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Abstract: Rather than the traditional vector differential equation, this paper introduces ri-
gid body dynamics in a new form, as a matrix differential equation. For a system
of nb rigid bodies, the forces are characterized in terms of network theory, and
the kinematics are characterized in terms of a directed graph of the connections
of all members. The dynamics are characterized by a second order differential
equation in a 3 × 2nb configuration matrix. The first contribution of the paper is
the dynamic model of a broad class of systems of rigid bodies, characterized in
a compact form, requiring no inversion of a variable mass matrix. The second
contribution is the derivation of all equilibria as linear in the control variable.
The third contribution is the derivation of a linear model of the system of rigid
bodies. One significance of these equations is the exact characterization of the
statics and dynamics of all class 1 tensegrity structures, where rigid bar lengths
are constant and the string force densities are control variables. The form of the
equations allow much easier integration of structure and control design since the
control variables appear linearly. This is a significant help to the control design
tasks.
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1. INTRODUCTION

This paper introduces rigid body dynamics in a new form, as a matrix differen-
tial equation, rather than the traditional vector equation. This paper describes
the dynamics and the static equilibria of a set of discontinuous rigid bodies,
connected via a continuous set of strings to stabilize the system. In our theory,
the “strings” are “springs” which can take compression or tension. However,
in the special application of greatest interest, the “strings” can only take ten-
sion. All equilibria of such bar and string connections are described, and the
dynamics of such systems are described in a new form, a second order differ-
ential equation of a 3 × 2nb matrix, called the configuration matrix. By para-
metrizing the configuration in terms of the components of vectors, the usual
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nonlinearities of angles, angular velocities and coordinate transformations are
avoided. Indeed, there are no trigonometric functions in this formulation. We
seek simplicity in the analytical form of the dynamics, for ease in designing
control laws later. Among all the available equations for a system of rigid
bodies, these equations produce the simplest form. Our model of dynamics is
in a matrix form, opening new control research challenges to develop control
theories for matrix models of the dynamics.

In the 60s and 70s, a variety of Newtonian and energy approaches (Hamilton
and Lagrange) were introduced and traded for numerical efficiencies. NASA
had great interest in building accurate deployable spacecraft simulations com-
posed of a large number of rigid bodies in a topological tree. The typical form
of these equations was vector-second order. For a large class of problems it is
reasonable to assume that the rigid bodies are rod-shaped and have negligible
inertia about their longitudinal axes. We will make this assumption.

1.1 Tensegrity Systems

Class k tensegrity systems are defined by the number (k) of rigid bodies that
connect to each other (with frictionless ball joints) at a specific point (node).
This paper entertains only class 1 tensegrity systems, so no rigid bodies are in
contact, and the system is stabilized only by the presence of tensile members
connecting the rigid bodies. In the steady state, such a system has only axially-
loaded members, since the rigid bodies do not touch each other and the strings
connected to the rigid bodies cannot apply torques at the site of the attachment.
These features not only simplify the equations of motion, but the resulting
models will be much more accurate than models of rigid bodies that are subject
to bending moments. That is, the internal stresses in the rigid bodies have a
specific direction.

Tensegrity systems have been around for over 50 years as an artform, with
some architectural appeal, but analytical tools to design engineering structures
from tensegrity concepts are still inadequate. The primary motivation for this
paper is to provide a convenient analytical tool to describe both the statics and
dynamics of class 1 tensegrity systems.

1.2 Notation

Definition 1 The set of vectors ei , i = 1, 2, 3, form a dextral set, if thet
dot products satisfy ei · ej = δij (where δij is a Kronecker delta), and the
cross products satisfy ei × ej = ek, where the indices i, j, k form the cyclic
permutations, i, j, k = 1, 2, 3 or 2, 3, 1, or 3, 1, 2.

Definition 2 Let ei , i = 1, 2, 3 define a dextral set of unit vectors fixed in
an inertial frame, and define the vectrix E by E = [ e1 e2 e3 ].

310



Dynamics and Control of Tensegrity Systems

The item we call r is a Gibbs vector. The items we call rX and rE are vectors in
the linear vector spaces of linear algebra, where we use the notation, rX ∈ IR3RR
and rE ∈ IR3RR to denote that the items rX and rE live in a real three-dimensional
space. However, the items rX and rE tell us nothing unless we have previously
specified the frames of reference X and E for these quantities. If we must
assign a “dimension” to these quantities X and E, then we must say they are
3 × 1 arrays, composed of the three elements ei , i = 1, 2, 3. However, these
arrays contain quantities we call Gibbs vectors ei . So the 3 × 1 item E is not a
vector in either the sense of Gibbs, nor in the sense of linear algebra. For these
reasons Peter Hughes makes the logical choice to call the quantity E a vectrix.

Unlike many problems in aerospace, where multiple coordinate frames are
utilized, this paper uses only one coordinate frame to describe all vectors.
Since we always use the same frame of reference, the inertial frame, described
by the vectrix E, we will not complicate the notation of vectors with different
superscripts, as would be required above to distinguish between components
of a vector represented in different frames. Hence, we use the notation for the
vector ni , as follows

ni = EnE
i , nE

i = ni, (1)

where nT
i = [ ni1, ni2 , ni3 ] describes the components of the vector ni in

coordinates E, where we have dropped the superscript E that would be used
in the more complete and more general notation above (nE

i ), and we will write
only ni , hereafter, instead of nE

i .
We generate a diagonal n × n matrix from an n-dimensional vector vT =

[ v1 v2 v3 v4 . . . ], by denoting the hat operator by

v̂ = diag
[

v1 v2 v3 v4 . . .
]
. (2)

We generate a 3 × 3 matrix ṽ from the 3-dimensional vector vT =
[ v1 v2 v3 ] by the tilde operator as follows

ṽ =
⎡
⎣
⎡⎡

0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤
⎦
⎤⎤

. (3)

We often use the fact that for any two n-dimensional vectors v ∈ IRnRR , and
x ∈ IRnRR ,

v̂x = x̂v. (4)

2. DESCRIPTION OF A NETWORK OF
BARS/STRINGS

We now show how to organize the equations for nb rigid bars. We will show
below how to describe all dynamics in the E frame, after the usual definition
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of dot and cross products. The 3 × 1 matrix bi represents the components of
vector bi with respect to the fixed frame E. That is,

bi =
3∑

j=1

ejbij = [ e1 e2 e3
]⎡⎣
⎡⎡

bi1

bi2

bi3

⎤
⎦
⎤⎤

= Ebi. (5)

Lemma 3 Let for some chosen inertial reference frame E,

bi = Ebi, f
i
= Efiff , ni = Eni.

Then the cross product is given by

bi × f
i+nb

= (Ebi) × (Efiff +nb
) = Eb̃ififf +nb

and the dot product is given by

bi · f
i+nb

= (Ebi) · (Efiff +nb
) = bT

i ET · Efiff +nb
= bT

i fiff +nb

where the dot product ET · E = I since ei, i = 1, 2, 3 form a dextral set of
unit vectors.

Let a structural system be composed of nb bars and ns strings. The defini-
tions below will later allow us to describe the connections between the rigid
members and the strings.

Definition 4 A node (the ith node ni) of a structural system is a point in
space at which members of the structure are connected. The coordinates of
this point in the E frame are ni ∈ IR3RR , as in (1).

Definition 5 A string (the ith string) is characterized by these properties:

• A massless structural member connecting two nodes.

• A vector connecting these two nodes is si . The direction of si is arbit-
rarily assigned.

• The string provides a force to resist lengthening it beyond its rest-length,
but provides no force to resist shortening the string below its rest-length.

• A string has no bending stiffness.

Definition 6 A bar (the ith bar of a nb bar system) is characterized by these
properties:

• A structural member connecting two nodes ni and ni+nb
.
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The vector along the bar connecting nodes ni and ni+nb
is bi = ni+nb

−
ni, i = 1, 2, . . . nb.

• The bar bi has length ‖bi‖ = Li =
√

b

√√
T
i bi .

Definition 7 The vector ri locates the mass center of bar bi , and ri = Eri .

Definition 8 The vector t i represents the force exerted on a node by string
si , where the direction of t i is defined to be parallel to string vector si . That is,
t i = γiγγ si and hence, ti = γiγγ si for some positive scalar γiγγ .

Definition 9 The force density γiγγ in string si is defined by γiγγ = ‖ti‖
‖si‖ .

Definition 10 f
i

represents the net sum of vector forces external to bar bi

terminating at node ni . The net sum of vector forces acting at the other end of
bar bi is f

i+nb
.

From these definitions, define matrices, F ∈ IR3RR ×2nb , N ∈ IR3RR ×2nb , T ∈ IR3RR ×ns ,
S ∈ IR3RR ×ns , B ∈ IR3RR ×nb , � ∈ IRnRR s×ns , as follows

F = [ F1FF F2FF
] = [ f1ff f2ff . . . fnff

b
| fnff

b+1 . . . f2ff nb

]
(6)

N = [ N1 N2NN
] = [ n1 n2 . . . nnb

| nnb+1 . . . n2nb

]
(7)

T = [ t1 t2 . . . tnt s

]
(8)

S = [ s1 s2 . . . sns

]
(9)

B = [ b1 b2 . . . bnb

]
(10)

R = [ r1 r2 . . . rnb

]
(11)

γ̂ = � = diag
[

γ1 . . . γnγγ
s

]
, (12)

where γ̂ represents the diagonalizing operation on the vector γ ∈ IRnRR s . It
follows from (7), (10), and Definition 6 that

B = N2NN − N1 = N

[ −I

I

]
, (13)

and the locations of the mass centers of all bars are described by

R = N1 + 1

2
B. (14)

It follows from Definition 9 and (8), (9) that

T = S�. (15)
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2.1 Angular Momentum

Lemma 11 Assume that the mass of the bar is uniformly distributed only
along its length, and that its length is much longer than its diameter. Then the
angular momentum of the bar bi about the center of mass of bar bi , expressed
in the E frame, is

hi = mi

12
b̃i ḃi (16)

3. DYNAMICS OF A RIGID BAR

For a single bar, with bar vector b, at nodes n1 and n2, these forces are applied
f

1
and f

2
.

Lemma 12 The translation of the mass center of bar b, located at position r

obeys

mr̈ = f
1
+ f

2
(17)

or, in the E frame of reference,

mr̈ = f1ff + f2ff (18)

Lemma 13 The rotation of bar bi about it mass center obeys

m

12
b̃b̈ = 1

2
b̃(f2ff − f1ff ). (19)

3.1 Constrained Dynamics

We now wish to develop the dynamics constrained for constant bar lengths.
We add a non-working constraint torque τ to get

m

12
b̃b̈ = 1

2
b̃(f2ff − f1ff ) + τ (20)

κ = bT b − L2 = 0, (21)

where the added constraint is κ = 0, and τ is the non-working torque asso-
ciated with this constraint. The torque τ does no work in the presence of any
feasible perturbation of the generalized coordinate b. Hence, τT δb = 0. The
constraint must also hold in the presence of a feasible perturbation. Hence,
dκ = ( ∂κ

∂b
)T δb = 0. Thus, [

τT

( ∂κ
∂b

)T

]
δb = 0, (22)
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requiring that the matrix coefficient of δb must have deficient rank. Thus,
τ = ( ∂κ

∂b
)ζ , for some ζ (called a Lagrange multiplier). Furthermore, ∂κ

∂b
= 2b.

Hence, the constrained dynamic system obeys,

m

12
b̃b̈ = 1

2
b̃(f2ff − f1ff ) + bζ (23)

κ = bT b − L2 = 0. (24)

where we have absorbed some constants into the scalar ζ . Note that the con-
straint holds over time, hence κ = κ̇ = κ̈ = 0. Differentiating the constraint
yields,

ḃT b + bT ḃ = 0 = 2bT ḃ. (25)

Differentiating (25) yields

ḃT ḃ + bT b̈ = 0,

or,
bT b̈ = −ḃT ḃ. (26)

The conclusion thus far is that constant length rigid bar rotations obey, for
some scalar ζ , [

b̃

bT

]
b̈ =

[
b̃(f2ff − f1ff ) 6

m−ḃT ḃ

]
+
[

b

0

]
ζ. (27)

The following identity will be useful, and is proved by substitution.

Lemma 14 For any skew-symmetric matrix b̃, the following is true.

b̃2 = bbT − bT bI.

The properties of the Moore–Penrose inverse are well known, and are used to
obtain the following.

Lemma 15 The unique Moore-Penrose inverse of

[
b̃

bT

]
is given by

[
b̃

bT

]+
= [ −b̃ b

]L−2

Lemma 16 The solution of (27) for b̈ has the unique solution

b̈ = 6

m
(f2ff − f1ff ) − b

(
ḃT ḃ

L2
+ 6

mL2
bT (f2ff − f1ff )

)
(28)

The results of this section applies for any number of bars. The next section
will write the matrix construction for the general case.

315



R. Skelton

3.2 An nb-Bar System

It follows clearly that these equations apply to any number of bars, so that the
following is true, where θi is the ith element of the vector θ ∈ IRnRR b .

Theorem 17 Consider an nb-bar system with constant length bar vectors
bi, i = 1, 2, . . . , nb, and matrices defined by,

R = N1 + 1

2
B (29)

B = [ b1 b2 . . . bnb

] = N2NN − N1, N = [ N1 N2NN
]

(30)

N1 = [ n1 n2 . . . nnb

]
, N2NN = [ nnb+1 . . . n2nb

]
(31)

F = [ F1FF F2FF
]
, F1FF = [ f1ff . . . fnff

b

]
(32)

F2FF = [ fnff
b+1 . . . f2ff nb

]
(33)

Q = [ B R
]

(34)

K0 =
[

I

0

]
θ̂
[

I 0
]

(35)

θi = bT
i (fnff

b+i − fiff )/2L2
i + mi‖ḃi‖2/12L2

i (36)


 =
[ − 1

2I I
1
2I I

]
(37)

M = diag
[

. . . mi . . .
]

(38)

M =
[

1
12M 0

0 M

]
. (39)

Then the rigid body dynamics are given by

Q̈M + QK0 = F
, Q
T = N, (40)

where the coordinate transformation from coordinates N to coordinates Q is
provided by the invertible matrix 
T .

For a given square matrix J , define �J � = diag
[

. . . JiiJJ . . .
]
. Then, it

may be shown that,

Corollary 18

θ̂ = 1

2
L̂−2�BT (F2FF − F1FF ) + 1

6
ḂT ḂM� (41)

= 1

2
L̂−2�[ I 0

]QT (F2FF − F1FF ) + 1

6

[
I 0

] Q̇T M� (42)

L = [ L1 L2 · · · Lnb

]T
. (43)
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4. CHARACTERIZING BAR/STRING CONNECTIONS

Definition 19 Define the “string connectivity matrix” C by

Cij =

⎧⎪⎧⎧⎨⎪⎪
⎪
⎨⎨
⎩⎪⎪

1 if string vector si terminates on node nj .

−1 if string vector si eminates from node nj .

0 if string vector si does not connect with node nj .

(44)

C = [ C1 C2
]
, C1 ∈ IRnRR s×nb , C2 ∈ IRnRR s×nb

Definition 20 Define the “disturbance connectivity matrix” D by

Dij =
{

1 if disturbance vector wi connects to node nj .

0 if disturbance vector wi does not connect with node nj .
(45)

D = [ D1 D2
]
, D1 ∈ IRnRR w×nb , D2 ∈ IRnRR w×nb

For nw disturbance vectors applied at nodes selected by the matrix D,

W = [ w1 w2 · · · wnw

]
(46)

D = [ D1 D2
]
, D1 ∈ IRnRR w×nb , D2 ∈ IRnRR w×nb . (47)

Theorem 21 Let any connection of rigid bars and elastic strings be de-
scribed by the string connectivity matrix C and the disturbance connectivity
matrix D in Definitions (44-45), and let the arbitrary convention be established
that vectors entering a node have a positive sign. Then, the sum of all forces
entering the nodes of a class 1 tensegrity structure may be computed by,

F = −(T C + WD), (48)

and the string vectors si , i = 1, . . . , ns are linearly related to the nodal vectors
nj , j = 1, . . . , n2nb

by
S = NCT .

Lemma 22

F = −Q
T CT �C − WD, 
T =
[ − 1

2I 1
2I

I I

]
. (49)

Theorem 23 The dynamics of all Class 1 tensegrity systems with rigid, fixed
length bars are described by

Q̈M + QK + WD
 = 0, (50)
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Q = [ B R
]
, (51)

M =
[

1
12M 0

0 M

]
, (52)

K =
[

θ̂ 0
0 0

]
+ 
T CT �C
, (53)


T =
[ − 1

2I 1
2I

I I

]
(54)

θ̂ = 1

12
L̂−2

⌊
6
[

I 0
]QT (Q
T CT �C + WD)

[
I

−I

]

+ [ I 0
] Q̇T Q̇

[
I

0

]
M

⌋
. (55)

From (55), the ith element of the diagonal matrix θ̂ is given by

θi = 1

2
L−2

i bT
i (Q
T CT Ĉ�i

γ + WD�i
) + mi

12L2
i

||ḃi ||2, (56)

where the following definitions characterize the ith columns of the matrices
C1 − C2 and D1 − D2.

C�i
= ithcol(C1 − C2) (57)

C+i
= ithcol(C1 + C2) (58)

D�i
= ithcol(D1 − D2) (59)

D+i
= ithcol(D1 + D2) (60)

5. CONCLUSIONS

The dynamics of a system of nb rigid bodies, connected by tensile elements,
has been derived from a network point of view. The resulting equations are in
matrix form, rather than the traditional vector form. The nonlinear equations
are given in the form of a second order differential equation of a 3 × 2nb

configuration matrix. These equations contain no trigonometric nonlinearities,
and require no inversion of a mass matrix containing configuration variables.

These equations open the door a bit wider for feedback control design and
structure design as integrated activities, since all freedom in the desired equi-
libria can be utilized in the control problem. The result should be more efficient
controlled structures. This efficiency will be demonstrated in a future paper.
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