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PREFACE 

 
This book has been developed as a forest inventory textbook for students and could 
also serve as a handbook for practical foresters. We have set out to keep the 
mathematics in the book at a fairly non-technical level, and therefore, although we 
deal with many issues that include highly sophisticated methodology, we try to 
present first and foremost the ideas behind them. For foresters who need more 
details, references are given to more advanced scientific papers and books in the 
fields of statistics and biometrics. 
 Forest inventory books deal mostly with sampling and measurement issues, 
as found here in section I, but since forest inventories in many countries involve 
much more than this, we have also included material on forestry applications. Most 
applications nowadays involve remote sensing technology of some sort, so that 
section II deals mostly with the use of remote sensing material for this purpose. 
Section III deals with national inventories carried out in different parts of world, and 
section IV is an attempt to outline some future possibilities of forest inventory 
methodologies. 
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CHAPTER 1 

INTRODUCTION 

ANNIKA KANGAS, JEFFREY H. GOVE AND CHARLES  
T. SCOTT  

University of Helsinki, Finland; USDA Forest Service, Northeastern Research 
Station, USA  

1.1 GENERAL  

All decision-making requires information. In forestry, this information is acquired 
by means of forest inventories, systems for measuring the extent, quantity and 
condition of forests (Penman et al. 2003). More specifically, the purpose of forest 
inventories is to estimate means and totals for measures of forest characteristics over 
a defined area. Such characteristics include the volume of the growing stock, the 
area of a certain type of forest and nowadays also measures concerned with forest 
biodiversity, e.g. the volume of dead wood or vegetation (Chapters 8 and 9). This 
book presents methods and applications for carrying out a forest inventory in 
different situations.  
 A forest inventory could in principle be based on a complete census, i.e. on 
measuring every tree in a given area, but this is usually impossible in forestry 
because of the large areas involved. Therefore the acquisition of information is 
typically based on sampling, i.e. only a proportion of the population, a sample, is 
inspected and inferences regarding the whole population are based on this sample. 
 There are two main schools of inference in sampling theory, design-based 
and model-based. In design-based inference, the randomness in the sampling is 
solely due to the random selection of sampling units (Chapter 2). The population 
values yi are regarded as fixed, but unknown. Inference is based on the variation 
between all possible samples of size n that can be drawn from the population with a 
given sampling design. The confidence intervals obtained are to be interpreted on 
the assumption of a hypothetical repetition of samples. 
 This is not the case in model-based inference (Chapter 3), where the 
randomness is solely due to the model used for describing the population. In this 
case, the sampling method does not necessarily have to be random, but the possible 
correlation between sampling units needs to be accounted for.   
 

3 
A. Kangas and  M. Maltamo (eds.), Forest Inventory – Methodology and Applications, 3–11. 



 

 Forest inventory is more than sampling, however. Measuring trees and 
sample plots (Chapter 4) includes many methodological problems that are typical 
only to this sphere. Forest inventories cover different spatial scales from the stand 
level to the woodlot level, regional and country level and finally global level. It is 
evident that these varying scales also require different methodologies. The purposes 
of inventories may also vary. Stand-level inventories (Chapter 16) can be carried out 
in order to estimate the number of saplings after regeneration, woodlot-level 
inventories in order to facilitate harvesting or silvicultural decisions, and regional or 
country-level inventories in order to enhance policy decisions (Chapters 18-20). 
Global inventories (Chapter 17) may also serve certain purposes in global-level 
politics, such as international agreements over actions concerning biodiversity or 
global warming.  
 Forest inventories may also be means of estimating the current growing 
stock, but most often they are carried out at several points of time in order to analyse 
temporal changes (Chapter 5). 

1.2 HISTORICAL BACKGROUND OF SAMPLING THEORY 

The use of representative samples was recommended by A. N. Kiaer, a Norwegian 
statistician, at the end of the 19th century (Bellhouse 1988). Reactions to his 
recommendation were mainly negative at first, but by 1925 the idea was generally 
accepted. The idea of samples had been introduced even earlier, but it was Kiaer’s 
campaign that provided the breakthrough for its acceptance (Bellhouse 1988).  
 In those days the samples were, for most part, purposely selected. The idea 
of randomization was introduced into survey sampling by A. L. Bowley in 1912 
(Bellhouse 1988), but the use of purposive selection remained acceptable for the 
next decade. Bowley also studied the precision of the estimates obtained, and found 
purposive sampling to be more efficient than random sampling.  
 The paper of Neyman (1934) gave the first precise statistical framework for 
sampling theory. He presented confidence intervals for sample estimates, based on 
their distribution among all the possible samples of a given size from the given 
population, so that the estimates for the confidence intervals would apply 
irrespective of the properties of the original population (except when the sample was 
very small or the population extremely skewed).  
 Neyman also provided the reasons why randomization gave a more 
reasonable solution than purposive selection and outlined the assumptions under 
which purposive selection would work well, namely when there is a linear 
relationship between the variable of interest and the available covariates (Bellhouse 
1988). Since Neyman’s paper random sampling has superseded purposive sampling. 
Neyman also presented the principles of stratified sampling (1934), although the 
same ideas had already been put forward by Tschuprow (1923, see Schreuder et al. 
1993). 
 During the next two decades classical sampling theory, or design-based 
theory as it is called, achieved mathematical and practical acceptance, essentially in 
the form in which it is used today. The most important developments in design-
based theory during those decades were related to sampling with unequal 
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probabilities (Hansen and Hurwitz 1943), a method by which the precision of the 
results could, under some conditions, be radically improved. Horwitz and Thompson 
(1952) provided an unbiased estimator for unequal probability sampling.  
 The first challenge to the design-based approach was raised by V. P. 
Godambe in 1955. He showed that no minimum variance unbiased estimator exists 
among all possible linear unbiased estimators, even for simple random sampling 
(Rao and Bellhouse 1990). This means that certain estimators for population 
parameters (such as the sample mean) would not have the minimum variance in all 
populations. In order to find the best estimator, some assumptions therefore had to 
be made concerning the population. This aroused interest in an alternative approach 
to sampling theory, the model-based approach (also called the model-dependent or 
prediction approach). The foundations of this approach were introduced by 
Godambe (1955) and later established by Cassel et al. (1977). 

1.3 HISTORY OF FOREST INVENTORIES 

The main method used in inventories in the 19th century was complete enumeration, 
but it was soon noted that there was a possibility to reduce costs by using 
representative samples (Loetsch et al. 1973). Sampling-based methods were used in 
forestry a century before the mathematical foundations of sampling techniques were 
described (Doig 1976, Seppälä 1985, Honer and Hegyi 1990, Gregoire 1992, van 
Hooser et al. 1992, Schreuder et al. 1993, Frayer and Furnival 1999). 
 In the early days visual estimation was often used, as it was cheap and fast. 
In North America, for instance, these inventory surveys were carried out at the 
beginning of the 20th century by “timber lookers”, whose years of field experience allowed 
them to develop the ability to assess timber volumes by eye without the benefit of 
any measurements. One early common practice was to estimate the volume on an 
“average tree” within a plot of fixed size and, by knowing the count of stems on the 
plot, thereby estimate volume on an “average acre”, finally expanding to the yield 
on the tract of land (Graves 1906, p.192). According to Loetch et al. (1973), visual 
estimation was used until the 1940’s in Germany, where learning this method was 
part of a good training program for a forester in those days. In the Nordic countries, 
especially in Finland, these visual estimates are still used for acquiring data for 
management planning at the stand level. In early inventories visual estimates could 
also be combined with statistical estimates in order to reduce bias (Cajanus 1913, 
Ilvessalo 1923).  
 Statistical knowledge was gradually introduced into the forestry literature 
between 1900 and 1920, primarily in Scandinavia (Loetsch et al. 1973), where the 
first small-scale forest inventories using systematic strip sampling had been carried 
out in Sweden in the 1830’s by Israel af Ström. An auxiliary purpose in conducting 
an inventory was that of developing a map showing the distribution of timber, forest 
types, access and topographic detail. The method of cruising with continuous strips 
of fixed width covering a known percentage of the land area was most popular into 
the 1930s because it served both purposes, inventory and mapping.   
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 The most important scientific work in this field in Finland was the 
inventory carried out in Sahalahti and Kuhmalahti by Werner Cajanus in 1912 
(Seppälä 1985). Yrjö Ilvessalo carried out the first four National Forest Inventories 
between 1921 and 1963 (1927, 1942, 1956, 1962). National inventories in the other 
Nordic countries started at almost the same time. Since these first inventories were 
systematic, estimators for the variance in systematic sampling have been intensively 
developed in these countries (e.g. Lindeberg 1924, 1926, Langsaeter 1926, 1932, 
Östling 1932, Chapter 10). 
 However, the systematic use of strips was not the most efficient method. 
Thus, there began a slow shift from the use of strips to the use of the line-plot 
system: a systematic sampling design in which relatively small square or, more 
commonly, circular plots, were taken at set intervals (Robertson 1927). The line-plot 
method had the advantage of surveying a much smaller percentage of the area for a 
given accuracy, while still providing a method for mapping. 
 The next few decades brought a flurry of activity on the application of 
statistical methods to forest inventory. In the United States, Schumacher and Bull 
(1932) began the formalization of statistical sampling methods applied to forest 
inventories, with specific regard to the estimation of sampling errors. Mudgett and 
Gevorkiantz (1934) also looked at methods for assessing the reliability of area 
estimates using binomial, Poisson, and Lexian models according to differing 
assumptions about the random or stratified nature of the populations being sampled. 
Girard and Gevorkiantz (1939) devoted a large part of their monograph to the 
calculation of sampling errors, and interestingly, it was evidently Schumacher and 
Chapman (1942) who published the first known book on sampling in any field.  
 One of the most important issues in this era was the debate over systematic 
sampling, because of the heavy reliance on the line-plot and strip methods. Though 
earlier studies were concerned with this, Hasel (1938) conducted the first thorough 
study in forestry in regard to timber volume estimation and strongly advocated the 
randomization principals of R.A. Fisher in the case of heterogeneous populations, 
while at the same time stating that systematic cruises give closer estimates of the 
true volume than do random samples. Osborne (1942) conducted a similar study for 
mapping forest types and arrived at analogous conclusions about the nature of 
systematic surveys. Finney (1948), using Hasel’s data and material from another 
fully enumerated forest, concluded that the increased precision obtainable from a 
systematic sample is seldom the sole reason to prefer it over stratified sampling. 
Finney noted, however, that “this argument would be destroyed” if one could 
develop a method for assessing the error from a simple, unique systematic sample. 
Finney’s advice on stratification survives to the present, though many surveys 
continue to employ systematic methods without even the benefit of randomization of 
the initial sampling location, as suggested by Finney (1947).  
 Within the same period and subsequently, work on the theory for variance 
estimation in a systematic survey was greatly advanced by Matérn (1947, 1960, 
1986).  Since then, in the national forest inventories of Sweden and Finland, 
systematic cluster sampling design has been used (e.g. Kuusela and Salminen 1969). 
The ideas of Matérn were employed in assessing the precision of the inventory 
results (Salminen 1973, Ranneby 1981). 
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 Another very important development in forest inventory was the 
introduction of sampling with unequal probabilities, namely the work of Bitterlich 
and Grosenbaugh, and the introduction of the use of an angle gauge to determine 
whether an individual tree is to be included in the sample. Angle gauge sampling 
quickly established itself as an efficient method of sampling forests for the 
characteristic that is of most interest to foresters — timber volume. Angle count 
sampling was first introduced by Bitterlich in 1947 and 1948, though its conception 
predated that by almost two decades (Bitterlich 1984, p. 3). Originally, it was 
envisaged by Bitterlich as a method for determining the basal area density of a forest 
by means of an angle gauge. The cruiser simply counts those trees whose diameter 
appears larger than the projected angle. It can be shown through simple geometric 
relations that each such tree represents a constant basal area per unit land area, and 
thus a simple count of trees on a 360° sweep of a sample “point” yields an estimate 
of the basal area in surroundings.  
 It was Grosenbaugh (1952, 1955, 1958), however, who extended this 
interpretation to the probabilistic sampling realm, developing a theory for estimating 
any quantity associated with the sample trees  (e.g.  volume, biomass, number of 
individuals) employing probability proportional to size (PPS) sampling methods. 
Grosenbaugh coined the term “point sampling” because it was in the relation of a 
randomly chosen point falling within a tree’s inclusion area that this probabilistic 
argument was developed. Shortly afterwards, Palley and Horwitz (1961) gave a 
rigorous proof that point sampling was unbiased, while providing the statistical 
derivation of its design-based estimators under conditions of PPS sampling. While 
point sampling was a major innovation in sampling forests, where it is not feasible 
to visit every tree, many timber sales require just that.  
 Lacking in these methods is a generalized framework for estimating the 
components of forest growth. The continuous forest inventory system (CFI) 
introduced by Stott (1947) relied on permanent fixed area plots on which all the 
trees were numbered and remeasured annually. In time, methods like point sampling 
were also used in place of fixed-area plots, and annual remeasurements have largely 
given way to periodic 5- or 10-year visits. As the individual trees are numbered, the 
system allows tracking of each tree’s growth and death over time. A second system, 
introduced to forestry by Bickford (1959) and more formally by Ware and Cunia 
(1962), optimally combines growth information from permanent plots with volume 
information from temporary plots. In sampling with partial replacement (SPR), only 
a portion of the plots that were originally established are remeasured, the rest being 
replaced with a sample of new plots. CFI can thus be thought of as a special case of 
SPR where all the plots are remeasured in each time period. SPR was adopted 
almost immediately by Bickford et al. (1963) in conjunction with double sampling 
for stratification for the forest survey in the northeastern U.S. and has proved to be 
an efficient design. 
 Apart from the work of Matérn (1960), the model-based approach has not 
been used extensively in forest inventories, although a few exceptions exist, e.g. the 
works of Mandallaz (1991), Kangas (1993) and Gregoire (1998). 
 Aerial photographs have also been used in forestry since the early 20th 
century, mostly for visual interpretation, but also for double sampling (Bickford 
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1952, see Chapter 14). In recent years information from satellite images has also 
been used, so that the national forest inventories in Finland and many other countries 
has become a multi-source inventory (e.g. Tomppo 1992, Bechtold and Patterson 
2005, Chapters 11 and 12). Nowadays satellite images are gradually replacing the 
use of aerial photographs (Czaplewski 1999).  
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CHAPTER 2 

DESIGN-BASED SAMPLING  
AND INFERENCE 

ANNIKA KANGAS 
University of Helsinki, Finland  

2.1 BASIS FOR PROBABILITY SAMPLING 

The target of sampling is usually a finite population of N elements called sampling 
units. A sample s is a subset of this population with size n. A sample can be any 
subset of the population, but usually a random sample is used. 
 For sampling to fulfil the requirements of random sampling, it is enough 
that 1) a set Sn of all samples s of size n that it is possible to obtain can be defined;  
2) each sample has a known probability p(s) of being selected; 3) the probabilities 
are non-zero and the sum of these probabilities is one ∑

∈

=
Ss

sp 1)( , and 4) the sample 

s is selected according to the probabilities p(s). The units are selected independently, 
i.e. selection of any one unit does not affect the selection of others. No other 
requirements are needed. The probabilities p(s) then define the sampling design 
(Särndal et al. 1992, p. 8). Lund and Thomas (1989) provide a good overview of 
various sampling designs used in forest and stand inventories. It is worth noting, 
however, that systematic sampling does not fulfil the above requirements of 
independent selection, and this will affect inferences based on this sampling design 
(section 2.4.). 
 Another important probability measure is the inclusion probability iπ . This 
measures the probability of each sampling unit i entering the sample s. The inclusion 
probability and selection probability are connected (see section 2.2). When these 
probabilities are known, the sample statistics of interest can be calculated. The most 
general estimators that apply to all kinds of sampling design are those based on  
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arbitrary inclusion probabilities. An estimate T̂  for total value T of some interesting 
variable y in the population can be calculated with the Horwitz-Thompson estimator 
as 

 ∑
=

=
n

i i

iyT
1

ˆ
π

, (2.1) 

where iπ  is the inclusion probability of unit i. The variance estimator for the 
Horwitz-Thompson estimator is 

 ∑∑
=

≠
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
=

n

i

n

ij
j j

j

i

i

ij

ijji
HT

yyT
1 1

2

2
1)ˆvar(

πππ
πππ

, (2.2) 

where ijπ  is the probability of units i and j both being included in the sample at the 
same time, provided all the inclusion probabilities are above zero. All the estimators 
developed for different sampling designs can be derived from these general 
formulae. 
 Although the variance of the values of y in the population affects the 
estimates, the variance of an estimator in design-based inference is not statistically 
dependent on the distribution of y (Gregoire 1998). The expected value of an 
estimator and the variance of the estimators are based on the variation in the 
estimates (i.e. values of the estimators) between all the possible samples s in the set 
Sn. Since all the randomness comes from the selection of the sampling units, not 
from the population itself, the values of y in the population are treated as fixed but 
unknown (for a different situation, see Chapter 3). This also means that design-based 
inference is independent of the potential spatial correlation between the sampling 
units (Gregoire 1998). It is enough that the units are not correlated in terms of their 
selection.  
 One estimator of the mean value of y in the population is the sample mean, 
the expected value of which can be calculated as  

 ∑=
nS

ss spyyE )(ˆ)ˆ( . (2.3) 

This is the weighted mean of all possible sample means, weighted with the 
probability p(s) of selecting each sample s. An estimator is design-unbiased, i.e. 
unbiased under a certain sampling design, if and only if its expected value coincides 
with the true population value. The bias of an estimator for the mean value is then 
defined as (see Schreuder et al. 1993 p. 21)  

 YyEyB ss −= )ˆ()ˆ( , (2.4) 
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where Y  is the true population mean. The variance of the estimator is 

 { } ( ) )()ˆ(ˆ)ˆ(ˆ)ˆ(
22

spyEyyEyEyV
nS

sssss ∑ −=−=

and the mean square error (MSE) of the estimator is  

 ( ) ( ) { }222
)ˆ()ˆ()(ˆˆ)ˆ( ss

S
sss yByVspYyYyEyMSE

n

+=−=−= ∑ . (2.6) 

More generally, the expected value, bias and variance can be defined in the same 
way for any estimator sŶ  based on observed values yi from sample s (Särndal et al. 
1992 p. 40).  
 In typical sampling situations the population is easy to define and finite, 
whereas in forest inventories the population may be infinite and is often difficult to 
define. In many cases the population to be inventoried is assumed to be that of 
sample plots, i.e. the sampling unit is a sample plot (Shiver and Borders 1996 p. 59). 
This is justified by the fact that the interest lies in the forest characteristics per unit 
area, such as volume per hectare and so on. Consequently, the size of the population 
is often assumed to be the number of similar-sized sample plots that will fit into the 
area, i.e. the total area divided by the plot area. This definition is the easiest to 
operate with. 
 Such a definition is not adequate on all occasions, however. For instance, 
when circular sample plots are used it is not possible to divide the area into mutually 
exclusive plots that cover the whole of it. In point (or plotless) sampling with a 
relascope or angle gauge, the size of the sample plot is zero, so that the number of 
potential sampling units per unit area in infinite, as is the size of the population. 
When the aim is to estimate the forest area, the population is defined based on plots 
or points. 
 In addition to stand-level characteristics, tree-level characteristics such as 
the mean diameter or number of stems may be of interest, so that the most natural 
population would be the population of trees. On some occasions the trees may also 
be the primary sampling units, e.g. with sampling proportional to size in a stand, for 
example for relascope sampling. If the sampling units are trees, the size of the 
population is practically never known. One definition that would be adequate in 
many situations is that the population consists of trees but the sampling unit is a plot.  

2.2 SIMPLE RANDOM SAMPLING 

Simple random sampling, SRS, can be done either with or without replacement. 
Sampling with replacement means that each unit can be selected several times. This 
method is not very important in practice, but it is of theoretical importance as many 
formulae for this design are very simple. The probability p(s) of selecting a given 
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sample s of size n out of the population of size N is nNsp 1)( = (Särndal et al. 1992 
p. 50), as there are Nn samples of size n that can be drawn from the population.  
In this case, the inclusion probability can be calculated as one minus the probability 
of not drawing a certain unit i, i.e. n

i N )/11(1 −−=π , and the probability of 

selecting two units i and j is ( ) ( )nn
ij NN 211121 −+−−=π  (Särndal et al. 1992 p. 50). 

 In sampling without replacement, on the other hand, each unit can be 
selected only once and the selection and inclusion probabilities are not quite as easy 
to calculate as in the earlier case. The number of possible samples is nevertheless 

!)!(
!

nnN
N
−

and the probability of each of these being selected is its inverse  

 
N!

n!n)!-(N =s p )( . (2.7) 

The inclusion probability for any unit i is πi =n/N and the probability of selecting 
two units i and j is ( ))1()1( −−= NNnnijπ  (Särndal et al. 1992 p. 66).  
 The estimators for the mean and its variance can then be derived from these 
probabilities with (2.1) and (2.2). Although the Horwitz-Thompson estimator is for 
the total value, the estimators for the total value T̂  and mean ŷ are related 
according to 

 yN = T ˆˆ  (2.8) 

and their variances according to 

 )ˆvar()ˆvar( yN = T 2 , (2.9) 

assuming in both cases that the population size N is known. 
 One estimator for the population mean in SRS is the sample mean 

 ∑
=

=
n

i
iy

n
y

1

1ˆ , (2.10) 

where yi is the value of the variable of interest for unit i. For sampling without 
replacement, an estimator for its variance is  
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while that for sampling with replacement is 
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n
s = y

2
y)ˆvar( , (2.12) 

where sy
2 is the sample variance of y. The true variance of the sample means could 

be calculated if the population variance Sy
2 were known, but usually it is not. 

Therefore, estimators of the sampling variances are given in this chapter and not 
formulae for the true sampling variances. The formula for sampling with 
replacement (eq. 2.12) can also be used if the population is assumed to be infinite or 
very large.  
 The standard error of the mean is  

 )ˆvar( y = se . (2.13) 

This describes how much the sample means from different samples vary around the 
true mean. In the case of design-based sampling, the standard error can be 
interpreted as implying that the sample mean deviates less than es96.1± from the 
true mean in 95 samples out of 100 selected. This is based on the assumption that the 
distribution of sample means is normal. The statements concerning the accuracy of 
sampling are correspondingly based on the assumption of repeated sampling.  
 The proportion of a certain class i can be estimated from  

 
n
n =p i

iˆ , (2.14) 

where ni is the number of sampling units belonging to class i.  Its variance is 
estimated as 
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N
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2.3 DETERMINING THE SAMPLE SIZE 

The number of units to be selected is obviously limited by the budget. However, the 
minimum amount of units that should be selected depends on the requirements on 
the accuracy of the estimator. The sample size n can be calculated from the 
probability that the deviation of the sample mean from the true mean µ  is less than a 
given d with probability 1-α, αµ -1 = d)|-yP(| ≤ . 
 If it is assumed that the sample means follow a normal distribution, an 
equation (for sampling without replacement) 
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can be obtained from the probability statement, where 2/αz  is the critical value for 
the normal distribution, i.e. the value above which a normally distributed value is 
located with a probability α/2. Then, n is 
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In practice, the sample size is first solved for an infinite population (to avoid n on 
both sides of the equation): 
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and then, based on this, for finite populations as 
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The equation requires knowledge of the population variance S2, which is typically 
unknown. It can be estimated, however, from previous surveys or a pilot study. If 
the estimate for the variance is calculated from a sample, Student s t-distribution is 
used instead of the normal distribution and a corresponding critical value, 2/αt , is 
used. 
 In the case of proportions, an upper bound for the sample size is obtained 
by assuming pi to be 0.5, which gives the maximum variance. 

2.4 SYSTEMATIC SAMPLING  

In systematic sampling, every kth unit is typically selected into the sample. This 
means that there has to be a predefined order among the sampling units. It also 
means that the number of possible samples is only k. The predefined order is 
typically easy in a forest inventory, as the plots are always perfectly ordered with 
respect to their coordinates. In forest inventory, the number of possible samples may 
be infinite, if point sampling is applied. If the plots have fixed size, and they are not 
allowed to overlap, the size of the plot defines the number of possible samples. 
Furthermore, when the first unit is selected, the selection of the other sampling units 
follows automatically. Thus the units are not independently selected, and no design-
based estimators exist for the standard errors of systematic sampling.  
 In theory, standard errors can be calculated for systematic sampling from 

,
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the variance between all the k samples. It can be proved that the standard error 
depends on the inner correlation ω: 
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Since σ2 = σw
2 + σb

2,  the variance of the mean is 

 [ ] σωσ 2
b

2

 = -n+
n

=yvar )1(1)ˆ( . (2.21) 

Therefore, the larger the within-sample variance σw
2 is compared with the total 

variance σ2, the smaller the standard error of systematic sampling. A heterogeneous 
sample represents the population better. On the other hand, the smaller the  
between-sample variation σb

2 is, the smaller the standard error. If ω is negative, 
systematic sampling is more efficient than SRS. Unfortunately, (2.21) cannot be 
used as an estimator for variance if only one sample is measured; it only can be used 
for theoretical analysis.  
 In many cases SRS estimators are also used in systematic sampling. This is 
reasonable if the order of the units is completely random, but if there is a trend in the 
population, the SRS standard error overestimates the standard error of systematic 
sampling. On the other hand, if there is periodical variation in the population, 
systematic sampling may be highly inefficient (Särndal et al. 1992 p. 82). 
 Apart from using SRS estimators, the standard error of a systematic sample 
can be calculated 1) by taking several small samples and determining the variation 
between them (Chapter 10), 2) by using approximate formulae (Chapter 10), or 3) by 
using formulae from stratified sampling (section 2.5). The sample is then divided 
into several strata along the trend. 
 In a forest inventory, there may be a trend within any one forest stand if the 
site index increases from one side to the other, for example. There is also a large-
scale trend in a north-south direction in Finland due to changes in climate 
conditions. Periodical variation within a stand might be due to the ditch network, 
and large-scale periodic variation could be due to hills etc. 
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Example 2.1 Heikki Surakka 
 
In an inventory of a 100-hectare forested area in Southern Finland the sample plots 
were laid out on a square grid where both the line interval and the plot interval was 
100 metres. Altogether 102 circular and point sample plots were measured. If the 
average diameter at breast height was less than 8 cm, the trees were measured on a 
circular sample plot of radius 2.52 metres (area 20 m2). Otherwise point sampling 
was used with a basal area factor of 2, and if there were also understorey trees, they 
were measured on a circular plot of size 20 m2 as well. An estimate for stem volume 
per hectare was calculated for each sample plot. 
 SRS estimators can always be used for population means and totals, and in 
this example, an SRS estimator was also used for the sampling variance. The mean 
stem volume per hectare was 
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where yi is the stem volume per hectare of plot i. In order to calculate the standard 
error of the mean, we first have to determine the population and sample sizes (N and 
n). In general, if we had only circular plots or fixed-area plots of any other shape, 
then n could be simply determined as the number of sample plots and N as [total 
area] divided by [sample plot size], i.e. the number of sample plots located and 
shaped so that whole area is covered with no overlapping. As the size of a point 
sample plot is variable, it is impossible to determine N and n accurately, but we can 
estimate an approximate sampling ratio f=n/N: 
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where ai is the area of the circle from which the basal area median tree is counted as 
belonging to plot i and A is the total area. We can then calculate the sample variance, 
which is an estimator of the population variance: 
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The standard error of the mean stem volume per hectare is 
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In this case, the sampling ratio is so small that the finite population correction factor 
1 - n/N can be ignored. 
 The estimate for the total stem volume is 

 31932525.1930.100ˆˆ myAT =⋅==  

and its standard error  

 ( ) ( ) 322
ˆ 1100121070007.1210,100ˆvarˆvar myATsT ==⋅=== . 

The confidence interval for the true population mean is 

 ( ) ( )( )ee szyszy 2/2/
ˆ;ˆ

αα +− , 

where z(α/2) is a value from the normal distribution with a confidence level α. Thus 
the 95% confidence interval for the true mean stem volume per hectare would be 

 ( ) ( )hamham /215;/17200.1196.125.193;00.1196.125.193 33=⋅+⋅− . 

 
Example 2.2 
 
The proportion of the population that is of a certain character is often a matter of 
interest, for example the proportion of a given tree species or a given site type. Let 
us assume that we now want to know the proportion of mineral sites in this  
100-hectare inventory area. A decision has to be made for every sample plot 
regarding its soil class, i.e. it is either a mineral site, spruce swamp or pine bog. The 
estimate for the proportion of mineral sites is 

 79.0
102
81ˆ ===

n
np ms

ms , 

where nms is the number of mineral site sample plots and n is the total number of 
plots. Thus mineral sites make up 79% of the inventory area and  mires 21%.  
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Table 2.1 Plot data for the inventory area.   

aSoil class: 1=Mineral site
2=Spruce swamp
3=Pine bog

bPlot area: In the case of point sample plot it is the area of the circle from which the basal area median tree is counted as
belonging to plot, otherwise 20 m2.

cStratum: 1=Open areas, seedling stands and stands of seed trees
2=Middle aged stands
3=Mature stands  

The standard error is estimated as follows: 

Plot ID Soil classa Volume Basal area Plot areab Stratumc Plot ID Soil class Volume Basal area Plot area Stratum
m3/ha m2/ha m2 m3/ha m2/ha m2

1 1 155 26 71 2 52 1 236 34 90 2
2 1 242 32 118 2 53 1 217 34 83 2
3 1 108 18 65 2 54 3 157 16 310 3
4 2 269 26 335 2 55 3 135 22 75 2
5 1 114 18 74 2 56 3 284 32 235 3
6 1 93 16 64 2 57 1 33 2 20 1
7 1 201 32 88 2 58 1 74 10 126 3
8 1 80 12 115 1 59 2 430 40 317 3
9 1 66 14 37 1 60 1 340 30 361 3
10 1 363 34 316 3 61 1 315 28 359 3
11 1 171 22 163 2 62 3 93 18 42 2
12 1 217 26 135 2 63 3 23 4 93 2
13 1 36 13 20 1 64 1 45 5 20 1
14 1 176 24 118 2 65 1 360 42 159 3
15 1 278 32 178 3 66 1 181 18 209 3
16 1 210 22 267 3 67 1 330 30 467 3
17 1 20 3 20 1 68 2 224 34 84 2
18 1 347 32 405 3 69 2 209 30 106 3
19 1 260 32 177 3 70 1 371 38 208 3
20 1 164 14 406 3 71 1 248 34 107 2
21 1 149 26 62 2 72 1 247 38 80 2
22 2 25 6 20 1 73 1 445 38 385 3
23 1 407 44 212 3 74 1 130 20 85 2
24 2 330 32 280 3 75 1 223 22 256 3
25 2 368 36 286 3 76 1 408 38 448 3
26 1 114 14 173 3 77 1 241 24 289 3
27 1 221 18 491 3 78 1 89 16 60 1
28 1 310 26 406 3 79 1 278 30 219 3
29 1 85 19 20 1 80 1 355 30 445 3
30 1 344 34 276 3 81 3 66 8 240 3
31 3 288 32 213 2 82 1 247 26 230 3
32 1 141 20 154 3 83 1 136 22 67 2
33 1 224 24 235 3 84 1 166 22 147 2
34 1 297 28 278 3 85 1 151 24 75 2
35 1 212 22 271 3 86 1 164 22 118 2
36 3 227 26 184 2 87 1 119 28 26 2
37 2 208 18 491 3 88 1 169 24 105 2
38 1 263 30 224 3 89 1 0 0 20 1
39 1 0 0 20 1 90 2 164 22 104 2
40 1 242 24 240 3 91 1 112 20 59 2
41 1 392 34 357 3 92 1 63 6 388 1
42 1 255 24 342 3 93 1 109 10 489 2
43 2 196 22 199 3 94 3 36 8 31 1
44 1 130 20 86 3 95 1 140 22 80 2
45 1 0 0 20 1 96 1 215 22 299 2
46 1 339 32 275 3 97 1 64 6 427 1
47 1 386 36 304 3 98 1 59 12 40 1
48 2 224 22 332 3 99 1 103 16 83 2
49 2 255 30 177 3 100 1 130 14 256 2
50 1 124 18 123 3 101 1 37 4 296 1
51 1 195 20 272 3 102 1 18 2 491 1
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Figure 2.1 The inventory area, strata and sample plot locations. 
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2.5 STRATIFIED SAMPLING 

In stratified sampling there exists certain auxiliary information according to which 
the population can be divided to homogeneous groups or strata. Stratified sampling 
is in most cases more efficient than SRS, meaning that the standard errors are 
smaller. Each stratum can be interpreted as a small sub-population, for which the 
estimates are calculated using suitable estimators. Typically, selections within strata 
are performed using SRS, but systematic sampling, for instance, can also be used. 
The population values are then obtained as weighted averages of the sub-population 
values as  
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where L is the number of strata, Wh is the proportion of stratum h and sh
2 is the 

sample variance within stratum h : 
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Stratified sampling generally becomes more efficient with increasing homogeneity 
within the strata, as the weighted averages of small variances are obviously smaller 
than those of large variances, although the allocation of sampling units to strata also 
has an effect on the variance. 
 The allocation of sampling units to strata h can take place in several ways, 
being either constant, proportional, Neyman (optimal) or optimal with respect to 
costs. Constant allocation means that, a constant number of units is selected from 
each stratum. In proportional allocation, the proportion of selected units f = nh/Nh is 
similar in each stratum h, while in Neyman allocation the number of units selected 
depends on both the size of the stratum and the variation within it. This method is 
more efficient than the former ones if the variation varies among strata, meaning that 
it gives the smallest standard error for a given n. The sample size in each stratum is then 
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If the measurement costs vary between the strata, this can be accounted for by 
choosing  
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where ch is the measurement cost in stratum h. This allocation gives the smallest 
standard error for a given budget.  
 The stratification can also be performed after the sample has been selected 
(=post-stratification). In this case it cannot be used for allocating the sample 
optimally, but the estimators of stratified sampling can be used. This could be useful 
if post-stratification is less costly than stratification before sampling for some 
reason. In the case of known stratum sizes and proportional allocation, post-
stratification is almost as efficient as “normal” stratification (Särndal et al. 1992  
p. 265). If the stratum sizes are not known, this will introduce additional error (see 
Chapter 14). 
 

 
Example 2.3 Heikki Surakka 
 
The same 100-hectare area was then post-stratified with the help of aerial 
photographs. Three strata were defined: 
 
Stratum       A  n 
Open areas, seedling stands and stands with seed trees 18.0  18 
Middle-aged stands     33.3  35 
Mature stands      48.7  49 
 
The mean stem volumes per hectare for each stratum are 
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Total stem volumes for each stratum are 
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and the standard errors of the total stem volumes are 
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The mean stem volume per hectare for the whole area is 
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and its standard error 
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and the standard errors of the mean stem volumes per hectare are 
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Example 2.4 
 
In this example we will demonstrate how to determine the sample size. The question 
is derived from the previous examples. How many sample plots would be needed in 
normal systematic sampling to have the same standard error of the mean stem 
volume per hectare as in stratified sampling? 
 First we determine the allowable deviation of the sample mean from the 
population mean. The standard error of the mean stem volume per hectare in 
stratified sampling was 7.4 m3/ha. If we use a 95% confidence level, the confidence 
interval and the allowable deviation will be ±1.96 · 7.4 m3/ha. 
 To determine the sample size, the population variance should be known. As 
it is not known, it has to be estimated from the sample. 
 The sample size needed for an infinite population is 
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but for finite populations, the size of the population should be known. We can 
estimate this by dividing the total area by the average plot area: 
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The sample size for a finite population is now 
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The total stem volume for the whole area is 
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2.6 CLUSTER SAMPLING 

Cluster sampling is used when the population can be divided to separate groups. In 
forest inventory these are typically groups of sample plots located near each other or 
groups of trees located near each other. (Each sample plot could also be interpreted 
as a cluster of trees if the mean values for trees were of interest.) In cluster sampling 
the clusters are the basic sampling units. In one-stage cluster sampling, all the units 
within a selected cluster are measured, while in multi-stage cluster sampling another 
sample is selected from within the cluster. The sampling units at different stages 
vary.  
 Cluster sampling is not usually as efficient as the other selection methods 
given a fixed size of sample n. This is because the sampling units in one cluster may 
be correlated, i.e. the new information resulting from measuring a new unit is less 
than it would be if the units were independent. The usefulness of cluster sampling is 
based on cost efficiency: it is usually possible to measure more units with the same 
budget when they are located in clusters. In a forest inventory a cluster design will 
reduce walking distances in the forest. It is also typical for the clusters to be laid out 
in a systematic fashion, the groups of plots forming a line or a rectangular of a 
certain size, and for this reason the definition of a cluster is also somewhat more 
complicated in forestry than for clusters formed by families, classes or schools as in 
the social sciences.  
 The estimator for the population mean is the mean of the cluster means: 
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where a is the number of clusters selected and αŷ is the mean in cluster α. If the 
clusters are of different sizes, this formula might be biased. The bias occurs if the 
variable of interest is dependent on the cluster size, e.g. if it has larger values in 
larger clusters. The mean estimator should then be calculated as a weighted mean of 
the clusters. If y is independent of cluster size, the results are unbiased, although 
equal size is assumed (Cochran 1977). The variance estimator of the mean is  
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where A is the total number of clusters. The efficiency of cluster sampling increases 
as the variation between cluster means decreases, i.e. the more homogeneous the 
clusters are. This, on the other hand, depends on the inner heterogeneity of the 
clusters: the larger the amount of the population variation that is within-cluster 
variation, the better. The principle is similar to that of systematic sampling presented 
in section (2.4). This can be expressed using the intra-cluster correlation ω 
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where B is the size of a cluster. The variance in cluster sampling can then be 
presented as (Cochran 1977, Tokola and Shrestra 1999) 
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Thus the smaller the intra-cluster correlation is, the smaller the variance.  
 In two-stage cluster sampling, the variance of the mean is larger, because 
the second-stage sample also contains sampling error. The variance is 
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and where B is the population size within a cluster and b is the corresponding sample 
size. 

2.7 RATIO AND REGRESSION ESTIMATORS 

In a stratified inventory information on some auxiliary variables is used both to plan 
the sampling design (e.g. allocation) and for estimation, or only for estimation (post-
stratification). Stratification is not the only way to use auxiliary information, 
however, as it can be used at the design stage, e.g. in sampling proportional to size 
(section 2.8). It can also be used at the estimation stage in ratio or regression 
estimators, so that the standard error of the estimators can be reduced using 
information on a variable x which is known for each sampling unit in the population. 
The estimation is based on the relationship between the variables x and y. In ratio 
estimation, a model that goes through the origin is applied. If this model does not 
apply, regression estimator is more suitable. The ratio estimator for the mean is  
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where X  is the mean of a variable x in the population and x  in the sample . Ratio 
estimators are usually biased, and thus the root mean square error (RMSE) should be 
used instead of the standard error. The relative bias nevertheless decreases as a 
function of sample size, so that in large samples (at least more than 30 units) the 
accuracy of the mean estimator can be approximated as (Cochran 1977 p. 155) 
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 The ratio estimator is more efficient the larger the correlation between x 
and y relative to the ratio of the coefficients of variation. It is worthwhile using the 
ratio estimator if  
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 The (simple linear) regression estimator for the mean value is 

 )(ˆˆ x-X+y = yreg β , (2.35) 

where β̂  is the OLS coefficient of x for the model, which predicts the population 
mean of y based on the sample means. In a sampling context, the constant of the 
model is not usually presented, but the formula for the constant, x+y = βα ˆˆ , is 
embedded in the equation. The model is more efficient the larger the correlation 
between x and y. The variance of the regression estimator can be estimated as 
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Example 2.5 Heikki Surakka 
 
There were also data for the same 100-hectare area that contained only basal area 
measurements. These had been collected from a very dense grid with a basal area 
factor of 1. The sample covered the area so well that the estimates (mean and total 
basal areas) can be regarded as true, as if every tree included in the area had been 
measured. We will next use the basal area as an auxiliary variable and determine the 
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between stem volume and basal area, and the relationship is almost linear and goes 
through origin. 
 First we calculate the ratio between the estimates: 

 m
x
yr 6376.8
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As the true mean basal area was slightly smaller than the estimate for the mean basal 
area, the ratio estimate for mean stem volume per hectare is smaller than that 
obtained without ratio estimation: 
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Its variance estimate is 
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and the standard error estimate 

 hams
raty /8.4280.23 3

ˆ == . 

The ratio estimate for total stem volume is 
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and its standard error is 
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mean stem volume per hectare by ratio estimation. There is a very high correlation 
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with a relascope. It is then assumed that unit i is selected with the probability kxi, 
where k is a constant and x is a covariate (diameter of a tree in relascope sampling). 
PPS sampling is more efficient the larger the correlation between x and y. For 
perfect correlation the variance in the estimator would be zero (Schreuder et al. 1993 
p. 46). PPS sampling might even be less efficient than SRS, however, if the 
correlation were negative. This could be the case when multiple variables of interest 
are considered simultaneously, for example, when correlation with one variable (say 
volume) might give efficient estimates but the estimates for other variables (say 
health and quality) might not be so good. 
 In practice, PPS sampling can be performed by ordering the units, 
calculating the sum of their sizes (say ∑ ix ), and calculating nxi /∑ . The 
probability of a unit i being selected is then ∑ ii xx  and a cumulative probability 
can be calculated for the ordered units. A random number r is then picked and each 
unit with a cumulative probability equal to (or just above) r, r+1, r+2,…r+n-1 is 
selected for the sample. Every unit of size greater than nxi /∑  is then selected with 
certainty. 

2.9 NON-LINEAR ESTIMATORS 

The simple variance estimators presented in the above sections are not applicable to 
non-linear estimators. A typical example of a non-linear estimator is a ratio of two 
estimators, 21

ˆ/ˆ YY . Although the mean value in the whole sample is a linear 
estimator, the mean in any sub-population is a ratio estimator, because the number of 
sample units in the sub-population, ns, is a random variable having a variance that 
needs to be accounted for.  
 In such situations, the non-linear estimator needs to be linearized in order to 
be able to derive an (approximate) formula for the variance estimator. The ratio 
estimator 21

ˆˆ)ˆ( YY =g Y  (where Ŷ is the vector of estimators) can be linearized 
using Taylor series expansion. The variance can then be estimated as  
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2.8 SAMPLING WITH PROBABILITY PROPORTIONAL TO SIZE 

The basic properties of sampling with arbitrary probabilities (2.1) can also be 
utilized in sampling with probability proportional to size (PPS), such as sampling 
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 The Taylor series approach applies in the general case. In most simple 
cases, however, separate linearization is not required, since the estimators already 
presented for the variance of a ratio estimator can be used directly (and can be 
derived using 2.37, for instance: compare 2.38 with 2.41). An example of a non-
linear estimator is the case where whole stands (or compartments) are sampling 
units. Then, as the stands are of different sizes, the sampled area is not known before 
sampling but is also a random variable. The proportion of the area fulfilling a certain 
condition may be estimated as 

 ,ˆ
11
∑∑

==

=
n

i
i

n

i
ii AzAR  (2.39) 

where zi is an indicator variable with the value 1 if the condition is fulfilled and zero 
otherwise, and Ai is the area of the stand i. The standard error of this estimator can 
then be approximated as (Cochran 1977) 
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and 
N
AT

x =µ is the mean area of the sampling units. Assuming that the mean area is 

estimated with the sample mean, this formula can be simplified to (Heikkinen, 
personal information)  
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This means that it is enough to separate the areas of stands fulfilling the condition 
and those not fulfilling it. 
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e.g. jackknife and bootstrap methods. These work as follows: 
 
1) Draw K replicate samples of size n from the original sample (of size n) with 
replacement. 
2) For each replicate, calculate the estimator of interest (e.g. mean or ratio). 
3) Estimate the variance of this estimator from the variance between the estimates 
from replicate samples. 
 
 The replicate samples have to be drawn using the original design, i.e. with 
SRS for simple random sampling, by strata for stratified sampling etc., which means 
that these simple resampling estimators are not useful for systematic sampling. They 
nevertheless make variance estimation easy for complex sampling designs and for 
non-linear estimators.  
 In Bootstrap method, at least about 100, preferably more than 500 
replicates are drawn. The estimator is then  
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where 
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is the mean of the estimates from replicate samples.  
 For systematic sampling, parametric bootsrap may be an option. In 
parametric bootstrap, the distribution F of the sampling units is estimated based on 
the sample data. The distribution could be, for example, normal distribution. The 
bootstrap samples are then sampled from the estimated distribution. After that, the 
parametric bootstrap proceeds similarly as the simple bootstrap. 
 In the jackknife method, jackknife samples x(i) are taken, defined as samples 
with the ith observation left out, e.g. x(i) = (x1, x2, …, xi-1, xi+1,…, xn). )(̂iθ is then the ith 
jackknife replication of the estimator θ̂ . From these jackknife replications, pseudo-
values are calculated as 

 i
p

i nn θθθ ˆ)1(ˆ)( −−= . (2.45) 

2.10 RESAMPLING  

In many cases the capacity of modern computers can be utilized to estimate the 
sampling variances. There are several methods that work in quite a similar fashion, 
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is the mean of the replicate pseudo-values. The original sample estimator could also 
be used instead (e.g. Pahkinen and Lehtonen 1989). The same variance estimator 
could also be written without using pseudo-values as (Efron and Tibshirani 1998) 

 2)ˆˆ(1)ˆvar( ii

n

1=i
JACK -

n
n= θθθ ∑− . (2.47) 

 In this formula the differences between the jackknife resamples are 
assumed to be small relative to the variation between the pseudo-values, and 
therefore the value is inflated by (n-1)/n (Efron and Tibshirani 1998).  

2.11 SELECTING THE SAMPLING METHOD  

Optimal data acquisition can be considered from several points of view. 
Traditionally, it has been understood as the sampling design giving minimum 
variance for certain estimates, e.g. mean volume, with a given budget. The inventory 
costs can be assumed to include fixed costs that are similar for each sampling 
design, costs per cluster (in a cluster design), costs per plot, and costs per sample 
tree. The total costs can then be expressed as a function of the number of clusters 
(m) and plots (n) measured, e.g. 

 nCmCCC nmf ++= . (2.48) 

If the costs differ between sub-populations, this should also be accounted for in the 
cost function.  
 The variance can also be expressed as a function of the number of plots and 
clusters, even though this is non-linear. If there are several variables of interest, 
either one variable is chosen or the variances of all of them are combined in some 
way, e.g. using a weighted sum. Burkhart et al. (1978) suggested that the largest 
variance or the variance of the most important variable should be used to determine 
the sample size, while Scott and Köhl (1993) used the accuracy relative to the 

The jackknife variance can then be estimated as  
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where K is the number of variables of interest, S is the desired level of accuracy and 
s is the actual level of accuracy as a function of number of clusters and plots, Ct is 
the given cost level and C is the actual cost as a function of number of clusters and 
plots. There may also be more restrictions. A non-linear optimization problem can 
be fairly difficult to solve, however, and linear optimization is not applicable (Scott 
and Köhl 1993).  
 Expressing the variance of the estimator as a function of the number of 
plots requires information on the population variance S2. This is typically obtained 
from a previous study or from a small preliminary sample. In some cases it is 
possible to anticipate the population variance mathematically, assuming the 
locations of trees in the area to follow a known random process such as a Poisson 
process (Mandallaz and Ye 1999).  
 Another approach is to minimize the cost function at a given precision 
level. Constraints can then be given separately for all the variables of interest, e.g. 
the maximum variance level as 

 k ks S< . (2.50) 

It is also possible to minimize the utility function, which is the weighted sum of the 
inventory costs and MSE (Päivinen 1987). The problem then becomes a non-
constrained optimization, which is easier to solve. The problem of weighting the 
costs and accuracy remains, however. 
 In some cases it is not necessary to compare methods in an optimization 
problem of the kind presented above, as the cost-effectiveness of the designs can be 
compared using the relative efficiency of the alternatives (provided they reflect the 
same costs). The efficiency of alternative A relative to B can be defined as the 
variance of alternative A divided by the variance of alternative B (Scott and Köhl 
1993, Pahkinen and Lehtonen 1989):  

 BA yVyVDEFF )ˆ(/)ˆ(= .  (2.51) 

For a cluster sampling design, for example, the DEFF coefficient, assuming a 
constant number of clusters and constant cluster size, can be derived from formula 
(2.27) as [ ]ϖ)1(1 −+= BDEFF , where ω is the intra-cluster correlation. In the case 
of cluster sampling the latter can be defined as (Cochran 1977) 

desired level of accuracy and averaged across all the variables. The problems can 
then be presented as a single (non-linear) optimization problem:  
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 2

22

)1( σ
σσϖ

−
−=

B
b , (2.52) 

where 2
bσ is the between-cluster variance, 2σ is the total variance, and B is the size 

of the cluster. This enables different cluster shapes such as an L-shaped or square 
tract, or different plot distances within a cluster, to be compared (Tokola and 
Shrestra 1999). Similar problems can also be solved using a model forest, e.g. based 
on a satellite image, in which different designs can be compared (Päivinen 1987).  
  Another point of view is to optimize the intervals between subsequent 
forest inventories so that the information is always fresh enough for decision making 
at minimum cost. In such cases, the database can be updated in terms of forest 
growth by means of growth and yield models. Silvicultural measures can be 
ascertained from the forest owner or from aerial images, for instance (Anttila 2002, 
Hyvönen and Korhonen 2003).  
 It is evident, however, that the traditional approach based on the mean 
square errors of the estimates does not necessarily produce any information 
regarding the usefulness of the measured information for decision-making purposes. 
This aspect has been studied using cost-plus-loss analysis, in which the expected 
losses due to non-optimal decisions caused by inaccurate data are added to the total 
costs of the forest inventory (Hamilton 1978, Burkhart et al. 1978). Ståhl et al. 
(1994), for example, analysed whether it is more profitable to make accurate 
inventories at long intervals or moderately accurate inventories at shorter intervals.  
 The hardest part of cost-plus-loss analysis is to define the expected losses. 
Holmström et al. (2003), when studying the usefulness of different inventory 
methods for decision-making, defined the average loss in terms of the net present 
value (NPV) in the next 5-10 years, where the optimal NPV was taken to be the 
maximum value without any restrictions. This analysis suggested that extensive field 
sampling methods were worthwhile in the case of mature stands where the optimal 
treatment was to be expected in the near future. This kind of approach is a 
simplification of the true situation, however, as all decisions can be revised. The 
errors may therefore be non-symmetric in the sense that cuttings proposed for too 
early a stage can be postponed (provided the necessity can be observed in the field), 
but those proposed for too late a period cannot be transferred to an earlier occasion.  
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CHAPTER 3 

MODEL-BASED INFERENCE 

ANNIKA KANGAS 
University of Helsinki, Finland  

3.1 FOUNDATIONS OF MODEL-BASED INFERENCE 

Any survey can be separated into three stages, design stage, estimation stage and 
inference stage. The design stage means selecting the design by which the data  
is gathered, the estimation stage selecting and using the estimators for the 
parameters of interest, i.e. population means and totals, and the inference stage 
analyses concerning the accuracy of these estimators, i.e. the calculation of standard 
errors and confidence intervals.  
 Models can be used at several stages in sample surveys. They can be used 
in the design stage, for instance, to select the most efficient sampling design, or in 
the estimation stage as ratio or regression estimators, or in the inference stage by 
using autocorrelation models to estimate the variance in systematic sampling 
(Cochran 1946, Bellhouse 1988). Hansen et al. (1983) used the term model-based to 
describe strategies that utilize models in the design stage, estimation stage or both 
and the term model-dependent for strategies which used models in the inference 
stage. Schreuder et al. (1993) nevertheless use the term model-based to refer 
specifically to the use of models for inference, and the same approach is adopted 
here. 
 The principal difference between the model-based and classical approaches 
lies in the source of randomness they utilize (Särndal 1978). In classical, design-
based sampling theory the source of randomness is the probability introduced by the 
sampling design to the various subsets of the population. Inference rests on the 
stochastic structure introduced by the sample selection. Even when models are used, 
the validity of inference is ensured by the sampling design and not by the validity of 
the model. In fact, models that incorporate auxiliary information can be used 
regardless of whether they are valid or not (Mandallaz 1991). 

39 
A. Kangas and M. Maltamo (eds.), Forest Inventory – Methodology and Applications, 39–52. 

 



 In the model-based approach the observed values yi are assumed to be 
random, not fixed as in the design-based case. They are considered to be the realized 
outcome of random variables Yi having a joint distribution ξ. The so-called 
superpopulation ξ is modelled to reflect the available background information about 
the population (Cassel et al. 1977). The concept of superpopulation dates back at 
least to the paper of Cochran (1946) on systematic sampling. 
 In the model-based (or model-dependent) approach the inference rests 
entirely upon the validity of the model describing the real world (Mandallaz 1991). 
All the randomness in this inference is due to the population, not to the sampling 
method as in the design-based approach. Where the latter requires independent 
selection of units, the model-based approach considers the independence of the 
sampling units themselves, and thus (potential) spatial correlations between the 
sampling units need to be taken into account. On the other hand, the method by 
which the sample is selected is not considered important. If the model is valid, 
randomization is not needed and the sample may be selected in a purposive manner. 
Even in the case of purposive sampling, however, the sample must not be selected 
purposively with respect to values of yi (Gregoire 1998). In any case, random 
selection (or objective selection, as in systematic sampling) is usually used to ensure 
the validity of inference even though the approach is model-based, as the inferences 
will then be robust with respect to possible model misspecification. 
 In the model-based approach it is possible to make a distinction between 
inference concerning 1) the (finite) population values themselves and 2) the 
superpopulation that has generated the finite population (Särndal et al. 1992 p. 514).  
If we assume that a simple model describing the superpopulation ξ is  

 ii ey += µ , (3.1) 

where yi  is the value of variable y at point i belonging to the area of interest, its 
expected value (with respect to the model) will be Eζ (yi )=µ, and the variance of 
errors Vζ (ei )=σ2, units i and j are independent Covζ (ei,ej )=0 and ei’s can be assumed 
to be normally distributed. As the finite population of N units is also assumed to be a 
sample from this superpopulation, its mean Y is also a random variable. This means 
that the superpopulation parameter µ does not generally coincide with the population 
parameter Y . It can be said that model-based inference gives a prediction of the 
population parameter.  
 It is therefore necessary to decide whether interest is focused on inference 
concerning the finite population parameters (descriptive or enumerative inference) 
or concerning the superpopulation parameters (analytic inference) (Schreuder et al. 
1993 p. 204, see also section 10.6). In the case of descriptive information, the 
variance of interest would be the prediction variance, )var( Y−µ , rather than the 
variance in the superpopulation model parameter )var(µ ( Mandallaz 1991 p. 125).  
 In the design-based case an estimator is considered design-unbiased if its 
expected value in the set of all possible samples coincides with the population value. 
In the model-based case, the respective feature is model-unbiasedness. An estimator 
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µ, for instance, is regarded as a model-unbiased estimator for the population 
parameter if the expected value of the difference between the estimator µ̂  and  
the population parameter Y is zero with respect to the model ζ, given a sample s 

0)ˆ( =− sYE µς (Särndal et al 1992 p. 534). In the general case, as the super-
population is infinite, the expected value for the estimator Ŷ  of population 
parameter Y is the integral over the superpopulation model ζ.  

 ∫= ξς dYYE ˆ)ˆ( , (3.2) 

and the model-based variance is  

 { }∫ −= ξς dYEYYV
2

)ˆ(ˆ)ˆ( . (3.3) 

The model-based variance can be used in the design stage in order to obtain a 
sample that minimizes this variance, and, given the sample s, (3.3) could be used to 
select the minimum variance estimator (e.g. Särndal et al. 1992 p. 516).  

 In cases where random sampling is used, the estimators can be required to 
be both design and model-unbiased. The expected values and variances can then be 
calculated both under the design and the model, as ˆ( )pE E Yς  and 2ˆ ˆ( ( ))pE E Y E Yς − . 
Variances of this kind, called anticipated variances (Särndal et al. 1992 p. 516), can 
be useful for optimizing the sample design. 

3.2 MODELS 

In the general case, the model used for model-based inference can be a general linear 
model (see Searle 1971, Graybill 1976, Lappi 1993 or any textbook on general linear 
models) 

 εXβy += , (3.4) 

where y is an n-vector of the observed dependent variables, X  is an n × p matrix of 

parameters. It is assumed that E(ε) = 0 and the variance-covariance matrix of errors is 
var(ε)=σ 2I,  where I is an n× n identity matrix. This means that the errors are 
mutually independent (cov(εi,εj) = 0, ∀ i ≠ j) and homoscedastic (var(εi) = σ 2 ∀ i). 
 The parameters can then be solved by the ordinary least squares method 
with  

 yXX(Xβ )ˆ 1−= , (3.5) 

 

.
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 independent variables, ε is an n ×1 vector of errors and β is a p×1 vector of model 



producing 

 1XXβ −= )(ˆ)ˆvar( 2σ  (3.6) 

and 2)var()ˆvar( σε == iiy .The estimator for the residual variance is 

 
pn −
−−= )ˆ()ˆ(ˆ 2 βXyβXyσ .  (3.7) 

 In an even more general case, var(ε)=σ 2V , where V is an n × n matrix and 
the diagonal includes the possible weights of the observations (leading to WLS, i.e. 
Weighted Least Squares) and the off-diagonal cells the correlations among the errors 
(leading to GLS, i.e. Generalized Least Squares). The parameters can then be 
estimated from 

 yVXXV(Xβ 11 −−−= )ˆ 1 , (3.8) 

and the estimator for their variance is 

 2 1ˆ ˆvar( ) ( )σ − −= 1β X V X . (3.9) 

 With these general models, the estimator for the population mean is 

 Xβ̂ˆ =µ , (3.10) 

where X is the mean matrix of x-variables in the population. Its (analytic) variance is 

 XX)V(XXXβX 1−−= 12)ˆvar()ˆ( σµ =var . (3.11) 

 When the prediction variance for new observations (i.e. those not belonging 
to the sample) are calculated, an additional error term needs to be accounted for. The 
prediction error for one observation y0 is then 

 212
00 )ˆ( σσ +− −−

0
1

0 xX)V(Xx=yyvar  (3.12) 

and that for the mean of m new uncorrelated observations with the same values of 
regressors x0 is 

 2 1 2ˆ( ) /var y y = mσ σ− −− +1
0 0x (X V X) x . (3.13) 

 In a model-based framework, therefore, formula (3.11) describes the 
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uncertainty concerning the superpopulation parameter and formula (3.13) that 
concerning the prediction variance of the mean. Assuming the simplest model (3.1), 
with only an intercept term but no independent variables, the estimator (3.10) 
simplifies to a sample mean of y and the variance estimator for the superpopulation 
parameter to the SRS sampling variance for an infinite population,  

 
n

2
112 ˆ

)(ˆ)ˆvar( σσµ == −− 1I1 , (3.14) 

where 1 is an n-vector of ones, n is the number of sampling units and 2σ̂ the normal 
variance calculated from the sample. The estimator for prediction variance of the 
population parameter, )ˆvar( Y−µ , in a finite population of N units (of which (N-n) 
are new and n are known) is (see Gregoire 1998 p. 1436) 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=−

Nn
Y 11ˆ)ˆvar( 2σµ . (3.15) 

Thus the prediction error of the population mean is slightly different from the 
variance of the superpopulation parameter in a finite population, although the 
difference is small if N is large. It also means that even if the sample size were N, i.e. 
the whole population were measured, the estimate of the superpopulation parameter 
would still be uncertain while the variance of the population parameter approaches 
zero when n approaches N. 
 An important special case is the model through the origin 

 εβ iii +X=y   (3.16) 

with a variance proportional to the value of xi, ii xy 2)var( σ=   . The estimator for 
β̂ is then 
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and the estimator for its variance is  
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where, according to the WLS formula,  

 ∑
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The optimal sampling strategy with this model would be to select the units with the 
largest values of x for the sample, i.e. to maximize the value of  ∑

∈Si
ix  (Royall 1970). 

An analytic inference for )ˆvar(µ  can be calculated with (3.11), and the estimator for 
descriptive inference in a finite population is (Gregoire 1998) 
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where S denotes a sample and R those units that belong to the population P but not 
to the sample S.  
 

 
Example 3.1 
 
Assume a population of 125 trees where the diameter d and volume v of each tree 
are known. A (non-random) sample of 32 trees from this population are measured. 
The population parameters are presented in Table 3.1 and the sample trees in Table 
3.2.  

Table 3.1 Population parameters. 

 Total Mean Standard 
deviation 

Volume v 9477.036 dm3  75.82 dm3 48.10 dm3 
Diameter d 1485 cm 11.88 cm 3.55 cm 

 
The task is to estimate the mean volume of the trees in the population. The sample 
mean is 93.30, and the estimate of standard deviation in the sample is 41.02. It is 
assumed that the population is generated with model (3.1) and that the observations 
are mutually independent. Based on these assumptions, the estimated standard 
deviations are 7.25 for the superpopulation parameter with formula (3.14) and 6.255 
for the population mean with formula (3.15). In this small population the difference 
between analytic and descriptive inference is clear. 
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Table 3.2 Sample trees 

d cm v dm3 d cm v dm3 
9.2 38.32 13 80.08 
9.7 42.23 13.1 84.91 
10.9 50.30 13.3 81.29 
11.1 57.32 13.4 86.90 
11.3 57.59 13.7 90.11 
11.6 62.54 13.9 95.43 
11.8 70.06 13.9 95.43 
12 68.89 14.8 116.39 
12 67.88 14.9 108.63 
12.2 65.96 15.3 120.97 
12.4 70.26 16 129.39 
12.5 73.57 16.7 148.50 
12.6 70.30 16.8 144.35 
12.8 84.57 18.2 174.58 
12.9 78.87 18.4 174.82 
13 81.27 20 214.02 

 
For an example accounting for spatial autocorrelation, see Chapter 10. 

 
Example 3.2 
 
In this example estimates for the mean volume and its standard error are calculated 
using the model-based formulae (3.10) and (3.17)-(3.20). First, the estimate for 
parameter β is calculated with (3.17):  

 889.6
54.13
30.93ˆ ===

x
yβ  

The estimate for the population mean is then 

 3841.8188.11889.6ˆˆ dmX =⋅== βµ . 

The residual variance is estimated with 
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the descriptive variance with  
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and the standard error estimate as 
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The ratio estimate for the total stem volume is 
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and its standard error  
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Using analytic inference, the corresponding variances would be 

 232 )(2.12086449.088.11)ˆvar()ˆ( dm=var =⋅=XβXµ     and 

 
23222 )(9.190638086449.088.11125)ˆvar()ˆ( dmN=Tvar y =⋅⋅=XβX , 

 

3.3 APPLICATIONS OF MODEL-BASED METHODS TO FOREST 
INVENTORY 

Some examples of model-based inference can also be found in the forestry literature. 
Design-based and model-based inferences have been compared in papers by 
Schreuder and Wood (1986) and Gregoire (1998), for instance.  

,

,
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 A simple example of a forestry application is the paper of Pekkonen (1983), 
who used a polynomial volume model  

 i
k
iki exxy +++= ββ ...11 , (3.21) 

where xi is the diameter of tree i, as a superpopulation model for estimating the total 
timber volume in a given stand. The parameters of the volume model were estimated 
from a sample, and the total timber volume was then estimated by  

 yy=T i
si

i
si

+ ˆˆ ∑∑
∉∈

, (3.22) 

where the first term on the right-hand side is the total volume of sample trees and the 
second term the total volume of the other trees, estimated using the superpopulation 
model. Other examples of the use of model-based methods for timber estimation 
include the papers of Schreuder (1984), Schreuder and Thomas (1985). 
 The efficiency of sampling can often be greatly increased by using 
auxiliary information. In a forest inventory this may mean information obtained 
from previous studies, from satellite images or from GIS, for instance. These sources 
provide information which can be used for stratification of the population in the 
design-based approach. In a model-based framework, information from GIS was 
used by Mandallaz (1991, 1993). The model-based approach enabled several 
classifying variables and interactions to be used without complex analysis.  
 Auxiliary information can also be used for small-area estimation (Chapter 7). 
When estimates are desired for subdivisions of a population, design-based estimators 
often have unacceptably large sampling errors. In such a case it is preferable to use 
at least partially model-based estimators. Small area estimators have been studied by 
Särndal (1984) and Särndal and Hidiroglou (1989), for example, and in a forestry 
context by Green et al. (1987), Mandallaz (1991, 1993), Kangas (1996) and Lappi 
(2001). 
 In Scandinavian national forest inventories, models have been used to 
develop the sampling design and to develop error estimators for systematic strip 
sampling and systematic cluster sampling (Chapter 10). These estimators are still 
based on a design approach, however. Purely model-based estimators of the mean 
volume and its standard error were presented by Kangas (1993, 1994). The variation 
in volume in the area was divided into two components, the trend and the 
(correlated) random errors. Spatial autocorrelation was taken into account by 
estimating the covariance between the sample plots as a function of distance. The 
trend component was described with a second-order surface 

 0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3

2 2 2
7 1 8 2 9 3 .

i i i i i i i i ii

i i i ix x xβ β β ε+ + +
 (3.23) 

where yi is the volume (m3/ha) at point i and x1i and x2i are the coordinates of point i 
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and x3i is its altitude. Thus it is assumed that the mean volume varies in the region 
with respect to location. 
 The most important application of model-based inference may nevertheless 
be the possibility of choosing the optimal sampling strategy. This can be based on 
the anticipated variance (section 3.1) in a sample under the assumed model. Optimal 
sampling strategies have been discussed by by Schreuder and Quyang (1992), 
Mandallaz (2002), Mandallaz and Lanz (2001) and Mandallaz and Ye (2000), for 
instance.  
 Another example of a situation where model-based methods may possibly 
be useful is the incorporation of information from previous surveys. Such 
information can be used in a continuous forest inventory system, for example  
(van Deusen 1989). It is also possible to update sample data using growth models 
and to combine this information with new sample survey data (Dixon and Howitt 
1979). Data from previous surveys can similarly be used to determine the sampling 
scheme (Schreuder and Thomas 1985). The modelling approach can be extended 
directly to the analysis of non-sample errors (Little 1982). 

3.4 MODEL-BASED VERSUS DESIGN-BASED INFERENCE 

Since model-based methods were first presented, purposive sampling has again been 
discussed, and it has been shown to be not only possible but even desirable in certain 
situations. This strategy has been criticized, however, because it may lead to severe 
bias if the model assumptions are not correct. In this case statements about the 
sampling error may also be misleading.  
 Following that criticism, much of the work of modellers has been devoted 
to constructing robust model-based strategies. The search for a robust strategy often 
leads to the recommendation that the sampling design should be probabilistic 
(Godambe 1982) or that the sample should be balanced (Royall 1992). A balanced 
sample means that the sample moments of the covariates are equal to those in the 
population. If the model does not include all the relevant covariates, however,  
the selected sample may not be balanced with respect to these covariates and the 
results may thus be biased. A probabilistic design will, on average, provide an 
approximately balanced sample for regressors that have been overlooked as well.  
 In contrast to model-based inference, design-based inference is usually 
considered to be robust. According to Brewer and Särndal (1983), probability 
sampling is robust by definition: since the inference does not depend on a model, 
there is no need to discuss what happens in the case of model breakdown. Hansen  
et al. (1983) expressed the view that the design-based approach is robust because a 
minimum number of assumptions are made about the population, and personal bias 
in sample selection and model selection is eliminated.  
 In the model-based approach some model deviations can be controlled by 
choosing an appropriate sampling design, but there can never be complete 
robustness. The framework for inference is completely different in these two 
approaches, however. Often modellers and randomisers will make identical 
inferences from identical samples, e.g. in simple random sampling. If in the further 
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analysis of a population it is agreed that stratification should have been used, a 
modeller will say that the model was mis-specified and the inference was thus 
biased. In this same situation a randomiser may say that all that has happened is that 
there has been a loss of efficiency. Thus the results are interpreted differently, and 
the modeller’s bias is transformed into the randomiser’s sampling variance (Smith 
and Njenga 1992). 
 Brewer and Särndal (1983) described six approaches to sampling, which 
are progressively less dependent on model assumptions. 
 

1. The Model-Based Bayesian Approach. Inference is based on an assumed 
model and on the specified prior distributions of its parameters. The 
estimators are developed and the sample is selected in order to minimize 
Bayesian risk. 

 
2. The Model-Based Non-Bayesian Approach. Inference is based on an 
assumed model without using prior distributions for its parameters. The 
estimators are developed so as to be minimum variance unbiased estimators 
and sampling is conducted in order to minimize the variance of the 
estimator under the model. 

 
3. The Robust Model-Based Non-Bayesian Approach. This approach 
differs from the previous approach in that the sample is selected in order to 
achieve a balance. The estimators are also developed so as to be unbiased 
under a closely related alternative model. 

 
4. Probability Sampling with Modelling. Inference may be either design-
based or model-based with this approach. The design is chosen to minimize 
the model expectation of the design-based MSE. 

 
5. Classical Probability Sampling. Selection is probabilistic and inference is 
design-based. 

 
6. Inference Without Exchangeability. In this approach an attempt is made 
to make inferences without assumptions about exchangeability. 

 
 In the first two strategies the sample is purposively selected, so that these 
approaches may lead to erroneous inference if the model is not an accurate 
description of the population. If, on the other hand, the model is correct, these 
approaches are reliable and cost-effective (Schreuder et al. 1993). In the third 
approach, random selection is not required, but it may be used because simple 
random sampling produces a balanced sample on average. According to Brewer and 
Särndal (1983), the most reasonable choices are approaches 3, 4 and 5, but they 
prefer approach 4. The last approach has yielded some theorems on the non-
existence of optimal estimators, but is of little practical value.  
 Proponents of model-based inference argue that after a sample has been 
drawn, the soundness of the inference depends on the sample itself and not on the 
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process used to obtain it. In the design-based approach the sampling variance is 
averaged over all possible samples of realized values, and the resulting sampling 
variance does not describe how the sample performs but only how samples of the 
same size perform on average. With the model-based method, inference from the 
sample may be sound even when the sample is atypical.  
 The model-based approach is sometimes judged to be radically different 
from the traditional approach, and perhaps even controversial. A philosophical 
consensus among the different approaches to sampling theory is not likely, but from 
a pragmatic point of view the differences are not so great and the different 
approaches will lead to similar conclusions, at least in large samples. Actually, the 
model-based approach confirms many classical results. 
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CHAPTER 4 

MENSURATIONAL ASPECTS  

ANNIKA KANGAS 
University of Helsinki, Finland  

4.1. SAMPLE PLOTS  

4.1.1 Plot size 

In forest inventory problems, the size of the plots to be measured needs also to be 
decided in addition to selection of the number of plots. The larger the plots are, the 
more time-consuming and expensive it is to measure them, and obviously the 
number of sample plots that can be measured with a given budget is larger when the 
plots are small. On the other hand, the variation among plots in the population, Sy

2, 
diminishes as the plot size increases (Shiver and Borders 1995 p. 60).  
 Clusters of smaller sub-plots (or combined plots) have been used on many 
occasions instead of single plots, typically in large-area surveys such as national 
inventories (see Chapter 11). A cluster plot typically consists of small circular plots 
(or point-sampling plots, section 4.2) that form a geometrical figure such as a 
triangle or rectangle. There are two benefits entailed in the use of clusters (Loetsch 
et al. Vol II p. 345). First, the location and layout of a cluster of several small plots 
is faster and more accurate than the measuring of large single plots. In addition, the 
coefficient of variation is smaller than for single plots of the same total area. 
 The optimal plot size thus depends on both the measurement costs and the 
observed variation. This question has been studied by Nyyssönen (1966) and 
Nyyssönen et al. (1971), for instance. Gambill et al. (1985) presented a method for 
determining plot size that minimizes the total cruising time (i.e. costs) and provides 
a specified level of precision, while Scott et al. (1983) discussed a method for 
determining the optimal spacing of sub-plots in clusters and Scott (1993) one for 
determining the optimal cluster design. 
 It can be shown that the spatial pattern of forests has an effect on the 
optimal plot size. If the trees are located according to a Poisson distribution, the ratio 
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of the variance to the population mean, µσ 2 , for number of stems will assume the 
value 1, whereas it will be larger than 1 for a clustered population and smaller than 1 
for a systematic population. The more clustered the population is, the larger the plot 
size should be in order to obtain a certain coefficient of variation in the number of 
trees per plot. Also, the smaller the plot, the faster the coefficient of variation 

)/( µσ=CV  increases with the variance/mean ratio (Fig. 4.1), although the latter 
ratio also depends on the sample plot size: i.e. µσ 2  tends to increase as plot size 
increases (Loetsch et al. 1973 Vol II p. 332). 

Figure 4.1 Illustration of the effect of spatial pattern (variance/mean ratio) and plot size on 
the coefficient of variation (modified from Loetsch et al. 1973). 

 The size of plot also determines the inclusion area for each tree. When 
circular plots of radius r are used, the inclusion area is a circle also of radius r 
centred on the tree. In other words, a certain tree will be tallied if the sample plot is 
located in its inclusion area. Thus the inclusion probability of a tree is its inclusion 
area divided by the total forest area (Schreuder et al. 1993 p. 114). The inclusion 
probabilities for rectangular plots are calculated in the same way, but now the 
inclusion area of a certain tree is a rectangle centred on it, having the same area and 
same orientation as the original sample plots (Ducey et al. 2004). These inclusion 
probabilities are needed for calculating edge corrections (section 4.4).  

4.1.2 Plot shape 

The usual plot shapes used in forest inventories are rectangular, square and circular. 
Rectangular plots are established by first defining one side and two corners, after 
which right angles are traced at these corners and the other two corners are located 
(Schreuder et al. 1993). The distance between the last two corners, and also the two 
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 Another form of plot is a strip, i.e. a long, narrow rectangle. In strip 
sampling the measurer usually walks along the central line of the strip and checks its 
width now and then, e.g. with a pole (Loetsch et al. 1973 p. 318). It is also possible 
to walk along one side of the strip. Strips are not very commonly used nowadays, 
except for sampling rare populations (Chapter 8). This is due to the fact that the line-
plot type of inventory includes far less measurements but is just as efficient (section 
1.3).  

 Circular plots are easy to establish when the radius is not very large, and 
they are also not very vulnerable to errors in plot area. The length of the perimeter 
will increase as the radius increases, however, and so will the number of trees on the 
edge of the plot. Thus circular plots with a large radius are not very efficient 
(Schreuder et al. 1993, Loetsch et al. 1973). In many cases combined circular plots 
can be established, i.e. plots that consist of several concentric circles, the smaller 
circles being used for smaller trees and the larger circles for larger trees. 
 It is assumed with all plot types that the terrain will be level and the plot 
will lie entirely within the stand. If these assumptions are not fulfilled, a slope 
correction or edge correction will be needed (section 4.4). 

4.2 POINT SAMPLING  

Point sampling (also known as angle-gauge sampling, Bitterlich sampling, plotless 
sampling or variable radius plot [VRP] sampling) is a sampling method that is 
unique in forest inventories. The principles were first introduced by Walter Bitterlich 
(1947, see also Bitterlich 1984). In point sampling the trees do not have an equal 
probability of being included in the sample, but instead the probability is 
proportional to the tree size, or more exactly to the basal area of the tree (PPS 
sampling). This was first noted by Grosenbaugh (1952).  
 
 

Trees with a basal area exceeding a certain viewing angle α are selected for 
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diagonals if possible, should be measured in order to check the measurements, as a 
rectangular plot is fairly vulnerable to errors in determination of the right angles. If 
the angles at the first two corners are 5 degrees too wide, this will cause the plot area 
to be 8.3% too large (Loetsch et al. 1973 p. 317, Schreuder et al. 1993). A square 
plot can also be established working from the centre, by measuring the distance 

2/a  to the corner along each diagonal. This approach is much less vulnerable to 
errors.  

 The trees in plantation forests are often planted in rows and columns which 
are not exactly parallel, so that it may be difficult to establish a plot of exactly the 
specified size.  It is therefore usually advisable to establish a plot with corners mid-
way between the rows (Schreuder et al. 1993 p. 295), otherwise the plot estimates 
may be biased due to inaccuracies in the areas. Since plantations usually show 
periodic variation, systematic sampling may also be highly inefficient. If the plot 
centres always fall between two rows, for instance, the nearest rows will always be 
either just inside or just outside a plot (Shiver et Borders 1995 p. 60).  



 

the sample (Fig. 4.2). The radius r at which the basal area of the tree just exceeds the 
critical angle defines the plot area for a tree of this size, and each tree is measured in 
a circular plot having an area proportional to its basal area, giving (Loetch et al. 
1973 Vol II p. 348) 
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where di (dj) is diameter of tree i (j) and ri (rj) is the limiting radius for that diameter. 
 In angle-gauge sampling, the inclusion probabilities for each tree can be 
calculated as the inclusion area divided by the total area, as with circular plots. In 
this case, however, the inclusion area around each tree depends on its diameter, i.e. 
large trees have larger inclusion areas than small trees. The radius of this inclusion 
area is the limiting radius for trees of that size.  
 Each tree in a stand represents the same basal area, namely BAF m2/ha, 
where BAF is the basal area factor.  The estimator for any variable of interest is (see 
section 2.8 and Chapter 8) 
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where the inclusion probability BAFg jii /=π , and gji is the basal area of tree  
i at sampling point j, m is the number of sampling points, Nj is the number of trees at 
point j and BAF is the basal area factor of the angle gauge used. Typically, either 1 
(m2/ha) or 2 factors are used in Finland. If the variable of interest yi is the basal area 
gi, it is enough to count the trees filling the angle, so that the method provides a 
quick means of measuring the basal area. For other variables, such as the number of 
trees, the diameters of the trees also need to be measured.  
 Angle-gauge sampling can also be used in many other applications. In 
vertical point sampling, for example, the trees are selected in proportion to their 
squared height, i.e. the trees filling a vertical angle gauge are selected. This approach 
of estimating the mean squared tree height was proposed by Hirata (1955).  
 Angle-gauge sampling requires certain assumptions to be fulfilled 
(Grosenbaugh 1958, Schreuder et al. 1993). These are fairly similar to the ones that 
apply to plot sampling, namely that 
 

1. The trees are vertical and their cross-sections are circular. 
2. The terrain is level (or else a slope correction is made).  
3. The sample trees are visible from the point location (or from another point 

at same distance, or else their diameter and distance can otherwise be 
checked), and 
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4. The area from which the trees can be selected lies entirely within the stand 
(or else an edge correction is made) 

 

Figure 4.2 The principle of a relascope: k is a relascope constant, 2sin( / 2)k α= , α is the 
viewing angle and the basal area factor 4 210 sin ( / 2)BAF α= (Loetsch et al. 1973 p.349).  

 It has been seen in many studies (e.g. Laasasenaho and Päivinen 1986) that 
larger basal area factors give systematically larger basal areas.  This is most 
probably due to the fact that a small basal area factor allows large trees to be 
included in the point sample from long distances. This means that not all the trees 
are necessarily visible, or that there is a possible inclusion area beyond the stand 
edge. It is obvious that many measurers will ignore edge corrections in practical 
work (section 4.4), or fail to check whether trees that are further away should be 
counted. Consequently, it is advisable to use factors giving about 6-10 trees per 
sample point on average, to avoid factors that would cause trees to be included from 
long distances.  

4.3 COMPARISON OF FIXED-SIZED PLOTS AND POINTS  

If fixed area sampling and variable radius sampling are compared in such a way that 
one plot is compared with one point, the result usually is that plot sampling is more 
efficient. This is because plots usually include more tallied trees than points. If 
measurement costs are accounted for, point sampling can be more efficient.  
 Matérn (1972), who compared the two sampling methods in a theoretical 
framework, concluded that with a given number of measured trees, the point 
sampling method is more efficient for determining the basal area or the volume of 
the stand. This result has been confirmed in other studies (Schreuder et al. 1987, 
Scott 1990). Although the number of stems is more efficiently measured with plots 
of a fixed size, Schreuder et al. (1987) found that the number of stems by diameter 
classes could also be measured more efficiently using variable-radius plots. It has 
also been stated that change (i.e. mortality, ingrowth) (Scott 1990) is more 
efficiently measured with fixed-radius plots. In any case, point sampling estimates 
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for growth are often more complex (Chapter 5). In general, it can be concluded that 
variables associated with large diameter classes or correlated with current basal area 
are better estimated with point samples and variables associated with small diameter 
classes are more efficiently measured with fixed-area plots.  

4.4 PLOTS LOCATED ON AN EDGE OR SLOPE  

4.4.1 Edge corrections 

In many cases a sample plot may happen to be located in a void in a stand, such as 
on a road, in a lake or beneath a power line. In these cases the surveyor may be 
tempted to move it to a wooded spot. If the stand area includes voids, plots located 
on those spots will, however, be needed in order to calculate the mean volume 
accurately (Shiver and Borders 1995). Only if power lines etc. are excluded from the 
stand area should one not place plots there. Correspondingly, if the distance between 
the plots should be 200 metres the distance across a power line, for instance, should 
not be counted in this (Shiver and Borders 1995). 
 A special approach is needed when plots are located near a stand edge. For 
example, if a circular plot is located so that the distance from its centre to the stand 
edge is less than its radius r, the total area of the plot inside the stand will be less than the 
nominal area, so that, if no corrections are made, fewer trees will be measured than 
should be and the approach will result in a biased volume, i.e. an underestimate 
(Schreuder et al. 1993). The basic reason for the bias, however, is that the varying 
inclusion probabilities of the trees are not accounted for. If a tree is so near to the 
stand edge that its inclusion area is partly outside the border, its inclusion probability 
will be smaller than it should be (see Gregoire 1982).  
 The problem has been known for a long time, and the first attempts to 
correct the bias were presented by Finney and Palca (1948). Their method is itself 
biased, however. One solution that is often attempted is to move the plot away from 
the stand edge to the inside of the forest (the “Move-to-r” approach). Circular plots 
located nearer to the edge than their radius r, for instance, are moved to a point at a 
distance r from the stand boundary. This means, however, that the trees within a 
distance r from the edge have a smaller inclusion probability than those further 
inside the stand. Furthermore, the inclusion probability of the trees in the zone to 
which the plots are moved increases. This will lead to biased estimates if the border 
zone is different from the interior forest (Schreuder et al. 1993 p. 299). If trees grow 
better near the boundary than inside the forest, for instance, the stand volume may be 
underestimated.  
 Another approach is to measure a sample plot on the edge so that only the 
portion inside the stand is actually measured. This means that the true area of the 
plot inside the stand needs to be defined, which may be a complex matter when 
using circular plots, for example. The area of each plot also has to be accounted for 
when calculating the mean volume of the stand, i.e. by attaching more weight to 
plots with a smaller area (see Beers 1966). This method also produces biased 
estimates (Schreuder et al. 1993), but correct estimates can be achieved if each tree 
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in the plot is weighted separately according to the inverse of its inclusion area, 
(Beers 1966, Iles 2003 p. 627).  
 There are also other valid procedures for measuring plots at a stand edge. 
The most popular one is the “mirage method”, as presented by Schmid-Haas (1969, 
see also Beers 1977, Schmid-Haas 1982, Gregoire 1982). When the radius r of a 
circular plot is larger than the distance x from the edge, a mirroring sample plot is 
located at a similar distance x from the edge on the other side and only the trees 
inside the original stand are measured on this mirroring plot  (Fig. 4.3). This method 
exploits the concentric approach. With mirage method the folding of the plot works 
correctly, so that the inclusion area of each and every tree need not to be considered 
separately, and still the method provides unbiased estimates (Gregoire et al. 1982).   

 

Figure 4.3 Illustration of the mirage method. 

 The good point about the mirage method is that it is also directly suited for 
point sampling. It is not without problems, however. It requires the assumption to be 
made that the border is almost linear (e.g. Iles 2003). Corners may encounter 
problems in the case of two crossing borders, for instance, where some trees need to 
be counted once, some twice and some three or four times (Fig. 4.4.). Erroneous use 
can also produce biased estimates: if the plot is not circular, the mirage plot may 
contain trees that were not in the original sample (e.g. Ducey et al. 2001). This 
possibility needs to be accounted for. In some cases it may also be difficult to define 
the mirage plot, as it may border onto a lake, a cliff or even the lawn of a house.  

 

 
 
r

r

x

x

folded area (to 
be  

measured twice)

stand 
edge 

 A new and very promising method for edge correction is the “walkthrough 
method” (Ducey et al. 2004). This is based on the inclusion areas for single trees. It 
requires measurement of the distance between the tree and the centre of the plot, 
after which a similar distance is measured on the other side of the tree  (i.e. it is 
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Figure 4.4 Illustration of the mirage method in a corner. 

 

Figure 4.5 Illustration of the walkthrough method. The tree in the figure is counted twice, as 
the walkthrough point lies outside the boundary. 

 There are also many other methods for tackling this problem. Those 
interested could consider including sample points that lie outside the areas  
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assumed that the measurer walks through the tree in a constant direction for the same 
distance). If the point achieved in this way lies within the area, the tree is measured 
once, otherwise (i.e. the point is reached over the boundary) it is measured twice 
(Fig. 4.5). This method is simple to apply in the field and does not require linear 
borders. There are still problems involved, however. There may be cases in narrow 
areas where both a sample point that lies within the inclusion area of the tree and its 
walkthrough point are outside the area (Iles 2003). In such a case these areas are 
neither counted in the original sample nor compensated for by the walkthrough 
method. 
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(Masuyama 1954), or the related “toss-back” method of Iles (2001, 2003) and 
Flewelling and Iles (2004). Other unbiased approaches are to use the enlarged tree 
circle method (Barrett 1964, Schreuder et al. 1993), Grosenbaugh’s method (1958) 
or the tree concentric method (Gregoire and Scott 1990).   
 Edge correction problems also need to be accounted for when using clusters 
of sub-plots (Scott and Bechtold 1995, Hahn et al. 1995), although the edge effect 
becomes smaller the larger is the area to be surveyed. 

4.4.2 Slope corrections 

If plots are located on a slope and the distance is measured along the slope, the plot 
as projected to the horizontal will actually be an ellipse with too small an area. This 
will obviously cause bias in the estimates if it is not accounted for. The slope can be 
accounted for exactly if the distance of each tree from the centre of the plot is 
measured horizontally. This also applies to point sampling. Measuring the exact 
horizontal distances may be tedious, however, if there are many such plots, and 
difficult if the slope is steep. 
 Another possibility is to enlarge the radius of the circular plot by 
multiplying it by βcos/1 , where β is the maximum slope angle (Bryan 1956). The 
plot as projected to the horizontal will then be a circle with the correct area. In the 
case of a rectangular plot, the sides perpendicular to slope will remain unaffected but 
the sides parallel to slope need to be extended by βcos/1 (Loetsch et al. 1973 Vol II 
p. 324). If the plot is not oriented parallel or perpendicular to the gradient of the 
slope, the corrections will obviously be more complicated.   
 A correction for the slope can be made in point sampling by dividing the 
estimate for the basal area by the cosine of the maximum angle of the slope at the 
sampling point (Schreuder et al. 1993 p. 119). The problem with this method, 
however, is the varying sampling intensity on different slopes (Del Hodge 1965). 
Furthermore, the correction only applies to total basal area, since it means varying 
the basal area factor for individual trees (Loetsch et al. 1973 Vol II p. 354).  
 Del Hodge (1965) presented a method in which the angle gauge was 
adjusted for the maximum slope so that the inclusion areas of the trees were correct. 
Another possibility is to adjust the angle gauge separately for each tree (Bruce 
1955). This can be done fairly conveniently with a prism. There also exist 
instruments that make such corrections automatically, e.g. the Spiegel relascope 
(Shiver and Borders 1995 p. 91). This last method is the only one in which the 
inclusion areas for the trees are circular.   
 All in all, it is fairly easy to make a slope or edge correction. The most 
problematic cases are ones where both types of correction are needed (Ducey et al. 
2001). When the inclusion areas are ellipses, for instance, the mirage plot may 
contain trees even if the original plot does not, i.e. the mirrored area does not 
entirely overlap with the original plot. 
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CHAPTER 5 

CHANGE MONITORING WITH PERMANENT 
SAMPLE PLOTS  

SIMO POSO 
University of Helsinki, Finland  

5.1 CONCEPTS AND NOTATIONS 

There is nothing else permanent in nature but change. Everything is moving, as the 
Greek philosopher Herakleitos stated some 2500 years ago. In even-age forestry, 
forest stands develop from open areas and young plantations to mature stages, and in 
all situations individual trees either grow annually, are felled or face a natural death 
through the struggle for existence, storms or other sources of damage. Changes in 
forest growing stock can be measured and to some extent attributed to human 
activities and changes in general growth factors: temperature, moisture, nutrients and 
light conditions. The estimation of such changes has become an increasingly 
important objective in forest inventories and in other contexts. Duncan and Kalton 
(1987), in their comparison of alternative survey designs in relation to various 
inventory objectives, found that remeasurement of permanent sample units is the 
best and often the only way to estimate components of change over time and 
aggregate data for individuals over time.  
 When forest inventories and monitoring surveys are based on the use of 
permanent sample plots the definition of the necessary terms should be connected 
with the performing of periodic measurements. Discussions of the respective 
terminology and methodology have been presented by many authors, e.g., Chapman 
and Meyer (1949), Beers (1962), Ware and Cunia (1962), Nyyssönen (1967), Cunia 
and Chevrou (1969), Newton et al. (1974), Martin (1982), van Deusen (1989), 
Päivinen and Yli-Kojola (1989), Gregoire (1993) and Eriksson (1995). We will 
concern ourselves here only with changes in tree and growing stock dimensions and 
quantities. Changes in stand variables such as site indices or environmental 
properties are not included. 
 The sampling unit can be a plot of either fixed or variable size, the most 
common fixed-sized plots being circular ones and the most common variable-sized 
plots concentric circular plots or Bitterlich relascope plots (or units of horizontal 

6
–

65 
A. Kangas and M. Maltamo (eds.), Forest Inventory – Methodology and Applications, 65

 

84. 



point sampling). Concentric circular plots are ones in which trees belonging to the 
class of “small trees” are included or tallied on the basis of a shorter radius than 
“large trees”. The number of classes can also be greater than this. 
 Regardless of the type and size of the plot, the plot-based measurements are 
transformed or expanded for an area of standard size (Astd), e.g. 10,000 m2 or one 
hectare, using the expansion factor  

 
i

std
i a

Ae = , (5.1) 

where ai is the plot size corresponding to the size of the tree i. 

 
Example 5.1 
 

Astd = 10,000 m2 (one hectare) 
dbh = 23.6 cm 
The basal area factor is 1 (one tree on the plot corresponds to 1 m2/ha or the 
maximum plot radius for the tree is 50·dbh). 
The maximum radius for tree i to be included in the plot =11.8 m 
Then 

 2 23.1416 (11.8 ) 437.43 ,ia m m= ⋅ =  

and 
 

The tree expansion factor 22.86 means that one tree tallied on the plot  

 
2

2

10000 22.86
437.43 i

me
m

= =  

corresponds to 22.86 trees/ha. 
 

 
The tree expansion factor ei is constant for every tree and measuring time in the case 
of fixed-sized plots, but with variable-sized plots it may vary depending on the size 
of the tree. If relascope plots are used, for example, the tree expansion factor at the 
time of the later measurements will be smaller than it was at the beginning, on the 
assumption that the trees will have grown.  
 The equation for estimating plot values Yjdt for plot j, domain d and time t is 
calculated by multiplying the tree values by the per-standard-area expansion  
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factor for each tree and summing over all the trees belonging to the given domain 
and plot: 

 ∑=
i

jidjitjdt YY  δ  (5.2) 

where jitjitjit yeY = (tree value expanded to standard area, e.g. hectare, yjit is the value 
for the variable of interest in the case of tree i at time t on plot j) and  

 
⎩
⎨
⎧

=
otherwise

ddomaintobelongsitreeif
jid ,0

,1
δ . 

 The tree domains define the sets of trees which are of interest in the data 
analysis, and can be defined by tree species, threshold diameter, site class, age class 
or administrative unit, for example. 
 It is highly recommended that every tree on a permanent sample plot should 
be identified by mapping, e.g., by polar coordinates (bearing and distance from the 
plot centre to each tree), in order to facilitate the relocation of particular trees, and 
the necessary measurements of the desired tree and forest variables should be made 
with care. For good comparison, similar rules should be followed every time. It 
would be also good for successive height measurements on a tree to be made from 
the same compass bearing, as trees rarely grow exactly vertically and the accuracy of 
the change will be emphasized more markedly than the accuracy of the height 
measurement itself. The date of each measurement should be recorded to an 
accuracy of one day.  
 Assume that a set of living trees (n1) on a certain plot have been measured 
at time 1. The same plot will be measured after a certain interval (at time 2) 
hopefully following the same tree sampling and measuring rules as on the first 
occasion, resulting in the same or possibly somewhat different set of living trees 
(n2). The plot measurements can be repeated as many times as is thought desirable. 
The time axis, the points from the initial measurement, t1, until the last 
measurement, tk, and the notations employed here are illustrated in Figure 5.1. 
 The number of trees at the beginning and end of the measuring period may 
differ because of cutting, mortality, tree ingrowth and changes in plot size. Equally, 
the number of trees at the beginning of next measuring period may be smaller than 
the number of the trees at the beginning or at end of the previous one because 
mortality and cutting will not be included in further calculations, e.g., n2 is smaller 
than n1∪ n2. The union of trees during a measuring period, e.g., n1∪ n2, is classified 
here according to life and sample status as follows: 
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Figure 5.1 Terms related to periodic measurements made on permanent sample plots.  

Classification according to life status: 
1. Living tree: the tree is alive both at the beginning and at the end of the 

measuring period 
2. Mortality tree: the tree died naturally during the measuring period 
3. Cut tree: the tree was cut during the measuring period 

 
Classification according to sample status: 

a. Original tree: the tree is in the sample at the beginning of the measuring 
period. 

b. Ingrowth tree: the tree did not fulfil the requirements for the population 
(usually meaning that it did not meet the minimum diameter requirement) 
at the beginning of the measuring period but did so by the end , so that it is 
included in the sample for the end of the period.  

c. Ongrowth tree: the tree fulfilled the minimum diameter requirements for 
the population both at the beginning and at the end of the measuring period, 
was not big enough to be included in the sample at the beginning, but it was 
grown to the required size during the measuring period. (This status is 
relevant only for variable-size plots). 

measuring period 1

measuring period 2

measuring period t

t1 

tk

t3

t2

t2 

t(k-1) 

..

..

..

Sample 1 (at the beginning) 
n1 living trees 

Sample 2 (at the end)  
n1∪n2 trees 

Sample 2 (at the beginning) 
n2 living trees 

Sample k-1 (at the beginning)  
n(k-1) living trees 

Sample 3 (at the end)  
n2∪n3 trees 

Sample k (at the end)  
nk-1∪nk trees 
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5.2 CHOICE OF SAMPLE PLOT TYPE AND TREE MEASUREMENT 

Fixed-sized plots are simple to measure and estimate, and their efficiency relative to 
variable-sized plots becomes higher when change monitoring is emphasized over 
state monitoring and the accuracy of local estimates is emphasized relative to 
population estimates. According to Poso and Waite (1995), circular plots of fixed 
size are very much more efficient for estimating basal area increment than for 
estimating basal area. Concentric plots entail the same calculation problems as 
relascope plots, related mainly to ongrowth trees.  
 Complete tree data, either measured or estimated, are required both at the 
beginning and at the end of the measuring period for calculating the volumes 
possessing certain desired categories. Assuming that calculation of the volume of an 
individual tree is based on information about its species, height and diameter at 
breast height, the following data are required: 

1. Time of measurement at the beginning of the measuring period, t1 
2. Time of measurement at the end of the measuring period, t2  
3. Tree number or other identification for location, e.g., coordinates  
4. Tree species 
5. d1, dbh at the beginning of the measuring period 
6. d2, dbh at the end of the measuring period 
7. h1, height at the beginning of the measuring period 
8. h2, height at the end of the measuring period 
9. Life status (1, 2, 3) 
10. Sample status (a, b, c) 
11. Time of cutting in the case of cutting  
12. Time of death in the case of mortality 

 
 Complete tree data means that the above 12 data items should be available 
for calculating the results for the plot. If not all of the values for the variables of 
interest have been measured, estimates obtained by means of models will be needed. 
The following tree variables commonly fall into the class of lacking data: 

d2 and h2 of cut and mortality trees 
d1 and h1 of ingrowth trees 
d1 and h1 of ongrowth trees 
h1 and/or h2 of original trees (sampling decision, not observational 
inability)  
time of cutting in the case of cut trees 
time of death in the case of mortality trees 

 
Change estimation is based on the difference between two successively measured 
quantities, e.g., Vk -V(k-1). Both quantities are subject to measurement errors, which 
can badly affect the quality of the estimation. If the standard deviation in measuring 
is denoted as sy and no systematic measurement errors exist, the standard deviation 
of the difference is ys2 . Systematic measuring errors are particularly harmful if 
they act in different directions in successive measurements. On the other hand, their 
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effects will be minimal if they are equal in size and direction (the errors cancel each 
other when calculating the difference). There are good reasons to emphasize the 
need for more accurate measurements on permanent than on temporary sample plots. 
 The most important variable in measurements performed on a sample plot 
is usually diameter at breast height. In order to minimize the standard deviation and 
the effect of systematic errors, measurement of circumference is preferable over 
direct measurement of the diameter with callipers.  
 All feasible variables should be included in the measurements and stored as 
data, within the limits of economic possibility. Eriksson (1995) suggests that trees 
which do not yet belong to the sample but will probably do so by the next occasion, 
i.e., ingrowth and ongrowth trees, could be included in the measurements in order to 
improve the accuracy of later estimates.  

5.3 ESTIMATING COMPONENTS OF GROWTH AT THE PLOT LEVEL  

Equation (5.2) is applicable when calculating volumes and volume increments for 
plot j, but it does not define the set of trees which should be included in the 
calculation. There are two main alternatives: to use the trees measured at the 
beginning of the measuring period (Sample 1, n1 trees) or to use the trees measured 
at the end of the measuring period (Sample 2, n1∪n2 trees). The third alternative 
would be to use both sets of trees and to pool the outcome for the final estimate. 
Accordingly, Equation (5.2) may be concretized for alternative samples as follows: 
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δ (based on sample 2). (5.4) 

The set of trees represented by the union n1∪n2 is by definition always equal to or 
larger than n1 because the former still contains cut and mortality trees , and also 
ingrowth trees and, in the case of variable-sized plots, ongrowth trees as well. The 
union n1∪n2 can be written as the number of trees at the beginning of the measuring 
period + the number of ongrowth and ingrowth trees. 
 Volume and volume increment are usually assigned great importance in 
forest inventories and change monitoring. The next examples are built up on these 
variables. The volumes of different tree domains at the beginning and end of the 
measuring period and their changes during the period are elementary to the analyses, 
while the estimation of other variables, e.g. basal area and basal area increment, 
monetary value and value increment, or mean height and mean height increment 
could follow roughly the same scheme.   
  Assume that Yjdi in Equations 5.2, 5.3 and 5.4 refers to volume and Yjdt = 

POSO 70



 CHANGE MONITORING WITH PERMANENT SAMPLE PLOTS 

Vjdt . Then the components of the volumes at the beginning (Vjd1) and end (Vjd2) of 
the measuring period can be calculated. Calculation of the periodic volume 
increment for living original and ongrowth trees can be based on Sample 2, for 
example, in accordance with Equation (5.5). 
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 The expected output of Equation 5.5 is equal to that based on Sample 1: 
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 Recommendations for dealing with the various components needed for 
calculating the gross periodic volume increment on sample plot j, in domain d, and 
during a given measuring period are compiled in Table 5.1. 

Table 5.1 Recommendations for estimating the periodic  increment in volume (m3/ha between 
t1 and t2) for a permanent sample plot. 

Component of periodic 
gross volume increment  

Trees and 
expansion factors 

in Sample 1 

Trees and 
expansion 
factors in 
Sample 2 

Basis for 
final estimate 

- living, original trees (V2-V1)* V2-V1 Sample 2 
- living, ingrowth trees not reasonable V2 Sample 2 
- living, ongrowth trees not reasonable V2-V1 Sample 2 
- mortality, original trees (V2-V1)* (V2-V1)** Sample 1 
- mortality, ingrowth trees not reasonable V2 Sample 2 
- mortality, ongrowth trees not reasonable V2-V1 (-)*** 
- cut, original trees (V2-V1)* not reasonable Sample 1 
- cut, ingrowth trees not reasonable V2 Sample 2 or 

models 
- cut, ongrowth trees not reasonable V2-V1 (-)*** 
Gross  periodic volume 
increment **** 

  Sum of the 
above values 

 
* The expected increment is equal to the sum of the increments based on Sample 2 
for the union of original and ongrowth trees of respective life status.  
** Estimation may not be reasonable if the mortality trees have undergone 
transformation through bark shrinkage or breaking at the top, for example. 
*** This component is already included in Sample 1 and is relevant only in the case 
of Sample 2. 
**** The recommendations for estimating volume increments for various tree 
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classes (components) are also valid for subsets of n1 or n1∪n2 among the trees, e.g., 
for tree species. The term “gross periodic volume increment” may not be applicable 
in this case. 
 Estimation of volume and volume increment by components is useful for 
forest management purposes. The gross volume increment covers all trees in all tree 
classes and indicates the quality of the site class. The net volume increment equals 
the gross volume increment minus the volume of mortality trees, and the ratio of net 
volume increment to gross volume increment indicates the efficiency of forestry. 
The net change of volume is the difference in the volumes of living trees at times 2 
and 1. 
 As seen in Table 5.1, volumes (V1) and (V2) and volume increments for the 
union of living original and ongrowth trees can be calculated on the basis of both 
Sample 1 and Sample 2. Large differences suggest that there must have been a large 
number of “border trees” in the sample plot which were dropped out on one occasion 
and included on another. In this case pooling of the outputs from Samples 2 and 1 
might be feasible for monitoring the trend in volume at the plot level. 
 The above estimator of gross periodic volume increment (the “sum of 
above values” in Table 5.1), where the whole volume of ingrowth trees is regarded 
as increment, may not always be what is wanted. The volume increment of ingrowth 
trees can also be estimated as the difference V2–V1 (common when temporary plots 
are used) or V2–Vt’, where t’ refers to the time within the measuring period when the 
tree reached the threshold size (Eriksson 1995).  
 The calendar length of measuring period should be transformed into the 
number of growth seasons, as the use of this as the divisor when calculating average 
annual increments will improve the quality of the estimate. The same is true when 
applying growth models. Waite et al. (1996) started and ended the growth season on 
May 20 and August 15 respectively for coniferous trees and June 1 and July 31 for 
deciduous trees under the conditions prevailing in Central Finland and used 
curvilinear regression when estimating the progress of the growth season.  
 Cut trees are usually cut before the end of the measuring period and 
mortality trees have died within this time. For these tree classes the length of the 
measuring period is regarded as the number of growth seasons for which the trees 
really grew after they were measured at the beginning of the measuring period. If the 
exact date of cutting or mortality is not known it can be assumed to be the middle of 
the measuring period.  This is common practice in Forest Inventory and Analysis in 
the U.S.A. (Scott 2004). 
 There are problems in measuring ingrowth and ongrowth volumes and 
increments for cut trees, and problems may also arise for mortality trees, as the 
whole trunk, or at least the top of the tree or the bark may have fallen down. These 
problems suggest that estimation of the ingrowth and ongrowth of mortality and cut 
trees should be based on models. 

POSO 72



 CHANGE MONITORING WITH PERMANENT SAMPLE PLOTS 

5.4 MONITORING VOLUME AND VOLUME INCREMENT OVER TWO OR 
MORE MEASURING PERIODS AT THE PLOT LEVEL 

The building of time series to describe the development of individual stand variables 
for each permanent sample plot is fairly simple when plots of fixed size are used, but 
the procedure is more complex in the case of variable-sized plots and results in many 
alternative outputs, as illustrated for volume and volume increment, in m3/ha, in 
Figure 5.2. 

 

Figure 5.2 Illustration of alternative means of estimating volume and volume increment.  

Alternative 2 in Figure 5.2 corresponds to traditional volume estimation, where the 
time of measurement and estimation coincide, while Alternative 1 corresponds to 
forward calculations made on the basis of Sample i-1 (cf. Column 2 in Table 5.1) 
and Alternative 3 to backward calculations made on the basis of Sample i+1 (cf. 
Column 3 in Table 5.1). The procedure results in two or three volume estimates for 
each occasion or time of measurement. The lines with arrows refer to samples with 
the same set of trees, which makes them comparable for the purposes of increment 
estimation. 
 The expected estimates for the two or three alternative volume estimates for 
each time of measurement are equal if it is assumed that the volumes do not include 
ingrowth trees. Correspondingly, the two alternative volume increment estimates can 
be expected to be equal without the effect of ingrowth trees. The relevant questions 
are which of the alternatives would be the best (most accurate) and whether it would 
be reasonable to employ a pooling technique so that all the alternatives would affect 
the final estimates. No papers dealing with pooling in this connection are available 
and nor is it possible to make any recommendation here.  
 The common equation for monitoring volume and checking the 
compatibility and additivity of the estimates over one or more measuring periods is 

V2 V3 

V1 V2 V3 V4 

V1 V2 V3 

V4 

t1 t2 t3 t4
type of estimation 

forward

 time 

backward

Altern. 1  

Altern. 2 

Altern. 3 

Four successive measurements and three measuring periods 

at measurement 
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 V2-V1 = S2-S1+I-M-C, (5.6) 

where V is the volume of living trees at time 2 or 1, S is the volume of the survivor 
trees, i.e. living original trees at the end or beginning of the measuring period, I is 
the volume of ingrowth trees at the end of the measuring period, M is the volume of 
mortality trees at the time of death, and C is the volume of cut trees at the time of 
cutting. 
 Equation 5.6 can be used to check the compatibility of component 
estimates. Handling ingrowth and ongrowth trees correctly is the key to compatible 
estimators (Roesch et al. 1991). Another approach would be to estimate any 
component that is lacking. The volume of cut trees, for example, can be estimated as 
C = S2-S1+I - M + V1 -V2. 

 
Example 5.2  
 
Some simple examples can be taken to demonstrate the calculation of the volume 
and volume increment, m3/ha, of a tree on a simple circular plot or a more complex 
relascope plot. 

 
a) Assume a simple circular sample plot of radius 10 m and one tree on it with dbh 

25.5 cm and volume 0.554 m3 at the beginning of the measuring period. This 
leads to a tree expansion factor of 10000 m2/(π(10 m)2) = 31.831 trees/ha 
represented, or 31.831·0.554 = 17.634 m3/ha. Assume further that the dbh and 
volume of the tree have increased to 26.5 cm and 0.609 m3 respectively during 
the measuring period. The tree expansion factor remains constant. The volume 
at the end of period will then be 31.831·0.609 = 19.385 m3/ha and the volume 
increment 19.385-17.634 =1.750 m3/ha. The plot volumes and volume 
increments are estimated by summing the hectare-based values calculated for 
individual trees on the plot. 

b) Assume the above tree had been measured on a relascope plot with a basal area 
factor (BAF) of 1, i.e. each tree corresponds to 1 m2/ha of basal area. The tree 
expansion factors at the beginning and end of the measuring period will then be:
  
- at the beginning:  10000 cm2/(π /4 (25.5 cm)2 ) = 19.581, and  
- at the end:  10000 cm2/(π /4 (26.5 cm)2 ) = 18.131. 
 
The volume of the tree at the beginning and end of the period will be 
accordingly: 
 
- at the beginning: 19.581·0.554 = 10.854 m3/ha, and  
- at the end:  18.131·0.609 = 11.042 m3/ha. 
 
The volume increment for the relascope tree can be calculated either forwards, 
backwards or, if possible, both ways (cf. Fig. 5.2). Calculation both ways is 
possible and reasonable if the tree has been measured both at the beginning and 
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at the end of the measuring period.  
 
forwards: 19.581/ha (0.609 m3 -0.554 m3) =1.071 m3/ha 
backwards: 18.131/ha (0.609 m3 -0.554 m3) = 0.997 m3/ha 
 
The forward and backward estimates differ because the plot sizes differ, the 
earlier one corresponding to dbh 25.5 cm and the latter to 26.5 cm.  

 
For a very simple illustration, assume that 10 trees similar to the tree considered 
above were included in a forward calculation and 12 trees in a backward calculation 
(two of the trees were ongrowth trees). The increment estimates at the plot level 
would be 
 
forwards: 10·1.071 m3/ha = 10.710 m3/ha,  
and  
backwards 12·0.997 m3/ha = 11.960 m3/ha 
 
Both estimates can be regarded as unbiased because no ingrowth trees were 
included. This means that the final increment estimate on the plot level can be based 
on pooling. If ingrowth trees exist, they add volume and volume increment only in 
backwards estimation. If pooling is not applied the choice of backwards estimation 
(use of Sample 2) is recommended whenever possible, because Sample 2 usually 
corresponds to a larger plot area than Sample 1 and is more informative (cf. 
Nyyssönen and Kilkki 1965). For cut trees, and probably also for mortality trees, the 
use of Sample 2 is not reasonable, so that Sample 1 and forwards calculation is the 
only choice for volume and volume increment calculations involving these tree 
classes. 
 Mortality trees can be handled as living trees provided that they can also be 
measured at the end of the measuring period.  

 
Example 5.3 
 
A situation in which trees have been sampled by relascope with basal area factor 
(BAF) of 1 (each tree corresponds to 1 m2/ha in basal area) is illustrated in Table 
5.2. The existence of one tree in each of nine sample/life-status classes would hardly 
be likely in reality but is reasonable for illustration purposes.  
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Table 5.2 Example of data needed for volume and volume increment calculations. The heights 
and breast height diameters which cannot be measured but must be estimated on the basis of 

other trees or general models are in parentheses.  

Tree 
no. 

Sample 
status 

Life 
status 

 
d, mm

 
h, dm

Time of measurement 
yyyymmdd 

255 243 19980923 1 original   living   
265 249 20030826 
(47) (45) 19980923 2 ingrowth   living   
51 48 20030826 
(175) (172) 19980923 3 ongrowth  living   
182 178 20030215 
204 181 19980923 4 original    mortality  
212 187 20030215* 
(48) (35) 19980923 5 ingrowth    mortality  
52 37 20030215* 
(103) (92) 19980923 6 ongrowth   mortality  
110 99 20030215* 
267 245 19980923 7 original   cut   
(277) (251) 20030215* 
(49) (42) 19980923 8 ingrowth   cut   
(52) (45) 20030215* 
(50) (40) 19980923 9 ongrowth  cut   
(53) (42) 20030215* 

* estimated or registered time of mortality or cut. 
 
Assume that the data on the nine trees are from a variable-sized or relascope plot on 
which one tree corresponds to one m2/ha and that a dbh of at least 50 mm is required 
for a tree to be included in the population. As the dbh and height have been 
measured or estimated for each tree, the volume model y = f(species, dbh, h) can be 
used to estimate the volume of each tree. We then arrive at the following tables: 
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Table 5.3 A Volumes at the beginning of the measuring period, based on Sample 1 (V1(2), 
volume at measuring time, see Fig 5.2) and Sample 2 (V1(3), volume calculated backwards, 

see Fig 5.2). 

Volume at the beginning of the measuring period 

V1(2) V1(3)* 

Tree 
no. 

Sample status/ 
life status  

volume of 
tree,   dm3

Tree expansion 
factor m

3
/ha m

3
/ha 

1 Original living   554.3 19.581 10.854 10.050 
2 Ingrowth living   5.6 576.387 (3.228) 2.741 
3 Ongrowth living   204.6 41.575 (8.506) 7.865 
4 Original mortality   287.3 30.595 8.790 8.139 
5 Ingrowth mortality   3.3 552.621 (1.824) 1.554 
6 Ongrowth mortality   42.2 120.015 (5.065) 4.441 
7 Original cut   611.4 17.860 10.920 (10.146) 
8 Ingrowth cut   5.8 530.296 (3.076) (2.731) 
9 Ongrowth cut   5.7 509.296 (2.903) (2.584) 
*The tree expansion factor is as given in Table 5.3 B, e.g., 10.050 = 18.131·0.5543 

(Figures in parentheses are based on estimated rather than measured dbh and height 
values) 

Table 5.3 B Volumes at the end of the measuring period, based on Sample 1 (V2(1)) and 
Sample 2 (V2(2)). 

Volume at the end of the measuring period 

  V2(1) V2(2) 
Tree 
no. 

Sample status/ 
life status  

v, dm3 expansion factor m3/ha m3/ha 
1 Original living   609 18.131 11.925 11.042 
2 Ingrowth living   6.8 489.52 (3.919) 3.329 
3 Ongrowth living   227.3 38.439 (9.450) 8.737 
4 Original mortality   318.1 28.330 9.732 9.012 
5 Ingrowth mortality  3.9 470.87 (2.155) 1.836 
6 Ongrowth mortality  51 105.23 (6.121) 5.367 
7 Original cut   667.6 16.594 11.924 (11.078) 
8 Ingrowth cut   6.8 470.87 (3.606) (3.202) 
9 Ongrowth cut   6.8 453.27 (3.463) (3.082) 

 
(Figures in parentheses are based on estimated rather than measured dbh and height 
values) 
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Table 5.3 C Volume increment during the measuring period (five growing seasons). For 
forward and backward calculations, see  Fig. 5.2. 

Volume increment (see Tables 5.3 A and 5.3 
B) 

Forward calculation Backward calculation 

Tree 
no. 

Sample status/ 
life status 

V2(1) – V1(2) V2(2) – V1(3) 
1 Original living   1.071 0.992 
2 Ingrowth living   (0.692) 0.587 
3 Ongrowth living   (0.944) 0.873 
4 Original mortality   0.942 0.873 
5 Ingrowth mortality  (0.332) 0.283 
6 Ongrowth mortality  (1.056) 0.926 
7 Original cut   1.004 (0.933) 
8 Ingrowth cut  (0.530) (0.471) 
9 Ongrowth cut  (0.560) (0.499) 

(Figures in parentheses are based on estimated rather than measured dbh and height 
values) 
 
The calculations based on Sample 2 (backward calculation) give lower values for 
both volume and volume increment than do those based on Sample 1 (forward 
calculation). This is because the tree expansion factors of Sample 2 are expected to 
be smaller due to tree growth. In the case of tree number 1, the ratio of the tree 
expansion factors is 19.581/18.131 = 1.080. This corresponds to the ratio of plot 
sizes; the Sample 2 plot is 1.080 times the size of the Sample 1 plot. The expected 
number of ongrowth trees corresponding to tree 1 is 0.080. This leads us to conclude 
that the expected volume based on Sample 1 with original trees will be equal to the 
expected volume based on Sample 2 with original and ongrowth trees.  

Table 5.4 Example of output based on Tables 5.3 A, 5.3 B, and 5.3 C. 

 V1 V2 V2-V1 Remarks 
Original living tree 10.050 11.042 0.992 Based on Sample 2* 
Ingrowth living tree 0 3.329 3.329 Based on Sample 2 
Ongrowth living tree 7.865 8.737 0.872 Based on Sample 2 
     
Original  mortality tree 8.139 9.012 0.873 Based on Sample 2* 
Ingrowth  mortality tree 0 1.836 1.836 Based on Sample 2 
Ongrowth  mortality tree 4.441 5.367 0.926 Based on Sample 2 
     
Original cut tree 10.920 11.924 1.004 Based on Sample 1 
Ingrowth cut tree 0 3.202 3.202 Based on Sample 2  
Ongrowth cut tree 2.584** 3.082** 0.498** Based on Sample 2 

* Volumes and volume increments for original living and mortality trees can also be 
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calculated on the basis of Sample 1, whereupon the expected result would be equal 
to the sum of original and ongrowth trees based on Sample 2. 
** This component is meaningless if calculations are based on Sample 1. 
 
Examples of calculations based on the above tables: 
 
Volume of living trees at the beginning of the measuring period: 
 V1(living) = 10.050 + 7.865 + 8.139 + 4.441 + 10.920 = 41.415 m3/ha. 
 
Volume of living trees at the end of the measuring period: 
 V2(living) = 11.042 + 3.329 + 8.737= 23.108 m3/ha. 
 
Volume of mortality trees: 
 V2(mortality) = 9.012 + 1.836 +5.367= 16.215 m3/ha. 
 
Volume of cut trees: 

 V2(cut) = 11.924 + 3.202 = 15.126 m3/ha. 
 
Gross periodic volume increment: 
 I(gross) = 0.992 + 3.329 + 0.872 + 0.873+1.836+0.926 + 1.004 + 3.202  

= 13.034 m3/ha   .  
 
Net periodic volume increment: 
 I(net) = 0.992 + 3.329 + 0.872 + 1.004 + 3.202 = 9.399 m3/ha. 
 
Net change of volume: 
 E(V2(living) – V1(living)) = E (I(gross) – V(Mortality) – V(Cut)) 

V2(living) – V1(living) = 23.108 – 41.415 = –18.307 m3/ha 
I(gross) – V(Mortality) – V(Cut) = 13.034. – 16.215 – 15.126 = –18.307 
m3/ha. 

 

5.5 ESTIMATING POPULATION PARAMETERS 

The focus in forest inventories has shifted from assessing current values and net 
change to understanding the dynamics of the components of net change. This means 
that sampling with permanent plots will gain more ground. The two alternative 
sampling designs developed especially for using permanent sample plots are 
“Continuous Forest Inventory” (CFI) or “Complete Remeasurement Sampling” as 
introduced by Stott (1947) and Sampling with Partial Replacement (SPR). These 
designs can be combined with other methods such as stratification and double 
sampling for stratification (Scott and Köhl 1994). 
  In CFI, all plots established at the beginning of the first measuring period 
(occasion 1) are remeasured on all subsequent occasions. Forest surveys are 
typically conducted on a 5-20-year cycle, with faster growing areas on a shorter 
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cycle (Scott 1998). Two common methods of selecting samples are random drawing 
(simple random sampling), and use of a grid (systematic sampling). A systematic 
sample is well distributed across the population and is preferable to simple random 
sampling. Simple random sampling estimators can be employed, however, although 
the variance estimator tends to lead to slight overestimation (Reber and Ek 1983). 
 Complete remeasurement sampling (CFI, Continuous Forest Inventory) is 
not efficient for estimating current variables and infrequent phenomena, e.g. fungal 
infections, on the basis of cumulative samples. Complete remeasurement sampling 
reflects changes in plot values only, and changes in population during the measuring 
period brought about by additions to or subtractions from the forest area would 
require changes in the sample. Some old plots would have to be abandoned and 
some new plots established in order to keep the sample representative.  
 Measurement of a permanent sample plot is more expensive than 
measurement of a temporary plot, due to the cost of documenting both plot and tree 
locations and relocating the plots and trees following disturbances. This can easily 
lead to the idea of a design in which both types of plot are used in combination. 
When introducing their design known as Sampling with Partial Replacement (SPR) 
for forest inventory purposes, Ware and Cunia (1962) presented efficient unbiased, 
estimators for the current values of variable and for net change in those variables. 
Bickford et al. (1963) then improved the variance estimators for the components and 
the sample-based variance estimates for the whole calculation and also extended the 
two-occasion case to double sampling for stratification. Further studies to develop 
SPR were carried out by Cunia and Chevrou (1969, extension to three or more 
occasions), Newton et al. (1974, an efficient estimator for net change), Scott (1981, 
net change estimators), Schreuder et al. (1987, bootstrapping and jackknifing 
methods for estimating sample-based variances) and van Deusen (1989, a 
generalized least squares application).  
 SPR in its typical form is based on both permanent and temporary sample 
plots. The following example involving an estimator for the population total with 
two measurement occasions follows the notation introduced by Schreuder et al. 
(1993). The population total is estimated on the first occasion based on all the 
sample plots measured at that time, and on the second occasion by combining two 
independent estimates: the total estimated from the new units measured only on the 
second occasion and a regression estimate in which the coefficients are obtained 
from those plots measured on both occasions and the estimated total for the variable 
of interest is based on all first-occasion units. 
 Let n plots be drawn from N plots in the population on each of two 
occasions. Let m plots be common between the two samples and u be the number 
not shared. Thus u = n – m.  
 Let imŶ , iuŶ and ˆ inY be the estimates of Yi, the population total on the ith 
occasion (i=1,2) based on the common plots (m), the plots not held in common (u) 
and all the sample plots of a particular occasion (n), respectively. In addition, let β̂  
be the regression coefficient estimator based on the m common plots, let 2

1σ and 
 2

2σ , respectively, be the variances of y at times 1 and 2, let  12σ be the covariance of 
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y at times 1 and 2, and let ρ be the correlation between observations at times 1 and 2. 
An unbiased estimator of Y2 based on the u new plots at time 2 would then be 

  /ˆ
1

22 ∑
=

=
u

i
iu uyNY , (5.7) 

with the variance 
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2 (1)s is the within-sample 
variance of the u plots on which the iy2  were measured. A regression-based 
estimator of Y2 using the m common plots at times 1 and 2 is 
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The combined estimator of Y2 is the weighted mean, the weights usually being the  
reciprocals of the sample variances, that is 
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where )ˆ(/1ˆ ),ˆ(/1ˆ 2221 mru YvwYvw == . More complete equations including SPR with 
more than two measurement occasions can be found in the literature cited.  
 The proportion of permanent plots depends on the objectives of the 
inventory and the correlation between successive measurements. According to 
Schreuder et al. (1993), the optimum ratio is 
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5.6 CONCLUDING REMARKS 

Permanent fixed-area and concentric circular plots are preferable to relascope plots 
when change monitoring is emphasized. Ingrowth is a highly variable process that 
causes variation, especially in volume increment, regardless of the type of sample 
plot used. Concentric circular plots are variable-sized plots, as are relascope plots, 
and both of them deal with ongrowth trees. The size and type of plot may vary for 
different inventory and monitoring purposes, e.g. a larger plot size would be feasible 
for rarely occurring phenomena than for tree volume estimation.  
 The essential and costly aspect of the use of permanent sample plots is the 
acquisition and maintenance of tree data which fulfil the requirements of accuracy 
and completeness. Not all the data needed can be measured, and some, e.g. data on 
cut trees, must be based on estimation by means of models. 
 The values for quantitative variables of interests on a given plot, e.g. tree 
volume and basal area, can be calculated on the basis of either Sample 1 (n1 trees), 
or Sample 2 (n1∪n2 trees), or both, or else estimated by means of models. It is not 
always clear which is best. When the plot data are to be compared and aggregated 
over time it may be feasible to use pooling in order to reduce the “random” effect of 
ingrowth and ongrowth trees. The volume of original living trees based on Sample 1, 
for example, is expected to coincide with the sum of the volumes of original and 
ongrowth trees based on Sample 2 (Figure 5.1). If there are major differences, they 
probably originate from trees which are close to the threshold value, either inside or 
outside the sample plot. The monitoring and profiling of plot variables over time 
may be useful for planning silvicultural treatments. The gross volume increment, for 
example, gives an idea of the productivity of the site, and the net volume increment 
in relation to the gross volume increment an idea of the degree of utilization. The 
increment rates of different tree species and diameter classes can be compared in 
order to optimize thinning practices. 
 One problem related to the use of permanent sample plots, especially ones 
of variable size, is the compatibility or additivity, e.g. the time-additivity of the 
change components. This did not become relevant in the examples quoted in this 
chapter. The definitions were in accordance with those given by Eriksson (1995) and 
proved to be free of this problem. Other references to this issue are made by van 
Deusen et al. (1986) and Roesch et al. (1991), for example. 
 The main emphasis in the above was on the determination and monitoring 
of volume and volume increment. The analysis and change monitoring of other stand 
variables, such as mean diameter, mean height or biodiversity indicators, would 
require additional examination.  
 Continuous Forest Inventory, with or without stratification, is efficient for 
estimating net change and components of change for a population, while Sampling 
with Partial Replacement is more efficient for estimating current values. The 
disadvantages of this design, however, are that the estimators easily become 
complex and the calculations are sensitive to errors. Regressions must be fitted  
for every variable and the regression estimators do not always behave well and must 
be monitored carefully, especially since disturbed (harvested) plots can significantly 
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alter the results (Scott 1998). Finally, tables produced using SPR have the property 
that cells do not sum up at the margins (Scott and Köhl 1994). 
 Permanent sample plots are the only means of estimating all the 
components of change. They also provide data for fitting to models for growth 
projection purposes. Permanent sample plots together with information  
about human activities and natural conditions give us a powerful means for 
understanding and developing forestry, and the results of numerical analyses are 
generally much more convincing and useful than more or less professional opinions. 
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CHAPTER 6 

GENERALIZING SAMPLE TREE 
INFORMATION  

JUHA LAPPI, LAURI MEHTÄTALO AND KARI T. KORHONEN 
Finnish Forest Research Institute 

Some characteristics, e.g. tree height, may be rather expensive to measure, so that 
we may not want to measure them for all trees in an inventory but just for a  
subset, called here sample trees. We will then want to generalize the sample tree 
information to cover the tally trees, for which basic measurements, usually diameter 
at breast height and tree species, are available. In addition, we are often interested in 
many characteristics of trees which are too expensive to measure even on sample 
trees, e.g. stem volume or tree biomass. If these variables can be predicted using 
sample tree variables, we may then want to generalize the sample tree information to 
obtain predictions for the tally trees as well.  
 The first section of this chapter describes briefly different approaches to 
modelling sample tree variables using tally tree variables (called tally tree 
regression), while the second shows how auxiliary data can be utilized if the inventory 
data is too limited for performing tally tree regressions. The difference between real 
sample tree variables (e.g. tree height) and predicted sample tree variables (e.g. tree 
volume and biomass) will be ignored in the first two subsections, but in the third 
subsection we will take a closer look at the consequences of the three-level model 
structure created by observed tally tree variables, observed sample tree variables and 
predicted sample tree variables.  

6.1 ESTIMATION OF TALLY TREE REGRESSION 

Let y denote the sample tree variables (e,g, height, predicted volume or predicted 
biomass) and let x  denote tally tree measurements (e.g. dbh). The tally tree 
regression model is  

–
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 ( ) ( )i i i i iy E y e f e= + = +x x β ,  

where yi, xi and ie  are the sample tree variable, the vector of tally tree variables and 
the residual, respectively, for sample tree i and β is a vector of parameters. The 
assumptions regarding the form of ( )if x β  and the properties of ie  depend on the 
modelling situation, see Weisberg (1985) and Davidian and Giltinan (1995) for a 
general formulation of a regression model.  
 In forestry applications, a transformation of y is often modelled instead of y 
itself, in order to solve the problem of heteroscedastic residuals. In many cases, it 
also makes the model linear with respect to some transformations of x. Techniques 
for fitting non-linear models and estimating variance functions have developed 
rapidly in recent years, and these are now commonly available in modern statistical 
software packages (e.g. Pinheiro and Bates 2000). Modelling of the dependence of 
predicted sample tree volume on tree diameter using non-linear regression and a 
variance function is demonstrated in Example 6.1. 
 Forest inventory data are usually collected from several plots with several 
sample trees per plot. Hierarchical datasets of this kind can naturally be modelled 
through a mixed modelling approach. A mixed model for variable y in the case of 
tree i on plot k is defined as  

 ( ) ( ) kikkikikkiki efeyEy +=+= bβxbx ,, ,  

where yki, xki and kie  are the sample tree variable, the tally tree variable vector and 
the residual, respectively, for sample tree i on plot k; β  is the vector of fixed 
parameters and kb  the vector of random parameters on plot k. Thus the random 
parameters vary from plot to plot. The expectations for these parameters are usually 
assumed to be 0 and their variances are estimated at the model fitting stage. The 
realized values of the random parameters can be predicted for each plot in the 
dataset. When using the model for prediction purposes, one can use either 
expectations or predictions for the random parameters, the former approach giving 
population-level predictions and the latter plot-level predictions. In addition to the 
plots, stands, clusters or measurement occasions may create additional levels of 
grouping in the data. For a formal presentation of the approach, readers are referred 
to Lappi (1993), Davidian and Giltinan (1995), Pinheiro and Bates (2000) and 
McCulloch and Searle (2001). Forestry applications of linear mixed models have 
been reported by Lappi (1991), Gregoire et al. (1995) and Mehtätalo (2004), for 
example, and non-linear models by Gregoire and Schabenberger (1996) and Fang et 
al. (2001). Both a non-linear and a linear mixed-effects modelling approach to the 
dataset of Example 6.1 are illustrated in Example 6.2. 
 An important point to note, as discussed by Diggle et al. (2002), for 
instance, is that in an inventory we are estimating a cross-sectional regression 
function (population average) for y. The resulting function is not generally a logical 
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one for describing how y in a single tree is related to the development of x over time 
(subject-specific curve). For instance, in cross-sectional data ( )DH  often decreases 
with respect to D when D is large, even though the height of each single tree grows 
as D grows. This results from the fact that in inventory data trees with a large D are 
usually open-growing ones that have been allocating resources to diameter growth 
rather than height growth. Thus the growth allometry of individual trees does not 
provide theoretical reasons for any specific functional form for ( )E y x . 
 There are also approaches that do not require definition of the functional 
form of ( )E y x . One approach is to compute class means for y in various classes of 
x. The y values for tally trees can then be obtained either by using class means 
directly or by interpolating them. The bias in the estimated ( )E y x  is small in these 
methods, but the estimation variances can be large because the large number of 
parameters (class means) has to be estimated. This approach does not make proper 
use of the smoothness of ( )E y x . There are many methods nowadays for estimating 
flexible regression functions without any theoretical parametric models, e.g. 
regression splines, kernel smoothing, local regression and smoothing splines (see 
Hastie et al. 2001). Smoothing splines may provide a good general basis for future 
large-scale inventories. 
 The approaches presented above may be problematic if there is more than 
one variable that should be generalized. In such a case, regression models are 
required for each variable and it is difficult to ensure that the estimates for a single 
tally trees are logical and harmonized. One solution for avoiding such problems is 
non-parametric nearest neighbour (k-nn) estimation. The principle is simple. For 
each tally tree we search for the sample trees that are most similar to it and calculate 
the (weighted) mean of y for these trees. Similarity is measured with respect to tally 
tree variables x.  For example, the estimate of stem volume (or saw log volume) for 
a tally tree is the (weighted) mean value of stem volumes (or saw log volume) of its 
nearest neighbours. This technique was employed by Korhonen and Kangas (1997) 
to generalize sample tree information for tally trees.  
 

 
Example 6.1 Estimation of tally tree regression using weighted non-linear least 
squares 
 
This example uses non-linear regression to fit a volume model to sample tree data. 
Note that the volume modelled is not the actual volume but a prediction based on 
diameter and height (see section 6.3). The dataset consists of 385 Scots pine trees 
measured on 16 plots, being a subset of the INKA data originally collected for 
growth and yield studies (Gustavsen 1998). All these trees were measured for 
diameter and height, but just 61 trees were selected as sample trees for this example 
(Table 6.1), the remaining 324 trees being left as tally trees.  
 The volume of tree i in the sample tree data seemed to follow a non-linear 
model 
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 ( )exp lni i iy a b x e= + + , 

where a and b are model parameters, xi is the diameter of tree i, i=1,…,N , and N is 
the total number of trees in the data. Since, as seen in Figure 6.1a, the variance of the 
volume clearly increased as a function of diameter, it was assumed that  

 ( ) 2 2var i ie x δσ= . 

Using this assumption, the model was fitted using weighted non-linear least squares. 
The initial guesses for the estimates, obtained from a linearized ordinary least 
squares regression, were a = -2.373 and b =2.632, and the final parameter estimates 
obtained were  

a =-2.365, b= 2.631, σ2= 0.010252 and δ = 2.677. 

The variance function seemed to homogenize the variance well (Figure 6.1b), and 
the resulting model (see Figure 6.3) was used to predict the volumes of tally trees, 
giving a RMSE for the predictions of 19.04 dm3.  

Table 6.1 The sample tree data of Examples 6.1-6.3. Volume is a prediction based on 
diameter and height (Laasasenaho 1982). Plot 51 was not included in the modelling data. 

plot Diameter, Height, Volume, plot Diameter, Height, Volume, 
1 5 4.9 6.17 10 14.9 14 122.60 
1 8.3 7.7 23.31 11 10.3 8.4 38.33 
1 9.7 9 35.99 11 12.2 10.9 66.48 
2 5.2 5.6 7.28 11 5.7 7.3 10.58 
2 6.3 5.8 10.93 11 7.7 9.8 24.41 
2 7.6 7.2 18.58 11 7.6 8.5 21.16 
2 10.1 9.1 39.34 11 10.2 10.4 44.83 
2 8.1 7.2 21.09 11 9.2 10.3 36.24 
3 15.2 11.6 108.14 12 12.7 13 83.84 
3 10.7 9.3 44.90 12 11.6 13 70.10 
3 8 7.2 20.58 12 25.7 18.6 458.78 
4 12 13.1 75.47 12 12.2 13.3 79.02 
4 12.7 12.1 78.74 12 13.4 13.6 96.97 
4 15.1 13.4 121.07 12 19.5 17.5 253.89 
5 18.7 19.6 259.58 12 22.1 19.7 361.11 
5 22.2 18.9 350.64 12 18.4 18 232.59 
6 3.3 3.1 2.19 13 9.1 7.8 28.27 
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6 5 3.9 5.45 13 10.3 8.1 37.23 
6 3.7 3.8 2.95 13 5.7 5.3 8.43 
6 3.1 3.1 1.93 13 9.1 7.7 27.99 
6 4 3.3 3.27 13 12.1 8.7 54.22 
6 4.5 3.6 4.27 14 6.7 6.2 12.94 
7 13.1 10.3 72.92 14 7 5.6 13.16 
7 13.5 10 75.47 14 4.9 5.6 6.46 
7 15.1 10.3 96.45 15 5.4 8.2 10.41 
7 9.5 7.8 30.79 15 6.5 8.2 15.06 
8 21.7 14.1 257.33 16 4.8 6.5 6.89 
8 10.4 9.2 42.06 16 7.4 7 17.25 
8 17 13.8 156.79 16 5 5.3 6.49 
8 6 7.4 11.85     
8 14.9 11.4 102.43 51 3.9 4 3.36 
9 21.5 16.9 297.46 51 8.1 5.6 17.60 

 

Figure 6.1 Unstandardized (a) and standardized (b) residuals of the weighted non-linear least 
squares fit. The standardized residuals were obtained by dividing the unstandardized 

residuals by the square root of the estimated variance function.  
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model are correlated for a single plot. Thus we assume a non-linear mixed model  

 ( )exp lnki k ki kiy a b x eα= + + + , 

where yki, xki and eki are the volume, diameter and residual of tree i on plot k. Now 
i =1,…,Nk, where Nk is the total number of trees on plot k. The same model as in 
example 6.1 was assumed for the residual variance, the only difference being that 

k
with the variance var(ak) and expectation α. Fitting the model by means of restricted 
maximum likelihood gave the following parameter estimates: 

 α = -2.001, b = 2.473, var(ak) = 0.13162, σ 2 = 0.0069952 and δ = 2.548. 

Predictions of ak (McCulloch and Searle 2001, p. 247-262; Pinheiro and Bates 2000, 
p. 71) were calculated for each plot to obtain plot-specific volume models. The 
population curve and plot-specific curves for each plot are shown in Figure 6.2. 
Using the plot-specific curves, the RMSE of the volume prediction was 13.67dm3, 
which shows a considerable reduction as compared with the model without random 
effects. This can be interpreted in two ways. From a statistical point of view, random 
effects can either be said to be part of the error term or can be considered to be 
random parameters. In the first interpretation, the original errors in the model with 
random effects are decomposed into two components, plot-level errors and tree-level 
errors, while in the second, the decrease in RMSE is obtained by adding a large 
number of additional parameters to the model.  
 In some cases it is desirable to use linear mixed models rather than non-
linear ones. To demonstrate the difference between the two, the model  

 ln lnki k ki kiy a b x eα= + + +  

was fitted to the data. Note that the first two terms of the model are obtained by 
taking a logarithm of the non-linear model without the error term. The difference 
between the non-linear and linearized models lies in the assumptions regarding the 
error term (see McCulloch and Searle 2001, p. 78). Fitting of the linearized model to 
the data gave the parameter estimates  

 α = -2.002, b = 2.472, var(ak) = 0.13412 and var(eki) = 0.060672. 

The estimates for the fixed parameters are almost equal to those of the non-linear 
model, the differences between the random parameters resulting from different 
assumptions concerning the error variance. 

 
 
Example 6.2 Estimating plot-specific tally tree regression using a mixed model. 
 
It can be clearly seen from Figure 6.2, in which the observed volumes for trees on 
the same sample plot are connected by dashed lines, that the residuals of the volume 

parameter a was now defined as α + a , i.e. it was assumed to be specific for each plot 
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Figure 6.2 Observed volumes plotted against diameter. Observations from the same plot are 
connected by dashed lines. The thick solid line shows the population curve and the thin solid 
lines the plot-specific curves. Note that each plot-specific curve is plotted within the range of 

sample tree diameters of the plot and most of the 16 plot-specific curves are for diameters less 
than 15 cm.  

 

6.2. GENERALIZING SAMPLE TREE INFORMATION IN A SMALL 
SUBPOPULATION 

We may need to estimate ( )E y x  in a small population or subpopulation where not 
many sample trees have been measured. The subpopulations may be stands or small 
administrative areas, for instance. If we are using sample tree information collected 
only from the target subpopulation, the estimation errors in ( )Ê y x  may be large. 
We may thus try to use some prior information to obtain a smaller MSE for 

( )Ê y x , even though the estimate for ( )Ê y x  may be biased for the given 
subpopulation. Two such methods will be shortly discussed in the following, mixed 
estimation and mixed models. 
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6.2.1 Mixed estimation 

Mixed estimation can be applied if there are two datasets available: a dataset 
sampled from the current target population and an auxiliary dataset from a 
population which we anticipate to be quite similar to the target population. The two 
are then combined, with less weight attached to the observations in the auxiliary 
dataset than to those in the target population. Korhonen (1993) used mixed 
estimation to calibrate the data of the 8th Finnish National Forest Inventory using 
data from the previous inventory.  
 More specifically: let 1y  and 2y  be the vectors of the dependent variables 
for the sample as obtained from the target population and from the auxiliary 
population, respectively. Using the example above, these could be the values of the 
sample tree volume equation ( )HDV , , possibly divided by a function s(D) used to 
stabilize the error variance. Let us assume a linear model 1 1= +y X b e  and let 1X  
and 2X be the model matrices from the two samples, respectively. In mixed 
estimation b is estimated by ( ) ( )1

1 1 2 2 1 1 2 2
ˆ λ λ

−
′ ′ ′ ′= + +b X X X X X y X y  instead of the 

ordinary least squares estimate ( ) 1

1 1 1 1

−
′ ′X X X y . Thus a weighted least squares 

regression is applied in which the weights on the observations of the target 
population are 1 and those on the observations of the auxiliary population are λ. If 
the two populations do not deviate much, the resulting estimate will have a smaller 
MSE even if it is biased. For more information on mixed estimation, see Theil and 
Goldberger (1961) and Toutenburg (1982). Use of the mixed estimation approach 
with the non-linear volume model of Example 6.1 is illustrated in Example 6.3.  
 Ridge regression is another biased estimation method that can provide 
parameter estimates having a smaller MSE error than OLS, especially in small 
datasets. In this method the parameter estimates are shrunken towards zero. Both 
mixed estimation and ridge regression are formally similar to the prediction of 
random parameters using mixed models. Mixed models have a more natural 
theoretical basis, however.  

6.2.2 Applying mixed models 

If we are making an inventory in several subpopulations or classes which can be 
considered a priori to be similar, we can employ techniques which ‘borrow strength’ 
from other subpopulations. The classes can be sample plots or stands, for instance. 
The fitting of a mixed model was discussed in section 6.1. We now show how an 
estimated mixed model can be employed to predict tally tree regressions for small 
subpopulations outside the estimation data.  
 Mixed model prediction is based on linear prediction theory, which we will 
first explain briefly. Assume that we have a vector of random variables, h, which 
can be divided into two parts 
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⎦

⎤
⎢
⎣

⎡
=

2

1

h
h

h ,  

where h1 and h2 are random vectors of length 1 or more. It is assumed that E(h1)=µ1, 
E(h2)=µ2, var(h1)=V1, var(h2)=V2, and cov(h1,h2’) = V12. Using the notation of 
McCulloch and Searle (2001, p. 247), this can be written as  

 1 1 1 12

2 2 12 2

~ ,
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

h µ V V
h µ V V

. (6.1) 

Assume that we have observed the random vector h2 and want to predict vector h1. 
The Best Linear Predictor of h1 is 

 ( ) ( )1
1 1 1 12 2 2 2

ˆBLP −= = + −h h µ V V x µ , (6.2) 

with a prediction variance of  

 ( ) 1
1 1 1 12 2 12

ˆvar −− = −h h V V V V  (6.3) 

(McCulloch and Searle 2001, p. 250). Thus, if the expectations and variance-
covariance matrices of two random vectors are known and either one of them is 
observed, the other one can be predicted, and the variance of the prediction error can 
be calculated using Equation (6.3). If h follows the multinormal distribution, BLP 
will also be the Best Predictor. If the matrices V1, V2 and V12 and the vector 2µ  are 
replaced in the calculations by their estimates, the resulting predictor is the 
Estimated Best Linear Unbiased Predictor (EBLUP). Henderson mixed model 
equations lead to equivalent equations that do not require the inverse of V2 and are 
thus more convenient when the number of sample trees in the subpopulation is large 
(see Searle et al. 1991, Lappi 1991). 
 Assume that the sample tree variables in subpopulation k are written in 
vector yk , and assume that they follow a mixed model  

 ( ) kkkk eZbxfy ++= β, ,  (6.4) 

where ( )β,kxf  is the fixed part of the model, giving E(y|xk), bk includes the random 
parameters for subpopulation k, Z is the design matrix corresponding to the random 
coefficients and eki is the vector of residuals. The design matrix has a row for each 
sample tree, which includes those observed predictors which have a random 
coefficient. Linearity in the random part is required for simplicity. For prediction of 
the random parameters of non-linear mixed models, see Pinheiro and Bates (2000) 
and Fang et al. (2001). 

’

’
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 Let us note var(b)=D and var(e)= R. Estimates for these matrices are 
available from the estimation stage of the model. If the errors are homogeneous and 

1 k 2 k

1 2 12
predict the random parameters in subpopulation k, denoted by k̂b , and equation 
(6.3) to calculate its prediction error, ( )ˆvar k k−b b . 

 According  to model (6.4), the prediction regarding tree i in subpopulation 
k

 
is  

 ( ) ( ) ˆˆ , ,ki ki k ki ky E y f β= = +x y x zb . 

The variance in the predictions is needed for calculating their confidence intervals, 
for example, and for correcting for bias if yki is not on an arithmetic scale. Ignoring 
the estimation error in the fixed parameters, the prediction variance is  

 ( ) ( ) ( )ˆˆvar var varki ki k k kiy y e− = − +z b b z , 

where z is the row of Z that corresponds to the observation xki.  
 The above approach can be used when the sample tree variables in the 
modelling data coincide with those in the target population data. Using the volume 
example, predicted sample tree volumes based on diameter and height can be used if 
the volumes in the modelling data are based on same volume model. This is not the 
case, however, if the volumes in the modelling data are true volumes based on stem 
analysis and the sample tree volumes are predictions based on diameter and height. 
A multivariate approach for predicting sample tree volumes using measured sample 
tree heights, developed by Lappi (1991), is presented in Example 6.4.   

 
Example 6.3 Generalizing sample tree information to a small subpopulation 
 
Assume that we want to generalize the volumes for tally trees on a plot that is not 
included in the modelling data of the previous examples. Assume that two sample 
trees were measured on the plot (plot 51 in Table 1). This example demonstrates the 
use of both mixed estimation and mixed model prediction for generalizing sample 
tree information.  
 
Mixed estimation 
 
In order to homogenize the residual errors, the model of Example 6.1 was 
transformed to 

 

we obtain V =D, V = ZDZ’+R and V =DZ’. Now we can use equation (6.2) to 
uncorrelated, R=σ2I. Let us define h = b , h = y  in equation (6.1). Using model (6.4) 

’
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where, based on the variance function of Example 6.1, ( ) 2.68
i is x x= .   

 The dataset used in the previous examples was taken here as the auxiliary 
dataset for mixed estimation. Since the auxiliary data include 61 trees and the plot 
data only 2, uniform weighting of all the observations in the combined dataset would 
have given too much weight to the auxiliary data. Defining the weights as λ=1 in the 

data and half to the auxiliary data. Fitting of the model to the combined data using 
weighted least squares gave the parameter estimates  

 a= -2.400 and b = 2.631.  

The resulting curve is shown by the dashed line in Figure 6.3. One can see that it is 
more accurate than the population curve of Example 6.1, but clearly gives 
excessively large volumes for the sample trees. The RMSE of the prediction was 
12.51 dm3 and the bias (predicted-observed) 8.80 dm3. 
 Another approach to mixed estimation would have been to generate an 
artificial auxiliary dataset using an existing volume model (Pekkonen 1982). In this 
case, for example, one could have used the model of Example 6.1 to generate 
artificial trees with diameters varying systematically within the diameter range of the 
tally trees. The mixed estimation model would then have been fitted to the dataset 
consisting of the observed sample trees and the artificial sample trees and the 
weighting of the auxiliary data could have been controlled by the number of 
artificial trees. 
 
Mixed model prediction 
 
In this example the random parameters of the linearized volume model of Example 
6.2 were predicted for the plot using the two measured sample trees of plot 51 (Table 
6.1). Since the only random parameter in our example is the constant term, the 
average of the residuals includes all the information that is needed for predicting the 
random effect and equations (6.1 and 6.2) can be simplified. Let us first calculate the 
average of the observed logarithmic volumes as 1.21 2.87 2.04

2ky += = .  The 

average of the expected logarithmic volumes is obtained using fixed parameters of 

the model: 1.36 3.17 2.27
2

µ += = . Equation (6.1) now takes the form   

plot data and λ= 2/61 = 0.0328 in the auxiliary data gives half of the weight to the plot 

( ) ( )
1 exp( ln )i

i i
i i

y a b x e
s x s x

= + + , 
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( )

( ) ( ) ( ) ( )
2

2 2

var 2 0.134ˆ 2.04 2.27 0.206
var var 0.0607 2 0.134

k k
k k

ki k k

n a
a y

e n a
µ ⋅′= − = − = −

+ + ⋅
. 

Thus, according to the model (see example 6.2), the expected logarithmic volume on 
the plot is  

 ( )ln 2.002 0.206 2.47 ln 2.208 2.47 lnki k ki kiE y y x x= − − + = − + . 

Before applying the exponential transformation to obtain the volumes on an 
arithmetic scale, half of the error variance needs to be added to the logarithmic 
prediction. The error variance consists of the residual error var(eki)= 0.06072 and the 
prediction error of the plot effect, 

 ( ) ( )
( ) ( )

2
4

2
2 2

var 2 0.134ˆvar var( ) 0.134
var var 0.0607 2 0.134

0.00167.

k k
k k k

ki k k

n a
a a a

e n a
⎡ ⎤ ⋅⎣ ⎦− = − = −

+ + ⋅
=

 

Thus, the volume expectation is 

 
( )

( )

0.00167 0.00368exp 2.208 2.47 ln
2

exp 2.202 2.47 ln ,

ki k ki

ki

E y y x

x

+⎡ ⎤= − + +⎢ ⎥⎣ ⎦
= − +

 

which is shown with a solid line in Figure 6.3. The predictions are more accurate 
than in the mixed estimation approach (RMSE 4.43), but they are still slightly biased 
for plot 51, the observed bias being 3.01 dm3. 
 Both the mixed estimation and mixed model prediction approaches lead to 
a plot-specific volume model that is obtained from the population curve by shrinking 
it towards the observed volumes of the sample trees. In mixed estimation the degree 
of shrinkage depends on the ad hoc weights assigned to the auxiliary data, while in 
the mixed model approach it is defined by the estimated within-plot and between-
plot variances in the mixed model. 

 
( ) ( )
( ) ( ) ( )

var var0
~ ,

var var var
k k k

k k k ki k

a a a
y a a e nµ

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟+⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

, 

where n = 2, var(ak) = 0.1342 and var(eki) = 0.06072. The Best Linear Unbiased 
Predictor of ak is calculated to be 
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Figure 6.3 The dataset and fitted curves of Examples 6.1 and 6.3. The black circles show the 
true volumes of the two sample trees and the open circles those of the tally trees. The dotted 
line shows the expected curve of Example 6.1, the dashed line the curve obtained with mixed 

estimation and the solid line that obtained with mixed model prediction.  

 
Example 6.4 The multivariate case 
 
Lappi (1991) constructed the following multivariate model for the logarithmic 
height and logarithmic volume of tree i in stand k from stem analysis data 
(Laasasenaho 1982): 

 0 1
1 1ln 3.410 18.58ki k k ki

ki ki

H a a e
D D

= − + − +  and 

 0 1
1 1ln 2.704 48.93 1.387lnki ki k k ki

ki ki

V D c c u
D D

= − + + − + ,  

ki 0k, a1k, c0k and c1k are stand-specific random 
ki ki ki

var(uki)= 0.01540 and covariance cov(eki,uki) = 0.01040. Let us write the random 

where D  is DBH + 7 cm, parameters a
parameters and e  and u  are residuals with estimated variances of var(e ) = 0.01113, 
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parameters as vectors ( )0 1k k ka a=a  ( )0 1k k kc c=c and define ( )k k k=b a c . 
The estimated dispersion matrix of bk is (Lappi 1991) 

 
( )

[ ]1 12

12 2

0.04739 0.3887 0.05082 0.4772
0.3887 20.64 0.6036 24.88

var
0.05082 0.6036 0.05988 0.7876

0.4772 24.88 0.7876 31.11

.

k

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥= =
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

b D

D D
C H

D D

 

The last two parts define a partition of matrix D that is needed in the following 
calculations. The measured height of a sample tree will be used below to predict the 
random parameters of the volume function. Assume that two sample trees of 
diameters 20 and 30 cm and heights 20 and 26 m have been measured. The 
measured heights follow the model  

 k k k= + +y µ Za e , 

where vector yk includes the measured logarithmic heights, 
ln 20 3.00
ln 26 3.26k
⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

y , 

and µ their expectations, which are obtained using the first two terms of the height 

model as 
2.72
2.91
⎡ ⎤= ⎢ ⎥
⎣ ⎦

µ . Matrix Z is the design matrix of the random part, i.e., 

( )
( )

1 1 20 7
1 1 30 7

+⎡ ⎤
= ⎢ ⎥+⎣ ⎦

Z  , and ak and ek are unknown vectors of random parameters and 

random residuals with variances ( ) 1var k =a D  and ( )var 0.01113k = = ⋅e R I . Using 
the height and volume models, equation (6.1) can be written as 

 
1

~ ,k

k

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠

b D CZ0
y ZC ZD Z Rµ

 

and the BLUP of bk is (Equation 6.2)  

 

’ ’ ’ ’ ’

’

’
’ ’
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 ( ) ( )1
1

0.244
0.985ˆ
0.230
1.131

k k
−

⎛ ⎞
⎜ ⎟
⎜ ⎟= + − =
⎜ ⎟
⎜ ⎟
⎝ ⎠

b CZ ZD Z R y µ  , 

i.e. the predicted random parameters are a0k = 0.244, a1k = 0.985, c0k = 0.230 and 
c1k =1.131. The predicted logarithmic heights and volumes are obtained by writing 
these estimates into the height and volume models.  
 In order to arrive at unbiased predictions of volumes and heights, half of the 
prediction variance was added to the predicted logarithmic heights and volumes 
before applying the exponential transformation. The prediction variance of random 
parameters was first calculated to be  

 

( ) ( ) 1
1

ˆvar

 0.0212 0.536  0.0266 0.648
0.536 17.6 0.716 21.3

 0.0266 0.716  0.0372 0.918
0.648 21.3 0.918 26.8

k k
−− = − +

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟=
⎜ ⎟− −
⎜ ⎟

− −⎝ ⎠

b b D ZC ZD Z R CZ

. 

Ignoring the estimation errors in the fixed parameters, the prediction variances of the 
predicted logarithmic heights were then obtained from the diagonal of  

 ( ) ( ) IZaaZyy 01113.0*ˆvar***ˆvar +−=− kkkk , 

where yk* denotes the heights of the tally trees, Z* the design matrix of tally trees 
and ( )ˆvar k k−a a  includes the first two rows and columns of ( )ˆvar k k−b b  (see the 
definition of bk). The height and volume models corrected for population level and 
local bias are shown in Figure 6.4. 

’ ’ ’

’ ’

’
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Figure 6.4 Predicted height and volume models when random parameters are 0 (dashed lines) 
and are predicted using the two observed heights shown in the plot on the left.  

 

6.3 A CLOSER LOOK AT THE THREE-LEVEL MODEL STRUCTURE 

Let y denote a variable for which we do not have any measurements in the 
inventory data (e.g. stem volume), let x  denote tally tree measurements (e.g. dbh), 
and let z  denote sample tree variables for which we have some measurements (e.g. 
tree height). The statistical analysis is straightforward if we assume that both x  and 
z  are random vectors. We then assume that we know the conditional expectation 

( ),E y x z (called here the sample tree regression) and the conditional variance 
( )var ,y x z , which have been estimated from previous research data. The sample 

tree regression can be applied using sample tree measurements (note that 
( ) ( )( )var , var , ,y y E y= −x z x z x z ). We would like to estimate the tally tree 

regression ( )E y x  and its residual variance ( )var y x  using a random tree sample 
from the target population. 
 The conditional expectation ( )E y x  can be  presented as (see Rao 1973, 

p. 97) 

 ( ) ( ),E y E E y= z xx x z  (6.5) 

where Ez x denotes the expectation over the distribution of z for a given value of x.  

LAPPI ET AL. 100



 GENERALIZING SAMPLE TREE INFORMATION 

 There are two approaches for estimating the tally tree regression ( )E y x  
using (6.5). First, if we have a random sample from the population, the tally tree 
regression ( )E y x  can be estimated using the sample tree regression function 

( ),E y x z  as the dependent variable which is regressed on x , as in Examples 6.1 
and 6.2. The multivariate approach presented in Example 6.4 can also be shown to 
be equivalent to this approach.  
 A second possibility is to estimate the conditional distribution of z for a 
given value of x and then compute the expected value for ( ),E y x z  with respect to 
this conditional distribution. If ( ),E y x z  is not linear with respect to z, a numerical 
integration or approximation method is needed to compute the expected value. 
 The prediction variance of y can be expressed as (see Rao 1973): 

 ( ) ( ) ( )var var , var ,y E y E y= +z x z xx x z x z . (6.6) 

When ( )E y x  is estimated by regressing observed values of ( ),E y x z  on x , the 
estimator ( )Ê y x  also entails some estimation error. When y is predicted for tally 
trees using ( )Ê y x , i.e. ( )ˆŷ E y= x , the expected squared error consists of both the 
estimation error of the regression model ( ( ) ( )Ê y E y−x x ) and the residual 
variance ( )var y x of the true model ( )E y x . Thus, for a given ( )Ê y x : 

 ( )( ) ( ) ( )( ) ( )22 ˆˆ varE y y E y E y y− = − +x x x x . (6.7) 

The estimation error ( ) ( )Ê y E y−x x  consists of both the random error of the 
estimation procedure and possible model mis-specification error, i.e. a bias. If the 
bias component can be assumed to be small, the expected squared error over 
repeated estimations of ( )Ê y x  will be 

 ( )( ) ( )( ) ( ) ( )2 ˆˆ var var , var ,E y y E y E y E y− = + +z x z xx x x z x z . (6.8) 

The first component of (6.8) results from the estimation errors in the model and the 
last two components are the residual errors of sample tree regression and tally tree 
regression, respectively.   
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we want to predict the volumes of the tally trees, denoted as V. The known sample 
tree volume equation is denoted by ( ),V D H  and the unknown tally tree volume 
equation by ( )V D , that is ( ) ( ), ,V D H E V D H= , and ( ) ( )V D E V D= . The 
relation between V and D is dependent on the history of the stands, so that we cannot 
assume that there exists a universal relationship ( )V D which is constant from 
inventory to inventory. Using (6.5), we obtain 

 ( ) ( ),H DV D E V D H= . 

Adopting the first approach, the volume of the tally trees can be predicted by 
constructing a regression function for ( ),V D H  with respect to D. Taking the 
estimation error of  ( )V D  into account as well, the expected squared error is 
(Equation 6.8): 
 

( )( ) ( ) ( )( ) ( ) ( )2ˆ ˆvar var , var ,H D H DE V D V V D V D E V D H E V D H− = − + + . 

  (6.9) 

The conditional variances may be easier to understand if they are presented in an 
equivalent form showing that they are variances of residual errors: 

 ( ) ( )( )var , var ,V D H V V D H= −       and 

 ( ) ( ) ( )( )var , var ,H D E V D H V D H V D= −  

The last two terms in (6.9) are now the residual variance of the sample tree volume 
equation (estimated from true volumes in original research data) and the variance of 
the sample tree volume function around its expected value, i.e. the residual variance 
of the tally tree volume equation. Referring to Example 6.1, the first term is the 
estimation variance of the model, the second term is the residual variance of the 
volume equation of Laasasenaho (1982) and the third term is the residual variance of 
the estimated model.  
 Adopting the second approach, we first estimate the conditional distribution 
of H for a given D and then compute the expected value of ( ),V D H  with respect to 
this distribution. The most important property of the conditional distribution of H for 
a given D is the expected value ( )H D , i.e. the height/dbh curve. If the distribution 

 As an example, let us assume that dbh, denoted as D, is the tally tree 
measurement, and dbh and height, denoted as H, are sample tree measurements, and 
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2004). This is justified if ( ),V D H  is linear with respect to H, that is 

( ) ( ),V D H g D H=  for a known function of g. In this 

case ( )( ) ( ) ( ),E V D H D g D H D=  (see Rao 1973, p. 97). But because the volume 
is slightly non-linear with respect to height for a given dbh, the use of 

( )( ),V D H D entails a certain bias. If the error variance is to be computed using 

only the error variance of ( ),V D H , the third term in (6.9) will be ignored. For an 
error analysis of this approach, see Gregoire and Williams (1992). 
 If the error variance of the height equation ( )H D  is also estimated, a 
simple approximation for the distribution of H for a given D is a two-point 
distribution which places half of the probability mass on the expected value plus 
standard deviation and half on the expected value minus the sd. Using this two point 
distribution, we arrive at the approximations: 

 ( ) ( ) ( )( )0.5 , ,E V E V D d H E V D d Hµ σ µ σ≈ = = − + = = +  (6.10) 

 
( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )2 2

var 0.5 var , var ,

0.5 , ,

V V D d H V D d H

E V D d H E V E V D d H E V

µ σ µ σ

µ σ µ σ

≈ = = − + = = + +

= = − − + = = + − ,
 

  (6.11) 

where d is the diameter of the tally tree, µ   its expected height and σ  the standard 
deviation of the height prediction (Example 6.5). 
 The above equations can be applied to individual trees if the trees in the 
inventory data are assumed to be independent. The assumption of a model with plot-
level random effects, for example, implies that the trees on the same plot are 
correlated, and the conditional expectations must be computed by taking into 
account the tally tree and sample tree variables for all the trees on the same plot.  

 
Example 6.5 Use of the distribution of H|D to estimate tally tree volumes. 
 
Recalling the calibrated height model of Example 6.4, let us now assume that we are 
predicting the volumes of tally trees of diameters 10, 20 and 30 cm. The design 
matrix of the last equation of Example (6.4) is 
 

 

of H for a given D is approximated by its expected value, i.e. the whole probability 
mass is shifted to the expected value, we obtain the common simple approach in 
which ( )( ),V D H D  is used to predict tally tree volumes (Clutter et al. 1983, West 
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and the variance-covariance matrix of the prediction error becomes 

 ( )
0.130 0.00820 0.00319

ˆvar ln ln 0.00820 0.117 0.00449   
0.00319 0.00449 0.116

k k

⎛ ⎞
⎜ ⎟− = ⎜ ⎟
⎜ ⎟
⎝ ⎠

h h  . 

 There are only slight differences in the point estimates of volume, but 
considerable differences in the prediction errors. The merits of the second approach 
over the first are that a realistic estimate of the prediction variance is obtained and 
that bias correction based on Taylor series approximation and normality of the errors 
in the prediction of log height is not needed. 

Table 6.2 Predicted heights and volumes of the three tally trees and their prediction errors. 

D lnH sd(lnH) H1 H2 H3 

10 2.619 0.1739 13.93 11.53 16.33 

20 3.002 0.1266 20.30 17.69 22.92 

30 3.179 0.1274 24.21 21.14 27.27 

 

( )
( )
( )

1 1 10 7
* 1 1 20 7

1 1 30 7

+⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟+⎝ ⎠

Ζ  

The expectations for the logarithmic heights of the tally trees are shown in the 
second column of Table 6.2 and the standard deviation of their prediction errors, 
obtained from the diagonal of ( )ˆvar ln lnk k−h h , in the third column. The  

volumes of the tally trees were first calculated by the traditional approach, using  
the expected height (H1) to predict the volumes (V1) and applying bias correction  
in  the prediction  of  the  heights (Table 6. 3). Ignoring the height prediction 
 error , the standard error in prediction (sd(V1)) was calculated to be 

( ) ( )sd , 0.075 ,V D H E V D H≈  (Laasasenaho 1982). In the second approach, two predic-
ted heights were calculated for each tally tree: one obtained by subtracting the 
standard deviation of the prediction from (H2) and the other by adding it to (H3), the 
prediction of the expected log height before exponential transformation to calculate 
the volumes of the tally trees (V2 and V3). The final volume estimates, V4, were 
obtained as averages of V2 and V3 (Equation 6.10). The prediction variance (sd(V4),  
Equation 9.11), takes into account both the height prediction error and the volume 
function prediction error .  
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10 55.56 47.09 64.06 55.57 4.167 9.475 

20 305.7 269.3 342.2 305.8 22.93 43.13 

30 788.9 695.3 882.9 788.9 59.17 111.0 
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CHAPTER 7 

USE OF ADDITIONAL INFORMATION 

JUHA LAPPI AND ANNIKA KANGAS 
Finnish Forest Research Institute, University of Helsinki, Finland  

7.1 CALIBRATION ESTIMATION 

If there are not enough sample plots to give sufficiently good inventory results using 
only forest measurements, we may try to make use of auxiliary variables correlated 
with forest variables. The most obvious way is to use ratio or regression estimators 
(Section 2.7). The calibration estimator of Deville and Särndal (1992) is an 
extension of the regression estimator for obtaining population totals using auxiliary 
information. Both regression and calibration estimators can be employed if there are 
auxiliary variables for inventory sample plots known for which the population totals 
are also known, e.g. variables obtained from remote sensing or from GIS systems. 
The appeal of calibration estimators for forest inventories comes from the fact that 
they lead to estimators which are weighted sums of the sample plot variables, where 
the weight can be interpreted as the area of forest in the population that is similar to 
the sample plot.  
 The basic features of the calibration estimator of Deville and Särndal 
(1992) in terms of estimating means can be described as follows. Consider a finite 
population U consisting of N units. Let j denote a general unit, thus 

{ }NjU ,,,,1 ……= . In a forest inventory the population is a region where units are 
pixels or potential sample plots. The units in a forest inventory will be referred to 
here as ‘pixels’, and it will be assumed that an inventory sample plot gives values to 
the forest variables for an associated pixel. Each unit j is associated with a 
variable

jy  and a vector of auxiliary variables 
jx . The population mean of x, 

∑−=
U jN xX 1  is assumed to be known. The y  variables in a forest inventory are 

forest variables and the x  variables can be spectral variables from remote sensing or 
geographical or climatic variables obtained from GIS databases. 

–
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 Assume that a probability sample S is drawn, and 
jy  and jx  are observed 

for each j in S, the objective being to estimate the mean of y, ∑−=
U jyNY 1 . Let jπ  

be the inclusion probability and 
jd  the basic sampling design weight ( ) 1−= jj Nd π , 

which can be used to compute the unbiased Horvitz-Thompson estimator  

 ∑=
s jjd ydŶ . (7.1) 

A calibration estimator  

 ∑=
s jj ywŶ  (7.2) 

is obtained by minimizing the sum of distances, ∑
s

jj dwG ),( , between the prior 

weights jd  and posterior weights jw  for a positive distance function G, taking 
account of the calibration equation  

 Xx∑ =
s jjw . (7.3) 

If the distance between jd  and jw  is defined as  

 ( ) ( ) jjjjj ddwdwG 2
1  , −= , (7.4) 

the calibration estimator will be the same as the regression estimator 

 bXX ˆˆˆˆ ′
⎟
⎠
⎞⎜

⎝
⎛ −+==∑ dds jjr YywY , (7.5) 

where dX̂   and b̂   (a weighted regression coefficient vector) are 

 ˆ
d j js

d=∑X x and (7.6) 

 ( ) 1
ˆ

j j j j j js s
d d y

−′= ∑ ∑b x x x . (7.7) 

 If the model contains an intercept, the corresponding variable x  will be one 
for all observations, and the calibration equation (7.3) will then guarantee that the 
weights 

jw  add up to one. This means that when estimating totals, the 

LAPPI AND KANGAS 108



 USE OF ADDITIONAL INFORMATION 

weights
jNw will add up to the known total number of pixels in the population. 

Thus 
jNw  can be interpreted as the total area, in pixel units, for plots of forest 

similar to plot j . The standard least squares theory implies that the regression 
estimator (7.5) can be expressed in the form 

 bX ˆˆ ′==∑s jjr ywY . (7.8) 

It is assumed that the intercept is always among the parameters. 

 Estimator (7.7) is defined if the moment matrix ∑ ′
s jjjd xx  is non-singular. 

Some of the weights 
jw  in (7.2) implied by Eqs. (7.6)-(7.8) may be negative. Non-

negative weights are guaranteed if the distance function is infinite for negative 
jw . 

Deville and Särndal (1992) presented four distance functions producing positive 
weights. 
 Minimization of the sum ( )∑s jj dwG  ,  so that (7.3) is satisfied is a non-
linear constrained minimization problem. Using Lagrange multipliers, the problem 
can be reformulated as a non-linear system of equations which can be solved 
iteratively using Newton’s method (for details, see Deville and Särndal 1992). If the 
initial values of the Lagrange multipliers are set to zero, the first step will produce 

jw
‘

s of the regression estimator (7.5).  
 Since the calibration estimator is asymptotically equivalent to the regression 
estimator, Deville and Särndal (1992) suggest that the variance of the calibration 
estimator should be computed in the same way as the variance of the regression 
estimator using regression residuals. There is no design-unbiased estimator of the 
variance in systematic sampling (Schreuder et al. 1993). 
 The emphasis on area interpretation for the weights has the same argument 
behind it as was used by Moeur and Stage (1995) for the most similar neighbour 
method (MSN), where unknown plot variables are taken from a plot which is as 
similar as possible with respect to the known plot variables. In both methods each 
sample plot represents a percentage of the total area, and all the forest variables are 
logically related to each other. The difference is that in the calibration estimator  
we obtain an estimate of the area of the sample plot for the whole population 
whereas in the MSN method each pixel is associated with a sample plot. Since there 
is no straightforward way of showing that the MSN method produces optimal results 
in any way at the population level, it may be safer to use the calibration estimator for 
computing population-level estimates for forest variables. The problem with the 
calibration estimator is that it does not provide a map. If a map is needed, then the 
weights provided by the calibration estimator need to be distributed over pixels 
using separate after-processing. 
 Lappi (2001) proposed a ‘small-area’ modification of the calibration 
estimator which can be used when several subpopulation totals are required 
simultaneously. He used satellite data as auxiliary information for computing 
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inventory results for counties. Sample plots in the surrounding inclusion zone are 
also used for a given subpopulation so that the prior weight decreases as distance 
increases. The error variance is computed using a spatial variogram model. Block 
kriging (Cressie 1986) provides an optimal estimator for subpopulation totals under 
such a model, but kriging can produce negative weights for sample plots, and the 
weights are different for each y variable. Thus it is not possible to give areal 
interpretations to sample plot weights in kriging.  

7.2 SMALL AREA ESTIMATES  

Small area estimation is needed when estimates are required for subdivisions or 
domains of the population. Although the estimates for the whole population may be 
quite reliable, only a few sample units may fall into a given domain i, whereupon the 
classical design-based estimators may have unacceptably large errors. Accurate 
estimates for all small areas usually require overall sample sizes that are much too 
large to be within normal budget constraints (Särndal and Hidiroglou 1989). Thus, in 
order to improve the estimates of the domains, information from nearby areas can be 
used.  
 Small area estimators are typically at least partially model-based 
(Schreuder et al. 1993) and are referred to as synthetic or global estimators when 
information for the whole area is used instead of just the information from the 
domain i of interest (Särndal and Hidiroglou 1989). Estimators based only on 
information for the domain of interest are referred to as local estimators.  
 The classical local estimator for a domain i is  

 
i

j

sj
i n

y
=y

i

∑
∈

ˆ , (7.9) 

where si denotes the sample drawn from domain i and ni is the sample size in i. This 
estimator is unreliable for small sample sizes, however. The simplest possible model 
that can be used for small area estimation is 

 N1,...=jfor    +=y jj ,εµ . (7.10) 

Under model (7.10) the global estimator of the mean for domain i is thus  

 
n
y

=y  j

sj
iSYN ∑

∈

ˆ , (7.11) 

where s denotes the sample taken from the whole area and n is the total sample size. 
In fact, this is the sample mean for the whole population. The simplest global 

i
obtained with (7.11) will have a lower variance than the local estimates (7.9), but 
they will be badly biased unless the domain mean is the same as the population 

estimate is thus the overall sample mean for all domains i. As n > n , the estimates 
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mean, YYi = , in all domains. With this model, the synthetic estimator (7.11) would 
differ from the domain mean even if all the units in domain i were measured, i.e. 
ni = Ni.  
 A compromise between these two estimators is to combine the estimators 
(7.9) and (7.11). Under model (7.10), the best linear unbiased estimator for the 
domain mean iY  is (Schreuder et al. 1993, p. 318) 

 y
N
ny

N
ny

i

i
i

i

i
iCOM ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= 1ˆ  (7.12) 

If all the units in domain i were measured, the domain mean would have the weight 
1 in this case and population mean 0, giving the correct estimate. 
 If additional information is available, it is possible to use a model (Ericksen 
1973,1974, Mandallaz 1991, see sections 3.2, and 2.7) 

 ,...1=+= jfory jjj εβx , (7.13) 

j
β are estimated for the whole population and global estimates for domain i are 
obtained by  

 βX ˆˆ
iiREGy = , (7.14) 

where iX  contains the true average values for the independent variables of domain 
i. The estimator of its variance (assuming infinite population or analytic inference) is 

 ii
2

iREG
=)yVar XXXX 1)(ˆˆ( −σ , (7.15) 

each sample point and 2σ̂ is the estimator for the model residual variance (Eq. 3.7). 
If only the intercept of model (7.13) is significant, this model reduces to (7.10). The 
estimator (7.14) is almost the same as the estimator (3.10) presented in section 3.2. 
The only difference is that in (7.14) the model coefficients are estimated for the 
whole population whereas iX is for domain i.  
 Synthetic methods of estimation assume that small areas have 
characteristics similar to those of the larger areas of which they are part (Gonzales 
1973). If this assumption is unjustified, the synthetic estimators will be biased. If the 
bias component does not tend towards zero as the sample size increases, the 
estimator is design-biased (Särndal 1984). On the other hand, if an estimator is 
biased under the assumed model it can be said to be model-biased. A biased  
 

where x  is a ( p+1) vector of independent variables at point (plot) j. The coefficients 

where X is the n × ( p+1) matrix containing values for the independent variables for 

’
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estimator may still be useful if its MSE is smaller than that of an unbiased estimator 
and if the presence of bias is acceptable. 
 This bias in synthetic estimators can be reduced by combining an unbiased 
estimator with a design-biased but low variance estimator, for example, so that the 
weight of the unbiased estimator increases as the sample size in the small domain 
increases. Such attempts have included the use of shrinkage or empirical Bayes 
estimators (Green et al. 1987, see also Hulting and Harville 1991).  
 It is also possible to correct the estimates obtained with global models by 
using residuals observed in domain i (Särndal 1984, Särndal and Hidiroglou 1989). 
Mandallaz (1991) proposed a global estimator 

 ˆ ˆˆ ( )i iii SUR
 = + yy −X β x β ,  (7.16) 

where ix is the vector of sample means and iX  is the vector of true means in a small 
area i. In (7.16) the synthetic model-based estimator (7.14) is corrected for the bias 
by means of the residuals observed in the small area i.  
 The estimator of its variance is (Mandallaz 1991) 

 21ˆ( ) ( )
( 1)

i

ji iiSUR
i i j s

 Var = ry r-n n ∈

−∑ ,  (7.17) 

where rji is the observed residual in domain i and plot j. 
 An alternative model for domain estimation would be 

 1,...,k=i  and  1,...=jfor    +c+=y ijiijij εβx , (7.18) 

where ci ~ N(0,σw
2) is a random domain effect, εij ~ N(0,σe

2) is a random plot effect 
and c and ε are mutually independent (Battese et al. 1988). The difference relative to 
model (7.13) is that the residual error term in (7.18) is divided into two components. 
The domain effect describes the difference of domain i from the population mean, 
which makes it useful for estimating the domain mean. The global estimator for the 
domain mean is then (Prasad and Rao 1990) 

 iiiMIX
c+=y ˆˆˆ βX , (7.19) 

where the domain effect iĉ  can be estimated by  

 ˆ ˆ( ) ( )ˆ
2
w

i i i i i i2
e2

w
i

 = y yc
+

n

σ γ
σσ

− = −x β x β  (7.20) 

and iγ is the (constant) correlation within domain i, calculated from the variances in 
the domain and plot effects and the number of plots. 
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 The estimator of iĉ  (7.20) is biased for a given ci , but unbiased over the 
distribution of domains (Lappi  1993). Thus the estimator (7.19) is also model-
biased for a given domain but unbiased over the distribution of domains. The larger 
the within-domain correlation, and the larger the difference )ˆ( βxii -y , the larger the 
predicted iĉ  in (7.19) is. As the variance σe

2 approaches infinity, the correlation 
approaches one and estimator (7.19) approaches estimator (7.16). This means that 
the global estimator of the mean (7.19) is corrected by means of the observed 
residuals, as in (7.16), but the amount of this correction depends on the correlation 
within the domains. The mean square error of (7.19) can be calculated using the 
theory of linear models, details of which can be found in Prasad and Rao (1990).  
 If only the intercept of the fixed part of model (7.18) is significant, the 
estimator (7.19) reduces to a linear combination of the estimate for the total area 
mean and the observed mean in domain i: 
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This estimator is quite similar to simple James-Stein estimators or the combined 
estimator (7.13) (Schreuder et al. 1993). Treating the domain effect as random 
provides a means of combining the domain mean efficiently with the estimator of 
the population mean. 
 Geostatistical methods provide interesting possibilities in small area 
estimation in a forestry context, since in most cases the auxiliary information 
includes coordinate locations. With these methods it is possible to take the 
autocorrelations present in the data explicitly into account, instead of just constant 
within-domain correlation as in the mixed model. In kriging methods, the 
autocorrelation between the sample plots is usually assumed to depend purely on the 
distance between the sample plots and to decrease with increasing distance. In a 
mixed model, however, this correlation is approximated by means of an average 
correlation over a predefined area. Thus the mixed model approach can be 
considered a special case of kriging. The kriging method has been presented by 
Journel and Huijbregts (1978), Burgess and Webster (1980a, 1980b), Ripley (1981) 
and Cressie (1986), for example, and for small area estimation by Mandallaz (1993) 
(see also Chapter 10). Examples of small area estimation in forestry are provided by 
Green et al. (1987), Mandallaz (1991), Kangas (1996) and Lappi (2001), for 
example .  
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Example 7.1  
 
The example is based on simulated data. Assume a 1000 hectare area with five 
distinct regions of interest. The volume of each region is surveyed. There is a 
satellite image available, and the near-infrared (NIR) channel is used as auxiliary 
information.  
 The true data were obtained assuming that the NIR was a normally 
distributed variable with mean 0.2482 and standard deviation 0.0364. A dataset of 
1000 observations for the regions was generated, and the true volumes were 
obtained from a model  

 i i322.7473 714.951 N IR +iV ε= − , 

where the standard deviation of iε was 38.66 m3/ha. The true mean values for NIR 
and volume in each area, calculated from these data, are presented in Table 7.1. 

Table 7.1 True values for volume and NIR  

District size, ha NIR Volume 
m3/ha 

STD 

1 94 0.22893 155.5 43.82 
2 69 0.25104 140.7 40.43 
3 123 0.26008 139.2 42.34 
4 537 0.28201 120.4 45.40 
5 177 0.31497 92.5 44.35 
sum/mean 1000 0.27802 122.5 47.84 

 
A sample of 50 plots was taken from the area at random. The values of NIR and 
volume for each sample plot are presented in Table 7.2.  

.

LAPPI AND KANGAS 114



 USE OF ADDITIONAL INFORMATION 

Table 7.2 The sample. 

District NIR VOL District NIR VOL 
1 0.176512 212.6 4 0.264825 182.3 
1 0.212170 154.4 4 0.322347 70.3 
1 0.234031 170.8 4 0.313223 130.6 
1 0.196743 139.9 4 0.326355 95.3 
1 0.261204 159.6 4 0.264030 116.0 
1 0.235359 123.9 4 0.308574 93.6 
1 0.191436 222.9 4 0.313137 12.8 
2 0.244882 133.2 4 0.240222 142.5 
2 0.281133 70.8 4 0.281222 75.0 
2 0.252457 2.6 4 0.281231 127.1 
2 0.268814 119.0 4 0.330613 132.3 
2 0.268588 136.6 4 0.313529 114.9 
3 0.237107 169.6 4 0.261752 114.9 
3 0.253262 115.8 4 0.270598 115.1 
3 0.242354 141.9 4 0.327834 57.7 
3 0.268941 98.7 5 0.265201 141.3 
3 0.301190 163.5 5 0.319447 81.6 
3 0.273860 35.5 5 0.321587 120.4 
4 0.291545 116.2 5 0.272238 115.9 
4 0.259637 98.5 5 0.277245 142.2 
4 0.277605 110.7 5 0.309464 82.6 
4 0.239459 182.7 5 0.309751 89.2 
4 0.339731 56.0 5 0.275660 67.6 
4 0.226967 148.9 5 0.366935 28.3 
4 0.229883 202.5 5 0.326796 44.8 

 
A linear regression model, having the characteristics presented in Table 7.3, was 
estimated from the sample data. 
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Table 7.3 Model statistics. 

Regression Statistics     
R2 0.428969     
Adjusted R2 0.417073     
Standard Error 37.28421     
Observations 50     
      
ANOVA      

  df SS MS F Significance F 
Regression 1 50125.37 50125.37 36.0585 2.46E-07 
Residual 48 66725.41 1390.113   
Total 49 116850.8       
      

  Coefficients Std Error t Stat p-value   
Intercept 330.9492 36.24291 9.13142 <0.000   
NIR − 784.192 130.5926 − 6.00487 <0.000   

 
Estimates for the small area obtained with various formulae are presented in Table 
7.4.  

Table 7.4 Estimates for the small area. 

District n NIR 
iŷ  

(7.9) 
)ˆ( ie ys  

 (2.12) 
iSYNŷ   

(7.11) 
iREGŷ  

(7.14) 
iSURŷ  

(7.16) 
)ˆ( iSURe ys   

(7.17) 
1 7 0.22893 169.2 13.79 115.6 151.4 158.5 11.387 
2 5 0.25104 92.5 25.35 115.6 134.1 102.0 31.773 
3 6 0.26008 120.8 20.36 115.6 127.0 123.0 20.389 
4 22 0.28201 113.5 9.45 115.6 109.8 116.3 6.946 
5 10 0.31497 91.4 12.21 115.6 84.0 83.1 8.346 

total 50 0.27802 115.6 6.91 115.6 112.9 112.9 5.216 
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CHAPTER 8 

SAMPLING RARE POPULATIONS  

ANNIKA KANGAS 
University of Helsinki, Finland  

8.1 METHODS FOR SAMPLING RARE POPULATIONS  

8.1.1  Principles 

Rare populations, such as downed trees or single valuable living trees, are often 
important with respect to biodiversity, for example. The problem is that such 
populations are difficult to cope with in a normal forest inventory. In the sample plot 
inventory method designed for surveying the mean volume of living trees, the area 
of a sample plot is typically very small relative to the total area. In such a case, only 
a few observations from rare populations (or perhaps none at all) will be obtained. 
The standard errors may therefore be very large. For these reasons, specific methods 
have been developed for sampling rare populations. A typical case is that of 
estimating the volume of downed woody debris in area level (see Ringvall 2000, 
Ståhl et al. 2001). A few recently developed methods are included in this chapter, 
but there are numerous others for those interested, see Bebber et al. (2003) and 
Williams and Gove (2003), for example. 
 The estimating of wildlife populations constitutes a field of application 
which is in many respects different from tree surveys. Animals can move and hide, 
and the sampling process itself may cause them to move. Thus a true sampling frame 
may not exist and the probability of any one animal being sampled has in many 
cases been calculated after the sample has been drawn (Schreuder et al. 1993). 
Hence the probability of errors is also greater in animal surveys. The primary 
parameters of interest in wildlife surveys are usually population size or density, birth 
and mortality rates and immigration and emigration rates.  

–
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8.1.2 Strip sampling 

Strip sampling is often used for rare population inventories. Since this method 
typically covers a large area compared with plot sampling, it means a lot of work 
when applied to living trees. Since the autocorrelation between two subsequently 
located parts of the strip is high, this method is also inefficient for use with living 
trees. Observations on rare populations are typically located so far apart, however, 
that autocorrelation is not a problem. The workload in strip inventory is not 
prohibitive when rare populations are involved.  
 Strip sampling can be regarded as a sample plot inventory in which the 
plots are very large. Computationally, the easiest case is when the area is divided 
into N non-overlapping strips and n strips are selected from these by simple random 
sampling. The strips may also be selected using a certain spacing, however, in which 
case they may be (at least partially) overlapping. In sampling downed trees, the case 
may be either that 1) whole logs are measured if the butt is located on the strip, or 
that 2) only the parts of the logs that are located on the strip are measured. The 
former assumption is used in this chapter. Sometimes the same formulae may apply 
to both cases. For volume estimation, for instance, both definitions can be employed 
in the same formulae. For estimating the number of downed logs, however, the first 
case is more straightforward.  
 One problem with this approach is that the strips are usually of different 
lengths and areas, so that their mean is an inefficient estimator for population mean 
(Shiver and Borders 1996). This problem can be overcome by using the strip area as 
an auxiliary variable x. The estimator for the total volume (or other variable of 
interest) will then be (see Stehman and Salzer 2000) 
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where Vi is the total volume of strip i , Ai is the area of strip i and AT is the total area. 
 If the mean volume per hectare is of interest, it is enough to estimate the 
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x =µ  is the mean area of strips, N is the total number of strips in the area and n 

is the  number of sampled strips. 
 The variance estimator for total volume is obtained by multiplying the 
variance of the ratio (8.2) by AT

2.  The true mean area of the strips is often unknown 
and can be replaced with the mean area in the sample (Thompson 1992, p. 62).  

8.1.3 Line intersect sampling 

Line intersect sampling (LIS) was first presented by Canfield (1941) and was 
developed in the 1960s to sample the amount of slash and fuel wood remaining after 
logging and for estimating road lengths, for example (Warren and Olsen 1964, 
Matérn 1964, van Wagner 1968). Nowadays, it is often used for estimating the 
number of downed trees in biodiversity contexts.  
 Assume a line located in an area in a direction θ. This method implies that 
all the objects intersected by the line are included in the sample. The probability of a 
tree being selected is dependent on the length of the sampling line L and the 
effective length of the tree l’, i.e. its (maximum) length perpendicular to the 
sampling line. If the tree is assumed to be a line (i.e. it has no width) this can be 
calculated directly from its angle γ with the sampling line, )sin(γll = .  

 

 

Figure 8.1 Scheme of line intersect sampling. 

The total value of a variable of interest, y, per area A, according to the Horwitz-

l’ 
l

γ 
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Thompson estimator (see sections 2.1 and 2.8), is then (Kaiser 1983 p. 969) 

 ∑
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where the effective length is given as a function of the sampling line angle θ. If the 
tree is not horizontal but tilted at an angle δi, the effective length will also depend on 
cos(δi). If the angles are measured, there is no need to make any assumptions 
concerning their distribution. This is quite tedious, however. If it is assumed that the 
sampling line angle θ varies uniformly between 0 and π, the expected value of the 
effective length of tree i is πθ /2))(( ii llE = (Kaiser 1983). From these results an 
estimator for the total value of y per square metre can be obtained with  
(De Vries 1973) 
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where L is the the total length of the lines (m), li is the lengtht of the tree i (m), yi is 
the variable of interest for unit i (e.g. volume, weight, length) and m is the number of 
units observed. 
 If the volume of the trees is defined using Huber’s formula as  
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where di is the (intersectional) diameter of tree i (cm), the equation (8.4) can be 
transformed to (De Vries 1973 p. 8) 
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This formula gives the volume directly in cubic metres per hectare. If the interest 
lies in estimating the length of downed trees, a count of the trees intercepting the 
line is sufficient, since the length is then reduced from (8.4). If the interest lies in the 
volume, is will suffice to measure the diameters of the trees. If other characteristics 
such as the number of downed trees per hectare are desired, the lengths of the trees 
need to be measured as well.  
 The diameter of an intercepting tree can be measured either in the middle of 
the log, at both ends (using Smalian’s volume formula) or at the point where the tree 
intersects with the line. The main issue is to obtain an unbiased estimate of the mean 
diameter of the trees. The sampling line chooses one diameter from each tree, and 
the mean of these gives an unbiased estimate for the mean in the population (Van 

’

’
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Wagner and Wilson 1976). Therefore all these methods given fairly similar results, 
at least in large samples. 
 The variance of the LIS estimator can be calculated from the variation 
between the lines (De Vries 1974 p. 133): 
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where n is the number of lines, jT̂ is the total volume per hectare estimated from line 
j, T̂ is the total volume per hectare in the area and Lj = length of line j .  
 The formulae presented above assume that the lines are measured in 
random directions, or that the trees have fallen in random directions. If these 
assumptions are not correct, the formulae may give inefficient estimates. In many 
cases, however, the downed trees may tend to fall in a certain direction, with exactly 
the same orientation in the extreme case. Bell et al. (1996) noted in a simulation 
study that one single sampling line gave large errors for certain mean angles. This 
probably holds true for several parallel lines, but lines in the shape of a square or L 
gave practically as good estimates with all mean angles.  
 There is no need as such to make any assumptions concerning the 
orientation of fallen trees in random sampling, however, as the inference is based on 
the design and the population of fallen trees is assumed to be fixed. If the sampling 
lines are located systematically, the situation is similar to ordinary systematic 
sampling: the inferences are based on the assumption of random orientation of the 
trees if formulae for random sampling are to be used.  

 
Example 8.1  
 
Antti Mäkinen 
 
The inventory was carried out over an area of about 150 hectares at Tytinmäki, 
employing 6 east-west lines located at 100 metre intervals. The lines were directed 
from. The diameters of all downed trees intersecting the lines were measured at the 
intersection point (Table 8.1) and the volume per hectare for each line was 

calculated with ∑
=

=
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j
j

i
i d
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8
ˆ π . The results for each line i are presented in the  
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Table 8.2.  



 

Table 8.1 Measured data. 

Tree Line d Tree Line d Tree Line d Tree Line d 
1 1 4.6 53 2 28.7 115 3 5.8 167 5 9.1 
2 1 17.8 54 2 11.1 116 3 13.7 168 5 5.7 
3 1 5 55 2 8.9 117 3 14.8 169 5 11 
4 1 8 56 2 6.1 118 3 5.9 170 5 7.2 
5 1 5.5 57 2 8.8 119 4 26.9 171 5 9.6 
6 1 9 58 2 10.4 120 4 12.4 172 5 28.4 
7 1 19.3 59 2 5.5 121 4 9 173 5 7.7 
8 1 7.6 60 2 16.9 122 4 11.5 174 5 14.9 
9 1 10.8 61 2 15.8 123 4 5.7 175 5 7.4 
10 1 7.9 62 2 14.7 124 4 8 176 5 12.2 
11 1 21 63 2 6.1 125 4 9.3 177 5 8.1 
12 1 8.2 64 2 6.2 126 4 12.4 178 5 10.1 
13 1 13.5 65 2 13.6 127 4 7.5 179 5 13.8 
14 1 16.5 66 2 5.8 128 4 8.9 180 5 7.7 
15 1 10 67 2 7.8 129 4 10.3 181 5 11.5 
16 1 7 68 2 5.7 130 4 7 182 5 15.9 
17 1 5.5 69 3 7.4 131 4 9.5 183 5 5.2 
18 1 31 70 3 5.8 132 4 16.1 184 5 7 
19 1 24.7 74 3 5.8 133 4 6.2 185 5 25.1 
20 1 7.5 75 3 5.5 134 4 8.7 186 5 12.5 
21 1 8.4 77 3 6.1 135 4 16 187 5 24.6 
22 1 13.5 80 3 7.7 136 4 11.8 188 5 13.2 
23 1 16.5 81 3 5.4 137 4 31.5 189 5 8.1 
24 1 9 83 3 7.4 138 4 9.2 190 5 15.8 
25 1 12 84 3 5.2 139 4 6.9 191 5 5.3 
26 1 8.5 87 3 7.3 140 4 22.6 192 5 5.9 
27 1 5.4 89 3 11.3 141 4 12.2 193 6 6.4 
28 1 5.6 90 3 6.8 142 4 8.2 194 6 10.7 
29 1 5.8 91 3 10.4 143 4 17.7 195 6 13.3 
30 1 18 92 3 29.3 144 4 5 196 6 5.2 
31 1 9 93 3 5.1 145 4 8.6 197 6 28.5 
32 2 9 94 3 9.9 146 4 13.8 198 6 12.5 
33 2 22.4 95 3 25.7 147 4 29.2 199 6 15.8 
34 2 11.8 96 3 17.9 148 4 7.5 200 6 14.8 
35 2 7.4 97 3 18.9 149 4 12.5 201 6 5.4 
36 2 7 98 3 9.7 150 4 16 202 6 9.9 
37 2 13.4 99 3 6.7 151 4 12 203 6 5 
38 2 12 100 3 7.5 152 4 10.9 204 6 14.6 
39 2 33.4 101 3 14.7 153 4 14.1 205 6 7 
40 2 14.5 102 3 13.6 154 4 11.2 206 6 19.8 
41 2 7.2 103 3 7.3 155 4 6 207 6 7.3 
42 2 6.5 104 3 5.9 156 4 5.8 208 6 12.4 
43 2 18.3 105 3 14 157 4 5.4 209 6 11.6 
44 2 26.2 106 3 11.3 158 4 6 210 6 23.2 
45 2 11.2 107 3 5.4 159 4 9.7 211 6 16.8 
46 2 7.8 108 3 11.2 160 4 6.3 212 6 6.7 
47 2 11.4 109 3 5.8 161 4 14.6 213 6 14.9 
48 2 27.7 110 3 7.7 162 5 6.9 214 6 8.5 
49 2 10.8 111 3 13.7 163 5 5.2    
50 2 6.2 112 3 9.8 164 5 11.5    
51 2 8.5 113 3 11.2 165 5 9    
52 2 24.3 114 3 28.6 166 5 8.2    
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Table 8.2 The line results. 
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3 5973.66 1800 4.094282 573.3578 
4 7420.71 1300 7.042257 7385.942 
5 4849.16 1400 4.273151 208.0733 
6 4104.17 1300 3.894859 758.4263 
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8.1.4 Adaptive cluster sampling 

Adaptive cluster designs have been discussed at least since the work of Wald in 
1947. In an adaptive design the probability of selecting a new unit depends on the 
value of the variable of interest y in the previous unit. This kind of design is 
necessarily sequential (Thompson 1990, Thompson and Seber 1996). Adaptive 
designs have been regarded as useful in cases where some rare characteristic is 
clustered in the population. For instance, it could be assumed that given one 
individual of a rare species, other individuals are also likely to exist nearby. Thus 
concentrating the sample in the neighbourhood of the one known individual is likely 
to produce others. The neighbourhood may be defined using spatial proximity, or 
other proximity measures. 
 The basic design for adaptive cluster sampling includes an initial sample of 
size n1, selected using simple random sampling. The selection could be made either 
with or without replacement (see Chapter 2), but a design without replacement is 
assumed in this chapter. The mean for this sample is an unbiased estimator of the 
population mean.  
 It is assumed that for each sampling unit i there is a neighbourhood Ai, 
which also includes the unit i itself. If the initial sample is based on a grid of square 
units, (Figure 8.2), the neighbourhood can be defined, for instance, in terms of 
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adjacent squares to the left, right, top and bottom of unit i. The neighbourhood does 
not depend on the values of y in the units. The neighbourhood is also symmetric, i.e. 
if i is a neighbour to j, then j is also a neighbour to i.   
 The selection of additional units from the neighbourhood depends on the 
condition C, which can, for example, be defined so that it is satisfied by every value 
of y larger than or equal to a predefined value c. If a sample unit i satisfies the 
condition C, all the units in its neighbourhood will be included in the sample. If any 
of those units satisfies the condition, then its will also be included, and so on.  
 All the units selected as a result of first selecting unit i for the initial sample 
belong to the same cluster, and all the units in one cluster that satisfy condition C 
belong to a same network. Consequently, selecting any of the units in the network 
results in selecting all the other units as well. The units in the cluster that do not 
satisfy the condition, i.e., do not belong to the network, are called edge units. 
Selection of an edge unit does not result in the selection of any other units. These 
edge units are regarded as networks of size one. 

 

Figure 8.2 Adjusted cluster sampling based on squares. The first-order sample squares are 
delimited with thick black lines and the additional units with thinner lines. The additional 

units satisfying condition C are delimited with black lines and those not satisfying the 
condition with white lines.  
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  Thus each unit will be included in the sample if a) any unit of the network it 
belongs to is selected, or b) any unit of the network of which unit i is an edge unit is 
selected (Thompson 1990).  Assume mi to be the number of units in the network to 
which unit i belongs and ai to be the number of units in networks of which unit i is 
an edge unit. Then ai will be zero if unit i belongs to a network and mi will be one if 
unit i is an edge unit. The probability pi of selecting unit i in any one of n1 draws will 
then be 
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and the probability of unit i being included in all the draws will be (Thompson 1990) 
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 In this kind of sample, the classical sample mean is a biased estimator. In 
principle, a Horwitz-Thompson estimator (see Chapter 2.1) could be used with the 
inclusion probabilities, but some of the ai:s, i.e., sizes of networks for which ai is an 
edge unit, may be unknown. Therefore the estimator is modified so that only the 
initial sample of n1 units and the units belonging to the networks (and satisfying the 
condition) are used. The modified Horwitz-Thompson estimator is then calculated 
using the inclusion probabilities for those units, to yield 
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 If an indicator variable Ji is defined as having the value 0 if the unit i does 
not satisfy the condition or does not belong to the initial sample and the value 1 
otherwise, an unbiased estimator for the mean is obtained using (Thompson 1990) 
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where v is the number of distinct units in the sample.  
 To obtain a variance estimator for this, the notation is changed to include 
distinct networks k instead of units i. The sum of the values of y in network k is 
denoted as yk.. The inclusion probability αi

* is the same for all units in network k and 
is denoted with πk. The probability of one unit belonging to networks j and k is 
defined as 
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and an unbiased estimator for the variance of *
ˆ

HTy would be 
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where κ is the number of distinct networks. Estimates for the mean and its variance 
can also be calculated with a modified Hansen-Hurwitz type estimator (Thompson 
1990).  
 Adaptive schemes have been used in forestry by Roech (1993, 1994) and 
Acharya et al. (2000), for instance.  Roech (1993) used a probability proportional to 
size (i.e. point sampling-type estimator) instead of simple random sampling in the 
initial sample. This type of sampling is potentially very efficient, but may be 
inconvenient in the field as the final sample size cannot be determined beforehand.  

8.1.5 Transect and point relascope sampling 

In transect relascope sampling (TRS), logs on the forest floor are viewed using a 
wide-angle relascope. All trees of a length great enough to fill the angle-gauge at 
any point on the survey line are included in the sample (Ståhl 1998). In point 
relascope sampling (PRS), on the other hand, trees are included in the sample only if 
they fill the angle-gauge when viewed from certain sampling points (Gove et al. 
1999). 
 Estimation in transect relascope sampling (Fig 8.2) is based on the Horvitz-
Thompson estimator. The estimator for the total value T of any variable of interest is 
obtained as (Ståhl 1998) 
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where D is the distance between the lines (= A/L , i.e. the total area divided by the 
length of the line), v is the angle of the relascope , li = the length of tree i  and wi the 
angle between tree i and the line. 
 The probability of a log being included in the sample is calculated as the 
width h of its inclusion area perpendicular to the survey line divided by the distance 
D between the lines (Figure 8.3).  
 However, if it can be assumed that the direction of the transects is random, 
or that the logs have fallen in random directions, the angle w does not have to be 
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measured. Then the formula can be simplified (as in the LIS case) to  

 ∑ +
=

)cot/2sin/1(
ˆ

vvl
yDT

i

i

π
. (8.15) 

If the variable of interest is the total length of the fallen trees, the formula can be 
further simplified, as yi and li cancel each other out. Assuming that the true area A is 
known, that n transects of fixed length L are laid out in random directions, and that 
yki is the volume of log i on transect k and l is its length,  the estimator for the total 
volume can be presented as (Ringvall et al. 2001) 
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Figure 8.3 The scheme for transect relascope sampling. The tree is represented by the thick 
arrow. It can be seen with the angle v from any point in the two circles. The measurer cruises 
the transect line and measures the tree if the transect goes through either of these circles (i.e. 
the transect goes between the thin lines which define the width of the inclusion area h). The 
tree in the figure is not included in the sample, since the transect line does not intercept h.  

As in angle-count sampling, the first term (excluding area A) can be interpreted here 
as a relascope factor λ, while lki/ λ is the inclusion probability of the trees. This 
differs from normal angle-count sampling, however, in that the angles ν are much 
larger. The estimator is comparable to LIS, but it is possible to draw more sample 
trees with the same sampling line length L. The estimator of variance can be 
calculated as for LIS, namely by calculating the variation between the transects. 
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 In the case of point relascope sampling, an estimate for a variable y interest 
for the entire tract, based on a single sampling point k, is estimated as follows (Gove 
et al. 1999, 2002): 
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where A is the tract area, λ is the relascope factor, which is dependent on the 
relascope angle ν, mk is the number of observations made from point k and lki is the 
length of log i as observed at point k.  
 As the sampling probability in point relascope sampling is proportional to 
the squared length of downed trees (length in transect relascope sampling), an 
estimate for the squared length of downed trees can be obtained simply by counting 
the trees filling the angle-gauge. 
 If the points are selected at random, the estimate for the tract total will be 
the average of the point estimates, and the variance can be obtained from the 
variation between the points, as in SRS (Gove et al. 2002): 
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The transect and point relascope sampling methods require slope corrections (section 
4.4) as well as normal plot-based methods (Ståhl et al. 2002).  

8.1.6 Guided transect sampling 

Variables such as downed tree volume might be very difficult to see from remote 
sensing material, but it is often possible to observe other variables that are correlated 
with them and in this way to distinguish those parts of the area that are of greatest 
interest. In guided transect sampling, remote sensing material is used as auxiliary 
information in order to increase the probability of a transect passing through an area 
of interest. 
 Guided transect sampling is a two-stage sampling method. In the first stage, 
strips of large width are systematically located in the area to be sampled and divided 
into a grid of cells (Figure 8.4). The objects to be sampled are then selected from 
among the grid cells in the strips to form a route or strip within them (Figure 8.5). 
The idea is to select the grid cells forming the route with probabilities proportional 
to covariate values. The selected route is measured on strip survey principles, for 
example. 

KANGAS 130



Figure 8.4 Two transects selected from an area. 

Figuer 8.5 A route within one transect. . 

The route, i.e. the grid cells to be measured, can be selected in several ways, e.g. by 
allowing only transitions from one cell to a neighbouring cell in an onward grid cell 
column (Figure 8.4), or else transitions to any cell in an onward column (within the 
first-phase strip). Furthermore, a probability can be calculated for each transition, so 
that the route is formed step by step. Another possibility is to calculate the 
probability for the whole route at one time. In this case, a large number of possible 
routes are first generated without considering the covariate data and the final route is 
selected from among these, based on PPS sampling using the sum of the covariate 
values of the grid cells through which the route passes (scaled to the sum of that for 
all routes) as the probability value (Ståhl et al. 2000); viz, 
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given that xki is the covariate value for route k at cell j, mk is the number of cells on 
route k, and the covariate value is the pixel value for a satellite channel or numerical 
aerial photo channel, for example. 
 Selection is based on arbitrary probabilities, and the results of the inventory 
are calculated using the Horwitz-Thompson estimator. The estimate for the total 
value is (Ståhl et al. 2000) 
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where yij is the variable of interest in strip i and grid cell j and πij is the inclusion 
probability of grid cell j in strip i  
 In the case presented here, the inclusion probability can be calculated as the 
sum of the covariate values for all the routes including cell j divided by the sum of 
all covariate values:  
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The variance of this estimator could in principle be calculated using the Horwitz-
Thompson variance estimator (2.2), but unfortunately not all the joint inclusion 
probabilities πij are larger than zero, as is required (i.e. only one cell is selected from 
each column). The variance could nevertheless be estimated from the variation 
between the first-stage strips. 
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Figure 8.6  The scheme for line transect sampling. 

Line transect sampling (LTS), which has been used for estimating the density of 
wildlife populations (see Buckland et al. 1993), is based on (randomly located) lines 
on which the objects of interest (e.g. game animals) are observed. The objects 
themselves are assumed to be randomly distributed in the area (Burnham et al. 1980 
p. 14). It is assumed that the probability of observing object i depends on the 
distance from the line, i.e., the longer the distance the smaller the probability of 
observation. There are four assumptions on the reliability of the estimates depends 
(Burnham et al. 1980 p. 14): 

1. The probability directly on the line is one, i.e. objects on the line are never 
missed. 

2. The objects do not move before or after being sighted, i.e. each animal is 
counted, and is counted only once.  

3. Distances and angles are measured exactly, and 
4. Sightings do not depend on each other but are independent events. 

The distance is measured as a perpendicular (or right-angle) distance from the line 
(Figure 8.6). If it cannot be measured directly, it can be calculated from the sighting 
distance and the sighting angle (the angle between the transect and the line of sight) .  
 Given the function g(x) describing the probability of observation as a 
function of distance x, an unbiased estimate of the density D is obtained as (e.g. 
Burnham et al. 1980) 
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8.2 WILDLIFE POPULATIONS  

8.2.1 Line transect sampling 
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w is the maximum distance at which observations are made, and â  can be 
interpreted as half of the effective strip width.  
 This formula can be rewritten in the form (Schreuder et al. 1993, p. 329) 
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where n is the number of observations along the line, f(0) is the detectability curve, 
i.e. the probability of detection evaluated at distance 0, assuming f(x) = g(x)/a , i.e. 
f(x) is similar to g(x) except that it is scaled to integrate to one, and L is the length of 
the line. 
 The function g can be estimated using the exponential probability 
distribution, for example, as 

 xexg λ−=)( . (8.25) 

Although estimating the detectability curve is not easy, once achieved, it can be used 
to determine the density, as (Gates et al. 1968 p. 138) 
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In this and all other formulae based on (8.22), â can be interpreted in the manner of 
a mean sighting distance. The variance of this estimator can be calculated from the 
variability between the independent lines. The overall density is (Schreuder  
et al. 1993 p. 329) 
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where li is the length of transect i, R is the number of transects and L is the total 
length of the transects. The variance is then 
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8.2.2 Capture-recapture methods 

There are many variations on capture-recapture methods for estimating the sizes of 
animal populations (Krebs 1998). The simplest one was developed for closed 
populations (i.e. it is assumed that no immigration or emigration takes place). In this 
approach a sample of n1 individuals is first captured, marked and released. Then, at a 
later time (after the animals have been re-distributed over the area), a new sample of 
n2 animals is captured and the number m of marked animals among them is 
calculated.  
 The traditional estimator for the capture-recapture scheme is the Petersen 
estimate, or Lincoln index (Seber 1982, 1986, Shiver and Borders 1996, p. 329) 

 
m
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where n1 and n2 are the animals sampled on the first and second occasions, 
respectively, and m is the number of marked animals among those captured on the 
second occasion. This estimate is biased, however, and another, less biased, 
formulation has been proposed (Pollock et al. 1990, p. 10): 
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This modified version was originally given by Chapman (1951). The first model is 
based on the assumption of a binomial distribution, or sampling with replacement, 
and the latter on a hypergeometric distribution, or sampling without replacement 
(Seber 1986, p. 274). Even this estimate may be highly erroneous with values of m 
under 10, however. The variance of this estimator can be approximated as (Seber 
1982) 
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Many other, more complex capture-recapture methods for open populations and 
multiple captures have been based on this same idea (e.g. Seber 1982, 1986, Otis  
et al. 1978, Pollock et al. 1990). 
 One can also decide before the second occasion to continue until a fixed 
number m of marked animals are captured. In such a case the estimation is indirect, 
and the estimator (without replacement) is (Shiver and Borders 1996, p. 333) 
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with the (approximate) variance estimator  
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Besides the requirement for a closed population,  the basic assumptions behind the 
capture-recapture model are (Otis et al. 1978, Pollock et al. 1990, Schreuder et al. 
1993) 

1. All animals have a similar probability of capture. 
2. The marked individuals are randomly distributed among the population 

after the initial capture. 
3. The marks do not get lost or overlooked. 
4. Marking does not affect the probability of recapture. 

The first of these assumptions is likely to be violated, as the probability of capturing 
males, for instance, may be greater than that of capturing females. Likewise the 
fourth one may be violated, as the animals captured on the first occasion may be 
more wary the next time, so that the probability decreases, or in some cases they 
may become “trap happy”, i.e. the probability of capture may increase.  

8.2.3 The wildlife triangle scheme 

Wildlife populations in Finland are monitored using a triangle census programme 
that began in the late 1980’s (Lindén et al. 1996). The base unit is a permanent route 
of length 12 km that forms an equilateral triangle (each side is 4 km). These wildlife 
triangles are traced out by local hunteing clubs and censused twice a year by 
volunteers. Tetraonids (capercaillie Tetrao urogallus, black grouse Tetrao tetrix L, 
hazel grouse Bonasia bonasia L. and willow grouse Lagopus lagopus L.) are 
censused in a belt of width 60 m by a chain of three people in mid-August, the total 
census area covered by one triangle thus being 0.72 km2. The whole monitoring 
programme, comprising some 1500 triangles at present, is coordinated by the 
Finnish Game and Fisheries Research Institute  (Lindén et al. 1996). The triangles 
are not randomly located, however.  
 
 

In the wildlife triangle scheme all birds are assumed to be detected in the 
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above-mentioned 60m belt. Thus the method is essentially a strip census, a special 
case of line transect sampling with a probability of 1 for detecting birds over the 
whole strip. The density can then be estimated simply by 

 
µl

n
A
nD

2
== , (8.34) 

where A is the area of the strip, l is its length and µ2 is its total width (Högmander 
1995).  
 In winter counts, when animal tracks in the snow are counted, the situation 
is more complicated. The counting is done either after a snowfall or by checking the 
triangle twice and either marking or covering the tracks on the first occasion, so that 
the counting proper is done the next morning (Lindén et al. 1996). All tracks 
intercepting the triangle are counted. Counts of this kind are used for calculating the 
relative densities of 34 mammal species, including mountain and brown hares, red 
and flying squirrels, red and arctic foxes, pine marten and so on. These relative 
densities could also be transformed to absolute densities, but such calculations are 
not usually made. 

REFERENCES 

Acharya, B., Bhattarai, G., de Gier, A. and Stein, A. 2000. Systematic adaptive cluster sampling for the 
assessment of rare tree species in Nepal. Forest Ecology and Management 137:65-73.  

 
Bebber, D.P. and Thomas, S.C. 2003. Prism sweeps for coarse woody debris. Canadian Journal of Forest 

Research 33:1737-1743. 
 
Bell, G., Kerr, A., McNickle, D. and Woollons, R. 1996. Accuracy of the line intersect method of post-

logging sampling under orientation bias. Forest Ecology and Management 84:23-28. 
 
Buckland, S.T., Anderson, D.R., Burnham, K.P. and Laake, J.L. 1993. Distance sampling. Chapman & 

Hall.  
 
Burnham, K.P., Anderson, D.K. and Lake, J.K. 1980. Estimating of density from line transect sampling of 

biological populations. Wildlife Monographs 72. The Wildlife Society. Washington DC. 202 p. 
 
Canfield, R.H. 1941. Application of the line interception method in sampling range vegetation. Journal of 

Forestry 39:388-394. 
 
Chapman, D.G. 1951. Some properties of the hypergeometric distribution with applications to zoological 

censuses. Univ. Calif. Publ. Stat. 1:131-160. 
 
Cochran, W.G. 1977. Sampling techniques. 3rd edition. Wiley, New York.  
 
Ducey, M.J., Jordan, G.J. and Valentine, H.T. 2002. A practical modification of horizontal line sampling 

for snag and cavity tree inventory. Canadian Journal of Forest Research 32:1217-1224. 
 
Gates, C.E., Marshall, W.H. and Olson, D.P. 1968. Line transect method of estimating grouse population 

densities. Biometrics 24:135-145. 

Gove, J.H., Ringvall, A., Ståhl, G. and Ducey, M.J. 1999. Point relascope sampling of downed coarse 
woody debris. Canadian Journal of Forest Research 29:1718-1726. 

 SAMPLING RARE POPULATIONS 137 



 

 
Gove, J.H., Ducey, M.J. and Valentine, H.T. 2002. Multistage point relascope and randomized branch 

sampling for downed coarse woody debris estimation. Forest Ecology and Management 155: 
153-162. 

 
de Vries, P-G. 1973. A general theory on line intersect sampling with application to logging residue 

inventory. Mededelingen Landbouwhogeschool Wageningen. Nederland. 73-11. 23 p. 
 
de Vries, P.G. 1974. Multi-stage line intersect sampling. Forest Science 20:129-133.  
 
Högmander, H. 1995. Methods of spatial statistics in monitoring of wildlife populations. Jyväskylä. 

Studies in computer science, economics and statistics 25. 98 p. 
 
Kaiser, L. 1983. Unbiased estimation in line-intercept sampling. Biometrics 39:965-976.  
 
Krebs, C.J. 1998. Ecological Methodology. 2nd edition. Addison-Wesley Educational Publishers, Inc. 
 
Lindén, H., Helle, E., Helle, P. and Wikman, M. 1996b. Wildlife triangle scheme in Finland: methods and 

aims for monitoring wildlife populations. Finnish Game Research 49:4-11.  
 
Otis, D.L., Burnham, K.P., White, C.G. and Anderson, D.R. 1978. Statistical inference from capture data 

on closed animal populations. Wildlife Monographs No. 62. 
 
Pollock, K.H., Nichols, J.D., Brownie, C. and Hines, J.E. 1990. Statistical inference for capture-recapture 

experiments. Wildlife Monographs. The Wildlife Society, Washington DC. 97 p. 
 
Ringvall, A. 2000 Assessment of sparse populations in forest Inventory. Development and evaluation of 

probability sampling methods. SLU Silvestria 151. 
 
Ringvall, A., Ståhl, G., Teichmann, V., Gove, J.H. and Ducey, M.J. 2002. Two-phase approaches to point 

and transect relascope sampling of downed logs. Canadian Journal of Forest Research 31:971-977. 
 
Roech, F.A. Jr. 1993. Adaptive cluster sampling for forest inventories. Forest Science 39:655-669. 
 
Roech, F.A. Jr. 1994. Incorporating estimates of rare clustered events into forest inventories. Journal of 

Forestry 92:31-34. 
 
Schreuder, H.T., Gregoire, T.G. and Wood, G.B. 1993. Sampling Methods for Multiresource Forest 

Inventory. John Wiley and Sons. New York. 446 p. 
 
Seber, G.A.F. 1982. The estimation of animal abundance and related parameters. New York, Macmillan. 
 
Seber, G.A.F. 1986. A review of estimating animal abundance. Biometrics 42:267-292. 
 
Shiver, B.D. and Borders, B.E. 1996. Sampling techniques for forest resources inventory. 356 s. 
 
Stehman, S.V. and Salzer, D.W. 2000. Estimating density from surveys employing unequal-area belt 

transects. Wetlands 20:512-519. 
 
Ståhl, G. 1998. Transect relascope sampling – a method for the quantification of coarse woody debris. 

Forest Science 44:58-63 
 
Ståhl, G., Ringvall, A. and Lämås T. 2000. Guided transect sampling for assessing sparse populations. 

Forest Science 46:108-115. 
 
Ståhl, G., Ringvall, A. and Fridman, J. 2001. Assessment of coarse woody debris – a methodological 

overview. Ecological Bulletins 49:57-70. 

KANGAS 138



 
Ståhl, G., Ringvall, A., Gove, J.H. and Ducey, M.J. 2002. Correction for slope in point and transect 

relascope sampling of downed coarse woody debris. Forest Science 48:85-92. 
 
Thompson, S. K. 1990. Adaptive cluster sampling. Journal of American Statistical Association 85: 

1050-1059. 
 
Thompson, S.K. 1992. Sampling. John Wiley, New York.  
 
Thompson, S.K. and Seber, G.A.F. 1996. Adaptive sampling. John Wiley & Sons. New York.  
 
van Wagner, C.E. 1968. The line intersect method in forest fuel sampling. Forest Science 14:20-26. 
 
van Wagner, C.E. and Wilson, A.L. 1976. Diameter measurement in the line intersect method. Forest 

Science 22:230-232. 
 
Warren, W.G. and Olsen, P.F. 1964. A line intersect technique for assessing logging waste. Forest 

Science 10:267-276. 
 
Williams, M.S. and Gove, J.H. 2003. Perpendicular distance sampling: an alternative method for 

sampling downed coarse woody debris. Canadian Journal of Forest Research 33:1564-1579. 
 

 SAMPLING RARE POPULATIONS 139 



 

© 2006 Springer. Printed in the Netherlands. 
 
 

CHAPTER 9 

INVENTORIES OF VEGETATION, WILD 
BERRIES AND MUSHROOMS 

MATTI MALTAMO 
University of Joensuu, Finland  

9.1 BASIC PRINCIPLES  

Analysis of the vegetation cover is an important part of plant ecology, and the 
monitoring of temporal changes in the abundance of different plant species is 
important in relation to the biodiversity aspects, for example. In addition, floristic 
mapping produces information on species ranges and the abundance of rare plant 
species.  The abundance and occurrence of understorey plant species has also been 
used as an indicator of site fertility. Assessment of the vegetation forms a part of 
some national forest inventories, as on the permanent sample plots of the National 
Forest Inventory (NFI) in Finland. 

The aims of specific inventories of wild berries and mushrooms differ from 
those of other vegetation inventories, however, as interest may be focused on only 
the part of the population, those berries that are important for picking. Important 
aspects are then the prediction of annual yields and the time of ripening and the 
analysis of regional variability in yields. 

9.2 VEGETATION INVENTORIES 

9.2.1 Approaches to the description of vegetation 

Vegetation science examines the relationship between the occurrence or abundance 
of plant species and environmental factors (Lawesson 2000). Different concepts can 
help us to understand variations and changes in vegetation patterns. The nature of 
vegetation stands can be seen as continuous or discontinuous, leading to two 
contrasting views (Whittaker 1962): 1) the continuum concept, in which variations 
in vegetation in response to environmental factors are continuous, and 2) the 
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community-unit theory, in which the occurrence of vegetation is expected to follow 
natural groups of species. There are more or less discontinuities between vegetation 
stands, and these form integrated plant communities (c.f. Austin and Smith 1989). 

Certain countries have long traditions in vegetation surveys, and there are 
many different approaches and theories for the description of vegetation. According 
to ∅kland (1990), vegetation classifications usually include three phases: 1) the 
analytic phase, in which homogenous stands are selected,  one or more sample plots 
are defined in each stand and the vegetation of these plots is analysed, 2) the 
synthetic phase, in which the results are tabulated according to the similarities and 
differences in species composition between the plots, and 3) the syntaxonomic 
phase, in which the plots are arranged into plant communities according to the 
tradition followed. 

The Central European tradition of classifying vegetation into plant 
communities follows the Braun-Blanquet system, whereas in the Nordic countries 
attention is paid most to the quantitative differences in species abundances. Other 
approaches include the Anglo-American school, which uses a classification of 
vegetation types according to the dominance by one or more species (Whittaker 
1978). In Russia, Sukachew (1928) recognised ecological series of plant units 
somewhat similar to those used in Finland (Whittaker 1978). 

The basic ideas of the Braun-Blanquet approach are the following (Braun-
Blanquet 1932, Kent and Coker 1992): 
 
1. The floristic composition of plant communities is used to classify types of 
vegetation. In the field, sample plots (relevés) are located subjectively in 
homogeneous vegetation stands, and a minimum area for each is determined by 
studying the number of plant species, first within a small area and then increasing 
the plot area until the number no longer increases. 
 
2. Species abundance is estimated using a simple class scale which links shoot 
frequency with coverage. The classes are the following: one or a few individuals, 
occasional and less than 5% of total plot area , abundant and with very low cover or 
less abundant but with higher cover (in any case less than 5%), very abundant and 
less than 5% cover,  5-12.5%, 12.5-25%, 25-50%, 50-75% and 75-100% of cover 
(∅kland 1990). 
 
3. Diagnostic species whose ecological properties are the most effective indicators of 
the vegetation stands are used to organize the data into a hierarchy of plant 
communities. The fundamental unit of this classification is the plant association, 
which has a characteristic species combination. 
 Statistical methods play only a minor role in the Braun-Blanquet approach. 
More information about this method can be found in the textbooks of Whittaker 
(1978), ∅kland (1990) and Kent and Coker (1992), for example. 

The Nordic approach also includes similar basic phases of classification to 
those of the Braun-Blanquet approach, but the main emphasis is on quantitative 
differences in species abundance (Salemaa et al. 1999). The abundance of a plant 
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species is usually estimated using coverage or frequencies. Coverage estimates are 
classified to form scales (see 9.2.2). Vegetation data are usually collected from a 
large number of small sample plots, and a fixed sampling design has been employed 
more recently. 

Gradient based approaches to vegetation monitoring are emphasised in the 
Nordic countries. The term ecological gradient can be defined as a gradual change in 
any ecological factor (∅kland 1990), i.e. it is assumed that biotic and abiotic 
conditions vary along continuous gradients to form a complex gradient. In such a 
case vegetation and site classifications can be made simultaneously and lead to a 
non-hierarchical, multidimensional classification of sample plots along gradient axes 
(∅kland 1990). 

The site-type approach has been used in Finland for the classification of 
forest site types. The Finnish botanist A.K. Cajander developed a system in which 
the species of the ground and field layers are used as indicators of site properties 
(Cajander 1909, 1913). Site types are characterized by dominant, constant, 
differential and characteristic species, and a range of these types including all 
successional stages and parallel types is used in each region. A corresponding 
approach has also been adopted to the characterization of Finnish mires (Ruuhijärvi 
1960). 

9.2.2 Recording of abundance 

The abundance of a species is recorded using either qualitative or quantitative 
characteristics (∅kland 1990). A typical qualitative measure is presence/absence 
(∅kland 1990, see also Ståhl 2002), while quantitative indicators include cover 
estimation, frequency in sub-plots and point frequency. Plant biomass has also been 
used as a measure of abundance, but since this requires harvesting of the plants, it 
cannot usually be employed on a large scale or on permanent plots (Salemaa et al. 
1999). 

In the case of cover estimation, the percentage plant cover or various cover 
and cover-abundance scales can be used. These values are usually assessed visually 
in the field. It is also possible to use automatic image analysis methods, e.g. 
digitized photographs, for vegetation analysis, but their usefulness is dependent on 
the vertical structure of the vegetation (Vanha-Majamaa et al. 2000). It is also worth 
noting that detection is related to the size of the plant(s) and the resolution of the 
images. 

Cover estimates are usually subjective, vary between observers and include 
considerable sampling error (Lawesson 2000). A historical example of a cover scale 
used in the Nordic countries is Norrlin’s abundance-density scale, which is based on 
shoot densities measured in 10 grades (Pakarinen 1984). The values 1-7 are related 
to the average distances between plant specimens, the whereas the highest values (8-
10) are defined by the mixture of other species (Pakarinen 1984). A corresponding 
classification is Hult’s five-grade scale and its later modifications. 

The first application of direct coverage estimation was the use of decimal 
cover classes 1-10 (0.1, 0.2, …, 1.0) by Kujala (1936). Nowadays, direct percentage 
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cover is the main method used to assess the abundance of plant species in Finland, 
although some rounding off of percentages higher than 5% may take place. A scale 
of 0.1, 0.2, 0.5, 0.7, 1, 2, 5, 7, 10, 15, 20, 25 , 30, 40, …, 90, 93, 95, 97, 98, 99 and 
100% is used in the NFI, for example (Tonteri 1990). Cover classes are also used to 
speed up fieldwork. 

The description of abundance in terms of frequency requires recording of 
the occurrence of the plant species in subplots. Correspondingly, in the case of point 
frequency a regular or random arrangement of pins is placed on a sample plot and 
the touch frequency of each species is calculated to provide a measure of abundance 
(∅kland 1990). Methods which include the measurement of frequencies are more 
time-consuming than ones based on cover estimation. 

9.2.3 Sampling methods for vegetation analysis 

Vegetation studies are usually carried out by means of sampling. According to 
∅kland (1990), there are three main steps in the sampling of vegetation: 
 
1. Placement of sample units 
2. Determination of plot size and shape 
3. Determination of the number of sample plots. 
 
 Selective (subjective) sampling is a widely used method in conjunction 
with the Braun-Blanquet approach. The statistical properties of this method are poor, 
however, and statistical tests of species abundance or areal estimates are not always 
valid (∅kland 1990). The representation of rare species and vegetation types can be 
guaranteed, however, since these aspects can be emphasized when selecting the 
plots. The time required for plot selection is also minimal. 
 Random sampling meets the statistical prerequisites and is therefore a good 
choice for the estimation of species abundance and the definition of site types. The 
extremes on the gradient, e.g. rare species and vegetation types, may not be found, 
however, and redundant information will be collected. The sample may also be 
statistically clustered and the designation of plots is time-consuming (∅kland 1990). 
Therefore modifications of basic random sampling are often recommended 
(Jongman et al. 1987). The use of different methods of stratified (restricted) random 
sampling at least means that the selection of plots in the field is more effective. 
 Systematic sampling is also widely used in vegetation studies (Jongman  
et al. 1987). Sampling can be done on two-dimensional or one-dimensional grids, 
the latter being called transects (∅kland 1990). These transects can be open or 
closed depending on whether all the plots defined are chosen for the sample or not. 
In an open transect some plots may be rejected, but in a closed transect all the plots 
are measured. Systematic sampling can produce accurate coverage of a given area. 
An example of systematic sample design including open transects and different 
levels of subplot is presented in Figure 9.1.(∅kland and Eilertsen 1993). 
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Figure 9.1 A sampling design for analysing  boreal forest vegetation, according to ∅kland 
and Eilertsen (1993). The location of open transects is given on the left. Putative macro-level 
sample plots are delimited every tenth metre along the transect and are accepted or rejected 
according to given criteria. These macro plots, each 16 m2, are then divided into 16 subplots 
of 1 m2 each and two are chosen at random as meso-level plots and further divided into 16 

subplots, each of size 0.0625 m2, two of which (in corresponding locations to the meso plots) 
are taken as micro plots and again divided into 16 subplots. Finally, the presence/absence of 

each species is recorded in each subplot at the meso and micro-levels. 

The sample units in vegetation surveys have traditionally been square in 
shape, although other alternatives such as circular or rectangular plots have been 
used. Measurement of a square plot is easy and it can also be easily divided into 
subplots. The benefit of a rectangular plot lies in the ability to describe 
homogeneous vegetation in a clustered plant distribution, whereas a circle has only a 
minor edge effect compared with other shapes (Lawesson 2000).  
 The optimal size of plot depends on the homogeneity of the plant 
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communities and the representativeness of the plots (∅kland 1990). The 
homogeneity of plant species can be defined as the existence of an equal number of 
individuals in all parts of the area. Correspondingly, the species in a plant 
community should be homogeneously distributed. Finally, ecological homogeneity 
can be defined by specifying a range of variation along each complex gradient that 
should not be exceeded within in an individual plot (for more details, see ∅kland 
1990). 
 The requirement of homogeneous sample plots inevitably leads to a small 
size, since variation on the most important gradients should be greater between plots 
than within them. Small-scale changes in the vegetation may not be detected on 
large plots, whereas these will more probably have a species composition which 
reliably reflects the environmental conditions. This is referred to as the 
representativeness of plots (∅kland 1990). 
 Since there is no exact way to determine the optimal plot size it has to be 
decided separately in each case (see Jalonen et al. 1998, Salemaa et al. 1999). Some 
Finnish examples of the sizes (and number) of plots in one forest stand include ten to 
forty plots of 0.25 m2 (Kujala 1936), 20 quadrats of 1 m2 in an area of 30 x 40 m 
(Jalas 1962), three quadrats of either 2 or 4 m2 Hinneri (1972) and 5-15 sample plots 
of size 0.25 m2 on mires (Heikurainen 1953). Considerably larger plots of size 100 
m2 have also been used for cover estimation, however (Kujala 1964), having 
originally been established by the NFI for tree measurement purposes. 
 The number of plots required is dependent on the following aspects 
(∅kland 1990): the expected variation in ecological conditions and vegetation in the 
area, the method used for defining the sample plots, plot size, the desired 
representation of gradients and vegetation types and the time available for the 
fieldwork. The sample should also ensure further data analysis and yield data that 
can lead to an understanding of the ecological demands of individual species. 
 Various aspects of sampling design in vegetation surveys have been 
emphasized, e.g. in the textbook of Lawesson (2000), where traditions and current 
aspects are considered separately for each of the Nordic country. Other reviews are 
those presented by Knapp (1984), Pakarinen (1984), Kenkel (1989), ∅kland (1990), 
Kent and Coker (1992) and Elzinga et al. (2001). 

9.3 EXAMPLES OF VEGETATION SURVEYS 

Floristic mapping has long traditions in Finland. The earliest flora was published in 
1673, by Til-Landz (see Lawesson 2000), and large-scale mapping of plant species 
has been undertaken by Hulten (1950), by Jalas and Suominen for the ‘Atlas Florae 
Europaea’ (1967) and by Lahti et al. (1995) for a series of digital maps depicting the 
distribution of 1604 vascular species in Finland. 

The project “Atlas of the Vascular Plants of Finland (Kurtto and Lahti 
1985) divided Finland into 10x10 km quadrats which each included 100 quadrats of 
1x1 km. The aim was to examine the distribution of vascular plants using as many of 
the smaller quadrats as possible. Nowadays 2 401 small quadrats located in 249 
larger quadrats are being investigated, which means that 6.5% of the country’s land 
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area is being examined intensively 
Information on forest site types has been collected as a part of the Finnish 

NFI since 1921, when the first inventory was started (Ilvessalo 1927), and the third 
inventory, in 1951-53, assessed the vegetation on 12 000 circular plots of size 100 
m2 situated on survey lines running from south-west to north-east. Kujala (1964) 
published frequency maps for 189 plants included in the floristic data for this 3rd 
National Forest Inventory. During the 8th inventory, in 1985-1986, 3 000 permanent 
plots were established (Reinikainen et al. 1998), located systematically within 
Finland, and these were re-examined in 1995. The radius of the original plot of trees 
was 10 m, and the vegetation was examined on four sub-plots of size size  
2 m2 located systematically along the diameter of the plot in a south-north direction. 
Percentage cover was used as a quantitative measure for vegetation assessment. 

Although special attention has been paid to the statistical representativeness 
of the NFI vegetation data (see Reinikainen et al. 1998), the sampling design has not 
been optimal for vegetation surveys, since it was a compromise between the 
inventories of the tree stock and the plants. The results of the national inventories 
concerning changes in the frequencies and abundances of forest and mire plants 
were published in the textbook by Reinikainen et al. (2001). Mäkipää and Heikkinen 
(2003) studied large-scale changes in the abundance of terricolous bryophytes and 
macrolichens in Finland, and Tonteri (1990) and Korpela (2005), for instance, have 
analysed the NFI vegetation data. 
 Pan-European monitoring of forest vegetation was launched in the EU/ICP 
Forest Level II Programme (Manual on methods… 1998). The Level II network in 
Finland consists of 31 sample areas: 27 on mineral soil sites and 4 on peatlands. As a 
pilot study, alternative methods for the long-term monitoring of forest vegetation 
were tested on 9 Finnish Level II plots in 1998 (Salemaa et al. 1999), comparing the 
Nordic percentage cover method and the Braun-Blanquet method. The sampling 
design is presented in Figure 9.2. Percentage cover was used on the small quadrats 
(0.25, 1 and 2 m2) and the Braun-Blanquet scale on the larger plots (25 and 900 m2). 
The results showed that there are considerable differences in the mean coverages 
obtained by these approaches. The average number of species increased with quadrat 
size (0.25 < 1 < 2 < 25 < 900 m2), although in most cases it did not increase 
essentially after 16 quadrats (size 1 m2 or 2 m2) (Salemaa et al. 1999). 
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Figure 9.2 The sampling design used in a pilot study for the Finnish Eu/ICP Level II 
programme (Salemaa et al. 1999). For quadrat sizes, see text. In the final design a total of 16 

quadrats sized 2 m2 were marked out systematically. The occurrence of a species is also 
recorded outside the quadrats for areas of 400 m2 (common sample area). 

9.4 INVENTORIES OF MUSHROOMS AND WILD BERRIES  

In general, berry species and macrofungi can be surveyed in the same way as 
vascular plants (see previous chapter). If the object of interest is non-wood forest 
products, however, i.e. edible wild berries and mushrooms picked for household use 
or trade, the methodology and aims may differ from those of a basic vegetation 
inventory. The regional economic importance of some species, e.g. the mushroom 
Boletus edulis in Northern Karelia, Finland, may be very high. Inventories of 
mushrooms and wild berries have been conducted in the Nordic countries, Russia 
and Poland, for instance (Eriksson et al. 1979, Kalinowski 1999, Kukuev 1999, Salo 
1999), most of the studies being concerned with one municipality (Jaakkola  
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1983, Raatikainen and Raatikainen 1983), although national surveys have also been 
carried out in Sweden and Finland (Eriksson et al. 1979, Salo 1999). 

The main aim of inventories of non-wood forest products is to study the 
yields of these and their ripening. Thus the abundance of berry plant species as such 
is not of great importance, as it is also for them to produce berries. In addition, there 
are very marked annual and regional variations in yields due to site conditions, pests 
and climate (Solantie 1983). It is also possible that unripe berries and very small 
mushrooms may be picked by people or eaten by animals before they are counted. 
Therefore, inventories and forecasting systems for these products must include 
permanent plots which are checked several times during the growing season. There 
also exist both empirical and expert models for the prediction of yields (Ihalainen et 
al. 2002, 2003). 

The date of flowering and the numbers of unripe and ripe berries are 
recorded during the growing season (Salo 1999), and in some cases the biomass is 
also estimated (Laakso et al. 1990). Correspondingly, the numbers of edible 
mushrooms, identified by species, are usually recorded. 

The sizes and numbers of sample plots have varied in different inventories 
of wild berries and mushrooms. In the case of cowberries (Vaccinium vitis-idaea), 
the size of the plot has been as small as 0.25 m2 (also 4 and 10 m2), whereas 
cloudberries (Rubus chamaemorus) have been examined on plots of size 1- 20 000 
m2 (Raatikainen and Pöntinen 1983). Saastamoinen (1982) proposed the use of 
circular 1 m2 sample plots which could be measured quickly using a rake, while 
according to Veijalainen (1982) plot size has varied between 8-1 500 m2 in the case 
of mushrooms, the optimum size being about 100 m2. 
 The sampling design used in inventories of wild berries and mushrooms has 
also varied. Jaakkola (1983) used a systematic line inventory in which the sample 
quadrats were located in clusters, while in Sweden the NFI sampling design was 
used to define circular plots arranged in clusters, inside which wild berries were 
assessed on circular sub-plots (Eriksson et al. 1979). Correspondingly, in the 
sampling design of the 7th NFI was used eastern Finland to establish permanent 
plots for the monitoring of wild berries and mushrooms (Salo 1993; Figure 9.3). 
Three plots were located in each original NFI cluster. The location of sample plots 
may also be random if the area to be examined is small, e.g. one stand. 

The current national system for forecasting wild berry and mushrooms 
yields in Finland is based on 2 200 permanent plots in 440 forest compartments 
(Salo 1999). Each stand possesses 5 experimental plots of 1 m2 located subjectively 
in the most productive part of the stand.  This network was established in 1997 and 
is monitored three times a year. The fieldwork is carried out by researchers at the 
Finnish Forest Research Institute, staff from schools of agriculture and forestry, 
qualified natural product advisers and members of the 4H organisation (Salo 1999). 
The drawback with the system is the subjective placement of plots, which means 
that the statistical properties of the results are questionable, and may also lead to 
excessively optimistic yield forecasts. 
 

149 



 
 
 
 
 

B1

B2

B3

B4 

V7 

V8 

V1

V2

V3

V4

V5

V6 

P

10 m 
V = Vegetation sample sub-plot (1 m2) 
B = Wild berry sub-plot (10 m2) 
P = Permanent mycoflora sample plot (100 m2) 

 

Figure 9.3 Layout of an NFI-based permanent plot (100 m2) and location of the wild berry 
sub-plots, which formed one berry sample plot (40 m2) (Salo 1993).  The permanent plot also 

included vegetation sampling sub-plots. 
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CHAPTER 10 

ASSESSMENT OF UNCERTAINTY IN 
SPATIALLY SYSTEMATIC SAMPLING 

JUHA HEIKKINEN 
Finnish Forest Research Institute, Finland  

10.1 INTRODUCTION 

What is the best way to distribute sample plots over an inventory area? In the 
absence of any specific prior knowledge about the area, simple random sampling 
(SRS, section 2.2) is often recommended because of its objectivity and readily 
available design-based assessment of uncertainty. SRS can easily locate some 
sample plots very close together, however, and leave large gaps elsewhere. 
Intuitively, a more representative sample would be obtained by spreading the plots 
evenly over the inventory area (Figure 10.1). 
 

 

Figure 10.1 101 locations selected by simple random sampling (left) and by spatially 
systematic sampling (right). 
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Spatially systematic sampling is indeed commonly used in forest 
inventories both because it has been considered more efficient than SRS and because 
the fieldwork is simpler to implement. It is usually superior in efficiency if the target 
population is spatially autocorrelated, that is, if nearby values for the forest 
variables inventoried tend to be more similar than distant ones (for a more detailed 
discussion, see, for example, sections 8.9 and 8.13 of Cochran 1977). Systematic 
sampling can also be dangerous if the target variable varies periodically and the 
wavelength coincides with the sampling interval, but this can be regarded as a rare 
and unfortunate coincidence (see Milne 1959, Matérn 1960, Dunn and Harrison 
1993). 

A major problem in systematic sampling is the difficulty of assessing the 
sampling error. As we read in section 2.4, design-unbiased variance estimation is 
impossible (see also section 8.11 of Cochran 1977). The first attempts to deal with 
this problem were apparently made in the context of Scandinavian forest inventories 
in the 1920’s and 1930’s, and more general interest in systematic sampling arose in 
the 1940’s (Osborne 1942, Cochran 1946, Matérn 1947, Yates 1948, Quenouille 
1949). Although activity in this field of research seems to be growing again (see 
Dunn and Harrison 1993, Sherman 1996, Aubry and Debouzie 2000, D’Orazio 
2003, Flores et al. 2003), it seems that the methods proposed by Matérn (1960) are 
still the most generally useful for forest inventory purposes. 

The main aim of this chapter is to describe Matérn’s variance estimators, 
which are based on local spatial differencing. The early development of such 
estimators is briefly described in section 10.3, and section 10.4 explains how 
Matérn’s estimators are applied to the national forest inventory in Finland. Note that 
sampling error is regarded here as a means of assessing the uncertainty in inventory 
results on the basis of observed data. When different sampling designs are compared 
in the planning stage of an inventory, the sampling error needs to be assessed on 
different grounds, e.g. on the basis of statistical models describing typical forests 
(see Cochran 1946, Matérn 1960). 

But a model-based approach is also needed for analysing the properties of 
variance estimators when systematic sampling is applied to autocorrelated 
populations. In particular, model-based analysis shows that Matérn’s estimators are 
safe in the sense that they generally overestimate the sampling error. This is 
discussed in section 10.5, which also describes a class of statistical models 
appropriate for spatially autocorrelated populations and tries to shed some new light 
on the issue of descriptive versus analytic inference (section 3.1). 

The model-based approach can be taken even further by deriving the 
inventory results and their variance estimators directly from the assumed statistical 
model. Kriging is a well-known technique for doing this with spatial models. 
Section 10.5 contains a brief discussion of its potential in an inventory context (see 
also sections 3.3 and 7.2). 

Although this chapter concentrates on sampling error, this is by no means 
the only source of uncertainty in the results of an inventory. The effects of other 
kinds of error are briefly discussed in section 10.6.  
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Computational details are generally omitted in the examples provided in 
this chapter, but the computer code for reproducing the examples  and the link to the 
freely available software applied in them (R Development Core Team 2004, Ribeiro 
and Diggle 2004) are given on the web page 

10.2 NOTATION, DEFINITIONS AND ASSUMPTIONS 

This chapter deals mainly with the problem of estimating the mean value of a forest 
variable y over an inventory region U, formally a bounded set in R2.  It is assumed 
that the true value y(u) of y can in principle be defined (although it is not actually 
observed) at each point .Uu ∈ The unknown mean value to be estimated is then 

 ( ) ( ) | | ,Y U y u du UU= ∫  

where |U| is the area of U. In other words, it is assumed that the target population is 
an infinite collection of point locations. 
 i
pointwise observations )( ii uyy =  located at the centre points ui of the plots. In 
reality the observations may be averages, such as estimates of the total volume of the 
trees on the plot divided by the plot area. But if the plots are small relative to the 
distance between them, they can be considered points for all practical purposes. This 
will avoid some unnecessary complications (see the end of section 2.1). 

For simplicity, equal probability sampling is assumed, that is, the 
probability density for inclusion in the sample is assumed to be the same for all 
points of U. This requirement is naturally satisfied by simple random sampling and 
by spatially systematic plot sampling, where a regular network of sample plot 
centres is randomly positioned over U. 

It is assumed throughout this chapter, except in sections 10.4 and 10.5.4, 
that )(UY  is estimated by the sample mean 

 .1
1
∑

=
=

n

i
iy

n
y  

Equal probability sampling guarantees that y  is a design-unbiased estimator of )(UY . 
Example 10.1 and most of section 10.3 deal with line surveys. In that case, 

yi is the observed mean value of y over the i’th survey line (or survey strip; see the 
discussion of points versus plots above). To keep the formulae as simple as possible, 
it is assumed that all lines are of equal length, although this is rarely the case in 
practice. In particular, the un-weighted mean y  is design-unbiased only under this 
assumption; in the general case, yi should be weighted by the length of line i. 

The observed values y  on n sample plots, i = 1,2,…,n, are considered to be 
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region .UW ⊂  Rather than estimating )(WY  using the sample mean over plots 
within W, it may be desirable to utilise information from sample plots outside W as 
well through synthetic estimators of some kind (see section 7.2 and Chapter 12). 
Methods discussed in section 10.5.4 might then be useful. 

10.3 VARIANCE ESTIMATORS BASED ON LOCAL DIFFERENCES 

10.3.1 Restrictions of SRS-estimator 

The design-based variance of systematic sampling (equation 2.5) measures the 
variability of y  in hypothetical replications of the inventory obtained with repeated 
random shifts of the whole network of sample plots. Such replications would lead to 
different estimates ,ky k = 1, 2,...,K, whose empirical variance 

 ∑
=

−=
K

k
kK KUYyyv

1

2 /))(()(  (10.1) 

measures the uncertainty in y due to sampling. The design-based 

variance, ,))(E()V( 2UYyy −=  can be regarded as the limit of )(yvK  when the 
number of replications, K, tends to infinity. 

The square root )V()S( yy =  is the design-based standard error of .y  
The numerical results of the examples are presented in terms of standard errors, as 
these are easier to interpret: the width of the 95% confidence interval for )(UY  is 
approximately )S(4 y  (section 2.2). Theoretical results and formulae, on the other 
hand, are simpler in terms of variances. For simple random sampling, 
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1)(  (10.2) 

is a design-unbiased estimator of )V(y  (section 2.2). If spatial autocorrelation in y 
can be ignored, that is, if model (3.1) is assumed, then model-based arguments lead 
to an essentially identical estimator (3.14) whatever the sampling design. The main 
object of interest in this chapter, however, are cases with substantial spatial 
autocorrelation, where spatially systematic sampling is usually more efficient than 
SRS, and, accordingly, )(2 ys  should overestimate ),V(y  because its value is 
typically larger for systematic samples than for random samples of the same size. 

Small-area estimation is one of the important inventory problems that are 
not treated in this chapter. The target could be )(WY , for example, for a sub-
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Sahalahti and Kuhmalahti, conducted in 1912 as a pilot study for the first national 
forest inventory in Finland (Ilvessalo 1927). Figure 10.2 (left) shows the observed 
proportions of forest land on the 16 survey lines of the Ilvesvuori sub-region (about 
3,000 hectares). The clear trend is due to the concentration of agricultural areas in 
the north-eastern part of the region; the lines run in an approximately E-W direction 
with their numbering starting from the south. 
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Figure 10.2 Left: Proportion of forest land on 16 survey lines in the Ilvesvuori region in the 
1912 inventory of forests in Sahalahti and Kuhmalahti (Ilvessalo 1923, table 1 and figure 23). 

Right: An imaginary inventory region in which the shaded part is forest and the unshaded 
part is non-forest. The proportions of forest in the ‘survey lines’ displayed are equal to those 

on the left. 

For the sake of an example, let us create an artificial rectangular study 
region from which the observed proportions could have been sampled (Figure 10.2, 
right). Computing (10.1) from K=100 repeated random shifts of the network of 16 
equidistant lines gives an approximation 017.0)()S( =≈ yvy K  to the true 
standard error. In contrast, the standard error estimated from the observed 

 
Real inventory regions are usually more fragmented than the one in 

Figure 10.2 (right), which reduces the overestimation of variance. Nevertheless, any 
degree of spatial continuity invalidates the assumptions behind (10.2). In order to 
quantify the gain in efficiency obtained by using systematic sampling instead of 
SRS, alternative variance estimators are required. 

 
Example 10.1 
 
Ilvessalo (1923) reports the results of a line survey in two Finnish municipalities, 
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proportions by (10.2) is s(y) = 0.071.  



 

samples can be substantial, and alternatives were actively studied in the early 20th 
century (see Ilvessalo 1923, Lindeberg 1924, Langsaeter 1926, Östling 1932, 
Lindeberg 1926, Langsaeter 1932). This led to remarkable pioneering work in the 
development of line survey methodology and systematic sampling. Forest inventory 
problems also served as a powerful motive for the development of the general 
methodology of spatial statistics (Matérn 1960). 

One way to reduce the overestimation is to model spatial trends explicitly 
by means of a deterministic function µ(u), .Uu ∈  The variance could then be 
estimated on the basis of the observed residuals )(ˆ ii uy µ−  (Figure 10.3, middle), 
which would replace the differences from the overall mean y  in (10.2) (Figure 10.3, 
left). 

Trend modelling is highly subjective, of course. The first four national 
inventories of Finland (see Ilvessalo 1927), which were conducted as line surveys, 
employed a more objective variance estimator suggested by Lindeberg (1924). 
Instead of differences from the overall mean or from the trend model, this was based 
on differences between observations from successive lines (Figure 10.3, right). If all 
the lines are of the same length, then Lindeberg’s formula is 

 ∑
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n

i

ii yy
nn

y
2

2
1

2
)(

)1(
1)(V̂ . (10.4) 

Under quite general assumptions, (10.4) still leads to overestimation, which 
can be reduced by using higher-order differences (Langsaeter 1926, Lindeberg 
1926). An interesting detail to note is that the use of differencing as a device for 
obtaining stationarity and thereby valid estimations by ergodicity arguments has 
later become a standard tool in time series analysis (Box and Jenkins 1976). 

 
Example 10.2 
 
Figure 23 of Ilvessalo (1923) shows a trend model fitted by eye to the data shown in 
Figure 10.2 (left). A rather accurate reproduction (Figure 10.3, middle) was obtained 
using the piecewise polynomial  

10.3.2 Development of estimators based on local differences 

It had already been realised in the first large-scale Scandinavian inventories that the 
overestimation of sampling error resulting from applying (10.2) to systematic 
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ˆ ii
much closer to the ‘truth’ than was the SRS-based estimate )(ys  (see 
Example 10.1). 
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Figure 10.3 Differences of the observations in Figure 10.2 (left) from their overall mean 
(left), from the trend model (10.3) (middle), and from the observation of the previous line 

(right). 

 
Example 10.3 
 
For the Ilvesvuori data set (Examples 10.1 and 10.2), the use of first differences 
already yields a substantial improvement over :)(ys  as (10.4) gives the standard 

error estimate 0.023.)(V̂ =y  

 
Simple differencing works in the context of line surveys because the lines 

form an ordered sequence. But when the sampling units are essentially points on a 
plane, as in plot surveys, there is no natural order as required by (10.4). One way of  
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where the integer values of u correspond to the line numbers in Figure 10.3 and 
parameters a, b, c, d and e were chosen so that )(ˆ uµ  is continuous and equal to the 
observed proportions for lines 10, 11 and 12 (X-XII). Use of the 
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− µ(u )  gives an estimate of 0.02 for the standard  error. This is differences y
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The form of gT can be motivated by regarding 2/)( 4,1, igig yy +  and 2/)( 3,2, igig yy +  
as two local linear predictors for the value of y at the centre of the group. gT  is then 
the squared difference of these two predictors, measuring the uncertainty about the 
unobserved values of y. 

Variance estimators based on local spatial differences, as in (10.5), were 
introduced into forest inventories by Matérn (1947), although he refers to an even 
earlier use in agricultural field trials (Kristensen 1933). The following section gives 
more details on their use in the context of ratio estimation. 

10.4 VARIANCE ESTIMATION IN THE NATIONAL FOREST INVENTORY IN 
FINLAND 

In the Finnish national forest inventory, described in more detail in Chapter 11, 
clusters i of sample plots form a systematic rectangular grid (like that in Figure 10.1, 
right, but denser) covering the inventory region. The targets of the inventory include 
proportional and absolute areas, mean values for forest variables in various strata 
and total values over the region. Ratio estimators (section 2.7) of the general form 

 
∑
∑=

i i

i i

x
y

M̂  (10.6) 

can be employed for all these tasks. When estimating the mean tree volume on forest 
land, for example, xi is the number of sample plots in cluster i that are located in 
forest land and yi is the sum of the mean volumes on those plots. 
 The general reason why ratio estimation is needed is that the number of 
sample plots representing the target population (e.g. forest land) varies between 
clusters. In other words, the effective sample size is random. Ratio estimation is also 
useful when the population mean is known for an auxiliary variable that is correlated 
with the target variable (see sections 2.7 and 11.3.1). 

generalising (10.4) to a rectangular grid of sampling units (Figure 10.1, right) is to 
replace the terms 2/)( 2

1−− ii yy  with 

 4/)( 2
4,3,2,1, igigigigg yyyyT +−−=  (10.5) 

computed from observations on rectangular groups g of four adjacent sampling 
locations 
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overestimating the design-based variance. In contrast, when plots in one cluster are 
forced to be near each other, the plot-level observations can be expected to vary less 
than in simple random samples. Therefore there is a severe risk of underestimating 
the sampling error if it is assessed on the basis of plot-level variability (see also 

On the other hand, as discussed in section 10.3.1, application of (10.2) to 
the cluster level would usually lead to overestimation, which can be reduced by 
employing (10.5). The design-based variance of the ratio estimator M̂  can be 
approximated by (Cochran 1977, section 6.3) 

 
∑
∑ −

≈
i i

i ii

x
Mxy

M 2)(
)V(

)ˆV( , 

and if each cluster i belongs to four groups g, then the variance on the right hand 
side can be estimated by ,∑g gT  where 4/)( 2

4,3,2,1, igigigigg zzzzT +−−=  as 
in (10.5). This leads to 

 .
)(

)ˆ(V̂
2∑

∑
=

i i

g g

x

T
M  (10.8) 

A great practical advantage of estimator (10.8) is that its computation is an 
entirely routine task; in particular, no statistical modelling is involved. One practical 
issue that needs to be handled concerns the region boundaries, but this is easily taken 
care of, as demonstrated by Matérn (1960, section 6.7): If cluster i in group g is 
outside the inventory region U, then the corresponding zi is taken to be 0. 

A rectangular grid of individual sample plots is of course a special case of 
the cluster design considered here, with cluster size 1. If the estimator is the sample 
mean of plot-level measurements yi (xi = 1 for all plots), yM =ˆ , then  an obvious 
idea would be to compute the Tg’s from yi’s rather than from the zi’s of (10.7). This 

The assessment of sampling error is based on the variability in cluster-level 
residuals 

 .ˆ
iii xMyz −=  (10.7) 

To see why plot-level variability would give a false picture of the true sampling 
error, let us compare cluster sampling with spatially systematic sampling, where 
individual plots are located as evenly as possible. Plot-level variability is expected to 
be larger in the latter case than in simple random sampling if positive spatial 
autocorrelation is present. As discussed previously, this leads to )(2 ys  
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section 2.6). 



 

reported in Examples 2.1 and 2.2. 
As for the other examples, the computational details can be found on the 

web page 
 

 
As indicated by Examples 10.1-10.4, local differencing can lead to much 

more accurate estimators of sampling errors than (10.2) if there is pronounced 
spatial autocorrelation. A model-based approach is required, however, in order to 
derive any general properties for estimators of this kind.  

10.5 MODEL-BASED APPROACHES 

The statistical analysis of uncertainty in inventory results is in general based on 
considering the estimate y  to be a realised outcome of a random variable. In the 
design-based approach described in Chapter 2 (see also section 10.3.1), the 
randomness in y  is considered to be solely due to random selection of the sampling 
locations ui, while the response surface y(u), ,Uu ∈  is treated as a fixed but 

leads to the same result as working with the residuals, provided that yi is set to y  for 
plots outside U. For example, if ug,i1, ug,i2 and ug,i3 are inside U and ug,i4 outside, then 

 
.4/)(
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yyyy
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Example 10.4 
 
For the data shown in Table 2.1 and Figure 2.1, (10.8) gave standard errors of 
8.8 m3/ha for stem volume (Example 2.1) and 0.032 for the proportion of mineral 
soils (Example 2.2). Both are substantially smaller than the SRS-based estimates 
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10.5.1 Modelling spatial variation 

 ),()()( uzuuy += µ  (10.9) 

where µ is a deterministic mean value surface and z is a zero-mean (usually 
Gaussian) spatial process of correlated residuals (Cressie 1993) with a common 
variance V(z(u)) = σ2, Uu ∈  and a stationary covariance function 

 ),()())(),(Cov( 2 uuuuCuzuz −=−= ρσ  

which implies that the correlation between z(u) and z(u’) depends on the relative 
location of u’ with respect to u. The general purpose of decomposition (10.9) is to 
capture the large-scale variation, or trends, in µ and the small-scale spatial 
correlation in z. The distinction between ‘large scale’ and ‘small scale’ is vague, of 
course, and therefore the decomposition is definitely non-unique and is usually 
highly dependent on the modeller’s judgement; “one man’s trend is another man’s 
correlation.” 

first formulating a statistical model (superpopulation; section 3.1) that attempts to 
capture the essential features of the response surface y(u), ,Uu ∈  and then 
estimating the unspecified parameters of this model from the inventory data. This 
model could be used to predict the surface over unobserved locations, leading to a 
predictive distribution of )(UY  (subsection 10.5.4). 

The main aim in this section, however, is to see what model-based analysis 
can reveal about the properties of variance estimators (subsection 10.5.2). These 
properties depend on the model adopted, of course. Subsection 10.5.1 describes a 
general class of models for spatially autocorrelated populations, where useful results 
can be derived from quite general assumptions. The issue of descriptive versus 
analytic inference (section 3.1) is revisited in subsection 10.5.3. 

unknown parameter to be estimated. In many cases, in particular when sampling 
locations are selected independently of each other, this approach leads to an easily 
applicable analysis of uncertainty without the need to make any assumptions about 
the target population (section 3.4). For systematic sampling, however, design-based 
assessment of uncertainty is impossible due to the lack of repeated random 
selections. Furthermore, the potentially greater efficiency of systematic sampling 
relative to simple random sampling relies on the assumption of spatial 
autocorrelation in y. 
 The effect of autocorrelation can only be incorporated into the analysis if 
the values y(u) are modelled as (realisations of) random variables rather than fixed 
parameters. Only then can one even talk properly about the correlation between y(u) 
and y(u’) for two locations .', Uuu ∈  Such model-based analysis could proceed by 

’’ ’
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A commonly applied spatial model, a generalisation of (3.1), is 
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Figure 10.4 Nine realisations of three stationary processes on [0,1] with a common mean 
µ0 = 100 and a common standard deviation σ = 25 but different correlation functions. Left 

and middle: Gaussian correlation function (10.10) with φ  = 0.3 (left) and φ  = 0.05 
(middle). Right: Exponential correlation function ( ; ) exp( | | / ),h hρ φ φ= −  φ  = 0.3. 

 
 There are other ways of modelling fluctuations of this kind, of course, such 
as splines, kernel functions or local polynomials (Cleveland et al. 1992, Green and 
Silverman 1994, Wand and Jones 1995, Fan and Gijbels 1996, Loader 1999, Wood 
2003), but the modelling of small-scale features as spatial correlations has become 
the standard in spatial statistics (Cressie 1993). One of its advantages is that great 
variations involving different kinds and scales of spatial features can be included in 
model families with only a few parameters and that these parameters can usually be 
quite easily estimated from the data at hand. Another advantage is the availability of 
useful theoretical results, like that of the next subsection. 

where |h| is the length of the vector h, i.e. the distance between the points of interest. 
In order to obtain a clearer view of the essential features, a one-dimensional 
region U = [0, 1] was used in the simulation. We may imagine, for example, that U 

 
Example 10.5  
To see why (10.9) might be a useful model, let us look at some ‘forests’ that can be 
simulated according to a rather simple special case of it, namely that with a constant 
mean value µ(u) = µ0, Uu ∈  and an isotropic Gaussian correlation function 

 ),)/|(|exp();( 2φφρ hh −=  (10.10) 
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represents one line transect across an inventory area and y(u) represents the mean 
volume around a point at distance u along the transect. 

Figure 10.4 (left) shows 9 ‘forests’ simulated with µ0 = 100, σ = 25 and 
φ  = 0.3. The variability in each realisation is similar, due to the same correlation 
function, but the mean volumes deviate greatly from 100, since the correlation is 
relatively strong. Reducing the value of φ  leads to more rapidly variable ‘forests’ 
(Figure 10.4, middle), while changing the type of correlation function leads to 
different local smoothness properties (Figure 10.4, right). 



10.5.2 Model-based variance and its estimation 

If  y(u) is considered a random variable, then the population mean )(UY  will be 
random, too, and so will the design-based variance ).V(y  An appropriate model-
based measure of uncertainty is then the expected value of ),V(y  

 ,))(E( 2UYy −  (10.11) 

where the expectation applies both over the distribution of random surfaces y and 
over any randomisation involved in sampling (Cochran 1946). 
 For simple random sampling, ),(2 ys  as defined by (10.2), is an 
approximately unbiased estimator of (10.11) whatever the correlation structure in the 
superpopulation. For systematic sampling, on the other hand, )(2 ys  overestimates 
(10.11) if y is positively autocorrelated, unless a strong periodicity occurs with a 
wavelength equal to the sampling interval (Ripley 1981, section 3.2). 
 A remarkable result provided by Matérn (1947, 1960) is that the average of 
any set of quadratic forms 

 2
1 , )(∑ == m

i igig yaT  (10.12) 

satisfying the restrictions 

 0
1
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=

m

i
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1

2 =∑
=

m

i
ia  (10.13) 

is a positively biased estimator of (model-based) variance per sample point (n times 
10.11) under very weak model assumptions. The essential requirement is that y is (a 
realisation of) a spatial process (like 10.9) in which the correlation function )(hρ  
decreases monotonically with increasing inter-point distance |h|. 

The terms in the sum of (10.4) and the Tg’s defined by (10.5) are examples 
of quadratic forms (10.12). Note that the division of the difference by 2 in (10.4) and 
by 4 in (10.5) is needed to meet the conditions (10.13). This ensures that an unbiased 
variance estimator is obtained when there is no spatial autocorrelation. 
 In summary, although the estimators of sections 10.3 and 10.4 generally 
give smaller values than (10.2), they can still be usually regarded as safe 
overestimates. 
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Example 10.6 
 
18 sets of ‘inventory data’ were simulated by selecting one simple random sample 
and one systematic sample, both of size 30, from each simulated ‘forest’ of 
Figure 10.4 (left). The resulting simple random samples are shown in Figure 10.5 
and the systematic samples in Figure 10.6. 
 

 

Figure 10.5 Simple random samples of size 30 from the nine simulated populations of 
Figure 10.4 (left). The superpopulation mean µ0 = 100 is shown as dotted horizontal lines, the 

population means as thick horizontal lines and the sample means as thin solid lines (often 
indistinguishable from the population means). 

 The differences )(UYy −  are seen more clearly in Figure 10.7, where it is 
evident that systematic sampling does a better job in estimating ).(UY  For example, 
the simple random sample taken from the fifth forest (the one in the centre of the 
layout) underestimates )(UY  badly (by comparison with the systematic sample from 
the same forest), mainly due to the cluster of locations we happened to sample at the 
left-hand end of the forest. 
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Figure 10.6 Systematic samples of size 30 from the nine simulated populations of Figure 10.4 
(left). The population means are shown as thick horizontal lines. The sample means cannot be 

distinguished from the population means on the scale used here. 

Since we have repeated samples in this example, the true sampling error 
variance (10.11) in the simulated model can be estimated consistently by 

 ,))((
9
1 2

9

1
∑

=
−

k
kk UYy  (10.14) 

where )(UYk  is the population mean for the k’th simulated forest, and ky  is the 
mean in the sample selected from that forest. The square roots of (10.14), 
approximating the true standard errors associated with the two sampling designs, are 
2.6 for the simple random samples and 1.0 for the systematic samples. 
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Figure 10.7 Differences between the sample means and the corresponding population means 
in the samples of Figures 10.5 (o’s; SRS) and 10.6 (+’s; systematic). 

The standard error estimates computed by (10.2), on the other hand, vary 
between 1.2 and 5.9 (but are quite similar in both kinds of sample, as indicated in 
Figure 10.8). Thus, again, )(ys clearly overestimates the sampling error associated 
with systematic sampling, but appears to be appropriate (as it should be) for simple 
random sampling. 

The standard error estimates obtained from the systematic samples 
by (10.4) vary between 0.5 and 1.4. That is, the differencing method indeed gives a 
much better assessment of the precision when estimating )(UY  from systematic 
samples. 

Yet another way to illustrate the performance of )(ys  is by means of 95% 
confidence intervals computed from the simulated samples using (10.2) (boxes in 
Figure 10.8). The true population means )(UY are always within the intervals, but in 
the systematic samples they tend to be quite close to the centre of the interval 
(sampling error overestimated), whereas in the random samples they seem to vary 
more randomly within the interval, as they should if the sampling error were 
correctly estimated. 
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Figure 10.8 Population means (circles) and 95% confidence intervals (boxes) around the 
sample means (horizontal lines within the box) computed using (10.2) for the samples of 

Figures 10.5 (left; SRS) and 10.6 (right; systematic). The ‘whiskers’ show confidence 
intervals for the superpopulation mean (Example 10.7) based on the maximum likelihood 

estimator of (10.15). The dotted horizontal line is at the true superpopulation mean of 100. 

 

10.5.3 Descriptive versus analytic inference 

 
Note that (10.11) is an appropriate measure of uncertainty when y  is considered an 
estimator of the population mean ).(UY  But y  could also be used to estimate the 
superpopulation mean µ0 for model (10.9), with µ(u) = µ0, .Uu ∈  In that case, 
(10.11) should be replaced by 

 2
0 )( µ−yE , (10.15) 

which may be substantially different if )(UY  is highly variable in the model 
adopted (Example 10.7). 

But how do we decide whether we are doing descriptive inference (on 
population values) or analytic inference (on superpopulation parameters)? One 
possible interpretation of a superpopulation is: “(an infinite set of) forests considered 
to be similar to our U”. Thus, if we wish to study the relationship between two forest 
variables, for example, and to generalise the results based on data from one specific 
region (our U) to all similar forests, then we are trying to estimate superpopulation 
parameters. If the variables of interest are spatially autocorrelated, then the 
observations from one region will be mutually positively correlated realisations from 
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the superpopulation whatever the sampling design. In that case, )(2 ys  would 
underestimate (10.15) for all sampling designs (see Cressie 1993, p. 14 and 
Example 10.7 below). In general, spatial autocorrelation should be taken into 
account in the case of analytic inference even with simple random sampling. This 
can be done through the generalised least squares approach, for example 
(section 3.2), or with models allowing for the autocorrelation where likelihood-
based inference is concerned. 

In an inventory, however, we are usually interested in the particular 
region U from which the data were collected, and hence in the particular population 
which was actually sampled. The superpopulation was only introduced in order to 
take spatial autocorrelation into account. An inventory is therefore by definition a 
case of descriptive inference. 

 
Example 10.7 
 
In Example 10.6 the population means )(UY  varied much more around the 
superpopulation mean µ0 than the sample means differed from the corresponding 
population means. As a result, the SRS confidence intervals (boxes) of Figure 10.8 
contained the true value 100 of µ0 only in 5 cases (2 random and 3 systematic). That 
is, )(ys  clearly underestimates the error of ,y  when y  is considered an estimator 
of µ0. This happens both for simple random and systematic samples. 

The ‘whiskers’ in Figure 10.8 show the ‘appropriate’ confidence intervals 
for µ0, obtained using maximum likelihood estimates of (10.15), based on the model 
that was actually used to simulate the data (see caption to Figure 10.4). Population 
number 1 is obviously quite an extreme realisation of the model, but the confidence 
intervals computed from samples of both kinds taken from all the other populations 
do contain the true value of µ0. 

 
10.5.4 Kriging in inventories 

When assessing the precision of inventory estimates on the basis of an already given 
data set (as opposed to designing its collection, for example), it could well be argued 
that the average (10.11) over all the samples we might have collected using the 
design in question is not the most appropriate measure (see end of section 3.4). A 
purely model-based measure of uncertainty is the conditional mean-squared 
prediction error 

 },|))({( 1
2

nyyUYyE …− , (10.16) 

conditioned by sample plot locations that were actually realised from the design and 
by the values observed at those locations. Note that, completely opposite to (10.1), 
the observed y  is treated as fixed in (10.16), the randomness being in the 
unobserved values y(u), }.,,{ 1 nuuu …∉  
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Kriging (see Chiles and Delfiner 1999, Webster and Oliver 2001, 
Wackernagel 2003; also section 7.2) is one approach for replacing y  with an 
optimal predictor (under an assumed and/or estimated superpopulation model), 
which minimises (10.16). An estimate of the minimised prediction error will be an 
automatic by-product. 

If the configuration of sample plot locations is not regular, then the un-
weighted mean y  may not be the most efficient predictor of ).(UY  In particular, 
isolated sample plots should usually receive more weight than those in clusters, as 
they contain more ‘new’ information. In kriging the correlation model estimated 
from the data is used to derive the optimal weighting (see end of section 3.3). 

The kriging variance (10.16) for Gaussian superpopulations following 
model (10.9) depends on the covariance function and on the number and locations of 
the sample plots, but not on the observed values yi. It will therefore be different for 
different realisations of a simple random sampling design, but almost equal in all 
realisations of a systematic sampling design. Furthermore, for a systematic sample, 
all plots except those near the boundaries of U will have a similar configuration of 
neighbouring plots and essentially equal ,))(),((∫U duuZuZCov  which means that 

they will receive similar weights and y  will be practically optimal. This may be one 
reason for Matérn (1960) not suggesting kriging-type estimators (Cressie 1990). If 
the proportion of plots near the boundary of U is high, however, kriging might be 
useful for deriving appropriate weightings for those plots. 

If systematic cluster sampling is applied and only a part of the sample plots 
lie within the target population, say in forest land, then there will be different 
numbers of relevant plots in different clusters (section 10.4). The above discussion 
may then suggest that plots in clusters where there are fewer forest land plots should 
receive more weight (Kangas 1993). On the other hand, the reason for the smaller 
number of relevant plots in a cluster is that there is less forest land there, so that in 
order to derive appropriate kriging weights a forest land map would be needed. 
 As discussed in section 7.2, kriging is a worthwhile alternative for small-
area estimation. References to some kriging applications in forestry can be found in 
Nieschulze (2003) and Wallerman (2003). The general tendency in the production of 
official statistics, including forest inventory results, is nevertheless to rely on design-
based assessments of uncertainty (see de Gruijter and ter Braak 1990). Although 
model-based estimators are often more efficient, design-based ones are usually more 
robust (section 3.4). For example, kriging variance is highly sensitive to model 
specification, in particular to the estimated short-range correlations, on which there 
may not be very much information in the data (Kangas 1993), so that the uncertainty 
may just as well be underestimated as overestimated. 

10.6 OTHER SOURCES OF UNCERTAINTY 

There are, of course, many other components of uncertainty in inventory results in 
addition to sampling error, although it should be noted that the variance estimators 
considered in this chapter automatically include the effect of random (symmetric) 

’ ’
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measurement errors, as such errors increase the variability in yi (see Cochran 1977, 
section 13.10). 
 The effect of systematic measurement errors is not included, however, and 
these should be assessed separately (Cochran 1977, sections 13.9-13.16), as should 
model errors. For example, if y is the tree volume, then yi will usually be predicted 
by a model using measurements of certain covariates (see section 11.3.2). Residual 
variation, which is not captured in the systematic part of the model, will be missing 
from the point predictions, and consequently the variation in the predicted yi’s will 
be smaller than it would be if they were measured directly. As a result, the variance 
estimators considered in this chapter underestimate the total error if the model errors 
are substantial. Cunia (1965, 1987) explains how to deal with this. Furthermore, 
even random measurement errors in the covariates can lead to biased predictions of y 
if a non-linear model is used (Kangas 1996). 
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CHAPTER 11 

THE FINNISH NATIONAL FOREST 
INVENTORY 

ERKKI TOMPPO 
Finnish Forest Research Institute, Finland 

11.1 INTRODUCTION 

The National Forest Inventory has been producing large-area forest resource 
information on Finland since the beginning of the 1920s. The ninth inventory 
rotation was conducted in 1996-2003 and the tenth began in 2004.  
 The information generated by the Finnish National Forest Inventories (NFI) 
has traditionally been made use of in large-area forest management planning, e.g. in 
the planning of cutting, silviculture and forest improvement regimes at the regional 
and national levels, in decisions concerning forest industry investments and as a 
basis for forest income taxation. It has also provided forest resource information for 
national and international statistics such as the United Nations/FAO Forest Resource 
Assessment procedure and the Ministerial Conference on the Protection of Forests in 
Europe (MCPFE). It currently also produces information on forest health status and 
damage, biodiversity and carbon pools and changes in these for the Land Use Land 
Use Change (LULUCF) reports of the United Nations Framework Convention on 
Climate Change (UNFCCC). The NFI covers all forests and the information has 
been used by all ownership groups for justifying and calibrating their own results. It 
serves as a central information source and tool for use in forestry, the forest industry 
and forest environment decisions and policy making. 
 The sampling design and plot and stand-level measurements have been 
changed in the course of time to respond to contemporary requirements and to 
optimize the use of the available resources. 
 The sampling system in the First National Inventory was line-wise survey 
sampling, introduced by Professor Yrjö Ilvessalo (Ilvessalo 1927). The line interval 
was 16 kilometres in most parts of the country, but for error estimation purposes, an 
interval of 13 kilometres was used in one province and 10 kilometres in the Åland  
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Islands. Plot measurements were carried out in line strips of width 10 metres. The 
plot length was 50 metres and the interval between plots 2 km. Similar sampling 
systems with different sampling intensities were employed in the following three 
inventories up to 1963. 
 Detached tracts have been employed instead of continuous lines since the 
fifth inventory (1964-1970) (Kuusela and Salminen 1969). This design is 
statistically more effective and was also favoured by social developments and the 
improved road network. At the same time, the inventory became a continuous 
operation and proceeded by regions from south to north. The fixed-sized sample 
plots were also changed to Bitterlich plots (angle gauge plots, or PPS sampling, the 
size being determined by the basal area of a tree at breast height). A new feature in 
the 5th, 6th and 7th inventories was the use of aerial photographs in Northern 
Finland (Poso 1972, Poso and Kujala 1971). Two-phase stratified sampling 
(stratification based on aerial photographs) was employed in the 5th and 6th 
inventories and photo interpretation plots in the 7th inventory (Mattila 1985).  
 The ground sampling intensity has been adapted to the variability in forests, 
taking into account the necessary budget constraints. The sampling intensity in 
Northern Finland has thus been lower than that in Southern Finland. 
 About one fifth of the sample plots have been made permanent since the 8th 

inventory in Northern Finland (1992-1994), and the establishment of such plots was 
completed for the entire country in the 9th inventory. The aim is to be able to obtain 
information of a kind that cannot be derived from temporary plots, e.g. the amount 
and structure of the drain, detailed changes in land use and other changes taking 
place, and also to reduce the standard error of some estimates. 
 The length of each cycle, comprising one complete inventory, has been 
dependent on the funds granted in the national budget, the smallest areal unit for 
which results are required and the statistical precision of the estimates that is 
considered desirable. The first four inventory rotations took about three years each, 
while the next five took 6 to 9 years each. The rotation will be shortened to 5 years 
from the 10th inventory, which started in 2004. 
 The main administrative unit for forestry in Finland is the Forestry Centre 
district, commonly comprising 0.8 - 5.0 million ha of forest land. The mainland is 
divided into 13 such districts, with the Åland Islands forming an additional one. The 
standard error in the estimated growing stock volume for these districts is between 
2.7 and 1.9 per cent, and that for the entire country 0.6 per cent (Tomppo et al. 1997, 
1998, 2001). 
 Forest statistics for small areas have been computed since 1990 using 
satellite images and digital map data, e.g. land use data, elevation data and soil data, 
in addition to field measurements. The role of this multi-source technique is to be 
able to produce geographically localized information for areas smaller than is 
possible using field data only, e.g. for individual municipalities, which in Southern 
Finland typically have an area of some 10 000 ha. The image analysis methods have 
been chosen in such a way that estimates for all the variables considered in the 
inventory can be computed for each pixel. The entire country has been processed 
two and a half times by the method (up to the end of 2004). 
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 The method is described in Chapter 12, and related methods for removing 
errors caused by errors in the digital input maps in Chapter 13. This chapter 
describes the field sampling system used in the 9th National Forest Inventory and 
the relevant calculation methods. 

11.2 FIELD SAMPLING SYSTEM USED IN NFI9 

The sampling unit used in the ninth inventory rotation, in the years 1996-2003, was 
a cluster, also referred to as a tract. The sampling design was adapted to the 
variability in the forests, the distances between two tracts varying from 6 km x 6 km 
in the southernmost part of the country to 10 km x 10 km in Lapland. The NFI9 
sampling designs in the southernmost part of the country, Central Finland and 
Northern Finland are shown in Figure 1 (Figure 1a, 1b and 1c). The distances 
between clusters were 10 km x 10 km in the municipality of Kuusamo and in the 
southern part of Lapland and 7 km x 7 km elsewhere in Northern Finland. 
 

Figure 1. Field sampling designs used for the ninth National Forest Inventory in the 
southernmost part of Finland (a), in Central Finland (b) and in Northern Finland (c), except 

for the three northernmost municipalities, where two-phase stratified sampling was employed. 
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 Satellite image-based digital volume maps and sampling simulations were 
employed to evaluate different sampling designs. For each design tested, 1000 
samples were chosen and standard deviations for the mean volume computed 
(Henttonen 1991) and assumed to represent the standard error in mean volume. 
Another quite important aspect was that a sampling unit (cluster) should represent 
one day’s work on average. It was found that the ‘optimum’ design depended on the 
distribution of forest land and the heterogeneity of the forests, for instance, and 
therefore varied from south to north and from east to west. The sampling intensity 
was fitted to the spatial variation in forests throughout the whole country, being 
lower in the north than in the south. 
 The two-phase stratified sampling applied to the area of the three 
northernmost municipalities was based on three variables: 1) the per cent of waste 
land (e.g. open bogs and very poor mineral sites like open rocks), 2) the volume of 
growing stock and 3) on predicted cumulative day-time temperature. The two first 
variables were predictions of multi-source forest inventory in a form of thematic 
maps. 

Figure 2. A sample plot as used in NFI9. The maximum radius for trees to be counted was 
12.52 m in Southern Finland (q=2) and 12.45 m in Northern Finland (q=1.5). Every 7th tree 
is measured as a sample tree. The trees are counted by crews, starting at the beginning of the 

field season.  
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 The sample plot was a Bitterlich plot (angle-gauge plot) and the tally trees 
were selected with a relascope, the basal area factor (BAF) being 2 in Southern 
Finland and 1.5 in Northern Finland. The maximum radius was 12.52 m and 12.45 
m, respectively (corresponding to breast height diameters of 34.5 cm and 30.5 cm, 
respectively). Where a relascope could not be used for judging inclusion reliably, 
this was checked by measuring the distance and diameter of the tree at a height of 
1.3 m. Reducing the radius of a sample plot detracted very little from the reliability 
of the estimates, but it did ease the amount of fieldwork noticeably in some cases, as 
the number of divided sample plots (i.e. sample plots belonging to two or more 
stands or strata) decreased. The use of maximum distance may also have reduced 
errors caused by possible unobserved trees, usually located a long distance from the 
plot centre and behind other trees. Every 7th tally tree was measured as a sample tree, 
see Figure 2. 
 In the Finnish NFI schema forestry land is divided into productive forest 
land, poorly productive forest land, unproductive forest land (also called waste land) 
and forestry roads (for definitions, see Kuusela and Salminen 1969). Note that the 
national definitions of both forest land and poorly productive forest land deviate 
from the definitions of forest land and other wooded land of the FAO (2001), 
although the FAO definitions are currently applied in parallel with the national 
definitions in the Finnish NFI. The main tree species in the Finnish forests are Scots 
pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), birch (Betula 
spp.), aspen (Populus tremula L.) and alder (Alnus spp.). Some hardwood species 
such as oak (Quercus robur) are common locally in the extreme south of the 
country.  
 The number of field plots on land in the 9th Finnish National Forest 
Inventory was 81 249 in the entire country, of which 67 264 were on forestry land, 
62 266 on forest land and poorly productive forest land, and 57 457 on forest land 
alone. Note that the land area and water area by municipalities are assumed to be 
known and the figures are based on the statistics of Land Survey Finland (Finlands 
... 2003). The field plots were geolocated with a GPS system, and trees were 
measured on those plots which contained forest land and/or poorly productive forest 
land. 

11.3 ESTIMATION BASED ON FIELD DATA 

The NFI results can be divided into area, volume and increment estimates. The NFI 
plots cover the entire land area of the country and its waterways, so that the 
inventory produces area estimates not only for forestry land strata but for all land use 
classes. Forest land and forestry land are divided into sub-categories on the basis of 
site, ownership, silviculture and cutting regimes, treatments needed and growing 
stock, e.g. tree species composition, age and mean diameter of trees.  
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11.3.1 Area estimation 

Area estimation is based on the total land area and inland water areas which are 
known or assumed to be error-free, and on the number of centre points of the plots. 
In brief, the area estimate of a land stratum is the number of plot centres in the 
stratum divided by the total number of plot centres and multiplied by the known land 
area. Due to the fact that the number of plot centres on land is a random variable 
(depending on the design), the area estimators are ratio estimators (Cochran 1977) 
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where sa is the area estimate of the stratum s, A  the land area on the basis of the 
official statistics of the Finnish Land Survey (Finlands ... 2003), yi is 1, when the 
centre point of the plot belongs to the stratum in question and 0 otherwise, xi is 1 
when the centre point is on land and 0 otherwise, and n is the number of centre 
points on land (see Tomppo et al. 1997, 1998, 2001). Examples of land strata are 
forest land, spruce-dominated forest land and forest land thinned during the last ten 
years. 

11.3.2 Volume estimation 

Volume in the Finnish NFI means tree stem volume over bark (that is with bark), 
from above the stump to the top of the tree, excluding branches. All trees of height 
at least 1.3 m (i.e., breast height diameter > 0 cm) are included in the volume 
estimate. The volume estimators are ratio estimators in a similar manner to the area 
estimators (Eq. 11.1). Briefly, to obtain the mean volume for a given stratum, the 
mean volumes of all trees belonging to that stratum are summed and divided by the 
number of field plot centre points in the stratum. The mean volume of a tree means 
here the volume per hectare represented by the tree (see formulas 11.3a and 11.3b). 
The indicator variable yi in the nominator of (11.1) is replaced with the mean volume 
represented by a tree, or the mean volume of timber assortment class of  interest 
represented by the tree, on field plot i when computing mean volume or total volume 
estimates. For total volumes, the mean volumes have to be multiplied by the area 
estimate for the stratum in question. 
 The mean volumes (m3/ha) and total volumes (m3) are estimated as follows: 
 
1. Volumes and volumes by timber assortment classes are predicted for sample 

trees (every 7th tally tree) using volume functions and taper curve models  
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(Laasasenaho 1982) and sample tree measurements (see Kuusela and Salminen 
1969, Tomppo et al. 1997, 1998). 

2. The volumes of tally trees are predicted by strata using the volume predictions 
for the sample trees and measured and observed tally tree, stand and site 
variables.  

3. Mean volumes are tabulated by computation strata.  
4. Area estimates are calculated for the volume strata.  
5. Total volumes are tabulated by computation strata.  

11.3.2.1 Predicting sample tree volumes and volumes by timber assortment classes 

The volumes of the sample trees are predicted using the volume functions of 
Laasasenaho (1976, 1982), the parameters of the functions having been estimated for 
the following tree species or tree speices: pine, spruce, birch, aspen, alder, and 
Siberian larch, (Larix siberica, Ledeb.). Models for pine or birch are used for other 
conifereous and broad-leaved tree species respectively. The explanatory variables of 
the models are (measured) diameter at breast height 3.1d , (measured) upper diameter 

6d  (for trees of height at least 81 dm) and (measured) height h. The model is thus of 
the form: 

 current volume over bark ),,  species, tree( 0.63.10, hddfvob = . 

 Separate unpublished models of small trees are employed for trees shorter 
than a certain tree species-specific threshold, i.e. pine 4.5 m, spruce 3.5 m, birch 
6.5 m, aspen 5.0 m and alder 4.0 m. 
 The volumes of timber assortment classes can also be predicted for sample 
trees using the taper curve models of Laasasenaho (1982). The explanatory variables 
are 3.1d , 6d  (for trees of height at least 81 dm), height h and lengths of the stem parts 
of different timber assortment classes.Account is also taken of the minimum length 
requirements, quality requirements and relative unit prices of the timber assortments. 
A tree stem is assumed to be cut into timber assortments in such a way as to 
maximize its value. The relative unit price classes are: saw timber (class I) 3, saw 
timber (class II) 2.5, saw timber (class III) 2 and pulp wood 1. 

11.3.2.2 Predicting volumes for tally trees 

When using Bitterlich sampling (angle-gauge plots), each tree represents the same 
basal area per hectare. It is thus convenient to work with quantities called form 
heights rather than single tree volumes when computing mean volumes or total 
volumes. Form height is defined as 

 
g
vfh = , (11.2) 
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where v  is the volume of a tree stem (or the volume of a timber assortment in a 
tree) and 4/2

3.1dg π=  is the intersectional area of the tree at breast height.  
 Form heights are predicted for tally trees by the non-parametric k nearest 
neighbour (k-NN) estimation method. For each tally tree whose volumes are to be 
predicted, the k nearest sample trees are sought, the distance metric applied being 
Euclidean distance in the Cartesian product space of tree-level variables, tree 
species, 3.1d , and tree quality class, and stand-level variables, region code, 
cumulative day time temperature, site fertility class and stand establishment type. 
The weighted average of form heights (11.2) for the k nearest sample trees is then 
used as a predictor for the form height of the tally tree. The weight is the squared 
diameter of the sample tree. A similar method is employed when predicting the form 
height of a timber assortment. Only the variables 3.1d  and tree species group 
(coniferous vs. non-coniferous) are employed for trees with 3.1d  < 2 cm, due to the 
small number of sample trees of a small diameter. 
 In the case of small strata, e.g. exceptionally thick trees on poor sites, the 
distances from the nearest neighbours may be high, that is, similar sample trees are 
rare or do not exist in the current inventory for the region. A priori form height 
prediction is used as additional information when predicting volumes for these trees, 
the a priori information being the predicted volume as a function of 3.1d  and tree 
species group. The prediction models employed have been estimated using sample 
trees from neighbouring regions and/or sample trees from the previous inventory.  
 In total, 18 prediction models are estimated for each region (6 tree species 
or species groups multiplied by three form height models, corresponding to total 
volume, saw timber volume and waste wood volume). Sample trees from the 
previous inventory are not used in estimating form height models for timber 
assortments, due to changes in the timber quality requirements between inventories. 
The final form height prediction is a weighted average of the k-NN prediction and a 
priori prediction (Tomppo et al. 1998). 

11.3.3.3 Computing volumes for computation units  

The mean volume (m3/ha) represented by a tree identified using angle-gauge 
sampling is  

 f hqu = .  (11.3a)  

The maximum distance from the plot centre assigned to tally trees is 12.52 m in 
Southern Finland, where q = 2, and 12.45 m in Northern Finland, where q = 1.5. 
Trees thicker than 34.5 or 30.5 cm, respectively, are counted in a fixed-radius plot of 
area 2Ra π= , where R is the maximum distance. The mean volume represented by 
this type of tree is 
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gu = , (11.3b) 

where g is the basal area of the tree, 4/2
3.1dg π= . 

 The mean volume (m3/ha) of a stratum is estimated using the formula 

 
∑

∑∑

=

=== n

i
i

n

k
ki

n

i
s

x

u
v

i

1

1
,

1 , (11.4) 

where Sv  is the estimate for the mean volume of a stratum S , n is the number of 
centre points of plots on land in the region, kiu ,  is the mean volume represented by 
tree k in stratum S  on plot i, in  is the number of trees in stratum S on plot i and xi 
is 1 if the centre of plot i belongs to stratum S and 0 otherwise. 
 The total volume estimate is 

 SSS avV =  (11.5) 

where Sa  is the estimate for the area of the stratum. 
 Note that the method takes into account plots shared between two or more 
calculation strata, so that trees belonging to the stratum in question in parts of a plot 
that do not include the centre are also included in the sum in formula (11.4). It is 
assumed in volume estimation that the plot parts are distributed purely randomly 
between any two arbitrary strata s1 and s2. That is, for plots whose centre points 
belong to s2 , the expected area of the plot parts belonging to s1  is the same as the 
area of the plot parts belonging to s2 whose centre points belong to s1. 

11.4 INCREMENT ESTIMATION 

Volume increment in the Finnish NFI means the increase in tree stem volume over 
bark, from above the stump to the top of the tree. The annual volume increment is 
calculated as an average over five years, based only on full growing seasons, 
assuming that tree growth has finished by August 1. Thus  the increments in the five 
years preceding the inventory year are used for trees measured before August 1, and 
those in the inventory year and the four preceding years for trees measured on or 
after August 1.  
 The phases in calculating the volume increment of a stratum are: 

1. prediction of the annual increments in sample trees 
2. calculation of the average increments for sample trees by diameter classes 

(at 1 cm intervals) and by strata, e.g. land use classes, site fertility classes 
and tree species groups  
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3. calculation of the total increment for survivor trees in each stratum by 
diameter classes, by multiplying the average increment for trees in each 
diameter class by the number of tally trees in that class and summing the 
increments over the diameter classes 

4. calculation of the final increment adding the drain increment to that for the 
survivor trees.  

The need for the last phase is explained below. The sample tree variables employed 
in the volume increment calculation, in addition to those required in the volume 
calculation, are: bark thickness, diameter increment in five (full growth) years at a 
height of 1.3 m (above ground) and height increment. The height increment is 
measured only for coniferous trees, while that for broad-leaved trees is predicted by 
means of models (Kujala 1980).  
 The change in bark thickness must be taken into account in volume 
calculations, and this is done by introducing the ratio ‘volume over bark divided by 
the basal area under bark (at a height of 1.3 m)’. It is assumed that the change in this 
ratio is parallel to the average change calculated from a large set of sample trees 
(Kujala 1980).  
 To present the calculation of volume increments more formally, the 
following variables and notations are introduced (cf. Kujala 1980). 

d = diameter of tree at height 1.3 m in the inventory year 
d6 = diameter of tree at height 6 m in the inventory year 
b = double bark thickness 
h = height of tree in the inventory year  
id = diameter increment  
ih = height increment  
h-5 = height of tree 5 years before the inventory year  
gub,0 = basal area of tree under bark in the inventory year (= π(d-b)2/4) 
gub,-5  = basal area of tree under bark 5 years before the inventory year 
(= π(d-id-b)2/4) 
vob,0 = volume of tree over bark in the inventory year 
vob,-5  = volume of tree over bark 5 years before the inventory year 
iv = annual volume increment 
r0 = vob,0 /gub,0, current volume over bark divided by current basal area 
under bark 
r-5 = vob,-5/gub,-5, volume over bark 5 years ago divided by basal area under 
bark 5 years ago 

0̂r  = predicted ratio of current volume over bark to current basal area under 
bark’ 

5−̂r  = predicted ratio of volume over bark 5 years ago to basal area under 
bark 5 years ago 

 
The predicted ratios r̂  are calculated using models for r based on NFI6 data for 
Southern Finland by tree species covering over 40 000 sample trees. The only 
explanatory variable is tree height, h. The ratio r may be regarded as a form height  
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when using the basal area under bark. For a discussion of the reliability of this 
approach, see Kujala (1980). 

1. Predicting the annual increment in a sample tree 
 
1a. For a sample tree, take the current volume over bark as presented in 11.3.2.1. i.e.  

 ) , ,  species, tree( 0.63.10, hddfvob =  . (11.6). 

1b. Calculate the ratio  

 r0  = vob,0 /gub,0. (11.7) 

1c. Calculate the predicted ratios 0̂r  and 5−̂r  using the estimated models. 
1d. Define  

 r-5 = r0 - ( 0̂r - 5−̂r ) . (11.8) 

1e. Define   

 vob,-5  = r-5 × gub,-5 . (11.9) 

1f. Define  

 5/)( 5,0, −−= obobv vvi  (11.10) 

It is assumed that for each individual tree, the derivative of the ratio r, dr/dh, is same 
as that for the ratio predicted by the model. The bark of trees growing on poor sites 
is usually thicker than that of trees growing on fertile sites, which will increase the 
value of r. On the other hand, the form height of trees on poor sites is usually lower 
than that of trees on fertile sites. These facts cancel each other out to some extent, 
making the change in r as a function of h almost a tree species-specific constant. 

 
Example 11.1 (Kujala 1980).  
For pine, 3.177.0)3.1/(239.0ˆ −+−+= hhhr  (omitting a constant 0.39).  

6 d
ih=1.9 m. Then gub,0 = 0.01651 m2,  gub,-5=0.01227 m2 and h-5=10.1 m. From the taper 
curve models, v = 0.1207 m3. Hence, r =7.309. From the pine model for r̂ , 

0̂r =7.386, and 5−̂r =6.450. By formula (11.8) r-5 = 6.373, and thus by formula (11.9) 
vob,-5 = 6.373×0.01227 m3 = 0.0782 m3. Thus iv = 0.0085 m3. 

 
 
 

Let us take a pine tree with d = 16 cm, d = 11 cm, h =12 m, b= 15 mm, i =20 mm and 
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2. Calculation of average increments in sample trees by diameter classes  
 
The increment strata are composed in such a way that it can be assumed that the 
expected volume increase by diameter class is the same for each tree in a stratum. 
Thus the land use class (forest land, poorly productive forest land), main site class 
(mineral soil, spruce mire, pine mire), site fertility class and cumulative daytime 
temperature are all stratification factors in addition to tree species. The increment in 
tally trees of a diameter class d is the average increment in the sample trees 
multiplied by the number of tally trees, i.e.  

 dsvdStdsv ini , ,,,, ,   ×= , (11.11) 

where   ,, dStn is the number of tally trees in stratum S and diameter class d and  

dsvi , ,  the average increment in sample trees in stratum S and diameter class d. 
 
3. Total increment in survivor trees 
 
The total increment is summed over the diameter classes and calculation strata: 

 ∑∑=
d

dsv
s

v ii , , . (11.12) 

4. Total increment and increment in the drain 
 
Only increments in trees that have survived until the inventory time can be 
measured. To calculate the total increment over the five-year calculation period, the 
increments in the trees that have either been cut or have died naturally during the 
calculation period have to be added to the increment for the survivor trees. If a tree 
was cut two years before the inventory time, for instance, the increment in the first 
three years of the period has to be taken into account. 
 
The total drain consists of the following components 

1) cutting removals reported by forest industry companies, 
2) non-commercial roundwood removals, e.g. contract sawing and fuel wood 

used in dwellings,  
3) estimates of harvesting losses, including those arising from silvicultural 

measures, based on a special study by the Finnish Forest Research Institute, 
4) volume of unrecovered natural losses (currently 2.5 mill. m3). 

It is assumed that the percentage increment in trees that have subsequently been cut 
or have died is on average 70% of that in survivor trees. The fact that drain  
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statistics are compiled by calendar years whereas inventory measurements in a 
region are carried out during the growing season, often partly before August 1 and 
partly on or after that date in the same region, has to be taken into account when 
calculating the increment represented by the drain, which is done by dividing the 
inventory region into two sub-regions on an area basis. The tree species strata for 
drain statistics are pine, spruce and broad-leaved trees. The increment for a tree 
species is  

 0.7
j j

v
y y

j

i p q
v ∑ , (11.13) 

where iv  is the increment in the survivor trees of that species (tree species group), v 
is the volume of the survivor trees of that species (tree species group), 

jyp , j=1,2 is 

jyq , j=1,2 is a function of the annual drain volumes 
vdr,t as follows: 

 1yq = (vdr,t-5 + 3 vdr,t-4  + 5 vdr,t-3  + 7 vdr,t-2  + 9 vdr,t-1  + 5 vdr,t)/2,  (11.14) 

 
2yq = (vdr,t-4 + 3 vdr,t-3 + 5 vdr,t-2 + 7 vdr,t-1 + 4 vdr,t)/2, 

5vdr,t-k
(Salminen 1993). 
 The total increment is the sum of the increment in survivor trees and the 
increment in the drain (Kuusela and Salminen 1969). 

11.5 CONCLUSIONS 

The methods employed for calculating the results of the Finnish 9th National Forest 
Inventory, together with the field measurements and a brief account of the sampling 
design, have been described in this chapter . The sampling design was decided upon 
and modified on the basis of experiences and information gathered from the previous 
inventories. Sampling simulation studies were conducted in all the inventory regions 
to optimize the design, given acceptable maximum standard errors in the mean 
volume and total volume of growing stock and estimated measurement costs. 
 The estimation methods had also gained their current form during previous 
inventories and through experiences accumulating since the 1920s. 
 Some basic facts affecting the estimation methods are that NFI9 was based 
on temporary plots (permanent plots were established in the course of that survey, or 
in NFI8 in the case of Northern Finland), the land area is assumed to be known and 
the tally tree plot is an angle-gauge plot (Bitterlich plot). Both the area and volume 
estimators are ratio estimators. Area estimation is based on the number of centre 
points of plots.   
 

the proportion of that land area measured before August 1 in the inventory year ( j = 1) 
or from August 1 onwards ( j=2), 
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 In volume estimation all the trees belonging to the stratum in question are 
counted, including trees on parts of a plot that do not include the centre point. All 
trees are assigned to calculation strata in the field measurements. The sum of tree 
level volumes per hectare is divided by the area estimate for the stratum concerned. 
The area estimates are also based on the number of centre points in the volume 
calculations. This method avoids time-consuming-measurements of the areas of 
parts of plots in the field and produces statistically unbiased estimates if the 
boundaries between the calculation strata intersect the field plots purely at random. 
That is, for the, the area of the parts of plots whose centre points belong to s2 that 
belong to s1  is the same as the area of parts of plots with centre points belonging to 
s1 that themselves belong to s2. 
 Measurement of the areas of parts of angle-gauge plots would be very 
difficult or impossible in practice. Note that this method for handling divided plots is 
also applicable to the case of fixed-radius field plots. 
 Increment estimation is based on increment borings and height increment 
measurements performed on sample trees (height increment models in the case of 
broad-leaved trees). In principle, this method corresponds to the use of permanent 
plots for increment estimation but produces estimates with a lower standard error 
than the method which uses volume differences on permanent plots, due to the fact 
that errors in diameter measurements are usually greater than errors in the 
measurement of diameter increment cores. NFI also produces information about 
growth variation (Henttonen 2000), but the increment estimates given in normal 
publications are presented without growth variation corrections. 
 NFI10 began in 2004 and is proceeding in a different way from NFI9, with 
one fifth of the plots in the entire country being measured each year. Thus country-
level estimates can be updated annually and regional-level estimates within 2-3 
years of the start of the survey. A new estimation method is under development 
which takes into account the fact that both temporary and permanent plots are used 
(roughly one fifth of the plots are permanent). 
 Method used for estimating the standard errors in the area and volume 
calculations is based on the ideas presented by Matérn (1960) and is described and 
discussed in detail in the article by Heikkinen in this book, Chapter 10. 
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CHAPTER 12 

THE FINNISH MULTI-SOURCE NATIONAL 
FOREST INVENTORY – SMALL AREA 

ESTIMATION AND MAP PRODUCTION  

 ERKKI TOMPPO 
Finnish Forest Research Institute, Finland 

12. 1 INTRODUCTION  

12.1.1 Background  

The first forest resource assessments were total cover inventories based either on 
visual assessments or, in small areas, on counting all trees with a given minimum 
size., The development of statistically designed sampling-based forest inventories 
began at the end of 19th century and the beginning of the 20th. The purpose was to 
get accurate country level and sub-country level forest resource information. 
Nevertheless, some countries still base their national forest assessments on stand-
level (or compartment-level) inventories with visual assessment, possibly assisted by 
remote sensing data. One problem, in addition to possible biases in visual 
estimation, is the lack of methods to asses the errors of the estimates for large areas 
on statistical basis. 
 Forest decision-making and data utilisation often require information on 
smaller units than it is possible to reach with sparse field measurements only, and 
the meeting of this requirement by a field sampling-based method alone would 
require a many times greater sampling density and thus very much higher 
measurement costs. Field measurements are one of the most expensive components 
of sampling-based forest inventories, often the most expensive one of all.  
 The spatial variation in forests is often such that field measurements in a 
certain area can also be made use of in neighbouring areas by employing a relevant 
extrapolating, or ‘information borrowing’ technique. 
 This need, that of obtaining forest resource information for smaller areas 
than would be possible with field data only without increasing the costs of the 
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inventory significantly, was a driving force behind starting the development of the 
multi-source forest inventory method (MS-NFI) in connection with the Finnish 
national forest inventory (NFI). Furthermore, new natural resource satellite images 
provided new possibilities for increasing the efficiency of the inventories at 
relatively small additional costs.  
 One basic requirement placed on the method was that it should be able to 
provide information applicable to forestry decision-making. Thus methods that are 
often employed in satellite image-aided approaches, which produce only maps of 
forest types or land use classes, were not considered satisfactory. Methods were 
sought for that would be able to provide area and volume estimates, possibly broken 
down into sub-classes, e.g., by tree species, timber assortments and stand-age 
classes. In the optimal case, the method had to be able to provide all the same 
estimates for small areas as the field data-based method provides at national and 
regional levels. Note that the number of variables measured in the field is usually 
high, typically ranging from 100 to 400, and that estimates of additional variables 
are calculated from these measured ones. 
 One possible approach had been the use of separate or simultaneous 
regression models, or logistic regression models, for the variables of interest (Trotter 
et al. 1997, McRoberts 2005, Tomppo 1987, 1992), but one disadvantage was that 
models had to be derived separately for the variables or groups of variables to be 
predicted, so that the dependence relations in the predictions did not correspond to 
the original dependence relations between the field variables. Furthermore, this 
approach was somewhat laborious for practical applications because models had to 
be derived separately for each set of satellite images. 
 These were the reasons for selecting the k-NN approach, which had been 
used for several decades in image analysis and pattern recognition (see Fix and 
Hodges 1951). A somewhat similar method, a grouping method, had been used 
earlier in Northern Finland with aerial photographs and visual interpretation to 
reduce errors in the estimates (Poso, 1972), and was suggested by Kilkki and 
Päivinen (1986) for use with satellite images. A further advantage of this method 
was that it simultaneously produces thematic maps about forest resources . 
 It soon became obvious that any digital map which could separate forestry 
land from other land use classes with moderate accuracy could reduce the errors. 
Note that the maps do not need to be perfect in accuracy, as some of the effects of 
map errors on the estimates can be removed and handled in a statistically sound way 
(Katila et al. 2000, Katila and Tomppo 2002, see also Chapter 13 in this book). 
 The input data for the Finnish multi-source inventory are thus NFI field 
data, satellite images and digital map data of different types, e.g., basic map data, 
soil data for stratifying between mineral soil, spruce mires, pine mires and open 
bogs, and a digital elevation model.  
 The k-NN estimation method is non-parametric and thus avoids the need 
for explicit models, but it does presume that the total variation in all the forest 
variables is well represented by the field sample plots. This method in which the 
entire field data vector is predicted simultaneously (one vector or the weighted mean  
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of k vectors will serve as the predictor for an un-known field data vector), also 
preserves the covariance structure of the field variables better than do methods 
which predict each variable separately (for each element of the vector). 
 The pixel-level predictions of the variables can be arranged in the form of 
thematic maps , in which the covariance of the variables is close to that of field 
variables, which are more applicable for forestry, ecological and environmental 
purposes than maps in which the predictions have been made separately (Pakkala et 
al. 2002).  
 Pixel-level errors are typically high with the k-NN method, but this is also 
the case with other methods when space-borne satellite images with a spatial 
resolution of 20 - 30 m are used. The use of k field plots instead of one reduces 
errors caused by random variation in the image data. Several studies are available 
about the effect of the value of k on errors (Franco-Lopez et al., 2001, Katila and 
Tomppo, 2001, Tokola et al., 1996). High value of k usually decreases RMSE but 
also shifts the predictions towards the mean. Pre-processing of images and noise 
reduction also reduce errors and improve the quality of the estimates, particularly at 
the pixel level. Examples of other error sources are within-stand variation in forest 
parameters, dislocation of the field plots compared with the image coordinates and 
numerous other factors affecting pixel-level prediction errors (see the error source 
discussion in the Conclusion chapter of this article). A method for reducing the 
second of these problems is presented by Halme and Tomppo (2001).  
 The k-NN method has also been used or tested in forest inventories outside 
of Finland, its popularity being based on the simplicity of the basic method and on 
the facts that there is no need to estimate any model parameters, and particularly that 
the final calculation of the estimates returns to a result close to that reached with 
field data only. Franco-Lopez et al. (2001) tested the method both for estimation and 
map production with data from Forest Inventory and Analysis (FIA) programme of 
the US Department of Agriculture Forest Service. The outcome was that for map 
production a small value ok k keeps the variation of forest variables in the 
predictions better that higher values while for statistics, higher value of k gives 
samller RMSE. McRoberts et al. (2002) introduced an interesting stratified 
estimation method based on the k-NN technique for reducing the errors in forest area 
estimates in the FIA programme. Haapanen et al. (2004) also tested k-NN method 
for forest area estimation with US FIA data and noticed that both band weighting 
and the value of k depends very much on the case, image, image conditions and field 
data. 
 The performance of the k-NN method with different sets of remote sensing 
data, including simulated data, used for error estimation, and with the Swedish 
national inventory was studied in the doctoral thesis of Nilsson (1997). The 
operative k-NN-based Swedish system is described in Reese et al. (2003). The goal 
of the system is to produce forest maps both for forestry and ecological purposes.  
 The main goal in developing the corresonding Norwegian system was to be 
able to produce forest resource estimates at the municipality level, as  
in the Finnish MS-NFI (Gjertsen et al. 1999, Gjertsen and Eriksen, 2004).  
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The possibilities for applying k-NN predictions to harvest planning on radiata pine 
plantations in New Zealand were studied in Tomppo et al. (1999), who showed that 
the pixel-level errors were high but could be reduced by using stand age and years 
since the last thinning as ancillary information. These variables are known for 
planted forests, and therefore the method showed some promise. 
 The reduction of errors in small-area estimation with multi-temporal 
images by the k-NN technique was studied in Nordrhein-Westfalen, Germany 
(Diemer et al. 2000). The entire inventory concept, from planning of the field 
sampling design to calculation of the estimates both with field data only for large 
areas and with a k-NN based multi-source technique for small areas is presented by 
Tomppo et al. (2001) for an application in Heilongjiang province, North-East China. 

12.1.2 Progress in the Finnish multi-source inventory  

Development of the Finnish MS-NFI began in 1989, and the first operative results 
were calculated in 1990 (Tomppo, 1990, 1991, 1996). The method has been 
modified continuously since then and new features added (Katila et al. 2000, Katila 
and Tomppo 2001 and 2002). The core of the current method is presented in 
Tomppo and Halme (2004). 
 Any digital land use map or land cover data can be used to improve the 
accuracy of the predictions (Tomppo, 1991, 1996). Methods for removing the effects 
of possible map errors from the predictions are presented by Katila et al. (2000) and 
Katila and Tomppo (2002) (see also Chapter 13). 
 Application of the k-NN estimation method presumes the selection of 
‘estimation parameters’ for each satellite image and for the other data employed 
along with the image (Katila and Tomppo 2001). Operative application of the 
method has also shown that the predictions, particularly those of volumes by tree 
species, may be biased if the area of interest is large and covers several vegetation 
zones with different tree species compositions (Figure 12.3, Section 12.4.3). One 
reason for this bias is that mapping from the field data vector space to the image data 
vector space is not necessarily an injection when the area in question is large. (A 
function f: A → B, is injective or one-one, or is an injection, if and only if for all a, b 
in A, f(a) = f(b)⇒ a= b, that is no two different inputs give the same output.). 
Varying imaging conditions within the area of a satellite image can also alter the 
covariance structure between the field data and the image data. The biases will be 
reduced if the set of potential nearest neighbours can somehow be restricted. 
 In the first operative applications of the Finnish multi-source inventory 
(MS-FNFI), a sub-set of field plots was selected for potential nearest neighbours in 
the image space for each pixel, usually field plots within a certain geographical 
distance from the pixel in question. The goal was to find a sub-area in which a 
certain spectral vector would correspond to a unique field data vector and vice versa. 
Methods and criteria for selecting a (pixel-dependent) geographical area from which 
the nearest field plots (in the spectral space) for each pixel can be selected, i.e. the 
maximum horizontal and vertical search distances, are studied in Katila and Tomppo  
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(2001). A regular-shaped search region, e.g. a circle or rectangle, has previously 
been employed, but vegetation zone boundaries are more complex, and the shape 
and size of the area selected will typically vary with the location of the pixel on the 
image (ground element, Figure 12.3, Section 12.4.3).  
 Tomppo and Halme (2004) presented another method for guiding the 
selection of field plots that has been in an operative use since early in the year 2000. 
This employs additional variables in the distance metric, i.e. additional elements in 
the distance metric vector, to guide the selection of nearest neighbours. The elements 
are variables describing large-area variations in forest characteristics, e.g., mean 
volumes by tree species, and are map-form predictions of those variables. A 
relevant, practical variation scale for these variables and their predictions would 
range between 40 km and 60 km. Variation on this scale can be computed from field 
data only, e.g. from field data acquired in the current or preceding inventory of the 
area.  
 The method also employs band transformations in addition to the original 
image bands, since it is assumed that band ratios will improve the identification of 
tree species, although all the information from the satellite images is already in the 
original bands. An optimization method based on a genetic algorithm was developed 
to find the weight vector, a method that considerably reduces the errors both at the 
pixel level and in areas of different sizes. The method is called the ik-NN method 
(improved k-NN method) in Tomppo and Halme (2004). 
 One of the open problems related to the k-NN method is the lack of  
an analytical method for estimating the standard error of any estimate for an area of 
an arbitrary size. This problem has been solved in the non-parametric local Bayesian 
regression method utilising Markov Chain Monte Carlo (MCMC) estimation 
proposed by Taskinen and Heikkinen (2005). A Bayesian method with a state-space 
model has also been employed by Wallerman et al. (2003). The current progress 
with model-based approach has shown some promise also for error estimation for k-
NN method (Kim and Tomppo, 2005, McRoberts et al., 2005). 

12.2. INPUT DATA SETS FOR THE BASIC AND IMPROVED k-NN METHODS 

12.2.1 Processing of field data for multi-source calculations 

The core idea in employing multi-source data is to estimate new area weights for 
field sample plots. Furthermore, digital thematic maps can be created, in principle 
for any arbitrary variable in the NFI. Examples of map themes would be spatial 
distributions of site fertility, mean age and diameter of stand, volumes by tree 
species and timber assortments and volume increment in the growing stock by tree 
species. 
 The basic computation unit in image processing is a picture element, a 

25 m. Therefore it is more convenient to work with volumes per unit area than with 
volumes of tallied trees. Volumes per hectare are estimated for each sample plot by  
 

pixel. The pixel size employed with Landsat TM images, for example, is 25 m x  
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tree species and by timber assortment classes based on the tally tree volumes.  
The estimation of volumes and volumes of timber assortments for tally trees from 
field measurements is described in Chapter 11 of this book. The tree level volumes 
are transformed to volumes per hectare in the MS-NFI using the basal area factor 
and the maximum radius of the plot. Otherwise, the field variables used are similar 
to those in the NFI calculations performed using field data only. As the calculations 
based on field measurements do not involve increment estimates for tally trees, 
increment estimates are not usually produced using the multi-source method. 

12.2.2 Satellite images 

Images from the Landsat 5 TM or Landsat 7 ETM+ sensors are the most suitable for 
operative applications, by virtue of the fairly large coverage area of each image 
combined with moderate spatial and spectral resolution. These images are given 
priority when choosing satellite images to cover an area. If these images are not 
available, e.g. due to clouds, either Spot 2 -4 XS HRV images or IRS-1 C LISS 
images have been used so far.  
 The land area of Finland is 30.4473 million hectares, and the total area 
together with lakes and rivers is 33.8145 million hectares. This was covered by 
means of 36 Landsat 5 TM images and 2 Spot 2 XS HRV images in NFI8 and its 
updating in Southern Finland (field data from 1990-1994), and by 40 Landsat 5 TM 
or Landsat 7 ETM + images and 4 IRS-1 C LISS images in NFI9 (1996-2003). 
 Areas corresponding to the cloud-free parts of satellite images are used in 
operative applications. Forests under clouds and in cloud shadows are assumed to be 
similar on the average to those on the cloud-free part of the same areal unit (e.g. 
municipality).  
 All images are rectified to the national coordinate system, and point-type 
objects (e.g. small islands) are identified on both the satellite images and the base 
maps and a regression model fitted to their image coordinates and map coordinates. 
Second-order polynomial regression models are usually employed for this purpose: 
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where u and v are the image coordinates, x and y the map coordinates and uε and vε  
the random errors. A typical number of control points would be around 50. 
 An image element, i.e. a pixel, can be assigned to each ground element with 
the resulting model. The nearest neighbour method has been applied to a re-
sampling of the images to a pixel size of 25 m × 25 m, which is somewhat smaller 
than the Landsat TM and ETM+ pixel size and slightly larger than the Spot 2 -4 XS 
HRV pixel size. This size was selected for practical reasons, as narrower objects 
(e.g. roads) can be distinguished than at the original resolution of Landsat 5 TM, for  
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instance. The absolute values of the residuals in the model, i.e., ûε  and v̂ε , typically 
range from 0.3 pixels to 0.6 pixels. 

12.2.3 Digital map data 

Digital map data are used to reduce the errors in the estimates. The errors in both the 
area and total volume estimates can be reduced significantly by the multi-source 
method if the distinguishing of forestry land from non-forestry land can be 
supported by digital map information in addition to satellite images. The effect of 
possible map errors on the estimates can be reduced by two alternative statistical 
methods (Katila et al. 2000, Katila and Tomppo 2002). The first is a calibration 
method using a confusion matrix derived from the land use class distributions on the 
basis of field plot data and map data, and the second employs stratification of the 
field plots on the basis of map data (see Chapter 13 in this book). The map 
information is used to separate forestry land from other land use classes, such as 
arable land, built-up areas, roads, urban areas and single houses. In addition, a map 
is used to stratify the forestry land area and corresponding field plots into a mineral 
soil stratum and a peatland soil stratum (spruce mires, pine mires, open bogs and 
fens). 
 The digital map data purchased from the National Land Survey of Finland 
represent one basic data source in the operative MS-NFI. This database, called 
“Topo”, is the most accurate digital map covering most of the country (Topographic, 
..., 1998), the map data for the remaining area being taken from several data sources, 
mainly provided by the National Survey of Finland (Katila and Tomppo, 2001). 
 A digital elevation model is used in two ways, for stratification on the basis 
of elevation data and for correcting the spectral values by reference to the angle 
between solar illumination and the terrain normal. The latter method is described in 
detail by Tomppo (1992). Stratification in this context means the maximum vertical 
distance for possible nearest neighbours to a pixel (see formula (12.2)). The 
selection of parameters for stratification and spectral correction has been studied by 
Katila and Tomppo (2001). The basic computation unit in the multi-source inventory 
is the municipality. The number of these in the entire country is about 500 and their 
land areas range from around 1000 hectares to some hundreds of thousands of 
hectares. Digital municipality boundaries are used to delineate the units (Tomppo, 
1996). 

12.2.4 Large-area forest resource data 

The basic k-NN method was employed in NFI8 and the improved ik-NN method 
was introduced during NFI9. The latter employs a coarse scale variation in the key 
forest variables to guide the selection of field plots, from which the data are 
transferred to the pixel to be analysed. The variation is presented in the form of 
large-scale digital forest variable maps (Figure 12.3, Section 12.4.3), derived either 
from the current inventory data or from the data of the preceding inventory.  
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 The data produced by the 9th Finnish NFI9 (1996-2003) for Southern 
Finland were already available when the method was introduced. The inventory 
progressed by regions, and new large-area maps were created for the MS-NFI 
calculation whenever the field data for one region were available. The number of 
field plots on land in the entire country in the NFI9 was 81 249, including 67 264 on 
forestry land, on 62 266 forest land and poorly productive forest land, and 57 457 on 
forest land alone. All the plots on forest land and poorly productive forest land were 
used for the final large-area maps. 
 The variables were selected in such a way that their values indicate the 
areas in which the covariance structure between field variables and image variables 
would be approximately constant. It is assumed that the mapping from field data to 
image data, conditional for large-scale forest variables, is a bijection. A function, f: 
A → B, is bijective, or a bijection, or a one-to-one correspondence, if it is both 
injective (no two values map to the same value) and surjective (for every element of 
B there is some element of A which maps to it), that is there is exactly one element 
of A which maps to each element of B. Tree species composition or vegetation zones 
may reflect areas of these types in Finnish forests. Volumes by tree species on forest 
land and poorly productive forest land were therefore selected as variables. These 
variables also describe the average variation in the key inventory variables to be 
estimated in k-NN analysis. The maps were created as follows. The averages of the 
plot-level mean tree stem volumes (m3/ha) were computed by field plot clusters, and 
a map of Finland with a pixel size of 1 km × 1 km was ‘filled’ with these cluster-
level averages using a nearest neighbour method, i.e. the values were taken from the 
nearest cluster (in geographical space). The map was filtered three times using a 
moving average with window sizes of 20 km × 20 km, 11 km × 11 km, and 25 km × 
25 km (Figure 12.3, Section 12.4.3). 

12.3 BASIC k-NN ESTIMATION  

As given in section 12.2.4, basic non-parametric k-NN estimation was employed for 
the MS-NFI calculations during NFI8 and at the beginning of NFI9. The basic 
principles of the k-NN method should first be described. We recall that each field 
plot has a certain area representativeness, a plot weight, sometimes called a plot 
expansion factor when forest inventory estimates are calculated from pure field data. 
This plot weight can be the total land area divided by the number of field plots on 
land if either systematic or systematic cluster sampling is employed (Kuusela and 
Salminen 1969, Tomppo 2005, Chapter 11). In the MS-NFI, new plot weights (not 
equal for each plot) are calculated for each plot on an areal unit, e.g. municipality, 
basis (Tomppo 1996). The weights are calculated for each field plot Fi ∈ , where 
F is the set of field plots on forestry land. These plot weights are sums of satellite 
image pixel weights over the forestry land mask pixels. 
 The pixel weights are in turn calculated by a non-parametric k-NN 
estimation method that utilises the distance metric d, defined in the feature space of 
the satellite image data (Tomppo 1991, 1996). The k nearest field plot pixels (in 
terms of d ), i.e. pixels that cover the centre of a field plot Fi ∈ , are sought for each 
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pixel p under the forestry land mask of the cloud-free satellite image area. A 
maximum distance is usually set in both a horizontal and a vertical direction in order 
to avoid selecting the nearest plots (spectrally similar plots) from a region in which 
the response of the image variables to the field variables is not equal to that of the 
pixel under consideration. This is necessary due to the fact that the mapping from 
field data to spectral data is not a bijection in a large area. One reason for this is that 
the covariance structure between the field variables and image variables may vary 
from one vegetation zone and one image sub-area to another. Stratification on the 
basis of soil information is also employed for the same reason (Katila and Tomppo 
2001). The feasible set of nearest neighbours for pixel p is thus  
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indicator function of mineral soil/peatland soil (Tomppo 1990, 1991, 1996, Katila 
and Tomppo 2001). 
 Denote the nearest feasible field plots by )(),...,(1 pipi k . The weight wi,p of 
field plot i on pixel p is defined as 
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The power t is a real number, usually ( ]2,0∈t . The distance metric d in the 
operative MS-NFI was earlier  
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where  

 )(cos/,
0

, αr
plpl jj

ff =   (12.5) 

is the normalised intensity value of the spectral band (or feature) l. The normalising 
is done on the basis of the slope and aspect variation, taking 0

,l pjf as the original 
intensity of the spectral band l, α the angle between the terrain normal and the solar 
illumination, r the applied power due to non-Lambertian surface and nc the number 
of spectral features (Tomppo, 1996). Only original spectral bands with equal weights 
(=1) were employed in the old operative k-NN approach. 
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 In practice, k-NN estimation means transferring field data vectors from k 
field plots to each pixel, the field plots being pixel-specific. The k vectors are 
weighted in inverse proportion to the distance from the pixel in question with the 
given distance metric. The basic principle of the k-NN method with k= 2 is 
demonstrated in Figure 12.1. 
 

Figure 12.1 A simplified demonstration of the k-NN method with k =2.  

 To estimate forest parameters for areal units, the field plot weights on the 
pixels, wi,p are summed for the areal units (e.g. municipalities) in an image analysis 
process extending over the pixels belonging to each unit. The weight of plot i in 
areal unit u is denoted by 

 c wi u i p
p u

, , .=
∈
∑  (12.6) 

 Reduced weight sums r
uic ,  are obtained from the formula (12.7) if clouds or 

their shadows cover part of the areal unit u. The real weight sum for plot i is 
estimated by means of the formula  
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where  usA ,
ˆ  is  the estimated area of forestry land in unit u, and r

usA ,
ˆ  the estimated 

area of forestry land in unit u not covered by the cloud mask.  
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 The areas can be taken from digital maps or estimated by means of field 
plots. It is thus assumed that the forestry land covered by clouds areal unit u is on 
average similar to the rest of the forestry land in that unit with respect to the forest 
variables (cf. Tomppo and Halme 2004). 
 The weights (12.6) and (12.7) are calculated separately for the mineral soil 
stratum and peatland stratum within the forestry land, and also for other land use 
classes such as arable land, built-up land, roads and water bodies if a stratification-
based map correction method is employed (Katila and Tomppo 2002, Chapter 13). 
Alternatively, a statistical calibration and confusion matrix can be used to reduce the 
effect of map errors on the estimates (Katila et al.  2000, Chapter 13 in this book).  
 After the final field plot weights on the areal units have been calculated, 
ratio estimation is employed to obtain the estimates (e.g., Cochran 1977). In this 
sense the estimation procedure is similar to that using field plot data only. Volume 
estimates, for example, for areal unit u and reference unit s are calculated in the 
following way. Mean volumes are estimated by the formula 
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where vi,t is the estimated volume per hectare of timber assortment (log product) t on 
plot i and Is the set of field plots belonging to stratum s. The corresponding total 
volumes are obtained by replacing the denominator in formula (12.8) with 1.  
 The forest variable estimators for areal unit u thus utilise information from 
outside unit u. The k-NN estimator is therefore a kind of synthetic estimator 
(Gonzales, 1973).  
 Mean and total volume increments could be estimated in a similar manner, 
but increments are not predicted for tally trees in the NFI, but instead can be 
understood as constant within increment calculation strata, i.e. in relation to tree 
species, diameter class and site factor class over increment calculation regions. 
These regions are usually so large that the within-region variation in growth factors 
is high, so that predictions based on such constants do not correspond to the real 
variation between MS-NFI areal units (municipalities). 
 Some examples of estimates obtained with MS-NFI are given in Table 
12.1. These are from the 8th inventory, with field data and satellite images for 1992, 
and concern the Kainuu Forestry Centre District (Tomppo et al. 1998). The 
estimates are: distribution of forestry land into sub-classes (Table 12.1a), and mean 
and total volume of growing stock on forest land and on poorly productive forest 
land (PPF land, sometimes called scrub land) (Table 12.1b).  
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Table 12.1a Distribution of forestry land into sub-classes. 

 Forest  land PPF  land Waste  land Forestry land, 
Total 

 ha % ha % ha % ha         % 

Hyrynsalmi 113370 83.7 14435 10.7 7689 5.7 135494 100.0 

Kajaani 92850 88.8 7798 7.5 3971 3.8 104619 100.0 

Kuhmo 388155 83.7 49706 10.7 25737 5.6 463598 100.0 

Paltamo 73713 89.0 6429 7.8 2708 3.3 82850 100.0 

Puolanko 191331 80.7 30259 12.8 15389 6.5 236980 100.0 

Ristijärvi 69148 87.7 6613 8.4 3120 4.0 78881 100.0 

Sotkamo 222928 90.0 16846 6.8 7985 3.2 247759 100.0 

Suomussalmi 389616 77.0 65185 12.9 50876 10.1 505677 100.0 

Vaala 88493 75.6 18862 16.1 9661 8.3 117016 100.0 

Vuolijoki 52272 82.3 8344 13.1 2921 4.6 63536 100.0 

Total, MS-NFI 1681876 82.6 224477 11.0 130057 6.4 2036410 100.0 

Total, NFI 1659701  222675  142749  2025124  

Standard error of NFI 13895  8969  7863  8582  

 
For the purposes of the MS-NFI, forestry land (FRYL) consists of forest land (FL), 
poorly productive forest land (PPFL) and waste land (WL). In the national 
classification, forestry roads and depots together with some other minor areas 
connected with forestry are included in the forestry land. Note that totals for the 
entire forestry centre district are given in two ways in Table 12.1a) and Table 12.1b), 
based on the one hand on the MS-NFI and on the other hand on the field inventory 
only (NFI). The standard errors for the forestry centre totals in Tables 12.1a and 
12.1b are based on NFI. The error estimation method is presented in Chapter 10 in 
this book (Heikkinen); see also Matérn (1960). In addition to the tables present 
above, the following other tables were given in MS-NFI8 for all the municipalities 
in Finland: areas of mineral soil and peatland soils on FL, SRCL and WL separately, 
tree species dominance on FL and SRCL separately, areas of age classes on FL, 
mean volumes (m3/ha) by age classes on FL, areas of development classes on FL; 
mean volumes (m3/ha) by development classes on FL, mean and total volumes by 
tree species, timber assortment classes on FL and on FL and SCRL combined and 
some relative distributions for the area and volume estimates. 
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Table 12.1b Mean and total volume of growing stock on forest land and on poorly productive 
forest land .  

 Forest land Poorly productive forest land 

 ha m3/ha 1000 m3 ha m3/ha 1000 m3 

 Hyrynsalmi 113370 67.4 7638 14435 12.0 173 

 Kajaani 92850 68.8 6386 7798 11.1 87 

 Kuhmo 388155 74.9 29083 49706 11.4 567 

 Paltamo 73713 83.2 6133 6429 12.8 82 

 Puolanko 191331 69.7 13341 30259 13.2 399 

 Ristijärvi 69148 68.7 4748 6613 11.1 73 

 Sotkamo 222928 75.7 16870 16846 11.5 194 

 Suomussalmi 389616 66.1 25747 65185 10.4 678 

 Vaala 88493 64.0 5661 18862 13.3 251 

 Vuolijoki 52272 74.6 3900 8344 10.2 85 

 Total, MS-NFI 1681876 71.1 119507 224477 11.5 2589 

 Total, NFI 1659701 70.8 117000 222675 12.6 2800 

 Standard error of NFI 13895 1.4 2494 8969 0.7 198 

 
 Predictions of certain (optional) forest variables are written in the form of a 
digital map during the procedure, e.g. the land use classes outside forestry land are 
transferred to mapform predictions directly from the digital map file. Within the 
forestry land, the variables are predicted from the weighted averages of the k nearest 
neighbours (see Tomppo, 1991, 1996). 
 A pixel-level prediction pm̂  of variable M for pixel p is defined as  

 ∑
∈

=
Fi

ipip mwm ,ˆ ,  (12.9) 

where im is the value of the variable M on plot i.  
 The mode or median value is used instead of the weighted average for 
categorial variables, i.e. land use class, site fertility class, stand age, mean diameter 
of stand, mean height of stand, and volumes by tree species (pine, spruce, birch, 
other broad-leaved trees) and by timber assortment class. The total number of maps 
is thus  over 20. An example of an output map from MS-NFI8 is shown in Figure 
12.2. 
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Figure 12.2 Map depicting the volume of growing stock, produced in the Finnish multi-source 
national forest inventory. Note that the classification is done for the visual image. The unit in 

the original digital data is 1 m3/ha. 

12.4 THE IMPROVED k-NN (ik-NN) METHOD  

As stated earlier, one of the main problems in practical applications of the k-NN 
method is how to select the sub-area and sub-set of the field plots from which the 
potential nearest neighbours are sought for each pixel. Another problem is the 
selection of the spectral features of the distance metric (12.4) in order to achieve as 
small errors as possible.  
 These problems were studied by Tomppo and Halme (2004), who 
introduced a method called ik-NN, the improved k-NN method. A summary of the 
method is presented here. The overall aim of the improved method is to minimize 
the errors attached to predictions based on the multi-source inventory, both at the 
pixel level and particularly at higher areal levels (from several tens of thousands of 
hectares up to several millions of hectares).  
 Two modifications of the k-NN estimation method were introduced: 
1) the use of supplementary ancillary variables in addition to spectral data for 
selecting neighbours, 
2) the use of ‘optimal’ weights for both the image features and the ancillary 
information. A vector consisting of these elements is called a vector of explanatory  
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variable weights and denoted by ω. A method was developed for using ancillary data 
and finding the optimal explanatory variable weights. 
 As for the first modification, the complexity of the problem was reduced by 
selecting a few core variables and studying their estimates. Volumes by tree species 
were selected as the variables, since tests with age class distributions, and also 
earlier experiments, had shown that the errors in the predictions for other variables 
are reduced when those attached to volumes by tree species are minimized (Tomppo 
et al. 1998). 
 The optimization was carried out solely at the pixel level. It was hoped, and 
later checked, that larger area errors would decrease once the weights were 
optimized. This was considered to be the ultimate check of the success of the 
procedure. 
 A weighted sum of pixel level biases and RMSE’s of the predictions was 
selected as the objective function. The weights are called fitness function weights 
and denoted by γ (12.10). The variables employed were: 1) total volume, 2) volume 
of pine, 3) volume of spruce, 4) volume of birch and 5) volume of other broad-
leaved tree species. These 10 variables have also been used in operative applications 
of the method. The fitness (objective) function to be minimized with respect to ω is: 

 ∑∑
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where γ > 0 are user-defined coefficients for the pixel level standard errors jσ̂  and 

biases jê  in forest variable j (applied in a genetic algorithm) and ω is the weight 
vector to be estimated (formula 12.11). the feasible set of weight vectors is denoted 
by W.  
 The pixel-level biases and errors in the multi-source inventory (k-NN) 
estimates are  
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where im is the observed value of the variable to be estimated (e.g. total volume), 

im̂  its estimate on plot i and Fn  the number of field plots.  
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 The fitness function weights, bias weights and RMSE weights were 
experimentally given values and then fixed. This weighted sum was the criterion in 
the search for good weight vectors for image features and ancillary information. 
 Since determination of the large-area predictions for the forest variables, 
even for one weight vector, is an extremely computer-intensive task, the pixel-level 
objective function (formula 12.10) has to be taken as a proxy for the real objective. 
This is a major source of imprecision in the process, alongside the choice of 
variables and fitness function weights and the non-optimality of the optimization 
result. 
 Note that the explanatory variable weights (ω) are sought in such a way as 
to optimize the prediction of the selected variables, in this case volumes. Note also 
that the Landsat pixel measures information from an area that is larger than the size 
of a field plot (Halme and Tomppo 2001). This discrepancy is interpreted as a 
measurement error: a large one in the case of satellite images. It was decided to seek 
the weight vector using only field plots sufficiently far from the nearest stand 
boundary or land use class boundary to reduce this error. In practice a minimum 
distance of 20 metres was used. This decision was also motivated by the fact that 
another source of error is the location of the field plots with respect to the satellite 
image pixels. It is important to note that the final large-area and municipality group-
level estimates and error validation are calculated in operative applications using all 
the NFI field plots and weights obtained from optimization with plots located at least 
20 metres from the nearest stand boundary. 
 The predictions and their standard errors calculated from field data only are 
employed to validate all the multi-source predictions in areas ranging from several 
hundreds of thousand hectares to several million hectares. This is due to the fact that 
multi-source error estimation for areas larger than a pixel (field plot) is complicated 
and no solution has yet been found. Satisfactory predictions for groups of 
municipalities (at the level of several hundreds of thousands of hectares) and at the 
pixel level are assumed to be satisfactory at the levels of a few thousand and some 
tens of thousands of hectares as well. However, also note the recent model-based 
development in error estimation for areas of arbitrary size, mentioned earlier (Kim 
and Tomppo, 2005, McRoberts et al. 2005). 
 A new distance metric proposed by Tomppo and Halme (2004) introduced 
two types of new element into the distance vector: 1) transformations of spectral 
bands, and 2) coarse-scale predictions of some key forest variables (formula 12.11), 
also called ancillary variables. All possible ratios of spectral bands were used, as it 
was hoped that band ratios could distinguish between tree species, e.g. pine and 
spruce, better than the original bands. The use of large area forest variables as 
additional elements directed the selection of nearest neighbours to forests that were 
similar to the target pixel (cf. Figures 12.3, 12.4, 12.5 and 12.6). All the elements 
were finally weighted. The distance metric, also applied to the operative MS-NFI, 
was thus 
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where plf ,  is the lth image variable, plg , the large-area prediction for the lth forest 
variable, nf  the number of image variables (or features), ng the number of coarse-
scale forest variables and ωf and ωg the weight vectors for the image features and 
coarse-scale forest variables, respectively. A pixel size of 1 km × 1 km is used in the 
coarse-scale forest variable predictions plg , . (Note the different pixel sizes for large-
area forest variables and satellite image data.)  
 The values for the elements of the weight vector to be estimated are derived 
from an optimization employing a genetic algorithm, as given below. The first phase 
of ik-NN is to run the optimization algorithm, possibly by strata in the applications, 
e.g. for the mineral soil stratum and mire and bog stratum separately. The procedure 
then returns to the basic k-NN estimation. 

12.4.1 Simplified sketch of the genetic algorithm 

A genetic-type algorithm was selected due to the complexity of the optimization 
problem and because the optimization problem may have several local optima. The 
method noticeably reduces errors both at the pixel level and over areas of some 
thousand square kilometres or larger. 
 Genetic algorithms that imitate the behaviour of genes are currently used to 
solve difficult optimization problems such as combinatorial problems, but they are 
also popular for modelling economic and ecological phenomena and machine 
learning (see Mitchell 1996). Genetic algorithms often produce good results with 
problems that are hard to solve, but they also require a considerable amount of 
adjustment to fit the algorithm to the problem. 
 The following outline of the algorithm serves two purposes: it illustrates the 
principles of a genetic algorithm in general, and the version presented is similar to 
the genetic algorithm application discussed in this paper. For more information on 
genetic algorithm schemes, see Mitchell (1996, also Tomppo and Halme 2004). 
 The elements and operators of genetic algorithms originate from biology. 
The candidate solution vector is called a chromosome and a group of chromosomes 
is called a population. One population is a generation. The operators are: selection of 
chromosomes (the criterion being their fitness), the crossover of chromosomes 
producing new offspring and the random mutation of new offspring. 
 The account below does not include all the features of the algorithm 
employed in this paper. A more detailed version is presented by Tomppo and Halme 
(2004). In a genetic algorithm, the value of the objective function for a trial solution 
is called the fitness value of the solution. 
 The key parameters of the algorithm are: 

ngen = number of generations 
npop = number of weight vectors in one population and number of vectors in 
the medipopulation (these need not be the same)  
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pu = probability used in uniform crossover 
pc  = probability of accepting an inferior solution created by mutation 
pm = mutation probability 
prm = radical mutation probability 
pt1 = probability 1 in selection 
pt2 = probability 2 in selection 

The definitions of the parameters are given in the following simplified sketch, 
borrowed from Tomppo and Halme (2004). 
 
1. Initialisation 
Generate the initial population with npop random weight vectors. Calculate their 
fitness values (12.10). Set the generation count to 1. 
 
2. Selection 
In this step a medipopulation (an intermediate group of weight vectors between two 
populations) is formed. Choose two weight vectors in the population (e.g. randomly 
or successively at some point) the fitness values of which are to be compared. The 
one with the better fitness value is chosen as a member of the medipopulation with 
the probability pt1, and the one with the poorer fitness value is chosen as a member 
with the probability 1-pt1- pt2. They are both members with the probability pt2. 
Repeat until the medipopulation consists of npop vectors. Note that several copies of 
vectors may occur. 
 
3. Crossover 
In this step a new population is formed. A uniform crossover is carried out with two 
successive vectors of the medipopulation a and b (parent vectors) to produce two 
offspring c and d. This will mean that, with probability pu , the kth element (k = 1, …, 
n) of c (d) will come from a (b) and (1- pu) from b (a); Pick the vector having the 
best fitness in the set consisting of both offspring and parents to be a member of the 
next population. Repeat until the population consists of npop vectors. Increase the 
generation count by 1. Stop when the count is equal to ngen. 
 
4. Mutation 
In this step the weight vectors in the new population may undergo mutation. 
Each element in each vector of the population has a mutation probability pm. Two 
kinds of mutation can occur: radical (probability prm) (the element is subtracted from 
1) or non-radical (the element is changed by +-20 per cent). The mutant vector 
replaces the original vector as a member of the population if its fitness is better than 
that of the original vector. If its fitness poorer, it replaces the original vector as a 
member of the next population with a probability pc and whereas the original vector 
has the probability 1- pc  of remaining a member of the population. Go to 2. 
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An element changes by +-20 per cent if non-radical mutation takes place. This 
percentage was observed to perform well.  

12.4.2 Application of the algorithm 

Practical solutions obtained when applying the genetic algorithm are described in 
this section. The optimization problem to be solved is the distance metric that gives 
the lowest value for a linear combination of the RMSEs and biases. An ‘optimal’ 
weight vector for the elements of the distance metric has to be sought. 
Let the vector γ > 0 (formula 12.10). The objective function can therefore be 
denoted by f(ω,σ̂ , ê ). The objective as a function of ω is not continuous. 
 After numerous experimental runs to develop the method, upper bounds 
were introduced for the elements of the weight vector. This was because the 
objective seemed to be unexpectedly flat, providing a huge number of “equally good 
or almost equally good” solutions. No meaningful losses in the optimal values for 
the objective function were observed due to these bounds (Tomppo and Halme 2004, 
see Tables 12.2 and 12.3). Thus the set of feasible weight vectors W fulfils the 
condition  
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where uppej = upper bound for variable j 
ng  = number of large-area forest variable estimates employed 
nf  = number of spectral image variables employed 
n = ng + nf = sum of the number of spectral image and ancillary variables. 

 The variables employed in the fitness function (formula 12.10) were 1) 
mean volume (m3/ha) of all tree species on the field plot, 2) mean volume of pine, 3) 
mean volume of spruce, 4) mean volume of birch (two species) and 5) mean volume 
of other broad-leafed tree species. The values of the vector γ (formula 12.10) were 
sought at the beginning and finally fixed at γ =(0.3, 0.6, 0.6, 0.2, 0.1, 0.5, 1, 1, 0.2, 
0.1). The first five elements are the coefficients of the estimates of the standard 
errors jσ̂  and the rest those of the estimates of the biases jê , cf. formula (12.10). 
In the fitness function, the biases were given weights larger than the standard errors 
and the biases for pine and spruce were given especially large weights. The aim was 
to reduce the biases of the corresponding estimates both at the pixel level and for 
large areas because of problems in distinguishing between pine and spruce volumes 
in some areas. 
 The parameter values that worked successfully were: 

npop = 50 
ngen  = 30 - 80 
pu = 0.75 
pm = 0.05 
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prm = 0.35 
pc = 0.5 
pt1 = 0.95 
pt2 = 0.03. 

These values seem to work well for all multi-source data sets and have also been 
employed in the operative MS-NFI since implementation of the method. 

12.4.3 Reductions of the bias and standard error of the estimates at the pixel level 
and regional level  

To demonstrate the performance of the ik-NN method and to show the difference 
between the errors of the estimates obtained with the ik-NN and k-NN methods, 
some results are shown for an area in Eastern Finland. These results are part of the 
operative MS-NFI and were obtained when ik-NN method was being developed.  
 The area covers the major parts of the Eastern Savo and Northern Karelia 
Forestry Centre Districts, whose total land area is 3.222 million hectares and forestry 
land area 2.861 million hectares. The NFI9 was conducted in this area in 1999 and 
2000. The total number of field plots was 11 415. Some results for a sub-area of 2.22 
million hectares with 1.97 million hectares of forestry land (not covered by clouds or 
cloud shadows on the satellite image used) are shown here. The remaining area was 
arable land and built-up areas. The area was covered by two Landsat 7 ETM+ 
images, 186-16 and 186-17 obtained on June 10, 2000 (Figure 12.3). 

 

Figure 12.3 Large-scale variation in mean volumes of the main tree species, with boundaries 
of municipalities and forestry centre districts, field plot clusters and Landsat ETM + image 

boundaries. 
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 The first phase in applying the ik-NN method is to calculate the weights (ω) 
(formula 12.11). This is done using only field plots that are far enough away from 
the nearest stand boundary or land use class boundary (20 metres). The goal is to try 
to avoid the effect of mixed pixels on the weights. It should be recalled that all the 
field plots with their calculated weights are used in the estimation phase. The main 
objective in introducing the ik-NN method was to reduce the bias attached to the 
predictions both at the pixel level and, particularly, over larger areas, with the 
ultimate goal of improving the estimation of pine and spruce volumes. Examples of 
pixel-level (field plot-level) biases for predictions of volumes by tree species for the 
k-NN estimates (k-NN), k-NN predictions using large-area variables (k-NN la) and 
ik-NN methods using leave-one-out cross-validation and field data-based volume 
predictions FV̂  as a reference are shown in  Table 12.2 (Efron and Tibshirani 1993).  
 

Table 12.2 Examples of biases attached to k-NN predictions, k-NN predictions with large-
area variables (k-NN, la) and ik-NN predictions at the pixel level (field plot level) on the 

mineral soil stratum, leave-one-out cross-validation, using field data-based volume 
predictions FV̂  as a reference. 1953 field plots, k=5, upper bounds employed. 

 F̂V  
Bias 

 
Stand err.

of bias 

Bias 
a) 
 

Stand. 
err. 

of bias 

Bias 
b) 
 

Stand. err. 
of bias Reduction 

  k-NN k-NN k-NN, la k-NN, la ik-NN ik-NN a) / b) 
Volume m³/ha m³/ha m³/ha m³/ha m³/ha m³/ha m³/ha % 

Pine 63.750 2.430 1.648 2.230 1.570 -0.002 1.539 99.925 
Spruce 38.883 -3.167 1.304 -4.725 1.293 -0.005 1.260 99.891 
Birch 15.903 -0.961 0.684 -1.571 0.696 -0.199 0.701 87.346 

O. br. l. 3.874 -0.382 0.376 -0.430 0.383 -0.133 0.389 69.057 
Total 122.303 -2.021 1.827 -4.432 1.764 -0.259 1.800 94.152 

 
 A total of 1953 field plots located at least 20 m from the nearest stand 
boundary were employed. Spruce volume was significantly underestimated. The 
addition of large-area variables to k-NN did not alone reduce the biases, but a 
reduction was noticeable with ik-NN, although all the predictions were somewhat 
lower for birch and other broad-leaved tree species than for pine and spruce 
(Columns a/b in Tables 12.2 and 12.3 indicate the relative decrease in the absolute 
value for the bias.) This is a consequence of the selection of the weights fixed in the 
fitness function rather than of the capability of remote sensing data for 
distinguishing broad-leaved tree species, for instance. The biases are much less than 
one standard error for all of the variables. 
 An example of the bias reductions achieved for the peatland soil stratum is 
shown in Table 12.3. Here 638 field plots located at least 20 m from the nearest 
stand boundary were employed. The relative bias reductions for pine and spruce  
 

215 



 

volumes are about as high as for the mineral soil stratum, that for birch a little less 
and that for other broad-leaved tree species much less, although the original absolute 
biases for broad-leaved trees were small. The biases divided by the predictions were 
nevertheless high due to the low value of the predictions. All the pixel-level biases 
for volume predictions were satisfactory. 
 

Table 12.3 Biases in k-NN predictions, k-NN predictions with large-area variables (k-NN, la) 
and ik-NN predictions at the pixel level (field plot level) on the peatland soil stratum using 

leave-one-out cross-validation and field data-based volume predictions VF  in the comparison, 
with 638 field plots, k = 5, tolerance = 5 × correlation coefficient with ik-NN. 

 FV  
Bias 
 

Stand err. 
of bias 

Bias  
a) 
 

Stand. err. 
of bias 

Bias  
b) 
 

Stand. err. 
of bias Reduction 

  k-NN k-NN k-NN, la k-NN, la ik-NN ik-NN a) / b) 
Volume m³/ha m³/ha m³/ha m³/ha m³/ha m³/ha m³/ha % 
Pine 50.101 1.735 1.888 1.610 1.813 0.012 1.924 99.255 
Spruce 10.498 -1.482 1.268 -2.694 1.214 -0.019 1.738 99.295 
Birch 7.633 -0.454 0.760 -1.092 0.762 -0.303 1.151 72.253 
O. br. l. 0.305 -0.029 0.128 -0.069 0.125 -0.062 0.757 10.145 
Total 68.525 -0.231 2.058 -2.241 1.975 -0.367 0.123 83.623 

 
 This method also controls for regional-level errors in addition to pixel-level 
errors and biases. The predictions are validated at the level of groups of 
municipalities as follows. The area in question is divided into sub-areas with forest 
and other wooded land areas, ranging typically between 150 000 ha and 300 000 ha. 
The objective in the division is to create sub-areas that are as homogeneous as 
possible with respect to mean volumes by tree species, with their forest and other 
wooded land area being at least 150 000 ha (Figure 12.4). The evaluation is carefully 
designed to identify possible confusions in mean volume predictions by tree species. 
This is possible if the within-group variation is as small as possible and the between-
groups sub-area variation is as high as possible. The field data-based estimates of 
areas and volumes by tree species and their standard errors are calculated for these 
areas. All the field plots on forestry land (excluding forestry road plots) were 
employed both in the field data-based estimation and in the multi-source estimation. 
 Examples of the predictions for mean volumes by tree species (m3/ha) are 
given for two municipality groups in Table 12.4. The table also gives standard errors 
for the field data-based predictions. The table enables multi-source predictions to be 
compared with the field data estimates and assessed in terms of the field databased 
standard errors. 
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Figure 12.4 Areal units used for the compilation of Table 12.4, together with municipalities 
and forestry centre boundaries, displayed on large-scale volume maps. 

 The distinction between pine and spruce is often not good enough (Table 
12.4). In both areas the mean volume of pine was originally over-estimated and that 
of spruce under-estimated. The mean volumes of pine in these areas are lower than 
in the neighbouring areas and also lower than the averages for the entire area in 
question.  
 The ik-NN method gave lower deviations from the field data-based 
predictions, and thus more accurate predictions, in both sub-areas. The predictions 
for the mean volumes of birch and other broad-leaved trees obtained using the ik-
NN method were also nearer to the field data-based predictions than for the k-NN 
method; or at least they did not deviate any more than the latter. (Note that more 
weight is often given to pine and spruce volumes in formula (12.10) than to birch or 
other broad-leaved tree volumes.)  
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Table 12.4 Estimates of the volume of growing stock (m3/ha) on forest and other wooded land 
(a) and its standard error (aer) by tree species based on field data and on the k-NN method 
(b), ik-NN method (c) and ik-NN method when the resulting large-area weights have been 

multiplied by 10 (d), for two municipality groups. The estimated area of forest land and other 
wooded land is 241 200 ha for group 3 and 234 700 ha for group A4 (Figure 12.4). The multi-

source estimates are compared with the field data-based estimates. 

Group 3 a aer b b-a c c-a d d-a 
Pine 48.6 2.9 53.8   5.2 47.5 -1.1 49.7   1.1 
Spruce 38.5 2.5 35.6  -2.9 41.9   3.4 40.3   1.8 
Birch 15.7 1.2 15.7 -0.0 15.8   0.1 15.9   0.2 
Other br. 1. 4.3 0.6   3.7 -0.6   3.6 -0.7   3.1 -1.2 
Total 107.2 3.3 108.8  1.6 109.0   1.8 108.9   1.7 

 
Group A4 a aer b b-a c c-a d d-a 
Pine 47.9 3.2 56.3 8.4 49.1 1.2 51.0 3.1 
Spruce 53.7 2.8 49.6 -4.1 56.9   3.2 55.8   2.1 
Birch 18.1 1.2 18.5   0.4 17.5 -0.6 18.0 -0.1 
Other br. 1.   8.1 0.9   5.4 -2.7   6.0 -2.1   5.7 -2.4 
Total 127.9 4.2 129.7 1.8 129.4   1.5 130.6   2.7 

 

 

Figure 12.5 Distribution of weights for an individual municipality (east of 309) with the old k-
NN method: large-area information is not used, only the original bands with even weights are 

employed. 
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Figure 12.6 Distribution of weights for an individual municipality (east of 309) with the ik-NN 
method: large-area information, the original bands and band ratios with optimised weights 

are employed. 

 Use of information on large-area variations in forest variables in 
conjunction with the ik-NN method noticeably reduces the problem of 
distinguishing pine dominant stands from spruce dominant ones, for instance, or of 
estimating the volumes by tree species. The effect on the weights of the field plots, 
i.e. on the quantities uic , in formula (12.7), is demonstrated in Figures 12.5 and 12.6. 
The weights are given for the northernmost municipality in sub-area II (east of the 
number 309). The weights were more evenly spread over the entire area covered by 
field plots with the k-NN method than with ik-NN. On the other hand, the field plots 
in forests with a tree species composition similar to that of municipality 309 
obtained higher weights with ik-NN than with k-NN. Note that field plots in only 
two forestry centre districts were employed. 

12.5 CONCLUSIONS  

The Finnish National Forest Inventory has been using a satellite image-aided multi-
source method since 1990 in order to obtain results for smaller areas than is possible 
using field data only. The entire country has been covered twice by this method. The 
method is under continuous refinement. During the ninth inventory (1996-2003), the 
method was enhanced by introducing certain new features: 1) the use of large-area 
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forest variables for directing the selection of nearest neighbours, 2) the use of an 
optimization method based on a genetic algorithm to weight both large-area forest 
variables and satellite image variables, and 3) two optional methods were developed 
to remove the effect of map errors on the estimates. The new ik-NN method 
performs noticeably better than the original k-NN method. The use of information 
on large-area forest variables considerably reduces the problem of distinguishing 
stands with different tree species, or tree species composition, and reduces the errors 
entailed in the estimates of volumes by tree species. This has been a serious problem 
in areas where large-area tree species dominance changes, e.g. where spruce-
dominated forests change into pine-dominated ones or vice versa, a common 
occurrence in the Boreal region. Note that any relevant data, such as soil data or 
vegetation zone data, can be employed as ancillary data. The method, which is 
already in operative use in the Finnish multi-source forest inventory, reduces the 
biases and standard errors both at the pixel level and in larger areas. Comparisons 
with the k-NN method have been made with numerous Landsat TM and ETM+ 
images, and the method seems to perform well and to give in practice predictions 
with smaller errors than the old k-NN method did. Validation has been carried out, 
as is always the case in operative applications, at the pixel level and at the level of 
municipality groups, for which predictions and standard errors can be computed by 
means of field data only. 
 Two methods for reducing the errors in predictions caused by possible 
errors in the digital base maps are in use in the operative MS-NFI, a calibration 
method (Katila et al. 2000) and a stratification method (Katila and Tomppo 2002, 
Chapter 13). The new ik-NN method is applicable with both map correction 
methods. When using the stratification method, field plots outside the area of 
forestry land can be employed and separate weights can be calculated for different 
strata, as is done within forestry land for the mineral soil stratum and peatland soil 
stratum. 
 The pixel-level and stand-level errors of the estimates are rather high with 
current satellite images, for several reasons. The error sources in pixel-level 
predictions of forest variables have been listed in many papers (e.g. Katila 2004, and 
Tomppo et al. 1998). Examples are 1) possible errors in field data measurements and 
the models used to estimate tree and plot variables, 2) errors in the geographical 
location of field plots and their corresponding pixels, 3) field measurements apply to 
areas which do not correspond to the area of a satellite image pixel, 4) it is very 
seldom that all the factors affecting the spectral response of a satellite image are 
measured in the field, sometimes not all trees and seldom the ground vegetation, 5) 
the radiometric resolution of the sensors is inadequate (the sensors are not able the 
recognize all the variation in the target area, i.e. two targets in the field may give the 
same spectral response), 6) scattering of radiance in the atmosphere, 7) within-image 
variation in imaging conditions (different parts of an image are subject to different 
solar illumination and atmospheric conditions), 8) the variation in the field plots may 
not cover all the variation in the field, and 9) possible timing differences between the 
field data and image data. Furthermore, 10) soil moisture variation in the target area 
may affect the spectral properties, so that two areas with the same growing stock  
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may have different spectral properties, or two areas with different growing stock 
may have same spectral properties. 
 There are several methods for assessing pixel-level errors. Leave-one-out 
cross-validation has been employed in many cases, and Kim and Tomppo (2005) 
applied variogram modelling to the spectral space. The finding of a generally 
applicable error estimation method for areas larger than a pixel is a challenging task. 
Since the error in the predictor of a variable depends on the true value of the 
variable, errors are spatially correlated, and spatial dependences in the image itself 
make the error structure even more complex. Lappi (2001) presented a different, 
calibration-type approach to multi-source estimation, together with a variogram-
based variance estimator, and some other interesting variogram approaches are 
currently under development (McRoberts et al. 2005). 
 Practical applications of the multi-source inventory technique are also 
currently facing other problems. One of the most serious ones related to optical area 
images in certain regions of the globe is the availability of images obtained under 
cloud-free conditions. The most applicable satellite sensor, Landsat 7 ETM+, has 
suffered from a scan line corrector failure since 2003. Several correction methods 
have been introduced, but the quality of the product is not the same as before (see 
USGS 2005). One advantage of the k-NN method is that it is applicable to all image 
material. The precision of the estimates depends on the spectral, spatial and 
radiometric resolution of the sensor, however, and some image material may 
presume the use of other image material as an intermediate step between the field 
data and the final image data (Tomppo et al. 2002). Furthermore, the precision of the 
estimate will depend on how the k-NN method is applied, as seen above. A lot of 
research work has been carried out to analyse the errors and improve the precision of 
the estimates, and the process is still going on. 

REFERENCES 

Cochran, W. G. 1977. Sampling techniques. 3rd ed. New York: Wiley. 
 
Diemer, C., Lucaschewski, I., Spelsberg, G., Tomppo, E., and Pekkarinen, A. 2000. Integration of 

terrestrial forest sample plot data, map information and satellite data. An operational multisource-
inventory concept. In: Ranchin, T. and Wald, L. (Eds.), Proceedings of the Third Conference “Fusion 
of Earth Data: Merging Point Measurements, Raster Maps and Remotely Sensed Images” January 26-
28, 2000. Sophia Antipolis, France. SEE/URISCA, Nice. pp. 143-150. 

 
Efron, B. and Tibshirani, R. 1993. An Introduction to the Bootstrap. Chapman & Hall, New York. 
 
Fix, E. and Hodges, J.L. 1951. Discriminatory analysis - nonparametric discrimination: consistency 

properties. Report no. 4, US Air Force School of Aviation Medicine, Random Field. Texas. 
 
Franco-Lopez, H., Ek, A. R. and Bauer, M. E. 2001. Estimation and mapping of forest stand density, 

volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environment 77: 
251-274. 

 
Gjertsen, A.K., Tomppo, E. and Tomter, S. 1999. National forest inventory in Norway: Using sample 

plots, digital maps, and satellite images. In: IEEE 1999 International Geoscience and Remote Sensing 
Symposium, Hamburg, Germany. pp. 729-731. 

 

221 



 

Gjertsen, A. K. and R. Eriksen 2004. Test av MSFI-metoden: Nøyaktighetstest på datasett fra Østfold og 
Hobøl. Ås, Norsk institutt for jord- og skogkartlegging NIJOS: 52. (In Norweigian). 

 
Gonzales, M. E. 1973. Use and evaluation of synthetic estimators. In: Proceedings of the Social Statistics 

Section. American Statistical Association, Washington. pp. 33-36. 
 
Haapanen, R., Ek, A. R., Bauer, M. E. and Finley, A. O. 2004. Delineation of Forest/nonforest land use 

classes using nearest neighbor methods. Remote Sensing of Environment 89: 265-271. 
 
Halme, M. and Tomppo, E. 2001. Improving the accuracy of multisource forest inventory estimates by 

reducing plot location error - a multicriteria approach. Remote Sensing of Environment 78:  
321-327.  

 
Katila, M. 2004. Controlling the estimation errors in the Finnish multisource National Forest Inventory 

(Doctoral dissertation). The Finnish Forest Research Institute, Research Papers 910. 36 p. + 4 
publications. 

 
Katila, M., Heikkinen, J. and Tomppo, E. 2000. Calibration of small-area estimates for map errors in 

multisource forest inventory. Canadian Journal of Forest Research 30: 1329-1339. 
 
Katila, M. and Tomppo, E. 2001. Selecting estimation parameters for the Finnish multisource National 

Forest Inventory. Remote Sensing of Environment, 76: 16-32.  
 
Katila, M. and Tomppo, E. 2002. Stratification by ancillary data in multisource forest inventories 

employing k-nearest-neighbour estimation. Canadian Journal of Forest Research 32(9): 1548-1561. 
 
Kilkki, P. and Päivinen, R. 1987. Reference sample plots to combine field measurements and satellite data 

in forest inventory. University of Helsinki, Department of Forest mensuration and management. 
Research Notes 19: 209-215. 

 
Kim, H-J. and Tomppo, E. 2005. Model-based prediction error uncertainty estimation for k-nn method. 

Revision submitted to Remote Sensing of Environment. 
 
Kuusela, K. and Salminen, S. 1969. The 5th National Forest Inventory in Finland. General design, 

instructions for field work and data processing. Commununicationes Instituti Forestalis Fenniae 69.4: 
1-72. 

 
Lappi, J. 2001. Forest inventory of small areas combining the calibration estimator and a spatial model. 

Canadian Journal of Forest Research 31: 1551-1560. 
 
Matérn, B. 1960. Spatial variation. Meddelanden från statens skogsforskningsinstitut, 49(5): 1-144. Also 

appeared as Lecture Notes in Statistics 36. Springer-Verlag. 1986. 
 
McRoberts, R. E: 2005. Using inventory data, satellite data, and logistic regression model to estimate 

forest area and the precision of the estimates. Manuscript submitted to Remote Sensing of 
Environment. 

 
McRoberts, R. E., Nelson, M. D. and Wendt, D. G. 2002. Stratified estimation of forest area using 

satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sensing of 
Environment 82: 457-468.  

 
McRoberts, R. E., Tomppo, E. O., Finley, A. O. and Heikkinen, J. 2005. Variance estimators for nearest 

neighbors technique. USDA Forest Service, St. Paul, Minnesota. Finnish Forest Research Institute. 
Manuscript. 

 
Mitchell, M. 1996. An Introduction to Genetic Algorithms, The MIT Press. USA. ISBN 0-262-13316-4. 
 

TOMPPO 222



 FINNISH MULTI-SOURCE NFI 

Nilsson, M. 1997. Estimation of forest variables using satellite image data and airborne lidar. Ph.D. thesis, 
Swedish University of Agricultural Sciences, Department of Forest Resource Management and 
Geomatics. Acta Universitatis Agriculturae Sueciae. Silvestria, 17. 

 
Pakkala, T., Hanski, I. and Tomppo, E. 2002. Spatial ecology of the three-toed woodpecker in managed 

forest landscapes. In: Korpilahti, E., and Kuuluvainen, T. (eds.). Disturbance dynamics in boreal 
forests: Defining the ecological basis of restoration and management of biodiversity. Silva Fennica 
36(1): 279-288. 

 
Poso, S., 1972. A method of combining photo and field samples in forest inventory. Commununicationes 

Instituti Forestalis Fenniae 76(1). 
 
Reese, H., Nilsson, M., Granqvist Pahlén, T., Hagner, O. Joyce, S., Tingelöf, U., Egberth, M. and Olsson, 

H. 2003. Countrywide estimates of forest variables using satellite data and field data from the 
National Forest Inventory. Ambio 32. pp. 542-548.  

 
Taskinen, I. and Heikkinen, J. 2005. A nonparametric Bayesian method for assessing uncertainty in 

thematic maps of forest variables. Revision submitted to Journal of Agricultural, Biological, and 
Environmental Statistics. 

 
Tokola T., Pitkänen J., Partinen S. and Muinonen E. 1996. Point accuracy of a non-parametric method in 

estimation of forest characteristics with different satellite materials. International Journal of Remote 
Sensing 17: 2333-2351. 

 
Tomppo, E. 1987. Stand delineation and estimation of stand variates by means of satellite images. In: 

Remote Sensing-Aided Forest Inventory. University of Helsinki, Department of Forest Mensuration 
and Management, Research Notes No. 19: 60-76. 

 
Tomppo, E. 1990. Designing a Satellite Image-Aided National Forest Survey in Finland. In: The Usability 

of Remote Sensing For Forest Inventory and Planning, Proceedings from SNS/IUFRO workshop in 
Umeå 26 - 28 February 1990. Swedish University of Agricultural Sciences, Remote Sensing 
Laboratory, Report 4. 43-47. Umeå, Sweden. ISBN 91-576-4208-7. 

 
Tomppo, E. 1991. Satellite Image Based National Forest Inventory of Finland. International Archives of 

Photogrammetry and Remote Sensing 28 (7-1): 419-424. 
 
Tomppo, E. 1992. Satellite image aided forest site fertility estimation for forest income taxation. Acta 

Forestalia Fennica 229. 70 p. 
 
Tomppo, E. 1996. Multi-source National Forest Inventory of Finland. In: R. Vanclay, J. Vanclay, and S. 

Miina (Eds.), New Thrusts in Forest Inventory. Proceedings of the Subject Group S4.02-00 ‘Forest 
Resource Inventory and Monitoring’ and Subject Group S4.12-00 ‘Remote Sensing Technology’. 
vol. 1. IUFRO XX World Congress 6-12 Aug. 1995, (pp. 27-41) Tampere, Finland. EFI Proceedings,  
7. European Forest Institute. Joensuu. Finland. 

 
Tomppo, E., Katila, M., Moilanen, J., Mäkelä, H. and Peräsaari, J. 1998. Kunnittaiset metsävaratiedot 

1990-94. Metsätieteen aikakauskirja - Folia Forestalia 4B/1998: 619-839 (in Finnish). 
 
Tomppo E., Goulding C. and Katila M. 1999. Adapting Finnish multi-source forest inventory techniques 

to the New Zealand preharvest inventory. Scandinavian Journal of Forest Research 14: 182-192. 
 
Tomppo, E., Korhonen, K.T., Heikkinen, J. and Yli-Kojola, H. 2001. Multisource inventory of the forests 

of the Hebei Forestry Bureau, Heilongjiang, China. Silva Fennica 35: 309-328.  
 
Tomppo, E., Nilsson, M., Rosengren, M., Aalto, P. and Kennedy, P. 2002. Simultaneous use of Landsat-

TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass. 
Remote Sensing of Environment 82:156-171. 

223 



 

 
Tomppo, E. and Halme, M. 2004. Using coarse scale forest variables as ancillary information and 

weighting of variables in k-nn estimation: a genetic algorithm approach. Remote Sensing of 
Environment 92: 1-20. 

 
Topographic Database of Finland. 1998. The National Land Survey of Finland. Helsinki. Finland. 

http://www.nls.fi/kartta/maps/topodb.html. 
 
Trotter, C.M., Daymond, J.R. and Goulding, C.J. 1997. Estimation of timber volume in a coniferous 

plantation forest using Landsat TM. International Journal of Remote Sensing 18: 2209-2223. 
 
USGS, 2005. LANDSAT PROJECT. http://landsat7.usgs.gov/slc_enhancements/ 
 
Wallerman, J., Vencatasawmy, C.P. and Bondesson, L. 2003. Spatial simulation of forest using Bayesian 

state-space models and remotely sensed data. In: Wallerman, J. 2003. Remote sensing aided spatial 
prediction of forest stem volume. Acta Universitatis Agriculturae Sueciae, Silvestria 271. 

 

TOMPPO 224



 

© 2006 Springer. Printed in the Netherlands. 
 
 

CHAPTER 13 

CORRECTING MAP ERRORS IN FOREST 
INVENTORY ESTIMATES FOR SMALL 

AREAS  

MATTI KATILA 
Finnish Forest Research Institute, Finland 

13.1 INTRODUCTION 

Digital maps and satellite images are the most commonly available sources of 
auxiliary data for use in forest inventories. These sources have been used in 
traditional sampling-based inventories to delineate the inventory area (Chapter 11) 
or as a part of the sampling design (Chapter 2), and in multisource forest inventories 
they are used to obtain estimates for smaller areas than when employing pure field 
data only (Chapter 12). Topographic maps are useful for separating forestry land 
from water and other land use classes, but the maps are seldom up to date, there are 
locational errors and land use classes on the map that do not correspond to those in 
the field plot data.  Errors also arise during the post-processing of map data, e.g. 
while rasterizing small or narrow map themes to coarse-resolution raster images 
(Katila et al. 2000).  
 It can be seen from the confusion matrix between the Finnish national 
forest inventory (NFI) field plots and numerical map data (Table 13.1) that the 
proportion of forestry land based on the map data is overestimated (row sum hn per 
column sum ln ), with field plots truly belonging to forestry land (first column) 
distributed over all the map-based land use classes. The bias in the land use class or 
other areal cover type estimates obtained from remote sensing or map data can be 
corrected by means of the error probabilities contained in the confusion matrix  
(Czaplewski and Catts 1992, Walsh and Burk 1993), the field sample employed 
being based on a statistical sampling design (Card 1982). Two common statistical 
calibration estimators (Brown 1982) have been used in remote sensing  
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applications: classical calibration (Hay 1988), introduced by Grassia and Sundberg 
(1982), and inverse calibration (Card 1982), introduced by Tenenbein (1972).  

Table 13.1 Distribution of land use classes among field plots by map strata in an area in 
Western Finland. 

land use class l  
Forestry 
land 

Arable Built-up 
etc. 

Water Total 

stratum h % ,h ln  % ,h ln  % ,h ln  % ,h ln  % hn  

Forestry 
land 

93.6 4709 2.0 103 3.9 194 0.5 25 100.0 5031 

Arable   3.0   37    95.6 1198   1.4   18    0   0    100.0 1253 

Built-up 
land and 
roads  

21.7   81  14.2  53    63.8 238    0.3   1  100.0  373 

Water  0.5   5     0.4  4     0.4   4    98.8 1025   100.0 1038 

Total  % / 
ln  

62.8  4832   17.7 1358    5.9  454   13.7 1051 100.0 7695 

 
 In the following examples a calibration method is used to reduce map errors 
in the Finnish multi-source national forest inventory (MS-NFI) small-area estimates 
(Katila et al. 2000). The method is based on inverse calibration which is  is extended 
to the field plot weights obtained by k-nearest neighbour estimation (chapter 12.3).  

13.2 LAND USE CLASS AREAS 

The NFI estimates for large areas, or regions, in Finland are based on field data only, 
whereas the municipality-level (small-area) estimates are determined by the MS-NFI 
method, using satellite images and digital map data (chapter 12.3). The area of 
forestry land in the MS-NFI is delineated based on the numerical map data, and in 
some cases from satellite image data (Tomppo 1991). 
 Calibration of map errors in the NFI estimates is based on the confusion 
matrix between the NFI land use classes of the field sample plots and the 
corresponding classes obtained from map data for a large region. In the example, the 
field plots and the inventory area were stratified into four main land use classes 
(Table 13.1) and the proportion of land use class l within each map stratum h was 
first estimated in terms of the plot count ratio 

 ,
,

ˆ h l
h l

h

n
P

n
=   (13.1) 
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,

ˆ
l h l h

h
A P A=∑ , (13.2) 

where hA  is the area of map stratum h. 
 *

lA  is the unbiased post-stratification estimator for the region. If we can 
expect the map errors to be evenly distributed over the whole region, the proportions 
estimated for the large region can be used to calibrate the land use class estimates for 
small areas, too. This leads to synthetic estimation (chapter 7.2), where it is assumed 
that the small areas have the same characteristics as the large area to which they 
belong (Gonzales 1973). Ratios computed by municipalities are too variable, and for 
this reason a need arises for specific small-area estimation. The calibrated area 
estimator is then obtained by summing the corresponding proportions of the 
municipality-level stratum areas: 

 *
, , ,

ˆ ,U l h l U h
h

A P A=∑   (13.3) 

where hUA ,  is the area of stratum h in a particular municipality U. The properties of 
the synthetic municipality-level estimators (eq. 13.3) depend greatly on the 
homogeneity of the map strata with respect to their land use class distributions: if the 
true proportions lUh

P ,  were constant for all municipalities within a region, then the 
estimators would be unbiased. Calibration by reference to the confusion matrix in 
Table 13.1. reduces the forestry land area estimates for the municipalities in the 
given area in Western Finland (Fig. 13.1).  

 
Example 13.1  
 
Area of forestry land in the defined area in Western Finland according to map data: 
7973 km2 

 
Calibrated area of forestry land:  
0.936 ·7973 +  0.03·2383 + 0.217 · 632 + 0.005 · 1815 =  7680 km2  
 
Area of forestry land in the municipality of Jalasjärvi according to map data:  38 127 
ha 
 
Calibrated area of forestry land in the municipality:  
0.936 · 38127 +  0.03 ·10666 + 0.217 · 1601 + 0.005 · 441 =  36356 ha 

 
 

calculated over the entire region. The calibrated estimate for land use class l is  

227   CORRECTING MAP ERRORS IN NFI  



 

Figure 13.1 Percent difference between calibrated and uncalibrated MS-NFI estimates for the 
area of forestry land (km2) in each municipality in the given area in Western Finland plotted 

against the uncalibrated estimates. 

13.3 CALIBRATED PLOT WEIGHTS  

Map errors, or more precisely, errors in the estimates of the areas of forestry land, 
affect the MS-NFI estimators for municipalities. The forest parameter estimates are 
weighted sums of field plot data, i.e. field plot weights piw ,  for pixel p defined by k-
NN estimation and their sums Uic ,  over the computation unit (municipality) U. The 
sum of field plot weights over a computation unit is equal to the area of forestry land 
based on map data (chapter 12.3). Calibration of these weights for the map errors is 
not a straightforward matter in an MS-NFI context, essentially because non-forestry 
land field plots are not employed in the MS-NFI estimation procedures and because 
the map strata do not correspond exactly to the NFI land use classes. A heuristically 
derived method for calibrating the field plot weights was proposed by Katila et al. 
(2000), in which the sum of the calibrated weights for  computation unit U is equal 
to the calibrated forestry land area estimator *

,FRYLUA . 
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Figure 13.2 Two types of map error in small-area estimates. 

 We must deal with two types of error attributable to map errors (Fig. 13.2). 
First, the contribution of pixels which are falsely classified as forestry land on the 
basis of the map data must be eliminated (type (i) error, Fig. 13.2). The contribution 
of each non-forestry land use class l is estimated from the proportion given by the 
confusion matrix and area of the forestry land (FRYL) stratum  

 , , , ,
ˆ ˆ
FRYL l U FRYL FRYL l i U

i
P A P c= ∑ . (13.4) 

 Since there is no direct way of estimating the field plot weights piw ,  
reliably for the forestry land stratum pixels p that actually belong to land use class l, 
this is based on the assumption that they are on average similar to the pixels in the 
map strata which best represent land use class l, e.g. the arable land map stratum and 
the NFI arable land use class. The union of the map strata which represent land use 
class l  is denoted by h(l). The pixel weights piw , of the field plots are determined for 
all pixels p within these strata in the same manner (k-NN) as for those within the 
forestry land stratum in the ordinary MS-NFI (chapter 12.3). The average weight of 
a field plot on pixels whose actual land use class is l is then estimated by 

 .
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)h(
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,

, ∑
=

i
Ui

Ui

Ui

lh

lh

l c
c

w  (13.5) 

To account for map errors in the other direction (type (ii) error, Fig. 13.2), that is, for 
pixels in the non-forestry land strata which actually belong to forestry land, it is 
assumed that in each computation unit they are on average similar to the pixels in 
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the forestry land stratum of that unit. This leads us to scale the downward-calibrated 
weights up by the area correction factor  

 ( ), ,* *
, ,

, ,

ˆ( )
ˆ

h l

FRYL

h FRYL i Uh i
U FRYL U FRYL

FRYL FRYL i Ui

P c
A A

P c
= ∑ ∑

∑
,  (13.6) 

where the nominator is the calibrated small-area estimate for FRYL and the 
denominator the calibrated FRYL area for the FRYL stratum alone. As a result, the 
calibrated weights are 
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ˆ .
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U FRYL
i U i U FRYL l U FRYL i U

l FRYLU FRYL

A
c c P A w

A ≠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑  (13.7) 

It should be noted that although these weights add up to *
,FRYLUA , the positivity of the 

individual weights is not guaranteed. 
 The calibration typically increases the mean volume estimates and reduces 
the forestry land area estimates for small areas if forestry land is overestimated by 
the map data (Fig. 13.3, Example 13.2).   
 

Figure 13.3 Percent differences between calibrated and uncalibrated MS-NFI estimates for 
each municipality plotted against the uncalibrated estimates, mean volume (m3/ha), Western 

Finland. 
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The following will serve as a simplified confusion matrix (c.f. Table 13.1) between 
field plot land use classes (forestry land and non-forestry land) and land use classes 
based on map data: 
 

 NFI land use class l 
Stratum h Forestry land % Non-forestry land % Total % 
Forestry land 93.6 6.4 100 
Non-forestry land  4.6 95.4 100 

 
Data derived from 10 field plots were used to estimate the forestry parameters for 
computation unit U : area of FRYL, 74.30 ha; area of non-FRYL, 8.95 ha. 
 
For type (i) error (eq. 13.4), area of non-FRYL to be removed from FRYL: 

FRYLUlFRYL AP ,,
ˆ  = 0.064·74.30 ha = 4.76 ha. 

 
For type (ii) error, (eq. 13.6), 

*
,FRYLUA / *

,FRYLU FRYL
A   =  (0.936·74.30 ha + 0.046·8.95 ha)/(0.936·74.30 ha)= 1.006. 

 

 

Plot 
weight 

on 
FRYL 

Uic ,  

Plot 
weight 

on 
non-

FRYL 
)(, lhUic  

Field 
plot 

volume 
 

vi 

Proportion   
of field plot 

to non-
FRYL area  

h( ), li Uw  

Weight to be 
removed 

(eq. 13.4 and 13.5) 

( ), , ,
ˆ

h lFRYL l U FRYL i UP A w  

Calibrated 
weights 

on FRYL 
(eq. 13.7) 

*
,Uic  

Plot 
no. ha ha m3/ha  ha ha 

1 4.03 1.30 105 0.146 0.693 3.36 
2 9.27 2.29 0 0.256 1.216 8.10 
3 6.87 0.24 74 0.027 0.129 6.78 
4 1.65 0.17 32 0.019 0.091 1.57 
5 21.57 0.39 48 0.043 0.206 21.49 
6 2.67 0.21 66 0.024 0.112 2.57 
7 4.20 0.19 217 0.022 0.103 4.13 
8 12.63 0.38 17 0.042 0.201 12.51 
9 3.11 2.80 0 0.313 1.487 1.64 

10 8.29 0.97 0 0.109 0.517 7.82 
Sum 74.30 8.95 - 1 4.76 69.96 
 
Original mean volume estimate:  ∑∑ =

i
Ui

i
iUi cvc ,, 44.7 m3/ha 

Calibrated mean volume estimate:  ∑∑ =
i

Ui

i

iUi cvc *
,

*
, 45.9  m3/ha 
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Example 13.2 Calibrating the plot weights. 



 

 
 The small-area estimates obtained from the Finnish MS-NFI can be 
validated against the pure field inventory estimates and their standard errors for sub-
regions (groups of municipalities). In the area concerned here, calibration of the MS-
NFI estimates did not cause reveal any systematic errors in the forestry land area and 
volume estimates relative to the pure field data estimates (Fig. 13.4). The corrections 
in most groups of municipalities bring the estimates closer to those of the field 
inventory.  

 

Figure. 13.4 Groups of municipalities: pure field data estimates ± double standard error, MS-
NFI estimates and calibrated (cMS-NFI ) estimates, mean volume (m3/ha), Western Finland. 

 
 Despite the rather simple idea of the calibration, it is quite laborious when 
implemented in the MS-NFI, as the calculation is more complicated than in the 
original MS-NFI and some field plots are given negative weights. Another method, 
called stratified MS-NFI, has been presented for reducing the effect of inaccurate 
map data on forest resource estimates (Katila and Tomppo 2002), in which k-NN 
estimation is applied by strata. All the field plots within each map stratum, 
irrespective of their land use class in the field measurements, are used 
simultaneously for estimating the areas of the land use classes and forest variables 
within the particular stratum. Both of these methods have been employed in the 
operative MS-NFI in Finland (chapter 12). 
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CHAPTER 14 

MULTIPHASE SAMPLING 

SAKARI TUOMINEN, MARKUS HOLOPAINEN AND SIMO 
POSO 

Finnish Forest Research Institute, University of Helsinki, Finland 

14.1 INTRODUCTION 

Forest inventories are often required to cover large areas, so that the measuring of 
every tree in the field for the necessary data acquisition would be unrealistic. 
Sometimes, simple systematic field sampling may be a good method for data 
collection, but even so the walking distances from one sampling unit to another may 
become long, increasing the inventory costs. Multiphase sampling may offer a 
possibility for keeping inventory costs moderate. This requires the availability of 
suitable auxiliary (ancillary) data, which should fulfil the following two 
requirements: 
a) the auxiliary data for a sample unit should be distinctly correlated with the field 
data for the same unit, and 
b) the unit costs of the auxiliary data should be markedly less than that of field data. 
 Potentially useful sources of auxiliary data are remote sensing imagery 
(aerial photographs, satellite and radar imagery), maps and estimates from old forest 
inventories, for example. 
 It is also desirable that the auxiliary data should cover the whole inventory 
area homogeneously, i.e. the level of correlation between the field and auxiliary data 
should not vary much within the inventory area.  
 The units employed in multiphase sampling are the same at all levels. Thus 
Schreuder et al. (1993) give the definition “A sampling design where the same size 
of sampling unit is used at each phase (level) of sampling, but fewer units are 
selected at each succeeding phase.” In the practice, however, “same size” must be 
interpreted somewhat loosely. If the sampling unit is a circular plot in the field, for 
example, the corresponding unit on the aerial photograph or satellite image may be a 
pixel or combination of pixels, with the idea that the correlation between the data 
from the various phases should be as close as possible. Alternatively, old inventory 
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data on a forest stand can be used as auxiliary data for the first phase units located in 
the area of the stand. 
 Two-phase sampling comprises essentially two techniques (Cochran 1977): 
double sampling for stratification and double sampling for regression. Both 
techniques have been used in forest inventories for several decades. The basic idea 
in both cases is to improve the estimation efficiency for population parameters, 
while the methods proved to be quite inflexible for estimating local parameters. A 
special application called a grouping method was developed to cope with this 
problem and to answer the question of how to use aerial photographs in forest 
inventories (Poso and Kujala 1971, Poso 1972). Later, when first-phase data became 
widely available in digital format, research work was carried out to develop two-
phase sampling to meet inventory needs on both the whole population and the local 
level and to utilise the potentials of satellite imagery (Poso et al. 1984). The 
associated software was created by Waite (1993) and Wang et al. (1997). In 
addition, the k-nearest neighbour (k-nn) method was developed especially for 
meeting the needs for local data (Kilkki and Päivinen 1987, Muinonen and Tokola 
1990, Tomppo 1993). 
 All types and sizes of sampling units are possible when applying 
multiphase sampling. Very small units probably produce low correlations between 
the phases and very large units become expensive to measure in the field and would 
often fall into the area of more than one forest stand. The problem of sample unit 
selection will not be discussed further in this chapter.  
 Classical sampling theory usually requires random location for the 
sampling units. That is very rarely achieved in reality, however. The first-phase 
sample should cover the inventory area as evenly as possible to make sure that every 
part is represented. Regardless of the type of multiphase application, the first-phase 
sample can be drawn assuming a square grid which is laid over the inventory area so 
that each square defines the location of a sample unit. Maps with co-ordinate lines 
provide a good tool for this, because each first-phase unit can be identified 
individually by its co-ordinate values. 
 Under the present assumptions, all applications of multiphase sampling 
require field data, i.e. data which fulfil the requirement that all variables of interest 
should be measured with the desired accuracy. Great importance should be laid on 
how the sample units are selected for field measurements, as stratification of the 
first-phase units into homogeneous strata on the basis of the first-phase data would 
make it possible to allocate the field units more efficiently.  

14.2 DOUBLE SAMPLING FOR STRATIFICATION WHEN ESTIMATING 
POPULATION PARAMETERS 

The idea of double sampling, or two-phase sampling, was introduced by Neyman 
(1938) and was first applied to a forest inventory in the USA (Bickford 1952, 1953, 
1961, Bickford et al. 1963). The statistical basis of the method is explained by 
Cochran (1963, 1977).  
 For estimating population parameters such as mean volume and the 
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proportion of forest in an area, double sampling (two-phase sampling) for 
stratification, as described by Cochran (1977), may turn out to be the best choice. 
With local data gaining in importance, other double sampling applications will 
probably become more attractive, too (cf. Section 14.4.).  
 Stratification of the first-phase units to form strata that are as homogeneous 
as possible in relation to the variables of interest is central to the successful 
application of this method. One or more of the alternative stratification procedures 
listed below can be employed: 
a. Stratification of the inventory area before drawing the first-phase sample (e.g. 

into administrative units, forested and non-forested land or mineral soil and 
peatland from maps, resulting in area stratification) 

b. Stratification of the first-phase units before the drawing the second-phase (field) 
sample (i.e. pre-stratification). This makes it possible to draw the field sample in 
the optimal way. 

c. Stratification of the first-phase units after drawing the field sample (i.e. post-
stratification). This means that stratification is used only for applying the two-
phase sampling estimators. 

d. Stratification of the first-phase units for optimising estimation of the variable of 
particular interest (separate stratification for each variable of interest).  

 The difference between the concepts of stratum and area class should be 
understood. Distribution of the total inventory area into area classes (e.g. forested 
and non-forested areas, clear-felled areas and other areas) may be the main objective 
of the inventory and stratification the tool employed to attain this objective 
efficiently. In some cases, the aim of the stratification is to produce strata that 
coincide with the area classes (straightforward interpretation of area classes). The 
fieldwork can then be directed towards checking the compatibility and finding 
models to change the stratum areas into class areas.  
 The number of auxiliary data sources, and especially the auxiliary data 
variables (features), may become very high. Satellite imagery with six channels, for 
example, produces six auxiliary data values and two satellite images (e.g. in change 
monitoring) would produce 12 values for each first-phase unit. Adding other 
auxiliary data sources would further increase this number. One problem is how to 
weight the various auxiliary data sources and which procedures to use for successful 
stratification. One way to deal with the problem is to transform the original auxiliary 
data to principal components (Singh and Harrison 1985) and to utilize the latter 
instead of the original variables for stratification purposes. Where the variables in 
many auxiliary data sources are highly intercorrelated (e.g. the channel values in 
satellite imagery), principal component values do not correlate with each other.  
 The efficiency of stratification with double sampling is closely linked to 
concept of variance within strata versus total variance. The smaller the ratio of 
within-strata to total variance, the more efficient will be a forest inventory based on 
double sampling.  
 
 Double sampling, like other multiphase applications, can be divided into 8 
steps (some recommendations are included): 
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Determination of the inventory area using the official map co-ordinate 
system is preferable.  

2. Generation of the first-phase sample for the inventory area (Figure 14.1.b).  
The first-phase sample is usually created automatically by the computer and 
the first-phase data are usually in digital format. The size of the first-phase 
sample depends on the objective of the inventory, but the number of units is 
usually high. 

3. Acquisition of auxiliary data for the first -phase sample units. 
The best auxiliary data are closely correlated with the forest variables of 
interest, and their acquisition cost is low. Data produced by visual 
interpretation of aerial photographs and data from old management 
inventories are usually fairly well correlated with the actual forest 
characteristics, but they are often more expensive than auxiliary data based 
on digital or digitised remote sensing material. 

4. Stratification of the first-phase sample units (Figure 14.1.c). 
Stratification before drawing the field sample is recommended, i.e. all the 
relevant first-phase data are acquired for the first-phase sample units and 
the units are then stratified into as homogeneous strata as possible with 
respect to the forest variables of interest (see also Chapter 2).  

5. Determining the number of second-phase sample units, i.e. field plots, and 
allocating these to the strata.  

The number of second-phase sample units is usually decisive for the 
accuracy of population parameters in inventories (cf. Eq. 14.12). All 
inventory results, such as distributions of forest parameters, are based on 
the characteristics of the second-phase sample units, and if a characteristic 
is not represented among these units it will not be present in the inventory 
results either. The number of second-phase units is a compromise between the 
desired level of accuracy and the available monetary and professional resources. 

6. Drawing the field plots. (Figure 14.1.d) 
After the number of second-phase sample units has been determined, a 
decision has to be made on how the units are to be allocated to the various 
strata. The basic alternatives are proportional and optimal allocation (see 
also Chapter 2). 
 
a) Proportional allocation is recommendable if the field variables in each 
stratum are regarded as equally important for the inventory and the within-
stratum variances and the unit cost of the second-phase sample units do not 
vary too much from one stratum to another. In a multipurpose forest 
inventory it is often difficult to evaluate the importance of each forest 
variable, and consequently proportional allocation is preferable. Complete 
proportionality cannot be attained when only integers are acceptable as 
values for mh. A well-performed proportional allocation produces a field 
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mwm hh = ,  (14.1) 

where mh is the number of second-phase units in stratum h (closest integer) 
and wh is the proportion the total area represented by stratum h, i.e. 

n
nw h

h = , number of first-phase units in stratum h divided by total number 

of first-phase units. 
 

plot sample, on the basis of which statistical means and variances can be 
calculated directly by simple arithmetic procedures. The formula for 
allocating the total number of field plots, m, to strata when proportional 
allocation is employed is 
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Figure 14.1 The two-phase sampling procedure.  



 

 

A field sample plot should usually be measured in the format which fulfils the GIS 

geocoordinate system and each tree on the plot should be mapped in terms of polar 
co-ordinates, for example. 
 The estimators for quantitative variables, e.g. mean volume, and sampling 
error variance are (see also Chapter 2) 

 ∑
=

=
l

h
hh ywy

1
 (14.3) 

 
and 
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requirements: i.e. the location of each plot should be determined using the official 

b) Optimal allocation implies that those strata which are regarded as most 
important, i.e. those that have the highest variances or the lowest unit costs, 
should be assigned more second-phase sample units than would be 
suggested by proportional allocation. This requires the person operating the 
method to have a priori knowledge of the properties of the strata. If unit 
costs ch and the standard deviations sh vary between strata, then optimum 
allocation as obtained with 
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may be recommendable.  
7. Measurement of the field plots. 

As field data (i.e. ground truth data) are considered accurate, great effort 
should be expended on the location and measurement of each plot. 
Mistakes in location reduce the correlation between the auxiliary and field 
data and hence detract from the accuracy of the inventory. The weight of 
one field plot is usually fairly large, corresponding to the area it represents, 
i.e. its weight is  ah/mh, where ah refers to the inventory area belonging to 
stratum h. 

8. Estimation of population parameters and their accuracy. 
The best and most consistent estimates for the total population are those 
based on single tree measurements in the field. Each tree in the sample 
should be weighted with the inverse value of its sampling probability. For 
local estimation, stand characteristics, e.g. the distribution of the plot area 
by site classes or volume, m3/ha, should be calculated for every field 
sample plot separately. 
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A more precise estimator for the variance (cf. Schreuder et al. 1993) would be  
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where wh is the proportion of first-phase units in stratum h, mh is the number of field 
plots in stratum h, l is the number of strata and N is the size of the population. N 
should be taken here as the total inventory area divided by the area of one sample 
unit, and g1=(N-n)/N-1). 
 The last term in the variance of the mean estimator refers to the fact that the 
first-phase sample does not entirely represent the population. The formula is correct 
if the first-phase sample is drawn at random, but the sample probably represents the 
population better if a square grid model has been employed for defining the first-
phase sample, and consequently variance estimators that assume random sampling 
lead to overestimation. 
 Categorial variables such as site index and development stage related to 
rotation are also usually of great interest in forest inventories. Note Pj = proportion 
of variable j = Nj/N. The corresponding estimator is: 

 ∑= jhhj pwp , (14.6) 

where pjh = mhj/mh, and the estimator for the variance vpj is 
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A key measure of the usefulness or efficiency of the stratification is the ratio 
between the average variance within the stratum and the total variance, i.e.,  

 )(/)( 22 totalsaverages yyh
. (14.8) 

The within-stratum variance may vary substantially from one stratum to another. 
The average variance is a weighted value, i.e. 
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The smaller the ratio (14.8.) the more efficient is the stratification. 
 There are numerous types of auxiliary data, and there may not be any 
general rule for technical stratification procedures.  

241 



 

14.3 DOUBLE SAMPLING FOR REGRESSION 

Assume a linear regression, y=a+bx (y refers to second-phase data, field measured 
data, a to a constant for the regression line, b to the coefficient of regression, and x to 
the first-phase data). If the first and second-phase sample units are drawn by 
probabilistic design, the mean can be estimated as (Cochran 1977) 

 )( mnmlr XXbyy −+≈ , (14.10) 

where my is the mean based on the second-phase sample units, b is the regression 
coefficient, nX is the mean of the first-phase data for n sample units and mX the 
mean of the first-phase data for m sample units.  
 The variance of the mean can be estimated as (Cochran 1977) 
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where r is the coefficient of correlation between x and y.  
 If the unit cost of the first-phase sample is significantly high, as in the case 
of ocular photo interpretation, and the population parameters are of greatest interest, 
then the optimum ratio of first to second-phase sampling units, n/m, is roughly 
(Cochran 1977) 
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where f is the unit cost ratio, second-phase unit/first-phase unit, and r is the 
correlation coefficient.  
 The number of second-phase units depends on the targeted costs of the 
sampling procedure and the accuracy requirement. If CT is the money allocated to 
sampling, c1 the unit cost of the first-phase sample and c2 the unit cost of the second-
phase sample, then 

 ))/(/( 12 cmncCm T += .  (14.13) 

If the regression model yi = f(xi) +ei has been solved for m field and first-phase 
plots, then the estimate for any of the first-phase sample units is obtained by 
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  (14.14) 

where j refers to any of the first-phase plots. 
 The residuals ei, i.e. the differences between the estimated and the true or 
measured values, can be calculated only for plots measured in the field. The Mean 
Square Error (MSE)  
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1

2

−−
=

∑
=
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e
MSE

m

i
i

, (14.15) 

where m is the number of field plots and p+1 is the number of explanatory variables, 
including the intercept term (see also Chapter 6).  
 MSE values can be used to estimate the variance and standard error of the 
mean  

 
m

MSEvy ≈ , and 
m

MSEsy ≈ . (14.16) 

14.4 FOREST INVENTORY APPLICATIONS OF TWO-PHASE SAMPLING  

For forest management purposes, a forest inventory is required to produce results in 
the form of forest statistics and thematic maps (map-format estimates). The interest 
in local parameters (forest characteristics for relatively small geographical areas 
such as sample plots, forest stands or compartments) is likely to lead to a fairly 
dense grid of first-phase sample units and a special estimation procedure. A scheme 
for a multi-source forest inventory application utilizing several data sources and 
two-phase sampling for estimating local (stand) forest characteristics is presented in 
Figure 14.2. 

14.4.1 The grouping method – two-phase sampling for stratification with one 
second-phase unit per stratum 

The “Grouping Method” is a modification of the original concept of double 
sampling for stratification as described by Poso and Kujala (1971) and Poso (1972) 
in order to meet the multi-purpose and flexibility characteristics required by national 
forest inventories in Finland.  
 The method allows unbiased estimation of means and distributions in a 
forest population employing the same estimators as presented for double sampling. 
In addition, estimates can be obtained for any sub-population of the first-phase 
sampling units, on account of the fact that one second-phase sample unit per stratum 
is drawn and measured in the field. Inventory results, i.e. stand variables, are 
calculated individually for each second-phase sample unit and then transferred as 
such to each first-phase sample unit belonging to the same stratum. Consequently, 

ˆ ( )j jy f x= , 
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all first-phase sample units are supplied with formally complete inventory data, and 
inventory results can be calculated for any desired set of sample units.  

 

Figure 14.2 An example of the two-phase sampling procedure for estimating stand-level forest 
characteristics. 

 Since only one second-phase sample unit is drawn per stratum, the within-
stratum variances cannot be estimated without specific arrangements. For this 
purpose the strata can be combined together into larger groups on the assumption 
that the variances in the strata belonging to a particular group are equal. The 
variances are then estimated by studying the distributions of values in the field plots 
belonging to the group. After the within strata variances have been estimated, the 
estimators produced by double sampling for stratification are applicable. 
 The method was applied to national forest inventories in Northern Finland 
in association with aerial photograph interpretation in 1970-1980. Earlier, 
stratification of the first-phase sample units had been used for drawing the field 
sample, together with restricted random drawing to concentrate the fieldwork in 
specific areas. In the case of extensive forest areas, this procedure made it possible 
to minimize travel costs and markedly improve the efficiency of the inventory. In 
later applications (Mattila 1985) the field plots were sampled in clusters 
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however, which had a detrimental effect on the accuracy of the inventory (Poso and 
Kujala, 1978).  

14.4.2 Stratification with mean vector estimation 

This method resembles the grouping method in imputing the per stratum estimates 
for each first-phase sample unit, but the estimates are usually based on more than 
one second-phase sample unit. Estimation of local parameters is based on estimates 
generalised for each first-phase sample unit. The estimation of population 
parameters should in general be based on single-tree field measurements with 
weights inversely proportional to sampling probability. This can be regarded as an 
application of two-phase sampling for stratification.  
 Generalising of the stratum data on the basis of more than one field plot per 
stratum leads to a disadvantageous averaging problem, in that the proportions of 
very high and low values in the distributions of forest attributes become 
underestimated. This may be illustrated by a simple example. 

 
Example 14.1 
 
The data consist of field plots belonging to two strata, say Stratum 1 and Stratum 85. 
Only site index, main tree species and volume, m3/ha, are included in this 
illustration. It is assumed that three plots are measured in the field for both strata. 
The average values show the strata estimates, which are to be imputed to the first-
phase plots in the relevant strata. The average values for site index, tree species and 
volume are the median, mode and arithmetic mean, respectively. 

Table 14.1 Mean vector consisting of different types of forest variables. 

 Stratum 1 Stratum 85 

Plot Site Tree sp. Vol. Site Tree sp. Vol. 

1. 1 1 0 2 2 185.4 

2. 1 1 8.5 2 2 450.1 

3. 3 3 6.5 1 1 305.5 

Aver. 2 1 5.0 2 2 313.7 

 
All of the first-phase sample units belonging to Stratum 1 will be assigned the values 
2 for site index, 1 for tree species and 5.0 for volume. The corresponding values for 
the first-phase plots belonging to Stratum 85 are 2, 2 and 313.7. 

 

independently of the first-phase data and stratification was carried out after 
measuring the field plots. The sizes of the strata varied greatly in this application, 
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not, probabilities based on the presence of the attribute among the field plots can be 
applied. 
 The more sample plots per stratum are measured in the field, the more 
accurate are the estimates, but the optimum number of field plots per stratum is 
difficult to estimate. The average number in most applications ranges from 5 to 10. 
If the desired total number of field plots (second-phase units) has been determined, 
the desired number of field plots per stratum can be reached by regulating the 
number of strata. It is also often advisable to use geographical distances in the 
stratification in addition to the auxiliary data. In other words, the basis for 
stratification of the first-phase units should include the auxiliary (first-phase) data 
and information about geographical location. The objective is to avoid placing 
sample plots that are geographically very distant from each other in the same 
stratum.  
 More detailed estimates would be obtained if the calculations could be 
based on single tree measurements instead of mean vectors for the field plots; 
weighting the characteristics of each tree by the inverse of their sampling probability 
in the stratum. The procedure is the same as was described in connection with 
double sampling (14.2). Aggregation of the detailed stratum data at the level of the 
whole population would be unbiased and free of the averaging effect. 

14.4.3 K nearest neighbour method with mean vector estimation 

Another estimation method that can be employed in connection with two-phase 
sampling is the k-nearest neighbour (k-nn) method. This is based on the fact that 
each first and second-phase sample unit has an exact location in the n-dimensional 
feature space defined by the first-phase (auxiliary) data. Each auxiliary data variable 
forms one dimension in the feature space. Estimation of a first-phase unit is then 
based on the k (usually 3-10) field plots that are nearest to the first-phase plot in the 
feature space. The k field plots may be given different weights depending on their 
distances away from the unit in the feature space.  
 K-nn estimation was introduced by Kilkki and Päivinen (1987) as a 
reference sample plot method in which k is 1, and it has later been extensively used 
in connection with the Finnish national forest inventories (Tomppo 1993, see 
Chapter 12). K-nn estimation is based on a heuristic model and the estimation is not 
design-based. It is not possible to control the weight of an individual field plot (at 
the population level) in the estimation procedure. Thus, k-nn may produce biased 
results if aggregated for an entire population. 
 The estimates for numerical (ratio-scale) forest variables can be calculated 
as average values of the variables of the nearest neighbours. Equations for 
unweighted (eq. 14.17) and inverse distance-weighted (eq. 14.18) k-nn estimates are 
shown. 

 

 The estimates for categorial variables can be calculated as modes (nominal 
scale variables) or medians (ordinal scale variables) of the field observations within 
the stratum. For binary-type variables, where a certain attribute is either present or 
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and 

 ∑
=
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1
ˆ , (14.18) 

where ŷ is the estimate for variable y , yi is the measured value of variable y in ith 

nearest neighbour plot, and k is the number of nearest neighbours,  
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z
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i dd
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is the weight for plot i, where typically z ≥ 1 and 
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is the Euclidean distance from the ith nearest neighbour, xobs,est is the auxiliary data 
value for the observed and estimated plots and p is the number of auxiliary data 
variables (in the feature space). When d = 0, some positive non-zero value close to 0 
is given to d. 
 For ordinal scale (categorial) forest variables (such as forest site) the 
medians of the nearest neighbours can be employed for estimation purposes, while 
for nominal scale variables (e.g. dominant tree species) the modes of the nearest 
neighbours are appropriate (refer to Table 14.1) For binary-type attributes, the k-nn 
estimates can be calculated as probabilities (eq. 14.24): 

 
k

y
P

k

i
i∑

== 1   (14.21)

  
  
  

where P is the probability of the presence of variable y and yi = measured value of 
variable y in the ith nearest neighbour plot (0 or 1). 
 In general, when a large number of field plots are available for k-nn 
estimation, an increase in the number of nearest neighbours (value of k) will 
improve the accuracy of the estimates (Tokola et al. 1996). On the other hand, k-nn 
estimation is affected by a similar averaging problem to that explained in 14.4.2, 
except when k =1. The higher the value of k, the more averaging occurs in the 
estimates. Thus, the optimal value of k is a trade-off between the accuracy of the 
estimates and proportion of the original variation (among the field plots) retained in 
the estimates.  

kyy
k

i
i /ˆ

1
∑

=
=   (14.17) 
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14.5 MULTI-PHASE SAMPLING WITH MORE THAN TWO PHASES 

The use of more than two phases has been discussed in some research papers (e.g., 
LaBau and Winterberger 1989, Päivinen 1994), and estimators for a population with 
more than two phases of sampling have been presented by Jeyaratnam et al. (1984). 
The phases could consist of data from satellite images (first phase), aerial 
photographs (second phase) and field measurement (third phase), for example. The 
Alaska Integrated Resource Inventory System (AIRIS) even tested a four-phase 
inventory design involving satellite imagery as the first phase, high altitude aerial 
photography as the second phase, low altitude colour photography as the third phase 
and field sampling as the fourth phase (LaBau and Winterberger 1989). The results 
were disappointing, however, as the correlations between the dependent variables of 
interest and their covariates were not satisfactory (Schreuder et al. 1993).  
 Another possibility for handling several data sources is to apply two-phase 
sampling separately with alternative sources: satellite imagery + field data, or aerial 
photographs + field data. Final estimates can then be calculated by a weighted 
procedure in which the weights are inversely propotional to the estimated error 
variances for the data sources (Poso et al. 1999). It has been shown that the use of 
more than one auxiliary data source together with field data improves the estimation 
accuracy (Poso et al. 1999). 

14.6 ESTIMATION TESTING 

As distinct from ground truth values, estimated forest variables are generally not 
perfectly accurate. Thus estimates should always carry a measure of their accuracy. 
The accuracy of estimates can be tested on sample plots (i.e. field plots) for which 
both estimated and measured values are known. Distinct estimation and test sets 
have been used for this purpose in some cases, but more often a procedure called 
leave-one-out cross validation is applied, where each field plot is estimated 
independently of its ground truth value and the estimated and ground truth values are 
then compared.  
 For numerical variables, estimates of bias and RMSE can be used as 
measures of estimation accuracy.  

 
n

yy
Bias

n

i
ii∑

=
−

= 1
)ˆ(

 (14.22) 

 
n

yy
RMSE

n

i
ii∑

=
−

= 1

2)ˆ(
 (14.23) 

 
y

RMSERMSE *100% = , (14.24) 

TUOMINEN ET AL.  248



 MULTIPHASE SAMPLING 

where yi is the  measured value of variable y on plot i and iŷ  is the estimated value 
of variable y on plot i, iy is the mean of the observed values, and n is the number of 
plots. 
 Estimates of categorial variables can be tested using error matrices (or 
confusion matrices). An example of an error matrix in Table 14.2. involves 100 
sample plots and an estimated variable possessing five categories (a, b, c, d and e) 
each represented on 20 measured plots. 
 The error matrix answers the following questions: 
1. On what proportion of the sample plots is the variable correctly estimated? 
2. What proportion of each class is correctly estimated? 
3. Is the proportion of a certain class over or under-estimated? 
4. Are the estimation errors randomly distributed? 

Table 14.2 Example of an error matrix. 

 Estimated 

Measured A b C D E Total 

A 

B 

C 

D 

E 

12 

2 

1 

0 

0 

5 

15 

3 

0 

0 

3 

3 

13 

9 

2 

0 

0 

3 

9 

5 

0 

0 

0 

2 

13 

20 

20 

20 

20 

20 

Total 15 23 30 17 15 100 

 
Class  Omission   Commission Correct Kappa 

A 

B 

C 

D 

E 

0.400 

0.250 

0.350 

0.550 

0.350 

0.150 

0.400 

0.850 

0.400 

0.100 

0.600 

0.750 

0.650 

0.450 

0.650 

0.093 

0.109 

0.074 

0.058 

0.103 

Total 0.380 0.380 0.620 0.525 
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correct category is a generally used measure of estimation accuracy in the case of a 
categorial variable, although in some situations this proportion can be high even 
though the estimation has not been successful, as in the case where a very high 
proportion of the observed values belong to a single category. It is then 
recommendable to use the kappa value (κ) as a statistical measure, as this indicates 
the success of the classification relative to a random assignment of the observations 
to categories. A general definition of kappa is that given in equation 14.24, and a 
more specific examination is presented by Campbell (1987). 
 

 
e

e

p
pp

−
−=

1
0κ , (14.25) 

where p0 is the proportion of correct estimates and pe the proportion of correct 
estimates in a random classification. 
 The following interpretations have been suggested for kappa (Landis and 
Koch, 1977): 

<0.00  Poor 
0.00 - 0.20 Slight 
0.21 - 0.40 Fair 
0.41 - 0.60 Moderate 
0.61 - 0.80 Substantial 
0.81 - 1.00 Almost Perfect 

14.7 CONCLUDING REMARKS 

The density of the first-phase sample is primarily dependent upon the need and 
purpose of the inventory data. For local information, e.g. forest compartments or 
stands used in forest management planning, a density corresponding to a distance of 
some 20 – 50 m is reasonable, but for large-area inventories the density requirement 
could be lower. If both population and local parameters are of great interest, 
however, and the marginal cost of increasing the number of first-phase sample units 
is low, then it is reasonable to select a high-density first-phase sample. 
 The objective in a forest inventory application may be to obtain estimates 
for the total inventory area or map-form estimates for individual first-phase sample 
units in the inventory area. In the case of forest variables for an entire inventory area 
it is important that the estimates should be unbiased, while in the case of variables 
for individual first-phase sample units, the accuracy at this level is of the greatest 
importance and the extent of the bias is not so important. As local estimates are 
often biased (e.g. due to averaging) it is not advisable to derive the estimates for an 
entire inventory area as sums of first-phase unit estimates. Instead, they should be 
calculated directly on the basis of the original field plot data, weighting each field 
plot by the area it represents. 

The error of omission refers to observations belonging to a certain category and 
erroneously classified in another category, whereas the error of commission refers to 
observations erroneously classified in a certain category while belonging to another. 
Thus their totals are equal. The proportion of observations that are classified into the 
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CHAPTER 15 

SEGMENTATION 

ANSSI PEKKARINEN AND MARKUS HOLOPAINEN 
Joint Research Centre, Italy, University of Helsinki, Finland  

15.1 INTRODUCTION  

The spatial resolution of the RS material available in digital format has continuously 
improved since Landsat 1, and several satellite imaging systems currently provide 
data that has a spatial resolution that is better than 5 metres. Furthermore, the 
availability of aerial imagery has significantly increased thanks to new image 
compression algorithms and the development of web-based services (METRIA 
2003, ILMARI 2003). In addition to aerial photography, very high spatial resolution 
(VHR) data are available from airborne imaging spectrometers (e.g. AISA, CASI) 
and active sensors such as airborne laser scanners (Toposys, ALTM and ILRIS-3D) 
and airborne radars (e.g. CARABAS and GEOSAR). These sources provide 
interesting data for forest inventory applications, but also place new requirements on 
image analysis methods.  

A typical traditional remote sensing aided forest inventory application is 
based on pixel-level image analysis, either unsupervised or supervised. In 
unsupervised applications the pixels are classified into spectrally homogeneous 
groups which are assigned forest characteristics based on a priori knowledge or 
information gathered for the classes in the field. In supervised approaches the 
analysis is usually based on existing field information. If the information has been 
gathered using relatively small field plots, the signature file that serves as an 
interpretation key in the image analysis is compiled by assigning the spectral 
information to the field plots using the particular image pixel on which the plot is 
located. Both of these approaches, unsupervised and supervised, are reasonable if the 
pixels are large enough to cover an area that can be considered “forest”. If the pixels 
are significantly smaller, however, and the object to be analysed consists of several 
image pixels, a pixel-by-pixel analysis is not applicable and a contextual approach is 
required in which the image is divided into spatial entities, i.e. regions,  
 

253 
A. Kangas and M. Maltamo (eds.), Forest Inventory – Methodology and Applications, 253–269. 

 



 

that can be used as basic units instead of pixels (Blaschke and Strobl 2001). These 
regions can be determined with the help of image segmentation. 

15.2 IMAGE SEGMENTATION  

15.2.1 General 

Image segmentation is the division of an image into spatially continuous, disjoint 
and homogeneous regions. More formally, following the notation presented by Pal 
and Pal (1993), if a digital image is presented as 

 [ ]PxQPxQ yxfF ),(= , 

where PxQ  is the size of the image (columns x rows) and 

}1,...,1,0{),( −=∈ LGyxf L  is the set of possible grey-level values LG , image 

segmentation is partitioning of the image F into a set of homogeneous regions iS  
in such a manner that  
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n

i
i

S F
=

=∪  with i jS S = ∅∩ , i j≠ . 

The homogeneity of the regions is controlled with a homogeneity criterion, denoted 
by )( iSP . The criterion has to be true for all unique regions and false for adjacent 
regions. It thus ensures that every region is distinct from the others. More formally:  

( )i jP S S∪  has to be false when iS  is adjacent to jS . )( iSP  can be determined in 
any convenient manner, e.g. it can be set in such a way that a segment may include 
only pixels that carry the same grey-level value. In real-world applications, however, 
the criterion is usually much more complicated and may consist of a set of spectral 
and geometrical rules. 

15.2.2 Image segmentation techniques 

Image segmentation techniques can be classified in many ways depending on the 
level of detail included. Examples of different classifications can be found in 
segmentation reviews (Fu and Mui 1981b, Haralick and Shapiro 1985a, Pal and Pal 
1993b) but from the viewpoint of forest inventory applications a simple 
classification into pixel, edge and region-based methods is sufficient. 

Pixel-based image segmentation methods include image thresholding, 
clustering in the feature space and other methods that rely on pixel-level information 
and employ it in the global feature space. Image thresholding is a pixel-based 
technique in which an image is turned into a binary one in such a way that the 
objects of interest are separated from the background. Selection of the appropriate 
threshold value is usually based on a priori known properties of the object and 
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background. Image clustering can be seen as a multi-dimensional extension of 
thresholding (Fu and Mui 1981a). As both image thresholding and clustering 
methods produce results that may have several spatially discontinuous units that 
carry the same label, the result does not fulfil the definition of segmentation until the 
spatially continuous regions have been identified and re-labelled. This can be done 
using connected a component labelling (CCL) algorithm, also known as clumping 
(Jain et al. 1995).  
 Edge-based image segmentation methods differ significantly from pixel-
based ones. The first phase in all edge-based segmentation algorithms is of course 
detection of the edges. An edge point (pixel) in an image can be defined as: “... a 
point in an image with coordinates [i, j] at the location of a significant intensity 
change in the image.” (Jain et al. 1995). 

Given this definition, it is obvious that, in order to decide whether a pixel is 
an edge pixel or not, one needs to analyse it and its neighbourhood. Edge detection 
generally consists of a) filtering, b) enhancement and c) detection (Jain  
et al. 1995). The filtering step is needed because most of the edge enhancement 
methods are relatively sensitive to image noise and therefore perform better when 
using a smoothed input. The edge enhancement phase is usually carried out with 
specific edge operators that emphasize pixels having significantly different values 
from their neighbours. Most of these operators, such as those known as “Roberts”, 
“Sobel” and “Prewitt”, are based on discrete approximation of the gradient, which in 
the case of images is a two-dimensional equivalent of the first derivative (Jain  
et al. 1995). They usually produce adequate results for most applications, even 
though they typically result in relatively thick edges. If a more precise location of 
the edges is needed, this can be found using second derivative operators such as 
Laplacian and Second Directional Derivative (Jain et al. 1995).  
 The remaining step in edge detection after image filtering and edge 
enhancement is the recognition of edge points (pixels) among the edge candidates. 
This is usually done by means of thresholding. In the simplest case, all pixels having 
an edge magnitude above a given threshold T are considered to be edge pixels. In 
many real-world cases that deal with noisy images, however, it may be very difficult 
to find a threshold with which the probability of detecting false edges remains low 
while all the relevant edges are found. Therefore it may often be necessary to use 
conditional threshold values that take contextual information into account. After 
edge detection all the edge pixels that have been detected are linked and meaningful 
boundaries are composed.  
 Region-based image segmentation techniques differ from pixel and edge-
based methods in the way they deal with spatial relationships. Region-based 
techniques can all be seen as region growing techniques (Zucker 1976) or further 
divided into region growing, merging and splitting techniques and their 
combinations. The latter classification is used here.  
 There are several approaches to region growing. The algorithm may require 
a set of seed pixels or regions with which the process is started, or it may simply 
start with the initial image and process it pixel-by-pixel. If seeding is required, the 
seed pixels or areas may be shown interactively on the screen or selected 
automatically. If seeding is not required, the processing usually begins from the top 
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left corner of the image and proceeds from left to right and from top to bottom. 
Regardless of the processing details, region growing techniques usually join 
neighbouring pixels into one region if their spectral properties are similar enough, 
determined in terms of a homogeneity criterion, for example, or a combination of 
homogeneity, size and some other characteristics (Zucker 1976). Following the 
definition of segmentation, the region growing process is terminated after every 
pixel has been assigned to a segment.  
 In region merging and splitting techniques the image is divided into sub-
regions and these are merged or split according to their properties. In region 
merging, the basic idea is to start with initial regions, i.e. single pixels or areas 
determined using any initial segmentation technique, and to merge similar adjacent 
ones. Region splitting methods operate in the opposite fashion, i.e. the input usually 
consists of large segments that are divided into smaller sub-segments by reference to 
simple geometric rules. After that, the homogeneity of the sub-segments is assessed 
and if they are not homogeneous enough they are further divided and the process is 
continued. The basis for the splitting or merging may be spectral similarity between 
the segments or the magnitude and length of their common edge, for example 
(Zucker 1976).  

15.2.3 Segmentation software 

It may be difficult to select the appropriate image segmentation approach and 
algorithm for a specific task on the basis of the algorithm description, as the 
approaches typically have certain advantages and disadvantages that cannot be 
recognized prior to testing of the algorithms with actual imagery. In addition, several 
algorithms may result in similar segmentation outputs. In practice, the decision is 
usually made between the algorithms that are commercially available, which are 
unfortunately few in number. Practically the first commercially available 
segmentation software packages that were designed for the analysis of remote 
sensing data were released in 2000 (Schieve et al. 2001), since when interest in their 
development has increased, so that segmentation tools are currently available for 
many leading image processing software packages such as Erdas Imagine and ENVI. 
One software package that deserves explicit mention in a forestry context is 
eCognition, the multivariate segmentation procedure in which is based on a region 
merging technique that starts with regions of size one pixel. The region merging 
algorithm is iterative and merges adjacent regions on the basis of their spectral and 
spatial properties. The main parameters controlling the algorithm are scale and 
homogeneity criteria. The “scale” parameter, which makes use of information on the 
homogeneity of the segments, restricts the permitted heterogeneity of the resulting 
segments and can thus be used to control their size, while the homogeneity criteria 
can be controlled by weighting the “colour” and “shape” parameters. “Colour” refers 
to the spectral properties of the segments and “shape” to their geometric properties. 
Furthermore, the shape parameter is a combination of the segments “smoothness” 
and “compactness”, which can be weighted by the user (Baatz et al. 2002). The 
eCognition software was recently strengthened with a new tool designed for 
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automated tree crown delineation (Definiens 2003). 

15.3 SEGMENTATION IN FOREST INVENTORIES 

The idea of using image segmentation as a tool for analysing earth observation 
imagery is not new, of course. In their segmentation review, Haralick and Shapiro 
(1985) cite EO image segmentation studies that were conducted as early as the mid-
1970’s. The actual need for image segmentation tools was only recognized later, 
however, soon after the launch of the Landsat 4 (1982) and SPOT 1 (1986) satellites, 
which introduced new sensors that provided images with considerably improved 
spatial resolution. In addition to the early pioneers of satellite image segmentation, 
many other scientists in the RS community were convinced that these sensors had 
begun a new, contextual era in the analysis of satellite images.  

Although the need for contextual image analysis methods was recognized, 
few segmentation aided forestry applications of EO were proposed. Many of them 
were presented in Scandinavia and developed on the basis of ideas of Narendra and 
Goldberg (1980). Tomppo (1987) tested a method for the estimation of several 
attributes relevant to stand delineation, namely total volume, mean diameter at breast 
height, mean age and proportions of spine, spruce and deciduous trees by volume. 
Similar methods have been applied to land cover classification (Parmes and 
Kuittinen 1988), the segmentation of Landsat and SPOT imagery (Parmes 1992) and 
the spatial generalisation of pixel-level change detection (Häme 1991) and forest site 
fertility classification results (Tomppo 1992).   
 Approaches based on alternative segmentation algorithms have also been 
presented. Hagner (1990) introduced “t-ratio segmentation” and used it for the 
automatic delineation of stands.  The author described the method as “a type of 
region growing algorithm”, but it can be also classified as a region merging method. 
The same segmentation method has later been used for change detection (Olsson 
1994).  A segmentation method aimed at the delineation of stands for the 
construction of forest canopy reflectance models has also been presented (Woodcock 
and Harward 1992) and later employed for the generalisation of change detection 
results (Woodcock and Macomber 2001). 
 In general, segmentation methods produced promising results in stand 
delineation, the estimation of forest parameters and the post-processing of the results 
of pixel-based analysis. It has been concluded, for example, that stand delineation 
“seems to work quite well”, that “it is possible to develop a stand-wise forest 
inventory method based on the satellite images” (Tomppo 1987) and that 
segmentation-based stand delineation with SPOT imagery followed by manual 
editing gives comparable results to those achieved with visual interpretation of aerial 
images (Hagner 1990). In addition, the precision of stand-level estimates of volume 
and mean diameter was found to be comparable to the results of a subjective field 
inventory (Hagner 1990).  
 
 In spite of the relatively good results, the number of segment-based forestry 
applications remained low. There are two probable reasons for this. First, it was 
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soon observed that improved spatial resolution in satellite imagery did not 
necessarily require contextual image analysis methods, for despite the preliminary 
doubts, pixel-level analysis worked reasonably well with these images. Secondly, 
there was a lack of commercial image segmentation software. 

The need for segmentation was perceived again in the 1990’s, when the 
increasing availability of digitized aerial photographs and the slowly but surely 
approaching launches of new-generation satellites re-stimulated discussions 
concerning contextual image analysis. Following that, interest in object-oriented 
image analysis has steadily increased and the pixel-based approach has been more 
seriously criticized (Blaschke and Strobl 2001). This criticism is understandable in 
contexts such as the classification of buildings, landscape patches, agricultural fields 
and forest stands, when it is a question of considering the spatial relation between a 
pixel and the object of interest. 
 The fact that image segmentation provides a reasonable way of determining 
contextual VHR image analysis units has recently been recognized and image 
segmentation has been tested in numerous applications such as the delineation of 
habitats for biodiversity assessment (Holopainen 1998), the delineation of individual 
tree crowns from aerial and other high spatial resolution imagery (Pitkänen 2001, 
Gougeon 1995, Burnett 2003), change detection (Pekkarinen and Sarvi 2002, Saksa 
et al. 2003), the estimation of forest characteristics from AISA imagery, adjustment 
of the radiometry of aerial photographs (Tuominen and Pekkarinen 2004) and the 
stratification of forest areas (Pekkarinen and Tuominen 2003). Even commercial 
services that are based on segmentation technology and aim at stand-level 
inventories are already available (FACT 2004). In addition to optical imagery, image 
segmentation has increasingly been used for analysing airborne laser scanning 
(ALS)  in applications such as the delineation of trees for change detection and 
growth estimation (Yu et al. 2003) and the extraction of forest inventory parameters 
(Diedershagen et al. 2003). 

15.4 SEGMENTATION EXAMPLES 

15.4.1 General 

This section provides examples of the results of various segmentation methods and 
aims at illustrating the general properties of each method, but first let us briefly 
discuss the main factors that have an effect on the selection of an appropriate 
segmentation approach. 
 The applicability of different segmentation methods to a particular problem 
depends, of course, on the task to be carried out and the spatial, spectral and 
radiometric properties of the imagery employed. Thus segmentation that aims at the 
delineation of stands from medium-resolution multi-spectral satellite imagery may 
require a completely different approach from segmentation of individual tree crowns 
from aerial photographs. If the spatial resolution of the image material is coarse in 
relation to the object of interest all the segmentation approaches are generally likely 
to produce reasonable results, but in the opposite case region-based methods often 
produce better segmentation results. In addition to spatial resolution, the spectral and 
radiometric resolution of the imagery must also be considered when choosing the 
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segmentation approach, but these factors can be usually taken into account by 
adjusting the segmentation parameters and selecting appropriate image channels as 
the input to the segmentation process. Some types of imagery nevertheless have 
special properties that have to be taken into account when choosing the segmentation 
approach. Probably the most commonly used information source of this kind is 
aerial photography. 
 The spectral properties of the objects present on aerial photographs depend 
on their location in the spatial domain. This situation is typical of all imagery 
acquired using wide-angle instruments at low altitudes and is caused by the sun-
sensor-object geometry, topography, film properties and camera optics etc. The 
magnitude of the phenomenon depends greatly on the properties of the object, e.g. 
the vegetation and forest types (Holopainen and Wang 1998a, 1998b, Holopainen 
and Jauhiainen 1999). Attempts have been made to solve this problem by employing 
a priori information on the objects to be imaged (Holopainen and Wang 1998b) or 
pre-stratification of other remote sensing imagery (Holopainen and Jauhiainen 1999, 
Tuominen and Pekkarinen 2004), but it can still be concluded that because of the 
complex radiometry, it is advisable to base the segmentation of aerial imagery on 
methods that operate locally, i.e. on edge and region-based approaches. 
  The best segmentation is often achieved with a combination of several 
techniques. Our experiences show, for example, that it is usually advisable to 
conduct the segmentation of VHR imagery in two phases: first a large number of 
spectrally homogeneous initial segments are derived, and then the initial segments 
are merged by region-based techniques to form applicable processing units. This is 
just a general observation, however, and in practice the best combination of 
appropriate segmentation tools for a specific task can often be found only by trial 
and error. 

15.4.2 Example material  

The following examples illustrate different segmentation techniques. The examples 
were derived using a spectrally generalized AISA image of an area in Southern 
Finland. The original 30 channels of the AISA image were generalized to four 
spectral channels that correspond to those of the new-generation very high resolution 
satellite imagery. The examples employ only the green channel of the generalized 
imagery (Figure 15.1). Details of the original image and the generalization process 
are given by Pekkarinen (2002).  
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Figure 15.1 A subset of a spectrally generalized AISA image. Green, red and NIR channels 
(A) and green channel (B) © METLA 2004. 

15.4.3 Example 1: Pixel-based segmentation 

In our first example we derive a pixel-based segmentation using the green channel 
and image thresholding. The shape of the histogram of the green channel, shown in 
Figure 15.2, is typical of images of forested areas that do not include water bodies.  
 The image was binarized into classes 0 (white) and 1 (black) using a 
threshold set to 15. After that all the segments were composed by assigning each 
spatially continuous region a unique label. The outcome of the binarization and the 
resulting segment borders are shown in Figure 15.3.  

 

Figure 15.2 Histogram of the green channel of the spectrally generalized AISA image. 
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Figure 15.3 Binarized green channel (T = 15) of the spectrally generalized AISA image  (A)
 and the resulting segment borders (B). 

Thresholding is a simple technique with quite limited applications to forestry and 
pixel-level segmentation is more often accomplished by means of clustering which 
can be seen as multi-dimensional extension of thresholding. In the following 
example we cluster the AISA image using the well known k-means algorithm and 10 
spectral classes. The clustering output is presented in Figure 15.4a and an example 
of the resulting segments in Figure 15.4b. Note that, following the definition of 
segmentation (section 15.2.1), all the pixels in a certain segment must be spatially 
connected. Neither the threshold nor the clustering output will meet this criterion 
until the spatially continuous areas have been assigned unique labels. 

Figure 15.4 Clustered green channel of the spectrally generalized AISA image and an 
example of the resulting segment borders. 
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Pixel-based algorithms are problematic as far as the segmentation of VHR imagery 
is concerned, as high local variation typically results in a large number of tiny 
segments that are often not applicable to a forest inventory. The labelling of the 
spatially continuous components in our clustering example, for instance, resulted in 
almost 50 000 segments of an average size of approximately 4 pixels.  

15.4.4 Example 2: Edge detection 

Our second example illustrates various edge operators and their edge detection 
results. Edges, i.e. significant local changes in image intensities, are often detected 
by means of first and second derivatives, because they can be observed as peaks in 
the first and zero crossings in the second (Figure 15.5). The two-dimensional 
equivalents of these are the gradient and the Laplacian, respectively. 

 

 

derivatives. 

In practice, the gradient and the Laplacian are usually approximated by convolving 
the original image with the appropriate kernel masks, i.e. relatively small weight 
matrices that are placed on the pixel being processed, so that the convoluted value is 
computed as the weighted sum of the corresponding pixels. The local average for a 3 
x 3 pixel window, for example, can be computed using a 3 x 3 cell convolution 
kernel in which all the cells have a weight 1/9. Our examples employ two edge 
operators: Sobel and Laplacian. The gradient is determined by means of 
approximations of the partial derivatives xs  and ys  using the convolution masks 

PEKKARINEN AND HOLOPAINEN 262

Figure 15.5 Function f(x), describing a ramp edge, and its first (f’(x)) and second (f’’(x)) 



 SEGMENTATION 

shown in Figure 15.7 and the Laplacian is approximated using the left-hand mask 
presented in Figure 15.8, for example.  
 

 

Figure 15.6 Sobel convolution masks for partial derivatives in the directions x (left) and y 
(right).  

 

 

Figure 15.7 Laplacian convolution masks. 

In our Sobel experiment the magnitude of the gradient was determined using the 
square root of the sum of the squared partial derivatives xs and ys . Finally, the actual 
edges were detected using the gradient magnitude image and a threshold set to 170. 
The results of these operations are presented in Figure 15.8. 
 Gradient-based edge detection typically produces thick edges in cases 
where the intensity changes rapidly, e.g. at step-like edges), while the Laplacian, 
which detects edges that cause zero-crossing in the second derivative, produces a 
locationally more accurate edge detection result but is sensitive to image noise and 
therefore often produces a large number of false edges. In our example (Figure 15.9) 
the vast majority of the pixels present zero crossings and are therefore regarded as 
edges.  
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Figure 15.8 Sobel operator-based edge enhancement and detection results. Partial derivatives 
in the directions x (A) and y (B), gradient magnitude (C) and edge pixels detected (D). The 

light pixels in A, B and C represent high values and the black pixels in D represent the 
resulting edges. 

 Standard edge detection algorithms are obviously very sensitive to the high 
local variation present in VHR images and produce a considerable number of false 
edges. It should be noted, however, that our examples do not give a realistic 
impression of the performance of edge-based methods. Much better results can be 
achieved if the imagery is smoothed prior to edge enhancement and detection. 
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Figure 15.9 Laplacian of the green channel of the spectrally generalized AISA image (A) and 
the zero crossings, represented as black pixels (B). 

15.4.5 Example 3: Region segmentation 

The following figures illustrate the results of two region segmentations derived 
using a similar input but different region merging rules. The first example (Figure 
15.11 A) is based on an iterative region merging approach that takes each original 
pixel as an initial region and proceeds by merging regions that are spectrally similar. 
The similarity of adjacent regions was measured by means of the absolute difference 
in their mean values. The similarity threshold was set at 30 digital numbers, i.e. 
adjacent regions are merged if the difference between their spectral averages is less 
than 30 DNs. The second example uses the same input, but the region merging was 
controlled using a minimum region size threshold of 500 pixels. In other words, all 
the regions that were smaller than the given threshold were merged with their 
spectrally nearest adjacent region and the merging process was iterated until all the 
regions were larger that 500 pixels in size.  
 The second region-based segmentation example illustrates the results of a 
two-phase segmentation process in which the initial segments were derived using the 
method originally described by Narendra and Goldberg (1980) and implemented by 
Pekkarinen (2002). The initial segmentation was used as the input to a region 
merging algorithm controlled by the same minimum segment size threshold as in the 
example above (500 pixels).  
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Figure 15.10. Region merging results of A) an algorithm controlled by a spectral similarity 
threshold, and B) an algorithm controlled by a minimum region size threshold.  

Figure 15.11. Segments derived using the two-phase method described in Pekkarinen (2002): 
initial segments (A) and a region derived using a minimum segment size of 500 pixels (B). 
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CHAPTER 16 

INVENTORY BY COMPARTMENTS 

JYRKI KOIVUNIEMI AND KARI T. KORHONEN 
Finnish Forest Research Institute, Finland 

16.1 BASIC CONCEPTS AND BACKGROUND 

Inventory by compartments is the method typically used for acquiring data for 
traditional forest management planning purposes. It is based on the concept of the 
forest stand, which is traditionally defined as a geographically contiguous parcel of 
land whose site type and growing stock is homogenous (e.g. Lihtonen 1959 p. 9, 
Ilvessalo 1965 p. 159, Davis and Johnson 1987 p. 29, Poso 1994 p. 95). In this 
context, compartment can almost be considered a synonym for forest stand, but a 
compartment must be also a suitable cutting unit or treatment unit for silvicultural 
measures and need not necessarily be as homogenous as a forest stand. 
 Detailed forest management plans cannot be produced without 
compartment-wise estimates of site characteristics and growing stock and without 
silvicultural treatment proposals for each compartment. The latter must be made 
within the field inventory, because otherwise the planner has no way of ensuring that 
in the optimum solution to the forest management planning problem every 
compartment will be treated silviculturally in a feasible manner. Models describing 
forests and forestry in forest management planning packages (e.g. MELA, Siitonen 
et. al. 1996) are merely simplifications of reality.  
 Sampling theory could be used to estimate the sample size needed to attain 
a certain required level of accuracy in estimates of growing stock, but if the 
compartments are small the sample sizes become so large that the inventories will be 
too expensive. In Nordic countries and in Central Europe, where compartments are 
rather small, a solution to the problem has been found in terms of a subjective 
method called “inventory by compartments”, which is partially based on visual 
assessment of the growing stock. 
 Inventory by compartments will be illustrated in this chapter by describing 
a Finnish application. The area of forestry land in Finland is about 26 million ha, of 
which 60% is owned by private persons. All the forests owned by the state or by 
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forest companies have been inventoried.  Almost all the privately-owned forests 
have been inventoried at least once by forestry centres, and at the moment the 
databases of the forestry centres cover about 11 million ha of forest. The average 
area of a compartment in southern Finland is about 1.5 - 2 ha. Compartments under 
0.5 ha are not used unless the area is environmentally valuable. 

16.2 HISTORY OF THE INVENTORY METHOD IN FINLAND 

Inventory by compartments is the oldest method for conducting inventories of forest 
areas. The basic ideas were developed in Central Europe long before the days of 
mathematical sampling theory (Loetsch and Haller 1973 pp. 7-9). Management 
planning by stands began in the state-owned forests of Finland in 1907 (Lihtonen 
1959 p. 289). Inventory by stands in the early 20th century differed markedly from 
inventory by compartments as it is performed today, mostly on account of the 
availability of base maps and the existence of two inventions: aerial photography 
and the relascope. If no base maps were available for a particular area in earlier 
times, a land survey had to be included in the inventory. In Finland, aerial 
photographs were first used for making forestry maps in 1946. Delineation of the 
compartment borders is much easier with aerial photographs than with base maps 
and field measurements.  The relascope was invented in Austria in 1947 (Loetsch 
and Haller 1973 p. 8). Before this, the volume of growing stock had to be assessed 
on the basis of visual estimates of stand density and a few tree height measurements 
(Ilvessalo 1965). The relascope solved the problem of measuring stand density, and 
following its invention just a few sample plots have needed to be measured at 
subjectively selected locations in each compartment. These sample plot 
measurements can then be subjectively weighted to calculate the mean basal area 
(m2/ha), mean diameter, mean height and mean age of the growing stock in a 
compartment. Volumes of growing stock by tree species can be taken from stand 
volume tables based on estimated basal areas and mean heights (Nyyssönen 1954). 

16.3 INVENTORY BY COMPARTMENTS TODAY 

16.3.1 The inventory method 

Forest companies in their own forests and the Forest and Park Service in the state-
owned forests have now replaced traditional inventory by compartments with a 
continuous updating approach, so that large inventory projects carried out at regular 
intervals are no longer needed. Instead, the forest resource database is updated 
immediately after cutting or the implementation of a silvicultural measure in a 
compartment and the increment in the growing stock is updated by means of growth 
models.   
 The forestry centres still continue the tradition of inventories by 
compartments at 10 – 15 year intervals in private forests, but again the old inventory 
data are updated by mean of growth models before the new inventory. The first step 
in the inventory is delineation of the compartment borders using digital aerial 
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photographs, base maps and the old inventory data. The old inventory data are also 
used in the field inventory, being valuable for assessing site characteristics, for 
example. In the field work, a surveyor visits every compartment, checks the 
compartment borders, measures 2-8 sample plots at subjectively selected locations in 
each compartment (Figure 16.1) and makes proposals for silvicultural treatment over 
the next 10-year planning period. The sample plots are relascope plots (relascope 
factor usually 1 or 2) in thinning and mature stands, and circular plots (usually of 
radius 4 m) in seedling stands. 

 

Figure 16.1 Compartments identified in the inventory by compartments in 1990 and 2003, and 
sample plots measured in the 2003 inventory in a forest located near Riihimäki in southern 
Finland that is managed by Finnish Forest Research Institute. (Aerial photograph 2001, © 

FM-Kartta Oy). 

 The relascope plots are used for estimating the basal area (G, m2/ha), mean 
diameter (D, cm), mean height (H, m) and mean age (T) of the growing stock, all 
recorded by tree species and tree storey. Mean diameter is the diameter of the basal 
area median tree. Mean heights and mean ages are usually measured only for one or 
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two representative median trees in the whole compartment and not for every sample 
plot. For young stands, the number of stems (N, stems/ha) is measured instead of the 
basal area on fixed-radius plots. Even though several sample plots may be measured 
in order to estimate the mean characteristics, only one mean value for each tree 
species and tree storey is recorded for each variable in a compartment. Mean values 
are calculated using field computers. The original plot-level values are not stored in 
the compartment database. 

16.3.2 Estimation methods  

The estimation of stem volume, volumes by timber assortments and growth consists 
of the following stages. 

1. Prediction of diameter distribution. 
2. Selection of representative trees (model trees) from the theoretical diameter 

distribution. 
3. Prediction of volumes and increment for the model trees. 
4. Summation of compartment-level results. 
 

Prediction of diameter distribution 
 
The diameter distribution in thinning stands or mature stands is usually estimated by 
means of regression models predicting the parameters of the Weibull distribution 
(see Mykkänen 1986 and Kilkki et al. 1989). (Weibull distribution models actually 
predict the basal area distribution, but the term diameter distribution is used here for 
simplicity.) Other methods for estimating diameter distributions in addition to those 
based on parametric density functions have been developed recently (for 
distribution-free methods, see Kangas and Maltamo 2000a and 2000b, and for non-
parametric methods based on a database of known diameter distributions, see Haara 
et al. 1997).  Tree height distributions are employed in seedling stands instead of 
diameter distributions. 
 
Selection of representative trees from the theoretical diameter distribution  
 
Usually 10 representative trees (model trees) are selected systematically at fixed 
distances from the predicted diameter (or height) distribution and the number of 
stems represented by each is derived from the cumulative basal area distribution and 
the basal area of the model tree itself, so that the sum of the basal areas of model 
trees is equal to the measured basal area for the tree species and storey. 
 
Prediction of volumes and increment for the model trees 
 
The total height of each selected model tree is estimated by mean of general height 
models calibrated by reference to the measured height of the basal area median tree. 
Stem volume is predicted by means of general volume functions, using diameter and 
height as regressors. Volumes by timber assortments are estimated with tables as a 
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function of tree diameter and height. Volume increment is predicted using tree-level 
diameter and height increment models.  
 
Estimation of compartment-level results 
 
The number of stems represented by each model tree is derived as described above, 
and the compartment-level results are obtained simply by summing the estimated 
tree-level values multiplied by the representative factor. 

16.4 ACCURACY OF THE INVENTORY BY COMPARTMENTS METHOD 
AND SOURCES OF ERROR  

Inventory by compartments is still the most efficient inventory method for acquiring 
data for the purposes of detailed forest management planning. Another reason for its 
popularity is that the unit of assessment is intended to be the same as the smallest 
unit of forest management. The delineation of compartment borders and the making 
of proposals for cuttings and other silvicultural measures can also be regarded as the 
preliminary stages of forest management planning. Despite its popularity, however, 
the inventory method has also been criticized. It is considered expensive, the 
inventory results are not always accurate enough, and their accuracy cannot be 
estimated on the basis of measurements made in the inventory.  
 Main reason for the problems is that even a visually highly homogeneous 
compartment can show considerable variation in sample plot basal areas, and thus 
also in volumes, if sample plot sizes are kept at practical level (Figure 16.2). In 
inventory by compartments surveyors seldom measure sample plots in locations 
where the characteristics of the growing stock reach or come close to local 
maximum values, or if they do so, then they also balance out these local maxima 
with local minima. This procedure reduces random variation in the compartment-
level characteristics of the growing stock as compared with probabilistic sampling, 
but the compartment-level results will be biased if the surveyor’s impression of the 
average amount of growing stock along the route that he walks differs from the real 
situation. The largest compartment-level errors, however, arise from the fact that 
surveyors do not visit every part of the compartment. Unless a surveyor walks 
through the compartment in parallel to the trend in a given characteristic of the 
growing stock, quite large errors are very likely to occur. 
 Several studies have been published on the reliability of inventory by 
compartments. The sources of error mentioned include: 

• random and systematic measurement errors (e.g. in observing basal areas 
and locating compartment boundaries) 

• “sampling errors” when locating the relascope plots (quotation marks 
needed to indicate that this is not true sampling error, because the locations 
are selected subjectively 

• model errors in estimating diameter distributions, tree heights, stem 
volumes etc. 
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Figure 16.2  Basal areas of relascope plots located on a straight line through a homogeneous 
spruce stand in southern Finland (Koivuniemi 2003), calculated with relascope factors 1, 2, 

and 4 (G1, G2 and G4, respectively). The mean diameter and mean height of the growing 
stock were 23 cm and 17 m. 

According to these publications, the magnitude of the measurement and “sampling” 
errors (RMSE, root mean square error) for the mean volume estimate is 
approximately 25% (Table 16.1). The errors depend on the surveyor, however, and 
RMSE’s may vary from less than 15% to more than 40%. In addition, systematic 
errors occur, these being up to 20% at the surveyor level (Haara and Korhonen 
2004). Experienced surveyors are usually able to collect data with higher precision 
than unexperienced ones, whereas it has been shown that training does not improve 
the quality of the data produced by experienced surveyors (Ståhl 1992). 
 The accuracy of the results over the whole area inventoried can be 
estimated and systematic errors in compartment-level estimates can be reduced if the 
traditional inventory by compartments method is supplemented with an inventory 
based on probability sampling (Lindgren and Jonsson 1978, Laasasenaho and 
Päivinen 1986 and Jonsson et al. 1993). Estimation of the accuracy of the inventory 
results for the whole area is based on stratification and a two-stage sampling 
procedure in which the area is stratified into homogeneous groups of compartments 
and stage 1 consists of the sampling of compartments from the strata and stage 2 of 
systematic sampling of circular or relascope plots within each selected compartment. 
The accuracy of the inventory results can also be calculated for each stratum.  
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HgM = height of the basal area median tree, and V = mean volume . 

Study Characteristic 
of growing 
stock  

Statis-
tic Poso 

(1983) 
Laasasenaho and 
Päivinen (1986) 

Pigg 
(1994) 

Haara and 
Korhonen 
(2004) 

DgM (cm) b  -1.0 
(-4) 

-0.8  
(-4.8) 

0.4 
(2.4) 

 s  2.2  
(10) 

2.5 
(14.1) 

2.3 
(12.6) 

G (m2/ha) b  -0.1  
(-1) 

0.2 
(1.2) 

0.5 
(2.7) 

 s  3.3  
(16) 

2.8 
(18.5) 

3.9 
(19.6) 

HgM (m) b  -0.6  
(-3) 

-0.2  
(-2) 

-0.01 
(-0.05) 

 s  2.1  
(11) 

1.7 
(14.1) 

2.4  
(15.7) 

V (m3/ha) b    2.4  
(1.6) 

 s 36-66 
(29-38) 

32-37  
(17-24) 

 37.5  
(24.8) 

 
 The compartment-level estimates can be calibrated using regression 
techniques. In the simplest such technique, the compartment-level estimates 
achieved by an objective inventory method are predicted as a function of the 
estimates achieved by the traditional inventory by compartments method. 
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CHAPTER 17 

ASSESSING THE WORLD’S FORESTS  

ANNIKA KANGAS 
University of Helsinki, Finland  

17.1 GLOBAL ISSUES 

17.1.1 Issues of interest 

The Food and Agricultural Organization (FAO) of the United Nations has a long 
history of global forest resource assessments (FRA). The FRA programme has two 
major components (FFRI2003): 

1. Global assessment and reporting 
2. Support for national forest assessments 

The global assessment component has two objectives: to compile, analyse and report 
forest information covering all countries, and to maintain mechanisms and 
arrangements for global reporting. The support component also has two major 
objectives: to support countries in developing, packaging and using forest 
information and to establish an international framework for reporting on forest 
resources. 
 R. Zon, in collaboration with the United Stated Forest Service, prepared  
the first report on global forest resources in 1910 (Zon 1910), and this was updated 
in 1923 (Zon and Sparhawk 1923). The first world forest inventory was carried out 
by the FAO in 1947-1948, and it subsequently conducted such inventories every 
fifth year from 1953 to 1963. In these first assessments the FAO used a 
questionnaire to obtain the information from the individual countries (Holmgren and 
Persson 2002), but this approach could not be used later as the capacity for forest 
inventories had decreased in many countries. Thus expert judgments, in which all 
possible information from different sources was collected and an expert tried to infer 
the state of the country’s forests from this, were also used in the 1970s and 1980s 
(Holmgren and Persson 2002). The assessments made in the 1970’s were essentially 
regional, but a global synthesis of them was prepared as well (Persson 1974).  
 In the latest two assessments, the assessments of forests in the tropical 
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region are based on remote sensing, but those in the temperate and boreal zones on 
questionnaires. A panel of experts (FFRI 1996) made recommendations with respect 
to the major issues of data acquisition and the compilation of information for FRA 
2000 at the Kotka III meeting, and work for the new assessment, FRA 2005, 
discussed at the Kotka IV meeting (FFRI 2003), is currently going on.  
 Forest areas and area changes have been a major issue in the assessment of 
global forest resources. The forest area has been seen as a simple indicator of the 
status of the world’s forests, and therefore as an important means of monitoring 
changes. Changes in forest area may be due to land use changes, such as 
afforestation, deforestation and expansion of the natural forests, or internal changes 
within a forest class, such as reforestation, regeneration of natural forests, forest 
degradation and improvement.  
 Forest area can also be a problematic concept, however, as an indicator of 
the health of the ecosystem. The environmental, social or economic values of forests 
may not necessarily be related to their absolute extent, for instance. Thus the forests 
that are of the greatest environmental importance may be scattered and involve a 
small area, and their economic value may be related more to species distribution and 
volume than to forest area, while social values may be interrelated with other local 
interests such as agriculture.  
 The shortage of forest resources has always been a concern, and balancing 
of the supply with the needs requires information. Wood is needed for construction, 
for pulp and paper, for fuel and energy and for carbon sequestration, among other 
things, so that wood volume and biomass have been among the most important 
parameters in assessments of global forest resources. The issues considered in the 
Forest Resources Assessment 2000 (FRA 2000) were much wider than those of 
earlier assessments, however, the topics of interest being: 
 
forest area and its changes,  
wood volume and woody biomass,  
forest plantations,  
trees outside the forests (TOF),  
biological diversity,  
forest management,  
forests in protected areas,  
fires,  
wood supplies and 
non-wood forest products.  

 
 Ideally, a global forest assessment should address all the benefits of forests 
and the full range of potential beneficiaries, from local users to the global population 
(Holmgren and Persson 2002). This chapter will briefly review the most important 
results, namely forest area, volume and biodiversity considerations, although the 
main attention will be focused on methodological issues. 
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17.1.2 Forest area 

Up to the more recent assessments, the definition of forest was 20% canopy cover in 
the temperate and boreal zones and 10% cover in the tropical zone. In FRA 2000, 
however, 10% cover was used for all countries, and while a canopy cover between 
5% and 10% was classified as an “other wooded area”, a category which in earlier 
inventories had required a 10%-20% canopy cover. This change required much work 
in order to compare the results with earlier assessments, the discrepancies being 
largest in Russia and Australia, where extensive areas of forests with a canopy cover 
between 10%-20% exist.  
 Even a specific canopy cover threshold is not a straightforward definition 
of forest, however, for the definition used in FRA 2000 also involved a land use 
classification. When another land use, e.g. agriculture, predominates in an area, it 
cannot be defined as a forest. Thus oil palms and rubber trees are included in forests, 
but fruit orchards and agroforestry areas are not. Similarly national parks are 
included but urban parks are not (FRA 2000). 
 According to FRA 2000, the global forest area is 3 869 million hectares and 
accounts for 30% of the land area. The net change has been a decrease of 9.4 million 
hectares per year, implying 14.6 million hectares of deforestation of natural forests 
and an increase of 5.2 million hectares in the area of forest plantations.  

17.1.3 Wood volume and woody biomass 

 The wood volume was defined in global assessments as the stem volume of all 
living trees more than 10 cm in diameter at breast height (or above buttresses if these 
are higher) over bark, measured from the stump to the top of the bole (volume over 
bark, VOB). The above-ground biomass was defined as that of the woody parts of 
trees (stem, bark, branches, twigs), alive or dead, shrubs and bushes, excluding 
stumps and roots, foliage, flowers and seeds.  
 Suitable data were available for most developed countries, while estimates 
for the developing countries had to be based on local inventories in many cases, 
inventories that only covered certain aspects such as commercial forests, or 
inventories limited to a few species. Biomass studies in these countries were even 
less common.  
 Another problem was that the national results were seldom compatible with 
the FAO definitions. The volume could be defined to include trees above 5 cm or 50 
cm at breast height, for example. The largest minimum diameters were often used in 
humid regions such as Indonesia, and the smallest in dry regions of Africa. The 
volumes of the missing dbh classes were estimated with regression equations 
between dbh class and volume, or with volume expansion factors (VEF) when 
regression could not be used.  
 The volume data were converted to biomass with the formula (FRA 2000) 

 TFB = VOB ·WD · BEF,  (17.1) 

where TFB is the total forest biomass (t/ha), VOB is volume over bark (m3/ha), WD 
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is volume-weighted average wood density (t/m3) and BEF is the biomass extension 
factor, i.e. the ratio of whole tree oven-dry biomass to the oven-dry biomass of the 
inventoried stem volume.  
 The estimated global volume of forests in 2000 was 386 billion cubic 
metres and the above-ground woody biomass was 422 billion tonnes. The wood 
volume increased by 2 percent between FRA 1990 and FRA 2000, and at the same 
time the woody biomass decreased by 1.5%.  
 There are considerable numbers of trees, however, that are not located in 
forests but grow in gardens and parks, in cities, on farms, in fruit orchards or beside 
roads. These, too, may be important both environmentally and economically. They 
may provide shade, shelter and food, they may improve the landscape and they may 
protect the soil. No global assessment of the volume or biomass of such TOF trees 
has ever been made, although many studies exist for specific areas. In many areas 
TOF may be more important than forests, e.g. in Kerala, India, where as much as 
93% of the wood production was estimated to be from trees growing outside the 
actual forests.  

17.1.4 Biodiversity and conservation  

Biodiversity is a complicated issue, and for that reason only certain specific aspects 
can be monitored. The variables considered must be simple, uniform and easily 
understood, and they should represent major values in forest biodiversity. Such 
variables are typically based on indicators or indirect (surrogate) measures. The 
FAO Expert Consultation on Global Forest Assessment 2000 (FFRI 1996) 
recommended the following variables: 
 
naturalness (natural forests, semi-natural forests and plantations) 
protection status (IUCN categories, Table 17.1) 
fragmentation 
better information on forests in specific ecological zones. 
 
 There are obstacles even to the assessment of such simple-looking variables 
as these, however. World maps indicating diversity at the ecosystem or species level, 
for instance, typically have a resolution of 10 kilometres or more, and national-level 
summaries are even less detailed. Therefore, part of the meaning of diversity may be 
lost when the data are averaged over large areas (FRA 2000).  
 As data on biodiversity are scarce, two separate studies were carried out in 
the assessment: a review of the literature in each country on the number of species 
occurring in forests and a consideration of the spatial attributes of forests.  
 The literature review was carried out in order to estimate the importance of 
forests as habitats. Typically, fairly good information was available on all species, 
but only limited information on those occurring in forests. The data concerning trees 
are limited, for example, due to the problems of defining this group, and no data at 
all were available on reptiles, birds and mammals occurring in forests. The value of 
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limited (FRA 2000).  
 The spatial analysis could be carried out fairly easily. Three aspects of 
fragmentation were considered, namely area effects, edge and gradient effects and 
isolation effects. Area effects are based on the assumption that small patches support 
fewer species and are more vulnerable than larger patches, edge effects imply that 
the interface with non-forest ecosystems has negative effects on environmental 
variables, and isolation effects means that the gene flow between one population and 
others of the same species will be reduced. This approach was found to be 
technically feasible, but the problem remains that its relevance to biodiversity has 
not been determined (FRA 2000). 
 The area under protection was determined in two ways, through 
questionnaires sent to national and regional land management agencies and by 
overlaying global protected area maps on global forest cover maps. Since the global 
protected area map in some cases included only a reference point and not the actual 
shape of the area, a circular area had to be used. The result is that the map is not 
accurate for any given protected area but is mainly a cross-tabulation of the two 
maps (FRA 2000). 

Table 17.1 Categories of protected areas according to IUCN (McNeely and Miller 1984). 

Category Definition 

I - Strict nature reserve / wilderness area Protected area managed mainly for 
science or wilderness protection 

II - National park Protected area managed mainly for 
ecosystem protection and recreation 

III - Natural monument Protected area managed mainly for 
conservation of specific natural features 

IV – Habitat / species management area Protected area managed mainly for 
conservation through management 
intervention 

V – Protected landscape / seascape Protected area managed mainly for 
landscape / seascape conservation and 
recreation 

VI – Managed resource protection area Protected area managed for the 
sustainable use of natural ecosystems 

 
 The total extent of forests in protected areas was estimated to be 479 
million hectares, or 12.4% of the total forest area (Tables 17.2 and 17.3). In Europe 
the proportion is only 5.0%, which is partly explained by the fact that Siberia has no 
officially protected areas. There were considerable discrepancies in the comparisons 
between the answers to the country questionnaires and the global maps, especially 
since some countries had reported that the whole country was a protected area, since 
a general law to this effect existed, whereas others reported only strictly protected 
areas.  

assessments based on the number of endangered species is therefore seriously 
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Table 17.2 Forests in protected areas, based on the global protected area map (FRA 2000). 

Region Forest area in 
2000 (million 
hectares) 

Forest in protected 
areas 

Proportion (%) 

Africa 650 76 11.7 
Asia 548 50 9.1 
Oceania 198 23 11.7 
Europe 1039 51 5.0 
North and Central 
America 

549 111 20.2 

South America 886 168 19.0 
Total 3869 479 12.4 

Table 17.3 Forests in protected areas by ecological domain, based on the global protected 
area map (FRA 2000). 

Ecological domain Forest area 2000 
(million hectares) 

Forest in protected 
areas 

Proportion (%) 

Tropical 1997 304 15.2 
Subtropical 370 42 11.3 
Temperate 507 83 16.3 
Boreal 995 49 5.0 
Total 3869 479 12.4 

17.2 METHODOLOGY 

17.2.1 Global forest resources assessment 

compile the latest national-level statistics included specific guidelines aimed at 
obtaining data that would be well structured and compatible with the terms and 
definitions of FRA 2000. For those countries that had no suitable inventory data, 
assessments were compiled from partial inventories and/or subjective estimates 
(FRA 2000). Also, validation of the results was required from all countries 
(Holmgren and Persson 2002). This work could not have been done without the 
collaboration of forestry professionals in each country. The assessment represents 
212 countries, of which 160 participated in workshops or worked with FAO staff in 
their countries (FRA 2000).  
 The forest assessment information collected is subject to many sources of 
uncertainty. The information is very variable with respect to terms and definitions, 
for example, to the extent that over 650 definitions of forest were noted in 110 
independent surveys representing 132 developing countries (FRA 2000). A massive 
effort was made to harmonize the results (FAO 2002), but there is still no means of 

The formal requests sent to country representatives in 1996 and 1998 in order to 

KANGAS 284



 ASSESSING WORLD’S FORESTS 

interest of the countries to exaggerate or hide some issues. A country may want to 
give exaggerated deforestation figures, for example, in order to gain international 
assistance for their forestry sector, while another may exaggerate the area of 
protected forests, and so on (Holmgren and Persson 2002).  
 Another source of uncertainty is the fact that in many countries the national 
inventory is not based on sampling but on management plan inventories (Holmgren 
and Persson 2002). Only a few countries could derive statistical confidence intervals 
even for the forest area or area change data (FRA 2000), and in some cases there 
may not be a long enough time series available for estimating the changes. Of the 
137 developing countries, for example, only 22 have repeated inventories, 54 relied 
on a single inventory, 33 had only data from a partial inventory and 28 had had no 
inventory at all (Holmgren and Persson 2002, FRA 2000). 

17.2.2 Temperate and boreal forest assessment 

Assessment in the temperate and boreal regions, i.e. in the 55 industrialized 
countries, was entrusted to a team of government-nominated specialists formed in 
Geneva by UN/ECE and FAO and was carried out using questionnaires. The 
representatives of each country received a number of tables to be filled in according 
to FAO definitions (FAO 2002). Thus they were obliged to adjust their national 
definitions. They were also asked to give the likely range for their assessments. The 
representatives were aided in this by meetings and personal communications. 
 The main issues affecting the reliability of the data were 1) the differences 
in definitions (definition error) and 2) non-response. The possible effects of these are 
analysed in the main report (TBFRA 2000). Differences in the reference period may 
also have caused some errors, as the oldest data for TBFRA 2000 were from 1986 
(Germany) and most recent data from 1998 (Iceland). It should also be noted that the 
forest area of the four largest countries, Canada, the USA, Russia and Australia, 
accounts for about 85% of the world’s total forest area, so that possible errors in 
their figures will have had a major effect on the results.  
 Five out of the 55 countries did not answer the questionnaire at all: two 
countries from the former Yugoslavia together with Kyrgyzstan, Turkmenistan and 
Uzbekistan, but they comprise only 2.2% of total land area and 0.6% of forest area 
involved. Non-response was more severe in the case of certain attributes, however. 
Every country was able to give its total forest area and the area of other wooded 
lands, but it was difficult in many countries to give an assessment of annual 
removals, especially on other wooded lands. 
 The effects of definition errors were considered with respect to two 
variables, namely the definition of forest and the definition of the volume of a single 
tree. The definitions accepted, 10% crown cover and the possibility of achieving a 
height of 5 m, are the “lowest common denominators” for all the countries. The 
definitions of crown cover varied from 0% to 30% in 19 western Europe countries, 
those of minimum area from 0 ha to 0.5 ha, those of minimum production from 0 
m3/ha to 4 m3/ha and those of minimum width a forest patch from 0 m to 40 m. The 
definition of forest used in Ireland (20%, 0.5 ha, 4 m3/ha and 40 m) would give the 

assessing the accuracy of such adjustments. Another aspect is that it may be in the 
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lowest forest area and that used in of Luxemburg (0%, 0 ha, 0 m3/ha and 0 m) the 
largest (TBFRA 2000).  
 The volume of a single tree depends on three issues: 1) the minimum dbh 
threshold, 2) the starting point for stem volume (ground or stump) and 3) the 
minimum top diameter. The definitions for the first varied from 0 in Finland to 12 in 
Switzerland, and those for the third from 0 in Finland to 7.5 in Spain. The FRA 
definition was 0 cm minimum dbh, stump height and 0 cm minimum top height (the 
same as in Finland and Sweden), and therefore the top volumes, stump volumes and 
volumes of small trees had to be analysed separately in many countries. Adjustments 
were made by means of models, special investigations or expert judgments. The 
forest area was analysed in Finland, for instance, with a model applying parameters 
from the Finnish NFI, and in Switzerland from a survey using aerial photographs 
(TBFRA 2000). 

17.2.3 Pan-tropical remote sensing survey 

Since the greatest deficiencies were in the tropical data, a separate tropical survey 
based on remote sensing was carried out. The objectives were (FRA 2000): 

1) to monitor tropical forest cover and its changes over the past 20 years at the 
regional and pan-tropical levels  

2) to analyse trends in forest cover change in the intervals 1980-1990 and 
1990-2000 

3) to study the dynamics of changes in forest cover  
4) to identify the causal mechanisms behind deforestation, and 
5) to complement existing country-specific information by providing spatially 

and temporally consistent data on the state of the forests and changes in 
this. 

 
The survey was designed on a two-stage stratified sampling basis, in which the areas 
were divided into regions and sub-regions and the sub-regions further into a 
maximum of three strata corresponding to their forest cover and expected 
deforestation rates (FRA 2000, Czaplewski 2002). Those strata with higher expected 
deforestation rates were sampled proportionally more intensively (Czaplewski 
2002).  
 The population was defined as consisting of 1203 LANDSAT frames, 
representing all the frames in which the forest cover was more than 10% and the 
land area more than a million hectares (FRA 2000). Based on the country data, 87% 
of the tropical forests belonged to a sampling frame. Of these frames, 117 were 
selected for the sample, representing 10% of the area. This small percentage has 
been criticized (e.g. Tucker and Townshend 2000) and may indeed not be large 
enough for inference on a national scale, but it is large enough on a continental or 
global scale, which was the intention (Czaplewski 2002). 
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processed in three bands as standard false-colour infrared prints to a scale of 1:250 
000 (FRA 2000). The older images had been interpreted previously for an earlier 
assessment, but where new data such as vegetation maps were available, they were 
re-interpreted. All the images were interpreted at the same time, not independently.  
 The classification, carried out using a 2·2 km2 grid, was into ten classes, of 
which nine were visible (Table 17.4). Analyses of forest cover were then performed 
on this classification using three definitions of forest. In the strictest one (f1) only 
the closed forests were included, in f2 both the closed and open categories were 
used, together with some of the fragmented forests, a definition that comes closest to 
the country reports, and in the last definition (f3) the long fallow class was also 
included, as well as a higher proportion of the fragmented forests. The result of the 
analysis is a matrix of changes between classes from one image to another (FAO 
1999a) that enabled calculating forest change rates according to the different 
definitions. The aggregated results were calculated by treating each image as a 
cluster, and by calculating the results with ratio estimators, as the land area in each 
image is a random variable (FRA 2000).  
 

Table 17.4 Classification used in the pan-tropical image analysis (FRA 2000). 

Land cover categories Land cover 
classes 

Description 

Natural forest   
Closed 
canopy 

Canopy cover > 40% 

Open canopy Canopy cover 10-40% 

Continuous forest 
cover 

Long fallow Forest affected by shifting cultivation 
Fragmented forest Fragmented 

forest 
Mosaic of forest/non-forest 

Non-forest   
Shrubs  Other wooded land 
Short fallow Agricultural areas with short fallow 

periods 
Other land 
cover 

Includes urban and agricultural areas, 
areas with less than 10% woody 
vegetation cover 

Non-woody areas 

Water  
Human-made woody 
vegetation 

Plantations Forest and agricultural plantations 

Non-visible Non-
interpreted 

Clouds, burnt woodland, shadow 

 There were three LANDSAT images used for each unit in the sample, and 
those were taken that came as near as possible to the reference years 1980, 1990 and 
2000. All the images were interpreted visually from hard copies. They were 
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which it was assumed that the changes in land cover were constant and unchanging 
during the period and could be calculated using one reference date, and a linear 
method in which the changes were assumed to occur gradually requiring the use of 
both the available change rates. Both methods inevitably introduce errors into the 
analysis, but there is no general methodology to account for this uncertainty.  
 The results of the survey were fairly well correlated with the country data 
obtained by means of the questionnaires, although the satellite-based survey gave 
lower rates of deforestation than the country data, especially in Africa, where the 
difference was statistically significant. The major cause of deforestation in Africa 
was the establishment of small-scale agriculture, while in Asia and Latin-America it 
was the establishment of large-scale agriculture.  

17.2.4 Global mapping 

One result of the FRA 2000 project was a global map of the forests, as had already 
been proposed at the Kotka III meeting (Lund and Blue 1997). This map is based on 
AVHRR data, with a pixel sizeof 1 kilometre (FAO 2001). Such data are suitable, 
because the resolution is coarse enough and there is enough material, on account of 
the daily imaging schedule (FAO 2001). The daily data cycle also means that the 
AVHRR data could be formed into 10-day composites. This was done by the EROS 
Data Center (EDS). The data initially consisted of five calibrated AVHRR bands, 
and a NDVI (normalized difference of vegetation index) band. For global mapping 
purposes, the 10-day composites were used to form a monthly composite and the 
number of bands was reduced to two (red and infrared), together with the NDVI 
band: 

 
RNIR
RNIRNDVI

+
−= , (17.2) 

where NIR is the near-infrared value and R is that of the red channel. The areas on 
the global map are classified into five classes (Table 17.5). The most problematic 
parts for mapping are to obtain cloud-free data for all the areas and to piece together 
a large number of images. In spite of the efforts made, some Pacific islands could 
not be mapped because of deficiencies in the data. The last three classes could be 
fairly directly derived from the U.S. Geological Survey (USGS) EDC database 
(FAO 2001), but the closed and open/fragmented classes could not be directly 
inferred from the USGS seasonal forest cover type classes.  
 A new methodology was therefore developed for this latter task, based on 
spectral mixture analysis (SMA), which means that the pixels are assumed to consist 
of fractions of surface components. As the resolution of the AVHRR data is coarse, 
this is obviously the case. Mixture analysis aims at estimating the number of surface 
components, or end members, within the target pixels. The endmembers can be, for 

 Since the average dates of the images were 1977, 1989 and 1998, the 
observed deforestation rates had to be adjusted to obtain estimates of trends between 
the target years. This was done by two methods (FRA 2000): a constant method, in 
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dataset would be difficult to obtain, geographical stratification was used. Moreover, 
the analysis was performed separately for pixels with low, medium and high infrared 
reflectance. Pixels with low infrared reflectance contain burned areas, new forests 
and water, for instance. These pixels were classified on the basis of their NDVI 
values, as NDVI is considered to be insensitive to illumination variation (Holben et 
al. 1986). The pixels with high infrared reflectance contained forest land, 
agricultural land and non-vegetated land and were classified using mixture analysis 
with three end members, while those with mid-range infrared reflectance contained 
coniferous and mixed forests, fragmented forests, open woodlands, shrubland and  
grassland and were classified using linear scaling with red band reflectance, as forest 
cover density is closely correlated with red band reflectance  (Yang and Prince 
1997). Thus stratification was performed in order to improve the classification  (for 
further details, see FAO 1999b, 2001). 

Table 17.5 Classification used in the global mapping (FRA 2000). 

FRA 2000 class FAO definition 
Closed forest Canopy cover of trees more than 40% 

and height over 5 metres 
Open or fragmented forest Canopy cover of trees between 10% and 

40% and height over 5 metres 
Other wooded land Canopy cover of trees between 5% and 

10% and height over 5 metres, or shrub 
or bush cover of over 10% and height 
less than 5 metres 

Other land cover All other land, including urban and 
agricultural land, grassland and barren 
land 

Water Inland water 
 
 Validation of the global map with the available material showed its 
accuracy in this analysis to be about 80% for all the forest classes (FRA 2000). The 
closed forests could be mapped most accurately and the other wooded lands the least 
accurately (Table 17.6). 
 In addition to the global maps of forests, a map of ecological zones was 
also produced. This was based on the existing national and regional potential 
vegetation maps, climate data and satellite imagery (FRA 2000). The third type was 
a map of protected areas, the input for which was collected directly from the 
countries. 
 

instance, green vegetation, soil and rocks and shadow (see Smith et al. 1990, Roberts 
et al. 1993 for details). In mixture analysis, also other data with better resolution, 
such as LANSAT TM data are required.  
 As the variation on a global scale is paramount, and a sufficiently large TM 
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legend  total error 
1 65 2 3 8 78 83.33 0.42 
2 13 9 3 17 42 21.43 0.64 
3 1 2 6 10 19 31.58 1.10 
4 3 8 2 160 173 92.49 0.20 
Column 
total 

82 21 14 195 312   

Producer’s 79.27 42.86 42.86 82.05    
Standard 
error 

0.45 1.10 1.37 0.28    

 

17.2.5 Forest information database 

All the data gathered in the process were placed in the FORIS (Forestry Information 
System) database, a Web-based system with its main user interface at the FAO 
Forestry Department web site http://www.fao.org/.  
 The data are organized by country, subject, species, publication and 
organizational entity, and the information can be presented in all the FAO’s official 
languages, namely Arabic, Chinese, English, French and Spanish.  
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CHAPTER 18 

EUROPE 

TIMO TOKOLA  
University of Helsinki, Finland  

18.1 SWEDEN 

18.1.1 Swedish National Forest Inventory 

The main purpose of the NFI, which has been taking place since 1923, is to describe 
the state of forest resources in Sweden, e.g. growth and cuttings, and to trace 
changes in these. The NFI is a part of the Official Statistics of Sweden (Swedish 
National Inventory of Forests 2004), however, and thus has numerous fields of 
application, being, among other things, a powerful resource for environmental 
monitoring. As a basis for the statistical design of the survey, a geostatistical 
analysis has been used to determine the variation within areas, the importance of the 
size of the sample plot, the time required and the economic practicability of the 
available resources. The analysis has resulted in a division of the country into 5 
regions, the designing of survey tracts, a weighting between permanent and 
temporary survey tracts and a standard size of sample plot (Matern 1960, Matern, 
1981, Ranneby, 1981a, Ranneby, 1981b, Hägglund 1985, von Segebaden 1992). 
Variograms have been used to describe variations in land use, forest volume and 
topography (Matern 1960, Ranneby, 1981b), and these spatial functions have been 
used to define an effective layout for the survey tracts. 
 The Swedish NFI is based on the systematic sampling of tracts, so that the 
current design, including both permanent tracts (established in 1983) and temporary 
ones, covers the whole country every year. The tracts consist of circular plots (Fig 
18.2) within which samples of the trees, ground vegetation, etc, are selected and 
used for estimating the total volume of all trees, the total area of land covered by a 
certain vegetation type, and so on.  
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 Figure 18.1. The cluster and plot layout used in the Swedish National Forest Inventory (SNFI 
Web page). 

 The tracts are square or rectangular in shape and vary in size between 
different parts of Sweden. They are systematically distributed over the whole 
country, but lie closer together in the south than in the north (Fig. 18.3). Temporary 
tracts are surveyed only once, whereas permanent tracts are re-surveyed regularly  
(Swedish National Inventory of Forests 2004). 
 

Figure 18.2. Plot layout used in the Swedish National Forest Inventory.  

Particular sets of attributes are assessed in different parts of a plot (Figure 18.2): 
 
• Tree and shrub layer. All trees higher than breast height (1.3 m above ground) are 
calipered (diameter measured), the ages of the sample trees are counted from  
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annual rings in a core obtained from the stem at breast height, and the cores are sent 
to a laboratory for further measurements. 
 
• Ground vegetation. The type of ground vegetation is roughly assessed according to 
16 field layer and 6 ground layer categories which form the basis of the site index 
classification. A total of 267 species and groups of species are assessed and coverage 
is recorded for 71 of these on small subplots.   
 
• Site conditions. Soil moisture and surface water flow on the plot are assessed, and 
also its inclination and typographic position. A site index is determined to estimate 
its site quality class. In addition, the effects of forestry and other human activities are 
assessed. 
 
• Position in the landscape. The position of the plot is determined, with regard partly 
to administrative boundaries and partly to its location in relation to landscape 
elements such as roads, fields and lakes. North and east coordinates are also 
recorded, together with altitude. Since 1996 the positions of all plots have been 
defined using GPS. 
 One to three subsamples from each of the circular sampling areas are 
collected from the O-horizon with a soil corer. Equal numbers of subsamples are 
collected from each soil horizon, after which all the subsamples for a particular 
horizon are pooled. The vegetation layers are thoroughly surveyed, giving extensive 
information on the vegetation in each area. After collection, the soil samples are 
stored at room temperature in cotton bags for a maximum of one week before 
transportation to the laboratory, where they are dried to constant weight in a 
chamber. 
 The Swedish NFI presents its results in a variety of ways, ranging from the 
supplying of individual figures over the telephone to extensive analyses that includes 
year-round work. Some standard tables including mean values for the last 5 years are 
presented in an annual publication called Skogsdata. The results from 1983 up to the 
present are the easiest to handle and the fastest to present, but many results from as 
far back as 1923 can be shown and compared. As the Swedish NFI is carried out on 
the basis of systematic sampling, the precision of its figures can be estimated (see 
Chuan-Zong and Ranneby 1992) using specific approximations. The density of the 
tracts/plots can be adjusted by using information for a 5-year period in order to give 
high precision for estimates at a county level, whereas more extensive estimations 
for smaller units such as municipalities or catchment areas require modified methods 
of field sampling (a denser sampling network) and/or remote sensing techniques 
(Swedish National Inventory of Forests 2004). Annual results are presented on the 
Internet (http://www-nfi.slu.se/). 
 The Forest Soil Inventory is a detailed inventory of the soils on the  
permanent plots based on sampling of the humus layer and mineral soil to a depth to 
one metre and assessment of a number of attributes, including soil type, mineral 
texture, type of humus, degree of humification and thickness of the humus layer. 
Samples are also taken from the various soil horizons for later analysis of pH, 
nitrogen and carbon levels, degree of base saturation, heavy metal content, etc. 
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Figure 18.3 The distance between clusters varies in different parts of Sweden.  

18.1.2 Inventory for forest management planning 

One especially striking feature of Sweden as compared with other timber-producing 
countries around the world is that private companies are the largest single category 
of forest owners, accounting for 44% of the country’s forests, while approximately 
32% are family-owned. The average size of a private forest holding is about 50 
hectares. These holdings are the dominant category in the southern part of the 
country, accounting for 80% of the forest land. The state owns 17% of the 
productive forest land and other public owners account for 7%.  
 Sampling procedures have been used in forest inventories and intensively 
implemented for stand surveys for a long time in Scandinavia by comparison with 
other European countries. Ocular assessment of stands is employed in Sweden, but 
as this method is liable to subjective bias, the resulting estimates are supplemented 
with inventories based on PPS sampling or systematically distributed circular plots 
and calibrated accordingly. Wood procurement mapping is applied only on a limited 
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scale, the most important reason being the large forest properties owned by the paper 
companies and the lower level of market competition (relative to Finland).   

18.2 GERMANY 

Around 30% of Germany is covered with forests, of which a good third consist of 
deciduous trees. Over half of the approx. 11.1 million ha of forests in Germany are 
owned by the federal states or municipalities and 44% are privately owned 
(Bundeswaldinventur 2002). Forestry in general is organized at the level of the 
federal states, and most forest management projects are implemented by the states’ 
forest administrations. Although the federal states are the large forest owners, the 
federation as such owns only about 4% of the total forest area. All the forest areas in 
the country are considered “close to natural” and are managed, i.e. there is not a 
single untouched or virgin forest left, as a result of a long period of historical 
development. Forest damage, mainly from air pollution and storms, is an important 
issue (Akça 1994). 
 The maintaining of the various ecological and socio-economic forest 
functions requires differentiated forest inventory methods to support the 
management, sustainment and conservation goals. Forest inventories can be 
categorized according to the size of the inventory area and the significance of the 
inventory for forest enterprise policy and economic management of the forests 
(Table 18.1).  

Table 18.1 An overview of inventory methods employed at various management levels. 

Inventory 
Level 

Inventory Method Goals and target variables 

National National Forest Inventory Forest Area and Volume Increment 
Survey 

  National Forest Damage 
Inventory  

Inventory of Forest Damage 

 National Soil Condition 
 Survey 

Evaluation of Soil Condition 

Regional  Forest Framework  
Planning  

Inventory of forest attributes 
relevant to regional land use 
planning  

  Forest Functions Mapping  Recording of forest functions 
  Forest Biotope Mapping  Biotopes within forests 
Forest 
Enterprise  

Site Type Mapping   Recording of natural site conditions 

 Forest Management  Providing an internal aid to 
information, control and planning 

 
 One essential source of recorded data for forest inventories is fieldwork. 
Forest maps are mostly derived from the German basic map (scale 1:5 000) or 
topographical maps (scale 1:25 000). The use of remote sensing methods is limited 
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to aerial photographs or orthophoto consulted for update purposes, the mapping of 
forestry data, the definition of forest stands in the context of forest management 
planning and as an orientation aid in inventories at the level of forest enterprises and 
regional planning. Satellite images are rarely used as yet in forestry practice. 
Cartographic presentation of the recorded results and/or the defined management 
measures is normal practice in every forest inventory procedure (Akça 1994). 
 At the federal level, the results of the National Forest Inventory, National 
Forest Damage Inventory and the National Soil Condition Survey particularly serve 
forest policy purposes. The results of the regional management procedure are for the 
most part presented in the form of maps, while rge results of forest framework 
planning are presented on two forms of map: a map of forest functions, which shows 
the forest functions aspired to (currently planned and legally binding forest 
functions), and a measures map, which defines the foreseen changes and the 
measures required to attain the goals. Various thematic maps are made for the 
individual forest enterprises within the framework of forest management and site 
type mapping. These illustrate the current conditions, planned improvement 
measures or the desired future situation and are drawn up for given forest units or 
areas under common cultivation, and therefore specifically take ownership into 
account (Akça 1994).  

18.2.1 National Forest Inventory: Natural forests 

Inventories are made over the entire territory of Germany in order to record the size 
and distribution of the forested areas and timber reserves (National Forest 
Inventory), the degree of forest damage (National Forest Damage Inventory) and the 
prevailing soil conditions (National Soil Condition Survey). The first national forest 
inventory took place in 1986 -1990, and the main fieldwork for the second was 
carried out in 2001-2002 and the results published in 2004 (Polley 2001, 
Bundeswaldinventur 2002). 
 The collection of data for the second national forest inventory was based on 
permanent field sample plots chosen from among approximately 44 000 square 
cluster plots of size 150 x 150 m with a systematic layout  on either a 4 km × 4 km 
or 2 km × 2 km grid, depending on the state concerned (Figure 18.4). About 400 000 
sample trees were measured in the second inventory and about 150 variables were 
recorded for the sample plots (Survey instructions for Federal Forest Inventory II, 
2000). 
 Each corner of a cluster plot located in a forest forms the centre of an 
angle-count sampling sub-plot with a basal area factor of 4. This sub-plot type is 
used to define the sample trees, which are described in more detail to form the basis 
for a wide variety of evaluations. The following trees are included:  
- those falling into the angle-count sample (basal area factor 4) that are 
- either alive or have died recently (fine branchwood maintained in full) and 
- belong to the same stand as that in which the centre point of the sample lies and 
- have a diameter at breast height of at least 7 cm. 
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Figure 18.4 Cluster layout for the second NFI in Germany. Each cluster contains 4 plots. 

 In addition, angle-count sampling with basal area factor of 1 or 2 is carried 
out, in which the trees are counted as a basis for describing the forest structure by 
species and storey., Stand boundaries are not taken into consideration, but the angle-
count sampling is subjected to regular reflexion at the forest edges.  
 In addition, use is made of specific sample sub-plots or circles within the 
cluster plots (Figure 18.5): 
 
1. Each plot corner located in forest is taken as the centre of a sample circle with a 
radius of 1.75 m in which all trees over 50 cm high and under 7 cm in diameter at 
breast height are surveyed. 
 
2. A circle of radius 1.00 m is located 5 m away from the corner of the plot, 
generally to the north, for the recording of all trees of height 20 cm to 50 cm. 
 
3. The occurrence of deadwood is determined in a circle of radius 5 m around the 
plot corner. 
 
4. Trees up to 4 m in height, the shrub layer and the ground vegetation are surveyed 
in a circle of radius 10 m around each plot corner. 
 
5.  Site characteristics and forest edges are recorded in a circle of radius 25 m around 
each plot corner located in forest. 
 
If a sample circle of radius 1.75 m or 5 m is crossed by a stand boundary, the course 
of this boundary is surveyed and only the part cut off by it in which the cluster plot 
corner is located is considered for inventory purposes. 
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Figure 18.5 Plot layout for the NFI in Germany. 

Forest edges are surveyed within a radius of 25 m of all plot corners located in 
forest. In addition, stand boundaries which are not forest edges must be included in 
the survey, 
 

1. if they intersect the boundary circle of a sample tree defined by angle-
count sampling with basal area factor of 4. These are all stand 
boundaries within a radius of 25 times the breast-height diameter 
around the trees defined in angle-count sampling. Stand boundaries 
which are further than 25 m from the plot corner are not surveyed, 
however. 

2. if they divide a sample circle of radius 1.75 m or 5 m, provided that 
some sample elements (trees of height at least 50 cm and diameter at 
breast height up to 6.9 cm, or deadwood) are available in the circle 
(Polley 2001). 

 
 The stand boundaries surveyed during the Federal Forest Inventory need to 
be checked. The surveying of these and of forest edges is simplest if the horizontal 
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distance and azimuth are determined for two points on the boundary line. If the stand 
boundary does not run in a straight line, a further point must be surveyed at the 
knickpoint. The survey points on the stand boundary should be at least 10 m apart  
(Polley 2001). 

18.2.2 Regional inventories  

Regional administration and planning is organized by the Bundersländer (i.e. forest 
administration is located in the national Ministry of Finance). Various forms of map 
material produced by contractors are used for environmental decision-making.  
 Forest framework planning, forest functions mapping and forest biotope 
mapping are employed as forest policy management aids at the regional level. 
Forest framework planning sets the goals for proper forest sustainment, forest 
development and forest management and defines the measures to be taken, forest 
functions mapping describes the various functions of the individual forest areas, 
including a forest’s special recreation value or particular importance for climatic 
conditions, and forest biotope mapping records and localates biotopes within the 
forests. All three management aids and their respective inventory methods serve the 
essential purpose of sustaining and improving the various functions of the forests 
beyond the enterprise level and regardless of ownership for the benefit of the 
population and the balance of nature. Their results should be taken into account by 
all internal and external decision-makers dealing with forest questions (Akça 1994). 

18.2.3 Forest management planning: compartment level inventory 

Forest management plans are produced for landowners, and there are a large number 
of consultants bidding for contracts to prepare such plans for the largest landowners. 
The most important objective in a forest inventory is to obtain information for the 
internal operational management of forest enterprises. Two supplementary 
inventories are employed at this level (Akça 1994). 
 Site type mapping describes existing site conditions and potential natural 
forest stands within the properties of the forest enterprises and forms the basis of 
silvicultural planning in a forest enterprise. Apart from defining natural forest 
stands, it offers proposals and possibilities for assisting in the choice of tree species 
and forest stands. The results of this inventory and mapping method are of long-term 
importance due to the relative continuity of site conditions (Akça 1994). 
 Forest management inventories contribute to obtaining information for 
the management of individual forest enterprises. Forest management may be viewed 
as a combination of the instrumental aids of inventory, control and planning. In this 
manner, by recording and analysing internal and external natural economic and 
organizational site conditions, proposals can be made for the silvicultural 
management of forest enterprises which conform to the goals laid down for this 
(Akça 1994).  
 
 It is of particular importance that regional and internal inventory methods 
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should complement one another. Internal management planning should be in accord 
with the goals set at a regional level. National inventories provide fundamental 
information for formulating regional and internal guidelines based on the political 
and legislative decisions derived from them (Akça 1994). 
 The recording of conditions within forest management basically comprises 
three sectors: 
1. Surveying of forested areas and forest development 
2. Surveying of forest stands (timber reserves, timber increment, management 
conditions) 
3. Surveying of the landscape (cultivational, environmental and ecological) 
importance of forested areas (conservational and recreational functions). 
 The purpose of surveying forest stands is to record the locations and sizes 
of the areas owned by given forest enterprises. Forest stand (compartment or sub-
compartment) definition mapping is above all an aid to planning and control, 
providing a real distribution system. Moreover, a forest stand map should serve as an 
aid to orientation, forest surveying, the transport, logging and processing of timber, 
to creation of order in an area and forest protection. Within the forest enterprise 
itself, the areas are subdivided once again, according to their use being seen either as 
wood production areas (forested areas) or non-wood production areas (e.g. forest 
roads or timber depots). The forest stands (compartments and sub-compartments) 
form the base for recording timber volumes and improvement conditions, thereby 
permitting investigations into current production potential and future development 
possibilities. The third sector of an internal “natural inventory” is the recording of 
forested areas of landscape importance (cultivational, environmental and ecological). 
Counted among these are the conservational and recreational functions of the forests, 
which are of relevance to the silvicultural and economic management of the areas. 
 The data are either digitized on location by means of mobile data input 
systems or else digitized centrally. In this wayu the forest management data can be 
stored and evaluated centrally for each state. Analogue mapping is performed at the 
Forest Management and Planning Institutes and is very seldom carried out digitally. 
The integration of digitally stored and administrative data with their respective 
spatial relations in the form of geographical information systems is in the 
development phase in various federal states (Akça 1994). 

18.3 OTHER EUROPEAN AREAS 

Planning procedures are continuously being adapted to current needs and conditions, 
so that there are many different procedures in use within Europe today. The fact that 
federal systems usually leave forest planning to the authorities of each state or 
canton and the existence of different regulations for public and private forests have 
led to a situation in which there are no uniform regulations for forest planning within 
Central Europe and consequently no uniform sampling procedures. Data on stands 
and enterprises are mainly collated through a combination of total tallies, ocular 
assessments for taxation purposes and sample surveys. In some East European 
countries the situation is different, as recent reforms of the property laws and 
planned economy have provided a basis for uniform regulations. Remarks on current 
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domain and stand inventory practices in certain selected countries are provided 
below (Köhl 1992). 
 In Norway, the sixth NFI began in 1986 and results were presented for the 
year 1990. The results of seventh inventory were available for year 1996. The 
sampling design applied in NFI is systematic sampling and single-stage cluster 
sampling. Field data collection for the sixth inventory employed clusters of plots 
forlaid out in a grid pattern over the whole country with 3 km spacing. The basic 
shape of each cluster was a half square (L-shape), and the plots were located 300 m 
apart within each cluster. The southernmost plot was established as a permanent 
plot, while the others were temporary ones. Although the 3 km grid was fixed, the 
number of plots and the distance between them within a cluster sometimes differed 
between counties. If the percentage of forest land or the total area of the county was 
small, the number of plots was increased. This led to clusters of up to 12 sample 
plots (Tomter, 1992). Permanent sample plots are circular, fixed area plots of 250 
m2. Temporary sample plots are concentric fixed area plots of 100 m2 and 250 m2 for 
trees larger than 5 cm and 20 cm, respectively. (EC 1997) 
 Forest management plans in Norway are prepared by private institutions, 
principally forest-owner organisations, as a service for their own members and other 
interested parties. The planning process is as follows: 
   1. Aerial photographs are taken of the area for which a plan is to be prepared. 
   2. The aerial photographs are compared with a map of the area and the forest 
stands are identified and classified. 
   3. Records are prepared with the aid of the map while out in the forest. All the 
stands are systematically examined, and various measurable factors are recorded, 
such as average tree height and diameter, number of trees, yield class and age, and 
data associated with multiple land-use considerations (edge zones beside water, 
marshland, rivers and roads, and also large deciduous trees and hollow trees, the 
amount of dead wood, vegetation types etc.). 
   4. The data are processed and the findings are presented in the completed forest 
management plan.   
 In Austria, sampling design applied in the Austrian Forest Inventory (AFI) 
is a systematic cluster sampling. The field work of first inventory was carried out 
1961-70. Since 1981 four permanent sample plots, located in the corner of the 
square, have formed the tract with a side-length of 200m. Distance between tracts is 
3.89 km. Data are collected from circular concentric plots with areas of fixed area 
300 m for stand data, bitterlich plots for trees with diameter larger than 10.5 cm and 
fixed circular plots of 21 m2 for trees between 5-10.5 cm. (EC 1997) Forest holdings 
are either surveyed by means of ocular assessment of individual stands or sampling 
procedures. Standing timber reserves are estimated on the basis of yield tables for 
stands between 20 and 60 years of age and by point sampling for those between 60 
and 80 years. Stands over 80 years old are assessed on fixed-area plots or by means 
of total tallies. The sampling units are systematically distributed, one or two plots 
per hectare, or sometimes one per two hectares, being surveyed, depending on the 
stand conditions. Stand features, site characteristics and data for individual trees are 
recorded, and this information can then be extrapolated to larger units such as whole 
forest holdings, stand units or large stands. The current practice thus employs a 
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mixture of ocular assessments and sample surveys (Köhl 1992). 
 In France, the first cycle of National Forest Survey (IFN) started in 1960 
and lasted nearly 20 years. The second inventory ended 1994. The IFN service is 
part of Department of Agriculture and field data is mainly collected by local 
departments. The sampling is a 3 step double sampling for stratification: 

1) Aerial photographs are interpretated to stratify categories defined by land 
cover type, localisation and ownership. Systematic photo-plots (25 m radius 
circle) are distributed on photographs and  plots are assigned to strata.  

2) Photo interpretation is checked in the field and modifications to 
interpretation is carried out. 

3) Field plots are chosen randomly among plots in the various strata. Field 
plots are temporary plots and consist of three concentric circle plots. Trees 
are measured on plot with different radius (6m, 9m and 15 m). 
Regeneration is assessed on nine plots of 2.26 m radius.  

The sampling fraction may vary from one department to another. Data are stored in a 
national forest survey database. (EC 1997). 
 The national forest inventory in the United Kingdom employs the yield 
and production sections of the Forest Management Tables for all stands except final 
felling crops. A diversity of methods are used for collating data on privately-owned 
forests, volume being estimated on the basis of yield tables, while standing volume 
is extrapolated from visual assessment, the measurement of felled trees or, in 
exceptional cases, point sampling. (Köhl 1992). 

National forest inventories are undertaken by the Forestry Commission. 
The first assessment was done 1924 and has been repeated on average every 15 
years. The sampling frame covers all of Great Britain. Randomly selected square 1 
km temporary field plots are assessed using aerial photography then two 250 m by 
250 m are sampled at random from within the 1 km square. The yield models are 
empirical and based upon periodic measurements from 1500 permanent and 1000 
temporary sample plots. (EC 1997). 
 Switzerland has been described as the land of control and selection 
forestry. Continuous forest inventory techniques have been combined with control to 
furnish an inventory system that has been implemented in many Swiss cantons. 
Control sampling is based on permanent plots, while standing reserves are calculated 
from tariffs. Increment is determined through the comparison of data on standing 
reserves in successive inventories. Control sampling can justifiably be regarded as a 
procedure combining the classic methods of forest planning with the possibilities 
offered by sample surveys. Because of its practicalities and its many interesting 
possibilities for solving particular problems, the procedure has been widely adopted 
even outside Switzerland. A review of current methods shows that stand surveys for 
forest management planning are usually based not on sampling but on ocular 
assessments. Sample surveys are as a rule reserved for district-level inventories. One 
of the main arguments against the use of sample procedures for stand inventories is 
that most forest stands in Europe are relatively small and the sampling intensity must 
be very high to produce acceptably precise results.  
 Since the observation of what came to be known as “a new type of forest 
damage” (forest decline) in the forests of Central Europe in the early 1980’s, forest 
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health monitoring has been introduced at the national and local levels. The variables 
of interest in such inventories are ocular assessments of crown transparency and 
discoloration (Köhl 1992). 
 The goal of the National Forest Inventory (NFI) is to record the current 
state and recent development of the Swiss forests in a representative and 
reproducible manner using various data sources. To this end, the second inventory 
(1993–1995) employed a combination of methods. A double sampling design made 
use of aerial photos on a 0.5 × 0.5 km grid in the first phase to estimate strata sizes, 
to identify forest plots and stocks outside the forest and to provide reference points 
for the field survey and field sample plots on a 1.4 × 1.4 km grid in the second phase 
to record a number of variables connected with individual trees and stands, young 
growth and damage by game, together with features of the surrounding areas. The 
plot layout was a concentric circle of 200 and 500 m2 with thresholds at diameters of 
12 and 36 cm. Diameter at 7 metres and height were recorded for a sub-sample of 
the first-stage trees, following a scheme with inclusion probabilities proportional to 
the expected error of the volume estimates. The work and costs involved in the 
different steps of the terrestrial survey were recorded and evaluated, and ongoing 
training of the survey teams and control surveys were employed to ensure high-
quality data. Further information was obtained by interviewing representatives of the 
local forest services, from external data sources, from models describing the site 
conditions and from specially designed studies of forest transportation systems and 
the effects of game browsing on tree growth. The data were stored in a relational 
database and evaluated using statistical software developed specifically for this 
purpose. Static models were used to evaluate the following complex forest 
characteristics: the volume of standing and cut timber, tree growth, the work and 
cost involved in timber felling and extraction, the sustainability of forest 
regeneration, the protection provided by forests against avalanches and rockfalls, the 
recreational value of the forests, and the biotope values of the stands and forest 
edges. Furthermore, a dynamic model was developed which yielded prognoses for 
the future development of each individual tree in particular management scenarios 
(Köhl 1992). 

REFERENCES 

Akça, A. 1994. Forest Inventory Systems in the Federal Republic of Germany. In: Kennedy, P.J. , 
Päivinen, R. and Roihuvuori, L. 1994. Proceedings of International Workshop of “Designing a 
system of Nomenclature for European Forest Mapping”, European Forest Institute, Joensuu, Finland, 
13th-15th June 1994. Report EUR 16113 EN. p. 207-214.  

 
Bundeswaldinventur 2002. http://www.bundeswaldinventur.de/ 
 
Chuan-Zong L, Ranneby B, 1992. The precision of the Estimated Forest Data from the National Forest 

Survey 1983–1987, 54, Department of Forest Survey, Swedish University of Agricultural Sciences. 
 

307 



 

FIA 2004. Forest Inventory and Analysis, Phase 2 and Phase 3: Ground, Measurements FIA Fact Sheet 
Series. 2 pp. 

 
Hägglund B, 1985. En ny svensk riksskogstaxering. – Inst. f. Skogstaxering, SLU, Umeå. Rapport Nr 37. 
 
Köhl, M. 1992. Stand inventory techniques in Europe. In: Proceedings of the Stand Inventory 

Technologies: An International Multiple Resource Conference, World Forestry Center, Sept. 13-17, 
1992. American Society for Photogrammetry and Remote Sensing. 

 
Matern, B. (1960) Spatial variation. Medd. Statens Skogsf. Inst. 49(5). Also appeared as number 36 of 

Lecture Notes in Statistics. Springer-Verlag, New York, 1986. 
 
Matern, B. 1981, Funderingar om provträd I riksskogstaxeringen. Inst. f. Skogstaxering, SLU, Umeå. 

NUTAX-Rapport Nr 8. 
 
Polley, H, ed. 2001. Survey instructions for Federal Forest Inventory II, (2001-2002) 2nd corrected and 

revised reprint, May 2001. Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft 
(BMVEL), Bonn, Germany. 109 pp. 

 
Ranneby, B. 1981a. Provytestorlekens betydelse vid skogsinventeringar. Inst. f. Skogstaxering, SLU, 

Umeå. NUTAX-Rapport Nr 4. 
 
Ranneby, 1981b, Den topograpfiska variationen inom olika områden. En redovisning av skattade 

korrelationfunktioner. Inst. f. Skogstaxering, SLU, Umeå. NUTAX-Rapport Nr 5. 
 

Tomter, S.M. 1992. The National Forest Inventory of Norway. Proceedings of Ilvessalo Symposium on 
National Forest Inventories, Finland 17-21. August 1992. The Finnish Forest Research Institute. 
Research Papers 444. 279 p. 

 
von Segebaden 1992. The Swedish National Forest Inventory – a Review of Aims and Methods. 

Proceedings of Ilvessalo Symposium on National Forest Inventories, Finland 17-21. August 1992. 
The Finnish Forest Research Institute. Research Papers 444. 279 p. 

 

 
EC 1997. Study on European Forestry Information and Communication system. Volumes 1 and 2. Office 

for Official Publications for the European Communities. 1328 p.  Luxembourg, Belgium. 

TOKOLA 308

The Swedish National Inventory of FORESTS, 2004. 4 pp. Brochure, See, http://www-nfi.slu.se/ 



 

© 2006 Springer. Printed in the Netherlands. 
 
 

CHAPTER 19 

ASIA 

TIMO TOKOLA  
University of Helsinki, Finland  

19.1 INDIA 

Established in 1965 as the Pre-Investment Survey of Forest Resources and 
reorganized 1981, the Forest Survey of India (FSI) is entrusted with the 
responsibility of surveying forest resources over the entire country. It has its central 
organization in Dehradun and zonal offices in Bangalore (southern), Kolkata 
(eastern), Nagpur (central) and Shimla (northern). 
 The primary mandate of the FSI is: 

• to prepare a State of Forest Report biennially, providing an up-to-date 
assessment of the forest cover and monitoring changes in this, 

• to undertake a Forest Inventory, an Assessment of Trees Outside Forest and 
an Assessment of Wood Consumption, 

• to prepare thematic maps to a scale of 1:50 000 using aerial photographs, 
• to function as a nodal agency for the collection, compilation, storage and 

dissemination of spatial data on forest resources, 
• to conduct training of forestry personnel in the application of technologies 

related to resource surveying, remote sensing, GIS, etc. 
• to strengthen its own research and development infrastructure and to 

conduct research into applied forest survey techniques, 
• to support State/UT Forest departments for forest resources surveying, 

mapping and inventory purposes, and 
• to undertake special studies/consultancies related to forestry and to create 

customised training courses for SFD’s and other organisations on a project 
basis. 
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Its current activities include: 
• a Forest Cover Assessment 
• a Forest Field Inventory 
• Forest Inventory Data Processing and Analysis  
• an assessment of Trees Outside Forests (TOF) 
• an assessment of the Consumption and Utilisation of Wood and NWFP in 

the Household Sector 
• Training and Extension 

 
These current activities also include special studies and consultancy work, such as 
support for the State Forest Departments in connection with their forest inventories 
and GIS capacity building. The current field inventory data also allow the 
assessment of non-wood forest products (NWFPs), the carbon stock contained in the 
forest biomass and forest soil and biodiversity indices.  
 IRS 1C / 1D LISS images are used for forest cover mapping. The whole of 
India can be covered with 342 LISS images, with a rate of overlap between adjacent 
scenes of about 20%. The FSI acquires the system-corrected images from National 
Remote Sensing Agency (NRSA). The most suitable image acquisition date in India 
is after the rainy season, i.e. from October to January, which is also the best time for 
the observation of deciduous forests. Tests have also been made with the use of IRS 
PAN imagery together with LISS data, in order to improve the present forest cover 
mapping and the estimation of the numbers of trees outside the forest area. 

19.1.1 Forest cover mapping 

Biannual forest cover mapping has been one of the major activities of the FSI central 
office. Earlier, Landsat MSS and TM data were used as the primary sources, but 
Indian Remote Sensing satellite images have been adopted since the fifth mapping 
exercise. The methodology has been developed from the level of visual 
interpretation to complete digital processing lasting the course of the latest 
inventories (1999-2001). All the new maps in the 2001 forest cover mapping were 
produced by digital methods.  
 For digital interpretation, satellite data is procured in digital form from the 
National Remote Sensing Agency in Hyderabad and basic radiometric and stretch 
corrections are applied to remove radiometric defects and improve the visual impact 
of the False Colour Composite. Geometric rectification of the data is carried out by 
reference to scanned topographic maps. No digital elevation model is available. 
The forest cover is described in terms of the following classes: 

1. Dense forest (forest cover/canopy density > 40%) 
2. Open forest (forest/canopy density 10-40%) 
3. Mangrove (special areas) 
4. Scrub (poor growth and forest cover/canopy density < 10%) 
5. Non-forest 

The data classification procedure is the following: 
1. The forest areas in the scene are classified digitally. Topographic maps, 
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vegetation maps from the previous mapping cycle and field control for 
unclear locations are used in this classification. 

2. The forest cover is classified in terms of density using NDVI 
transformation. The threshold values for the density classes are determined 
for the NDVI image and these areas are used directly as forest cover 
estimates. Shadow areas in the scenes are treated separately. 

3. Mangroves are interpreted separately due to their special reflectance, 
texture and location characteristics.  

4. The classified scenes are mosaicked and reports by state and district are 
extracted using boundary layers. 

 
 Topographic maps to scales of 1:1 million and 1:250 000 were used earlier 
as primary reference data, but nowadays 1:50 000 topographic maps are used for 
digital image processing. The entire country is covered by 363 map sheets on a scale 
of 1:250 000 or 5200 sheets on a scale of 1:50 000. 

19.1.2 Forest inventory 

National Forest Inventory has been one of the major activities of the FSI and the 
Pre-Investment Survey of Forest Resources. The old inventory system was based on 
two-stage random sampling with post-stratification. Prior to 1982, stratification was 
based on aerial photographs, which were used to derive thematic maps, but from that 
year onwards each topographic map (1:50 000) has been divided into a grid of 36 
elements covering 2 ½’ × 2 ½’ of latitude and longitude, with two sample points 
marked in each grid square at random. The inventory data are collected from a 
square plot of 0.1 ha laid out on the ground at each of these sample points. The FSI 
covered an area of about 680 000 km2 and produced 130 inventory reports between 
1965-1995.  
 Between 1996 and 2001 the inventory activities of FSI were concentrated 
on the assessment of “trees outside the forest”, and traditional forest inventory work 
was suspended. Since 80% of the country’s forest area had been inventoried by 
1995-1996, it was felt at that juncture that it was important to assess trees outside the 
forest, as these had traditionally not been inventoried at all and little quantitative 
information existed on them. TOF also provide support for the rural economy and 
for food security.  
 The policy changed in 2001-2002, and work began on establishing a new 
methodology for integrated forest resource assessment. The FSI proposed that it 
should supplement the usual field inventory with measurements of several other 
parameters in order to obtain a comprehensive assessment of forest resources inside 
and outside forest areas at the national level. Additional data will now be collected 
during the field inventory stage to assess regeneration status, biodiversity indices 
and soil carbon in forest areas. Along with the assessment of trees outside forests in 
rural and urban areas, assessments of the utilisation of wood and non- 
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Figure 19.1 The sampling design for forest inventories (1965-1995) was systematic, with a 
grid size of 2.5’ × 2.5’ of latitude and longitude. Each grid cell contained 2 sample plots, each 
of 0.1 ha in size (31.62 × 31.62 m). The location of the first plot inside the grid cell is selected 

at random and the second is linked to it, being located at the same distance from the cell 
centre in the opposite direction. 

wood forest products will be carried out through a household survey. Field data will 
be collected from sample plots based on stratification of the country into 
physiographic zones, each covering several states, and the drawing of a sample of 
5% districts every year for a detailed inventory. Measurement of the field sample 
plots in selected districts will be entrusted to the zone offices in Bangalore, Kolkata, 
Nagpur and Shimla). The plots will be allocated by reference to the topographic map 
sheets (1:50 000), each map being divided into a grid of 144 elements representing 1 
¼’ × 1 ¼’ of latitude and longitude, and two cells of 2 ½’ × 2 ½’ selected at random 
from these, after which every second cell was systematically selected to form a 
sample sub-grid. One sample point will be marked at the centre of each of these 
cells. Thus two sample points are allocated to the centres of the cells of a small grid 
within one cell of the large grid. The plots include main plots of size 0.1 ha, four 
small “soil, forest floor and carbon” plots in the corners and four plant biodiversity 

TOKOLA 312



plots (3m × 3m and 1m × 1m) located about 50 m away on the diagonals of the main 
plot. This new design has been tested in pilot inventories in Bangalore, and time 
studies were carried out as well 
 The field data are currently collected using nine forms, the content of which 
can be described as follows: 

1) Plot approach form, containing information on team composition, time 
required to reach the plot and timing of the measurements,  

2) Plot description form, containing plot-level descriptions of general soil, 
crop and bamboo characteristics. The data are collected from 0.1 ha 
plots (31.62 m x 31.62 m). 

3) Plot enumeration form, on which the species and diameters of all trees 
are listed, 

4) Sample tree form, on which additional measurements made on the 
sample trees are recorded (dominance, dbh, height, crown width),  

5) Bamboo enumeration by clumps form, on which the quantities of 
bamboo are enumerated by quality and diameter classes and by 
species,  

6) Bamboo enumeration form for non-clumping culms, on which the 
quantities of bamboo are enumerated by quality and diameter classes 
and by species, 

7) Bamboo weight form, which contains more detailed data on the sample 
bamboo stands by species (diameter, length, utilizable length, weight)  

8) Herbs, shrubs and regeneration form, which contains data on the herb 
plots (1 m × 1m) and shrub and regeneration plots (3 m × 3 m). Species 
and collar  diameter are recorded. 

9) Soil and Forest Floor Carbon form, which contains data on gravel/soil 
and the weight by volume of the forest floor. 

 Some basic GPS models have been procured and will be used for 
navigation to the field sample plots. The FSI has around 40 field teams engaged on 
the field inventory work at present, each led by an FSI official, the rest of the team 
being hired on a contractual basis. The work would require the formation of around 
75 teams, however. The field season is about 8-10 months, depending on the rains. 
About 2000 forest plots and their associated vegetation survey plots are currently 
measured each year. The data are also checked on a regular basis after collection, 
especially if the figures appear to be illogical. The data are stored mainly at 
Dehradun, where the volume characteristics etc. are also calculated on the basis of 
local models developed by the FSI, state departments and the FRI. 
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19.1.3 Trees outside the forest (TOF) and the household survey 

TOF and household surveys are performed in parallel, and it was these that 
constituted the main activity of the inventory unit between 1991 and 2001. The 
methodology used at that time was based on conventional means of assessing TOF. 
Altogether 180 districts (out of the total of 593) were covered by the traditional 
method. Trees in about 2000 villages were enumerated, and related household 
surveys were carried out. More recently, a new sampling methodology has been 
tested in pilot areas, where outlines for the sample size and the shape and size of the 
plots were determined. Studies for stratification of the tree cover in rural areas into 
block, linear and scattered shapes have been carried out separately. Plot sizes may 
differ between strata. A new comprehensive assessment of tree resources outside the 
forest area will follow the procedure listed here:  

1. Stratification of the country’s geographical area into physiographic zones, 
2. Selection of 10% of the districts every two years, 
3. Delineation of the forest area and non-forest area in each district, 
4. Use of remote sensing techniques for stratification of the forest and non-

forest areas, 
5. Generation of separate estimates for rural and urban non-forest areas, 
6. Use of LISS III and PAN data,  
7. Geometric correction,  
8. Digital interpretation of satellite image data, 
9. Overlaying of digitised forest boundaries on the classified imagery 

wherever available – to provide the TOF area, 
10. Use of the fused LISS III and PAN data to give the TOF stratification,  
11. Further division of the rural areas into three strata, block, linear and 

scattered, using the remote sensing images, 
12. Use of sampling units as the sampling frame in the national urban statistics, 

and 
13. Selection of the optimum number of sampling units in each district for the 

survey.  
 
 Household and wood consumption assessment is a separate exercise. A 
demand exists for data of this type, even though these surveys are very time-
consuming. The following procedure will be used in the household surveys: 

1. Household surveys will be conducted in rural and urban areas in selected 
districts. 

2. Working Plans or utilization practices will be sought for local NWFPs, to 
provide  the basis for preparing a schedule for NWFP utilization and 
consumption. The tradition of NWFP utilization and its timing can vary 
between areas. 
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3. The blocks of the national urban survey framework will be used in urban 
areas. 

4. A list of households will be prepared. 
5. Different classes of household will be indicated on this list. 
6. 12 households will be selected within three pre-defined strata after a 

random start. 
7. Ten villages adjacent to the peripheral plots of forest will be selected 

systematically in each rural area. 
8. Ten villages will be selected at random from among the remaining ones. 
9. Households will be selected as in the case of the urban areas. 
10. The data will be recorded according to a prepared schedule. 
11. In addition to consumption data, the report will also include sources of 

NWFPs 
a. From the market 
b. From the forests 
c. From collections 

19.1.4 Forest management planning  

The planning and management of forests forms an integral part of environmental 
planning. GIS technology is being put to use by several State Forest Departments 
(SFD) in order to prepare management plans within their administrative domains. 
The key areas in which GIS technology is being employed are (1) demarcation of 
environmentally degraded areas, including potential ones, and (2) developing 
models for locating centres of viable economic activity in order to ease pressure on 
the environment. Some SFDs are very advanced in this respect  but others need 
further assistance and training. The FSI has provided expertise and training for 
several State Forest Departments in the use of Remote Sensing and GIS for the 
preparation of working plans.  
 A project for the assessment of TOF approved by the Forest Department, 
for example, involves estimation of the growing stock and the numbers of trees by 
species and diameter class located outside forests. Remote sensing techniques will 
be used to stratify the area concerned into three geometrical formations, i.e. linear, 
scattered and block plantations, after which field data will be collected and analysed. 
The project is expected to be completed within 18 months. The PAN data from IRS 
satellites 1C and 1D to be used in this project will be provided by the  Forest 
Department itself. 
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19.2 INDONESIA  

Indonesia’s tropical forests are among the richest in the world. Some 75% of the 
country is covered by natural forests (about 143 million hectares), half of it 
“production forest”. The coverage of natural forest is decreasing very rapidly, 
however, due to poor concession management, illegal logging, forest fires and land 
use conversion (e.g. to agriculture). 
 The government owns all the land in Indonesia and grants concessions to 
companies, local people manage the land in many areas as if it were their own, and 
thus the forestry companies are obliged to co-operate with them. Processed wood 
products generate up to 18% of the national income from exports. An urgent need 
exists for data on the actual extent of the forests, their biophysical characteristics, the 
process of deforestation and land cover change, and data are also needed for the 
verification of sustainable forest management and the surveillance of forest reserves. 
The Indonesian government has been working on an inventory of forests since 1989, 
using a combination of aerial photography and ground checks. The acquisition of 
useful information has often been prevented by cloud, fog and rain, however.  
 The Indonesian forests can be divided into natural forests and tree 
plantations, the latter covering 9.9 million ha, (3.5 million ha rubber, 1.5 million ha 
teak, and 3.9 million ha other broadleaved trees, including 1.1 million ha of 
industrial pulpwood plantations ). Through the Ministry of Forestry, the Indonesian 
government and the Association of Forest Concession Holders are working together 
to develop systems for managing the Indonesian tropical rain forests. These bodies 
have the authority to define accepted systems and regulations governing forestry 
mapping and inventories of forest estates. 
 Information on Indonesian forestry is collected at three levels:  

1. National level, based on maps on a scale of 1:2,500,000 covering the whole 
of Indonesia.  

2. Provincial level, based on maps to a scale of 1:250,000.  
3. Concession holder level, based on larger-scale maps, typically 1:25,000., 

The system provides information for each concession on forest cover types 
and contours, a digital elevation model, a five-year logging plan, a yearly 
logging plan, timber volumes, commercial species, replanting, etc.  

19.2.1 The National Forest Inventory 

The National Forest Inventory Project conducted by the government of Indonesia 
since 1989 (Revilla and Liang 1989, Sutter 1990a) has involved the use of remote 
sensing technologies coupled with a Digital Image Analysis System (DIAS) and a 
Geographic Information System (GIS) integrated with a Field Data Processing 
System (FDPS). This represents the first extensive inventory of forest resources 
(trees, rattan, bamboo, nipa and sagu) in Indonesia and, in view of the relatively high 
access cost involved, it was designed to collect as much field sample data as 
possible. The field data include details collected from permanent sample plots (PSP) 
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and temporary sample plots (TSP) which are to be used for forest status and change 
assessment at the national and province levels, respectively. Landsat MSS and TM 
images were used in combination with field data to produce the map presentations, 
however. 
 

Figure 19.2  The NFI Sampling Design Process in Indonesia (3-stage sampling) (Revilla and 
Liang 1989, Sutter 1990a). 

 The plot clusters (Figure 19.3), distributed systematically with a random 
start, are arranged in a 20 × 20 km grid cell. All legal forest lands, as indicated on 
the Forest Land Use Planning Maps, are covered regardless of vegetation type. This 
includes all production forests, plantation forests and forests at higher altitudes, and 
protection and conservation forests at altitudes greater than 1,000 metres. There are 
about 3,300 plot clusters distributed throughout the country, except for the island of 
Java.  
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Figure 19.3 Plot cluster layout used in the Indonesian NFI. Each TSP contains 9 tracts and 
each PSP is a 1 ha plot (Revilla and Liang 1989, Sutter 1990a, Sutter 1990b). 

 19.2.2 Concession renewal mapping 

The Indonesian Association of Forest Concession Holders has set up a company (PT 
MAPINDO PARAMA) to monitor forest exploitation and conversion, whether to 
agriculture, settlement, or replanting. The company monitors a total of 85 million 
hectares, and its concessions, which are awarded for 20 years, are divided into 35 
lots. A concession entitles the holder to exploit one lot per year.  Most of the timber 
companies are forced to use this company’s products. 
 Any company seeking renewal of its concession must demonstrate 
compliance with the logging regulations during the previous concession period. As it 
is designed to fulfil a range of needs, the forest resource information system 
developed by MAPINDO manages data from several sources, including: 

1. Aerial photographs to a scale of 1:20,000, used to assess forest cover types 
and commercial timber volumes. The survey takes five years to complete 
and will be repeated every five years. Aerial photos are also used to 
compile contour and vegetation maps to a scale of 1:25,000, and are 
combined with field survey data to classify forests on the basis of type, 
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crown density, stand height and crown diameter.  
2. Synthetic aperture radar (SAR) imagery. A pilot study using airborne SAR 

supplemented with GPS position data was undertaken in the mountainous 
parts of Kalimantan. Oblique SAR is capable of acquiring images with a 
resolution of 6 metres irrespective of cloud cover. This one-year study will 
result in topographic contour and thematic maps covering much of central 
and eastern Kalimantan.  

3. Satellite imagery is being used for the annual monitoring of forest 
exploitation. The images are used to produce a general classification by 
forest type and to identify the areas to be left as primary forest or to be 
exploited as forest estates. 

19.2.3 Forest management planning: compartment-level inventories of natural 
forests 

The silvicultural system known as Indonesian Selective Cutting and Planting 
comprises logging practices with a diameter limit and forest regeneration. This was 
initially referred to in 1972 as Indonesian Selective Cutting (TPTI). It is a series of 
planned forest management activities which include logging, regeneration and 
tending of the forest stands in order to ensure the sustainability of timber or other 
forest production. To achieve the expected target, the following series of activities 
and schedules have been established for each harvesting area: 

 
Stage of TPTI Activities Time of Implementation (year)  

(Et = time of harvesting operation)  
Organization of working area  Et – 3 
Stand inventory before logging  Et – 2 
Opening up of forest area  Et- 1 
Logging  Et 
Liberation Et+ 1 
Inventory of residual stand  Et+ 1 
Procurement of planting stock  Et + 2. 
Enrichment planting Et + 2 
First-stage tending  Et + 3 
Advanced tending  
a. Liberation  Et + 4 
b. Thinning  Et + 9 
 Et+ 14 
 Et+ 19 
Forest protection and research  Continually 
 

The annual logging units have traditionally been 1 km × 1 km blocks, and the 
present regulations recommend natural borders for the delineation of these units. 
Timber companies are keen to find locations with a high volume of valuable trees, 
and thus they usually use aerial photos to locate the forests with the highest 
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potential. The dense crown cover makes the interpretation of single trees difficult, 
however, and it is also difficult to identify species from a bird’s eye view. (The 
identification of trees is even difficult from the ground.).  
 According to the TPTI rules, a stand inventory (Pre-felling inventory, 
cruising) has to be carried out one year before harvesting, in order to determine the 
volume of trees over 50 cm in diameter to be harvested. For this purpose the logging 
unit is tallied in detail, tree by tree, and individual trees are located within the square 
area (all trees over 50 cm). These tree location maps must be submitted with the 
application for a logging license. 
 An inventory of the residual stand (after-felling inventory) has to be made 
in all forest areas two years after logging, to check the condition of the forest stand 
at that stage. This differs from the pre-felling inventory in that all trees over 20 cm 
in diameter are measured and regeneration is estimated by sampling. Tree location 
maps are produced to control the logging intensity. 

19.2.4 Forest management planning: compartment-level inventories of plantation 
forests 

The most important plantation organization is Perum Perhutani, the state-owned 
forestry company, which has 1.36 million hectares of plantations, mostly of teak 
(within a total of 3 million hectares of forest). The management method, called Clear 
Cutting with Artificial Regeneration (THPB), has been practised in Java since 1880. 
The tree species most frequently planted up to now consist of indigenous or exotic 
species, the most common exotic species are Acacia mangium, Acacia crassicarpa, 
Acacia auriculiformis, Gmelina arborea and Eucalyptus urophylla.   
 

 

Figure 19.4 A typical sample of a young Acacia mangium plantation.  

 The THPB silvicultural system can be used for establishing a plantation 
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forest either for land rehabilitation or for the industrial production of fast growing 
species (HTI). An example of its implementation is the conversion of natural forest 
into plantation forest, e.g. the conversion of non-teak forest in Java into pine forest, 
agathis forest etc. Other examples are the establishment of mangrove forests, the 
establishment of plantation forests along the coast and the reforestation of 
alang-alang (Imperata cylindrica) fields outside Java. In practice, the THPB method 
is very close to Scandinavian stand-bsed forest management system.  
 Since the value of the plantation forests is an object of interest for the 
financing institutions (banks), supporting agencies (Indonesian government bodies) 
and timber/paper companies, inventory methods are developing rapidly in this sector 
and the companies are constantly open to innovations. 
 Private forest estates have started to use orthophotographs and EnsoMosaic 
products (Figure 19.4) in their forest plantation information systems. The resulting 
images are used to plan fieldwork and to control the quality of wood resources. 
Mostly paper prints are used to digitize the delineation of stands, which are 
classified according to planting year and species. Tree attribute information is 
collected from subjectively located field sample plots by means of specific 
tallysheet, relascope and height estimation tools. Companies store the inventory data 
mostly in GIS data layers. 

19.3 CHINA  

China conducted 4 national forest resource inventories in the period 1973-1993. The 
results achieved in the Fourth National Forest Resource Inventory (1989-1993) 
revealed that the land area used for forestry purposes is 262.89 million ha, with a 
forest area totalling 133.7 million ha and a forest cover of 13.92%, an increase of 
8.03 million ha compared with the results of the Third National Forest Resource 
Inventory (1984-1988). Likewise, the plantation area had increased by 2.78 million 
ha, from the previous figure of 31.01 million ha to 33.79 million ha, representing an 
average annual increment of 650,000 ha.  
 The huge flood problems experienced in China in summer 1998 caused the 
government to impose a total logging ban in order to preserve the natural drainage 
basins. Since that time local foresters in the natural forest sector have been mainly 
responsible for forest planning and design, the planting trees and research, while 
plantation forestry has started to grow in southern China as foreign investors (e.g. all 
the most important paper manufacturers) have entered the country. 
 Aerial photography was introduced in 1954. It was first used to delineate 
the boundaries of stands and working units such as compartments and sub-
compartments, and then to deduce forest types, tree species, site indices, stand 
volumes and other stand variables. Angle count sampling was introduced in 1957 to 
improve on the ocular estimation technique, and stratified sampling was first tried in 
1963. Since then, the forest inventory technique has progressively moved over from 
ocular estimation to statistical sampling. Meanwhile, research and experimentation 
has been focused on inventory methods that would be suitable for different areas, 
conditions and management levels, such as two-stage and multistage sampling 
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inventories, double sampling with regression, and regression based surveys with 
visual estimation and field mensuration, etc. Most of these methods have already 
been put into practice. 
 In order to monitor the dynamic changes taking place in national forest 
resources, a CFI (continuous forest inventory) system has been set up in all the 
provinces with permanent sampling plots. There are 250,000 permanent sampling 
plots in the whole country. 15 provinces have been remeasured since 1986, and 
satisfactory results have been achieved. 
 Remote sensing data have been used for forest mapping and monitoring in 
China for more than 40 years. Foresters used only aerial photographs for inventory 
purposes between 1950 and 1970, but use has also been made of satellite remote 
sensing data since 1980, although mostly in development projects rather than 
everyday operations. 

19.3.1 National Forest Inventory: natural forests 

The area of China is covered by a permanent field sample plot network which is 
planned to be measured in 5-year periods. The sample plots are in general 20 × 30 
m2 in size and located in 2 km × 4 km grid cells. There are a total of about 230 000 
sample plots over the whole country. Altogether 35 variables are measured on each 
plot, and the data are stored in a Dbase database. The NFI results are calculated 
using field samples for administrative units. 

19.3.2 Forest management planning: compartment-level inventories 

A province in the Chinese forest management planning system includes several 
forestry bureaus. each divided into several forest farms (e.g. one sample forestry 
bureau includes 12 forest farms). Each forest farm comprises several compartments 
as its administration units, and these compartments are then divided into sub-
compartments according to their silvicultural condition. In terms of Finnish forestry, 
the Chinese forest compartments correspond primarily to forest farms and the sub-
compartments to forest stands, but the management areas or treatment units are 
usually more extensive in China.  
 Data from the stand inventories are recorded in a forest register, which 
includes stand information such as area, species, age, volume, growth and degree of 
stocking by sub-compartments. The forest registers are then summed to apply to 
larger management units. The accuracy of this compilation method depends on the 
stand inventory techniques employed, e.g. aerial photography, visual estimation, 
sampling techniques and yield tables. The number of sample points ranges between 
3 and 14 depending on the size of the sub-compartments. The compilation method 
has now beeen taken into use and supplemented with stratification based on aerial 
photographs or satellite images. 

19.4 OTHER ASIAN AREAS  

Industrial plantation forest inventories are very similar in all the Asian countries 
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(and actually world-wide), since the rotation time is short and investment relatively 
high (so that intensive inventories are acceptable). Thus aerial photographs are 
commonly used in conjunction with field sampling . 
 Remote sensing is also particularly useful for extensive or distant areas of 
forest where access is difficult, and these techniques, including aerial photography, 
are arousing much interest in connection with the tropical forests of south Asia in 
particular. Aerial photographs provide us with certain strata, such as forest types, 
density classes and height classes, and it is possible in some cases to identify certain 
tree species and to assess the volume of their growing stock. Most countries began to 
use aerial photographs as a means of stratifying forest lands when carrying out a 
national forest inventory after the Second World War, and then as the tool for forest 
planning and management.  
 The following paragraphs briefly describe the use of remote sensing data in 
selected Asian countries:  
Japan  
There are a great number of pure plantations, totalling 10 million ha, so that 
stratification techniques are very useful for reducing internal variance smaller and 
applying various models for the assessment of actual forests (Minowa 1992). 
Taiwan 
The national forest inventory employs aerial photography in its primary sampling. 
Approximately 134,000 photo points were selected over the entire island, after 
which field locations were selected at an density of one per 900 hectares, which 
resulted in 4,132 locations (2,491 in forests) for the entire island (Minowa 1992). 
Korea 
The fourth national forest inventory was conducted between 1986 and 1990 (the first 
one in 1962-1964). To reduce the number of field plots, cost and time, a stratified 
double sampling technique was adopted with the combined use of aerial photographs 
and ground surveys.  
 Forest lands were classified into several types using B&W aerial 
photographs on a scale of 1: 15000. The number of sampling plots was determined 
statistically in order to be able to estimate the total growing stock with a relative 
precision of 5% at the 95% confidence level  (Minowa 1992). 
Philippines 
The national forest inventory employs a two-stage sampling approach using small 
scale aerial photographs (1:60,000) and Landsat false colour composites (FCC) as 
the area frame and relascope samples as the ground truth information. A two-stage 
design was introduced in 1983 that concentrated the field sampling in selected forest 
strata. In order to keep the standard error below 3%, a total of 2,000 field clusters are 
required. These clusters are allocated to the regions and provinces in proportion to 
their forest cover (Minowa 1992). 
Malaysia 
Inventory methods in Malaysia have traditionally been very similar to those in 
Indonesia, and the Malysian natural forest management system is very similar to the 
Indonesian TPTI system (Minowa 1992). 
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for national forest inventory purposes. Landsat images in particular can reduce the 
time and personnel needed for assessing the existing forest area over the entire 
country, as a survey can be completed in only one year as compared with ten years 
when conventional aerial photographs are used (Minowa 1992). 
 Aerial photography was first applied to forestry in 1955, for the delineation 
of various forest types and the compilation of forest maps. The Thailand National 
Remote Sensing Programme was established in 1972. At present, aerial photographs 
and Landsat images are being used to compile maps of forest types, forest land use, 
vegetation cover and existing forests. Landsat images cannot be used for the 
classification of all forest types, however, and consequently both aerial photographs 
and Landsat data are used in the national forest inventory. 
 Interpretationa made in the office by trained staff are verified by means of 
ground surveys.  
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Thailand 
Remote sensing has been used by the Royal Forest Department as a useful technique 
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CHAPTER 20 

NORTH AMERICA 

TIMO TOKOLA  
University of Helsinki, Finland  

20.1 CANADA 

Canada is steward of about 10% of the world’s forests and 30% of the world’s 
boreal forests. Around 34% of the country’s total area of 909 million hectares is 
classified as forest land, and 293 million hectares of these forests are potentially 
available for commercial forestry at the present time  In terms of forest type, 66% of 
Canada’s forests contain softwood, 12% hardwood and 22% are mixed forests. The 
forest land is mainly owned by public instances (the provincial governments 77% 
and federal government 16%), and only 7% is in private ownership. Provincial forest 
lands may or may not be assigned to industry for timber harvesting under a wide 
variety of agreements (State of Canada’s Forests 2003-2004).  
 Each Canadian province and territory has its own legislation, regulations, 
standards and programmes through which it allocates harvesting rights and 
management responsibilities for the forests within its jurisdiction. In addition, many 
provinces and territories have legislation that requires public participation in forest 
management planning and allocation processes.  
 Each province has made major investments in forest management 
inventories in terms of organisation, technology and data. The federal government, 
primarily through Natural Resources Canada, participated directly in the earlier 
development of these inventories, but the present federal role is restricted to research 
and development, the inventories on federally administered land and the compilation 
of national forestry statistics. There are many mechanisms providing for provincial 
cooperation for inventory purposes, the most visible of which is the Canadian Forest 
Inventory Committee (CFIC), which is a forum for inventory specialists from all 
jurisdictions to meet, exchange information and tackle problems of mutual concern. 
Procedures for aggregating the many provincial inventories into one national  
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inventory have been developed through the CFIC’s collective cooperation, the 
working details being negotiated separately with each province. 

20.1.1 Provincial-level management inventories 

A typical forest management inventory in Canada is based on maps to a scale of 
about 1:20 000 made from stereo aerial photographs. Volume estimates are generally 
added to each stand (forest type polygon) based on regional volume relationships 
calculated for temporary sample plots. Because of the large areas involved and their 
remoteness, only a small proportion of the stands can be visited at the time of 
performing the inventory. 
 The inventory process usually takes place in a province over something like 
a 10 or 15-year cycle, and a new inventory will progressively replace the old one. 
The inventories are designed for periodic planning at the management unit level and 
must provide reasonable general information on every stand. Management 
inventories can also serve as a basis for subsequent local and more specialised 
operational surveys. 
 Although management inventories are designed to give the best current  
information that the available funds will allow and local forestry staff have a good 
working knowledge of the inventory’s accuracy and peculiarities, estimates of their 
precision or of changes are not usually available or expected in the balance of user 
priorities. The regions of greater activity tend to receive the most frequent and 
intensive inventory attention and lower interest areas may be covered by less 
intensive reconnaissance inventories. 
 As specifications and standards tend to improve with each cycle, a new 
inventory cannot generally be compared with an old one in order to estimate 
changes. Permanent sample plots (PSPs) are not usually a direct component of 
Canadian inventories, although products of PSP studies such as growth and yield 
relationships may be integrated into inventories. 
 New inventory methods such as spatially referenced data and image 
handling technology or the modelling of stand development are increasingly 
allowing the maintenance and updating of existing inventories until new ones can be 
produced. Inventory priorities and funding have primarily been fuelled by timber 
interests, and Canadian forest management and inventory specialists are currently 
striving to sort out society’s new expectations regarding the state-owned forest 
resources and to develop inventory techniques to handle these expectations. Above 
all, they would like to obtain the extra funds necessary to upgrade this massive 
investment in information that starts to become outdated at the moment of 
publication. 
 It is recognized that better basic descriptions of forest vegetation, sites and 
the activities taking place would all improve the ability of the inventory data to serve 
different needs, and would also allow for better tracking and modelling, in order 
both to update inventories and to project them forward in time for use as planning 
scenarios. 
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Example of a provincial inventory: the Vegetation Resources Inventory of 
British Columbia 
 
The Vegetation Resources Inventory (VRI) is a process for assessing the quantity 
and quality of timber and other vegetation resources in British Columbia, providing 
an account of these that is of known accuracy and is more complete than past forest 
inventories. The VRI has broader in scope than past inventories, and more reliable, 
because it use statistically accurate procedures and detailed ground sampling to 
augment estimates deduced from air photographs. 
The Vegetation Resources Inventory use:  
1. interpretations of air photographs  
2. ground sample measurements  
3. statistical analysis and adjustment of the initial estimates  
 
 The Ministry is responsible for coordinating and auditing the completed 
vegetation resources inventories, which is conducted by private industry and other 
stakeholders according to approved standards and procedures. Specialized 
contractors is hired to conduct the ground sampling.  

20.1.2 National forest inventories, national aggregation  

Canada’s National Forest Inventory is aggregated from various sources, mostly 
provincial management inventories based on forest type maps made from air 
photographs. The national inventory takes advantage of an infrastructure of source 
inventories that are basically similar, and procedures have been developed to 
combine inventories with different specifications and to overcome gaps in the data. 
Inventories in this form are now entering their third five-year cycle, in which 
modern computer technology is being used to handle georeferenced data (Lowe 
1991, 1994). 
 There has been considerable investment in map-based inventories across 
most of the forested regions of Canada since the 1950s, and there are many 
similarities in the methods used despite the temporal differences and those occurring 
between and within jurisdictions. There has been a convergence of basic inventory 
characteristics through cooperative liaison and the application of similar techniques 
to similar problems. The forest inventory organisations were some of the earliest 
operational users of computers for handling large stand lists and associated bodies of 
information (Lowe 1991, 1994). 
 Up to and including the 1976 national inventory, the practice was to collect 
and publish provincial-level summaries for each jurisdiction. Standardisation in 
certain key topics was encouraged, especially through the conditions placed upon 
federal contributions to provincial inventories and through federal inventories of 
more remote areas. Inventory specialists from the various jurisdictions met several 
times in the 1970s as part of a wider, federally coordinated effort to rationalise and 
standardise the country’s conversion to metric units, and they found the meetings so 
beneficial that they continued in the form of the Canadian Forest Inventory 
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Committee. From the national perspective, this has encouraged voluntary 
compatibility and a converging evolution of inventory methods (Lowe 1991, 1994). 
 Using geographic information system (GIS) technology and capitalising on 
the circumstances described above, the 1981 national inventory collected, 
standardised and aggregated data from various source inventories on a map sheet 
basis, using each map sheet as one of the 43 000 ‘cells’ in the national inventory. 
The target cell size was 10 km by 10 km, and this proved to be a very suitable level 
of resolution on national scales of about 1:20 million (Lowe 1991, 1994). 
 The national inventory is not a sample but a complete census of stands, 
providing a level of detail that can be used for creating regional or national statistics, 
thematic maps and national spatial studies. It is not suitable for intensive local 
examination, nor has it been approved for such. 
 The 1986 and 1991 inventories improved progressively in content, quality 
and process, but their principles were the same. The basic production steps for the 
1991 inventory were: 
 

1. Exploration and documentation of the conversion of datasets between the 
provincial inventories and the national inventory in such matters as terms 
and classes. Recoding from the province-specific data was required in order 
to extract data according to national standards.  

2. Quality check and aggregation. The data were checked rigorously and 
aggregated from the stand level to the cell level. 

3. Missing values. Since not all source inventories can supply data for every 
attribute in all situations, many of ‘holes’ had to be filled by calculation on 
the basis of local knowledge.  

4. Auxiliary information. Some other categories of regional information that 
are not part of the source inventories are combined with the national 
inventory to calculate new attributes. 

 
 One weakness of Canada’s aggregated inventory is that the data are the best 
available in the source inventories at the time of collection. Thus the average age of 
the data collected for the 1986 inventory was 10 years and it was not practicable to 
update the national inventory by calculation. It should be noted, however, that the 
provincial forest management inventories from which the national inventory is 
aggregated every five years are improving rapidly in their incorporation of changes 
to keep them more up-to-date (Lowe 1991, 1994). 
 Inventories based on re-measurement plots can monitor changes extremely 
well. This has been perhaps the weakest aspect of Canada’s national inventory, that 
the provincial inventories are not primarily designed to estimate change. The new 
NFI has been designed to meet such monitoring needs, however, for in the new 
national forest inventory programme design launched in 1997 all potential sample 
locations are indicated on a national 4 x 4 km network, with a preferred sampling 
intensity represented by a 20 x 20 km grid of sampling points nested within  
the national 4 x 4 km grid. Even so, Canada depends on input from  
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its provinces, which are encouraged to use the grid, but are not required to do so if 
they are using a statistically valid design and can provide the necessary core data. 

20.1.3 Industrial forest management inventories 

The two inventory methods used by industry across Canada, and their objectives, 
are: 
 
1. Management Inventory 
The objective is to provide general forest statistics over a large area so that a 
management plan and allowable cut can be determined. The information required 
includes the volume of mature timber by species, the area of immature timber, 
growth rate and information on access routes. 
 
2. Operational Inventory 
The objective is to provide specific forest statistics over a small area so that logging 
plans can be prepared. The information required includes forest type maps, the 
volume of mature timber by species and diameter class and topographical data. 
 
 Most companies use similar inventory methods for both management and 
operational inventories, with the operational inventory representing an 
intensification of the management inventory in order to obtain more detailed 
information and to improve the accuracy over a reduced area.  
Methods for management inventories vary, but basically employ the following four 
broad inventory methods (Caesar 1975): 
 
Method 1: Pre-Stratification 

1. Type maps are prepared by interpreting photographs prior to the fieldwork. 
2. Temporary field plots are measured in all the important strata for 

determining volume. 
3. Stand and stock tables are prepared for all forest types from the plot data. 

 
This method is used almost universally by industry in the Western Provinces, in 
Quebec and to some extent in the Maritimes, and provides the most detailed results. 
An accurate forest type map is produced based on photo interpretation and can be 
checked by ground examination. Plot measurements combined with reliable volume 
tables and reduction factors for waste and defects provide detailed stand information 
for each type. Volumes are based on actual measurements. Reliance on human 
judgment and the use of averages are eliminated almost entirely. As a result of the 
increased fieldwork, more information is obtained regarding stand conditions, access 
routes and other values such as soil, water and wild-life. 
 
Method 2: No Stratification 

1. The forest classification is derived from the interpretation of photo points 

 
located in accordance with a mechanical grid. The proportion of photo  
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points falling within one forest type is used to calculate the area of that 
type. 

2. Timber volume is calculated from areal volume tables using stand 
descriptions derived from the interpretations of the photo points. 

3. Maps are prepared using existing compartment maps and photo point 
measurements. 

 
 Forest type maps are prepared using existing management plans, and only 
the attributes are updated. It is assumed that no change take place in the stand 
borders. Volumes are projected from average tables, and the accuracy of the results 
is entirely dependent on the ability of the interpreter to classify the stands 
consistently. As there are no field measurements for volume, it is not possible to 
produce reliable stand data such as volume by species or diameter class. 
 
Method 3: Post-Stratification 

1. Temporary field plots are established in the principal types to determine the 
forest classification. 

2. Type maps are prepared from photographs after the fieldwork. 
3. Timber volume is derived from normal yield tables using stand descriptions 

derived from  the photographs. 
 
 This method has been developed by the province of Ontario and has been 
adopted by industry at the government’s request. Forest type maps are prepared 
based on photo interpretation combined with limited field examinations. Volumes 
are predicted indirectly on the basis of photo classification using basal area, age, 
species and site. None of these variables can be measured on the photographs. Thus, 
for all stands not examined on the ground, the accuracy of results is entirely 
dependent on the interpreter’s judgment, and his ability to classify stands 
consistently. As a result of there being no field measurements of volume, it is not 
possible to produce reliable stand data such as volume by species and diameter class. 
 
Method 4 C.F.I. (Continuous Forest Inventory) 

1. No stratification. 
2. Permanent field plots are established and used to determine timber volume 

and growth. 
3. Maps can be prepared using existing compartment maps by calibrating 

thematic information using new information. 
 
 Overall volume data and growth data are provided, but maps are rarely 
derived. Once the plots have been established, and the computer program set up, re-
measurement and updating of total volume can be done fairly economically. 
 There are a number of variations within the four general methods just 
described that can be introduced concerning measurement techniques and the 
intensity of the work. The methods differ in their costs and the results that they 
produce. When deciding which method to use, the forester must determine the  
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amount of detail that is required and must then devise a means of obtaining it given 
the available funds. The selection of the method for a forest management inventory 
is an important decision, since once the method has been introduced it is costly to 
change it at a later date. Pre-stratification and post-stratification can cost the same, 
although pre-stratification is normally considered the most expensive alternative. 
Optimum allocation of samples in pre-stratification may even so cost less than a 
post-stratification case in which a random sample is distributed over the same area. 
If post-stratification is based on existing field sample plot material, however, 
significant savings can be achieved. The establishment and measurement of 
permanent plots is normally quite costly, although it provides the best alternative for 
monitoring purposes. 
 Some considerations that influence the selection of a method for forest 
management inventories are put forward in the following (Caesar 1975). 
 
1. Type of forest management practised 
If sustained yield management is being practised it is necessary to know the timber 
volume by forest types, area by age classes and site index so that the annual 
allowable cut can be determined and a cutting budget can be prepared for a full 
rotation. Thus a detailed inventory with forest type maps is required. If the area is 
being managed to provide a fixed volume per year over a short term, then it is 
sufficient to know the total volume, approximate species distribution and volume per 
acre.  
 
2. Timber supply 
If timber is plentiful, general information concerning total volume is adequate and 
the accuracy of the results is not critical, but if timber is scarce and it is necessary to 
compete for supplies, then detailed stand information is required and accurate results 
are essential. 
 
3. Timber value 
If all the timber is pulpwood, the species composition and diameter distribution are 
not of great importance, as it is usually sufficient to know the approximate species 
composition and volume per acre. If the timber includes sawlogs, veneer logs and 
pulpwood, however, it becomes important to know the volume by species and 
volume by diameter class, so that the volumes suitable for the various conversion 
processes can be determined. This requires a detailed inventory. 
 
4. Forest variation 
If the forest has suffered little disturbance and the stands are homogeneous, a forest 
inventory can be carried out with less intensive work than for a disturbed forest with 
heterogeneous stands. 
 
5. Forest access 
The availability of access routes and the ease with which field crews can be moved 
through the area will greatly influence the cost of the fieldwork. Thus  there will be a 
tendency in inaccessible areas to adopt methods that are heavily dependent on air 
photographs. 
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6. Available data 
If suitable aerial photographs and base maps are available from outside sources, this 
will reduce costs and may influence the inventory methods used. 
 
7. Government regulations 
Provinces lay down regulations intended to establish minimum standards for forest 
inventories carried out by industry. 
 
8. Form of tenure 
The type of timber holding will affect the method and intensity of a management 
inventory. If the land is held in fee simple, then the company will normally be 
preparing long-range management plans and a detailed inventory will be required. If 
the lands are held under a short-term occupation agreement, a detailed inventory will 
not be required and it will usually be adequate to determine the location and 
approximate volume of the timber so that a logging programme can be developed. 
 
9. Other values 
Where a forest inventory is to include other values such as soil, water, wildlife or 
recreation, more comprehensive procedures are necessary than if only timber 
volume is to be assessed. 

20.2 THE UNITED STATES OF AMERICA 

The United States had 747 million acres of forest land in 1997, amounting to 33% of 
the country’s total land area. Reserved forest land has doubled since 1953 and now 
stands at 7% of all forest land. This reserved area includes state and federal parks 
and wilderness areas but not conservation easements, i.e. areas protected by non-
governmental organizations, nor most urban and community parks and reserves. 
Timber land is fairly evenly distributed among the three major regions of the United 
States, but other forest land, such as slow-growing spruce forests in the interior of 
Alaska or pinyon-juniper forests in the interior west, dominate many western 
landscapes and comprise more than one-fourth of all U.S. forest land.  
 The U.S. forests are predominantly natural stands of native species, with 
planted forests most common in the east and south. After intensive logging in the 
late 19th century and early 20th century, 55% of the forests on the nation’s timber 
land were less than 50 years old and 6% more than 175 years old. While most timber 
products harvested from U.S. forests have been increasing in quantity since 1976, 
the greatest gains have been in fibre for pulp and composite products. Much of this 
increase has been in hardwoods, as new technologies improve the utilization of these 
species. 
 Large companies provide a market for many types of logs, wood fibre and 
chips. Private woodland owners may choose to harvest their own timber and sell the 
cut product (e.g. veneer and sawlogs, pulpwood, posts, poles, etc.) or sell the trees as 
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they stand and allow the buyer to cut and remove them. The latter method is referred 
to as stumpage sales. Non-industrial private woodland owners own approximately 
40% of Minnesota’s commercial forest land, for example, and over 40% of the 
timber harvested in the state is derived from these lands. Many of these landowners 
receive a significant income from their woodlands each year.  
 Many large forest industries provide forest management and marketing 
assistance to private woodland owners. In addition, there are consulting foresters 
who provide a wide range of fee-paying land management services, including timber 
harvesting and marketing assistance. The fees for such harvesting and marketing 
assistance are usually a percentage of the gross receipts from the sale. These 
consultants can also act as agents for landowners during timber sales. The range of 
services provided by these private sector foresters usually exceeds those provided by 
public foresters.  

20.2.1 The National Forest Inventory 

 The Forest Inventory and Analysis (FIA), the nation’s forest census, which 
commenced in 1930, reports on the status of the forest area and trends in this and on 
its location, the species, size and health of the trees, total tree growth, mortality and 
removals by harvesting wood production and utilization rates in terms of the various 
products and forest land ownership. The enhanced FIA programme includes 
information relating to tree crown condition, soils, ozone indicator plants, complete 
vegetative diversity and coarse woody debris. The programme is managed by the 
research and development organization within the USDA Forest Service in 
cooperation with state and private forestry and the national forest system. The FIA 
has been in operation under various names (Forest Survey, Renewable Resources 
Evaluation, and now Forest Inventory and Analysis) for some 70 years, and its 
programme, covering forests on all forest lands within the US,  is implemented in 
cooperation with a variety of partners, including state forestry agencies and private 
landowners, who grant access to their lands for data collection purposes.  
 The FIA provides objective and scientifically credible information on key 
forest ecosystem processes:  how much forest there is, what it looks like, whether 
the forest area is increasing or decreasing, how quickly trees are growing, dying and 
being harvested, and how the forest ecosystem is changing over time with respect to 
soil and other vegetative community attributes. The FIA is the only programme that 
provides consistent, credible and periodic data for all forest lands (public and 
private) within the United States.  
 The FIA has three levels of internal management: an executive level 
involving senior executives from the Forest Service and state forestry agencies, who 
provide broad policy guidance, a management level consisting of field programme 
managers from the Forest Service and states responsible for implementing the 
programme on a day-to-day basis, and a technical level consisting of groups of 
technical specialists drawn from the Forest Service and states who develop, 
document and review the procedures. The work is coordinated from five regional  
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field offices across the country, with each region maintaining its own internal set of 
regional customers and partners who collaborate over implementation of the 
programme.  
 The FIA consists of a nationally consistent core programme which can be 
enhanced at the regional, state or local level to address special interests. The national 
core consists of three phases: 
 

1. Phase one (P1) is a remote sensing-based classification of the land into 
forest and non-forest, during which spatial measurements of fragmentation, 
urbanization and distance variables etc. are made.  This phase has 
historically been done using aerial photography, but is now changing to a 
system based on satellite imagery.   

 
2. Phase 2 (P2) consists of a set of field sample locations distributed across 

the landscape with approximately one location (FIA plot) every 6,000 
acres. Field crews visit these locations to collect a variety of forest 
ecosystem data.  Non-forest locations are also visited as necessary to 
quantify the rates of land use change.   

 
3. Phase 3 (P3) involves a subset of the phase two plots (approximately 1 

every 96,000 acres), which are visited during the growing season in order to 
collect an extended suite of ecological data covering a full vegetation 
inventory, tree and crown condition, soil data, lichen diversity, coarse 
woody debris and ozone damage.  

 
 Under the annual approach, data are collected on a subset of the plots in all 
states every year. This is a departure from the historical FIA approach of sampling 
states sequentially in a cycle. Ultimately, the goal is to sample 20% of all field plots 
in every state every year.  
 Maps, aerial photographs/imagery and global positioning system (GPS) 
units are made use of to install the ground plots properly. The information on a 
photo is used to establish a starting point (SP), an easily recognizable feature that 
can be seen on the photo and/or found using land use patterns. The crew then 
navigates to the plot centre (PC) either by means of this information or using a GPS 
instrument. Once the crew has traversed along the azimuth and distance to the PC 
from the SP, they will examine the photo, verify that they are actually at the PC and 
record the GPS readings. All this information will be useful in helping future FIA 
field crews to re-locate the plot. Any additional information that future crews need in 
collecting the data is also included in the general plot notes. The FIA gathers 
quantitative and qualitative measurements for all forested field plots that describe  

- Tree diameter, length, damage, amount of rotten or missing wood and 
tree quality. 

- Tree regeneration. 
- Site quality information. 
- Stocking. 
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- General land use. 
- General stand characteristics such as forest type, stand age and 

disturbance. 
- Changes in land use and general stand characteristics. 
- Estimates of growth mortality and removals. 

 
The current measurements made on the Phase 3 subset of plots may be grouped into 
the following categories: 

- Crown conditions – generally good crown conditions are signs of 
vigorous trees and poor crown conditions are symptoms of trees under 
stress. 

- Soil condition – soil erosion and compaction are measured and soil 
samples are collected for the analysis of physical and chemical 
properties, including estimates of site fertility. 

- Lichen communities – lichen species richness and abundance are 
measured on the plot. The presence or absence of certain lichen species 
may be indicative of air quality, climate changes and ecosystem 
biodiversity. 

- Vegetation diversity and structure – the composition, abundance and 
spatial arrangement of the vegetation (species and growth forms) in the 
forest are measured to determine such aspects as vegetative diversity, 
presence and abundance of exotic and introduced plant species, fuel 
loading, wildlife habitat suitability and carbon cycling. 

- Down woody debris – measurements of the amount of coarse and fine 
wood on the ground can provide an estimate of carbon storage, soil 
erosion potential, fire fuel loading and, combined with the vegetation 
structure data, wildlife habitats. 

 
 A FIA plot consists of a cluster of four circular subplots spaced out in a 
fixed pattern. The plot is designed to provide a sampling location for all P2 and P3 
measurements. Subplots are never reconfigured or moved, but a plot may straddle 
more than one ‘condition class’, such as two forest types or a forest and a meadow. 
A condition class is a specific combination of environmental attributes such as land 
use, forest type, stand age and other attributes which collectively describe a 
homogeneous area. Every plot exists in at least one condition class and may include 
more than one. If multiple condition classes occur on a plot, each is described 
separately. Forested condition classes are further subdivided into the following 
groups (listed in order of priority): reserved status, owner group, forest type, stand 
size class, regeneration status and tree density. If any of these attributes changes 
within a plot, an additional condition class must be defined and described. The rest 
of the variables within the condition class-level data are used to describe the 
condition class in more detail, but changes in these auxiliary variables are not used 
to define an additional class. 
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Subplot 24.0 ft (7.32 m) radius

Microplot 6.8 ft (2.07 m) radius

Annular plot 58.9 ft (17.95 m) radius

Lichens plot 120.0 ft (36.60 m) radius

Vegetation plot 1.0 m2 area

Soil Sampling (point sample)

Down Woody Debris 24 ft (7.32 m) 
transects

 

Figure 20.1 Phase 2 (P2)/Phase 3 (P3) Plot Design in the USA’s NFI   

 An overview of the FIA is provided in the following list:  
- Primary measurement protocols designed for field plots 
- 0.40-ha primary sampling unit (2 × 2-pixel area) 

o trees measured on 0.06 ha (less than one 30-m Landsat pixel in 
area) 

- 5 × 5-km grid over the entire conterminous territory of the USA 
o 360,000 field plots in the USA, of which 
o 120,500 are forested 

- Each field plot re-measured every  
o 9-12 years in the eastern USA (cost $1,800-$2,600 per forested 

field plot) 
o 20 years in the western USA (cost $3,700-$7,600  per forested 

field plot) 
o An average 2-person field crew can survey 1 forested field plot per 

day 
o 300 permanent staff, plus a small army of seasonal “plot-getters” 

- Stratification to improve precision (statistical efficiency) 
- Use currently made of aerial photos from the National Aerial Photography 

Program (NAPP)  
o 1 × 1-km grid 
o over 9,000,000 photo-plots in the conterminous USA 
o nominal 0.4-ha photo-plot 
o repeated every NAPP cycle 
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- Replacing NAPP with Landsat 7 
o better mesh, with a shift to annual re-measurement of field plots 
o provides maps, and not just a “dot grid” of photo-plots 
o may be less expensive 

- Forest/Non-forest Landsat classification adequate for statistical 
stratification  

o Forest and tree measurements mostly equal 0 in thenon-forest 
stratum, which is the largest single gain in efficiency  

o High classification accuracy needed to achieve practically 
significant gains in efficiency 

- Classification of detailed forest types valuable 
o Detail needed for regional analyses and modelling 
o At least 80-90% accuracy needed for significant statistical 

efficiency 
- New land cover classifications probably needed every 5 years, or else 

updates every 5 years through change detection  

20.2.2 Industrial forest management planning: stand-level inventory 

The private forestry companies have mostly forest maps produced by means of 
ground data collection and photo-interpretation. One example is Sierra Pacific 
Industries’ forest mapping in Northern California, where the forests are classified 
according to following scheme: Forest Type (based on species composition – true fir 
forest, Douglas fir forest, mixed conifer forest, ponderosa pine/Douglas fir forest, 
ponderosa pine forest, knobcone pine forest), size class (based on tree diameter – 0-6 
inches, 6-12 inches, 12-24 inches and > 24 inches) and crown closure (0-20%, 20-
40%, 40-70%, >70%). 
 Fifteen years ago most large companies maintained an adequate staff and 
computer system to collect, process and analyse their inventory information. 
Contractors were not general protocol for these companies as they were with smaller 
organizations and independents. Since this time, however, staffs have been trimmed 
to the point where an outside labour force is mandatory, and the industry is currently 
going through further evaluations and changes concerning software and hardware 
configurations. Software maintenance and design is becoming more dependent on 
central sources and outside consultants, and large companies are now sharing much 
of the same software and common data configured for their specific needs. This 
continuing and growing external element is now leading to further outside expertise 
in inventory design, initialization, maintenance and analysis. 

20.2.3 Cruising, scaling and volume estimation 

Cruising is the process of measuring forest stands to determine characteristics such 
as average tree size, volume and quality. The primary purpose is to obtain a volume 
estimate for appraisal and for the preparation of timber sales.  
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 Scaling is the determination of the gross and net volume of logs. The 
primary purpose is to determine the volume by product or species that will be 
charged at a predetermined rate, also known as “scaling for payment”. Conventional 
scaling entails measuring log diameters and lengths and applying an approved set of 
rules to make deductions for defects. This process is intended to determine the gross 
and net volumes of a given number (generally log truck loads) of logs. Another 
method that is being used more frequently is weight scaling, especially for low-value 
material involving a single species/product, or where all the products being weighed 
are more or less of the same value.  

20.3 MEXICO  

Mexico has carried out three activities that can be identified as “national forest 
inventories”, although technically they are not complete forest inventories, as they 
do not include all of the parameters and procedures that are typically part of one.  Of 
these, only the first, the Inventario Forestal (1964-1980), was based on the use of 
aerial imagery supported by extensive field sampling to establish the location, 
extent, wood volume and commercial value of forest stands.  The Inventario 
Forestal therefore comes closest to being a complete forest inventory. 
 The second and third “inventories” were essentially updates of land 
use/land cover (LU/LC) maps using remote sensing imagery and were not in fact 
complete inventories.  The second was based on an analysis of low-resolution 
Advanced Very High Resolution Radiometer (AVHRR) imagery and was published 
on a scale of 1:1,000,000 as part of the Gran Visión report from the Secretaría de 
Agricultura (SARH). The purpose of this inventory was to produce a quick estimate 
of the extent of forest lands to support Mexico’s information needs at the national 
level, most of which were related to international treaties. 
 Mexico’s most recent (and third) national inventory was completed in 
1994. Called the Inventario Nacional Forestal Periódico (1992-1994), it was a 
LU/LC map based on visual interpretation of Landsat Thematic Mapper (TM) 
imagery and field measurements on about 20,000 plots obtained through systematic 
sampling and intended for the determination of vegetation type. It produced 
cartographically to a scale of 1:250,000 for the purpose of providing information on 
the location, extent and timber volume on forest lands to support the country’s 
operational needs. In fact this forest inventory only produced location and extent 
data for three fourths of the country and yielded no data on timber volumes.   
 Mexico has now embarked on a new national inventory,, the Inventario 
Nacional Forestal (INF), which defines “forest” as any area covered by naturally 
occurring trees, scrub, or arid zone vegetation. The Instituto Nacional de 
Investigaciones Forestales (INIFAP) carries out the inventory under the supervision 
of the Comisión Nacional Forestal (CONAFOR) and with funding from 
CONAFOR’s parent agency, the Secretaría de Medio Ambiente y Recursos 
Naturales (SEMARNAT). CONAFOR provides detailed guidelines for the 
collection of inventory field data, which will provide wood volume estimates that  
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can be used to “characterize” some of the INEGI LU/LC classes in terms of carbon 
content. Since the early 1980s the INF has been the only government-approved 
source of wood volume data in Mexico. 
 SEMARNAT is responsible for the design and supervision of the national 
forest inventory, which follows closely the design of the USDA Forest Service FIA 
and the Canadian Forest Service inventories. Thus the new survey will generate data 
for Mexico that are comparable to those for the rest of North America. 
Implementation of the forest inventory survey is underway, with modest progress 
being made in the basins of the rivers Lerma-Santiago in Central Mexico and 
Pánuco in the state of Veracruz. Limited progress is also being made in parts of the 
states of Hidalgo and Jalisco. 
 By overlaying a sampling grid on Land use/land cover maps produced by 
the Instituto Nacional de Estadística Geografía e Informática (INEGI), the INF can 
produce sample wood volume data for all areas mapped as “forest” on the INEGI’s 
Series III maps. The grid spacing is 5 km × 5 km for tropical and temperate forest, 
10 km × 10 km for scrub land and 20 km × 20 km for arid zones. The INEGI maps 
are restricted to “forest” classes, i.e areas where INF field data have been collected. 
That is, the INF sampling grid “selects” points that fall into “forest” classes and 
excludes points that fall into other classes such as agriculture, urban areas and water 
bodies. 
 Although the primary focus of the INF is on estimating the commercial 
potential of forest lands, the survey also collects data and information on scrub land 
and arid zone vegetation. 
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21.1 INTRODUCTION 

Detailed, timely information on forests is required for traditional forest management, 
forest certification and the assessment of forest biodiversity, and this increased 
demand for information, combined with the desire to reduce costs, has created a 
need to increase the efficiency of forest data acquisition. Technologies for acquiring 
spatial forest resource data have developed rapidly in recent years. Fieldwork has 
been enhanced by global satellite positioning systems, automatic measuring devices, 
field computers and wireless data transfer, and modern remote sensing is now able 
to provide cost-efficient spatial digital data that are more accurate than ever before. 
This chapter scrutinizes the possible ways in which these new technologies could be 
used in forest inventories. 

21.2 REMOTE SENSING  

21.2.1 Digital aerial photos 

Aerial photos have traditionally been the most common source of remote sensing 
imagery for use in forest inventories. As a result of technological advances, the 
interpretation of aerial photographs has evolved from analogue imagery and devices 
to digital applications. An analogue aerial photo can be digitized by scanning, or else 
the photos can be taken directly with digital cameras.  Digital aerial photos can be 
rectified to the desired coordinate system, and the effects of terrain elevation can be 
considered with a digital elevation model. The result of such a rectification, an 
orthophoto, is spatially almost as accurate as an ordinary map, and the image is 
highly scalable. Digital orthophotos are currently used mostly as background images 
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in forestry mapping and geographic information system (GIS) applications, e.g. for 
on-screen visual interpretation. The next, considerably more demanding step will be 
to utilize the imagery in fully automatic computerized interpretation.  

21.2.2 Spectrometer imagery 

A spectrometer is a device capable of imaging extremely narrow bands over a broad 
range of wavelengths. In other words, the device’s spectral resolution is high. The 
visible light and near-infrared wavelength ranges can be imaged by up to 300 bands, 
and measurements can be taken either on the ground or from aircraft. The 
advantages of spectrometer imaging over other remote sensing techniques are (i) the 
abundance of wavelength bands, and (ii) the ability to select certain narrow 
wavelength bands. A function of all imaged wavelength bands, or a spectral 
fingerprint, can also be used to improve accuracy in the interpretation phase. 
Furthermore, basic information on the spectral properties of the objects deduced is 
acquired which can be utilized in the interpretation of other remote sensing imagery.  

21.2.3 High-resolution satellite imagery 

Langley (1975) was one of the first to test imagery from space for forest inventory 
purposes, since when the technology has vastly improved. The most notable advance 
in modern satellite remote sensing has been the marked improvement in spatial 
resolution. The first commercial satellite having a spatial ground resolution < 1 m, 
IKONOS, was launched in 1999. This had a ground resolution in the panchromatic 
mode of 0.8 m (nadir point), and the ground resolutions of the 4 bands ranging from 
0.45 µm to 0.9 µm in the multiband mode were 3.2 m. A single IKONOS image 
covered an area of 11 km x 11 km. The American QuickBird 2 satellite, launched in 
2001, had a ground resolution of 0.61 m in the panchromatic mode and 2.44 m in the 
multiband mode. Modern high-resolution satellite imagery provides a highly 
attractive alternative to digital aerial photography and can be used in mapping 
applications, for example, which to date have been carried out in Finland exclusively 
with aerial photos. In forestry, high-resolution satellite imagery could in principle be 
used for forest planning purposes, but the high cost of these images has hindered 
such development up to now. 

21.2.4 Microwave radars 

Radar imaging is an active remote sensing technology in which radiation emitted by 
the device itself is measured. The device emits recurrent microwave pulses of a 
certain frequency and the  receiver in turn measures the radiation reflected from 
different ground objects. The main advantage of radar imagery is its high temporal 
resolution, as images can be acquired at practically any time, while optical satellite 
imagery may be hard to come by in Finland due to the often cloudy conditions.  
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Radar imagery is thus an interesting alternative for forest mapping, given that its 
accuracy is sufficient for acquiring detailed plot and compartment information. 
 Microwave satellite images have so far not been able to supply sufficiently 
detailed information, but they have proved suitable for large-area forest mapping 
where optical satellite imagery has not been available. Future radar sensors will also 
be able to produce highly detailed forest imagery. Several sensors having spatial 
resolutions of 1-3 m are currently being planned, e.g. the TerraSAR sensor, which 
will have a ground resolution of 1 m, complete polarmetry (polarization = direction 
of oscillation), stereo imaging and interferometry imaging (phase difference of two 
separate radar signals). It is planned that TerraSAR images should be available 
within 5 years. Due to the appropriate resolution and number of imaging channels 
(several frequencies, polarizations, imaging angles, imaging times), satellite radar 
imagery will also soon be able to provide valuable detailed information for forestry 
purposes. 

21.2.5 Profile imaging  

Profile imaging is aimed at producing height profiles of objects by imaging the area 
of interest in parallel flight paths. Since the flight altitude is only 100-200 m, a 
single flight path covers a relatively narrow strip of terrain, but a 3-dimensional (3D) 
profile of the imaged area can be obtained by combining several flight-path images. 
One example of a profiling sensor is profiling microwave radar. It has been shown 
by Hyyppä (1993) that profiling microwave radar is capable of measuring the mean 
and dominant height of the growing stock in a stand, the basal area, stem volume, 
crown height, development class and soil type. The main problem has arisen from 
the low ground width of the images, so that the resulting flight path density in 
operative use has been so high that imaging costs have soared astronomically. 

21.2.6 Laser scanning 

Laser scanning provides more promising remote sensing material than profile 
imaging. This technique makes it possible to reach even the single-tree level in 
forest imaging. A laser scanner emits an infrared laser pulse, and each image row 
consists of a 3D point cloud representing near-adjacent ground elements. The x, y 
and z coordinates are derived for each measurement, and both 3D terrain and crown 
models can be derived by analysing the measurements, so that the difference 
between these models provides a height model for the growing stock. The main 
advantage of this technology compared with optical remote sensing is that the 
physical dimensions of the imaged objects can be measured directly (Hyyppä and 
Inkinen 1999). 
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21.3 USE OF MODERN REMOTE SENSING IN FOREST INVENTORIES 

21.3.1 Accuracy of remote sensing in forest inventories 

When considering remote sensing in forest inventories one must weigh its costs and 
benefits, i.e. the reductions in fieldwork costs, against the costs stemming from the 
acquisition, preprocessing and interpretation of the remote sensing imagery. If 
remote sensing is regarded as beneficial, the next step is to consider the type of 
remote sensing to be employed. Should the imagery be acquired by satellite or by 
aircraft, and what is the most suitable spatial, spectral, radiometric and temporal 
resolution of the imagery, or should active remote sensing be used? These issues 
depend on the size of the inventory area, the purpose of the inventory (mapping, 
monitoring), the desired level of accuracy (region, compartment, tree) and the 
imaging costs. In other words, if the purpose of the inventory is, say, to locate highly 
stocked areas for wood-purchasing purposes, highly detailed information may not 
necessarily be required. In this case the use of moderate-cost mid-resolution imagery 
(e.g. Landsat) may be recommended. On the other hand, if the purpose is to assess 
intra-compartment variation or single-tree characteristics, airborne optical imagery 
or laser scanning may be the best choice.  
 Promising results in generalizing field inventory results to large forest areas 
have been achieved using remote sensing (e.g. Tokola 1990, Tomppo 1990, Tokola 
and Heikkilä 1997, Katila and Tomppo 2001, Hyvönen 2002, Katila 2004), but apart 
from visual interpretation of aerial photos, remote sensing has rarely been used for 
forest planning in connection with compartment-based inventories in Finland, for 
two main reasons. Firstly, delineation of the compartment boundaries is a highly 
subjective matter and thus difficult to accomplish automatically by means of 
computerized methods, and secondly, computerized interpretation methods have so 
far not been sufficiently accurate. 

Recent results (e.g. Holopainen 1998, Hyyppä and Inkinen 1999, Pitkänen 
2001, Tuominen and Poso 2001, Pekkarinen 2002, 2004, Anttila 2002a, b, Anttila 
and Lehikoinen 2002, Hyvönen 2002, Uuttera et al. 2002) suggest that the most 
suitable type of remote sensing imagery for forest-planning purposes in Finland is 
currently digital aerial photos and that for large-area inventories passive satellite 
imagery. The main advantages of mid-resolution satellite imagery over aerial photos 
are its markedly lower acquisition cost per areal unit and its higher spectral 
resolution. High-resolution satellite imagery (e.g. IKONOS) is very much 
comparable to aerial photos, but the main advantages of the latter lie in their slightly 
better spatial resolution, lower imaging costs and above all the long tradition of 
using them in forest planning. Visual photo interpretation has been carried out for 
decades and inventory staff can therefore be conveniently trained to use and interpret 
digital aerial photos.  

If only the accuracy of remote sensing is considered, the most promising 
fields of development are those related to the direct measurement of object 
characteristics. Laser scanning and individual tree measurements using digital aerial 
photogrammetry are examples of these technologies. Applications of airborne laser 
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scanning in forestry include the determination of terrain elevations (Kraus and 
Pfeifer 1998), estimation of mean the height and volume of stands (Næsset 1997a, 
1997b), estimation of the height and volume of individual trees (Hyyppä and Inkinen 
1999, Brandtberg 1999), tree species classification (Brandtberg et al. 2003, 
Holmgren and Persson 2004) and measurement of forest growth and detection of 
harvested trees (Yu et al. 2004). The accuracies of laser-scanning estimates at the 
tree, plot and stand levels are very similar or even better than those achieved in 
traditional field inventories (Holmgren 2003, Næsset 2004). The first research to 
compare laser-derived forest inventory estimates with estimates obtained by other 
remote sensing methods at a single test site was carried out by Hyyppä and Hyyppä 
(1999), who discovered that laser-derived attributes were more accurate than those 
obtained with other remote-sensing inventory methods. The results also showed that 
laser scanning is the only remote sensing method that meets the requirements for 
accuracy in operative stand-based forest inventories. 
 The heights of individual trees can be measured to a maximum accuracy of 
50 cm using laser scanning or digital photogrammetry (Hyyppä and Hyyppä 1999, 
Korpela 2004), and basal area and stem volume at the stand level can be obtained 
with a standard error of about 10% if the relationship between the height and 
diameter of the tree can be resolved appropriately. Use of a distribution function can 
be of help in assessing the amount of wood in the second and third storeys (Maltamo 
et al. 2004). Tree species can be deduced with about 80-90% accuracy for individual 
trees (Persson et al. 2002, Holmgren and Persson 2004), and laser surveying 
provides a digital elevation model (DEM) with an accuracy between 20 cm and 40 
cm in hilly, forested areas (Hyyppä et al. 2000, Ahokas  
et al. 2003). The accuracies of 2D and 3D measurements made on digital aerial 
photographs and laser scans compared with a traditional compartment-based 
inventory are shown in Table 21.1.  

Table 21.1 Accuracies (RMSE%) of different forest inventory methods (Uuttera et al. 2002 
(a), Korpela 2004 (b), Næsset 2004 (c), dgM = mean diameter, hgM = mean height, n/ha = 

stem number, age = mean age). 

 3D and laser 
scanning 
 

Compartment-based 
inventory 

2D photographs 

 A B c a b c a b c 
dgM 
(cm) 

15 15 15 15 15 18 20 20 23 

hgM 
(m) 

4 4 4 15 15 18 20 20 23 

n/ha 20 20 20 20 20 23 65 65 70 
age 
(a) 

20 20 30 25 28 25 20 20 30 
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21.3.2 Stand-, plot- and tree-level measurements on digital aerial photographs  

A basic problem inherent in compartment-based inventories is how to measure intra-
compartment variance. In traditional inventories information on mean and total 
values is derived and used for different tree strata, but no information exists on how 
this stratum information is distributed among the compartments. This problem can 
be solved, however, by combining positioned field sample plot data with modern 
remote sensing data. The objects to be interpreted may be smaller and more 
concretely defined than actual planning compartments, such as fixed-sized plots, 
automatically defined image segments, or even single trees. 

There are at least two ways of assessing intra-compartmental variance by 
remote sensing. The first of these uses analyses of image tone and texture features at 
the segment or plot level. In this case the objects to be analysed are either 
automatically derived image segments or systematically distributed fixed-sized plots 
(see Holopainen 1998, Pekkarinen 2004, Tuominen and Pekkarinen 2005). This 
approach requires successful correction of radiometric distortions in the high-
resolution imagery. 

The imaging geometry at the time of exposure and the vegetation structure 
will greatly affect the illumination and cause bidirectional reflectance effects (Kimes 
et al. 1980, Kimes 1984, Li and Strahler 1986, Kleman 1987, Leckie 1987, King 
1991, Abuelgasim and Strahler 1994, Fournier et al. 1995), which can be observed 
in the form of variations in brightness, especially in airborne images, where objects 
in the direction of the incoming solar radiation expose their shady sides to the sensor 
and those in the opposite direction expose their illuminated sides. As a result, the 
same forest or vegetation type will have totally different reflectance values and 
texture features depending on its position in the photograph (Figure 21.1). Empirical 
corrections for bidirectional reflectance have been applied successfully to aerial 
photographs (e.g. by Holopainen and Wang 1998a, 1998b, Tuominen and 
Pekkarinen 2004), video images (e.g. by King 1991, Franklin et al. 1995, Pellikka 
1998) and multispectral scanner data (e.g. by Leckie 1987, Leckie et al. 1995).  

In addition to segment or plot-level estimations, tree-level analyses can be 
performed, in which tree crown models are derived using either digital 
photogrammetry or laser scanning. Tree heights can also be derived during the 
crown identification phase, and other tree characteristics are derived using various 
tree models. This approach requires successful tree crown identification, especially 
in 2-storey and multistorey stands, and appropriate tree models. 
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Figure 21.1 The impact of bidirectional reflectance and atmospheric backscattering is seen in 
the form of intensified brightness in the opposite part of the image from the incoming 

irradiance. Hyytiälä, Finland, June 24 1995, 2:30 pm solar time, red band of the 1:30 000 
photograph (Holopainen and Wang 1998a). 

 There are several 2D approaches for interpreting tree crowns in single digital 
aerial photographs. A crown model can be derived and corresponding crowns can be 
sought for in the image. Problems nevertheless arise from the fact that crown images 
vary greatly depending on the illumination of the crowns and their location in the 
image. Another alternative is to analyse the image statistically to identify pixel sets 
having high grey tones and to assume that they depict actual tree crowns. This 
approach is in turn highly dependent on the imaging scale used and the conditions 
encountered. The image can also be divided statistically into segments representing 
crowns and non-crowns. Furthermore, the borders between illuminated crowns and 
intermediate areas can be sought. Finally, combinations of these approaches can be 
used (Holopainen et al. 2000, Anttila and Lehikoinen 2002). These techniques have 
mainly been used with single images (Figure 21.2). 
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Figure 21.2 Interpreting tree crowns in a single digital aerial photograph by the 2D method. 
Image copyright Arbonaut Ltd. 

 

Figure 21.3 3D measurements of tree tops. Colour infrared aerial photographs to a scale of 
1:6000. Ca. 20-m high specimens of Norway spruce. Pixel size 14 µm. Front, Front-Side, 

Back-side, Back, Back-Side and Front-Side illuminated views. Manually measured (multiple 
image matching using six images) tree top positions (white dots). 18.1 m trunk rom apex 

(200.8 m a.s.l.) to DTM superimposed (white lines). A 5 m long sun-ray projected at Z = 200.8 
m a.s.l. (yellow arrows) (Korpela 2004). Image copyright FM-Kartta International Ltd. 

“ ” 
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 Korpela (2004) presented a new forest inventory method in which multiple 
digitized aerial photographs are used for manual and semiautomatic 3D positioning 
of treetops, species classification and measurements of tree height and crown width 
(Figure 21.3). Tree height and volume can be measured with the same accuracy as 
by laser scanning, and tree species can be determined with about 80-90% correctness 
(Korpela 2004). It is possible to achieve better accuracies using 3D digital 
photogrammetry than with an inventory method based on 2D measurements of 
digital aerial photographs (Uuttera et al. 2002, Korpela 2004). 

When operating on the segment or plot level the imagery to be analysed 
may consist of rather small-scale (1:20 000 – 1:30 000) digital aerial photos or even 
high-resolution satellite images. Tree-level analyses in turn require stereo pairs (2 or 
more) of large-scale digital aerial photos (at least 1:16 000) or laser scanner images. 
The costs of a reliable tree-level analysis are therefore considerably higher than 
those of a segment or plot analysis. Independent of the approach used, successful 
analyses require accurately measured and located ground-truth data. The accuracy of 
the analysis can also be improved by the use of advance information such as 
previous compartment-based inventory results. The tree-level approach is further 
dependent on models depicting the relationships between tree characteristics. 
Finally, theoretical models taking into account trees that are invisible in the remote 
sensing imagery are also required.  

21.3.3 Stand-, plot- and tree-level measurements using laser scanning 

Extraction of forest variables using laser scanner data can be divided into two 
categories: inventories performed at the stand or plot level, and individual tree-based 
inventories. From a methodological point of view, methods can be divided into 
statistical and image processing-based retrieval methods (Hyyppä et al. 2004).  

In the statistical methods, features and predictors are assessed from the 
laser derived surface models and point clouds used for forest parameter estimation, 
typically by means of regression analysis. Percentiles in the distribution of canopy 
heights have been used as predictors in regression models for estimating mean tree 
height, basal area and volume (Lefsky et al. 1999, Magnussen et al. 1999, Means  
et al. 2000, Næsset 1997a, 1997b, Næsset and Okland 2002, Næsset 2002). Næsset 
(2002) estimated several forest attributes using a two-stage procedure applied to 
field data. His canopy height metrics included quantiles corresponding to the 
0,10,…90 percentiles of the first pulse laser canopy heights and corresponding 
statistics, whereas canopy density corresponded to the proportions of both first and 
last pulse laser hits above the 0,10,…90 quantiles for the total number of pulses. 

Physical features such as crowns, individual trees, group of trees, or whole 
stands can be delineated using image processing techniques on laser scanner data 
(Hyyppä et al. 2004), and tree locations can be found by detecting local image 
maxima. In laser scanning a local maximum is detected using the canopy height 
model, after which the edge of the crown can be found using the processed canopy 
height model. This approach can provide tree counts, tree species, crown area, 
canopy closure, gap analysis and volume and biomass estimates (Gougeon and 
Leckie 2003). 
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Hyyppä and Inkinen (1999) were the first to demonstrate a tree-based forest 
inventory using a laser scanner in which  maxima in the canopy height model were 
used for finding trees and segmentation for edge detection. In this way 40 to 50% of 
the trees in coniferous forests could be correctly segmented. Persson et al. (2002) 
improved the crown delineation and were able to link 71% of the tree heights with 
reference trees. Other attempts to use a tree-based approach have been reported by 
Brandtberg et al. (2003) Leckie et al. (2003), and Popescu et al. (2003), for instance. 
Methods for obtaining tree-based measurements using laser scanner data are still 
under development, however, and empirical studies on the quality of the approaches 
are needed. 

21.3.4 Integration of laser scanning and aerial imagery 

The acquisition of laser scanning and digital aerial photographs could be integrated 
in the future. Laser data provide accurate tree height information, which is missing 
from single aerial photographs, whereas digital aerial photos provide more details of 
the spatial geometry and more colour information that can bee used for classifying 
tree species and health. Both provide information on crown shape and size. The first 
attempts at integrating laser scanner data with aerial imagery have been reported by 
St-Onge (1999), Leckie et al. (2003) and Persson et al. (2004). Further studies are 
nevertheless required on methods for integrating laser scanner data with aerial 
imagery for forest inventory purposes. 

Due to the low imaging altitudes and complicated preprocessing and 
interpretation procedures, the costs of laser scanning are currently quite high. The 
availability of laser data is improving significantly year by year, however, and the 
costs are steadily decreasing due to the acceptance of new systems with higher 
sampling densities and higher flight altitudes. The present costs of laser surveying 
are highly dependent on the size and shape of the test site. The most economic use of 
laser scanning in forestry is to apply it to strip-base sampling, since long strips are 
economic to fly. Laser scanning samples could be used in a compartment-based 
forest inventory if a cheaper remote sensing material (e.g. digital aerial photographs) 
were available for generalizing them to an entire forested area (Holopainen and 
Hyyppä 2003). 

21.4 IMPROVING THE QUALITY OF GROUND-TRUTH DATA IN REMOTE 
SENSING ANALYSIS 

21.4.1 Development of field measuring devices  

One of the major factors affecting the accuracy of numerical image interpretation 
regarding stand-level analyses is the accuracy of the ground-truth data used. The 
standard error in stand data derived from compartment-based forest planning 
inventories, commonly used as ground-truth data, is as high as 26 – 36% (Poso 
1983) or 15 – 24% (Laasasenaho and Päivinen 1986), which is naturally also  
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reflected in the interpretation accuracy. Ground-truth errors may in fact be even 
larger than the actual interpretation errors. It is therefore of the utmost importance to 
improve the accuracy of ground-truth data.  
 Modern measuring equipment provides a reliable means for improving the 
efficiency and accuracy of field measurements. Modern field measurements are 
carried out with the aid of field computers and satellite-positioning systems, with 
which measured forest data can be transferred directly to databases accompanied by 
accurate positioning data. Devices for improving the efficiency and accuracy of 
stock measurements have also been developed thanks to rapid technological 
progress, but although various electronic dendrometers, callipers and height-
measuring devices have already been tested, the efficiency of forest data collection 
has not improved significantly. Devices equipped with laser technology, for 
example, have been tested in the United States (Carr 1992, 1996, Williams et al. 
1999), but these have been shown by Skovsgaard et al. (1998) and Parker and 
Matney (1999) to be inefficient and too expensive. In general, the usability of 
measuring devices with new technology has been quite poor. To be efficient, a 
device should enable the measurement of at least the basic tree characteristics. Some 
new field measurement devices equipped with laser technology have developed 
recently, and the exploitation of digital photographs seems to be becoming more 
realistic. 

21.4.1.1 Terrestrial lasers  

Laser scanners have opened up a new dimension in the field of surveying with their 
data capturing properties. Laser scanning is increasingly being used in various 
applications and it is also a promising method for forest inventories. Several 
companies are now marketing laser scanners for terrestrial applications, e.g. Leica, 
Optech, Riegl and Zöller + Fröhlich. According to Fröhlich and Mettenleiter (2004), 
terrestrial laser scanners can be categorized by the principle used in their distance 
measurement system. Both the range and the resulting accuracy of the system 
correlate with the distance measurement principle (i.e. pulse, phase or triangulation). 
The most popular measuring system at the moment is pulsed time of flight, which 
allows measurements of distances up to several hundreds of metres. Another 
common technique for medium ranges is the phase measurement principle, whereas 
the optical triangulation technique allows measurements only up to distances of few 
metres. For forestry applications (e.g. to create a three-dimensional model of a forest 
stand) a laser scanner using the pulse or phase principle and equipped with GPS 
seems to be appropriate.  

A raw scanned data set contains a huge number of points, and the 
recognition of trees in point clouds is essential for estimating forest characteristics. 
According to Aschoff and Spiecker (2004), tree detection has to run quickly and 
almost automatically for terrestrial laser scanners to be useful in a forest inventory 
context, and they present a semi-automatic algorithm for detecting trees that contains 
several steps: 1. The scanned data is filtered to eliminate outliers in the point cloud. 
2. A digital terrain model (DTM) is generated, on the basis of which horizontal 
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layers at a constant distance above the terrain are generated. 3. Objects that are not 
of interest in the layers, such as bushes and tree crowns, are filtered out. 4. A 
validation check on the resulting trees is performed by linear regression. The 
processing time is an essential consideration for using the method in a standard 
forest inventory application, and some work still has to be done on the filtering 
methods and data collection to make the algorithm quick enough for practical 
forestry use (Aschoff and Spiecker 2004).   

Some forestry tests using laser scanners operating on a phase principle have 
already been carried out. Thies and Spiecker (2004), for example, have tested the 
IMAGER 5003 laser measuring system produced by Zoller + Fröhlich in order to 
evaluate its measuring accuracy for detecting tree stems under typical forest 
conditions following the method presented by Aschoff and Spiecker (2004), i.e. 
deriving diameters at breast height (DBH), tree heights and coordinates for tree 
positions. The accuracy of tree position determination was almost as good as with a 
conventional tachymeter, and diameters were also measured with good accuracy, but 
tree heights were overestimated quite considerably, so that the method still needs to 
be improved. A possible source of error in any case of automatically derived DBH 
could be the DTM, because of ground vegetation and rocks on the ground. Thies and 
Spiecker (2004) emphasize that no terrestrial laser scanning system is yet ready for 
practical forestry use. Although terrestrial laser scanning offers advantages such as 
the opportunity to determine the quality of the timber contained in standing trees and 
less dependency on the observer, careful attention should be paid to economic 
aspects when considering its adoption. 

21.4.1.2 Laser relascope  

Development of a laser relascope, in practice a combination of a dendrometer and a 
relascope (Kalliovirta et al. 2005), was initiated in 1998. The device is based on 
laser measurements of angles and distances, and enables tree heights and tree 
diameters at arbitrary heights to be measured at plot centres without actually 
physically touching the trees. All the measurements can be positioned accurately 
using GPS (Laasasenaho et al. 2002, Koivuniemi 2004).  
 The third laser relascope prototype includes a laser rangefinder, a variable-
width slot with a fixed-length arm, an electronic compass, an electronic 
inclinometer, a data collection/processing unit and a GPS receiver (Figure 21.4). 
Data from sensitive elements are saved in the data collection/processing unit, which 
also contains a data collection program that can perform some calculations. A serial 
port is included in the device for charging the batteries and transferring data to a PC, 
and a data collection program for transfer from a PC to the laser relascope. A 
rechargeable battery and back-up battery are used as power sources. This newest 
prototype weighs about 2 kg and can be folded to make carrying easier. The length 
of the device is 92 cm when in use for measurement purposes and 51 cm when 
folded for carrying.  
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Figure 21.4 The third laser relascope prototype, opened out for measuring and folded for 
carrying.  

The basic principles behind relascope measurements (Bitterlich 1949) are used to 
measure tree diameters. When the relascope slot sides are positioned exactly at the 
sides of the trees, the relationship between the diameter of the tree and the viewing 
distance is the same as the relationship of the slot width to the arm’s length. The 
distance from the eye of the measurer to the tree is measured with a laser 
rangefinder. In addition, the distance between the eye of the observer and the slot of 
the relascope, i.e. the length of the fixed relascope arm, is known. Therefore, when 
the width of the slot is known, the diameter of a tree can be calculated by 
triangulation (Räty 2001). The width of the movable slot is adjusted using a tiny 
electric motor run by the measurer with a toggle switch. To measure stem diameters, 
the sides of the slot must be adjusted to the sides of the tree (Figure 21.5). To ensure 
that the distance between the eye of the measurer and the slot of the relascope is 
always the same, a support is provided for the observer’s cheek. A transparent sight 
plate is placed in front of the processing unit, and for appropriate measurements the 
upper edge of this sight plate must be in line with the slot. The vertical aiming line 
in the centre of the sight plate must be directed at the centre of the stem, and the 
laser is similarly directed at the centre of the stem. 
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Figure 21.5 Aiming with the laser relascope. 

According to Kalliovirta et al. (2005), the laser relascope gives almost unbiased 
diameter measurements (overestimation 1.3 mm) at measuring distances of 1.4–15.0 
m, the standard error in their tests being 8.2 mm. In height measurements, the device 
produced unbiased results with the standard error of 4.9 dm, but the volumes 
calculated for the plots were overestimated by 2.2 m3/ha (1.4%) on average. The 
standard error was 4.5 m3/ha, i.e. 2.8% of the mean volume. The measuring of a 
sample point took an average of 15.5 min and the measuring of a single tree 85 s. 
Although the device was too slow for practical inventory work on a compartment 
basis, it is suitable for collecting accurate ground-truth data for remote sensing 
analysis.  

21.4.1.3 Digital cameras 

Tree stem measurements based on digital images represent an interesting attempt to 
increase the accuracy of the measurements and reduce the dependency on the 
observer. The cost of such an imaging system is also quite low. Juujärvi et al. (1998) 
studied a digital camera-based method for estimating the stem diameters of growing 
trees for forest inventory purposes that employed a single camera, a laser 
rangefinder and a calibration stick. Tree diameter estimation is a challenging 3D 
machine vision task, the problem being that of transforming the 2D image 
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information to a three-dimensional model of the tree stem. Because of the texture 
richness of the trees and the diverse light conditions, the results were not accurate 
enough when the image information alone was used, but combination of the image 
data with a theoretical stem curve model provided realistic results (Juujärvi et al. 
1998). A combination of automated photo interpretation with laser relascope 
measurements could offer an interesting solution to this problem in the future. 

21.4.2 Field data acquisition using logging machines 

Another new, interesting ground-truth data source is stock data recorded on logging 
machines. Modern logging machines are commonly equipped with GIS software and 
GPS devices, enabling data on each harvested tree to be positioned to an accuracy of 
a couple of metres (Rasinmäki and Melkas 2005). By combining harvested stock 
data with GPS positioning data, valuable ground-truth data on harvests and changes 
in forest resources can be obtained efficiently (Laasasenaho et al. 2002). Rasinmäki 
and Melkas (2005) introduced a method that can be used to estimate the tree 
composition and volume of arbitrary subdivisions of a harvested stand. The average 
RMSE of the volume estimates varied from 4% for 0.4 ha subregions to 29% for 
0.03 ha subregions. The stand subdivision method affected the accuracy of volume 
estimation only in the smallest subregions. Compared with the use of harvester data 
as such, i.e. without tree location simulation, the improvement in total and species-
specific volume estimates varied from 5% to 35%.  

The development of a stem database for aggregating stem data after 
collecting has been initiated by Metsäteho (Räsänen 1999). The database is compiled 
while harvesting stands with modern harvesters, which collect and save accurate 
stem data in a standardized form that is easy to import into the database. According 
to Räsänen (1999), one of the uses of the stem database could be as ground-truth 
data based on reference stands. Stem databases are now being compiled extensively 
by Finnish forest enterprises. A suitable approach for using reference stands in a 
stem database is the non-parametric k-Most Similar Neighbour (k-MSN) method 
(Malinen et al. 2001), which is based on distance-weighted nearest-neighbour 
estimation in which the k most closely identical stands, found by using variables 
describing the site and tree stock, are used to estimate the characteristics of the target 
stand. .  
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