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CHAPTER 7 

USE OF ADDITIONAL INFORMATION 

JUHA LAPPI AND ANNIKA KANGAS 
Finnish Forest Research Institute, University of Helsinki, Finland  

7.1 CALIBRATION ESTIMATION 

If there are not enough sample plots to give sufficiently good inventory results using 
only forest measurements, we may try to make use of auxiliary variables correlated 
with forest variables. The most obvious way is to use ratio or regression estimators 
(Section 2.7). The calibration estimator of Deville and Särndal (1992) is an 
extension of the regression estimator for obtaining population totals using auxiliary 
information. Both regression and calibration estimators can be employed if there are 
auxiliary variables for inventory sample plots known for which the population totals 
are also known, e.g. variables obtained from remote sensing or from GIS systems. 
The appeal of calibration estimators for forest inventories comes from the fact that 
they lead to estimators which are weighted sums of the sample plot variables, where 
the weight can be interpreted as the area of forest in the population that is similar to 
the sample plot.  
 The basic features of the calibration estimator of Deville and Särndal 
(1992) in terms of estimating means can be described as follows. Consider a finite 
population U consisting of N units. Let j denote a general unit, thus 

{ }NjU ,,,,1 ……= . In a forest inventory the population is a region where units are 
pixels or potential sample plots. The units in a forest inventory will be referred to 
here as ‘pixels’, and it will be assumed that an inventory sample plot gives values to 
the forest variables for an associated pixel. Each unit j is associated with a 
variable

jy  and a vector of auxiliary variables 
jx . The population mean of x, 

∑−=
U jN xX 1  is assumed to be known. The y  variables in a forest inventory are 

forest variables and the x  variables can be spectral variables from remote sensing or 
geographical or climatic variables obtained from GIS databases. 
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 Assume that a probability sample S is drawn, and 
jy  and jx  are observed 

for each j in S, the objective being to estimate the mean of y, ∑−=
U jyNY 1 . Let jπ  

be the inclusion probability and 
jd  the basic sampling design weight ( ) 1−= jj Nd π , 

which can be used to compute the unbiased Horvitz-Thompson estimator  

 ∑=
s jjd ydŶ . (7.1) 

A calibration estimator  

 ∑=
s jj ywŶ  (7.2) 

is obtained by minimizing the sum of distances, ∑
s

jj dwG ),( , between the prior 

weights jd  and posterior weights jw  for a positive distance function G, taking 
account of the calibration equation  

 Xx∑ =
s jjw . (7.3) 

If the distance between jd  and jw  is defined as  

 ( ) ( ) jjjjj ddwdwG 2
1  , −= , (7.4) 

the calibration estimator will be the same as the regression estimator 

 bXX ˆˆˆˆ ′
⎟
⎠
⎞⎜

⎝
⎛ −+==∑ dds jjr YywY , (7.5) 

where dX̂   and b̂   (a weighted regression coefficient vector) are 

 ˆ
d j js

d=∑X x and (7.6) 

 ( ) 1
ˆ

j j j j j js s
d d y

−′= ∑ ∑b x x x . (7.7) 

 If the model contains an intercept, the corresponding variable x  will be one 
for all observations, and the calibration equation (7.3) will then guarantee that the 
weights 

jw  add up to one. This means that when estimating totals, the 
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weights
jNw will add up to the known total number of pixels in the population. 

Thus 
jNw  can be interpreted as the total area, in pixel units, for plots of forest 

similar to plot j . The standard least squares theory implies that the regression 
estimator (7.5) can be expressed in the form 

 bX ˆˆ ′==∑s jjr ywY . (7.8) 

It is assumed that the intercept is always among the parameters. 

 Estimator (7.7) is defined if the moment matrix ∑ ′
s jjjd xx  is non-singular. 

Some of the weights 
jw  in (7.2) implied by Eqs. (7.6)-(7.8) may be negative. Non-

negative weights are guaranteed if the distance function is infinite for negative 
jw . 

Deville and Särndal (1992) presented four distance functions producing positive 
weights. 
 Minimization of the sum ( )∑s jj dwG  ,  so that (7.3) is satisfied is a non-
linear constrained minimization problem. Using Lagrange multipliers, the problem 
can be reformulated as a non-linear system of equations which can be solved 
iteratively using Newton’s method (for details, see Deville and Särndal 1992). If the 
initial values of the Lagrange multipliers are set to zero, the first step will produce 

jw
‘

s of the regression estimator (7.5).  
 Since the calibration estimator is asymptotically equivalent to the regression 
estimator, Deville and Särndal (1992) suggest that the variance of the calibration 
estimator should be computed in the same way as the variance of the regression 
estimator using regression residuals. There is no design-unbiased estimator of the 
variance in systematic sampling (Schreuder et al. 1993). 
 The emphasis on area interpretation for the weights has the same argument 
behind it as was used by Moeur and Stage (1995) for the most similar neighbour 
method (MSN), where unknown plot variables are taken from a plot which is as 
similar as possible with respect to the known plot variables. In both methods each 
sample plot represents a percentage of the total area, and all the forest variables are 
logically related to each other. The difference is that in the calibration estimator  
we obtain an estimate of the area of the sample plot for the whole population 
whereas in the MSN method each pixel is associated with a sample plot. Since there 
is no straightforward way of showing that the MSN method produces optimal results 
in any way at the population level, it may be safer to use the calibration estimator for 
computing population-level estimates for forest variables. The problem with the 
calibration estimator is that it does not provide a map. If a map is needed, then the 
weights provided by the calibration estimator need to be distributed over pixels 
using separate after-processing. 
 Lappi (2001) proposed a ‘small-area’ modification of the calibration 
estimator which can be used when several subpopulation totals are required 
simultaneously. He used satellite data as auxiliary information for computing 
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inventory results for counties. Sample plots in the surrounding inclusion zone are 
also used for a given subpopulation so that the prior weight decreases as distance 
increases. The error variance is computed using a spatial variogram model. Block 
kriging (Cressie 1986) provides an optimal estimator for subpopulation totals under 
such a model, but kriging can produce negative weights for sample plots, and the 
weights are different for each y variable. Thus it is not possible to give areal 
interpretations to sample plot weights in kriging.  

7.2 SMALL AREA ESTIMATES  

Small area estimation is needed when estimates are required for subdivisions or 
domains of the population. Although the estimates for the whole population may be 
quite reliable, only a few sample units may fall into a given domain i, whereupon the 
classical design-based estimators may have unacceptably large errors. Accurate 
estimates for all small areas usually require overall sample sizes that are much too 
large to be within normal budget constraints (Särndal and Hidiroglou 1989). Thus, in 
order to improve the estimates of the domains, information from nearby areas can be 
used.  
 Small area estimators are typically at least partially model-based 
(Schreuder et al. 1993) and are referred to as synthetic or global estimators when 
information for the whole area is used instead of just the information from the 
domain i of interest (Särndal and Hidiroglou 1989). Estimators based only on 
information for the domain of interest are referred to as local estimators.  
 The classical local estimator for a domain i is  

 
i

j

sj
i n

y
=y

i

∑
∈

ˆ , (7.9) 

where si denotes the sample drawn from domain i and ni is the sample size in i. This 
estimator is unreliable for small sample sizes, however. The simplest possible model 
that can be used for small area estimation is 

 N1,...=jfor    +=y jj ,εµ . (7.10) 

Under model (7.10) the global estimator of the mean for domain i is thus  

 
n
y

=y  j

sj
iSYN ∑

∈

ˆ , (7.11) 

where s denotes the sample taken from the whole area and n is the total sample size. 
In fact, this is the sample mean for the whole population. The simplest global 

i
obtained with (7.11) will have a lower variance than the local estimates (7.9), but 
they will be badly biased unless the domain mean is the same as the population 

estimate is thus the overall sample mean for all domains i. As n > n , the estimates 
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mean, YYi = , in all domains. With this model, the synthetic estimator (7.11) would 
differ from the domain mean even if all the units in domain i were measured, i.e. 
ni = Ni.  
 A compromise between these two estimators is to combine the estimators 
(7.9) and (7.11). Under model (7.10), the best linear unbiased estimator for the 
domain mean iY  is (Schreuder et al. 1993, p. 318) 

 y
N
ny

N
ny

i

i
i

i

i
iCOM ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= 1ˆ  (7.12) 

If all the units in domain i were measured, the domain mean would have the weight 
1 in this case and population mean 0, giving the correct estimate. 
 If additional information is available, it is possible to use a model (Ericksen 
1973,1974, Mandallaz 1991, see sections 3.2, and 2.7) 

 ,...1=+= jfory jjj εβx , (7.13) 

j
β are estimated for the whole population and global estimates for domain i are 
obtained by  

 βX ˆˆ
iiREGy = , (7.14) 

where iX  contains the true average values for the independent variables of domain 
i. The estimator of its variance (assuming infinite population or analytic inference) is 

 ii
2

iREG
=)yVar XXXX 1)(ˆˆ( −σ , (7.15) 

each sample point and 2σ̂ is the estimator for the model residual variance (Eq. 3.7). 
If only the intercept of model (7.13) is significant, this model reduces to (7.10). The 
estimator (7.14) is almost the same as the estimator (3.10) presented in section 3.2. 
The only difference is that in (7.14) the model coefficients are estimated for the 
whole population whereas iX is for domain i.  
 Synthetic methods of estimation assume that small areas have 
characteristics similar to those of the larger areas of which they are part (Gonzales 
1973). If this assumption is unjustified, the synthetic estimators will be biased. If the 
bias component does not tend towards zero as the sample size increases, the 
estimator is design-biased (Särndal 1984). On the other hand, if an estimator is 
biased under the assumed model it can be said to be model-biased. A biased  
 

where x  is a ( p+1) vector of independent variables at point (plot) j. The coefficients 

where X is the n × ( p+1) matrix containing values for the independent variables for 

’
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estimator may still be useful if its MSE is smaller than that of an unbiased estimator 
and if the presence of bias is acceptable. 
 This bias in synthetic estimators can be reduced by combining an unbiased 
estimator with a design-biased but low variance estimator, for example, so that the 
weight of the unbiased estimator increases as the sample size in the small domain 
increases. Such attempts have included the use of shrinkage or empirical Bayes 
estimators (Green et al. 1987, see also Hulting and Harville 1991).  
 It is also possible to correct the estimates obtained with global models by 
using residuals observed in domain i (Särndal 1984, Särndal and Hidiroglou 1989). 
Mandallaz (1991) proposed a global estimator 

 ˆ ˆˆ ( )i iii SUR
 = + yy −X β x β ,  (7.16) 

where ix is the vector of sample means and iX  is the vector of true means in a small 
area i. In (7.16) the synthetic model-based estimator (7.14) is corrected for the bias 
by means of the residuals observed in the small area i.  
 The estimator of its variance is (Mandallaz 1991) 

 21ˆ( ) ( )
( 1)

i

ji iiSUR
i i j s

 Var = ry r-n n ∈

−∑ ,  (7.17) 

where rji is the observed residual in domain i and plot j. 
 An alternative model for domain estimation would be 

 1,...,k=i  and  1,...=jfor    +c+=y ijiijij εβx , (7.18) 

where ci ~ N(0,σw
2) is a random domain effect, εij ~ N(0,σe

2) is a random plot effect 
and c and ε are mutually independent (Battese et al. 1988). The difference relative to 
model (7.13) is that the residual error term in (7.18) is divided into two components. 
The domain effect describes the difference of domain i from the population mean, 
which makes it useful for estimating the domain mean. The global estimator for the 
domain mean is then (Prasad and Rao 1990) 

 iiiMIX
c+=y ˆˆˆ βX , (7.19) 

where the domain effect iĉ  can be estimated by  

 ˆ ˆ( ) ( )ˆ
2
w

i i i i i i2
e2

w
i

 = y yc
+

n

σ γ
σσ

− = −x β x β  (7.20) 

and iγ is the (constant) correlation within domain i, calculated from the variances in 
the domain and plot effects and the number of plots. 
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 The estimator of iĉ  (7.20) is biased for a given ci , but unbiased over the 
distribution of domains (Lappi  1993). Thus the estimator (7.19) is also model-
biased for a given domain but unbiased over the distribution of domains. The larger 
the within-domain correlation, and the larger the difference )ˆ( βxii -y , the larger the 
predicted iĉ  in (7.19) is. As the variance σe

2 approaches infinity, the correlation 
approaches one and estimator (7.19) approaches estimator (7.16). This means that 
the global estimator of the mean (7.19) is corrected by means of the observed 
residuals, as in (7.16), but the amount of this correction depends on the correlation 
within the domains. The mean square error of (7.19) can be calculated using the 
theory of linear models, details of which can be found in Prasad and Rao (1990).  
 If only the intercept of the fixed part of model (7.18) is significant, the 
estimator (7.19) reduces to a linear combination of the estimate for the total area 
mean and the observed mean in domain i: 

 y

n
+

+

n
+

1=y i

i

2
e2

w

2
w

i

2
e2

w

2
w

iMIX

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

σσ

σµ
σσ

σ ˆˆ . (7.21) 

This estimator is quite similar to simple James-Stein estimators or the combined 
estimator (7.13) (Schreuder et al. 1993). Treating the domain effect as random 
provides a means of combining the domain mean efficiently with the estimator of 
the population mean. 
 Geostatistical methods provide interesting possibilities in small area 
estimation in a forestry context, since in most cases the auxiliary information 
includes coordinate locations. With these methods it is possible to take the 
autocorrelations present in the data explicitly into account, instead of just constant 
within-domain correlation as in the mixed model. In kriging methods, the 
autocorrelation between the sample plots is usually assumed to depend purely on the 
distance between the sample plots and to decrease with increasing distance. In a 
mixed model, however, this correlation is approximated by means of an average 
correlation over a predefined area. Thus the mixed model approach can be 
considered a special case of kriging. The kriging method has been presented by 
Journel and Huijbregts (1978), Burgess and Webster (1980a, 1980b), Ripley (1981) 
and Cressie (1986), for example, and for small area estimation by Mandallaz (1993) 
(see also Chapter 10). Examples of small area estimation in forestry are provided by 
Green et al. (1987), Mandallaz (1991), Kangas (1996) and Lappi (2001), for 
example .  

−
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Example 7.1  
 
The example is based on simulated data. Assume a 1000 hectare area with five 
distinct regions of interest. The volume of each region is surveyed. There is a 
satellite image available, and the near-infrared (NIR) channel is used as auxiliary 
information.  
 The true data were obtained assuming that the NIR was a normally 
distributed variable with mean 0.2482 and standard deviation 0.0364. A dataset of 
1000 observations for the regions was generated, and the true volumes were 
obtained from a model  

 i i322.7473 714.951 N IR +iV ε= − , 

where the standard deviation of iε was 38.66 m3/ha. The true mean values for NIR 
and volume in each area, calculated from these data, are presented in Table 7.1. 

Table 7.1 True values for volume and NIR  

District size, ha NIR Volume 
m3/ha 

STD 

1 94 0.22893 155.5 43.82 
2 69 0.25104 140.7 40.43 
3 123 0.26008 139.2 42.34 
4 537 0.28201 120.4 45.40 
5 177 0.31497 92.5 44.35 
sum/mean 1000 0.27802 122.5 47.84 

 
A sample of 50 plots was taken from the area at random. The values of NIR and 
volume for each sample plot are presented in Table 7.2.  

.
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Table 7.2 The sample. 

District NIR VOL District NIR VOL 
1 0.176512 212.6 4 0.264825 182.3 
1 0.212170 154.4 4 0.322347 70.3 
1 0.234031 170.8 4 0.313223 130.6 
1 0.196743 139.9 4 0.326355 95.3 
1 0.261204 159.6 4 0.264030 116.0 
1 0.235359 123.9 4 0.308574 93.6 
1 0.191436 222.9 4 0.313137 12.8 
2 0.244882 133.2 4 0.240222 142.5 
2 0.281133 70.8 4 0.281222 75.0 
2 0.252457 2.6 4 0.281231 127.1 
2 0.268814 119.0 4 0.330613 132.3 
2 0.268588 136.6 4 0.313529 114.9 
3 0.237107 169.6 4 0.261752 114.9 
3 0.253262 115.8 4 0.270598 115.1 
3 0.242354 141.9 4 0.327834 57.7 
3 0.268941 98.7 5 0.265201 141.3 
3 0.301190 163.5 5 0.319447 81.6 
3 0.273860 35.5 5 0.321587 120.4 
4 0.291545 116.2 5 0.272238 115.9 
4 0.259637 98.5 5 0.277245 142.2 
4 0.277605 110.7 5 0.309464 82.6 
4 0.239459 182.7 5 0.309751 89.2 
4 0.339731 56.0 5 0.275660 67.6 
4 0.226967 148.9 5 0.366935 28.3 
4 0.229883 202.5 5 0.326796 44.8 

 
A linear regression model, having the characteristics presented in Table 7.3, was 
estimated from the sample data. 
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Table 7.3 Model statistics. 

Regression Statistics     
R2 0.428969     
Adjusted R2 0.417073     
Standard Error 37.28421     
Observations 50     
      
ANOVA      

  df SS MS F Significance F 
Regression 1 50125.37 50125.37 36.0585 2.46E-07 
Residual 48 66725.41 1390.113   
Total 49 116850.8       
      

  Coefficients Std Error t Stat p-value   
Intercept 330.9492 36.24291 9.13142 <0.000   
NIR − 784.192 130.5926 − 6.00487 <0.000   

 
Estimates for the small area obtained with various formulae are presented in Table 
7.4.  

Table 7.4 Estimates for the small area. 

District n NIR 
iŷ  

(7.9) 
)ˆ( ie ys  

 (2.12) 
iSYNŷ   

(7.11) 
iREGŷ  

(7.14) 
iSURŷ  

(7.16) 
)ˆ( iSURe ys   

(7.17) 
1 7 0.22893 169.2 13.79 115.6 151.4 158.5 11.387 
2 5 0.25104 92.5 25.35 115.6 134.1 102.0 31.773 
3 6 0.26008 120.8 20.36 115.6 127.0 123.0 20.389 
4 22 0.28201 113.5 9.45 115.6 109.8 116.3 6.946 
5 10 0.31497 91.4 12.21 115.6 84.0 83.1 8.346 

total 50 0.27802 115.6 6.91 115.6 112.9 112.9 5.216 
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