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Preface 
 
The dynamics of transition from laminar to turbulent flow remains to this 
day a major challenge in theoretical and applied mechanics. A series of 
IUTAM symposia held over the last twenty five years at well-known 
Centres of research in the subject - Novosibirsk, Stuttgart, Toulouse, 
Sendai and Sedona (Arizona) - has proved to be a great catalyst which has 
given a boost to research and our understanding of the field.  At this point 
of time, the field is changing significantly with several emerging 
directions.  
 
The sixth IUTAM meeting in the series, which was held at the Jawaharlal 
Nehru Centre for Advanced Scientific Research, Bangalore, India, focused 
on the progress after the fifth meeting held at Sedona in 1999.  The sym-
posium, which adhered to the IUTAM format of a single session, included 
seven invited lectures, fifty oral presentations and eight posters. 
 
During the course of the symposium, the following became evident. The 
area of laminar-turbulent transition has progressed considerably since 
1999. Better theoretical tools, for handling nonlinearities as well as 
transient behaviour are now available.  This is accompanied by an enor-
mous increase in the level of sophistication of both experiments and direct 
numerical simulations. The result has been that our understanding of the 
early stages of the transition process is now on much firmer footing and we 
are now able to study many aspects of the later stages of the transition 
process. Consequently, considerable light was thrown during the 
symposium on, e.g., the role of streamwise streaks, flow separation, 
complex geometry, turbulent spots etc. We are also now capable of better 
approaches to flow control.  The immediate future is likely to see impor-
tant advances in this area and it is hoped that the symposium has added 
momentum to this effort.   
 
I am most grateful to the scientific committee for their very active role and 
detailed advice at every stage.  Professor R Narasimha has been involved 
in each single aspect of the symposium, I am indebted to him for his 
constant support and guidance. The constant contribution of the organising 
committee is highly appreciated.  It was our good fortune that Anjana 
Krishnaswamy joined us, she has looked after every detail of both the 
symposium and of this proceedings in the most professional and 



xii

symposium possible.  Special thanks to Major Tony Mitchell of 
AFOSR/AOARD for his encouragement and support. Sincere thanks to the 
IUTAM.  The Pratt and Whitney – A United Technologies Company, Dr. 
Jayant Sabnis, Dr. Kirit Patel and Dr. TK Vashist have been a constant and 
important source of support and encouragement. This conference would 
not have been a success without their active participation. 
 
The facilities and logistics support provided by Jawaharlal Nehru Centre 
for Advanced Scientific Research is gratefully acknowledged, special 
thanks to Mr. Jayachandra and his team. Most important, we thank all the 
authors, session chairmen and all the participants, whose active 
involvement and contributions defined the conference. Finally, I 
acknowledge Kluwer-Springer for printing the proceedings. 
 
Countries represented and number of participants 
 

The meeting attracted 113 participants from 15 countries: 
Brazil (1)  Canada (1)          China (2)  
France (5)  Germany (9)          India (49)  
Israel (2)   Japan (12)          Malaysia (1)  
Russia (4)   Spain (1)          Sweden (6)  
Switzerland (3)  The Netherlands (1)         United Kingdom (11) 
USA (5) 

meticulous way.  I am very touched by the selfless labour put in by the 
support group, and their high standards, special mention must be made of 
Faraz Mehdi. All the sponsors are gratefully acknowledged for making the 
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LAMINAR SEPARATION BUBBLES 

M. Gaster 
Queen Mary University of London 

Abstract: The phenomenon of leading edge stall is associated with the “bursting” of 

leading edge separation bubbles from a short form, where the length is roughly 

100 momentum thicknesses, to a long form that maybe 1000 or more 

momentum thicknesses long. The paper reports experiments and theoretical 

discussions of work carried out by the author 50 years ago during his PhD 

study on bubbles. Detailed measurements of the flow within bubbles are 

shown together with the oscillogram traces of the velocity fluctuations present.  

A linear model of the stability of separated shear layers was developed that 

suggested that the disturbances were spatially evolving waves described by 

modes with complex wavenumbers and not the temporal modes usually used 

in stability studies.  It was noted that some modes appeared to have a very 

small group velocity.  Although at the time the full implications of this were 

not properly understood, the conjecture was put forward that a true instability 

(or absolute instability as it is now called) could therefore exist.  A change in 

the sign of the group velocity could dramatically change the transition process 

and thus explain the bursting phenomenon.

1. INTRODUCTION  

Aerofoils designed for extensive regions of laminar flow tend to have 

small leading edge radii.  Such aerofoils have a very abrupt stall 

characteristic known as “nose stall”. 

This behaviour is illustrated on figure 1(a) – (c).  The potential flow 

contains a sharp suction peak on the upper surface close to the nose. At high 

Reynolds numbers, the flow follows the contour closely and separates close 

to trailing edge.  However, if the pressure distributions are examined 

carefully with very closely spaced pressure tapping around the nose, it is 

apparent that there is a very small separation bubble present that is 

characterised by a plateau in the distribution.  Oil flow can also show that 

there is narrow region along the upper surface close to the leading edge 

1
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where something is happening to the skin friction.  On a wind tunnel model 

this zone maybe only 2 or 3 millimetres long. The turbulent boundary layer 

that forms downstream of the separated region maybe slightly thicker that 

that of a boundary layer that has become turbulent via a normal transition 

process, but this has only a slight influence on the trailing edge separation on 

the upper surface. Progressive reduction of flow speed will make the bubble 

longer, but at some stage, the bubble may “Burst” and the separated layer 

will cover a large portion of the upper surface.  The change in flow regime 

from a “short” bubble to a “long” bubble results in “nose stall”. 

Inviscid flow

-Cp

High Reynolds number Low Reynolds number

Figure 1. Nose Stall 

Apart from some early reference to this behaviour it was not considered 

to be important until the early 1950’s.  Owen & Klanfer1 noted that the short 

bubble occurred when the Reynolds number of the separating boundary layer 

was above about 400 (based on the displacement thickness), while the long 

bubble occurred below this value. This criterion implied that busting was 

controlled by the stability of the separated shear layer in some way. A 

number of other papers showed that this simple bursting criterion was not 

always applicable. Professor Piercy suggested the topic to McGregor
2
 in 

1951 for his PhD research and he was followed by me3 and then by several 

other students.  This paper focuses on my efforts during the period 1954 and 

1957.

McGregor investigated leading edge bubbles on a Piercy aerofoil, 

successfully making some pressure distributions as well as hot-wire 

measurements.  The bubble region was quite small and he therefore built a 

blunt nosed model to provide a physically larger bubble suitable for detailed 

probe measurements.  These were certainly the first measurements of the 

structure of the short bubble.  He did not provide any mechanism for 

bursting other that a suggestion that the overall energy balance within the 

recirculation zone could only be maintained by a large expansion of the 

bubble.  My own efforts were directed to the study of bubbles on swept 

wings.  Large swept models require shaped end walls to generate reasonably 

“infinite” swept pressure fields.  An easier way of generating appropriate 

pressure distributions was to use a plate and auxiliary aerofoil mounted close 

to the surface.  The aerofoil vortex together with the image will create a field 
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that decays like the inverse square of the distance and this reduces much of 

the end effects.  The other advantage of this arrangement is that 

measurements can be made over a flat surface to a large physical scale for a 

range of different pressure distributions.  In fact, although a swept version of 

this set-up was produced, I only had time to work with the two-dimensional 

model shown on figure 2. In order to increase the lift of the aerofoil jet 

blowing was incorporated.

Aerofoil~Plate setup

Jet blowing aerofoil

Figure 2. Windtunnel Setup 

2. EXPERIMENTS 

2.1 Mean Quantities 

Various pressure distributions were created on the plate and the resulting 

separated flows explored. An example is shown on figure 3 where the 

pressure distributions are shown for two speeds that result in a short and a 

long bubble. The short bubble exhibits a flat plateau, while the lower 

Reynolds number long bubble shows a slight rise before transition causes the 

pressure to recover.  This pattern is quite characteristic of a long bubble. An 

approximation to the inviscid pressure distribution was obtained by 
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measuring the pressure distribution when separation has been inhibited by 

tripping the boundary layer. 

Figure 3. Pressure Distributors 

A constant current hot-wire anemometer was used to explore the flow 

within the bubble.  The wire cannot distinguish between forward or reverse 

flow, and it also gives incorrect mean estimates in regions of high 

turbulence.  A set of velocity profiles for the two pressures distributions 

shown above are plotted on figure 4. The profiles for the long bubble are 

drawn with 4 times the scale thus indicating a much thicker separation 

bubble.  This is more clearly indicted in the next figure showing contours of 

the mean hot-wire readings.  Both pictures show an initial triangular region 

where the velocity, although reversed, is almost stagnant.  The laminar shear 

layer above this region spreads very little before reaching a maximum 

height.  At this point considerable turbulence activity occurs and the shear 

layer spreads out rapidly as the flow reattaches to the surface. The contour 

patterns in the two cases are not that dissimilar from one another for the 

forward part of the long and short bubbles.  However, the turbulent 

reattachment zones are different with the long bubble zone taking a much 

larger portion of the bubble.
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Figure 4. Velocity Profile 

Figure 5. Contours of Hot-wire Signal 

The structures of short bubbles prior to bursting as speed was reduced 

were studied for a range of pressure distributions.  It was quite clear that the 

critical Reynolds number for bursting was highly dependent on the height of 
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the bubble amongst other parameters.  Larger pressure gradients caused the 

bubble height to be greater and this appeared to be associated with an 

increase in critical Reynolds number for bursting.  The height of the 

separated shear layer is related to the collapse in the pressure distribution 

arising from the displacement shape of the bubble.  A suitable parameter 

defining this is given in terms of the pressure gradient that would have 

existed if there were no displacement effect.  This pressure gradient scaled 

with the square of the momentum thickness and the viscosity is plotted 

against separation thickness Reynolds number at bursting on figure 6.  Points 

from other experiments are also incorporated on the figure and show good 

consistency.

Conditions at bursting

Figure 6. Bursting Criteria 

2.2  Unsteady Measurements 

The signal from the hot-wire bridge, suitably amplified, provided 

information on the transition process taking place in the bubble.  It was 

hoped that a careful examination of the transition processes taking place in 

the two types of bubble would give some clue as the reason for the 

phenomenon of bursting. It was noticed that short bubbles were susceptible 

to external excitation by sound.  Even quite a weak tone of the correct 

frequency could excite a periodic response of the hot-wire in the separated 

shear layer of a short bubble. The process was so powerful that it seemed 

sensible to use a loud-speaker mounted on the roof of the contraction to try 

to excite regular waves that could then be mapped as they progressed 
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downstream.  It was at that time known that periodic travelling waves could 

be generated in boundary layers.  The paper of Schubauer and Skramstad
4
,

that had been published a few years before this work was carried out, 

showed that the basic instability ideas of Schlichting
5
 and Tollmien

6
 were 

substantially correct in explaining the mechanics of transition to turbulence.  

It seemed likely that the acoustically generated waves were of the same type 

and it was expected that a proper exploration of these waves in the two types 

of bubble would explain bursting. Initial measurements were made in a short 

bubble.  In order to obtain the phase and amplitude of the excited wave with 

respect to signal feeding the speaker a rather complex sequence of operations 

had to be performed that involved determining the mean square of the sum 

and difference of the hot-wire and the loud-speaker signals.  This was then 

repeated using a 90-degree phase shifted speaker signal.  The squaring 

operation was carried out with a vacuum thermo-junction tube.  A boundary 

layer traverse with the phase and amplitude is shown on figure 7.  This 

would have taken a whole day to obtain.  The phase plot is much more 

complex than that arising in an attached layer.  Note that the outer solution 

shows an exponential decay for the amplitude that can be used to obtain the 

real part of the wavenumber, while the phase behaviour provides an estimate 

of the imaginary part, or spatial amplification. 

Amplitude and phase profile

Figure 7. Amplitude and Phase of Excited Wave 
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The whole region of a bubble was charted in this way and this is 

displayed on figure 8. 

Phase and amplitude of excited waves

Figure 8. Contours of Excited Wave 

Attempts to repeat these measurements on a long bubble failed because it 

turned out to be impossible to generate regular periodic waves in this type of 

flow. As this was near the end of my 3 year support it was too late to spend 

time in further investigation.  I treated this inability to follow through my 

measurements to the long bubble as a failure.  Hot-wire traces taken in the 

long bubble are shown on figure 9 without excitation and on figure 10 with 

periodic and pulsed excitation. 

Hot-wire signals from a long bubble

Figure 9. Hot-wire Signals in a long Bubble 
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Signals from a long bubble

with continuous or pulsed excitation

Figure 10. Long Bubble Response to Periodic and Pulsed Excitation 

3. STABILITY THEORY 

 Since experiments has shown that the separated shear layer supported 

unstable travelling waves it seemed sensible to address the problem of the 

stability of typical velocity profiles arising in a bubble.  In the region of the 

flow where the instability waves amplified, the profiles consisted of shear 

layer some distance from the wall with no flow in the dead-air zone between 

the layer and the wall.  Although Schlichting had calculated the temporal 

stability of Blasius flow, it was a daunting task to apply his approach to the 

separated profiles.  A simpler approach was used on a profile modelled by 

three straight lines.  Treating the solution in the three sectors as inviscid it 

was not difficult to produce a characteristic function defining the 

eigenmodes. In the model viscosity was included in the wall solution and 

curvature in the central region where there was a critical layer. Although 

temporal modes could easily be extracted from the characteristic function, 

the spatial problem was much harder to resolve.  At the time it was necessary 

to split the equation into real and imaginary components and to find crossing 

points of characteristics. It was clear that the waves grew exponentially with 

distance travelled and not with respect to time. This was also true of the 

waves observed by Schubauer.  In cases where the amplification factors are 
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weak it was shown that the two types of mode were related through the 

group velocity.  This is of course a physically reasonably way of looking at 

spatial growth.  However, when the imaginary components are as large it is 

essential to solve for real frequencies and complex wavenumbers in order to 

describe the appropriate solutions to the physical situation.  At the time this 

was not an accepted procedure!  The eigenvalues did not seem sensitive to 

Reynolds number and it was unclear how the Reynolds number could have 

any influence on the stability and thus be linked to bursting.  Figure 11 

shows the real eigenvalues for a profile close to that of figure 7 together with 

experimental measurements.  The imaginary components also agreed 

roughly with the predictions. 

Figure 11. Comparison of Theoretical and Experimental Eigenvalues 

4. DISCUSSION  

Measurements of the flow patterns within bubbles provide some 

indication of the structure.  At separation the shear layer detaches from the 

surface.  At some distance downstream the instability of the shear layer 

10



Laminar separation bubbles 

causes it to become turbulent, then rapid mixing creates a reverse flow 

vortex and the shear layer reattaches to the surface as a turbulent boundary 

layer. Long bubbles appear quite similar to short bubbles except that the 

reattachment zone appears to be greatly extended. Long bubbles form when 

the Reynolds number at separation is below a threshold based on the 

pressure rise over the bubble.  It appears that virtually all short bubbles fall 

below the “bursting” line.  It was thought that there was some overall global 

stability that could cause bubble to burst.  A short bubble well away from the 

critical bursting condition would expand as the flow speed was reduced 

slightly. It was conjectured that there could be some type of feed back 

between the influence of the separated zone on the Reynolds number at 

separation in such a way that the process could run away as bursting was 

approached.  No evidence was found for this idea. 

Because the Reynolds number seemed to be a critical parameter 

controlling bursting flow stability and transition were obviously important. 

At the time this work was carried out there was still the idea that the critical 

Reynolds number for the amplification of instabilities was the vital 

parameter.  However, it turns out that critical Reynolds number for a 

separated shear layer is very much smaller that the values involved in the 

experiment.  A change in Reynolds number can influence the amplification 

rate, but again the change in amplification rates are negligible. Nevertheless, 

the stability and transition process were investigated in order to understand 

what was happening in the bursting process.

Detailed measurements of the acoustically excited instability waves 

showed that they were spatially growing modes described by complex 

wavenumber eigenmodes.  Unfortunately, it was found that the long bubble 

was very unsteady and regular periodic wavetrains could not be excited.  

Figure 11 shows traces of the naturally occurring waves at various locations 

from separation in a long bubble.  The wave-like ripples only arise 

intermittently.  Figure 12 shows the signal when excited by sound.  There are 

weak regular waves, but these were interrupted by random bursts of 

wavepackets.  Attempts to excite such packets by feeding the loud speaker 

with bursts of signal showed that packets could be excited in this way, but 

they did not model the violent naturally occurring ones. By filtering the 

signal and looking at the low frequency portion at the same time as the 

instability waves it was clear that bursts occurred whenever the low 

frequency motion indicated an extreme excursion of the shear layer.  This 

could be interpreted as large low frequency wandering of the shear layer.  

Whenever it was far from the plate surface a burst appeared.  It was clear 

that without more sophisticated signal processing it was not possible to 

extract anything from the long bubble signals.  At the time I considered this 

to be a disaster as the original experimental plan could not be completed and 
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a comparison made between the transition process in long and bubbles made.  

But, in fact this failure was linked to the first clear difference between the 

transition process in long and short bubble. At the time I did not appreciate 

this result.

In the forward region of a bubble the skin friction and pressure gradient 

are essentially zero.  The momentum integral of the shear layer must 

therefore remain constant.  But there are viscous effects that must make the 

shear layer spread and, if the momentum is to be conserved, there has to be 

some reversed flow created.  Any reversed flow close to the wall will create 

a negative skin friction and this will enhance the degree of backflow from 

the diffusion of the shear layer.  A scenario does therefore exist for creating 

increased reversed flow as the Reynolds number falls.  In turn this will 

produce the possibility of negative group velocity instability.  At the time 

this was an idea, but now we know that a backflow of about 20% is needed 

to form an absolute instability. Only half-formed ideas as to how all this 

could create some type of irregular relaxation oscillator were postulated.  

The fact that a fall in Reynolds number so far above the critical value for 

instability could influence the behaviour was at the time inexplicable.  But 

the Reynolds numbers that are consistent with the necessary back flow are 

not that far from the critical bursting values.  The last lecture of this 

conference given by Hermann Fasel showed that the structure of the long 

bubble was roughly consistent with the above scenario.  His numerical 

simulations will, I am sure, prove to be of vital importance in understanding 

the problem of bursting.  Certainly he showed that an absolute instability 

could exist for a short while and that this would cause the bubble to rapidly 

shorten to a state where the instability reverted back to a convective form.  

His numerical experiments help to explain a lot of the observations made in 

the experiment. But more work is needed to fully account for the observation 

made in the windtunnel. 

5. CONCLUSIONS 

Measurements made in transitional separation bubbles some 50 years ago 

have been presented for both long and short bubbles.

The process of bursting from a short to along bubble was shown to be 

linked to the separation Reynolds number as well as a parameter linked to 

the pressure rise over the bubble.

Instability waves excited in a short bubble by sound were measured and 

shown to be spatially growing complex wavenumber modes in accord with a 

simple model based on a segmented profile. 
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Disturbances in a long bubble were shown to be very irregular and to 

contain short duration bursts of instability waves.  It appeared, therefore, that 

the flow could only sustain very unstable, possible absolutely unstable, 

modes for short periods of time. 

These observations may well be explained by the computer simulations 

of Fasel. 
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Abstract: Transient growth associated with non-normal stability operators are discussed.
Results for both temporal and spatial transient growth are presented. These re-
sults allow for an understanding of the type of bypass transition found when
laminar boundary layers are subjected to free-stream turbulence. Direct numer-
ical simulations of such a transition scenario show that precursors to turbulent
spots are optimal streaks which undergo secondary instability. Finally aspects
of the receptivity of the streaks are discussed.

Keywords: Stability, transient growth, by-pass transition

1. INTRODUCTION

In 1969 Morkovin coined the expression “bypass transition”, noting that
“we can bypass the TS-mechanism altogether”. In fact, experiments reveal
that many flows, including channel and boundary layer flows, may undergo
transition for Reynolds numbers well below the critical ones from linear sta-
bility theory. A possible route was proposed by Ellingsen and Palm (1975).
They considered, in the inviscid case, an initial disturbance independent of
the streamwise coordinate in a shear layer and showed that the streamwise ve-
locity component may grow linearly in time, producing alternating low- and
high-velocity streaks. Hultgren and Gustavsson (1981) considered the tempo-
ral evolution of a three-dimensional disturbance in a boundary layer and found
that in a viscous flow the initial growth is followed by a viscous decay ( tran-
sient growth).

There is a simple physical explanation for this growth. A wall-normal dis-
placement of a fluid element in a shear layer will cause a perturbation in the
streamwise velocity, since the fluid particle will initially retain its horizontal
momentum. An example is weak pairs of quasi streamwise counter rotating
vortices which are able to lift up fluid with low velocity from the wall and
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bring high speed fluid towards the wall forcing streamwise oriented streaks of
high and low streamwise velocity. This mechanism is denoted lift-up effect
and it is inherently a three-dimensional phenomenon.

Navier–Stokes operator is non-normal for many flow cases (e.g. shear flows),
a significant transient growth may occur before the subsequent exponential
behavior (see Schmid and Henningson, 2001). Such growth can exist for sub-
critical values of the Reynolds number and it is the underlying mechanism in
bypass transition phenomena. In particular, for the Blasius boundary layer,
Andersson et al. (1999) and Luchini (2000) used an optimization technique
to determine which disturbance present at the leading edge gives the largest
disturbance in the boundary layer. This optimal perturbation was found to
consist of a pair of steady streamwise counter-rotating vortices, which induce
strong streamwise streaks.

An interesting application of bypass transition is boundary layers in the
presence of free-stream turbulence. Inside the boundary layer the turbulence
is damped, but low frequency oscillations, associated with long streaky struc-
tures, appear. The first experimental study of such disturbances is due to Kle-
banoff (1971). Kendall (1985) denoted these disturbances as Klebanoff modes.
As the streaks grow downstream, they breakdown into turbulent spots. The
spots grow in size and merge with other spots until the flow is completely
turbulent. Westin et al. (1994) presented detailed measurements of a lami-
nar boundary layer subjected to free-stream turbulence. A recent review on
the experimental studies of boundary-layer transition induced by free-stream
turbulence can be found in Matsubara and Alfredsson (2001), while numeri-
cal simulations are presented in Jacobs and Durbin (2001) and Brandt et al.
(2004).

2. TEMPORAL TRANSIENT GROWTH

To study the underlying transient growth we Fourier transform the linearized
Navier-Stokes equations in the homogeneous spanwise and streamwise direc-
tions. Then we use the divergence constraint to eliminate the pressure and end
up with the Orr-Sommerfeld-Squire equations governing the development of
small perturbations on the parallel mean flow U(y). We have

∂v̂

∂t
= (D2 − k2)−1

[
−iαU(D2 − k2) + iαU ′′ +

1
Re

(D2 − k2)2
]

︸ ︷︷ ︸
LOS

v̂ (1)

∂η̂

∂t
=

[
−iαU +

1
Re

(D2 − k2)
]

︸ ︷︷ ︸
LSQ

η̂ + −iβU ′︸ ︷︷ ︸
LC

v̂ (2)

  From a mathematical point of view, it is now clear that since the linearized
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Flow Gmax (10−3) tmax α β

plane Poiseuille 0.20 Re2 0.076 Re 0 2.04
plane Couette 1.18 Re2 0.117 Re 35/Re 1.6
circular pipe 0.07 Re2 0.048 Re 0 1
Blasius boundary layer 1.50 Re2 0.778 Re 0 0.65

Here η̂ and v̂ are the Fourier transforms of the normal vorticity and the normal
velocity, respectively. Further, k2 = α2 + β2, where α and β are the wave
numbers in the streamwise and spanwise directions, respectively. We can write
these equations in the following form

d

dt

(
v̂
η̂

)
︸ ︷︷ ︸

dû/dt

=
( LOS 0

LC LSQ

)
︸ ︷︷ ︸

L

(
v̂
η̂

)
︸ ︷︷ ︸

û

(3)

The aspect of sub-critical growth in the linearized equations of interest here
is the maximum transient growth possible. It is found by maximizing growth
in solutions of the initial value problem. We calculate

G(t) = max
û0 �=0

‖û(t)‖2

‖û0‖2
= ‖eLt‖2 ≤ κ e2�{λmax}t (4)

where we use the energy norm. We have also included a bound on the maxi-
mum growth, where the constant κ can be thought of the the condition number
of the "matrix of eigenfunctions", which can be generalized to infinite dimen-
sional operators (Trefethen 1997). If L was a normal operator, or equivalently,
if all of its eigenfunctions were orthogonal, this condition number would equal
unity, i.e. κ = 1. It is streamwise independent disturbances or streaks, which
experience the largest transient growth. Computations yield that κ = O(Re2),
see table 1.

3. SPATIAL TRANSIENT GROWTH

The streaks that appear in boundary layers subject to free-stream turbulence
develop in space and not in time. It is possible to consider the spatial equiv-
alent of the temporal transient growth by using the linearized boundary layer
equations around the mean flow U(x, y). Since the frequency of the streaks is
low we consider the time-independent equations, i.e.

Table 1. Maximum transient growth for selected shear flows and the corresponding streamwise
and spanwise wavenumbers. From Schmid and Henningson (2001)
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û0 = ρp̂0 p̂1 = û1

û1 = Aû0

p̂0 = A∗p̂1

x0 xf

x0 xf

Figure 1. Sketch of optimization algorithm for computing spatial optimal disturbances. For

ux + vy + βw = 0
(Uu)x + V uy + Uyv = uyy − β2u

(V u + Uv)x + (2V v)y + βV w + py = vyy − β2v

(Uw)x + (V w)y − βp = wyy − β2w

We consider a disturbance at the leading edge, û0 = (û0(y), v̂0(y), ŵ0(y)),
and integrate the parabolic equations forward to position x1 and the optimal
output û1. We let this procedure be represented by the linear operator A, i.e.

û1 = Aû0.

We can maximize the growth between position 1 and 2 as

G(x1) = max
û0 �=0

‖û1‖2

‖û0‖2
= max

û0 �=0

‖Aû0‖2

‖û0‖2

= max
û0 �=0

(Aû0,Aû0)
(û0, û0)

= max
û0 �=0

(A∗Aû0, û0)
(û0, û0)

= λmax

where we have used that λmax is largest eigenvalue of A∗Aû0 = λû0.
The optimal disturbance is found by power iterations, ûn+1

0 = ρnA∗Aûn
0 ,

where A∗ solves the adjoint equations backward. For a visual description of
the method see figure 1.

Maximum spatial transient growth for boundary layer flow versus stream-
wise distance can be seen in figure 2. The growth in this figure is scaled with

details see Schmid and Henningson (2001)
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Figure 2. Maximum spatial transient growth for boundary layer flow versus streamwise dis-
tance. Adapted from Andersson et al. (1999)

Rex ∼ Re2, since the spatial case also has a similar Reynolds number depen-
dence as the optimal transient growth in time studied earlier. This scaling can
be motivated by the following observation, we have

G(x1) = max
û0 �=0

‖û1‖2

‖û0‖2

= max
û0 �=0

∫ ∞

0

(
u2 +

v2

Re2 +
w2

Re2

)
dy

∫ ∞

0

(
u2 +

v2

Re2 +
w2

Re2

)
dy

≈ max
û0 �=0

Re2

∫ ∞

0
u2dy∫ ∞

0

(
v2 + w2

)
dy

where we have used that the normal and spanwise velocity components in the
energy norm are divided by Re2 due to the boundary layer scaling. Thus,
if growth should be maximized one must have initial disturbances with zero
streamwise components and final disturbances consisting of only disturbance
in the streamwise velocity. The optimal input and the resulting output is shown
in figure 3.

4. BY-PASS TRANSITION

Simulations have been performed to follow the breakdown and transition
to turbulence in boundary layers subjected to free-stream turbulence using the
spectral DNS code of Lundbladh et al. (1999). Results are presented for three
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Figure 3. Spatial optimal disturbance for boundary layer flow: (a) velocity vectors in the
y-z-plane at x = x0; (b) contours of streamwise velocity at x = x1. From Andersson et al.

z

x

Figure 4. Instantaneous streamwise velocity in a plane parallel to the wall at y/δ∗0 = 2. The
plot is not to scale since the domain depicted is 900 units long and 90 units wide in terms of δ∗0 .

cases. In all of them the inlet of the computational box is at Re = 300, based
on the initial displacement thickness δ∗0 (Rex0 = 30000) and the free-stream
turbulence intensity is 4.7%. Different integral length scales of the inflow tur-
bulence have been used, that is L = 2.5 δ∗0 , L = 5 δ∗0 and L = 7.5 δ∗0 . The free-
stream turbulence is composed of about 800 modes of the continuous spectrum
of the Orr-Sommerfeld-Squire equations, see Brandt et al. (2004) for details.

A snapshot of the flow is shown in figure 4 where the instantaneous stream-
wise velocitiy is plotted in a plane parallel to the wall. The overall picture of
the transition scenario can be deduced from the figure. Starting from the in-
let position, the perturbation in the boundary layer appears in the streamwise
velocity component, in the form of elongated structures. Patches of irregular
motion are seen to appear further downstream. As they travel downstream, the
spots become wider and longer. The turbulent region at the end of the domain
is created by the enlargement and merging of the spots.

(1999)

The fringe region is not shown. From Brandt et al. (2004)
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Figure 5. (a) Skin friction coefficient, (b) maximum u2
rms (thick lines) and its wall-normal

position (thin lines); plotted for L = 7.5δ∗0 (dashed line), L = 5δ∗0 (solid line) and L = 2.5δ∗0
(dash-dotted line). From Brandt et al. (2004)

Figure 6. a) Wall-normal distribution of the u2
rms of the streaks from the simulations of

Brandt et al (2004) compared to the optimal output; b) the growth of individual optimal dis-
turbances (dashed lines) together with their envelope (solid line). The slope is adjusted to fit

Some of the data obtained by averaging in time and in the spanwise direc-
tion are displayed in figure 5. The friction coefficient is shown in figure 5(a);
also the values for a laminar and a turbulent boundary layer are displayed for
comparison. For the case with the smallest integral length scale transition does
not occur within the computational domain, while the transition location is at
lower Rex for L = 7.5δ∗0 , in agreement with the experimental findings in Jonas
et al. (2000). In figure 5(b) the maximum u2

rms at each downstream position
is depicted to show the evolution of the streaks. In all cases the energy of the
streaks is proportional to the distance from the leading edge, as observed in the
experiment. In figure 5(b) the wall-normal position of maximum urms is also
shown. The laminar streaks have a maximum at about y = 1.3δ∗, while their
turbulent counterparts are located much closer to the wall.

experimental values. From Andersson et al (1999)

4.1     Charatieristics of the breakdown
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In figure 6a the wall-normal distribution of the u2
rms of the slowly mean-

dering streaks from the simulations of Brandt et al (2004) are compared to the
optimal streak calculated by the spatial procedure presented above. The streaks
in the simulations can be seen to be well described by the theoretical calcula-
tions, indicating that the optimal output is a strong attractor towards which any
disturbance with a non-zero projection on the optimal input will tend. In fig-
ure 6b the growth of individual optimal disturbances and their envelope are
shown. The slope is a free parameter associated with the amplitude of the op-
timal disturbance at the leading edge, and is here adjusted to fit experimental
values.

The optimal disturbances at the leading edge protrudes out of the bound-
ary layer and their subsequent development into the boundary layer will thus
describe a linear receptivity mechanism. This was studied by Andersson et al.
(1999) and Luchini (2000) using the boundary layer approximation in the man-
ner described above and by Wundrow and Goldstein (2001) by means of as-
ymptotic expansions. Besides this linear receptivity, Berlin and Henningson
(1999) and Brandt et al. (2002) have proposed a nonlinear mechanism. Calcu-
lations have shown that oblique waves in the free stream can interact to gen-
erate streamwise vortices, which, in turn, induce streaks inside the boundary
layer.

The two mechanisms are compared by means of DNS to try to identify
which of the two can be considered as the most relevant in cases with known
free-stream perturbations. Different levels of free-stream turbulence intensity
are considered and, moreover, the free-stream turbulence generation is manip-
ulated to involve few or many modes with very low values of the frequency.
In this way, we are able to control the amount of low-frequency content in the
inflow turbulence.

The wall-normal maximum of the streamwise velocity perturbation induced
inside the boundary layer is displayed in figure 7 versus the local Reynolds
number for six cases considered. The results in figure 7(a) pertain to three dif-
ferent free-stream turbulence levels, Tu = 4.7%, Tu = 3% and Tu = 1.5%,
with integral length scale L = 7.5δ∗0 . For this case only a few modes charac-
terized by low frequency are introduced as part of the inflow perturbation spec-
trum. It is shown in figure 7(c) that by dividing the urms values in figure 7(a)
with the square of the turbulence intensity Tu, the growth of the perturbation
associated with the higher turbulence intensities follow parallel lines which are
rather close together. Therefore the dominating receptivity mechanism is most
likely the nonlinear one (see Brandt et al. 2004 for more details). The results in
figure 7(b) pertain to cases with the same free-stream turbulence levels and in-

4.2     Receptivity
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Figure 7. Streamwise evolution of the wall-normal maximum of urms for three levels of
free-stream turbulence intensity: - - -, Tu = 4.7%; —–, Tu = 3% and - · -, Tu = 1.5%. The
results in (a) pertain to the case of few low-frequency modes as part of the inflow perturbation
spectrum, while the data in (b) to a free-stream turbulence spectrum rich with low-frequency
modes. (c): The same rms-values as in (a) are scaled with the square of the free-stream
turbulence intensity Tu. (d): The same rms-values as in (b) are scaled with the free-stream

tegral length scale, but this time the perturbation spectrum is characterized by
many low-frequency modes, as shown by the high urms-values already at the
inlet of the computational domain. In this case the urms scales linearly with
the perturbation intensity Tu (see figure 7d) and the dominating receptivity
mechanism responsible for the streak growth is therefore the linear one. From
the results in the figure it is possible to conclude that the linear mechanism is
the most relevant if the free-stream turbulence contains significant energy in
low-frequency modes.

5. CONCLUSIONS

Transient growth associated with non-normal stability operators have been
reviewed. Results for both temporal and spatial transient growth are presented
and show that the energy grows proportional to the Reynolds number squared,
based on the boundary layer thickness. These results allow for an understand-
ing of the type of bypass transition found when laminar boundary layers are
subjected to free-stream turbulence. Direct numerical simulations of such a
transition scenario show that precursors to turbulent spots are optimal streaks
which undergo transition. Finally aspects of the receptivity of the streaks are

turbulence intensity Tu. From Brandt et al. (2004)
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discussed and it is indicated that in experiments with a rather large low fre-
quency content, such as may be expected after a wind-tunnel contraction, the
linear mechanism is most likely dominating.
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Abstract: Transition to turbulence in parallel or nearly parallel flows is known to be crit-
ically influenced by ambient perturbations. At relatively low intensity level,
external perturbations initiate transition through receptivity process, i.e. by ex-
citing instability waves, but without affecting linear and subsequent nonlinear
amplification rate. At moderate to high intensity level, however, external dis-
turbances may directly alter the instability properties. The present paper reports
some recent theoretical progresses in understanding the role of external distur-
bances in transition. These include (a) a self-consistent theory for the vortical
receptivity, which predicts accurately the experimental measurements, (b) the
demonstration that the streaks formed due to the free stream vortical fluctuations
modify the viscous Tollmien-Schlichting (T-S) waves, and indeed may even in-
duce stronger intermittent inviscid instability, and (c) a theoretical model, which
links the critical Reynolds number to the external perturbations, and shows, for

reduced by even a minimal level of external perturbations. Several problems
which require further studies are highlighted.

Keywords: External disturbance, receptivity, streak, bypass transition, subcritical instability

1. INTRODUCTION

Transition to turbulence in open flows has been investigated for more than
a century as one of the fundamental problems in hydrodynamics. The first
step toward understanding this exceedingly complex process is linear instabil-
ity analysis, which seeks unstable eigen modes that the laminar base flow may
support. Nonlinear instability theory, developed to explain numerous transition
features beyond the remit of linear theory, usually follows the development of

In both linear and nonlinear theo-
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some chosen eigen mode(s) ([25], [11]).

the case of channel flow, that the critical Reynolds number can be substantially
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ries, the external perturbations play an indirect role, and their effects are not
explicitly accounted for.

However, ever since the earliest laboratory studies of boundary-layer transi-
tion ([8], [26]), almost all experimental evidence pointed to the fact that tran-
sition is critically influenced by ambient perturbations, such as free stream
turbulence (FST) and surface roughness, which are inevitable present in many
technological applications and experimental facilities. The correlation data [9]
shows that the overall trend is such that with increased FST level and/or surface
roughness, transition occurs considerably earlier.

From the physical point of view, the external perturbations may influence
transition through at least three distinct mechanisms.

At relatively low intensity level, external perturbations initiate transi-
tion through receptivity process, i.e. by exciting viscous T-S instability
waves, which then evolve through linear and subsequent nonlinear de-
velopment as if the external perturbations were absent; this is the con-
ventional transition.

At moderate intensity level, the instability retains its original character,
but its linear and/or nonlinear growth may be substantially modified by
the external disturbances.

At high intensity level, the external disturbances may induce new in-
viscid instabilities, such as secondary instability of streaks. Transition
then takes the so-called bypass route, i.e. without involving the usual T-S
instability.

The division between these different regimes is not necessarily clear cut,
because the intensity of the external disturbances is unlikely to be the only
relevant parameter. The time and length scales characterizing their temporal
and spatial structures may well be relevant, and so is the correlation prop-
erty of highly random background perturbations, which determines whether
the growth of an instability wave is dampened or enhanced.

In this lecture, I shall present some recent theoretical work that aims to quan-
tify the role of external perturbations from the three perspectives listed above.
The main thesis is that external disturbances must be explicitly taken into ac-
count in theoretical/computational models in order to address some fundamen-
tal problems in transition, including boundary-layer receptivity(§2), streaks in-
duced by FST and their instability (§3), and subcritical transition in channel
flow (§4). Investigations of such fundamental aspects on a first-principle basis
should form an important part of the effort for improving the current transition
prediction, because they provide physical insights and identify the key factors,
which would ultimately aid the development of reliable correlation formula for
transition Reynolds number.
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2. BOUNDARY-LAYER RECEPTIVITY TO
VORTCICAL DISTURBANCES

Receptivity refers to excitation of instability waves by ambient disturbances.
Its importance owes to the fact that boundary layer is convectively unstable,
which means that an impulse disturbance would generate a downstream prop-
agating wave packet, behind which the flow remains unperturbed. Transition
therefore could take place only in the presence of persistent external distur-
bances. But the time and length scales of the naturally present perturbations
do not coincide simultaneously with those of the inherent instability. In order
for them to excite instability waves, some form of scale conversion mecha-
nisms are required. In contrast, for absolutely unstable flows, any accidental
perturbation eventually spreads into the entire domain so that the receptivity
requires no special attention.

The crucial breakthrough in understanding receptivity was made in 1980s;
see the review [13]. Extensive researches followed, most of which were sur-
veyed in [22]. Here we present some latest work on this particular problem.

The basic mechanism involves a vortical disturbance interacting with a lo-
calized surface roughness element, and was described in [10] using triple-
deck formulation based on the assumption that the Reynolds number R =
U∞L/ν � 1, where L is the distance of the roughness centre to the leading
edge of the plate. The frequency of the vortical disturbance and the length scale
of the roughness are taken to be comparable with the characteristic frequency
and wavelength of T-S waves, which are of O(R−3/8L) and O(R1/4U∞/L)
respectively, according to the asymptotic theory ([19], [24]). More precisely,
the vortical disturbance in the free stream is taken to be a convected gust, and
its velocity can be represented by

u = εc u∞(y) ei(αcx−ωt) +c.c. with αc = ω ∼ R1/4. (1)

The local roughness has a shape

yw = R−5/8hFw(X), with X = R3/8x, h � 1. (2)

The forcing resulting from the interaction between the two has both the time
and length scales comparable with those of a T-S wave so that the latter is gen-
erated as a result. The leading-order approximation for the amplitude of the T-S
wave excited was given in [10], but no numerical calculation was performed.

A comprehensive set of experimental data were first obtained by Dietz [7],
who generated the vortical disturbances in a controlled manner. This prompted
Wu [30] to develop a second-order asymptotic theory. In order to be able to
make a quantitative comparison with the experiments, the analysis was per-
formed for an arbitrary profile of the gust. The triple-deck formulation offers
the advantage that the solution can be obtained in the closed form. For a single
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Figure 1. max |uI | v.s. R1/2 for a fixed excitation frequency F = 50. The solid line: the
second-order theory; the dashed line: the ‘first-order’ theory; symbols: experiment

max |uI |

Figure 2. max |uI | v.s. F for a fixed R = 6202

max |uI |

roughness located at x0, the amplitude of the T-S wave can be expressed as

uI(x0) = (εchR−1/8)
F

∂α∆(α; x0)
ŨTS (3)

where α is the wavenumber, and ∆(α; x0) is the dispersion relation of the T-
S wave. F and ŨTS stand for the forcing and the eigen function respectively,
both of which were obtained up to O(R−1/8) accuracy. When (3) is specialized
to the case of Dietz [7], F is found to be proportional the slip velocity of the
gust at the edge of the boundary layer, indicating that the detailed profile of
the gust is unimportant. Figures 1 and 2 show the dependence of max |uI |
on the Reynolds number and frequency F = ω∗ν/U2

∞ × 106 (ω∗ being the
dimensional frequency), and the comparisons with the experiments.

The result (3) was also generalized to the case of multiple elements by an
appropriate superposition of the contribution from each. A theory for the dis-
tributed roughness was developed in [29]. The comprehensive comparison,
presented here and in [29], [30], shows that the quantitative agreement be-
tween the second-order theory and the experiments was very satisfactory, and
this puts our understanding of vortical receptivity on a firm footing.
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3. STREAKS AND STREAK INSTABILITY

In the presence of high level FST, the most striking feature of the boundary
layer is the emergence of streaks. These streaks oscillate at very low frequen-
cies, and were thus called ‘breathing modes’ by Taylor [26] and Dryden [8],
who made the first observations. In the more recent investigations ([2], [16],
[28]), streaks are often referred to as ‘Klebanoff modes’[17]. It is now gen-
erally understood that streaks arise because the boundary layer acts a ‘filter’,
allowing the low-frequency (i.e. long wavelength) components to be entrained
into the boundary layer while absorbing the high-frequency ones in its outer
edge.

Streak instability has been suggested to be a key mechanism causing bypass
transition, e.g. [27]. Supporting experimental evidence was provided in [21],
where it was reported that streaks undergo rapid oscillations and quickly break
down to form localized spots, even though the overall mean flow does not
significantly depart from the laminar Blasius profile.

A number of investigators have analysed streak instability theoretically, e.g.
[1]. The streaks in the calculations were taken to be the so-called optimal dis-
turbances, which are completely steady. The spanwise distribution is assumed
to be periodic so that Floquet theory could be used to identify the instability
modes. The threshold amplitude for the inviscid instability is found to be about
26%, which is obviously too high to explain the experiments [21].

Streaks in reality, though of low frequency and exhibiting a discernible pat-
tern, are neither steady no strictly periodic. Moreover, experiments indicate
that breakdown of streaks occurs sporadically in space rather than collectively
as implied by Floquet theory. For these reasons, Wu & Choudhari [31] investi-
gated the instability of streaks that induced by free stream disturbances. These
streaks are unsteady, and localized in the spanwise direction. The primary aim
of [31] is to assess whether or not a relatively small-amplitude streak is able (a)
to modify substantially the growth rate of T-S waves, and (b) to cause inviscid
instability. These two questions are closely related to the change-over from the
conventional to the bypass transition scenarios.

In the far field, the FST is taken to a convected gust

u∞ = εD

{
û∞B′(z), v̂∞B′(z), ŵ∞B(z)

}
ei k1(x−t)+i k2y (εD � 1) (4)

where B(z) → 0 as z → ±∞. The normalization was based on Λ, the span-
wise length scale of the gust, and the free stream velocity U∞. The disturbance
of relevance has a streamwise wavelength much larger than Λ so that k1 � 1.
It is assumed that Reynolds number RΛ = U∞Λ/ν � 1. The fluctuation in
the major inviscid region is governed by linearized Euler equations, which can
be solved to give the slip velocity in the spanwise direction ws(z). Through
ws, the FST drives the boundary layer fluctuation, the streamwise velocity of
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Figure 3. The growth rates of varicose (solid line) and sinuous modes (dashed line) at three
instants for a fixed location x̄ = 2

which can be written as

uD = εD

(
−w′

s(z)/k1

)
ŪD(y, z, x̄, t) with ŪD = O(1), x̄ ≡ k1x, (5)

which is larger than the spanwise component by a factor k−1
1 � 1. Note

that streaks arise as a response to the forcing from the outside of the bound-
ary layer, and their dominance is simply due to the disparity of the spanwise
and streamwise length scales, rather than to the transient growth as has been
frequently suggested. Because of the very long streamwise length scale, the
streaks are appropriately described by linearized boundary-region equations
[18]. To make analytical progress possible, it is further assumed in [31] that Λ
is much larger than the local boundary layer thickness. The boundary-region
equations then reduce to boundary-layer equations.

An important consequence of the unsteadiness of the streak is that close to
the wall, U ′′

D ∼ y, but the curvature of the Blasius profile U ′′
B ∼ y2 so that

εD/k1U
′′
D ∼ U ′′

B , and an inflection point may appear, even when εD/k1 is
small. It is deduced that the instability is fundamentally altered when the free
stream disturbance reaches the threshold order of magnitude εD ∼ R

−1/3
Λ k

2/3
1 ,

for which an inflection point emerges in a layer where y ∼ σ = O(RΛk1)−1/3.
The distorted base flow supports localized instability modes of the form

A(X)Φ(z) ei σ
− 1

2 (αx−σωt) with A = ei(κ0+κe)X , X = σ
5
2 x. (6)

The streamwise wavelength of the modes is much shorter than Λ. The modal
shape Φ is determined by the eigen-value problem:

−Φ′′(z) = [γ(z; x̄, t) − αs]Φ(z), Φ → 0 as z → ±∞, (7)

which is a Schrodinger equation with the potential γ(z) ∼ U ′
D(0, z; x̄, t). The

total growth rate (κ0 +κe) is a sum of the usual viscous growth rate κ0 and the
streak-induced excess growth

κe(x̄, t) =
∫ ∞

−∞
U ′′′

D (0, z; x̄, t)Φ2 d z. (8)
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Figure 4. Contours of growth rates of the sinuous modes: (a)-(d) correspond to the instants
t̄ ≡ k1t = −1.8, −1.25,−0.82,−0.44

The nature of the instability depends on εD. If εD ∼ R
− 1

20
Λ k

21
20
1 , the excess

growth rate is comparable with the viscous growth rate, so that the instability

may be viewed as modified T-S modes. If εD � R
− 1

20
Λ k

21
20
1 , the instability is

essentially inviscid with an inviscid growth rate:

κ(ω, x̄, t) = −πc4
0/(4λ) + κe.

Both sinuous and varicose modes exist when the flow features a low-speed
streak. Figure 3 shows typical growth rates κ. The sinuous modes have con-
siderably larger growth rates than the varicose modes, consistent with the ob-
servation that sinuous modes were noted to occur more frequently [21].

The instability occurs only during certain phases and within a streamwise
windows, and such a local and intermittent nature of the instability can be illus-
trated by plotting the growth-rate contours in the ω−x̄ plane at various instants
of time (figures 4). At t̄ = −1.8, a small ‘bubble’ of instability is observed in
the ω − x̄ plane, indicating the incipience of the instability. As time increases,
the bubble grows in both spatial and spectral extent, reaching its maximum at
t̄ ≈ −0.82, after which the bubble shrinks and finally disappears, before re-
emerging during the next cycle of the streak modulation. Of course, given the
disparity between the temporal scales of the streak and the instability waves
the latter could amplify substantially within a single period of modulation and,
therefore, reach sufficiently high amplitudes to induce a local breakdown.
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4. SUBCRITICAL INSTABILITY AND EXTERNAL
PERTURBATIONS

Channel-flow transition probably is the most extensively studied topic in the
field. Linear theory predicts that the flow loses stability at a critical Reynolds
number Rc ≈ 5772, and the onset is marked by growth of a two-dimensional
disturbance, as is expected by Squire’s theorem. These predictions have been
verified by experiments, but only when considerable effort was made to sup-
press the extraneous perturbations. With increased external disturbances, tran-
sition occurs at much lower Reynolds numbers, and the onset instability is
three dimensional, that is, Squire’s theorem becomes invalid.

The relation between the critical Reynolds number and the external distur-
bances could be quantified by describing the excitation and nonlinear evolution
of the T-S wave simultaneously [20]. Here nonlinearity must be included in the
receptivity analysis because otherwise the waves excited decay. This is a cru-
cial difference from the boundary layer, where the T-S waves excited in the
subcritical regime will eventually amplify due to the ever increasing Reynolds
number, and enter nonlinear regime subsequently, that is, receptivity and non-
linear evolution can be treated separately.

To fix the idea, the external disturbances correspond to a small oscillatory
pressure gradient, εp̃ e− i ωt, and distributed surface roughness, modelled by
a wavy y = εh± ei αx cos(βz). The mutual interaction produces a forcing
χ ei(αx−ωt) cos(βz) to excite the T-S wave A(t) ei(αcx−ωct) cos(βz), if the near
resonance condition, (α, ω) ≈ (αc, ωc), is satisfied, where (αc, ωc) represents
the neutral T-S wave with spanwise wavenumber β. The amplitude function A
is found to be governed by the nonlinear evolution equation:

A′ =
[
d(

1
R

− 1
Rc

)+ i(ω−ωc)
]
A+ lhA|A|2 +A

∫ t

0
|A(t−Rξ)|2K(ξ) d ξ +χ

(9)
where Rc(β) is the linear critical Reynolds number, and χ characterizes the
forcing. The appropriate initial condition is: A → χt as t → 0. The local non-
linear term is contributed by the harmonics, while the non-local nonlinear term
was by the streaks, the streamwise vortices as well as the spanwise uniform
mean flow distortion. It turns out that the dominant nonlinearity comes from
the steaks. Very often, the dominance of streaks is attributed to the transient
growth associated with non-normality of the operator governing the streaks and
vortices. But presently this is not the appropriate explanation, because neither
the streak, nor the vortices were seeded initially. They all arise purely due to
the forcing induced by the nonlinear wave interaction. The large amplitude
of the streak owes to the scale disparity, a feature that is well understood in
nonlinear instability theory ([14], [12],[32]). Transient growth per se is irrele-
vant, and nonlinear effect in contrast is crucial in generating and sustaining the
streaks.
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The inhomogeneous equation (9) describes the interaction between the ex-
ternal disturbances and the internal dynamics. An interesting consequence of
this is that the system exhibits a tuned response as shown in figure 5. For a
fixed χ and R < Rc, there exists an interval of ω for which A blows up, i.e.
there is a nonlinear subcritical instability. The width of the window shrinks as
R is lowered, and eventually disappears at the tip of ‘instability tongue’, out-
side of which the amplitude remains bounded. The Reynolds number at the tip
can naturally be defined as the critical Reynolds number for subcritical nonlin-
ear instability. It depends directly on the level of the external disturbance, and
so is denoted as R

(N)
c (χ).

Figure 6 shows that R
(N)
c (χ) decreases with χ. The reduction is more

rapidly for 3D disturbances so much so that although in the absence of the
external disturbances the critical Reynolds number is higher, it is reduced to
values smaller than that for the two-dimension disturbance, when χ exceeds a
critical value χc, marked by the cross-over of the two curves. Two-dimensional
onset is expected only when χ < χc, beyond which 3D disturbances reign.
The value of χc roughly corresponds to 10−3 roughness and 10−3 velocity
fluctuation. This result is consistent with the experimental observation that 3D
instability prevails in general.
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5. CONCLUDING REMARKS AND FUTURE WORK

The boundary layer receptivity to vortical (and acoustic) disturbances is now
well understood theoretically. Quantitative agreement with experimental data
has been achieved, at least in the case of a flat plate.

The origin of streaks in the boundary layer is well understood. For small-
amplitude disturbances, the boundary region/layer equations provide an ap-
propriate framework for quantitative prediction. There exists experimental ev-
idence for streak breakdown through localized & intermittent instability, and
the recent theoretical work suggests this to be possible even for relatively weak
streaks. It is now increasingly recognized that the external disturbances, which
trigger bypass transition in the first place, must be explicitly taken into account
in any relevant theoretical and computational modelling.

The 3D external disturbances (combined with the nonlinear effect) are shown
to be crucial in explaining the subcritical transition in channel flow and the ap-
parently failure of Squire’s theorem.

To conclude this lecture, I now highlight a few outstanding problems for
future research. A remaining mystery in receptivity concerns the generation
of non-stationary cross-flow vortices, which were the dominant cause of tran-
sition in a swept wing when the FST level is high [6]. The usual receptivity
mechanism of gust/roughness interaction is probably too weak. This leads one
to speculate whether a stronger mechanism operates, involving the FST and
the highly non-parallel nature of the base flow near the leading edge.

Recent DNS ([5], [15]) reveal some interesting aspects of bypass transi-
tion, but quantitative characteristics of streak instability, such as growth rates
and frequencies, have not been computed. Further more, using the continuous
modes of O-S equation to represent the disturbances at the inlet seems unsat-
isfactory because O-S equation neglects non-parallelism, which is particularly
significant for the relevant long wavelength components. A promising way for-
ward is to use nonlinear boundary region equations to compute the signature
of streaks, and then perform a secondary instability analysis.

Stochasticity is another major obstacle. Certain ideas in the theory for waves
propagating through a random medium could be borrowed to assess the im-
pact of random FST on instability, especially on the viscous T-S waves. This
may help reconcile some seemingly contradictory claims regarding the stabi-
lizing/destabilizing role of FST ([3], [4]).

The impact of FST on transition in supersonic/hypersonic boundary layers
is an important problem, where special attention should be paid to shocks and
acoustic disturbances. The latter are very strong in the wind tunnel experi-
ments, and apparently cause transition to occur much earlier than in the flight
condition [23]. Their effect has to be accounted for in order to calibrate the
experimental data.
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Abstract: An experimental and computational study is conducted to develop a model for 

the effects of surface steps on transition to turbulence in boundary layers.  The 

step effects are captured within the framework of a variable n-factor method, 

where the step results in a reduction in the TS-wave transition n-factor NTS.

Data is presented for NTS for favorable and adverse pressure gradients.  

Backward-facing steps result in significantly larger reductions in the transition 

n-factor when compared to forward-facing steps.  The results show that step 

effects can be accounted for by using a NTS for step heights up to 1.5 times 

the local boundary-layer displacement thickness. 

Key words: Instability, Receptivity, Steps, Transition Prediction, Variable N-Factor 

1. INTRODUCTION 

In many flows of practical interest, the location of the transition to 

turbulence is influenced by the presence of surface imperfections in the form 

of steps, gaps, or protuberances.  In aerodynamics some of the most common 

surface imperfections are forward- and backward-facing steps.  New 

methods to improve transition predictions (based on better physical 

modeling) need to account for these typical surface imperfections. 

Currently, the most useful tools for predicting transition are based on the 

so-called e
n
 method – originally devised by Smith & Gamberoni (1956) and 

Van Ingen (1956).  In the e
n
 method, transition is assumed to occur when the 

amplification factor n reaches a critical value N, where N is established by 
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correlation with experiments.  For controlled experimental conditions, this 

provides an effective prediction method.  However, when applied away from 

the correlation conditions the method does not yield consistent results.  The 

primary shortcoming of the basic e
n
 method is that the receptivity 

(responsible for the initial amplitude A0) and nonlinear-breakdown physics 

cannot be adequately accounted for in a single value of N.

To overcome the major shortcomings of the basic en method, variable n-

factor methods have been proposed (Mack 1977; Crouch & Ng 2000).  Here 

the value of N is given as a function of the external conditions, which 

influence the receptivity or locally change the growth rate.  The methods are 

based on experimental correlation or a combination of correlation and 

theory.  In this paper, we consider a new form of variable N-factor to 

account for the effects of steps on Tollmien-Schlichting (TS) wave 

transition.

The investigation of the effects of steps and protuberances on transition 

has a long history starting from the beginning of the last century (Prandtl 

1914; Goldstein 1936; Dryden 1953, etc.). These early experiments led to 

the concept of a “critical obstacle height” necessary for affecting transition.  

The data form these experiments are the foundation for current empirical 

approaches to transition prediction (e.g. Fage 1943).

A more clear understanding of the physical mechanisms leading to 

transition came with the experiments of Klebanoff & Tidstrom (1972). They 

have shown that surface imperfections change the boundary-layer stability 

characteristics, leading to an accelerated transition.  Aizin & Polyakov 

(1979) obtained another important result showing that surface imperfections 

can serve as effective sources for unstable Tollmien-Schlichting (TS) waves 

through the enhanced receptivity to free-stream acoustic disturbances. These 

TS waves were later shown to superimpose on the TS waves already existing 

in the smooth-surface boundary layer (Kosorygin 1985, Kosorygin & 

Polyakov 1985/1990), resulting in movement of the transition onset location.

Analytical and numerical studies show that some of the effects of the 

steps can be accounted for by modeling the details of the local flow 

perturbations in the calculation of amplification factors (Nayfeh 1992; 

Perraud & Seraudie 2000).  Meanwhile, Boeing has initiated transition 

experiments aimed at incorporating the effects of steps into the critical N

value. Gaster & Wang (2004) investigated the effects of rectangular 

backward- and forward-facing steps in a flat-plate zero pressure-gradient 

boundary layer. They obtained the changes in n-factor for steps of various 

heights. The present investigation aims at developing a prediction scheme to 

account for step effects on transition in boundary layers under favorable or 

adverse pressure gradients, characteristic of leading-edge regions in 

aerodynamic flows. 
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2. EXPERIMENTS 

The experiments are conducted in the wind tunnel T-324 at the Institute 

of Theoretical and Applied Mechanics, Russian Academy of Sciences 

(Novosibirsk). This is a low-turbulence close-circuit wind tunnel with a 

1m x 1m x 4m test section and is well suited for receptivity, stability, and 

transition experiments. Two flat-plate models were used in the experiments. 

Each of these plates is manufactured from a 6-mm aluminum alloy sheet and 

they are 0.996m wide and 2.0m long. The leading-edge shape is a semi-

cylinder machined directly on the flat plate model with radius 2.25mm. The 

position of the stagnation line and the pressure distribution in the vicinity of 

the leading edge are controlled by a trailing-edge flap during tests.   

The flat plates have movable leading edges to create backward- and 

forward-facing steps (as well as gaps) over a wide range of heights. The 

accuracy of adjustment for the step height was about 10 m. The model 

leading edges have different lengths (127mm and 450mm) to enable the 

placement of the step in a favorable or an adverse pressure gradient.  The 

polished working surfaces of the flat plates have slightly different natural 

undulations, which have been documented.  Both plates contain a row of 24 

0.35mm static pressure orifices parallel to the centerline, but shifted in the 

span direction. The surface pressure variation is created by means of wall 

contours, as shown in figure 1.

Detailed measurements of the basic flow are used to establish the flow 

conditions for the stability analysis.  The measured pressure distribution is 

shown in figure 2, along with the spline fit used for the calculations.  The 

minimum of the pressure distribution is located at a longitudinal distance 

x=250mm and the step can be placed at either x=127mm or x=450mm, in the 

Figure 1. Experimental setup showing the flat-plate in the test section with wall contours 

(distances are in mm), and flat plate with movable leading edge 
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Figure 2. Basic-flow characteristics:  (a) experimental pressure distribution with curve used 

for computations, (b) computational (line) and experimental (symbols) velocity profiles 

favorable (FPG) or adverse (APG) pressure gradient, respectively. The free-

stream velocity is varied from 18.3m/s up to 27.5m/s. All measurements are 

conducted under natural background disturbances, with an integral free-

stream turbulence intensity of  = 0.028% at U=18.3m/s, and  = 0.039% at 

U=27.5m/s (bandwidth 2 – 4·103 Hz). 

Figure 2 also shows velocity profiles measured at the streamwise 

locations x=400mm (open symbols) and x=900mm (closed symbols).  The 

lines through the experimental points are boundary-layer calculations based 

on the measured Cp distribution.  The experimental points were shifted in y

using the calculated results to “find the wall.” The calculated basic flow is in 

very good agreement with the measured flow conditions. 

In addition to the mean-flow quantities, the transition location and 

velocity oscillations are also measured.  The transition location is determined 

by means of a 1-mm round Preston tube which is moved along the surface. 

The measured dynamic pressure can be interpreted in terms of the velocity 

profile slope close to wall (i.e. the skin friction). The dynamic pressure

typically diminishes along the streamwise coordinate in a laminar boundary 

layer. At some distance downstream, the pressure (and skin friction) will rise 

as a result of the non-linear processes associated with transition. The 

transition location, xT, is estimated based on the minimum of the dynamic 

pressure distribution, with an uncertainty in xT of about 20mm.  The 

transition Reynolds number, ReT = U xT / , is plotted in figure 3 as a function 

of the non-dimensional step height. An Increase in the step height results in a 

reduction in the extent of laminar flow.  The results show a stronger 

reduction in ReT for backward-facing steps. 

Velocity profile measurements are made using a single-wire probe built 

in-house with 5 m  1mm Pt-plate tungsten wire.  The probe is connected to 

a DANTEC constant-temperature anemometer.  Spectra of the velocity 

oscillations,  measured just prior to transition onset,  show a band of unstable 
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Figure 3. Transition Reynolds numbers as a function of non-dimensional step height, for:

(a) forward-facing and (b) backward-facing steps, in favorable and adverse pressure gradients. 

TS waves.  The measurements also show the exponential growth 

characteristic of TS waves.  Similar measurements in the presence of steps 

demonstrate that the same frequencies are responsible for transition, within 

some step-height range. However, the measured amplitudes of the leading 

frequencies are larger in presence of a step. 

3. N-FACTOR RESULTS 

Tollmien-Schlichting wave amplification n-factors are calculated based 

on quasi-parallel theory.  The mean flow is obtained numerically by solving 

the compressible boundary layer equations for spanwise-uniform flow. The 

experimental pressure distributions are used to generate the edge velocities 

for the boundary layer.  The instabilities are governed by the Orr-

Sommerfeld equation, with imposed values for the real frequency  and 

spanwise wavenumber .  The amplification n-factor is defined as: 

),),;((maxmax)(

0

x

x

TS
dssxn  (1) 

where  is the spatial growth rate.  These n-factors are calculated for the 

smooth-surface conditions, without accounting for any of the local effects 

due to the steps.

Figure 4 shows the amplification n-factors calculated for the test 

conditions of this study.  The results show a slight destabilizing effect due to 

increasing the free-stream velocity from U=18.3m/s to U=27.5m/s.  This 

corresponds to an increase in the unit Reynolds number from 1.2 10
6

m
-1

 to 

1.8 10
6
m

-1.    The change in unit Reynolds number also results in a change in 
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Figure 4 N-factor curves calculated for the experimental conditions, with different edge 

velocities: U=18m/s, U=20m/s, U=23m/s, U=27m/s

boundary-layer thickness at the x=127mm step location from 
*
=0.52mm to 

*
=0.42mm. The dominant frequencies calculated from the stability theory 

are in agreement with the dominant frequencies measured prior to transition. 

The value of nTS(xT) at the transition location, xT, is designated NTS.  For 

each step height considered, the transition location is measured and the value 

of NTS is determined.  In the absence of any step, transition occurs at 

xT=1000mm for U=18m/s, and at xT=760mm for U=27m/s; the 

corresponding transition n-factors for these two cases are NTS=10 and 

NTS=8.5, respectively.  This difference in n-factor is consistent with the 

difference in turbulence levels given in section 2, following the relationship 

of Mack (1977).

In the presence of a step, the transition n-factor is reduced due to the 

forward movement of the transition location.  The reduction in transition n-

factor can be modeled with a variable n-factor relationship 

),(h/NNN
*

TSTS0TS
 (2) 

where the function NTS accounts for the local change in the stability 

characteristics at the step.  The value of the smooth-surface transition n-

factor NTS0 can account for the free-stream turbulence level as suggested by 

Mack (1977).  Delta-n-factors are calculated for each of the step-heights 

considered, and are plotted against the step height in figure 5.  The step 

heights are normalized by the local displacement thickness at the step 

location.  Results are presented for both favorable and adverse pressure 

gradients.  In general, the adverse-pressure-gradient NTS results show a 

better collapse, when compared to the favorable-pressure-gradient results.  In 

both pressure gradients, the backward-facing steps have a much bigger 

impact on the transition n-factors.  For forward-facing steps, the reduction in 

n-factor is generally larger for adverse pressure gradients.  The NTS results 

have also been plotted against the trip-height Reynolds number, Reh = U h /

(not  shown).   This yields distinct curves for the favorable-pressure-gradient 
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Figure 5. N-factor results for: (a) forward-facing steps, and (b) backward-facing steps in 

favorable and adverse pressure gradients 

and adverse-pressure-gradient data since it only accounts for the unit 

Reynolds number, and not the actual boundary-layer thickness. 

The lines drawn through the calculated n-factors of figure 5 are based on 

a fit to the adverse-pressure-gradient data.  These lines provide a rough 

upper bound for the favorable-pressure-gradient data.  These results lead to 

the TS-wave n-factor expressions: 

,h/NN
*

TS0TS
6.1:FFS  (3) 

,h/NN
*

TS0TS
4.4:BFS  (4) 

for forward- and backward-facing steps, respectively.  For forward-facing 

steps, a step height equal to the displacement thickness results in a reduction 

in the TS-wave transition n-factor of 1.6.  The delta n-factors for backward-

facing steps are much larger.  A backward-facing step at a height of the 

boundary-layer displacement thickness results in a reduction of 4.4 in the 

transition n-factor – almost three times the reduction of a forward-facing step 

of the same height.  These expressions for NTS capture the effects of steps on 

transition for step heights up to 1.5 times the boundary-layer displacement 

thickness.

4. CONCLUSIONS 

Detailed measurements are made to quantify the effects of forward- and 

backward-facing steps on transition.  The transition results from the 

amplification of TS waves, both for the smooth surface and in the presence 

of steps.  Measurements and boundary-layer calculations are used to 

43



J.D. Crouch,  V.S. Kosorygin,  L.L. Ng

establish a basic flow.  The calculated boundary-layer profiles are shown to 

be in very good agreement with the experiments.  Linear-stability theory is 

used to determine the amplification n-factors for the TS waves. 

The effects of the steps are modeled by a variable transition n-factor.  

The amplification n-factors are calculated for a smooth surface, but the 

critical value that signifies transition is given as a function of the step height.  

The transition n-factor varies linearly with the step height, 

nondimensionalized with the boundary-layer displacement thickness at the 

step location.  Backward-facing steps result in n-factor reductions that are 

almost three times as large as forward-facing steps of the same height.  The 

variable n-factor relationships are well correlated with the experiments for 

steps heights up to 1.5 times the local boundary-layer displacement 

thickness. This provides a very useful method to account for surface steps in 

practical applications. 
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RECENT OBSERVATIONS OF THE TRANSITION
TO TURBULENCE IN A PIPE

Abstract: We report the results of an experimental investigation of the transition to turbu-
lence of Poiseuille flow in a long pipe. Our findings confirm that the recently
established scaling law for the finite amplitude perturbation required to cause
transition is O(Re−1). New results are presented concerning the decay of dis-
turbances injected into the flow field at values of Re where the flow is known
to be globally stable. Exponential decay and critical behaviour is observed and
these are consistent with observations in other shear flows. This new approach
has enabled us to uncover a sharp cut off at the lower limit of the stability thresh-
old.

The origins of turbulence in the flow along a circular pipe has intrigued sci-
entists for more than one hundred and twenty years since Reynolds’[3] land-
mark experimental investigations. Mathematically, the flow is linearly stable
[1] so that laminar flow ought to be observed for all flow rates. In practice,
however, pipe flows are typically observed to be turbulent even at modest flow
rates. Hence there is a direct conflict between theory and observation. Under-
standing this enigma has been one of the outstanding challenges of hydrody-
namic stability for more than a century. Reynolds also showed that if distur-
bances at the inlet to the pipe are minimized, laminar flow can be maintained to
higher flow rates than if they are not. Kelvin [2] proposed that finite amplitude
perturbations are most likely to be responsible for triggering the transition to
turbulence. The finite amplitude nature of the transition process was confirmed
in the experiments of Pfenniger [4] who managed to obtain laminar flows up
Reynolds numbers of Re ≈ 100, 000 by taking extraordinary care to control
external influences. (Here Re = Ua

ν where U is the peak velocity, a is the pipe
radius and ν the kinematic viscosity of the fluid.)
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The issue of transition to turbulence in pipe flow is not only of deep sci-
entific interest, it is also of significant engineering importance. Transitional
flows necessarily involve large pressure variations since the pressure gradient
required to drive laminar and turbulent flows may differ by an order of magni-
tude. Thus flows in oil and gas pipelines are often run inefficiently turbulent
to avoid the large pressure fluctuations found in the transitional regime. In ad-
dition, the control of turbulence is a dream of many practitioners, just as an
understanding of turbulence is the desire of many scientists.

Linear stability of the flow means that infinitessimal disturbances added
to Poiseuille flow will decay as they propagate along the pipe and laminar
flow will be recovered downstream. Available experimental evidence from
Reynolds and Pfenniger suggests that the influence of such disturbances is
likely to become more important as Re, increases. A mathematical statement
[17] of these facts is provided by: if ε = ε(Re) denotes the minimal amplitude
of all finite perturbations that can trigger transition, and if ε scales with Re
according to

ε = O(Reγ) (1)

as Re → ∞, then what is the exponent γ? A negative value of γ will be consis-
tent with the observations and one substantially less than zero would indicate
that the sensitivity of the laminar flow to perturbations increases rapidly with
Re. An outstanding problem is relating this theoretical concept to observation
in a quantitative manner. Now, we review some recent experimental evidence
which suggests that it is beneficial to consider the problem in this way. We will
focus on the issues associated with the stability of fully developed Poiseuille
flow. Hence we will not discuss the important practical problem of developing
or entrance flow which can feature linear instability (see Da Silva and Moss
[7] for a review of this problem).

In general terms, pipe flow may be considered as a nonlinear dynamical
system du/dt = f(u, Re) which represent the Navier Stokes equations subject
to appropriate forcing and boundary conditions. The single control parameter
Re determines the dynamical state of the system such that there is one linearly
stable fixed point, Poiseuille flow, for all Re and another attractor, turbulence,
when Re > Rec. Hence when Re < Rec all initial conditions are attracted to
the laminar state which is the global attractor for the system. When Re >>
Rec nearly all initial conditions give rise to turbulence so that the laminar state
is now a local attractor. In practice, Rec � 1800 so that all disturbances will
decay as t → ∞ for values of Re smaller than this.

Experimental evidence [9] has shown that when Re � 1800, small am-
plitude perturbations introduced into fully developed Poiseuille flow decay as
they travel downstream i.e. when Re � 1800 all perturbations decay and
turbulent flow cannot be maintained. On the other hand, perturbations of suf-
ficient amplitude give rise to transition to the nontrivial state of turbulence. At

T.  Mullin and  J. Peixinho46



Recent observations of the transition to turbulence in a pipe

A
finite amplitude threshold therefore exists, below which laminar flow is main-
tained and above which turbulence sets in. The boundary is not sharp but is
probabilistic in nature [22]. Nevertheless, a definite demarcation can be estab-
lished between perturbations which give rise to transition and those which do
not.

A threshold curve was established by Darbyshire and Mullin as a function
of Re using a constant mass flux experiment with impulsive perturbations. It
was found that the the amplitude of perturbation required to cause transition
reduced when Re was increased from 1800 and became independent of Re for
Re � 3000. In a more recent investigation [13] a novel type of perturbation
was used to uncover a scaling relationship for the amplitude of perturbation
required to cause transition to turbulence. The novel feature of the perturbation
is that it allowed for a separation of amplitude and timescales by injecting a
boxcar distribution of perturbation fluid into the main flow field. It was firmly
established that the important criterion was the length of the flow field which
was perturbed and this enabled the uncovering of a O(Re−1) scaling law for
the amplitude of perturbation required to cause transition over a wide range of
Re. Some evidence for such a scaling law has been reported previously for
boundary layers [23], pipe flows [6] and has also been found for plane Couette
flows [20].

One surprising consequence of this finding is that the absolute amplitude of
the perturbation remains relatively large with increasing Re. Therefore, theo-
ries based on local analyses of the trivial state may not provide much insight
into transition since the basin of attraction of the laminar state remains finite
even at modest Re. This appears to contradict many observations which show
that very small amplitude disturbances are required to promote turbulence at
high Re. However, most of these are concerned with the entrance or devel-
oping flow which is linearly unstable [7] whereas fully–developed flow is not.
Hence, the fully developed flow always requires a finite amplitude disturbance
to cause transition.

In drawing a connection between experimental observations and theory, the
difficult issue of what is meant by a perturbation must be addressed. In models,
the temporal and spatial form of any perturbation can be accurately specified.
On the other hand, experimentalists rely on injecting and or subtracting fluid
through slits or holes in an attempt to mimic the mathematical process. The
perturbation can be either periodic[6, 8] or impulsive [9] but specifying a form
which can be directly related to theory is difficult. Indeed, identifying the part
of the physical perturbation which initiates the transition process is in itself a
difficult exercise although progress is being made[8]. The robust scaling law
uncovered by Hof et al [13] also shows that self consistency can be found.

these values of Re the turbulence is in the form of a turbulent puff [5].
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Modern theoretical research may be broadly split into two approaches. In
one, initially small disturbances on the laminar state grow in a transient phase
[16],[21] until they reach a sufficiently large amplitude that nonlinear effect be-
come important. These ideas have been explored for various low–dimensional
models[12] and applied to plane Poiseuille flow[15, 14] and scaling laws for
the amplitude of the perturbation as a function of Re have been provided. An
alternative point of view[17] is that the turbulent state originates from instabil-
ities of a finite amplitude solution which is disconnected from the base state.
The basin of attraction of the turbulent state grows with Re so that any small
perturbation will kick the laminar solution towards it. Such solutions of the
Navier Stokes equations are known to exist other flows [19, 20, 18] and more
recently they have been shown to exist in Poiseuille flows [24, 25]. Their lower
limits of existence are almost a fact or two below the range of Re where tur-
bulence can be established but recent experimental evidence [27] suggests that
they may play a role in observed turbulent structures. The stability of these
new solutions and their role in transition are both currently open questions.

The scaling law discussed above raises an interesting issue. The perturba-
tion amplitude is normalized by the mass flux of the mean flow and thus is
effectively scaled by Re. The dimensional perturbation amplitude is hence
independent of Re which suggests that the flow can be destabilized for both
high and low values of Re. It is known that the flow is globally stable for
Re � 1800 and hence there is inconsistency between these new results [13]
and well established facts. Here we report the results of a new experimen-
tal investigation where we study the processes whereby injected perturbations
decay for Re � 1800.

1. EXPERIMENTAL DETAILS

The experimental system can be regarded as a large hypodermic syringe
where a piston pulls water at a fixed mass flux along a 17 metre ’needle’. A
schematic diagram of the apparatus is shown in figure 1. The pipe consisted
of a D = 20 ± 0.01 mm diameter Perspex tube which was constructed using
150 mm long machined sections push-fitted together and butted flush so that
there was no measurable gap between each join. The sections were held on
on a steel base with a total length of 15.7 m (785D) and were aligned using a
laser.

A reservoir with a capacity of approximately 100 liters was connected to
the pipe entrance via a smooth trumpet shaped inlet. This device ensures a
laminar flow over the whole Re range investigated for a flow which was ini-
tially disturbance free. The maximum flow rate achievable corresponded to
Re = 23, 000 and laminar flow could be achieved with care. On the other
hand a sharp cornered inlet induced transition spontaneously at a Re ≈ 2000.
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Figure 2. (a) Schematic of the disturbance generator. (b) Typical trace of the perturbation.
(c) Inlet manifold of six jet disturbance

The fluid was pulled through the pipe by a cylindrical machined steel piston
of length 1.033 m and 0.260 m diameter. The expansion aspect ratio between
the piston and the pipe was 13 and a smooth trumpet joint was again used. The
piston was pulled by a lead screw and nut arrangement. This was powered by
d.c. motor which was computer controlled allowing the speed to be varied as
a function of time to within an accuracy of 1%. Hence, even if the fluid in the
pipe becomes turbulent the mass flux pulled through the pipe will be unaffected
the Re constant.

The long term temperature stability of the laboratory was set at 20 ± 1 oC
using several air-conditioning units which were located adjacent to the pipe.
The largest temperature gradient recorded from several K thermocouple along
the pipe was 0.3oC which corresponds to a variation in Re of ±30 at Re =
2000.

Two types of experiments were performed. In the first, fully developed lam-
inar flow [11] was established over the Re range investigated and the stability
of the flow was probed using a perturbation which was applied at 530 pipe
diameters from the pipe entrance. In the second, a well defined perturbation
was injected into fully developed flow and the evolution of the disturbance was
observed as it progressed downstream.

Schematic of the constant mass flux pipe facility
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Figure 3. A typical puff at Re = 1900

In both sets of experiments the perturbation was provided by a single box-
car pulse of fluid which was injected tangentially into the flow via a ring of six
equally spaced 0.5 mm holes as shown in figure 2(c). The valves which con-
trol the fluid injection had switching times of approximately 1 ms are shown
schematically in figure 2(a). A typical pressure trace of the perturbation is
shown figure 2(b). The injection system enabled variation of both the duration
( 
t0 to 10 s) and the amplitude (0 < Φinj < 5 ml/s) of the perturbation.
The displaced volume Φinj from the injector is used in our definition of the
amplitude A of the perturbation. The quantities of fluid injected were in the
range 0.01 to 0.1 % of the total mass flux where the larger values were required
to cause transition at smaller Re. The duration of the injection set the spatial
extent of the disturbed flow (L∗ = 
t ∗ U in pipe diameters) since it initially
travel with the mean speed U of the flow in the pipe. The relative volume flux
Φinj/Φpipe is used to define the amplitude of he perturbation A. In principle,
the perturbation will affect the flow field globally. However, previous tests
using both injection and suction [9] showed that it is localized in practice.

The flow state was monitored using flow visualization. A small amount of
Mearlmaid Pearlessence were added to the water. The particles were anisotropic
and had the form of ∼ 35×10µm platelets. They reflect the incident light from
a ∼ 3mm vertical light-sheet which was formed all along the pipe. The light-
sheet was switched sequentially to reduce heating effects. A photograph of a
typical turbulent puff is given in figure 3.

The design of the experiment was such that it ran in single shot mode. Tran-
sients at both the beginning and the end of each run were approximately 10 s
long and these were independent of Re. A typical useful experimental time
was half an hour at Re = 2000. After each run of the experiment, the fluid
was pushed back through the pipe into the reservoir and allowed to settle for a
period of at least 30 minutes before the next run was started. This period was
chosen empirically on the basis of observations of the fluid in the tank and it
was also found to be the minimum time required to give repeatable results.

In the second set of experiments on the evolution of disturbances, it occa-
sionally proved possible to obtain results from several sequential experimental
runs. This helped improve the statistics of the measured distributions.
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Figure 4. A versus Re

2. RESULTS

Finite Amplitude Stability Curve

As discussed in the introduction, Hof et al. [13] developed an injection sys-
tem which permits the amplitude and width of the perturbation to be varied
independently. This helped uncover a scaling law which indicates that the am-
plitude of perturbation required to cause transition scales as O

(
Re−1

)
. One

interpretation of this result is that it reflects the balance between viscous and
inertia terms in the Navier Stokes equations. The smallest amplitude of pertur-
bation required to cause transition is obtained when L∗ � 6D. We have added
to these results and a compilation of both sets of results is presented in figure
4(a). In general, there is very good agreement between both sets of results and
a O

(
Re−1

)
scaling law.

The amplitude A of the perturbation in figure 4(a) is made non-dimensional
by dividing by the mass flux of the main flow. Hence it is effectively scaled
by Re. If the data is now plotted in dimensional form as in figure 4(b) it
can be seen that Φinj is almost independent of Re and only departs from a
constant level for Re � 3000. In fact, the departure is not significant since all
experimental evidence suggests that the flow is globally stable for Re � 1800
so that it might be expected that Φinj → ∞. Clearly, disturbances injected into
the flow when Re � 1800 will decay as they move downstream and it is this
process that we will focus on in the next section.

3. DECAY OF INJECTED DISTURBANCES

The investigation was carried out by injecting well defined perturbations
into fully developed Poiseuille flow (285D from the entrance) and observing
their development downstream. The values of Re investigated were such that
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Figure 5. The probability of observing a localized region of disturbed flow plotted as a func-
tion of distance downstream from the point of injection. Data was accumulated from between
40 to 100 measurements for each of the six values of Re. The lines are least squares fits of
exponentials. (a) The initial disturbance amplitude was A = 0.01 (b) The initial disturbance
amplitude was A = 0.1

the final state far downstream was laminar flow. At a given Re, the disturbed
flow was localized and travelled along close to the mean speed of the flow. In
the first 100D the perturbation evolved in a complicated way as discussed by
Wygnanski and Champagne [5] and Darbyshire and Mullin [9]. Several light
boxes suspended above the pipe provided a light sheet along the length of the
pipe and these were switched on and off sequentially to avoid heating effects.
This illumination allowed the observation of the disordered fluid as it travelled
along and enabled an estimate to be made of position at which the disordered
spot decayed (measured in diameters D from the perturbation input).

The results presented in figure 5 are graphs of the probability of observing a
localized disturbed region of flow, plotted as a function of distance downstream
in D from the point of injection (zero on the abscissa). The downstream limit
was set by the length of the pipe at 500D but this was not a severe limitation
since not many disturbances survived to this station in practice. The initial con-
ditions for the perturbation were L∗ = 10 and the amplitudes used in figure 5
(a) and (b) were A = 0.01 and A = 0.1 respectively. Between 40 and 100 in-
dependent experimental runs were performed for each value of Re in order to
obtain good statistics. The straight lines correspond to least squares fits of ex-
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a reasonable approximation. In general, the slopes increase as Re decreases
i.e. there is faster decay at smaller Re. Such behaviour has previously been
observed by Bottin and Chate [10] in experiments on plane Couette flow.

A useful measure that can be extracted from the exponential fits is time
required for half the initial states to decay which is defined as τ = (ln 2)/ε
where ε = Re − Rec. We will refer to this as the ’half-life’ of a perturbation.
Plots of the inverse of half-life τ−1 versus Re are shown in figure 6 for the two
perturbation amplitudes used in the present series of experiments viz. A =
0.01 and A = 0.1. It may be seen that τ−1 passes through zero at 1830 ±
10 and 1710 ± 10 respectively. At these critical values of Re the half-life τ
approaches infinity and the perturbation does not decay but develops into a
turbulent puff which persists. Hence this gives a method for estimating the
threshold for transition to turbulence which is more accurate than the direct
method of increasing the amplitude of perturbation until a threshold is crossed
as in the results section labelled (Finite Amplitude Stability Curve) above. This
method was used to obtain estimates of the stability threshold for Re� 1750
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by setting the amplitude of the perturbation at a prescribed value and observing
transient behaviour for a range of Re as above. The new results for the estimate
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Figure 7. Finite amplitude threshold curve A vs Re with data from transient experiments
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of the threshold curve are presented together with the previous ones in Figure 7
a,b. We have again chosen to show the results on both logarithmic (Figure 7 (a))
and linear (Figure 7 (b)) scales to emphasize different aspects. There is clear
consistency between the two sets of results which indicates that both methods
are valid ways of estimating the stability boundary. The new estimates show
clearly that the stability boundary rises almost vertically for Re � 1750 i.e.
there is a sharp departure from the O

(
Re−1

)
scaling law. Hence maintaining

disordered flow below Re � 1750 is not possible since perturbations over a
wide range of amplitudes decay.

4. CONCLUSIONS

We have confirmed previous results [13] on an O
(
Re−1

)
scaling law for the

amplitude of the perturbation required to cause transition in circular Poiseuille
flow. Moreover we have extended the results using the transient decay of per-
turbations towards the lower values of Re. These new findings have uncovered
a surprisingly sharp cut off in Re below which turbulence can not be main-
tained. It has been suggested [26] that such behaviour is consistent with the
formation of a chaotic repellor and saddle in the solution set but much more
work is required before definite conclusions in this respect can be justified.
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LOCALISED INSTABILITY IN UNSTEADY
SEPARATION BUBBLES
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Abstract: We propose an experimental method to study the instability of thin unsteady
separation bubbles, i.e. of unsteady boundary layers with reverse flow. The un-
steady boundary layer is created by controlled temporal and spatial variations of
the velocity external to the boundary layer. We present results of the evolution of
instability in different temporally varying flows in a shallow angle diffuser. De-
pending on the extent of reverse flow in the boundary we observe that instability
can be spatially localised.

Keywords: Laminar separation bubble, inflectional instability, unsteady boundary layer.

1. INTRODUCTION

In this paper we are concerned with the evolution of instability in thin un-
steady separation bubbles. The bubble is considered thin in that the boundary
layer approximation is valid, and in the boundary layer, over some length, there
is flow reversal (figure 1). The external flow velocity (U0), boundary layer
thickness (δ) are in general, functions of downstream distance (x) and time
(t); the extent of the reverse flow region also depends on t. We describe an
experimental procedure in which it is possible to tailor the spatial and tempo-
ral dependences of the separation bubble parameters, and hence systematically
study the stability characteristics of unsteady separating flows.

Laminar separation bubbles have been studied in two contexts. One type
of study is of a laminar separation bubble due to an imposed steady adverse
pressure gradient on a flat plate (Gaster, 1966). For the Reynolds numbers of
interest, vortices are periodically shed from the bubble, and the downstream
boundary layer usually is turbulent. Though recent experiments and direct
numerical simulations (see for example, Rist, 2002, Alam and Sandham, 2000)
have given detailed information, many questions remain with regard to the
dynamics, in particular, the nature and cause of the shedding. Suggestions
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have been made that the shedding may be due to an instability of the reverse
flow region.

The other type of study has been that of unsteady boundary layer separa-
tion. Though the term separation bubble is generally not used, a reverse flow
region or separation bubble does exist in these flows, before true separation
takes place. We believe unsteady separation can be classified into two types.
One, as in the flow past an impulsively started cylinder, unsteady separation
is characterised by local thickening of the boundary layer, perhaps with the
development of a Van Dommelen - Shen (Van Dommelen and Shen, 1980)
type singularity. The second type, as found in dynamic stall experiments, is in
which a long reverse flow region exists which becomes unstable prior to full
separation. This instability and how it relates to the final separation has not
been studied. Also, there has been no effort to systematically vary the charac-
teristics of the separation bubble.

In this paper we describe an unsteady water tunnel in which it is possible
to create a variety of unsteady separation bubbles. Next we present flow visu-
alisation results of evolution of instabilities in unsteady separation bubbles in
a shallow angle diffuser. The unsteady separation bubbles are created by an
adverse pressure gradient due to both a spatially decelerating (∂U0

∂x < 0) and a
temporally decelerating (∂U0

∂t < 0) external flow. In some cases the instability
is spatially localised, and preliminary stability analysis indicates it could be an
absolute instability.

2. EXPERIMENTS

For an unsteady boundary layer flow shown in figure 1(a), the boundary
layer momentum equation is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P0

∂x
+ ν

∂2u

∂y2
(1)

where P0 is the pressure at the edge of the boundary layer, u is velocity com-
ponent in the direction of x, coordinate along the surface, v is normal to the
surface and ν is the kinematic viscosity. It is useful to split the pressure gradi-
ent into two components, temporal(Πt) and spatial(Πx),

−1
ρ

∂P0

∂x
=

∂U0

∂t
+ U0

∂U0

∂x
(2)

Πt Πx

We have developed an unsteady water tunnel that allows control of Πt and
Πx. It consists of two 2.4m long compartments of rectangular cross section,
one over the other (figure 2). The cross sectional areas of the top and bottom
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Figure 1. (a) Unsteady boundary layer, here shown with reverse flow. (b) The main parame-
ters that characterise a velocity profile with reverse flow

Figure 2. Piston driven unsteady water tunnel

compartments are 154 × 284 mm2 and 134 × 276 mm2 respectively. The
top compartment contains the test section; a snugly fitted piston in the bottom
compartment generates the flow. A pulley driven by an AC servomotor is con-
nected to the piston. With this arrangement it is possible to create a specified
variation with time of the free stream velocity in the test section. A test is
completed before the disturbances created at the bends convect to the test sec-
tion. Flow is visualised by injecting a thin layer of Fluorescein dye on the test
wall before the start of the experiment. A light sheet from an Argon Ion laser
beam illuminates the flow field at the mid-plane of the test section, and the
the motion of the dye is captured using a CCD camera (Kodak Motion Corder
Analyzer, Model - SR Ultra).
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Figure 3. The geometry of the channel with the diffuser

3. RESULTS AND DISCUSSION

By a suitable combination of geometry of the model and piston motion, dif-
ferent types of separation bubbles may be generated. The geometry determines
Πx; for example, a bluff body will have a high Πx. Piston acceleration and de-
celeration controls Πt. To create reverse flow we need a decelerating external
flow, which can be through a spatial adverse pressure gradient and / or through
a decelerating piston. Here we present results of flow in a diffuser with a diver-
gence angle of 6.2◦ and thus a relatively low Πx. Upstream and downstream
of the diffuser are long lengths of constant cross section (figure 3). To keep
the the pressure gradient due to wall curvature small, the upstream straight
portion and the inclined straight wall of the diffuser are connected by a gentle
curve of 100 cm radius; a similar curvature is provided at the downstream end.
The bottom and top wall pressure distributions, obtained from potential flow
computation using FLUENT, are shown in figure 4.

We present results for unsteady flow in the shallow angle diffuser for differ-
ent cases of piston motion variation with time. The piston velocity variation
with time in all cases is trapezoidal. By varying the piston velocity profiles
we are able to vary the values of the parameters characterising the unsteady
boundary layer, viz, the boundary layer thickness, location of inflection point,
magnitude of reverse flow velocity and the Reynolds number. How these pa-
rameters vary with x and t influences the stability behaviour of the boundary
layer. Table 1 lists the important parameters for the six cases discussed in the
present article; the definitions of the parameters are also given. An example of
the spatial variations obtained at different times in the boundary layer thickness
(δ) and in the velocity difference (∆U ) is shown in figure 5.

The flow was seen to become unstable with the formation of vortices, and
usually the first vortex was seen to occur near the maximum spatial pressure
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Figure 4. Pressure distributions along the lower and upper walls of the diffuser. S is distance
measured along a wall, H is the upstream channel height

Table 1. Values of important parameters for different cases

Case U0m t0 t1 t2 ts tv δs
∆Us
U0m

Reδs

(cm/s) (s) (s) (s) (s) (s) (mm)

I 13.72 0.6 1 2 1.2 3.83 3.66 0.79 399
II 13.72 0.6 5 5.75 4.53 6.17 7.84 1.03 1105
III 22.88 1 2 2.83 2.05 2.73 4.73 0.97 1056
IV 18.30 0.8 1 5 1.75 3.3 4.53 0.81 675
V 13.72 0.6 3.5 6.5 3.55 5.17 6.8 1.01 937
VI 13.72 0.6 3.5 5 3.55 5.07 6.8 1.0 935

U0m - maximum average velocity upstream of the diffuser; piston motion times : (0-t0) - acceleration,
(t0 − t1) - constant velocity phase (Umax), (t1 − t2) - deceleration; ts - time at which wall shear stress =
0 at MPGP; tv - time at which first vortex forms; δs - boundary layer thickness at t = ts; ∆Us - velocity
difference (see figure 1(b)) at t = ts; Reδs = (∆Usδs)/ν

gradient point (MPGP). Figure 6 gives the piston velocity versus time vari-
ations for cases I to IV for which flow visualisation pictures have been given.
Figure 7 gives the velocity profiles at the MPGP at following times : 1) t1 -
start of piston deceleration, 2) ts - time when the wall shear stress at MPGP = 0,
3) tv - time when the first vortex is seen to form, and 4) tm = (ts +(tv−ts)/2)
- time in between tv and ts. The software FLUENT has been used to compute
the 2-D laminar flow field and the velocity profiles are from the computation.
It is expected that the computed results will be valid only till the flow becomes
unstable.

In the boundary layer flows with inflection points we are considering, the
instability is essentially inviscid and characterised by low critical Reynolds
numbers and high growth rates of disturbances. Linear stability analysis shows
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(Das and Arakeri, 1998) that for velocity profiles having reverse flow (fig-
ure 1(b)), the disturbance growth rate of the most unstable mode is  0.12∆U
and the most unstable wavelength  3δ. Thus we may expect the instability to
develop over the convective time scale, δ/∆U .

Case I corresponds to a short piston travel, thus a small boundary layer thick-
ness, and a small Reynolds number (see Table 1). Flow becomes unstable first
near the MPGP, and a little later in the upstream straight portion of the diffuser.
Multiple vortices may be seen at t=4.93s (figure 8(a)) well after the piston has
stopped at t=2s. Several adjacent vortices merge with time to form bigger vor-
tices (figure 8(b)). No vortices are observed in the downstream inclined portion
of the diffuser; here ∆U is lower, the Reynolds number is smaller, and though
the flow may be unstable, the growth rates of the disturbances, proportional to
∆U , are not large enough to result in vortex formation. During the develop-
ment of the instability, between ts and tv, flow in the boundary layer is almost
entirely in one (reverse) direction, much like in a wall jet (figure 7(a)).

Compared to Case I, in Case II the piston travel is longer and thus the bound-
ary layer thickness and Reynolds numbers are larger. And, importantly, due to
the longer piston travel, the effect of the spatial adverse pressure gradient is
felt. During the constant piston velocity phase itself, while the velocity pro-
files are non-inflectional in the straight portions, in the inclined portion they
become inflectional and there is flow reversal over a small length. The insta-
bility vortices are first seen near the MPGP, but rapidly form at upstream and
downstream locations a little later (figure 9).

In Case III the piston velocity and Reynolds numbers are higher than in
cases I and II; the flow would be expected to become unstable faster and the
perturbations to grow more rapidly. Just before the piston stops, a single vor-
tex starts to form near the MPGP at 2.73s, and is prominently visible at 3s
(figure 10(a)). At this time the instability seems very localised. A little time
later, vortices form on either side (figure 10(b)). The first vortex continues to
grow and then becomes turbulent. Figure 10(c) shows the flow at 9s. Just as
the instability, transition to turbulence is also very localised; a two dimensional
strip of turbulence is formed.

In the cases considered so far the piston deceleration has occurred over a
short time, and the vortex has formed at about the time or after the piston
has stopped. After the piston stops, since the net mass flow across a cross
section is zero, a strong reverse flow is obtained near the walls; the velocity
profiles are very similar to those obtained in a wall jet, albeit with a strong
spatial variation in the maximum reverse flow velocity (see figures 7(a), 7(b),
7(c)). For Case IV, however, the piston deceleration is gradual. Unlike in cases
I to III, the velocity in the boundary layer is predominantly in the forward
direction during the growth of the instability (figure 7(d)). Multiple vortices are
observed (figure 11(a) and figure 11(b)) in the inclined portion of the diffuser,
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Figure 7. Velocity profiles at different times at the maximum pressure gradient point (MPGP)
for different cases. After the piston stops the flow in the boundary layer is predominantly in the
reverse direction; e.g. Case I at t = tm, tv

where both the spatial and temporal components of the pressure gradient are
present. In the straight portion where only the Πt is present, even though the
velocity profiles are inflectional, no vortices form. At later times (figure 11(c))
transition to turbulence is observed. Here, the instability appears to be of the
classical convective type.

3.1 Spatio-Temporal Stability Analysis

A preliminary quasi-steady, locally parallel stability analysis is performed
for the boundary layer in the neighbourhood of the MPGP using normal mode
approach under the assumption that the instability arises from the inflectional
nature of the flow (Akhavan et al., 1991 and Das and Arakeri, 1998), and grows
at the rate of the convective scale, δ/∆U , while, the base flow time scale is
δ2/ν. The resulting Orr-Sommerfeld equation is solved for instantaneous ve-
locity profiles at a time interval of 0.025 seconds from t1 up to tv.
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Figure 8. Flow visualisation for Case I. The prominent vortex seen at t=18s is from merger
of several vortices formed earlier

Our aim is to check whether a flow is absolutely unstable at the MPGP.
Because of the spatial gradients, the parallel flow assumption is not clearly
valid for the present flow. But the stability analysis may indicate the nature
of the instability. The least stable normal modes with zero group velocity
are tracked using Hooke - Jeeves search algorithm in the 4D wave number-
frequency space, (αr + iαi, ωr + iωi), (Rist, 2003). The contour plot of one
such mode in α plane for constant ωr, is shown in figure 12. It can be seen
that the saddle point (α = 1.41 − 0.06i), which consists of spatial branches
originating from different half planes, is a pinch point as required for absolute
instability (Schmid and Henningson, 2001).

The instantaneous growth rates for various locations in the neighbourhood
of the MPGP are plotted as a function of time t in figure 13. The maxi-
mum growth rate and also a longer interval of time over which ωi is positive
is achieved at the MPGP. Further analysis is concentrated on the disturbance
growth at the MPGP. The instantaneous growth rates ωi at the MPGP are plot-
ted against time in figure 14 for cases given in Table 1. The corresponding
tvs measured from the experiments are marked by circles. The instantaneous
positive growth rates increase up to some time and then decrease to a nega-
tive value at a later time suggesting instantaneous decay at the convective time
scale. However, the accumulated growth rate starting from the time of pos-
itive ωi, t+, up to tv, Ḡ =

∫ tv
t+

ωidt will characterise the true time-growing
instabilities at the time tv.
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Figure 9. Flow visualisation for Case II. Initial vortex formation is near the MPGP (a),
Secondary vortex formation (b) and merging of adjacent vortices (c) is observed
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Figure 10. Flow Visualisation for Case III. Instability initiated near the MPGP develops
rapidly and leads to transition to turbulence
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Figure 11. Flow visualisation for Case IV. Low piston deceleration results in forward flow
in most of the boundary layer. Instability appears to be of convective type. t=7.67s is after the
piston has stopped and the flow near the wall will be in the reverse direction
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The integrated growth rates, Ḡ for the Cases V and VI (figure 14) are pos-
itive while the corresponding experiments show the growth of a single vortex
at MPGP followed by the development of many vortices in the neighbourhood
at a later time. When Ḡ is negative or non-existing (Case IV ), simultaneous
development of many vortices along the lower channel wall is observed exper-
imentally. However, when the values of Ḡ is very close to zero (Cases II and
III), predicting the nature of vortex development is difficult based on its sign.
Preliminary analysis seems to suggest that in cases where localised instability
is observed, the flow may be absolutely unstable.

4. CONCLUSION

We have proposed a method by which the stability characteristics of general
unsteady boundary layers can be experimentally studied. For unsteady flow in
the shallow angle diffuser, we have observed, depending on the piston velocity
variation, two types of instabilities: classical convective type instability (Case
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IV); and localised and highly spatially variable instability (Case I, II and III).
In the cases where localised instability is observed, the transition to turbulence,
if it occurs, is also localised. Preliminary linear stability analysis shows that in
some cases the flow may be absolutely unstable. We believe the present type
of study can clarify many issues related to the nature of instability in laminar
separation bubbles and in unsteady boundary layer separation.
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INTERACTION OF SEPARATION AND TRANSITION
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SIMULATIONS
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Abstract: The role of hydrodynamic instability mechanisms in the presence of laminar
boundary layer separation is investigated by means of Direct Numerical Simu-
lations. In a series of simulations involving generic laminar separation bubbles
we show that the “natural” onset of unsteadiness (i.e. the development of visible
vortex shedding) is not necessarily caused by an absolute/global instability. Our
results indicate that the entrainment of high-momentum fluid required to “close”
the separation bubble is primarily provided by 2-D or “2-D coherent” structures,
which are a consequence of the (inviscid) hydrodynamic instability of the sep-
arated shear layer. In a series of highly resolved simulations for a flat-plate
boundary layer subjected to low-pressure turbine blade conditions, we demon-
strate that this natural instability mechanism (with respect to two-dimensional
disturbances) can be exploited for effective control of separation using pulsed
vortex generator jets.

Keywords: laminar separation, convective/absolute instability, separation control

1. INTRODUCTION
In spite of considerable progress in recent years, both separation and laminar-

turbulent transition are not well understood. Matters get highly complicated
when transition and separation are present simultaneously and interact in a
physically complex manner. This is the case for low Reynolds number bound-
ary layers in the presence of strong streamwise adverse pressure gradients and
for convex wall curvature. The importance of hydrodynamic instability mecha-
nisms in understanding separation and reattachment in laminar separation bub-
bles was already recognized by Gaster in his Ph.D. thesis 50 years ago (see
Gaster, 2004). In his seminal work involving experiments and theory, he con-
jectured that a “true” instability mechanism (which was later rediscovered and
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called absolute instability) may be at play. Practical applications where the
interaction of transition and separation is relevant include unmanned aerial ve-
hicles (UAVs), low-pressure turbines (LPTs), wind turbines, etc. In order to
design efficient and robust flight vehicles or turbines, for example, it is es-
sential that the fundamental physical mechanisms that are present in the in-
teraction of separation and transition are understood. This understanding is
particularly relevant also when passive and active flow control techniques are
being considered.

For low free-stream turbulence levels, transition to turbulence in boundary
layers is caused by a hydrodynamic instability, as a consequence of which dis-
turbance waves arise that are amplified in the downstream direction. For low
levels of environmental disturbances, these waves are, at first, predominantly
two-dimensional. Streamwise adverse pressure gradients have a destabiliz-
ing effect such that the amplification rates increase and the critical Reynolds
number decreases. If the adverse pressure gradient is strong enough, the flow
separates, and the inflection point in the velocity profile moves farther and
farther away from the wall. As a consequence, the flow becomes inviscidly
unstable (Kelvin-Helmholtz instability), resulting in ever larger growth rates
of the instability waves. Due to the high amplification rates, these waves
rapidly (within the streamwise extent of the bubble) reach large (non-linear)
amplitudes, visible in experiments as 2-D spanwise vortices (“rollers”). The
presence of these large-amplitude waves (or vortices) facilitates an exchange
of momentum between the high-momentum fluid away from the wall and the
low-momentum fluid in the separated region close to the wall. This exchange
of momentum limits the extent and intensity of the separation. Of course,
once the two-dimensional waves have reached high enough amplitudes and
the Reynolds number is large enough, secondary instabilities can take hold
that will lead to a rapid breakdown to small 3-D structures and eventually to
fully turbulent flow. The smaller 3-D scales (due to the added eddy-viscosity)
weaken the coherence and strength of the 2-D rollers and, as a consequence
of this, reduce the exchange of momentum due to these rollers. Of course, the
extra eddy-viscosity caused by the small scales also has an effect of resisting
separation due to the higher wall shear. Thus, both mechanisms are relevant
and can be exploited for limiting the extent of separation or preventing it alto-
gether. An example is the use of “tripping” devices for transitioning the flow
so that separation is prevented or delayed. To complicate matters even fur-
ther, for separated flows, the instability mechanisms may be “convective” or
”absolute/global” (for a definition and detailed discussion regarding convec-
tive and absolute/global instability, see Huerre and Monkewitz, 1990). From
the discussion above, it is obvious that separation and transition (and therefore
also hydrodynamic instability) are intricately linked.
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In our research, we are employing Direct Numerical Simulations (DNS) for
investigating this intricate interplay of separation and transition, in particular
also with regard to its relevance for Active Flow Control (AFC) applications.
In this paper, we will attempt to shed light on some of the key physical mech-
anisms in the interaction of laminar separation and transition by employing
simulations of simple prototypical flow geometries. The understanding gained
from these simplified model simulations will then be employed for extracting
the relevant mechanisms that are present in active control of separation for
low-pressure turbine cascades.

2. DIRECT NUMERICAL SIMULATIONS

For the present investigations, Direct Numerical Simulations will be em-
ployed. The Navier-Stokes codes used for these simulations were developed in
our Computational Fluid Dynamics Laboratory. The incompressible Navier-
Stokes equations are solved in vorticity-velocity formulation,

∂�ω

∂t
= (�ω · ∇)�v − (�v · ∇) �ω +

1
Re

∇2�ω, (1)

where �ω = −∇×�v = [ωx, ωy, ωz]T is the vorticity vector and �v = [u, v, w]T is
the velocity vector. The velocity equations are obtained from the definition of
vorticity and from the fact that the velocity and vorticity vectors are solenoidal,

∇2�v = ∇× �ω. (2)

The governing equations are discretized with 4th-order accurate compact dif-
ferences in the streamwise and the wall-normal direction. The spanwise di-
rection (for the 3-D simulations) is assumed to be periodic and is treated by
a pseudo-spectral Fourier method. A 4th-order accurate Runge-Kutta scheme
is used for the time integration. The numerical method is discussed in detail
in Meitz and Fasel, 2000. Parallelization using MPI is employed to allow for
highly-efficient computations on vector-parallel supercomputers such as the
Cray X1. Our codes have been validated in numerous simulations of transition
and separation for a variety of flow geometries, flow speeds, and applications
(see Wernz and Fasel, 1999; Fasel, 2002; Postl et al., 2003; Postl et al., 2004).

3. LAMINAR SEPARATION BUBBLES

In order to elucidate the complex interaction of separation and transition,
we will first present and discuss results for a simple flow geometry, namely a
laminar separation bubble on a flat plate. For the simulations presented here,
the separation bubble is generated by a volume force field such that the bound-
ary layer is first accelerated and then decelerated in such a way that a generic
separation bubble is generated (see figure 1). In principle, the separation bub-
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Figure 1. Computational setup for the simulations. Left: integration domain; right: “ramp-
ing” function for the volume force field to generate separation bubbles

ble could also be generated by imposing a pressure gradient at the free stream
boundary. However, using volume force fields facilitates numerically the tai-
loring of the separation bubble such that certain properties are exposed. De-
pending on the strength of the volume force field, i.e. the magnitude of the
acceleration or deceleration of the boundary layer, the simulations will yield
separation bubbles that can be steady or unsteady, as the results presented be-
low will demonstrate.

Case 1: Steady Separation Bubble

For this simulation, the force field is gradually imposed on an attached, zero
pressure gradient boundary layer (see figure 1). The final, maximum acceler-
ation/deceleration is chosen such that the flow reaches a steady state behavior
(as shown in figure 2), albeit by a small margin. A slight increase in the maxi-
mum acceleration/deceleration would no longer yield a steady-state flow. The

Figure 2. Case 1: Spanwise vorticity contours for the steady state

temporal development of the separated region can be observed clearly from the
instantaneous wall shear, as shown in figure 3. It is obvious that the separated
region increases with time until a final, steady state is reached. The velocity
profile at the location of maximum negative wall shear stress is given in figure
4, indicating that a reverse flow of approximately 13% of the free stream veloc-
ity is reached. This is mentioned here since in several other research efforts, it
was observed that the intensity of the reverse flow is one of the parameters that
determines whether the flow is convectively or absolutely (globally) unstable.

Here, we attempt to determine if the flow is convectively or absolutely un-
stable by using a numerical simulation tool similar to the one proposed by
Brancher and Chomaz, 1997. For this, we set up a separate simulation with a

74



Interaction of separation and transition in boundary layers: DNS

5 10 15 20 25 30
x

-5

0

5

10

15

20

ω
z,

w
al

l

time

Figure 3. Case 1: Temporal develop-
ment of the spanwise wall-vorticity

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
u / U∞

0

0.2

0.4

0.6

0.8

1

y

data
analytic approx.

u
r
=13%

Figure 4. Case 1: Velocity profile at
the location of max. negative wall shear

parallel base flow and periodic inflow/outflow boundary conditions. The base
flow is constructed by using the velocity profile (from the spatial simulation)
that is to be examined with respect to its convective or absolute instability (fig-
ure 5). Then, at a sufficient distance from the inflow and outflow boundaries,
a very small pulse disturbance is introduced through a blowing and suction
slot. The pulse generates a wave packet that grows in time and in space (if
the profile is unstable), as shown schematically in figure 6. If the trailing edge
of the wave packet propagates downstream (see left-hand-side of figure 6), the
profile is classified as convectively unstable. If the trailing edge propagates up-
stream (see right-hand-side of figure 6), the profile is absolutely unstable. Of

x

y

pulse

parallel
flow

Figure 5. Computational setup for convective/absolute instability investigations

Figure 6. Schematic of convective and absolute instability. Left: convective instability; right:
absolute instability (Huerre and Monkewitz, 1990)
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Figure 7. Case 1: t/x diagram of the distur-
bance wall-vorticity

Figure 8. Case 1: Fourier
amplitude of the disturbance
wall-vorticity

course, the calculation becomes meaningless when the perturbations reach the
inflow and/or the outflow boundaries. Therefore, it is essential that the compu-
tational domain is sufficiently large so that a clear trend is established before
the perturbations reach these boundaries.

Applying this tool for the velocity profile of figure 4 yields the response
given in figure 7. To construct the t/x diagram of figure 7, the spanwise vor-
ticity perturbations at the wall are used. It is obvious that these perturbations
grow, but remain contained in a wedge. The trailing edge of the wave packet
propagates downstream, thus confirming that this profile is convectively un-
stable, but absolutely stable. This is consistent with the fact that our spatial
simulation of this bubble leads to a steady behavior without unsteady perturba-
tions. The fact that this profile is convectively unstable can be clearly observed
from figure 8, where the Fourier amplitude of the spanwise disturbance vor-
ticity at the wall is plotted versus the downstream direction. The increase
in amplitude by approximately seven orders of magnitude is an indication of
the very strong (convective) instability which is caused by the inviscid (inflec-
tion point) instability mechanism. However, as seen in figure 8, the amplitudes
never reach levels large enough to observe a “visible” unsteadiness as “con-
firmed” by figure 2. Figure 8 clearly points to the difficulty and dilemma when
using numerical simulations and/or experiments for determining if a flow is

Figure 10. Case 1: Instantaneous vorticity contours for random forcing
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convectively or absolutely (globally) unstable based on observations of “nat-
ural” (unforced) perturbation waves or vortex shedding. Due to the enormous
amplification rates of the instability waves (see figure 8), extremely small back-
ground disturbances (for example due to round-off error in simulations or free
stream turbulence in experiments) can lead to visible, large disturbance waves
and vortices without additional “controlled” forcing. To demonstrate this, we
used the steady flow field of the previous simulation (see figure 2) as initial
condition and introduced small, controlled perturbations (with an amplitude
of 0.1% of the free stream velocity) by periodic blowing and suction through
a slot located upstream of the separation location (see figure 9). The pertur-
bations quickly grow to very large amplitudes, not surprising considering the
very high growth rates observed in figure 8, so that large amplitude waves de-
velop (typically described in the literature as “vortex shedding”). The large
amplitude waves or “vortices” (“rollers”) enhance the exchange of momentum
between the inner and outer fluid.

To answer the question of whether this phenomenon is only an artifact of the
periodic forcing, we performed a simulation where random forcing was used
instead of periodic forcing (everything else being the same). This is a better
model of the effects of “uncontrollable” environmental disturbances that arise
in experiments (free stream turbulence, vibrations, noise, etc. ) or in numerical
simulations (discretization and round-off errors). The response to the random
forcing, as shown in figure 10, makes it obvious that the convective instability
mechanism quickly leads to large perturbation waves (or vortices) as before,
but, of course, not with a single frequency as the flow is unstable with regard
to a band of frequencies. It is important to note that, in both simulations, the
bubble returns to a steady state when the forcing is turned off.

Case 2: Marginally Unsteady Separation Bubble

In the next sequence of simulations presented here (case 2), the accelera-
tion/deceleration in the force field was chosen such that large amplitude insta-
bility waves or “vortex shedding” occurred “naturally” (see figure 11), that is
without adding “controlled” forcing, either periodic or random, as for the pre-
vious case 1. As before, the simulation starts with an attached boundary layer

Figure 11. Case 2: Instantaneous spanwise vorticity contours
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flow as initial condition and then the volume force field is gradually imposed.
(the time over which the force field is “ramped in” was doubled compared to
case 1). It is noteworthy that the intensity of the force field is increased only
by approximately 5% compared to case 1, indicating the strong sensitivity of
the flow field to the increased acceleration/deceleration.

Is the observed unsteadiness due to convective or absolute instability mecha-
nisms? As observed from the previous case, the growth rates of the convective
instability are very strong (see figure 8). Now, with the stronger accelera-
tion/deceleration and, associated with this, the stronger separation, the ampli-
fication rates of the convective instability would also be accordingly larger.
Therefore, the finite amplitudes that are reached (as a result of convective
growth) may be such that “visible” vortex shedding can be observed. How-
ever, the unsteadiness or vortex shedding could, of course, also result from
an absolute/global instability. To answer the question of whether an absolute
instability is at play, we examined the profile with the maximum reverse veloc-
ity (approximately 25%), as shown in figure 12. This profile is only reached
momentarily just before the shedding sets in. In order to establish a t/x di-
agram, we used the same numerical tool as discussed previously. The result
of this analysis is presented in figure 13. As before, the wave-packet-type
disturbances grow in time and in space, and are contained in a wedge region.
Contrary to the previous case, the left boundary of the wedge is now practically
vertical, indicating that the trailing edge of the wave packet is stationary. Thus,
disturbances never really convect entirely out of the field. Therefore, we clas-
sify this profile as “marginally” absolutely unstable. However, it is not possible
to unequivocally attribute the observed vortex shedding to an absolute/global

Figure 14. Case 2: Instantaneous vorticity contours for periodic forcing
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Figure 15. Case 2: Instantaneous spanwise vorticity contours for a pulse disturbance

instability mechanism, because, as discussed previously, the strong convective
instability is present at the same time.

What happens now if we additionally introduce external perturbations as
for the previous case? The response to upstream periodic blowing and suction
with the same small amplitude as in section 1 is presented in figure 14. Com-
paring with figure 9 for the weaker separation (convective instability only), the
responses are practically indistinguishable. This is an additional indication that
judging convective versus absolute instability based on observed vortex shed-
ding is misleading, at best. It should be noted, also, that the bubble returns to
the self-sustained shedding when the additional external forcing is discontin-
ued.

What happens if we only force with an initial pulse before the shedding has
established itself (the pulse is introduced through a slot at the same location
as for the periodic forcing)? A series of instantaneous plots for this simulation
are presented in figure 15. After the wave packet created by the pulse has
propagated through the separated region (and generating large structures in
doing that), the bubble develops the same way as without the pulse forcing,
that is it develops the self-sustained shedding as before, thus confirming the
marginal absolute instability.

Case 3: Unsteady Separation Bubble

In a third case, the intensity of the volume force field is increased by another
5% from the previous case. The time-dependent development of the separation
bubble is illustrated in figure 16. It is obvious that stronger and more energetic
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Figure 16. Case 3: Instantaneous spanwise vorticity contours

vortical structures are generated. The velocity profile for the location with the
maximum reverse velocity (figure 17) now indicates a maximum reverse veloc-
ity of 38%, considerably larger than before. Thus, a “true” absolute instability
should be visible in this case. This is confirmed by the t/x diagram in fig-
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Figure 18. Case 3: t/x diagram of the disturbance
wall-vorticity

ure 18, which shows, in contrast to before, that the perturbations now indeed
travel upstream. For the full spatial simulation, at the location where this ve-
locity profile arises, the disturbances grow in an absolutely unstable manner.
In other words, a continuous “oscillator” is present that generates perturbations
of increasing amplitude until a non-linear, finite equilibrium is attained. The
streamwise extent of this absolutely unstable behavior is, of course, limited by
the fact that sufficiently far away from the location where the maximum reverse
flow is reached, the local profiles become absolutely stable. This is essentially
the mechanism that leads to “global” modes (Couairon and Chomaz, 1996).

Case 4: Highly Unsteady Separation Bubble

In this final case, the force field is such that it generates velocity profiles
with considerably larger reverse velocities than in all the previous simulations.
The instantaneous flow field shown in figure 19 illustrates the development
of highly energetic structures. The entrainment and exchange of momentum
caused by these structures is so strong that the extent of the separation is dras-
tically reduced. Shortly before vortex shedding sets in, the maximum reverse
velocity for this case is approximately 55% (see figure 20). The t/x diagram
of figure 21 illustrates the very strong absolute instability obtained from a local
analysis as discussed before.
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Figure 19. Case 4: Instantaneous vorticity contours

All the simulations presented so far were two-dimensional, thus all three-
dimensional effects were (deliberately) neglected. As a consequence, sec-
ondary (3-D) instability mechanisms were excluded and, in particular, the
breakdown to turbulence could not occur. The only mechanisms allowed so
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far were viscous (Tollmien-Schlichting) and inviscid (Kelvin-Helmholtz) in-
stability mechanisms. Thus, the question arises what contributions would arise
from 3-D effects, and, in particular, from allowing the flow to transition? A
simulation of the last case was performed for which the 2-D simulation was
used as an initial condition for a 3-D simulation that now allows breakdown to
turbulence. As can be observed from figure 22, compared to the 2-D simula-
tion, the strong 2-D structures are considerably weakened, although shedding
of 2-D coherent structures (“rollers”) can still be observed. The weaker struc-
tures provide less exchange of momentum between outer and inner regions,
and, as a consequence, the extent of the separation is greatly increased.

Finally, for the same case (pressure gradient), the simulation is started up
immediately in 3-D instead of first establishing a 2-D simulation as before (for
brevity, no plots are shown for this case). As in the 2-D simulation, large lam-
inar (2-D) structures initially develop before the flow eventually transitions.
In other words, the 3-D simulation looks exactly like the 2-D simulation for
quite some time. This observation provides additional evidence of the fact that
the flow is initially absolutely unstable with respect to two-dimensional distur-
bances and that the growth of 3-D perturbations is the consequence of a sec-
ondary instability mechanism. The precise nature of this secondary instability
mechanism is not fully understood, as the breakdown of the flow could either
be due to a convective secondary instability (with very large growth rates) or
due to an absolute secondary instability (as suggested by Maucher et al., 1997
and Marxen et al., 2004).

The examples presented here demonstrate the intricate interplay of sepa-
ration, hydrodynamic instability waves, and transition, where several compli-
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Figure 22. Case 4: Instantaneous vorticity contours (3-D simulation)
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cated physical mechanisms are at play. The same (and possibly additional)
mechanisms are likely to be relevant for practical applications where geome-
tries are more complex. Therefore, the information gained from these generic
investigations should serve well in interpreting the more complex situations
of practical applications, and should serve particularly well for understanding
and improving strategies for active control of separation. An example of this
is active control of separation for low-pressure turbines using vortex generator
jets, which will be discussed below.

4. ACTIVE CONTROL OF SEPARATION USING
VORTEX GENERATOR JETS

In many modern gas turbines, laminar separation on the suction side of low-
pressure turbine (LPT) blades can result in considerable performance losses.
Boundary layer separation is especially problematic under low Reynolds num-
ber operating conditions as encountered in off-design operation, during high-
altitude cruise, or in small engines such as those used in modern unmanned
aerial vehicles. Experiments conducted at the Air Force Research Laboratory
(AFRL) by Bons et al., 2001a; Bons et al., 2001b and Sondergaard et al., 2002
for a linear PakB LPT cascade convincingly demonstrated that losses incurred
by laminar boundary layer separation could largely be reversed when pulsed
vortex generator jets (VGJs) were employed upstream of the separation loca-
tion. Although pulsed VGJs were shown to be much more effective than steady
VGJs, the underlying physical mechanisms responsible for this observation are
far from understood. As the relatively low Reynolds numbers (Re = 25, 000
based on axial chord length, Cx) permit the use of “fully” resolved Direct
Numerical Simulations (i.e. with a resolution down to the Kolmogorov scale,
(∆x,∆y, ∆z) = O(lk)), we have begun investigating separation for a flat-
plate boundary layer which is subjected to the same streamwise pressure gra-
dient as measured in the experiments at AFRL. In the present section, we sum-
marize results obtained from these recent investigations (Postl et al., 2004) and
attempt to interpret them in light of the understanding gained from the simu-
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Figure 23. Computational setup for the 3-D
DNS

Figure 24. Schematic of the
VGJ actuation
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lations of section 3. For details on our simulations of the experimental LPT
cascade, see Gross and Fasel, 2005.

The computational setup for the present simulations is schematically de-
picted in figure 23. A highly accelerated laminar boundary layer profile ob-
tained from a pre-cursor calculation is specified at the inflow. In contrast to
the simulations discussed previously, the pressure gradient is imposed at the
free stream boundary by specifying a Neumann condition for the wall-normal
velocity component (see figure 23). The VGJs are modeled by prescribing
appropriate Dirichlet conditions for the velocity components at the wall. The
setup of the VGJ actuation is schematically depicted in figure 24. The leading
edge of the hypothetical LPT suction surface is located at x = 0, the hypothet-
ical trailing edge is located at x = 10.18.

The free stream boundary condition imposed in the simulations was ad-
justed iteratively in a priori calculations until good agreement was obtained for
the Cp distribution measured in the experiments. The wall-pressure coefficient
versus suction surface length (SSL) for the uncontrolled case is shown in fig-
ure 25. The pressure plateau downstream of 62% SSL indicates the region of
boundary layer separation. Velocity profiles at various streamwise locations
are presented in figure 26.
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Figure 25. Wall-pressure coefficient for
the uncontrolled boundary layer
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Figure 26. Velocity profiles for the un-
controlled boundary layer

The experimental profiles do not show negative velocities because the mea-
surements were obtained from single hot-wire probes. While the profile at
92% Cx may indicate attached flow, it is in fact separated. The careful setup of
the numerical simulations results in a good agreement with the experimental
data for the base flow. Typical results from a simulation of the uncontrolled,
separated boundary layer are presented in figure 27. In the mean, the bound-
ary layer separates at approximately x = 5.7 and reattaches at approximately
x = 15.8. Since the trailing edge of the hypothetical suction surface is located
at x = 10.18, the flow for an actual LPT cascade would, for this case, not
reattach to the blade surface.
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Figure 27. Instantaneous vorticity contours for the unforced case

In the simulations with pulsed VGJ control, the momentum coefficient cµ

was 1.65 · 10−5 (based on maximum jet exit velocity), the hole-diameter was
D ≈ 0.15, the duty cycle τ (ratio of jet on-time to forcing period) was 10%,
and the non-dimensional forcing frequency F+ was 4.2 (based on reference
velocity U∞ and axial chord length Cx).

In figure 28 (from top to bottom), spanwise wall-vorticity contours are shown
in a top view towards the wall for the unforced case, a case with pulsed, verti-
cal VGJ actuation, a case with pulsed, angled actuation, and a 2-D simulation
with periodic blowing and suction through a slot. In all three controlled cases,
the forcing has a significant effect on the time-averaged extent of the separa-
tion region (bright areas represent attached flow, dark areas represent separated
flow).

Figure 28. Time-averaged contours of spanwise wall-vorticity. Top view towards the surface

Figure 29 shows the wall-pressure coefficients obtained from these simula-
tions in comparison to the unforced case. Also included is the curve obtained
from a simulation where the boundary layer was tripped to turbulence upstream
of the separation location, resulting in an attached flow along the entire surface.
This curve represents the “ideal” pressure distribution for this particular pres-
sure gradient as the trip prevents separation altogether. For each of the forced
cases shown in figure 29, the location of the pressure minimum moves down-
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stream compared to the unforced case. The pressure distribution obtained from
the 2-D simulation is in excellent agreement with the fully attached flow in the
region between 30% and 65% SSL.

For the pulsed VGJs, the reattachment of the flow appears to be due (at
least partially) to the momentum exchange as a consequence of an acceler-
ated boundary layer transition. The transition process can be clearly observed
in figure 30. Here, the λ2 vortex identification criterion (Jeong and Hussain,
1995) is used to highlight the nature of the structures created by the pulsed
jets. Λ-structures, along with the subsequent development of ring-like or hair-
pin vortices, appear only a short distance downstream of the forcing location.
These structures closely resemble the late stages of classical Klebanoff-type
transition scenarios (Rist and Fasel, 1995; Bake et al., 2002). Thus, it is ob-
vious that the pulsed VGJs are very effective in triggering a “by-pass” mecha-
nism leading to a relatively quick breakdown to turbulence. However, trigger-
ing breakdown to turbulence may not be the entire story because, in the 2-D
simulation (where breakdown is prevented), separation can also be controlled
effectively by periodic forcing. We therefore conjecture that, in addition to
accelerating transition, forcing with pulsed jets also exploits an instability of
the underlying base flow with respect to two-dimensional disturbances. To
scrutinize this conjecture, the amplification of the two-dimensional component
of the instability modes resulting from the forcing with pulsed VGJs is plot-
ted in figure 31. Shown is the development of the Fourier amplitudes for the
spanwise disturbance wall vorticity for both vertical and angled VGJs. Despite
the relatively large amplitudes at the forcing holes, the disturbances grow ex-
ponentially (linear in the log-plot) downstream of an adjustment region. The
exponential growth is a strong indication that linear instability mechanisms are
present. Therefore, forcing with the “proper” frequencies exploits the natural
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Figure 32. Instantaneous iso-surfaces of
spanwise vorticity obtained from a simulation
of a generic separation bubble forced with
pulsed, vertical VGJs

instability of the underlying flow and the energy input required to produce large
perturbations can be minimized. In other words, a relatively small disturbance
input can yield strong spanwise coherent structures that aid in the entrainment
of high-momentum fluid from the free stream.

The spanwise coherent structures that can develop when this two-dimensional
instability mechanism is exploited are illustrated in figure 32. Shown are re-
sults obtained from simulations of a generic separating boundary layer using
pulsed, vertical VGJs (Postl et al., 2003). It is obvious that, in spite of the
inherent three-dimensionality of the forcing through localized holes, a two-
dimensional disturbance component is introduced as part of the actuation.

In our simulations, the spanwise coherence of the large structures remains
strong far into the transitional and turbulent regions for both pulsed, vertical

Figure 33. POD analysis of a generic separation bubble forced with pulsed, vertical VGJs.
Left: iso-surfaces of wall-normal velocity for POD mode 1; right: associated POD- and forcing
time signals
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VGJs and pulsed, angled VGJs (not shown here). The development of the
spanwise coherent structures was also confirmed by applying a Proper Orthog-
onal Decomposition (POD) to the time-dependent data. Shown in figure 33,
for example, are wall-normal velocity contours of POD mode 1 for forcing
with pulsed, vertical jets. This mode contains the most energetic unsteady
structures. The coherent structures present in the flow can therefore clearly
be identified as pre-dominantly two-dimensional. The time signal associated
with POD mode 1 is also shown in figure 33. Comparison of this time signal
to that of the VGJ input reveals that the structures are synchronized with the
forcing and develop as a direct consequence of the actuation. Based on this
evidence, we believe that the inviscid instability mechanism that leads to the
large “coherent” two-dimensional “rollers”, as demonstrated in the previously
discussed model simulations (section 3), can be exploited for effective control
of low-pressure turbine separation.

5. CONCLUSION

Using Direct Numerical Simulations of generic laminar separation bubbles,
we demonstrated the complex interaction of separation and transition, and,
in particular, also the role of hydrodynamic instability in explaining the un-
steadiness observed in experiments. The understanding gained from the model
geometries helped us to interpret the physical mechanisms that are at play when
active flow control using pulsed VGJs is employed for controlling separation
in low-pressure turbines. The presented results and discussions are “work in
progress” and should therefore not be accepted as definitive. With additional
simulations, we intend to scientifically substantiate the preliminary findings
presented in this paper. In particular, with similar, well-tailored simulations,
we plan to focus on many of the unresolved issues addressed in the paper by
Gaster, 2004, such as the effect of Reynolds number, short bubbles versus long
bubbles, bubble bursting, etc.
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Abstract: The instability of nominally laminar steady two-dimensional closed separation 

bubbles is investigated using direct numerical simulations and BiGlobal 

instability analysis. The canonical flat-plate case is studied in some detail. We 

demonstrate that large steady two-dimensional bubbles may become unsteady 

and shortened in the mean upon applying periodic forcing. Using BiGlobal 

instability analysis we demonstrate, for the first time, the generation of Kelvin-

Helmholtz instabilities as solutions of the pertinent partial-derivative eigenvalue 

problem, without resorting to the simplifying assumptions on the form of the 

underlying basic state. Finally, we employ appropriate instability analysis to 

study the effect of periodic forcing as means of active control of separation on a 

trailing-edge geometry. 

Key words: Separation bubble, Wake flow, BiGlobal flow instability 

1. INTRODUCTION 

Our present concern is with instability of two-dimensional steady laminar 

separation bubbles in planar and bluff-body geometries. The numerical 

approaches utilized in our analyses encompass two-dimensional direct 

numerical simulations (DNS) and BiGlobal instability analyses via solutions 

of the linearized Navier-Stokes equations or the partial-derivative eigenvalue 

problem. Particular emphasis is placed on the identification, demarcation 

and classification of well-known local (Kelvin-Helmholtz) and less explored 
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global instability mechanisms. The ultimate objective of the ongoing 

research is to reduce the parameter space in which either of the 

aforementioned instability scenarios is operative and propose criteria for 

efficient control of generic laminar separated flow configurations.

Two distinct applications have been chosen for the numerical work: 

adverse pressure-gradient flow in the boundary layer on a flat plate and the 

trailing edge of a bluff body. In the first application, the imposed pressure 

gradient is adjusted in order to control the size and shape of the separation 

bubble. In the second application, serving as a model for the trailing edge of 

airfoils or low-pressure-turbine blades, separation is induced by the 

geometry and the imposed boundary conditions. In the bluff-body model we 

are interested in exploiting global instability mechanisms to modify the 

structure and characteristics of the wake, while in the flat-plate model we are 

interested on the one hand in preventing open separation and on the other 

hand in shortening the length of the bubbles, without generating boundary 

layers with increased drag.  Further motivation is provided by the recently 

found independence of the spatial characteristics of the amplitude functions 

of the leading global eigenmode of laminar separated flow on the underlying 

geometry [10] and the need to further explore global instability phenomena 

in distinct separated flow configurations. 

2. THEORETICAL AND NUMERICAL METHODS 

2.1 Linear instability analyses 

Steady two-dimensional basic states are obtained and analyzed with 

respect to their three-dimensional BiGlobal linear instability. The latter 

problem is addressed by either solving the three-dimensional linearized 

Navier-Stokes and continuity equations,  

[ t + U x + V y]  ̃u + ũ xU + ṽ yU + x p̃ - 1/Re [ 
2
-

2
] ũ = 0, (1)

[ t + U x + V y] ṽ + ũ xV+ ṽ yV+ y p̃ - 1/Re [ 
2
-

2
] ṽ = 0, (2)

[ t + U x + V y] w̃ - p̃ - 1/Re [
2
-

2
] w̃ = 0, (3)

x ũ + y ṽ - w̃ = 0, (4)

following a decomposition of the flow vector q according to q(x,y,z,t) = 

Q(x,y) + q̃ (x,y,t) exp (–i  z ) + c.c. Further, the partial-derivative 

eigenvalue problem is solved, as resulting from the substitution q̃ (x,y,t) =               

q’ (x,y) exp ( – i + i r ) t + c.c., where Q = (U, V, 0, p)
T, and

90



On fundamental instability mechanisms 

q’=(u’,v,’,w’,p’)
T. The periodicity length Lz, in the spanwise direction is 

associated with the real wavenumber parameter through Lz = 

2.2 The numerical work 

A set of different codes has been developed and utilized, each being 

appropriate for an individual task arising in the course of the present work.  

Two-dimensional DNS work in the canonical flat-plate geometry is 

performed using a code which solves the incompressible Navier-Stokes and 

continuity equations in primitive variables using the fractional step method 

presented in [6]. The equations are discretized using fourth-order compact 

finite-difference schemes on a regular cartesian staggered grid [5] in the 

directions parallel (x) and perpendicular (y) to the wall. Third-order Runge-

Kutta is used for explicit time integration of all but the viscous term in y,

which is treated implicitly. The Poisson equation for the pressure is solved 

using multigrid. The Cartesian grid used is stretched in the y- and uniform  

in the x-direction. A three-dimensional extension of this code, employing 

Fourier collocation to resolve the homogeneous spatial direction is used for 

the associated 3D work.

The instability analyses of the bluff body are performed by solution of 

the 3D linearized Navier-Stokes and continuity equations. In the canonical 

flat-plate flow instability analyses are performed by solving the partial-

derivative eigenvalue problem corresponding to (1 – 4) when the time-

derivative is replaced by a harmonic expansion in time. Spectral collocation 

methods based on Chebyshev polynomials are used to discretize in a coupled 

manner the spatial operator in the wall-normal and the downstream 

direction.  Boundary conditions based on extrapolation of different orders 

are used in  the (open) downstream flow direction and  Krylov subspace 

iteration  methods are employed  to identify the interesting part of the 

eigenspectrum, as has been successfully demonstrated, e.g. in [8, 9].  

A general-purpose two-dimensional finite-element code, applicable to 

arbitrary geometries [4] is used for the direct numerical simulations 

associated with the latter part of our research. In two spatial dimensions,      

the code is based on the combination of the characteristics [2] and the 

conjugate-gradient method [3]. The latter algorithm is used to solve the 

Stokes problem that results after discretization of the material derivative by 

the semi-lagrangian scheme. A Taylor-Hood finite element type is used,    

the accuracy of which is quadratic for the velocity and linear for the 

pressure. Convective terms are treated using a semi-langrangian scheme, 

where the characteristic path must be sought on an unstructured mesh. The 

evaluation of the viscous term is performed by an implicit Crank-Nicholson 
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scheme. An extension of the same code solves the three-dimensional 

linearized Navier-Stokes equations (1 – 4) using analogous techniques.

The basic flow field around a 2D bluff-body in a rectangular domain        

x � [ 0, 45 ]  y � [ -20, 20 ] is resolved. The geometry is  non-

dimensionalized by the body width and the free-stream velocity. The 

immersed object, modeling the trailing edge of a low-pressure-turbine or 

airfoil has a length of 4 and a width of 1 unit, with circular-arc rounded 

corners and a curvature radius of 0.4 units. Steady and unsteady basic flows 

have been obtained at angles of attack  = 0º and 3º, in the Reynolds number 

range Re � [ 60, 400 ]. Unstructured meshes with a total of ~3  104 nodes 

have been used to solve this geometry. Boundary conditions used are of 

Dirichlet type at the inflow, upper and lower sides of the domain and non-

reflecting (natural) boundary conditions at the outflow boundary. At the  

body surface no-slip is applied for the baseline calculations, while basic 

states are also obtained by modifying the boundary condition at the rounded 

corners. The imposed velocity at the corners results in counter-rotating fluid 

motion and has a magnitude of      ||u|| = A [1+cos(4· - )], where the angle 

 is taken along the azimuthal direction in the 1st and the 2nd quadrant. In the 

3D linearized Navier-Stokes work, boundary conditions on the disturbance 

quantities are homogeneous Dirichlet on all surfaces, except for the outflow 

boundary where non- reflecting boundary conditions have been employed. 

3. RESULTS 

The basic states obtained on the canonical geometry are characterized by 

a momentum-thickness Reynolds number Re = 28, the numerical domain 

considered being defined by x  [0, 1122] y  [0, 143] in inflow 

momentum thickness  units. Without forcing, a steady state results, as 

shown in the upper right part of Fig. 1. Exploiting Kelvin-Helmholtz 

instability to force the flow unsteady two-dimensional states result, such as 

that shown in the lower right part of Fig. 1. This flow, obtained at a slightly 

higher Re = 30 and using a forcing frequency St = f b / U � = 0.018, where 

b is the momentum thickness of the shear layer above the bubble at a 

position where the velocity inside the bubble reaches a minimum [7], is 

characterized by strong vortex shedding and a mean bubble length which is 

substantially smaller than the corresponding unforced laminar bubble. 

BiGlobal instability analysis is subsequently performed, using the 

unforced steady basic flow with a twofold objective: first, identify 

frequencies in the neighborhood of that resulting in optimal modification of 

the separation bubble and, second, assess whether a three-dimensional 

instability may modify the two-dimensional steady basic state utilized (e.g. 

as in [8]). Results of two- ( = 0) and three-dimensional (  0) solutions of 
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the partial-derivative eigenvalue problem have been obtained. The 

dependence of the frequency of the three least-damped eigenmodes on  is 

shown in the left part of Fig. 2, while only stable BiGlobal eigenmodes have 

been found at = 0. Nevertheless, the recovered eigenmodes, the least-

damped of which is shown in the right part of Fig. 2, encompass structures 

that can be qualitatively associated with the vortex shedding shown in the 

lower right part of Fig. 2. Further examination of the eigenspectrum and 

classification of its members is currently underway.  

Figure 3 shows an image of the mesh used for the bluff-body simulations. 

Steady basic flow results for the streamwise velocity component at Re = 60 

in the baseline and a modified configuration, the latter obtained using A = 

1% at the two angles of attack examined so far are shown in Figure 4. At the 

zero angle of attack at which the present simulations are performed, there is 

no separation bubble formed on the suction side of the object, while well-

defined closed separation bubbles are present in the case of nonzero angle of 

attack. Instability analyses of both the baseline and the modified basic states 

are currently underway and results are contrasted against those in the NACA 

0012 airfoil and the T106-300 low pressure turbine [10].  

Figure 1. Left: schematic description of the canonical flow geometry, where                    

Vsuct = as exp (-bs ( x - cs )
2

) [1] and  Vforc = af sin(2  f t), with as = 0.35 and af = 10-2. Right, 

upper: Steady basic flow; white line indicates contour of zero streamwise velocity. Right, 

lower: Corresponding 2D flow with forcing; black line shows the zero contour of the average 

streamwise velocity  
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Figure 2. Left: Dependence of the amplification rate of the least damped 3D BiGlobal 

eigenmodes on . Right, amplitude functions of the disturbance velocity components of the 

least-damped 2D damped eigenmode; u’ (upper), v’ (middle), p’ (lower); axes scaling as in 

Figure 1 

Figure 3. The unstructured mesh utilized for the bluff-body simulations         

Figure 4. The steady baseline flow at Re = 60,  = 0 (upper left) and  = 3º (upper 

middle). The steady modified basic flow at  = 0 (lower left) and  = 3º (lower middle). 
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The present paper deals with the stability analysis of the flow induced

As the basic flow is strongly nonparallel, the modal form gives ampli-

stability problem is thus described by a PDE system whose results seem

oscillations. In order to analyse this phenomenon, cold gas experiments
are carried out. As suggested by numerical simulations, e.g. Lupoglazoff
and Vuillot, 1996, the velocity field in the cold gas set-up is expected to
reproduce faithfully the one occurring in real motors with combustion.

the present case deals with the basic flow which is strongly non parallel.
Usual stability approaches are performed within the parallel assump-
tion. In this case, using the normal mode form, the amplitude functions
depend on one space variable only and the linearized Navier-Stokes equa-
tions lead to an ordinary differential equation of Orr-Sommerfeld type.
This has been successfully applied to shear flows such as the boundary
layer or the jet flows. However there are some physical configurations
for which the basic flow is fully non parallel, its velocity field depends
on two space variables (instead of only one), like a separated boundary
layer and the boundary layer around an attachment line. In these cases,
the normal mode assumption leads to amplitude functions which depend

Under some conditions, large solid rocket motors may exhibit thrust

by wall injection either in a rectangular duct or in a cylindrical pipe.

tude functions which are dependent on two space variables. The linear

to be in good agreement with the experiments.

Abstract :

1. INTRODUCTION

In the framework of the instabilities modelling, the main difficulty in

and G. Avalon
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This second approach needs obviously large computational resources
mainly concerning the memory, but the major difficulty seems to be
related to the boundary conditions, except for the case of the Poiseuille
flow, see Tatsumi and Yoshimura, 1990. With non physical boundaries,

an outline for a flow which presents only one non physical boundary,
details can be found in Féraille, 2004. The obtained results are given in
comparison with measurements obtained with two cold gas set-ups, one
is a planar duct, the other one a cylindrical pipe.

Two configurations are analyzed, case 1 is a rectangular duct, case 2
a circular pipe, see figures below. In both cases, air is uniformly in-

�

� �

� � � � � � � � � 	 	

�

��

� � � � � � � � � 	 	

Figure 1. Figure 2.

jected through a porous wall. All quantities given below are made di-
mensionless thanks to the height H or R and the norm of the injection
velocity. The characteristic Reynolds number based on these quantities
is noted Re. In some conditions the flow is laminar at least for small
values of x. A laminar analytical steady inviscid solution exists ; in both
cases, corresponding streamfunctions are expressed by :

Ψ1 = x sin
(

πy

2

)
Ψ2 = x sin

(
πr2

2

)
(1)

where subscripts 1 and 2 correspond respectively to the rectangular duct
and the circular pipe. For the considered large Reynolds numbers, this
form is accurate enough, see Casalis et al., 1998.

The flow is strongly non parallel, particularly for small values of x, see
Figure 3. A linear stability analysis of this flow is carried out. Assuming
that the perturbation remains two-dimensional (case 1) or axisymmetric
(case 2), a streamfunction φ may be associated to the fluctuation. Due
to the non parallel nature of the basic flow, the normal mode writes as :

φ1(x, y, t) = φ̂1(x, y)e−iωt φ2(x, r, t) = φ̂2(x, r)e−iωt

2.1 Theoretical model

the published results are more recent, see Lin and Malik, 1996, Theofilis,
and Robinet and de la Motte, 2003 for instance. The present paper gives
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on two variables and the stability equations then become an eigenvalue
problem written as a system of partial differential equations.
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with ω a complex number, its real part ωr corresponds to the circular
frequency of the instability mode and its imaginary part ωi to the tem-
poral growth rate. The amplitude function thus depends on two space
variables and the linear stability problem consists in solving a partial dif-
ferential equation (PDE) for φ1 (resp. φ2) with respect to (x, y) (resp.
(x, r)) and ω is the eigenvalue to be determined.

The PDE has to be solved in a

x

r

0 2 4 6 8-1

-0.5

0

0.5

1

Figure 3.

rectangular domain. The trans-
verse coordinate y (or r) varies
between the symmetry line and
the porous wall and the axial co-
ordinate x varies from the front

wall x = 0 up to a given exit value Xe. On the first boundary, symme-
try conditions are imposed, on the second and third ones the fluctuating
velocity is imposed to be zero, the fourth boundary is artificial and “ad-
hoc” conditions are imposed (see section 2).

The two configurations of figures 1 and 2 have been experimentally
explored with the set-ups VECLA and VALDO using the same feed-
ing equipment. Air coming from a pressurized tank at 250 bar is in-
jected inside the two set-ups through elementary throats that control
the mass flow rate entering the duct at several parts of the porous wall.
To compensate the decrease of temperature due to its depressurization,
air passes inside a gas heater before its injection. The heat quantity given
to the air is controlled by a thermo-regulator whose power is adjusted
to obtain a temperature of 20◦C inside the ducts.

The porous walls of the two set-ups are formed of bronze poral ob-
tained by joining together small spheres of bronze of same diameter.
Low porosities, typically equal to 8 µm or 18 µm, are adopted for these
porous walls in order to avoid as much as possible the transfer of acoustic
energy from the duct to the backside of the porous wall. The VECLA
set-up is composed of a planar chamber which is 603 mm in length and
60 mm in width whose bottom is equipped with a porous plate of 5 mm
thickness and 581 mm in length. The height of the duct can be fixed to
10 mm, 20 mm, 30 mm or 40 mm by mounting metallic blocks under
the top wall of the chamber which contains special ports where pressure
transducers and hot wire can be introduced. A nozzle can be attached to
the downstream end of the chamber. The VALDO set-up is of modular
type with a conception in separate modules, each of them containing a
porous cylinder of 60 mm in diameter, made in porous bronze of thick-
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ness 5 mm. Air is injected into each module by three orifices which are
regularly spaced around the circumference. The modules have a length
of 168 mm and, since four modules are available at the present time, the
maximum channel length is 672 mm. Over the four modules, one has
several ports located in front of holes drilled on the surface of the porous
cylinders at which the pressure, the temperature and the velocity of the
air inside the central duct can be measured. The radial displacement of
the hot wire is ensured by a pilotable table whose variation extent is of
100 mm. The set-up can operate in two versions depending if a nozzle
attached to the end of the injecting part is used or not.

The PDE system written for φ̂ (case 1 or 2) is discretized by a spectral
collocation method in the two space directions. The problem becomes
a generalized eigenvalue problem A.X = ωB.X with A and B two ma-
trices and X the vector corresponding to the value of φ̂ on each double
collocation point. Due to the size of the matrices, the spectrum (set of
the eigenvalues ω) is obtained part by part using an Arnoldi algorithm,
see Arnoldi, 1951. This means that a target is specified before each
calculation and only the eigenvalues close to it are computed. The ob-
tained results consist in a set of discrete complex values for ω. With 100
collocation points in x and 120 in r (case 2), table 1 gives the numerical

Table 1. Converged numerical eigenvalues for five modes, Re = 1000, case 2

k 1 2 3 4 5

ωr 5.4776 10.189 14.378 18.130 21.536
ωi -4.9307 -6.8131 -8.5493 -10.258 -11.810

values of some modes identified by the integer k, see figure 5.
After several attempts, a simple extrapolation for φ̂ is imposed at

the boundary Xe. The results (eigenvalue and eigenfunction) are found
amazingly to be independent of the type of conditions imposed at x = Xe

(other conditions have been tested, see Féraille, 2004) and are also in-
dependent of the location of the exit abscissa Xe. This is clearly shown
in figure 4, which gives the contours of |Re(φ̂2)| for four values of Xe.
Except maybe in a region very close to Xe, each result is completely
superposed to the other results obtained for larger values of Xe. This
means that the general structure of the mode is determined by the up-
stream part of the flow : moving the non physical Xe downstream does
not affect the upstream physical values associated to the eigenmode.
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Figure 4. Norm of the real part of φ̂2 associated to the mode k = 5. Superposed
results obtained with four different exit sections : 4, 6, 8 and 10, Re

The first result is the spectrum i.e. the set of the complex eigenval-
ues ω. For both configurations the spectrum is plotted in figure 5 in
the complex plane (ωr, ωi). Several observations may be done, they are
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Figure 5. Spectrum in the complex (ωr, ωi) plane : case 1 (left) with Re = 1000
and case 2 (right) with Re = 2100

the same in both cases. Only (temporally) damped modes are obtained
seeing that the temporal growth rates are all negative. The basic flow
is thus stable from this point of view. The eigenfunctions especially for
frequencies (dimensionless values) between 20 and 80 exhibit actually a
huge growth in the x direction, in fact a growth which is nearly exponen-
tial. The modes are stable with respect to the time but exponentially
growing in space (with respect to x) ! It can be also remarked that only
discrete values of the frequency are obtained. This result contradicts
the conclusion obtained by using the classical normal mode approach
(assuming that the basic flow is parallel whereas it is clearly not, see
figure 3). A continuous range of frequencies corresponding to spatially
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amplified modes is predicted by this usual stability analysis, see Casalis
et al., 1998. Comparison with the experiments is given in figure 6. The
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Figure 6. Comparisons between the new stability analysis and measurements of the
fluctuating velocity by a hot wire : case 1 (left) and case 2 (right)

vertical dashed lines correspond to the dimensional values of the different
discrete modes k shown in figure 5. A rather good agreement is obtained
especially in case 2 and the experimental results seem to be closer to a
discrete structure than exhibiting a continuous range of amplified fre-
quencies. The modes are temporally damped, are exponentially growing
in x and only some of them are measured. This may indicate that the
environmental fluctuations are very important in terms of receptivity.
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THE PECULIARITIES OF DEVELOPMENT 

OF FORERUNNERS ON LONGITUDINAL 

STRUCTURES FRONTS IN THE BOUNDARY 

LAYER OF A STRAIGHT WING 

Vasiliy N. Gorev, Mikhail M. Katasonov and Viktor V. Kozlov 
Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia 

Abstract: Wind-tunnel experiments on longitudinal structures developing in laminar 

boundary layers on a straight wing have been carried out. High-frequency 

perturbations, that is, “forerunners” occurring near the fronts of the streamwise 

disturbances were detected. Their characteristics and dynamics were clarified 

revealing similarities of the disturbances with boundary-layer instability 

waves.

Key words: flow; turbulence; subsonic; wind tunnel; hot-wire anemometer; boundary 

layer; disturbances; streaky structure; Tollmien-Schlichting wave; forerunner. 

1. INTRODUCTION 

In recent years the longitudinal localized vortex disturbances, so called 

“streaky structures”, or “puffs” appearing in boundary layers under the effect 

of external flow turbulence are of much interest. Once these disturbances are 

generated, they amplify downstream, and incipient spots appear which, 

finally, result in laminar-turbulent transition [1, 2].

In the present paper on wave packets occurring in the regions preceding a 

drastic change of the velocity inside the boundary layer at the longitudinal 

structures fronts are in focus. Their characteristics and dynamics have been 

studied, thus analogy has been found between this type of the vortex 

disturbances and Tollmien-Schlichting waves. 
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2. EXPERIMENTAL PROCEDURE 

The investigations were carried out in the subsonic low-turbulent wind 

tunnel T-324, ITAM SB RAS (Fig. 1); the test section of the facility is 

1000 mm x 1000 mm x 4000 mm. Free stream velocity was U0 = 8.3 m/s at 

the turbulence level smaller than 0.04%. The model was a straight wing of 

1000 mm span with the chord of 450 mm set vertically at the positive angle 

of attack of 5o. The disturbances were generated via blowing (suction) 

through a slot arranged in the surface perpendicularly to the free stream. The 

slot was located at the distance of 40 mm from the leading edge of the wing. 

The sizes of the slot were: width of 0.5 mm, length of 90 mm. The blowing 

(suction) was carried out with the aid of a compressor, their duration was 

controlled by a fast valve synchronized to a signal-recording system.

Figure 1. Layout of the experiment. 1 –test section of the wind tunnel, 2 - wing profile, 3 – 

traverse system, 4 - hot-wire anemometer, 5 - signal to the hot-wire meter bridge and then to 

the computer ADT, 6 - slot – disturbance’s source, 7 - pneumatic routing cowling, 8 - 

pneumatic routing (45 tubes), 9 - set of controllers, 10 - damper, 11 - fast valve, 12 - valve-

opening signal, 13 - pneumatic routing to the compressor 

The longitudinal structures were generated with the frequency of 1 Hz. 

Velocity gradients (du/dt) at the leading and back fronts were controlled by a 

damper of 0.5 litre volume. The latter was installed between the valve and 

the slot. It should be noted that the local gradient du/dt can be converted into 
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a spatial gradient du/dx, with due regard to the constant velocity of the 

longitudinal disturbance propagation. 

The damper and the slot were connected to each other with a pneumatic 

canal track consisting of 45 individual tubes with a controller of each. This 

system gave a possibility to assign an arbitrary profile of air blowing 

(suction) through the slot. 

The measurements were performed with a constant temperature 

anemometer using single-wire probes. The mean and perturbation 

components of the longitudinal velocity component were measured. The 

wire diameter was of 6 microns, the length of about 1 mm. The coordinates 

origin was in the slot’s center with X - measured in the streamwise direction, 

Z - along the span of the model, and Y - normally to X and Z with the 

reference point on the wing surface. 

3. RESULTS AND DISCUSSION 

First, the undisturbed flow characteristics including mean velocity 

distribution above the wing (Fig. 2a) and boundary layer profiles (Fig. 2b) 

were measured. Then, Y – t diagrams of the boundary layer with the excited 

longitudinal structures were obtained in the same streamwise sections and, 

further, Z – t diagrams were recorded at the disturbances maximum across 

the boundary layer. In this way, the structure and dynamics of the 

perturbations were clarified.

Figure 2. a Streamwise distribution of the external flow velocity, x = -40 mm corresponds to 

the leading edge of the wing; b mean velocity profiles of the undisturbed boundary layer U, 

m/s (o) and deviations of the instantaneous velocity from its mean value due to longitudinal 

structures u, m/s (•) 
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One can observe in Fig. 2b that the longitudinal structures keep inside the 

boundary layer while spreading normally to the wall as the boundary 

thickness grows. Also it was found that the mean-velocity deviation (u) from 

the undisturbed flow induced by the longitudinal structures is fairly smooth 

in the transverse direction minimizing velocity gradients du/dz. Thus, 

secondary instabilities one could expect at the side boundaries of the 

structures were excluded.

At the streamwise propagation, the longitudinal structures generate wave 

packets, the so-called forerunners, in the regions of strong velocity variations 

at the leading and the back fronts of the structures (see example in Fig. 3). 

Under negative pressure gradient in the upstream portion of the flow 

amplification of these disturbances is negligible, however, the forerunners 

grow rapidly in the aft part of the wing (Fig. 4a). At the same time, the 

streaks amplitude falls down constantly all through the x-range under 

examination (Fig. 4b).

Figure 3. a Y – t diagram of the wave packet generated by blowing at the leading front of the 

longitudinal structure; b mean velocity profile of the undisturbed boundary layer (o) and 

r.m.s. distribution of the perturbations ( ); x = 160 mm 

Origination and evolution of the wave packets depend on velocity 

gradients dU/dx at the leading and the back fronts of the longitudinal 

structures. When the structure is generated by suction, high-speed motion 

from the outer part of the boundary layer is transferred locally towards the 

wall. The resultant streaky structure propagates in a slow fluid and the 

largest velocity gradient occurs at its leading front. 

The opposite situation takes place in the case of blowing so that the 

velocity variation becomes higher at the back front of the perturbation. 

Besides this, the forerunners at the leading front of the longitudinal 

structures are convected in the undisturbed boundary layer whereas those at 
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the back front propagate through the flow distorted by the structures both at 

suction and blowing. 

Also, we notice that the longitudinal structures have different effect upon 

the boundary layer depending on the way of their generation. Once they are 

excited by blowing, the filling of velocity profile is reduced that makes the 

flow receptive to external perturbations. Thus, more intensive should be 

development of the wave packet at the back front of the structure. In 

contrast, at boundary-layer suction the flow receptivity becomes lower so 

that the wave packet at the leading front dominates. Variations of the wave 

packets amplitude with the streamwise distance shown in Fig. 4a are in 

agreement with the above concept of the disturbances evolution. The larger 

velocity gradient dU/dx at the front of the longitudinal structure, the higher 

amplitude of the forerunner. 

Figure 4. a Streamwise variation of the forerunners amplitude at the leading (o) and the back 

( ) fronts of the streaky structures generated by blowing (dotted line) and suction (solid line); 

b intensities of the streaks excited by blowing ( ) and suction (o) 

At examination of the perturbations, similarities of their characteristics in 

all the cases of the forerunners generation were found. Those include the 

group velocity determined for the wave packets center which was close to 

0.34U0 and the specific spatial arrangement of the disturbances with 180-

degrees phase difference between the oscillations in the near-wall and the 

outer parts of the boundary layer, see Fig.3a. Some differences were found in 

frequency spectra of the forerunners at the leading and back fronts of the 

streaky structures. For the leading-front perturbations at blowing and the 

back-front ones at suction a pronounced peak was observed at about 150 Hz 

only; otherwise, the subharmonic oscillations were amplified, as well. The 

above observations strongly support an idea that the forerunners are 
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essentially the wave packets of 3D linear and nonlinear Tollmien-Schlichting 

waves.

4. CONCLUSIONS 

In the present experiments the high-frequency perturbations, i.e. 

forerunners, at the leading and back fronts of the longitudinal structures 

evolving in the laminar boundary layer have been found. Their 

characteristics affected by the external-flow pressure gradient, the way of the 

longitudinal structures generation, and velocity gradients induced by the 

latter were investigated. In particular, it was observed that the forerunners 

are strongly amplified in the adverse pressure gradient flow being much 

influenced by local velocity gradients. The results of the study make reason 

to consider the forerunners as wave packets of 3D instability waves. 
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OBSERVATION OF NONLINEAR TRAVELLING 

WAVES IN TURBULENT PIPE FLOW 

Björn Hof, Casimir W.H.van Doorne, Jerry Westerweel and Frans T.M.

Laboratory of Aero- and Hydrodynamics, Delft University of Technology, Leeghwaterstraa

21, 2628 CA Delft, The Netherlands 

Abstract: Transition to turbulence in pipe flow has posed a riddle in fluid dynamics 

since the pioneering experiments of Reynolds[1 ]. Although the laminar flow is 

linearly stable for all flow rates, practical pipe flows become turbulent at large 

enough flow speeds. Turbulence arises suddenly and fully without distinct 

steps and without a clear critical point. The complexity of this problem has 

puzzled mathematicians, physicists and engineers for more than a century and 

no satisfactory explanation of this problem has been given. In a very recent 

theoretical approach it has been suggested that unstable solutions of the Navier 

Stokes equations may hold the key to understanding this problem. In 

numerical studies such unstable states have been identified as exact solutions 

for the idealized case of a pipe with periodic boundary conditions[2 , 3 ]. These 

solutions have the form of waves extending through the entire pipe and 

travelling in the streamwise direction at a phase speed close to the bulk 

velocity of the fluid. With the aid of a recently developed high-speed 

stereoscopic Particle Image Velocimetry (PIV) system, we were able to 

observe transients of such unstable solutions in turbulent pipe flow[4 ].

Key words: Hydrodynamic stability, Turbulence, Shear flow transition, Unstable states 

Pipe flow is governed by a single dimensionless parameter, the Reynolds 

number Re=UD/ , where U is the mean (or bulk) flow speed, D the pipe 

diameter and  the kinematic viscosity of the fluid. Whereas stability theory 

Nieuwstadt

1. INTRODUCTION
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predicts that laminar pipe flow is stable for all flow rates[5], in practice pipe 

flows become turbulent even at moderate speeds. Turbulence sets in 

suddenly and fully, with no intermediate states. In experiments transition to 

turbulence typically occurs spontaneously at Re as low as 2000, however in 

carefully designed experiments the transition point can be delayed to 

Reynolds numbers as large as 100000[6]. 

Recent discoveries of disconnected unstable solutions to the governing 

Navier-Stokes equation[2,3,7,8]
,

have lead to a new transition scenario for 

pipe and related shear flows
9
. Since these solutions are unstable they cannot 

persist individually in practical flows. As the Reynolds number is increased 

and the number of these unstable solutions grows they can form a chaotic 

saddle in phase space [9], which gives rise to long-lived turbulent transients. 

As Re is increased further the lifetimes of the turbulence transients are 

believed to increase exponentially and the strange saddle is believed to 

evolve into a turbulent attractor, which sustains disordered turbulent flow 

indefinitely. The relevance of such unstable travelling waves to transition in 

shear flows has been confirmed by the recent experimental observations of 

Hof et al.[10]. The authors observed transients of these travelling waves 

within turbulent flow structures in experimental pipe flow. 

2. EXPERIMENTAL METHODS 

The experimental set-up shown in figure 1 consists of a 26 metre long 

circular pipe with an inner diameter of 4 cm corresponding to a non-

dimensional length of 650 diameters. Fully developed laminar pipe flow was 

perturbed 350 pipe diameters from the inlet by means of a jet injected 

through a 1mm hole perpendicularly to the pipe wall. The resulting turbulent 

flow was investigated 150 diameters downstream with a high-speed 

stereoscopic PIV system. Tests have shown that a length of 150 pipe 

diameters is sufficient for all transients which might be inflicted by the 

perturbation mechanism to subside. Careful calibration of the measurement 

system allowed the instantaneous measurement of all three velocity 

components in a cross-sectional plane. The passage of turbulent structures 

was recorded in this plane at a series of 1000 contiguous measurements at 

sampling rates up to 500 Hz. A detailed description of the experimental 

apparatus can be found in Hof et al. [4] (online material). 
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Observation of nonlinear travelling waves in turbulent pipe flow 

Figure 1.  Experimental apparatus 

In this section we report an investigation of a turbulent puff at Re=2000. 

Puffs are localized turbulent structures, which travel downstream at 

approximately the bulk velocity and are typically 10 to 50 pipe diameters 

long. In our measurements the characteristic quantities such as the centre 

line velocity during the passage of the puff were found to be in excellent 

agreement with those reported in earlier studies[11]. In figure 2 we show 

three flow profiles, measured at the leading edge, the centre and the trailing 

edge of the puff. At the leading edge the velocity in the central part of the 

pipe is clearly slower than for the laminar profile (shown on the right) 

whereas velocities in the near wall region are larger. In the central region of 

the puff the flow is turbulent and the profile is distorted by strong cross flow 

components and streaks. At the trailing edge the flow recovers the parabolic 

profile very quickly in comparison to the rather slow velocity modification 

observed at the leading edge. The advection speed of the turbulent puff is 

approximately equal to the mean velocity of the flow, which at Re=2000 is 

u=4.6 cm/s. Particle images were recorded at a frequency of 62.5 Hz during 

the passage of the turbulent puff through the measurement plane. Applying 

the Taylor hypothesis this corresponds to a spatial resolution of 

approximately 55 sampled velocity profiles per pipe diameter in the 

streamwise direction. 

3. RESULTS
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Figure 2.  Three component Velocity profiles. The profile on the left was taken at the leading 

edge of the puff and that in the middle in the central part of the puff. The profile on the right 

was taken after the passage of the trailing edge where the flow is laminar again. The colour 

coding (red / blue corresponds to high / low velocities) shows the streamwise component 

Figure 3.  In plane kinetic energy during the passage of a turbulent puff 

The high spatial resolution allowed us to closely monitor the in-plane kinetic 

energy (u
2
+v

2
) during the passage of the turbulent puff (figure 3). At the 

leading edge the in-plane kinetic energy increases relatively slowly in 
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Observation of nonlinear travelling waves in turbulent pipe flow 

comparison to the rather fast decline at the trailing edge. The most surprising 

features of the curve are the sudden changes in the kinetic energy. The 

largest spike occurs approximately 2 D from the trailing edge and here the 

energy almost doubles over a distance of a tenth of a pipe diameter. In the 

vicinity of this energy spike we were able to identify streak-vortex 

configurations which closely resemble those of the numerically calculated 

travelling wave solutions. Here a 3-fold symmetric travelling wave transient 

was observed and it is shown in figure 4 together with its numerical 

counterpart.

Figure 4.  3-fold nonlinear travelling wave. Left: Experimental observation at Re=2000. 

4.

We present observations of vortex streak configurations which are in 

striking agreement with those found in nonlinear travelling waves calculated 

numerically for pipe flow[2,3]. The high sampling speed and spatial 

resolution of the measurement technique enables us to identify large spikes 

in the in-plane kinetic energy during the passage of turbulent puffs. 

Right: Exact travelling wave solution 

CONCLUSION
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A STRANGE INSTABILITY WITH GROWTH
NORMAL TO A BOUNDARY LAYER
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Abstract: We present recent results concerning the linearized inviscid stability and prop-
agation characteristics of disturbances to the boundary-layer flow due to an in-
finite rotating disk in otherwise still fluid. Such disturbances are expected to
decay exponentially outside the boundary layer, but we have found a situation
where exponential growth can occur in the wall-normal direction. It is shown,
by considering the solution to the initial-value problem, that this behaviour can
be predicted by using modes with exponentially divergent eigenfunctions.

Keywords: Absolute instability, convective instability, rotating disk boundary layer, initial
value problems

1. INTRODUCTION

Early theories of the stability of boundary layers considered spatially har-
monic disturbances that might grow or decay exponentially in time, and yet
early experiments used vibrating ribbons to excite disturbances that were har-
monic in time and which might grow or decay exponentially with downstream
distance from the ribbon. In principle, the evolution of any disturbance to the
flow can be decomposed into a superposition of spatially harmonic waves, but,
as shown by Gaster, [2], [3], a much simpler and more direct comparison be-
tween theory and these experiments can be realized by solving for roots of the
dispersion relation with real frequency (to give time-harmonic behaviour) and
complex wavenumber (to give growth or decay in the downstream coordinate).

Although these spatial theories are now completely accepted, one objection
to complex wavenumbers is that they are modes whose amplitudes tend to in-
finity in the streamwise direction. Is such a mode really suitable for a linear
stability theory? This objection is overcome by pointing out that in practice we

∗The author is grateful to the Royal Society of London for partially funding his attendance at this confer-
ence.
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are interested in studying initial-value problems, in which a localized distur-
bance has only propagated a finite distance downstream from the source after
a finite time, and therefore only shows spatial growth over a finite distance
from the source. (In practice, this distance is also limited by the size of the
experimental apparatus).

In this paper we extend the idea of spatial instability in the downstream
direction to spatial instability in the wall-normal direction. A scenario is pre-
sented in which a propagation takes place that is efficiently described by modes
with ‘eigenfunctions’ that grow exponentially in the wall-normal direction.
These modes fail to satisfy homogeneous boundary conditions and so the ob-
jection might be raised that they are not allowable roots of the dispersion re-
lation. (In fact, they are analytic continuations of the dispersion relation).
Nonetheless, consideration of the initial value problem for the generation of
these waves shows that they do describe actual disturbance evolutions. After a
finite time, growth only extends over a finite distance above the source, though
this distance increases with time. These divergent modes therefore describe a
new type of convective instability in the wall-normal direction.

The results presented in this conference paper are a brief summary of work
recently submitted for journal publication [8], and the reader should consult
that paper for full details and discussion.

The physical problem giving rise to this behaviour is introduced in § 2, to-
gether with equations describing the disturbances. A saddle point theory ex-
tended to include the case of wall-normal propagation is presented in § 3. Com-
parisons between the results of saddle-point theories based on modes with di-
vergent eigenfunctions and numerical evaluations of impulsive disturbances
are made in § 4, and conclusions drawn in § 5.

2. PHYSICAL PROBLEM

The basic flow is the boundary layer that forms adjacent to a disk rotating at
constant angular velocity under a body of fluid at rest far from the disk. This
flow is described by the classic von Karman similarity solution in which the ra-
dial component has a wall-jet character (fluid near the disk is thrown outwards
by centrifugal forces) and there is a typical boundary layer structure in the
azimuthal direction. This cross-flow structure generates inviscid waves with
zero phase velocity relative to the disk (the stationary vortices) that produce a
striped pattern in flow visualizations, [5]. Furthermore, Lingwood has shown
that this inviscid problem has unstable waves with zero group velocity, gener-
ating absolute instability, [10], the onset of which seems intimately related to
the transition to turbulence.

Absolute instability characteristics are determined by the dominant saddle-
point contribution in certain inverse Fourier transforms, [4] (‘pinch-points’ in
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4. NUMERICAL SOLUTION TO IMPULSIVE
DISTURBANCES

We can test this surprising prediction by carrying out a numerical evalua-
tion of (3) while maintaining the branch-cuts along the imaginary α-axes, and
choosing an integration path A that is restricted to conventional modes with de-
caying eigenfunctions. The details are given in [8], and the results are shown in
figure 3 (the results are normalized so that the disturbance profiles at different
times can be compared on the same graph — the underlying absolute insta-
bility causes significant growth in time). The maximum growth does indeed
propagate out of the boundary layer at a group velocity close to

5. CONCLUSIONS

The collective behaviour of a superposition of modes with decaying eigen-
functions can, nonetheless, produce sustained growth in the wall-normal direc-
tion. Such behaviour can be captured by saddles with divergent eigenfunctions.
The source of energy supplying this growth is described in [8]. Long-wave as-
ymptotic theories have been developed in [9] showing that this behaviour is
generic in the long-wave limit for this problem. This behaviour can be con-
sidered to be the result of an instablity of the continuous spectrum, which is
present for flows unbounded in the direction perpendicular to the stream, and
which represents the contribution to the integral (3) due to the branch-cuts aris-
ing from the square-root terms in (2).
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NUMERICAL STUDIES OF STREAK
INSTABILITY IN BOUNDARY LAYERS

Luca Brandt,1 Carlo Cossu,2 Dan S. Henningson,1 Jean-Marc Chomaz,2

Patrick Huerre2

1KTH Mechanics, SE-100 44 Stockholm, Sweden
2LadHyX, CNRS-Ecole Polytechnique, F-91128 Palaiseau, France

Numerical results on the stability of boundary layers in the presence of
streaks, assumed steady and spanwise periodic, are presented. The in-
stability features are retrieved both from stability analysis and from the
numerical simulation of the flow impulse response. It is found that the
presence of streaks of moderate amplitudes is able to quench the viscous
Tollmien-Schlichting waves. However, a threshold exists beyond which
secondary inflectional instabilities occur. Streaky basic flows unstable to
both sinuous and varicose perturbations are considered. To gain physical
understanding of the instability mechanisms the equation for the pertur-
bation kinetic energy is analysed. To investigate the sinuous instability
modes an analytical model streak is also proposed.

Keywords: Instability, Boundary layer, Streamwise streaks

1.
Due to non-modal growth mechanisms, small amounts of streamwise

vorticity in a laminar boundary layer are very effective in moving low-
momentum particles away from the wall and high-momentum particles
toward the wall, thus forming elongated spanwise modulations of the
streamwise velocity, called streaks. Since the latter perturbations are
expected to arise whenever a boundary layer is exposed to free-stream
vortical disturbances, the stability of boundary layers in the presence
of streaks, assumed steady and spanwise periodic, is investigated. The
instability features are retrieved both from classical stability analysis (
Schmid and Henningson, 2001) and from the numerical simulation of the
flow impulse response (Delbende et al., 1998, Brandt et al., 2003).

In order to examine the instability mechanisms, the distribution of
the kinetic energy production terms in the cross-stream (y, z) plane is
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However, above a certain threshold streak amplitude, secondary inflec-
tional instabilities occur (Andersson et al., 2001, Brandt and Henningson,
2002). These unstable waves can be either symmetric or antisymmetric
in the spanwise direction, the latter type of instability being, by far, the
dominating one for this type of streaks. Analysis of the kinetic energy
balance reveals that the spanwise shear is responsible for the antisymmet-
ric sinuous instability, whereas the wall-normal shear weakly counteracts
it. In particular, for a streak of amplitude A = 0.36U∞, where A is
defined as half the maximum distortion with respect to the Blasius pro-
file, and for sinuous perturbations with the most amplified streamwise
wavenumber α = 0.6, the terms in eqn. (2) take the following values.
ωi = 0.0338, T̃y/2Ẽ = −0.0095, T̃z/2Ẽ = 0.0505, D̃/2Ẽ = 0.0071.

3. i

To study the instability characteristics of the antisymmetric/sinuous
modes, an analytical model streak is proposed. The basic flow considered
is given by the sum of the Blasius profile UB and a wake-like low-speed
streak obtained as product of a function of the wall-normal coordinate y
and a function of the spanwise variable z

U(y, z) = UB(y) − ∆UF (y)W (z). (3)

∆U represents the strength of the streak while F (y) is an ad hoc function
similar to that used in Schoppa and Hussain, 1997 and Kawahara et al.,
1998 and defined by

F (y) ≡ Cy y exp[−ρ(y − y∗)2], (4)

where ρ defines the distance over which F (y) vanishes, y∗ determines
the distance yM at which F (y) is maximum, and Cy normalises this

 MODEL STRE AK  FOR SINUOUS INSTABILITY
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Figure 1. a) Temporal growth rates ωi/∆U versus streamwise wavenumber kx and
for increasing values of the wake depth ∆U = 0.45, 0.7, 0.95, 1.15, 1.35. b) Temporal
growth rates ωi ∆c versus streamwise wavenumber kx ∆c for streaks with ∆c = 1
(dotted line), ∆c = 0.8 (solid line), ∆c = 0.6 (dashed-dotted line), ∆c = 0.4 (dashed
line). The variables are made non dimensional with respect to the free-stream velocity
U∞ and the local boundary layer displacement thickness δ∗



maximum value to unity. The wake profile W (z) is similar to the one
used by Monkewitz, 1988 to study two-dimensional wake profiles

where 2∆c defines the width of the wake by the spanwise distance be-
tween the two inflectional points on the side of the wake and N (equal
to 1 in the present case) determines the steepness of the profile.

This basic flow can be shown to reproduce satisfactorily well the spatio-
temporal instability of the saturated optimal streak computed in Brandt
et al., 2003. Results obtained using the model are displayed in figure 1.
In 1a) the temporal growth rates for a set basic flows obtained by increas-
ing the wake depth ∆U while keeping all the other parameters constant
are presented. The basic flows considered in 1b), instead, differ only in
the spanwise scale ∆c. It can be seen that in both cases the growth rates
of the sinuous modes scales more than linearly with the streak span-
wise shear, proportional in our model to both ∆U and ∆c. Further, the
cut-off wavenumber is increasing when ∆c decreases since shorter length
scales are now introduced in the problem. Analysis of the group veloc-
ities of the unstable wave-packet reveals that the most amplified waves
travel at the same velocity attained by the underlying streak at the loca-
tion of maximum spanwise shear. The spreading rate of the wave packet
is proportional to the wake depth ∆U , whereas it is unaffected by ∆c.
The effect of the spanwise extension of the computational domain en-
closing the streak is also investigated. It is found that imposing periodic
boundary conditions at different distances from the low-speed streak has
a small effect on the instability characteristics.

The symmetric/varicose instability is studied by reproducing numer-
ically the experimental set-up in Asai et al., 2002. The latter authors
generated a region of defect velocity by using a small piece of screen
set normal to the wall. In agreement with the experimental results it is
found that both types of instability are present. The varicose modes are
characterised by higher frequencies and are the most amplified, while the
sinuous instability is active in a longer streamwise region. The growth
rate of the varicose modes is found to increase with the screen width.

By analysing the kinetic energy balance it is found that the varicose
instability is driven by the work of the Reynolds stress τ̃uv against the
wall-normal shear ∂U/∂y. The cross-stream distribution of the term
appearing in eqn. (1) is displayed in figure 2 for the streak profile induced
50 mm downstream of the wider screen.

4. VARICOSE INSTABILITY
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Figure 2. Density of perturbation kinetic energy production for the streak extracted
50 mm downstream of the wider screen. The shaded areas represent the region of the
cross-stream plane where the terms exceed 30% of their maxima. a) T̃y: dark grey, T̃z:
light gray. b) Viscous dissipation. Varicose mode with α = 1. ωi = 0.0696, T̃y/2Ẽ =
0.0970, T̃z/2Ẽ = 0.0070, ˜ ˜

Unexpected results are obtained in the case of the sinuous instability:
the wall-normal shear is responsible also for this type of instability modes,
despite τ̃uv and ∂U/∂y now having opposite spanwise symmetry (see
figure 3). Following the streak evolution further downstream, where the
wall-normal shear has decreased more than its spanwise counterpart, it
is still observed that the term T̃y is larger than T̃z, even if of comparable
amplitude. The production associated to the spanwise shear is seen to
be the strongest term for a sinuous instability for the streak induced by
the narrower screen and 120 mm downstream of it.

Figure 3. Same as figure 2 for the sinuous mode with α = 0.4. ωi =
0.0385, T̃y/2Ẽ = 0.0543, T̃z/2Ẽ = 0.0021, ˜ ˜

The occurrence of the streak instability has been recently related to
the breakdown into turbulent spots observed in boundary layers sub-
ject to high levels of free-stream turbulence (see invited lecture by D.
Henningson and Brandt et al., 2004). Here we have investigated the in-

5. CONCLUSIONS

D/2E = 0.0171

D/2E = 0.0345

Numerical studies of streak instability in boundary layers 125



stability of boundary layers in the presence of steaks assumed steady and
spanwise periodic. Two type of streaks are considered: those induced by
optimally growing streamwise vortices and the streak induced by placing
an obstacle normal to the plate (Asai et al., 2002). The former type is
mostly unstable to sinuous modes, whereas in the latter case the varicose
is the dominant instability.

It is found that when the basic flow is characterised by strong spanwise
shear the sinuous instability is dominant. Conversely, when strong wall-
normal shear is induced, as in the case of an obstacle normal to the
flow, the varicose mode is the strongest. However, in the latter case,
unstable sinuous modes are found which are driven by the wall-normal
shear of the streak. Therefore, there is no obvious relation between the
sinuous/varicose instability and the streak spanwise/wall-normal shear.

Andersson, P., Brandt, L., Bottaro, A., and Henningson, D. S. (2001). On the break-
down of boundary layers streaks. J. Fluid Mech., 428:29–60.

Asai, M., Minagawa, M., and Nishioka, M. (2002). The instability and breakdown of
a near-wall low-speed streak. J. Fluid Mech., 455:289–314.

Brandt, L., Cossu, C., Chomaz, J.-M., Huerre, P., and Henningson, D. S. (2003). On
the convectively unstable nature of optimal streaks in boundary layers. J. Fluid
Mech., 485:221–242.

Brandt, L. and Henningson, D. S. (2002). Transition of streamwise streaks in zero-
pressure-gradient boundary layers. J. Fluid Mech., 472:229–262.

Brandt, L., Schlatter, P., and Henningson, D. S. (2004). Transition in boundary layers
subject to free-stream turbulence. J. Fluid Mech., 517:167–198.

Cossu, C. and Brandt, L. (2002). Stabilization of Tollmien-Schlichting waves by finite
amplitude optimal streaks in the Blasius boundary layer. Phys. Fluids, 14:L57–L60.

Delbende, I., Chomaz, J.-M., and Huerre, P. (1998). Absolute and convective insta-
bilities in the Batchelor vortex: a numerical study of the linear impulse response.
Journal of Fluid Mech., 355:229–254.

Fransson, J. H. M., Brandt, L., Talamelli, A., and Cossu, C. (2004). Experimental
study of the stabilization of Tollmien–Schlichting waves by finite amplitude streaks.
Proceeding IUTAM Symposium, Bangalore.
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A POSSIBLE LINEAR INSTABILITY MECHANISM
IN SMALL-SCALE PIPE FLOWS

Kirti Chandra Sahu
Engineering Mechanics Unit
Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, 560 064, INDIA.

kirti@jncasr.ac.in

The laminar flow through a pipe of constant average radius is shown to dis-
play linear instability at low Reynolds number. This is offered as a possible
mechanism that could be operating in small-scale flows. The effect of changing
geometry, which could be a significant factor, is studied. A multigrid algorithm
is used for computing the meanflow and a full non-parallel stability analysis is
conducted.

Keywords: pipe, small-scale, stability.

1. INTRODUCTION

It is well known that the fully-developed flow in a circular pipe is linearly
stable for any Reynolds number. The transition to turbulence is therefore
driven by nonlinear mechanisms. The route observed often [see e.g. Schmid
and Henningson, 2001] is transient growth of a combination of linear (stable)
nonorthogonal eigenmodes, leading to streamwise vortices, and secondary in-
stabilities of the resulting azimuthally-modulated flow. It has also been demon-
strated both theoretically and experimentally that nonlinearities appearing in
the form of travelling waves provide a self-sustaining mechanism for transition
to turbulence [Waleffe, 2001; Waleffe, 1998; Faisst and Eckhardt, 2003; Faisst
and Eckhardt, 2004; Hof et al., 2004]. We study here the effect of changing
geometry, which could be a significant factor, especially in small-scale flows,
and show that a linear mechanism of instability is operational even at surpris-
ingly low Reynolds numbers.

In the literature, much work has been done on spatially developing boundary
layers [e.g. Gaster, 1974, Bertolotti et al., 1992, Govindarajan and Narasimha,
1995], but to our knowledge, no work has been done on the nonparallel stability
of flow through spatially developing pipes. In the present work, we consider
a variety of diverging-converging pipes whose average radius is constant. The
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pipes have serrated walls as shown in figure (1). The main results are that
(i) linear instability occurs at surprisingly low Reynolds number and (ii) the
instability behaviour can be changed dramatically by reversing the direction of
flow. The following two sections describe the basic flow computations and the
stability analysis respectively and results are discussed in the last section.

2. THE MEAN FLOW

For the mean flow calculation alone, the centerline velocity Ui and the ra-
dius Ri of the pipe, at the smallest cross-section, are used as velocity and length
scales respectively. The axisymmetric Navier-Stokes equations for steady, in-
compressible Newtonian flow in the streamfunction vorticity formulation, in
non-dimensional form, are given by

∂Ω
∂t

+ (�U.∇)Ω =
1

Rei
∇2Ω, (1)

Ω = −∇2Ψ, (2)

where Rei ≡ UiRi/ν, Ω(x, r) is the azimuthal vorticity, �U is the velocity
vector, ν is the kinematic viscosity, ψ is the streamfunction, and t is time.
To accelerate the rate of convergence of the Possion solver, a full-multigrid
algorithm has been used. The vorticity is obtained by time-marching, details
are available in Sahu, 2003. A transformation of coordinates, given by

ζ = x, η =
r

f(x)
,

where f(x) is a function describing the boundary, is adopted. The boundary
conditions at the centerline are Ψ = Ω = V = ∂U/∂r = 0. No-slip and
impermeable boundary conditions are imposed at the wall. The functional
forms of the streamfunction at the centerline, and the vorticity at the wall, are
described by employing fictitious points outside the domain. Because of the
periodicity in the boundary, a periodic boundary condition is implemented in
the streamwise direction. Sample streamwise and radial velocity profiles are
shown in the figures (2a) and (2b) respectively, for the geometry shown in
figure (1b). The length of the domain considered for the computation is 53.8.

3. NON-PARALLEL STABILITY ANALYSIS

We now use the local radius R(x) and the local centerline velocity Uc(x)
at a given x as scales. Each flow quantity is expressed as the sum of a steady
mean and a time-dependent perturbation, such as

u = U(x, r) + û(x, r, θ, t). (3)
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Figure 1. (a) Schematic diagram of the geometry. (b) The computational domain
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Figure 2. Velocity profiles for the flow from left to right in the pipe shown in figure (1b),
Rei = 50. (a) Streamwise, and (b) radial velocity profiles at different streamwise locations

Since the flow under consideration varies significantly in the axial direction, a
normal mode form may be used only in time and in the azimuthal coordinate θ.
In the axial coordinate, the perturbation may be expressed as a rapidly varying
wave-like part [of local axial wavenumber α(x)] scaled by a relatively slowly
varying function [see e.g. Bertolotti et al., 1992; Govindarajan and Narasimha,
1995], such as

[û, v̂, ŵ, p̂] = Real
{

[u, v, w, p] exp
[
i
(∫

α(x)dx + nθ − βdtd

)]}
, (4)

where u(x, r), v(x, r) and w(x, r) are the amplitudes of the velocity pertur-
bations in the axial, radial and the azimuthal directions respectively, p(x, r)
is the amplitude of the pressure perturbation, n is the number of waves in the
azimuthal direction, and β(= βdR/Uc) is the disturbance frequency. It is to be
noted that the apportionment in (4) between the x-dependences of α and the
eigenfunction is arbitrary, and there are many ways of performing it. However,
as long as the rapid (wavelike) change is included in αr, there is no difference
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in the prediction of the growth of any physical quantity [Bertolotti et al., 1992].
We have checked that this is the case for the present flow as well.

The equations are linearised in the standard manner, and terms of higher or-
der [O(a2), O(Re−2), O(Re−1a)] are neglected, where a is the local slope of
the pipe. The result is a set of partial differential equations for the perturbation
velocities and pressure, each of first order in x and up to second order in r,
which amounts to a seventh order system in r. These may be expressed in the
form

Hφ(x, r) + G ∂φ(x, r)
∂x

= βBφ(x, r). (5)

Here φ = [u, v, w, p], and the nonzero elements of the 4 × 4 matrix operators
H, G and B are given by [Sahu & Govindarajan (preprint, 2004)]

h11 = U
[
2
U ′

c

Uc
+iα−ar

∂

∂r

]
+

∂U

∂x
−ar

∂U

∂r
+V

∂

∂r
+

1
Re

[
α2+

n2

r2
−1

r

∂

∂r
− ∂2

∂r2

]
,

h22 = V
∂

∂r
+

∂V

∂r
+U

[U ′
c

Uc
+iα−ar

∂

∂r

]
− 1

Re

[ ∂2

∂r2
+

1
r

∂

∂r
− (1 + n2)

r2
−α2

]
,

h33 = V
∂

∂r
− V

r
+U

[U ′
c

Uc
+iα−ar

∂

∂r

]
− 1

Re

[ ∂2

∂r2
+

1
r

∂

∂r
− (1 + n2)

r2
−α2

]
,

h12 =
∂U

∂r
, h14 =

(
2
U ′

c

Uc
+ iα − ar

∂

∂r

)
, h23 =

2
Re

in
r2

,

h24 =
∂

∂r
, h32 = − 2

Re

in
r2

, h34 =
in

r
, h41 =

iα
Re

∂

∂r
,

h42 = V
∂

∂r
+

∂V

∂r
+ U

(U ′
c

Uc
+ iα − ar

∂

∂r

)
+

1
Re

(n2

r2
+ α2

)
,

h43 =
in
Re

( 1
r2

+
1
r

∂

∂r

)
, h44 =

∂

∂r
, g11 = g22 = g33 = g42 = U,

g14 = 1, and b11 = b22 = b33 = b42 = i. Here U ′
c = dUc/dx.

In equation (5), we confirm that if we set a, U ′
c and ∂φ/∂x to zero, we get the

parallel stability equations of Gill, 1973 and Lessen et al., 1968. The boundary
conditions emerge from requiring that all quantities vary continuously with r
at the centerline [Batchelor and Gill, 1962], and obey no-slip at the wall:

u = v = w = p = 0, at r = 0, for n �= 1, (6)

u = p = 0, v + iw = 0, at r = 0, for n = 1, (7)

u = v = w = 0, at r = 1. (8)

For n = 1, we generate an extra boundary condition by differentiating the
continuity equation with respect to r. Equation (5) is solved as an eigenvalue
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problem of larger size as described in detail in Sahu & Govindarajan [preprint,
2004].

We consider downstream growth of disturbances followed at a constant
value of the non-dimensional radius r. The amplitude of a given disturbance
at a particular streamwise location is given by

A

Acr
= exp

[∫ x

xcr

g(x)dx

]
(9)

where g is the growth rate of a disturbance, as defined below, and the subscript
cr stands for the critical (neutral) location, at which g = 0. The growth rate of
the nondimensional disturbance kinetic energy, Ê, for example, is given by

g =
1
Ê

∂Ê

∂x
= −2αi +

1
E

∂E

∂x

∣∣∣
r
, where E =

1
2

(uu∗ + vv∗ + ww∗) ,

(10)
the star denotes a complex conjugate. We see that a disturbance may amplify
at one r and decay at another. Secondly, one disturbance quantity could be
amplifying while others decay.

4. RESULTS AND DISCUSSION

In the present case as in straight pipes, we find that the swirl (n = 1) mode
is always the most unstable. A typical amplitude of the disturbance kinetic
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Figure 3. Amplification of disturbance kinetic energy for Re = 50, n = 1 (solid line:
average across the pipe, dashed line: at a particular radial location) (a) Flow from left to right
(case I) for βd = 0.287 and r = 0.58. (b) Flow from right to left (case II) in figure (1b) for
βd = 0.262 and r = 0.50. The dimensional frequency in each case is maintained constant

energy of the (n = 1) mode is shown in figure 3. When the flow is from left
to right (case I), the maximum growth occurs at r = 0.58, but when the flow
is from right to left (case II), r = 0.50 is the location for highest growth. It

downstream
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is found (not shown here) that there is no amplification near the centerline or
in the wall region. The disturbance kinetic energy integrated across the pipe
is decaying in case II and amplifying in case I (figure 3). It is seen that the
flow is much more unstable when the flow is from left to right. For the small
divergence and shown here the flow is already linearly unstable at Re = 50.
For a larger divergence the instability Reynolds number is much lower. The
linear mechanism may thus be important in small scale flows (e.g. with pipe
diameters in mm and velocities in cm/s.)
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EFFECTS OF STRONG ADVERSE PRESSURE 

GRADIENTS AND INCIDENT WAKES ON 

TRANSITION AND CALMING 

J.P. GOSTELOW and R.L. THOMAS 

University of Leicester 

Abstract: At a previous meeting results based on wavelet analysis demonstrated 

similarities between triggered turbulent spots and the turbulent patches caused 

by wake interactions on compressor and turbine blading[1].  Hughes and 

Walker[2] went further and used wavelet conditioning to identify the 

prevalence of Tollmien-Schlichting instability phenomena in the flow over 

axial flow compressor blades.  In the current investigation transition 

phenomena occurring in axial flow compressors are simulated on a larger scale 

to provide further evidence on the similarities between turbomachinery and 

wind tunnel flows.  The applicability of the intermittency-based approaches to 

the closure of laminar separation bubbles is demonstrated.  The spacing 

between impinging wakes is systematically varied and it is found that the 

calmed region acts to suppress turbulence, even for closely spaced wakes.

Key words: Transition; calming; wakes; turbomachinery.

1. INTRODUCTION 

It is often assumed that turbomachinery flows have a high freestream 

turbulence level and that transition is not an important consideration for 

blading.  For many important applications this is not correct. Altitude cruise 

conditions for aircraft engines result in a blade Reynolds number more like 

105 than 106; the same applies to late stages in steam turbines. Investigations 

of wake interactions, and especially the calmed region effect, have resulted 

in massive reductions in blade count, hence cost and weight. 

Following research demonstrating that flows in rotating machines could 

be replicated on a wind tunnel flat plate, work was undertaken to elucidate 

flow features such as natural and by-pass transition, laminar separation, the 

calmed region and wake interaction effects on a large scale. 

The experiments were conducted in a low speed wind tunnel having a 

working section of 1.00 m x 1.15 m and containing a flat plate 2.4 m long.  

The Reynolds number based on plate length was maintained at 1.4×10
6
 and 
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the freestream turbulence level was less than 0.2%.  The top wall was 

contoured to produce a self-similar adverse pressure gradient sufficiently 

strong to produce a long, thin laminar separation bubble.  The flat plate, 

under this adverse pressure gradient, was subjected to wakes generated by a 

rod moving transversely upstream of the leading edge.

In the undisturbed flow the long and thin laminar separation bubble 

exhibited linear growth of Tollmien-Schlichting waves.  The bubble was 

terminated by a short, but conventional, transition region.  In 1957 

Narasimha had produced his seminal paper on intermittency[3] and, 40 years 

later, speculated that intermittency might be of value in predicting laminar 

separation bubble closure.  Intermittency had provided a robust basis for 

predicting attached flow transition lengths.  The method of Solomon et al.[4]

predicted transition length under varying pressure gradients, based on spot 

formation rates and spreading angles.  New data have extended this 

prediction capability into the laminar separation region.  The intermittency 

approach can be extended to separated-flow transition and bubble closure, 

which can be characterized by the universal intermittency distribution.

Wake interaction experiments have involved the systematic variation of 

spacing between incident upstream wakes.  This series of experiments was 

prompted by the work of Gutmark and Blackwelder[5] who performed 

similar investigations on triggered turbulent spots. 

2. THE RESULTS 

  The results highlighted the interaction between incoming wakes and the 

undisturbed boundary layer[6].  Each wake provoked a vigorous turbulent 

patch, resulting in the instantaneous collapse of the separation bubble.  

Throughout the investigation the wake interactions closely resembled a 

spanwise assemblage of turbulent spots or patches.  The principal features of 

classical turbulent spots were evident reinforcing confidence in the use of on 

turbulent spot data and approaches to modeling based on such information. 

The turbulent patch triggered by the wake interaction was followed by a 

very strong and stable calmed region. The calming effect accompanying the 

turbulent patch induced by a wake interaction is stronger than that of an 

isolated turbulent spot and has beneficial effects both in suppressing the 

harmonic development leading to transition and in stabilizing the velocity 

profile against laminar separation.  Further work on the extent of the calmed 

region is aimed at optimizing the interval between wake disturbances, 

corresponding to the spacing between upstream blades. 
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3. INSTABILITY, WAVELETS AND INTERMITTENCY 

At previous meetings results were shown, based on wavelet analysis, that 

demonstrated similarities between the behaviour of triggered turbulent spots 

and the turbulent patches caused by wake interactions on compressor and 

turbine blades. Hughes and Walker[2] subsequently used wavelet 

conditioning to identify instability phenomena on blading in an operating 

axial flow compressor.  Estimated values of most likely T-S frequency 

closely matched the measured frequencies indicating that T-S instability was 

prevalent.

The Narasimha universal intermittency distribution has provided a robust 

basis for predicting attached flow transition.  The intermittency-based 

method of Solomon et al.[4] has predicted transition length reliably under 

varying pressure gradients.  Can this approach be extended to separated flow 

transition and bubble closure?

Figure 1 shows the time-averaged intermittency distribution for the 

undisturbed flow over the flat plate in the region of separation bubble 

closure.  The data were recorded at a constant height of 2 mm above the 

surface and showed good agreement with the universal intermittency 

distribution.  This demonstrated that intermittency-based methods would be 

suitable for predicting the closure of this bubble.

This finding confirms the earlier findings of Malkiel and Mayle[7] and of 

Volino and Hultgren[8] who also observed agreement with the universal 

intermittency distribution in the reattachment region of a laminar separation 

bubble.  It also justifies the extension of intermittency-based procedures to 

flows having laminar separation bubbles.  Good examples of such a practice 

are given in the work of Sanz and Platzer[9] and Hobson and Weber[10]. 

Figure 1. Measurements of intermittency - compared with Narasimha distribution 
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4. WAKE PROXIMITY 

 In the current investigation these transition phenomena were simulated on  

a  large scale  to  provide  further  evidence  on  the  similarities  

turbomachinery and wind tunnel flows. In these tests the relationship 

between classical transition, wake-induced transition and the calmed region 

to transition inception and development were investigated. 

Figure 2. Effect of increasing wake proximity on RMS velocity
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Gutmark and Blackwelder[5] had performed an interesting experiment in 

which the time interval between one triggered turbulent spot and a following

spot was systematically varied.  Close proximity saw the celerity and 

disturbance level of the following spot diminished.  If a wake-induced 

turbulent patch is really an ensemble of spots does a wake-induced patch 

exhibit similar behaviour? 

No such trends were observed for celerity but Figures 2 and 3 

demonstrate that the RMS disturbance level of the following wake-induced 

turbulent patch was clearly diminished when the two wakes were in close 

proximity.  Figure 2 gives contours of RMS plotted on a y ~ t basis for 

varying degrees of spacing between wakes.  The plot for  = 30
o
 has the 

wakes closest together and shows a clear diminution of RMS.  In Figure 3 

the peak value of RMS has been plotted for all the data against a wake 

proximity parameter , which normalises the wake temporal spacing by the 

duration of the turbulent patch, and shows that this trend is a consistent one. 

5. CONCLUSIONS 

Behavioral similarities were found between wind tunnel results on 

triggered turbulent spots and wake-disturbed flat plate boundary layers under 

strong adverse pressure gradients, and wake-disturbed boundary layers on 

axial flow compressor blading. 

Wavelet analysis and conditioning supported the findings of natural 

transition from the axial-flow compressor testing, a viscous instability 

Figure 3. Variation of peak RMS with wake proximity parameter 
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predominating.  The universal intermittency distribution was found to be 

valid for the closure of laminar separation bubbles.  The results from wakes 

generated by a rod moving transversely upstream of the plate highlight 

interaction between incident wakes and an undisturbed boundary layer, 

featuring a long, thin laminar separation bubble.  The wakes resulted in 

turbulent patches, and a resulting strong calmed region; this stabilised the 

boundary layer, delayed laminar separation and suppressed disturbances, 

even within the turbulent region of a following wake-induced patch.  The 

implications for turbomachinery are that the controlled manipulation of 

wakes inherent in multi-stage design may allow for the continual prevention 

of separation between the calming wake interactions, and also reduced time-

mean surface flow turbulence intensities, thus reducing losses and local heat 

transfer rates on turbine blade suction surfaces. 
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We investigate the influence of free-stream turbulent vortical disturbances on a
compressible laminar boundary layer by solving the unsteady linear boundary-
region equations for the velocity and temperature fluctuations. These equations
describe the evolution of the perturbations when the boundary layer thickness
becomes of the order of the transverse free-stream integral length scale of turbu-
lence. Similar to the incompressible case, low-frequency disturbances penetrate
into the boundary layer to form streamwise-elongated streaks, often referred to
as “Klebanoff” modes. High-frequency fluctuations are instead absorbed in the
outer edge layer. We find that increasing the Mach number and the free-stream
turbulent length scale both have a stabilizing effect on the growth of r.m.s. of
mass flux fluctuations in the core of the boundary layer.

Keywords: Klebanoff modes, compressible boundary layer, bypass transition.

1. INTRODUCTION

This paper investigates how a compressible laminar boundary layer responds
to small free-stream turbulent vortical disturbances. The work can be viewed
as the extension of the seminal work by Leib et al. (1999) (LWG) to the com-
pressible case. The interest is in the mechanism by which the free-stream vorti-
cal motions are entrained into the viscous region and evolve downstream. The
growth of these disturbances is likely to be one of the relevant precursors of by-
pass transition to turbulence, which refers to a laminar flow breaking down to
turbulence without experiencing the classical exponential growth as predicted
by linear stability theory.

We focus on compressible flows because of the importance of bypass transi-
tion for the design of engineering high-speed fluid systems. The most relevant
features during transition are undoubtedly the increase of wall-friction drag
and heat transfer, and the aerodynamic heating at high Mach numbers, which

Abstract:
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are both of concern in a wide range of technology applications, encompassing
high-speed vehicle aerodynamics, turbomachinery design and the problem of
space capsule re-entry into the atmosphere.

The first experiments of laminar boundary layers disturbed by free-stream
turbulence were conducted at low velocity (Dryden 1936; Taylor 1939). The
low-frequency disturbances significantly amplified during the first stage of
evolution. The idea that the boundary layer acts like a filter, allowing low-
frequency perturbations to penetrate into the boundary layer and convect down-
stream, has been the topic of further research (Morkovin 1984; Goldstein et al.
1992; Goldstein & Leib 1993), which showed that these fluctuations develop in
the form of streak-like structures elongated in the streamwise direction (“Kle-
banoff” modes - Klebanoff 1971; Kendall 1991). Their behaviour is initially
linear, while further downstream nonlinearity generates smaller scales of mo-
tion which then form turbulent spots and eventually the turbulent boundary
layer. The conventional TS instability mechanism does not seem to play a
relevant role so that the exponential growth of disturbances triggered by recep-
tivity is bypassed.

The compressible version of these phenomena is however largely unex-
plored. Dryden (1955) briefly reviewed the data at that time, but no account
was provided on the effects of the different kinds of external perturbations.
Further experimental studies have followed (Laufer & Vrebalovich 1960;
Kendall 1975; Lebiga et al. 1979; Demetriades 1989), in which the free-stream
flow was always disturbed by high-intesity fluctuations of acoustic nature. A
more recent study was carried out by Graziosi & Brown (2002) (GB), who
reported mass flow fluctuation measurements in a supersonic boundary layer.
The properties of the acoustic free-stream disturbances were analyzed in de-
tail and the focus was directed at the linear growth of disturbances and on
the initial departure of the mean profile from the similarity solution. A ten-
tative theoretical approach was put forward by Mack (1975), who studied the
boundary layer forcing by free-stream Mach waves of pressure fluctuations.
The noise from the wind tunnel walls seemed unavoidable in the above ex-
periments, which often resulted in the transition Reynolds number measured
in flight conditions being higher than in ground experiments (Schneider 2001).
All these findings are thus not comparable with the present ones since they per-
tain to boundary layers perturbed by acoustic disturbances, whilst ours are lim-
ited to freestream forcing by gust-like perturbations. Our analysis is however
likely to more closely resemble a flight situation, where vortical disturbances
are always present and the noise level may be low.

We first present the influence of Mach number on the evolution of boundary
layer fluctuations produced by a single Fourier component in the free-stream.
We then investigate the effect of Mach number and of the transverse integral
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Figure 1. Sketch of the problem of the asymptotic regions

turbulent length scale on the full-spectrum mass flux fluctuations, calculated

2. PROBLEM FORMULATION: SCALING AND
EQUATIONS OF MOTION

We study the flow of air of uniform velocity U∞ and temperature T∞ past
an infinitely thin flat plate. Vortical fluctuations of the convecting gust type are
superposed. The Mach number M ≡ U∞/c∞ is taken to be O(1), where c∞ is
the free-stream speed of sound. The Cartesian coordinate system is represented
by x = x̂i + yĵ + zk̂ = x1î + x2ĵ + x3k̂. The lengths are non-dimensionalized
by the free-stream transverse integral scale of turbulence Λ. The velocities
and the temperature are scaled by their free-stream values, and the pressure
and the time by ρ∞U2

∞ and Λ/U∞, respectively. The intensity of turbulent
velocity fluctuations is assumed to be low so that the problem can be treated as
a linear perturbation about the laminar solution. The free-stream fluctuations
are represented as a superposition of sinusoidal disturbances:

u− î = εu∞(x − t, y, z) = εû∞ei(k·x−k1t), (1)

where k = {k1, k2, k3}. The linear nature of the problem allows us to calculate
the signature of the individual Fourier components within the boundary layer;
the overall effect of the continuous free-stream spectrum is accounted for by
a proper summation to compute the r.m.s.. We define RΛ ≡ U∞Λ/ν∞ and,
like LWG, as ε → 0 while εRΛ = O(1), the domain can be divided into four
asymptotic regions (I, II, III, IV ), shown in figure 1 (see LWG for a detailed
description). The results describe the flow when the boundary layer thickness
is of the order of the transverse length scale (region III).
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EFFECT OF VISCOSITY STRATIFICATION ON
SECONDARY AND NONMODAL INSTABILITIES
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The effect of viscosity stratification on the different mechanism of transition to
turbulence is not well understood. In this paper, a viscosity variation normal
to the flow in a channel is investigated. The primary and secondary instability
are computed, and the transient growth is analysed. It is found that viscosity
stratification can have different effects in each case.

Keywords: Transient growth, secondary instability, viscosity stratification

1. INTRODUCTION

It has been shown by numerous authors that a viscosity stratification brings
a large change in the stability characteristics [Wall and Wilson, 1996, Yih,
1967, Govindarajan et al., 2001, Ranganathan and Govindarajan, 2001]. A
stratification of viscosity in the direction normal to a laminar shear flow of-
ten has a large effect on the instability behaviour. If the viscosity decreases
as one approaches the wall, the linear mode of disturbance growth is usually
stabilized. Consequently, transition to turbulence is presumed to take place at
a significantly higher Reynolds number than in an unstratified flow. The re-
verse is expected when the viscosity increases towards the wall. The process
of transition, however, is markedly different in different shear flows. Our focus
here is the flow through a channel, in which the effect of viscosity stratifi-
cation on the transient growth and secondary instability has not been under-
stood. An unstratified channel flow often reaches turbulence at a Reynolds
number (Re ≡ Uh/ν, where U is the centerline velocity, h the half chan-
nel width and ν the kinematic viscosity) of about 1500, well below the value

∗Also: Engineering Mechanics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Banga-
lore, INDIA
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Figure 1. Variation of non-dimensional
(a) viscosity and (b) velocity with y. The
velocity is scaled by maximum and the vis-

Figure 2. The neutral curve for various
viscosity ratio. At Tcold = 295oK, for the
unstratified case, i.e., at m = 1.0, Recr is

(Re = 5772) at which the laminar flow first becomes unstable to linear distur-
bances. One mechanism which makes this possible is the interaction of differ-
ent linear modes to give a transient algebraic growth for some finite amount of
time. Such an interaction takes place because the eigen-modes of the stability
equation are non-orthogonal (i.e., the stability operator is not self-adjoint). For
an unstratified flow the transient growth is highest [Schmid and Henningson,
2001, Reddy and Henningson, 1993] when the disturbance waves are invari-
ant in the streamwise direction. In this paper we study the case of asymmetric
heating of channel walls. The secondary instability and transient growth analy-
ses are done and it is shown that the viscosity stratification can have different
effects on these distinct mechanisms.

2. MEAN PROFILES

The temperature is assumed to vary linearly across the channel. The vis-
cosity dependence on temperature is assumed to be of Arrhenius type: µ(T ) =
C1 exp(C2/T ). This model works fairly well for most liquids, e.g. water, alco-
hol. The viscosity is non-dimensionalised with that at the higher temperature
wall. The mean flow equation for the viscosity stratified channel flow will then
be, (νU ′)′ = dP/dxRe. The above equation is solved numerically and the
velocity and viscosity profiles are presented in figure 1.

3. TRANSIENT GROWTH

The growth of small perturbations introduced into the mean flow is studied.
The perturbed quantities in normal mode form are given as

[
ûp, v̂p, ŵp

]
=

[
up(y), vp(y), wp(y)

]
exp[i(αpx + βpz − ωpt)], (1)

cosity is scaled by its value at the hot wall 5772.2
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where αp and βp are the wave numbers in streamwise and spanwise directions
respectively, and ωp is the complex frequency of the wave. The full stability
equations are derived in the traditional way [White, 1991]:

iαp[(v′′p − (α2
p + β2

p))(U − ωp/αp) − U ′′vp]

=
1

Re
[µviv

p + 2µ′v′′′p + (µ′′ − 2(α2
p + β2

p)µ)v′′p − 2(α2
p + β2

p)µ′v′p

+((α2
p + β2

p)µ′′ + (α2
p + β2

p)2µ)vp], (2)

i(ωp − αpU)η + iβpU
′vp =

1
Re

[
µ[η′′ − (α2

p + β2
p)η] + µ′η′

]
, (3)

with the perturbation vorticity η in the normal direction given by

η = iβpup − iαpwp. (4)

Equations 2 and 3 form an eigenvalue problem with the boundary conditions

vp(±1) = v′p(±1) = η(±1) = 0. (5)

Equations 2 & 3 (with appropriate boundary conditions from equation 5)
constitute the modified Orr-Sommerfeld equation and the Squires equation for
viscosity-stratified flow. The neutral curves are shown in figure 2. As the vis-
cosity ratio increases the flow stabilises for asymmetric heating. We focus next
on the transient algebraic growth of linear perturbations. The methodology is
the same as used in Schmid and Henningson, 2001, Reddy and Henningson,
1993 or Meseguer, 2002. If vpj is the jth eigenvector, a linear combination of
vpj will produce a perturbation v̂p, such as

v̂p(y, t) =
N∑

j=1

κj(0)e−iΛtvpj(y) =
N∑

j=1

κj(t)vpj(y), (6)

where κj is the jth expansion coefficient of eigenfunction, κ = (κ1, κ2, ..., κN )T

and Λ = diag{ω1, ω2, ...ωN}. We may define the energy growth, g(t) [Schmid
and Henningson, 2001], for a given initial condition κ(0) as,

g(t) =
‖κ(t)‖2

E

‖κ(0)‖2
E

=
‖e−iΛtκ(0)‖2

E

‖κ(0)‖2
E

. (7)

Maximising g(t) in equation (7) for all possible initial conditions κ(0), we
define

G(t) ≡ max
κ�=0

g(t) (8)
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Figure 3. The contour of Gmax for
Re = 1000 for asymmetric heating.

o

Figure 4. Same as figure 3 but with
o

We next define Gmax as the maximum of G(t) over time, for one particular
Re, αp and m. The main interest here is the effect of m on Gmax. From figure
3 & 4, we see that transient growth is affected only marginally by asymmet-
ric viscosity stratification. We conclude that viscosity stratification has only
minimal effect on transient growth in channel flow.

4. SECONDARY INSTABILITY ANALYSIS

The method here is as in Herbert, 1983 and Bayly et al., 1988. All flow
variables are decomposed in the form

u = ū + Ap(ûp) + Asûs, (9)

where ū comes from the basic flow, ûp is the solution from linear stability
analysis and ûs is the secondary instability solution that we seek. The di-
rect interactions between primary instabilities are negligible, which means
A2

p terms are neglected (also means A2
p << ApU, Ap∂u/∂y). Assuming

1 >> Ap > As, we get a linear system of partial differential equations.
The secondary and primary waves have a phase difference with a corre-

sponding frequency shift. The phase shift, PS is defined as PS = ωpα+/αp −
ωs. Herbert, 1983 showed that for a subharmonic mode the frequency shift
vanishes for high value of β suggesting a phase lock.

The secondary perturbation quantities are three dimensional and are as-
sumed to be of a form such as

ûs =
1
2

[
u+(y, t)ei(α+x+βz) + u−(y, t)ei(α−x−βz) + c.c.

]
, (10)

where α+ and α− are the wave numbers of the secondary waves in the stream-
wise direction, β is the wave number in the spanwise direction.

∆T = 50 K
∆T = 100 K
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For the flow under consideration, the growth/ decay rates of the primary
mode are so small that dAp/dt can be neglected during one period of time,
the primary flow may be taken to be periodic. The most unstable primary
mode (which is two dimensional in accordance with Squire’s theorem) alone
is considered for the secondary instability analysis. We substitute these in
the three momentum equations, eliminating pressure and neglecting non-linear
terms in the secondary disturbance. On averaging over x, z and t, all terms
become zero except the resonant modes, given by, α+ + α− = αp. Using
the continuity equation the streamwise component of secondary velocity is
eliminated and we get the secondary perturbation equations:

−D
∂v+

∂t
+ s

∂f+

∂t
= −sAf+ + (AD − iα+(DU))v+

−Ap

[ iα2
+

2α−
upD +

vpα+D2

2α−
+

i(Dup)α+

2

]
v∗− (11)

+
Apα

2
+

2

[
− vpD + iα−up +

iβ2

α−
up +

β2

α+α−
vpD

]
f∗
−,

∂v+

∂t
− D

∂f+

∂t
= −Av+ + (AD + (DA))f+ − Ap(αp + α−)

2

[ vp

α−
D (12)

−iup

]
v∗− +

Ap

2

[
− i(αp + α−)upD − iα−(Dup) + vp

(α+β2

α−
+ D2

)]
f∗
−.

where A = [iα+U +νs−νd2−ν ′D], f+ = − i
β w+, D = d/dy Equations (11)

& (12) and complementary equations for v∗− and f∗
− are solved using Cheby-

shev collocation spectral methods, with the boundary conditions ûs, v̂s, ŵs = 0
at y = ±1. The dispersion relation is F (Ap, β, m, Re, αp, c, ) = 0 (see Her-
bert, 1983).

The variation of secondary growth rate with the spanwise wave number for
various viscosity ratios is plotted in figures 5. For a non-zero temperature dif-
ference, a second mode appears, which does not exist in unstratified flow. This
second mode is highly unstable, compared to the usual unstratified mode. An-
other interesting feature to note is the stabilizing effect of temperature differ-
ence for low wave numbers. At the point from where the new mode dominates,
the secondary wave has no phase shift from the primary wave, as demonstrated
in figure 6. Phase locking is achieved at an earlier β than for the unstratified
case.

5. CONCLUSIONS

The primary instability mode was stabilised with increase in temperature
difference, while the secondary stability analysis showed a high level of desta-

149Effect of viscosity stratification



A. Sameen

Figure 5. The dependence of growth
rate on spanwise wave number of the sec-
ondary disturbance for various viscosity ra-
tios, subharmonic case. αp = 1.0, Ap =

Figure 6. The variation of PS with span-
wise wave number for various viscosity ra-
tios, subharmonic case. αp = 1.0, Ap =

bilisation. The transient growth, however, was only marginally affected by vis-
cosity stratification. Since the level of background noise can determine which
route to turbulence will be followed, viscosity stratification can have effects
completely at variance.
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SPECTRAL ELEMENT STABILITY ANALYSIS
OF VORTICAL FLOWS
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The scope of the present study is to demonstrate the use of spectral/hp-element
methods in understanding the global instability mechanisms of vortex dominated
flows. Using a BiGlobal stability analysis, analytically constructed and numeri-
cally evaluated base flows have been investigated, with the leading eigenvalues
obtained by the Arnoldi algorithm. Subsequently, Direct Numerical Simulation
(DNS) was used to investigate the non-linear development of an unstable Batch-
elor vortex. It was found that a spiral-type instability, if allowed to develop in an
axially unconstrained manner, leads to an axial loss of energy and the formation
of a stagnation point.

Keywords: BiGlobal; stability; vortex breakdown; DNS; PSE

1. INTRODUCTION

Although vortex breakdown has been researched for some time, there re-
mains no accepted explanation of the phenomenon. Following Leibovich,
1978, breakdown is defined as, ‘a disturbance characterised by the formation
of an internal stagnation point on the vortex axis, followed by reversed flow in
a region of limited extent’. The main theories associated with breakdown are
those of vortex stability; and the wave-motion theories, primarily attributed to
Squire (1960) and Benjamin (1962).

The concept of hydrodynamic stability, and its advancement to global lin-
ear instability theory (summarised by Theofilis, 2003), has resulted in con-
siderable investigation into the unstable modes of the Batchelor (1964) vortex
model. Initially investigated by Lessen et al. (1974) and more recently by Ash
and Khorrami (1995), several spiral-type modes of instability exist. It is not
immediately evident, however, how an instability can lead to an abrupt change
in flow structure; although the DNS of Abid and Brachet (1998) does relate the
non-linear development with a lateral expansion. The aim of the current re-
search is to unify linear stability analysis with three-dimensional DNS to show

Abstract:
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2. NUMERICAL METHOD

The numerical method applied consists of solving the eigenvalues of a ma-
trix system corresponding to the linearised incompressible Navier-Stokes equa-
tions. Following the methods of Barkley and Tuckerman (2000), an exponen-
tial power method – coupled with an Arnoldi algorithm – is used to evaluate the
leading eigenvalues of the system; which is reduced to a Krylov subspace span-
ning the number of eigenvalues sought. Validation of the method was achieved
by comparing the results for an isolated Batchelor Trailing Vortex (BTV) with
the classical one-dimensional stability analysis of Mayer and Powell (1992),
which assumes both a streamwise and an azimuthal Fourier decomposition.

Linearised stability analysis is based upon the decomposition of all flow
variables into a steady mean component upon which small-amplitude three-
dimensional disturbances are permitted to develop (i.e. q = q̄+q′). By allow-
ing a mild dependence of the base flow on the streamwise spatial coordinate z,
an eigenmode Ansatz is introduced, according to which

q′(x, y, z) = q̂(x, y, z∗) exp iΘ + c.c. (1)

Θ = Θ3D =
∫ z

z0

β(ξ)dξ − Ωt (2)

Applied to the linearised Navier-Stokes equations this leads to the follow-
ing system of equations that define the Parabolised Stability Equation (PSE)
concept (originally developed by Herbert, 1997) for three-dimensional flows

ûx + v̂y + iβŵ = −ŵz (3)

{L − ūx} û − ūyv̂ − p̂x + iΩû = w̄ûz + ūzŵ − 2iβ

Re
ûz (4)

−v̄xû + {L − v̄y} v̂ − p̂y + iΩv̂ = w̄v̂z + v̄zŵ − 2iβ

Re
v̂z (5)

−w̄xû − w̄yv̂ + Lŵ − iβp̂ + iΩŵ = w̄ŵz + w̄zŵ − 2iβ

Re
ŵz + p̂z (6)

Where L = (1/Re){∂xx + ∂yy − β2} − ū∂x − v̄∂y − iβw̄. Implicit in
this derivation is that the disturbance takes the form of a rapidly varying phase
function and a slowly varying shape function, for which second derivatives
with respect to z (along with products of first derivatives) can be neglected.

3. STABILITY OF A BATCHELOR VORTEX

A single Batchelor vortex (defined by Batchelor, 1964) with a swirl value
of q = 0.8 and a co-flow parameter of a = 0 has been investigated. A typi-
cal linearly unstable perturbation mode is illustrated in Figure 1 for a Reynolds
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Figure 1. Two-dimensional view of the
linear perturbation mode for an isolated
Batchelor vortex with β = 2.0. Visualised

Figure 2. Three-dimensional view of
the linear perturbation mode for an isolated
Batchelor vortex with β = 2.0. Visualised
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Figure 3. Temporal development of
the kinetic energy within the zeroth axial

Temporal development of the
kinetic energy within the first axial Fourier

number based on the vortex core radius of Re = 667; the corresponding eigen-
value is 0.296±1.189i. This was evaluated using a BiGlobal stability analysis;
equivalent to Eqs. (3)–(6) with the RHS terms – which are related with deriva-
tives of the basic flow and the disturbance terms in the z-direction – neglected.

4. NON-LINEAR DEVELOPMENT

The non-linear development of an isolated vortex has been analysed by DNS
using N εκταr 1, for Re = 1000. Initially, a periodic representation was ap-
plied in the axial direction, with the non-linear temporal development analysed
from initial conditions constituting the isolated BTV with the first mode of in-
stability superimposed as a small perturbation. As illustrated in Figures 3 and

1A spectral/hp-element solver developed by Sherwin and Karniadakis (1995)

using contours of axial velocity using iso-surfaces of axial velocity

Fourier mode

Figure 4.

mode
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t = 0 t = 50 t = 60

t = 70 t = 80 t = 90

Figure 5. Non-linear development of an isolated Batchelor vortex assuming a periodic repre-
sentation in the axial z-direction and a Fourier approximation consisting of the first 16 modes.
Visualised using iso-surfaces of λ2

t = 20 t = 30 t = 40

Figure 6. Three-dimensional temporal development of an isolated Batchelor vortex illus-
trating axial deceleration and formation of a stagnation point. Visualised using iso-surfaces of
λ2

4, an energy transfer between the zeroth axial Fourier mode and the linear per-
turbation mode is identified. This is significant, since it implies that the growth
of the linear instability leads to a loss of axial energy in the mean flow, which
must be accompanied by a cross-section expansion to satisfy continuity, visu-
alised in Figure 5. Consequently, the associated drop in axial velocity suggests
a causal relationship between instability and breakdown.

Enforcing an axial periodicity in the solution restricts how the streamwise
w-component of the velocity can change, limiting the extent of axial decelera-
tion. To resolve this problem, 3D-DNS on the same BTV has been conducted
(Figure 6). Although the initial development correlates well with the periodic
representation, the axial deceleration now develops into a stagnation point –
confirming the link between a spiral-type of instability and vortex breakdown.

5. POTENTIAL APPLICATIONS

Whereas classical stability analysis places restrictions on the complexity of
the instability modes that can be studied, BiGlobal analysis allows more gen-

= −0.2

= −0.4, shaded by axial velocity
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Figure 7. Computational grid in the Figure 8. RANS-evaluated base flow

Figure 9. Short wavelength unstable per- Figure 10. DNS of wake vortex system

eral flows, with arbitrarily complicated vorticity distributions in the plane nor-
mal to the axial flow direction. The use of unstructured grids, coupled with the
high spatial accuracy of spectral methods, also offers a significant flexibility
to the method. For example, the complicated vortex system originating from
a low aspect ratio wing close to the ground, along with a corresponding short-
wavelength mode of instability, is illustrated in Figures 8 and 9 respectively;
where the base flow was evaluated from a RANS-simulation.

Although there is a question on the appropriateness of taking such a solu-
tion from an analytic perspective, DNS of the RANS-evaluated wake system
(visualised using λ2 iso-surfaces in Figure 10) confirmed the development of
an instability with a wavelength (β = 100) comparable with the most unsta-
ble perturbation mode. Analogous to an isolated Batchelor vortex, the devel-
opment of the instability also leads to an axial loss of velocity in the vortex
core. In a similar analysis, Crouch et al. (2004) used RANS-obtained basic
states, coupled with a compressible BiGlobal stability analysis to obtain realis-
tic eigenmodes related to the buffeting of an 18% thick bi-convex airfoil. This
illustrates the scope of the method and suggests that it is valid.

turbation mode of the trailing vortex illustrating development of breakdown

wake of a low aspect ratio wing computed about a low aspect ratio wing
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6. CONCLUSIONS AND FUTURE RESEARCH

A unified approach to analysing vortex stability has been discussed, and a
causal relationship between stability and breakdown implied. Spiral modes of
instability were found to cause a lateral expansion of the cross-section, and a
corresponding drop in axial velocity (a prerequisite of vortex breakdown). This
confirms the proposals of Ash and Khorrami (1995), who describe breakdown
as, ‘a final outcome of vortex instability, with the caveat that vortex breakdown
can also be produced by external means’.

External influences might include an adverse pressure gradient, which can-
not be investigated through BiGlobal stability analysis. A suitable technique is
the Parabolised Stability Equation concept derived in Section 2. This formula-
tion permits flows with a mild variation in the axial direction and is currently
being implemented to address the influence of axial pressure gradients, and
their role in vortex instability and development to breakdown.
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Abstract: The present paper is devoted to the detailed experimental study of weakly nonli-
near resonant interactions of Tollmien-Schlichting waves in a specially designed
2D non self-similar boundary layer on an airfoil. The influence of the funda-
mental frequency on the efficiency of the tuned subharmonic resonance is in-
vestigated as well as the influence of frequency and spanwise wavenumber de-
tunings. The results are compared with Direct Numerical Simulations based on
a vorticity-velocity formulation of the complete Navier-Stokes equations. Good
overall agreement is achieved.

1. INTRODUCTION

For the design of subsonic, natural laminar flow (NLF) airfoils usually half-
empirical transition prediction codes based on linear stability theory (LST) are
applied. This approach gives reliable results as long as the streamwise extend
of the nonlinear disturbance growth is short in comparison to the linear part.
Detailed optimizations of boundary layer parameters with respect to a long
laminar run now take advantage of the successive (linear) amplification and
damping of Tollmien-Schlichting (TS) waves in a way that the resulting am-
plitudes just remain below a certain critical threshold. In this case the onset of
nonlinear interactions is of significant importance for the extent of the laminar
run.

At this stage the disturbances in the boundary layer can still be described as
different modes of the frequency-wavenumber spectrum. The basic properties,
like amplitude and phase in the y-profiles, remain the same as predicted by
linear theory. The interaction of those modes is dominated by so called reso-
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nant interactions (see review by Herbert [1] and Kachanov [2]). The classical
resonance is the Craik Triad [3], consisting of a 2D fundamental wave with a
pair of 3D subharmonic waves with half of the fundamental wave frequency.
Subsequent theoretical and experimental studies [4, 5] have shown that this
resonance is not only possible for the classical tuned case, where frequency,
streamwise and spanwise wavenumber and phase fit. In experiments [5] on a
self-similar adverse pressure gradient (APG) flow the highest amplification ra-
tes were observed for detuned (mainly with respect to frequency) modes. The
double-exponential growth of these modes leads very fast to flow randomiza-
tion and transition. In previous investigations [6, 7] those systematic studies
were extended to the case of a non self-similar boundary layer, which exhibits
a rather strong change of the resonance conditions in streamwise direction in
comparison to the self-similar one. The present paper is devoted to the compa-
rison of the results obtained in these experiments with DNS.

2. EXPERIMENTAL SETUP

The experiments were conducted in the Laminar Wind Tunnel (LWT) of
the IAG. The LWT is an open return tunnel with a turbulence level less than
Tu = 2·10−4. The boundary layer measurements were performed on the lower
surface of the WW03BL106 airfoil section, which was specially designed to gi-
ve a constant threshold of a n-factor of n = ln(A(f)/A0(f)) = 6 (downstream
of s/smax = 0.3, smax = 604 mm, arc length measured from the leading edge)
at an angle of attack of 2 degree and a Reynolds number of approx. 0.7 · 106.
The experiments were carried out at controlled disturbance conditions. The
TS-waves were excited by a slit source which was mounted flush to the surface
at s/smax = 0.13. The slit is 0.2 mm wide and extends 290 mm in spanwise
direction. Below the slit, 116 equally spaced pneumatic tubes are connected to
32 micro loudspeakers which are driven by power amplifiers and a 16 channel
signal generator. Independent memory of 4096 points (12 bit resolution) for
each channel and external triggering by a quartz based clock enables the gene-
ration of disturbances with different frequencies and spanwise wavenumbers.
Hot-wire measurements were performed downstream of the slit with a phase
locked (with respect to the disturbance generator) data acquisition. Due to the
quadratic influence of the velocity on the stability characteristics the veloci-
ty (U∞ = 18 m/s) was fixed rather than the Reynolds number (the kinematic
viscosity varied between 14.5 · 10−6 and 16.4 · 10−6m2/s due to temperature
effects). The AC-signal of the Dantec 55M10 bridge was band pass filtered and
optimal adjusted to the input range of the 12 bit AD-converter by a program-
mable amplifier. A total of 215 points were sampled at approximately 10 kHz
at every measurement station. The time traces are corrected for the influence
of the filters by a forward-backward Fourier transform before applying King’s
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Law to the total signal. The complex TS-wave amplitudes were determined by
a final Fourier transform. Spanwise scans and sets of wall normal profiles were
performed at several downstream positions. All necessary base flow parame-
ters were obtained, including stability characteristics for 2D and 3D TS-waves
in a range of frequencies from 255 to 610 Hz (see figures 1 and 2).

Figure 1. Distribution of velocity, shape
factor and displacement thickness

Figure 2. 2D stability diagram with posi-
tion of source and investigated fundamental
frequencies

3. EXPERIMENTAL RESULTS

In a first step resonant triplets were excited consisting of a 2D fundamental
wave with an amplitude of approximately 0.06% of ue at 20 mm downstream
of the disturbance source and a pair of 3D subharmonic waves with an amplitu-
de of about one order below the fundamental one [6]. The resonance condition
was always satisfied at the position of the disturbance source. Despite the rather
strong downstream variation of the resonant subharmonic spanwise wavenum-
ber, resonant growth is present in a wide range of tuned and detuned frequen-
cies and spanwise wavenumbers in general consistence with experiments [5, 8]
in a self-similar APG boundary layer.

It was found, as shown in figure 3, that the resonant amplification is the
strongest at high fundamental wave frequencies (which are most unstable at the
initial section of the airfoil) and subsides quickly with decreasing frequency.
This phenomenon seems to be explained by the frequency variation of the di-
spersion characteristics of the base flow due to its essential non self-similarity.
The dependence of the resonant amplification on the initial phase shift led to
an anti-resonance regime where suppression of the subharmonic mode is ob-
served as shown in figure 4.

Measurements with frequency detuning [7] showed that for high fundamen-
tal frequencies the strongest amplification occurs at small positive frequency
detunings, while at low frequencies at very large detunings (about 80% of the
subharmonic frequency). For fundamental frequencies f1 ≥ 400 Hz the ma-
ximum amplification of the subharmonic mode occurred in a rather narrow
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Figure 3. Amplification curves for investi-
gated fundamental frequencies in tuned regi-
mes

Figure 4. Amplification curves for tuned,
anti-resonance, subharmonic only and maxi-
mum resonance detuned regimes

Figure 5. Effective mode amplification fac-
tors vs. frequency of excitation

Figure 6. Influence of wavenumber detu-
ning on subharmonic growth rates

frequency range close to 300 Hz for the excited subharmonic mode, shown in
figure 5. This finding let to a joint interaction regime of a quasi-subharmonic
3D wave pair with two 2D fundamental waves. It was shown that a superpo-
sition principle is satisfied which is leading to a very rapid growth of quasi-
subharmonic waves with increments, which are as large as (or even somewhat
greater than) those observed in the same two resonances when they occur se-
parately.

The subharmonic spanwise wavenumber detuning was shown to influence
significantly the resonant amplification of subharmonics, while the tuned regi-
mes still dominate over the corresponding detuned ones (figure 6). The charac-
ter of this influence correlates with the streamwise variation of the base flow
properties.

4. COMPARISON WITH DIRECT NUMERICAL
SIMULATIONS

The DNS are based on the vorticity-velocity formulation of the comple-
te Navier-Stokes equations for incompressible flat-plate flow with streamwise
pressure gradient. 6th-order compact FDs are employed for the streamwise and
wall-normal direction, and a Fourier spectral representation for the spanwise
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direction, with RK4-O4 time stepping. The disturbances are introduced at the
same position as in the experiment at ∆s = 0 mm by time wise periodic blo-
wing and suction within a spanwise disturbance strip at the wall. For details
of the method see [9, 10]. Simulations were made with the average Reynolds
number and kinematic viscosity obtained from all measurements. The DNS di-
sturbances are determined by matching the amplitudes at ∆s = 20 mm to the
ones measured at this position.

Experimental and DNS amplification curves for tuned resonance regimes
are shown in figure 3. The comparison shows good quantitative agreement up
to the end of the parametric stage at ∆s ≈ 130 mm for a wide rage of funda-
mental frequencies.

Figure 4 shows the subharmonic growth rates for different experimental and
DNS regimes with the same fundamental frequency f1 = 510 Hz (sub only:
no excitation of fundamental wave). Except for the anti-resonance regime all
other subharmonic amplitudes coincide within each regime. The difference in
the anti-resonance regime is attributed to the inaccuracy of the experimental
determination of the exact phase shift within a adequate time frame. The ex-
perimentally found phase shifts varied from 146◦ for f1 = 610 Hz to 153◦ for
f1 = 409 Hz whereas the DNS phase shifts were found to be approx. 4◦ higher.
Therefor the streamwise length of suppression of the measured subharmonic is
shorter than the one found in DNS. Upstream of the suppression both growth
rates are again identical.

The dependence of the effective subharmonic mode amplification on fre-
quency detuning is shown in figure 5. The amplitudes were measured close
to the disturbance source ∆s1 = 40 mm and farther downstream at ∆s2 =
120 mm (160 mm for f1 = 255 Hz). The same positions were used for the
determination of the amplification found in DNS. For the highest fundamen-
tal frequencies (f1 = 510 and 610 Hz) very good quantitative agreement was
found over the entire range of investigated detunings (±80%). The different
amplifications for lower fundamental frequencies are showing good qualitati-
ve agreement by matching the excited subharmonic frequency where the ma-
ximum resonant interaction is observed in the experiment. The quantitative
deviation can be explained by a slight difference in the growth rate of the sub-
harmonic modes leading to lower intergral amplitudes in DNS.

The influence of spanwise wavenumber detunings on the resonant amplifi-
cation of subharmonic waves was investigated in detail for the strongest reso-
nant interaction (f1 = 610 Hz) in a range of ±100% of the resonant spanwise
wavenumber (−100% is equivalent to 2D excitation). The estimated values of
the subharmonic growth rates are presented in figure 6 versus the spanwise
wavenumber for three streamwise positions. In general the behavior is similar
with good agreement for positions closer to the disturbance source and for the
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resonant or higher spanwise wavenumbers. The cause for the differences and
especially for β = 0.2 rad/mm have yet to be determined.

5. CONCLUSION
Weakly nonlinear interactions of TS-waves have been studied under con-

trolled disturbance conditions in an essentially non self-similar APG boundary
layer on an airfoil. Despite rather strong downstream variation of the resonant
subharmonic spanwise wavenumber the resonant growth is found in a wide
range of tuned and detuned frequencies and spanwise wavenumbers in general
consistence with previous experiments [5, 8]. The obtained DNS results sho-
wed in a wide range of experimental regimes an excellent agreement. Minor
differences were found only in the anti-resonance regimes cause by uncertain-
ties in the determination of the experimental phase shift for maximum suppres-
sion of the subharmonic mode and in the comparison of the estimated values
of the subharmonic growth rates for different spanwise wavenumbers.
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schaft (N 436 RUS 113/749/0-1) and the Russian Foundation for Basic Rese-
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Abstract: A simplified DNS study is presented of the evolution of Klebanoff-type modes 

in swept 3D boundary layers (Falkner-Skan-Cooke flows) with adverse and 

favourable streamwise pressure gradients. 
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1. INTRODUCTION 

Klebanoff (K) modes are flow structures in the form of streamwise 

streaks that appear to be caused by freestream turbulence. They were first 

observed by Klebanoff [1].  His basic findings have been confirmed by many 

subsequent authors.  The K modes are fundamentally different from 

Tollmien-Schlichting (TS) waves in that they grow algebraically and reach a 

steady state rather than growing exponentially.  Moreover they are not wave-

like in form.  Recently Fasel[2] has carried out a direct numerical simulation 

(DNS) study that elucidates the role of K modes in transition for the Blasius 

boundary layer, showing that their interaction with TS waves can explain 

many of the features of the transition process including intermittency and 

turbulent spots.  Here we present a simplified DNS study of the behaviour of 

K-type modes in swept 3D laminar boundary layers using the Falkner-Skan-

Cooke family of velocity profiles as a base flow. The present study extends 

our recent methods[3] for simulating the evolution of K-modes to 2D and 3D 

boundary layers with streamwise pressure gradients. 
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2. METHOD 

The numerical simulations are based on our velocity-vorticity 

formulation of the Navier-Stokes equations[4].  For 3D swept boundary 

layers there is a natural co-ordinate system at any given station whereby the 

cross-flow velocity is zero at the boundary-layer edge (see Figure 1).  It 

should be noted that the external streamline is deflected by an angle ( ) that 

is approximately equal to the angle of the swept leading edge.  The 

formulation is based on three primary variables ( x, y, w), namely the 

perturbation vorticity components in the x and y directions and the wall-

normal velocity perturbation.  These primary variables satisfy three 

governing equations: two vorticity transport equations for x and y and a 

Poisson equation for w.  For the present study the perturbations are assumed 

to be small and the governing equations have been linearized.  Furthermore, 

for simplicity we have made a quasi-parallel-flow approximation which 

implies that the undisturbed velocity and vorticity fields correspond to the 

Falkner-Skan-Cooke profiles with the wall-normal velocity W = 0.  High 

levels of freestream turbulence generate the K modes; to approximate the 

effects of freestream turbulence a body force (0, Fy, 0) is used.  This leads to 

a vorticity source on the right-hand side of the governing equation for x that 

takes the form of a delta-function ( ):

)(tHzzxxGe
z

F

ff

yiy

 (1) 

Thus the steady vorticity source has magnitude G, varies sinusoidally in 

the spanwise direction with wavenumber  and is located at (xf, zf) where zf is 

located at the boundary-layer edge.  All variables are non-dimensionalised 

with respect to the length parameter L* = ( x/Ue), where  is the kinematic 

viscosity, and the velocity parameter Ue.

3. RESULTS 

The K modes produced by a constant-strength body force suddenly 

applied at time t=0 are shown in Figure 2; the structures produced are long in 

the streamwise direction, narrow in the spanwise direction and appear as 

alternating high- and low-speed streaks.  The optimal spacing of the K 

modes within a Blasius boundary layer also coincides with that found by 

Klebanoff himself (reported in Bertolotti[5]). 

The transient nature of the K modes is shown by the fact that, for the 

Blasius boundary layer, their strength initially rises as time increases, 

ultimately reaching an asymptotic (steady-state) value. 
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Klebanoff modes in swept boundary layers 

Figure 1.  The natural co-ordinate system

Figure 2.  Contour plots of the streamwise velocity component showing the numerically 

generated K modes produced in an unswept Blasius boundary layer at z = 2.0.  Dashed lines 

indicate a negative contour plots. Parameters are as follows: RL* = 1000, L* = 0.225 

In two-dimensional flows, the pressure gradient is shown to have a strong 

effect on the maximum strength (in this case the maximum value of the 

streamwise velocity component) and the optimal spacing of the K modes 

(see Figure 3); the more adverse the pressure gradient the stronger the 

streaks produced and the smaller the optimum spanwise wavenumber. 
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Figure 3.  The variation of the optimum spanwise wavenumber ( optL*) with streamwise 

pressure gradient (m) and also the maximum strength of the K mode achieved at this optimum 

spacing.  Parameters are as follows: RL* =1000

Figure 4 shows the temporal evolution of the K mode within a swept 

boundary layer with a favourable streamwise pressure gradient viewed from 

above.  The K mode grows in the negative-y direction, beneath the adjacent 

streak, with the maximum strength remaining toward the upstream end.  

Eventually, the growth of the streaks causes the relatively weaker 

downstream-end of the adjacent streak to become detached and this 

subsequently gets swept downstream. 

Figure 5 shows the temporal evolution of the K mode in a swept 

boundary layer with an adverse streamwise pressure gradient when viewed 

from above.  This time, the K mode grows in the positive-y direction and the 

maximum strength of the streak moves towards the downstream-end.  A 

wave-like instability is then shown to occur that grows bigger with time. 

Further investigation reveals that the wave-like instability is not a 

numerical artefact nor impulsively driven.  It resembles a secondary 

instability and a secondary instability is a nonlinear phenomena.  It is 

possible that the disturbance is the superposition of two forms of stationary 

disturbance with disparate wavenumbers and receptivity. 

With both a favourable and adverse streamwise pressure gradient, the 

evolution of K modes in a swept boundary layer is much more complex and 

the larger the angle-of-sweep, the more rapidly they develop (see Figure 6). 

Further details of our study are given in Kudar[6].  However, further 

investigation is required in order to fully elucidate the flow physics involved 

in the phenomena described above. 
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Klebanoff modes in swept boundary layers 

Figure 4. Streamwise velocity contour plots showing the evolution of the K mode, with time, 

from above in a swept boundary layer (45°) with a favourable (m = 0.0204) streamwise 

pressure gradient applied.  Dashed lines indicate a negative contour plot. Parameters are as 

follows: L* = 0.2, RL* = 1000, xf = 1600, zf = 4.5 

Figure 5. Streamwise velocity contour plots showing the evolution of the K mode, with time, 

from above in a swept boundary layer (45°) with an adverse (m = -0.0196) streamwise 

pressure gradient applied.  Dashed lines indicate a negative contour plot. Parameters are as 

Figure 4 
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Figure 6. Streamwise velocity contour plots showing the evolution of the K mode, at t = 

6400, from above in a boundary layer, with an adverse (m = -0.0196) streamwise pressure 

gradient, swept at different angles.  Dashed lines indicate a negative contour plot. Parameters 

are as Figure 4 
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EFFECTS OF COMPRESSIBILITY AND
NOSE RADIUS ON INSTABILITIES NEAR
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Abstract: The flow in the vicinity of the attachment line of a swept airfoil is investigated
numerically. The typical Goertler–Haemmerlin modes are recovered at the at-
tachment line and found to be stabilised with an increase of the Mach number
and reduction of the nose radius. Away from the leading edge, another instabil-
ity, most probably a streamline–curvature instability as described by Itoh, 1994,
was found which dominates the attachment line instability.

Keywords: attachment line –, centrifugal –, crossflow instability

1. INTRODUCTION

Empirically, the attachment–line instability was found to be important for
laminar/turbulent transition on swept wings since the early fifties. A review of
the early theoretical and experimental work is due to Poll, 1979. The linear
stability analysis by Hall et al., 1984 for the incompressible flat plate yields a
critical Reynolds number Re = 583. This Reynolds number is based on the
spanwise velocity and the viscous length scale defined below. This finding is
consistent with DNS studies as for example the first one performed by Spalart,
1988. Flat plate experiments do not exist and curved surface experiments sup-
posedly confirm this results. But recently a finite nose radius was found to
increase the critical Reynolds number. Based on linear stability analysis, Lin
and Malik, 1997 predict an increase up to Re = 637 for R/δ = 143. The
flat plate case is recovered for R/δ > 1430. Little is known for compressible
flow. For the weak compressible regime on a flat plate, Le Duc et al., 2002
confirmed the existence of the instability for Re = 644.

173

R. Govindarajan (ed.),  IUTAM Symposium on Laminar-Turbulent Transition, 173–179. 

© 2006 Springer. Printed in the Netherlands.

 Sixth



J. Sesterhenn and R. Friedrich

In this contribution we study the flow about a parabolic leading edge in
supersonic flow and the nature of the instabilities appearing on and away from
the stagnation line.

2. BASE FLOW

2.1 Parameters

The base flow on a curved leading edge in compressible flow is de-
scribed by several parameters.

The proper length scale is the viscous length, which is about a third of the
boundary layer thickness. It is formed by the velocity gradient and the viscos-

ity and reads δ =
√

ν/∂u∞
∂x . x denotes the chord direction, z the spanwise

direction and y is perpendicular to both. Below, we will also refer to n as the
normal direction to the body surface and s as the coordinate along the body
surface starting at the leading edge. In the flat plate case the velocity gradient
is an arbitrary parameter and in the curved case approximated by the velocity
gradient of a potential flow at the wall of a circular cylinder ∂u∞

∂x = 2u∞/R.
The nose radius may be expressed in terms of this length scale, being a first
dimensionless parameter of the problem. If we omit blowing and suction or
the use of trip-wires, we are left with three more dimensionless parameters.
The Reynolds number is Re = w∞δ

ν . It is constructed with the sweep veloc-
ity w∞ parallel to the leading edge, the viscous length scale and a reference
viscosity. The reference viscosity is taken to be the viscosity on the stagnation
line for an adiabatic wall. The adiabatic wall temperature Tr is available from
Reshotko and Beckwith, 1958. In our investigation, the wall temperature Tw

was always adiabatic thus, the dimensionless parameter τ = Tw−Tr
To−T∞

was kept
zero. Additionally a sweep Mach number M = w∞/c∞ can be defined.

Please note that the sweepback angle is hidden in the Reynolds number
by the ratio of the two velocity components. It is thus no longer a formal
parameter of the problem.

It is known from the literature Hall et al., 1984, Obrist and Schmid, 2003 that
below a critical Reynolds number of Re = 583 the flow is linearly stable. This
value is raised by a finite nose radius Lin and Malik, 1997 and compressibility
Le Duc et al., 2004.

Practical situations, e.g. for an airplane or fighter, typically involve Reynolds
numbers of Re = 400 − 1000, nose radii of R/δ = 300 − 1000 and sweep
Mach numbers of M = 0.3 − 1.5.

2.2 Model assumptions and numerical method

We have introduced the assumption of periodicity in spanwise direction for
our computations. Thus we neglect spanwise boundary layer growth. By this
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assumption we are able to compute the base flow in two dimensions only. This
makes the investigation of the relevant parameter space more affordable. In
future, we want to perform three—dimensional computations in representa-
tive regions of the parameter space and quantify the validity of the periodicity
assumption.

At the outflow, non-reflecting boundary conditions are employed. At the
inlet we consider in this paper supersonic conditions with a moving bow shock
which is prescribed by use of the Rankine–Hugoniot conditions. The body
surface is taken to be a parabolic leading edge.

We use a characteristic-type numerical scheme which was developed for
DNS of compressible transitional and turbulent flow by Sesterhenn, 2001. Its
features are low numerical dissipation and dispersion and 5th, respectively 4th
order accuracy in space and time. The bow shock, if present, is treated explic-
itly with a shock-fitting procedure as demonstrated in Fabre et al. Fabre et al.,
2001.

In the present simulations we use grids with 350× 128× (16...64) points in
wall-normal, tangential and spanwise direction. Only few points in spanwise
direction are needed to resolve the principal mode.

2.3 Description of the base flow

In the sequel, we consider a flow of M∞ = 8 over a swept wing of Λ =
30◦, leading to a sweep Mach number M = 1.25. The spanwise velocity
component at the attachment–line has the typical Blasius–like profile, whereas
the wall normal velocity increases almost linearly with wall distance.

The velocity away from the attachment–line is depicted in fig.1. We show
the velocity components in a coordinate system which uses the wall normal
n/δ, the potential streamline and the cross–product of these two directions
for its base. The u profile looks like a Blasius boundary layer but there is a
crossflow component which leads to an inflection point of the overall profile.
The local streamline curvature is depicted in figure 2. In that diagram a cut

normal to the stagnation line is presented. We show contour lines of the local
streamline curvature. The flow is from top to bottom. The upper border is the
location of a detached bow shock and the lower border is the body surface.

The local curvature is maximal away from the leading edge and the locus
of maximal streamline curvature is at (x/δ, y/δ) ≈ (100,±200). Additionally
the primary instability vortices are shown. They are visible as the two thin
stripes along the body surface. They will be discussed later. The streamlines
are concave and exhibit no inflection point.
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Figure 1. Velocity profile in streamline coordinates. u is the velocity in direction of the
streamline, v the crossflow velocity and w the wall–normal one

Figure 2. Local streamline curvature depicted in a plane perpendicular to the attachment line

3. PERTURBED FLOW

The steady base flow was perturbed in two ways: randomly in the vicinity
of the leading edge and coherently by an entropy perturbation upstream of the
shock. Both perturbations were introduced with an amplitude such that the
response was linear. This was checked afterwards.

The first method instantaneously triggered the crossflow or centrifugal in-
stability. Very close to the attachment line the growth of an instability was
observed, but it could not easily be identified as the attachment-line instability
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due to the fact that it was rapidly superseded by the other growth mechanism.
For identification, tailored perturbations were introduced which generate a vor-
tex pair travelling along the boundary layer edge. Thus it was hoped to favour
the attachment line instability.

Computations were performed for the parameters indicated in the follow-
ing table 1. The extension of the computational domain in z-direction fixes

Table 1. Overview of Reynolds numbers and nose radii

Re 600 642 700 750 800
R/δ 377 409 446 472 504

the wavelength of the possible growing modes. Therefore different depths in
this direction had to be investigated. For time being the computational domain
is only large enough to host one principal wavelength and its higher harmon-
ics. The most unstable mode for the incompressible case has a wavelength
of λ ≈ 23δ. Thus we have chosen to vary the dimensionless wavenumber
α = 2πδ/λ = 2π/30 − 2π/20.

Random perturbations lead to an unconditional growth of kinetic energy of
the principal mode when measured globally in the full computational domain
or in the full boundary layer. The growth rate was measured between 2 and 6,
based on the dimensionless time (∂u∞

∂x )−1, given above. Flow visualisations
revealed that this was due to vortices roughly inclined as the potential stream-
lines. They did not extend along the full body surface but were locally confined
to the region of the strongest streamline curvature of the flow. A cut in a plane
parallel to the leading edge and normal to the body surface is presented in fig-
ure 3. The plane is located near the locus of maximal streamline curvature at a
distance of s = 189δ from the stagnation line. Contour lines of the v velocity
component are shown. They resemble very closely the known pattern of the
crossflow instability. Figure 4 shows the phase of the Fourier component of
this mode. It shows a strong phase shift which is typical for crossflow modes.
Atypical, and rather indicating a centrifugal instability is the local confinement
of the the vortices.

In order to identify the attachment line instability, separate measurements of
the kinetic energy of the perturbation were performed at the locus of maximal
streamline curvature and in the vicinity of the leading edge. They revealed that
the main kinetic energy is found in the strong vortices described above. At the
leading edge a conditionally unstable mode was found. Its growth rates were
measured to be a factor of ten less. The critical Reynolds number is shifted
towards Re = 635 and the wave number is lowered as compared to the flat
incompressible case.

In a second test series, the flow was perturbed by an entropy spot ahead of
the detached bow shock. Upon interaction with the shock, entropy, vorticity
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Figure 3. Contour lines of the v–velocity at s = 189δ. The distance of the contourlines is ten
percent of the reference velocity behind the shock
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Figure 4. Phase relation of the observed instabilities

and acoustic disturbances are generated behind the shock. The vorticity per-
turbations have the form of two counterrotating vortices Fabre et al., 2001,
and it was hoped that they strongly favour the weaker attachment–line insta-
bility. These attempts proved unsuccessful and it was not possible to excite
the attachment–line instability strong enough to temporarily exceed the other
instabilities.
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4. CONCLUSIONS

For the compressible swept leading edge flow at a sweep Mach number of
M = 1.25 with adiabatic wall conditions at a parabolic leading edge with a
nose radius of 300 − 500, the attachment–line instability was observed. It is
substantially weaker than a crossflow or centrifugal instability which is locally
confined to the locus of maximal streamline curvature. The critical Reynolds
number is increased whereas the corresponding wavenumber decreases. The
dominating instability is unconditionally unstable in the investigated parameter
range. The exact nature of this instability is uncertain. The phase relationship
indicates a crossflow instability whereas the local confinement of the instability
to the place of maximal streamline curvature indicates a centrifugal instability.

For further investigations a global stability solver based on the current DNS-
code is being developed since the DNS data is difficult to analyse and expen-
sive to obtain.
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The study of "simple" flows such as Poiseuille flow have been for a long time studied
and their simplicity has permitted us to highlight different instability mechanisms.
More recently, several authors have shown, through transient growth studies and by
the identification of the nonnormal character of the operator of Orr-Sommerfeld,
that these two flows could have subcritical dynamics. However, the assumption
of one-dimensionality of the basic flow limits the comparison with the experiment
where the basic flow is not exactly one-dimensional. Although different studies
have been realized on the stability of a two-dimensional basic flow, all were in-
terested only in the most unstable mode. In this present paper, the stability of the
laminar flow in a rectangular duct of an arbitrary aspect ratio is investigated nu-
merically with for objective the computation of the complete spectrum. This study
will highlight strong similarities between the 1D and 2D spectra but, in spite of a
powerful numerical method, will show the numerical limitations observed to obtain
a spectrum converged in a sufficiently large field in

Keywords: Two-dimensional instability, collocation spectral, eigenvalue problem, Poiseuille
flow.

Since many years it is well-known that for some flows the prediction of linear
eigenvalue analysis fail to match most experiments. Poiseuille flow is this kind of
flows. Recently it has emerged that the failure of eigenvalue analysis may more
justly be attributable to the non-normality of the linearized system. It is a fact
of linear algebra that even if all eigenvalues of a linear system are distinct and
stable, inputs to that system may be amplifed by arbitrarily large factors if the
eigenfunctions are not orthogonal.

S. C. Reddy and Henningson, 1993, have discovered that the operator that arises
in Poiseuille flow is in some sense exponentially far from normal and Butler and
Farrell, 1992, have shown that small perturbations to these flows may be ampli-
fied by factors of many thousands, even if all the eigenvalues are stable.

Abstract:
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hension of the mechanisms of transition to the turbulence in open flows such as
Poiseuille flow, the modeling of these flows remains rather simple. Indeed, for
all of these flows only one spatial direction is supposed to be homogeneous, at
least in an approximate sense. This restriction may be relaxed by considering
an extension of the classic linear theory in which the condition of spatial homo-
geneity in the laminar basic state is required of one spatial direction only, while
the other two spatial direction are resolved. This extension was already used by
some authors like Tatsumi and Yoshimura, 1990, and Theofilis, 1998, Theofilis,
2000, for the calculation of instabilities in a rectangular duct flow and Theofilis
et al., 2000, Theofilis, 2003, for many academic flows. However, all these stud-
ies related to the calculation of the most unstable modes and not of the complete
spectrum of the discrete eigenvalues necessary for the computation of transient
growth.

spectrum, to compare it with the spectrum when A → ∞ and to evaluate the
capacity of the computational techniques usually used to calculate the "whole" of
the discrete eigenvalues spectrum in simple flow in a duct of rectangular cross-
section: two-dimensional Poiseuille flow.

The main idea of the linear stability theory is to split the flow field in two parts.
The first part is of order O(1) and is called the basic flow (noted •). It is supposed
to be steady and solution of the Navier Stokes equations. The second part is the
disturbance term and is assumed to be of small amplitude. Considering that the
basic flow is two-dimensional in (x, y) and the third direction is assumed to be
homogeneous. In cartesian coordinates, each physical quantity Z of the flow field
(velocity components, pressure, temperature, density) is thus written :

Z(x, y, z, t) = Z(x, y) + εZ̃(x, y)ei(βz−ωt) + cc., ε � 1. (1)

The aim is to determine the disturbance field. Filling the Navier Stokes equations
with this ansatz, a new system is obtained, from which the basic flow terms can
be dropped, as they already solve the equations. By linearising, the quadratic flow
terms also disappear.

In the temporal framework, as considered here, β is a real wavenumber pa-
rameter and ω is the complex eigenvalue being seeked; whose real part indicates
frequency and whose positive imaginary part is the growth rate in time t. The
imaginary unit is i =

√
−1 and c.c. denotes complex conjugate. The solutions

of the problem are thus seeked under the form of temporal waves behaving pe-
riodically in the z-direction, and of amplitude the unknown eigenfunction vector
Z̃(x, y).

DECOMPOSITION OF T HE INSTANTANEOUS
FLOW FIELD

J.-C. Robinet and C. Pfauwadel

However,although these new approaches have considerably evolved the compre-

The objective of this paper is to study the structure of the discretized operator
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We considers a duct with rectangular section [−A, A] × [−1, 1] following x
and y directions respectively and of infinite extension in z direction. According
to the geometry of the problem, one can suppose that the velocity field does not
depend on z, the velocity is thus: V = [0, 0,W (x, y)]t and pressure can be
written as P (x, y, z). Under these assumptions, the Navier Stokes equations can
be written as Poisson equation ∂2W/∂x2 + ∂2W/∂y2 = λRe, and the pressure
P is linear in the z-direction. where λ = ∂P/∂z is a constant. This equation
is discretized by spectral collocation méthod and solved by classical numerical
method. The boundary conditions are for the two-dimensional Poiseuille flow:
W̄ (±A, y) = W̄ (x,±1) = 0, ∀(x, y) ∈ [−A, A] × [−1, 1].

The decomposition (1) is substituted into the incompressible equations of mo-
tion. Linearisation about Z follows, based on the argument of smallness of ε and
the basic flow terms, themselves satisfying the equations of motion, are subtracted
out. The linearised Navier-Stokes equations become a partial differential system
and can be written in matrix form:[

M1
∂2

∂x2
+ M2

∂2

∂y2
+ M3

∂2

∂x∂y
+ M4

∂

∂x
+ M5

∂

∂y
+ M6

]
Z̃ = 0, (2)

with Z̃(x, y) = [ũ, ṽ, w̃, p̃]t (x, y) and where M j , j = 1, . . . , 6 are real or com-
plex (4 × 4) matrices. For more details, see Theofilis, 2003. In this formulation
the boundary conditions are :

ũ(x,±1) = ṽ(x,±1) = w̃(x,±1) = 0 and
∂p̃

∂y
(x,±1) = 0, ∀x,

ũ(±A, y) = ṽ(±A, y) = w̃(±A, y) = 0 and
∂p̃

∂x
(±A, y) = 0, ∀y.

(3)

Here we have a system of four variables. In order to spare computer memory,
it is possible to combine the equations and obtain two two-variable systems: the
two-dimensionnal extension of the Orr-Sommerfeld equation. Finally the EDP
system can be written in the following matrix form:

[
M1

∂4

∂x4
+ M2

∂4

∂y4
+ M3

∂4

∂x3∂y
+ M4

∂4

∂x2∂y2
+ M5

∂4

∂x∂y3
+

M6
∂2

∂x2
+ M7

∂2

∂y2
+ M8

∂2

∂x∂y
+ M9

∂

∂x
+ M10

∂

∂y
+ M11

]
Z̃ = 0,

(4)

BASIC FLOWS

LINEARIZ ED NAVIER-STOKES (LNS)
FORMULATION

TWO-DIMENSIONAL ORR-SOMMERFELD (2DOS)
FORMULATION

3.

4.

5.

Two-dimensional local instability: complete eigenvalue spectrum
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with Z̃(x, y) = [ũ(x, y), ṽ(x, y)]t. For more details, see Tatsumi and Yoshimura,
1990. In this formulation the boundary conditions are :


∀x, ũ(x,±1) = ṽ(x,±1) =

∂ṽ

∂y
(x,±1) = 0,

∀y, ũ(±A, y) = ṽ(±A, y) =
∂ũ

∂x
(±A, y) = 0.

(5)

The problem so formulated is an eigenvalue problem. In other words, there ex-
ists an implicit dispersion relation where the different parameters are connected
between them. The resolution of the eigenvalue problem brings the family of
eigenvalues ωj and the corresponding eigenfunctions Z̃. The real part �(ωj)
is the disturbance wave frequency and its imaginary part �(ωj) is its growth or
damping rate.

Spectral Chebychev collocation method is used in both directions. The grid
is built with Gauss-Lobatto nodes. The principal numerical difficulties lie in the
resolution of 2DOS formulation because it is 4 order system of two equations.
In two formulations, it is possible to separate symmetric and antisymmetric solu-
tions in order to divise by four the size of the computational domain. Finally, the
discretized system is represented by a general eigenvalue problem AX = ωX .
The eigenvalues ω and its associated eigenvectors are determined by using the
Arnoldi algorithm. In order to improve the precision of the computations and the
convergence, different numerical techniques are used in particular in the numeri-
cal processing of the boundary conditions of 2DOS formulation.

If we want to compute the transient growth of a two-dimensional Poiseuille
flow, it is necessary to know whole eigenvalue spectrum and not only the most
unstable mode. In the two following sections, the spectrum of two-dimensional
Poiseuille flow is computed by the numerical method descrived above.

A complete spectrum (superposition of the four modes) of the Poiseuille flow is
shown in figure 1. The parameters are chosen according to Tatsumi and Yoshimura,
1990, so that the flow field is at its neutral point. The neutral mode is found to
have a value of ω = (0.2112(2), 2.9(75).10−5), which is close to the result given
by Theofilis, 1998, ω = (0.21167, 1.10−5) for a grid (60 × 40).

The spectrum in figure 2 is found to have a similar structure to that obtained
with a one-dimensional approach. However important differences between the 1D
and 2D spectrum are nevertheless observed. In the 1D spectrum, the eigenvalues

NUMERICAL METH  ODS

NUMERICAL RESULTS

J.-C. Robinet and C. Pfauwadel

6.

7.

7.1    Discretized  Spectrum Computation
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are located on three main branches which have been labeled A, P and S by Mack
(1976). In the 2D spectrum these branches seem always exist but in a different
way. The global Y shape characteristic to a 1D Poiseuille flow is roughly found
in the 2D configuration. Although the P, S and A branches seem to be located
at the same place as those in 1D, important differences between the 1D and 2D
spectrum are nevertheless observed. The P branch seems to be composed of two
series of aligned modes, the S branch seems as complicated as the P branch with
an additional difficulty because | ω | is not small and the convergence is weak.
More number of points are necessary to reach convergence. The structure of the A
branch is more difficult to identify, this branch is strongly modified in comparison
with that obtained in 1D approach. In the 1D configuration, the A branch is
composed of several isolated modes. In the 2D configuration, the A branch seems
to be made up of aligned modes on segments of curve where one extremity of
these segments corresponds to the locus of the 1D modes. These "segments of
modes" are well converged. It is obvious in this figure that some part of the
spectrum is not totally converged in spite of a significant number of points. In fact
the P and S branches are not well converged. There are still plenty of disorganized
modes lying between the left of the P branches and the right of the A branch and
on the left of the S branch. These unconverged modes move if the grid is refined.
Indeed, above the P branch, the spectrum seems to be composed of two series of
line of modes. With a low discretisation, these lines of modes are in segments like
form whose one of these ends is not converged instead of forming a line of modes
like in the 1D case, these diverge in two different directions like a fork. The
length of the portion of lines increases when the number of points increase but
the convergence is slow when the number of point increase. This phenomenon
explains why there are many modes between the P and A branches organized
more or less in lines. The same arguments apply to the S branch. In order to
study the possible existence of two series of branches in the spectrum (for the P
branch), a computation with a (65×51) points has been realized for Re = 10400,
β = 0.91 and A = 2. We note on figure 3 that P branch is in fact composed of two
distinct P branches as we have supposed for A = 5 and these branches get closer
when the A ratio increase and when A → ∞ these branches collapse in unique
branch. Moreover, in accordance with Tatsumi and Yoshimura, 1990 results, the
basic flow is linearly stable when A = 2. Figure 3 shows this spectrum.

However, when A = 5 and for a grid (65× 51) the spectrum is not sufficiently
converged to be usable for the transient growth calculation in future. This figure
establishes a very close relation with 1D and 2D instabilities. It seems like the
transversal walls of the 2D duct only play a minor role on the spectrum structure
at A = 5. Moreover, at this aspect ratio, the flow can not be considered to one-
dimensional. Indeed, if we consider the critical Reynolds number it is equal to
10400 when A = 5 and it is only equal to 5772.22 when A → ∞. The walls
affect the flow by stabilizing it.

Two-dimensional local instability: complete eigenvalue spectrum
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A comparison between the codes written with the Orr-Sommerfeld formulation
(4) and the linearized Navier-Stokes equations (2) was performed. The spectra
can be observed in figure 4. They are in very good correspondence. That validates
the approaches and their equivalence. In 1D approach, the LNS spectrum is equal
to the sum of OS spectrum and Squire spectrum, in 2D approach, the 2DOS
spectrum and 2DLNS spectrum are totally equivalent.

From a numerical point of view, the Orr-Sommerfeld formulation is much
cheaper than the 2DLNS formulation, the memory space is divided by 3 and time
by nearly 10. Convergence at a given number of points is equivalent in both cases.
However, the Orr-Sommerfeld formulation is more sensitive to numerical charac-
teristics, as discussed earlier. Moreover, the spectra shown here are obtained with
derivative matrices containing information about parity. When the comparison is
established for "natural" symmetric boundary conditions, it appears that the NSL
spectrum is much converged than the Orr-Sommerfeld. The former looks very
much like the one shown here whereas the latter is very polluted and the modes
so scattered that the structure is barely recognizable. This is an other argument to
say that the Orr-Sommerfeld formulation is very interesting in terms of costs, but
also very sensitive to numerical conditions.

In this present paper, the complete spectrum of a two-dimensional Poiseuille
flow has been shown. It was highlighted, as soon as A ≥ 5, that the spec-
trum resulting from a one-dimensional approach and those resulting from a two-
dimensional approach present strong similarities in their structures. Although the
existence of a finished aspect ratio A rather tends to stabilize the flow with respect
to the monodimensional result (A → ∞). The spectrum of Poiseuille flow seems
to have three branches like its 1D counterpart. However, when A < ∞, the P
branch seems to be double and tends towards a single branch when A → ∞. This
characteristic must undoubtedly play an important role in the mechanisms of tran-
sient growth of such flows because the modes resulting from the P and S branch
in the one-dimensional case play a considerable part in the transient growth of
the disturbances. However this study has shown, in spite of a powerful numerical
method, that the convergence of the complete spectrum (in a rather broad field
in ω) is not easily realizable, in particular in the vicinity of the P and S branches
to make it usable in a transient growth study. An improvement of the numerical
methods must be carried out.

SUMMARY AND CONCLUSIONS

J.-C. Robinet and C. Pfauwadel

7.2

.8

Comparison Between 2DLNS and 2DOS
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Figure 1. Complete spectrum of linear sta-
bility for a Poiseuille flow in a rectangular
duct of aspect ratio A = 5. Grid (65 × 51),
Re

Figure 2. Poiseuille flow. Superposition of
the linear stability spectra : ◦ 1D and � 2D
(mode 1). Aspect ratio A = 5. Grid (65× 51)
for 2D spectrum. Re

Figure 3. Discretized linear stability spec-
trum for aspect ratio A = 2, grid (65 × 51),
Re

Figure 4. Poiseuille spectra (mode 1) ob-
tained with different formulation of the equa-
tions of motion. � : 2DOS; ◦ : 2DLNS. Grids
(65×51). A = 5, Re

= 10400 and β = 0.91 = 10400 and β = 0.91

= 10400 and β = 0.91 = 10400 and β = 0.91

Two-dimensional local instability: complete eigenvalue spectrum
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INSTABILITY OF FLOW PAST A CASCADE
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The unsteady dynamics of laminar separation bubbles such as those arising
in bluff body flows, or behind obstacles, is of considerable practical interest.
Bubble formation near the leading edge of an aerofoil can dramatically alter
the characteristics of the flow over the wing and induce stall. Similarly, laminar
separation near the trailing edge of an aerofoil and instability of the separation
bubble can influence the dynamics of the wake flow. The flow past a row
bluff bodies placed in a uniform stream, is often used to model engine inlet
flows, and thus an understanding of the unsteady dynamics of the eddies which
form behind the bluff bodies and the unsteady development of the wake flow
is useful in predicting the flow impinging on subsequent rotor blades.

There have been a number of recent studies aimed at investigating the insta-
bility of bubbles and wakes by using an idealised model for the mean flow. For
example, in [1] a family of modified Falkner-Skan profiles is used to gener-
ate velocity profiles containing regions of reverse flow and the linear stability
of these model profiles is then examined using the Orr-Sommerfeld equation.
Based on their findings, Hammond and Redekopp [1] suggest that the flow in
a separation bubble will be absolutely unstable and likely to trigger a global
mode instability if the the extent of the reverse flow within the bubble ap-
proaches about 30% of the free stream value. Whilst such conclusions are
interesting, as the authors point out, their analysis is based on the parallel flow
assumption. The mean flow in a separation bubble is highly non-uniform and
cannot be taken as being non-parallel. Work by Davies & Carpenter[2] have

INTRODUCTION1.
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shown that in rotating disk flow, the inclusion of non-parallel terms can give
rise to different conclusions as to whether a flow is absolutely or convectively
uunstable.

Numerical simulations of separation bubbles in a boundary layer by Alam
& Sandham [3] also conclude that a considerable region of reverse flow is
required for the flow in the bubble region to be absolutely unstable. In this
work, the linear stability analysis is based on the Orr-Sommerfeld equation
with a model velocity profile fitted to the numerically generated data. Again,
the highly non-parallel nature of the mean flow raises serious questions about
the validity of the stability analysis employed.

In the experimental work of [4, 5] the flow past a flat plate placed normal
to an oncoming uniform flow, and with a splitter plate aligned with the flow
direction, is studied. Hudy & Naguib [4] suggest that under certain conditions,
an absolute instability associated with the flow in the middle of the separation
region may be responsible for the low frequency ‘flapping’ of the shear layer.

Recently Castro [6] has looked at the stability of the wake flow generated
by a row of flat plates placed normal to the oncoming stream. Computations of
the unsteady Navier-Stokes equations indicate a global instability, and the con-
clusions are further supported by linear Orr-Sommerfeld stability calculations
of model velocity profiles fitted to the numerical data. Whilst the latter stabil-
ity analysis is questionable, the numerical evidence from the time integrated
Navier-Stokes equations is more convincing.

In the present study we consider an infinite row of circular cylinders placed
in a uniform stream. The techniques that we have adopted to study the in-
stability involve solving the two-dimensional eigenvalue problem, as in Cliffe
& Tavener [7]. Once the mean flow is computed, the stability analysis is con-
ducted by looking for perturbations proportional to e−βt, where β is a complex
frequency, and t is non-dimensional time. This leads to the solution of a gen-
eralised eigenvalue problem.

In what follows, we describe the problem formulation and give brief details
of the numerical method. Some sample mean flow results are discussed. The
results of the stabilty problem were felt to be too preliminary to include and
will be published later when fully tested and validated.

Consider an infinite row of cylinders placed in a uniform stream with U∞
in the x−direction. The centre of the cylinders lie on the y−axis at x = 0, see
figure 1.

We consider the unsteady Navier-Stokes equations, with lengthscales nondi-
mensionalised with respect to the cylinder radius, and velocities with U∞. The

2.
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Instability of flow past a cascade of circular cylinders

Figure 1.
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Figure 2.

equations written in streamfunction-vorticty formulation are:

ωt + ψyωx − ψxωy =
2
R
∇2ω, (1)

∇2ψ + ω = 0. (2)

Here ψ is the streamfunction, ω the vorticity, and R = Ud/v, where U is the
uniform speed relative to the cylinder at large distances from the cylinder, d
the diameter of the cylinder and v is the kinematic viscosity of the fluid, and
t is non-dimensional time. With refernce to figure 1, the non-dimensional gap
width between the cylinders is W .

Let ψB(x, y), ωB(x, y) denote the steady mean flow. In computing the
mean flow, we exploit the symmetry in the problem by computing only in the
region as shown in figure 2.

Sketch of flow past a cascade of circular cylinder

Sketch of the physical domain
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Perturbations to the mean flow are introduced as follows with

ψ(x, y, t) = ψB(x, y) + e−βtψ̃(x, y), ω(x, y, t) = ωB(x, y) + e−βtω̃(x, y)
(3)

and after substituting into (1,2) we linearise for small pertubations ψ̃, ω̃. The
perturbation equations are linearised using the same techniques as used for
computing the mean flow with high-order finite differences in the x−direction
and chebychev collocation in the other direction. For further details of the
computation of the mean flow, see [8]. Finally the resulting eigenvalue problem
for determining β is of the form

Az = βBz. (4)

This is the generalised eigenvalue problem. The eigenvalue problem here is not
dissimilar to that arising in other contexts such as in the finite Taylor problem
for the flow in the annular region between two concentric cylinders. Methods
for the solution of (4) are discussed in Cliffe et al. [9], and we have adopted
similar procedures. The main objective is to determine the eigenvalue spectrum
for β with the two parameters, the Reynolds number R and gap-width W .
Standard results demonstrate that the basic flow is stable if Re(β) > 0 for all
eigenvalues of (4). We are particularly interested in determining what happens
to the eigenvalues when the parameters change leading to loss of stability when
a real eigenvalue crosses the imaginary axis, or when a complex conjugate pair
crosses the imaginary axis leading to a Hopf bifurcation.

J.S.B. Gajjar192

Figure 3. Contours of the stream function for gap widths W = 5, 20 and 50 at selected values
of the Reynolds number
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The results for the steady flow have been extensively discussed in Gajjar
& Nazzam [8]. The solution properties can be categorised into three distinct
types, depending mainly on value of the gap width W between the cylinders.
For small values of the gap width the flow which develops in the wake is of
boundary layer type with a long eddy forming behind the cylinder, see fig-
ure 3, with the vorticity being non-uniform in the eddy region. For moderate
gap widths the solution properties change dramatically particularly near the
reattachment region. The solution, see figures 3,4, comprise a long thin eddy
followed by a much shorter fatter eddy near reattachment. The vorticity in
the eddy near reattachment is uniform suggesting that the eddy is dominated
by inviscid dynamics. Finally for large gap widths the flow in the wake is
dominated by a very large eddy which initially grows linearly in size with in-
creasing Reynolds numbers. For very large Reynolds numbers the eddy width
eventually reaches some limiting value, although the length of the eddy is still
linearly proportional to the Reynolds number, see figure 5.

Further comments and comparisons of the results with previous numerical
and theoretical work for the steady flow is extensively documented in [8].

3. RESULTS

Figure 4. Contours of the vorticity function for gap widths W = 5, 20 and 50 at selected
values of the Reynolds number



Figure 5. A plot of the eddy length and eddy width versus Reynolds number R for gap widths

[8] Gajjar, J.S.B. and Azzam, N., (2004). “Numerical solution of the Navier-Stokes equations
for the flow in a cylinder cascade,” J.Fluid Mech., 520, 51-82.
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of W = 5, 20, 50, 100. The symbols represent the data points of Fornberg [10]
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Finally concering the stability of the flow, our results are still at a prelimi-
nary stage and therefore not discussed here.

The author is grateful to the Royal Society of London for a travel grant to
enable him to attend the meeting.
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A WAVE DRIVER THEORY FOR VORTICAL
WAVES PROPAGATINGACROSSJUNCTIONS
BETWEEN RIGID AND COMPLIANT WALLS

1 2

Department of Applied Mechanics, IIT Delhi, New Delhi-110016
1School of Engineering,University of Warwick, Coventry CV4 7AL, UK
2School of Mathematics, Cardiff University, Cardiff CF24 4YH, UK

A novel theoretical method is presented based on the theory of ad-
joints for analyzing the behaviour of Tollimein - Schlichting waves and
other wall-based waves incident on junctions between rigid and compli-
ant walls.

Keywords: Wave driver, jump conditions, compliant wall, vortical wave, cutoff fre-
quency

1.
We present a novel method for analyzing and understanding a class

of receptivity problems. The method is believed to have general appli-
cability, but it is applied to a specific problem investigated by Davies
and Carpenter [1] using direct numerical simulation, namely, the behav-
ior of Tollimien - Schlichting waves propagating in plane Poiseuille flow
and incident on a junction between rigid and compliant walls. This is
illustrated in figure 1. Previous unsuccessful attempts at solving this
receptivity problem are reviewed in [2]. The practical motivation for
Davies and Carpenter was the proposal that transition could be post-
poned to indefinitely high Reynolds number by designing a wall con-
sisting of a series of alternate rigid and compliant panels, each tailored
to local flow conditions. According to conventional stability theory, the
growth of Tollimien - Schlichting waves could be suppressed along the
entire length of the compliant wall. The question of the effect of the
junctions at the leading and trailing edges of the panels on the Tollim-
ien - Schlichting waves was both an obvious and a practical one. The
present paper adresses this question.

Abstract:

P.K. Sen, P.W. Carpenter , S. Hegde and C. Davies
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Figure 1. Schematic of case below cut-off

2.
A two dimensional parallel flow is being considered here. A distur-

bance stream function ψ(x, y, t) can be defined. The governing equation
is obtained from the linearized Navier-Stokes equation in vorticity (∇2ψ)
form, in terms of ψ, expressed as ψ(x, y, t) = f(x, y)e−iωt . Here, f(x, y)
is the amplitude function of normal modes. For the sake of distinguish-
ing the rigid and compliant sides, the function f(x, y) is defined in two
halves: f(x′, y) = H(−x′)fu(x′, y) + H(x′)fd(x′, y), where, H(x) is the
Heaviside step function. Also, the suffixes u and d denote the rigid-side
(upstream) and the compliant-side (downstream) amplitude functions
respectively. The junction region is very narrow compared with the
wave-length of the incident TS wave. Thus these pair of functions can
be written in the following form:

fu(x′, y) = R[φu(y)e−iαux′

︸ ︷︷ ︸
far field

+ fnu(ξ, y)︸ ︷︷ ︸
near field

] : x′ < 0; (1a)

fd(x′, y) = R[λφd(y)e−iαdx′

︸ ︷︷ ︸
far field

+ fnd(ξ, y)︸ ︷︷ ︸
near field

] : x′ > 0, (1b)

where in (1a,b), φu and φd are suitably normaslised, and λ in (1b) is the
jump in amplitude. Substituting the stream function as defined above
in the linearsied Navier-Stokes equation yields the operative differential
equation for the problem:

−iω(∇2f) + ū
∂

∂x
(∇2f) − ū′′∂f

∂x
− 1

R
∇4f = 0 . (2)

FORMULATION OF THE WAVE DRIVER
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Half-range Fourier transforms in the wave number α, are now defined
for f(x, y), again in two halves, on either side of the junction.

Fu(y, α) =
∫ 0

−∞
fu(x′, y)e−iαx′

dx′ ; (3a)

Fd(y, α) =
∫ +∞

0
fd(x′, y)e−iαx′

dx′ . (3b)

Taking the half-range Fourier transforms of the operative differential
equation (2), and making an order of magnitude analysis on each term,
we obtain the following pair of equations

L(α)Fu,d = ±ū
{
· · · + +

(∂2fu,d

∂x2

)
︸ ︷︷ ︸

O(1/ε2)

}
∓ h.o.t (4a, b)

where h.o.t means higher order terms, and L(α) is the linear Orr-Somm
erfeld operator, namely

L(α)F = i(αū−ω)(F ′′−α2F )− iαū′′F − 1
R

(F iv −2α2F ′′ +α4F ) . (5)

We assume that the pair of functins fu,d to be the same in the near
field of x′ = 0. Further it can be shown that the width of the near field
at the junction is O(ε−2) leading to ∂2fu,d

∂x2 ∼ O(ε−2). Moreover, it can

also be shown that (∂2fu,d

∂x2 )x′=0 is independent of y and can be expressed

as (∂2fu,d

∂x2 )x′=0 = C, where C is a constant. C is thus a measure of the
vorticity of the virtual wave driver created at the junction. Hence the
upstream and the downstream equations are given respectively as,

L(αr)Fu = ūC; (6a)

L(αc)Fd = −ūC. (6b)

Subscripts r and c refer respectively to rigid and compliant sides. Next
we rewrite (6a) as follows,

L(αr)Fu + (α−αr)L2(αr)Fu = (uC − λrL2(αr)φr) + λrL2(αr)φr . (7)

We note that λr is the amplitude of the wave on the rigid side, φr is the
normalised rigid wall eigenfunction and αr is the rigid wall eigenvalue.
By choosing λr = 1 for the rigid side, as reference normalization, one
actually obtains the value of the strength of the local wave driver. Using
the solvability condition of (7) one obtains,

C =
∫ 1
0 [L2(αr)φr]θrdy∫ 1

0 θrudy
, (8)
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where θr is the rigid-side adjoint eigenfunction. A similar consideration
for Fd, gives the amplitude for the compliant side as

λc =
C

∫ 1
0 θcudy∫ 1

0 [L2(αc)φc]θcdy
. (9)

Straightaway therefore

Fu =
λr

(α − αr)
φr. (10)

Inversion of the half-Fourier transform yields fu as

fu = λrφre
iαrx. (11)

Identical considerations similarly determine fd as

fd = λcφce
iαcx . (12)

Now let λr = 1, then λc gives the jump.

3.
We present two cases of results, one corresponding to the below-cutoff

frequency of the panel and the other to the above-cutoff frequency when
the TS wave propagates across the rigid-compliant junction. Wall vor-
ticity is plotted for the below cutoff case in figure 2. We notice the jumps
at both the leading edge and the trailing edge of the compliant panel.
The results are in good agreement with Davies and Carpenter (1997)

Next, the wall vorticity of a long panel is shown for the above-cutoff
case in figure 3. The case above cutoff has, on the compliant side, a
non-vortical long wave, the compliant side TS wave, and an upstream
travelling vortical mode. The complete wave system on the compliant
side is obtained by matching the boundary conditions at the leading
and trailing edge junctions. The bottom plot is from the Davies and
Carpenter (1997) numerical simulations. There are actually two set of
waves corresponding to two different lengths of the panel. Figure 4 shows
the TS component for figure 3. We notice that the TS wave has decayed
totally at the trailing edge. But there is a downstream TS wave. This is
possible because the vortical wave combined with the (residual) TS wave
is able to excite the trailing edge junction to create a wave driver there.
This wave driver is formed even if the compliant TS wave has decayed
to zero at the trailing edge. This wave driver generates the downstream
TS wave. The virtual wave drivers at the leading and trailing edge are
thus vortical wave drivers.

RESULTS AND DISCUSSIONS
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Figure 2. Wall vorticity ωw for the case below cutoff. Junctions are at: x = x1 = 12
and x = x2 = 48

Figure 3. Comparison of wall vorticity plots for the case of a long panel. The length,
L = 340. Junctions are at: x = x1 = 20 and x = x2 = 360 (a) Top: Present results
(b)Bottom: Corresponding results from Davis and Carpenter simulation program
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x

Figure 4. Tollmien-Schlichting component in figure 3; junctions are at: x = x1 = 20
and x = x2 = 360
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OPTIMAL SUCTION DESIGN FOR HYBRID
LAMINAR FLOW CONTROL
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SE-172 90 Stockholm, Sweden
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We present a theory for computing the optimal steady suction distribution in
order to minimize the growth of convectively unstable disturbances, and thus
delay laminar-turbulent transition on swept wings. Here, we use the optimal
control theory and minimize an objective function based on a sum of the kinetic
energy of an arbitrary number of disturbances. The optimization procedure is
gradient-based where the gradients are obtained using the adjoint of the parabo-
lized stability equations and the adjoint of the boundary layer equations. Results
are presented for an air foil designed for medium range commercial air crafts.

Keywords:

1. INTRODUCTION

The stabilization effect of steady boundary layer suction on disturbance
growth has been known for a long time, see Schlichting, 1943, and has been uti-

ever, in most cases the design of suction distributions rely on the experiences
of the engineers which may not always give the optimal solution, i.e. giving
the largest delay of laminar-turbulence transition for a given suction power.
In the recent decade, the development of optimal control theory applied in
ßuid mechanics problems has been rapid and a number of attempts have been
made to optimize the steady suction distribution in order to control growth of
disturbances Airiau et al., 2003, Balakumar and Hall, 1999, Cathalifaud and
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lized for laminar flow control, for an extensive review see Joslin, 1998. How-
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Figure 2. Left: Pressure distribution, Cp, as a function of the arc-length normal to the leading
edge, s/c. The black box shows the domain available for suction systems, Γc. Right: EoE of
NE-factor curves for Tollmien-Schlichting (TS) and cross-ßow (CF) waves for zero suction

3. RESULTS

acterized by a free-stream Mach number M∞ = 0.8, temperature T∞ = 230
K, Reynolds number Re∞ = 3.04 × 107 and the leading edge sweep angle
φle

◦

air crafts can be seen in Figure 2 (left) together with a domain, ΓC , avail-
able for mounting the suction system. The envelope of envelopes (EoE) of

and Tollmien-Schlichting (TS) waves can be seen in Figure 2 (right).
In the results shown here, the total disturbance kinetic energy is calculated as

the sum of the CF and TS wave with the largest disturbance kinetic energy over
a large number of other disturbances. The dimensional frequency and spanwise
wave number for these CF and TS waves are (f∗

1 = 5500 s−1, β∗
1 = 2500 m−1)

and (f∗
2 = 5750 s−1, β∗

2 = 225 m−1) respectively. In these calculations, the
magnitude of the control effort is EC = 0.35Re−1

∞ . In Figure 3 (left), the
optimal static pressures of the chambers (thick lines) are plotted for the cases
of 5, 6 and 7 pressure chambers together with the pressure distribution Pe of
the wing (thin lines). To show the details, the region s/c=[0.05,0.175] has been

j = Pe − Pcj
is larger

close to the leading edge and decreases downstream.
The suction distributions corresponding to the optimal static pressure in Fig-

ure 3 (left) are plotted in Figure 3 (right). Note that the uppermost streamwise
suction distribution in each case is due to a stagnation line control and is taken

For each case in Figure 3 (right), a comparison is done with a
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The flow studied here is the boundary layer on the upper side of a wing

= 30.2 . The pressure distribution of an air foil designed for commercial

designed for commercial air crafts, see Figure 2. The flow conditions are char-

N -factor curves, based on the disturbance kinetic energy, for cross flow (CF)

magnified. As it is shown there, the pressure drop ∆P

to be fixed.
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Figure 3. Left: Pressure distribution on the wing (thin lines) and optimal static pressure in the
chambers (thick lines) for the cases of 5, 6 and 7 pressure chambers minimizing the disturbance
kinetic energy for dominating CF and TS wave with EC = 0.35Re−1

∞ . Right: Corresponding
suction distributions (thick lines). A comparison is done with a suction distribution (thin lines)
obtained by optimizing ṁw in a continuous control domain

suction distribution obtained by optimizing ṁw (thin lines) in a continuous do-
main. As the same control effort is used in these calculations, a direct compar-
ison of the optimal suction distributions for these cases is possible. It is seen
that the distribution using pressure chambers approaches the continuous one
when the number of chambers is increased. This is most evident downstream
of s/c = 0.05.

The effect on the disturbance growth using the optimal chamber pressures
for the cases of 5, 6 and 7 pressure chambers is shown in Figure 4 (left). Here
the EoE of the NE-factor curves for CF and TS waves are plotted for zero and
optimal chamber pressures of all cases (solid lines). The arrows mark increas-
ing number of pressure chambers. A decrease in both the growth of CF and TS
waves is obtained in all cases using the optimal chamber pressures calculated
here compared to zero control. A comparison is done with EoE of the NE-
factor curves which are calculated using the suction distribution obtained by
optimizing ṁw in Figure 3 (right) (dashed lines). It is seen that as the number
of pressure chambers are increased, the results within the control domain using
pressure chambers approach those using a suction distribution in a continuous
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control domain. The relatively small effect on the mean flow for the cases in
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Figure 4. Left: EoE of NE-factor curves (solid lines) for CF and TS waves for zero control
and the pressure chambers in Þgure 3. Arrows mark increasing number of chambers. Com-
parison with the EoE of NE-factor curves (dashed lines) given the continuous optimal suction
distribution in Figure 3. Right: Corresponding shape factors H12

Figure 4 (left) are shown by the shape factor H12 in Figure 4 (right).
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TRANSITION CONTROL IN A FLAT-PLATE
BOUNDARY LAYER

Seiichiro Izawa∗, Takeshi Sakai∗, Ayumu Inasawa∗,
Ao-Kui Xiong∗, Yu Fukunishi∗

∗Tohoku University, Sendai, Japan

A semi-automatic and active control of T-S waves and oblique waves is per-
formed using an array of piezo-ceramic actuators attached on a flat-plate sur-
face. The actuators generate counter waves to cancel the incoming instability
waves. The actuator’s operating amplitudes and phases are successively updated
using the velocity fluctuations monitored downstream by a rake of hotwires. It
is shown that the system could weaken these waves when their sweep angles are
less than 15 degrees. However, it has difficulty in controlling the waves of large
sweep angles. Through the results from the experiment activating only one ac-
tuator, it is shown that the difficulty arises because the wave front of the waves
generated by each actuator deforms into an arch.

Keywords: Transition, Boundary Layer, Active Control, Feedback, Piezo Actuator

1. INTRODUCTION

The primary objective of this study is to develop a system that can automat-
ically control T-S waves or oblique waves in a flat-plate boundary layer. These
instability waves are cancelled in their linear stages of transition by superim-
posing the counter waves. Many attempts to generate a wave in a boundary
layer have been proposed for the last several decades. A vibrating ribbon at-
tached on a surface [1], periodic heating of thin nichrome films [2], and suc-
tion/blowing system [3] are examples of activators for generating the waves in
the boundary layer. In the flow controlling attempts, Sturzebecher & Nitsche
[4] used the slot system which is all-in-one device including a speaker and a
sensor. An open-loop control using an array of PZT actuators was attempted
by Fukunishi et al. [5, 6].

On the other hand, in this experiment small and thin piezo-ceramic (PZT)
actuators are used as the control device to generate the counter waves against
the incoming waves. The actuators aligned in the spanwise direction attached
on a flat-plate surface were designed so that they could be operated indepen-
dently with different amplitudes and phases, allowing the device to generate
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two dimensional or oblique waves of various angles. The actuator’s operat-
ing signals are successively updated using the velocity fluctuations monitored
downstream by a rake of hotwires. A simple feedback system is applied to the
semi-automatic and active control of T-S waves and oblique waves.

2. EXPERIMENTAL SETUP

2.1 Flat Plate and Actuators

The experiments are conducted in the low turbulence wind tunnel at the
Institute of Fluid Science of Tohoku University. The wind tunnel is a Göttin-
gen type with an octagonal test section, which is 3,200mm long and 1,010mm
from wall-to-wall. The contraction ratio between a settling chamber and a test
section is 12:1.

The schematic view of the experimental setup is shown in Fig. 1. A smooth
flat plate made of Aluminum alloy, which is 3,200mm long, 1,000mm wide
and 10mm thick, is mounted vertically in the middle of the test section. From
the leading edge of the plate, Scotch tapes, actuators, and error sensors are at-
tached to its surface. Target waves, either T-S waves or oblique waves, are ex-
cited upstream by a combination of Scotch tapes on the surface and an acoustic
forcing using a loudspeaker set upstream of the settling chamber. The operat-
ing frequency of loudspeaker is 77.8Hz. The sweep angle of generated waves
is changed by inclining the tapes. The axes x, y, and z are in the streamwise,
wall-normal, and spanwise directions, respectively.

Fig. 2 shows the details of the piezo-ceramic actuators. Each actuator is
wired separately so that they can be manipulated independently using a com-
puter. If the tip of an actuator is shifted slightly up or down because it was
tilted when attached, it was found that a slight difference in the tilt angle of
the actuator, resulting in the minute up or down shift of their tips could lead to
large differences in the amplitude of the introduced velocity fluctuations. Thus,
additional insulator is inserted between the actuators and the bottom insulator
on the surface to make the upper surfaces of all actuators leveled. Both the up-
stream and downstream ends of the actuators are sloped to prevent separations
and high-receptivity at the edges. In the current experiment, six middle pieces
(channel 1 though 6) among the twelve pieces of the actuator array is used. A
hotwire sensor is installed straight downstream of the center of each activated
actuator, about 2mm away from the wall. Reynolds number Rex at the actua-
tors’ position, x = 1,000mm, is 9.9× 105. The total thickness of each actuator
is approximately 0.6mm, which is 13% of the boundary layer thickness at the
location. The freestream velocity U∞ is 14.0m/s and the velocity fluctuation
within the freestream is 0.07%.
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Figure 3. (a) Contour map of velocity fluctuation <u′>/U∞ in xz plane. at U∞ = 14m/s and
contour interval = 0.01U∞. (b) Overlapping of the original waves and the wave from a single
actuator

2.2 Control System

The details of the controlling system are described in this section. A feed-
back loop system for an active flow control using actuators and error sensors
is constructed. First, the sensors capture the velocity fluctuations of the waves
generated upstream. Each signal is filtered and stored for three cycles and then,
based on the ensemble averaged property of the signal, the operating amplitude
and the phase of each actuator is determined and successively updated. The ad-
justment is performed for only one actuator piece at a time, and the actuators
are adjusted in turn. This adjustment process is repeated until the waves are
damped to a level lower than a certain criterion.
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As a result of the previous experiment, shown in Fig. 3, it was found that the
waves’ pattern generated by a single actuator located between z = 0 ∼ 20mm
spreads in the spanwise direction as the waves travel downstream, and each
wave becomes curved forming an arch. When the amplitude of one actuator is
increased in order to cancel the locally concentrated velocity fluctuation spot
in downstream, the middle parts of the arches will work to neutralize that con-
centration (see Region A in Fig. 3(b)). However, because the wave front is
curved, one end of the arch will work to enhance the original fluctuation (see
Region B in Fig. 3(b)). Due to this phenomenon, the system will end up creat-
ing another concentrated velocity fluctuation region next to the region it tried
to erase. By taking this effect into account, each adjustment is limited to below
5% of the previous value. Because the influence of one actuator spreads in the
spanwise downstream, it is difficult to satisfy the control criteria at the sensors
of the spanwise ends. So, six actuators (channel 1 through 6) are adjusted to
satisfy the criteria at four inner sensors (channel 2 though 5).

3. RESULTS AND DISCUSSION

Velocity fluctuation waves captured by the downstream sensors for the con-
trolled and non-controlled cases against the T-S wave are shown in Fig. 4.
When the velocity fluctuations measured at the two sensors (channel 3 and 4)
are reduced for more than 10dB, the control is judged to be a success, and
further adjustment is stopped. In this case 97 adjustments are performed. In
Fig. 4, it can be found that the velocity fluctuation became much weaker for all
sensors. It should be mentioned here that the amplitudes of the waves does not
monotonously decrease as the adjustment progresses.

In Fig. 5, the RMS profiles of fluctuating velocity components, measured
250mm downstream from the actuator array is presented. The weakening ef-
fect reaches approximately 66% after the 97th adjustment. In the figure, a very
high value of RMS can be found near the wall. This comes from a minute and
local unevenness of the downstream slope behind the actuator, x = 1,000mm
and z  0mm. It is found that this particular slope very slightly moves up and
down accompanied by the generated waves, amplifying the waves..

Fig. 6 shows the effect of the active control when the target waves are inclin-
ing 15 degrees. The target for this weakening control is set at 6dB, instead of
10dB, because the flow control is more difficult. As well as the T-S wave case,
the amplitude of each velocity fluctuation is well suppressed as the result of
the control. The weakening effect reached 6dB after the 44th adjustment. The
RMS value of the velocity fluctuation at the peak around η = 1.5, decreased to
nearly half as the result of the control, which is shown in Fig. 7.

The control becomes more difficult with the increase in the sweep angle.
Fig. 8 shows the control attempt against the oblique waves with a 30 degree
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Figure 4. Control effect on velocity fluctuation waves
(T-S waves), (a) before and (b) after the 97th adjustment

Figure 5. RMS profile of
the velocity fluctuation at x =
1,350mm, z = 0mm (T-S waves)

Figure 6. Control effect on velocity fluctuation waves
(15 degree oblique waves.), (a) before and (b) after the
44th adjustment

Figure 7. RMS profile of
the velocity fluctuation at x =
1,350mm, z = 0mm (15 degree
oblique waves)

Figure 8. Control effect on velocity fluctuation waves (30 degree oblique waves.), (a) before
and (b) after the 67th adjustment

sweep angle. The target for weakening is set at 6dB as in the 15 degrees
case. Unfortunately, the amplitude of the velocity fluctuation does not show
any sign of decreasing even after more than 70 adjustments. The reason for the
difficulty, besides the effect of wave front forming an arch described before,
is not clear yet. It may require more actuators along the spanwise direction
for the more accurate generation of the waves with large sweep angles. More
improvement in the control algorithm may be also needed.

211Transition control in a flat-plate boundary layer 



4. CONCLUDING REMARKS

A semi-automatic active control of the T-S waves and the oblique waves was
attempted using an array of piezo-ceramic actuators attached on a flat-plate
surface. It was shown that the system could reduce the two-dimensional T-S
waves and the oblique waves whose sweep angles were not large. However, it
was found that the system was not effective against oblique waves of a large
sweep angle.
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LINEAR FEEDBACK CONTROL
OF TRANSITION IN SHEAR FLOWS

Jérôme Hœpffner1, Mattias Chevalier1,2, Thomas Bewley3, and Dan
Henningson1,2

1Department of Mechanics, Royal Institute of Technology (KTH) SE-100 44 Stockholm,
Sweden, 2The Swedish Defense Research Agency (FOI), SE-172 90, Stockholm Sweden
3Flow Control Lab, Dept of MAE, UC San Diego, La Jolla, CA 92093-0411, USA.

This work focuses on the application of linear feedback control to tran-
sition to turbulence in shear flows. The controller uses wall-mounted
sensor information to estimate the flow disturbances and uses wall ac-
tuators to prevent transition to turbulence. The flow disturbances are
induced by external sources of perturbations described by means of a
stochastic volume forcing. We show that improved performance can be
achieved if the proper destabilisation mechanisms are targeted.

Keywords: Feedback control, LQG, state estimation, Kalman filter, stochastic dis-
turbance model.

1. INTRODUCTION
In many applications like aeroplane wings, pipes, turbine blades, grow-

th of small disturbances due to external sources of excitation can lead
to transition to turbulence and thus increase the friction drag. Control
is being increasingly applied to fluid flow as the theories and devices are
being developed (see Bewley, 2001, Kim, 2003). A powerful theory for
linear feedback control is available and can be applied to flow control,
assuming a linear dynamics for the flow (small amplitude disturbances),
with a quadratic objective function, and a Gaussian distribution for
the external sources of excitation and measurement noise. This method
known as LQG (Linear, Quadratic, Gaussian) or L2 control (see Green
and Limebeer, 1995) is used in this work.

2. SYSTEM AND CONTROL SETUP
In this work, the dynamics of small perturbations to a laminar base

flow is modelled by the linearized Navier–Stokes equation. Measure-
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ments are extracted as the instantaneous value of the two components
of the wall skin friction and pressure. Control is applied by means of
blowing and suction at the wall. In the LQG control formulation, the
systems can be written in state space

{
q̇ = Aq + B1f + B2u

y = Cq + g,
,

{
˙̂q = Aq̂ + B2u − v

ŷ = Cq̂
,

u = Kq̂,

v = L(y − ŷ).
(1)

The equations above show the four elements of a LQG formulation. The
flow system to be controlled, the estimator providing an estimate of the
instantaneous flow state, and the estimator and control feedback gains
L and K.

The flow state q = (v, η)T is constructed with the wall normal velocity
v and wall normal vorticity η. It is affected by external disturbances in
the form of a stochastic forcing f . The measurement vector y contains
all the available information about the flow state. It is corrupted by the
sensor noise g with covariance G.

The estimator is built with analogous form. The estimator state q̂ is
forced to approach the flow state by a 3D volume forcing v, feedback of
the measurements. The flow and estimator states q and q̂ are controlled
by means of the blowing and suction u. The control actuation is a
feedback of the estimated flow state.

For the dynamic operator A, we use the linearised Navier–Stokes
equations transformed to Fourier space, i.e. the Orr-Sommerfeld/Squire
equations (see e.g. Schmid and Henningson, 2001)

A =
(
LOS 0
LC LSQ

)
,

{
LOS = ∆−1(−ikxU∆ + ikxU ′′ + ∆2/Re),
LSQ = −ikxU∆/Re, LC = −ikzU

′,
(2)

where U, U ′, U ′′ are the base flow and its wall normal derivatives, ∆ de-
notes the Laplacian operator, kx and kz are the streamwise and spanwise
wavenumbers, and Re is the Reynolds number.

The main issues in designing such a controller, is the description of
the external disturbances f by their covariance Rff (Hœpffner et al.,
2003), and the control objective J by the quadratic norm Q,

Rff = E[ff∗], J =
1
2

∫ ∞

0
(q∗Qq + �2u∗u) dt, (3)

where E[·] denotes the expectation operator, and � plays the role of a
penalty on the control effort. The optimal feedback gains L and K can
be computed independently for each wave number pair by solving two
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Riccati equations (see e.g. Glover et al., 1989)

{
A∗X + XA − 1

l2
XB2B

∗
2X + Q = 0, K = − 1

l2
B∗X,

AP + PA∗ + B1RffB∗
1 − PC∗G−1CP = 0, L = −PC∗G−1.

(4)
The performance of the estimator is monitored by the estimation error

energy, i.e. the kinetic energy of (q− q̂). The flow state is well estimated
when this energy is low compared to the flow energy. The performance
of the controller is seen by the controlled flow energy. The flow is well
controlled when its energy is low compared to the uncontrolled flow.
We will see in the following sections how these performance can be fine-
tuned.

3. RESULTS

3.1 Control and estimation
The evolution of a localized initial condition in channel flow, and

its evolution when controlled are depicted in figure 1 . The objective
function is designed to minimize the kinetic energy of the disturbance to
the laminar flow profile. The model for the disturbances assumes finite
length correlation for the external disturbances (see Hœpffner et al.,
2003). The covariance model for the disturbances assumes the form




Rfjfk
(y, y′, kx, kz) = d1 δjkM(y, y′),

M(y, y′) = e−(y−y′)2/2dy ,

d1(kx, kz) = da k2
d e−k2

d+1 with k2
d = (kx/dx)2 + (kz/dz)2,

(5)

where M describes the covariance of f in the wall normal direction for a
single wavenumber pair, and d1 accounts for the variation in wavenum-
ber pair space of the strength of this forcing. The model parameters
dy, da, dx, and dz can be freely chosen to fit the flow type at hand.

The initial condition presented is the localized perturbation that may
originate from a jet normal from the bottom channel wall. This pertur-
bation initially grows in energy and is finally damped by viscous effects.
We show two cases of controller. The first one is turned on at time 0 and
the second one at time 20. In both cases the feedback uses estimated
flow state information. The performance for both cases for full informa-
tion controller and estimation error is depicted with dashed dotted and
dotted thin lines. When the controller is started at time 0, there is an
initial growth of the controlled flow energy and estimation error energy
due to a strong component of growing disturbance. But when controller
and estimator are started up later, monotonous decay is observed.
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Figure 1. (a) Isosurfaces of the wall normal velocity, for time 0 and 90 of the
evolution of the localised initial condition in a channel. Flow without control is
transparent and with control is opaque. (b) Energy evolution in time for the flow
(bold solid) and the compensated flow (bold dashed). Two cases are represented:
when the compensator is turned on at initial time and turned on at time 20. The
flow energy evolution with full information control is represented with a dash-dotted
line and the estimation error energy with dotted lines

See on figure 1(b) an isosurface plot of the wall normal velocity for the
initial disturbance and its evolved state at time 90 for no control (trans-
parent) and estimation-based control (opaque). When controlled, the
wave packet is prevented from spreading in the channel. The actuation
is visible in this figure as the non-zero value of the wall normal velocity
at the lower wall. It can be seen that the wall blowing and suction is
of the same order of magnitude as the wall normal velocity of the flow
disturbance to be controlled. The control effort is though of relatively
low amplitude since most of the energy of the disturbance is carried by
the streamwise velocity component.

3.2 Flexibility in the objective function
If one seeks to minimize the disturbance kinetic energy everywhere

and all the time, the objective function (3) is well suited. We will now
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demonstrate that different goals can be reached by simple modifications
of the quadratic norm defined by Q.

Two examples of the flexibility of the quadratic objective function
for the case of a single wavenumber pair (kx, kz) = (0, 0.5) of a Blasius
boundary layer are depicted in figure 2 .

On figure 2(a) the control is turned off at time 100 in the time evo-
lution of the initial condition that lead to the greatest reachable energy
growth. If a strong (though not energetic) component of the potentially
growing initial condition is still present at time 100, the growth resumes
when the actuation is stopped as can be seen for case 1. To avoid this the
controller in case 2 targets the growth mechanism by an extra penalty
Re on the wall normal velocity responsible for the lift up effect (see e.g.
Schmid and Henningson, 2001). This way, the growth is reduced after
the actuation interval. Note that the control performance is only mar-
ginally affected by the extra penalization if the control is not stopped
(dashed lines).

In figure 2(b) the same flow system is constantly excited by stochastic
disturbances and has reached statistical steady state. For the three cases
presented, the controller targets respectively the total kinetic energy, the
kinetic energy integrated in the wall normal direction up to 2 and up to
1 (in displacement thickness units). Such a controller seeks to eject the
disturbances away from the wall instead of killing disturbance energy
everywhere. When only targeting the disturbance energy up to 1, the
goal is met, and very little disturbances are in contact with the wall
surface.
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Figure 2. Illustration of the flexibility in the choice of the objective function. (a)
time evolution of the flow energy with full information control all the time (thin
dashed) and when the controller is turned off at time 100 (thin solid). In case 1, the
controller minimizes the kinetic energy, and in case 2 there is an additional Reynolds
number penalisation on the wall normal velocity component. (b) Steady state distrib-
ution of perturbation kinetic energy in the wall normal direction for a boundary layer
constantly excited by external forcing. The bold line is the flow kinetic energy and
the thin lines are the full information controlled flow when only the kinetic energy up
to 1, 2, ymax is minimised in the objective function, as shown by the arrow



4.
We show in this work that improved control performance can be

achieved for control of transition to turbulence in shear flows, if the
proper destabilisation mechanisms are targeted. This means that a thor-
ough physical understanding of the phenomenon to be controlled is nec-
essary. We use a stochastic model for external disturbances, that may
account for a wide range of flow disturbances. We design the quadratic
objective function to target the main destabilisation mechanism, as for
example streamwise elongated vortices in bypass transition.
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EFFECTS OF AMBIENT VISCOSITY ON THE 

ENTRAINMENT AND DYNAMICS OF A 

BUOYANT JET 

Manikandan Mathur and K.R. Sreenivas
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research,

Bangalore - 560064, India. 

Abstract: In this paper we present results on the behavior of a turbulent, negatively buoyant 

jet in an ambient fluid having a higher viscosity  than the jet fluid. Our 

experimental results indicate that the turbulent jet undergoes a reverse transition. 

Large scale eddies at the interface are suppressed, and the observed entrainment 

rate also reduces dramatically for the jet in a higher-viscosity medium. We also 

present results from numerical simulations, using vortex methods with a viscous 

diffusion scheme, to corroborate the results from our experiments.

Key words:  Entrainment; Ambient-viscosity; Jet; Plume. 

1. INTRODUCTION 

Modeling the dynamics of turbulent jets and plumes is of importance in 

many applications like dispersion of pollutants and predicting the behavior 

of a cloud in the atmosphere. Entrainment is the process by which 

irrotational ambient fluid is incorporated into the turbulent jet-flow. 

Entrainment process and hence the dynamical behavior of the jet depend on 

several parameters such as ambient density stratification[1], axial-pressure 

gradient[2,3], cross-flow and off-source buoyancy addition[4,5,6], 

temperature and viscosity contrasts[7] between the free-shear flow and the 

ambient medium. There are other applications in which free-shear flows can 

encounter an ambient fluid with a higher viscosity. For example, the flow of 
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Figure 1: Schematic of the main glass tank

lava into a magma chamber, where viscosity variation arises due to a change 

in temperature and/or constituents, and in the process industry where 

polymers have to be blended with additives or with other polymers having 

different physical properties.  Except for the work reported by Campbell and 

Turner[7], there is no other study, to our knowledge, that explores the 

interaction of a free-shear flow in an ambient fluid of a different viscosity. 

Campbell and Turner’s work [7] is of exploratory nature. In their study, the 

flow configuration does not correspond to a standard jet/plume. In the 

present study we report results for a negatively buoyant jet discharged into 

an ambient fluid of a different viscosity. We also use vortex method based 

numerical simulations to study the effects of ambient viscosity on the 

dynamics of a jet. 

2. EXPERIMENTS 

All the experiments were conducted in a glass tank of dimensions 

30x30x45 cm (see figure 1). A pipette with an internal diameter of 1.4 mm at 

the exit was used to discharge the jet vertically down in the tank. By adding 

salt, the density of the jet fluid was increased in comparison to that of the 

ambient fluid, making it negatively buoyant. The jet fluid was dyed with 

either potassium permanganate or fluorescein dye for visualization. CMC 

was used to change the viscosity of the ambient fluid. The discharge velocity 

was maintained constant by using a constant pressure-head arrangement 

discharging across a constant resistance, as suggested by Arakeri et. al[8].

2.1 Results 

For a given inlet Reynolds number (1700), when the viscosity of the ambient 

fluid is 680 times of that of the jet fluid (Figure 2b), the entrainment was 

observed to reduce dramatically in comparison to the case shown in figure 

2a. We also observe that the large-scale eddies (coherent structures) at the 
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interface between the two fluids have been completely suppressed in the 

latter case.  This suppression plays a crucial role in reducing entrainment and

will be discussed later. For the values of the inlet Reynolds number and the 

ambient viscosity specified in figure 2b, we observe that the jet is almost 

laminar and hence the entrainment is also very low. It can be concluded that 

the inlet Reynolds number, at which the instabilities and hence appreciable 

entrainment set in, is higher for a higher ambient to jet viscosity ratio. Also, 

the flow tends towards the laminar regime as the viscosity of the ambient 

fluid is increased without changing the inlet Reynolds number. Figure 3 

represents a closer look into the large-scale eddies (coherent structures) for 

an inlet Reynolds number and ambient viscosity specified in the figure. 

        In Figure 4, we present a result indicating the behavior of the jet when it 
enters a high viscosity fluid after passing through a fluid of its own viscosity. 
The transition takes place at the interface indicated by the dark line in the 
figure.  In the dotted box shown in the figure, small-scale fluctuations in the 
turbulent jet are evident. When it passes into the high viscosity region, all 
small-scale fluctuations are suppressed, however, small wave-number 
fluctuations still persist. In the higher-viscosity medium, the flow seems to 
have undergone a reverse transition (tending towards the laminar regime) 
resulting in lower entrainment. In this case, suppression of large scale eddies 
has reduced entrainment. In contrast, for the off-source buoyancy added 
flows[4,5] and for axial accelerated flows[3,9], the small wave-number 
fluctuations are disrupted resulting in lower entrainment. The two results put 
together will support the model proposed by Narasimha and Roshko[10]. 
They argue that the entrainment process involves three steps: (a) Induction -- 
purely a kinematic process, bringing in ambient fluid into the turbulent 
region; large scale eddies are responsible, (b) Diastrophy -- stretching and 
folding which increases the area of interaction between the ambient fluid and 
the jet fluid; dominated by small scale processes and (c) Molecular diffusion 
-- molecular mixing. Factors inhibiting any of the above steps will reduce 

Figure 2: Flow visualization

images for two viscosity ratios

and inlet Reynolds number

(a: 1, 1700; b: 680, 1700) 

Figure 3: Coherent

structures for Reinlet =

700 and 2 = 1

Figure 4: Entrainment

through two different

layers. Reinlet = 450
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entrainment. Off-source buoyancy addition and axial acceleration inhibit the 
induction phase whereas high viscosity ambient suppresses both the 
induction and the diastrophy phases.

3. 2-D SIMULATIONS 

We simulate the entrainment process in a jet using 2-D discrete-vortex 

method (DVM). In free-shear flows, the vorticity is confined to certain areas 

and this is exploited by DVM, which restricts its computations to regions of 

non-zero vorticity. The details of the simulations are given in [9]. 

3.1 Results 

First set of results presented here is for an inlet Reynolds number of 2500 

and viscosity ratio equal to unity. The instantaneous velocity at the edge of 

the jet and the corresponding fluctuating vorticity are shown in figure 5. The 

mean entrainment coefficient (ratio of the velocity with which the ambient 

fluid moves into the main jet and the local mean axial centreline velocity) 

and an instantaneous vorticity field are shown in Figures 6a and 6b 

respectively. For a Y/D ratio up to 30, coherent structures do not form. At all 

times, the net circulation across a horizontal section in this region is close to 

zero. Mean entrainment coefficient in this initial phase is also low (Figure 

6a).  However, for Y/D ratio greater than 30, the jet undergoes a transition 

and the positive and negative circulations in the shear layers occur in clusters 

(Figure 6b). Clustering of circulation, which indicates formation of coherent 

structures, is accompanied by an increase in entrainment (Figure 6a). The 

inlet laminar portion, represented by two parallel vortex sheets (resulting in 

no net vorticity at the axial location) will induce no velocity in the ambient 

fluid and hence the induction phase is ineffective.

Figure 5 Fluctuating vorticity and

velocity at the edge of the jet. Purple

line indicates horizontal sum of

circulation at each height

Figure 6 (a) Entrainment

coefficient; (b) instantaneous net

circulation at the axial location and

eddy-structures

(a) (b)
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Figure 7 (a) Instantaneous,

horizontal sum of fluctuating

vorticity, indicating motion

of coherent structures with

time; and (b) corresponding

entrainment episodes. Note

the high correlation between

the two plots 

Axial motion of large-scale structures as a function of time and the 

corresponding entrainment episodes are presented in Figures 7a and 7b 

respectively.

 The  two  plots  are  highly  correlated.  The  calculated  correlation 

coefficient is greater than 0.9 at all times. Results in Figure 7 clearly 

demonstrate the close relation between the coherent structures and the 

entrainment process.

     We also present some of the preliminary results obtained for a jet in an 

ambient fluid of higher viscosity using the same program. For the inlet 

Reynolds number and ambient viscosity specified in Figure 8, we observe 

that the (1/e) velocity width is much greater than the (1/e) concentration 

width after the initial region. This result is verified experimentally as shown 

in figure 9. We observe that, even though the inlet fluid is restricted to a very 

small width, the momentum has diffused over a much wider region. It is 

hence important to look at the concentration widths rather than the velocity 

widths in entrainment studies, as the former determines important dynamics 

like the combustion efficiency in a flame.  

Figure 8: Simulations: Reinlet = 100, 2

= 50 1 ; Concentration and velocity

widths. The velocity width is much

 Figure 9: Experiments: Reinlet = 1500, 2

= 680 1; right dye streak indicates the

spread of momentum into the ambient,

whereas the jet fluid is confined to a
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4. CONCLUSIONS 

higher viscosity of the ambient fluid suppresses the formation of large-scale 

coherent structures. A strong correlation between the coherent structures and 

the rate of entrainment has been established.  Absence of coherent structures 

for a jet in high viscosity ambient fluid is due to the increased stability of the 

concentration width indicates moving away of the inflection point in the 

velocity profile from the region of high shear and this may contribute to the 

increased stability of the shear layers. Thus, relating shear layer instability to 

the entrainment process in free-shear flows will be helpful in modeling their 

behavior and can address the observed variation of entrainment coefficient in 

free-shear flows subjected to different body forces as suggested by [3].
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Abstract: Numerical simulation results for the behaviour of disturbances in flows over
compliant surfaces are described. Most attention is given to the propagation of
Tollmien-Schlichting waves over compliant panels and the self-excited genera-
tion of such waves by very short panels. The use of compliant walls to suppress
transiently growing forms of boundary-layer disturbance and the effects of sur-
face compliance on the rotating disc boundary layer are also briefly discussed.

Keywords: Boundary-layer stability; transition delay; compliant surfaces; numerical simu-
lation.

1. INTRODUCTION

The influence of surface compliance on the development of disturbances in
transitional boundary layers has been the subject of many theoretical studies
over the last forty years. (A number of review articles can be found in the
recent book edited by Carpenter & Pedley [1].) Much of this work has been
concerned with the use of compliant surfaces to stabilize Tollmien-Schlichting
waves for relatively simple two-dimensional flows, in particular Blasius flow
over a flat plate and plane-channel flow. For these model flows a standard
linear stability eigenvalue analysis, conducted for compliant surfaces with an
assumed infinite streamwise extent, can be used to demonstrate that it is feasi-
ble to select surface compliance properties that will completely eliminate the
Tollmien-Schlichting mode of instability [2–5]. Though such results are very
promising they do not establish, unequivocally, that compliant surfaces provide
a practical means for delaying transition in technological applications. They
only demonstrate that the specific transition route that begins with the spatial
amplification of Tollmien-Schlichting waves may, in principle, be closed off

225

R. Govindarajan (ed.),  IUTAM Symposium on Laminar-Turbulent Transition, 225–230.  

© 2006 Springer. Printed in the Netherlands.

 Sixth



for model two-dimensional boundary-layer flows over uniform compliant sur-
faces that can be treated as if they were arbitrarily long.

There remain many other features of boundary-layer disturbance develop-
ment in transitional boundary layers over compliant surfaces that merit a care-
ful study. For example, all of the following are pertinent to the practical deploy-
ment of compliant surfaces for transition delay: (i) the influence of compliant
surfaces on transiently growing forms of disturbance; (ii) the effects of three-
dimensionality in the basic boundary-layer flow, which can introduce other
modes of instability such as crossflow vortices; (iii) the effects of using finite
length compliant surfaces in order to tailor local surface compliancy proper-
ties so that they match the local flow conditions. We will briefly review work
that we have undertaken in order to investigate the nature of each of the effects
that have just been mentioned. Due to space limitations, most attention will
be given to some interesting, and rather puzzling, behaviour that has recently
been found for very short compliant panels.

The work that we shall report has involved the direct numerical simulation
of linearized boundary-layer disturbance evolution for a number of different
flow and compliant surface configurations. These simulations were all under-
taken using a new velocity-vorticity formulation of the Navier-Stokes equa-
tions that has proved to be particularly well-suited for studying flow-structure
interactions for boundary layers [6–10].

2. NUMERICAL SIMULATION RESULTS

Klebanoff modes. We have used numerical simulations for three-dimensional
disturbances to study the effects of surface compliance on the development of
transiently growing streaks that are associated with Klebanoff modes of distur-
bance [11–13]. Transient streaks can occur, for example, in flow environments
where the level of free-stream turbulence is relatively high. In our simulations
we employed body-forcing localized in the free stream at the boundary-layer
edge in order to generate streaks. For the Blasius boundary layer, the sim-
ulations demonstrated that the growth of streaks could be very significantly
diminished by a compliant surface, but also that these more weakly growing
streaks may persist over a wider range of spanwise wavenumbers than in the
case when the wall is rigid. The simulation results thus suggest that compliant
surfaces can be designed so that they are still effective in delaying transition in
circumstances where transient streak-like structures play a more important role
in the transition process than conventional eigenmode forms of disturbance,
such as Tollmien-Schlichting waves.

Rotating disc flow. Numerical simulations have also been used to investi-
gate the spatial and temporal development of three-dimensional forms of lin-
earized disturbance in the three-dimensional von Karman boundary-layer flow
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formed over a rotating disc with a compliant surface [7, 14]. The rotating disc
boundary layer can be viewed as a canonical model for more complicated and
realistic three-dimensional flows that are susceptible to crossflow instability. In
addition to confirming that a compliant disc surface can be strongly stabilizing
for both travelling and stationary crossflow vortices [15, 16], the simulation re-
sults served to highlight the strongly non-parabolic nature of the rotating disc
boundary layer. It was found that a compliant annulus inserted into an other-
wise rigid disc was capable of stabilizing disturbances even at locations that
were radially inboard from the compliant part of the disc surface.

Flow-stabilization using finite compliant panels. A variety of numerical
simulations have been conducted to investigate the behaviour that can occur
for two-dimensional disturbance waves in boundary-layer flows over finite-
length compliant panels [3–6, 17]. Initially we studied the spatial development
of Tollmien-Schlichting waves as they propagated over the ends of relatively
long compliant panels that were embedded in otherwise rigid walls. Simula-
tions were carried out both for plane channel flow and for parallelized Blasius
flow, with qualitatively similar results found in each case. To ensure the perti-
nence of the simulations to transition delay applications, the stiffness and mass
parameters of the compliant part of the wall were selected so that if the compli-
ant panel was, instead of being finite, taken to be of indefinite extent both up-
stream and downstream, then it would be flexible enough to stabilize Tollmien-
Schlichting waves without being so soft as to allow surface-based waves to be-
come destabilized. Typically, the simulations for such configurations showed
that the Tollmien-Schlichting wave could become very rapidly stabilized as it
propagated over the rigid-compliant wall join at the upstream end of the com-
pliant panel. But it could also trigger a complex response involving stable
surface-based waves that propagated up and down along the remainder of the
compliant panel. The wall motion associated with these surface-based waves
could then, in the near vicinity of the compliant-rigid join at the far end of the
compliant panel, act as a generator to create a new Tollmien-Schlichting wave
that propagated downstream, away from the compliant-walled section. Despite
the somewhat complex dynamics that could occur over the full length of the
compliant panel, it was still found to be possible to obtain a strong reduction
in the overall growth of the Tollmien-Schlichting wave. Such results offer en-
couraging prospects for the construction of technologically feasible transition
delaying surfaces using compliant panels.

Self-excited Tollmien-Schlichting wave generation. For both plane-channel
flow and Blasius flow, numerical simulations also showed that, in some cir-
cumstances, sufficiently short compliant panels could become subject to a self-
excited form of instability. Rather surprisingly, this was found even in cases
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where there was known to be no corresponding instability for an infinitely long
compliant surface with the same material properties. Clearly, a detailed under-
standing of the mechanism behind this new form of instability is needed so
that it can be accounted for, and hence avoided, in any practical applications
of compliant surfaces to transition delay. For the present, we will just illustrate
some preliminary simulation results to indicate the kind of behaviour that can
be found.

In order to keep things as simple as possible, we will consider results from
a plane channel flow simulation where the Reynolds number has been chosen
to be low enough to ensure that Tollmien-Schlichting waves of all frequencies
would be stable if the wall was entirely rigid. Similar results were obtained
for higher, post-critical, Reynolds numbers where the rigid-walled Tollmien-
Schlichting mode was unstable and also for corresponding cases for Blasius
flow. Figure 1 shows a snapshot of the wall-normal velocity while Figure 2
displays time histories of the wall vorticity at successive rigid-walled locations
that are downstream from the short compliant panel that extends from x = 25
to x = 28.5. The disturbances were triggered by the passage of a disturbance
wavepacket that was generated upstream of the panel, but the exact form of the
initial excitation is unimportant for the eventual self-excited response. From
Figure 2 it can be seen that there is temporal disturbance growth, with a dis-
tinct resonant frequency, at all of the depicted streamwise locations. There is
also spatial decay of the disturbance along the downstream direction. There
are two factors that can be used to explain this decay. Firstly, the disturbance
in the flow downstream of the panel takes the form of a Tollmien-Schlichting
wave that is ‘forced’ by the compliant panel motion and this wave must be
spatially decaying because the Reynolds number has been chosen to be sub-
critical for the rigid-walled Tollmien-Schlichting mode. But secondly, and in
many cases more importantly, the effective level of forcing due to the com-
pliant panel motion is increasing with time, so that the waves found further
downstream were generated at a time when the forcing level was lower. This
latter effect explains why the disturbance was still found to be spatially decay-
ing even when the Reynolds number was chosen to be above critical and the
Tollmien-Schlichting waves downstream of the panel were characterized by a
frequency that would have led to strong spatial growth if the effective forcing
amplitude had been kept constant.

Simulations conducted at a given Reynolds number for compliant panels
with fixed material properties but varying panel lengths L showed that it was
possible to identify a definite range Lmin < L < Lmax over which there
was self-excited compliant wall motion yielding Tollmien-Schlichting waves
downstream of the compliant section. It was also found that the wavelength
of these waves was approximately proportional to the panel length, but that
the constant of proportionality was not given by any obvious geometrical con-
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Figure 1. Normal wall velocity for a selected time instant from a numerical simulation of
a self-excited disturbance in plane-channel flow with a compliant panel insert. The panel is
positioned along the streamwise direction between x = 25 and x = 28.75. The Reynolds
number based on the channel half-width and the centre-line velocity is R = 3000. The material
properties of the compliant panel are chosen such that the same flow over a corresponding but

Figure 2. Time histories for the wall vorticity at various streamwise positions for the same

infinitely long compliant surface would be stable

simulation as in the previous figure
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straint. (Such as would be dictated by the formation of half-sine waves, or
any other sinusoidal standing waves, over the length of compliant panel). This
unexplained behaviour is currently the subject of further investigation.

[1] Carpenter, P.W. & Pedley, T.J. (eds) 2003 Flow past highly compliant boundaries and in
collapsible tubes. Kluwer Academic Publishers.

[2] Davies, C.& Carpenter, P.W. 1997 Instabilities in a plane channel flow between compliant
walls. J. Fluid Mech. 352 205-243.

[3] Carpenter, P.W., Davies, C. & Lucey, A.D. 2000 Hydrodynamics and compliant walls:
Does the dolphin have a secret? Current Sci. 79 758-765.

[4] Carpenter, P.W., Lucey, A.D. & Davies, C. 2001 Progress on the use of compliant walls
for laminar-flow control. J. Aircraft 38 504-512.

[5] Davies, C. 2003 Convective and absolute instabilities of flow over compliant walls. In
Flow past highly compliant boundaries and in collapsible tubes (eds. Carpenter, P.W. &
Pedley, T.J.), ch. 4, pp. 69-93. Kluwer Academic Publishers.

[6] Davies, C. & Carpenter, P.W. 1997 Numerical simulation of the evolution of Tollmien-
Schlichting waves over finite compliant panels. J. Fluid Mech. 335 361-392.

[7] Davies, C & Carpenter P.W. 2001 A novel velocity-vorticity formulation of the Navier-
Stokes equations with applications to boundary layer disturbance evolution. J. Comp.
Phys. 172 119-165.

[8] Lockerby, D.A., Carpenter, P.W., & Davies, C. 2002 Numerical simulation of the inter-
action of microactuators and boundary layers. AIAA J. 40 67-73.

[9] Davies, C., 2004 Numerical simulation of boundary-layer disturbance evolution. Phil.
Trans. R. Soc. London A, (in press).

[10] Davies, C., 2004 Computational studies of boundary-layer disturbance development. In
One Hundred Years of Boundary Layer Research, IUTAM Symposium, Gottingen, Ger-
many. Kluwer Academic Publishers (in press).

[11] Ali, R. & Carpenter, P.W. 2001 Klenbanoff modes in boundary layers over compliant
surfaces. Bull. Amer. Phys. Soc. 46 29-30.

[12] Ali, R. 2003 Receptivity and transition in boundary layers over rigid and compliant sur-
faces. PhD thesis, University of Warwick.

[13] Lockerby, D.A., Carpenter, P.W., & Davies, C. 2004 Control of sub-layer streaks using
microjet actuators. AIAA J. (submitted).

[14] Davies, C. & Carpenter, P.W. 2003 Global behaviour corresponding to the absolute insta-
bility of the rotating-disc boundary layer. J. Fluid Mech. 486 287-329.

[15] Cooper, A.J. & Carpenter, P.W. 1997 The stability of rotating disc boundary-layer flow
over a compliant wall. Part 1. Types I and II instabilities. J. Fluid Mech. 350 231-259.

[16] Cooper, A.J. & Carpenter, P.W. 1997 The stability of rotating disc boundary-layer flow
over a compliant wall. Part 2. Absolute instability. J. Fluid Mech. 350 261-270.

[17] Carpenter, P.W., Sen, P.K., Hegde, S. & Davies, C. 2004 A wave-driver theory for vor-
tical wavess propagating across junctions with application to those between rigid and
compliant walls. J. Fluid Mech. (submitted).

REFERENCES

230 C. Davies, P .W. Carpenter, R. Ali and D. A. Lockerby



SUPPRESSION OF WALL TURBULENCE BASED 

ON STABILITY AND TURBULENCE ANALYSIS 

USING A COMPLIANT SURFACE 

P. K. Sen, P. S.  Josan and S. V. Veeravalli 
Department of Applied Mechanics Indian Institute of Technology, New Delhi 10016, India 

Abstract: This paper discusses the role of hydrodynamic stability theory in 

understanding wall turbulence and its possible suppression by using compliant 

surfaces. Our work reveals that, in wall turbulent flows, there are three 

important ‘mode classes’; namely, the Tollmien-Schlichting (TS) mode class, 

the Static Divergence (SD) mode class, and the High-speed highly damped 

(HSHD) mode class. All these modes scale with inner wall variables and so do 

the material properties of the compliant surface. The general thrust should be 

to replace TS modes by the HSHD stable modes. Outer modes were also 

investigated and found to be damped.

Key words: Wall turbulence, Compliant surface, Stability 

1. INTRODUCTION 

The recent work of Sen and Veeravalli (1998, 1999 & 2000) has 

established a connection between instability and fully developed wall turbulence. 

The extended OS equation developed therein mimics some of the key features of 

fully developed wall flows extremely well, e.g. the location of the production peak, 

the range of unstable wave numbers etc.  Thus Sen & Veeravalli (1998 – 2000) 

suggest that stability theory yields the ‘root cause mechanism’ responsible for the 

sustenance of turbulence in fully developed turbulent wall flows.  The question that 

naturally arises is whether one can interfere with this root cause mechanism and 

thereby suppress turbulence?  The present work addresses this question using a 

compliant wall as a possible means of turbulence suppression. 
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The use of Compliant surfaces has been widely proposed in the past to 

delay laminar-to-turbulent transition. We have used two types of wall models, on the 

lines of those used by Carpenter and Garrad (1985) and Sen & Arora (1988). The 

inverse methods as discussed in Sen & Arora (1988) were used both for selecting the 

parameters for stabilisation of the flow, and also, investigating physical realisability 

of the predicted modes. The results obtained in the rigid wall case with our new 

simplified numerical scheme are similar to the ones reported in Sen and Veeravalli 

(1998, 2000). Numerical computation was also done for outer modes. However, they 

do not scale with inner variables and are not relevant here. 

2. FORMULATION 

In the present study the formulation is based on a combined fluid-solid 

problem. This requires the separate specification of the dynamics of the fluid side 

and that of the solid side, and matching the two at the interface.
We now discuss briefly the Sen and Veeravalli theory (details may be seen in 

Sen and Veeravalli, 1998, 2000). In the discussion to follow the instantaneous 

velocity vector 
i

u  and pressure p obey the well known Navier-Stokes and 

continuity equations. Typically, in turbulent flows the velocity and pressure fields 

are decomposed by the well-known Reynolds decomposition, however, here we 

prefer a triple decomposition as follows:

; .
i i i i

u u u u p p p p                       (1)

 Here ,
i

u p  are respectively the mean velocity and pressure, 
i

u , p  are the 

(random) turbulent fluctuations and 
i

u
~

, p
~

 correspond to an organised (solenoidal) 

disturbance  (with zero mean).  The organized disturbance is assumed to be small 

compared to the turbulent fluctuations. 

After some algebra, one is in a position to obtain the dynamic equation for the 

organised disturbance. Using normal mode analysis, like the disturbance stream 

function  being expressed as 
)()( ctxi

ey , one obtains the extended 

forms of the Orr-Sommerfeld equation, given below: [for details see Sen and 

Veeravalli (1998, 2000)]. 

2 2 4[( )( ) ] 1/ [ 2 ]i u c u R
2 4 2 21/ [ { 2 } 2 { } { }]R E E E

3/ [ 2 2 ] 2 / [ 2 ] 0E R i i i R E E E     (2)

Here  is the spatial wavenmumber, c = cr + ici is the complex wave speed, E is 

the eddy viscosity non-dimensionalised by molecular viscosity  and  is 

anisotropy function. All quantities in eq. (2) have been non-dimensionalised by 

outer variables.  Equation (2) may also be written in terms of inner variables using 
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the friction velocity *u  as the velocity scale and */ u as the length scale.  It then 

becomes nearly universal for wall modes. Quantities non-dimensionalised by inner 

scales are denoted with superscript ‘+’. 

2.1 Boundary Conditions 

The boundary conditions for the rigid wall are presented in Sen & Veeravalli 

(2000).  Here we will discuss the compliant wall only.  The boundary conditions at y

= 0, after linearisation, are ac)0( and )0( =
w

Ua , where subscript w

refers to the wall, and, a is a non-dimensional form of the amplitude of the wall 

displacement. Substituting ca
w

/  we get:

0
www

Uc   at  0y .                    (3)     

The second boundary condition is obtained by equating the wall pressures, or a 

pressure-derived response coefficient, like admittance Y, calculated from the fluid 

side and from the solid side.  In the inverse method of Sen-Arora (1988) w is 

parametrised as w = | w |e
i

and | w | &  become the two kinematic parameters. 

Physical realisability entails that the two back-calculated generic properties, viz. the 

surface wave speed, Co and the damping d , satisfy Co

2 > 0 and d > 0.  Thereafter 

the flexural rigidity, K, and the material damping d can be back-calculated for 

different given values of the mass m.

3. RESULTS, DISCUSSION AND CONCLUSIONS 

i) Figure 1A shows the growth rate 
i

c plotted against .  The result 

is universal in wall-bounded flows and independent of Reynolds number. 

ii) Figure 1B shows experimental confirmation of the eigen function 

computed for the rigid wall.  Experiments were performed in a fully developed 

turbulent channel.  An organised disturbance was introduced by means of a loud 

speaker system, the velocity field was measured using a hot-wire and the organised 

part was educed by phase-averaging. 

iii) Figure 2 shows variation of 
i

c as a function of the kinematic wall phase 

 , for the TS mode class.  The data collapse over a range of Reynolds numbers and 

it is seen that wall compliance does not affect 
i

c much.

iv) Figure 3 similarly, shows the variation of 
i

c  and 
r

c with  for the SD 

mode class.  Again the data for different R collapse well.
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v) Figure 4 shows the variation of 
i

c with  for the HSHD mode class.  

We note that over most of the parameter space the HSHD mode is strongly damped. 

vi) Figure 5 shows a plot of the flexural rigidity K
+ versus   for various 

values of m
+ for the TS, SD and HSHD modes.  It can be seen that K

+ (and 

simultaneously d
+) may be chosen so as to eliminate most of the TS and SD modes 

while allowing HSHD modes.  This would be the thrust for stabilizing the flow.
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Figure 1A. Growth rate 
i

c versus  (inner variable scaling). Figures in brackets 

correspond to unstable wave numbers  for R = 5000 

Figure 1B. Graph of comparison of experimental and theoretical graphs of urms  versus y+ in 

the channel flow. = 0.17 (experimental) and 0.078 (theoretical) 

Figure 2. .
i

c   versus    (Theta),  in TS mode, for += 0.10878   and m
+ (corresponding 

to m =0.3, at R=5000). Key to the legend: e.g. R =5000 is specified as 5R 



Figure 3.
i

c  and 
r

c versus    (Theta), in SD mode, for  + = 0.10878 and m+

(corresponding to m =0.3, at R=5000). Key to the legend: e.g. R =5000 is indicated as 5R

CR-Real and CI-Imaginary parts of c+

Suppression of wall turbulence 235

Figure 4. Graph for 
i

c  versus  for channel-flow for HSHD stable mode class, 

corresponding to mode class III (Fig. 1A), for R = 5000 and with |
w

| = 60% 
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Figure 5. Graph of K+ and versus  for the TS and SD modes, corresponding 

to mode class III with | w | ranging from 1% to 70% and with m
+
 ranging 

from 28.497 to 4274.58 (corresponding to m = 0.1 to 15.0 at R = 5000) 

Key to legend:  TS+105.44(50%) means values of K+ in TS mode, m+ = 105.44 and | w | = 

50% or HSHD+284.97(70%) means values of K+ in HSHD mode, m+ = 284.97 and | w | = 

70%.
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ROUGHNESS INDUCED TRANSIENT GROWTH: 

NONLINEAR EFFECTS 

Meelan Choudhari* and Paul Fischer** 
*   NASA Langley Research Center, Hampton, VA 23681

** Argonne National Laboratory, Argonne, IL 60439 

Abstract: Numerical simulations are used to model the disturbance field associated with a 

spanwise periodic array of circular disks in a laminar boundary layer.  Besides 

capturing the major trends from the recent wind tunnel measurements by White 

and Ergin (2003), the simulations reveal the intricate effects of disturbance 

nonlinearity and roughness geometry on the transient growth characteristics in 

the wake of the roughness array and provide a numerical database for validating 

detailed features of optimal growth theory in the context of roughness induced 

stationary disturbances.

Key words: Transient growth, bypass transition, roughness 

of small-amplitude disturbances prior to an exponential decay farther 

downstream (Landahl, 1980). For suitable inflow conditions, the 

transient amplification ratios can be comparable to the growth factors that 

correlate with the onset of transition due to exponential growth of linearly 

unstable eigenmodes.  Consequently, the transient growth paradigm has 

emerged as an alternate scenario for laminar-turbulent transition, especially 

under subcritical (i.e., linearly stable) flow conditions (Reshotko, 2001).  An 

upper bound on the transient growth ratios is provided by the optimal growth 

theory (Andersson et al. 1999, Luchini 2000, Tumin and Reshotko 2001).  

According to this theory, the optimal initial conditions are associated with 

purely wall normal and spanwise velocity perturbations resembling a 

spanwise array of streamwise vortices; the transient growth occurs as these 

1. BACKGROUND 
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initial conditions evolve into streak-like motions that are dominated by 

perturbations in the streamwise velocity.

 The physical relevance of optimal growth theory to boundary-layer 

transition depends on receptivity characteristics of the laminar boundary 

layer, in particular, whether and how such optimal (or near-optimal) initial 

conditions can be realized in a natural disturbance environment.   Transient 

growth of low-frequency boundary-layer disturbances due to free-stream 

turbulence of weak through moderate intensity has been documented in 

experiments (Kendall 1985) and also predicted using theoretical models 

(Leib et al. 1999).  The recent correlation between subcritical transition on 

rough axisymmetric nosetips and a linear amplitude criterion based on 

optimal disturbance growth (Reshotko and Tumin, 2002) provides the 

motivation to study the role of surface roughness in promoting the transient 

growth of purely stationary disturbances.

 Wind tunnel measurements by Gaster et al. (1994), White (2002), White 

and Ergin (2003), and Fransson et al. (2004) have established the typically 

suboptimal roughness-induced transient growth for a variety of roughness 

distributions.  Theoretical analysis by Tumin and Reshotko (2004) has 

shown that transient growth also occurs in the limit of small roughness 

heights, a challenging case for accurate disturbance measurements in a wind 

tunnel.  Here, we present numerical simulations of roughness-induced 

transient growth to help bridge the gap between theory and experiment.  

Specific issues of interest include: a comparison with the measurements by 

White and Ergin (2003) for a spanwise periodic array of roughness elements, 

the range of validity of the measured empirical scaling for perturbation 

energy as function of Rek, and unsteady vortex shedding at large values of 

Rek.  An earlier account of these simulations was presented by Fischer and 

Choudhari (2003), henceforth referred to as FC.

 The primary flow configuration used for the numerical simulations 

corresponds to a flat-plate boundary layer with a spanwise periodic array of 

circular-disk roughness elements, located at a distance of x0 = 230 mm from 

the sharp leading edge.  The diameter of the roughness elements is equal to 

6.35 mm, with the spacing between each pair of adjacent elements being 0

= 19 mm, i.e., approximately 3 times the roughness diameter.  The free-

stream speed is 10 m/s.   All numerical simulations have been performed 

using the spectral element code Nek5000 (Fischer et al. 2002).  Details of the 

computational procedure and grid convergence studies are described in FC. 

2. NUMERICAL RESULTS 
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  Simulation results for the baseline roughness height of h = 0.57 mm 

(Rek  119) are presented in Fig. 1, which shows the streamwise evolution of 

integrated modal energy for the first four spanwise modes.  Similar to the 

experiment, the modes  = 0,  = 0/3, and  = 0/4 exhibit transient growth 

before decaying farther downstream.  The fundamental mode undergoes a 

rapid and substantial decay before the beginning of its algebraic growth. In 

contrast, the shorter wavelength modes begin to amplify almost immediately 

in the wake of the array.  The  = 0/4 mode reaches its peak amplitude 

before the other modes, and is closely followed by the  = 0/3 mode which 

dominates the disturbance amplitudes in the intermediate wake region, up to 

approximately 200 mm downstream of the roughness array.

  As discussed by FC, the streamwise velocity perturbations at  = 0

undergo a sign reversal near x – x0 = 35 mm (i.e., xexp = 335 mm, where the 

subscript exp denotes distances from the physical leading edge in the 

experiment by White and Ergin (2003)), which results in optimal-like initial 

conditions for transient growth downstream of this location.  Because the 

integrated modal energies Ei(x) (i=1 4) are defined using a streamwise 

varying (similarity) length scale, the energy metric for the fundamental mode 

appears to reach a plateau near xexp = 600 mm (i.e., x - x0 = 300 mm), even 

though the actual disturbance energy continues to grow up to xexp  1025 

mm.  The latter location is somewhat upstream of xexp = 1245 mm, where the 

local spanwise wave number reaches the theoretical optimum of 0.45 for 

transient growth beginning at the leading edge. After accounting for the 

thickening of the mean boundary layer over the transient growth interval, 

one finds the transient growth ratio for the  = 0 mode to be approximately 

320.  However, because this growth is preceded by an even larger 

disturbance decay upstream of the minimum energy location, the exact 

significance of transient growth via a spanwise periodic roughness array 

cannot be determined at this stage.

 White and Ergin were able to correlate their data for the transient growth 

of  = 0/3 and  = 0/4 modes with a quadratic fit of the form E3, E4  Rek
2

at a fixed x.  To assess this scaling behavior within the computational 

framework, additional simulations were carried out for h = 0.665 mm (i.e., 

Rek  162).  Modal analysis of the wake disturbances (Fig. 2(a)) suggests 

that the Rek
2
 scaling applies uniformly to modal energies of all four modes 

under consideration (i.e.,  = 0, 0/2, 0/3, and 0/4), at least within the 

narrow range of  Rek included in the figure. 

 Fig. 2(b) indicates that the empirical scaling for E3(x) is approximately 

valid over the range of 75 < Rek < 250. For Rek values below this range, the 
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qualitative behavior of the modal energy evolution for  = 0/3 was found to 

deviate from that seen earlier in Fig. 1. Specifically, there is noticeable decay 

in E3(x) behind the roughness element before its transient growth ensues.  

The decay becomes stronger at smaller roughness heights, such that little or 

no transient growth is observed for the  = 0/3 mode prior to its original 

peak near xexp = 360 mm for the baseline roughness configuration. The 

modes  = 0 and  = 0/4 exhibit transient growth as before, but the onset 

of transient growth and/or peak modal amplitudes occur at significantly 

different locations than those in Fig. 1.  Therefore, the amplitude scaling for 

the different Fourier harmonics becomes nonuniform at these lower values 

of Rek.

 At a roughness height of h = 1.14mm (i.e. twice the height in the baseline 

case), the separated flow behind the roughness element is found to be 

unsteady.   The unsteady vortex structures in the plane of symmetry (Fig. 3) 

resemble the flow structures observed during natural transition in a flat plate 

boundary layer. Follow-up computations will reveal the critical Rek value at 

which vortex shedding begins and whether or not these vortex structures 

decay eventually or lead to an earlier onset of transition. 

3. CONCLUDING REMARKS 

 In summary, we have presented numerical simulations of transient 

growth due to a spanwise periodic array of cylindrical roughness elements.  

The agreement between simulation results and the measured data confirms 

the accuracy of the spanwise-global wall-finding algorithm used by White 

and Ergin (2003) over the local wall-finding procedure used previously by 

White (2002).  Results for smaller roughness heights support the linear 

theory predictions of Tumin and Reshotko (2004) concerning a decay of the  

 = 0/3 mode across a considerable distance downstream of the roughness 

array.  At intermediate roughness heights (i.e. approximately 75 < Rek < 

250), simulation results are nearly consistent with the Rek
2
fit for disturbance 

energy as derived from the measured data.  Self-sustained, unsteady vortex 

shedding occurs at sufficiently large roughness heights, and unsteady flow 

structures in the form of high shear layers are observed along the symmetry 

plane.

By underscoring the experimentally observed variation of transient 

growth characteristics with roughness geometry, the present computational 

findings indicate the challenges in physical understanding of subcritical 

transition due to distributed surface roughness.  Our future work will focus 

on transient growth due to other relevant roughness configurations, including 
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the interactions among multiple roughness arrays, as well as on the onset of 

transition due to vortex shedding at large roughness heights.
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Figure 1.  Downstream evolution of modal energy Ei (xexp) in selected disturbance harmonics 

(i=1–4) for h = 0.57 mm 

growth: normalized modal energies Ei/Rek
2

(i=1–4), plotted  as functions of xexp.  Lines 

denote modal evolution for baseline array 

(Re k = 119); symbols represents the case of 

k

0

streamwise location, xexp = 370mm, as 

function of Rek.  Symbols denote simulation 

data, whereas the line indicates the empirical, 

Rek
2 scaling based on the baseline results.

Figure 2. Nonlinear effects on roughness induced transient growth 

(a)  Energy of  = /3 mode at a fixed 

larger-height array with Re  = 162. 

(b)Effect of roughness height on transient 



Meelan Choudhari and Paul Fischer

Figure 3. Unsteady vortex shedding in z = 0 plane behind roughness array with h = 1.14 mm 
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Linear feedback control has been applied to transitional boundary layer
flows. Information from wall-mounted sensors is used to estimate the
flow state. The estimated state is then used to compute the optimal
feedback control which is applied as blowing and suction with zero net
mass-flux through the wall. The performance of the controller is tested
in direct numerical simulations of a spatially growing Falkner–Skan–
Cooke boundary layer where an inflectional instability is triggered. The
extension to spatial boundary layer flows is an important step towards
real applications.

Keywords: Flow control, LQG, control, estimation, Navier–Stokes equations,Falkner–
Skan–Cooke, Orr–Sommerfeld/Squire

1.
By applying control to flows with strong inherent instabilities, through

sensors and devices acting only on small parts of the flow, one may
achieve dramatic effects by only minute amounts of control energy ex-
penditure. Such control devices can be used in a wide variety of ap-
plications, for example, maintaining laminar flow on aircraft wings, re-
laminarizing/decreasing drag in turbulent flows and enhancing mixing
in turbulent flows. Here we use linear optimal control theory where it is
possible to formulate a control problem in which the control is computed
from limited measurements from the flow. Recent overviews of similar
flow control attempts are found in Bewley, 2001 and Kim, 2003.

Abstract:

INTRODUCTION
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2.
A standard state-space formulation (e.g. Lewis and Syrmos, 1995) of

the control problem can be written

q̇ = Aq + B1f + Bu, q(0) = q0,

y = Cq + g,
(1)

where q is the state, A is the linear operator representing the dynam-
ics of the system, the stochastic forcing f acts on the system through
operator B1, and the control u acts on the system through operator
B. Furthermore q0 is the initial condition and operator C extracts the
measurements from the state and g adds stochastic measurement noise
with given statistical properties which leaves the actual measured quan-
tity in y. The measurements used in this study are the streamwise and
spanwise shear stresses and wall pressure fluctuations.

An estimator, similar to system (1), can be formulated where an ad-
ditional volume force v is added,

˙̂q = Aq̂ + Bu − v, q̂(0) = q̂0,

ŷ = Cq̂,
(2)

and where q̂ is the estimated state and ŷ is the measurement of the
estimated flow. The purpose of the volume force is to make the estimator
flow converge toward the “real” flow q.

The control u and the estimator volume force v are defined as u = Kq̂
and v = Lỹ = L(y − ŷ) respectively where K and L are the control and
estimation gains respectively which are computed as optimal feedback
gains. This can be done independently for each wavenumber pair by
solving two Riccati equations, see for example Green and Limebeer,
1995 for details on the theory.

In order to fit the incompressible Navier–Stokes equations into the
state-space formulation we linearize the equations and transform them
to Fourier space which give us the Orr–Sommerfeld / Squire equations
Schmid and Henningson, 2001). Note that the gains can be precomputed
and then applied online in the simulations.

When designing the controller and estimator the objective function
that determines what we want to minimize and the description of the
external disturbances f , modeled through the covariance Rff, are cru-
cial quantities as they appear in the respective Riccati equations. In
Hœpffner et al., 2004 and Chevalier et al., 2004 different covariance
models have been studied for the case of channel flow and the estimator
performance has been improved markedly by making physically relevant

FEEDBACK CONTROL
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Figure 1. The covariance Rfifj of the external disturbances is depicted in (a). From
top to bottom and right to left each square represent to covariance for f1, f2, and
f3. The wavenumber space amplitude function is shown in (b). The peak is moved

choices. Here we take the significant step of extending the work to spa-
tially developing boundary layers. A first attempt in that direction was
performed in Högberg et al., 2003.

In this work we model the covariance of the external disturbances as

Rfjfk
(y, y′, kx, kz) = exp[−((kx−k0

x)/dx)2−((kz−k0
z)/dz)2]δjkMy(y, y′).

The model parameters k0
x and k0

z can be used to locate the peak energy
of the disturbances in Fourier space, and dx and dz to tune the width of
this peak. These parameters are specific for each flow case and are here
chosen as k0

x = 0.25 and k0
z = −0.25. The y-variation of Rfjfk

, depicted
in figure 1(a), is given by the function

My(y, y′) = w
(
(y + y′)/2

)
exp(−(y − y′)2/2dy),

where the design parameter dy governs the width of the two-point cor-
relation of the disturbance in the wall-normal direction. The function
w(ξ) = U ′(ξ)/U ′(0) describes the variances at different distances from
the wall. Here, the estimator is applied to disturbances inside the bound-
ary layer, we thus use the wall-normal derivative of the mean flow.

Each of the three measurements is assumed to be corrupted by random
sensor noise processes, the amplitude of which is determined by the
assumed quality of the sensors. The covariance of the sensor noise vector
g can thus be described in Fourier space by a 3 × 3 matrix G whose
diagonal elements α2

ι are the variances of the sensor noise assumed to
be associated with each individual sensor Rgι(t)gκ(t′) = δικδ(t − t′)α2

ι .
The combination of full-state control and state-estimation is some-

times referred to as a compensator. The compensator consists of a “real”

to {0.25,−0.25} which is the mode that is triggered in the FSC simulations
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(a) (b)

y

x x

Figure 2. Snapshots of the wall-normal velocity component at y = 0.5. The flow
state is depicted in part (a). In (b) the effect of the compensator control is shown.
In both controlled flows the actuation was applied for 2000 time units, and reached

and an estimated flow. The “real” flow could be an experimental setup
where only wall information is extracted. In our studies the “real” flow
is represented by a direct numerical simulation (DNS). The estimator is
another DNS, which is used to recover the state from sensor information.
The compensation algorithm can be summarized in the following steps.
First compute the difference between the measurements from the esti-
mator flow and the “real” flow. Secondly compute the estimator forcing
and apply it to the estimator. The new estimated state is then used
to update the control signal. Finally the control is applied to both the
“real” flow and the estimator.

3.
The DNS has been performed with the code reported in Lundbladh

et al., 1999, which solves the incompressible Navier–Stokes equations
by a pseudo-spectral approach. In order to allow spatially developing
flows, a fringe region technique as described in e.g. Nordström et al.,
1999 has been applied. This adds a forcing in the fringe region located
in the downstream end of the computational box where the outflow and
inflow conditions are blended together. The control is applied as a zero
mass-flux blowing and suction boundary condition on the wall.

The computational domain is discretized in space by Fourier series
in both horizontal directions and with Chebyshev polynomials in the
wall-normal direction. The time integration is done using a four-step
third-order Runge–Kutta method for the advective and forcing terms
whereas the viscous terms are treated with a Crank-Nicolson method.
The computational box has the dimensions [0, 500] × [0, 8] × [0, 251.4]
based on the displacement thickness δ∗0 at the beginning of the box where
Reδ∗0 = 337.9. The corresponding resolution is 192 × 49 × 48 modes.

its steady state. The black to white scales lies within v ∈ [−0.00045, 0.00045]

DIRECT NUMERICAL SIMULATIONS
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Figure 3. Time averaged perturbation energy for cross-flow vortices in a FSC bound-
ary layer. Solid: uncontrolled. Dashed: full information control. Dash-dotted: com-

An inflectional instability is studied in a Falkner–Skan–Cooke (FSC)
boundary layer where the Reynolds number is Reδ∗0 and the Hartree
parameter βh = 0.5098 with a cross-flow component W∞ = 1.442.
The same FSC boundary layer flow studied in this paper is subject to
several other studies, for example Högberg and Henningson, 1998 and
Högberg and Henningson, 2002. The measurement region is located in
x ∈ [40, 150] and the control region in x ∈ [175, 325]. A random per-
turbation in space and time, upstream in the box, generates cross-flow
vortices downstream.

The uncontrolled flow develops downstream and forms the cross-flow
vortices depicted in figure 2(a). The figure shows the wall-normal per-
turbation velocity plotted at y = 0.5. The corresponding plot when
compensator control has been applied is shown in figure 2(b). The sim-
ulations are run until a statistically stationary state is reached where
we sample and time average the disturbance energy in the streamwise
direction as shown in figure 3. The solid line shows the uncontrolled
flow whereas the dashed and dash-dotted lines show full-information
and compensator control respectively.

The control removes the exponential growth. However, adjacent to
the downstream end of the control region the disturbance starts to grow
exponentially again since the wave is unstable over the whole box.

4.
Based on findings on how to improve the performance of the state

estimator, reported in Hœpffner et al., 2004, combined with the state-
feedback control used in, for example, Bewley and Liu, 1998 and Högberg
and Henningson, 2002 inflectional instabilities in spatially developing
boundary layer flows are controlled based on wall measurement.

pensator control. The dotted line shows the energy is the estimator

CONCLUSION
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The key to the improved performance of the estimator is the design of
a physically relevant stochastic model for the external sources of distur-
bances which should account for as much as possible of the flow system
that cannot be taken into account in the linear dynamic model that is
used to formulate the control and estimator problem.

Note that so far we have given the estimator ample time to converge
before turning on the compensator control. In future work one could
reduce the time frame for the estimator to converge as well as experiment
with smaller measurement regions.

This work has been financed by the Swedish Defence Research Agency
(FOI) which is greatfully acknowledged.
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EFFECT OF ELASTIC SUPPORTS ON THE CRITICAL
VALUE OF REYNOLDS NUMBER PAST A CYLINDER

Sanjay Mittal and Saurav Singh
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, UP 208 016 ,
India

smittal@iitk.ac.in

Flow past a cylinder becomes unstable at Re ∼ 47 and vortex shedding ensues.
A cylinder mounted on lightly damped springs can undergo vibrations as result
of the unsteady forces experienced by it due to the vortex shedding. In this
paper we examine the effect of elastic supports on the critical Reynolds number
at which the vortex shedding sets in. It is found that for a cylinder with elastic
supports, vortex shedding can be observed for Reynolds number as low as 22.

1.
Flow past a circular cylinder is associated with a variety of instabilities. The

first instability is that of the wake. At Re ∼ 47 the steady flow past a cylin-
der becomes unstable resulting in the von Karman vortex street (Williamson,
1996). Beyond Re > 47, Vortex Induced Vibrations (VIV) are observed for
a cylinder that is mounted on elastic/non-rigid supports. It is well known that
the motion of the cylinder can alter the flow-field significantly. Under certain
conditions, the motion can cause the vortex-shedding frequency to match the
vibration frequency. This is referred to as lock-in or synchronization. In addi-
tion, near the low- and high-end of the lock-in regime, the flow and cylinder
response may exhibit hysteresis. Significant research has gone into the un-
derstanding of various phenomena associated with VIV. For a comprehensive
review of the research, on various aspects of VIV, the reader is referred to a
recent article Govardhan and Williamson, 2004.

The objective of the present work is to investigate the possibility of ob-
serving vortex shedding at Re < 47 for an elastically mounted cylinder. To
this extent, 2D numerical simulations for VIV of a cylinder are presented. A
stabilized space-time finite element formulation is utilized to solve the incom-
pressible flow equations in primitive variables. The results of the simulations

INTRODUCTION
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4.
The rms values of the aerodynamic coefficients and the non-dimensional

shedding frequency, for a stationary cylinder at Re = 50 and 100, is compared
with already published data. Good match is observed. The Re = 25 flow
with a freely vibrating cylinder, is computed with three different finite element
meshes. While the coarsest mesh has 24, 604 nodes, the finest one consists of
46, 410 nodes. The difference between the results from these meshes is less
than 1%. This establishes the confidence in the present computations and the
method being used.

Figure 1 shows the response of the cylinder and the associated flow at var-
ious Re. Vortex shedding can be observed for 22 ≤ Re ≤ 34. The cylinder
oscillations begin at Re ∼ 21.7, reach maximum intensity at Re ∼ 26 and
then die beyond Re ∼ 34. Also, the maximum oscillations occur at a reduced
velocity of U ∗ ∼ 8. The initial condition for all the computations corresponds
to the steady flow at that Re for a stationary cylinder. This implies that the ob-
served instability is intrinsic to the aeroelastic system. Further, it implies that
the critical Re (Rec) for a cylinder on elastic supports is significantly lower
than that for a rigid cylinder. This has also been confirmed by carrying out a
global linear stability analysis of the combined equations for the flow as well
as the cylinder motion. The linear stability analysis has been carried out in a
frame of reference attached to the cylinder. The finite element formulation re-
sults in a generalized eigenvalue problem that is solved via subspace iteration
for tracking the rightmost (most unstable) eigenvalue. Figure 2 shows the real
and imaginary part of the eigenvectors of the vorticity field close to the onset
of the instability. The vortex shedding frequency at the onset, predicted by
the linear stability analysis and the direct numerical simulations, are virtually
identical.

The non-dimensional vortex shedding frequency for the freely vibrating
cylinder at various Re are shown in Figure 3. It is found that the vortex shed-
ding frequency and the vibration frequency of the cylinder match. This is the
classical phenomenon of "lock-in". However, the vortex shedding frequency
of the vibrating cylinder is significantly different than the structural frequency.
Our computations for a cylinder of higher non-dimensional mass (m = 50)
show that for heavier cylinders the vibration and vortex shedding frequency
are much closer to the natural frequency of the spring mass oscillator. This ob-
servation was also made in our earlier work Mittal and Kumar, 1999 for higher
Re flows. Also shown in Figure 3 are the results from Buffoni 2003 from
laboratory experiments for forced oscillations of a cylinder. Clearly, there are
differences in the vortex shedding frequency from the two studies. This might
be related to the difference between the forced and free vibrations. More work
is presently being carried out to address some of these observations.

S. Mittal and S. Singh
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Figure 1. Flow past a freely vibrating cylinder: amplitude of the cylinder response (nor-
malized with its diameter) and the vorticity field at various Re. White color contour lines

Re=34.0, imaginaryRe=21.8, imaginary

Re=21.8, real Re=34.0, real

Figure 2. Flow past a freely vibrating cylinder: real and imaginary part of the eigenmodes,

Effect of elastic supports

correspond to positive vorticity while the black color lines show the negative vorticity

computed via linear stability analysis, at the onset of vortex shedding
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Figure 3. Flow past a freely vibrating cylinder: the non-dimensional vortex shedding fre-
quency and natural frequency at various Re
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5.
These computations show that the aeroelastic instability can result in the

lowering of critical Reynolds number for vortex shedding. These oscillations
are self excited in nature. This might, to some extent, also explain some of
the scatter of data in the literature for the critical parameters for the onset of
shedding. The results for vortex induced oscillations at subcritical Reynolds
numbers, from the direct numerical simulations and linear stability analysis
agree quite well.

CONCLUSIONS



IMPROVEMENT OF LIFT-TO-DRAG RATIO

 OF THE AERO-TRAIN 

Y. P. Kohama and Dong-hee Yoon 
Institute of Fluid Science, Tohoku University, Sendai 980-8577 Japan 

Abstract: Aero-Train is a new concept of environment friendly high speed transport 

system invented by our group.  In order to realize this concept, improvement 

of the aerodynamic performance is essential.  Our goal is to attain the overall 

lift to drag ration up to 25.  Presently it is around 13 to 15.  Some of the 

possible reasons why the value is low are in the interference drag and induced 

drag around lifting and guide wing junction. Flow separates largely at suction 

surfaces of the wing section enhanced by the existence of horizontal and 

vertical walls. Separation control study is conducted in present investigation 

using CFD and EFD approaches.  Drastic improvement of lift to drag ratio was 

achieved by introducing several devices at the wing section.   .

Key words: Environment friendly high speed transport system, Wing-in-Ground effect, 

Wing-wing interaction, Lift-to Drag ratio, Flow Separation Control 

1. INTRODUCTION 

     Over 20% of Carbon Dioxide emission is from the general transport 

system.  Fluid dynamic drag force is proportional to the square of the speed 

of the vehicle.  Therefore in the case of high speed transport system

including aircrafts, reduction of the aerodynamic drag force is essential from 

the point of environmental pollution problem. The Laminar-Turbulent 

Transition Symposium is essentially important in improvement of overall 

performance of aircrafts, namely increasing lift to drag ratio by maintaining 

laminar boundary layer over the vehicle surface.  .   

In the case of high speed ground transport systems like Shinkansen in 

Japan or Trans Rapid in Germany where cruising speeds exceed 300 km/h, 

around 90-% of the total drag is from aerodynamic drag.  From such a point 

of view, we need to consider them as aircrafts.  Therefore, increasing the lift 

to drag ratio of ground transport system is as important as that for aircrafts.  
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From such consideration, we have been involved in the improvement of 

aerodynamic performance of high speed train in Japan.  After a long survey 

of conventional high speed ground transport systems, we came to the 

conclusion that almost all the existing transport systems have to be entirely 

reconsidered for improving the aerodynamic performance.  At the same time, 

we noticed that some of them are almost impossible to improve.  For a 

instance, train system has a fatal problem.  They cannot reduce the weight 

and cannot reduce aerodynamic drag force produced from the under floor 

narrow gap flow.  Knowing such a fatal problem, finally we came to the idea 

of a completely new “Aero-Train” concept.   

Aero-Train [1] floats over U-shape guide way solid surface by wing-in-

ground effect.  It is also guided by the same aerodynamic levitating side 

forces.  Image sketch of the Aero-Train is shown in Fig.1.  Cruise speed goes 

up to 500 km/h and 350 passengers with 3 coaches.  Up to now, we already 

proved the practical floatation by constructing two running models.  Fig.2 

shows ART002 model running at 120 km/h in a guide way.  Owing to the 

ground effect, lift to drag ratio of the Aero-Train becomes larger.  Even the 

aspect ratio of the wings are quite small compared with that of aircrafts.

Train (120km/h, motor driven propeller)
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Figure 2. Test run of ART002 

Figure 3. Separation area visualized by tuft method 
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Figure 1. Image sketch of the Aero-



Improvement of lift-to-drag ratio of the aero-train 

Through 3 year series tests, we found the aerodynamic problems existing 

in the present system.  One of the important problems is a large flow 

separation at the suction surface near trailing edge of main and guide wing 

parts.  Fig.3 shows the tuft visualization and the separated area.  Boundary 

layer flow tends to separate largely at this area more than conventional free 

flight condition because of the existence of the ground close to the wings.  

We could improve L/D if we could successfully control this separation.   

Therefore, the purpose of the present investigation is to control the flow 

separation of the Aero-Train wing system by installing a single slotted 

flap[2,3].  Experimental and numerical investigations have been introduced, 

and by comparing each other, improvement of the performance was 

systematically tried. 

2. NUMERICAL ANALYSIS 

     Numerical analysis is carried out using finite element analysis program 

“NSYS”.  The flow field is analyzed using the CFD of ANSYS.  The flow 

model uses the transport equation derived from the 3D Navier-Stokes 

equation.  It used incompressible energy equation and standard -  model for 

a turbulence model.  The numerical analysis is performed to find out the 

flow at the juncture and the slot shape.  For the boundary condition of this 
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Figure 4. Computational results (with and without the single-slots)

Figure 5. The wind tunnel wing model variation 



analysis, no-slip condition is applied to the flow on the wing surface and 

symmetric boundary condition is used at the root of the wing.  Free stream 

velocity is 35 m/s and the velocity of ground and side walls are equal to the 

free stream velocity.  Reynolds number based on the chord length is 

Re=3.5x105.  The whole domain is assumed to be turbulent. 

3. COMPUTATIONAL RESULTS 
Fig 4 shows models with and without the single slotted flap on the main and 

guide wings.  The velocity vectors shown here are 1 mm above the wing’s 

surface.  The slot gaps are increasing from the entrance of 3 mm on the low 

surface to the exit of 8 mm on the upper surface.  The slot’s shape and the 

slot’s location showed the best results in controlling the boundary layer and 

the separated flow at the juncture. 

4. EXPERIMENTAL RESULTS 

4.1.   The Variation of Aerodynamic Performance by Single-Slotted Flap 

     To begin with, the flow over the upper surface observed in the 

experiments was compared with that predicted in the numerical analysis.  

Fig.5 shows wing models used in the experiment.  From now, we name 

models with the combination of A-D for the main wing and a-d for the guide 

wing.  Fig.6 shows the visualization of the upper surface of the C-c wing 

model.  This photograph indicates that the slotted flap successfully removed 

the separated region.  This result agrees well with the velocity vector in Fig.4. 

     Fig.7 shows the aerodynamic characteristics of the models at m=2 °.  

The CL of the models with single slotted flaps are lower by 0.045 in 

comparison with the baseline model, but the ground effect characteristics of 

the models are similar to that of the baseline model.  Also, the CD values 

decrease as the main wing approaches the ground plate.  This is because the 

amount of the pressure leakage from the slot is increased as the main wing 

approaches the ground, which increases the outflow of the air from the slot, 

consequently suppressing the separation by the wing-wing interaction.  The 

L/D of the models increase rapidly as h/c decreases, in comparison with that 

of the baseline model.  On the other hand, the L/D of the B-a and B-d models 

without single slots ( m=4°, s=2°, U =35m/s) 
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Figure 6. Oil flow visualization over suction surface of the wing system C-c, with and



Improvement of lift-to-drag ratio of the aero-train 

are excellent in comparison with other models and the ground effect 

characteristic of B-d model is excellent in comparison with other models.  
The ground effect works as the restoring force in the pitch direction of the 

Aero-Train.  At the designed suspending height of the Aero-Train(i.e. 

h/c=0.067), the L/D of B-a will increase by about 17.1 % and CD will 

decrease by about 20 %, compared to that of  baseline model. 

     From the results above, the L/D of the wing models dramatically 

increased by the installation of the single-slotted flap.  Among the wing 

models with a single-slotted flap, the L/D of the B-a model is the best in 

comparison with other models, however, the ground effect characteristic of 

the B-a model somewhat decreased in comparison with that of the baseline 

model.

     On the other hand, among the wing models with a single-slotted flap, the 

ground effect characteristic of the B-d model is the best in comparison with 

other models.  Then, at g/c=0.067, the L/D of the B-d model increased by 

about 17% at m=2°, by about 22.3% at m=4° and by about 31.6% at m=6°. 

4.2. The Change of Side Force by Single-Slotted Flap 

     In the experiment of side force measurement, the height of the main wing 

is fixed at h/c=0.067 and h is changed from 4mm to 20mm.  Fig.8 shows the 

ground effect characteristics of the side force coefficient Csf.  This graph is 

plotted with the distance between the vertical wing and the side plate on the 
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Figure 7. Aerodynamic Characteristics of the models at 

Figure 8.  Side force characteristics of the wing system 



x-axis, and the side force coefficient on the y-axis.  The figure shows that the 

Csf of the models with single-slotted flaps decreases somewhat in 

comparison with that of the baseline model.  Also, the ground effect 

characteristics of the models with single-slotted flaps show a tendency to be 

lower in comparison with that of the baseline model.  This ground effect 

works as that restoring force in the yaw and roll directions on the Aero-Train, 

therefore, using a single-slotted flap tends to lower the yaw stability of the 

Aero-train.

5. CONCLUSIONS 

     For the purpose of improving the aerodynamic performance of the wing 

configuration, numerical analysis and wind tunnel experiments have been 

performed installing a single-slotted flap system.  From these results, the 

following conclusions are obtained. 

(1) By the installation of the single-slotted flap on the wings, when m=2°

to 6°, the L/D increased sharply. 

The increase in L/D of the B-a model is the best in comparison with 

other models.  The location of the slot of the B-a model, in percent 

chord of main wing, is 38% and the location of the slot in percent chord 

of vertical wing is 50%. 

The increase in ground effect characteristic of the B-d model is the best 

in comparison with other models.  The location of the slot of the B-d 

model, in percent chord of main wing is, 38% and the location of the 

slot in percent chord of vertical wing is 20%. 

(2) The ground effect characteristics of Csf of the models, with single-

slotted flaps, show a tendency to be lower in comparison with that of the 

baseline model. 
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IN-FLIGHT AND WIND TUNNEL MEASURE-
MENTS OF NATURAL AND OF CONTROLLED
INSTABILITIES ON A LAMINAR FLOW AIRFOIL

Inken Peltzer and Wolfgang Nitsche
Technical University of Berlin, Institute of Aeronautics and Astronautics
Marchstr. 12, Sekr.F2, D-10587 Berlin

inken.peltzer@tu-berlin.de

Abstract: The temporal and spatial development of natural Tollmien-Schlichting (TS) in-
stabilities and artificially generated disturbances was investigated comprehen-
sively in-flight as well as in a wind tunnel. The experiments were performed on
a laminar wing glove for a sailplane using different surface sensor arrays (surface
hot-wire sensors, piezo-sensor arrays). Two-dimensional TS waves dominate in
the early linear stage of the boundary layer flow, but single three-dimensionally
(3D) dominated wave packets, observed in the late stage of TS development,
can be measured in the early stage as well. Furthermore, in the in-flight mea-
surements, the 3D-instabilities occur earlier than in the wind tunnel. For the
experiments on controlled transition, an array of spanwise distributed harmonic
point sources which induced mono and multifrequency disturbances was used in
order to compare the development of natural and controlled instabilities.

Keywords: Natural and controlled transition, in-flight- and wind tunnel experiments, Toll-
mien-Schlichting-waves, TS-instabilities, wave packets, laminar wing glove

1. INTRODUCTION

The present experimental investigation deals with the laminar-turbulent boun-
dary layer transition on an airfoil, in particular with the spanwise development
and amplification of Tollmien-Schlichting (TS) instabilities. The development
of TS waves depends strongly on the environmental flow conditions. It is there-
fore necessary to investigate the transition under real conditions (i.e. in flight
experiments), as well as in wind tunnel tests. This work is based on the ex-
perience gained in the Deutsche Forschungsgemeinschaft -funded university
group research project [Nitsche et al., 2001], where artificial disturbances of a
harmonic point source were investigated and which was carried out in coop-
eration with the Institute of Aerodynamics and Gasdynamics (IAG), Stuttgart
University. The focus of the present paper is on investigating the temporal and
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Figure 1. Point sources, 16 surface hot-wire array and 74 piezo sensor array
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spatial propagation of natural TS waves as well as artificially generated dis-
turbances using an array of spanwise distributed point sources. The controlled
disturbances were generated in order to model the development of natural dis-
turbances and as input values for the Direct Numerical Simulation (DNS). Pre-
vious results of this work are published in [Peltzer and Nitsche, 2003].

A laminar wing glove, which was developed for the Grob 103 TWIN II
two-seater sailplane at the Institute for Aeronautics and Astronautics, Techni-
cal University of Berlin, was used for the in-flight measurements. The mea-
suring surface of the glove had a 1.0 m span and a chord length of 1.22 m.
For comparison, a segment of the glove was employed for both in-flight and
wind tunnel experiments. A Prandtl tube, which was attached underneath the
glove, measures the freestream velocity. The boundary and in-flight condi-
tions (pressure, temperature, velocity, etc.) were recorded continuously during
the experiments. Comparative wind tunnel measurements were carried out at
the laminar wind tunnel at the IAG, Stuttgart University. A freestream veloc-
ity of u = 23.6 m/s was used for all experiments. Basic investigations were
performed in order to measure the velocity distributions over the glove at this
freestream velocity. This velocity distribution was then reproduced in the wind
tunnel. Both distributions showed a good agreement, allowing the comparison
of in-flight and wind tunnel measurements [Peltzer, 2004].

The sensor and actuator set-up is shown in Fig. 1. A spanwise array of 16
surface hot-wire sensors was located at a chord length of 33 %. This sensor
was especially used to measure the instabilities with a very small amplitude
in the early linear stage of amplification. Furthermore, an array of 74 piezo
sensors was used in the stages of higher amplification (at 40 % to 50 % chord
length). Small loudspeakers were arranged in a spanwise manner (at 20 %
chord length) underneath the glove surface, and were optionally employed in
order to introduce controlled disturbances into the boundary layer via a circle

2. EXPERIMENTAL SET-UP



Figure 2. Controlled transition in the wind tunnel (fA = 600 Hz), a) Contour plot of a time
sequence of the spanwise hot-wire array (x/c = 33%) and b) Normalised RMS-values of the
piezo array
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of holes (with a diameter of d = 0.2 mm each). These speakers were oper-
ated individually by a signal processor that was capable of generating arbitrary
types of disturbance waves. A point source generates disturbances consisting
of a 2D plane wave and an infinite number of oblique wave trains (3D modes).
For investigations dealing with artificially generated disturbances similar to
’natural’ disturbances, point sources are the most suitable.

Controlled transition
Previous experiments, as well as the stability analysis [Stemmer and Kloker,

2002] showed that the most amplified instabilities occurred at a frequency of
600 Hz. Therefore, in the most simple excitation case, all point sources were
activated in phase at this frequency. Subsequently, a mixture of signals con-
sisting of two, three and five frequency components were generated. Results
from the tests using controlled monofrequency disturbances are shown in fig.
2. Three sources are located upstream from where the signals shown were
measured. Spanwise contiguous, 2D-dominated wave trains were observed in
the contour plot of time traces of the surface hot-wires signals located at 33 %
of the chord length (fig. 2.a). The slight waviness of the wave trains is due to
the properties of the point sources. Looking at the RMS-values of the piezo
array (fig. 2.b), there are three relatively small areas with high RMS-values,
meaning highly amplified instabilities, downstream of the point sources.

These observations were also made for each case of multifrequency excita-
tion. Fig. 3., for instance, shows the contour plots obtained from piezo array
measurements for several disturbance cases generated by multiple frequencies.
Basically, the same distribution of RMS-values can be seen. Areas of highest
fluctuations are downstream of the spanwise-arranged, point sources, located
upstream. The difference between the plots is due to the transition moving
downstream. An increase in the number of frequencies that participate in the
generated signal causes the amplification of instabilities to occurs later, which
moves the transition downstream. In general, it has been found that the gener-

In-flight and wind tunnel measurements
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Figure 3. Controlled transition in the wind tunnel - Normalised RMS-values of the piezo
array, a) fA = (600+700) Hz, b) fA = (600+700+800) Hz, c) fA = (400+500+600+
700 + 800) Hz

4. COMPARISON OF NATURAL AND CONTROLLED
TRANSITION

264

ated disturbances lead to fundamental breakdown. This is confirmed by com-
paring a numerical study by Stemmer [Stemmer and Kloker, 2002] and by
measurements with Stereo-Particle-Image-Velocimetry described by Schröder
[Schröder and Kompenhans, 2003].

Contour plots of each spanwise piezo sensor row are shown in fig. 4. The
results from the in-flight measurements of natural transition are illustrated in
fig. 5.a-d), the wind tunnel measurements are shown in fig. 5.e-h). Further-
more, there are results from controlled transition with multifrequency excita-
tion in fig. 5.i-l). The amplification of the instabilities can be observed in all
cases by comparing subsequent sensor rows. The first spanwise sensor row
(x/c = 46.3%) of each case shows similar amplification of almost-2D TS-
wave trains, indicating the equal phase of the spanwise-adjacent sensors. Lo-
cally limited wave trains with small oblique angles appear in the second sensor
row (x/c = 47.4%) during natural transition of the in-flight measurements
(fig. 4.b) and also during controlled transition experiments in the wind tun-
nel (fig. 4.j). For natural transition experiments in the wind tunnel, 2D waves
dominate the second sensor row, as well as the first row and the third row (fig.
4.e-g), but the amplitudes of the fluctuations in the third row (x/c = 48.6%)
are higher than in flight. The higher amplitudes can be also observed dur-
ing controlled transition experiments in the wind tunnel. In the last spanwise
row (x/c = 49.7%), only individual wave packets occur in all measurements,
which means that the 3D-portions dominate the local disturbance structures
(beginning nonlinear stage). The amplitudes of the fluctuations in both wind
tunnel measurements are more uniformly distributed, however. Fig. 5.b) il-
lustrates the downstream RMS-values for the three cases. The amplitudes are
smallest for natural transition in the wind tunnel. These amplitudes increase



Figure 4. Contour plots of the four spanwise piezo rows, a-d) Natural transition - in-flight
measurement, e-h) Natural transition - wind tunnel measurement and i-l) Controlled transition
fA = (400 + 500 + 600 + 700 + 800) Hz - wind tunnel measurement

later and more rapidly than in the in-flight measurements. All RMS-values
start at almost the same low level. The values for controlled transition are the
first to increase, but do not become larger than those of the natural transition
cases. Obviously, the generation of the controlled multifrequency instabilities
lead to structures that are similar to the natural ones, as can be seen in the
contour plots as well as in the downstream time traces (fig. 5.a and c).

Figure 5. Signals of the downstream piezo sensors - Comparison of natural and controlled
transition, a) Time traces with controlled disturbances (fA = (400 + 500 + 600 + 700 +
800) Hz), b) Normalised RMS-values of natural transition in wind tunnel, in-flight and on
controlled transition in wind tunnel, c) Time traces of in-flight measurement of natural transition
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5. CONCLUSIONS

Experiments on controlled and natural transition on a laminar wing glove
were carried out during comparative in-flight and wind tunnel measurements.
The experiments for natural transition have shown that mainly 2D TS-instabi-
lities dominate the boundary layer flow in the very early amplification stage of
transition, but that single three-dimensional wave packets were present in this
stage as well. Furthermore, the 3D-instabilities occur earlier in the in-flight
measurements. The results obtained on controlled transition showed character-
istic two- and three-dimensional structures, which are comparable with results
obtained from numerical simulations. Finally, the measurements show that
controlled disturbances, similar to those occurring in natural transition, could
be generated using multifrequency disturbances.
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INHERENT MECHANISM OF BREAKDOWN
IN LAMINAR-TURBULENT TRANSITION∗

Luo Ji-sheng, Wang Xin-jun, Zhou Heng†
Department of Mechanics, Tianjin University Liu-Hui center of Mathematics, Nankai and Tian-
jin University

Abstract: Abstract The conventional idea of Laminar-turbulent transition is that the tran-
sition starts from the amplification of disturbances, and when the disturbances
become larger, higher harmonics will be generated due to non-linear effect, mak-
ing the flow more and more complicated, and finally becomes turbulent. Though
the scenario seems is clear, yet there is a missing link, that is, what happens in
the breakdown process. Here we show by analyzing the results from direct nu-
merical simulations that the change of stability characteristics of the mean flow
profile plays a key role in the breakdown process.

Keywords: Key words: laminar-turbulent transition, breakdown, stability

1. ARGUMENTS BASED ON KNOWN FACTS

From hydrodynamic stability theory point of view, the laminar flow profile
can support unstable eigen-mode solution when the Reynolds number is suffi-
ciently large. The eigen-function bears a global character in the sense that the
solution spans the whole region of the flow in the direction normal to the flow.

Contrary to that, the mean flow profile of turbulent flow does not support
global unstable eigen-mode solution. For wall bounded turbulent flows such
as plane channel flow and boundary layer flow, there are two distinct regions
in the flow, namely, the wall region and the so-called outer region of a turbu-
lent boundary layer or the core region of a channel flow (hereafter we mention
only channel flow). The investigation by Tsujimoto and Miyake showed that
the wall region has its own dynamics[1], which manifests itself as the gener-
ation of coherent structures, extracting turbulent energy from the mean flow,
and then by the so-called bursting and sweeping phenomena, interact with the

∗Project supported by NNSF of China, grant(10232020), and Liuhui Center of Applied Mathematics,
Nankai and Tianjin University
†Author of corrspondence
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outer region. Zhou and his colleagues have proposed instability models for the
generation of coherent structures in the wall region [2][3][4][5].

A distinct character of the mean flow profile for turbulent flows is that the
normal-wise velocity gradient is very large in the wall region, but is very mild
in the core region of a channel flow, which leads to the breakdown of the global
character of the instability waves. Coherent structures are essentially generated
due to some sort of instability of the flow in the wall region, which bears a
strong local nature in the sense that the eigen-solution representing coherent
structures decays very fast outside the wall region. The scenario of turbulent
channel flow can be described as determined by interactions of disturbances in
the two wall regions with those in the core region, and the core region plays a
relatively passive role. The existence of distinct wall region and core region is
obviously the consequence of mean flow modification.

2. DIRECT NUMERICAL SIMULATION FOR THE
TRANSITION OF CHANNEL FLOWS

We used plane channel flow as the prototype for transition investigation. The
numerical method used was semi-spectral method, that was, Fourier decompo-
sition in stream-wise and span-wise directions, while in normal-wise direction,
a 4th order accurate, two points compact finite difference scheme was used to
solve equations resulting from Fourier decomposition.

We started from the laminar flow with a parabolic flow profile. Then initial
disturbances were introduced, which consisted of three T-S waves expressed
as follows:

a1u1e
i(α1x+β1z) + a2u2e

i(α2x+β2z) + a3u3e
i(α3x+β3z) (1)

Where x is the coordinate in the stream-wise direction, z the coordinate in
span-wise direction, y the coordinate in normal-wise direction; αi and βi(i =
1, 2, 3) the wave numbers in x and z directions respectively; ui(i = 1, 2, 3)
represent the eigen-velocity vectors solved from the eigen-value problem of
Orr-Sommerfeld equation for the laminar profile, normalized by the condi-
tion that max |ui| = 1, where ui is the stream-wise velocity component, and
a1,a2a3 the amplitudes.

Altogether, 6 cases were examined, their parameters are shown in Table 1,
in which the Reynolds number Re was based on the velocity at the channel
center of the laminar profile and half channel width. Depending on the initial
amplitude of the disturbance, they can be either regular transition, i.e. starts
from the amplification of small amplitude disturbances, or by-pass transition,
which bears a sudden nature. But no matter which category they belong to,
the change of their mean flow profiles during breakdown all have the same
characteristics, hence here we show only results for case 1.
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Table 1 Parameters for cases studied

Case α1 β1 α2 β2 α3 β3 a1 a2 a3 Re
1 1.0 0.0 0.8 0.6 1.0 0.3 0.002 0.002 0.002 8000
2 1.0 0.0 0.8 0.6 1.0 0.3 0.002 0.002 0.002 7000
3 1.0 0.0 0.8 0.6 1.0 0.3 0.08 0.08 0.01 8000
4 2.1 0.0 1.5 0.9 1.5 0.3 0.08 0.08 0.01 7000
5 2.7 0.0 2.1 0.9 1.5 0.3 0.08 0.08 0.01 7000
6 1.0 0.0 0.8 0.6 1.0 0.3 0.18 0.18 0.18 8000

The first two input waves were unstable modes. The disturbances evolved
gradually at first and kept quite regular until about t=340, as shown in Fig.
1a, in which the velocity component u at a certain point induced by the Fourier
components having the same wave numbers as the second input wave is shown.
Correspondingly, the mean flow profile was still very close to the parabolic
profile up to this moment, as shown in figure 1b, which also includes the mean
flow profiles of several subsequent time instants. The mean velocity gradient
at the wall also started to increase sharply after t=340, as shown in Fig.1c.

Fig.1 (a) velocity u of a certain point induced by wave with wave number α2

and β2 , (b) Mean flow profiles at different times, (c) time history of mean
velocity gradient at the wall

Fig. 2 Velocity vector plots in a certain y-z plane and the time history of
averaged turbulent energy. (a) t=340, (b) t=400, (c) t=800. The vector length

in (a) has been enlarged by a factor of 3
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Fig.3 Fourier spectral of max |w| in α and β plane. max |w| is the maximum
of |w| for each given α and β. (a) t=340, (b) t=385, (c) t=800

Fig. 2 shows the velocity vector plot in a certain y-z plane at t=340, 400
and 500 respectively. Fig.2a shows that the disturbance is still quite regular,
having the global nature as noted above. The corresponding figure Fig.3a for
the spectral distribution of the maximum of w for each given a and b includes
only some isolated components. Fig.2b corresponds to t=400, a moment during
the breakdown process, in which the disturbance spreads over the whole plane,
implying that many more harmonics were almost equally excited, and this can
also be seen from Fig.3b. Fig.2c corresponds to a situation after breakdown, in
which the disturbance manifests mainly as vortices, or coherent structures, near
the two walls without mutual correlations, which is typical for turbulent flows,
while the corresponding figure Fig.3c shows that the spectral is more evenly
distributed, yet the magnitudes of different harmonics decreased appreciably
compared with those for t=400.

Although at t=800, the main transition process has already been accom-
plished, as the shape of the mean flow profile already resembles the turbulent
profile and the mean velocity gradient at the wall has already decreased sharply
from its peak value, but it is still far from the final equilibrium state of turbu-
lence. One can confirm this either by the fact that for the equilibrium turbu-
lent flow, the maximum velocity of the mean flow should be close to 0.28 for
R=8000, or the mean velocity gradient at the wall should be 0.5, the same as
the laminar flow, because we used the constant pressure gradient formulation
for our numerical simulation. The slowness of the flow in approaching its final
equilibrium state is due to the fact that the mean flow modification is governed
by a diffusion equation with a small coefficient for its diffusive term. But dur-
ing the breakdown process, its modification was rather very quick due to the
largeness of the disturbance, as manifested in Fig.2b and Fig.3b.

The result shown includes a previously unknown fact that during the break-
down, different harmonics were greatly enhanced, not only compared with
those before transition, but also compared with those after transition. As dis-
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cussed earlier, this is also the reason why the breakdown process can take a
relatively short period to accomplish. Naturally, it poses a question, what is
the key mechanism leading to the quick enhancement of many harmonics dur-
ing breakdown? Simply refer to non-linear interaction seems is not enough.

Figure 1 shows that the mean flow profile started to have appreciable change
at t=370, when slight inflection point appeared. We analyzed the linear stability
characteristics of the mean flow profile at several times during the breakdown
process, corresponding to t=375, 380, 385 and 390. Their neutral curves in a
and ęÂ plane, together with those of laminar flow profile, are shown in Fig.4.
Compared with the one for laminar profile, the unstable zones encircled by the
neutral curves are drastically enlarged. In fact, not only the unstable zone, the
maximum amplification rate have also been significantly increased, become
0.00507, 0.01570, 0.01552 and 0.01791, compared with 0.002735 for laminar
profile. The enlargement of the unstable zone and the significant increase of the
amplification rate was the basis of quick enhancement of many harmonics and
turbulent energy, as shown in Fig.2b and d, which eventually lead to turbulence.
Such a quick enhancement of many harmonics was not simply the result of
non-linear interactions among different harmonics.

Judging by the mean flow profile in Fig.2, one can see that the breakdown
process started from sometime between t=340 to 370, when it started to deviate
from the original parabolic profile. The process practically ended at sometime
between t=400 to 440, when the profile already bore the typical shape of tur-
bulent profile that its central part became flat. The total time of transition was
of the order of 40-50 time units.
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Fig. 4 Neutral curve in α, β plane. t = 000 corresponds to laminar profile
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Among the six cases investigated, five of them belong to regular transition,
while the other one was by-pass transition, but their breakdown process all
undergone similar sequence of mean flow profile changes. There is one more
interesting thing worth to be mentioned, that is, although the initial amplitude
of the disturbances were the same for the case 4 and case 5, yet the time of
breakdown was very different, as one can see from the evolution curves of the
mean velocity gradient at the wall shown in Fig.5.
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Fig 5 Mean velocity gradient at the wall (a) for case 4; (b) for case 5
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Fig. 6 Eigen-functions for case 4 and case 5 (a) 2-D eigen-functions for case
4; (b) 2-D eigen-functions for case 5; (c) 3-D eigen-functions for case 4, with

wave numbers α2 and β2; (d) 3-D eigen-functions for case 5, with wave
numbers α2 and β2. They all were normalized by the condition that

max |u| = 1

A possible explanation is that the peaks of the eigen-modes of case 4 are
closer to the wall compared with their counter parts in case 5, as shown in
Fig.6. The mean flow modification depends on the Reynolds stress gener-
ated by the disturbances, and if the peaks are closer to the wall, its ability of
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modifying the mean velocity gradient at the wall must be stronger. Since the
breakdown depends on the quick increase of mean velocity gradient at the wall,
which causes the inflection point of the mean flow profile to appear, thus time
of breakdown for case 4 came quicker than those for case 5.

3. DISCUSSIONS

One can summarize the breakdown process as: first, the disturbances modify
the mean flow profile and different harmonics are generated through non-linear
interaction. At a certain stage, which is crucial for breakdown, the mean flow
profile starts to have inflection points, resulting in the quick enlargement of
unstable zone in the wave number plane and the significant increase of the
amplification rates, leading to the quick enhancement of many more harmonics
and the spreading of disturbances over the whole channel. Thus, the mean
velocity gradient of the mean flow profile will quickly become mild in the
central part of the channel, effectively breaks the channel into two parts having
different inherent dynamics, namely the wall region and the core region.

Such a flow profile provides the condition for the generation of coherent
structures in the wall region, which extract energy from the mean flow, serving
as the main source of turbulent energy. However, to reach the final turbulent
profile, a quite long time is needed.

Also, breakdown does not depend solely on the amplitude of disturbances,
because the ability of modifying the mean flow profile is different for different
disturbances with the same amplitude but different wave numbers, as discussed
in above section.
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EXPERIMENTAL AND NUMERICAL ANALYSIS
OF UNSTEADY BOUNDARY LAYER TRANSITION
USING CONTINUOUS WAVELET TRANSFORM
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Abstract: The unsteady boundary layer transition over an airfoil is investigated experi-
mentally for several Strouhal numbers. Continuous wavelet analysis is used to
highlight the key mechanism of unsteady boundary layer transition. A quasi-
steady approach is used to compute wave amplifications which are compared
successfully with experimental amplifications.

Keywords: Boundary layer, Transition, Wavelet, Quasi-steady approach

1. INTRODUCTION

This paper is devoted to an experimental study of the oscillating boundary
layer transition in presence of pressure gradient for several Strouhal numbers.
Main studies on this topic have been carried out by Obremski and Fejer [7]
and Desopper [2]. In these pioneering investigations, determination of ampli-
fied wave zones were simply made by observation of instantaneous waveform
preventing a precise determination of locations, frequencies which compose
"wave packets" and wave amplitude. The present study proposes a complete
determination of the spectral content of the boundary layer velocity fluctua-
tions in time, location and frequency during transition by using a continuous
wavelet transform.

This transform can be seen in this case like an extend of a windowed Fourier
transform, the width of which adapts to the frequency to analyze. For more
details, the reader is refered to works of Daubechies, Mallat and Farge [1,3,6].

This method presents many advantages: constant relative accuracy of an-
alyzed frequencies, detection of very small amplitudes and accurate time lo-
cation of each frequency. By doing so, unsteady growth rates and amplitude
profiles of unstable waves can be easily obtained and compared to the local
linear stability theory by following the propagation of individual waves.
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2. EXPERIMENTAL SET UP

The experimental study is conducted on a NACA0015 airfoil (chord=0.3 m)
at 0o angle of attack placed in a low-velocity wind tunnel (freestream turbu-
lence level 0.2%). The pulsation of the flow is induced by two rotating flaps,
with a phase angle of 90o, located far downstream (figure 1).

Y

X

Hot wire probe

Unsteady device

Mechanical separation

Hot wire probe
X-Y Displacement system

Wind direction

rubber joint
NACA0015 airfoil flat plate Rotating flaps

Diffuser

Figure 1. Experimental set-up

Velocity measurements are based on hot wire anemometry and are synchro-
nized with the rotation of flaps. Two configurations are presented in this paper,
characterized by Reynolds number (Re), Strouhal number (St), and amplitude
of fluctuation of the external flow (∆Ue

Ue
) at x/c = 0.5:

U0(m/s) f(Hz) Re = U0c
ν St = fc

U0

∆Ue
Ue

(x/c = 0.5)
Case 1 21 10 415 000 0.14 0.15
Case 2 21 30 415 000 0.43 0.25

Figure 2 shows measured smoothed pressure distributions which are used in
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Figure 2. Pressure distributions for the studied cases

the unsteady boundary layer calculations.
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3. UNSTEADY CASES

In figures 3(a), 4(a), the shape factor H is plotted in the (x/c − t/T ) plane.
This presentation reveals periodic turbulent wedges (small H values) and the
transition location characterized by a rapid variation of H , always in a positive
chordwise pressure gradient.

Figure 3. Case 1 analysis

Figure 4. Case 2 analysis

Two types of transition can be distinguished: "natural" transition by break-
down of unstable waves (black circles) and the laminar-turbulent interface cor-
responding to the turbulent area trailing edge (black squares).

277Experimental and numerical analysisof unsteady boundary layer transition



In a qualitative way, the distinction can be made by showing amplitude time-
frequency spectra presented in figures 3(b) and 4(b). They are plotted for sta-
tions specified by vertical dashed lines on the corresponding figures on the
left. The same time scale is used to underline the conformity of integral quan-
tity (H) and local spectrum. In case 1, for f ≈ 1000Hz, there are clearly
two Tollmien-Schlichting waves (TS) peaks, one on each side of the turbulent
area. For each time, transition results from the breakdown of TS-waves in a
quasi-steady process. In case 2, for the same frequency range, there is only
one TS peak just before the beginning of the turbulent area. For t/T ≈ 0.3,
a turbulent front is present without TS waves. There is a competition between
TS wave velocity, the arrows in figures 2 and 3, and turbulent patches veloc-
ity. In a quantitative way, computation of the skewness of the most amplified
wave along the number of realization of the period gives precious information
concerning the transition position. An example of this kind of analysis, called
WSM (Wavelet Skewness Method), is given in figure 5.
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(b) Amplitude (.-) and Skewness (-) of wavelet
coefficients along the black line in figure 5(a)

Figure 5. Example of transition position detection in the case of "creative" and "convective"
transition. Transition points detected on the right are reported on time frequency spectrum on
the left: (�) "convective" transition, (o) "creative" transition

The skewness of wavelet coefficients for f = 1100Hz (specified by a black
line in figure 5(a)) is plotted in solid line. It presents two well-defined devia-
tions, one positive for t/T = 0.28 and one negative for t/T = 0.60.

The negative peak: A possible interpretation can be proposed. In the final
stage of transition, non-linear interactions are driven by the fundamental mode
(most unstable TS wave) in a resonant way [5]. Because of the "natural", un-
controlled disturbance conditions, unstable waves are modulated in time which
conducts to "intermittent" non-linear interactions. As the most unstable wave
tend to give energy to its harmonics, a negative deviation of the skewness is
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found for fundamental wave. Concerning the harmonics, a positive deviation
of the skewness is detected (not presented here).

The positive peak: The positive peak of skewness is more "artificial", be-
cause it doesn’t correspond to a particular event. The position of the spot edge
varies along realizations around a mean state which is in a laminar zone, this
configuration can only produce positive deviations on the velocity signal, and
consequently induces positive skewness peak at the mean position of the turbu-
lent interface. It is interesting to note that, in such a case, the positive skewness
peak is visible for all the frequency range.

3.1 Stability computations

The goal of calculation is to improve the quasi-steady approach concern-
ing stability analysis of unsteady flows. Therefore, computation follows the
classical scheme: external velocity distribution is introduced in an unsteady
boundary layer solver which gives the velocity profiles for the linear stability
solver.

The boundary layer calculations are performed with the help of an unsteady
boundary layer code based on finite volume formulation. This code is initial-
ized by unsteady external pressure distribution (figure 2) and a Hiemenz profile
at the stagnation point (x/c = 0) for each time. In case 2, the experimen-
tal transition position is imposed to compute accurately the laminar boundary
layer flow.
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Figure 6. Stability calculations for the 2 cases

In stability calculations, we solve the local linear stability problem (Orr-
Sommerfeld equation) in a spatial theory, for each x/c and t/T point. The
amplification rate is computed along wave trajectories determined by the phase
velocity, assumed to be close to the group velocity. This quasi-steady method
has been first suggested by Obremski and Morkovin [8]. Comparison between
experimental and numerical amplifications are made along the same path.

2 instants t/T=0.2 and t/T=0.7.
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A comparison of TS amplification along two different wave trajectories for
each case (in figure 3(a), 4(a)) is plotted in figure 6. A general good agreement
is found concerning amplifications. The shape of eigen functions have been
verified successfully too (not presented here). Application of eN method gives
an acceptable estimation of the transition position (with N ≈ 7 for case 1 and
N ≈ 5.5 for case 2). Nevertheless, special care has to be taken due to the
variation of turbulence level and receptivity conditions along the period.

4. CONCLUSION

The time-frequency analysis using the wavelet transform brings new infor-
mations for unsteady flow transitions. It allows an accurate comparison with
prediction method and a better understanding of the transition scenario through
a precise determination of the amplitude of unstable waves and their accurate
location in time.

A new method for the determination of unsteady transition position is pro-
posed. It is based on the skewness of the wavelet coefficients of the most un-
stable waves. This method presents two main advantages: the decision is based
on the localization of the extremum of a function (skewness) and doesn’t deal
with a treshold, like most of methods used to determine intermittency functions
[4,9]. It gives the kind of transition according to the nature of the extremum
(minimum or maximum).

Finally, the "natural" transition part can be described by the local linear sta-
bility theory provided that amplification is computed along wave trajectories.
For the "convective" transition, methods based on spot convection can be help-
ful.
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NONLINEAR NONLOCAL ANALYSIS OF CROSS–
FLOW–DOMINATED TRANSITION SCENARIOS
USING DNS–LIKE RESOLUTION

Stefan Hein
DLR – Institute of Aerodynamics and Flow Technology
Bunsenstraße 10, D-37073 Göttingen, Germany

stefan.hein@dlr.de

Crossflow–dominated laminar–turbulent transition is studied by nonlinear non-
local theory (PSE) for the DLR swept–flat plate experiment. The strongly non-
linear stages of the transition process, i.e. the formation of high–frequency sec-
ondary instabilities, their linear and nonlinear growth as well as the subsequent
disintegration of the secondary disturbance structures which is accompanied by
a degradation of the stationary crossflow vortices are discussed.

Keywords: laminar–turbulent transition, PSE, high–frequency secondary instability

1. INTRODUCTION

It is well known that the process of laminar–turbulent transition in cross-
flow–dominated three–dimensional boundary–layer flows is intimately con-
nected with the development of saturated crossflow vortices and the subse-
quent appearance of high–frequency secondary instabilities [10]. Using non-
linear nonlocal instability theory, i.e. solving the parabolized stability equa-
tions (PSE) [1], it was possible so far only to model the saturation in amplitude
of these crossflow vortices. All attempts to also cover the development of
high–frequency secondary instabilities with this type of approach failed, how-
ever. Therefore, these simulations so far also failed to provide any indication
of the location of laminar–turbulent breakdown in crossflow–dominated cases.

The application of nonlinear nonlocal instability theory is limited to convec-
tively unstable flows. On the other hand, recent spatial DNS by Wassermann
& Kloker [11] clearly demonstrated the convective nature of this type of flow
and thus confirmed corresponding numerical results by Koch [5] and experi-
mental observations by White [12]. In principle at least, it should be possible
to model the development of the high–frequency secondary disturbances by
nonlinear nonlocal instability theory, provided that sufficient resolution is used

Abstract:
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in modal space in order to cover both the low–frequency travelling crossflow
disturbances and the high–frequency secondary instabilities, the latter being
also very localised in space.

2. BASIC FLOW

The displacement body placed on top of the DLR swept–flat plate exper-
iment imposes a favourable pressure gradient in downstream direction which
is strong enough to suppress Tollmien–Schlichting–type instability completely.
Hence, it is a pure crossflow instability which triggers laminar–turbulent transi-
tion in this case. The basic flow was calculated by a first–order boundary–layer
code for a free–stream velocity of Q∞ = 19 m/s, an effective sweep angle of
φ∞ = 42.5o and an analytically given approximation of the measured pressure
distribution (see [6]). For the given free–stream conditions, stationary cross-
flow vortices with a spanwise wavelength of about λc = 12 mm were observed
in the experiment. This value is taken as the fundamental spanwise wavelength
and the fundamental frequency is set to f = 135 Hz, which according to linear
theory corresponds to the most amplified frequency.

3. NUMERICAL METHOD

The nonlinear nonlocal transition analysis code NOLOT/PSE [2, 3] solves
the compressible parabolized stability equations (PSE) formulated in curvilin-
ear orthogonal coordinates. The disturbance flow field q̃(x, y, z, t) is described
by truncated double Fourier series of the form

q̃(x, y, z, t) =
M∑

m=−M

N∑
n=−N

q̆mn(x, z)ei(nβy−mωt)

with

q̆mn(x, z) = q̂mn(x, z)e
i
∫ x

x0
αmn(x)dx

,

where ω and β denote the fundamental circular frequency and the fundamental
spanwise wavenumber, respectively. Each disturbance mode is identified by
its Fourier indices (m,n) with the corresponding chordwise wavenumber αmn.
A fourth–order compact finite–difference scheme is used in wall–normal di-
rection, whereas the chordwise derivatives are discretised by first– or second–
order backward finite differences. The resulting system of algebraic equations
can be solved efficiently by a marching procedure in chordwise direction x.
All calculations were performed with 301 non–equidistant grid points in wall–
normal direction z. The truncation limits were set to M=31, N=19 (without
counting the additional modes required for an aliasing–free FFT) and were
checked by additional computations using M=N=42.
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Figure 1. Chordwise velocity amplitude versus chord position for (a) the stationary modes

4. RESULTS

The interaction of a stationary crossflow mode (0,1) and a travelling cross-
flow mode (1,1) are studied for two different sets of initial amplitudes. In both
cases the modes (0,1) and (1,1) are initialised slightly upstream of branch I at
about 4% chord. While these two modes are growing in streamwise direction,
they trigger the growth of more and more modes by nonlinear interaction.

The initial amplitudes of the first simulation (case S) were chosen such
that the stationary crossflow vortex finally saturates at high amplitudes (fig.1a)
without being too much affected by the presence of non–stationary modes.
This choice mimics the situation in a secondary instability analysis, where the
influence of the non–stationary modes on the stationary crossflow vortices is
neglected. Therefore, the amplitude development of the stationary modes (0,n)
is rather regular (fig.1a). Due to the high modal resolution used, a different
way of presenting the results for the travelling modes is required. In fig.1b,
the maximum rms amplitude Au,m in the yc,z–plane of the chordwise velocity
component uc versus chord position has been plotted for the different frequen-
cies considered in the calculation. Thus, up to 39 (i.e. 2N+1) Fourier modes
contribute to each amplitude curve without counting the complex conjugate
modes. The corresponding rms distribution in the yc,z–plane at xc/c = 1.0
is depicted in fig.2 for m=2 and m=15, i.e. 270 Hz and 2025 Hz. Besides
showing the same spanwise periodicity as the stationary crossflow vortices,
the rms distribution exhibits other important features of a secondary instabil-
ity mode [8]. In particular, the domain of highest rms amplitude coincides
with regions of either high spanwise or wall–normal shear rate in the distorted
time–averaged flow field. Moreover, it can be shown that the wavenumbers
of nonlocal modes with identical frequency index m, when transformed into a
vortex–oriented coordinate system, indeed form a wave packet which approxi-
mately obeys the disturbance ansatz used in linear secondary instability theory

(0,n) and 0 ≤ n ≤ 19, (b) the m–th harmonic of the fundamental frequency (case S)
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Figure 2. RMS isocontours of the uv–velocity component in a wall–normal plane at
xc/c = 1.0 plotted on top of the isolines (dashed) of the time–averaged velocity component
in xv–direction for a frequency of (a) 270 Hz (m=2) and (b) 2025 Hz (m=15) for case S. The
xv–coordinate is locally aligned with the direction of the primary stationary crossflow vortex

Figure 3. Chordwise velocity amplitude versus chord position for (a) the stationary modes

for parallel flows [2]. Apparently, these nonlocal modes describe a single sec-
ondary disturbance mode, respectively.

With case S it was demonstrated that the non–zero frequency modes gen-
erated by nonlinear interaction of a stationary and a low–frequency travelling
crossflow mode evolve into low– and high–frequency secondary instabilities.
Case T, which differs from case S by higher initial amplitudes only, is now
used to study the subsequent nonlinear development of these secondary dis-
turbances. Although mode (0,1) still remains dominant in amplitude up to the
position where the nonlinear nonlocal analysis stops converging, the influence
of travelling modes on the stationary crossflow vortices is no longer negligi-
ble, as indicated e.g. by the less regular development of the stationary modes
with higher values of n (fig.3a). Moreover, at xc/c ≈ 0.8 the stationary modes
with lower values of n start to decrease in amplitude. At xc/c ≈ 0.7, an ex-
plosive growth of the high–frequency secondary disturbances sets in (fig.3b).
This rapid growth does not trigger an immediate laminar–turbulent breakdown,
however. On the contrary, a region follows where the growth of these modes

axis

(0,n) and 0 ≤ n ≤ 19, (b) the m–th harmonic of the fundamental frequency (case T)
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Figure 4. RMS isocontours of the uv–velocity component in a wall–normal plane at
(a) xc/c = 0.70 and (b) xc/c = 0.90 plotted on top of the isolines (dashed) of the time–

v

Figure 5. Top view on the vortical structures in the instantaneous flow field at an arbitrary
time t visualised by λ2–isosurfaces with λ2 = −10−5 between 40% and 94% chord and two
fundamental wavelengths in spanwise direction (case T). For visualisation purposes a paral-
lel translation of each plane xc = const. of the form y′

c = yc − tanΦshift (xc − xc,0) with
Φshift = 47o and xc,0

levels off again or where they even decay in amplitude, until downstream
of xc/c ≈ 0.8 a second phase of rapid growth sets in. This rather compli-
cated nonlinear amplitude development of the high–frequency secondary dis-
turbances may hamper a secondary N–factor transition prediction methodol-
ogy as suggested in [9]. In fig.4, the mode structure of a high–frequency sec-
ondary instability with frequency of 2700 Hz (m=20) is plotted for xc/c = 0.70
and xc/c = 0.90. At the latter position a complex nonlinear interaction sce-
nario between the different disturbances has developed. The increasing spot-
tiness of the rms distribution indicates the appearance of vortical structures
of successively smaller scales as visualised by λ2–isosurfaces in fig.5. The
travelling disturbances generate vortical structures which are winding around
the primary stationary vortices, similar to the observations made by Kohama

averaged velocity component in x –direction for a frequency of 2700 Hz (m=20) for case T

/c = 0.40 was introduced
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& Egami [7]. Packets of finger vortices spanning between two neighbouring
stationary crossflow vortices, as described recently by Wassermann & Kloker
[11], were not observed, probably because of differences in the basic flow char-
acteristics and the downstream position where the travelling disturbances were
introduced in their spatial DNS.

5. CONCLUDING REMARKS

The linear and nonlinear development of high–frequency secondary insta-
bilities in crossflow–dominated transition scenarios including the subsequent
disintegration of the secondary disturbance structures was modelled success-
fully by nonlinear nonlocal theory (PSE). Though an almost DNS–like reso-
lution was required, these (compressible) calculations were still feasible on a
state–of–the–art PC and took about a week only. Hence, a coupling of non-
linear nonlocal theory and secondary instability theory as used in [4] to study
crossflow–dominated transition on a real aircraft wing is no longer necessary.
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THE EFFECT OF LENGTH SCALE OF FREE
STREAM TURBULENCE ON BOUNDARY LAYER
TRANSITION

Toshiaki Kenchi, Masaharu Matsubara
Shinshu University, Nagano, Japan

The present experiment focused on revealing effect of scale and directional com-
ponent of free stream turbulence on boundary layer transition, especially growth
rate of disturbance energy in the boundary layer. The free stream turbulence
generated by a turbulence grid mounted upstream of the contraction has typical
character of axisymmetric turbulence with strong anisotropy. The experimental
results with anisotropic free stream turbulence show the non-modal growth dis-
turbance even at 0.7 % turbulence intensity. The correlation between the filtered
free stream fluctuation and growth rates of the disturbance in the boundary layer
suggests that the wall-normal velocity fluctuation in the free stream dominates
the disturbance growth.

Keywords: Boundary layer, transition, free stream turbulence, non-modal growth.

1. INTRODUCTION

It is known that there are several scenarios of laminar-turbulent transition in
a flat plate boundary layer. One of them originates from Tollmien-Schlichting
(T-S) waves and another process starts with the non-modal instability. The pri-
mary disturbances of the non-modal transition forms longitudinally elongated
domains of low-speed so-called streaky structures. The streamwise scale of
streaky structures is dozens of times larger than their spanwise scale that is
the same order of the boundary layer thickness [1], [2]. The streaky structures
breakdowns with vibration of the spanwise direction, and then a turbulent spot
is formed. This streak generation with free stream turbulence was also con-
firmed by DNS result [3]. According to the non-modal theory [4], it is thought
that the wall normal component of disturbance taken into the boundary layer
from the free stream contributes to generation of the streaky structures. It also
predicts that a profile of the streamwise fluctuation has a peak at the middle
of boundary layer and that the energy of the disturbance grows in proportion
to the streamwise distance from the leading edge. Though there were several
studies on transition due to the free stream turbulence, experiments focused on
scale and directional component of the free stream turbulence are quite rare.

Abstract:
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Figure 1.

The present experiment focused on revealing effect of these properties of free

2. EXPERIMENTAL SET-UP

The experiments were performed in a closed wind tunnel, which has a
4 m long test chamber of 0.4 × 0.6 m cross-section, preceded by a three-
dimensional contraction with ratio 9:1. The test plate is mounted vertically
in the test chamber and its leading edge is located 1.5 m from the exit of the
contraction as shown in figure 1. The leading edge is wedge-shaped within a
100 mm length. The counter wall to the test plate was carefully adjusted so
that streamwise pressure gradient along the plate is zero. A trailing edge flap
enables to adjust the stagnation line on the leading edge. The three axes ro-
bot arm, which was designed to minimize flow resistance, traverses a hot wire
probe in y-z plane and a rail mounted on top of a test section roof is used for
movement of the arm in the streamwise directions. The free stream turbulence
was generated by turbulence grids of various grid sizes. Grids A, B and C have
30 mm, 50 mm and 120 mm mesh sizes respectively. Grids A and B consist
of square bars of 6 mm sides and are mounted at the exit of the contraction,
while Grid C with 13 mm diameter round pipes is placed at the inlet of the
contraction for generation of axisymmetric turbulence. The pipes of Grid C
was bored with 2 mm diameter holes oriented upstream in order to change tur-
bulence intensity with blowing jets from these holes when inside of the pipes
is pressurized by a blower. For the purpose of this paper, the streamwise and
lateral components of the velocity fluctuation in the free stream are taken for
definitions of the turbulence levels as Tuu = urms/U∞ and Tuv = vrms/U∞.
The turbulence levels of the streamwise velocity fluctuation with Grid A and
Grid B, measured at the corresponding streamwise position to the leading edge,
are 3.5 % and 2.4 % independently of the free stream velocity. For Grid C, the
steamwise turbulence level is 0.5 % to 2.8 % depending on both pressure inside
the pipes and the free steam velocity.

stream turbulence on the boundary layer transition

Experimetal set-up
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3. RESULT AND DISCUSSION

In figure 2 shows downstream development of the streamwise and wall-
normal velocity fluctuation in the free stream. The velocity components were
obtained with a X-type hot wire probe. In the case of Grid A, which is mounted
downstream of the contraction at x = −1500 mm, the streamwise fluctuation
urms and the lateral fluctuation vrms decay downstream and their reduction
curves are more or less overlapped showing quasi-isotropy of the free stream
turbulence. In the case when Grid C is mounted at the inlet of the contraction,
vrms is about 3 times higher than urms indicating strong anisotropy. vrms

slowly decreases downstream while urms keeps constant without blowing jets
and increases downstream with blowing jets. It is inferred from this result that
the free stream turbulence energy is redistributed to the streamwise component
from the lateral components due to the strong anisotropy.

Figure 3 and figure 4 show mean and fluctuation profiles of the streamwise
velocity for Grid A. The wall-normal position is normalized with the estimated
displacement thickness of the Blusius boundary layer δ∗. As shown in figure
3, the mean velocity profiles up to x = 300 mm are good agreement with
the Blusius profile. The mean velocity downstream accelerates close to the
wall and decelerates in the upper part of the boundary layer and then attains
to a typical turbulent profile at x = 900 mm. Before the mean profile clearly
deviates from the Blusius profile, the fluctuation profiles have peaks at middle
of boundary layer thickness as seen in figure 4, strongly suggesting the non-
modal growth. The amplitude of fluctuation increases downstream and the
position of the peak shifts toward the wall at x = 500 mm then the profile at
x = 900 mm indicates feature of a turbulent boundary layer.

Figure 2. Turbulence decay at U∞ = 7 m/s. +: urms for Grid A, · : vrms for Grid A,
�, , � : Grid C with blower frequency 0 Hz, 30 Hz and 50 Hz, respectively. Open marks are

for urms and solid marks are for vrms
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Figure 4. Profiles of the streamwise ve-

Figure 6. Profiles of the streamwise ve-

Figure 5 and figure 6 show mean and fluctuation profiles of the streamwise
velocity for Grid C without the blowing jets. The streamwise and lateral free
stream fluctuations, urms and vrms are 0.3 % and 0.5% of the free stream
velocity, respectively. The mean profile begins to deviate from the laminar
profile at x = 750 mm, and then the profile at x = 900 mm resembles the
turbulent boundary layer profile. The rms profiles up to x = 550 mm have
a peak around y/δ∗ = 1.2 in the same way in the Grid A case. It is worth
while to notice that even Tuv = 0.7% the non-modal growth dominants the
disturbance development in the transitional boundary layer.

Figure 7 shows the streamwise development of the disturbance energy E =
(urms/U∞)2 and intermittency factor for the quasi-isotropic free stream tur-
bulence (Grid A) and the axisymmetric free stream turbulence (Grid C). Both
values are measured at y/δ∗ = 1.2. For Grid C, the disturbance energy in-
creases in proportion to the normalized streamwise distance Rex until the in-
termittency starts to rise at Rex = 3 × 105, and then the slope of E suddenly
turns steep. Further downstream, the disturbance energy reaches a peak where
the intermittency is about 0.6. The proportional growth is also in agreement
with the non-modal theory. For Grid A the disturbance energy traces simi-
lar change with good agreement the relation to the intermittency though the

locity fluctuation

locity fluctuation
Figure 3. Mean velocity profiles with
Grid A at U∞ = 5 m/s

Figure 5. Mean velocity profiles with
Grid C at U∞ = 10 m/s
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proportional growth is not clearly confirmed because of lack of measurement
points up stream.

These disturbance energy are normalized with component energy of free
stream turbulence as shown in figure 8 in order to compare the normalized
slopes for Grid A and Grid C. Though these normalized slopes of the energy
development are constant in the experiment with the isotropic free stream tur-
bulence [2], the slope for Tuu in the anisotropic case (Grid C) is much steeper
than the slope in the isotropic case (Grid A) show as a solid lines. The slope
for Tuv, however, the slopes for both of the cases resemble suggesting that
the wall-normal component of the free stream turbulence is dominant for the
growth rate of the disturbance in the boundary layer. This is more obvious if
the growth rates G = dE/dRex are plotted with the energy components of the
free stream turbulence, Tuu and Tuv, as shown in figure 9 (a) and (e). Compar-
ing, Tuv is well correlated to the growth rate and the fitted with the line which
is the empirical result of the experiment with the isotropic free stream turbu-
lence [2]. When Tuv is bandpass filtered with length scale of 80 mm to 400
mm as shown in (g), this growth rate can be collapsed better than other band-
pass filtered Tuv to a linear line with slope factor 1, though no improvement is
seen compared with (e). Note that the lines in the filtered plots are fitted with
least square sense in real values not in log values. This result suggests that the
dominant energy components are not all but of some length scale, though more
experimental data is required to precisely decide the effective length scale in
the free stream turbulence on the disturbance growth in the transitional bound-
ary layer.

Figure 7. Streamwise turbulence energy
and intermittency as functions of Rex for
Grid A at U∞ = 5 m/s and Grid C at
U∞ = 10 m/s. (a) Streamwise turbulence

Figure 8. Streamwise turbulence energy
normalized by free stream turbulence en-
ergy. ©: E/Tu2

u with Grid A at U∞ =
5 m/s, �: E/Tu2

v , ×: E/Tu2
u with Grid

C at U∞
2
venergy, (b) Intermittency = 10 m/s, +: E/Tu
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(a) (b) (c) (d)

(e) (f) (g) (h)

4. SUMMARY

The measurement of the streamwise velocity fluctuation in the boundary
layer shows the characteristic of the non-modal instability that has the stream-
wise fluctuation peak at the middle of the boundary layer and linear energy
growth with the streamwise distance from the leading edge even with low free
stream turbulence such as Tuv = 0.7%. The growth rate is dominated by the
wall-normal disturbance in the free stream turbulence and well correlated to
the energy of the bandpass filtered free stream turbulence. This suggests that
information of the length scale of the free stream turbulence should be taken
account to transition prediction for the boundary layer subjected to the free
stream turbulence.
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Figure 9. Effect of length scale of the free stream turbulence on the growth rate with Grids
A, B and C. (a)–(d): Tuu, (e)–(h): Tuv , (a) (e): without filter, (b) (f): filtered with 0.4–2 m, (c)
(g): filtered with 0.08–0.4 m, (d) (h): filtered with 0.016–0.08 m

292



UNSTEADY DISTURBANCE GENERATION AND 

AMPLIFICATION IN THE BOUNDARY-LAYER 

FLOW BEHIND A MEDIUM-SIZED 

ROUGHNESS ELEMENT 

Ulrich Rist and Anke Jäger 
Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70550

Stuttgart, GERMANY 

Abstract: In the present work we investigate receptivity and disturbance amplification 

behind a circular roughness element in a zero-pressure-gradient flat-plate 

boundary layer with the aim to identify and understand the basic mechanisms 

at work.  The low disturbance background and the high repeatability of the 

direct numerical simulations allow to evaluate the different contributions of 

acoustic-roughness receptivity and of local disturbance amplification.  A 

distinct feature of the boundary-layer flow with roughness element are 

streamwise streaks which develop from the spanwise edges of the roughness.  

Small-scale three-dimensional disturbances develop and amplify within these 

streaks both by instability and by receptivity.  For the present small amplitude 

unsteady forcing however, they remain confined to these areas.  In contrast to 

this, the far-field receptivity result is similar to a wave train generated by 

periodic suction and blowing at the wall.

Key words: Direct numerical simulation, receptivity, roughness, Tollmien-Schlichting 

wave

1. INTRODUCTION 

In the past several years many investigations of the different routes to 

transition in generic boundary layer flows have been performed and tools 

have been developed that could predict the location of laminar-turbulent 

transition if the initial amplitudes were known accurately enough.  In 

conclusion of the German priority research program on laminar-turbulent 

transition (cf. Wagner et al., 2003) we may say that finding the relevant 
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initial disturbances is the key issue for a successful transition prediction in 

the future.  In addition, there is considerable interest in studying all aspects 

of roughness-induced (bypass) transition since this is a significant feature in 

aerodynamics at medium Reynolds numbers.

2. PROBLEM FORMULATION 

With the present work we want to contribute to a better understanding of 

the initial stages of laminar-turbulent transition behind an isolated roughness 

element with a circular planform which is embedded in a two-dimensional 

incompressible flat-plate Blasius boundary layer.  The roughness element is 

placed at Re*=855, where Re* is the Reynolds number based on the 

boundary layer displacement thickness *.  Here, x, y, and z denote the 

streamwise, wall-normal, and the spanwise coordinates, respectively.  The 

contour of the roughness element is defined by 

h(x, z) = h0 cos
3
( r/2b),

with height h0 = 0.5 *, radial coordinate r, and radius b = 8.42 *.  Since 

the height of the roughness amounts to 50 % of the local displacement 

thickness of the unperturbed boundary layer, the present case cannot be 

treated by (linear) receptivity theory but our data may be used for future 

comparisons with non-linear theories or experiments. 

In the absence of external disturbances a steady three-dimensional base 

flow develops.  This is computed using the numerical method developed by 

Rist and Fasel (1995) augmented by the “immersed boundary technique” of 

Peskin (1977) to provide an efficient modeling of the roughness element 

without using body-fitted coordinates.  Taking the latter would have 

increased the memory and computer time of the computations in a drastic 

manner.

Two controlled disturbance scenarios are then computed and compared to 

each other.  One with a harmonic modulation of the inflow profile with the 

so called second Stokes’ problem which mimics the presence of a two-

dimensional acoustical wave in the free stream, such that an acoustic-wall-

roughness type of receptivity interaction takes place at the roughness 

element.  In a second case time-wise harmonic perturbations are introduced 

by suction and blowing at the wall upstream of the roughness element in 

order to force a two-dimensional Tollmien-Schlichting wave that travels 

over the roughness element such that changes of the stability behavior 

become apparent.  Each of the two cases has been computed for base flows 

with and without roughness elements to further clarify the differences.  More 
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information can be found in Wörner (2004).  Linear stability calculations 

(LST) based on local and averaged velocity profiles are then used to further 

clarify the mechanisms. 

3. RESULTS 

The roughness element leads to several interesting three-dimensional 

features within the steady base flow which are illustrated in Figure 1.  

Streamwise parallel longitudinal streaks of low- and high-speed fluid 

develop at the spanwise corners of the roughness element.  These appear as 

bright and dark vertical stripes in the u-velocity contours at the last three 

x=const planes in the figure.  They persist for a long distance downstream of 

the roughness and their spanwise gradients needed an unexpectedly high 

spanwise resolution of the computations (80 Fourier modes with their 

complex conjugates, verified with a simulation run with twice as much).  

The streaks are accompanied by weak streamwise vorticity only, such that 

streamlines which are shown for illustration are only mildly deformed.  Still, 

the identified vortex system resembles that found for much larger obstacles 

which protrude the boundary layer, like a pair of horseshoe vortices. 

Figure 1. Illustration of the base flow using streamlines and contours of the streamwise 

velocity component at constant downstream positions 

The unsteady results shown in the following figures were obtained by 

first taking the difference of two according simulations, one with roughness 

element and the other one without, and then by computing the second time 
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derivative according to Maucher et al. (1997).  This helped to reduce 

remaining transients that were still present in the unsteady simulation results 

with roughness element. 

Figure 2. Disturbance field created by interaction of a periodic free-stream perturbation with 

the roughness element; top: far away from the wall (y = 8.14 *), bottom: close to the wall 

(y = 0.011 *)

The addition of a two-dimensional sound wave to the free stream has a 

two-fold effect on the disturbance field.  Far away from the wall (Fig. 2 top) 

a characteristic wave-train develops that has already been observed earlier 

when the boundary layer has been forced by a harmonic point-source, e.g. by 

Stemmer & Kloker (2000).  Note the characteristic development of two 

spanwise maxima downstream of the source which is due to superposition of 

several oblique Tollmien Schlichting waves of moderate obliqueness 

angles.  However, close to the wall (Fig. 2 bottom) highly oblique waves that 

appear in the streamwise streak regions dominate over the wave-train part of 

the disturbance. 

A comparison of DNS disturbance profiles with eigenfunctions of linear 

stability theory (LST) is shown in Fig. 3.  The LST computations are based 

on mean-flow profiles extracted from the DNS at x = 2.7.  Two different 

296



Unsteady disturbances behind a medium-sized roughness element 

LST-analyses have been made, one for the spanwise-averaged, the other one 

for the local profile extracted in the middle of the high-speed streak.  In the 

first case the disturbance maximum is placed further away from the wall 

compared to the second.  The figure proves that velocity fluctuations with 

small spanwise wave numbers in the DNS behave like eigenmodes of the 

averaged flow, while those with large wave numbers belong to eigen-

fluctuations of the streak profile.  The first correspond to the harmonic wave 

train seen in the far field while the latter make up the highly oblique 

structures in the streaks.  Since the stability characteristics of the base flow 

with roughness element play a major role for both of them, another case 

where a two-dimensional Tollmien Schlichting wave travels over the 

roughness element will be considered next. 

Figure 3. Comparison of two DNS disturbance profiles with eigenfunctions of linear stability 

theory based on the spanwise averaged velocity profile ( ) and on the streak profile ( ),

k = spanwise wave number 

Figure 4 presents instantaneous disturbance structures of this second case 

which can be directly compared with the first case in Fig. 2 (bottom).  Again, 

the disturbance is composed of a wave train and dominant local structures in 

the streak.  Compared to above, they have less phase shifts in spanwise 

directions but they consist of eigenmodes of the profile from the high-speed 

streak, while disturbances which make up the wave train correspond to 

eigenmodes of the averaged velocity profile, as before. 
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Figure 4. Disturbance field close to the wall induced by interaction of a TS-wave with the 

roughness element 

4. CONCLUSIONS 

An isolated roughness element in a flat-plate boundary layer that interacts 

with an impinging two-dimensional sound or Tollmien Schlichting wave 

was found to scatter two kinds of oblique waves.  Close to the wall, highly 

oblique disturbances dominate over the wave train part.  For the present 

small disturbance amplitudes these highly oblique waves remained confined 

to the streaks, but for larger amplitudes they may lead to bypass transition. 
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EXPERIMENTAL STUDY OF THE STABILIZATION
OF TOLLMIEN-SCHLICHTING WAVES BY FINITE
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The stabilization of Tollmien-Schlichting (TS) waves in a spanwise modulated
Blasius boundary layer has been experimentally verified in the MTL wind tunnel
at KTH. The alternating high and low speed streaks were created by regularly
spaced cylindrical roughness elements mounted on the flat plate. It is shown that
the larger the streak amplitude the larger is the damping effect of the TS-waves,
which is in agreement with recent theoretical work.

Keywords: Roughness element array, 3D boundary layer, TS waves, stabilization

1.

In the absence of external perturbations or wall imperfections, the boundary
layer developing on a flat plate is spanwise uniform (2D) and is well described
by the Blasius similarity solution. The 2D Blasius boundary layer is known
to be unstable to viscous perturbations, the so called Tollmien-Schlichting
(TS) waves, for Reynolds numbers Re = δU∞/ν =

√
xU∞/ν larger than

Rec ≈ 304. Here δ, ν, U∞, and x are the boundary layer scale, the kinematic
viscosity, the free stream velocity, and the downstream position from the lead-
ing edge, respectively. It has recently been found, by using temporal and spatial
numerical simulations, that steady optimal streaks of moderate amplitude, i.e.
sufficiently large but not exceeding the critical amplitude for the inflectional
instability, are able to reduce the growth of TS-waves up to their complete
stabilization (Cossu and Brandt, 2002; Cossu and Brandt, 2004). Experimen-
tally, Boiko et al., 1994 found a stabilizing effect on the TS-waves in the case
of a boundary layer subject to free stream turbulence and unsteady streaks. It
has therefore been suggested that the optimal forcing of steady streaks could

∗E-mail: jens.fransson@mech.kth.se

Abstract:
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be used as a possible appealing method to delay transition in boundary layers
within a low noise environment.

This study presents an investigation aimed at experimentally verifying the
theoretical results above by generating stable and "clean” (close to sinusoidal)
streaks with moderate amplitudes. The non–modal growth of steady and span-
wise periodic streamwise streaks in a flat plate boundary layer have been stud-
ied and the discrepancy between the experimental streaks and the optimal the-
oretical streaks has been clarified, see Fransson et al., 2004. The key factor of
the discrepancy was found to be the wall normal location and the extension of
the laminar standing streamwise vortices inducing the experimental streaks.

2.

The experiments were carried out at KTH Mechanics in the Minimum-
Turbulence-Level (MTL) wind tunnel with a setup similar to the one used
in Fransson et al., 2004. A 4.2 m long flat plate was mounted horizontally
in the test section whose dimensions are 7 m in length, 0.8 m in height and 1.2
m in width. Figure 1 shows a schematic of the experimental set-up. The plate
was the same as described in Klingmann et al., 1993 designed in order to get
a short pressure gradient region without any suction peak at the leading edge
region (cf. Fransson, 2004). A trailing edge flap is also mounted in order to
compensate for the extra blockage below the plate due to the supports and the
piping system for the TS wave generation.

The origin is located on the centerline at the leading edge with x−, y−, and
z−axis directed along the streamwise-, wall normal-, and spanwise direction,
respectively. A single hot-wire anemometry probe was used to measure the
streamwise velocity component in the present experiment.

The streaky boundary layer was generated by means of cylindrical rough-
ness elements similar to those used and described in Fransson et al., 2004. To

Figure 1. Schematic of the set-up. k = 1.3 or 1.4 mm, d = 4.2 mm, ∆z = 14.7 mm, and
xk = 80 mm

EXPERIMENTAL SETUP
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get a good spanwise homogeneity 9 elements were periodically pasted on the
plate surface. Relevant parameters in this study are: the boundary layer scale δ
corresponding to

√
xν/U∞, the height of the roughness element k, the cylin-

der diameter d, the spacing between the elements ∆z, and the distance from
the leading edge where the elements were located xk (see figure 1 with caption
for an illustration of all parameters).

TS waves were generated by time periodic suction and blowing at the wall
through a slot in a plug mounted in the plate. The slot, located at x = 190 mm
from the leading edge, is 330 mm long in the spanwise direction and 0.8 mm
wide.

The disturbance signal was generated by the computer through a D/A-board
to an audio amplifier driving two loudspeakers, and the data set acquisitions
were triggered by the reference signal from the waveform generator. The loud-
speakers are then connected to the disturbance source through twenty flexible
tubes. A more thorough description of the disturbance generating system can
be found in Elofsson, 1998.

The amplitude of the loudspeakers signal was manually adjusted for each
frequency in order to keep the TS amplitudes below 0.8% of U∞ at branch
II , i.e. in the linear regime. The spanwise uniformity of the generated waves
was checked by measuring wall-normal distributions of TS amplitude at three
different spanwise positions in the 2D case.

The structure of the flow was depicted by traversing the probe in the yz-
plane, with a minimum number of points being 31 × 18, to 6 − 12 different
streamwise positions depending on the frequency. At each point the measure
was obtained by acquiring 3 sets of samples with a frequency of 1 kHz.

Figure 2. Base flows (at maximum streak amplitude) for the R (a) and the higher roughness
element height S2 (b). Solid bold lines are velocity contours with an increament of U/U∞ =
0.1 from the wall. Dotted and dashed lines are negative and positive contours of spanwise mean
deviation (U − Uz)/U∞ = ±[0.02 0.04 0.06 0.08 0.1]. β∗ = 0.43 mm−1
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3.

Three base flows have been investigated and are denoted by R, S1 and S2,
where R is the 2D reference case and S1 and S2 correspond to the streaky
base flows with increasing roughness height, namely k = 1.3 and 1.4 mm re-
spectively. The spanwise array of cylindrical roughness elements modulates
the 2D base flow into a 3D flow. Totally, five different forcing frequencies
(F = {2πfν/U2∞ × 106} = 90, 110, 130, 150, 170) of the TS waves were
investigated. The free stream velocity was kept constant at 5 ms−1 in all the
experiments, resulting in maximum streak amplitudes of 11.6% and 12.4% of
U∞ for S1 and S2, respectively.

In figure 2 we display yz-scans (i.e. cross-stream planes) of both the mean
streamwise velocity (solid bold lines) and of the deviation from the span-
wise mean (dotted and dashed lines) for the R and the S2 configurations.
The streamwise locations correspond to the streamwise position of maximum
streak amplitude, i.e. at approximately Re = 401. Note that the undisturbed
boundary layer flow in figure 2(a) also was scanned at its streamwise station.
The S1 case, not shown here, looks similar to the S2 case but with a lower
streak amplitude.

The streak (ST ) and the TS (yz
TS) amplitudes are defined as:

AST = max
y

{(U(y)high − U(y)low)/2}/U∞ and

Figure 3. (a) Experimental cross sectional measure of the streaky TS amplitude for F = 110
and close to branch II (Re = 651). Dotted lines indicate the location of low and high speed
streaks. The contour levels are (0.5 : 0.5 : 4.5)×10−3, and β∗ = 0.46 mm−1. (b) Wall-normal
amplitude profile evolution for F = 110. (b1) High and (b2) low speed location. Re = 451,

RESULTS

501, 551, 601, 651
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Figure 4. (a) Streak amplitude (AST ) versus Re. (b) TS amplification curves for the R-case
(•) and for successively increasing roughness heights S1 and S2 (�,©). F = 130. Solid lines

Ayz
TS =

∫ 2π

0

∫ η∗

0

ATS(η, β)
U∞

dηdβ, respectively.

Here U(y)high and U(y)low denote the velocity profiles in the high and low
speed regions, respectively. η = y/δ, β = zβ∗ = z2π/∆z, η∗ = 8, and ATS

is the measured amplitude of the TS-wave.
The 2D generated TS waves are redistributed in the spanwise direction at the

instant they enter the boundary layer in order to comply with the 3D modulated
base flow. An example of the fundamental TS mode (F = 110) distribution
close to branch II is illustrated in figure 3(a), where the dotted lines indicate
the location of low and high speed streaks (see caption for contour levels).
Here, the data in the figure has been smoothed by local spatial averaging. In
contrast to the single peak profile in the high speed region, which resembles
the amplitude profile in a 2D base flow, a two peak profile is observed in the
low speed region. This is in agreement with previous studies (see e.g. Tani
and Komoda, 1962; Kachanov and Tararykin, 1987; Bakchinov et al., 1995).
A better illustration of these distributions are, however, found in figure 3(b)
where the streamwise evolution of the TS amplitude is shown both at the high
(b1) and at the low (b2) speed locations. In the high speed region the variation
is not so dramatic as compared to the low speed region where it is seen that
the amplitude of the outer peak decreases by a factor of two relative to the
inner peak. It can also be seen that approaching branch II the shape variations
diminish and that the maximum in the high speed region is located at η = 0.8
independent of Re. An interesting observation is that, when comparing the
high and low speed regions, the strongest growth is found in the high speed

are fitted spline curves to the experimental data
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region. This is in contrast to what one would expect from a 2D stability point
of view since the mean velocity shape is actually fuller and would therefore
imply a more stable region as compared to the low speed region.

In figure 4(a) it is seen that the only difference between the two streaky base
flows S1 and S2 is the streak strength, since the two curves of AST essentially
are parallel.

The present experimental data with the cross sectional integral amplitude
measure (Ayz

TS) defined above shows unambiguously that the TS wave growth
is damped when these waves evolve in a 3D sinuousoidal base flow. Fur-
thermore, figure 4(b) shows the first experimental result ever on successively
increased damping of the TS waves with increasing streak amplitude. This
damping was observed for all frequencies studied.

The financial support of the Swedish Research Council (VR) is gratefully
acknowledged. C.C. acknowledges financial support from CNRS during his
stay at KTH.
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DEVELOPMENT OF STREAMWISE STREAKS
IN A QUASI-LAMINAR BOUNDARY LAYER
DOWNSTREAM OF LOCALIZED SUCTION

Through a short perforated wall strip, local boundary layer suction is applied to a
turbulent boundary layer to generate a quasi-laminar boundary layer with high-
intensity active turbulence. The retransition begins with algebraic growth of
streamwise streaks from immediately behind the suction. Even in the early stage
of the growth of low-speed streaks their spanwise spacing is found to be almost
the same as that in the original turbulent boundary layer. After the growth sat-
uration the streak instability and the associated breakdown of low-speed streaks
occur to generate near-wall burst-like motions with quasi-streamwise vortices.

Keywords: Streak instability, Low-speed streaks, Boundary-layer suction, Wall turbulence

1.

With an insight that turbulence is caused and then sustained by a sequence
of flow instabilities, we have been working on the transition to wall turbu-
lence. The instability events highly depend on the disturbance environments
for wall-bounded flows and various paths can lead to the transition even for
the same flow geometry. In any path to the transition, however, the prerequi-
site for wall turbulence generation is the occurrence and growth of near-wall
low-speed streaks. Under a very low free-stream turbulence condition where
transition is initially governed by linear instability waves and subsequently by
the secondary instability, low-speed streaks appear at the final stage to transi-
tion. With increasing the background turbulence, low-speed streaks can grow
even from the initial stage and lateral oscillations of the developed low-speed
streaks often lead to the formation of turbulent spots. Our interest is focused on
such near-wall phenomena directly related to the wall turbulence generation.
In the present experimental study, the near wall flow in the oncoming devel-
oped turbulent boundary is relaminarized by concentrated wall suction, and
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Figure 1.

the subsequent retransition of the quasi-laminar boundary layer downstream of
the suction is examined to clarify the generation and breakdown processes of
streamwise streaks under residual but still active turbulent fluctuations.

2.

3.

When the local suction is applied, near-wall low-speed streaks disappear
immediately downstream of the suction strip. If the suction rate is not so
large, however, turbulent vortices in the core of turbulent boundary layer sur-

Schematic of test section (dimensions in mm)

EXPERIMENTAL SETUP AND PROCEDURE

RESULTS AND DISCUSSION

M. Asai, Y. Konishi, Y. Oizumi and M. Nishioka306
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4.

The retransition of quasi-laminar boundary layer downstream of suction was
investigated to examine the generation and breakdown processes of the near-
wall streaks under active turbulent fluctuations. The low-speed streaks gener-
ated were elongated with rather regular spanwise alignment in spite the fact
that they were generated by random turbulent vortices of moderately high in-
tensity. The spanwise spacing of the newly developed low-speed streaks was
almost the same as that in the turbulent boundary layer without suction. Further
downstream of the formation region of streaks, the streak instability occurred,
accompanied by wall bursts.

CONCLUSIONS

REFERENCES

M. Asai, Y. Konishi, Y. Oizumi and M. Nishioka310

ANDERSSON, P., BERGGREN, M. & HENNINGSON, D. S. 1999 Optimal disturbances and bypass 

transition in boundary layers Phys. Fluids 11, 134–150. 

ASAI, M., MINAGAWA, M. & NISHIOKA, M. 2002 The instability and breakdown of a near-wall 

low-speed streak J. Fluid Mech. 455, 289–314. 

BRANDT, L. & HENNINGSON, D.S. 2002 Transition of streamwise streaks in zeropressure- 

gradient boundary layers J. Fluid Mech. 472, 229–261. 

JEONG, J, HUSSAIN, F, SCHOPPA W. & KIM, J. 1997 Coherent structures near the wall in a 

turbulent channel flow J. Fluid Mech. 332, 185–214. 
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THE TRANSITION TO TURBULENCE
OF THE TORSIONAL COUETTE FLOW
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49, rue F. Joliot-Curie, 13384, Marseille, cédex 13, France
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This work is devoted to the experimental study of the transition to turbulence
of a flow confined in a narrow gap between a rotating and a stationary disk.
When the fluid layer thickness is of the same order of magnitude as the boundary
layer depth, the azimuthal velocity axial gradient is nearly constant and this
rotating disk flow is a torsional Couette flow. As in the plane Couette flow or
the cylindrical Couette flow, transition to turbulence occurs via the appearance
of turbulent domains inside a laminar background. Nevertheless, we show that
in the rotating disk case, the nucleation of turbulent spirals is connected to the
birth of structural defects in a periodic underlying spiral roll pattern.

Keywords: Couette flow, rotating disk flow, defect turbulence, by-pass transition

Transition to turbulence in extended systems can be induced by the erratic
nucleation of defects in periodical patterns. This is the case in Rayleigh-Bénard
convection [1] or in Taylor-Dean system [2] for instance. Topological defects
in wave patterns have also been identified in numerical solutions of coupled
Landau-Newell type equations [3] or of the complex Ginzburg-Landau equa-
tion (CGLE) [4, 5] and the mechanism for transition from phase to defect chaos
has been identified by Coullet et al. [6]. In our work, a primary instability cre-
ates a periodic laminar spiral wave pattern in the torsional Couette flow con-
fined between a rotating and a stationary disk [7, 8]. As the rotation rate of
the disk is increased, some defects appear through the local disappearance of
a spiral (a dislocation), or through the connection of two systems of spirals
with different orientations (a grain boundary). Then as the control parameter
is further increased, the number of these defects increases, and spatially local-
ized chaotic regions develop under the form of turbulent spirals (TS). In this
paper, we first describe the appearance of the disorder (Defect Turbulence) in
the periodic pattern until the first TS waves appear. Then, the lifetime of these
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turbulent structures grows and they form permanent turbulent spirals arranged
nearly periodically all around the disks. We will thus describe in the second
part of this article this transitional process in the framework of spatiotempo-
ral intermittency (STI). This mechanism involves a mixed state of turbulent
patches and laminar domains, which coexist for the same values of the con-
trol parameter. This kind of scenario has been observed in different systems
[9–11]. Several experiments have also described this mechanism of transition
to turbulence. In particular, it was studied in Rayleigh-Bénard convection in
annular and rectangular geometries [12, 13] and in the Taylor-Dean [14] or the
Taylor-Couette systems [15]. In all these experiments, the transition to tur-
bulence via STI was described within the framework of critical phenomena.
Pomeau [16] proposed in 1986 that the spatiotemporal intermittency scenario
could be similar to a percolation process, where the disordered state would
propagate into the laminar one via a contamination mechanism. In this case,
the turbulent state would be the "active", or "contaminant" phase, while the
laminar state would be the "absorbing", or the "passive" state. Although the
critical exponents found in experiments take various values and do not corre-
spond to those of percolation, we will keep this terminology to describe the
first steps of the invasion process of the turbulence in our own system. In par-
ticular we will define a "percolation threshold" as the limit value of the control
parameter for which the turbulent structures possess an infinite lifetime.

Figure 1.

2. THE ROTATING DISK DEVICE

Rotating disk device

A. Cros and P. Le Gal312

The experimental device, presented in Figure 1, consists of a water-filled
cylindrical casing in which the rotating disk is immersed. The top lid of the
container plays the role of the stationary disk. The radius of the stainless steel



disk is 140 mm and its thickness is 13 mm. It is painted in black to enhance
visualizations which are realized with kalliroscope flakes. The drive shaft goes
through the bottom of the tank and is connected to a d.c. electric motor whose
rotating velocity can be varied from Ω = 0 to 200 rpm with an accuracy better
than 0.2%. The stationary disk is a 20 mm thick plexiglass plate, so that the
flow can be observed through it. The distance between the rotating disk and the
fixed one is set to 2 mm. A CCD video camera is placed on the rotation axis and
can rotate if necessary with a velocity which can be adjusted in order to observe
the waves in their rotating frame. This video camera is finally connected to a
computer, and images can be captured in real time.

a) b) t
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Figure 2. a) Defect in the spiral roll pattern. b) Space-time diagram along a radius

Figure 2-a) shows a typical defect of the laminar spiral pattern. We will
describe the flow by the use of spatio-temporal diagrams which are realized
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Figure 3. Total number of defects versus Reynolds number with a fit as proposed in [17]

3. TRANSITION TO DEFECT TURBULENCE

313The transition to turbulence of the torsional couette flow



along the radial direction. Figure 2-b) presents such a diagram where Defect
Turbulence [6] can be observed. A statistical study of these defects shows that
their occurrence obeys a Poisson law near their threshold. We observe also in
Figure 3 that their number increases similarly to what is proposed by theoreti-
cal studies [17]. Our results are also in agreement with the interpretation that
these defects are homoclinic orbits of a dynamical system nearby a saddle-node
critical point [18]. As the rotation rate is further increased, the time duration
separating two consecutive defects decreases dramatically and the defects are
associated to strong amplitude modulations. A similarity with the “MAWs”
of Brusch et al. [4] is striking. In fact, these modulations act as seeds for the
turbulent spirals visualized in Figure 4-a).

Figure 4. a) Visualization of the turbulent spirals. b) Space-time diagram (along a circle)
showing the turbulent spirals (in black) inside the laminar flow (in white)

Very near their observation threshold, these turbulent structures that are the
equivalents of the turbulent spirals of the cylindrical Couette flow (note that
in spite of their traditional appellation, they are not spirals in this case but
rather helices!) have a very short life time. As the rotation rate is further
increased, this lifetime increases until a threshold is reached (the percolation
threshold) where they finally form permanent turbulent spirals arranged nearly
periodically all around a circumference. However, since the number of these
turbulent spirals decreases with the rotational frequency, the transition to a
fully turbulent regime is never achieved. Thus the turbulent fraction of the
pattern saturates to a value close to 0.5. Figure 5 presents the evolution of
this turbulent fraction with the Reynolds number. However, as it can be seen,
this turbulent fraction presents a power law critical behavior with an exponent
β = 0.3 near its threshold.

Another exponent of the transition can also be measured. As presented in
Figure 6-a), the statistics of the length of the laminar domain follows an ex-
ponential law with a well defined characteristic length. The evolution of these

4. SPATIO-TEMPORAL INTERMITTENCY
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Figure 5. a) Evolution of the turbulent fraction versus Reynolds number. b) At threshold, an

laminar domains lengths versus the Reynolds number presents a divergence
with a power law with an exponent α = −1

2 (see Figure 6-b). Thus, although
the transition to turbulence is not completed, it appears that it really shares
some features with Space-Time Intermittency [19]. Therefore, although a uni-
versal scenario is still lacking for this type of transition to turbulence, we note
that values of both α and β agree with the measures of Daviaud et al. [12]
in their convection experiments. Note also that the saturation of the turbulent
fraction near 0.5 is reminiscent of the amazing periodization of turbulence in
bands as discovered by Prigent et al. [20] in the plane and in the cylindrical
Couette flow and reproduced numerically by Barkley and Tuckerman [21].
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NONLINEAR WAVEPACKETS
IN BOUNDARY LAYERS

Marcello A. F. Medeiros
Department of Aeronautical Engineering – University of S~ao Paulo
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The nonlinear evolution of streamwise modulated three-dimensional waves in
boundary layers was investigated. Three nonlinear stages were identified. The
first was related to oblique transition and transient growth. The second involved
Klebanoff instability. The third was a subharmonic instability. Associated with
the modulation, a mechanism of production of subharmonic waves was also
identified. This provided the deterministic seeds for the subharmonic instability.

In laminar boundary layers, when the Tollmien-Schlichting (TS) waves be-
come large, different nonlinear mechanisms can take place. There are at least
three different scenarios, namely, subharmonic resonance, fundamental reso-
nance and oblique transition. However, to observe these phenomena the exper-
iments have to be tuned to produce a particular outcome. In such experiments,
almost always only a limited number of waves are introduced into the flow.

In natural transition a large number of waves are involved. Therefore, all
these nonlinear interactions are possible. In fact, features of these three sce-
narios have been observed in natural transition, but the role of each of these
phenomena has not yet been clearly identified.

In general, natural transition involves three-dimensional waves that are also
modulated in time and in the streamwise direction. The current paper presents
results of an investigation into the effect of streamwise modulation on the evo-
lution of a three dimensional wavetrain emanating from a point source. The
strategy here was to add a controlled amount of streamwise modulation to
the wavetrain from a point source and so bridge the gap between the three-
dimensional wavetrain and the three-dimensional wavepacket. Figure1displays
hot-wire records of the streamwise fluctuating velocity, measured along the
centerline of the flat plate, at y = 0.6δ∗. Each frame corresponds to a dis-
tance from the leading edge, showing the downstream evolution of the waves.
A scale given with the bottom signal indicates the wave amplitude. The top
signal is sufficiently long for its central part to behave like a continuous wave-

Abstract:

317

R. Govindarajan (ed.),  IUTAM Symposium on Laminar-Turbulent Transition, 317–322. 

© 2006 Springer. Printed in the Netherlands.

 Sixth



 900

1000

1100

1200

X/mm

.03 .23

F

E

D

C

B

A

.002 U∞

time/s

di
ff

er
en

t m
od

ul
at

io
ns

.04 .24

.05 .25

.06 .26

Figure 1.

train. The bottom signal is a wavepacket excited by a pulse. The degree of
modulation increases from top to bottom. In the nonlinear regime, the contin-
uous wave (top signal) displays a mean flow distortion clearly seen at stations
x=1100 and 1200mm. In the wavepacket (bottom signal), the nonlinear distor-
tion corresponds to the loss of a ripple. The signals at x=1100mm or 1200mm
show a pattern of increasingly localized mean flow distortion linking the con-
tinuous wavetrain to the wavepacket. The time×span planes in figure 2 give
the three-dimensional structure of the waves.

Here, interpretation of the results is based on the spectral distribution of
the signals (figure 3). Figure 4 shows the linear evolution of the signals as
computed from Linear Stability Theory (LST). Comparison of figures 3 and
4 indicates more clearly what part of the spectra corresponds to a nonlinear
behavior. It also indicates that, throughout the experimental domain, the TS
band agreed very well with the linear predictions.

Theoretical analysis of the nonlinear regime are not described here in detail.
Only the main results are given and briefly discussed. It was possible to distin-
guish three different stages in the nonlinear evolution of these waves. The first
stage resembled to oblique transition. It was associated with a forcing of lon-
gitudinal vortices by the weakly nonlinear terms of the longitudinal vorticity
equation. These vortices, via transient growth, give rise to a three-dimensional
mean flow distortion in the form of longitudinal streaks. The difference from
oblique transition lies in the fact that, here, the system did not involve only

Centerline evolution of TS waves with different modulation envelopes
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Figure 4. Spectral distribution of the signals at x=600, 900, 1100 and 1300mm as predicted
by LST. The streamwise position increases from left to right and the modulation increases from

a pair of oblique waves, but a very large number of waves, including a two-
dimensional one. In order to check the argument, calculations of the weakly
nonlinear forcing terms above mentioned were performed for the case without
streamwise modulation, that is, the continuous three-dimensional wavetrain.
In figure 3, the theoretical predictions of the spanwise wavenumber (β) are
given by the arrows on the top frame for x=800mm (Medeiros, 2004). The
agreement is good for both the modulated and the continuous signals.

The second stage appeared to be governed by Klebanoff instability. This
instability involves the appearance of three-dimensional waves of the funda-
mental frequency and with selected spanwise wavenumbers. The interaction of
these waves with the waves composing the primary wave-system gives rise to
other streaks and change the spanwise wavenumbers of the three-dimensional
mean flow distortion. PSE calculations for a continuous wavetrain were per-
formed. In figure 3, the spanwise wavenumbers predicted by the computations
are given by the arrows on the top frame for x=1100mm. The agreement is
good, even for the waves with a large degree of modulation. Because the three-
dimensional mean flow distortion was larger than the primary wave-system,
and spectrally separated from the TS band, it shows more clearly the spanwise
wavenumbers selected by the instability mechanism. However, by comparing
with figure 4, it is clear that these three-dimensional mean flow distortions are

top to bottom
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Figure 5. The nonlinear part of the signals at x=1300mm. The modulation increases from

associated with waves that have the fundamental frequency, but which a span-
wise wavenumber that can be outside the TS band.

The third stage involved the appearance of three-dimensional subharmonic
waves. This stage was not observed in the continuous wavetrain and was more
intense for the more modulated signals. In figure 3, the theoretical predictions
of the most unstable subharmonic modes are given by the white symbols on the
bottom frame for x=1300mm. The picture suggests that the subharmonic band
was seeded by energy that came from the mean flow distortion. This is plau-
sible, because as the modulation increases the mean flow distortion associated
with the streaks becomes more localized in the physical space and, therefore,
wider in the spectral space. For very modulated signals the localized mean
flow distortion can have components with the right frequency for subharmonic
resonance.

In physical space, the process appears more clearly if the TS waves are dig-
itally filtered out. Figure 5 shows how the streak structure of the continuous
wavetrain gives rise to the oblique subharmonic waves of the wavepacket. It
has been shown that the evolution of wavepackets must involve some mecha-
nism of production of subharmonic waves (Medeiros and Gaster, 1999; Craik,
2001). This argument provides a possible such mechanism.

The author acknowledges the financial support from FAPESP.
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APPLICABILITY OF LES MODELS FOR PREDIC-
TION OF TRANSITIONAL FLOW STRUCTURES

Philipp Schlatter, Steffen Stolz and Leonhard Kleiser
Institute of Fluid Dynamics, ETH Zu··rich, Switzerland

schlatter@ifd.mavt.ethz.ch

compared to fully-resolved DNS data. For the LES different subgrid-scale (SGS)
models are compared.
grids are able to predict the physically relevant mechanisms at successive stages
of transition: Λ-vortices, rollup of shear layers, hairpin vortices. Addition-
ally, results for the exact subgrid-scale dissipation are computed from the DNS
data. The results suggest that SGS models including a three-dimensional relax-
ation regularization show similar transitional structures as present in the DNS,
whereas the dynamic Smagorinsky model does not show hairpin vortices for the
chosen coarse resolution.

Keywords: Large-eddy simulation, K-type transition, Hairpin vortices, SGS models, Relax-
ation regularisation

1. INTRODUCTION

lation (LES) would inevitably improve the applicability of LES for practical in-
dustrial applications. LES only requires a fraction of the computational cost of
a fully-resolved direct numerical simulation (DNS) while attempting to achieve
similar accuracy. It has already been shown in a number of investigations that,

τ or
the shape factor H12 can be predicted reasonably well by LES, see e.g. [1, 6].
However, it is also important to faithfully represent the dominant transitional
ßow mechanisms and their three-dimensional vortical structure like Λ-vortices
and hairpin vortices.

We examine data obtained with highly resolved
DNS and compare to different SGS model results at rather coarse resolution.

Abstract:
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Instantaneous transitional flow structures of standard K-type transition in in-

It is investigated how well the SGS models on coarse

compressible plane channel flow predicted by large-eddy simulations (LES) are

The ability to accurately simulate transitional flows using large-eddy simu-

e.g. for the model problem of temporal transition in channel flow, spatially av-

In this contribution, we focus on standard temporal K-type transition in in-

eraged integral flow quantities like the skin friction Reynolds number Re

compressible channel flow.
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2. SIMULATION METHOD AND PARAMETER
SETTINGS

The simulations are performed using a Fourier-Chebyshev spectral Galerkin-
tau method with periodic boundary conditions in the streamwise (x1) and span-
wise (x2) direction and no-slip at the walls x3 = ±1. Full dealiasing has been
applied in all directions. The initial disturbances for temporal K-type transition
consist of a 2D Tollmien-Schlichting (TS) wave of maximum amplitude 3% of
the centerline velocity uCL and two superimposed oblique 3D waves with am-
plitude 0.1% and the same fundamental wavenumber as the 2D wave, similar
to [4, 2, 5]. The Reynolds number based on uCL and channel half-width h
is Re = 5000 (corresponding to Reτ ≈ 210 in the fully turbulent regime).

bances, i.e. 5.61h × 2.99h × 2h.

tered velocities ui and pressure p

∂ui

∂t
+

∂ujui

∂xj
+

∂p

∂xi
− 1

Re

∂2ui

∂xj∂xj
= − ∂

∂xj
(uiuj − uiuj) =: −∂τij

∂xj
, (1)

are supplemented with the incompressibility constraint ∂ui/∂xi = 0. The
subgrid-scale (SGS) term τij is not closed and has to be modelled appropriately
by a SGS model. The dissipation due to the SGS stresses is

εSGS = τijSij , with Sij =
1
2
(
∂ui

∂xj
+

∂uj

∂xi
) . (2)

3. ANALYSIS OF DNS RESULTS

The fully-resolved reference DNS was performed on 1602×161 grid points.
During the temporal evolution of K-type transition, a saturated TS wave is
formed (t < 100), which undergoes secondary instability with the formation
of strong shear layers and pronounced open Λ-vortices (t ≈ 130) [2, 5]. These
vortices in turn provoke the appearance of hairpin vortices (roll-up of shear

y

velocity signal as sharp ÒspikesÓ. The roll-up of the shear layer then proceeds

(t ≈ 155).
Figure 1a shows the excited computational modes during transition. By

choosing a resolution of 322 × 33 grid points (16 Fourier modes), the sim-
ulation is underresolved in all directions for t > 70.
dissipation εSGS was computed for a number of LES grids with full dealiasing.

2 × 33 indicates the necessity of a SGS
model even for the early laminar stages prior to transition, mainly due to the

ing a LES resolution of 322 × 33 grid points was chosen in order to assess the
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The computational domain is chosen to fit one wavelength of the initial distur-

The incompressible Navier-Stokes equations for the non-dimensional fil-

layer, t ≈ 136) first in the peak plane (y = L /2), which are also visible in the

to more complex flow states and eventually the whole flow domain is affected

In figure 1b, the SGS

Similarly to figure 1a, the resolution 32

underresolved 2D saturated TS wave. Based on these findings, for the follow-
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Figure 1. (a) Excited modes of the DNS (resolution 1602 × 161 grid points).
streamwise direction, spanwise direction, wall-normal direction (number

of Chebyshev modes is halved to allow comparison with Fourier modes). In the Fourier di-
rections a threshold of 10−15 is used whereas the threshold value in the wall-normal direction
is 10−6. (b) Maximum of SGS dissipation maxx,y,z εSGS. 322 × 33, 322 × 49
(almost coinciding with 322 × 33), 482 × 49, 642 × 65, 962

(see also [6]).

4. LARGE-EDDY SIMULATION

Results of LES calculations using the dynamic Smagorinsky (DS) model
[1] and the ADM-RT model [7, 6] together with a no-model LES (coarse-grid

given by [7, 6]
∂τij

∂xj
= χH ∗ ui , (3)

i.e. a relaxation regularization (relaxation term, RT) has been added to the mo-
mentum equations.

Three-dimensional visualisations of the breakdown process for the different
DNS = 136, tDNS = 140 and

tDNS = 154.5 using the negative λ2 criterion [3]. To allow a direct comparison
of the LES models and the DNS, the selected times for the LES were slightly
shifted such that the stage of transition development is matched at tDNS ≈ 128.
Note that the DNS results have been coarsened to the LES grid prior to plotting
in order to allow for a more suitable comparison.

The results for the RT model show a similar behaviour as the DNS: Hair-
pin vortices (tDNS = 136) and the related roll-up (tDNS = 140) of the shear
layer are clearly visible and their position, convection speed and growth rate
are similar to the DNS. Moreover, the initial stages of the turbulent breakdown

× 97
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ability of the SGS model to predict laminar, transitional and turbulent flows

DNS) are presented. Note that for the DS a 3D graded filter of second order
has been used as test filter [6]. The SGS stresses for the ADM-RT model are

H denotes a suitable 3D high-pass filter [7] and χ is a

bution of the ADM-RT model are thus confined to the smallest scales.

models are depicted in figure 2 for the times t

model coefficient, set constant in the present computations. The model contri-
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DNS (interpolated onto LES grid)

No-model LES

Dynamic Smagorinsky model

ADM-RT model

Figure 2. Three-dimensional visualisation of the transitional structures for the different sim-
ulations by isocontours of the negative λ2 criterion (same isolevel for respective times). From
left to right: tDNS = 136, tDNS = 140, tDNS

DNS = 154.5). The no-
model LES shows fragments of hairpin vortices, but these are disguised by a
high level of ambient high-frequency oscillations (noise) which is attributed to
missing SGS dissipation. Unlike for the DNS data, at the latest time shown
(tDNS = 154.5) already the whole span of the channel is turbulent. The simu-
lation using the dynamic Smagorinsky model does not show a proper roll-up of
the shear layer. Vortices are generated, but these are not so pronounced, closer

= 154.5
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are confined to a region close to the peak plane (t



to the wall, and spread further away from the peak plane. Moreover, no hairpin
vortex can be detected.

Figure 3. Contour plots in the peak plane (y = Ly/2) for the different simulations at tDNS =

140 (“three-spike stage”). Left column: Shear ∂u/∂z. Right column: Negative λ2

In Figure 3, the wall-normal shear ∂u/∂z and λ2 are shown in the peak
plane (y = Ly/2) at the early “three-spike stage” (tDNS = 140). The “kinks”
in the shear layer (x ≈ 1.5) coincide with the hairpin vortices, clearly de-
tectable by the λ2 criterion (figure 3, right column). Again, the results obtained
with the ADM-RT model compare favourably to the DNS data. The no-model
LES also shows the roll-up of the shear layer in an overall more noisy en-
vironment. The DS model, however, does not predict the physically proper
transition scenario.
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Figure 4. Streamwise velocity for the “three spike stage” at z = −0.3. DNS,
ADM-RT. Left: tDNS = 143, peak plane (y = Ly/2).Right: tDNS = 154.5, valley

criterion

plane (y = 0)
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A quantitative comparison of the streamwise velocity component during the
“three-spike stage” at both the peak and the valley position is given in figure 4
for DNS and the ADM-RT model only since these stages could not be identi-
fied properly in either the DS or the no-model simulation. It is evident that the
“three-spike stage” is captured accurately by the ADM-RT model. Note that at
tDNS = 154.5 transition at the peak position is already well advanced (see also
figure 2), but the ADM-RT model is still able to accurately predict the roll-up
at the valley position.

5. CONCLUSIONS

By examining instantaneous flow fields from LES of channel flow transition,
distinct differences between SGS models can be established. The dynamic
Smagorinsky model fails to correctly predict the first stages of breakdown in-
volving the formation of typical hairpin vortices on the coarse LES grid. The
no-model calculation, as expected, is generally too noisy during the turbu-
lent breakdown preventing the identification of transitional structures. On the
other hand, the ADM-RT model, whose model contributions are confined to
the smallest scales, appears to be able to allow a more accurate and more phys-
ically realistic prediction of the transitional structures even up to late stages of
transition.

This work was supported by the Swiss National Science Foundation (SNF)
and the Swiss National Supercomputing Centre (CSCS).
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TURBULENT SPOTS IN A COMPRESSIBLE
BOUNDARY-LAYER FLOW

Aeronautics and Astronautics, School of Engineering Sciences
University of Southampton
Southampton, S017 1BJ
United Kingdom
Email: n.sandham@soton.ac.uk

Direct simulation of an isolated turbulent spot in a compressible iso-
thermal wall boundary-layer flow has been performed. A bypass transi-
tion scenario at Mach 2,4 and 6 is considered. The flow field associated
with the transitional and turbulent spots is studied in detail, with re-
sults in broad agreement with previous experimental work. The evolved
spots are found to have an arrowhead shaped front with a leading edge
overhang, followed by a turbulent core and a calmed region at the rear
interface. The lateral spreading of the spot is found to decrease substan-
tially with the flow. Evidence for a supersonic (Mack) mode is found in
the Mach 6 case: spanwise-coherent structures are observed under the
spot overhang region.

Keywords: Bypass transition, Turbulent spots, Compressibility.

1.
The breakdown of disturbances in a laminar flow into a turbulent

flow often occurs via the formation of localised turbulent patches, gen-
erally referred to as turbulent spots. The laminar base flow can be
perturbed using various forcing techniques like vibrating ribbons, acous-
tic forcing, localised point source disturbances (loud speakers, sparks),
suction/blowing slots, roughness elements and complex wave generators.
The growth of instabilities in a laminar flow triggers the transition pro-
cess, but intrusion of large amplitude non-linear perturbations may skip
the linear stages of transition in a process known as bypass transition.
The extent of the transition length is generally shorter in a bypass tran-
sition scenario. A detailed study of the dynamics of turbulent spots
can also be useful in extending our understanding of turbulence physics.

Abstract:
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The length of the transition region mainly depends on spot characteris-
tics such as the convective speed of the leading and trailing edges of the
spot, lateral growth rate and interactions between spots.

Most of the earlier transition studies were performed for incompress-
ible flows. A detailed review of transition studies in a variety of flows was
given by Narasimha (1985). Based on results of flow visualisation exper-
iments, Perry et al. (1981) suggested that a turbulent spot is an array of
Λ-shaped vortices. The effect of compressibility has been less well stud-
ied. Variation of the wall and lateral spreading angles of the disturbance
region with local Mach number was reported by Fischer (1972), who also
summarized the results of earlier investigations on disturbance growth.
The spreading angle relative to the wall remained invariant with Mach
number while the lateral spreading angle decreased sharply from 11 to 3
degrees with increasing Mach number up to about Mach 6.0. In bound-
ary layer transition experiments using thin-film heat-transfer gauges at
Mach 6 (Mee (2002)) also demonstrated that turbulent spots grow at
a more slender angle than at low Mach numbers. The present com-
putation is aimed at understanding the mechanisms behind this strong
compressibility effect.

2.
A high-order scheme, with numerical stability enhanced by an entropy

splitting of the Euler terms, is used to solve the compressible Navier-
Stokes equations. All the spatial discretizations are done using a fourth-
order central-difference scheme and the time integration is done using
the third-order Runge-Kutta method. Details regarding the entropy-
splitting and other numerical issues used in the present computations
can be found in Sandham et al. (2002).

Table 1. Details of Spot Simulations

Case Mach Re∗δin
Tw/T∞ (Lx, Ly, Lz)/δ∗in Nx, Ny, Nz

M2 2 950 1.672 400 x 60 x 60 801 x 101 x 121
M4 4 2000 3.694 450 x 60 x 60 801 x 101 x 121
M6 6 3000 7.0 600 x 30 x 40 601 x 101 x 121

All lengths are normalised with the displacement thickness (δ∗in) of the
laminar inflow profile. The laminar base flow is obtained by a separate
self-similar compressible boundary layer solution. Details of the various
cases considered are given in Table 1. The flow is assumed periodic in
the spanwise direction, while no-slip fixed temperature conditions are

SIMULATION DETAILS
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applied at the plate surface. Characteristic boundary conditions are
used at the inflow, outflow and upper surface. The laminar base flow is
perturbed by a localised injection of low momentum fluid through the
plate surface.

A spanwise symmetric rectangular slot of dimensions 4 x 4 (x, z) is
used (Figure.2). The blowing trip is applied for a short duration of 8
non-dimensional time units (δ∗in/u∞ ) by specifying vertical velocity at
the plate surface (vinj = Au∞). The amplitude of the disturbance is
chosen such that a spot can be triggered and studied within the present
domain size. A perturbation amplitude of A = 0.2 was used for the
Mach number M∞ = 2 and M∞ = 6 cases. For the M∞ = 4 case the
length of the injection slot was 6 and the value of A was set to 0.35.

3.
The organisation of spot substructures during the early stages of tran-

sition at M = 2 tends to confirm the conceptual picture of Perry et al.
(1981) (Figure 1). Further growth, interaction and breakdown of these
complex substructures finally evolves the flow field into a mature turbu-
lent spot. Plan and side views of the mature turbulent spot are shown
in Figure 2a-c. The leading edge of the spot is found to travel at a speed
of 0.8u∞-0.9u∞ (Figure 3) while the speed of the trailing edge increased
with the Mach number (0.5u∞−0.7u∞). Figure 4 shows the streamwise
evolution of span-averaged skin friction (cf ). The cf value in the calmed
region behind the spot is higher than the laminar value; this supresses
the growth of instabilities in the wake of a spot.

The growth mechanism of a spot in a boundary layer is complex, since
the spot interacts with the irrotational free stream flow at the top and
the rotational laminar boundary layer flow surrounding it. The physical
mechanisms involved in the lateral and wall-normal growth of a spot are
different. The wall-normal growth of the spot is similar to this classical
entrainment mechanism. The difference between convective speeds of the
front and the tail of a spot results in the spot growth in the streamwise
direction.

The spot grows in the lateral direction by destabilising the surround-
ing laminar flow. The spot spreading rate was found to be faster than
the spot turbulent diffusion (Gad-El-Hak et al., 1981). As seen in Figure
1, the primary flow structures created by the injection of low momen-
tum fluid developed into a complex turbulent spot. The vortex dynamics
associated with the metamorphosis of a single hairpin vortex into a tur-
bulent spot in an incompressible flow was explained in detail by Haidari
& Smith (1994) and Singer (1996). They showed that the lateral inviscid

RESULTS
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vortex deformation and an inviscid-viscous interaction of vortices with
the surface are responsible for the regeneration of coherent structures.
In agreement with previous studies, the sequence of events leading to a
mature turbulent spot is: (a) roll up of the high-shear layer between the
injected fluid and the free stream fluid into a primary hairpin structure,
(b) generation of secondary hairpin vortices and other structures due
to the lift up of near wall low momentum fluid between the legs of the
hairpin vortex i.e. vortex-surface interactions, (c) growth in the lateral
direction due to the inviscid deformation of the vortex lines comprising
the hairpin structure, and (d) further growth, regeneration, non-linear
interactions and breakdown of these hairpin structures results in the for-
mation of a random turbulent flow field with complex flow structures.

The lateral growth of a spot is highly dependent on the flow Mach
number. For the M2, M4 and the M6 cases the calculated lateral half-
spreading angles are 5◦, 4◦ and 1.7◦, respectively. A comparison of the
estimated spot half-spreading angles with the data of Fischer (1972) is
shown in Figure 5. The lateral half-spreading angle of the spot decreases
strongly with the Mach number. This clearly shows that the effect of
compressibility is to suppress the spot spreading and delay transition at
hypersonic speeds.

In a compressible flow temperature and density fluctuations (acous-
tic disturbances) introduce additional acoustic instabilities in the flow.
These acoustic modes at high-speed flows were first discovered by Mack
(1969), and they are unstable to inviscid disturbances. Reflection of
these acoustic waves between the solid surfaces and the sonic line makes
these modes unstable. At low Mach numbers the first mode instabilities
play a major role in destabilizing the flow. However, above Mach 2.2 the
large amplification rates of the inviscid instabilities (Mack modes) are
likely to dominate over the first mode instabilities. In the M∞ = 6 case,
complete breakdown to turbulence has not yet occurred. The structure
is however, already markedly different to the Mach 2 and 4 spots. In par-
ticular we note the appearance of coherent spanwise structures close to
wall, visible for example in the side view of Figure 2.c (400 < x < 520).
It is possible that these structures (associated with Mack modes) are
excited by the supersonic flow relative to the wall in the spot overhang
region.

4.
A localised blowing trip mechanism was used to trigger a turbulent

spot in a laminar base flow. Prior to the breakdown, an array of hairpin
structures and quasi-streamwise vortices were noticed inside the spot.

SUMMARY
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Hairpin-shaped and quasi-streamwise structures are the dominant struc-
tures observed inside the spot. The assortment of these flow structures
and also their mutual interactions results in a mature spot with an ar-
rowhead shaped front overhang region and a calmed region at the rear
interface. The front overhang also entrains the laminar fluid into the
spot and assists in destabilising the flow. The calculated flow properties
inside the spot core region are found to be similar to a fully developed
turbulent flow. The estimated spot growth rate and propagation param-
eters are consistent with previous experimental results and the effect of
compressibility is to suppress the spot growth.

Further detailed analysis of the spot growth mechanism, compressibil-
ity effects and heat transfer characteristics will help in understanding the
transition physics and modelling transitional flows.

The authors would like to acknowledge the financial support of the
European Space Agency (ESTEC) for this work.
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Abstract: The evolution of a train of vortex pairs ejected from a slot into a Blasius 

boundary layer was studied experimentally, with the aim of active boundary 

layer tripping. The excitation was directed upstream or downstream, at a 

shallow angle, or perpendicular to the surface. Vorticity, circulation, 

trajectories and convection speeds were calculated and used to describe the 

vortices’ evolution. Intermittency, spectra and mean velocity profiles of the 

forced boundary layer were measured. It was found that shallow downstream 

directed excitation is very effective for promoting transition. 

Key words: Oscillatory vorticity generators; Flow control, Actuators, Laminar boundary 

layer; Transition; Turbulence 

1. INTRODUCTION 

Flow control research dates back to 1904, when Prandtl presented the boundary 

layer concept, its failure (i.e. separation) and control by suction. Much progress has 

been made since, in both research and applications of Active Flow Control (AFC) 

[1-2]. Successful application relies on efficient actuators to exercise control 

authority on the flow. One successful and popular actuator is the zero-mass-flux 

alternating suction/blowing device, known as “Synthetic jet”  While the 

development and application of such actuators is intensively studied, fundamental 

understanding of the near slot evolution of the fluidic excitation in still air and with 

cross-flow boundary layer is lacking. One of the candidate applications of periodic 

excitation is the promotion of laminar-turbulent boundary layer transition. It is well 

known that turbulent boundary layers are more resistant to adverse pressure gradient 
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and that convection heat transfer significantly increases in a turbulent boundary 

layer. Forced transition is especially important at low, sub-critical, Reynolds 

numbers, in which natural transition does not take place. 

Therefore, the current paper describes the application of a nominally 2D 

Oscillatory vorticity and momentum generator for actively tripping a Blasius 

boundary layer. Initially, the evolution of the resulting train of vortex pairs in still air 

will be discussed. Next, the interaction of the vortices with the incoming boundary 

layer, in the immediate vicinity of the slot will be studied. Finally, the effect of the 

excitation on the boundary layer forced transition process will be analyzed and 

conclusions drawn. 

2. EXPERIMENT 

The experiment was conducted in a small, open-loop wind tunnel. The test section 

dimensions are: 50mm high, 150mm wide and 300mm long. The tunnel is capable 

of velocities of 4 to 18m/s with 0.2% turbulence level. Two actuators with slot exits 

width of 1mm wide and 135mm long were used, but for the shallow excitation 

directions, i.e. 30o or 150o (Fig. 1), the streamwise slot width was 2mm. However, 

the mean velocity profiles at x/h=75 were not affected by the presence of the slots at 

x/h=0. The peak velocities at the slots, were Up=5 to 35 m/s. This paper describes 

operation at the resonance frequencies of 1.06kHz and 1.04kHz for the 90o and 

30o/150o actuators, respectively. The actuators cavity pressure oscillations and 

temperature were continuously monitored. Hot-wire (velocity uncertainty 2%) could 

be traversed to any location inside the test section. PIV (2D) was applied at half-

width of the test section. Image pairs (usually 100) were acquired, phase locked to 

the excitation signal (16 phases per cycle, PIV uncertainty 2%). For more 

information see [4, 5]. The PIV measured flow fields were analyzed using the 

Angular Momentum Method (AMM) [6], in order to track the vortices. Good 

correlation exists between the vortex core location, based on visual observation, and 

the AMM vortex identified [4-6]. 

3. RESULTS 

When the actuator operates in still air, a vortex pair is generated at the slot during 

the blowing stage (Fig. 2). Figure 3 presents the vortices’ trajectories for several 

peak slot exit velocities (Up), with wall normal excitation ( 90o) into still air 

(Ue=0). For Up<10.7m/s the vortices are formed but are re-ingested into the slot 

(Up=9m/s, Fig. 3). For larger Up, the vortices “escape” the suction effect due to 

asymmetry (non-linearity) of the blowing/suction. The vortex convection speed is 

constant and approximately scales with Up varied between 0.20 to 0.33Up [5]. The 

relative direction between the slot and the wall ( ) has a dominant effect on the 

resulting vortices. Figure 4 shows phase-locked data at identical conditions to those 

of Fig. 2 (Ue=0, Up=18m/s), with only varied. The “positive” vortex is larger and 

stronger, while the ejected “negative” vorticity is smeared on the wall to the left. 
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With cross flow, the opposite flow ( 150o) excitation will only generate the same 

signed vortex as the boundary layer (BL) vorticity. 

PIV measurements of 90o excitation-laminar boundary layer (LBL) 

interaction (Fig. 5) revealed that unsteady vortices are being shed and convected 

downstream, as long as Up (determined when Ue=0) is supercritical (Figs. 3 & 5). 

Furthermore, dictates the sign of the surviving vortices (compare Figs. 5 & 6). 

However, for the 150o (counter flow) excitation, only "negative" vortex is formed 

at the upstream lip of the slot and it is not shed (see Fig. 7). Nevertheless, it's 

unsteady nature and induced reverse near wall flow (at x/h>0) has a strong 

destabilizing effect on the LBL. 

The fluidic periodic excitation promotes laminar-turbulent transition of the LBL, 

especially for 30/ 0° (Fig. 8). Downstream of the slot, turbulent structures mix 

between the layered smoke pattern, flowing from the right. The LBL accelerates 

towards the slot at its upstream side due to the suction effect of the actuator (Fig. 4). 

 To quantify the forced transition process, near-wall hot-wire velocity signals 

were acquired at x/h=30, 75 and 110. Two free-stream velocities (Ue=5.5 and 

10.5m/s), a wide range of excitation amplitudes (Up/Ue) and the three 's were used 

to calculate intermittency. The conclusion is that 30/150° excitations are more 

effective for transition promotion than 90o. At Ue=5.5m/s, it requires roughly 

twice the Up/Ue it requires to trip the flow at Ue=10.5m/s.

The evolution of the spectra from highly coherent at the excitation frequency and 

its higher harmonics, to turbulent was also documented. Figures 9 present the near-

wall velocity spectra for a range of Up. For sufficiently large Up/Ue the BL turned 

turbulent even for Ue=5.5m/s at x/h=30. The 30o excitation data, indicates that for 

marginal amplitudes (Up/Ue=0.4, Fig. 9a) peaks appear at the excitation frequency 

sub-harmonics (excitation at f=1040Hz, sub-harmonics ¼f=260Hz, ½f=520Hz and 

¾f=780Hz), indicating the existence of sub-harmonic sub-critical transition 

mechanism. While the excitation frequency and its higher harmonics still dominate 

the spectra, the peaks widen and the gaps between the excitation related peaks fill-up 

as Up increases. Two groups of spectral distributions can be clearly identified, the 

ones corresponding to larger Up resemble what is accepted as turbulent spectra. The 

150o excitation (Fig. 9b) generates a non-linear response in the BL at Up/Ue 0.8,

smaller than for ° which is in agreement with the intermittency data. However, 

there is no distinct sub-harmonic process as for the 30o excitation. The magnitude 

of the excitation related peaks significantly attenuate as one progresses from x/h=30 

to x/h=75 and the spectra is  turbulent, for Up/Ue>1 and all considered).

Figure 10a presents velocity profiles at x/h=75 using the three excitation 

directions. The excited profiles for 90° and 150o resemble turbulent profiles 

with H 1.37±0.02, indicating non-equilibrium turbulent BL, a viscous sub-layer and 

a logarithmic region, but with somewhat different “law of the wall” constants. While 

the 90° excitation significantly increased the momentum thickness while the 

30° excitation reduced it and the shape factor was also reduced to 1.5 (from 2.42).
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The modified shape of the profiles can be explained according to the excitation-

interaction findings as follows. The 30o excitation injects momentum in the 

downstream direction, and "fills" the BL profile. Even at x/h=75 there is momentum 

access for 30o and 7<y/ *<11 (Fig. 10a). The 30o excitation releases two signs 

of vortices (Fig. 6). One vortex resides in the BL (with negative vorticity), while the 

"positive" vortex is ejected into the upper parts of the BL, generating a momentum 

deficit. The 90o and the 150o excitations inject the momentum in the 

perpendicular and upstream directions, respectively, which lifts up low momentum 

fluid from the wall proximity. The amplitude of the excitation dictates the 

circulation of each vortex and its penetration into the (LBL) and/or free stream (i.e., 

Figs. 3 and 5). The effect of the negligible or even negative streamwise convection 

velocity of the 90o and 150o excitations generated vortices is mainly to create an 

oscillatory blockage in the BL and destabilize it, with a marked advantage to 30o.

over 90o. Figures 10b present the BL spectra measured at x/h=75 using 30o.

The spectra for all y/h and the three types of excitations (other not shown), 

resemble a well-behaved turbulent boundary layer spectra, with remnants of the high 

amplitude excitation frequency.

4. CONCLUSIONS  

Shallow angle introduction of periodic excitation is a very effective active boundary 

layer tripping mechanism. It involves sub-harmonic interaction, quickly filling the 

spectra and leading to random, turbulent motion. 

The vorticity flux from the excitation slot determines the vortex circulation and 

its subsequent development, while the slot inclination determines the relative 

magnitudes of the “positive” and “negative” vortices and their initial convection 

velocity. The latter is important when considering the interaction of the vortices with 

the vorticity of the incoming boundary layer, and also with the slot during the 

suction stage of the cycle.
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RESONANT MODE INTERACTION
IN A CANONICAL SEPARATED FLOW

Rajat Mittal and Rupesh B. Kotapati
Department of Mechanical and Aerospace Engineering, The George Washington University
Washington DC 20052, USA

smittal@lltk.ac.in

Abstract: A novel configuration has been devised to study the flow physics of separated
airfoil flows. The configuration allows us to prescribe the size and extent of
the separation zone. A systematic variation of key separation parameters then
allows us to precisely delineate the processes that govern resonant-mode inter-
actions and transition in these flows. Numerical simulations of this configuration
indicate the presence of three distinct characteristic time scales associated with
the shear layer, the separation zone and the vortex shedding in the wake.

Keywords: Active separation control, resonant mode interaction, zero-net-mass-flux jets

1. INTRODUCTION

The current study is directed towards understanding the flow physics of sep-
arated flows over airfoils with the ultimate goal of developing effective zero-
net-mass-flux (ZNMF) jet based active separation control (ASC) strategies.
The key control parameters in a ZNMF device are the jet frequency f and
jet velocity VJ . The former is usually non-dimensionalized as F+ = f/fn

where fn is some natural frequency in the uncontrolled flow. The latter is
non-dimensionalized by U∞ . Note that VJ is some characteristic measure of
the jet velocity, such as the peak or an average velocity. As expected, con-
trol authority varies monotonically with VJ/U∞ (Seifert et al. 1996; Glezer
& Amitay 2002; Mittal & Rampunggoon 2002) up to a point where a further
increase would likely completely disrupt the boundary layer. Thus, there is lit-
tle possibility of extracting an "optimal" value of this parameter. On the other
hand, control authority has a highly non-monotonic variation with F+ (Seifert
& Pack 2000; Glezer et al. 2003) and this not only suggests the presence of
rich flow physics and multiple flow mechanisms but also reveals the potential
of optimizing the actuation scheme with respect to this parameter.
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Figure 1. Three different scenarios for flow past an airfoil

Current strategies for ZNMF based separation control are explicitly or im-
plicitly based on the proposition that the dynamics of a separated flow over an
airfoil are dominated by the characteristic frequency of the separation region,
fsep and that fsep ∼ U∞/Lsep where Lsep is the length of the separation re-
gion. However the situation is significantly more complex than this. Based
on past studies (Chang 1976, Wu et al. 1998), one can consider the follow-
ing three situations for flow past an airfoil (see figure 1). Case A represents
attached flow at low angle-of-attack (AOA) where the boundary layer on the
suction side develops under an adverse pressure gradient but does not sepa-
rate. Such a flow has one dominant wake shedding frequency fwake which,
according to Roshko (1954) scales as U∞/Wwake . In direct contrast to Case
A is the situation at high AOA, namely the post-stall Case C where separation
occurs near the leading-edge and the flow does not reattach (in the mean) to
the airfoil surface. This flow behaves like that past a bluff body and is conse-
quently subject to two frequency scales, fSL and fwake, where the former is
the natural vortex rollup frequency of the shear layer and the latter is again the
frequency corresponding to vortex shedding in the wake. Finally, Case B cor-
responds to the situation where separation occurs at some location downstream
of the leading edge, and the separated shear layer may or may not reattach be-
fore the trailing edge (Chang 1976). If the flow reattaches before the trailing
edge, there are potentially three frequency-scales: fSL , fwake, and fsep, the
frequency scale corresponding to the separation "bubble." It is quite clear that
the nonlinear interactions between these various flow features will drive the
temporal dynamics and transition process for this flow. This also has implica-
tions for ZNMF based separation control since it clearly indicates that fsep is
just one of the three naturally occurring frequencies in a separated airfoil and
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an effective separation control strategy should take account of these multiple
frequencies and associated mechanisms.

However, our understanding of the dynamics of this resonant mode inter-
action is somewhat limited. Past approaches to studying these issues have
mostly employed conventional airfoil geometries where the flow separation is
produced by varying angle-of-attack and/or freestream velocity. Although this
approach is obviously grounded in practical reality, it is not the best one for a
precise investigation and delineation of the various physical mechanisms that
are potentially implicated in ASC. Thus, a configuration is needed that (1) is
simple and includes all the important features of a canonical separated airfoil
flow, including leading edge boundary layer inception, suction side separation
(open as well as closed separation), (2) has a wake which includes vortices
from the suction and pressure sides; and (3) allows independent prescription of
the location and extent of the separation region as well as the Reynolds num-
ber. A novel configuration that satisfies these criteria has been devised and is
described below.

2. FLOW CONFIGURATION

The configuration to be studied involves a thin flat-plate (chord length c
and thickness t) as shown in figure 2. Separation is induced on the upper
surface of this plate by applying blowing and suction on the upper boundary
of the computational domain as shown in the schematic. The technique of Na
& Moin (1998) will be adopted wherein the following boundary condition is
prescribed on the upper wall

uy = G(x);
∂ux

∂y
=

dG

dx
; uz = 0, (1)

where G(x) is the prescribed blowing and suction velocity profile, and the
boundary condition on ux ensures that no spanwise vorticity is produced due
to the blowing and suction. The key aspect of this approach is that the func-
tion G(x) allows us to prescribe the streamwise Lsep and cross stream size Hs

of the separation region as well as its location. Thus, separation can be pro-
duced anywhere on the plate surface and can therefore reproduce any of the
three separated flow situations discussed in the previous section. The above
configuration can be employed to examine the nonlinear interactions between
the shear layer, separation region, and airfoil wake in uncontrolled and ZNMF-
based controlled versions of these flows. Note that the confounding effect of
curvature is absent here, something that is not usually possible with conven-
tional airfoil investigations.
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Suction

Blowing

separation bubble

Wake

Figure 2. Schematic of canonical separated flow configuration used in current study

3. NUMERICAL METHOD

A finite-difference based approach for computing flows with moving im-
mersed solid three-dimensional boundaries on fixed Cartesian grid has been
developed. The key feature of this method is that simulations with complex
boundaries can be carried out on stationary non-body conformal Cartesian
grids and this eliminates the need for complicated remeshing algorithms that
are usually employed with conventional Lagrangian body-conformal methods.

The governing equations are the incompressible Navier-Stokes equations
which are discretized using a cell-centered, collocated (non- staggered) arrange-
ment of the primitive variables. The equations are integrated in time using the
fractional step method. In the first step, the momentum equations without the
pressure gradient terms are first advanced in time. In the second step, the pres-
sure field is computed by solving a Poisson equation. A second-order Adams-
Bashforth scheme is employed for the convective terms while the diffusion
terms are discretized using an implicit Crank-Nicolson scheme, which elimi-
nates the viscous stability constraint. The solution of pressure Poisson equa-
tion (PPE) is the most time consuming part of the solution algorithm. In the
current solver an efficient multigrid methodology has been developed which
is well suited for use in conjunction with the immersed boundary method. A
compressible version of the solver is described in Ghias et al. (2004).

4. RESULTS AND DISCUSSION

Two-dimensional simulations of this configuration using a 2% thick elliptic
airfoil at a chord Reynolds number of 60,000 have been carried out. These
serve to demonstrate the validity of the proposed approach as well as the nu-
merical capabilities of the immersed boundary solver employed. All simu-
lations reported here have been carried out on a single processor, 2.4 MHz,
Pentium-4 workstation. Figure 3a shows the spanwise vorticity contour plot
for the baseline unseparated flow and the plot shows the presence of Karman
vortex shedding in the wake. Figure 3b shows the temporal
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Figure 3. Spanwise vorticity contour plot and temporal variation of cross-stream velocity at
three locations for baseline case with no induced separation

Figure 4. Variation of pressure in the streamwise direction above the top surface of the airfoil

Figure 5. Sequence of spanwise vorticity contour plots and temporal variation of cross-stream
velocity at three locations with separation induced at the mid-chord
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of cross-stream velocity component at x/c = 0.25 (top), 0.5
and 1.25 (bottom) where x is measured from the leading edge, and it can
be seen that even far upstream of the trailing edge, the global signature of the
wake vortex shedding is present. The frequency of vortex shedding, when nor-
malized with the momentum thickness of the wake and the freestream velocity,
gives a value of roughly 0.14 which is consistent with the scaling of Roshko
(1954).

This baseline case is subsequently subjected to sinusoidal blowing and suc-
tion on the top boundary to induce separation. Two different cases are sim-
ulated. The first one is of a closed mid-chord separation where the blow-
ing and suction extends from x/c = 0.25 to 0.75 and the second one is a
case of trailing-edge separation where the blowing and suction extends from
x/c = 0.50 to 1.0. Figure 4 shows pressure along a horizontal line above the
top surface of the airfoil with adverse pressure gradient induced by blowing-
suction on top boundary at two different locations. Examination of the mean
flow shows that in the first case, a recirculation bubble of length Lsep ≈ 0.3c
is created whereas in the second the bubble length is 0.35c .

Figure 5a shows a sequence of spanwise vorticity contour plots that show
a flow rich in distinct vortical interactions. First, the boundary layer is seen
to separate at the location where the suction become active (x/c = 0.25) and
this separated shear layer immediately starts rolling up into small scale Kelvin-
Helmholtz type vortices. Some of these vortices are seen to merge and form
larger vortices and this leads to the formation of larger vortices in the separation
region. At periodic intervals, one of these large vortices is released from the
separation bubble and it travels downstream where it intermittently disrupts the
Karman vortex shedding in the wake. Thus, this one example clearly shows all
of the features that we have claimed will be present on a canonical separated
flow. Examination of temporal variation of flow variable allows us to extract
the three distinct frequencies. Figure 5b shows the variation of cross-stream
velocity component at the separation point (x/c = 0.25), at the center of the
separation bubble (x/c = 0.50) and in the wake at (x/c = 1.25). The first and
second plots clearly show the presence of the high shear layer frequency as well
as the lower separation bubble frequency which corresponds to the release of
the vortex by the separation bubble. The third plot also clearly shows how
the high frequency vortex shedding is disrupted periodically by the separation
vortex. For this case, fsepLsep/U∞ is about 0.42. Furthermore, the shear layer
frequency fSL is about 7fsep whereas the vortex shedding fwake frequency is
about 19fsep .

Figure 6a shows a sequence of spanwise vorticity contour plots for the sec-
ond case and comparison with previous case illustrates the potential effect of
separation bubble location on the flow. Overall the interaction between the
three features of the flow (shear layer, separation bubble and wake) are qualita-
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Figure 6. Sequence of spanwise vorticity contour plots and temporal variation of cross-stream
velocity at three locations for with separation induced on the aft half of the airfoil

tively similar to that seen in the previous case. For this case, fsepLsep/U∞
is about 0.19 which is quite low and this is likely due to the effect of the
wake on the separation dynamics. This underscores our earlier conjecture that
fsepLsep/U∞ can be significantly different from unity depending on the flow
configuration. The flow is clearly more chaotic than the previous case and
this is likely due to the interaction between the separation region and wake
instabilities. Interestingly however, shear layer frequency fSL is about 6fsep

which is similar to the previous case and the vortex shedding frequency fwake

is about 19fsep which matches the previous case also. Therefore, there is some
indication that the shear layer and wake seem to "lock-on" to the separation
region frequency which itself seems to be modified by virtue of being in the
vicinity of the wake. This again provides some validation to the resonant-mode
interaction that we have hypothesized is important in such flows.
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STABILITY AND TRANSITION IN THE FLOW
OF POLYMER SOLUTIONS

Paresh Chokshi and V. Kumaran
Indian Institute of Science, Bangalore 560 012

Abstract: The linear stability analysis of a plane Couette flow of viscoelastic fluid have
been studied with the emphasis on two dimensional disturbances with wave
number k ∼ Re1/2, where Re is Reynolds number based on maximum veloc-
ity and channel width. We employ three models to represent the dilute polymer
solution: the classical Oldroyd-B model, the Oldroyd-B model with artificial
diffusivity and the non-homogeneous polymer model. The result of the linear
stability analysis is found to be sensitive to the polymer model used. While the
plane Couette flow is found to be stable to infinitesimal disturbances for the first
two models, the last one exhibits a linear instability.

1. INTRODUCTION

Dilute solutions of polymeric and complex fluids play a central role in many
scientific and industrial applications. While the effect of the macromolecules
on fully developed turbulent flow, giving rise to the familiar phenomenon of
turbulent drag reduction, has been studied extensively over last few decades,
the influence of polymers on the onset of transition has not been as widely
investigated. In the present study, we carry out the linear stability analysis of
dilute polymeric flow, represented by an Oldroyd-B model, in plane Couette
flow. Following the studies of Davey and Nguyen, 1971 on Newtonian flow,
the threshold energy for finite-amplitude instability in plane Couette flow is
minimum for critical disturbances with wave number k ∼ Re1/2, where Re
is Reynolds number based on maximum velocity and channel width. Hence,
we focus on the stability of the linear velocity profile towards the perturba-
tions with wave number, k ∼ Re1/2. A hierarchy of models is used to repre-
sent the polymer solution. The simplest is the classical Oldroyd-B model. For
large wave number disturbances, the discrete eigenmodes are found to coalesce
with the continuous spectrum and disappear. This is due to the hyperbolic na-
ture of the classical Oldroyd-B model in the absence of diffusion. In order
to correct this unrealistic behaviour, an additional artificial diffusivity of the
polymer conformation tensor is added to the classical Oldroyd-B governing
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equation to obtain the diffusive Oldroyd-B model. A more realistic model is
the non-homogeneous model, where variations in the polymer number-density
are explicitly incorporated by writing an additional equation for the polymer
number density. Bhave et al., 1991 derived one such model based on the princi-
pals of kinetic theory for an elastic dumbbell molecule. We perform a stability
analysis for this non-homogeneous polymer model as well.

2. MODEL FORMULATION

The system consists of a plane Couette flow of an incompressible viscoelas-
tic fluid with density ρ and viscosity η occupying domain 0 < y∗ < L in cross
stream direction, with top plate moving with constant axial velocity V

∗
x = V

and bottom plate held stationary. The fluid continuity equation and momen-
tum balance equation, upon non-dimensionalising velocity with V , distance
with L, time with L/V , pressure with ρV 2 and stresses with ηV/L, become

∇ · v = 0 (1)

∂tv + v · ∇v = −∇p +
β

Re
∇2v +

1
Re

∇ · τ p (2)

where β = ηs/η indicates the solvent contribution to the solution viscosity η,
where η = ηs + ηp. The polymer contribution is indicated by (1 − β). The
Reynolds number is defined, based on the solution viscosity, as Re = ρV L/η.

The dimensionless polymeric stress, τ p, is expressed in terms of the poly-
mer chain conformation tensor c as,

τp = (1 − β)
(c − I)

We
(3)

where the Weissenberg number, We, which is indicative of fluid elasticity, is
defined as We = λV/L, with λ being the relaxation time of the viscoelastic
fluid. The governing equation for the conformation tensor is given by the single
relaxation time model with upper-convected time derivative,

[
∂tc + v · ∇c − c · (∇v) − (∇v)T · c

]
= −(c − I)

We
(4)

Here, c is non-dimensionalised with its equilibrium value which is (kBT/H),
where kBT is thermal energy and H is spring constant.

The hyperbolic nature of the evolution equation for the conformation tensor
(eq.(4)) results in the perturbation equation with singularities leading to branch

2.2   Oldroyd-B model with artificial diffusivity

2.1    Classical Oldroyd-B model
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cut in the eigen value space (Wilson et al., 1999). Sureshkumar and Beris, 1995
suggested the use of artificial diffusivity to eliminate the singularity. Here, the
classical Oldroyd-B model is modified by introducing an additional diffusive
term in the governing equation for the conformation tensor as,

Dtc = −(c − I)
We

+
1

Pe
∇2c (5)

where the Peclet number is defined as Pe = LV/Dtr, with Dtr being the
translational diffusivity of the polymer chain.

The addition of the diffusive term necessitates boundary conditions for the
conformation tensor to be specified. The state of the polymer chain and the ex-
tent of its stretching at the walls remain uncertain. Different researchers have
used different types of boundary conditions for the components of the con-
formation tensor. While Black, 2000 employed no-flux boundary condition,
i.e. conformation flux jc = v · c − ∇c = 0 at the walls, Sureshkumar and
Beris, 1995 applied the classical Oldroyd-B governing equation (eq.(4)) at the
walls. The latter boundary condition results in the following set of equations
for steady-state plane shear flow:

cxx = 1 + 2We2

(
dV x

dy

)2

cxy = We

(
dV x

dy

)
cyy = 1 (6)

Bhave et al., 1991 introduce molecular orientation near the wall simply by re-
quiring the elastic dumbbells to be parallel to the wall as a boundary condition.
Thus, polymer chain is assumed to be stretched along the flow direction with
its length Q0 as an arbitrary parameter.

Since polymer diffusion is a consequence of local non-homogeneity, previ-
ous models, which are based on the assumption of spatial uniformity of poly-
mer distribution, are not reasonable. Hence, a model capturing the rheology
and mass transfer phenomena in dilute polymer solution with spatially varying
distribution has been derived by a number of researchers using kinetic the-
ory approach (Bhave et al., 1991) as well as using the principles of continuum
mechanics (Öttinger, 1992) and non-equilibrium thermodynamics (Mavrantzas
and Beris, 1992). This model exhibits stress-concentration coupling and hence
accounts for stress induced migration of polymer molecules apart from poly-
mer diffusivity. The non-dimensional polymer constitutive relation is,

τp = (1 − β)
(C − nI)

We
(7)

where n is the polymer number-density. Here, we use number-density weighted
conformation tensor C = nc. The governing equation for C and the conser-

2.3    Non-homogeneous polymer solution model
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vation equation for the polymer are,

DtC = −(C − nI)
We

+
1

Pe
∇2C (8)

Dn

Dt
=

2
Pe

∇2n − 1
Pe

∇∇ : C (9)

The boundary conditions for the conformation tensor have been discussed
in the previous section. The polymer concentration satisfies the typical no-flux
boundary condition at the surfaces, i.e. j = −2∇n + ∇ · C = 0.

3. STABILITY ANALYSIS

The steady-state solution of above three models with either no-flux for con-
formation tensor at wall i.e. dyc = 0 or eq.(6) as boundary conditions, is:

φ = {V x, V y, V z, cxx, cxy, cyy, czz, cxz, cyz, p} =

{y, 0, 0, (1 + 2We2), We, 1, 1, 0, 0, 0} (10)

To study the temporal stability, this steady-state profile is superimposed with
2-dimensional infinitesimal amplitude perturbation of the form:

φ′(x, y, t) = φ̃(y)eik(x−ct)

where k is the axial wave number and scalar quantity the c is the complex wave
speed, the sign of whose imaginary part is indicative of growth or decay of the
infinitesimal disturbance.

Upon linearising the resulting equation in perturbation quantities, we get a
generalized eigen value equation of the form:

Lφ = cMφ (11)

where L and M are linear differential operators. We use Chebyshev-collocation
method to discretize the operators and obtain the eigen-spectrum of the prob-
lem using QZ algorithm.

For a plane Couette flow, Davey and Nguyen, 1971 found that perturbations
with wave-length comparable to the critical layer thickness, i.e. k ∼ Re1/2

are the least stable. As seen in Figure 1(a), for Newtonian fluid, the damping
rate for the least stable mode is minimum (i.e. Im(c) is maximum) for k =
0.63Re1/2. However, for classical Oldroyd-B fluid, the least stable eigen value
merges with the continuous spectrum and disappears before Im(c) approaches a
maximum. The singularity in the perturbation equation is due to the existence
of a stable continuous spectrum with c = y − i/(kβWe). As pointed out
by Wilson et al., 1999, this continuous spectrum is a branch cut, hence eigen
values appear as well as disappear as the flow parameters are changed.

3.1.    Classical Oldroyd-B model
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Figure 1. (a) Classical Oldroyd-B model: Imaginary part of wave speed for a range of wave
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Figure 2. Effect of fluid elasticity on Im(c) for Re = 2000, β = 0.95, k = 1.0 for three
different boundary conditions for the conformation tensor

By adding artificial diffusivity with Pe ∼ 103 − 106, the continuous spec-
trum disappears and we obtain only the discrete modes. As shown in Fig-
ure 1(b) for no-flux boundary condition for the conformation tensor, the wall
mode, qualitatively similar to Newtonian wall mode (indicated as mode 1),
continues for large wave number, even past the continuous spectrum for the
classical Oldroyd-B model. This mode has a minimum damping rate at k ∼
1.4Re1/2. However, there exists another mode (indicated by mode 2) which
becomes dominant at large wave number. This mode seems to be qualitatively
different from the Newtonian wall mode, since it does not continue to New-
tonian wall mode as β approaches unity.

3.2.    Oldroyd-B model with artificial diffusivity
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Figure 3. Wet for a range of wave number for Re = 2000. The minimum on this curve
gives the critical point (kc,Wec) (a) for no-flux boundary condition for conformation tensor;
(b) using conformation tensor governing equation in the limit Pe → ∞ at the walls

The steady state solution of eqns.(2), (8) & (9) is same as that for the pre-
vious two models, that means the polymer conformation as well as the con-
centration are uniform. However, the base profile for polymer concentration is
non-uniform for the boundary conditions suggested by Bhave et al., 1991 i.e.
Cxx = nwQ2

0, Cxy = Cxx = 0. For this case, we set the value of the per-
turbation of the conformation tensor at the wall to be zero, in order to satisfy
the stipulated stretching of dumbbells for the base state at the wall. Figure 2
shows the results of the linear stability analysis in the form of the effect of fluid
elasticity on Im(c) for three kinds of boundary conditions for c̃. While there is
no instability for the homogeneous boundary condition, the other two bound-
ary conditions result in an instability for We > Wet. For these two boundary
conditions, Figure 3 shows the neutral stability curve in Wet-k plane. The
minimum on this curve gives the critical point (kc, Wec).
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EXPERIMENTAL STUDY OF TURBULENCE 

BEGINNING AND TRANSITION CONTROL

 IN A SUPERSONIC BOUNDARY LAYER
 ON SWEPT WING

N.V. Semionov 1, A.D. Kosinov 1 and V.Ya. Levchenko 1
1
Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia 

Abstract:     The paper is devoted to an experimental study of controlled disturbances 

evolution in supersonic boundary layer of swept wing. We obtained, that the 

evolution of disturbances at frequencies of 10, 20, and 30 kHz are similar to 

the development of traveling waves for subsonic velocities. We shown, that 

mechanism of secondary cross-flow instability play main role in laminar-

turbulent transition in 3-D supersonic boundary layer. On the basis of the 

obtained data the technique of laminar-turbulent transition control with the 

help of the distributed roughness was developed. Usage of this technique, has 

allowed as to bring transition upstream by 30 % to delay downstream by 40 %. 

Key words: swept wing, supersonic boundary layer, stability, transition control. 

1. INTRODUCTION 

The attention of researchers in various countries is focused on the problem of 

transition to turbulence in spatial boundary layers. This interest arises from the 

practical applications of this phenomenon, in particular, because similar boundary 

layers are observed in the flow around a swept wing of an airplane. Most theoretical 

and experimental results on stability and transition control of a three-dimensional 

boundary layer are obtained for subsonic flow. However very few theoretical 

investigations[1-3] of supersonic 3 D boundary layer stability have been fulfilled up 

to date. The results on the laminar-turbulent transition in three-dimensional 

boundary layers for M > 1 was described in experiments[3-6]. Stationary structures 
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were registered using different methods of flow visualization. Stability of supersonic 

boundary layer on swept wing was studied in experiments [7,8, 9]. 

As is known from experiments[3] at subsonic flow over swept wing, the 

distributed roughness is an effective way of control of crossflow instability. It was 

obtained, that changing of spanwise spacing of circular roughness elements, located 

in a neighborhood of a leading edge of a swept wing, considerably effects on the 

transition location. Saric and Reed[10] obtained the first results on transition control 

of supersonic boundary layer on the swept wing. They extended method of transition 

control in low-speed experiments[11] to the case of supersonic flow. We were aware 

of the successful use of distributed microroughness for transition control in a 

supersonic boundary layer on swept wing only with subsonic leading edge.

2.          EXPERIMENTAL EQUIPMENT 

 The experiments were conducted at the ITAM SD RAS in the M-325 

supersonic wind tunnel with test-section dimensions 0.2 0.2 0.6 m for Mach 

number M = 2.0. A wing model with a 400 sweep angle of the leading edge and a 

lenticular profile was used in the experiments. A generator of localized artificial 

disturbances[12] was used to introduce controlled oscillations in the boundary layer.  

A sketch of the model, data processing, source of controlled disturbances and the 

coordinate system are described in our experiments[8,9]. The oscillations were 

measured by a constant-temperature hot-wire anemometer. Single-wire tungsten 

probes of diameter 5 m and length 0.8 mm was used. To measure a transition 

position the pneumometric or hot-wire methods were used. A transition position 

was measured at a fixed location of the probe, a unit Reynolds number was varied. 

3        STABILITY

The experimental study of controlled disturbances evolution in boundary layer 

on swept wing were conducted at M=2 and Re1=6.6 106 m-1. The measurements 

were conducted in x' cross sections by moving the hot-wire probe along the z'

coordinate, in the layer of maximum fluctuations at y=const. The results of an 

experimental study of supersonic boundary layer stability on swept wing are 

described in detail in our experiments[8,9]. Oscillograms were obtained in two sets 

of experiments for x' = 20.7, 24.6, 28.4, 32.2 mm (first set) and x' =32.2, 36.1, 39.9 

mm (second set). The initial amplitude of disturbances in the second set was higher 

approximately by 10-20 %. After the Fourier transform of periodic oscillograms in 

time, we obtained amplitude-phase distributions of the disturbances along z'. As for 

the case of a flat plate[13], the disturbances are localized in a narrow region and the 

wave train on a swept wing is asymmetric.

The design feature of the controlled disturbances source as a roughness on the 

bottom surface of a wing has resulted in formation of stationary disturbances. 

Existence of stationary vortices is characterized for three-dimensional boundary 

layer[3-6]. In distributions of U(z') a minimum was observed, caused by stationary 

crossflow disturbances. The position of the minimum of U(z') shifts downstream 

(along x) at an angle of 3.0-3.50 to the x axis, which indicates the downstream 
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entrainment of cross-flow vortices in the 

boundary layer in the region of the present 

measurements. The experimental value of 

the inclination angle of stationary 

disturbances to the free stream is close to 

the calculation results[14], where at  = 2 

was obtained, that the angle between a 

wave vector and external flow =87 -89

in the region of the low branch of neutral 

stability curve. The amplitude of the 

stationary disturbances is about 30% and 

remains practically unchanged in the first 

set of measurements. The stationary 

disturbances damp in the second set. In the 

last section (at x  =39,9 mm), where 

laminar - turbulent transition practically 

take place, a destruction of stationary disturbances is observed.

 By means of a frequency-wave analysis of the array of fluctuation oscillograms 

relative to z' and x', we determined the wave characteristics of disturbances with f =

10, 20, and 30 kHz. Note, that the amplitude and phase distributions of disturbances 

along z , and the amplitude-phase spectra along ' are reminiscent of similar 

distributions obtained for a subsonic flow at a significant distance from the 

source[13]. On the basis of the phase spectra of disturbances, we can conclude that 

there exists a range of wavenumbers where the streamwise phase growth is almost 

linear for ' = const, which allows us to determine the streamwise wavenumber. For 

each fixed value of ', we determined first the stream-wise wavenumber r and 

then r along the x' axis: r = ( r/cos400 - ' tan400). The inclination angle of the 

wave vector ' in the plane (x', z') was found from the formula '=arctan( '/ r).

The resultant dependences r ( ') and ' ( ') are plotted in fig. 1. It follows from 

these results that the disturbances with the highest amplitude for f = 10 kHz, like for 

f = 20 kHz, have an angle of inclination of the wave vector in the plane (x', z') 

between 60 and 1200. The disturbances with frequency of 30 kHz did not increase 

in this flow region. The angle of the group-velocity vector obtained for the unstable 

disturbances was about 430 in the plane (x', z'), which coincides with the direction 

of downstream entrainment of the stationary disturbances with account of 

revolution of the coordinate system. 

Another character of disturbance evolution is observed in the nonlinear stage 

(second set of measurements). The amplitude and phase distributions at the basic 

frequency remain about same, as well as at earlier stage of evolution. Though also 

they changes from section to section, what does not allow to determine the wave 

characteristics r  and . The main differences are observed at subharmonic 

frequency.  Figure 2 shows the amplitude-phase '-spectra of disturbances for 10 
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kHz for second set of measurements. The primarily three-dimensional disturbances 

at the subharmonic frequency are transformed in "two-dimensional". The amplitude 

of disturbances at subharmonic frequency surpasses amplitude of disturbances at 

base frequency. The strong growth of subharmonic disturbances, on all visibility, is 

connected to interaction with 

stationary disturbances. The same 

processes were observed at studying 

of nonlinear development of 

controlled disturbances in supersonic 

boundary layer on the flat plate at 

large initial amplitudes[15]. In the last 

section (39.9 mm) happen fast 

destruction of traveling disturbances 

and stationary structure. The obtained 

experimental data are in qualitative 

correspondence with theoretical 

results[2].

The data on controlled disturbance 

development in a supersonic boundary 

layer on swept wing indicate a 

continuous relations of the traveling disturbances and stationary disturbance. The 

bounds of the artificial wave train and the stationary structure coincide. The angle of 

inclination of the wave vector for energy-carrying disturbances is directed across the 

flow, and the group-velocity vector is aligned with the steady cross-flow 

disturbance. A simultaneous destruction of the traveling and stationary disturbances 

takes place. Besides, an excitation of the high-frequency disturbances, which 

increase downstream, was found out in the natural and controlled cases. These 

results coincide with the calculations of the secondary instability of the crossflow 

disturbances [1,2]. Hence, it is possible to say, that mechanism of secondary 

crossflow instability play the main role in laminar-turbulent transition in 3-D 

supersonic boundary layer. 

4             TRANSITION CONTROL 

As was shown above, the transition to turbulence in a supersonic boundary 

layer on swept wing is caused by interaction of stationary disturbances and 

traveling disturbances. Thus, for laminar-turbulent transition control in this case it 

is easier and more effective to exert influence upon stationary structures, the 

character of which development in the greater degree influences on transition 

location.   As is known from subsonic experiments[11], the distributed roughness is 

used for transition control in three-dimensional boundary layers. But the optimum 
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2 mm
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Figure 3. Example of distributed roughness 

parameters of the distributed 

roughness for the most effective 

transition control are completely 

unknown. As a distributed 

roughness longitudinal strips, 

smoothed longitudinal strips and 

dot roughness were used.

Roughnesses were rendered with 

the help of a special matrix and nail 

polish on some distance from the 

leading edge. The example of 

longitudinal roughness is presented 

in figure 3. It was obtained, that the 

dot roughness (step of 2 mm) results in earlier transition (approximately by 30 %). 

Therefore it was suggested to use longitudinal strips as a roughness. Width of each 

strip and as distance between them it was l=1, 1.5 or 2 mm in various experiments. 

Measurements of transition location were carried out at the fixed position of the 

probe at x = 85 mm. These measurements have been executed both for a case of a 

smooth surface of model, and for various kinds of distributed roughness. The 

distributions of pulsation and constant component from an output of a hot-wire 

anemometer were obtained depending on parallel leading edge coordinate of the 

wing at x = 65 mm. Simultaneously in each point of measurements the amplitude-

frequency spectra of disturbances were obtained too. More detailed data on 

transition control with the help of the distributed roughness will be published in 

proceedings of ICMAR 2004 conference [16].

The distributions of the mass-flow rate U and mass flux <m > over the 

spanwise coordinate z' for the case of smoothed distributed roughness with l=2 mm 

are presented in fig.4. The periodicity in distributions has the sharply expressed 

form. In this case it is possible precisely to determine a step between stationary 

structures in a spanwise direction. For a case of a smooth surface of model and 

another distributed roughnesses, periodicities in distributions U and <m > also were 

observed in experiments[7], but they were not brightly visible. A comparison of 

frequency spectra obtained for distributed roughness it is visible that in the case of 

l=2 mm similar spectra are obtained at considerably higher values of Reynolds 

numbers. All these distinctions in behavior of disturbances evolution in case of 

smooth surface and different distributed roughnesses become understandable after 

the analysis of the data on the position of laminar - turbulent transition. Results of 

measurements of laminar-turbulent transition are plotted in figure 5. It is obtained, 

that in the case of distributed pointed roughness (curve 3), Reynolds number Retr

on  30 % is less, than for the case of a smooth surface (curves 1 and 2). Using of 

longitudinal distributed roughness (curves 4, step 1 mm and 5, step 2 mm) lead to 

stabilization of the flow. Note, that the curve 5 is obtained for a roughness subjected 
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of additional polishing. Hence, smoothed roughness with l=2 mm has resulted to 

flow laminarization of 40%. Flow laminarization is reflected on disturbances 

evolution and on spectra. As to periodicity in distributions of the mass-flow rate U

and mass flux <m > over the spanwise coordinate z', for a case of the smooth surface 

and distributed roughness l=1 mm, measurement were conducted in the transition 

zone. Apparently, in this case there was a suppression of stationary disturbances. It 

was obtained in experiments[9] too. It is not suppression of stationary disturbances 

in the region of measurement in the case of l=2 mm.

Figure 4. The distributions of U and

<m > over z'

Figure 5. Measurements of laminar-

turbulent transition 

Thus, using the obtained data on process of turbulence beginning in a supersonic 

boundary layer on swept wing, the technique of transition control was designed. The 

form of roughnesses as longitudinal structures distributed along spanwise of the 

wing was designed. A choice of the form is very important question and original 

form, offered by us, allowed obtains of 40 % laminarization of supersonic boundary 

layer on swept wing with supersonic leading edge 

5.          CONCLUSIONS

An experimental study of disturbance development in a supersonic boundary 

layer on swept wing was carried out. The wave characteristics of traveling 

disturbances in controlled conditions were determined. It was obtained that the 

evolution of controlled disturbances is similar to development of travelling waves 

for subsonic speeds. It was shown experimentally that secondary cross-flow 

instability plays the main role in laminar-turbulent transition in 3-D supersonic 

boundary layers.

A technique of control of laminar - turbulent transition on swept wing at 

supersonic speeds of flow was designed. The influence of a distributed roughness on 

disturbances evolution and on the location of laminar - turbulent transition was 

studied. Usage of this technique (different forms of a distributed roughness), has 

allowed as to bring transition upstream by 30 % and to delay downstream by 40 %.
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TRANSITION INVESTIGATION ON HYPERSONIC
FLAT-PLATE BOUNDARY LAYERS FLOWS WITH
CHEMICAL AND THERMAL NON-EQUILIBRIUM

Christian Stemmer
Institut für Strömungsmechanik, Technische Universität Dresden, George-Bähr-Str. 3c, 01069
Dresden, Germany

Abstract: The influence of high-temperature gas-effects on hypersonic flat-plate boundary-
layer flows is presented in this investigation. Chemical reactions are taken into
account and the temperature dependent thermodynamic properties are modelled.

The present work investigates for the differences in the spatial disturbance
development in a flat-plate boundary-layer flow at M= 20 with ideal-gas prop-
erties and for a chemical non-equilibrium case. The comparison of DNS data
with linear stability results for the ideal-gas case show good agreement. The
non-equilibrium results show a decrease in disturbance levels mostly for the
three-dimensional disturbance waves whereas two-dimensional (second mode)
disturbances are almost unchanged in their linear amplitudes.

Keywords: hypersonic flow, dissociation, chemical reactions, flat-plate boundary-layer tran-
sition, compressible linear stability theory

1. INTRODUCTION

Laminar-turbulent transition for hypersonic flows is still poorly understood
in its complexity due to the difficulties in experimental and numerical inves-
tigations. After early flight tests revealing general phenomenological insights
into hypersonic flows around rockets in the 50s and 60s (Schneider, 1999), the
development of a compressible stability theory (Mack, 1969) opened the possi-
bility to investigate a given boundary-layer flow for flow instabilities for ideal
gases. In addition to the classical Tollmien-Schlichting modes for incompress-
ible flows, so called Mack modes were found in the theory that contribute to the
complexity of compressible transition (see also Stuckert and Reed, 1991; Ma-
lik and Anderson, 1991). A more complete overview on transition in com-
pressible and incompressible flows can be found e.g. in Kleiser and Zhang,
1991; Kachanov, 1994. In the late 80s and early 90s, renewed interest in high
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speed flows spawned numerous wind tunnel tests where just one shall be men-
tioned here, containing many references to these experiments. Stetson and
Kimmel, 1992, investigated the transition on a cone at M=8 under varying
conditions. In general, wind-tunnel tests suffer the draw back that it is almost
impossible to mimic free-flight conditions at hypersonic speeds in the tunnel
due to the high stagnation temperature. Therefore, most measurements are so
called “cold” measurement and don’t satisfy the “hot” conditions in free flight.

With these obvious limitations at hand, the contribution of Direct Numeri-
cal Simulations (DNS) to the problem of understanding free-flight hypersonic
boundary-layer transition is very valuable. With increasing computer capabil-
ities and capacities, the path is open for detailed DNS investigations of “hot”
hypersonic flows, where non-equilibrium and chemical reactions can play a
dominant role in the transition process. Experiments for qualitative validation
of the results are available in Mironov and Maslov, 2000.

2. NUMERICAL METHOD

The numerical method is based on the discrete numerical solution to the
complete, unsteady three-dimensional Navier-Stokes equations. The method
is based on the finite volume approach (Adams, 1998; Adams, 2000) and has
extensively been validated against experiments (see also Loginov et al., 2004).
The employed finite differences employed are derived on the base of Lele,
1992. A hybrid ENO-scheme treating shocks locally is implemented exhibiting
shock-capturing capabilities. A 3rd order low-storage Runge-Kutta algorithm
is used for the advancement in time. The inflow is prescribed, the conditions
at the wall satisfy the no-slip boundary conditions (except for the disturbance
strip location) and is non-catalytic. The outflow is realized with a damping
zone and the upper boundary is modelled with a non-reflective boundary con-
dition (Adams, 2000). An isothermal wall condition has been applied here.

The chemical reaction modeling is implemented according to Park, 1989.
The thermodynamic properties are modeled with curve fits as described in Blot-
tner et al., 1971 and in Candler, 1995. A steady two-dimensional base flow is
calculated before the disturbances are introduced. The disturbance introduc-
tion is realized with the help of a disturbance strip that models periodic pres-
sure disturbances at the wall (compare Eißler and Bestek, 1996 and Stemmer
and Mansour, 2001).

The presented results were accomplished with a resolution of 801x17x255
points in down-stream (x), span-wise (y) and wall-normal (z) direction, respec-
tively. The effectiveness of the numerical approach is documented in Stemmer
and Adams, 2004, as obtained on a NEC SX5 vector supercomputer. The grid
spacing was ∆x = 0.0205 m, ∆y = 0.00196 m, ∆z = 0.0625 m with a time
step of ∆t = 1.729 · 10−7 s.
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Figure 1. translational temperature distrib-
ution within the boundary layer for the react-
ing non-equilibrium case

Figure 2. vibrational temperature distribu-
tion within the boundary layer for the reacting
non-equilibrium case

3. RESULTS

The flight condition for the simulations was H=50km (T∞=270.65K,
p∞=79.78 N/m2) and M=20 (u∞=6596 m/s). The Knudsen number yields
Kn = 0.003 assuring the continuum assumption. The wall temperature is
fixed to TW /T∞ = 3. The ideal-gas results are compared with the non-equili-
brium reacting case in the following.

The influence of the chemical reactions and the non-equilibrium on the flow
shall be demonstrated with the help of the temperature inside the boundary
layer. For the ideal-gas case, maximum temperatures just above T = 4800 K
are observable. For the reacting non-equilibrium case, the translational tem-
perature reaches much lower levels of T ≈ 2300 K further out in the boundary
layer as for the ideal-gas case as shown in Fig. 1. The vibrational tempera-
ture reaches levels that are comparable to the translational temperature but at a
location much closer to the wall as shown in Fig. 2.

This results in a change in species concentrations as demonstrated in Figs. 3
and 4 (note the differing scales for cN ) at the downstream position x = 5.5 m.
For the ideal-gas case (equilibrium conditions), the minimum of the atomic
nitrogen concentration cN is at the same location as the maximum temperature.
For the non-equilibrium reacting case (Fig.4), the level of cN is highest where
the maximum vibrational temperature is present. Very notable as well is the
presence of the highest levels of nitric oxygen cNO for the non-equilibrium
case close to the same location. This corroborates the fact, that the vibrational
temperature is maximum where the level of non-equilibrium is maximum.

Linear Stability theory. A comparison of DNS profiles with eigenfunc-
tions of the linear stability theory for an isthermal-wall flat-plate boundary
layer at Ma=4.8 (from Eißler, 1995) is presented in Fig. 5. A more extensive
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Figure 3. Species concentrations at x=5.5m
for the equilibrium ideal-gas case. cN × 5

; cN2
; cO ; cO2

; cNO × 10

Figure 4. Species concentrations at x=5.5m
for the reactive non-equilibrium case. cN ×
10 ; cN2

; cO ; cO2
; cNO × 10

comparison of the DNS profiles with the linear stability eigenfunctions for the
presented Ma=20 case can be found in Stemmer, 2002. The comparison of the
DNS results with the amplification rates of the linear stability theory shows
good agreement. The initial oscillations result from the way the disturbances
are introduced at the wall (not just a single mode is excited – see Eißler, 1995,
for a discussion thereof).

Figure 5. Amplification rates for a Ma=4.8

Disturbance development. For
the disturbance calculations, a two-
dimensional instability wave is in-
troduced together with a three-
dimensional wave with half the re-
spective amplitude and an oblique-
ness angle of θ = 15◦ (Fig. 6) for the
ideal-gas case. The two-dimensional
wave nonlinearly generates higher
modes. The notation of the distur-
bance wave is in a pair (h, k), where
h denotes the multiple of the distur-
bance frequency and k denotes the
multiple of the basic spanwise wave
number. The three-dimensional dis-

turbance wave (1,1) with half the amplitude is just below the two-dimensional
disturbance wave (1,0). The amplitudes are too small for nonlinear interac-
tions.

A comparison of linear disturbance amplitudes for the ideal-gas (non-reac-
ting in the figure legend) and the reacting non-equilibrium case is shown in

boundary layer (LST from Eißler, 1995 p.63)
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Figure 6. umax for the ideal-gas case for
2D and 3D disturbances with F=3.46·10−5

Figure 7. comparison of umax for the
ideal-gas/reacting case for 2D and 3D distur-
bances with F=3.46·10−5

Fig. 7. The two-dimensional disturbance waves for the two cases are at the
same level. Nevertheless, the reacting case shows a decrease in disturbance
amplitude for the three-dimensional wave (1,1) by a factor of 2-3 compared to
the ideal-gas case. Larger differences are not to be expected for the present
disturbance amplitudes since the difference in temperature between the ideal-
gas and the reacting case is roughly 2-3 K. For non-linear disturbances, a larger
influence of the chemical reactions is to be expected.

4. CONCLUSIONS

The presented work shows the capability of the employed numerical proce-
dure to tackle more difficult and extensive laminar-turbulent transition investi-
gations in a hypersonic boundary-layer flow over a flat plate.

The numerical method is briefly outlined and the chemical and thermo-
dynamic modeling is mentioned. A comparison with the compressible linear
stability theory is conducted which shows good agreement within the limita-
tions of the theory. First linear disturbance calculations in a three-dimensional
flat-plate boundary-layer flow are presented. The comparison between the
ideal-gas case and the reacting case show reduced disturbance amplitudes for
the three-dimensional waves by a factor of 2-3 for the chosen flight case and
the linear disturbance input. Nonlinear disturbances are expected to have a
much larger (attenuating) effect on the disturbance development.

Non-linear disturbance calculations are the next step in the investigation of
the role of the chemical reactions and the thermal non-equilibrium in laminar-
turbulent transition. Simulations for frozen conditions will be conducted as
well as simulations for cold (wind-tunnel) and hot (free-flight) conditions.
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Abstract: An experimental study is done to confirm the existence of a new instability 

due to the curvature of external streamlines in a three-dimensional boundary 

layer. Monochromatic-wave excitation from a tiny hole near the attachment 

line of a yawed circular cylinder is used to separate unsteady disturbances 

due to the streamline-curvature in-stability from traveling waves of the 

cross-flow instability.  Experimen-tal results show that a point-source 

disturbance evolves into a wedge-shaped distribution and that amplitude 

and phase distributions in the spanwise direction definitely include both 

modes arising from the two instabilities. Observed characteristics and 

behavior of those disturbances are shown to be in excellent agreement with 

the latest results of a linear stability theory based on the complex 

characteristic method.   

1. INTRODUCTION 

Theoretical analyses by Itoh (1994, 1996a,b)  show that the streamline 

curvature destabilizes the flow in the attachment-line region, while the wall 

curvature has an attenuating effect as has been already shown, and that a 

new instability is produced by the curvature of external streamlines and 

yields unsteady disturbances of longitudinal-vortex type like travel-ing 

waves induced by the cross-flow instability. It is also found that this new 

instability, labeled the streamline-curvature (referred to as S-C henceforth) 

instability, is really much weaker than cross-flow (C-F) instability in 

conventional geometric configurations. Itoh (1996a) suggests that S-C mode 

can be detected in dispersive development downstream of a point source, 

because the propagation direction of S-C disturbances is opposite to that of 

C-F ones.  Takagi et al. (1996, 1997) gave the first experimental evidence 

for the existence of S-C disturbances as well as traveling C-F disturbances in 
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an artificially excited boundary layer on a yawed circular cylinder. Their 

subsequent experiments (Takagi and Itoh, 1998; Takagi et al, 2000; 

Tokugawa et al., 2002) also showed some important features of S-C 

instability in the boundary layer under similar conditions and in a rotating-

disk flow. But the dispersive develop-ment of both S-C and C-F disturbances 

is not yet fully investigated along the theoretical predictions. The present 

study is therefore directed to experimental observation of the separate 

appearance of S-C and C-F modes in the wedge-shaped disturbances 

originating from a point source, and detailed characteristics in spatial 

development of both disturbances are compared with the linear stability 

theory based on the method of complex characteristics by Itoh (1996a). 

2. EXPERIMENTAL ARRANGEMENT 

A circular cylinder model prepared for a series of stability experi-ments 

at the JAXA is made from a steel pipe with an external diameter of 0.5m and 

a length of 3.1m. This model was vertically set at a sweep angle of 50º in a
test section 5.5m in width by 6.5m in height and 9m in length of the Low-

speed Wind Tunnel of the JAXA. More details are shown in Takagi and Itoh 

(1994). A tiny hole with a diameter of 0.6mm was drilled at the azimuthal 

angle =20º from the attachment line in order to introduce an artificial 

acoustic disturbance into laminar boundary layer by means of a loud speaker 

installed underneath the hole. All the experi-ments have been conducted at a 

wind speed of 10m/s, which gives a Reynolds number RQ = 0.5x106 based on 

the uniform velocity Q and the streamwise length L of the cylinder, and at 

which freestream turbulence level to the uniform velocity is approximately 

0.15%.

3. EXPERIMENTAL RESULTS AND COMPARISON 

WITH LINEAR STABILITY THEORY 

For the present experimental condition with a sweep angle 50º of the 

circular cylinder at a Reynolds number RQ = 0.5x10
6
, linear stability 

calculations by Itoh (1996a) give the amplitude distributions in Y of 

disturbances with various values of the non-dimensional frequency 
ˆ =2 Lf/(Q RQ

1/2
) developing from the single forcing location X0=0.1 to the 

observation location X1=0.3.  Here, X and Y are normalized by the distance l,

which is the surface length between the leading and the trailing edges.  The 

results  definitely  exhibit  that  the new streamline-curvature mode separately  
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appears at the left flank of  cross-flow  bump in a  wedge  developing  from  a 

point source.  In experiments, two forcing frequencies for S-C and C-F 

modes were chosen according to the theoretical calculations as f=45Hz

corresponding to the most unstable frequency ˆ =-0.03 for S-C mode, and 

f=130Hz gives the most unstable frequency ˆ =0.09 for C-F mode, where 

the negative sign of the frequency denotes that the phase of disturbance 

propagates in the direction opposite to its wavenumber vector. On 

continuous introduction of a monochromatic disturbance with f=45Hz or 

f=130Hz at X0=0.11 ( =20º), spanwise variations of the resulting 

fluctuations were measured at X1=0.31 (  =56º) as illustrated in Fig.1, 

which includes two amplitude distributions (solid and dotted lines by theory) 

of ˆ =-0.03 and 0.09.  Experimental results given there surely show two 

distinct bumps in each spanwise variation: that is, the large bump consisting 

of the C-F disturbances and the minor bump due to the S-C instability in the 

left-hand region of the wedge in consistence with the theoretical results. The 

peak position of the C-F bump is found to agree very well with the 

calculation, but that of the S-C mode looks slightly different from the 

theoretical prediction. This difference is related with appearance of several 

minor peaks on the left-hand side of the C-F bump clearly visible in Fig. 

1(a), where the S-C mode is expected to grow.  Figures 1(a) and 1(b) also 

indicate that the S-C instability is much weaker than C-F instability in the 

present geometric configuration.  Relative peak magnitude of the S-C mode 

to the C-F mode shows quantitative agreement between experiment and 

theory, but spanwise width of the observed wedge is slightly wider than the 

calculation. 

The separate appearance of S-C and C-F modes observed enables us to 

investigate their spatial characteristics using cross-correlation measure-

ments between observed growing disturbance and speaker input signal. The 

phase distribution in the spanwise direction has been already overlaid in 

Fig.1.  This result indicates that the C-F disturbance propagates in the larger 

Y direction and the S-C disturbance in the smaller Y direction in accordance 

with theoretical prediction.  Similar phase measurements in the spanwise 

direction were carried out at a different chordwise location X=0.294 ( =53º)

to determine the exact propagation direction, phase velocity and wavelength 

of both S-C and C-F disturbances. Two phase distributions measured at 

X=0.294 and at X1=0.31 are quite similar and indicate development of a 

steady wave pattern due to continuous forcing.  Inclination of a wave crest of 

unsteady disturbances is readily determined from the displacement between 

X=0.294 and X1=0.31 and the spatial shift of the spatial distribution along the 
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Y axis so as to overlap each other.  This overlapping procedure shows that 

the wave crests of both S-C and C-F disturbances have an inclination of 

=26º from the chordwise direction near X=0.3, which is in good 

agreement with theoretical results =33º for the most unstable S-C mode 

and =23º for the most unstable C-F mode (Itoh, 1996a) as shown in Fig.2.  

Using these results, the exact propagation directions of S-C and C-F 

disturbances, which are normal to their wave crests, are also shown with the

arrows in Fig.1.

In the steady pattern of wedge-shaped disturbances generated by con-

tinuous forcing, the wavelength  of unsteady disturbance is determined 

from the relation = scos( ), where the spanwise distance s between 
adjacent wave crests is obtained from each phase distribution of Fig.1. We 

really have the wavelengths CF = 8.9mm for the C-F disturbance in case of 

130Hz forcing and SC =15.6mm for S-C disturbance in case of 45Hz 
forcing, showing good agreement with the calculations 8.6mm for C-F 

disturbance and 16.9mm for S-C disturbance (Itoh, 1996a).   

 The phase velocity C is obtained from the simple relation fC ,

giving CCF/Q  = 0.115 for C-F disturbance with 130Hz forcing and CSC/ Q

= 0.07 for S-C disturbance with 45Hz forcing.  These values are in good 

agreement with theoretical predictions 0.11 and 0.073, respectively.  Figure 

2 illustrates the behavior of both C-F and S-C disturbances near X=0.31

( =56º) with the wave crests of traveling disturbance denoted by a pair of 

two lines.   

Another important difference in characteristics between C-F mode and S-

C mode is the phase distribution in the normal-to-wall direction.  The phase 

distributions (in accordance with Itoh’s definition) in addition to the 

amplitude distributions are compared with the theoretical calcula-tions in 

Fig.3, where comparisons are made at Y =0.163 near the left edge of the S-C 

bump with 45Hz forcing, and at the peak location of the C-F bump with 

130Hz forcing.  The amplitude distributions of two modes are similar but the 

phase distributions show a significant difference.  The phase of the C-F 

disturbance has a definite advance of nearly 160º as the distance increases 

from the wall to the boundary-layer edge, while the S-C disturbance varies 

only 30º in phase across the boundary layer.  Good agreement between 

experimental results and eigen functions is shown, except for the phase 

distribution of the S-C disturbance near the boundary-layer edge, where 

disagreement may be attributed to experi-mental error due to very low 

amplitude of the S-C mode.  
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Figure 1. Observed amplitude and phase distributions in the spanwise direction at the

circumference =56  in the wedge-shaped region developing from a point source at

=20º together with theoretical results.  (a) the case of forcing frequency 45Hz for
the most unstable S-C mode, (b) the case of forcing frequency 130Hz for the

(a) (b)

Y Y

most unstable C-F mode 

Figure 2. Spatial behavior of C-F

disturbance and S-C disturbance in

the wedge-shaped region. The

numbers in parenthesis show

(a) S-C mode

(b) C-F mode

Figure 3. Amplitude and phase distributions of observed velocity components in

comparison with eigen-solutions.  (a) Streamline-curvature disturbance at the peak

location Y=0.163 in the negative-frequency region in Fig. 1(a), (b) Cross-flow

disturbance at the peak location Y=0.21 in the positive-frequency region in Fig. 1(b) 
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4. CONCLUDING REMARKS 

Three-dimensional boundary layers over highly curved wing surface are 

characterized by both the cross flow and the curvature of external stream 

lines.  Experimental results surely showed the separate appearance of two 

distinct bumps in the spanwise amplitude distributions. The smaller bump 

consists of the negative-frequency disturbances, which are representative of 

the streamline-curvature instability, and the larger bump is of the positive-

frequency disturbances due to cross-flow instability, though an amplitude 

modulation due to superimposition of two modes weakly appears between 

them.  The phase and amplitude distributions in the normal-to-wall direction

of the disturbances observed at the peaks of two bumps showed good 

agreement with the eigen-solutions of linear stability theory. It was also 

confirmed that detailed behavior of two instability disturbances, such as the 

inclination of wave crest, propagation direction and phase velocity as well as 

the frequency and the path line of the most unstable disturbance, also agrees 

very well with the theoretical predictions.  Such quantitative agreement 

verified validity of the linear stability theory based on the complex 

characteristic method.



RECEPTIVITY OF SWEPT ATTACHMENT LINE 

BOUNDARY LAYER TO FREE-STREAM 

VORTICITY

Maxim V. Ustinov 
Central aerohydrodynamic Institute, Zhukovsky, Russia 

Abstract: Receptivity of the attachment line boundary layer on an infinitely long 

cylinder, whose axis is inclined relative to the flow direction, to free-stream 

vortical disturbances is studied. The perturbations are maximal at the upper 

edge of the boundary layer and its amplitude is proportional to R . This may 

be a reason for subcritical laminar-turbulent transition. 

Key words: receptivity, attachment line, swept wing, vorticity, turbulence 

1. INTRODUCTION 

Study of the origin of disturbances and growth in the attachment line 

boundary layer is an important part of the investigation of swept wing 

laminar-turbulent transition. It is clear that turbulence originating at the 

attachment line renders ineffective any means of laminar flow control in the 

boundary layer on the entire wing. Instability waves in attachment line 

boundary layer were first observed experimentally by Pfeninger & Bacon1.

The early results were revised by Poll2,3 who found that transition in this 

flow occurs for 235<R<580 depending on the size of the surface roughness. 

First theoretical description of attachment line flow instability was based on 

Orr-Sommerfeld equation written for axial velocity profile2. It gives 

incorrect critical Reynolds number. This inconsistency was removed by 

Hall, Malik & Poll4 who derived and solved the system of linear stability 

equations accounting for flow non-parallelism. By means of DNS Spalart5

found that turbulent attachment line flow could be maintained for R>260. 

This is in good agreement with the lower limit of transitional Reynolds 

number found in experiment. All the studies mentioned above dealt with 
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disturbances originating inside the boundary layer. However, attachment line 

transition may be triggered by outer flow disturbances. The present study is 

focused on investigation of receptivity of the attachment line boundary layer 

to free-stream vorticity normal to the leading edge. As was shown by 

Goldstein, Leib & Cowley
6
 such disturbances undergo amplification via 

vortex lines stretching by flow around the blunt leading edge. 

2. PROBLEM FORMULATION AND SOLUTION 

We shall consider the flow of viscous incompressible fluid over an 

infinite swept cylinder. The flow configuration and general designations 

used are shown in Figure 1. We normalize all variables by the free-stream 

velocity u  and the radius of the cylinder 0r .

Figure 1. Flow configuration and general designations 

The oncoming flow is considered to be nominally uniform except for 

infinitesimally small perturbations of streamwise (u ) and spanwise (u )

velocity components. The perturbations are uniform in the vertical direction 

(along axis), periodic along  and , and are convected downstream 

with the flow velocity. Such a flow is represented in the following form 
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The perturbations are strictly periodic along the axis of the cylinder and 

they decay in the normal direction. Such perturbations correspond to the 

solution of linearized Navier-Stokes equations in uniform flow and may be 
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considered as a model of turbulence excited by the inclined grid. The 

Reynolds number /0ruR  is assumed to be large. Periods of 

perturbations are scaled as the attachment line boundary layer thickness, so ~
,~  are scaled as 

2/1
R . The flow is evaluated in the cylindrical co-

ordinates ,, rx  shown in Figure 1b. Further we shall focus on finding the 

solution for infinitesimally small polar angles . Solutions of the following 

form are sought. 

i
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erwrvru

rWrVrUuuu
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sin~

;)cos1( trx
 (1) 

Here the basic flow 
000 ,, WVU outside the boundary layer corresponds 

to the potential flow around the cylinder with imposed axial velocity and are 

given by generalized Hiemenz solution in it. Axial and radial wavenumbers 

and  here are the projections of the wavevector of the free-stream 

perturbations on x  and r . The radial wavenumber is complex due to the 

attenuation of disturbances in the radial direction. Substitution of this into 

Navier-Stokes equations, linearization in  and accounting for the largest in 

 terms gives the boundary value problem for the set of ordinary 

differential equations for the perturbations wvu ,, . Matched asymptotic 

equations method is applied for this problem solution. For this purpose the 

flowfield is divided into outer inviscid region where 1~r and the boundary 

layer of thickness of )( 2/1
RO . Preliminary analysis of the solution in the 

outer region made for 2/1~
,~1 R  reveals that its behavior near the 

wall crucially depends on the scaling of the radial wavenumber . In a 

general case 1~  the perturbations remain finite as 1r .

However, if )1(O  the pulsations of axial and vertical velocity become 

infinite as 1r . Hence, only this case is considered in detail. It 

corresponds to a wavenumber almost parallel to the cylinder axis. Further we 

assume that )1(),( 2/1
ORO  and introduce the following scaling for 

perturbations in the inviscid region 

1~,,,,

,,,, 12/12/1
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pRpwwvvuRuR
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Substution of this into linearized Navier-Stokes equations and retainment 

of the largest in 
1

R terms reduces the problem in the outer region to the 

initial value problem for ordinal differential equations 
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Its solution is easily obtained analytically, but since it is too cumbersome, 

only its asymptoticl form for 1r  is presented here 
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In the boundary layer, solutions for perturbations of the following form 

are sought
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Substitution of this and eq.1 into linearized Navier-Stokes equations and 

elimination of pressure leads to two coupled equations 
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Here F and G  are functions describing generalized Hiemenz flow as 
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The same equations were used by Hall, Malik & Poll
4 for stability 

analysis of the attachment line flow. Boundary conditions for them follow 

from the outer solution (eq. 2) and the no-slip conditions at the wall 

;,0,0)0(',, )1(ii
WVWWV

Equations (3) with these boundary conditions were solved numerically by 

the fourth order Runge-Kutta method using Godunov’s orthogonalizations. 

3. RESULTS AND DISCUSSION 

Vertical profiles of the perturbations of the axial and vertical velocity 

obtained for 0Re,300,1.0 ** R  are shown in Figure 2. (Under the

assumption made, the imaginary part of  is fully determined by *  as 

)2Im
2

*
, hence  will be used to designate the real part of radial 

wavenumber). Solution for V  are not shown because the pulsations of the 

chordwise velocity are negligibly small. Perturbations of the axial velocity 

excited by free-stream vorticity are maximal at the outer edge of the 

boundary layer. 

Figure 2. Profiles of amplitude and phase of perturbations in boundary layer 
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The profile is quite different from the eigensolution for 

033.0,300 **R  which reaches maximum well inside the boundary 

layer. The difference is explained by the difference in phase velocity of the 

forced perturbations and the eigensolution. Forced pulsations have maximum 

in  for zero radial wavenumber and gradually decrease with growth of 

|| . Amplification factor  of the disturbances as a function of 
*R  and 

*  is presented if Figure 3 a. 

Figure 3. Amplification factor of disturbances in boundary layer 

It is defined as the ratio of the maximal pulsations of the axial velocity in 

the boundary layer to the perturbation of the streamwise velocity in the free 

stream for 1 (see Figure 1a). Amplification is substantial 60~k  for 

subcritical Reynolds number and this may be a reason for subcritical 

transition at the attachment line. As shown in Figure 3b the amplification 

factor grows linearly with Reynolds number. This scaling of disturbances is 

similar to amplification of optimal perturbations in the boundary layer on a 

flat plate7
. So, as for the flat plate, the Reynolds number of laminar-turbulent 

transition in the attachment line boundary layer should be inversely 

proportional to the free-stream turbulence level. 

The research was supported by RFBR (grant # 04-01-00632 and 

1984.2003.1).

REFERENCES

1. Pfeninger, W., Bacon, J.W. Amplified laminar boundary layer oscillations and transition at 

the front attachment line of a 450 swept flat-nosed wing with and without suction. In 

Viscose Drag Reduction (ed. C.S. Wells), pp.85-105. Plenum Press (1969) 

380



2. Poll D.I.A. Transition in the infinite swept attachment line boundary layer., Aero. Q.30,

607-629 (1979) 

3. Poll D.I.A. Some observations of the transition process on the windward face of a long 

yawed cylinder. J. Fluid Mech. 150, 329-356 (1985) 

4. Hall P., Malik M.R., Poll D.I.A. On the stability of an infinite swept attachment-line 

boundary layer. Proc. R. Soc. Lond. A 395, 229-245 (1984) 

5. Spalart P.R. Direct numerical study of leading edge contamination. AGARD CP-438 (1988) 

6. Goldstein M.E., Leib S.J., Cowley S.J. Distortion of a flat plate boundary layer by free-

stream vorticity normal to the plate. J. Fluid Mech. 237, 231-260 (1992)

7. Andersson P., Berggren M., Henningson D.S. Optimal disturbances and bypass transition 

in boundary layers. Phys. Fluids. 11(1), 289-309 (1999) 

381Receptivity of swept attachment line boundary layer 



OBSERVATIONS OF CROSSFLOW TRANSITION ON A 

SWEPT WING WITH GAW-2 AIRFOIL SECTION 
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Abstract:  Low speed experiments were conducted to study features of crossflow transition on 

the windward surface of a wing swept at 40 . Surface pressure and wall shear stress 

fluctuation measurements and flow visualization by chemical sublimation 

conducted at different incidence angles revealed both stationary vortices and TS 

waves. Interesting results from the hot-film gages are discussed. 

Key words:  Swept  wing; cross flow instability; transition; stationary waves; traveling waves. 

1.  INTRODUCTION 

The problem of transition in three-dimensional boundary layers by crossflow 

instability, especially occurring on a swept wing, has gathered considerable 

interest in the recent past as seen in comprehensive reviews by Bippes[1] and 

Saric et al[2]. The flow near the leading edge region of a swept wing is 

influenced by three dimensionality and surface curvature, which induce a 

crossflow component in the boundary layer. An inflection point exists in the 

crossflow profile making it inherently unstable leading to amplification of 

both stationary and traveling waves. The stationary waves are observed as 

streamwise streaks by surface flow visualization and the traveling waves are 

often observed as a broad band hump in the spectra. Experiments have 

shown that either of these waves could eventually cause transition. There 

have been different approaches[3-5] adopted to predict crossflow transition; 

different levels of success have been seen in the use of e
N methods. While 

significant progress has been made in the understanding of certain broad 

features of crossflow transition, a variety of carefully planned experiments 

would be still needed for gaining further insight and modeling. This paper is 

essentially an experimental study documenting certain broad features of 

cross flow transition on a swept wing with modified GAW(2) airfoil section.
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2.  EXPERIMENTS 

Experiments were conducted in the 1.5mx1.5m low speed wind tunnel at 

NAL, which has a freestream velocity range of 8-50m/s; the mean velocity 

in the test section is uniform to within 0.3% and the longitudinal turbulence 

intensity is within 0.10%. The wing model made of glass fiber composite 

(Fig.1) had a 15% thick GA(W)-2 airfoil section and a chord of 0.5m. The 

wing was swept at 40  and spanned across the test section side walls. The 

model had 28 static pressure ports on each surface at different chordwise 

positions on the central span of the wing. Static pressure distribution was 

measured using a Scanivalve coupled to a Setra differential transducer. The 

model also had an array of McCroskey hot-film gages (from Micro-

measurements, USA) on the windward surface at different chordwise 

positions as illustrated in Fig.1. The two hot-films A & B of the McCroskey 

are perpendicular to each other and were aligned symmetric to the chord 

line. The gages were connected to two channels of a CTA system (DANTEC 

56C01) and operated at the overheat ratio of 1.2. The HP and LP filters were 

set at 3Hz and 3KHz respectively at a gain of 100. Signals from the two 

gages were acquired simultaneously on the PC at 2kHz for 8s. The voltage 

fluctuations thus acquired are representative of the wall shear stress 

fluctuations. Chemical sublimation technique using Naphthalene was utilised 

to observe broad features of transition and the presence of stationary waves. 

Tests were carried out at the freestream velocity of 35m/s, chord Reynolds 

number of 1x10
6 for model incidence angle  of 6-10  in steps of 2 .

3.  RESULTS 

Fig.2 shows the chordwise pressure distributions on the model for 

various . It can be observed that the windward surface has a favorable 

pressure gradient region extending up to about 60% chord. Linear stability 

calculations conducted at DLR, Germany suggested that this pressure 

gradient in the leading edge region combined with the sweep angle provide 

conditions well suited for the onset and growth of cross-flow disturbances in 

the boundary layer.

Fig.3 shows chemical sublimation patterns on the windward surface at 

various . The equally spaced streaks roughly aligned with the freestream 

direction are visible and indicate the presence of stationary crossflow 

disturbances in the boundary layer. These streaks are visible from about 10 

to 55% chord. The wedge like patterns in the chemical sublimation pattern 

further downstream are similar to those observed in Dagenhart & Saric[6]

and possibly indicate that turbulence is originating at fixed distinct points at 

these locations.
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The voltage fluctuations of the two films of each McCroskey gage were 

practically similar (see Ref.7 for details) and hence results of Gage A are 

presented here. Fig.4, 5 and 6 show the results for  = 6, 8 and 10

respectively. The scales of the plots of either the fluctuations or their 512-

point spectra (averaged for all data) are the same for all data. The flow 

features are broadly similar at  = 6 and 8 , namely, an initial large increase 

in the amplitude of the fluctuations (at x/c=30% for  = 6 , and at 55% for 

8 ), followed by quenching of turbulence and a clear indication of eventual 

completion of transition to turbulence downstream (x/c > 70%). The initial 

build up of fluctuations is probably due to the presence of stationary waves 

inferred from the sublimation patterns. It is not very evident from the results 

as to why the subsequent quenching occurred. Further downstream, the 

spectra show a broad hump (at x/c=40% for  = 6  and at x/c=50 & 65% for 

 = 8 ) centered at about frequency of 500Hz which is representative of the 

Tollmien-Schlichting (TS) waves at the experimental conditions.

At  = 10  (Fig.6) on the other hand, the signals are qualitatively 

different from those at lower . Compared to the spectra at x/c = 10%, the 

amplitudes at all stations downstream have increased by at least a decade, 

possibly due to stronger stationary vortices. There  is evidence of a hump 

around 500Hz at x/c=40%and a weaker one at x/c=65%. These observations 

suggest that the TS waves may also have a role in the transition process to 

turbulence.

4. CONCLUSIONS 

Broad features of the cross flow transition on the windward surface of a 

swept wing at low speeds are documented at different . The chemical 

sublimation patterns clearly reveal the existence of streamwise streaks of 

stationary vortices from x/c = 10 to 55%. Analysis of hot film fluctuations 

suggests that, in addition to cross flow disturbances, TS waves may also 

have a role in the final transition to turbulence. Detailed analysis employing 

advanced stability calculations may be needed to get a better understanding 

of the observed features. 
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Fig.1 Schematic top view of the test section with the swept wing model
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Fig.4.Time trace and respective spectra of hot film signals (e’) at various x/c, =6
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DNS OF SEPARATION-INDUCED TRANSITION
INFLUENCED BY FREE-STREAM
FLUCTUATIONS
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Kaiserstrasse 12, D-76128 Karlsruhe, Germany.
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Abstract: Direct Numerical Simulations (DNS) of transitional boundary layer separation
with and without background fluctuations have been performed. In the absence
of explicitly added free-stream fluctuations, unstable Kelvin-Helmholtz (KH)
modes are found to be triggered by small scale numerical truncation error. Ad-
dition of uniformly distributed free-stream fluctuations causes a stronger trig-
gering of unstable KH modes such that the location of transition moves up-
stream. When replacing the uniformly distributed free-stream fluctuations by
fluctuations concentrated in periodically passing wakes the location of transition
is found to move alternately upstream and downstream. Compared to the uni-
formly distributed fluctuations, the large scale fluctuations carried by the wakes
are much more effective in reducing the size of the separation bubble.

Keywords: DNS, transition, free-stream disturbances

1. INTRODUCTION

Recently, the identification of transition mechanisms in separated boundary
layer flows has received much attention, see e.g. Alam and Sandham (2000),
Maucher et al. (1997), Spalart and Strelets (2000), Wissink and Rodi (2003).
The present paper aims to provide an overview of various Direct Numerical
Simulations (DNS) of Transitional Separation Bubbles (TSB) performed in
Karlsruhe. These three-dimensional (3D) simulations were carried out as part
of the German Research Foundation (DFG) Project "Periodic Unsteady Flow
in Turbomachinery". The computational domain, illustrated in Figure 1, was
chosen in accordance with experiments performed in a companion project at
the Technical University of Berlin. Separation and subsequent transition and
reattachment of the boundary layer on the lower flat plate wer studied for three
free-stream scenarios detailed below. The Reynolds number of the flow prob-
lem, based on the mean inflow velocity U0 and the length of the flat plate

389

R. Govindarajan (ed.), IUTAM Symposium on Laminar-Turbulent Transition, 389–394. 

© 2006 Springer. Printed in the Netherlands.

 Sixth



x/L

y/
L

-0.5 0 0.5 1

0

0.1

0.2

0.3

v=v’

no-slip

free-slip

free-slip

Convective
outflow

u=U0+u’

w=w’

Ucyl

Scenario 3

Figure 1. Geometry of the computational domain

L (see Figure 1), is Re = 60 000. Moving in the downstream direction, in
the absence of free-stream disturbances the special shape of the upper wall
causes the streamwise pressure gradient to change from favourable to adverse
at x/L = 0.3. As a consequence a separation bubble appears along the lower
flat plate boundary downstream of x/L = 0.3. To save computational points,
along the upper wall a free-slip boundary condition is applied. In the span-
wise direction the flow is assumed to be statistically homogeneous and periodic
boundary conditions are prescribed. At the outlet a convective outflow condi-
tion is applied. The numerical method employed is detailed in Wissink and
Rodi (2003). The following three free-stream scenarios are examined which
are governed by different inflow conditions:

1 In the reference run, a steady inflow (U0, 0, 0) is prescribed at the inlet.
Along the lower side, for x/L ≥ 0, a no-slip boundary condition is used
while for x < 0 a free-slip boundary condition is used. The triggering
of instabilities is left to depend on numerical round-off errors.

2 At the inlet, uniformly distributed free-stream fluctuations (u′, v′, w′)
with turbulence level Tu = 7% are superposed on the mean inflow ve-
locity (U0, 0, 0). The fluctuations stem from a separate LES of isotropic
turbulence in a l × l × l box, with l = 0.08L, and resemble grid-
turbulence. By identifying the x-direction of the box with time, a pe-
riodic signal consisting of the fundamental frequency f0 = U0/l =
12.5U0/L and its higher harmonics is obtained. The boundary condi-
tions along the lower side are identical to the ones described above.

3 The fluctuations (u′, v′, w′) at the inlet are concentrated in periodically
passing wakes which are generated by an imaginary row of bars moving
in the negative y-direction with velocity Ucyl = 0.7U0. The wakes stem
from a separate LES performed by Wu and Durbin (2001) and are super-
posed on a Blasius velocity-profile with free-stream velocity U0. At the
inlet, the mean wake deficit is 25% and the wake’s half-width is 0.05L.
The period, T , between two passing wakes is varied to study its affect
on the TSB. In this simulation the entire lower boundary is a wall. Note
that for this case the boundary conditions at the inlet and at the lower
boundary differ from what is shown in Figure 1.
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An overview of the simulations reported in the results section is shown in Ta-
ble 1. Phase-averaging was performed during 10 periods in Simulation 3.1 and
45 periods in Simulation 3.2. In the phase-averaging procedure each period
was subdivided into 256 equal phases at which statistics were gathered.

Table 1. Overview of simulations numbered according to inflow scenarios detailed above

Simulation Tu (%) Oncoming Wakes T (×L/U0) Mesh
1 0 no - 1038 × 226 × 128
2 7 no - 1926 × 226 × 128

3.1 - yes 0.6 966 × 226 × 128
3.2 - yes 0.3 1286 × 310 × 128

2. RESULTS

Figures 2a,b show snapshots of a spanwise vorticity iso-surface of (a) Sim-
ulation 1 and (b) Simulation 2. In the absence of explicitly added disturbances
(see Figure 2a), the presence of small numerical round-off errors is found to be
sufficient to trigger a KH instability. The KH instability is characterised by a

(a) (b)

Figure 2. Snapshots of the spanwise vorticity iso-surface ωz = −150 identifying the sepa-
rated boundary layer. (a): Simulation 1, (b): Simulation 2 (see Table 1)

quasi-periodic shedding of vortices from the separated shear-layer. To further
identify some of the physical mechanisms, the mean shedding period was sub-
divided into 80 equal phases for which phase-averaged statistics are gathered.
From these statistics it can be concluded that the bulk of the phase-averaged
fluctuating kinetic energy is generated inside the rolled-up shear layer. Com-
paring Figures 2a,b shows that the addition of free-stream fluctuations (here
Tu = 7%) leads to earlier transition and a drastic reduction in the size of the
separation bubble. As in Figure 2a, a quasi-periodic shedding of vortices is
observed in Figure 2b too. The frequency spectra of the spanwise averaged
v-velocity, shown in Figure 3, illustrate that the most unstable KH mode in
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Figure 3. Upper graphs: frequency spectra of the spanwise averaged v-velocity signals at
P1, · · · , P4, Lower graphs: countours of the time-averaged spanwise vorticity showing location
of P1, · · · , P4. (a): Simulation 1, (b): Simulation 2 (see Table 1)

Simulation 1 has a frequency of f = 14.0, while in Simulation 2 it has a fre-
quency of f = 12.5. This difference is explained by the fact that f = 14.0
is not present in the inflow fluctuations of Simulation 2. Instead, f = 12.5,
which is almost identical to the frequency of the second most unstable mode
of Simulation 1 (f = 12.4) and corresponds to the basis frequency f0 of these
inflow fluctuations (see introduction), is found to become the most unstable
mode in Simulation 2.

↙impinging wake

↖↗separation
↖

boundary layer

←uτ

Figure 4. Simulation 3.2: snapshot of the iso-surface ωz = −150 which identifies the bound-
ary layer (front). The translucent box at the back shows vortical structures of an impinging wake.
The light contours at the bottom identify separation
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Figure 4 shows a snapshot of a spanwise vorticity iso-surface of Simulation
3.2 with periodically oncoming wakes with period T = 0.3L/U0. Compared
to the simulations with and without uniformly distributed free-stream fluctua-
tions, (see Figures 2a,b), the location of transition has moved further upstream.
While in Simulation 2 (see Figure 2b) the boundary layer is mainly disturbed
by a large spanwise mode, in Simulation 3.2 the boundary layer disturbances
are much more irregular (see Figure 4). The relatively large-scale fluctuations
carried by the impinging wakes are found to be quite effective in promoting
transition and reducing the size of the TSB (see also Figure 6). Especially in
Simulation 3.2 the period between impinging wakes is very small, such that
the boundary layer is almost constantly affected by disturbances.

Figure 5. Simulations 3.1 and 3.2: the location of transition as a function of phase

Figure 6. Streamlines of the mean velocity field showing a comparison of separation bubbles
obtained in (a): Simulation 1, (b): Simulation 2, (c): Simulation 3.1, (d) Simulation 3.2

Figure 5 shows the location of transition in Simulations 3.1 and 3.2, identi-
fied by the most upstream location along y/L = 3.2×10−4 where the spanwise
fluctuation w′w′ exceeds 20% of its maximum. The irregularities in the curve
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of Simulation 3.2 reflect the limited amount of 10 periods of phase-averaging.
Both curves have a saw-tooth-like shape. Each time a new wake impinges the
location of transition abruptly moves upstream. This is followed by a period in
which the boundary layer disturbances are gradually convected downstream.
Compared to Simulation 3.2, the larger period used in Simulation 3.1 leads to
a larger fluctuation in the location of transition. Note that the most upstream
location of transition is x/L ≈ 0.46 in both simulations.

Figure 6 shows streamline plots of the time-averaged velocity field of Sim-
ulations 1, 2, 3.1 and 3.2. It illustrates the large influence of fluctuations on the
size of the TSB. Compared to Simulation 1, where no free-stream fluctuations
were added, the small scale, uniformly distributed disturbances in Simulation
2 lead to a significant reduction in size of the TSB. The concentrated, large
scale disturbances carried by the wakes, however, are even more effective in
reducing the size of the bubble. This effect is especially strong in Simulation
3.2, which has a period between wakes that is only half of the period employed
in Simulation 3.1.

3. CONCLUSIONS

DNS-s of TSB flow were performed with and without uniformly distributed
or spatially confined disturbances added to the free stream. The results show
that explicitly added disturbances can be very effective in reducing the size of
the separation bubble. In Simulation 1 numerical round-off error was found to
be responsable for triggering a Kelvin-Helmholtz instability leading to the roll-
up of the separated boundary layer. In Simulations 1 and 2, this roll-up was
found to be followed by a rapid transition to turbulence of the flow inside this
roll. Compared to the Simulation 1, the addition of Tu = 7% inflow fluctua-
tions at the inlet in Simulation 2 was found to significantly reduce the size of
the bubble. The most effective reduction, however, was found to be achieved
by the spatially concentrated large-scale disturbances carried by periodically
oncoming wakes in Simulations 3.1 and 3.2.
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THE EFFECT OF SWEEP ON LAMINAR 

SEPARATION BUBBLES

Tilman Hetsch and Ulrich Rist 
Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70550

Stuttgart, GERMANY  

Abstract:     The effect of a systematic variation of the sweep angle on the disturbance 

amplification and onset of transition is studied in a generic family of swept 

laminar separation bubbles (LSB) by means of direct numerical simulation. 

The detailed analysis of a transition scenario with fundamental resonance in a 

30°-LSB shows, that the saturation of background disturbances is the key 

event, after which a rapid breakdown of transitional structures to smaller 

scales and thus turbulent flow occurs. The stages of transition are similar to 

unswept LSB, but two-dimensional disturbances lose their dominance for 

sweep angles larger than 15°. Instead, oblique Tollmien-Schlichting waves 

which travel approximately along the direction of the potential streamline 

experience the maximal amplification in the linear stage and stimulate the 

strongest growth of background disturbances after saturation. 

Key words:   Laminar separation bubble; sweep angle; transition; direct numerical simulation. 

1. INTRODUCTION 

Laminar separation bubbles (LSB) are observed where laminar boundary 

layers encounter strong adverse pressure gradients, as on high-lift devices of 

commercial aircraft or turbine blades. For instance, an LSB was measured by 

Greff (1991) on the slat of an Airbus A310. Although most technical 

applications are inherently 3D, research efforts have been focussed almost 

exclusively on the easier 2D-case.  Since the extensive experiments of 

Horton (1968) little was published about swept LSB until Kaltenbach and 

Janke (2000) demonstrated that the problem is now treatable by DNS.  

The goal of this paper is twofold: Firstly, a transition scenario based on 

fundamental resonance in a 30°-LSB is discussed. Later, the impact of 
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different sweep angles Ψ  and propagation directions Ψ of chosen 

disturbances on such scenarios are investigated to identify the most effective 

disturbance combinations. To this end, a family of short leading-edge 

separation bubbles on a swept plate was calculated by means of DNS. This 

steady, laminar base flow allows for a systematic variation of Ψ  from 0° to 

45° and was already described in Hetsch and Rist (2004). Physically, it is 

characterized by a free-stream velocity of U =30 m/s, a reference length 

L=0.05m and a Reynolds number 331)(Re 01
=xδ , based on the 

displacement thickness at the inflow of the integration domain. Under the 

influence of an adverse pressure gradient caused by a prescribed deceleration 

of the edge velocity Ue(x) shown in figure 1, the laminar boundary layer 

separates at xs=1.75 and reattaches at xr=2.13. Arbitrary disturbances are 

excited in a disturbance strip by periodic suction and blowing through the 

wall. The DNS-code utilizes 6th-order compact finite differences to solve the 

complete, incompressible Navier-Stokes-equations in vorticity-velocity 

formulation. For an in-depth description see Wassermann and Kloker (2002). 

2. DISTURBANCE PROPAGATION IN SWEPT LSB  

For each scenario one selected “primary disturbance” (PD) is excited 

with an initial amplitude 5 orders of magnitude larger than the one of all 

other modes. Additionally a group of 10 small “background disturbances” 

(BD) with the same fundamental frequency =2 ·L/U ·f and varying 

spanwise wave numbers γ=[-50, -40,…,50] are introduced. Different modes 

are referred to as modes ( /γ). This mimics a situation where a single high-

amplitude disturbance hits a swept separation bubble in the presence of 

discrete background disturbances. Note that all angles are taken with respect 

to the X-axis throughout the paper. Three hypotheses about which type of 

PD is able to stimulate the strongest fundamental resonance of the BD were 

investigated: Earliest transition for a given swept LSB may be expected for a 

PD with: (i) A propagation direction of Ψ=0°, because 2D-disturbances are 

the dominant modes in unswept LSB, see Rist (1999). (ii) Ψ in the direction 

of the potential streamline, as those modes are most amplified in attached 

swept flows. (iii) The integrally most amplified mode in the linear domain, 

as it will reach earliest the high-amplitude level necessary to influence base 

flow and BD non-linearly. For each sweep angle the linearly most amplified 

representative of each class (i)-(iii) was determined by spatial linear stability 

theory (LST). The results are summarized in table 1. Note that the maximal 

amplification (iii) always occurred for modes which spread nearly in the 

direction of the potential streamline. As DNS results of both types in non-

linear stages are also almost identical, we can identify the types (ii) and (iii). 
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Table 1. LST within linear domain: Integrally most amplified mode ( ,γ) for each sweep 

angle Ψ  with: propagation direction Ψ=0°, propagation direction in direction of potential 

streamline (Ψ=Ψ ) or strongest overall amplification (amp-max) in the base flow 

Ψ  2D-PD: Ψ=0° Pot: Ψ=Ψ Ψ amp-max Ψ
0° (18/0) (18/0) 0° (18/0) 0°

15° (18/0) (18/10) 12° (18/10) 12°

30° (18/0) (18/20) 27° (20/20) 25°

45° (18/0) (22/30) 44° (24/30) 39°

2.1 Stages of transition in a swept LSB 

In order to compare the transition mechanism in swept LSB with the 

known 2D case, one such scenario – namely the most amplified PD-(20/20) 

of the 30°-LSB – was analysed and visualized in detail in figure 3 and 4. 

Shown are alternating isosurfaces of the pure disturbance-component of the 

spanwise vorticity z=±0.0001 in region I and a single 2-isosurface inside 

the regions II, III and IV. For the sake of a clearer layout, only one BD and 

two non-linearly generated modes are displayed as examples in the lower 

picture of figure 4. The distinguished alternating z-pattern at stage I 

represents the “footprints” of a single Tollmien-Schlichting wave. This is the 

PD (20/20) as indicated by the common propagation direction of Ψ=25° and 

the insignificant amplitude of all other modes. Until the PD reaches the 

critical amplitude of about 1% of Ue at x≈1.8, all BD grow in very good 

agreement to LST, nicely demonstrated by BD (20/-10) in figure 4. At this 

point the PD has achieved an amplitude high enough to deform the base flow 

itself and the linear regime (a little larger than region I) ends. The 2-method 

indicates the onset of a PD-vortex in region II, which is still amplified as 

predicated by LST until it saturates. For the unswept bubble, Rist (1999) has 

proven that the short stage between the end of the linear domain and the 

saturation of the 2D-PD (18/0) is governed by secondary stability theory. In 

the present case, a sudden increase of the amplification rates can also be 

noticed for the higher harmonic (40/40) and the BD. As soon as the PD and 

its higher harmonics saturate simultaneously the third stage starts. Together 

they form a coherent structure with a weak secondary vortex near the wall.  

After leaving the LSB its phase velocity cr= /(αr
2+γ2) increases by 20% (αr

denotes the streamwise wave number). In the visualisation of figure 4 this 

acceleration is visible as a bending of the vortex at x=2.15. At the same time 

its propagation direction Ψ=arctan(γ/αr) is adapted until it exactly matches 

that of the potential streamline, as demonstrated in figure 2. Compared to the 

previous stage, decreased amplification rates of all BD are observed. 

Immediately after the BD saturate, the coherent structures rapidly break 

down to smaller scales and an early stage of turbulent flow appears. 
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2.2 The effect of sweep angle and propagation direction 

As a general trend, the resonance of BD with the 2D-PD (18/0) is 

diminishing for larger sweep angles. Compared to the reference scenario 

Ψ =0°, only the 15°-case reaches slightly larger amplitudes for the most 

amplified BD at x=3. The amplitude level of the associated 45°-scenario is 

already more than one order of magnitude lower. Even though amplification 

in the linear domain generally increases with Ψ , the growth in region III 

significantly decreases for scenarios with a 2D-PD. Contrary to this series, 

the resonance of BD to the most amplified PD rises continuously with Ψ .

They saturate at x≈3.15 in the 0°-base flow for the PD (18/0), for Ψ =15°

with the PD (18/10) at x≈3.0 and in the 30°-scenario with PD (20/20) 

already at x≈2.80. Table 2 shows additional calculations with PD in 

intermediate propagation directions Ψ in the 30°-LSB. They confirm that the 

soonest saturation of BD indeed appears for the PD (18/20) and (20/20), 

which propagate approximately in the direction of the potential streamline.  

Table 2. X-Position of saturation of background disturbances in the 30°-LSB for different PD 

Ψ =30° (18/0) Ψ (18/10) Ψ (18/20), (20/20) Ψ (18/30) Ψ
BD-saturation x≈3.20 0° x≈2.95 13° x≈2.75, x≈2.80 27°, 25° x≈2.95 43°
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Figure 1. Integration domain of the 30°-LSB with bubble surface and outer streamlines 

Ue(x)

Figure 2. 30°-LSB: Propagation angle Ψ in [ °] for PD (20/20), Ψe: potential streamline   
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Figure 3. Stages of transition in a 30°-LSB. Fundamental resonance of background 

disturbances to a primary disturbance (20/20): I) linear amplification, II) PD: high-amplitude 

vortex, III) coherent structure of saturated PD and higher harmonics, IV) early turbulence 

Figure 4. 30°-LSB: Comparison of amplification curves with top view of figure 3. Lines: 

DNS, doted line: spatial LST. Rapid breakdown of coherent structures (III) to turbulence (IV) 

by saturation of background disturbances. LSB: Separation x=1.75, reattachment x=2.13 

(20/20)

(40/40)

(20/-10) (0/30)

LST
LSB

II
I

III
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3. CONCLUSIONS 

Disturbance amplification and the onset of turbulent flow have been 

studied in a family of small, leading-edge laminar separation bubbles (LSB) 

for sweep angles Ψ =0°, 15°, 30° and 45°. An analysis of a transition 

scenario with fundamental resonance in the 30°-LSB showed similar stages 

as in unswept LSB: I) linear amplification of disturbances until the 

dominating primary disturbance (PD) reaches sufficient amplitude. II) 

Strong resonance of the background disturbances (BD) to a high-amplitude 

PD-vortex, which still grows according to LST until saturation. III) A 

coherent structure is formed by the saturated PD and its higher harmonics, 

which slightly dampens the amplification of all BD. IV) Rapid breakdown to 

smaller scales immediately after the saturation of the BD, which was thereby 

identified to be an appropriate criterion for the onset of turbulent flow. As a 

comparison of different PD showed, oblique TS-waves propagating 

approximately in the direction of the potential streamline were linearly most 

amplified and additionally stimulated the strongest growth of BD in the non-

linear stages. In spite of being dominant in unswept LSB, 2D-disturbances 

became unimportant with growing sweep angle. It follows that investigations 

of unswept LSB are not transferable to cases with sweep angels higher than 

about 10°-15°. 



ON THE BURSTING CRITERION FOR 

LAMINAR SEPARATION BUBBLES 
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Abstract:  Traditionally, laminar separation bubbles have been characterised as being 

‘long’ or ‘short’ on the basis of a two parameter ‘bursting’ criterion involving 

a pressure gradient parameter and Reynolds Number at separation. In the 

present work we suggest a refined bursting criterion, which takes into account 

not just the length of the bubble but also the maximum height of the bubble, 

thereby shedding some light on the less understood phenomenon of ‘bursting’ 

in laminar separation bubbles. 

Key words:  Laminar separation bubble; bursting; bubble height. 

1. INTRODUCTION 

Gaster (1967) in his landmark work on laminar separation bubbles 

proposed a two-parameter bursting criterion for the transition of separation 

bubbles from a “short” to a “long” state, as the flow velocity was reduced 

gradually. In his experiments, the bursting was associated with sudden increase 

in the length of the bubble. He suggested a two-parameter criterion to 

characterise the bursting of a short bubble to a long bubble. 

A two dimensional computational study by Pauley et al (1990) found this 

criterion for bursting to be inadequate and they instead suggested that a long 

bubble is a steady separation bubble without any vortex shedding, whereas a 

short bubble is accompanied by vortex shedding.  

In the present work, we examine the criterion for bursting carefully. We 

make use of detailed measurements from our experiments and compare this 

with the available data in the literature. First of all, we find that in our as well as 

in others’ measurements, ‘short bubble’ (according to Gaster’s criterion) is 
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more common and the data on ‘long bubble’ is scarce. Moreover the shedding 

criterion for short bubbles, enunciated by Pauley et al, was not ubiquitous at all; 

an example is, one ‘short bubble’ of Watmuff (1999) with no evidence of 

shedding or unsteady activity, unless the bubble was forced externally. This 

casts a question on the criterion put forth by Pauley et al, which is primarily 

based on considerations of vortex shedding from the bubble. The suggestion 

that bursting might have something to do with the switching from convective to 

absolute instability (Alam & Sandham, 2000) also appears to be questionable. 

This is because equating the presence of a ‘long bubble’ with absolute 

instability is inconsistent with the long and slow approach to reattachment.  

We suggest here that a criterion for bursting should take into account not 

just the length of the bubble but also the maximum height (h). A refined 

bursting criterion is proposed and its merits are discussed.    

2. EXPERIMENTAL PROCEDURE 

2.1 Experimental setup 

The experiments were conducted in the Closed Circuit Wind Tunnel (1m 

X 1m X 4m) at the Department of Aerospace Engineering. A 5mm thick 

aluminum plate with an elliptical cross-section leading edge (Prasad and 

Narasimha, 1994), acts as the measurement surface. The flat plate is 

provided with pressure ports for the measurement of static pressures, with 

the coefficient of pressure defined as 
inf

inf

PP

PP
Cp

total

x

−
−

=

Figure 1. Experimental Setup 
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The laminar separation bubble was produced on the flat plate by 

contouring the top wall of the test section as shown in Fig. 1. The boundary 

layer on the top wall was tripped to avoid separation on the contour. The 

strength of the adverse pressure gradient could be adjusted by raising or 

lowering the contour by means of a nut-screw rod arrangement. Figure-1 

shows one of the settings of the contour, with respect to the flat plate.  

The velocity data, both mean and fluctuating, were measured using single 

component tungsten hot-wire of 5µm diameter and an active length of 2mm. 

A traversing mechanism with controlled 2D movement was employed to 

position the probe.

Experiments were done for three different settings of the contour (to be 

called cases A, B and C) with increasing severity of the adverse pressure 

gradient. 

2.2 Flow visualisation  

Following are the flow visualization techniques used for qualitative as 

well as quantitative analysis of the flow phenomenon in the present work.   

2.2.1 Smoke flow visualisation technique 

Smoke was introduced into the test section in the form of a sheet, with 

the help of a smoke-rake, which was placed upstream of the honeycomb. 

The smoke was illuminated by a sheet of laser light (100mW). The height of 

the laminar separation bubble is easily extracted from the recorded pictures. 

Fig. 2 shows the picture of a typical laminar separation bubble produced 

using the above-mentioned technique. 

Figure 2. Smoke flow-visualisation. The flat plate is visible as the symmetry plane. Uref = 3.6 

m/s, Contour Setting B 
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2.2.2 Surface flow visualisation technique 

In order to locate the position of separation and reattachment (surface 

streamlines) with fairly good accuracy, a technique, which we call as “ink-

dot matrix” technique (see Langston and Boyle, 1982) was used.  

Figure 3. Surface flow visualisation. Uref = 5.46 m/s, Contour Setting B  

This method gives a time averaged picture of the surface streamline 

pattern as shown in Fig. 3 where S is a separation line and R is a 

reattachment line. The reverse flow is indicated by the reversed direction of 

streaks beyond the separation line.

3. THE BURSTING CRITERION 

Gaster (1967) proposed a two parameter criterion to characterise the 

bursting process which included the pressure gradient parameter and the 

Reynolds number as given below.  

inviscid
X

Us
P

∆
∆=

ν
θ 2

~
   ,     

ν
θ

θ
sUs

R
s

=  (1) 

Where Us is the freestream velocity at separation, s is the momentum 

thickness at separation and U/ X is the velocity gradient of the equivalent 

‘inviscid’ flow (obtained by tripping the boundary layer). These parameters 

are plotted in Fig. 4 for various experimental studies.  

S R
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Figure 4. Gaster’s bursting criterion 

This bursting criterion does not appear to be universal in classifying and 

differentiating the short bubbles from long bubbles for the following reasons. 

(1) The bubbles which Gaster terms as “long” in his experiments 

actually lie in the Short Bubble Region. 

(2) The bubble obtained by Marxen et al. (2004) does not show a 

significant departure from the inviscid pressure distribution. But still 

it lies in the long Bubble Region. 

(3) According to Gaster(1969), “bursting” occurs when the data points 

on the plot from the Short Bubble Region approach the bursting line 

steeply. This in fact makes it a three-parameter criterion where along 

with P
~

 and s
Rθ one perhaps needs to specify the slope on the P

~
-

s
Rθ curve. Furthermore a series of experiments need to be done to 

arrive at this. 

We suggest here that a criterion for bursting should take into account not 

just the length of the bubble but also the maximum height (h). Transition to 

turbulence in the separated shear layer is initiated (possibly through a 

Kelvin-Helmholtz instability mechanism) roughly around the streamwise 

location at which the height of the bubble (i.e., the location of the mean 

dividing streamline) reaches a maximum value. By combination of h and the 

overall velocity gradient ( XU ∆∆ / ) across the bubble, we arrive at a new 
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non-dimensional pressure gradient parameter
X

Uh
P

∆
∆=

ν

2

, which can be 

expected to be an indication of the global nature of the bubble. Note that the 

XU ∆∆ / here is the actual mean velocity gradient across the bubble as 

against the inviscid gradient used by Gaster. As already discussed above, the 

local conditions at the streamwise location of maximum height of the 

bubble can be expected to influence the approach of the separated shear 

layer towards reattachment. So the maximum height and the freestream 

velocity (
h

U ) at that location seem to be the most appropriate parameters 

for defining the Reynolds number
ν

hU
h

h
=Re . In Fig. 5, we plot the 

variation of P as a function of 
h

Re for a variety of experimental data. 

It is apparent from the plot that there is a clear- cut demarcation between 

the “short” and the “long” bubbles, with “short” bubbles clustered in the 

upper portion of the plot. This thus suggests a single parameter bursting 

criterion where the critical line can be placed at P ~ -28. If P > -28, it is a 

short bubble, otherwise a long bubble. It is interesting to note that all the 

data points in Short Bubble Region (except for the data points of Brear and 

Hodson (2003) where aerofoil is used rather than a flat plate) collapse 

Short Bubble Region 

Long Bubble Region

Figure 5. The proposed bursting criterion 
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reasonably well onto a single curve approaching the critical line, which 

eliminates the need to introduce the “approach towards critical condition” to 

be a separate parameter. A single data point is thus sufficient to decide 

whether the bubble is “long” or “short”. 

4. CONCLUSIONS  

A laminar separation bubble is produced experimentally on a flat plate. 

The flow visualization and pressure measurements show the typical time 

averaged characteristics of a bubble reported in the literature. Gaster’s 

bursting criterion is revisited and a refined bursting criterion involving the 

maximum height is proposed. It is shown that the proposed criterion clearly 

demarcates between short and long bubbles. A single parameter criterion 

(with a critical value of P ~ -28) is shown to indicate the transition to a long 

bubble. The proposed criterion is seen to be more universal than the existing 

criteria. 
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In this paper spatial Direct Numerical Simulation is used to study the nonlinear
interaction between planar Tollmien Schlichting waves and Goertler Vortices.
The results show the development of lambda vortices typical of K-type and H-
type break down. Two different structures have been found which are shifted
with respect to each other by π in the spanwise direction.

Keywords: Goertler vortices, Tollmien-Schlichting waves, boundary layer stability, hydro-
dynamic stability, transition to turbulence

A boundary layer over a concave surfaces may develop both Goertler Vor-
tices (GV) and Tollmien-Schlichting (TS) waves when the curvature of the
plate is mild. When both centrifugal and viscous instabilities are present, their
interaction may hasten the transition to turbulence. Besides the importance
of these instability modes in certain aeronautical applications, GV are a suit-
able model for studding the structures found in turbulent flows. The study of
GV/TS interaction may help understand the development of turbulent coherent
motion. The similarities between the structures presented in this paper and the
near-wall turbulent vortex structures presented by Panton [1] are remarkable.

Already in 1969, Tani and Aihara [2] identified experimentally that the TS
waves are affected by the vortices through the spanwise variation in the bound-
ary layer thickness. This change in the boundary layer thickness is caused by
the redistribution of the mean flow owing to the counter rotating vortices, and

Abstract:
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The nonlinear interaction result in a strong growth of a pair of oblique waves
with spanwise wavenumber identical to the that of the vortices and the same
frequency as the frequency of the initial TS wave (Fig. 1). This oblique
wave suggests the possibility of a fundamental resonance mechanism. Figure
2 shows structures of the flow with 2 wavelengths in the spanwise direction,
therefore, 2 upwash and 3 downwash regions can be seen. The structures are
iso-surfaces given by the second invariant of the velocity gradient Q. The ini-
tial TS spanwise vorticity is modulated by the GV longitudinal vorticity. Fur-
ther downstream staggered hair pin vortices develop, and the resulting structure
resembles the structure found in H-type subharmonic resonance (Fig. 2 and 4).
In Fig. 4 the x to z and y to z ratio has changed from 1 to 0.2. A similar struc-
ture with overlapping vortices was found near the wall by Shoppa and Hussaini
[11] in a DNS of turbulent flows.

Figure 1. Downstream amplitude devel-
opment of various modes in the frequency-

Figure 2.

In the second test case the Goertler number was raised to Go = 5.0, keeping
the same Reynolds number, TS frequency and spanwise wavenumber. The
results are similar to the results for the first test case. Due to the nonlinear
interaction an oblique wave develops raising the possibility of fundamental
resonance with the 2-D TS wave. Comparing the second test case results with
the results for the first test case, two fundamental differences in the resulting
structure can be observed. The first difference is a phase shift in the peak-and-
valley structure. In Fig. 3 a peak occur in the downwash region, while in Fig.
5 a valley is found there. Second the overlapping lambda vortices are aligned,
as shown in Fig. 6, consistent with a K-type fundamental resonance.

In this work the nonlinear interaction between planar Tollmien-Schlichting
waves and Goertler vortices was studied using direct numerical simulation. As

wavenumber spectrum

Iso-surfaces of Q = ±5
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Figure 7. Downstream amplitude development of various modes in the frequency-

in previous investigations the results show the development of oblique waves
which lead to the development of lambda vortices typical of K-type and H-type
breakdown. The resulting structures change from a staggered pattern to an
aligned pattern when the Goertler number was changed. The peak and valley

wavenumber spectrum
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structures found for the two test cases presented are shifted with respect to each
other by π in the spanwise direction.

It is conjectured that the TS waves are affected by the longitudinal vortices
through the spanwise variation in the boundary layer thickness. This change in
the boundary layer thickness is caused by the redistribution of the mean flow
owing to the Goertler vortices that give rise to upwash and downwash regions.
The phase shift is consistent with this argument. The spanwise phase of the
3-D nonlinear structures would be dependent on whether the interaction were
close to the first or the second branch of the TS stability curve [12].
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EXPERIMENTS ON STREAMWISE VORTICES 

IN A SWEPT WING BOUNDARY LAYER AND 

THEIR SECONDARY INSTABILITY 

Victor V. Kozlov1, Valery G. Chernoray2, Alexander V. Dovgal1  and Lenart
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Abstract: A detailed experimental study on the formation of crossflow vortex mode 

packets and their secondary instability in a swept wing boundary layer was 

carried out. As a result, two modes of nonstationary perturbations traveling 

along the vortices were found. 

Key words: flow; streaks; turbulence; shear layers; boundary layer; flow breakdown; 

instability; crossflow vortex; wind tunnel; wing. 

1. INTRODUCTION 

There are a number of indications that three-dimensional velocity 

perturbations such as streamwise vortices and streaks are involved in 

transition to turbulence in wall bounded shear layers. Creating local flow 

distortions, they induce velocity gradients in spanwise and wall-normal 

directions, which in turn lead to growth of secondary high-frequency 

disturbances with further laminar flow breakdown. For the first time, 

secondary instabilities of three-dimensional boundary layers were focused, 

probably, by Poll (1979), who observed high-frequency oscillations near the 

swept wing leading edge. Later, Kohama (1987) assumed that such 

perturbations can be caused by an inflexion-point instability in the vortex 

core. A theory for the secondary disturbances as those associated with the 
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inflections in the velocity distributions induced by the stationary crossflow 

vortices was developed further by Fischer & Dallmann (1991). Then, 

theoretical studies on the topic were carried out by Malik, Li & Chang 

(1994). The first spatial direct numerical simulation of the swept wing 

secondary instability was performed by Hoegberg & Henningson (1998). 

They examined both a small-amplitude random ('natural') disturbance added 

to a saturated crossfow vortex and its harmonic perturbation. It was found 

that the growth rate of the high-frequency secondary disturbance is 

considerably larger than that of the low-frequency one, thus, importance of 

high-frequency secondary instabilities for laminar flow breakdown was 

emphasized. Wassermann & Kloker (2002) also performed spatial direct 

numerical simulation focusing an infinite swept wing flow. 

In the present study we focus on formation of crossflow vortex mode 

packets and their secondary instability in a swept wing boundary layer. Two 

modes of nonstationary instability, were found to develop with a preferred 

mode depending on the properties of the primary stationary disturbance. 

2. EXPERIMENTAL SET-UP AND PROCEDURE 

Results of the study were obtained in the wind tunnel of Thermo and 

Fluid Dynamics Department, Chalmers University of Technology. A wing 

model with C-16 airfoil profile was placed at the sweep angle of 450 in the 

test section of the facility, see Figure 1. 

Figure 1. Experimental model 
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Experiments on streamwise vortices 

All the experimental runs were performed at the oncoming flow velocity 

U0 of 8.2 ms-1, making the chord-based Reynolds number of about 390 000, 

at the free-stream turbulence level well below 0.1%. The data were acquired 

from hot-wire measurements in z - slices along the wing leading edge. To 

generate stationary crossflow vortices in the laminar boundary layer different 

roughness elements were pasted onto the model surface at 0.3 of the wing 

chord. High-frequency travelling disturbances evolving along the streaks 

were excited by periodic blowing-suction through a hole of 0.8 mm in 

diameter on the surface of the model at 0.4 chord, the excitation frequency 

was 210 Hz. 

3. RESULTS 

The basic flow on the test surface of the wing was found as typical one 

for swept-wing configurations. As an example, mean velocity profiles 

measured without excitation of controlled stationary and nonstationary 

perturbations are given in Figure 2. 

Figure 2. a - Undisturbed velocity profiles at 0.3 chord shown in different coordinate systems. 

b - Profiles of streamwise Us and spanwise Ws velocity in the coordinate system of external 

streamline 

An illustration of the results obtained is given in figure 3 where two 

crossfow vortex mode packets generated by roughness elements are shown. 

These vortices were found as much different from each other due to mean 

velocity disturbances they produced and unsteady secondary instabilities 

evolving in each case. 
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Figure 3. Forced periodical disturbances evolving along the stationary vortices 
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DEVELOPMENT OF VARICOSE SECONDARY 

MODE ON THE STRAIGHT WING WITH 
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Abstract: In the present experimental work, which utilizes a hot-wire visualization 

method, an influence of external pressure gradient on the development of 

secondary instabilities in the straight wing boundary layers has been 

demonstrated for the first time. The comparison of experimental data and 

direct numerical simulation results of this process has been given.  

Key words: flow; turbulence; wind tunnel; wing; hot-wire anemometer; visualization;
boundary layer; longitudinal structure; varicose mode.  

1. INTRODUCTION  

The latest stages of laminar flow breakdown on a wing are associated 

with formation of longitudinal low- and high-speed fluid structures (streaks), 

which further make the flow susceptible to secondary instabilities. In natural 

case such disturbances can be initiated by some surface irregularities such as 

uniform surface roughness or humps. On a swept wing, secondary instability 

of the crossflow plays an important role in the formation of streaks as shown 

in our previous studies [1]. It was found that the swept wing flow with the 

longitudinal vortices or streaks is secondary unstable to periodical 

disturbances. In the present investigation it is also shown that similar 

processes lead to the final flow breakdown at very late stages of transition. 

Additionally, for the first time it is demonstrated that the external pressure 

gradient has very strong influence on the development of secondary 
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instabilities on the straight wing and hence the applicability of pressure 

gradient variation for the control purposes is proven in this case. 

2. EXPERIMENTAL SET-UP AND PROCEDURE 

The experiments were performed in a wind tunnel at Thermo and Fluid 

Dynamics, Chalmers University of Technology in Göteborg, Sweden. The 

facility is closed circuit, has a test section 3 m long, 1.8 m wide and 1.2 m 

high and a maximum free-stream velocity 0U of 60 m/s. The free-stream 

turbulence level in the test section is well below 0.1% of 0U in the velocity 

range 0U =5-15m/s and frequencies between 0.1 and 10000 Hz. The wing 

model used is made of wood and has a C-16 aerofoil. Its chord C  is 500mm, 

span 1500 mm and the maximum thickness to chord ratio is 0.16 at about 0.3 

chord. The top side of the wing after 0.4 chord represents a flat surface thus 

making it possible to study the flow without wall-curvature effects. The 

wing is mounted horizontally in the middle of the test section (Figure 1). To 

create the streaks, injection through a small hole on the surface of the wing 

was used in the same way as employed in the DNS work [2].  

Figure 1. Sketch of experimental setup for Cases A, B (on the left). Sketch of experimental 

setup for Case C (on the right) 

Also in the same fashion the varicose instability mode was artificially 

superimposed, thus allowing direct comparison of the experiment with the 

420

numerical simulation. 



A method, which gains the advantage of flow visualization and gives 

quantitative description of the flow phenomena has been developed and 

employed in Chalmers for investigation of the three-dimensional features of 

flow breakdown. Comparing to traditional visualization methods which are 

limited in application and give little or no quantitative data for advanced 

analysis, a combination of accurate hot-wire anemometry techniques and 

modern data acquisition has been used to develop a new quantitative spatial 

”visualization” during a series of experiments conducted. A comprehensive 

system for automated traversing and data acquisition has been designed and 

developed for this task. The developed hot-wire visualization technique is 

proved to be highly successful and great deal of experimental investigations 

was performed using this technique at this time.  

3. EXPERIMENTAL RESULTS 

The data were obtained in three experimental regimes, see Figure 1, with 

nearly zero streamwise pressure gradient (Case A) and the adverse one 

(Cases B, C). In Case C the boundary layer was perturbed by a cylindrical 

roughness element. The rectangles in the figure show the areas where 

measurements were performed. In Figures 2–4 the spatial hot-wire 

visualizations of the time-periodic part of the disturbance, its time-periodic 

part together with the mean velocity distortion, and the mean velocity 

distortion are shown which are very similar to the breakdown process from 

DNS of Figure 5. Qualitatively, the comparison is very good, thus the 

experimental and computational results demonstrate similar process of the 

streak breakdown. Also, the figures demonstrate the effect of pressure 

gradient on the streaks evolution which is observed here for the first time. It 

is clearly visible that the development of streaks is affected by the character 

of flow motion, and in the area of decelerated flow the spread rate of the 

streaks and the secondary disturbances is increased, and their growth is 

promoted. The reason for this is not absolutely clear at the moment so that a 

continuation of these studies is required with a support by theoretical 

investigations.

In conclusion, it should be noticed that the present data on the streak 

breakdown support the results on turbulence generation in the wall region of 

a turbulent boundary layer obtained in [2] through direct numerical 

simulations. Future work could include investigation of other instability 

modes and the influence of favorable pressure gradient on the streaks.  
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Figure 2. Hot-wire visualization of the total velocity disturbance: (a) Case A, dP/dx  0, (b) 

Case B, dP/dx > 0, (c) Case C, dP/dx > 0 with roughness element 

Figure 3. Hot-wire visualization of the time-periodic part of the disturbance: (a) Case A, 

dP/dx  0, (b) Case B, dP/dx > 0, (c) Case C, dP/dx > 0 with roughness element  
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Figure 4. Hot-wire visualization of the mean velocity distortion. (a) Case A, dP/dx  0, (b) 

Case B, dP/dx > 0, (c) Case C, dP/dx > 0 with roughness element  

Figure 5. Breakdown of a streak via development of a varicose secondary mode. From DNS 

results by Skote, Haritonidis, and Henningson [2] 
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optimal control to the state equations obtained by a suitable discretization of

properties can be affected through the choice of the objective function used for
optimal control. In the present work, various control algorithms have been ob-
tained by using full state feedback. The objective function has been chosen using

performance of the controllers thus designed has been studied.

Keywords:
objective function.

linear process. Most often, in the initial stages of transition, only small per-

Navier-Stokes equations. Linear control works very well as long as perturba-
tions are maintained small. In optimal control, the controller is designed in
order to minimize a suitably chosen objective function (performance index).

Abstract:

1.       INTRODUCTION
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Control of transition in plane channel flows can be achieved by applying linear

the Fourier transformed and linearized Navier-Stokes equations. Different flow

control of transition; flow control; linear control; optimal control; LQ regulator;

a measure of the energy of flow perturbations, with various weight matrices. The

The process of transition from laminar to turbulent flow is basically a non-

turbations dominate, whose flow behavior can be approximated by linearized
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the key mechanisms to be targeted by an effective control scheme. Different

therefore, is an important part of the formulation of the optimization problem.

varying the weight matrix (Q).

PROBLEM FORMULATION

0 and chan-
nel half-width δ. Non-dimensionalizing all velocities by U0 and lengths by

U(y) = 1 − y2 on the domain y ∈ [−1, 1]. The equations governing small,

U are given by the linearized Navier-Strokes and continuity equations. Now
Orr-Sommerfeld and Squire equations are derived by manipulating the Fourier
transformed Navier-Stokes equations.

∆v̇ = {−ikxU∆ + ikxU
′′

+ ∆(∆/Re)}v (1)

ω̇ = {−ikzU
′}v + {−ikxU + ∆/Re}ω

where, ∆ ≡ ∂2/∂y2 − k2
x + k2

z , kx and kz being the wave numbers along x
and z directions, and ω ≡ ∂u/∂z − ∂w/∂x is the Fourier tranformed wall-

The continuous equations for the
v, ω perturbations in Eq. (1) are now discretized on a grid of N+1 Chebyshev-
Gauss-Lobatto points in the wall normal direction. The ÔyÕderivatives ofv
and ω can be expressed as linear combinations of the grid point values of v
and ω, respectively (Canuto et al., 1988). Applying homogenous Neumann
boundary condition on v by modifying the Þrst derivative matrix, Eq. (1) can
be expressed in the form (Bewley and Liu, 1998)

ẋ = Ax + Bu (2)

channel. The vector u, which contains the blowing/suction velocity at the top

For simplicity, we have restricted our attention to one supercritical case and

Re=10000, kx=1, and kz=0. As kz = 0, eigenmodes of ω equation are entirely
decoupled from eigenmodes of v equation, but fortunately, all the eigenmodes
of ω are stable. Hence, for the purpose of studying the effect of control in
case (i) we restrict ourselves to the eigenmodes of v. For Case (ii), we have

2.
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function. In the current work, the performance of the controller is studied by

The complicated physics of a transitional flow makes it difficult to identify

flow properties can be affected through the choice of objective function, which,

A measure of the energy of flow perturbations is often used in the objective

Consider a steady plane channel flow with maximum velocity U

δ, the mean velocity profile in the streamwise direction (x) may be written

incompressible, three-dimensitional perturbations u, v, w, p to the mean flow

normal component of vorticity fiuctuation.

The vector x is called as state vector as it contains the wall-normal fiuctuation
v and normal vorticity fiuctuations ω at the grid points on the interior of the

one subcritical case, as defined by Bewley and Liu, 1998. Case (i) is given by

and bottom walls, is referred to as the ÔcontrolÕ.



Figure 1.

taken Re=5000, kx=0, kz=2.044, kx = 0. In this case, eigenmodes of v and ω
are coupled, hence we have to consider full coupled equations of v and ω. The
system (2) can be stabilized by simply closing the loop with full state feedback.
This is done by using linear state feedback in the form given below.

u = Kx (3)

towards zero in an optimal way. This is done by using linear state feedback in

u forces the state x towards zero in an optimal way. The objective function

J =
∫ ∞

0
(x∗Qx + l2u∗u)dt, (4)

matrix K can be determined by solving the associated Riccati problem. The
performance of the controller designed in this way will depend on the choice
of the performance index, i.e., the choice of the matrix Q. In the present work,
Þve diagonal Q matrices have been used, as shown in Fig. 1(a).

427

We have to find matrix K such that the controller feedback u forces the state x

the form u = Kx. We have to find matrix K such that the controller feedback

(performance index) for optimal control can be defined as

where Q is the weight matrix, which defines the weight of disturbances. The

Linear optimal control of transition in plane channel flows
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Figure 2.

NUMERICAL INTEGRATION

The numerical integration was done on the controlled and uncontrolled sys-
tems to study the decay of norm of state vector and to study the total control
energy consumed. First, the uncontrolled system was integrated for random
initial perturbation. Figure 1(b) shows the growth of l2 norm of the state vec-
tor x for case (i). Figure 2(a) shows the growth of l2 norm of x for case(ii).
Since numerical integration did not show any subcritical transition ,we will not
do this analysis for case (ii) for closed loop systems. In order to do a compar-
ative study of controllers designed using different weight matrices, numerical
integration of the reduced order system with full state information feedback
control was done for case (i). The perturbation was given as a linear combi-
nation of uncontrolled and a few least stable eigenvectors. Figure 2(b) shows
the decay of l2 norm of x with time for l2 = 1 and Fig 3(a) shows cumulative
control energy expenditure over time for l2 = 1.

We can note that the controller derived using a weight matrix (Q) from the

control energy expenditure is also very low. Now, the choice of the controllers
will depend on the designerÕs preference.
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Ôcoefficient of kinetic energyÕ is slower than the other weight matrices but its

3.
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Figure 3.

TRANSIENT ENERGY GROWTH

Energy of ßow perturbations at any time τ is given by (Bewley and Liu,
1998)

E = χ∗(eΛ∗tΞ∗QΞeΛt)χ (5)

Where χ is projection vector of initial state x(0), Λk is eigenvalues matrix,
and Ξ is right eigenvector matrix. Normalizing it with initial perturbation, It
can be expressed as,

θ =
E(τ)
E(0)

=
χ∗(eΛ∗tΞ∗QΞeΛt)χ

χ∗(Ξ∗QΞ)χ
(6)

As case (i) has already been studied using numerical integration, we analyze
the transient energy growth for case (ii) only. Figure 3(b) shows the varia-
tion of the energy of perturbation with time for the uncontrolled system of
case (ii). χ is chosen to be the vector of squares of reciprocals of correspond-
ing eigenvalues. For the system with full state feedback control, Figure 4(a)
shows the variation of the energy of perturbation with time for l2 = 10 and
Fig 4(b) shows cumulative control energy expenditure (

∫ t
0 u′u dt) over time

for l2 = 10. χ was chosen to be the vector of squares of reciprocals of cor-
responding eigenvalues. From Fig 4(a) and Fig 4(b) it is clear that a weight
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matrix based on the coefficient of kinetic energy is the optimal choice.

4.
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CONCLUSIONS

The following conclusions can be drawn from the present study.

1
energy gives cheaper control compared to other controllers.

2 For the supercritical case, the weight matrix from 1−cosine function
gives faster rate of control compared to controllers based on other weight
matrices.

3 For the subcritical case, it is observed that the weight matrix from coef-

Bewley, T.R. and Liu, S. Optimal and robust control and estimation of linear paths to transition
J. Fluid Mech. v 365, p 305-349. 1998.

Butler, K. M. and Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear

Canuto, C. Hussaini, M. Y. Quarteroni, A. and Zang, T. A. 1988 Spectral Methods in Fluid
Dynamics. Springer.
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For the supercritical case, the weight matrix from coefficient of kinetic

ficient of kinetic energy is the optimal choice.
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Abstract: Control of transition in plane channel flows can be achieved by applying linear
control to a suitable reduced-order system of state equations, with an appropriate
state estimator. In the present work, a comparative study of various estimator-
based controllers has been carried out. The state estimators have been designed
as Kalman filters using various covariance matrices. The performance of linear
optimal controllers based on these estimators has been studied by numerical
integrations.

Keywords: Flow control; linear control; optimal control; state estimators; Kalman filters.

1. INTRODUCTION

Control of transition in plane channel flows can be achieved by applying lin-
ear optimal control to the state equations obtained by a suitable discretization
of the Fourier transformed and linearized Navier-Stokes equations. Various
control algorithms using full state feedback have been studied in a related work
(Rajesh et al., 2004). In practice, a controller based on wall-measurements is
more feasible than full state feedback as it is not always possible to measure
all the state variables. The state variables can be estimated by using a state
estimator, which can be designed in an optimal way as a Kalman filter. Design
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of a Kalman filter depends on the choice of the covariance matrices of state
disturbance and measurement noise. The performance of the estimator based
controller will depend on this choice.

2. PROBLEM FORMULATION

A reduced-order model of plane channel flow can be derived in the form of
state equations ẋ = Ax + Bu (Bewley and Liu, 1998; Rajesh et al., 2004).
The state-vector (x) contains the wall-normal velocity and vorticity fluctua-
tions (v and ω) at the grid points on the interior of the channel. The control
(u) contains the blowing/suction velocities at the top and bottom walls. For
simplicity, we have restricted our attention to one supercritical case and one
subcritical case, as defined earlier (Bewley and Liu, 1998; Rajesh et al., 2004).

We assume that measurements made at the wall provide information about
the streamwise and spanwise skin friction, from which (subtracting out the
known influence of ∂v/∂x and ∂v/∂z from the stress tensor at the wall) we
may define an output vector ym as function of values of ∂u/∂y and ∂w/∂y
at the walls. Using Orr-Sommerfeld and Squire equations, continuity equation
and definition of vorticity, u and w can be expressed in terms of ω and ∂v/∂y.
Thus ym can be expressed as ym = Cx + Du (Bewley and Liu, 1998). Now
the equations governing the small flow perturbation in a laminar channel flow
may be expressed in the standard form

ẋ = Ax + Bu (1)

y = Cx

where y is obtained from ym by subracting the terms containing control. In
order to close the loop a system model with a structure similar to the system
itself is used, such that

˙̂x = Ax̂ + B (u − û) (2)

ŷ = Cx̂

with feedback û based on the difference between the observations of the state
y and the corresponding quantity in the model û such that û = L(y − ŷ) The
control u, in turn, is based on the state estimate x̂ such that u = Kx̂. Equa-
tions (1) and (2) represent the plant and the estimator (observer), respectively.
Optimal control and estimation can be achieved by designing a linear-quadratic
Gaussian (LQG) regulator, i.e., a linear-quadratic regulator based on a Kalman
filter. The problem at hand is to compute linear time-invariant (LTI) matri-
ces L and K such that (i) the estimator feedback forces the state estimate in
the estimator towards the state x in the plant, and (ii) the controller feedback u
forces the state x towards zero in the plant. This is done by solving two Riccati
problems, associated with the plant and the estimator, respectively.
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Figure 1. Covariance matrices of state disturbance

Various controllers were designed earlier by using different weight matrices
and the cost of control (Rajesh et al., 2004). Here, various Kalman filters have
been designed by using different covariance matrices as shown in Fig. 1. The
problem is normalized such that the maximum singular values of the covari-
ance matrices of state disturbance and sensor noise are equal to unity and α2

(a design parameter), respectively.

3. NUMERICAL INTEGRATION

The numerical integration is done on the controlled and uncontrolled sys-
tems to study the decay of norm of state vector and to study the total control
energy consumed. It was observed earlier (Rajesh et al., 2004) that numerical
integration cannot capture the instability in sub-critical transition. Hence, we
will discuss only supercritical transition (case (i)) here.

Numerical integration of the reduced order system with estimator alone was
done for case (i). Figure 2 shows the decay of l2 norm of x̂ with time for
α2 = 1. The initial estimator error (x̂) is given as a linear combination of
uncontrolled and few least stable eigenvectors. From Fig. 2 it is also clear
that covariance matrix based on sine and 1−cosine function gives better state
estimation than the remaining ones.

Numerical integration of the reduced order system with compensator was
done by fixing the coefficient of kinetic energy as weight matrix and α = 100.
Figure 3(a) shows the decay of l2 norm of x with time for l2 = 1 and l2 =
100 and Fig 3(b) shows cumulative control energy expenditure over time for
l2 = 1 and l2 = 100. The perturbation is given as a linear combination of
uncontrolled and a few least stable eigenvectors. Table 1 shows settling time
for the system with estimator based feedback control for coefficient of kinetic
energy as weight matrix (α = 100). Thus, considering the speed of control
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Figure 2. Estimation errors for systems with various covariance matrices
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Table 1. Settling time (sec) for the system with estimator based feedback control for coefficient
of kinetic energy as weight matrix (α = 100)

- l2 = 1 l2 = 100

1-cosine function 109 131
Identity matrix 243 254
Cosine function 273 283
1-Sine function 299 299
Sine function 114 137

Table 2. Settling time for estimator based control for case (ii) for l2 = 100

covariance matrices α2 = 0.01 α2 = 0.1 α2 = 1 α2 = 10 α2 = 100 α2 = 1000

1-cosine function 110 - 100 100 110 110
Identity matrix - 80 90 90 110 110
Cosine function - - - 150 100 110
1-Sine function 110 100 110 110 130 150
Sine function - 110 100 100 100 110

and cost of control, it is clear that that the covariance matrix based on 1-cosine
function is the most suitable for the supercritical case.

4. TRANSIENT ENERGY GROWTH

Energy of flow perturbations at any time τ is given by (Bewley and Liu,
1998)

E = χ∗(eΛ∗tΞ∗QΞeΛt)χ (3)

Where χ is projection vector of initial state x(0), Λk is the matrix of eigenval-
ues, and Ξ is right eigenvector matrix. Normalizing it with initial perturbation,
It can be expressed as,

θ =
E(τ)
E(0)

=
χ∗(eΛ∗tΞ∗QΞeΛt)χ

χ∗(Ξ∗QΞ)χ
(4)

Since case (i) has already been analyzed using numerical integration, only
case (ii) has been analyzed for transient energy growth. Transient energy
growth is calculated over time for the system of case (ii) with various compen-
sators, by using coefficient of kinetic energy as weight matrix and l2 = 100.
Fig 4(a) shows the variation of energy of perturbation with time with time for
α2 = 100. Fig 4(b) shows the variation of cumulative cost of the control en-
ergy with time with time for α2 = 100. χ has been chosen to be the vector
of squares of reciprocals of corresponding eigenvalues. Table 2 shows settling
time for various α2 and covariance matrices. From these results, we can infer
that the identity matrix is a good choice for the covariance matrix for estimator
based controller for the subcritical case.
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Figure 4. System with estimator based control for coefficient of kinetic energy as weight
matrix

5. CONCLUSIONS

The following conclusions can be drawn from the present study.

1 For the supercritical case, the covariance matrices based on sine and
1−cosine functions give better state estimation than other ones.

2 The estimator based controller derived from the covariance matrix based
on 1-cosine function shows the best performance for the supercritical
case.

3 For the subcritical case, the covariance matrix based on the identity ma-
trix is most preferable.
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CONTROL OF TURBULENT BOUNDARY LAYERS
BY UNIFORM WALL SUCTION AND BLOWING

Shuya Yoshioka1,2 and P. Henrik Alfredsson,1
1KTH Mechanics, SE-100 44 Stockholm, Sweden, 2at present, Institute of Fluid Science, To-
hoku University, 2-1-1 Katahira, Aoba-ku, Sendai 9808577, Japan

Abstract: The effect of uniform wall suction and blowing on a turbulent boundary layer
was experimentally investigated. It was discovered that the development of the
boundary layer is suppressed by suction and promoted by blowing. The tur-
bulence intensity in the outer part increases with blowing and decreases with
suction, however in the inner part the intensity is only slightly affected if scaled
with the free-stream velocity.

Keywords: flow control; turbulent boundary layer; wall suction and blowing; coherent struc-
ture; VITA analysis.

1. INTRODUCTION

The aim of this research is to investigate the effect on the turbulent bound-
ary layer by uniform wall suction and blowing. Early experiments (Simpson
et al., 1969, Antonia et al., 1988 ) show that the boundary layer thickness and
turbulence statistics are changed by suction and blowing. Recent numerical re-
sults (Mariani et al., 1993, Sumitani and Kasagi, 1995, Chung and Sung, 2001)
show that suction and blowing modify the large scale structures in the bound-
ary layer. In the present study the turbulence statistics are precisely measured
varying the suction and blowing velocity. The coherent structures inside the
boundary layers was also investigated using the so called VITA method from
the measured velocity signals.

2. EXPERIMENTAL SETUP

The experiments were conducted in the MTL-wind tunnel at KTH. The test
section of the wind tunnel is shown in Fig. 1. We use a coordinate system with
its origin fixed at the centre of the leading edge of the plate. The x, y- and
z-axis are directed in the downstream, wall normal and spanwise directions.

A permeable, porous plastic material of 3.2 mm in thickness, covers 2.25
m (length)×1.0 m (width) of the upper surface of the test plate, see Yoshioka

© 2006 Springer. Printed in the Netherlands.
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Figure 1. Schematic of experimental facility. Dimensions are in millimeters

et al. (2004) for details. Through this porous surface, uniform suction and
blowing were applied starting from x = 2.3 m. The free-stream velocity was
fixed to U∞ = 8.0 m/s. The suction and blowing rate V0 was varied in the range
–0.3% ≤ V0/U∞ ≤ +0.3%. The Reynolds number based on the momentum
thickness and the free-stream velocity was Reθ = 3900 at x = 3.7 m at the no
suction or blowing condition. Velocity measurements were made with hot wire
anemometry with a single sensor probe. The sampling time was typically 120
sec and the sampling rate 5 kHz.

3. RESULTS

In Fig. 2 the downstream development of the displacement thickness δ1 is
shown for the different suction and blowing cases. The growth of the boundary
layer thickness is clearly shown to be suppressed by suction. For suction veloc-
ity of V0/U∞ = −0.2% it seems that the boundary layer reaches the asymp-
totic state and for V0/U∞ = −0.3% the displacement thickness is decreasing
in downstream direction. For the blowing cases the growth of the boundary
layer thickness is promoted and the higher the blowing rate the thicker the
boundary layer becomes.

The distributions of velocity and turbulence intensity in wall unit are shown
in Figs. 3(a) and 3(b) and the effects of blowing and suction are clearly seen.
The velocity gradient at the wall is increased 26% by suction of V0/U∞ =
−0.3%, and decreased 29% by blowing of V0/U∞ = +0.3% at x = 4.0 m.
For the suction boundary layer at asymptotic conditions (i.e. no boundary layer
growth) it is easy to show that

τw

ρU2∞
=

(
uτ

U∞

)2

=
V0

U∞
(1)

where uτ is the friction velocity. The friction velocity is determined from the
mean velocity profile close to the wall (at least four measurement points in
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Figure 2. Downstream development of displacement thickness. Open symbols denote data
from experiments without suction or blowing. No suction, ◦, suction rate: �: −0.3%; �:
−0.2%; �: −0.1%, blowing rate: �: +0.1%; , �: +0.2%; �: +0.3%

the linear region). This method to determine the friction velocity seems to
be fairly accurate, since for the case with 0.2% suction the boundary layer
thickness seems to stay constant and uτ/U∞ = 0.045 which is close to the
value obtained from eq. 1 for this case.

The large changes of urms/uτ with different V0 is mainly due to the change
of uτ . The data shown in Fig. 3(b) are re-plotted in Fig. 4 where instead the
turbulence intensity is normalized by the free-stream velocity, and the distance
from the wall is normalized by the displacement thickness. In these figures

100 101 102 103
0

10

20

30

40

y+

U
/u

τ

(a)

100 101 102 103
0.0

1.0

2.0

3.0

4.0

u
s

mr
/u

τ

y+

(b)

Figure 3. Turbulence statistics in wall unit. (a) Time averaged velocity, (b) Turbulence inten-
sity. Symbols as in Fig. 2
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some interesting features are found. For all cases shown in Figs. 4(a) and 4(b)
there are two peaks in the profiles, one is a sharp peak near the wall in the buffer
layer and the other is a broad peak (or plateau) away from the wall. When
suction is applied (see Fig. 4(a)), the value of the peak away from the wall
decreases with an increase of the suction rate. The value of the near wall peak
is, on the other hand, not affected by suction of V0/U∞ = −0.1%, −0.2%,
whereas it decreases for V0/U∞ = −0.3%. In the blowing cases shown in Fig.
4(b), the peak value decreases with increasing blowing rate at the near wall
peak, whereas the peak away from the wall increases in amplitude.

The peculiar behavior of the turbulence intensity mentioned above may be
caused by the change of the coherent structures in the turbulent boundary layer.
To further investigate this effect, we attempted to extract the large scale mo-
tions from the velocity signals by using well known VITA method (see for
instance Johansson and Alfredsson, 1982). The short time variance, var(t, T ),
is first calculated from the velocity signals varying the integration time T ac-
cording to

var(t, T ) =
1
T

∫ t+T/2

t−T/2
u2(s)ds −

(
1
T

∫ t+T/2

t−T/2
u(s)ds

)2

(2)

and when var > ku2
rms, where k = 1, a coherent structure is assumed to

pass the sensor. An example of this procedure is shown in Fig. 5. When
T becomes large the second term of the right hand side of eq. 2 tends to

440 S. Yoshioka and P. H. Alfredsson



T )s(4500.0=

0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 1.0
3-

2-

1-

0

1

2

3

0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 1.0
0

5.0

1

5.1

2

5.2

r(t,T/ )usmr
2av

u(t/)usmr

t )s(

.sop .sop.gen
.gen k 0.1=

Figure 5. Example of event detection by VITA method, T = 0.0054 sec, k = 1.0

zero and thus var → u2
rms. As T approaches zero the two terms of on the

right hand side of eq. 2 become identical, so that var → 0. This leads to
that at some intermediate value of T the number of peaks of var exceeding
the threshold has a maximum. The detected fluctuation is further sorted into
positive (accelerating) events or negative (decelerating) events, depending on
the slope of the velocity signal at the detection time.

In Fig. 6 the frequency of occurrence of only the positive (accelerating)
events is shown as a function of T . These are obtained from velocity signals
obtained in the buffer layer close to where the urms profiles have their peak.
When suction is applied, the frequency of occurrence is not changed whereas
it decreases by the strongest suction of V0/U∞ = −0.3% as shown in Fig.
6(a). The decrease of urms at the near wall peak shown in Fig. 4(a) may be
attributed to this decrease of the number of events. This feature is reminiscent
of the visual experiments of Antonia et al. (1988), where the number of the
streaky structures are decreased by suction. The frequency of occurrence, on
the other hand, simply decreases with increasing blowing rate, see Fig. 6(b).

4. SUMMARY

The effect of uniform wall suction and blowing on the structure of the turbu-
lent boundary layer is experimentally investigated. The growth of the boundary
layer thickness is suppressed by suction and promoted by blowing. The peak
value in the urms profiles in the buffer layer is decreased by suction and blow-
ing. The VITA analysis of the velocity signal suggests that these changes in
the urms profiles are due to the change of the frequency of occurrence of the
coherent motions in the boundary layer.
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STABILITY OF COMPLIANT PIPE FLOW
TO AXISYMMETRIC AND
NON-AXISYMMETRIC DISTURBANCES

P. K. Sen, Munendra Kumar and A. K. Raghava
Department of Applied Mechanics, I.I.T. Delhi, New Delhi-110016

Abstract: Stability of compliant pipe flow has been studied, by considering a visco-
elastic pipe, with an outer rigid shroud, and, with Hagen - Poiseuille
flow through the pipe. The work includes normal compliance studies,
and combined normal plus tangential compliance studies. Both axisym-
metric and non-axisymmetric disturbances have been considered.

Keywords: Pipe-flow stability, Compliant surface, Neutral - curves.

1. INTRODUCTION
Stability of flow over flexible boundaries has given further insight into

the nature of transition and transition control. Fluid flow in a pipe with
flexible walls generally occurs in nature, for example, in biological sys-
tems like flow of blood and other fluids in the body. Such flows also
occur in industrial applications like through hollow fibres, reactors and
membranes. It is found that the system is unstable to both axisymmet-
ric and non-axisymmetric disturbances, although the rigid wall problem
is stable to all infinitesimal disturbances. For a given azimuthal wave
number, it is found that there are no more than two unstable modes.
One is a solid based, flow induced surface instability, while the other is
a fluid based instability that asymptotes to the least damped rigid wall
mode, as the thickness of the visco-elastic wall tends to zero. All modes
are stabilized to different degrees by the solid viscosity.

The present study is aimed at understanding the stability of developed
laminar internal flow through a circular pipe with a compliant wall. This
work is intended to add to the large body of knowledge in the field by
Kumaran and coworkers (1995 - 2000) and Hamadiche and Gad-el-Hak
(2002). The Sen and Arora (1988) method has been used herein in
conjunction with combined fluid-solid model. Only normal compliance,
and also combined normal and tangential compliance, and the inter-
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relation of the two, have been looked into. Numerical methods used are
based on extensions of the finite-difference techniques developed by Sen
and Arora (1988) and Sen, Venkateswarlu and Maji (1985).

2. FORMULATION OF THE PROBLEM
We consider a system where a visco-elastic pipe is coupled with Hagen-

Poiseuille flow, subjected to infinitesimal axisymmetric and non - ax-
isymmetric disturbances.

Disturbance equations for the fluid-side
Figure 1. shows the geometry of flow, with x, r, θ as the longitudinal,

radial and azimuthal directions respectively. The disturbances may be
expressed in normal mode form, as follows:

(û, v̂, ŵ, p̂) = [u(r), v(r), w(r), p(r)] exp [i {nθ + α(x − ct)}] ; (1)

where û, v̂, ŵ are respectively the disturbance velocities in x, r, θ direc-
tions, and p̂ is the pressure, u, v, w and p are the respective amplitude
functions. Also, α and n (integer) are the axial and azimuthal wavenum-
bers respectively. Further, c = cr + ici is the complex phase speed. If
ci > 0 there is instability, and if ci < 0 there is stability. Also u is the
mean laminar velocity. Substituting eq. (1) in the linearized Navier-
Stokes equations, one gets the following:

iα(u − c)u + u′v = −iαp +
1
R

[
u′′ +

u′

r
−

(
α2 +

n2

r2

)
u

]
; (2)

iα(u−c)v = −p′+
1
R

[
v′′ +

v′

r
−

(
α2 +

n2 + 1
r2

)
v − 2niw

r2

]
; (3)

iα(u − c)w = − inp

r
+

1
R

[
w′′ +

w′

r
−

(
α2 +

n2 + 1
r2

)
w +

2niv

r2

]
.

(4)
In the above, and hereinafter, prime (′) means derivative with respect
to r. The continuity equation is given as:

iαu + v′ +
v

r
+ i

nw

r
= 0 . (5)

Disturbance equations for the solid-side
The homogeneous visco-elastic pipe is a hollow cylinder surrounded

on the outside by a rigid shroud, and with Hagen - Poiseuille flow inside.
The disturbance displacement field is given as

(ξ̂, η̂, ζ̂, p̂s) = [ξ(r), η(r), ζ(r), ps(r)] exp [i {nθ + α(x − ct)}] ; (6)
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where ξ̂, η̂, ζ̂ are respectively the disturbance displacements in the x,
r,θ directions and p̂s is the solid - side pressure, and, ξ, η, ζ and ps are
the corresponding amplitude functions. Putting eq. (6) into the Navier
equations, one gets the following:

−α2c2ξ = −iαps +
K

R

[
ξ′′ +

ξ′

r
−

(
α2 +

n2

r2

)
ξ

]
; (7)

−α2c2η = −p′s +
K

R

[
η′′ +

η′

r
−

(
α2 +

n2 + 1
r2

)
η − 2niζ

r2

]
; (8)

−α2c2ζ = − inps

r
+

K

R

[
ζ ′′ +

ζ ′

r
−

(
α2 +

n2 + 1
r2

)
ζ +

2niη

r2

]
. (9)

The continuity equation for the visco-elastic medium, can also be written
as follows:

iαξ + η′ +
η

r
+

inζ

r
= 0 . (10)

K is the visco-elastic parameter which is written as K = Kr + iKi.
Comparing with the formulation of Kumaran, K can be expressed as:
Kr = R/Γ2 + αµrci Ki = −αµrcr where µr = µs/µf and, µs and
µf are the viscosities of solid and fluid respectively. Kumaran defined
the parameter Γ as Γ =

√
ρV 2/G, where V is the maximum mean fluid

velocity, ρ is the density of the visco-elastic material and G is the shear
modulus. Γ is a measure of the relative stiffness of the wall coating. The
axisymmetric formulation is obtained with n = 0, ζ = 0, and w(r) ≡ 0.

Boundary conditions for the combined fluid-solid problem
The boundary conditions at the centre of pipe r = 0, for modes with

different azimuthal wavenumbers, are:

n = 0; u′(0) = 0; v(0) = 0; w(r) ≡ 0 (11)

n = 1; u(0) = 0; v(0) + iw(0) = 0; v′(0), w′(0) = 0 ; (12)

n > 1; u(0) = 0; v(0) = 0; w(0) = 0 ; (13)

where, p is assumed eliminated between eqs. (2-5). At the outer surface
of the pipe, i.e. at r = H, because of the rigid shroud, (ξ, η, ζ) = 0. The
boundary conditions at the interface r = 1 between the solid and the
fluid are the continuity of velocity:

∂ξ

∂t
= u + ηu′;

∂η

∂t
= v;

∂ζ

∂t
= w; r = 1 ; (14)
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and, the continuity of transmitted stresses, given as

σrr = τrr; σrx = τrx +
1
R

ηu′′; σrθ = τrθ; r = 1; (15)

where τ corresponds to the fluid-side and σ corresponds to the solid-side.
Note that the term 1

Rηu′′ was ignored by earlier workers. This term is
called the ‘extra term’ herein.

For the normal compliance problem, first the Sen-Arora method, pa-
rameterizing the interface motion, is used. We have vw = |φw| exp(iθ)
, where θ and |φw| are parameters, corresponding to a suitable normal-
ization of either v, or one of its higher derivatives v(n), at the centre-line
of the pipe, i.e at r = 0. (For details see Sen and Arora 1988). After
this, physical realisability studies are carried out assuming a notional
plate-spring model. This gives generic answers for square of the elastic
surface wave speed c0

2 and the damping d. Physical realisability entails
c2
0 > 0 and d > 0. Thereafter, the full visco-elastic wall, supported

by a thin interface plate, which only allows normal motion, is studied.
The normal compliance problem results are also compared with the full
problem of combined normal and tangential compliance.

3. RESULTS, DISCUSSIONS AND
CONCLUSIONS

(1) Figure 2a shows variation of c2
0 and d with the phase angle θ using

the Sen and Arora method. Figure 2b shows the variation of R/Γ2 and
µr, with phase angle θ, for the full the visco-elastic wall with a thin
plate at the interface. The current results are plotted by making the
loss tangents the same in figs. 2a,b. It is seen from the figures that the
two problems are completely equivalent, thus re-emphasizing the generic
nature of the Sen-Arora method.
(2) Figures 3a,b show sample neutral - curves respectively for the ax-
isymmetric and non-axisymmetric cases. The effect of the ‘extra term’
is seen to be marginal to moderate. Also shown are neutral - curves for
the normal compliance problem. These results are quite different from
the combined normal plus tangential compliance problem.
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LARGE EDDY SIMULATION OF ROTATING 

CHANNEL FLOW BY USING A NEW DYNAMIC 

ONE-EQUATION SUBGRID SCALE MODEL 

R. K. Akula,  A. Sadiki and J. Janicka 
Institute for Energy and Power plant Technology, Dept. of Mechanical Engineering, 

Technical University of Darmstadt, Petersenstr. 30, 64287 Darmstadt, Germany. 

Abstract: The main aim of the present work is to develop a robust and efficient one-

equation model based on the subgrid scale (SGS) kinetic energy for the large 

eddy simulation (LES) and test on a fully developed channel flow with constant 

spanwise rotation. The proposed model combines the advantages of existing 

one-equation SGS models. The proposed model first tested on fully developed 

channel flow and compared with some existing models results. Second, 

efficiency of this model has been demonstrated by the prediction of re-

laminarization of grid scale (GS) turbulence on the suction side of the spanwise 

rotating channel flow. 

Key words: Large eddy simulation, Subgrid-scale models, Subgrid-scale kinetic energy  

1. INTRODUCTION 

The most popularly used SGS model is Smagorinsky[1] model. There are 

some draw backs with this model. This model assumes local equilibrium and 

alignment of the principle axes of the SGS-stress tensor with those of the 

resolved strain-rate tensor. In the simulations of rotating channel flow, it 

gives SGS turbulence due to the mean velocity gradient even if GS flow is 

almost re-laminarized. Performance of this model can be improved by 

implementing the different dynamic procedures. Due to these procedures 

negative value of SGS eddy viscosity sometimes appears and is claimed to 

be related to the energy backscatter. It should be removed in some way since 

it causes numerical instability. Further these models still assume alignment 

447

R. Govindarajan (ed.),  IUTAM Symposium on Laminar-Turbulent Transition, 447–452. 

© 2006 Springer. Printed in the Netherlands.

 Sixth



R. K. Akula,  A. Sadiki and J. Janicka

of the principle axes of the SGS-stress tensor with those of the resolved 

strain-rate tensor. One-equation models for SGS kinetic energy, based on the 

transport equation of SGS kinetic energy are becoming popular due to their 

ability in handling backscatter. These models come under eddy viscosity 

model classification. In this paper a new one-equation model has been 

formulated by combining the advantages of existing one-equation models 

from Sohankar[2] and Menon[3].

2. NUMERICAL PROCEDURE 

For our computations, the governing equations are discretised on a block-

structured boundary-fitted collocated grid following the finite-volume 

approach. Spatial discretisations are 2
nd

 order with flux blending technique 

for the convective terms. The solution is updated in time using 2
nd

 order 

accurate implicit Crank-Nicolson scheme. A SIMPLE type pressure 

correction is used for pressure-velocity coupling. The resulting set of linear 

equations is solved iteratively. Details of the method can be found in the 

paper by Mengler[4]. 

For the incompressible and constant density flows considered here, the 

basic governing equations are the grid filtered continuity and Navier-Stokes 

equations.

0i

i

u

x
, (1) 

2
iji i

i j

j i j j j

u up
u u

t x x x x x
, (2) 

where the overbar denotes a filtered variable. The effect of the 

unresolved subgrid scales is represented by the SGS stress 

i jij i j
u u u u . (3) 

In the Smagorinsky model, the anisotropic part of the SGS-turbulent 

stress, a

ij
, is related to the resolved strain-rate tensor 

ij
S  by 

1/ 222( ) 2a

ij s mn mn ij
C S S S , (4) 

where Cs represents the Smagorinsky constant. 
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Following Germano[5], one introduces a test scale filter represented by a 

tilde. The purpose of doing this is to utilize the information between the 

grid- and test-scale filters to determine the characteristics of the SGS motion. 

The Smagorinsky constant can be then calculated dynamically using the 

following expression[5]: 

2 ij ij

s

ij ij

L M
C

M M
, (5) 

where 2 22 2
ij ij ij

M S S S S , (6) 

,

,

i jij i j

ij ij

L u u u u

or

T

 (7) 

ij i j i j
T u u u u , (8) 

 is a test filter width and S

1/ 2

2
mn mn

S S .

Different dynamic procedures can be applied to compute equation (5). 

Among these the Lagrangian dynamic model from Meneveau[6], is 

geometry independent and hence can be used for the complex geometries, 

considered for this work. 

The proposed one-equation model is based on the transport equation of 

SGS kinetic energy 

, , ,

sgs a

j sgs t l sgs ij ij
j j

j

k
u k k S

t
. (9) 

In the above equation first, second and third terms in the right hand side 

represents diffusion, production and dissipation respectively. The production 

term Pksgs is computed using the local dynamic coefficient C without any 

averaging or restrictions using following procedure[2] 

, 2 ,a a

ksgs ij ij ij sgs ij
P S C k S

Coefficient C computed by using dynamic procedure 
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1 1
2 2

; ;
2

1
,

2

.

ij ij

ji j i
ij

ij ij

sgs
ii

ij
ij sgs ij

L M
C L u u u u

M M

K k L

M K S k S

The subgrid stresses in the momentum equation and diffusion term in the 

Eq. (9) are computed by using a homogeneous value <C>xyz given by using 

following procedure[2] 

1 1
2 22 2

sgs ij ij sgs ij ijxyz
xyz xyz

C k S S C k S S .

Model constant in dissipation term is evaluated by using following 

procedure[3]

F
C

G ,

where

11
22

,

.

i i i i

j j j j

sgs

u u u u
F

x x x x

kK
G

3. RESULTS AND DISCUSSION 

Numerical simulations were performed first on a fully developed 

turbulent channel flow at Reynolds number 395, which is based on the 

friction velocity and half-width of the channel. The two walls of the channel 

are treated as no-slip boundaries. Ksgs is zero at the wall boundary. In the 

streamwise and spanwise directions the domain is truncated to a finite size 

and periodic boundary conditions are imposed. For the present case the 

domain size of 2 2 in the streamwise, spanwise and wall-normal 

has been considered. Simulations are carried out on a coarse grid with cells 

64×32×32. An evaluation of the proposed model is performed using DNS 

data of AGARD test case PCH10[7]. Results are also compared to that 

obtained with the Smagorinsky model and its Lagrangian dynamic version. 

450



Comparison between obtained normalized mean velocity and normalized 

Reynolds stress profiles are shown in the Fig. 1 and Fig. 2. Both one-

equation and Lagrangian models predict near wall flow phenomena very 

well compared to Smagorinsky model. Fig. 3 shows the comparison between 

forward and backscatter energy, which are evaluated by using following 

formulation.

1 1
,

2 2
ksgs ksgs ksgs ksgs

P P P P P P .

Figure 1. Comparison of mean velocity <u> 

profiles

Figure 2. Comparison between <u´u´> 

profiles

Figure 3. Comparison between backscatter and forwardscatter 

For the second test case fully developed spanwise rotating channel has 

been considered. For this case computational domain of 4 ×(4 ⁄3)×2  in 

the streamwise, spanwise and wall-normal with grid size of 48×51×64 is 

considered. Reynolds number and rotation number are 177 and 0.144 

respectively, which are based on the friction velocity and half-width of the 

channel. Results are compared to that obtained with the DNS results of 

AGARD test case PCH21[7] and Lagrangian dynamic model (only for the 

451Large eddy simulation of rotating channel flow 



R. K. Akula,  A. Sadiki and J. Janicka

mean velocity). Comparison between obtained mean velocity and Reynolds 

stress profiles are shown in the Fig. 4 and 5. This comparison clearly 

demonstrates the advantage of the proposed one-equation model in the 

prediction of the body force. These simulations also demonstrate that one-

equation model does not produce SGS turbulence in the suction side of 

rotating channel flow. 

Figure 4. Comparison between <u> profiles Figure 5. Comparison between <u´u´> 

profiles

4. CONCLUSIONS 

A new one-equation model based on SGS kinetic energy is developed by 

combining the advantages of existing one-equation models. This model can 

predict backscatter and capable of proper prediction of laminar, transition 

and turbulent regions and more stable compared to Germano model. 
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