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Summary

In 1977, Chua and Gillham (J Cell Biology 74: 441-452) reported for the first time the existence of two chlo-
roplast-encoded proteins within the thylakoid membrane of the green alga Chlamydomonas reinhardtii, which
they termed D-1 and D-2. The D1 and D2 proteins are now recognized as the Photosystem II reaction center
polypeptides with a key role in binding all of the co-factors involved in photosynthetic water oxidation. In this
chapter we summarize some of the biochemical and mutagenesis data that has been instrumental in shaping

this view of the D1 and D2 proteins.

l. Introduction

Although the Photosystem II ( PS II) complex — i.e.,
water-plastoquinone oxidoreductase, is composed of
over twenty-five subunits, the important light-induced
electron transfer reactions occur within a heterodimer
composed of the D1 and D2 polypeptides (D1/D2).
Recent structural studies have now identified the
positions of the Chl and Pheo pigments within D1/D2
and, importantly, the location of the Mn-Ca metal
cluster which catalyses photosynthetic water oxida-
tion (Zouni et al., 2001; Kamiya and Shen, 2003;
Biesiadka et al., 2004; Ferreira et al., 2004). Perhaps
one of the most reassuring aspects of the structural

Abbreviations: BRC — reaction center from purple non-sul-
fur photosynthetic bacteria; B,/B, — PSII chlorophylls in
similar position to the two accessory BChls of the BRC;
BChl —bacteriochlorophyll; BPheo — bacteriopheophytin; C-ter-
minal —carboxyl-terminal; Chl —chlorophyll; Chl Z;, —peripheral
Chl in the PS I RC, ligated by D1-His118; Chl Z,, - peripheral
Chl in the PS IT RC, ligated by D2-His117; Cyt — cytochrome;
ENDOR - electron nuclear double resonance; EPR — electron
paramagnetic resonance; ESEEM — electron spin-echo envelope
modulation; FTIR — Fourier transform infrared ; P— special pair of
BChl in the BRC; P680 — historical term for the primary electron
donor within PS II; P,/P, — chlorophylls in PS Il in similar position
to the special pair of BChl of BRC; Pheo,/Pheo,, — pheophytin a
molecules in PS II in similar position to the BPheo molecules of
the BRC; Q, —primary quinone electron acceptor; Q, —secondary
quinone electron acceptor; RC — reaction center; S, — Mn clus-
ter that has accumulated two of the four oxidizing equivalents
needed for water oxidation; SDS-PAGE —sodium dodecyl sulfate-
polyacrylamide gel electrophoresis; Y, — redox-active tyrosine,
D2-Tyr160; Y, — redox-active tyrosine, D1-Tyr161, which acts
as the immediate oxidant of the Mn cluster

studies has been how much had been correctly pre-
dicted in advance. In this chapter, we describe the
background that led to the emergence of D1 and D2
as the PS II reaction center (RC) subunits, plus the
key mutagenesis and biochemical experiments that
identified the likely binding sites for the various pig-
ments and redox-active components within the D1
and D2 heterodimer.

Il. Identification of the D1 and D2 Proteins
A.Terminology

The D1 and D2 nomenclature was first used in stud-
ies aimed at identifying those thylakoid proteins that
were synthesized by the chloroplast of the green alga
Chlamydomonas reinhardtii (Chua and Gillham,
1977). Cells were pulse-labeled with ['*C]-acetate in
the presence of an inhibitor of cytoplasmic protein
synthesis, and the radiolabeled thylakoid proteins
separated by denaturing polyacrylamide gel elec-
trophoresis. Two broad areas of radioactivity were
identified by autoradiography and termed ‘diffuse
band-1’ (D-1) and ‘diffuse band-2’ (D-2). In these
experiments, D-1 possessed an apparent molecular
mass of about 34 kDa and D-2 appeared to be 30 kDa.
Although D-1 and D-2 might have been composed
of a number of different co-migrating polypeptides,
the notation D1 and D2 (sometimes D, and D,) has
been subsequently used to describe the psh4 and
psbD gene products, respectively, in all oxygenic
photosynthetic organisms.
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B. Linking the psbA Gene to Its Gene Product
in the Thylakoid Membrane

1. The Rapidly-Turning-Over 32-kDa Protein

Early studies on the synthesis of thylakoid mem-
brane proteins in isolated chloroplasts of higher
plants revealed that a major product was a protein
of apparent molecular mass 32 kDa (Bottomley
et al., 1974; Eaglesham and Ellis, 1974). Given
that it did not seem to correspond to an abundant
polypeptide, this particular protein appeared to be
undergoing rapid synthesis and degradation within
the membrane — hence its name. The gene encoding
this protein, now termed psbA, was mapped onto the
chloroplast genome by a number of different groups
and the first sequences, from spinach and tobacco,
were published in 1982 (Zurawski et al., 1982).

2.The 32-kDa Herbicide-Binding Protein

A large number of herbicides block photosynthetic
electron flow on the acceptor side of PS II. Through
the use of the radiolabeled photoaffinity herbicide,
azido-["“C]-atrazine, Pfister and co-workers showed
thata 32-kDa protein was a target (Pfisteretal., 1981).
By proteolytic fingerprinting this particular tagged
protein and the 32-kDa rapidly-turning-over protein, it
was concluded that they were one and the same (Stein-
back et al., 1981). Confirmation that psbA encoded
the herbicide-binding protein came with the identi-
fication of a mutation, Ser264Gly, in the pshA gene
product of a spontaneous atrazine-resistant biotype
of Amaranthus hybridus (Hirschberg and Mclntosh,
1983). This same mutation has now been found in a
variety of herbicide-resistant photosynthetic organ-
isms (for a review, see Oettmeier, 1999).

3.The Qg-Binding Protein

Several lines of evidence (for areview, see Kyle, 1985)
have indicated that the binding site for herbicides in
PS II was coincident with, or near to, the binding
site for the secondary quinone electron acceptor, Q,,
which takes part in the binary gate mechanism for the
transmission of electrons into the plastoquinone pool
(Bouges-Bocquet, 1973; Velthuys and Amesz 1974).
These included the influence of the Q,, redox state on
the affinity of PS II for herbicides (Velthuys, 1981),
EPR studies (Rutherford et al., 1984), inhibition of
herbicide binding using plastoquinone analogues
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(Vermaas et al., 1983; Oettmeier et al., 1984) and
slowing of Qg reduction in atrazine-resistant plants
(Bowes et al., 1980). Together these data led to the
idea that D1, encoded by psbA4, was the Q,-binding
protein of PS 11, as well as a target for several classes
of herbicide (for a review, see Oettmeier, 1999).

C.The Link Between the psbD Gene and Its
Gene Product

The psbD gene was located first on the chloroplast
genome of C. reinhardtii using a combination of
antibodies raised against proteins in the D2 region
of denaturing gels and an E. coli-based transcription-
translation of cloned chloroplast DNA fragments
(Rochaix, 1981). The sequence was first published in
1984 (Rochaix et al., 1984) and later in an amended
form (Erickson et al., 1986). Using this gene, psbD
was subsequently isolated from a variety of chlo-
roplasts (Alt et al., 1984; Holschuh et al., 1984;
Rasmussen et al., 1984) and cyanobacterial sources
(Williams and Chisholm, 1987). The identification
of the psbD gene product in thylakoids was initially
uncertain, especially for higher plants, because of
the lack of specific antibodies. For C. reinhardtii, D2
was identified indirectly on the basis of radioactive
labeling of thylakoid proteins and concluded to be a
component of the PS II core complex (Delepelaire,
1984). Confirmation that the psh4 and psbD gene
products were indeed components of the PS II com-
plex from higher plants came with the use of specific
antibodies raised to the gene products expressed in
E. coli (Nixon et al., 1986).

lll. The Primary Structures of D1 and D2

D1 is synthesized as a precursor protein in higher
plants (Grebanier et al., 1978) with, unusually, a
carboxyl-terminal (C-terminal) extension (Marder et
al., 1984). With the apparent exception of Euglena
gracilis (Karabin et al., 1984) and some species of
dinoflagellates (Yamamoto etal., 2001), the presence
of'a C-terminal extension for D1 appears ubiquitous.
Protein sequencing of mature D1 from spinach (M
Takahashi et al., 1988;Y Takahashi et al., 1990), the
green alga C. reinhardtii (B. A. Diner, personal com-
munication) and the cyanobacterium Synechocystis
6803 (Nixon et al., 1992a) has confirmed that in all
cases the C-terminal residue of mature D1 is Ala344
so that 9, 8 and 16 amino-acid residues are removed,
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respectively, from their precursor molecules. In con-
trast, D2 is not C-terminally processed (Y. Takahashi
et al., 1990).

In spinach, the initiating N-formylmethionine
residue of both D1 and D2 is removed leaving Thr2
at the N-terminus, which is acetylated. These Thr
residues can also be phosphorylated in both D1 and
D2 (Michel et al., 1988). The physiological sig-
nificance for D1 and D2 phosphorylation in higher
plants remains unclear although evidence points to
a role in regulating their degradation (Koivuniemi
et al., 1995). D1 has also been suggested to be pal-
mitoylated in higher plants (Mattoo and Edelman,
1987) but the site of attachment and physiological
importance remain obscure. For cyanobacteria, D1
and D2 do not appear to be phosphorylated, whereas
in the green alga C. reinhardtii there are reports that
D2, but not DI, is phosphorylated (Delepelaire,
1983, 1984; de Vitry et al., 1991). Bands assigned to
the phosphorylated (D2.1) and non-phosphorylated
forms (D2.2) of D2 have been resolved by SDS-PAGE
conducted in the presence of 8 M urea (Delepelaire,
1983, 1984). The phosphorylation site in D2.1 has
yet to be identified.

The molecular masses for D1 and D2, determined
by mass spectrometry, are approximately 38.0 kDa
and 39.5 kDa, respectively, as predicted from the
gene sequences (Sharma et al.,, 1997). However,
upon SDS-PAGE analysis they usually migrate with
apparent sizes of between 30-34 kDa (Satoh et al.,
1983), depending on the electrophoretic conditions,
most notably the concentration of urea in the gel. In
the absence of urea, D1 migrates as two immunode-
tectable bands (at 34 and 30 kDa), the faster of which
is likely to be a more compact structural ‘conformer’
(Taylor et al., 1988). D2 migrates between these two
D1 bands (Nixon et al., 1986; Sayre et al., 1986).
Inclusion of urea at concentrations greater than 6M
causes the two D1 bands to collapse to a single band of
apparent size 30 kDa, so that D2 now migrates slower
than D1. Before the availability of specific antisera,
the aberrant electrophoretic migration of D1 and D2
together with their poor staining by Coomassie blue,
led to much confusion concerning their identification.
It is even possible that the radiolabeled bands first
assigned to D1 and D2 in non-urea containing poly-
acrylamide gels (Chua and Gillham, 1977) actually
represent the two different electrophoretic conformers
of D1 (Nixon, 1988).
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IV. Identification of the D1 and D2 Proteins
as the Photosystem Il Reaction Center
Subunits

A. Interpretations of Sequence Similarities

DNA sequencing studies revealed early on that the
psbA and psbD gene products shared some sequence
similarity and possessed similar hydropathy profiles,
suggestive of an evolutionary relatedness (Rochaix
et al., 1984). While the overall sequence identity
between the two was relatively unimpressive (27% in
C. reinhardtii), there were regions of high sequence
identity approaching 60% (Rochaix et al., 1984). In
concurrent work, it was realized that the L and M
subunits of the RC of purple non-sulfur photosyn-
thetic bacteria (hereafter called the BRC) also showed
significant regions of sequence similarity to D1 and
D2 (Williams et al., 1983, 1984; Youvan et al., 1984).
In the absence of detailed structural information, the
significance of these similarities was unclear. Based
on what was known about D1 and PS II at the time,
it was suggested that the areas of similarity were
related to a function in quinone binding (Hearst and
Sauer, 1984; Rochaix et al., 1984).

A major step in understanding the structure of
PS II came paradoxically with the elucidation of the
structure ofthe BRC from Rhodopseudomonas viridis
(Deisenhofer et al., 1985). The previously observed
areas of strong sequence similarity between D1/D2
and the L/M subunits were in regions of the BRC in-
volved in binding the special pair of BChl molecules,
and not quinone as first thought. Other key residues
such as the four His residues involved in ligating
the non-heme iron on the acceptor side of the BRC
were also found in D1 and D2. Consequently it was
quickly realized from these studies that D1 and D2
were most likely the RC subunits of PS II (Michel
and Deisenhofer, 1986) fulfilling roles analogous to
L/M of the BRC. Other key residues in L/M were
conserved in D1/D2 so that folding models could
be drawn for D1/D2 in the absence of direct experi-
mental data (Trebst, 1986; Barber, 1987a; Michel and
Deisenhofer, 1988). At that time the dogma in the
literature, based on a variety of biochemical evidence,
was that CP47, encoded by psbB, was the PS II RC
subunit (Camm and Green, 1983; Nakatani et al.,
1984; de Vitry et al., 1984; Satoh, 1986). However
with hindsight it is now clear that D1 and D2 were
either present in the active PS II preparations but
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had escaped detection or that inappropriate assays
for PS II RC activity were used.

B. Isolation of Photosystem Il Reaction Center
Complexes

The first direct experimental support for the D1/D2
RC model of PS II came with the isolation by Nanba
and Satoh (1987) from spinach of the so-called PS II
RC complex, sometimes referred to as the ‘D1/D2/
Cyt by’ complex. Although this preparation did not
contain Mn, lacked a fully functional secondary elec-
tron donor, Y, and had lost the two quinone electron
acceptors, Q, and Qy, it still retained the ability to
perform light-induced charge separation indicative of
the formation of the primary radical pair, P680" Pheo
(Danielius et al., 1987; Y. Takahashi et al., 1987). As
the complex lacked CP47, this result suggested that
D1 and D2 bound P680 and the redox-active Pheo.
Other features to support the presence of P680 and
the Pheo electron acceptor within this complex were
the abilities to generate a spin-polarized chlorophyll
triplet state (Rutherford et al., 1981; Okamura et al.,
1987) associated with charge recombination of the
radical pair and to photoaccumulate either reduced
Pheo in the presence of dithionite (Nanba and Satoh,
1987), or oxidized chlorophyll, possibly P680*, upon
addition of silicomolybdate (Barber et al., 1987). For
a review of the isolated PS II RC see Satoh (1993).
Analysis of the PS II RC complex by SDS-PAGE
and Coomassie-blue staining revealed two bands with
approximate sizes of 30 kDa plus a further fainter
staining band at about 60 kDa. The CP47 and CP43
apopolypeptides were both undetectable (Nanba and
Satoh, 1987). Vital immunochemical experiments
later confirmed the two 30-kDa bands as the D1 and
D2 subunits and the 60-kDa band as either a mixture
of D1 and D2 homodimers (Satoh et al., 1987) or a
D1/D2 heterodimer (Marder et al., 1987). Also present
within this preparation were the low molecular mass
a and f subunits of cytochrome b, which could be
detected spectroscopically (Nanba and Satoh, 1987),
and the Psbl subunit, also encoded by the chloroplast
genome (Ikeuchi and Inoue, 1988a; Webber et al.,
1989). The nuclear-encoded PsbW subunit was found
later in some preparations of the D1/D2/Cyt bs, com-
plex (Lorkovi¢ et al., 1995), but its absence in other
preparations suggests a location on the periphery of
the D1/D2/Cyt by, complex (Alizadeh et al., 1999).
Important confirmation that D1 and D2 bound the
Chl and Pheo molecules of the RC came with the
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isolation and analysis of a D1/D2 complex depleted
of Cyt by, and Psbl (Tang et al., 1990).

D1/D2/Cyt by, complexes have now been iso-
lated from C. reinhardtii (Alizadeh et al., 1995),
and Synechocystis 6803 (Giorgi et al., 1996), so it
is clear that the subunit structure of the PS II RC is
conserved across the whole range of oxygenic organ-
isms. Radio-labeling studies (Alizadeh et al., 1999)
and determination of the ratio of amino acids (Satoh,
1993) have further indicated that the five subunits are
present in equimolar amounts.

C. Folding Models of the D1/D2 Heterodimer

Based on hydropathy plots, D1 was originally pro-
posed to consist of seven transmembrane helices (Rao
etal., 1983), rather than the five predicted by Michel
and Deisenhofer (1986). Experiments involving the
binding of site-specific D1 antibodies to inside-out
and right-side-out thylakoid vesicles, and trypsin
accessibility to D1, provided early support for a
five transmembrane helix model for D1 (Sayre et
al., 1986).

In the absence of detailed structural information,
anumber of computer-based models were developed
for the D1/D2 heterodimer using the structure of the
BRC as a template (Svensson et al., 1990; Ruffle et
al., 1992; Svensson et al., 1996; Xiong et al., 1998).
In all models there are two branches, A and B, of
chlorins spanning the membrane (Fig. 1). Based on
the nomenclature developed for the BRC, the 2 Chls
analogous to the special pair of BChl molecules are
designated in this chapter as P, and P, the 2 Chls
analogous to the accessory BChl molecules are des-
ignated B, and By (these Chls are termed Chl,, and
Chl,, in Chapters 19-21), and the 2 pheophytins are
designated Pheo, and Pheo,. Midway between the
primary (Q,) and secondary (Q,) quinone electron
acceptors is a non-heme iron atom (Fe). Two addi-
tional chlorophylls (Chl Z,; and Chl Z;,) found in
PS 11, but not the BRC, are included in Fig. 1 (Xiong
et al., 1998).

Superficially the computer-generated models are
very similar, although there are significant differ-
ences with regard to the amino-acid residues lining
the co-factor binding sites (reviewed in Xiong et al.,
1998). Nevertheless these models are consistent with
early structural data obtained by EPR such as the
orientations of Pheo, and Q, (Dorlet etal.,2000) and
distances estimated from the spin-lattice relaxation
of paragmagnetic species: 39.5 + 2.5 A for Fe(Il)-
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Fe Qg

Fig. 1. Nomenclature and model of the transmembrane arrangement of the pigment, quinone and non-heme cofactors within the D1/D2
heterodimer, based on a close analogy to the BRC. The P,/P, and B,/B;, Chl molecules within PS IT occupy similar (but not identical)
positions to the special-pair and accessory BChl molecules, respectively, of the BRC. Pheo, and Pheo, are equivalent to the two BPheo
molecules of the BRC. Q, is the primary quinone electron acceptor, Q, the secondary quinone electron acceptor, and Fe the non-heme
iron atom. In the BRC, electron transfer proceeds down the ‘A’ branch from P,/P, via B, to BPheo, then Q, and finally to Q. In PS II
there are two extra Chls termed Chl Z ;,, and Chl Z ,, ligated by D1-His118 and D2-His117, respectively.

Chl Z* (Koulougliotis et al., 1994), 37 = 5 A for both
Fe(II)-Y,, and Fe(II)- Y, (Koulougliotis et al., 1995)
and 20 + 4.2 A for Fe(Il)-Pheo, (Deligiannakis and
Rutherford, 1996). The close structural similarity
between the acceptor sides of PS Il and the BRC, sug-
gested by these and other early studies, has now been
conclusively shown in recent X-ray crystallographic
studies (Zouni et al., 2001; Kamiya and Shen, 2003;
Biasiadka et al., 2004; Ferreira et al., 2004).

Figure 2 displays folding models for D1 and D2
based on those of Svensson et al. (1996). Highlighted
are key residues predicted from sequence com-
parisons to be involved in binding various cofactors
within PS II. Unfortunately the lack of sequence
similarity between D1/D2 and L/M in the extrinsic
loops connecting the transmembrane helices has
limited the ability of the computer-based structural
models to provide clear guidance as the structure of
the lumenal regions and hence the possible site of
the Mn cluster.

V. Mutagenesis of the D1 and D2 Proteins

Two model organisms have been widely used for the
mutagenesis of D1 and D2: the cyanobacterium Syn-
echocystis sp. PCC 6803 (reviewed by Nixon et al.,
1992b; Vermaas, 1993; Debus 2001; Diner 2001) and
the green alga Chlamydomonas reinhardtii (reviewed

by Ruffle and Sayre, 1998). The ability ofa D1 protein
from a chloroplast to be successfully integrated into
a cyanobacterial PS II complex, without loss of O,-
evolving activity (Nixon et al., 1991), suggests that
the mechanism of water oxidation by PS II is highly
conserved throughout nature. In general, mutagenesis
experiments have provided strong support for the
general arrangement of pigments shown in Fig. 1 and
have provided crucial information on the location of
the redox-active components within PS II including
the Mn cluster. In the following sections we will
discuss some of the key mutants. Unless indicated
otherwise, the numbering of residues comes from
the Synechocystis sequences. For further details, see
Chapters 9 (Diner and Britt) and 11 (Debus).

A. Mutations Affecting the Donor Side
1.Tyrosines Y, and Y,

The first demonstration of the power and useful-
ness of mutagenesis studies for PS II came with the
identification of the tyrosine electron donors, Y, and
Y, In the early literature these electron donors are
sometimes called Z and D, respectively. Z lies on the
electron transfer pathway connecting the Mn cluster
to P680* whereas D is on a side-path. In their oxidized
states they give rise to EPR signals of similar shape,
the so-called Signal II, but show different kinetics
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Fig. 2. Folding models for the D1 (top) and D2 (bottom) subunitsof Synechocystis 6803 based on ones drawn by Svensson et al. (1996).
Each subunit consists of five (A-E) transmembrane helices and two (CD and DE) helices that lie parallel to the membrane. Amino-acid
residues that are discussed in the text are indicated by the one-letter code. Possible amino-acid ligands to P,, Py, Chl Z,,, Chl Z,, Pheo,,

Pheo,, and Fe are indicated.

of formation and decay: oxidation of Z gives rise
to Signal II; (very fast) in intact PS II or Signal II,
(fast) in samples lacking a Mn cluster (Blankenship
et al., 1975). Signal II_ (slow) (Babcock and Sauer,
1973) is an extremely stable signal and is associated
with oxidation of D. On the basis of the hyperfine

structure of Signal II and its simulation using model
compounds, together with other arguments, early
work suggested that Z might be a plastosemiquinone
cation (PQH,") (O’Malley et al., 1984). However,
PSII complexes with fully functional Z and Q,
only contain sufficient extractable plastoquinone to
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account for the single Q, molecule (de Vitry et al.,
1986). A resolution to the chemical identity of D,
and by extrapolation Z, came with a beautiful series
of experiments by Barry and Babcock in which they
showed that Signal II, became narrower when PS 11
incorporated deuterated tyrosine but not deuterated
plastoquinone, so implicating tyrosine as the origin
of D (Barry and Babcock, 1987). A similar analysis
of isolated PS II complexes containing deuterated
tyrosine later confirmed Z to be also a tyrosine
residue (Boerner and Barry, 1993). Radio-iodination
experiments in which '»I is activated by PS II-medi-
ated oxidation prior to modification of protein side
chains, suggested that D1 and D2 contained Z and D,
respectively (Y. Takahashi et al., 1986; Ikeuchi and
Inoue, 1987). Folding models predicted the presence
oftwo symmetrically placed Tyr residues, D1-Tyr161
and D2-Tyr160, in the region of iodination (Ikeuchi
and Inoue, 1988b; Y. Takahashi and Satoh, 1989).
Mutation of D2-Tyr160 to Phe in Synechocystis 6803
caused loss of the dark stable Signal Il associated with
D (Debus et al., 1988a; Vermaas et al., 1988) but still
allowed assembly of an O,-evolving PS II complex.
Mutation in Synechocystis 6803 of the symmetrical
tyrosine in D1 to either Phe (Debus et al., 1988b;
Metz et al., 1989), or Trp, His, Cys and Met (Nixon
etal., 1992b), all produced strains that were incapable
of photosynthetic water oxidation. Analysis of man-
ganese-depleted core complexes isolated from these
mutants by EPR and optical spectroscopy further
demonstrated that the lesion in electron transfer was
at the level of donor Z (Metz et al., 1989). So far no
other residue appears to be oxidized when placed at
this position. Together these data led to the attribution
of D1-Tyr161 and D2-Tyr160 as donors Y, and Y,
respectively. It is now recognized that when oxidized,
Y, and Yy, form the neutral radical species, Y, and
Y, and not the cationic species sometimes cited in
the literature (reviewed by Diner, 2001; Chapter 9,
Dinner and Britt).

2.D1-His190 and D2-His189

A variety of EPR evidence has indicated thatY," and
Y, are H-bonded (reviewed by Diner, 2001). ENDOR
(Tang et al., 1993, Campbell et al., 1997), high-field
EPR (Un et al., 1996) and FTIR (Hienerwadel et
al., 1997) experiments, using a D2-His189 mutant
of Synechocystis 6803, strongly support the pres-
ence of a H-bond between Y," and D2-His189. The
situation regarding the role of D1-His190 appeared
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more complicated with 'N pulsed-ENDOR not fa-
voring a direct H-bond between Y," and D1-His190
(Campbell, 1999). These experimental results are
consistent with several of the computer-generated
models, which have suggested that D2-His189 might
H-bond to the phenolic oxygen of Y,;°, but that D1-
His190 is too far away to H-bond to Y," (reviewed
by Xiong et al., 1998).

Allmutants created at D1-His190 in Synechocystis
6803 (Dineretal., 1991a; Nixon etal., 1992b; Nixon
and Diner, 1994; Chu et al., 1995a; Diner and Nixon,
1998; Hays etal., 1998; 1999) and C. reinhardtii (Rof-
fey et al., 1994) are unable to evolve O, apart from
Lys and Arg substitutions at approximately 13% of
wild type rates (Chu et al., 1995a; Hays et al., 1998).
The oxidation of Y, is dramatically slowed by greater
than 200-fold in mutants such as D1-His190Gln and
Asp (Dineretal., 1991a; Diner and Nixon, 1998; Hays
etal., 1998) but can be partially restored through the
addition of small organic bases such as imidazole
(Hays et al., 1998). Similarly the rate of re-reduc-
tion of Y, in manganese-depleted PS II complexes,
through charge recombination, is also much slower
and likewise can be accelerated through addition of
small bases (Hays et al., 1998). Together these data
supportamodel in which D1-His190 acts as a general
acid/base catalyzing the protonation/abstraction of
the phenolic proton of Y, during its proton-coupled
reduction/oxidation (Hayes et al., 1998). Unless Y,
is able to be deprotonated, its oxidation is blocked.
There is still debate as to whether D1-His190 forms
a direct H-bond to Y, or is linked indirectly through
other proton-carriers. See Chapter 9, Diner and Britt,
for a more detailed account.

3. Mutants Affecting the Binding and Function
of the Manganese Cluster

Based on folding models for D1 and D2, residues
exposed to the lumen have been subjected to site-
directed mutagenesis (for reviews, see Diner, 2001;
and Debus, 2001). The chief targets for mutagenesis
were carboxylates and histidine residues, both of
which are excellent candidates for ligating metal
ions. Some early support for a role for His in ligating
the cluster came from chemical modification experi-
ments (Tamuraetal., 1989). Pulsed EPR experiments
have since unambiguously confirmed this proposal
(Tangetal., 1994). The participation of histidine and
carboxylate residues in Mn binding in PS II has also
been suggested on the basis of non-competitive inhi-
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bition experiments between exogenous Mn?* and the
artificial electron donor to PS II, diphenylcarbazide
(Seibert et al., 1989; Preston and Seibert, 1991).

One of'the surprises of the brute-force mutagenesis
approach was how difficult it was to knock out the
assembly of a functional Mn cluster (Pakrasi and
Vermaas 1992; Nixon et al., 1992b). In part this may
reflect the ability of alternate ligands such as water
and chloride to substitute for a missing proteinaceous
ligand. Nevertheless, this observation strengthened
the significance of residues at which mutation specifi-
cally blocked Mn assembly.

a.The LF-1 Mutant of Scenedesmus obliquus

One of the first and most important mutants affect-
ing the assembly of the Mn cluster in PS II was the
LF-1 (low fluorescence —1) mutant of Scenedes-
mus obliquus, which was generated through X-ray
mutagenesis (Metz and Bishop, 1980). Originally
identified in chlorophyll-fluorescence based screens
as low-fluorescent, the LF-1 was consistent with an
impairment on the donor side of PS II. Biochemical
studies indicated that the PS II could accumulate and
retain electron transfer activity across the membrane
but was unable to assemble a functional Mn cluster,
with only 1-2 Mn bound to each PS II center (Metz
and Bishop, 1980; Metz et al., 1980). A polypeptide
of apparent molecular mass 34 kDa in the wild type
showed a shift to an apparent molecular mass of 36
kDa in LF-1. No other differences in the electropho-
retograms were detected, so the 34-kDa subunit was
suggested to be involved in binding Mn (Metz et al.,
1980). Originally thought to be a modified form of
the 33-kDa extrinsic protein involved in stabilizing of
the Mn cluster (Bishop, 1983) or possibly D2 (Metz
and Seibert, 1984), the 36-kDa polypeptide is now
known to be precursor D1 (Metz et al., 1986; Taylor
et al., 1988; Diner et al., 1988). The phenotype of
LF-1 results from a single base deletion and a con-
sequent frameshift in the coding region for CtpA, the
D1 processing protease (Trost et al., 1997), which
is needed to remove the C-terminal extension. That
the inability to assemble the Mn cluster was due to
a block in D1 maturation, rather than some other
target for the processing protease, was confirmed
through the construction of the D1-S345P mutant
of Synechocystis 6803 which was unable to process
precursor D1 because of a modified cleavage site. The
phenotype of this mutant was essentially identical to
that of LF-1 (Nixon et al., 1992a).
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Overall the LF-1 mutant provided the first mutagen-
esis evidence to indicate arole for D1 in the assembly
of the Mn cluster, not just in Q, binding. However,
it still remains unclear to what extent the C-terminal
extension causes indirect structural perturbations on
the lumenal side of PS I1.

b. D1-Asp170

This was the first amino acid residue to be identi-
fied as important for assembly of a functional Mn
cluster (Nixon and Diner, 1990). Mutants created at
this residue in either Synechocystis 6803 (Nixon and
Diner, 1992; Boerner et al., 1992) or C. reinhardtii
(Whitelegge et al., 1995) were to varying degrees able
to accumulate active PS II. Retention of a residue
that was capable of ligation to a metal allowed the
assembly of a cluster whereas substitution with a non-
ligand such as Ala showed no O, evolution but was
still able to assemble an otherwise functional PS II
complex with regard to electron transfer from Y, to
Qg (Nixon and Diner, 1992). Mutations at Asp170
also affected the ability of detergent-solubilized PS 11
complexes, with the Mn cluster removed, to bind and
oxidize Mn*" to Mn** at a high-affinity site within
PSII (Diner and Nixon, 1992; Nixon and Diner,
1992). This high-affinity site, implicated first by EPR
(Hoganson et al., 1989), is probably identical to the
binding site for the first Mn ion in the natural light-
driven process of photoactivation that assembles the
functional Mn cluster (Radmer and Cheniae, 1977).
More recent evidence to support the idea that Asp170
acts as a ligand to the Mn (IIT) has come from parallel
mode EPR measurements (Campbell et al., 2000).
The structural model of PS II from Imperial Col-
lege London has now confirmed a role for Asp170
in ligating one of the Mn ions of the intact cluster
(Ferreiraetal.,2004). Somewhat surprisingly mutants
D1-Aspl170Val, Leu and Ile are able to assemble a
functional cluster in a fraction of the centers despite
the presence of a non-ligand at this position (Chu
et al., 1995a). Presumably an alternative ligand is
operating in these mutants.

c. His332, Glu333, His337 Asp342 in the Car-
boxyl-Terminal Region of D1

Mutation of a number of residues in the C-terminal
region of D1 specifically compromised the ability to
assemble a functional Mn cluster (Nixon etal., 1992a;
Nixon and Diner, 1994; Chuetal., 1995b). In the case



80

of some, but not all, of the mutants created at D1-
His332, D1-Glu333 and D1-Asp342 O, evolution is
blocked (Nixonetal., 1992b; Nixon and Diner, 1994;
Chu et al., 1995b), consistent with their roles as Mn
ligands (Ferreira etal., 2004). Those substitutions that
allow assembly of a Mn cluster have the potential to
actas ligands. Many of the mutants constructed in this
region of D1, such as at D1-His337, allow O, evolu-
tion but the activity is readily photoinhibited (Nixon
et al., 1992b; Chu et al., 1995b). The most detailed
analysis so far of mutants in this region of D1 has come
from an ESEEM study of PS II complexes isolated
from a D1-His332Glu mutant of Synechocystis 6803,
in which the Mn cluster assembles but is unable to
pass beyond the S, state (Debus et al., 2001). Since
this residue is now known to be a ligand to the Mn
cluster (Ferreira et al., 2004), these results highlight
the importance of appropriate ligation for controlling
the redox properties of the cluster. Of importance was
the finding that the high-affinity Mn*'-binding site
characterized in isolated PS II complexes is largely
preserved in C-terminal mutants lacking a functional
cluster (Nixonetal., 1992a,b; Nixon and Diner, 1994).
This feature distinguishes the C-terminal D1 mutants
from those at D1-Asp170.

d. The Carboxyl-Terminal Residue at Ala-344

In some of the first mutagenesis studies on D1 in
Synechocystis 6803, the effect of deleting progres-
sively larger portions of the C-terminus was examined
(Nixon et al., 1992a). Removal of the C-terminal
extension, so that only the mature form of D1 was
synthesized, did not block assembly of functional
PS II. This important finding, which holds also for the
green alga C. reinhardtii (Lers et al., 1992; Schrader
and Johanningmeier, 1992), showed that the C-ter-
minal extension was not required for integration of
D1 into the thylakoid membrane, a possibility that
had been suggested in early studies on D1 matura-
tion (Marder et al., 1984). Removal of an additional
residue, leaving D1-Leu343 as the C-terminal residue,
allowed the assembly of PS II complexes competent
in the oxidation of Y, but blocked the formation of
an active Mn cluster. Deletion of additional resi-
dues further reduced the ability to accumulate PS II
centers, all of which were inactive for O, evolution
(Nixon et al., 1992a). These results therefore high-
lighted the functional importance of the C-terminal
residue for the Mn cluster. A number of residues (Gly,
Met, Ser, Val, Tyr, Lys) could substitute for Ala-344
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without blocking totally the assembly of the Mn
cluster. Therefore it was suggested that it was the free
carboxyl group that was important for functionality
(Nixon et al., 1992a).

e. Other Residues Affecting the Manganese
Cluster

A number of D1 mutants have been characterized
that retain oxygen-evolving ability but show modi-
fied properties. Amongst these are mutants created at
D1-Asp59,D1-Asp61 and D1-Glu65, in the lumenal
loop connecting helices A and B. These residues
had been speculated for some time to be involved
in binding metal ions, either Mn or Ca". A role for
D1-Asp59 and D1-Asp61 in binding Ca*" was given
impetus with the finding that photoautotrophic growth
of mutants constructed at these sites was sensitive to
the depletion of Ca** from the growth medium (Nixon
and Diner, 1994; Chu et al., 1995a). More detailed
analyses of mutants at these positions are consistent
with an important role for these residues in stabiliz-
ing intermediates formed during the assembly of the
Mn cluster, possibly through the binding ofa calcium
ion, although this has yet to be probed directly (Qian
et al., 1999). In addition, mutants at these residues
show slower production of O, indicative of a slower
cycling through the higher S-state transitions (Hundelt
et al., 1998; Qian et al., 1999).

Besides D1-Asp59 and D1-Asp61, the photoau-
totrophic growth of mutants at D1-Glu333 and D1-
Asp342 in the C-terminal region are also sensitive to
the depletion of Ca*" (Nixon and Diner, 1994; Chu
et al., 1995a) or chloride (Nixon and Diner, 1994)
from the growth medium. These phenotypes are also
observed with many D2 mutants (Keilty et al., 2001)
and mutants lacking extrinsic proteins of PS II (sum-
marized in Li and Burnap, 2001). Ca** and chloride
play a role in the function of the Mn cluster, suggest-
ing direct or indirect effects of all these mutations
on their normal binding within PS II or in the case
of chloride, a possible role as a replacement ligand
to the cluster. One indirect effect of mutating these,
and other residues such as D1-Arg64, might be to
prevent correct binding of the extrinsic proteins to
the lumenal side of PS II (Li and Burnap, 2001).

Another feature of many D1 mutants, including
mutants constructed at the C-terminus of D1, as well
as the D2-Glu69GIn mutant (Vermaas et al., 1990),
is the enhanced sensitivity to light-induced inactiva-
tion of O, evolution by mutant cells. There are many
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possible causes for such a phenotype including the
damaging effects of relatively long-lived highly oxi-
dizing species within PS II, the production of reactive
oxygen species at the modified Mn clusters (Chu et
al., 1995b) and effects on the D1 repair cycle (Dalla
Chiesa et al., 1996). Thus enhanced sensitivity to
photoinhibition is in itself not compelling evidence
for a role for that residue in binding Mn. For more
details see Chapter 11, Debus.

f. Model for Location and Assembly of the
Manganese Cluster Based on Mutagenesis
Data

On the basis of the mutagenesis data, Diner et al.,
(1991a) proposed a simple structural model for the
location of the Mn cluster within D1 (Fig. 3). In
order to bring all the crucial residues identified by
mutagenesis into a compact cluster that could ligate
the Mn cluster, the C-terminal region of D1 had to be
folded back so that it was present close to D1-Asp170.
The location of Asp170 only 9 residues away from
D1-Tyr161, the oxidant of the cluster, also suggested
that the Mn cluster was located close to Y,; indeed
estimates from computer modeling studies placed
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Aspl170 6-7 A fromY, (e.g., Svenson etal., 1996). At
the time of the proposal of the model in Fig. 3, EPR
data suggested that the Mn cluster was greater than
10 A from Y, (Hoganson and Babcock, 1988) and,
in other work, possibly up to 32 A away (Un et al.,
1994). Such distances led to the exclusion of Asp170
as a ligand in early computer models (Svensson et
al., 1990). However more recent EPR analyses have
indicated a much smaller distance (7-9 A) between
the Mn cluster and Y, (Dorlet et al., 1998; Peloquin
et al., 1998; Lakshmi et al., 1999). The proposed
location of the Mn cluster in Fig. 3 also agrees very
well with the structural models determined by X-ray
crystallography (Kamiya and Shen, 2003; Biesiadka
et al., 2004; Ferreira et al., 2004).

The mutagenesis data have also allowed a model
to be proposed for the coupling of D1 processing to
the assembly of the Mn cluster (Diner et al., 1991a;
Nixon et al., 1992a). In this model, the first Mn ion
is proposed to bind at a high-affinity site of which
D1-Asp170 is an important component. It is this Mn
ion that is oxidized first by PS II in photoactivation.
In order to complete the assembly of the cluster,
removal of the C-terminal extension is required. At
the same time this cleavage reaction would reveal

Lumen

Fig. 3. The folding model of D1 proposed by Diner et al. (1991a), showing the location of the Mn cluster (Mn) within PS II based on
the analysis of site-directed mutants of Synechocystis 6803. The five transmembrane helices of D1 are labeled here as I-V. The cluster
was proposed to be coordinated by D1-Asp170 (D) and by residues within the C-terminal region of D1, including the C-terminus itself
(C). Also shown are Yz (Y), the oxidant of the Mn cluster, which is thought to be close to D1-H190 (H), as well as P680 (p680) and the
non-haem iron (Fe). A possible amphiphilic helix (helix A) was suggested to bring the C-terminal residues towards D1-Asp170 (D).

Reprinted with permission from Elsevier Science.
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the carboxy terminus at D1-Ala344, which might
act as a ligand to the cluster, perhaps following a
substantial conformational change to bring the C-
terminus close to D1-Asp170. The involvement of
the free C-terminus in ligating Mn (or Ca*") explains
nicely why processing is required for assembly of a
functional Mn cluster.

The presence of the C-terminal extension provides
a selective advantage to cells growing in mixed cul-
ture compared to those without (Ivleva et al. 2000).
However it remains unclear what advantage the
extension conveys. One possibility is that removal
of the extension is coupled to the stepwise assembly
of the most stable and active cluster. In its absence,
there might be an increased chance that inappropri-
ate ligands are used so that although active clusters
might still assemble, there is a greater likelihood of
forming poorer functioning clusters with a greater
propensity for causing damage to PS II. Alternatively,
the C-terminal extension might play arole in optimiz-
ing the assembly of PS II in the PS II repair cycle.
While the model in Fig. 3 emphasized an exclusive
role for D1 in binding the Mn cluster, it was always
recognized that other PS II subunits might participate,
as eventually revealed in the structural model from
Imperial College (Ferreira et al., 2004).

4. D1-His198 and D2-His197

The histidines that coordinate the two members of the
special pair found in the L and M subunits ofthe BRC
are conserved in PS ITat D1-His198 and D2-His197.
This naturally led to a model in which these latter
residues also ligated the chlorophyll molecules, P, and
Py, respectively, (Fig. 1) in a broadly similar way to
that found in the BRC, although there had to be some
structural distortion to explain the absence of strong
excitonic coupling between the two Chls (Durrant et
al., 1995). However, the presence of P, and P, in PS 11
was not immediately accepted because of the signifi-
cant redox and spectral differences observed between
PS II and the BRC. For instance, because P680" is
much more oxidizing than the bacterial equivalent,
van Gorkom and Schelvis (1993) pointed out that P,
as well as By might not be retained in PS II to avoid
unwanted oxidation of Chl. Also models were sug-
gested in which P, was rotated from perpendicular
to the membrane plane to 30 degrees (Noguchi et
al., 1993) so as to accommodate EPR data on the
orientation of the chlorophyll molecule carrying the
P680" state (van Mieghem et al., 1991).
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Early mutagenesis studies indicated that DI-
His198 and D2-His197 were indeed important since
replacement by leucine (Nixon et al., 1992b) and
tyrosine (Vermaas et al., 1987), respectively, led
to loss of PS II from the membrane. More recently
a number of mutations have been made at these
positions that allowed assembly of functional PS IT
complexes. These mutants have subsequently proved
to be an invaluable resource in addressing questions
regarding the nature of P680 (Diner et al., 2001) and
the energetics of primary charge separation (Merry
et al., 1998).

In the most detailed work so far on these mutants,
Diner et al. (2001) have applied optical and EPR
spectroscopies to examine the P680" and P680"
states in core complexes isolated from mutants of
Synechocystis 6803 constructed at either D1-His198
or D2-His197. Mutation of D1-His198 caused
both shifts in the P680'—P680-absorbance differ-
ence spectrum and appreciable modulation of the
P680"/P680 redox couple. Mutation of D2-His197
had less dramatic effects on these parameters. The
triplet-minus-singlet optical difference spectrum
for P680 was in contrast unchanged in all mutants.
These results therefore support a model in which
following charge separation the chlorophyll cation
(usually called P680") is stabilized primarily on P,
(ligated by D1-His198) and to a lesser degree (ap-
prox 20%) on P, (ligated by D2-His197). Results
obtained with the above mutants and other data in the
literature also support the idea that charge separation
is initiated mainly from the singlet excited state of
the accessory chlorophyll, B,*, and that the P680
triplet state is stabilized at low temperature mainly
on B, and not P, (Noguchi et al., 1998; Sarcina et al.,
1998). At first sight, such a scheme for PS II primary
photochemistry is in sharp contrast with that for the
BRC where the BChl singlet, cation and triplet states
are located on the special pair of BChls (P). However,
a major rethinking of this dogma suggests that there
are multiple pathways for stable charge separation in
the BRC including charge separation from B,* not
just P* (van Brederode and van Grondelle, 1999;
Dekker and van Grondelle, 2000). PS II differs from
the BRC in that the excited singlet states are much
closer in energy in the former resulting in extensive
delocalization of the excited state of the RC within
a multimer of pigments rather than localized to the
special pair (Durrantetal., 1995). Atlow temperature
(4K) the excited state energy in PS II is exclusively
localized on B, implying that charge separation at
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this temperature must be occurring from B," (Diner
et al., 2001; Diner and Rappaport, 2002).

5.D1-His118 and D2-His117

Initial measurements of the pigment stoichiometry of
the D1/D2/Cyt b,,, complex isolated by Nanba and Sa-
toh (1987) suggested aratio of about 5 Chl per 2 Pheo
molecules. For the BRC, there are 4 BChl molecules
and 2 BPheo. Hence it was anticipated by analogy
that the pigment stoichiometry for the D1/D2/Cyt
bss, complex would in fact be 4 Chl/2 Pheo (Barber,
1987b). However, following suggestions that this was
so(e.g., Barberetal., 1987; Aured etal., 1994; Chang
etal., 1994; Pueyo et al., 1995), a consensus has now
emerged in favor of a ratio of 6 Chl per 2 Pheo for
the most stable form of the PS Il RC (Gounaris et al.,
1990; Kobayashi etal., 1990; Eijckelhoffand Dekker,
1995). Thus, the D1/D2/Cyt b, complex contains 2
additional Chls compared with the BRC. Important
confirmation that it was the D1/D2 heterodimer that
bound these 2 extra Chl came with the isolation of a
D1/D2 complex (Tang et al., 1990).

The possible ligands for these two ‘extra’ Chl
molecules focused on two symmetrically related His
residues, D1-His118 and D2-His117, not conserved
in the BRC, which are predicted to lie in the second
transmembrane helix of D1 and D2, respectively
(Michel and Deisenhofer, 1988). Computer modeling
studies placed these Chls on the exterior of the D1/D2
heterodimer in a position to interact with the neigh-
boring CP47 and CP43 subunits and to act possibly
as linker Chls connecting the pigments in CP47 and
CP43 to those involved in primary photochemistry
in D1 and D2 (Ruffle et al., 1992). Measurements of
energy transfer within the isolated PS II RC indeed
suggested two populations of pigments: A peripheral
pool, which shows a relatively slow rate of energy
transfer to P680 (Schelvis etal., 1994), possibly bound
to D1-His118 and D2-His117, and an inner core of
pigments that shows rapid equilibration of excitation
energy (Durrant et al., 1992).

Mutation of D2-His117 to residues that could
potentially coordinate Chl (Cys, Met, Asn and Thr)
still allowed photoautotrophic growth in Syrecho-
cystis 6803, whereas other substitutions impaired
accumulation of PS IIto varying degrees (Pakrasi and
Vermaas, 1992; Lince and Vermaas, 1998; Stewart et
al., 1998). Fluorescence studies on the D2-His118Thr
mutant suggested that energy transfer into the PS II
RC was slowed, consistent with a role in binding
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Chl (Lince and Vermaas, 1998; Vasil’ev and Bruce,
2000). A comparison by EPR, near-infrared absor-
bance and resonance Raman spectroscopies of PS 1T
complexes isolated from Synechocystis 6803 mutants
D2-His117GlIn and its counterpart, D1-His118Gln,
(Stewart et al., 1998) led to the conclusion that D1-
His118, and not D2-His117, was the axial ligand to
Chl Z, a photooxidizable Chl molecule that had been
identified earlier in PS II from higher plants (de Paula
etal., 1985). The possible physiological role of Chl Z
in protection form photoinhibition and its mode of
oxidation and reduction are described in detail in
Chapter 15 (Faller and Rutherford) of this volume.
Based on symmetry arguments Stewart et al (1998)
further suggested that D2-His117 also acted as an
axial ligand to Chl but that this Chl, termed Chl D,
was redox-inactive. The Chl Z and Chl D nomencla-
ture is an extension of that used to describe the two
redox-active tyrosines in PS II-Y, and Yo,

The PSII structure determined to a resolution
of 3.8 A by Zouni and co-workers confirmed the
presence of two Chls, termed Chl Z,, and Chl Z,,,
within the predicted vicinity of D1-His118 and D2-
His117, respectively (Zouni et al., 2001). One of the
interesting features of this PS II structure was the
finding that Cyt b, was located on the D2 side of
the complex (Zouni et al., 2001). This meant that Cyt
bss,, suggested initially to be the direct reductant of
Chl Z* (Thompson and Brudvig, 1988) was in fact
closer to Chl D than Chl Z. Had Chl Z been misas-
signed so that D2-His117 rather than D1-His118 was
the true ligand? The possibility that the Chl bound
to D2-His117 could be redox-active has received
recent experimental support from studies of D2-
His117Asn/Gln and D1-His118GIn mutants of C.
reinhardtii (Ruffle et al., 2001; Wang et al., 2002).
The EPR spectrum assigned to Chl Z* obtained from
PS II RCs isolated from the D2-His117Asn mutant
was broadened compared to the wild type and the
D1-His118GIn mutant, which both showed similar
spectra. This broadening has been interpreted in terms
of a possible rotation of the Chl (Wang et al., 2002).
Mutation of both D1-His118 and D2-His117 in C.
reinhardtii altered energy transfer into the PS I RC
consistent with modification to peripheral Chls of
the RC. These results are in apparent contradiction
to the conclusions made by Stewart et al. (1998).
A possible reconciliation of these data has recently
emerged from comparative studies on the identity of
the photooxidizable accessory Chls in PS II from Syn-
echocystis 6803 and spinach (Tracewell et al., 2001).
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For Synechocystis 6803 it appears that only Chl Z
(Chl Z,,,) is photooxidized whereas in spinach, and
hence possibly C. reinhardtii, both Chl Z and Chl D
(Chl Z,,,) can be photooxidized. This contrasts with
early studies where only one of the accessory Chls
was thought to be photooxidizable in the plant system
(de Paula et al., 1985). Given the current uncertainty
it seems prudent to adopt the nomenclature Chl Z,,
and Chl Z,, to describe these two Chl species rather
than Chl Z and Chl D.

B. Mutations Affecting the Acceptor Side
1. The Pheophytins

It has long been established that Pheo is reduced
during primary charge separation in PS II (Klimov
et al., 1977). Pigment analysis of the PS I RC sup-
ported the presence of 2 Pheo per RC. Based on the
analogy with the BRC the two Pheo would be on
separate branches of co-factors in the RC, with the
Pheo bound to D1 on the active branch. Sequence
comparisons indicated that the C9-keto group of each
Pheo would be positioned so that Pheo, could form a
H-bond to residue 130 of D1 and Pheo, to residue 130
of D2 (Michel and Deisenhofer, 1988). Interestingly
the residue at D1-130 is not totally conserved within
PS II-for the majority of organisms it is a glutamic
acid whereas for Synechocystis 6803 it is a glutamine.
Early ENDOR (Lubitzetal., 1989), resonance Raman
(Moenne-Loccozetal., 1990) and FTIR experiments
(Nabedryk et al., 1990) all suggested the presence of
aH-bond to the photoactive Pheo in plants. Confirma-
tion that residue 130 of D1 plays an important role
in the optical properties of a redox-active Pheo came
with the analysis of PS II RCs isolated from mutants
D1-GIn130Glu and D1-GIn130Leu constructed in
Synechocystis 6803 (Giorgi et al., 1996). The Q,
transition was shifted from 541.5 nm in the wild
type to 540 nm in the D1-GIn130Leu mutant and to
544nminthe D1-GIn130Glu mutant. In plants, where
residue D1-130 is naturally a Glu, the Q, transition
is already at 544 nm. The degree of the red shift in
the mutants correlates with the probable strength of
the H-bond to this residue, a similar behavior to that
found in the equivalent mutants in the BRC at L-104
(Bylina et al., 1988). Since only 1 of the 2 Pheo in
the PS I RC is photoactive (Nanba and Satoh, 1987),
these data also provided compelling evidence to sup-
port the assumption that it was the D1-bound Pheo
that was redox-active and that electron proceeded
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predominantly down the A-branch as in the BRC.
This conclusion has been recently reinforced from
analysis of PS I RCs in which the D1-bound Pheo was
replaced by a 13-OH-Pheo derivative (Germano et al
2001). FTIR analysis of mutant Synechocystis 6803
PS II RCs (P. J. Nixon and J. Breton, unpublished)
have confirmed the presence of a H-bond between
residue 130 and the C9-keto group. This conclusion
is also supported by a recent high field EPR study
of PS II RCs isolated from D1-Glul30His, Gln and
Leu mutants of C. reinhardtii (Dorlet et al., 2001).
Overall these data provided important experimental
support to the idea that the location and orientation
of the redox-active Pheo is conserved between PS 1T
and the BRC.

Besides identifying the location of pigment mol-
ecules within PS II through the effects of mutation
on the optical, redox or vibrational properties of the
molecule, it is possible to create mutants in which a
different type of pigment molecule is inserted into the
site. In BRCs, when an imidazole ligand is supplied
in the correct region of the BPheo pocket, a BChl
is inserted instead, presumably because the central
Mg?*" is stabilized (Kirmaier et al., 1991). Based on
sequence comparisons, the analogous mutants have
now been constructed in PS II. The D2-Leu209His
mutant of Synechocystis 6803 (DA Force and BA
Diner, unpublished data) replaces the redox-active
Pheo with a Chl, the result of which is that primary
charge separation occurs with a reduced quantum
yield. Mutant D1-Leu210His stabilizes insertion of
a Chl for the redox-inactive Pheo (DA Force and BA
Diner, unpublished data). This latter mutant is very
important, as it has provided the first mutagenesis data
in favor of a strong structural similarity between PS 11
and the BRC with regard to the redox-inactive Pheo
molecule. A strong similarity between PS II and the
BRC in terms of the orientation, not just the location,
of the two Pheo molecules, is also suggested from
recent spectroscopic experiments on isolated PS II
RCs containing a 13-OH-Pheo derivative (Germano
etal., 2001, 2002).

2.The Accessory Chlorophylls B, and B,

The His residues that act as axial ligands to the ac-
cessory BChls in the BRC are not conserved in D1
and D2 (Michel and Deisenhofer, 1988). This feature
raised the possibility of quite dramatic differences to
the BRC in this part of PS II. The identification of
accessory molecules in the first structures of PS II
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was vital evidence that this was not the case (Rhee et
al., 1998). Presumably there are alternative ligands
to these Chl in PS II such as water molecules, for
which there is precedence (Hofmann et al., 1996),
the protein backbone or perhaps a different type of
amino-acid side chain. Inspection of the CD helices
in D1 and D2 has identified two potential ligands:
D2-Argl80and D1-Asn181. Mutation of D2-Arg180
in Synechocystis 6803 has not provided definitive
evidence concerning a role as a Chl ligand although
there were clear effects on Y, (Manna et al., 1998).

3.The Iron-Quinone Complex

A variety of early biophysical evidence suggested a
close analogy between PS I and the BRC with regard
the acceptor side of the complex (reviewed by Diner
etal., 1991b). Both contain a tightly bound quinone,
Q,, which acts as a 1-electron carrier (Q,/Q,) and
a second quinone, Q,, which is reduced by Q, to
first the semiquinone anion, Qg, and, following a
second turnover of the RC, to the quinol. Following
protonation the quinol, QzH,, is released from the
Q,-binding site (Bouges-Bocquet, 1973; Velthuys and
Amesz, 1974; Chapter 8, Petrouleas and Crofts). For
the BRC, the binding sites for Q, and Qj are located
in the M and L subunits, respectively. By analogy the
equivalent sites in PS II would be in D2 and D1. For
the BRC, the non-heme iron located between Q, and
Qg is ligated by 4 His residues plus a glutamate, at
position 232 in the M subunit of Rhodopseudomonas
viridis (Deisenhofer et al., 1985). In PS II there is
no obvious homologue to this Glu residue. Instead
FTIR experiments indicate that bicarbonate acts
as a bidentate ligand to the iron (Hienerwadel and
Berthomieu, 1995). The bicarbonate ligand can be
displaced competitively by a collection of ligands
which include NO and carboxylate anions, resulting in
amodest slowing of the reaction Q, Q, — Q,Q; and
a marked slowing of the reaction Q; Qz — Q,QzH,
(Diner and Petrouleas, 1990; Petrouleas et al., 1994).
These observations and earlier bicarbonate depletion
experiments have led to the conclusion that bicarbo-
nate is involved in protonation reactions coupled to the
formation of Q, (Eaton-Rye and Govindjee, 1988) and
of QzH (van Rensen et al., 1988) (reviewed in Diner
et al., 1991b). Extensive mutagenesis experiments
have also been directed at identifying residues that
might be important for bicarbonate binding. Muta-
tion of D2-Lys264 and D2-Arg265, which lie close
to D2-His268 impair bicarbonate binding (Diner et
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al., 1991a). Two other residues, D2-Arg233 and D2-
Arg251, have a weaker effect on bicarbonate binding
(Cao et al., 1991).

Photosystem II differs from BRCs in that the
non-heme iron is redox-active. First identified as
Q.0 the iron shows reversible oxidation/reduction
with a reduction potential of 400 mV at pH 7 (Diner
and Petrouleas, 1987). The 4 His residues that ligate
the iron in the BRC are conserved in D1 and D2 at
D1-His215,D1-His272,D2-His214 and D2-His268.
The effect of mutating these residues in PS Il has not
been fully explored although initial reports suggest,
perhaps surprisingly, that replacement of D2-His268
by GIn (Vermaas et al., 1994) and of D1-His215 by
Leu (Nixon et al., 1992b) leads to the accumulation
of PS Il centers but with a much lower quantum yield
of Q, reduction.

Computer generated models for PS II have iden-
tified a number of D2 residues that could line the
Q,-binding pocket, including D2-Ala249, Ser254,
Ala258,Ala260 and His268 (e.g., Ruffleetal., 1992).
Mutagenesis studies have now confirmed the impor-
tance of these residues for PS II function (Vermaas
et al., 1994; Ermakova-Gerdes and Vermaas, 1998;
Ermakova-Gerdes et al., 2001). An interesting prop-
erty of these mutants, such as the D2-Val247Met,
Ala249Thr double mutant (Ermakova-Gerdes and
Vermaas, 1998) and the D2-His268GIln mutant (Ver-
maas et al., 1994) is the apparent ease of loss of Q,
from its binding site and the ability to reconstitute
with artificial quinones. D2-Trp253 has attracted at-
tention because it is in an analogous position to residue
M-Trp250 of Rp. viridis, which lies between Q, and
BPheo,, and which is required for retention of Q,
(Coleman and Youvan, 1990). In the D2-Trp253Phe
mutant, Q, is destabilized, consistent with a close
location for this residue (Vermaas, 1993).

Analysis by ESEEM of PSII centers isolated
from wild type Synechocystis 6803 and mutant D2-
Ala260Gly, in which N had been incorporated,
has provided overwhelming experimental support
for a weak H-bond between an oxygen of Q, and
the peptide nitrogen of D2-Ala260 (Peloquin et al.,
1999). Such an interaction is predicted from struc-
tural models based on the BRC (Diner etal., 1991b).
Another, stronger H-bond exists between Q, and an
unidentified peptide nitrogen. However, evidence
for a predicted H-bond between Q, and D2-His215,
thought to ligate the non-heme iron, based on struc-
tural homology with the BRCs, is not apparent in
the ESEEM spectra (Peloquin et al., 1999; but see
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Deligiannakis et al., 1999). The inability to see this
interaction does not necessarily mean that it does not
exist, as the magnetic coupling may be extremely
weak and may depend on the pH and the coordination
of the non-heme iron. Thus, while there is significant
structural conservation between the Q,,-binding sites
of PS II and the BRC, the strength of the H-bonds
to Q, is likely to depend on subtle differences in the
position ofthe H-bonding residues and on the interac-
tion of D2-His215 with the non-heme iron.

The Qg-binding pocket within PSII is formed
from residues present in transmembrane helices D
and E of D1 and the stromal DE loop connecting
them (Fig. 2). The predicted DE loop in D1 is 17
amino-acid residues longer than that found in the
L subunit. Mutagenesis has indicated that PS II can
tolerate dramatic changes in the length and sequence
of'this loop although there are deleterious effects on
Q; function (Kless et al., 1994; Nixon et al., 1995).

Sequence alignments between D1 and the L subunit
indicate only 9 out of 77 residues to be identical in the
region from D1-Phe206 to D1-Gly282. Of the con-
served residues, residue D1-His215 is the equivalent
to L-His190 of Rp. viridis, which H-bonds to Qzand
ligates the non-heme iron. D1-Ser264 appears to be
homologous to L-Ser223 ofthe BRC, since mutation
of both gives rise to herbicide resistance (Oettmeier,
1999). L-Ser223 plays a role in the protonation of
Qg to Q,H (Paddock et al., 1990) and might be in-
volved in stabilizing the binding of Q H™ in the Q,
site (Lancaster and Michel, 1997). Replacement of
D1-Ser264 by Gly reduces the affinity for Q, but has
little effect on the protonation of the quinol in PS II
(Taoka and Crofts, 1990) indicating other pathways
for protonation, such as via D1-His252, which was
suggested early on to have arole in the protonation of
Qzand Q H (H. Robinson and A.R. Crofts, personal
communication). In support of this view, a recent
report (Lupinkova et al., 2002) shows a dramatic
effect of mutating this site on the rate of oxidation
of Q,. Other residues identified by mutagenesis as
important for Q, binding are D1-Phe255 and D1-
Leu271 (Ohad and Hirschberg, 1992). For further
details see Chapter 8, Petrouleas and Crofts.

PS 11 is a known target for a number of different
classes of herbicides, including the triazines and
ureas. Herbicide resistance is afforded by mutation
of any one of 16 amino-acid residues within D1, in
a region extending from D1-Phe211 to D1-Leu275
(reviewed by Oettmeier, 1998). According to the
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structural models for D1, these mutations cluster
within a defined region of D1 (Erickson et al.,
1989). The binding pocket for the herbicides in PS 11
overlaps with that for Q; so that many, but not all,
herbicide-resistant mutants also affect the binding
of Q, and modulate its redox properties (Ohad and
Hirschberg, 1992).

VI. Concluding Remarks

The study of D1 and D2 mutants has proved to be
a remarkably successful approach to probe the link
between PS 11 structure and function. Not only has it
provided ample evidence to support the close analo-
gies between PS II and the BRC with respect to the
electron acceptor sides of both complexes, but it has
also identified several residues in D1, which could
not have been predicted by comparison to BRCs, that
play key roles in photosynthetic water-oxidation. The
importance of D1-Asp170 for assembly of the Mn
cluster led to the suggestion that the Mn cluster was
close to the CD loop of D1 (Nixon and Diner, 1992).
Mutagenesis experiments also identified residues
within the C-terminal region of D1 that were impor-
tant for assembly of the Mn cluster. The emerging
structural models of PS II have confirmed that these
regions of D1 are indeed involved in ligating the Mn
cluster (Zouni et al., 2001; Kamiya and Shen, 2003;
Biesiadkaetal., 2004; Ferreiraetal., 2004). Now that
adetailed structural model for PS Il is available, with
side-chain information (Ferreira et al., 2004), there
will be tremendous interest in the construction and
analysis of new mutants (and possibly the reassess-
ment of previously constructed ones). To this end, it
would be highly beneficial to develop a thermophilic
cyanobacterium, such as Thermosynechococcus
elongatus, as a suitable model system to combine
mutagenesis and spectroscopic experiments with
structural studies.
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