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CHAPTER 6 

GENERALIZING SAMPLE TREE 
INFORMATION  

JUHA LAPPI, LAURI MEHTÄTALO AND KARI T. KORHONEN 
Finnish Forest Research Institute 

Some characteristics, e.g. tree height, may be rather expensive to measure, so that 
we may not want to measure them for all trees in an inventory but just for a  
subset, called here sample trees. We will then want to generalize the sample tree 
information to cover the tally trees, for which basic measurements, usually diameter 
at breast height and tree species, are available. In addition, we are often interested in 
many characteristics of trees which are too expensive to measure even on sample 
trees, e.g. stem volume or tree biomass. If these variables can be predicted using 
sample tree variables, we may then want to generalize the sample tree information to 
obtain predictions for the tally trees as well.  
 The first section of this chapter describes briefly different approaches to 
modelling sample tree variables using tally tree variables (called tally tree 
regression), while the second shows how auxiliary data can be utilized if the inventory 
data is too limited for performing tally tree regressions. The difference between real 
sample tree variables (e.g. tree height) and predicted sample tree variables (e.g. tree 
volume and biomass) will be ignored in the first two subsections, but in the third 
subsection we will take a closer look at the consequences of the three-level model 
structure created by observed tally tree variables, observed sample tree variables and 
predicted sample tree variables.  

6.1 ESTIMATION OF TALLY TREE REGRESSION 

Let y denote the sample tree variables (e,g, height, predicted volume or predicted 
biomass) and let x  denote tally tree measurements (e.g. dbh). The tally tree 
regression model is  
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 ( ) ( )i i i i iy E y e f e= + = +x x β ,  

where yi, xi and ie  are the sample tree variable, the vector of tally tree variables and 
the residual, respectively, for sample tree i and β is a vector of parameters. The 
assumptions regarding the form of ( )if x β  and the properties of ie  depend on the 
modelling situation, see Weisberg (1985) and Davidian and Giltinan (1995) for a 
general formulation of a regression model.  
 In forestry applications, a transformation of y is often modelled instead of y 
itself, in order to solve the problem of heteroscedastic residuals. In many cases, it 
also makes the model linear with respect to some transformations of x. Techniques 
for fitting non-linear models and estimating variance functions have developed 
rapidly in recent years, and these are now commonly available in modern statistical 
software packages (e.g. Pinheiro and Bates 2000). Modelling of the dependence of 
predicted sample tree volume on tree diameter using non-linear regression and a 
variance function is demonstrated in Example 6.1. 
 Forest inventory data are usually collected from several plots with several 
sample trees per plot. Hierarchical datasets of this kind can naturally be modelled 
through a mixed modelling approach. A mixed model for variable y in the case of 
tree i on plot k is defined as  

 ( ) ( ) kikkikikkiki efeyEy +=+= bβxbx ,, ,  

where yki, xki and kie  are the sample tree variable, the tally tree variable vector and 
the residual, respectively, for sample tree i on plot k; β  is the vector of fixed 
parameters and kb  the vector of random parameters on plot k. Thus the random 
parameters vary from plot to plot. The expectations for these parameters are usually 
assumed to be 0 and their variances are estimated at the model fitting stage. The 
realized values of the random parameters can be predicted for each plot in the 
dataset. When using the model for prediction purposes, one can use either 
expectations or predictions for the random parameters, the former approach giving 
population-level predictions and the latter plot-level predictions. In addition to the 
plots, stands, clusters or measurement occasions may create additional levels of 
grouping in the data. For a formal presentation of the approach, readers are referred 
to Lappi (1993), Davidian and Giltinan (1995), Pinheiro and Bates (2000) and 
McCulloch and Searle (2001). Forestry applications of linear mixed models have 
been reported by Lappi (1991), Gregoire et al. (1995) and Mehtätalo (2004), for 
example, and non-linear models by Gregoire and Schabenberger (1996) and Fang et 
al. (2001). Both a non-linear and a linear mixed-effects modelling approach to the 
dataset of Example 6.1 are illustrated in Example 6.2. 
 An important point to note, as discussed by Diggle et al. (2002), for 
instance, is that in an inventory we are estimating a cross-sectional regression 
function (population average) for y. The resulting function is not generally a logical 
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one for describing how y in a single tree is related to the development of x over time 
(subject-specific curve). For instance, in cross-sectional data ( )DH  often decreases 
with respect to D when D is large, even though the height of each single tree grows 
as D grows. This results from the fact that in inventory data trees with a large D are 
usually open-growing ones that have been allocating resources to diameter growth 
rather than height growth. Thus the growth allometry of individual trees does not 
provide theoretical reasons for any specific functional form for ( )E y x . 
 There are also approaches that do not require definition of the functional 
form of ( )E y x . One approach is to compute class means for y in various classes of 
x. The y values for tally trees can then be obtained either by using class means 
directly or by interpolating them. The bias in the estimated ( )E y x  is small in these 
methods, but the estimation variances can be large because the large number of 
parameters (class means) has to be estimated. This approach does not make proper 
use of the smoothness of ( )E y x . There are many methods nowadays for estimating 
flexible regression functions without any theoretical parametric models, e.g. 
regression splines, kernel smoothing, local regression and smoothing splines (see 
Hastie et al. 2001). Smoothing splines may provide a good general basis for future 
large-scale inventories. 
 The approaches presented above may be problematic if there is more than 
one variable that should be generalized. In such a case, regression models are 
required for each variable and it is difficult to ensure that the estimates for a single 
tally trees are logical and harmonized. One solution for avoiding such problems is 
non-parametric nearest neighbour (k-nn) estimation. The principle is simple. For 
each tally tree we search for the sample trees that are most similar to it and calculate 
the (weighted) mean of y for these trees. Similarity is measured with respect to tally 
tree variables x.  For example, the estimate of stem volume (or saw log volume) for 
a tally tree is the (weighted) mean value of stem volumes (or saw log volume) of its 
nearest neighbours. This technique was employed by Korhonen and Kangas (1997) 
to generalize sample tree information for tally trees.  
 

 
Example 6.1 Estimation of tally tree regression using weighted non-linear least 
squares 
 
This example uses non-linear regression to fit a volume model to sample tree data. 
Note that the volume modelled is not the actual volume but a prediction based on 
diameter and height (see section 6.3). The dataset consists of 385 Scots pine trees 
measured on 16 plots, being a subset of the INKA data originally collected for 
growth and yield studies (Gustavsen 1998). All these trees were measured for 
diameter and height, but just 61 trees were selected as sample trees for this example 
(Table 6.1), the remaining 324 trees being left as tally trees.  
 The volume of tree i in the sample tree data seemed to follow a non-linear 
model 
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 ( )exp lni i iy a b x e= + + , 

where a and b are model parameters, xi is the diameter of tree i, i=1,…,N , and N is 
the total number of trees in the data. Since, as seen in Figure 6.1a, the variance of the 
volume clearly increased as a function of diameter, it was assumed that  

 ( ) 2 2var i ie x δσ= . 

Using this assumption, the model was fitted using weighted non-linear least squares. 
The initial guesses for the estimates, obtained from a linearized ordinary least 
squares regression, were a = -2.373 and b =2.632, and the final parameter estimates 
obtained were  

a =-2.365, b= 2.631, σ2= 0.010252 and δ = 2.677. 

The variance function seemed to homogenize the variance well (Figure 6.1b), and 
the resulting model (see Figure 6.3) was used to predict the volumes of tally trees, 
giving a RMSE for the predictions of 19.04 dm3.  

Table 6.1 The sample tree data of Examples 6.1-6.3. Volume is a prediction based on 
diameter and height (Laasasenaho 1982). Plot 51 was not included in the modelling data. 

plot Diameter, Height, Volume, plot Diameter, Height, Volume, 
1 5 4.9 6.17 10 14.9 14 122.60 
1 8.3 7.7 23.31 11 10.3 8.4 38.33 
1 9.7 9 35.99 11 12.2 10.9 66.48 
2 5.2 5.6 7.28 11 5.7 7.3 10.58 
2 6.3 5.8 10.93 11 7.7 9.8 24.41 
2 7.6 7.2 18.58 11 7.6 8.5 21.16 
2 10.1 9.1 39.34 11 10.2 10.4 44.83 
2 8.1 7.2 21.09 11 9.2 10.3 36.24 
3 15.2 11.6 108.14 12 12.7 13 83.84 
3 10.7 9.3 44.90 12 11.6 13 70.10 
3 8 7.2 20.58 12 25.7 18.6 458.78 
4 12 13.1 75.47 12 12.2 13.3 79.02 
4 12.7 12.1 78.74 12 13.4 13.6 96.97 
4 15.1 13.4 121.07 12 19.5 17.5 253.89 
5 18.7 19.6 259.58 12 22.1 19.7 361.11 
5 22.2 18.9 350.64 12 18.4 18 232.59 
6 3.3 3.1 2.19 13 9.1 7.8 28.27 
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6 5 3.9 5.45 13 10.3 8.1 37.23 
6 3.7 3.8 2.95 13 5.7 5.3 8.43 
6 3.1 3.1 1.93 13 9.1 7.7 27.99 
6 4 3.3 3.27 13 12.1 8.7 54.22 
6 4.5 3.6 4.27 14 6.7 6.2 12.94 
7 13.1 10.3 72.92 14 7 5.6 13.16 
7 13.5 10 75.47 14 4.9 5.6 6.46 
7 15.1 10.3 96.45 15 5.4 8.2 10.41 
7 9.5 7.8 30.79 15 6.5 8.2 15.06 
8 21.7 14.1 257.33 16 4.8 6.5 6.89 
8 10.4 9.2 42.06 16 7.4 7 17.25 
8 17 13.8 156.79 16 5 5.3 6.49 
8 6 7.4 11.85     
8 14.9 11.4 102.43 51 3.9 4 3.36 
9 21.5 16.9 297.46 51 8.1 5.6 17.60 

 

Figure 6.1 Unstandardized (a) and standardized (b) residuals of the weighted non-linear least 
squares fit. The standardized residuals were obtained by dividing the unstandardized 

residuals by the square root of the estimated variance function.  
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model are correlated for a single plot. Thus we assume a non-linear mixed model  

 ( )exp lnki k ki kiy a b x eα= + + + , 

where yki, xki and eki are the volume, diameter and residual of tree i on plot k. Now 
i =1,…,Nk, where Nk is the total number of trees on plot k. The same model as in 
example 6.1 was assumed for the residual variance, the only difference being that 

k
with the variance var(ak) and expectation α. Fitting the model by means of restricted 
maximum likelihood gave the following parameter estimates: 

 α = -2.001, b = 2.473, var(ak) = 0.13162, σ 2 = 0.0069952 and δ = 2.548. 

Predictions of ak (McCulloch and Searle 2001, p. 247-262; Pinheiro and Bates 2000, 
p. 71) were calculated for each plot to obtain plot-specific volume models. The 
population curve and plot-specific curves for each plot are shown in Figure 6.2. 
Using the plot-specific curves, the RMSE of the volume prediction was 13.67dm3, 
which shows a considerable reduction as compared with the model without random 
effects. This can be interpreted in two ways. From a statistical point of view, random 
effects can either be said to be part of the error term or can be considered to be 
random parameters. In the first interpretation, the original errors in the model with 
random effects are decomposed into two components, plot-level errors and tree-level 
errors, while in the second, the decrease in RMSE is obtained by adding a large 
number of additional parameters to the model.  
 In some cases it is desirable to use linear mixed models rather than non-
linear ones. To demonstrate the difference between the two, the model  

 ln lnki k ki kiy a b x eα= + + +  

was fitted to the data. Note that the first two terms of the model are obtained by 
taking a logarithm of the non-linear model without the error term. The difference 
between the non-linear and linearized models lies in the assumptions regarding the 
error term (see McCulloch and Searle 2001, p. 78). Fitting of the linearized model to 
the data gave the parameter estimates  

 α = -2.002, b = 2.472, var(ak) = 0.13412 and var(eki) = 0.060672. 

The estimates for the fixed parameters are almost equal to those of the non-linear 
model, the differences between the random parameters resulting from different 
assumptions concerning the error variance. 

 
 
Example 6.2 Estimating plot-specific tally tree regression using a mixed model. 
 
It can be clearly seen from Figure 6.2, in which the observed volumes for trees on 
the same sample plot are connected by dashed lines, that the residuals of the volume 

parameter a was now defined as α + a , i.e. it was assumed to be specific for each plot 
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Figure 6.2 Observed volumes plotted against diameter. Observations from the same plot are 
connected by dashed lines. The thick solid line shows the population curve and the thin solid 
lines the plot-specific curves. Note that each plot-specific curve is plotted within the range of 

sample tree diameters of the plot and most of the 16 plot-specific curves are for diameters less 
than 15 cm.  

 

6.2. GENERALIZING SAMPLE TREE INFORMATION IN A SMALL 
SUBPOPULATION 

We may need to estimate ( )E y x  in a small population or subpopulation where not 
many sample trees have been measured. The subpopulations may be stands or small 
administrative areas, for instance. If we are using sample tree information collected 
only from the target subpopulation, the estimation errors in ( )Ê y x  may be large. 
We may thus try to use some prior information to obtain a smaller MSE for 

( )Ê y x , even though the estimate for ( )Ê y x  may be biased for the given 
subpopulation. Two such methods will be shortly discussed in the following, mixed 
estimation and mixed models. 
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6.2.1 Mixed estimation 

Mixed estimation can be applied if there are two datasets available: a dataset 
sampled from the current target population and an auxiliary dataset from a 
population which we anticipate to be quite similar to the target population. The two 
are then combined, with less weight attached to the observations in the auxiliary 
dataset than to those in the target population. Korhonen (1993) used mixed 
estimation to calibrate the data of the 8th Finnish National Forest Inventory using 
data from the previous inventory.  
 More specifically: let 1y  and 2y  be the vectors of the dependent variables 
for the sample as obtained from the target population and from the auxiliary 
population, respectively. Using the example above, these could be the values of the 
sample tree volume equation ( )HDV , , possibly divided by a function s(D) used to 
stabilize the error variance. Let us assume a linear model 1 1= +y X b e  and let 1X  
and 2X be the model matrices from the two samples, respectively. In mixed 
estimation b is estimated by ( ) ( )1

1 1 2 2 1 1 2 2
ˆ λ λ

−
′ ′ ′ ′= + +b X X X X X y X y  instead of the 

ordinary least squares estimate ( ) 1

1 1 1 1

−
′ ′X X X y . Thus a weighted least squares 

regression is applied in which the weights on the observations of the target 
population are 1 and those on the observations of the auxiliary population are λ. If 
the two populations do not deviate much, the resulting estimate will have a smaller 
MSE even if it is biased. For more information on mixed estimation, see Theil and 
Goldberger (1961) and Toutenburg (1982). Use of the mixed estimation approach 
with the non-linear volume model of Example 6.1 is illustrated in Example 6.3.  
 Ridge regression is another biased estimation method that can provide 
parameter estimates having a smaller MSE error than OLS, especially in small 
datasets. In this method the parameter estimates are shrunken towards zero. Both 
mixed estimation and ridge regression are formally similar to the prediction of 
random parameters using mixed models. Mixed models have a more natural 
theoretical basis, however.  

6.2.2 Applying mixed models 

If we are making an inventory in several subpopulations or classes which can be 
considered a priori to be similar, we can employ techniques which ‘borrow strength’ 
from other subpopulations. The classes can be sample plots or stands, for instance. 
The fitting of a mixed model was discussed in section 6.1. We now show how an 
estimated mixed model can be employed to predict tally tree regressions for small 
subpopulations outside the estimation data.  
 Mixed model prediction is based on linear prediction theory, which we will 
first explain briefly. Assume that we have a vector of random variables, h, which 
can be divided into two parts 
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 ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

h
h

h ,  

where h1 and h2 are random vectors of length 1 or more. It is assumed that E(h1)=µ1, 
E(h2)=µ2, var(h1)=V1, var(h2)=V2, and cov(h1,h2’) = V12. Using the notation of 
McCulloch and Searle (2001, p. 247), this can be written as  

 1 1 1 12

2 2 12 2

~ ,
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

h µ V V
h µ V V

. (6.1) 

Assume that we have observed the random vector h2 and want to predict vector h1. 
The Best Linear Predictor of h1 is 

 ( ) ( )1
1 1 1 12 2 2 2

ˆBLP −= = + −h h µ V V x µ , (6.2) 

with a prediction variance of  

 ( ) 1
1 1 1 12 2 12

ˆvar −− = −h h V V V V  (6.3) 

(McCulloch and Searle 2001, p. 250). Thus, if the expectations and variance-
covariance matrices of two random vectors are known and either one of them is 
observed, the other one can be predicted, and the variance of the prediction error can 
be calculated using Equation (6.3). If h follows the multinormal distribution, BLP 
will also be the Best Predictor. If the matrices V1, V2 and V12 and the vector 2µ  are 
replaced in the calculations by their estimates, the resulting predictor is the 
Estimated Best Linear Unbiased Predictor (EBLUP). Henderson mixed model 
equations lead to equivalent equations that do not require the inverse of V2 and are 
thus more convenient when the number of sample trees in the subpopulation is large 
(see Searle et al. 1991, Lappi 1991). 
 Assume that the sample tree variables in subpopulation k are written in 
vector yk , and assume that they follow a mixed model  

 ( ) kkkk eZbxfy ++= β, ,  (6.4) 

where ( )β,kxf  is the fixed part of the model, giving E(y|xk), bk includes the random 
parameters for subpopulation k, Z is the design matrix corresponding to the random 
coefficients and eki is the vector of residuals. The design matrix has a row for each 
sample tree, which includes those observed predictors which have a random 
coefficient. Linearity in the random part is required for simplicity. For prediction of 
the random parameters of non-linear mixed models, see Pinheiro and Bates (2000) 
and Fang et al. (2001). 

’

’
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 Let us note var(b)=D and var(e)= R. Estimates for these matrices are 
available from the estimation stage of the model. If the errors are homogeneous and 

1 k 2 k

1 2 12
predict the random parameters in subpopulation k, denoted by k̂b , and equation 
(6.3) to calculate its prediction error, ( )ˆvar k k−b b . 

 According  to model (6.4), the prediction regarding tree i in subpopulation 
k

 
is  

 ( ) ( ) ˆˆ , ,ki ki k ki ky E y f β= = +x y x zb . 

The variance in the predictions is needed for calculating their confidence intervals, 
for example, and for correcting for bias if yki is not on an arithmetic scale. Ignoring 
the estimation error in the fixed parameters, the prediction variance is  

 ( ) ( ) ( )ˆˆvar var varki ki k k kiy y e− = − +z b b z , 

where z is the row of Z that corresponds to the observation xki.  
 The above approach can be used when the sample tree variables in the 
modelling data coincide with those in the target population data. Using the volume 
example, predicted sample tree volumes based on diameter and height can be used if 
the volumes in the modelling data are based on same volume model. This is not the 
case, however, if the volumes in the modelling data are true volumes based on stem 
analysis and the sample tree volumes are predictions based on diameter and height. 
A multivariate approach for predicting sample tree volumes using measured sample 
tree heights, developed by Lappi (1991), is presented in Example 6.4.   

 
Example 6.3 Generalizing sample tree information to a small subpopulation 
 
Assume that we want to generalize the volumes for tally trees on a plot that is not 
included in the modelling data of the previous examples. Assume that two sample 
trees were measured on the plot (plot 51 in Table 1). This example demonstrates the 
use of both mixed estimation and mixed model prediction for generalizing sample 
tree information.  
 
Mixed estimation 
 
In order to homogenize the residual errors, the model of Example 6.1 was 
transformed to 

 

we obtain V =D, V = ZDZ’+R and V =DZ’. Now we can use equation (6.2) to 
uncorrelated, R=σ2I. Let us define h = b , h = y  in equation (6.1). Using model (6.4) 

’

LAPPI ET AL. 94



 

GENERALIZING SAMPLE TREE INFORMATION 

where, based on the variance function of Example 6.1, ( ) 2.68
i is x x= .   

 The dataset used in the previous examples was taken here as the auxiliary 
dataset for mixed estimation. Since the auxiliary data include 61 trees and the plot 
data only 2, uniform weighting of all the observations in the combined dataset would 
have given too much weight to the auxiliary data. Defining the weights as λ=1 in the 

data and half to the auxiliary data. Fitting of the model to the combined data using 
weighted least squares gave the parameter estimates  

 a= -2.400 and b = 2.631.  

The resulting curve is shown by the dashed line in Figure 6.3. One can see that it is 
more accurate than the population curve of Example 6.1, but clearly gives 
excessively large volumes for the sample trees. The RMSE of the prediction was 
12.51 dm3 and the bias (predicted-observed) 8.80 dm3. 
 Another approach to mixed estimation would have been to generate an 
artificial auxiliary dataset using an existing volume model (Pekkonen 1982). In this 
case, for example, one could have used the model of Example 6.1 to generate 
artificial trees with diameters varying systematically within the diameter range of the 
tally trees. The mixed estimation model would then have been fitted to the dataset 
consisting of the observed sample trees and the artificial sample trees and the 
weighting of the auxiliary data could have been controlled by the number of 
artificial trees. 
 
Mixed model prediction 
 
In this example the random parameters of the linearized volume model of Example 
6.2 were predicted for the plot using the two measured sample trees of plot 51 (Table 
6.1). Since the only random parameter in our example is the constant term, the 
average of the residuals includes all the information that is needed for predicting the 
random effect and equations (6.1 and 6.2) can be simplified. Let us first calculate the 
average of the observed logarithmic volumes as 1.21 2.87 2.04

2ky += = .  The 

average of the expected logarithmic volumes is obtained using fixed parameters of 

the model: 1.36 3.17 2.27
2

µ += = . Equation (6.1) now takes the form   

plot data and λ= 2/61 = 0.0328 in the auxiliary data gives half of the weight to the plot 

( ) ( )
1 exp( ln )i

i i
i i

y a b x e
s x s x

= + + , 
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( )

( ) ( ) ( ) ( )
2

2 2

var 2 0.134ˆ 2.04 2.27 0.206
var var 0.0607 2 0.134

k k
k k

ki k k

n a
a y

e n a
µ ⋅′= − = − = −

+ + ⋅
. 

Thus, according to the model (see example 6.2), the expected logarithmic volume on 
the plot is  

 ( )ln 2.002 0.206 2.47 ln 2.208 2.47 lnki k ki kiE y y x x= − − + = − + . 

Before applying the exponential transformation to obtain the volumes on an 
arithmetic scale, half of the error variance needs to be added to the logarithmic 
prediction. The error variance consists of the residual error var(eki)= 0.06072 and the 
prediction error of the plot effect, 

 ( ) ( )
( ) ( )

2
4

2
2 2

var 2 0.134ˆvar var( ) 0.134
var var 0.0607 2 0.134

0.00167.

k k
k k k

ki k k

n a
a a a

e n a
⎡ ⎤ ⋅⎣ ⎦− = − = −

+ + ⋅
=

 

Thus, the volume expectation is 

 
( )

( )

0.00167 0.00368exp 2.208 2.47 ln
2

exp 2.202 2.47 ln ,

ki k ki

ki

E y y x

x

+⎡ ⎤= − + +⎢ ⎥⎣ ⎦
= − +

 

which is shown with a solid line in Figure 6.3. The predictions are more accurate 
than in the mixed estimation approach (RMSE 4.43), but they are still slightly biased 
for plot 51, the observed bias being 3.01 dm3. 
 Both the mixed estimation and mixed model prediction approaches lead to 
a plot-specific volume model that is obtained from the population curve by shrinking 
it towards the observed volumes of the sample trees. In mixed estimation the degree 
of shrinkage depends on the ad hoc weights assigned to the auxiliary data, while in 
the mixed model approach it is defined by the estimated within-plot and between-
plot variances in the mixed model. 

 
( ) ( )
( ) ( ) ( )

var var0
~ ,

var var var
k k k

k k k ki k

a a a
y a a e nµ

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟+⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

, 

where n = 2, var(ak) = 0.1342 and var(eki) = 0.06072. The Best Linear Unbiased 
Predictor of ak is calculated to be 
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Figure 6.3 The dataset and fitted curves of Examples 6.1 and 6.3. The black circles show the 
true volumes of the two sample trees and the open circles those of the tally trees. The dotted 
line shows the expected curve of Example 6.1, the dashed line the curve obtained with mixed 

estimation and the solid line that obtained with mixed model prediction.  

 
Example 6.4 The multivariate case 
 
Lappi (1991) constructed the following multivariate model for the logarithmic 
height and logarithmic volume of tree i in stand k from stem analysis data 
(Laasasenaho 1982): 

 0 1
1 1ln 3.410 18.58ki k k ki

ki ki

H a a e
D D

= − + − +  and 

 0 1
1 1ln 2.704 48.93 1.387lnki ki k k ki

ki ki

V D c c u
D D

= − + + − + ,  

ki 0k, a1k, c0k and c1k are stand-specific random 
ki ki ki

var(uki)= 0.01540 and covariance cov(eki,uki) = 0.01040. Let us write the random 

where D  is DBH + 7 cm, parameters a
parameters and e  and u  are residuals with estimated variances of var(e ) = 0.01113, 
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parameters as vectors ( )0 1k k ka a=a  ( )0 1k k kc c=c and define ( )k k k=b a c . 
The estimated dispersion matrix of bk is (Lappi 1991) 

 
( )

[ ]1 12

12 2

0.04739 0.3887 0.05082 0.4772
0.3887 20.64 0.6036 24.88

var
0.05082 0.6036 0.05988 0.7876

0.4772 24.88 0.7876 31.11

.

k

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥= =
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

b D

D D
C H

D D

 

The last two parts define a partition of matrix D that is needed in the following 
calculations. The measured height of a sample tree will be used below to predict the 
random parameters of the volume function. Assume that two sample trees of 
diameters 20 and 30 cm and heights 20 and 26 m have been measured. The 
measured heights follow the model  

 k k k= + +y µ Za e , 

where vector yk includes the measured logarithmic heights, 
ln 20 3.00
ln 26 3.26k
⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

y , 

and µ their expectations, which are obtained using the first two terms of the height 

model as 
2.72
2.91
⎡ ⎤= ⎢ ⎥
⎣ ⎦

µ . Matrix Z is the design matrix of the random part, i.e., 

( )
( )

1 1 20 7
1 1 30 7

+⎡ ⎤
= ⎢ ⎥+⎣ ⎦

Z  , and ak and ek are unknown vectors of random parameters and 

random residuals with variances ( ) 1var k =a D  and ( )var 0.01113k = = ⋅e R I . Using 
the height and volume models, equation (6.1) can be written as 

 
1

~ ,k

k

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠

b D CZ0
y ZC ZD Z Rµ

 

and the BLUP of bk is (Equation 6.2)  

 

’ ’ ’ ’ ’

’

’
’ ’
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 ( ) ( )1
1

0.244
0.985ˆ
0.230
1.131

k k
−

⎛ ⎞
⎜ ⎟
⎜ ⎟= + − =
⎜ ⎟
⎜ ⎟
⎝ ⎠

b CZ ZD Z R y µ  , 

i.e. the predicted random parameters are a0k = 0.244, a1k = 0.985, c0k = 0.230 and 
c1k =1.131. The predicted logarithmic heights and volumes are obtained by writing 
these estimates into the height and volume models.  
 In order to arrive at unbiased predictions of volumes and heights, half of the 
prediction variance was added to the predicted logarithmic heights and volumes 
before applying the exponential transformation. The prediction variance of random 
parameters was first calculated to be  

 

( ) ( ) 1
1

ˆvar

 0.0212 0.536  0.0266 0.648
0.536 17.6 0.716 21.3

 0.0266 0.716  0.0372 0.918
0.648 21.3 0.918 26.8

k k
−− = − +

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟=
⎜ ⎟− −
⎜ ⎟

− −⎝ ⎠

b b D ZC ZD Z R CZ

. 

Ignoring the estimation errors in the fixed parameters, the prediction variances of the 
predicted logarithmic heights were then obtained from the diagonal of  

 ( ) ( ) IZaaZyy 01113.0*ˆvar***ˆvar +−=− kkkk , 

where yk* denotes the heights of the tally trees, Z* the design matrix of tally trees 
and ( )ˆvar k k−a a  includes the first two rows and columns of ( )ˆvar k k−b b  (see the 
definition of bk). The height and volume models corrected for population level and 
local bias are shown in Figure 6.4. 

’ ’ ’

’ ’

’
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Figure 6.4 Predicted height and volume models when random parameters are 0 (dashed lines) 
and are predicted using the two observed heights shown in the plot on the left.  

 

6.3 A CLOSER LOOK AT THE THREE-LEVEL MODEL STRUCTURE 

Let y denote a variable for which we do not have any measurements in the 
inventory data (e.g. stem volume), let x  denote tally tree measurements (e.g. dbh), 
and let z  denote sample tree variables for which we have some measurements (e.g. 
tree height). The statistical analysis is straightforward if we assume that both x  and 
z  are random vectors. We then assume that we know the conditional expectation 

( ),E y x z (called here the sample tree regression) and the conditional variance 
( )var ,y x z , which have been estimated from previous research data. The sample 

tree regression can be applied using sample tree measurements (note that 
( ) ( )( )var , var , ,y y E y= −x z x z x z ). We would like to estimate the tally tree 

regression ( )E y x  and its residual variance ( )var y x  using a random tree sample 
from the target population. 
 The conditional expectation ( )E y x  can be  presented as (see Rao 1973, 

p. 97) 

 ( ) ( ),E y E E y= z xx x z  (6.5) 

where Ez x denotes the expectation over the distribution of z for a given value of x.  
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 There are two approaches for estimating the tally tree regression ( )E y x  
using (6.5). First, if we have a random sample from the population, the tally tree 
regression ( )E y x  can be estimated using the sample tree regression function 

( ),E y x z  as the dependent variable which is regressed on x , as in Examples 6.1 
and 6.2. The multivariate approach presented in Example 6.4 can also be shown to 
be equivalent to this approach.  
 A second possibility is to estimate the conditional distribution of z for a 
given value of x and then compute the expected value for ( ),E y x z  with respect to 
this conditional distribution. If ( ),E y x z  is not linear with respect to z, a numerical 
integration or approximation method is needed to compute the expected value. 
 The prediction variance of y can be expressed as (see Rao 1973): 

 ( ) ( ) ( )var var , var ,y E y E y= +z x z xx x z x z . (6.6) 

When ( )E y x  is estimated by regressing observed values of ( ),E y x z  on x , the 
estimator ( )Ê y x  also entails some estimation error. When y is predicted for tally 
trees using ( )Ê y x , i.e. ( )ˆŷ E y= x , the expected squared error consists of both the 
estimation error of the regression model ( ( ) ( )Ê y E y−x x ) and the residual 
variance ( )var y x of the true model ( )E y x . Thus, for a given ( )Ê y x : 

 ( )( ) ( ) ( )( ) ( )22 ˆˆ varE y y E y E y y− = − +x x x x . (6.7) 

The estimation error ( ) ( )Ê y E y−x x  consists of both the random error of the 
estimation procedure and possible model mis-specification error, i.e. a bias. If the 
bias component can be assumed to be small, the expected squared error over 
repeated estimations of ( )Ê y x  will be 

 ( )( ) ( )( ) ( ) ( )2 ˆˆ var var , var ,E y y E y E y E y− = + +z x z xx x x z x z . (6.8) 

The first component of (6.8) results from the estimation errors in the model and the 
last two components are the residual errors of sample tree regression and tally tree 
regression, respectively.   
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we want to predict the volumes of the tally trees, denoted as V. The known sample 
tree volume equation is denoted by ( ),V D H  and the unknown tally tree volume 
equation by ( )V D , that is ( ) ( ), ,V D H E V D H= , and ( ) ( )V D E V D= . The 
relation between V and D is dependent on the history of the stands, so that we cannot 
assume that there exists a universal relationship ( )V D which is constant from 
inventory to inventory. Using (6.5), we obtain 

 ( ) ( ),H DV D E V D H= . 

Adopting the first approach, the volume of the tally trees can be predicted by 
constructing a regression function for ( ),V D H  with respect to D. Taking the 
estimation error of  ( )V D  into account as well, the expected squared error is 
(Equation 6.8): 
 

( )( ) ( ) ( )( ) ( ) ( )2ˆ ˆvar var , var ,H D H DE V D V V D V D E V D H E V D H− = − + + . 

  (6.9) 

The conditional variances may be easier to understand if they are presented in an 
equivalent form showing that they are variances of residual errors: 

 ( ) ( )( )var , var ,V D H V V D H= −       and 

 ( ) ( ) ( )( )var , var ,H D E V D H V D H V D= −  

The last two terms in (6.9) are now the residual variance of the sample tree volume 
equation (estimated from true volumes in original research data) and the variance of 
the sample tree volume function around its expected value, i.e. the residual variance 
of the tally tree volume equation. Referring to Example 6.1, the first term is the 
estimation variance of the model, the second term is the residual variance of the 
volume equation of Laasasenaho (1982) and the third term is the residual variance of 
the estimated model.  
 Adopting the second approach, we first estimate the conditional distribution 
of H for a given D and then compute the expected value of ( ),V D H  with respect to 
this distribution. The most important property of the conditional distribution of H for 
a given D is the expected value ( )H D , i.e. the height/dbh curve. If the distribution 

 As an example, let us assume that dbh, denoted as D, is the tally tree 
measurement, and dbh and height, denoted as H, are sample tree measurements, and 
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2004). This is justified if ( ),V D H  is linear with respect to H, that is 

( ) ( ),V D H g D H=  for a known function of g. In this 

case ( )( ) ( ) ( ),E V D H D g D H D=  (see Rao 1973, p. 97). But because the volume 
is slightly non-linear with respect to height for a given dbh, the use of 

( )( ),V D H D entails a certain bias. If the error variance is to be computed using 

only the error variance of ( ),V D H , the third term in (6.9) will be ignored. For an 
error analysis of this approach, see Gregoire and Williams (1992). 
 If the error variance of the height equation ( )H D  is also estimated, a 
simple approximation for the distribution of H for a given D is a two-point 
distribution which places half of the probability mass on the expected value plus 
standard deviation and half on the expected value minus the sd. Using this two point 
distribution, we arrive at the approximations: 

 ( ) ( ) ( )( )0.5 , ,E V E V D d H E V D d Hµ σ µ σ≈ = = − + = = +  (6.10) 

 
( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )2 2

var 0.5 var , var ,

0.5 , ,

V V D d H V D d H

E V D d H E V E V D d H E V

µ σ µ σ

µ σ µ σ

≈ = = − + = = + +

= = − − + = = + − ,
 

  (6.11) 

where d is the diameter of the tally tree, µ   its expected height and σ  the standard 
deviation of the height prediction (Example 6.5). 
 The above equations can be applied to individual trees if the trees in the 
inventory data are assumed to be independent. The assumption of a model with plot-
level random effects, for example, implies that the trees on the same plot are 
correlated, and the conditional expectations must be computed by taking into 
account the tally tree and sample tree variables for all the trees on the same plot.  

 
Example 6.5 Use of the distribution of H|D to estimate tally tree volumes. 
 
Recalling the calibrated height model of Example 6.4, let us now assume that we are 
predicting the volumes of tally trees of diameters 10, 20 and 30 cm. The design 
matrix of the last equation of Example (6.4) is 
 

 

of H for a given D is approximated by its expected value, i.e. the whole probability 
mass is shifted to the expected value, we obtain the common simple approach in 
which ( )( ),V D H D  is used to predict tally tree volumes (Clutter et al. 1983, West 

103 



and the variance-covariance matrix of the prediction error becomes 

 ( )
0.130 0.00820 0.00319

ˆvar ln ln 0.00820 0.117 0.00449   
0.00319 0.00449 0.116

k k

⎛ ⎞
⎜ ⎟− = ⎜ ⎟
⎜ ⎟
⎝ ⎠

h h  . 

 There are only slight differences in the point estimates of volume, but 
considerable differences in the prediction errors. The merits of the second approach 
over the first are that a realistic estimate of the prediction variance is obtained and 
that bias correction based on Taylor series approximation and normality of the errors 
in the prediction of log height is not needed. 

Table 6.2 Predicted heights and volumes of the three tally trees and their prediction errors. 

D lnH sd(lnH) H1 H2 H3 

10 2.619 0.1739 13.93 11.53 16.33 

20 3.002 0.1266 20.30 17.69 22.92 

30 3.179 0.1274 24.21 21.14 27.27 

 

( )
( )
( )

1 1 10 7
* 1 1 20 7

1 1 30 7

+⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟+⎝ ⎠

Ζ  

The expectations for the logarithmic heights of the tally trees are shown in the 
second column of Table 6.2 and the standard deviation of their prediction errors, 
obtained from the diagonal of ( )ˆvar ln lnk k−h h , in the third column. The  

volumes of the tally trees were first calculated by the traditional approach, using  
the expected height (H1) to predict the volumes (V1) and applying bias correction  
in  the prediction  of  the  heights (Table 6. 3). Ignoring the height prediction 
 error , the standard error in prediction (sd(V1)) was calculated to be 

( ) ( )sd , 0.075 ,V D H E V D H≈  (Laasasenaho 1982). In the second approach, two predic-
ted heights were calculated for each tally tree: one obtained by subtracting the 
standard deviation of the prediction from (H2) and the other by adding it to (H3), the 
prediction of the expected log height before exponential transformation to calculate 
the volumes of the tally trees (V2 and V3). The final volume estimates, V4, were 
obtained as averages of V2 and V3 (Equation 6.10). The prediction variance (sd(V4),  
Equation 9.11), takes into account both the height prediction error and the volume 
function prediction error .  
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10 55.56 47.09 64.06 55.57 4.167 9.475 

20 305.7 269.3 342.2 305.8 22.93 43.13 

30 788.9 695.3 882.9 788.9 59.17 111.0 
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