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CHAPTER 2 

DESIGN-BASED SAMPLING  
AND INFERENCE 

ANNIKA KANGAS 
University of Helsinki, Finland  

2.1 BASIS FOR PROBABILITY SAMPLING 

The target of sampling is usually a finite population of N elements called sampling 
units. A sample s is a subset of this population with size n. A sample can be any 
subset of the population, but usually a random sample is used. 
 For sampling to fulfil the requirements of random sampling, it is enough 
that 1) a set Sn of all samples s of size n that it is possible to obtain can be defined;  
2) each sample has a known probability p(s) of being selected; 3) the probabilities 
are non-zero and the sum of these probabilities is one ∑

∈

=
Ss

sp 1)( , and 4) the sample 

s is selected according to the probabilities p(s). The units are selected independently, 
i.e. selection of any one unit does not affect the selection of others. No other 
requirements are needed. The probabilities p(s) then define the sampling design 
(Särndal et al. 1992, p. 8). Lund and Thomas (1989) provide a good overview of 
various sampling designs used in forest and stand inventories. It is worth noting, 
however, that systematic sampling does not fulfil the above requirements of 
independent selection, and this will affect inferences based on this sampling design 
(section 2.4.). 
 Another important probability measure is the inclusion probability iπ . This 
measures the probability of each sampling unit i entering the sample s. The inclusion 
probability and selection probability are connected (see section 2.2). When these 
probabilities are known, the sample statistics of interest can be calculated. The most 
general estimators that apply to all kinds of sampling design are those based on  
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arbitrary inclusion probabilities. An estimate T̂  for total value T of some interesting 
variable y in the population can be calculated with the Horwitz-Thompson estimator 
as 

 ∑
=

=
n

i i

iyT
1

ˆ
π

, (2.1) 

where iπ  is the inclusion probability of unit i. The variance estimator for the 
Horwitz-Thompson estimator is 
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where ijπ  is the probability of units i and j both being included in the sample at the 
same time, provided all the inclusion probabilities are above zero. All the estimators 
developed for different sampling designs can be derived from these general 
formulae. 
 Although the variance of the values of y in the population affects the 
estimates, the variance of an estimator in design-based inference is not statistically 
dependent on the distribution of y (Gregoire 1998). The expected value of an 
estimator and the variance of the estimators are based on the variation in the 
estimates (i.e. values of the estimators) between all the possible samples s in the set 
Sn. Since all the randomness comes from the selection of the sampling units, not 
from the population itself, the values of y in the population are treated as fixed but 
unknown (for a different situation, see Chapter 3). This also means that design-based 
inference is independent of the potential spatial correlation between the sampling 
units (Gregoire 1998). It is enough that the units are not correlated in terms of their 
selection.  
 One estimator of the mean value of y in the population is the sample mean, 
the expected value of which can be calculated as  

 ∑=
nS

ss spyyE )(ˆ)ˆ( . (2.3) 

This is the weighted mean of all possible sample means, weighted with the 
probability p(s) of selecting each sample s. An estimator is design-unbiased, i.e. 
unbiased under a certain sampling design, if and only if its expected value coincides 
with the true population value. The bias of an estimator for the mean value is then 
defined as (see Schreuder et al. 1993 p. 21)  

 YyEyB ss −= )ˆ()ˆ( , (2.4) 
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where Y  is the true population mean. The variance of the estimator is 

 { } ( ) )()ˆ(ˆ)ˆ(ˆ)ˆ(
22

spyEyyEyEyV
nS

sssss ∑ −=−=

and the mean square error (MSE) of the estimator is  

 ( ) ( ) { }222
)ˆ()ˆ()(ˆˆ)ˆ( ss

S
sss yByVspYyYyEyMSE

n

+=−=−= ∑ . (2.6) 

More generally, the expected value, bias and variance can be defined in the same 
way for any estimator sŶ  based on observed values yi from sample s (Särndal et al. 
1992 p. 40).  
 In typical sampling situations the population is easy to define and finite, 
whereas in forest inventories the population may be infinite and is often difficult to 
define. In many cases the population to be inventoried is assumed to be that of 
sample plots, i.e. the sampling unit is a sample plot (Shiver and Borders 1996 p. 59). 
This is justified by the fact that the interest lies in the forest characteristics per unit 
area, such as volume per hectare and so on. Consequently, the size of the population 
is often assumed to be the number of similar-sized sample plots that will fit into the 
area, i.e. the total area divided by the plot area. This definition is the easiest to 
operate with. 
 Such a definition is not adequate on all occasions, however. For instance, 
when circular sample plots are used it is not possible to divide the area into mutually 
exclusive plots that cover the whole of it. In point (or plotless) sampling with a 
relascope or angle gauge, the size of the sample plot is zero, so that the number of 
potential sampling units per unit area in infinite, as is the size of the population. 
When the aim is to estimate the forest area, the population is defined based on plots 
or points. 
 In addition to stand-level characteristics, tree-level characteristics such as 
the mean diameter or number of stems may be of interest, so that the most natural 
population would be the population of trees. On some occasions the trees may also 
be the primary sampling units, e.g. with sampling proportional to size in a stand, for 
example for relascope sampling. If the sampling units are trees, the size of the 
population is practically never known. One definition that would be adequate in 
many situations is that the population consists of trees but the sampling unit is a plot.  

2.2 SIMPLE RANDOM SAMPLING 

Simple random sampling, SRS, can be done either with or without replacement. 
Sampling with replacement means that each unit can be selected several times. This 
method is not very important in practice, but it is of theoretical importance as many 
formulae for this design are very simple. The probability p(s) of selecting a given 
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sample s of size n out of the population of size N is nNsp 1)( = (Särndal et al. 1992 
p. 50), as there are Nn samples of size n that can be drawn from the population.  
In this case, the inclusion probability can be calculated as one minus the probability 
of not drawing a certain unit i, i.e. n

i N )/11(1 −−=π , and the probability of 

selecting two units i and j is ( ) ( )nn
ij NN 211121 −+−−=π  (Särndal et al. 1992 p. 50). 

 In sampling without replacement, on the other hand, each unit can be 
selected only once and the selection and inclusion probabilities are not quite as easy 
to calculate as in the earlier case. The number of possible samples is nevertheless 

!)!(
!

nnN
N
−

and the probability of each of these being selected is its inverse  

 
N!

n!n)!-(N =s p )( . (2.7) 

The inclusion probability for any unit i is πi =n/N and the probability of selecting 
two units i and j is ( ))1()1( −−= NNnnijπ  (Särndal et al. 1992 p. 66).  
 The estimators for the mean and its variance can then be derived from these 
probabilities with (2.1) and (2.2). Although the Horwitz-Thompson estimator is for 
the total value, the estimators for the total value T̂  and mean ŷ are related 
according to 

 yN = T ˆˆ  (2.8) 

and their variances according to 

 )ˆvar()ˆvar( yN = T 2 , (2.9) 

assuming in both cases that the population size N is known. 
 One estimator for the population mean in SRS is the sample mean 

 ∑
=

=
n

i
iy

n
y

1

1ˆ , (2.10) 

where yi is the value of the variable of interest for unit i. For sampling without 
replacement, an estimator for its variance is  
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while that for sampling with replacement is 
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n
s = y

2
y)ˆvar( , (2.12) 

where sy
2 is the sample variance of y. The true variance of the sample means could 

be calculated if the population variance Sy
2 were known, but usually it is not. 

Therefore, estimators of the sampling variances are given in this chapter and not 
formulae for the true sampling variances. The formula for sampling with 
replacement (eq. 2.12) can also be used if the population is assumed to be infinite or 
very large.  
 The standard error of the mean is  

 )ˆvar( y = se . (2.13) 

This describes how much the sample means from different samples vary around the 
true mean. In the case of design-based sampling, the standard error can be 
interpreted as implying that the sample mean deviates less than es96.1± from the 
true mean in 95 samples out of 100 selected. This is based on the assumption that the 
distribution of sample means is normal. The statements concerning the accuracy of 
sampling are correspondingly based on the assumption of repeated sampling.  
 The proportion of a certain class i can be estimated from  

 
n
n =p i

iˆ , (2.14) 

where ni is the number of sampling units belonging to class i.  Its variance is 
estimated as 
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2.3 DETERMINING THE SAMPLE SIZE 

The number of units to be selected is obviously limited by the budget. However, the 
minimum amount of units that should be selected depends on the requirements on 
the accuracy of the estimator. The sample size n can be calculated from the 
probability that the deviation of the sample mean from the true mean µ  is less than a 
given d with probability 1-α, αµ -1 = d)|-yP(| ≤ . 
 If it is assumed that the sample means follow a normal distribution, an 
equation (for sampling without replacement) 
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can be obtained from the probability statement, where 2/αz  is the critical value for 
the normal distribution, i.e. the value above which a normally distributed value is 
located with a probability α/2. Then, n is 
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In practice, the sample size is first solved for an infinite population (to avoid n on 
both sides of the equation): 

 2
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and then, based on this, for finite populations as 
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The equation requires knowledge of the population variance S2, which is typically 
unknown. It can be estimated, however, from previous surveys or a pilot study. If 
the estimate for the variance is calculated from a sample, Student s t-distribution is 
used instead of the normal distribution and a corresponding critical value, 2/αt , is 
used. 
 In the case of proportions, an upper bound for the sample size is obtained 
by assuming pi to be 0.5, which gives the maximum variance. 

2.4 SYSTEMATIC SAMPLING  

In systematic sampling, every kth unit is typically selected into the sample. This 
means that there has to be a predefined order among the sampling units. It also 
means that the number of possible samples is only k. The predefined order is 
typically easy in a forest inventory, as the plots are always perfectly ordered with 
respect to their coordinates. In forest inventory, the number of possible samples may 
be infinite, if point sampling is applied. If the plots have fixed size, and they are not 
allowed to overlap, the size of the plot defines the number of possible samples. 
Furthermore, when the first unit is selected, the selection of the other sampling units 
follows automatically. Thus the units are not independently selected, and no design-
based estimators exist for the standard errors of systematic sampling.  
 In theory, standard errors can be calculated for systematic sampling from 

,
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the variance between all the k samples. It can be proved that the standard error 
depends on the inner correlation ω: 
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Since σ2 = σw
2 + σb

2,  the variance of the mean is 

 [ ] σωσ 2
b

2

 = -n+
n

=yvar )1(1)ˆ( . (2.21) 

Therefore, the larger the within-sample variance σw
2 is compared with the total 

variance σ2, the smaller the standard error of systematic sampling. A heterogeneous 
sample represents the population better. On the other hand, the smaller the  
between-sample variation σb

2 is, the smaller the standard error. If ω is negative, 
systematic sampling is more efficient than SRS. Unfortunately, (2.21) cannot be 
used as an estimator for variance if only one sample is measured; it only can be used 
for theoretical analysis.  
 In many cases SRS estimators are also used in systematic sampling. This is 
reasonable if the order of the units is completely random, but if there is a trend in the 
population, the SRS standard error overestimates the standard error of systematic 
sampling. On the other hand, if there is periodical variation in the population, 
systematic sampling may be highly inefficient (Särndal et al. 1992 p. 82). 
 Apart from using SRS estimators, the standard error of a systematic sample 
can be calculated 1) by taking several small samples and determining the variation 
between them (Chapter 10), 2) by using approximate formulae (Chapter 10), or 3) by 
using formulae from stratified sampling (section 2.5). The sample is then divided 
into several strata along the trend. 
 In a forest inventory, there may be a trend within any one forest stand if the 
site index increases from one side to the other, for example. There is also a large-
scale trend in a north-south direction in Finland due to changes in climate 
conditions. Periodical variation within a stand might be due to the ditch network, 
and large-scale periodic variation could be due to hills etc. 
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Example 2.1 Heikki Surakka 
 
In an inventory of a 100-hectare forested area in Southern Finland the sample plots 
were laid out on a square grid where both the line interval and the plot interval was 
100 metres. Altogether 102 circular and point sample plots were measured. If the 
average diameter at breast height was less than 8 cm, the trees were measured on a 
circular sample plot of radius 2.52 metres (area 20 m2). Otherwise point sampling 
was used with a basal area factor of 2, and if there were also understorey trees, they 
were measured on a circular plot of size 20 m2 as well. An estimate for stem volume 
per hectare was calculated for each sample plot. 
 SRS estimators can always be used for population means and totals, and in 
this example, an SRS estimator was also used for the sampling variance. The mean 
stem volume per hectare was 
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where yi is the stem volume per hectare of plot i. In order to calculate the standard 
error of the mean, we first have to determine the population and sample sizes (N and 
n). In general, if we had only circular plots or fixed-area plots of any other shape, 
then n could be simply determined as the number of sample plots and N as [total 
area] divided by [sample plot size], i.e. the number of sample plots located and 
shaped so that whole area is covered with no overlapping. As the size of a point 
sample plot is variable, it is impossible to determine N and n accurately, but we can 
estimate an approximate sampling ratio f=n/N: 
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where ai is the area of the circle from which the basal area median tree is counted as 
belonging to plot i and A is the total area. We can then calculate the sample variance, 
which is an estimator of the population variance: 
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The standard error of the mean stem volume per hectare is 
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In this case, the sampling ratio is so small that the finite population correction factor 
1 - n/N can be ignored. 
 The estimate for the total stem volume is 

 31932525.1930.100ˆˆ myAT =⋅==  

and its standard error  

 ( ) ( ) 322
ˆ 1100121070007.1210,100ˆvarˆvar myATsT ==⋅=== . 

The confidence interval for the true population mean is 

 ( ) ( )( )ee szyszy 2/2/
ˆ;ˆ

αα +− , 

where z(α/2) is a value from the normal distribution with a confidence level α. Thus 
the 95% confidence interval for the true mean stem volume per hectare would be 

 ( ) ( )hamham /215;/17200.1196.125.193;00.1196.125.193 33=⋅+⋅− . 

 
Example 2.2 
 
The proportion of the population that is of a certain character is often a matter of 
interest, for example the proportion of a given tree species or a given site type. Let 
us assume that we now want to know the proportion of mineral sites in this  
100-hectare inventory area. A decision has to be made for every sample plot 
regarding its soil class, i.e. it is either a mineral site, spruce swamp or pine bog. The 
estimate for the proportion of mineral sites is 

 79.0
102
81ˆ ===

n
np ms

ms , 

where nms is the number of mineral site sample plots and n is the total number of 
plots. Thus mineral sites make up 79% of the inventory area and  mires 21%.  
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Table 2.1 Plot data for the inventory area.   

aSoil class: 1=Mineral site
2=Spruce swamp
3=Pine bog

bPlot area: In the case of point sample plot it is the area of the circle from which the basal area median tree is counted as
belonging to plot, otherwise 20 m2.

cStratum: 1=Open areas, seedling stands and stands of seed trees
2=Middle aged stands
3=Mature stands  

The standard error is estimated as follows: 

Plot ID Soil classa Volume Basal area Plot areab Stratumc Plot ID Soil class Volume Basal area Plot area Stratum
m3/ha m2/ha m2 m3/ha m2/ha m2

1 1 155 26 71 2 52 1 236 34 90 2
2 1 242 32 118 2 53 1 217 34 83 2
3 1 108 18 65 2 54 3 157 16 310 3
4 2 269 26 335 2 55 3 135 22 75 2
5 1 114 18 74 2 56 3 284 32 235 3
6 1 93 16 64 2 57 1 33 2 20 1
7 1 201 32 88 2 58 1 74 10 126 3
8 1 80 12 115 1 59 2 430 40 317 3
9 1 66 14 37 1 60 1 340 30 361 3
10 1 363 34 316 3 61 1 315 28 359 3
11 1 171 22 163 2 62 3 93 18 42 2
12 1 217 26 135 2 63 3 23 4 93 2
13 1 36 13 20 1 64 1 45 5 20 1
14 1 176 24 118 2 65 1 360 42 159 3
15 1 278 32 178 3 66 1 181 18 209 3
16 1 210 22 267 3 67 1 330 30 467 3
17 1 20 3 20 1 68 2 224 34 84 2
18 1 347 32 405 3 69 2 209 30 106 3
19 1 260 32 177 3 70 1 371 38 208 3
20 1 164 14 406 3 71 1 248 34 107 2
21 1 149 26 62 2 72 1 247 38 80 2
22 2 25 6 20 1 73 1 445 38 385 3
23 1 407 44 212 3 74 1 130 20 85 2
24 2 330 32 280 3 75 1 223 22 256 3
25 2 368 36 286 3 76 1 408 38 448 3
26 1 114 14 173 3 77 1 241 24 289 3
27 1 221 18 491 3 78 1 89 16 60 1
28 1 310 26 406 3 79 1 278 30 219 3
29 1 85 19 20 1 80 1 355 30 445 3
30 1 344 34 276 3 81 3 66 8 240 3
31 3 288 32 213 2 82 1 247 26 230 3
32 1 141 20 154 3 83 1 136 22 67 2
33 1 224 24 235 3 84 1 166 22 147 2
34 1 297 28 278 3 85 1 151 24 75 2
35 1 212 22 271 3 86 1 164 22 118 2
36 3 227 26 184 2 87 1 119 28 26 2
37 2 208 18 491 3 88 1 169 24 105 2
38 1 263 30 224 3 89 1 0 0 20 1
39 1 0 0 20 1 90 2 164 22 104 2
40 1 242 24 240 3 91 1 112 20 59 2
41 1 392 34 357 3 92 1 63 6 388 1
42 1 255 24 342 3 93 1 109 10 489 2
43 2 196 22 199 3 94 3 36 8 31 1
44 1 130 20 86 3 95 1 140 22 80 2
45 1 0 0 20 1 96 1 215 22 299 2
46 1 339 32 275 3 97 1 64 6 427 1
47 1 386 36 304 3 98 1 59 12 40 1
48 2 224 22 332 3 99 1 103 16 83 2
49 2 255 30 177 3 100 1 130 14 256 2
50 1 124 18 123 3 101 1 37 4 296 1
51 1 195 20 272 3 102 1 18 2 491 1

KANGAS  22



 DESIGN-BASED SAMPLING AND INFERENCE 

 

Figure 2.1 The inventory area, strata and sample plot locations. 
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2.5 STRATIFIED SAMPLING 

In stratified sampling there exists certain auxiliary information according to which 
the population can be divided to homogeneous groups or strata. Stratified sampling 
is in most cases more efficient than SRS, meaning that the standard errors are 
smaller. Each stratum can be interpreted as a small sub-population, for which the 
estimates are calculated using suitable estimators. Typically, selections within strata 
are performed using SRS, but systematic sampling, for instance, can also be used. 
The population values are then obtained as weighted averages of the sub-population 
values as  
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where L is the number of strata, Wh is the proportion of stratum h and sh
2 is the 

sample variance within stratum h : 
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Stratified sampling generally becomes more efficient with increasing homogeneity 
within the strata, as the weighted averages of small variances are obviously smaller 
than those of large variances, although the allocation of sampling units to strata also 
has an effect on the variance. 
 The allocation of sampling units to strata h can take place in several ways, 
being either constant, proportional, Neyman (optimal) or optimal with respect to 
costs. Constant allocation means that, a constant number of units is selected from 
each stratum. In proportional allocation, the proportion of selected units f = nh/Nh is 
similar in each stratum h, while in Neyman allocation the number of units selected 
depends on both the size of the stratum and the variation within it. This method is 
more efficient than the former ones if the variation varies among strata, meaning that 
it gives the smallest standard error for a given n. The sample size in each stratum is then 
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If the measurement costs vary between the strata, this can be accounted for by 
choosing  
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where ch is the measurement cost in stratum h. This allocation gives the smallest 
standard error for a given budget.  
 The stratification can also be performed after the sample has been selected 
(=post-stratification). In this case it cannot be used for allocating the sample 
optimally, but the estimators of stratified sampling can be used. This could be useful 
if post-stratification is less costly than stratification before sampling for some 
reason. In the case of known stratum sizes and proportional allocation, post-
stratification is almost as efficient as “normal” stratification (Särndal et al. 1992  
p. 265). If the stratum sizes are not known, this will introduce additional error (see 
Chapter 14). 
 

 
Example 2.3 Heikki Surakka 
 
The same 100-hectare area was then post-stratified with the help of aerial 
photographs. Three strata were defined: 
 
Stratum       A  n 
Open areas, seedling stands and stands with seed trees 18.0  18 
Middle-aged stands     33.3  35 
Mature stands      48.7  49 
 
The mean stem volumes per hectare for each stratum are 
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Total stem volumes for each stratum are 
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and the standard errors of the total stem volumes are 
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The mean stem volume per hectare for the whole area is 
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and the standard errors of the mean stem volumes per hectare are 
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Example 2.4 
 
In this example we will demonstrate how to determine the sample size. The question 
is derived from the previous examples. How many sample plots would be needed in 
normal systematic sampling to have the same standard error of the mean stem 
volume per hectare as in stratified sampling? 
 First we determine the allowable deviation of the sample mean from the 
population mean. The standard error of the mean stem volume per hectare in 
stratified sampling was 7.4 m3/ha. If we use a 95% confidence level, the confidence 
interval and the allowable deviation will be ±1.96 · 7.4 m3/ha. 
 To determine the sample size, the population variance should be known. As 
it is not known, it has to be estimated from the sample. 
 The sample size needed for an infinite population is 
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but for finite populations, the size of the population should be known. We can 
estimate this by dividing the total area by the average plot area: 
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The sample size for a finite population is now 
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The total stem volume for the whole area is 
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2.6 CLUSTER SAMPLING 

Cluster sampling is used when the population can be divided to separate groups. In 
forest inventory these are typically groups of sample plots located near each other or 
groups of trees located near each other. (Each sample plot could also be interpreted 
as a cluster of trees if the mean values for trees were of interest.) In cluster sampling 
the clusters are the basic sampling units. In one-stage cluster sampling, all the units 
within a selected cluster are measured, while in multi-stage cluster sampling another 
sample is selected from within the cluster. The sampling units at different stages 
vary.  
 Cluster sampling is not usually as efficient as the other selection methods 
given a fixed size of sample n. This is because the sampling units in one cluster may 
be correlated, i.e. the new information resulting from measuring a new unit is less 
than it would be if the units were independent. The usefulness of cluster sampling is 
based on cost efficiency: it is usually possible to measure more units with the same 
budget when they are located in clusters. In a forest inventory a cluster design will 
reduce walking distances in the forest. It is also typical for the clusters to be laid out 
in a systematic fashion, the groups of plots forming a line or a rectangular of a 
certain size, and for this reason the definition of a cluster is also somewhat more 
complicated in forestry than for clusters formed by families, classes or schools as in 
the social sciences.  
 The estimator for the population mean is the mean of the cluster means: 

 ∑
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yy
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ˆˆ
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α , (2.27) 

where a is the number of clusters selected and αŷ is the mean in cluster α. If the 
clusters are of different sizes, this formula might be biased. The bias occurs if the 
variable of interest is dependent on the cluster size, e.g. if it has larger values in 
larger clusters. The mean estimator should then be calculated as a weighted mean of 
the clusters. If y is independent of cluster size, the results are unbiased, although 
equal size is assumed (Cochran 1977). The variance estimator of the mean is  
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where A is the total number of clusters. The efficiency of cluster sampling increases 
as the variation between cluster means decreases, i.e. the more homogeneous the 
clusters are. This, on the other hand, depends on the inner heterogeneity of the 
clusters: the larger the amount of the population variation that is within-cluster 
variation, the better. The principle is similar to that of systematic sampling presented 
in section (2.4). This can be expressed using the intra-cluster correlation ω 
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where B is the size of a cluster. The variance in cluster sampling can then be 
presented as (Cochran 1977, Tokola and Shrestra 1999) 
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Thus the smaller the intra-cluster correlation is, the smaller the variance.  
 In two-stage cluster sampling, the variance of the mean is larger, because 
the second-stage sample also contains sampling error. The variance is 
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where  
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and where B is the population size within a cluster and b is the corresponding sample 
size. 

2.7 RATIO AND REGRESSION ESTIMATORS 

In a stratified inventory information on some auxiliary variables is used both to plan 
the sampling design (e.g. allocation) and for estimation, or only for estimation (post-
stratification). Stratification is not the only way to use auxiliary information, 
however, as it can be used at the design stage, e.g. in sampling proportional to size 
(section 2.8). It can also be used at the estimation stage in ratio or regression 
estimators, so that the standard error of the estimators can be reduced using 
information on a variable x which is known for each sampling unit in the population. 
The estimation is based on the relationship between the variables x and y. In ratio 
estimation, a model that goes through the origin is applied. If this model does not 
apply, regression estimator is more suitable. The ratio estimator for the mean is  
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 Xr = X
x
y = yrat

ˆ , (2.32) 

where X  is the mean of a variable x in the population and x  in the sample . Ratio 
estimators are usually biased, and thus the root mean square error (RMSE) should be 
used instead of the standard error. The relative bias nevertheless decreases as a 
function of sample size, so that in large samples (at least more than 30 units) the 
accuracy of the mean estimator can be approximated as (Cochran 1977 p. 155) 
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 The ratio estimator is more efficient the larger the correlation between x 
and y relative to the ratio of the coefficients of variation. It is worthwhile using the 
ratio estimator if  

 1 ( )( , )
2 ( )

CV xcorr x y  > 
CV y

. (2.34) 

 The (simple linear) regression estimator for the mean value is 

 )(ˆˆ x-X+y = yreg β , (2.35) 

where β̂  is the OLS coefficient of x for the model, which predicts the population 
mean of y based on the sample means. In a sampling context, the constant of the 
model is not usually presented, but the formula for the constant, x+y = βα ˆˆ , is 
embedded in the equation. The model is more efficient the larger the correlation 
between x and y. The variance of the regression estimator can be estimated as 
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Example 2.5 Heikki Surakka 
 
There were also data for the same 100-hectare area that contained only basal area 
measurements. These had been collected from a very dense grid with a basal area 
factor of 1. The sample covered the area so well that the estimates (mean and total 
basal areas) can be regarded as true, as if every tree included in the area had been 
measured. We will next use the basal area as an auxiliary variable and determine the 
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between stem volume and basal area, and the relationship is almost linear and goes 
through origin. 
 First we calculate the ratio between the estimates: 

 m
x
yr 6376.8

373.22
25.193 === . 

As the true mean basal area was slightly smaller than the estimate for the mean basal 
area, the ratio estimate for mean stem volume per hectare is smaller than that 
obtained without ratio estimation: 
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and the standard error estimate 
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The ratio estimate for total stem volume is 
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and its standard error is 
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mean stem volume per hectare by ratio estimation. There is a very high correlation 
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with a relascope. It is then assumed that unit i is selected with the probability kxi, 
where k is a constant and x is a covariate (diameter of a tree in relascope sampling). 
PPS sampling is more efficient the larger the correlation between x and y. For 
perfect correlation the variance in the estimator would be zero (Schreuder et al. 1993 
p. 46). PPS sampling might even be less efficient than SRS, however, if the 
correlation were negative. This could be the case when multiple variables of interest 
are considered simultaneously, for example, when correlation with one variable (say 
volume) might give efficient estimates but the estimates for other variables (say 
health and quality) might not be so good. 
 In practice, PPS sampling can be performed by ordering the units, 
calculating the sum of their sizes (say ∑ ix ), and calculating nxi /∑ . The 
probability of a unit i being selected is then ∑ ii xx  and a cumulative probability 
can be calculated for the ordered units. A random number r is then picked and each 
unit with a cumulative probability equal to (or just above) r, r+1, r+2,…r+n-1 is 
selected for the sample. Every unit of size greater than nxi /∑  is then selected with 
certainty. 

2.9 NON-LINEAR ESTIMATORS 

The simple variance estimators presented in the above sections are not applicable to 
non-linear estimators. A typical example of a non-linear estimator is a ratio of two 
estimators, 21

ˆ/ˆ YY . Although the mean value in the whole sample is a linear 
estimator, the mean in any sub-population is a ratio estimator, because the number of 
sample units in the sub-population, ns, is a random variable having a variance that 
needs to be accounted for.  
 In such situations, the non-linear estimator needs to be linearized in order to 
be able to derive an (approximate) formula for the variance estimator. The ratio 
estimator 21

ˆˆ)ˆ( YY =g Y  (where Ŷ is the vector of estimators) can be linearized 
using Taylor series expansion. The variance can then be estimated as  
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2.8 SAMPLING WITH PROBABILITY PROPORTIONAL TO SIZE 

The basic properties of sampling with arbitrary probabilities (2.1) can also be 
utilized in sampling with probability proportional to size (PPS), such as sampling 
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 The Taylor series approach applies in the general case. In most simple 
cases, however, separate linearization is not required, since the estimators already 
presented for the variance of a ratio estimator can be used directly (and can be 
derived using 2.37, for instance: compare 2.38 with 2.41). An example of a non-
linear estimator is the case where whole stands (or compartments) are sampling 
units. Then, as the stands are of different sizes, the sampled area is not known before 
sampling but is also a random variable. The proportion of the area fulfilling a certain 
condition may be estimated as 
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where zi is an indicator variable with the value 1 if the condition is fulfilled and zero 
otherwise, and Ai is the area of the stand i. The standard error of this estimator can 
then be approximated as (Cochran 1977) 
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and 
N
AT

x =µ is the mean area of the sampling units. Assuming that the mean area is 

estimated with the sample mean, this formula can be simplified to (Heikkinen, 
personal information)  
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This means that it is enough to separate the areas of stands fulfilling the condition 
and those not fulfilling it. 
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e.g. jackknife and bootstrap methods. These work as follows: 
 
1) Draw K replicate samples of size n from the original sample (of size n) with 
replacement. 
2) For each replicate, calculate the estimator of interest (e.g. mean or ratio). 
3) Estimate the variance of this estimator from the variance between the estimates 
from replicate samples. 
 
 The replicate samples have to be drawn using the original design, i.e. with 
SRS for simple random sampling, by strata for stratified sampling etc., which means 
that these simple resampling estimators are not useful for systematic sampling. They 
nevertheless make variance estimation easy for complex sampling designs and for 
non-linear estimators.  
 In Bootstrap method, at least about 100, preferably more than 500 
replicates are drawn. The estimator is then  
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is the mean of the estimates from replicate samples.  
 For systematic sampling, parametric bootsrap may be an option. In 
parametric bootstrap, the distribution F of the sampling units is estimated based on 
the sample data. The distribution could be, for example, normal distribution. The 
bootstrap samples are then sampled from the estimated distribution. After that, the 
parametric bootstrap proceeds similarly as the simple bootstrap. 
 In the jackknife method, jackknife samples x(i) are taken, defined as samples 
with the ith observation left out, e.g. x(i) = (x1, x2, …, xi-1, xi+1,…, xn). )(̂iθ is then the ith 
jackknife replication of the estimator θ̂ . From these jackknife replications, pseudo-
values are calculated as 

 i
p

i nn θθθ ˆ)1(ˆ)( −−= . (2.45) 

2.10 RESAMPLING  

In many cases the capacity of modern computers can be utilized to estimate the 
sampling variances. There are several methods that work in quite a similar fashion, 
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is the mean of the replicate pseudo-values. The original sample estimator could also 
be used instead (e.g. Pahkinen and Lehtonen 1989). The same variance estimator 
could also be written without using pseudo-values as (Efron and Tibshirani 1998) 
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 In this formula the differences between the jackknife resamples are 
assumed to be small relative to the variation between the pseudo-values, and 
therefore the value is inflated by (n-1)/n (Efron and Tibshirani 1998).  

2.11 SELECTING THE SAMPLING METHOD  

Optimal data acquisition can be considered from several points of view. 
Traditionally, it has been understood as the sampling design giving minimum 
variance for certain estimates, e.g. mean volume, with a given budget. The inventory 
costs can be assumed to include fixed costs that are similar for each sampling 
design, costs per cluster (in a cluster design), costs per plot, and costs per sample 
tree. The total costs can then be expressed as a function of the number of clusters 
(m) and plots (n) measured, e.g. 

 nCmCCC nmf ++= . (2.48) 

If the costs differ between sub-populations, this should also be accounted for in the 
cost function.  
 The variance can also be expressed as a function of the number of plots and 
clusters, even though this is non-linear. If there are several variables of interest, 
either one variable is chosen or the variances of all of them are combined in some 
way, e.g. using a weighted sum. Burkhart et al. (1978) suggested that the largest 
variance or the variance of the most important variable should be used to determine 
the sample size, while Scott and Köhl (1993) used the accuracy relative to the 

The jackknife variance can then be estimated as  
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where K is the number of variables of interest, S is the desired level of accuracy and 
s is the actual level of accuracy as a function of number of clusters and plots, Ct is 
the given cost level and C is the actual cost as a function of number of clusters and 
plots. There may also be more restrictions. A non-linear optimization problem can 
be fairly difficult to solve, however, and linear optimization is not applicable (Scott 
and Köhl 1993).  
 Expressing the variance of the estimator as a function of the number of 
plots requires information on the population variance S2. This is typically obtained 
from a previous study or from a small preliminary sample. In some cases it is 
possible to anticipate the population variance mathematically, assuming the 
locations of trees in the area to follow a known random process such as a Poisson 
process (Mandallaz and Ye 1999).  
 Another approach is to minimize the cost function at a given precision 
level. Constraints can then be given separately for all the variables of interest, e.g. 
the maximum variance level as 

 k ks S< . (2.50) 

It is also possible to minimize the utility function, which is the weighted sum of the 
inventory costs and MSE (Päivinen 1987). The problem then becomes a non-
constrained optimization, which is easier to solve. The problem of weighting the 
costs and accuracy remains, however. 
 In some cases it is not necessary to compare methods in an optimization 
problem of the kind presented above, as the cost-effectiveness of the designs can be 
compared using the relative efficiency of the alternatives (provided they reflect the 
same costs). The efficiency of alternative A relative to B can be defined as the 
variance of alternative A divided by the variance of alternative B (Scott and Köhl 
1993, Pahkinen and Lehtonen 1989):  

 BA yVyVDEFF )ˆ(/)ˆ(= .  (2.51) 

For a cluster sampling design, for example, the DEFF coefficient, assuming a 
constant number of clusters and constant cluster size, can be derived from formula 
(2.27) as [ ]ϖ)1(1 −+= BDEFF , where ω is the intra-cluster correlation. In the case 
of cluster sampling the latter can be defined as (Cochran 1977) 

desired level of accuracy and averaged across all the variables. The problems can 
then be presented as a single (non-linear) optimization problem:  
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where 2
bσ is the between-cluster variance, 2σ is the total variance, and B is the size 

of the cluster. This enables different cluster shapes such as an L-shaped or square 
tract, or different plot distances within a cluster, to be compared (Tokola and 
Shrestra 1999). Similar problems can also be solved using a model forest, e.g. based 
on a satellite image, in which different designs can be compared (Päivinen 1987).  
  Another point of view is to optimize the intervals between subsequent 
forest inventories so that the information is always fresh enough for decision making 
at minimum cost. In such cases, the database can be updated in terms of forest 
growth by means of growth and yield models. Silvicultural measures can be 
ascertained from the forest owner or from aerial images, for instance (Anttila 2002, 
Hyvönen and Korhonen 2003).  
 It is evident, however, that the traditional approach based on the mean 
square errors of the estimates does not necessarily produce any information 
regarding the usefulness of the measured information for decision-making purposes. 
This aspect has been studied using cost-plus-loss analysis, in which the expected 
losses due to non-optimal decisions caused by inaccurate data are added to the total 
costs of the forest inventory (Hamilton 1978, Burkhart et al. 1978). Ståhl et al. 
(1994), for example, analysed whether it is more profitable to make accurate 
inventories at long intervals or moderately accurate inventories at shorter intervals.  
 The hardest part of cost-plus-loss analysis is to define the expected losses. 
Holmström et al. (2003), when studying the usefulness of different inventory 
methods for decision-making, defined the average loss in terms of the net present 
value (NPV) in the next 5-10 years, where the optimal NPV was taken to be the 
maximum value without any restrictions. This analysis suggested that extensive field 
sampling methods were worthwhile in the case of mature stands where the optimal 
treatment was to be expected in the near future. This kind of approach is a 
simplification of the true situation, however, as all decisions can be revised. The 
errors may therefore be non-symmetric in the sense that cuttings proposed for too 
early a stage can be postponed (provided the necessity can be observed in the field), 
but those proposed for too late a period cannot be transferred to an earlier occasion.  
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