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Preface

Plant growth promoting rhizobacteria (PGPR) are indigenous to soil and 
plant rhizosphere. These microorganisms are the potential tools for 
sustainable agriculture. They enhance the growth of a root system and even 
of an entire plant and often control certain plant pathogens. It is a fascinating 
subject, multidisciplinary in nature, and concerns scientists involved in plant 
heath and plant protection. There have been marked advances in this field 
during the last few decades. This area has been the subject of several 
reviews, but there is no exclusive text on the subject. This book stresses the 
need to document the information, developing a unifying theme which 
treated PGPR in a holistic manner. It deals with biocontrol of plant diseases 
by PGPR and their role in plant growth promotion, biofertilization and 
phytohormone production. Since PGPR are the centre of the theme, the book 
limits itself to the use of PGPR in biocontrol, biofertilization, phytohormone 
production and their formulations. 

The book has eleven chapters and attempts to present balanced 
information on various aspects of PGPR. Chapter 1 describes the 
mechanisms of action of different PGPR groups. Physical, chemical and 
biological factors which affect colonization and the interactions of PGPR 
with other soil microorganisms and their ecology are dealt in detail. Other 
chapters deal with PGPR mediated induced resistance, and the biosynthesis 
of antibiotics by PGPR and role of PGPR in biocontrol of plant pathogens 
and biofertilization. PGPR action is also considered in phytohormone 
production and as a potential alternative of plant productivity. Chapter on 
visualization of interactions of pathogens and biocontrol agents on plant 
roots using autofluorescent protein markers has provided better 
understanding of biocontrol process.  Proteomics perspective on biocontrol 
and plant defence mechanism has a separate chapter.  An independent 
chapter has been devoted to formulations of PGPR. Current and future 
prospects of biocontrol of plant diseases by genetically modified 
microorganisms are discussed in the last chapter.
             The book is not an encyclopedic review. However, an international 
emphasis has been placed on trends and probable future developments. The 
chapters incorporate both theoretical and practical aspects, and may serve as 
base line information for future research through which significant 
developments can be expected. This book will be useful to students, teachers 
and researchers, both in universities and research institutes, especially 
working in areas of agricultural microbiology, plant pathology, and 
agronomy. 

 With great pleasure, I extend my sincere thanks to all the 
contributors for their timely response, excellent and up to date contribution 
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and consistent support and cooperation. My gratitude to late Prof. Abrar 
Mustafa Khan, well known Plant Pathologist of India is immense. He along 
with his students established the section on Plant Pathology in the 
Department of Botany at Aligarh Muslim University, Aligarh, India. I also 
express my deep sense of gratitude to late Professor Syed Israr Husain. Prof. 
Husain was my research supervisor and a student of Prof. Abrar M. Khan. He 
initiated me into this discipline and was a great source of inspiration to me. I 
am also thankful to Dr. W. G. Dilantha Fernando, Department of Plant 
Science, University of Manitoba, Canada, for his encouragement and help 
during this project. I acknowledge with thanks the valuable assistance from 
my teachers, friends, well wishers and students. Special thanks are extended 
to Professors Ainul Haq Khan, Aqil Ahmad, R. P. Singh, Department of 
Botany, A.M.U. Aligarh, John Robert Pichtell, Ball State University, USA, 
and also to Drs. Mashiat Ullah Siddiqui, Department of Biochemistry, 
J.N.M.C, Syed Mashhood Ali, Department of Chemistry, Shamsul Hayat and 
Lamabam Peter Singh, Department of Botany, A.M.U. Aligarh, India for 
their encouragement, courtesy and help as this book progressed. 

I am also thankful to Department of Science and Technology, 
Government of India, New Delhi for granting me a research project on PGPR 
to extend research in the field. 

I am extremely thankful to Springer, Dordrecht, The Netherlands for 
completing the review process expeditiously to grant acceptance for 
publication. Subsequent cooperation and understanding of its staff, especially 
of Maryse Walsh and Deignan Margaret  is also thankfully acknowledged. 

I express sincere thanks to family members, particularly my wife 
Talat, daughter Zara, son Arsalan, brothers Rafi, Wasi , Atif and Tauqeer, as 
also to father and uncle for all the support they provided, and regret the 
neglect  and loss they suffered during the preparation of this book. 

Finally, I must be gracious to Almighty God who helped me develop 
and complete a book on PGPR: Biocontrol and Biofertilization.

Zaki A. Siddiqui 
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Chapter 1 

ECOLOGY OF PLANT GROWTH PROMOTING 
RHIZOBACTERIA

HANI ANTOUN1 AND DANIELLE PRÉVOST2

1Department of Soil Science and Agriculture and Agri-Food Engineering, Faculty of
Agriculture and Food Science Laval University Quebec Canada G1K 7P4  
2Soil and Crops Research and Development Centre, Agriculture and Agri-Food Canada, 
Sainte-Foy, Quebec, Canada G1V 2J3 

Abstract: Chapter presents a discussion on the term PGPR which underlines the need to 
have a uniform definition to be used by all authors. The actual biodiversity of 
PGPR will be illustrated by examples of genera and species chosen from the 
literature and their mechanisms of action for the following different groups: 
diazotrophs, bacilli, pseudomonads, and rhizobia. As PGPR are introduced in 
an ecosystem where intense interactions are taking place, we describe how 
plants, mycorrhiza, and soil fauna can influence the microbial diversity in the 
rhizosphere. Finally, the beneficial interactions between PGPR and symbiotic 
microorganisms in the Rhizobium-legume symbiosis, and in mycorrhizal 
plants are discussed. Interactions of PGPR with protozoa and nematodes are 
also examined. 

Key words:  arbuscular mycorrhizae; bacteria; fauna; mycorrhizosphere; PGPR; 
rhizosphere.

1         INTRODUCTION 

The rhizosphere is the volume of soil surrounding and under the 
influence of plant roots, and the rhizoplane is the plant root surfaces and 
strongly adhering soil particles (Kennedy, 2005). Often, studies of the 
microbial ecology of the rhizosphere also include the rhizoplane. In this 
chapter unless specified otherwise, the term rhizosphere will be used to refer 
to both zones. In the rhizosphere, very important and intensive interactions 
are taking place between the plant, soil, microorganisms and soil 
microfauna. In fact, biochemical interactions and exchanges of signal 
molecules between plants and soil microorganisms have been described and 
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2 Antoun and Prévost 

reviewed (Pinton et al., 2001; Werner, 2001; 2004). These interactions can 
significantly influence plant growth and crop yields.  In the rhizosphere, 
bacteria are the most abundant microorganisms. Rhizobacteria are 
rhizosphere competent bacteria that aggressively colonize plant roots; they 
are able to multiply and colonize all the ecological niches found on the roots 
at all stages of plant growth, in the presence of a competing microflora 
(Antoun and Kloepper, 2001). The presence of rhizobacteria in the 
rhizosphere can have a neutral, detrimental or beneficial effect on plant 
growth. The presence of neutral rhizobacteria in the rhizosphere probably 
has no effect on plant growth. Deleterious rhizobacteria are presumed to 
adversely affect plant growth and development through the production of 
metabolites like phytotoxins or phytohormones but also through competition 
for nutrients or inhibition of the beneficial effects of mycorrhizae (Nehl et
al., 1996; Sturz and Christie, 2003). Kloepper (2003) discussed the problems 
associated with early research work on deleterious rhizobacteria, resulting 
from the use of soil-less systems lacking competition from native soil and 
rhizosphere bacteria, and from the use of a very high number of bacteria to 
inoculate plants, that can reach log 11.8 per seedling. These experimental 
conditions would not be encountered in nature, and the concept and nature of 
deleterious rhizobacteria can be questioned. 

1.1 What are plant growth promoting rhizobacteria? 

About 2 to 5% of rhizobacteria, when reintroduced by plant 
inoculation in a soil containing competitive microflora, exert a beneficial 
effect on plant growth and are termed plant growth promoting rhizobacteria 
(PGPR) (Kloepper and Schroth, 1978). PGPR are free-living bacteria 
(Kloepper et al., 1989), and some of them invade the tissues of living plants 
and cause unapparent and asymptomatic infections (Sturz and Nowak, 
2000). These rhizobacteria are referred to as endophytes, and in order to 
invade roots they must first be rhizosphere competent. It is important to note 
that the term endorhizosphere, previously used in studies of the root zone 
microflora, is semantically incorrect and should not be used (Kloepper et al.,
1992).  The original definition of rhizobacteria was restricted to free-living 
bacteria to differentiate them from nitrogen-fixing rhizobia and Frankia.
Overtime, some authors have used a less restrictive definition of 
rhizobacteria as any root-colonizing bacteria. With the original definition, 
rhizobia and Frankia would not be considered as PGPR, while they would 
be PGPR with broader definition of rhizobacteria. Hence, it is important for 
authors to define their terms. It is generally accepted now that growth 
stimulation resulting from the biological dinitrogen fixation by rhizobia in 
legume nodules or by Frankia in nodules of Alnus spp., is not considered as 
a PGPR mechanism of action (Kloepper, 1993; Kapulnik, 1996; Lazarovits 
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and Nowak, 1997; Bashan et al., 2004), but rather as the result of the 
establishment of these well-known symbioses producing nodules. Rhizobia 
and Frankia in that case are designated as the microbial symbiotic partners 
(microsymbionts) of their homologous plant hosts. Thus, designating 
rhizobia and Frankia species involved in symbiotic associations with higher 
plants as intracellular PGPR or symbiotic PGPR (Vessey, 2003; Gray and 
Smith, 2005), is not in agreement with the essence of the original definition 
of PGPR, and it complicates the study of PGPR since the field of the 
legume-rhizobia symbioses is so vast and well studied (Vessey, 2003). 
Several strains of Burkholderia caribensis and Ralstonia taiwanensis 
belonging to the -subclass of proteobacteria are legume-nodulating, they 
carry nod genes very similar to those of rhizobia and they have been 
designated as -rhizobia (Chen et al., 2003). Associative dinitrogen fixing 
bacteria when they do not exhibit morphological modification of the host 
plant are considered as PGPR. However, rhizobia can also behave like 
PGPR with non-legume plants and some rhizobia are endophytes (Sessitsch 
et al., 2002).  

PGPR may induce plant growth promotion by direct or indirect 
modes of action (Beauchamp, 1993; Kloepper, 1993; Kapulnik, 1996; 
Lazarovits and Nowak, 1997). Direct mechanisms include the production of 
stimulatory bacterial volatiles and phytohormones, lowering of the ethylene 
level in plant, improvement of the plant nutrient status (liberation of 
phosphates and micronutrients from insoluble sources; non-symbiotic 
nitrogen fixation) and stimulation of disease-resistance mechanisms 
(induced systemic resistance). Indirect effects originate for example when 
PGPR act like biocontrol agents reducing diseases, when they stimulate 
other beneficial symbioses, or when they protect the plant by degrading 
xenobiotics in inhibitory contaminated soils (Jacobsen, 1997). Based on their 
activities Somers et al. (2004) classified PGPR as biofertilizers (increasing 
the availability of nutrients to plant), phytostimulators (plant growth-
promoting, usually by the production of phytohormones), rhizoremediators 
(degrading organic pollutants) and biopesticides (controlling diseases, 
mainly by the production of antibiotics and antifungal metabolites). Bashan 
and Holguin (1998) proposed the division of PGPR into two classes: 
biocontrol-PGPB (plant-growth-promoting-bacteria) and PGPB. This 
classification may include beneficial bacteria that are not rhizosphere 
bacteria but it does not seem to have been widely accepted. When studying 
beneficial rhizobacteria, the original definition of PGPR is generally used: it 
refers to the subset of soil and rhizosphere bacteria colonizing roots in a 
competitive environment, e.g. in non-pasteurized or non-autoclaved field 
soils (Kloepper, 2003). Furthermore, in most studied cases, a single PGPR 
will often reveal multiple modes of action including biological control 
(Kloepper, 2003; Vessey, 2003). 

Ecology of plant growth promoting rhizobacteria 
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2         GENERA OF PGPR 

Early studies on PGPR focused more on biological control of plant 
diseases than on growth promotion, and involved bacteria like fluorescent 
pseudomonas and Bacillus subtilis that are antagonistic to soil-borne plant 
pathogens (Kloepper et al., 1989). The number of bacterial species identified 
as PGPR increased recently as a result of the numerous studies covering a 
wider range of plant species (wild, economically important and tree) and 
because of the advances made in bacterial taxonomy and the progress in our 
understanding of the different mechanisms of action of PGPR. Presently, 
PGPR include representatives from very diverse bacterial taxa (Vessey, 
2003; Lucy et al., 2004) and in the following sections we are not giving a 
thorough description of all the genera and species of PGPR, but rather a few 
examples to illustrate the biodiversity of these beneficial bacteria. 

2.1       Diazotrophic PGPR 

Azospirillum known for many years as PGPR was isolated from the 
rhizosphere of many grasses and cereals all over the world, in tropical as 
well as in temperate climates (Steenhoudt and Vanderleyden, 2000) This 
bacterium was originally selected for its ability to fix atmospheric nitrogen 
(N2), and since the mid-1970s, it has consistently proven to be a very 
promising PGPR, and recently the physiological, molecular, agricultural and 
environmental advances made with this bacterium were thoroughly reviewed 
by Bashan et al. (2004). Presently PGPR for which evidence exists that their 
plant stimulation effect is related to their ability to fix N2 include the 
endophytes Azoarcus sp., Burkholderia sp., Gluconacetobacter 
diazotrophicus and Herbaspirillum sp. and, the rhizospheric bacteria 
Azotobacter sp. and Paenibacillus (Bacillus) polymyxa, (Vessey, 2003).  

Several plant isolates, previously included in the genus Azoarcus,
have now separate genera: Azovibrio restrictus, Azospira oryza and 
Azonexus fungiphilus (Reinhold-Hurek and Hurek, 2000). Azoarcus spp. are 
strictly respiratory bacteria belonging to the -subclass of the Proteobacteria, 
and most species have been isolated from roots or stems of Kallar grass, 
Leptochloa fusca; (Hurek et al., 1997). All the plant associated isolates of 
these genera are unable to use carbohydrates for growth but they use organic 
acids or ethanol and their optimal growth temperatures are high (37-420C).
Azoarcus sp. strain BH72, which is capable of colonizing the interior of rice 
(Oryza sativa L.) root, has been described as a model for nitrogen fixing 
grass endophytes (Hurek and Reinhold-Hurek, 2003). Gluconacetobacter
diazotrophicus, previously known, as Acetobacter diazotrophicus, is a 
Gram-negative bacterium, strict aerobe originally isolated from sugarcane 
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(Saccharum officinarum) roots and stems (Pan and Vessey, 2001). G.
diazotrophicus has also been isolated from the inner tissues of sweet potato 
(Ipomoea batatas), grass elephant (Pennisetum purpureum var. Cameroon), 
coffee (Coffea arabica), finger millet (Eleusine coracana) and pineapple 
(Ananas comosus) plants (Muñoz-Rojas and Caballero-Mellado, 2003). 
Herbaspirillum is an endophyte, which colonizes rice, maize (Zea mays), 
sorghum (Sorghum bicolor), and other cereals and sugarcane (James et al.,
2002). The genus Burkholderia contains over 30 species, and the ability to 
fix atmospheric nitrogen has been established in several plant isolates 
including B. vietnamiensis and B. Kururiensis (De Los Santos et al., 2001; 
Coenye and Vandamme, 2003). 

Multiple inoculation experiments during recent decades failed to 
show a substantial contribution of biological nitrogen fixation to plant 
growth in most cases. For example, inoculation with different strains of 
diazotrophs did not relieve the N-deficiency symptoms of unfertilized maize 
in either field or greenhouse assays (Riggs et al., 2001). It is now clear that 
associative diazotrophs, like other PGPR, exert mainly their positive effects 
on plant growth through different direct or indirect mechanisms (Dobbelaere 
et al., 2003). Kennedy et al. (2004) discussed the possibility of improving 
the plant growth promoting potential of diazotrophs, through the production 
of high quality inoculant biofertilizers.

2.2       Bacilli 

By using the PCR-denaturing gradient gel electrophoresis (DGGE) 
technique developed to study the diversity of Bacillus (including the groups 
separated as Paenibacillus, Alicyclobacillus, Aneurinibacillus, Virgibacillus,
Salibacillus, and Gracilibacillus), Garbeva et al. (2003) showed that the 
majority (95%) of Gram-positive bacteria in soils under different types of 
management regimes (permanent grassland, grassland turned into arable 
land, and arable land), were putative Bacillus species; B. mycoides, B.
pumilus, B.megaterium, B. thuringiensis, and B. firmus, as well as related 
taxa such as Paenibacillus, were frequently identified by sequencing the 
DNA bands obtained on DGGE gels. Other Gram-positive bacteria including 
Arthrobacter spp. and Frankia spp. were a minority (less than 6% of the 
clones obtained). The ubiquity and the importance of B. benzoevorans in 
soils throughout the world were proved by using molecular methodology 
developed to identify non-culturable bacteria (Tzeneva et al., 2004). 

Bacillus spp. are able to form endospores that allow them to survive 
for extended periods under adverse environmental conditions. Some 
members of the group are diazotrophs and B. subtilis was isolated from the 
rhizosphere of a range of plant species at concentration as high as 107 per 
gram of rhizosphere soil (Wipat and Harwood, 1999). P. polymyxa is a 

Ecology of plant growth promoting rhizobacteria 
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cytokinin producer (Timmusk et al., 1999) identified as an endophyte of 
lodgepole pine seedlings (Shishido et al., 1999). However this bacterium is 
probably not an endophyte, and this misidentification results from the 
resistance of endospores to the different plant surface disinfection protocols 
(Bent and Chanway, 2002). Bacillus species have been reported to promote 
the growth of a wide range of plants (De Freitas et al., 1997; Kokalis-Burelle 
et al., 2002); however, they are very effective in the biological control of 
many plant microbial diseases. 

Under field conditions in Thailand, Jetiyanon et al. (2003) observed 
that a PGPR mixture containing B. amyloliquefaciens strain IN937a and B.
pumilus strain IN937b, induced systemic resistance against southern blight 
of tomato (Lycopersicon esculentum) caused by Sclerotium rolfsii,
anthracnose of long cayenne pepper (Capsicum annuum var. acuminatum)
caused by Colletotrichum gloeosporioides, and mosaic disease of cucumber 
(Cucumis sativus) caused by cucumber mosaic virus (CMV). Bacillus
megaterium KL39, a biocontrol agent of red-pepper Phytophthora blight 
disease, produces an antifungal antibiotic active against a broad range of 
plant pathogenic fungi (Jung and Kim, 2003). B. subtilis also synthesizes an 
antifungal antibiotic inhibiting Fusarium oxysporum f. sp. ciceris, the agent 
of fusarial wilt in chickpea (Kumar, 1999) and strain RB14 produces the 
cyclic lipopeptides antibiotics iturin A and surfactin active against several 
phytopathogens. This strain has a very good potential to be used for the 
biological control of damping-off of tomato caused by Rhizoctonia solani
(Asaka and Shoda, 1996). The best isolates to inhibit Fusarium roseum var. 
sambucinum, the causal agent of dry rot of potato tubers, obtained from 
Tunisian salty salts belonged to the species B. cereus, B. lentimorbus and B. 
licheniformis (Sadfi et al., 2001). The antifungal activity of the selected 
isolates was associated with their ability to produce inhibitory volatile 
substances and diverse and complex lytic chitinases. 

2.3       Pseudomonads 

Early observations on the beneficial effect of seeds or seed pieces 
bacterization were first made with Pseudomonas spp. isolates, on root crops. 
By treating potato (Solanum tuberosum L.) seed pieces with suspensions of 
strains of Pseudomonas fluorescens and P. putida, Burr et al. (1978) 
obtained statistically significant increases in yield ranging from 14 to 33% in 
five of nine field plots established in California and Idaho. Substantial 
increase in the fresh matter yield of radish (Raphanus sativus L.) was 
obtained by seed inoculation with fluorescent pseudomonads (Kloepper and 
Schroth, 1978). Significant growth increases in seedling and mature root 
weights, and in total sucrose yield were attained in field trials in California 
and Idaho, by inoculating sugar beet (Beta vulgaris L.) with selected strains 
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of fluorescent Pseudomonas spp. (Suslow and Schroth, 1982). Under 
greenhouse conditions when tested in three different soils, an isolate of 
Pseudomonas sp. consistently caused a significant increase of the maize 
shoot dry matter yield (Lalande et al., 1989). Several Pseudomonas isolates 
are able to solubilize sparingly soluble inorganic and organic phosphates 
(Chabot et al., 1993; Rodriguez and Fraga, 1999). Less than 0.5% of the 200 
randomly selected isolates obtained from Australian soils were able to use 
inositol hexaphosphate as sole source of C and P (Richardson and Hadobas, 
1997). Further study of 238 isolates obtained from enrichment culture 
allowed the identification of four unique isolates showing the ability to 
specifically utilize inositol hexaphosphate, two of them were putative 
fluorescent (P. putida) and two were non-fluorescent pseudomonads (P.
mendocina). The fluorescent Pseudomonas strains exhibited marked phytase 
activity and liberated up to 81% of P from inositol hexaphosphate. In field 
trials performed in Quebec (Canada), inoculation with tricalcium phosphate 
solubilizing Pseudomonas sp. 24 caused a significant increase in maize plant 
height after 60 days of growth and an 18% increase in lettuce shoot fresh 
matter yield (Chabot et al., 1993). The effects of plant inoculation with 
Pseudomonas and their possible growth promoting mechanisms of action 
have been reviewed (Lemanceau, 1992; Digat, 1994). The beneficial effects 
of these bacteria have been attributed to their ability to promote plant growth 
and to protect the plant against pathogenic microorganisms. Production of 
indole acetic acid (IAA) by Pseudomonas putida GR12-2 plays a major role 
in the root development of canola (Brassica rapa) root system as evidenced 
by the production of roots 35 to 50% shorter by an IAA-deficient mutant 
(Patten and Glick, 2002). IAA may promote directly root growth by 
stimulating plant cell elongation or cell division or indirectly by influencing 
bacterial 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. 
ACC is the direct precursor of ethylene an inhibitor of root growth, and 
strain GR12-2 like several other bacteria produces ACC-deaminase 
(Jacobson et al., 1994), which degrades ACC, thus preventing plant 
production of inhibitory levels of ethylene. Strain G20-18 of Pseudomonas 
fluorescens produced higher amounts of three cytokinins, isopentenyl 
adenosine, trans-zeatin ribose and dihydrozeatin riboside (Garcia de 
Salamone et al., 2001). The use of mutants with reduced capacity to 
synthesize cytokinins, revealed the importance of cytokinin production in the 
plant growth promoting ability of strain G20-18 (Garcia de Salamone, 2000). 

Pseudomonads are well known for their involvement in the 
biological control of several plant pathogens. Alabouvette et al. (1993) 
showed that in addition to non-pathogenic Fusarium oxysporum, P.
fluorescens and P. putida are the main candidates for the biological control 
of fusarium wilts. The fluorescent pseudomonads are involved in the natural 
suppressiveness of some soils to fusarium wilts, and they have been applied 
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successfully to suppress fusarium wilts of various plant species (Lemanceau 
and Alabouvette, 1993). For many pseudomonads, production of metabolites 
such as antibiotics, siderophores and hydrogen cyanide (HCN) is the primary 
mechanism of biocontrol (Weller and Thomashow, 1993). By using a 
bacterial mutant unable to produce HCN, Gallagher and Manoil (2001) were 
able to show that P. aeruginosa PAO1 kills the nematode Caenorhabditis 
elegans by cyanide poisoning. P. aeruginosa 78 produce a polar substance, 
heat labile, sensitive to extreme pH values causing in vitro juvenile mortality 
of Meloidogyne javanica, the root -knot nematode (Ali et al., 2002). Several 
evidence indicate that siderophore production when iron is limited is 
responsible for the antagonism of some strains of P. aeruginosa against 
Pythium spp. the causal agents of damping-off and root rot of many crops 
(Buyens et al., 1996; Charest et al., 2005). The antibiotics produced by 
bacterial biocontrol agents and their role in microbial interaction, were 
reviewed by Raaijmakers et al., (2002). P. fluorescens CHAO isolated and 
intensively studied by the group of G. Défago in Switzerland produces 
several bioactive compounds (antibiotics, siderophores, HCN, indole acetic 
acid) giving it one of the broadest spectra of potential biocontrol and growth-
promoting mechanisms of known PGPR (Weller and Tomashow, 1993). 
Production of 2,4-diacetylphloroglucinol by CHAO is an important 
mechanism of suppression of take-all of wheat and black root rot of tobacco 
(Keel et al., 1992). The production of a novel lipopeptide antibiotic (AFC-
BC11) is largely responsible for the ability of Burkholderia cepacia to 
effectively control damping-off of cotton caused by Rhizoctonia solani in a 
gnotobiotic system (Kang et al., 1998). Many strains of pseudomonads can 
indirectly protect the plants by inducing systemic resistance against various 
pests and diseases (Van Loon et al., 1998; Ramamoorthy et al., 2001; 
Zehnder et al., 2001). In Canada, Pseudomonas spp. were developed for the 
biological control of Pythium diseases in hydroponics systems for 
greenhouses (Paulitz and Bélanger, 2001). In a spring cucumber crop, P.
corrugata strain 13 and P. fluorescens strain 15 produced 88% more 
marketable fruit, while in a fall crop with severe disease pressure due to 
higher slab temperatures, both strains significantly increased by 600% the 
marketable fruit. Strain 15 also increased fruit production in treatments not 
inoculated with pathogen (Paulitz and Bélanger, 2001). Several reports show 
the critical role-played by fluorescent Pseudomonas spp. in naturally 
occurring soils that are suppressive to fusarium wilt (Mazzola, 2002), and 
take-all caused by the fungus Gaeumanomyces graminis var. tritici (Weller 
et al., 2002). Finally, P. putida isolated in the province of Quebec, from a 
soil selected for its important suppressive effect against the causal agent of 
potato silver scurf (Helminthosporium solani), reduced the disease severity 
by 70% after 30 days at 150C and by 22% after 18 days at 240C (Martinez et 
al., 2002).  
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2.4       Rhizobia 

Rhizobia and bradyrhizobia are well known as the microbial 
symbiotic partners of legumes, forming N2-fixing nodules. However these 
bacteria also share many characteristics with other PGPR. In fact rhizobia 
can produce phytohormones, siderophores, HCN; they can solubilize 
sparingly soluble organic and inorganic phosphates, and they can colonize 
the roots of many non-legume plants (Antoun et al., 1998). Under 
greenhouse condition, radish dry matter yield was increased by inoculation 
with strains of Bradyrhizobium japonicum, Rhizobium leguminosarum bv. 
phaseoli, R. leguminosarum bv. trifolii, R. leguminosarum bv. viciae and 
Sinorhizobium meliloti. The highest stimulatory effect (60% increases as 
compared to the uninoculated control) was observed with strain Soy213 of 
B. japonicum (Antoun et al., 1998). In a series of field experiments 
performed between 1985 and 1993, Höflich et al. (1994) observed that 
inoculation with strain R39 of R. leguminosarum bv. trifolii, significantly 
(P<0.05) stimulated the shoot dry matter yield of maize, spring wheat 
(Triticum aestivum L.) and spring barley (Hordeum vulgare L.). In pot 
experiments, inoculation of wheat with some strains of R. leguminosarum
bv. trifolii isolated from Morocco increased shoots dry matter yield by 16 to 
19% and grain yield by 23 to 25%, as compared to the uninoculated control 
(Hilali et al., 2001). Chabot et al. (1996) obtained under field conditions the 
stimulation of growth of maize and lettuce (Lactuca sativa L.) by inoculation 
with dicalcium phosphate solubilizing strains of R. leguminosarum bv. 
phaseoli. Similar stimulations were observed when mycorrhizal lettuce was 
inoculated with strains of S. meliloti under gnotobiotic conditions 
(Galleguillos et al., 2000). Inoculation of barley in pots with the tricalcium 
phosphate solubilizing strain Mesorhizobium mediterraneum PECA21 
significantly increased the plant dry matter yield, and its content in N, K, Ca 
and Mg (Peix et al., 2001). Azorhizobium caulinodans is nitrogen fixing 
bacterium forming stem and root nodules on their legume host Sesbania
rostrata (Ndoye et al., 1994). In the presence of the flavonoid naringenin 
strain ORS571 of A. caulinodans is able to colonize the roots of Brassica 
napus (O’Callaghan et al., 2000). Several reports indicate that rhizobia are 
endophytes of non-legume plants. McInroy and Kloepper (1995) isolated B. 
japonicum from the roots of cotton (Gossypium hirsutum L.) and sweet corn. 
Rhizobium giardinii (Reiter et al., 2002) and S. meliloti (Sturz et al., 1999) 
were also identified as endophytes of potato. Photosynthetic bradyrhizobia 
were also found as natural endophytes of the African wild rice Oryza 
breviligulata, the ancestor of the African cultivated rice, O. glaberrima
(Chaintreuil et al., 2000). In regions where legumes are cultivated in rotation 
with non-legumes, rhizobia are frequently found as endophytes of the non-
legume plant involved in the rotation. In Egypt, for over 7 centuries, 
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production of rice has benefited from the rotation with Egyptian berseem 
clover (Trifolium alexandrinum); and 3-4 strains of R. leguminosarum bv. 
trifolii were true rhizobial endophytes of rice, and were able to promote rice 
growth and productivity under laboratory and field conditions (Yanni et al.,
1997). Rhizobium etli is a natural endophyte of maize traditionally cultivated 
for thousands of years in Mesoamerica, in association with beans (Phaseolus 
vulgaris) (Guttiérrez-Zamora and Martinez-Romero, 2001). Lupwayi et al.
(2004) observed that in the bulk soil, rhizosphere or rhizoplane of barley, 
wheat and canola the populations of rhizobia were greater when these crops 
were grown in rotation after pea as compared to monoculture, and R.
leguminosarum bv. viciae colonized the root interiors of the three plants. 

Rhizobia have a good potential to be used as biological control 
agents against some plant pathogens. Strains of S. meliloti are antagonistic to 
Fusarium oxysporum (Antoun et al., 1978), and rhizobia antagonistic to F.
solani f. sp. phaseoli isolated from commercial snap bean, appeared to have 
a good potential for controlling fusarium rot (Buonassisi et al., 1986). 
Ehteshamul-Haque and Ghaffar (1993) observed under field conditions that 
S. meliloti, R. leguminosarum bv. viciae, and B. japonicum used either as 
seed dressing or as soil drench reduced infection of Macrophomina
phaseolina, Rhizoctonia solani and Fusarium spp., in both leguminous 
(soybean; Glycine max and mungbean; Vigna radiata) and non-leguminous 
(sunflower; Helianthus annuus and Okra; Abelmoschus esculentus) plants. In 
a field naturally infested with Pythium spp. inoculation of pea (Pisum
sativum L.) and sugar beet with strain R12 of R. leguminosarum bv. viciae,
isolated from lentil (Lens culinaris) in Alberta Canada, significantly 
increased seedling emergence four weeks after planting (Bardin et al., 2004). 
This strain was as effective as Pseudomonas fluorescens 708 a biological 
control agent of Pythium sp. (Bardin et al., 2003). In one field experiment 
performed with sugar beet in august 2001, rhizobia R12 was as effective as 
the fungicide ThiramTM used as seed treatment to control Pythium diseases. 
Two other strains R20 and R21 isolated from pea showed comparable results 
and are potentially good biocontrol agents against Pythium diseases in pea 
and sugar beet. Reitz et al. (2000) showed that the lipopolysaccharides of R. 
etli G12 induce the systemic resistance to infection by the cyst nematode 
Globodera pallida in potato roots. 

3     EFFECTS OF INOCULATION WITH PGPR ON 
THE PLANT-SOIL-MICROBE ECOSYSTEMS 

In order to have a beneficial effect on a target plant, PGPR are 
introduced in large number by seed or seed piece inoculation, with the aim 
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of having good root colonization, a prerequisite for the successful use of 
PGPR. However, this inoculation process might have other non-target 
effects on plants, microorganisms and other members of the soil fauna like 
protozoa and nematodes. Winding et al. (2004) reviewed recently the non-
target effects of the use of bacterial biocontrol agents suppressing root 
pathogenic fungi. The introduction of antibiotic-producing bacteria into the 
rhizosphere caused in some cases significant non-target effects; however 
they were generally small in scale and limited to a growth season, and have 
not been proven to affect soil health. Regardless of the statistics and 
techniques used, culture-dependent (BIOLOG, FAME, PLFA) or culture 
independent (PCR-DGGE), it was frequently observed that the introduction 
of bacterial biocontrol agents affected microbial community structures, and 
these temporary effects are probably of minor importance for soil 
functioning (Winding et al., 2004). Later in this chapter we will be showing 
how PGPR can influence some beneficial symbiosis, like the Rhizobium-
legume or the plant-mycorrhizae, but let us first see how some important 
constituents of the soil-plant-microbe ecosystems affect soil microbial 
structure which may have an important effect on the outcome of inoculation 
with PGPR. 

3.1      Factors influencing soil microbial structure and activity 

3.1.1     Mycorrhizae 

More than 80% of all land plant species form symbiotic associations 
with mycorrhizae (Sylvia, 2005). Following mycorrhizal colonisation, the 
functions of the root become modified both through the mycorrhizal fungus 
acting as a sink for the photoassimilate and through hyphal exudation. This 
may be expected to lead to changes in both qualitative and quantitative 
release of exudates in the mycorrhizosphere (Hodge, 2000). The rhizosphere 
concept has therefore been widened to take into consideration the fact that 
plant root are commonly mycorrhizal resulting in the term 
“mycorrhizosphere”. The mycorrhizosphere is the zone influenced by both 
the root and the mycorrhizal fungus and it includes the more specific term 
“hyphosphere” which refers only to the zone surrounding individual hyphae 
(Johansson et al., 2004). Plant root-colonization with arbuscular mycorrhizal 
(AM) fungi can affect bacterial communities associated with the roots 
directly by providing energy-rich carbon compounds derived from host 
assimilates and transported to the mycorrhizosphere via fungal hyphae, by 
fungal induction of pH changes, by fungal exudates (inhibitory or 
stimulatory compounds) or by competition. Indirect effects of AM fungi can 
result from modification of soil structure or plant root exudates (Johansson 
et al., 2004). A greater number of the PGPR Azotobacter chroococcum and 
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Pseudomonas fluorescens were attracted towards tomato roots colonized by 
Glomus fasciculatum compared to non-vesicular-arbuscular mycorrhizal 
tomato roots (Sood, 2003). By using mutants of A. brasilense and R.
leguminosarum altered in the production of extracellular polysaccharides, 
Bianciotto et al. (2001) showed the involvement of these polysaccharides in 
the attachment of these bacteria to the structures of AM fungi. In soil, an 
extensive network of AM fungi develops and PGPR are usually associated 
with fungal surfaces (Bianciotto and Bonfante, 2002). The symbiotic AM 
fungi Gigaspora margarita, Scutellospora persica and Scutellospora 
castanea, contain endosymbiotic bacteria closely related to the genus 
Burkholderia (Bianciotto et al., 2000). Minerdi et al. (2001) observed the 
presence of nif genes in Burkholderia the endosymbiont of G. margarita.
The ecological importance of the presence of these rare examples of bacteria 
living in symbiosis with fungi remains to be elucidated. Barea et al. (2002) 
summarized the different interactions taking place in the mycorrhizosphere 
that improve plant fitness and soil quality. Villegas and Fortin (2001) used a 
two compartment Petri plate system, and roots of carrot (Daucus carota L.) 
transformed with Agrobacterium rhizogenes to study the solubilization of 
tricalcium phosphate by the AM fungus Glomus intraradices and by 
phosphate solubilizing bacteria. When ammonium was used as sole nitrogen 
source Pseudomonas aeruginosa, and mycorrhizal and non-mycorrhizal 
roots of carrot and the mycelium of G. intraradices exhibited some P 
solubilization activity. Inoculation of the non-mycorrhizal carrot roots with 
P. aeruginosa showed a slight non-significant increase in the amount of P 
solubilized. However, when the inoculated roots were infected with G. 
intraradices a substantial significant increase in P solubilization was 
observed clearly indicating the presence of a synergistic effect caused by the 
fungus. When nitrate was used as sole nitrogen source, important 
solubilization activities were only observed as results of the interactions 
between G. intraradices and the two P-solubilizing bacteria P. aeruginosa
and P. putida (Villegas and Fortin, 2002).  

3.1.2     Plant effect 

In comparison to the bulk soil, the number of microorganisms in the 
rhizosphere is always substantially higher because of the plant influence. 
There are also changes in the biodiversity of microorganisms caused by this 
“rhizosphere effect” which was defined by Badalucco and Kuikman (2001) 
as any physical, chemical or biological change occurring within the root 
sphere or even indirectly mediated by its excretions and organic debris. Plant 
genes play an important role in the interaction between plant and beneficial 
symbiotic (and probably asymbiotic) microorganisms, as indicated by the 
observed variations in the response of different plant cultivars to the same 
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introduced organism. Plant genotype affects the response to inoculation with 
PGPR because it affects root colonization by the introduced bacteria, as well 
as the total population size of microbial communities on plant and it 
probably also affect the composition of those communities (Smith and 
Goodman, 1999). Lemanceau et al. (1995) used biochemical and 
physiological tests to compare the diversity of the soilborne populations of 
fluorescent pseudomonads in flax (Linum usitatissinum L.) and tomato 
(Lycopersicon esculentum Mill.) grown in the same soil. The populations 
isolated from uncultivated soils were different from those isolated from 
plants (rhizosphere, rhizoplane or root tissue), and analysis of the bacterial 
isolates indicated that plant has a selective influence on fluorescent 
pseudomonads and the selection was more strongly expressed with flax than 
with tomato plants. Further study with 317 isolates of fluorescent 
pseudomonads revealed that in the vicinity of flax and tomato roots, 
denitrifiers were more abundant than in the uncultivated soil, and it was 
hypothesized that denitrification could be a selective advantage for the 
denitrifiers in the root environment and that this process could contribute to 
modify the specific composition of the bacterial communities in the 
rhizosphere (Clays-Josserand et al., 1995). The genetic variability of the 
cultivable Burkholderia cepacia populations in the rhizosphere of maize 
grown under field conditions in Italy, decreased as plants were getting older 
indicating that in the selection of B. cepacia strains to be used as inoculants 
for maize, plant growth stage is an important factor among others that should 
be taken into account (Di Cello et al., 1997). Comparable results suggesting 
a marked influence of time on microbial pools were observed with pot 
grown maize plants (Baudoin et al., 2002). By using direct DNA isolation 
and the PCR-DGGE technique Duineveld et al. (1998) observed that the 
rhizosphere effect in chrysanthemum plants grown in pots influenced only a 
minor fraction of the total bacterial community represented by weak bands 
on the DGGE gel. Normander and Prosser (2000) also did not observe any 
difference between DGGE patterns of bulk soils and rhizosphere in barley 
grown in pots. Different results are obtained from the rhizosphere of plants 
grown under field conditions. In fact, under field conditions, the DGGE 
fingerprints obtained from the rhizosphere of strawberry (Fragaria ananassa 
Dutch.), oilseed rape (Brassica napus L.) and potato showed plant dependent 
shifts in the relative abundance of the rhizosphere populations, which 
became more pronounced in the second year of growing the same crop 
(Smalla et al., 2001). The perennial strawberry plant had rhizosphere 
communities’ pattern quite different from those of the two similar patterns 
obtained with the annual plants oilseed rape and potato. In studying 
microbial diversity in soil, molecular techniques based on PCR have been 
used to overcome the limitations of culture-based methods; however these 
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techniques have their own limitations, which have been reviewed by Kirk et
al. (2004).  

3.1.3     Soil fauna 

Soil fauna has an important function in regulating rhizosphere 
microbial processes and therefore affect plant growth (Bonkowski et al.,
2000). Protozoa are essential components of the soil ecosystem and they 
consume in general more than 50% of the bacterial productivity, enhancing 
nutrient cycles and energy flows to the benefit of microorganisms, plants and 
animals (Foissner, 1999). There is about 1600 known protozoan species 
living in terrestrial environment, however as indicated by studies with 
ciliates, these represent about 20 to 30% of the species actually present, most 
of which are still not described. Grazing by a mixed assemblage of soil 
protozoa (seven flagellates and one amoeba) had significant effects on the 
bacterial community structure in a soil microcosm, as revealed by the PCR-
DGGE as well as the community level physiological profiling determined 
with the Biolog plates (Ronn et al., 2002). Grazing favoured Gram-positive 
bacteria closely related to Arthrobacter spp. The effects of rhizobacteria on 
root architecture seem to be mediated by protozoan grazing, particularly by 
naked amoeba, which are the most important bacterial grazers in soil 
(Bonkowski, 2004). The presence of the amoebae Acanthamoeba sp.
induced changes in root morphology of watercress (Lepidium sativum L.)
seedlings resembling hormonal effects and increased the proportion of IAA 
producing rhizosphere community (Bonkowski and Brandt, 2002). By 
changing the physical structure of soil and the distribution of resources, the 
activities of earthworms alter the habitat for many different types of 
organisms (Amador and Görres, 2005). Hendriksen and Hansen (2002) 
observed that the vegetative cells of the insecticide bacterial strain Bacillus
thuringiensis var. Kurstaki DMU67R, were present in the gut of the non-
target earthworm species Lumbricus rubellus, L. terrestris and
Apporrectodea caliginosa. In A. caliginosa DMU67R, spore germination 
seemed to be restricted to the gut and sporulation occurred after defecation. 
These results suggest that survival in the soil of B. thuringiensis is a dynamic 
process involving germination, cell divisions and sporulation in specific 
microhabitats. Knox et al. (2003) tested in sand based microcosms, the effect 
of three species of nematodes (Caenorhabditis elegans, Acrobeloides thornei
and Cruznema sp.) on wheat rhizosphere colonization by three Gram-
negative PGPR (Pseudomonas corrugata and two strains of P. fluorescens)
and a Gram-positive PGPR (B. subtilis). Irrespective of the bacterial or 
nematode species, rhizosphere colonization by the tested PGPR was 
substantially increased by the presence of nematodes. In developing new 
plant inoculants containing PGPR, the effect of soil fauna is an important 
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factor that should not be overlooked, and the possibility of developing a 
mixed inoculant containing for example beneficial protozoa should be 
considered and further investigated. 

3.1.4     Abiotic factors 

Soil physical and chemical properties (pH, humidity and water 
availability, temperature, redox, salinity, texture, stability of aggregates, 
fertility, organic matter content), the presence or absence of pesticides and 
other xenobiotic substances are examples of well known abiotic factors that 
can directly or indirectly affect plant growth and their interaction with soil 
microflora and fauna. Abiotic factors can also directly influence PGPR 
activity and probably their effect on plant growth and the dynamics of root 
microbial communities. Duffy and Défago (1999) studied the environmental 
factors that modulate the biosynthesis of antibiotic and siderophore by the 
disease-suppressive strain P. fluorescens CHAO. The production of the 
antibiotic 2,4-diacetylphloroglucinol was stimulated by Zn2+, NH4Mo2+ and 
glucose, and production of pyoluteorin was stimulated by Zn2+, Co2+ and 
glycerol and was repressed by glucose. The production of the siderophore 
pyochelin was increased by Co2+, fructose, mannitol and glucose. 
Comparison of strain CHAO with a genetically diverse collection of 41 P. 
fluorescens biocontrol strains indicated that the effect of some factors like 
the stimulation of 2,4-diacetylphloroglucinol by Zn2+ and glucose was strain 
dependent (Duffy and Défago, 1999).  

3.2       Root colonization by introduced PGPR 

Failure of PGPR to produce a desired effect after seeds inoculation 
is frequently associated with their inability to colonize plant roots. In fact, 
root colonization is a very complex phenomenon involving several steps and 
influenced by many biotic and abiotic parameters, and has been reviewed by 
Benizri et al. (2001). Mechanisms involved in the establishment of a 
successful interaction between PGPR and plant roots have been reviewed 
and discussed (Somers et al., 2004). Latour et al. (2003) described a strategy 
used during the last decade to study traits involved in the rhizosphere 
competence of fluorescent pseudomonads. First, the diversity of indigenous 
populations associated with plant roots was compared with that of the 
uncultivated soils in order to identify traits discriminating between the two 
populations. Comparing a wild-type strain to mutants affected in the 
corresponding phenotypes, allowed the determination of the involvement of 
the identified traits in rhizosphere competence. Finally, traits shared by 
populations adapted to the rhizosphere were identified by comparing the 
metabolism and the competitiveness in the rhizosphere of a collection of 
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bacterial strains. The results obtained indicated that rhizosphere competent 
pseudomonads are particularly efficient in using pyoverdine-mediated iron 
uptake system and in reducing nitrogen oxides (Latour et al., 2003). 

Quorum sensing (also called autoinduction) is a well-understood 
mechanism of bacterial cell-to-cell communication and it conveys the 
concept that certain traits are only expressed when bacteria are crowded 
together. In plant pathogenic bacteria, traits regulated by quorum sensing 
include the production of extracellular polysaccharides, degradative 
enzymes, antibiotics, siderophores, and pigments, as well as motility and 
biofilm formation (von Bodman et al., 2003). N-acyl-homoserine lactones 
(AHLs), are the most commonly reported type of quorum sensing signals, 
and interestingly production of this molecule is more common among plant- 
associated Pseudomonas spp. than among soil borne species, confirming the 
importance of quorum sensing in plant associated bacterial communities 
(Elasri et al., 2001). 

4     INTERACTIONS BETWEEN PGPR AND OTHER 
MICRO-ORGANISMS

Research on the interactions between PGPR and other soil microbes 
has been mainly focused on their benefits for increasing yield of different 
plant crops. Soil is a complex environmental system, and the beneficial 
effects of PGPR interactions are often strain and plant dependant. However, 
the importance of these interactions is clearly seen by the increasing number 
of studies looking for synergism between PGPR with symbiotic organisms 
(rhizobia, mycorrhiza), and with other soil microorganisms and some 
constituents of the fauna. 

4.1       PGPR and symbiotic organisms 

4.1.1 PGPR and rhizobia 

Symbiotic nitrogen fixation in legumes is accomplished by rhizobia 
inside root nodules. This process is dependant on the efficiency of the 
Rhizobium strain involved and on its competitiveness for nodulation against 
indigenous soil rhizobia, and is influenced by environmental factors. 
Increasing symbiotic nitrogen fixation is rational since legume crops are an 
important source of protein and are environmentally safe, avoiding the use of 
nitrogen fertilizers. Rhizobial strain selection and legume breeding are 
conventional approaches to improve this process and, more recently; 
molecular approaches have demonstrated their potential. The exploitation of 
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PGPR in combination with Rhizobium also constitutes an interesting 
alternative to improve nitrogen fixation. 

Free-living diazotrophs, Azotobacter and Azospirillum increase 
nodulation and yield of several legume species such as soybean, winged 
bean, pea, chickpea, sulla clover, vetch, clover, alfalfa and Macroptilium 
atropurpureum after co-inoculation with their respective rhizobial symbionts 
(Singh and Subba Rao, 1979; Burns et al., 1981; Iruthayathas et al., 1983; 
Sarig et al., 1986; Yahalom et al., 1987). The mechanisms involved in the 
beneficial interaction Azospirillum-Rhizobium with clovers have received 
considerable world-wide attention. However, negative effects of 
Azospirillum on nodulation of clover have also been reported under artificial 
experimental conditions (agar plate assay) in the presence of some strains of
R. leguminosarum bv. trifolii (Plazinski and Rolfe, 1985a). This inhibition 
occurs when the cell ratio of Rhizobium:Azospirillum is about 1:2000 or 
when Azospirillum is inoculated  24 h before or after the Rhizobium. From a 
series of subsequent experiments (Plazinski and Rolfe, 1985a; 1985b), it was 
concluded that Azospirillum could block the capacity of some rhizobial 
strains to produce root hairs curling (the first step of nodulation). In the case 
of increased nodulation, the significant increase in root hairs number and 
length in the presence of the Rhizobium-Azospirillum mixture suggested that 
Azospirillum can create additional infection sites, which can be occupied 
later by rhizobia. This hypothesis is strengthened by a further study using a 
Gus-reporter gene (Tchebotar et al., 1998), in which an equal mixture of 
Azospirillum lipoferum-R. leguminosarum bv. trifolii increased nodulation in 
clovers, and Azospirillum was observed colonizing tap root, root hairs and 
sites near or on the nodules.

The ability of other PGPR species to improve nodulation is 
documented for many legume species. In general, enhanced nodulation 
allows higher nitrogenase activity resulting in superior dry matter yield. 
However, the results vary depending on the experimental system used. 
Under field conditions, nine PGPR strains of Serratia proteamaculans, S. 
fonticola, P. fluorescens and P. putida, tested individually or in combination 
with R. leguminosarum, increased emergence, vigor, nodulation, nitrogenase 
activity and root weight of lentil, but had no effect on pea. Laboratory 
studies showed that the two best strains in field studies gave similar results 
with lentil grown in pot and sand column systems, but not in Leonard jar or 
growth pouch systems (Chanway et al., 1989). The potential for using 
fluorescent Pseudomonas and Rhizobium in pea production has been shown 
in field studies where there was a reduction in the number of Fusarium
oxysporum infected peas grown in infested soils, and an improvement of 
plant growth in term of shoot height and dry weight. The strains used 
exhibited antifungal activity and produced siderophores (Kumar et al.,
2001). However, strains of Pseudomonas putida identified as plant 

Ecology of plant growth promoting rhizobacteria 



18 Antoun and Prévost 

deleterious, produced extracellular metabolites regulated by iron that inhibit 
the growth of R. leguminosarum and have a negative impact on its 
chemotaxis, indicating that the initial pea root infection process could be 
disrupted (Berggren et al., 2001). Other studies showed that antifungal 
rhizobacterial isolates of Rahnella aquatilis and S. proteamaculans increased 
the yield of pea and lentils in field soils, and they were selected for possible 
development of commercial inoculants (Leung et al., 2003; 2004). Growth 
promotion mechanism on pea was investigated using 2,4-
diacetylphloroglucinol (DAPG) producing P. fluorescens and its negative 
mutant (De Leij et al., 2002). High concentrations of DAPG were found in 
pea rhizosphere, suggesting that DAPG can act as a plant hormone-like 
substance, inducing morphological changes in the plant that can lead to 
enhanced infection and nodulation by Rhizobium. A novel interaction 
between Streptomyces lydius WYEC108, known as a biocontrol agent and a 
siderophore producer, and the Rhizobium-pea symbiosis was shown to 
enhance overall growth of the plant (Tokala et al., 2002). Root and nodule 
colonization by this streptomycete is probably one of the mechanisms that 
promote nodule number and growth, and improve bacteroids vigor by 
favoring iron assimilation. 

The presence of PGPR can influence the ability of rhizobia to 
compete with indigenous populations for nodulation. This was demonstrated 
with green gram (Vigna radiata) grown in a non-sterile soil, in which  two  
strains of Enterobacter co-inoculated with two strains of Bradyrhizobium sp. 
(Vigna) did increase nodule occupancy of the two rhizobial strains.
Bradyrhizobium sp. strain S24 occupied 60% of nodules in single 
inoculation and this value was increased to 81% in the presence of 
Enterobacter strain EG-ER-1. The other Enterobacter isolate (KG-ER-1) 
increased nodule occupancy of Bradyrhizobium strain Cog15 from 77 to 
88% (Gupta et al., 1998).  However, it seems that PGPR strains have no 
effect on the in vitro growth of Bradyrhizobium, as demonstrated by the 
same authors using 10 Bradyrhizobium strains co-inoculated with 14 PGPR 
strains, including the same Enterobacter strains (Gupta et al., 2003). Five 
Bacillus spp. strains and two Enterobacter strains increased yield of green 
gram, while nodulation and nitrogen fixation (acetylene reduction activity, 
ARA) were increased only in combination with Bradyrhizobium strain 
cog15. In a field study, a consortium of three PGPR inoculated to cowpea 
resulted in a better nodulation and nitrogen fixation than what was observed 
using Bradyrhizobium sp. (Vigna) alone. However, dual inoculation with 
Bradyrhizobium sp. and the PGPR consortium improved all growth 
parameters (Gulati et al., 2001).  

In a study with B. japonicum, 18 root colonizing bacteria belonging 
to the genera Pseudomonas and Aeromonas spp. did not interfere with the 
nodulation capacity of soybean, but three of these strains increased nodule 
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numbers and others enhanced plant growth (Polonenko et al., 1987). Similar 
strain dependent effects have also been reported in a study where co-
inoculation with P. fluorescens 2137 increased the colonization of B.
japonicum on soybean roots, nodule numbers and ARA while coinoculation 
with P. fluorescens WCS365 had the opposite effects (Chebotar et al.,
2001). The same study also suggests that the high root colonization of P.
fluorescens 2137 could enhance nodulation by the release of growth-
promoting substances that stimulate B. japonicum. Lian et al. (2001) 
observed that a strain of Bacillus circulans produces a chemical compound 
analog to the nod factor of B. japonicum. This compound causes root hair 
deformation activity on soybean. 

PGPR can also overcome the inhibitory effect of low temperature on 
the B. japonicum-soybean symbiosis. It was shown that application of the 
PGPR strains S. protamacluans 1-102 or S. liquefaciens 2-68 co-inoculated 
with Bradyrhizobium allowed a better plant growth, higher nitrogen fixation 
and nodule numbers at root zone temperatures of 15°C and 25°C (Zhang et 
al., 1996; 1997). This was reflected in field studies where these PGPR 
accelerated nodulation and nitrogen fixation under short growing seasons 
(Dashti et al., 1998). The optimal co-inoculation dose is 1 X 108 cells per 
soya seedling, for both PGPR strains (Bai et al., 2002a). The combination of 
these PGPR with genistein flavonoid responsible for the induction of 
nodulation genes, did not cause additional improvement in nodulation and 
nitrogen fixation in field studies (Pan et al., 2002), although some combined 
treatments of PGPR plus rhizobia preincubated with genistein stimulated 
growth under certain low root temperatures (Dashti et al., 2000). However, 
an inducible activator, possibly an LCO (lipo-chitooligosaccharide) analogue 
to the rhizobial signal to legumes stimulating nodule formation, could be 
responsible for the growth-promoting activity of strain 1-102 (Bai et al.,
2002b).  In another study of co-inoculation with B. japonicum, two strains of 
Bacillus subtilis (NEB4 and NEB5) and a strain of B. thuringiensis 
(NEB17), isolated from nodules of field-grown soybean plants, enhanced 
soybean plant growth in greenhouse and field experiments (Bai et al., 2003). 
Strain NE-B17 is the most suitable for use in soybean production systems 
because it provided the highest nodule number and weight, and shoots and 
roots dry weight.  

Stimulation of nodulation and plant growth has also been reported 
for chickpea (Cicer arietinum) using Pseudomonas strains that are 
antagonistic to fungal pathogens (Aspergillus sp., Fusarium oxysporum, 
Pythium aphanidrematum and Rhizoctonia solani) in co-inoculation with 
Mesorhizobium (Goel et al., 2000). This resulted in the formation of 68 to 
115% more nodules, compared to single inoculation with Mesorhizobium.
The beneficial effect on plant shoot dry mass was more pronounced with 
HCN-producing Pseudomonas strain (Goel et al., 2002).  

Ecology of plant growth promoting rhizobacteria 
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Synergism between Rhizobium, PGPR and phosphate solubilizing 
bacteria (PSB) is also advantageous for legume crops, as observed earlier 
with chickpea (Alagawadi and Gaur, 1988). Dual inoculation of Rhizobium
and P. striata or B. polymyxa (PSB) increased plant growth parameters, 
nodulation, nitrogenase activity, and N and P uptake. PSB also increased the 
available P content of the soil. The possibility of producing a common 
inoculant containing a mixture of a PGPR (Pseudomonas KB-133), a PSB 
(B. megatherium) and a Rhizobium sp. strain (COC 10) efficient for 
blackgram nodulation and yield, has been recently demonstrated (Prasad and 
Chandra, 2003;Gunasekaran et al., 2004).  

Finally, inoculation modes of PGPR and rhizobia may result in 
variable effects on legume growth, and this may depend on the phase of the 
process modified by PGPR: infection, nodulation or nitrogen fixation. This 
was concluded from results showing that PGPR strains (P. fluorescens,
Chryseobacterium balusim and Serratia fonticola) and Sinorhizobium fredii
gave the most significant increases on plant growth yield when they  were 
inoculated at different times (PGPR or S. fredii first). Co-inoculation had no 
effect, probably due to competition between the PGPR and S. fredii (Lucas 
Garcia et al., 2004)

4.1.2 PGPR-mycorrhizae interaction 

It is widely reported that mycorrhizal symbiosis influences growth, 
water and nutrient absorption of plants, and protects them from root 
diseases. The AM fungi are important because they are associated to about 
80% of plant species. They reside as spores, hyphae and propagules, and the 
extraradical hyphae act as a bridge between soil and roots. Plant root 
colonization proceeds with the growth of intraradical hyphae and with the 
formation of arbuscules located in cortical cells. It is now clear that 
development of endo or ectomycorrhizae cause rhizosphere microbial 
changes which can result in interactions among rhizosphere microbes 
(Bianciotto and Bonfante, 2002). For example, AM fungal endosymbiotic 
bacteria have been reported, but their functional significance is not clear, 
indicating the complexity of the mycorrhizal interactions with bacteria 
(Bianciotto and Bonfante, 2002). 

Interactions of AM fungi with other soil organisms have been 
described with regards to their effect on mycorrhizal development and 
functioning. Some interactions such as grazing of the external mycelium by 
soil organisms are detrimental, while other including PGPR can promote 
mycorrhizal functioning (Hodge, 2000). Rhizobacteria showing a beneficial 
effect on mycorrhizae are often referred to as “mycorrhizae-helper 
microorganisms”. Linderman and Paulitz (1990) reviewed the interactions 
between mycorrhizae and groups of bacteria such as nitrogen-fixing bacteria, 
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PGPR including phosphate-solubilizing bacteria and biocontrol agents. 
Bacteria associated to mycorrhizal fungi adhere to fungal spores and hyphal 
structures and thus spread to the rhizosphere (Bianciotto and Bonfante, 
2002). Recently, Bianciotto et al. (2004) observed strong evidence of a 
vertical transmission of endobacteria through the AM fungus vegetative 
generation. However, antagonistic effects are often reported in the AM 
fungi-PGPR interactions. Positive interactions often result in plant growth 
improvement.  

Inoculation with both free living nitrogen fixing bacteria such as 
Azospirillum brasilense or Azotobacter and with AM fungi increase plant 
productivity. The nitrogen-fixing bacteria stimulate root colonization by AM 
fungi and increase their number of internal vesicles; they also alter 
rhizosphere rhizobial populations (Linderman and Paulitz, 1990).  It is not 
clear whether the enhancement of plant growth is due to free nitrogen 
fixation or to the production of plant-growth promoting substances. On the 
other hand, a study estimated that associative nitrogen fixation by Bacillus
could contribute in part to the growth promotion effect observed with Pinus 
contorta inoculated with the mycorrhizal fungus Wilcoxina mikolae 
(Chanway and Holl, 1991).   

Some studies considered free-nitrogen fixers like other PGPR 
species, without reference to nitrogen fixation activity.  For instance, in a 
study using the nitrogen-fixer A. chroococcum and P. fluorescens, the 
chemotaxis of these two PGPR towards roots of mycorrhizal tomato plants 
(Glomus fasciculatum) was an important step of communication for root 
colonization (Sood, 2003). It was found that G. fasciculatum alters the 
characteristics of root exudates which are chemoattractants specific for each 
PGPR, amino acids for P. fluorescens and sugars for A. chroococcum. In 
dual inoculation with Glomus mosseae, B. coagulans was superior to A. 
chroococcum in enhancing plant biomass of Simarouba glauca (Sailo and 
Bagyaraj, 2003). Different combinations between three PGPR species (A.
chroococcum, Azospirillum brasilense and Burkholderia cepacia) and two 
AM fungi (Glomus clarum and G. fasciculatum) did not show the same 
trends on root colonization or on the nutritional status of onion and tomato, 
the highest mycorrhizal colonization was achieved by Azospirillum
brasilense co-inoculated with each AM species on tomato and by single 
inoculation with G. fasciculatum on onion (Pulido et al.,2003). Finally, 
mycorrhization of wheat and maize was not affected by different 
Azospirillum species or by a genetically modified derivative of A. brasilense
overproducing indole-3-acetic acid, indicating again variations in PGPR-AM 
fungi interactions (Russo et al., 2005). On the contrary, a biofertilizer 
containing a mixture of N-fixer (A. chroococcum), P solubilizer (B. 
megaterium)  and K solubilizer (B. mucilaginous) and AM fungus (G.
mosseae or G. intraradices) increased growth and nutrient uptake of maize, 
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enhanced root colonization by the AM fungus and improved soil properties 
such as organic matter content and total N (Wu et al., 2005) 

The effect of PGPR strains (Pseudomonas cepacia, P. aeruginosa, 
P. fluorescens and P. putida) on growth and interactions of spring wheat 
with AM fungi in field studies varied with the PGPR strain used. Wheat 
harvest index was increased by pseudomonads and root biomass was 
reduced by one PGPR strain while two others increased root dry weight in 
the 15 cm zone (Germida and Walley, 1997). More evidence of positive 
interactions between AM fungi and PGPR on wheat has been shown in field 
experiments conducted in New Delhi, India. Different combinations from 11 
PGPR and five AM fungi affected plant yield and weight and uptake of 
micro- and macro-nutrient, and these benefits allowed a reduction of 
fertilizer application by up to 50% (Singh and Adholeya, 2003).   

The use of PGPR and AM mycorrhizae has been attempted with the 
aim of protecting plants against pathogens. The interactions of biocontrol 
PGPR with AM fungi are often contradictory and probably depend on the 
tested bacterium, the plant species and the environmental factors. In a study 
with wheat, some strains of Pseudomonas spp. and Bacillus spp. showed a 
better biocontrol effect against Gaeumannomyces graminis when applied 
alone than when used with soil inoculation with AM fungi (Ksiezniak et al.,
2001).  

The combination PGPR and ectomycorrhizae have been studied for 
enhancing growth of tree seedlings in nurseries, but the effect of PGPR is 
either beneficial or detrimental for mycorrhization, depending on the study. 
For instance, in a study with Douglas-fir, dual inoculation with P.
fluorescens strain BBc6R8 and the ectomycorrhiza Laccaria bicolor
increased mycorrhizal colonization from 45 to 77% depending of the dose of 
bacterial and fungal inocula used (Frey-Klett et al., 1999). Two years after 
inoculation, Pseudomonas cells could not be detected in the soil, but the 
height of the mycorrhizal Douglas-fir was increased, even by the lowest 
bacterial dose used.  When co-inoculated, L. bicolor and P. fluorescens
strain BBc6 significantly inhibited mycorrhizal development in Eucalyptus
diversicolor (Dunstan et al., 1998). However, in the same study, a PGPR 
effect was observed with an unidentified bacterium, allowing 49% more 
shoot dry weight than the uninoculated control. Studies with Bacillus species 
showing reduction in mycorrhizal colonization of loblolly pine suggest high 
metabolic costs of mycorrhizal maintenance in the presence of some 
rhizobacteria (Vonderwell and Enebak, 2000). This is also confirmed in a 
greenhouse study with pine, where both B. licheniformis CECT 5106 and B.
pumilus CECT 5105 promoted growth of Pinus pinea without the synergistic 
effect of mycorrhizal inoculation with Pisolithus tinctorius (Probanza et al.,
2001). The absence of a synergistic effect of the same two Bacillus strains 
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combined to P. tinctorius was also observed with oak (Domenech et al.,
2004).  

Antagonistic or synergistic interactions reported above may be 
related to physical and chemical interactions between AM fungi and PGPR. 
First, the degree of attachment to spores and hyphae of AM fungi depends 
on the PGPR strain, and it was suggested that extracellular soluble factors 
(bacterial material) produced around the attached bacteria may mediate 
bacterial-fungal interactions, and that AM fungi are vehicles for the 
colonization of plant roots by rhizobacteria (Bianciotto et al., 1996). 
Secondly, the chemotaxis of PGPR towards AM mycorrhizal roots could be 
an important step of communication between these microorganisms for root 
colonization and could depend on mycorrhizal root exudates which are 
chemoattractants for PGPR (Sood, 2003). 

4.1.3 Interactive effects of PGPR with AM fungi and Rhizobium-
legume symbioses  

The possibility of optimizing plant growth by managing interactions 
between AM fungi, PGPR and the Rhizobium-legume symbiosis has been 
considered as a promising avenue and synergism resulting from these 
interactions has been demonstrated earlier. For example, dual inoculation of 
the legume clover with AM fungi and PGPR resulted in higher shoot dry 
weight and nodulation than inoculation with mycorrhizae or PGPR alone 
(Meyer and Linderman, 1986). Some studies indicated that extracellular 
metabolites could be responsible for the synergism. In fact, the addition of 
PGPR cell-free culture filtrate to the mycorrhizal and nodulated legume 
Hedysarum coronarium resulted in maximum plant growth and nutrient 
uptake in comparison to PGPR washed cells or the whole bacterial cultures 
(Azcòn, 1993). However, in other experiments with beans (Phaseolus 
vulgaris), bacterial culture of fluorescent Pseudomonas co-inoculated with 
Glomus etunicatum increased root growth, nodulation and N and P uptake  
(Silveira et al., 1995).  

Selecting PGPR and AM fungi from polluted soils has been shown 
to be a valuable ecological approach to promote effective Rhizobium-legume
symbiosis in these soils. In an experiment with clover growing in soil 
contaminated with Cd, an indigenous AM fungus plus the indigenous PGPR 
Brevibacillus enhanced shoot biomass from 18% (at 13.6 mg Cd kg-1soil) to 
35% (at 85.1 mg Cd kg-1soil) and nutrition (N, P, Zn and Ni content) and 
reduced Cd transfer from soil to plants by up to 37.5%. There was also a 
strong positive effect of Brevibacillus sp. on nodule formation (Vivas et al.,
2003a). The same tendency was observed in Pb contaminated soils, where 
co-inoculation with an indigenous PGPR strain, identified as Brevibacillus,
and a mixture of AM fungal indigenous species, could enhance plant growth, 
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mycorrhizal infection, nitrogen and phosphorus content (Vivas et al., 2003 
b).  There was also a decrease in the amount of Pb absorbed in clover, 
probably due to the increased root biomass resulting from the production of 
IAA by the PGPR strain. Thus, autochthonous microorganisms applied as 
inocula are important for plant tolerance and growth in polluted soils.  

The use of isotopic dilution techniques (15N and 32P)  have been 
found useful to evaluate the interactive effects of microbes (Rhizobium,
mycorrhizal fungi, phosphate-solubilizing bacteria) and rock phosphate 
fertilizer on N and P uptake by Medicago sativa (Toro et al., 1998). The 
mixed microbial inoculation treatments used more P from the labile fraction 
in soils than from rock phosphate, but the total plant P uptake was far higher 
in AM mycorrhizal plants. Enterobacter inoculation seems to improve the 
use of rock phosphate in the rhizosphere of non-mycorrhizal plants. There 
was enhanced N fixation rates in plants inoculated with Rhizobium and AM 
fungi compared to rates achieved by Rhizobium alone.  

4.2       PGPR vs. other microbes: mediated biocontrol and 
induced systemic resistance 

The effect of the introduction of PGPR on rhizosphere community 
has not been intensively studied, since many experiments have been 
performed under gnotobiotic or greenhouse conditions. However a recent 
study strongly indicates that increases in plant growth can be attributed to 
changes in the rhizosphere microbial community due to the presence of the 
inoculated PGPR in soils (Ramos et al., 2002). This study showed that the 
PGPR B. licheniformis improved European alder growth and induced 
different changes in phospholipids profile and culturable bacteria according 
to the soil used.  

Most studies on PGPR interactions with other soil microorganisms 
and with soil fauna have been focused on biocontrol or induced systemic 
resistance against fungal, bacterial and viral diseases and against insect and 
nematode pests. A recent review on the induction of systemic resistance by 
PGPR in crop plants underlines the potential of Pseudomonas species for 
commercial exploitation and the potential of developing mixed inoculants 
against various pathogens attacking the same crop (Ramamoorthy et al.,
2001). PGPR cause plant cell wall modifications and physiological changes 
that lead to the synthesis of compounds involved in plant defense 
mechanisms. Lipopolysaccharides, siderophores and salicylic acid are major 
determinants of PGPR that mediate induced systemic resistance. 
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4.3       PGPR vs. soil fauna  

The interactions between plant roots, microorganisms and animals 
play a determinant role in nutrient cycling and in the availability of mineral 
nutrients to plants. The process of “the microbial loop” in soil is initiated by 
the release of root exudates that increase microbial biomass. Nutrients 
sequestered during microbial growth are re-mobilized for plant uptake due to 
the microbial consumption by soil fauna (Griffiths, 1994). Protozoa and 
nematodes are very important in this process, representing 70 and 15% 
respectively of total respiration of soil animals (Sohlenius, 1980; Foissner, 
1987). Protozoa and saprozoic nematodes show indirect plant growth 
promoting effect, mainly due to their important contribution in N 
mineralization (Griffiths, 1994). It is thus important to increase knowledge 
of their interactions with rhizobacteria, especially with the PGPR, to fully 
understand and manage soil living organisms for optimizing plant growth. 

4.3.1 PGPR-protozoa interactions 

Interactions between protozoa and rhizobacteria in the rhizosphere 
are well-known to increase plant growth through the mechanism identified 
as “the microbial loop in soil” (Bonkowski, 2003). The beneficial effect of 
protozoa on plant growth is not only due to nutrients released from 
consumed bacterial biomass, but also by their effects on root architecture 
and the resulting change of the composition of microbial communities in the 
rhizosphere. This effect is similar to a “plant-growth-promoting” or 
“hormonal” effect (Bonkowski, 2002). In experiments with watercress in the 
presence of Acanthamoeabae (Protozoa: Amoebida) , the root system was 
greater and more branched and there was an increase in the proportion of 
IAA producing rhizosphere bacteria, further indicating hormonal effect on 
plant growth (Bonkowski and Brandt, 2002). IAA did not originate from 
amoebal metabolism, but resulted from the changes in the composition and 
activity of microbes. It is likely that hormone production is stimulated by 
selective amoebal grazing of rhizosphere bacteria and thereby favoring 
certain bacteria capable of promoting plant growth by producing hormones. 

4.3.2 PGPR-nematodes interactions 

The PGPR-nematodes interactions have been extensively studied 
with the aim to manage plant-parasitic nematodes. These studies involve the 
selection of bacteria that can be used as biocontrol agents against nematodes. 
The genera involved include Agrobacterium, Alcaligenes, Bacillus,
Clostridium, Desulfovibrio, Pseudomonas, Serratia and Streptomyces
(Siddiqui and Mahmood, 1999).  

Ecology of plant growth promoting rhizobacteria 
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In the last few years, other bacterial species have shown biocontrol 
potential against nematodes. Bacteria isolated from the root of nematicidal 
plants, and identified as Stenotrophomonas maltophilia, Bacillus mycoides
and Pseudomonas sp. reduced Trichodorid nematodes density on potato by 
56% to 74%. These bacteria were characterized for production of hydrolytic 
enzymes, HCN, phenol oxidation and antifungal activity (Insunza et al.,
2002). Rhizobium etli has been reported to have a biocontrol effect against 
the nematode Meloidogyne incognita and showed the capacity to colonize 
plant roots and nematode galls (Hallmann et al., 2001). Azotobacter,
Azospirillum, Rhizobium sp. and the mycorrhiza Glomus have been reported 
to reduce galling and nematode Meloidogyne javanica infesting chickpea 
(Siddiqui and Mahmood, 2001). 

Nematodes influence the colonization of roots by pathogenic and 
beneficial organisms, but little is known on the interactions with their natural 
antagonists in the rhizosphere (Kerry, 2000). Based on phylogenetic studies, 
it was proposed that the origin of parasitism in the root-knot nematode 
Meloidogyne spp. may have been facilitated through horizontal gene transfer 
from soil bacteria. Root-knot nematodes and rhizobacteria occupy similar 
niches in the soil and roots, suggesting the possibility for genetic exchange 
(Bird et al., 2003).  

Non parasitic nematodes can also play an important role in the 
colonization of the rhizosphere by PGPR in the absence of percolating water. 
Three species of nematodes (Caenorhabditis elegans, Acrobeloides thornei
and Cruznema sp.) promote rhizosphere colonization of four strains of 
beneficial bacteria in sand-based microcosm system. Nematodes should be 
considered as important vectors for bacterial rhizosphere colonization (Knox 
et al., 2003). 

5      CONCLUSION 

There is overwhelming evidence in the literature indicating that 
PGPR can be a true success story in sustainable agriculture. In fact, through 
their numerous direct or indirect mechanisms of action, PGPR can allow 
significant reduction in the use of pesticides and chemical fertilizers. These 
beneficial events producing biological control of diseases and pests, plant 
growth promotion, increases in crops yield and quality improvement, can 
take place simultaneously or sequentially. Plant age and the soil chemical, 
physical and biological properties will greatly influence the outcome of 
PGPR inoculation. Presently, the absence of a universal magic PGPR 
bioinoculant formulation for each important field crop, simply reflects the 
complexity of the interactions and of the molecular signal exchanges taking 
place in the soil-plant-organisms ecosystems. There are in the literature 
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several examples of important synergism observed on plant growth when the 
inoculants used contain a mixture of organisms. To develop future beneficial 
inoculants for field grown crops, one approach should consider performing 
inoculation assays with a consortium containing a mixture of soil organisms 
instead of a single strain. A consortium could contain a mixture of PGPR 
stimulating plant growth at different growth stages, and showing one or 
more of the known PGPR mechanisms of action. It could also contain 
beneficial symbiotic organisms like AM fungi, rhizobia and mycorrhizae 
helper bacteria. Finally this consortium will probably contain some 
beneficial protozoa and nematodes as well.  

Another valuable approach could be the exploitation of single 
microbes in which the mechanism of action is well understood and the 
environmental conditions showing significant beneficial plant growth effects 
are well defined. Many examples in literature showed that the same strain of 
PGPR can be effective with different plant species and in different soil types 
and regions. Inoculants containing one micro-organism could be easier to 
produce and commercial formulation more stable ensuring better cell 
viability.  

Single or consortium inoculants will have to be developed by taking 
into account the soil of the region and the general crop management systems 
used. PGPR inoculants will have to be compatible with the agrochemicals as 
well as the soil organic amendments used, and their development will also 
have to take carefully into account the long term crop rotation systems. 
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INDUCED SYSTEMIC RESISTANCE AS A 
MECHANISM OF DISEASE SUPPRESSION BY 
RHIZOBACTERIA
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Utrecht, The Netherlands 

Abstract: Plant growth-promoting rhizobacteria can suppress diseases through 
antagonism between the bacteria and soil-borne pathogens, as well as by 
inducing a systemic resistance in the plant against both root and foliar 
pathogens. The generally non-specific character of induced resistance 
constitutes an increase in the level of basal resistance to several pathogens 
simultaneously, which is of benefit under natural conditions where multiple 
pathogens may be present. Specific Pseudomonas strains induce systemic 
resistance in e.g. carnation, cucumber, radish, tobacco and Arabidopsis, as 
evidenced by an enhanced defensive capacity upon challenge inoculation. 
Although some bacterial strains are equally effective in inducing resistance in 
different plant species, others show specificity, indicating specific recognition 
between bacteria and plants at the root surface. In carnation, radish and 
Arabidopsis, the O-antigenic side chain of the bacterial outer membrane 
lipopolysaccharide acts as an inducing determinant, but other bacterial traits 
are also involved. Pseudobactin siderophores have been implicated in the 
induction of resistance in tobacco and Arabidopsis, and another siderophore, 
pseudomonine, may explain induction of resistance associated with salicylic 
acid (SA) in radish. Although SA induces phenotypically similar systemic 
acquired resistance (SAR), it is not necessary for the systemic resistance 
induced by most rhizobacterial strains. Instead, rhizobacteria-mediated 
induced systemic resistance (ISR) is dependent on jasmonic acid (JA) and 
ethylene signaling in the plant. Upon challenge inoculation of induced 
Arabidopsis plants with a pathogen, leaves expressing SAR exhibit a primed 
expression of SA-, but not JA/ethylene-responsive defense-related genes, 
whereas leaves expressing ISR are primed to express JA/ethylene-, but not 
SA-responsive genes. Combination of ISR and SAR can increase protection 
against pathogens that are resisted through both pathways, as well as extend 
protection to a broader spectrum of pathogens than ISR or SAR alone. 

Key words:     disease suppression; ISR; PGPR; SAR. 
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1 INTRODUCTION

Plant roots release substantial amounts of carbon- and nitrogen-
containing compounds into the surrounding soil. Microorganisms are 
attracted to this nutritious environment and use the plant exudates and 
lysates for growth and multiplication on the root surface and in the adjacent 
rhizosphere soil (Lynch and Whipps, 1991). Because of the rapid 
consumption of the nutrients, bacterial growth in the rhizosphere remains 
nutrient-limited, and roots are seldom colonized for more than about 15% of 
their surface area. Nevertheless, the rhizosphere microflora plays a very 
important role in plant development and acclimation to environmental 
stresses (Van Loon and Glick, 2004). Harmful microorganisms, i.e. 
pathogenic fungi and bacteria, are damaging to the plant, whereas beneficial 
microorganisms, such as mycorrhizal fungi and many bacterial species, can 
protect the plant against adverse abiotic and biotic stresses. Since the 
rhizosphere microflora is extremely diverse, a dynamic interplay between 
the members of the microbial community occurs, mediated by synergistic 
and antagonistic interactions, within the limits of the nutrients available 
(Garbeva et al., 2004). In addition, signals are being exchanged between 
fungi and bacteria and plant roots, effectively forming a highly dynamic 
belowground communication network (Van Loon and Bakker, 2003; Somers 
et al., 2004). Although dependent on plant age and soil conditions, the 
microbial-plant network is maintained for the lifetime of the root and exerts 
a buffering action on the rhizosphere environment. 

Growing roots penetrate new soil layers in which the network is not 
yet established. This makes growing roots vulnerable to attack by pathogens 
and insects. For instance, the vascular wilt pathogen Fusarium oxysporum
tends to penetrate growing plant roots preferentially through the fully 
undifferentiated tip, after which it establishes itself in the xylem vessels 
without interference from antagonistic microorganisms (Turlier et al., 1994). 
However, when growing saprophytically towards the elongating root, 
Fusarium is sensitive to antagonistic actions by other soil microorganisms. 
Depending on the strategy of a given soil-borne fungal pathogen, competing 
microorganisms may be more or less effective in counteracting pathogen 
survival, spore germination, hyphal growth or tissue penetration and 
colonization (Whipps, 1997; Weller et al., 2002). Plants treated with specific 
rhizosphere microorganisms, notably of certain genera of non-pathogenic 
bacteria, show improved growth. Hence, these rhizobacteria have been 
denoted as plant growth-promoting rhizobacteria (PGPR) (Kloepper et al.,
1980). PGPR may promote plant growth directly through improving uptake 
of minerals and water or the production of growth-stimulating compounds, 
but in many cases improved growth can be attributed to the suppression of 
deleterious microorganisms that are harmful to the plant (Schippers et al.,
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1987; Glick et al., 1999). PGPR can, thus, promote plant growth by 
suppressing diseases caused by various soil-borne pathogens (Van Loon and 
Glick, 2004). 

There is a vast literature describing positive effects of specific 
strains of rhizobacteria on growth of many plant species in soils in which 
more or less defined pathogens cause substantial losses (Kloepper et al.,
1991). For a number of such strains, mechanisms of disease suppression 
have been defined. The use of bacterial genetics has allowed mutant analysis 
to prove that specific traits are responsible. For instance, Fusarium wilt in 
radish, caused by Fusarium oxysporum f. sp. raphani, is suppressed by the 
rhizobacterial strain Pseudomonas putida WCS358. A bacterial mutant 
impaired in the production of the fluorescent siderophore pseudobactin, no 
longer suppressed disease (Raaijmakers et al., 1995). Using similar 
approaches, it has been established that effective antagonistic mechanisms 
can comprise competition for iron through the production of siderophores, 
production of antibiotics, and secretion of lytic enzymes (Handelsman and 
Stabb, 1996; Whipps, 2001; Van Loon and Bakker, 2003). In addition, 
release of non-specific volatile inhibitors, such as HCN, may hamper the 
activity of pathogenic microorganisms, but can also restrict plant growth 
(Schippers et al., 1991). 

When testing for antagonistic activity of Pseudomonas fluorescens
strain WCS417 against Fusarium oxysporum f. sp. dianthi on carnation, it 
was found that bacteria, when remaining confined to the plant root system, 
were still protective when the pathogen was slash-inoculated into the stem 
(Van Peer et al., 1991). Since in this case the rhizobacteria and the 
pathogenic fungus were never found to contact each other on the plant, the 
protective effect had to be plant-mediated. Similar observations were made 
when several strains of PGPR were applied to roots of cucumber, the leaves 
of which were subsequently challenge inoculated with the anthracnose 
fungus Colletotrichum orbiculare (Wei et al., 1991). The phenomenon was 
named induced systemic resistance (ISR). Apparently, the inducing 
rhizobacteria triggered a reaction in the plant roots that gave rise to a signal 
that spread systemically throughout the plant and enhanced the defensive 
capacity of distant tissues to subsequent infection by the pathogens. ISR thus 
extended the protective action of PGPR from their antagonistic activity 
against soil-borne pathogens in the rhizosphere to a defense-stimulating 
effect in aboveground tissues against foliar pathogens. As it appeared, the 
enhanced defensive capacity was expressed in roots as well as in leaves, 
adding the mechanism of ISR to the list of traits that are effective against 
soil-borne pathogens (Leeman et al., 1995b). However, ISR, in addition, can 
reduce damage from pathogens that are active exclusively on foliage, 
flowers or fruits (Wei et al., 1991; Hoffland et al., 1996). In the past decade, 
ISR has been established as a mechanism that is effective in bean, carnation, 
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cucumber, radish, tobacco, tomato, as well as in the model plant Arabidopsis 
thaliana, against different types of pathogens (Van Loon et al., 1998; 
Ramamoorthy et al., 2001; Kloepper et al., 2004). In addition, ISR has been 
implicated in several other plant species in which plants, after being treated 
with specific rhizobacterial strains, showed improved growth in the presence 
of one or more pathogens. 

2         THE MECHANISM OF RHIZOBACTERIA-
INDUCED SYSTEMIC RESISTANCE 

The generally non-specific character of induced resistance 
constitutes an increase in the level of basal resistance to several pathogens 
simultaneously, which is of benefit under natural conditions where multiple 
pathogens may be present (Van Loon, 2000). ISR appears phenotypically 
similar to systemic acquired resistance (SAR), which is the phenomenon that 
once a plant has been infected by a pathogen and been able to effectively 
resist it, it has become more resistant to subsequent challenge inoculation by 
the same and other pathogens and, in some instances, even insects (Sticher et
al., 1997; Van Loon et al., 1998). SAR has been studied in detail since the 
1960s as to its induction by pathogens, signal-transduction in the plant, and 
expression in response to challenge inoculation, with tobacco and 
Arabidopsis as model plant species (Ryals et al., 1996; Van Loon, 2000). 
Most effective induction is achieved when the plant reacts to primary 
infection by a hypersensitive reaction, but necrosis is not a prerequisite for 
SAR induction. Rather, pathogen elicitors may give rise to hypersensitive 
necrosis on the one hand, and to the generation of a signal for enhanced 
resistance on the other hand. Nevertheless, necrotization does contribute to 
the induction of SAR, and the more systemic signal is generated as tissue 
necrosis proceeds at a pace that the tissue has sufficient time to react before 
succumbing. Thus, infliction of rapid necrosis, e.g. by cutting or burning, 
does not generate sufficient signal to give rise to SAR, whereas damage 
leading to slowly developing necrotic specks, such as occurs as a result of 
ozone or heavy metal toxicity, does provoke the state of SAR. To understand 
the phenomenon of rhizobacteria-mediated ISR it is important to gain insight 
into the bacterial and plant mechanisms involved and to unravel the 
requirements for ISR induction, signaling, and expression. 

2.1       Induction of ISR 

Beneficial rhizobacteria do not obviously damage their host or cause 
localized necrosis. Therefore, the eliciting factor(s) produced by ISR-
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triggering rhizobacteria must be different from elicitors of pathogens, which 
are defined as compounds that induce defense reactions in the host plant 
(Ebel and Mithöfer, 1998). There is comparatively little information on the 
bacterial determinants that trigger ISR (Bakker et al., 2003). However, 
elicitation shows some similarities to the generation of certain non-specific 
defense reactions in plant cells that occur in response to general pathogen-
associated molecular patterns (PAMPs): common components that are 
present in microorganisms and appear to be recognized by eukaryotic cells 
(Gómez-Gómez, 2004; Nürnberger et al., 2004). Crude microbial cell wall 
preparations, i.e. dead cells, can act as general, non-specific elicitors and 
induce local or systemic resistance. Cell surface components, such as the 
outer membrane lipopolysaccharide (LPS) and flagella, can activate the 
innate immune response in animals and act as triggers of defense-associated 
reactions in suspension-cultured plant cells and leaves (Gómez-Gómez and 
Boller, 2002; Erbs and Newman, 2003). Indeed, both these factors of the 
rhizobacterial strain WCS358 can elicit ISR when applied as purified 
components to root systems of Arabidopsis plants (Bakker et al., 2003; 
Meziane et al., 2005). Upon challenge inoculation of treated plants with the 
causal agent of bacterial speck disease, the pathogenic bacterium 
Pseudomonas syringae pv. tomato (Pst), the resulting chlorotic and necrotic 
symptoms on the plants were reduced to an extent comparable to that on 
plants grown in soil containing wild-type WCS358. Mutants of WCS358 
that were defective in the O-antigenic side-chain (OA-) of the LPS or lacked 
flagella (fla-) could still induce systemic resistance, as expected because 
flagella, or intact LPS, respectively, were still present in these mutants. 

Perception of the main constituent protein of bacterial flagella, 
flagellin, has been studied extensively in suspension-cultured cells of tomato 
and Arabidopsis (Felix et al., 1999; Gómez-Gómez and Boller, 2000). In 
Arabidopsis flagellin is perceived through recognition of a conserved 
domain within the protein by a leucine-rich repeat – nucleotide binding site – 
containing receptor-like kinase with a structure similar to that of several 
major resistance (R) genes in plants. Signalling through a mitogen-activated 
protein (MAP) kinase cascade leads to WRKY transcription factor-mediated 
activation of defense-related genes and enhanced resistance against Pst and 
the fungus Botrytis cinerea (Asai et al., 2002; Zipfel et al., 2004). The 
conserved nature of the flagellin domain being recognized by the receptor 
would be expected to endow ISR-eliciting activity in Arabidopsis on most, if 
not all, non-pathogenic rhizobacteria. However, this does not appear to be 
the case. In contrast to WCS358, Pseudomonas fluorescens strain WCS374 
does not elicit ISR in Arabidopsis (Van Wees et al., 1997). Preliminary 
evidence suggests that flagella of both WCS358 and WCS374 are being 
recognized by plant suspension cells (L.C. van Loon, unpublished 
observation). Thus, elicitation of ISR must differ between strains and also 
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involve other factors. Indeed, induction by purified LPS is highly unlikely to 
occur through the same receptor kinase as recognizes flagellin. 

A non-specific induction of ISR by rhizobacteria is also 
incompatible with an observed differential induction of systemic resistance 
in different plant species and, in some cases, even ecotypes (Van Wees et
al., 1997; Ton et al., 1999). Although some rhizobacterial strains appear to 
be equally effective in inducing systemic resistance in different plant 
species, others show narrow specificity, indicative of a plant species-specific 
recognition between bacteria and receptors on the root surface (Van Loon et
al., 1998). As shown in Table 1, of the three WCS strains mentioned earlier, 
WCS358 elicits ISR in Arabidopsis (Van Wees et al., 1997), bean and 
tomato (Meziane et al., 2005), but not in carnation (Duijff et al., 1993) or 
radish (Leeman et al., 1995a), WCS374 in radish (Leeman et al., 1995a) but 
not in Arabidopsis (Van Wees et al., 1997), and WCS417 in all five species 
(Van Peer et al., 1991; Leeman et al., 1995a; Van Wees et al., 1997; Duijff 
et al., 1998; Bigirimana and Höfte, 2002). Moreover, of ten Arabidopsis
accessions tested, eight were responsive to WCS417; accessions RLD and 
Ws-0 were not (Ton et al., 1999). 

For a limited number of ISR-eliciting rhizobacterial strains the 
inducing determinant(s) have been identified through mutant analysis and 
application of isolated components (Table 2). WCS358 can elicit ISR in 
Arabidopsis not only through its flagella or LPS, but also through its 
pseudobactin siderophore (Bakker et al., 2003; Meziane et al., 2005). In 
bean and tomato ISR elicitation by WCS358 depends on both LPS and 
pseudobactin (Meziane et al., 2005). Siderophores are also acting as an 
inducing determinant in Pseudomonas aeruginosa 7NSK2 (Audenaert et al.,
2002), Pseudomonas fluorescens CHA0 (Maurhofer et al., 1994), and 
WCS374 (Leeman et al., 1996), and have likewise been implicated in the 
elicitation of ISR by Serratia marcescens 90-166 on tobacco against the 
wildfire disease, caused by Pseudomonas syringae pv. tabaci (Press et al.,
1997).  

From Table 2, it seems that 7NSK2 elicits ISR in tomato and in bean 
or tobacco through different determinants. However, this is not necessarily 
the case. In tomato, as in bean (De Meyer and Höfte, 1997) and tobacco (De 
Meyer et al., 1999a), bacterially produced salicylic acid (SA) was at first 
considered to be the inducing factor. Further studies in tomato demonstrated 
that it is the combination of the siderophore pyochelin and the active oxygen 
species-generating antibiotic pyocyanin that is responsible (Audenaert et al., 
2002). Pyochelin contains a SA moiety and, thus, the bacteria need to 
produce SA for incorporation into pyochelin, making SA a contributing 
determinant. So far, it has not been clarified whether the involvement of SA 
in the elicitation of ISR in bean and tobacco is likewise linked to production 
of the pyochelin siderophore. 
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Table 1. Differential induction of systemic resistance by Pseudomonas spp. 
in different plant species. 

Plant species       P. putida      P. fluorescens    P. fluorescens    References 
              WCS358      WCS374           WCS417 

Arabidopsis       +              -         +          Van Wees et al., 1997 

Bean        +                   nd        +          Bigirimana and Höfte, 2002; 

                Meziane et al., 2005 

Carnation        -                     nd                       +               Van Peer et al., 1991; 

                Duijff et al., 1993 

Radish        -                     +           +          Leeman et al., 1995a 

Tomato        +               nd        +          Duijff et al., 1998; 

                Meziane et al., 2005 

_____________________________________________________________ 
-: no induction; +: induction; nd: not determined. 

The production of siderophores occurs only under iron-limited 
conditions. Such conditions are likely to prevail in the rhizosphere, and 
competition for iron through the production of siderophores is one of the 
mechanisms of bacterial antagonism against soil-borne pathogens. Thus, 
siderophore production by specific ISR-eliciting rhizobacteria can play a 
dual role in disease suppression by depriving resident pathogens from iron 
locally and by inducing resistance in the plant systemically. Whereas all 
bacterial siderophores are functional in sequestering iron, not all 
siderophores elicit ISR. This can be explained by the fact that siderophores 
produced by different bacteria have very different chemical structures 
(Höfte, 1993). How siderophores are perceived by plants is presently fully 
unknown. 

Strains WCS374 and WCS417 appear to elicit ISR in radish through 
more than a single determinant, including an iron-regulated compound with 
properties resembling a siderophore different from pseudobactin (Leeman et
al., 1996). For WCS417, the compound is not known. For WCS374, it was 
established that this bacterium produces the additional siderophore 
pseudomonine under iron-limiting conditions (Mercado-Blanco et al., 2001), 
but it is not clear yet in how far pseudomonine is involved in the elicitation 
of ISR by this strain in radish. 

Antibiotics have also been implicated in ISR. Whereas in tomato, 
the pyocyanin-producing strain 7NSK2 elicits ISR through this antibiotic in 
conjunction with the pyochelin siderophore, 2,4-diacetylphloroglucinol 
(DAPG) has recently been shown to elicit ISR in Arabidopsis, establishing 
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this antibiotic as an inducing determinant of P. fluorescens strains CHA0 
(Iavicoli et al., 2003) and Q2-87 (Weller et al., 2004). DAPG has likewise 
been shown to act as the inducing agent in CHA0-mediated ISR in tomato 
against the root-knot nematode Meloidogyne javanica (Siddiqui and 
Shaukat, 2003). These findings, that rhizobacterially produced DAPG can 
elicit ISR, suggest that more antibiotics may be capable of eliciting ISR in 
plants. As in the case of siderophores, antibiotics may thus be taken to play a 
role not only in microbial antagonism in the rhizosphere, but also in 
stimulating plant defensive capacity. 

The LPS of the three WCS strains is recognized by all plants in 
which each of these strains was demonstrated to elicit ISR (Van Loon et al., 
1998). Likewise, purified LPS from Burkholderia cepacia strain ASP B 2D 
has been shown to protect tobacco systemically against black shank disease, 
caused by Phytophthora nicotianae (Coventry and Dubery, 2001), whereas 
LPS of Rhizobium etli strain G12 is a determinant in the induction of 
systemic resistance in potato roots towards the cyst nematode Globodera
pallida (Reitz et al., 2002). LPS of different bacterial strains differs in the 
repeating oligosaccharide moieties of the O-antigenic side-chain, providing a 
plausible explanation why these LPSs show differential specificity in 
different plant species. Apparently, the requirements for perception by the 
plant differ between species. That only a few rhizobacterial strains have been 
demonstrated to elicit ISR through their LPS may be due to the situation that 
its involvement for other ISR-eliciting strains has not been investigated. 
Alternatively, in other strains the structure of the LPS may differ 
substantially from those of the inducing strains. 

Very recently, it was found that certain bacilli, i.e. Bacillus
amyloliquefaciens IN 937a and Bacillus subtilis GB03, can trigger ISR in 
Arabidopsis through a volatile compound, 2,3-butanediol (Ryu et al., 2004). 
Probably, related compounds are also active. These results show that there 
are many compounds present on, or released by, rhizobacteria that can elicit 
ISR in various plant species. Since bacteria abound on the root surface, one 
might expect all plants in nature to become induced readily at a young stage 
and remain so as long as the rhizobacteria remain active. However, this does 
not seem to be the case. Non-bacterized plants growing in raw soil 
commonly develop more severe symptoms than bacterized plants upon 
challenge inoculation with a pathogen. For radish, it was established that a 
minimum of 105 colony-forming units per gram of root is required for ISR to 
be induced by WCS374 (Raaijmakers et al., 1995). This value appears to be 
typical and is seldom reached by any single strain amidst the diverse 
microbial population in the rhizosphere. Only through inundative 
applications densities can be increased to the level required for ISR to 
become established. 
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Table 2. Bacterial determinants of induced systemic resistance in different 
plant species. 

Bacterial strain    Plant species     Determinant         Reference 

B. amyloliquefaciens Arabidopsis       2,3-butanediol          Ryu et al., 2004 

IN937a

B. subtilis GB03         Arabidopsis       2,3-butanediol        Ryu et al., 2004 

P. aeruginosa             Bean               Salicylic acid         De Meyer et al., 1999b 

7NSK2                 Tobacco             Salicylic acid         De Meyer et al., 1999a 

     Tomato              Pyochelin + Pyocyanin     Audenaert et al., 2002 

P. fluorescens             Arabidopsis    2,4-diacetylphloroglucinol  Iavicoli et al., 2003 

CHA0    Tobacco             Siderophore                       Maurhofer et al., 1994 

                                   Tomato            2,4-diacetylphloroglucinol  Siddiqui and Shaukat, 2003    

P. fluorescens Q2-87 Arabidopsis     2,4-diacetylphloroglucinol Weller et al., 2004   

P. fluorescens     Radish               Lipopolysaccharide,         Leeman et al., 1995b 

        WCS374                siderophore,                      Leeman et al., 1996  

               iron-regulated compound   Leeman et al., 1996 

P. fluorescens             Arabidopsis      Lipopolysaccharide        Van Wees et al., 1997 

        WCS417     Carnation         Lipopolysaccharide          Van Peer and Schippers, 1992 

                                    Radish              Lipopolysaccharide           Leeman et al., 1995b 

                iron-regulated compound  Leeman et al., 1996 

P. putida WCS358     Arabidopsis     Lipopolysaccharide            Meziane et al., 2005 

                siderophore,         Meziane et al., 2005 

                flagella                               Meziane et al., 2005 

                     Bean              Lipopolysaccharide,         Meziane et al., 2005 

                               siderophore          Meziane et al., 2005 

                     Tomato            Lipopolysaccharide,           Meziane et al., 2005 

                               siderophore         Meziane et al., 2005 

Rhizobium etli G12     Potato              Lipopolysaccharide           Reitz et al., 2002 

S. marcescens 90-166  Tobacco          Iron-regulated compound  Press et al., 1997 

2.2       Signalling in pathogen-induced systemic acquired 
resistance 

Perception at the root surface is followed by signal transduction 
leading to the induced state. Whereas SAR is apparent as soon as disease 
symptoms are visible (Ross, 1961), the time needed for ISR to become 
established has not been the subject of extensive investigations. However, it 
appears that it can be reached in as short as one day (Leeman et al., 1995a), 
but usually it is taken to require several days. Differences may reside in a 
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differing effectiveness of elicitation or speed with which the original 
perception is transduced, as well as in the nature and properties of the mobile 
signal that is needed to propagate the induced state systemically throughout 
the plant. Often, a period of one week between induction treatment and 
challenge inoculation is used, because over this period the extent of induced 
resistance tends to increase.  

SAR is commonly taken to remain active for the lifetime of the 
plant, even though there is detailed evidence that the induced state becomes 
“diluted” in newly developing foliage (Bozarth and Ross, 1964). ISR can 
likewise be maintained for weeks, but the level of induced resistance 
decreases with time (Liu et al., 1995). These observations indicate that 
elicitor perception and signal transduction confer on the plant an enhanced 
defensive capacity that is maintained for a considerable length of time. With 
a single exception (Roberts, 1983), induced resistance has never been shown 
to be transmissible through seed. Hence, the phenomenon is reminiscent of 
an epigenetic alteration that is more or less stably maintained. The 
“memory” effect is conceptually similar to vernalization of seeds or 
induction of flowering, which are likewise maintained after the initial 
inducing stimulus has disappeared. 

In the case of SAR, mutant and transgenic plants have been 
instrumental in the identification of critical steps in the signal transduction 
pathway. The original hypothesis that a phenolic compound structurally 
resembling SA was required for the establishment of SAR (Van Loon and 
Antoniw, 1982) was borne out when SA was determined to be an 
endogenous compound in plants, increasing in amount upon elicitation in 
tobacco (Malamy et al., 1990) and being transported through the phloem in 
induced cucumber plants (Métraux et al., 1990). Its role as a key regulator 
was demonstrated by the use of transformed tobacco and Arabidopsis plants 
carrying the bacterial NahG gene (Gaffney et al., 1993). The NahG gene 
encodes the enzyme salicylate hydroxylase, which converts SA into the non-
inducing product, catechol. Plants expressing the NahG gene, when 
subjected to induction treatments, no longer express SAR, but can be 
“rescued” by treatment with SA-analogs, such as 2,6-dichloroisonicotinic 
acid or acibenzolar-S-methyl, that are not substrates for the SA-hydroxylase 
(Ryals et al., 1996; Sticher et al., 1997). 

The presence of SA in phloem vessels suggested that SA is not only 
required for the establishment of induced resistance, but also responsible for 
the systemic nature of the induced resistance by acting as the mobile signal. 
When SA is applied as a soil drench, it is absorbed by plant roots and 
transported to other plant parts, where it induces resistance (Van Loon and 
Antoniw, 1982). However, this transport is likely to take place in the xylem 
and, thus, to differ from the behaviour of the endogenous SA produced in 
response to an eliciting pathogen or similar condition. Local application of 
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SA to leaves induces resistance locally but not necessarily systemically (Van 
Loon and Antoniw, 1982), even though some SA seems to be transported out 
of the induced leaf (Shulaev et al., 1995). Indeed, the mobile signal was 
shown to pass through the petiole of an inducer-treated leaf before an 
increase in SA in the phloem could be detected (Rasmussen et al., 1991). 
Moreover, grafting experiments demonstrated that an induction-treated 
NahG rootstock gives rise to full induced resistance in a wild-type scion, in 
spite of the fact that SA in the rootstock never accumulated (Vernooij et al.,
1994). These results cannot be explained by SA acting as the mobile signal 
for the systemic induction of SAR. This conclusion is strengthened by recent 
findings that as a result of a virus-induced hypersensitive reaction, 
transgenic ethylene-insensitive tobacco plants are fully capable of elevating 
SA levels and expressing induced resistance locally but, when used as 
rootstock, fail to transmit the mobile signal to a wild-type scion (Verberne et
al., 2003). Nowadays the favoured hypothesis is that upon induction, local 
SA levels are increased, associated with the generation of a mobile signal 
that is transported throughout the plant and, in turn, initiates further local SA 
production in distant leaves. This SA is necessary and sufficient to confer 
the systemically induced state (Durrant and Dong, 2004).

The trigger for increased SA production in the plant is not known, 
nor has it been established how SA exerts its resistance-inducing action. 
However, SA action requires the presence of the protein NPR1, an ankyrin-
repeat family protein structurally resembling the inhibitor IF- B, which 
plays a role in animal innate immunity (Cao et al., 1997). Under the 
influence of SA, a redox change causes oligomers of NPR1 in the cytoplasm 
to be reduced to monomers. The monomers are transported into the nucleus, 
where they interact with specific TGA transcription factors to allow the 
expression of genes encoding pathogenesis-related proteins (PRs) (Dong, 
2004). Several PRs have been shown to have more or lesser anti-pathogen 
activities (Van Loon, 1997). These conclusions led to the hypothesis that the 
state of SAR relies on the presence of PRs. However, SA-induced PRs are 
not active against many pathogens that have been shown to be resisted 
through SAR, and additional mechanisms must be of major importance in 
restricting pathogen growth and disease development in SAR-induced 
plants. Nevertheless, the specific association of PRs with SAR makes PRs 
convenient molecular markers for this type of induced resistance (Kessmann 
et al., 1994). 

2.3       Signalling in rhizobacteria-induced systemic resistance 

SAR has been taken as a paradigm for the systemic resistance 
induced by non-pathogenic rhizobacteria. However, signalling in ISR 
appears considerably more complex. Some rhizobacteria are capable of 
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producing SA and do so in vitro on minimal media in the absence of iron 
(Van Loon et al., 1998). If these bacteria encounter similar conditions in the 
rhizosphere of plants, they would be expected to produce SA likewise and 
induce SAR, mimicking a soil drench with SA solution. However, the SA 
produced by the bacterium may be incorporated into a SA-containing 
siderophore, rather than being secreted into the rhizosphere. Under such 
conditions, induction of systemic resistance might occur depending on 
whether that siderophore could act as an inducing determinant or not, and on 
whether the bacterium triggers the SAR pathway or activates a different 
signalling route.  

Several ISR-eliciting rhizobacterial strains have been described to be 
capable of producing SA, whereas others are not. To determine whether such 
strains trigger ISR through activation of the SA-dependent SAR pathway, 
two criteria can be used: the induced systemic resistance should be 
associated with the induction of PRs, and both ISR and the induction of PRs 
should be abolished in NahG plants. Induction of systemic resistance by 
various rhizobacterial strains in the available NahG-transformed tobacco, 
Arabidopsis and tomato demonstrated that ISR against tobacco mosaic virus 
(TMV) and Botrytis cinerea is abolished in tobacco and tomato plants, 
respectively, upon application of 7NSK2 (De Meyer et al., 1999a, Audenaert 
et al., 2002) and in Arabidopsis against P. syringae pv. maculicola after 
elicitation by B. pumilus SE34 (Ryu et al., 2003), whereas it is maintained in 
all other combinations tested (Table 3). Moreover, mutants of S. marcescens
90-166 that had lost the ability to produce SA still induced resistance in 
tobacco against Pseudomonas syringae pv. tomato and in cucumber against 
Colletotrichum orbiculare (Press et al., 1997).  

The requirement of SA production for resistance induction by 
7NSK2 was corroborated by the loss of ISR elicitation by bacterial mutant 
derivatives that were no longer capable of producing SA (De Meyer and 
Höfte, 1997; De Meyer et al., 1999b; Audenaert et al., 2002). However, 
upon colonization of tomato roots, SA is required for the production of the 
SA-containing siderophore pyochelin that elicits ISR in conjunction with the 
antibiotic pyocyanin. In tobacco, SA-dependent induction of systemic 
resistance by 7NSK2 was not accompanied by expression of the marker PR-
protein, PR-1 (De Meyer et al., 1999a). One explanation could be that tiny 
amounts of SA that are insufficient for inducing PRs, already suffice to elicit 
SA-dependent ISR. It is equally possible, however, that upon application of 
7NSK2 to tobacco SA might be needed for the synthesis of pyochelin, and 
elicitation of ISR might involve pyochelin and occur by a SA-independent 
signalling route. The evidence that WCS358, which does not produce SA, 
elicits ISR in Arabidopsis (Van Wees et al., 1997), and other rhizobacterial 
strains that can produce SA in vitro either do not elicit ISR [e.g. WCS374 on 
Arabidopsis (Van Wees et al., 1997)], or elicit ISR in a SA-independent way  
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Table 3. Results of assays for induction of systemic resistance on NahG 
plants.

Bacterial strain        Plant species/Pathogen                 ISR     Reference 

B. amyloliquefaciens Arabidopsis/Erwinia carotovora          +        Ryu et al., 2004 

IN937a

B. pumilus SE34        Arabidopsis/P. syringae pv. maculicola +       Ryu et al., 2003 

    Arabidopsis/P. syringae pv. tomato     -       Ryu et al., 2003 

    Tobacco/Peronospora tabacina    +       Zhang et al., 2002 

B. pumilus T4   Arabidopsis/P. syringae pv. maculicola  +       Ryu et al., 2003 

    Arabidopsis/P. syringae pv. tomato    +       Ryu et al., 2003 

B. subtilis GB03       Arabidopsis/Erwinia carotovora    +       Ryu et al., 2004 

P. aeruginosa           Tobacco/tobacco mosaic virus                  -       De Meyer et al.,1999a

7NSK2               Tomato/Botrytis cinerea      -      Audenaert et al., 2002 

                           Tomato/ Meloidogyne javanica    +     Siddiqui and Shaukat, 2004 

P. chlororaphis 06    Tobacco/P. syringae pv. tabaci    +      Spencer et al., 2003 

                           Tobacco/Erwinia carotovora                   +      Spencer et al., 2003  

P. fluorescens            Arabidopsis/Peronospora parasitica       +      Iavicoli et al., 2003 

       CHA0   Tomato/Meloidogyne javanica     +    Siddiqui and Shaukat, 2004 

P. fluorescens WCS417  Arabidopsis/P. syringae pv. tomato   +     Pieterse et al., 1996 

P. fluorescens 89B61  Arabidopsis/P. syringae pv. maculicola +     Ryu et al., 2003 

                                 Arabidopsis/P. syringae pv. tomato      -     Ryu et al., 2003 

                  Tomato/Phytophthora infestans     +     Yan et al., 2002 

Serratia marcescens Arabidopsis/P. syringae pv. maculicola   +     Ryu et al., 2003 

90-166                Arabidopsis/P. syringae pv. tomato          -     Ryu et al., 2003 

                           Tobacco/P. syringae pv. tabaci     +     Press et al., 1997 

[e.g. Serratia marcescens on tobacco (Press et al., 1997) or CHA0 on 
Arabidopsis (Iavicoli et al., 2003)] indicates that rhizobacterial production of 
SA is not generally required for induction of systemic resistance. 

Systemically induced resistance in NahG plants rules out an 
involvement of plant-produced SA also. So far, NahG transformants are 
available in only a few plant species. In other species, an involvement of SA 
can only be assessed on the basis of systemic accumulation of SA-inducible 
PRs. Several ISR-eliciting strains were shown to activate the PR-1a
promoter in a transgenic GUS reporter line of tobacco (Park and Kloepper, 
2000), including Serratia marcescens 90-166, that was subsequently shown 
to induce resistance in tobacco in a SA-independent way (Zhang et al.,
2002). However, when grown in vitro on nutrient agar medium under 
gnotobiotic conditions the bacteria do not remain confined to the roots but 
colonize the entire seedling as well as the surrounding agar, reaching 
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extremely high densities, which may cause substantial stress to the small 
seedlings. Induction of the PR-1a promoter in greenhouse-grown plants was 
also observed, but variable, as was a rise in SA in bacterized seedlings 
(Zhang et al., 2002). These findings contrast with those obtained in 
Arabidopsis after elicitation of ISR by WCS417, in which neither an 
increase in SA nor PRs were detectable (Pieterse et al., 1996, 2000). Hence, 
there is very little conclusive evidence for a role of SA in rhizobacteria-
mediated ISR similar to its involvement in SAR. 

This conclusion seems to be contradicted by a number of 
observations where SA-inducible PR-proteins were observed in soil-grown 
plants upon treatment with ISR-eliciting rhizobacteria. However, when 
applied at high doses to roots of sensitive plant species, specific 
rhizobacterial strains can be toxic to plant roots, even though no obvious 
symptoms are apparent on the leaves. Accumulation of proteins with 
molecular weights corresponding to PR-proteins was observed in tobacco 
plants after spraying two leaves with purified LPS of Burkholderia cepacia,
associated with development of ISR against Phytophthora nicotianae
(Coventry and Dubery, 2001). At the concentrations of LPS used, cell 
permeability was slightly increased and viability decreased, whereas the 
proteins induced were not characterized. The characteristic, SA-inducible 
PRs were expressed in tobacco plants upon triggering of ISR against tobacco 
necrosis virus (TNV) by CHA0 (Maurhofer et al., 1994). Transformation of 
a non-SA-producing strain, P3, with a gene cassette for SA biosynthesis, 
made the transgenic derivative an inducer of ISR against TNV, confirming 
that SA induces SAR against viruses (Maurhofer et al., 1998). 
Unfortunately, neither CHA0, nor the SA-producing derivative of P3 seems 
to have been tested on NahG tobacco. However, on NahG Arabidopsis
plants CHA0 was still able to elicit ISR against the downy mildew oomycete 
Peronospora parasitica (Iavicoli et al., 2003), suggesting that CHA0 at least 
has the ability to elicit ISR independently of SA, similar to WCS358 and 
WCS417 (Pieterse et al., 1996). 

Downstream of SA in the SAR signalling pathway, the protein 
NPR1 plays an essential role. Although SA is not necessarily involved in 
ISR, NPR1 has been demonstrated to be necessary also for ISR in 
Arabidopsis (Pieterse et al., 1998). Mutant npr1 plants did not express ISR 
after treatment with WCS417. Thus, NPR1 seems to play a central role in 
reaching the induced state, whether triggered by avirulent pathogens or by 
non-pathogenic rhizobacteria. However, downstream of NPR1, the 
signalling pathways must diverge again, because SAR is associated with the 
accumulation of PRs, whereas in ISR-induced plants such accumulation does 
not commonly occur (Fig. 1). How NPR1 acts in rhizobacteria-mediated ISR 
is presently unknown. 
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Fig. 1. Current model of signal-transduction pathways leading to pathogen-induced 

systemic acquired resistance (SAR) and rhizobacteria-induced systemic resistance (ISR). 

Some non-pathogenic rhizobacteria may trigger a SA-dependent signalling pathway that leads 

to a state of induced resistance resembling SAR (After Pieterse et al., 1998). 

A possible requirement for other regulatory factors implicated in 
plant defense was tested in bioassays with Arabidopsis mutants. In the jar1
mutant, which has reduced sensitivity to jasmonic acid (JA), WCS417 was 
no longer able to elicit ISR against Pst, implicating JA in the signalling 
pathway of ISR (Pieterse et al., 1998). Jar1 encodes a presumed JA-amino 
acid synthetase that is required to activate JA for signalling (Staswick and 
Tiryaki, 2004), but the nature and role of the conjugate in the JA signal-
transduction pathway is not clear. Spraying Arabidopsis plants with the 
methyl ester of JA (MeJA) induced a systemic resistance identical to that 
elicited by the rhizobacteria (Pieterse et al., 1998). However, treatment with 
these rhizobacteria did not increase endogenous JA levels in Arabidopsis
roots or leaves (Pieterse et al., 2000). Therefore, ISR signalling appears to 
require responsiveness to JA rather than increased levels of this regulator. It 
is possible that the sensitivity to JA is increased as a result of elicitation of 
ISR, and gene expression studies accordingly indicate an enhanced capacity 
for expression of JA-regulated genes in induced leaves (see below). 
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Sensitivity to ethylene proved to be likewise required for ISR, as 
ethylene-insensitive Arabidopsis mutants etr1 and ein2 were unable to 
express ISR upon elicitation by WCS417 (Pieterse et al., 1998; Knoester et
al., 1999). ETR1 encodes an ethylene receptor and the dominant etr1
mutation causes reduced sensitivity to the hormone (Guo and Ecker, 2004). 
EIN2 is a membrane protein showing similarity to the Nramp family of 
metal-ion transporters (Alonso et al., 1999). It plays a central role in the 
ethylene response, but its biochemical function is unknown. Because many 
components of the ethylene signalling pathway have been identified, 
additional ethylene-insensitive mutants (ein3 – ein7 and axr1-12) were 
tested, as well as the ethylene-overproducing mutant eto1-1. All ethylene-
insensitive mutants were impaired in ISR (Knoester et al., 1999), indicating 
that the expression of ISR requires the complete signal-transduction pathway 
of this hormone known so far. Surprisingly, also in the eto1-1 mutant, ISR 
was abolished. Upon infection with Pst, non-induced eto1-1 plants 
developed symptoms to the same extent as non-induced wild-type plants. 
This observation is difficult to reconcile with the result that exogenous 
application of 1-aminocyclopropane-1-carboxylic acid (ACC), the 
immediate precursor of ethylene that is rapidly converted once taken up by 
plants, did elicit a systemic resistance to Pst comparable to ISR (Pieterse et 
al., 1998). Treatment of wild-type Arabidopsis plants with WCS417 did not 
lead to an increase in ethylene production (Pieterse et al., 2000), but did 
increase the capacity for ACC conversion in the leaves (Hase et al., 2003). 
Hence, it appears that, as for JA, it is the sensitivity to the hormone that is 
required, while the capacity for its synthesis is increased. 

The Arabidopsis mutant eir1 is insensitive to ethylene in the roots, 
but not in the shoots (Roman et al., 1995). In accordance with the 
requirement for ethylene sensitivity, in bioassays the eir1 mutant did not 
express ISR upon treatment with WCS417 to the roots, while it did exhibit 
ISR when the inducing bacteria were infiltrated into the leaves (Knoester et
al., 1999). This result demonstrated that for the induction of ISR in 
Arabidopsis by WCS417, ethylene responsiveness is required at the site of 
application of the inducing rhizobacteria. The eir1 mutant is allelic to pin2,
and lacks a functional auxin efflux carrier protein in roots (Luschnig et al.,
1998). A role of auxin in ISR has not been tested and it is presently unclear 
whether auxin could also be involved. However, ethylene insensitivity of the 
eir1 mutant can fully explain its lack of ISR inducibility. 

In wild-type Arabidopsis plants, ISR can be induced chemically by 
exogenous application of either MeJA or ACC. In the jar1 mutant, ACC was 
still capable of inducing ISR, indicating that responsiveness to ethylene is 
required after the JA-dependent signalling step. Conversely, MeJA did not 
induce ISR in the etr1 mutant (Pieterse et al., 1998). Thus, responsiveness to 
JA and ethylene are required in this order. Neither MeJA, nor ACC could 
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elicit ISR in the npr1 mutant, placing the requirements for both JA and 
ethylene upstream of NPR1 in the signalling pathway. These results defined 
a novel signalling pathway for the type of induced systemic resistance 
elicited by rhizobacteria (Fig. 1). 

ISR against Peronospora parasitica in Arabidopsis in response to 
root inoculation with CHA0 has likewise been shown to require JAR1, EIR1 
and NPR1, and not SA. However, mutants etr1-1 and ein2-1 still expressed 
ISR against Peronospora parasitica (Iavicoli et al., 2003), suggesting that 
the requirements for ISR against this pathogen overlap only partly with those 
defined for ISR against Pst, as induced by WCS417. On the other hand, ISR 
activated by two Bacillus species through the volatile 2,3-butanediol (cf. 
Table 1) was found to be independent of SA and dependent on ethylene, yet 
did apparently not require JA (Ryu et al., 2004). ISR elicited in Arabidopsis
against Pst or Pseudomonas syringae pv. maculicola by four other PGPR 
strains was reported to be variably dependent on ethylene and JA (Ryu et al.,
2003). These results confirm that, in general, ISR is not dependent on SA, 
but indicate that instead ISR has a variable requirement for JA and ethylene 
signalling. The latter does not need to be problematic, because hormone 
sensitivity is still poorly understood and may vary depending on 
experimental conditions. In a given situation, either sensitivity to JA or to 
ethylene, or both, might be limiting. 

2.4       Expression of ISR 

Expression of ISR upon challenge inoculation with a pathogen is 
similar to expression of SAR in that disease severity is reduced or the 
number of diseased plants diminished. This reduction is typically associated 
with decreased growth of the pathogen and reduced colonization of induced 
tissues, testifying to the fact that the plant is better able to resist the pathogen 
(Van Loon, 2000). Neither ISR, nor SAR protects plants completely, in 
contrast to R gene-mediated resistance. However, a decrease in, or slowing 
down of disease development may save a crop or at least increase yield. 

The spectrum of diseases against which ISR and SAR are effective, 
overlaps only partly (Ton et al., 2002), as could be expected because of the 
differences in defense signalling described above. It has been demonstrated, 
mainly in Arabidopsis, that pathogens are resisted by either SA-dependent, 
or by JA- and/or ethylene-dependent defenses, or both (Thomma et al.,
2001; Ton et al., 2002). This conclusion was reached because pathogens that 
are resisted by SA-dependent defenses, cause more severe disease on 
transgenic NahG than on wild-type plants. Conversely, pathogens that are 
resisted by JA- and ethylene-dependent defenses cause enhanced disease 
susceptibility in plant mutants that are defective in JA or ethylene synthesis 
or signalling. Pst causes increased disease severity in both NahG and jar1 or 
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ein2 plants, indicating that this pathogen is resisted by SA-dependent, as 
well as JA- and ethylene-dependent defenses (Ton et al., 2002). 
Accordingly, both SAR and ISR are effective against Pst. Moreover, 
combination of SAR and ISR by induction of SAR through inoculation with 
an avirulent derivative of Pst on the leaves of plants growing in soil 
containing ISR-inducing WCS417 bacteria, led to additive protection (Van 
Wees et al., 2000). This observation demonstrates that SAR and ISR are 
distinct and complementary mechanisms by which the defensive capacity of 
plants is enhanced through biotic stimulation. Thus, expression of ISR, while 
phenotypically similar to SAR, relies not only on a different type of 
biological inducer, but occurs also through different defense-related 
activities. Phytoalexins can also contribute to plant resistance. However, 
Arabidopsis mutants that are impaired in the synthesis of the phytoalexin 
camalexin (pad1 – pad4) express normal ISR against Pst (C.M.J. Pieterse, 
unpublished results), indicating that ISR does not operate through 
stimulation of phytoalexin production against this pathogen. 

In Arabidopsis, SAR is most effective against biotrophic pathogens - 
downy and powdery mildews, as well as viruses -, that are sensitive to SA-
dependent defenses. Indeed, PRs, such as PR-1 and PR-5, have been shown 
to possess antifungal activity against oomycetes (Van Loon 1997), while SA 
action  in  resistance  to  viruses  is  likely  to  rely  on a different mechanism 
(Singh et al., 2004). In contrast, ISR is more active against necrotrophic 
pathogens (Ton et al., 2002) through mechanisms that are yet to be elucidated. 
It was observed earlier that SAR was not effective against typical 
necrotrophic fungi, such as Botrytis cinerea and Alternaria brassicicola
(Thomma et al., 2000) or bacteria, such as Erwinia carotovora (Vidal et al.,
1998). Against these pathogens, ISR is effective, be it that the strategy of 
Botrytis to kill its host in advance of tissue colonization hampers the reaction 
of the plant. 

In tobacco, the effectiveness of SAR and ISR against different types 
of pathogens is largely similar to their differential activities in Arabidopsis.
However, in tomato the powdery mildew fungus Oidium neolycopersici was 
reported to not be resisted by SA-dependent defenses, while SA was 
involved in defense against Botrytis (Achuo et al., 2004). Thus, the 
conclusion must be that SA- and JA- or ethylene-dependent defense 
mechanisms can be effective against different pathogens in different plant 
species. Therefore, findings from a single pathosystem cannot be 
generalized, and rigorous experimentation is required to define the potential 
of SAR or ISR to contribute to enhanced resistance in a particular plant 
species.

A search for newly induced proteins upon induction of ISR that can 
be used reliably as markers for the induced state, similar to the PRs 
associated with SAR, proved negative (Van Wees et al., 1999). As must be 
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concluded from several investigations, the state of ISR is not consistently 
associated with significant changes in the proteome of the induced plant. 
Other defense-related activities have been sought that could serve to indicate 
that ISR was induced and would preferably have a defined role in plant 
resistance. There are several publications reporting increases in the activities 
of e.g. chitinase, glucanase, phenylalanine ammonia-lyase (PAL) or 
peroxidase, as well as in the content of phenolic compounds, in plants 
treated with ISR-eliciting PGPR. Although specific PR-2 and PR-3, -4, -8 
and –11 proteins have glucanase and chitinase activities (Van Loon and Van 
Strien, 1999), respectively, many glucanases and chitinases in plants are 
developmentally regulated and induced by various abiotic and biotic stresses 
through signalling pathways that may, or may not, overlap with those 
regulating SAR and ISR. While PAL, the key enzyme in phenolic 
biosynthesis, and oxidative enzymes, such as peroxidase and 
polyphenoloxidase, can play a role in increased tissue lignification (Barcelo, 
1997), as well as the generation of toxic quinones, a causal relationship 
between these increases and enhanced resistance against specific pathogens 
has not been well established. Moreover, effective WCS417-triggered ISR in 
radish was not associated with such changes (E. Hoffland and H. Steijl, 
unpublished observations), making these parameters unsuitable as markers 
for the state of ISR. Also, the activities of PAL and peroxidase, and phenolic 
content, are strongly developmentally regulated and respond sensitively to 
changes in the physical and chemical environment, as well as to different 
stresses. That these parameters often change in response to treatment with 
rhizobacteria indicates that the plants react to the presence of the bacteria, 
but in how far this reaction is coupled to establishment of ISR is fully 
unclear. Directly, through stimulation of plant growth, or indirectly, through 
suppression of deleterious microorganisms, bacterial treatments also 
promote growth and this, in turn, could lead to increases in e.g. chitinase, 
glucanase, PAL, peroxidase and phenolics in association with the improved 
development of the plants. It would be most interesting to determine the 
effects of ISR-eliciting rhizobacteria on transgenic plants with impaired 
enzyme activities, but so far such experiments have not been reported. 

Recently, transcriptome analyses by cDNA microarrays, RNA 
differential display, or subtractive hybridization of cDNA libraries have 
confirmed the notion that rhizobacteria influence plant gene expression to 
only limited extents. Analysis of the expression of over 8000 genes of 
Arabidopsis plants with ISR elicited by WCS417 revealed changes in the 
expression of 102 genes in the roots on which the bacteria were present. In 
contrast, systemically in the leaves, none of the genes examined showed a 
consistent change, in spite of the fact that, when challenge inoculated, these 
leaves showed a significant ISR response (Verhagen et al., 2004). Clearly, 
the roots reacted locally to colonization by the bacteria. Within the first 
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week transient changes were observed in the expression of hundreds of 
genes, but these were not associated with the persistent state of ISR. Of the 
102 genes whose expression was changed over a longer period, 39 were up-
regulated and 63 were down-regulated. Unless a pre-existing factor was 
released as a result of colonization of the roots by the ISR-eliciting bacteria, 
the mobile signal that is required for systemic induction is likely to be 
generated through the action of those genes whose expression was altered. 
For instance, one or more of the up-regulated genes might encode enzymes 
required for the synthesis of such a mobile signal. However, it is equally 
possible that down-regulation of a specific gene might lift the inhibition on a 
pre-existing or newly induced mechanism. In view of the ethylene 
dependency of ISR, an increase in a putative ACC oxidase and down-
regulation of ethylene response factor 1 (ERF1) and ethylene-responsive 
element binding factors 1 (EREBP1) and 2 (EREBP2) are particularly 
interesting.

These results appear to contrast with an analysis of Arabidopsis
plants treated with the rhizobacterium Pseudomonas thivervalensis, which 
likewise induced systemic resistance against Pst (Cartieaux et al., 2003). 
Those experiments were conducted in Arabidopsis accession Ws-0, which is 
known to be incapable of expressing ISR (Ton et al., 1999). Hence, the 
resistance induced by P. thivervalensis must be ascribed to a different type 
of ISR. This type was not specified, but it was reported that the bacterium 
reduced plant growth by 41% and, at least initially, decreased net 
photosynthesis. These observations suggest that P. thivervalensis behaved as 
a pathogen on Arabidopsis and may have induced the SAR pathway, which 
is also effective against Pst. Under these conditions, cDNA microarray 
analysis of approximately 14300 Arabidopsis genes revealed that the 
transcript levels in colonized roots were hardly changed relative to axenic 
control plants, and none were elevated. In contrast, in shoots the levels of 63 
transcripts were modified, including 42 genes that were upregulated. Except 
for a putative chitinase, no indication of increased PR gene expression was 
evident, however. Induction of resistance against Erwinia carotovora in 
Arabidopsis by Paenibacillus polymyxa was associated with increased 
tolerance to drought and changes in the abundance of mRNAs encoding 
drought stress- and biotic stress- responsive proteins, consistent with a mild 
pathogenic effect of P. polymyxa on Arabidopsis (Timmusk and Wagner, 
1999). These alterations do not seem typical of ISR. 

It was observed earlier that upon challenge inoculation of 
Arabidopsis plants with Pst, SAR-induced plants showed an augmented 
expression of SA-dependent PR-1 mRNA, whereas plants with ISR 
accumulated mRNA of the JA-inducible gene Vsp to higher levels than non-
induced plants (Van Wees et al., 1999). This “priming” effect indicated that 
induced plants activate defense-related gene expression earlier and to a 
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greater extent than non-induced plants (Conrath et al., 2002). Indeed, cDNA 
microarray analysis of WCS417-induced plants revealed 81 genes showing 
an augmented expression pattern in ISR-expressing leaves after challenge 
inoculation with Pst (Verhagen et al., 2004). Of these, 51 genes were 
expressed at at least 1.5 times higher levels, including Vsp, the JA- and 
ethylene-responsive gene Pdf1.2, a thaumatin-like gene, a chitinase gene, 
and a gene encoding EREBP2. The other 30 genes showed a Pst-induced 
change in WCS417-treated plants only, and appear to be ISR-specific. These 
included genes that are presumably involved in regulating gene transcription 
and signal transduction. The majority of the genes were predicted to be 
regulated by JA or ethylene. Thus, the requirement for JA and ethylene 
sensitivity in ISR seems to be related to the priming action of defense-related 
gene expression after challenge inoculation of induced plants.  

ISR triggered by Pseudomonas chlororaphis O6 upon root 
colonization of cucumber against target leaf spot, caused by Corynespora
cassiicola, was likewise associated with a faster and stronger accumulation 
of transcripts of six distinct genes upon challenge inoculation, as revealed 
through subtractive hybridization (Kim et al., 2004). Expression of these 
genes was not induced by O6 colonization alone, and became apparent only 
after challenge with the pathogen. These results corroborate earlier findings 
of augmented defense responses upon challenge inoculation of induced 
plants, such as an increased production of dianthramide phytoalexins after 
infection by Fusarium oxysporum f.sp. dianthi of carnation plants induced 
by WCS417 (Van Peer et al., 1991) and increased cell wall strengthening 
upon pathogen attack of cucumber and tomato plants pretreated with ISR-
eliciting rhizobacteria (Benhamou and Nicole, 1999).

3         SYSTEMICALLY INDUCED RESISTANCE AND 
PLANT GROWTH 

Systemically induced resistance, whether SA-dependent SAR or JA- 
and ethylene-dependent ISR, both seem to be expressed through an 
enhanced activation of defense responses upon challenge inoculation. 
However, whereas SAR is associated with the accumulation of PRs and 
negatively affects plant growth (Heil, 2002), most of the ISR-triggering 
rhizobacteria have been selected primarily because of their plant growth-
promoting properties. It is quite unclear in how far plant protection through 
ISR and growth promotion are connected. Besides inducing ISR, PGPR can 
exert a protective action against those soil-borne pathogens that are 
particularly prone to attack emerging seedlings. Stimulation of plant growth 
will lead to increased plant vigour and a shorter period of vulnerability 
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before adult plant resistance may have become sufficient to limit damage by 
the pathogen. ISR-eliciting rhizobacteria can be applied on seeds and then 
will readily colonize emerging plant roots. Thus, seedlings can be better 
protected already at an early stage (Kloepper et al., 1989; Leeman et al.,
1995c).

These properties make ISR-inducing PGPR a useful tool to reduce 
diseases caused by pathogens that are sensitive to JA- and ethylene-
dependent defenses. Moreover, combination of ISR and SAR can increase 
protection against pathogens that are resisted through both mechanisms, as 
well as extend protection to a broader spectrum of pathogens than ISR or 
SAR alone. This provides an attractive strategy when other means of crop 
protection are limited or absent. However, both ISR and SAR only reduce 
disease and are usually less effective than physical methods, such as 
steaming of the soil, or chemical treatments. Notably, the costs of chemical 
crop protectants are often lower than those of a biological product that 
requires fermentation on a nutrient medium, extensive formulation, has only 
limited shelf life, and is less effective under field conditions. Thus, for 
economic reasons biological crop protectants can only seldom compete with 
highly effective chemicals. However, ISR is only one of the mechanisms 
that may be mobilized to counteract plant pathogens in an environmentally 
friendly and durable way. Integrating ISR-triggering PGPR into disease 
management programs in conjunction with other strategies will be a 
worthwhile approach to explore. 

REFERENCES

Achuo, E. A., Audenaert, K., Meziane, H., and Höfte, M., 2004, The salicylic acid-dependent 
defence pathway is effective against different pathogens in tomato and tobacco. Plant Pathol.
53:65-72. 

Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., and Ecker, J. R., 1999, EIN2, a 
bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148-
2152. 

Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W. L., Gómez-Gómez, L., Boller, T., 
Ausubel, F.M., and Sheen, J., 2002, MAP kinase signalling cascade in Arabidopsis innate 
immunity. Nature 415:977-983. 

Audenaert, K., Pattery, T., Cornelis, P., and Höfte, M., 2002, Induction of systemic resistance to 
Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, 
pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15:1147-1156. 

Bakker, P. A. H. M., Ran, L. X., Pieterse, C. M. J., and Van Loon, L. C., 2003, Understanding the 
involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant 
diseases. Can. J. Plant Pathol. 25:5-9. 

Barcelo, A. R., 1997, Lignification in plant cell walls. Int. Rev. Cytol. 176:87-132. 
Benhamou, N., and Nicole, M., 1999, Cell biology of plant immunization against microbial 

infection: the potential of induced resistance in controlling plant diseases. Plant Physiol. 
Biochem. 37:703-719. 



Induced systemic resistance as a mechanism 61

Bigirimana, J., and Höfte, M., 2002, Induction of systemic resistance to Colletotrichum 
lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica 
30:159-168. 

Bozarth, R. F., and Ross, A. F., 1964, Systemic resistance induced by localized virus infections: 
extent of changes in uninfected plant parts. Virology 24:446-455. 

Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., and Dong, X., 1997, The Arabidopsis NPR1
gene that controls systemic acquired resistance encodes a novel protein containing ankyrin 
repeats. Cell 88:57-63. 

Cartieaux, F., Thibaud, M. C., Zimmerli, L., Lessard, P., Sarrobert, C., David, P., Gerbaud, A., 
Robaglia, C., Somerville, S., and Nussaume, L., 2003, Transcriptome analysis of Arabidopsis
colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease 
resistance. Plant J. 36:177-188. 

Conrath, U., Pieterse, C. M. J., and Mauch-Mani, B., 2002, Priming in plant-pathogen 
interactions. Trends Plant Sci. 7:210-216. 

Coventry, H. S., and Dubery, I. A., 2001, Lipopolysaccharides from Burkholderia cepacia
contribute to an enhanced defensive capacity and the induction of pathogenesis-related 
proteins in Nicotianae tabacum. Physiol. Mol. Plant Pathol. 58:149-158. 

De Meyer, G., and Höfte, M., 1997, Salicylic acid produced by the rhizobacterium Pseudomonas 
aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. 
Phytopathology 87:588-593. 

De Meyer, G., Audenaert, K., and Höfte, M., 1999a, Pseudomonas aeruginosa 7NSK2-induced 
systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not 
associated with PR1a expression. Eur.J.Plant Pathol. 105:513-517. 

De Meyer, G., Capieau, K., Audenaert, K., Buchala, A., Métraux, J. P., and Höfte, M., 1999b, 
Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas 
aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol.Plant-
Microbe Interact. 12:450-458. 

Dong, X., 2004, NPR1, all things considered. Curr. Opin. Plant Biol. 7:547-552. 
Duijff, B. J., Meijer, J. W., Bakker, P. A. H. M., and Schippers, B., 1993, Siderophore-mediated 

competition for iron and induced resistance in the suppression of fusarium wilt of carnation by 
fluorescent Pseudomonas spp. Neth. J. Plant Pathol. 99:277-289. 

Duijff, B. J., Pouhair, D., Olivain, C., Alabouvette, C., and Lemanceau, P., 1998, Implication of 
systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas 
fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur.J.Plant Pathol.
104:903-910. 

Durrant, W. E., and Dong, X., 2004, Systemic acquired resistance. Annu. Rev. Phytopathol.
42:185-209 

Ebel, J., and Mithöfer, A., 1998, Early events in the elicitation of plant defence. Planta 206:335-
348.

Erbs, G., and Newman, M. A., 2003, The role of lipopolysaccharides in induction of plant defence 
responses. Mol. Plant Pathol. 4:421-425. 

Felix, G., Duran, J. D., Volko, S., and Boller, T., 1999, Plants have a sensitive perception system 
for the most conserved domain of bacterial flagellin. Plant J. 18:265-276. 

Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, 
H., and Ryals, J., 1993, Requirement of salicylic acid for the induction of systemic acquired 
resistance. Science 261:754-756. 

Garbeva, P., Van Veen, J. A., and Van Elsas, J. D., 2004, Microbial diversity in soil: selection of 
microbial populations by plant and soil type and implications for disease suppressiveness. 
Annu. Rev. Phytopathol. 42:243-270. 

Glick, B. R., Patten, C. L., Holguin, G., and Penrose, D. M., 1999, Biochemical and genetic 
mechanisms used by plant growth promoting bacteria. Imperial College Press, London. 



Van Loon and Bakker 62

Gómez-Gómez, L., 2004, Plant perception systems for pathogen recognition and defence. Mol.
Immunol. 41:1055-1062. 

Gómez-Gómez, L., and Boller, T., 2000, FLS2: a LRR receptor-like kinase involved in 
recognition of the flagellin elicitor in Arabidopsis. Mol. Cell 5:1003-1020. 

Gómez-Gómez, L., and Boller, T., 2002, Flagellin perception: a paradigm for innate immunity. 
Trends Plant Sci. 7:251-256. 

Guo, H., and Ecker, J. R., 2004, The ethylene signalling pathway: new insights. Curr. Opin. Plant 
Biol. 7:40-49. 

Handelsman, J., and Stabb, E. V., 1996, Biocontrol of soilborne plant pathogens. Plant Cell
8:1855-1869. 

Hase, S., Van Pelt, J. A., Van Loon, L. C., and Pieterse, C. M. J., 2003, Colonization of 
Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels 
of ethylene upon pathogen infection. Physiol. Mol. Plant Pathol. 62:219-226.

Heil, M., 2002, Ecological costs of induced resistance. Curr. Opin. Plant Biol. 5:345-350. 
Hoffland, E., Hakulinen, J., and Van Pelt, J. A., 1996, Comparison of systemic resistance induced 

by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86:757-762. 
Höfte, M., 1993, Classes of microbial siderophores. In: Iron chelation in plants and soil 

microorganisms, Barton, L. L., and Hemming, B. C. (eds), Academic Press, San Diego, pp 3-
26.

Iavicoli, A., Boutet, E., Buchala, A., and Métraux, J. P., 2003, Induced systemic resistance in 
Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. 
Mol. Plant-Microbe Interact. 16:851-858. 

Kessmann, H., Staub, T., Ligon, J., Oostendorp, M., and Ryals, J., 1994, Activation of systemic 
acquired disease resistance in plants. Eur. J. Plant Pathol. 100:359-369. 

Kim, M. S., Kim, Y. C., and Cho, B. H., 2004, Gene expression analysis in cucumber leaves 
primed by root colonization with Pseudomonas chlororaphis O6 upon challenge-inoculation 
with Corynespora cassiicola. Plant Biol. 6:105-108. 

Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N., 1980, Enhanced plant growth by 
siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885-886. 

Kloepper, J. W., Lifshitz, R., and Zablotowicz, R. M., 1989, Free-living bacterial inocula for 
enhancing crop productivity. Trends Biotechnol. 7:39-43. 

Kloepper, J. W., Zablotowicz, R. M., Tipping, E. M., and Lifshitz, R., 1991, Plant growth 
promotion mediated by bacterial rhizosphere colonizers. In: The rhizosphere and plant 
growth. Keister, D. L., and Cregan, P. B. (eds), Kluwer, Dordrecht, pp 315-326. 

Kloepper, J. W., Ryu, C. M., and Zhang, S., 2004, Induced systemic resistance and promotion of 
plant growth by Bacillus spp. Phytopathology 94:1259-1266. 

Knoester, M., Pieterse, C. M. J., Bol, J. F., and Van Loon, L. C., 1999, Systemic resistance in 
Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of 
application. Mol. Plant-Microbe Interact. 12:720-727. 

Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M., and 
Schippers, B., 1995a, Induction of systemic resistance by Pseudomonas fluorescens in radish 
cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur. J. Plant 
Pathol. 101:655-664. 

Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M., and 
Schippers, B., 1995b, Induction of systemic resistance against fusarium wilt of radish by 
lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021-1027. 

Leeman, M., Van Pelt, J. A., Hendrickx, M. J., Scheffer, R. J., Bakker, P. A. H. M., and 
Schippers, B., 1995c, Biocontrol of fusarium wilt of radish in commercial greenhouse trials by 
seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85:1301-1305. 

Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M.,  
and Schippers, B., 1996, Iron availability affects induction of systemic resistance against 
fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149-155. 



Induced systemic resistance as a mechanism 63

Liu, L., Kloepper, J. W., and Tuzun, S., 1995, Induction of systemic resistance in cucumber by 
plant growth-promoting rhizobacteria: duration of protection and effect of host resistance on 
protection and root colonization. Phytopathology 85:1064-1068. 

Luschnig, C., Gaxiola, R. A., Grisafi, P., and Fink, G. R., 1998, EIR1, a root-specific protein 
involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev.
12:2175-2187. 

Lynch, J. M., and Whipps, J. M., 1991, Substrate flow in the rhizosphere. In: The rhizosphere and 
plant growth, Keister, D. L., and Cregan, P.B. (eds), Kluwer, Dordrecht, pp 15-24. 

Malamy, J., Carr, J. P., Klessig, D. F., and Raskin, I., 1990, Salicylic acid: a likely endogenous 
signal in the resistance response of tobacco to viral infection. Science 250:1002-1004. 

Maurhofer, M., Hase, C., Meuwly, P., Métraux, J. P., and Défago, G., 1994, Induction of systemic 
resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas 
fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. 
Phytopathology 84:139-146. 

Maurhofer, M., Reimmann, C., Schmidli-Sacherer, P., Heeb, S., Haas, D., and Défago, G., 1998, 
Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the 
induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology
88:678-684. 

Mercado-Blanco, J., Van der Drift, K. M. G. M., Olsson, P. E., Thomas-Oates, J. E., Van Loon, 
L. C., and  Bakker, P. A. H. M., 2001, Analysis of the pmsCEAB gene cluster involved in 
biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain 
Pseudomonas fluorescens WCS374. J. Bacteriol. 183:1909-1920. 

Métraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, 
E., Blum, W., and Inverardi, B., 1990, Increase in salicylic acid at the onset of systemic 
acquired resistance in cucumber. Science 250:1004-1006. 

Meziane, H., Van der Sluis, I., Van Loon, L. C., Höfte, M., and Bakker, P. A. H. M., 2005, 
Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in 
plants. Mol. Plant Pathol. 6:177-185. 

Nürnberger, T., Brunner, F., Kemmerling, B., and Piater, L., 2004, Innate immunity in plants and 
animals: striking similarities and obvious differences. Immunol. Rev. 198:249-266. 

Park, K. S., and Kloepper, J. W., 2000, Activation of PR-1a promoter by rhizobacteria which 
induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol. Control
18:2-9. 

Pieterse, C. M. J., Van Wees, S. C. M., Hoffland, E., Van Pelt, J. A., and Van Loon, L. C., 1996, 
Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic 
acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237. 

Pieterse, C. M. J., Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., 
Weisbeek, P. J., and Van Loon, L. C., 1998, A novel signaling pathway controlling induced 
systemic resistance in Arabidopsis. Plant Cell 10:1571-1580. 

Pieterse, C. M. J., Van Pelt, J. A., Ton, J., Parchmann, S., Mueller, M. J., Buchala, A. J., Métraux, 
J. P., and Van Loon, L. C., 2000, Rhizobacteria-mediated induced systemic resistance (ISR) in 
Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an 
increase in their production. Physiol. Mol. Plant Pathol. 57:123-134. 

Press, C. M., Wilson, M., Tuzun, S., and Kloepper, J. W., 1997, Salicylic acid produced by 
Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in 
cucumber or tobacco. Mol. Plant-Microbe Interact. 10:761-768. 

Raaijmakers, J. M., Leeman, M., Van Oorschot, M. P. M., Van der Sluis, I., Schippers, B., and 
Bakker, P. A. H. M., 1995, Dose-response relationships in biological control of fusarium wilt 
of radish by Pseudomonas spp. Phytopathology 85:1075-1081. 

Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., and Samiyappan, R., 2001, 
Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants 
against pests and diseases. Crop Protection 20:1-11. 



Van Loon and Bakker 64

Rasmussen, J. B., Hammerschmidt, R., and Zook, M. N., 1991, Systemic induction of salicylic 
acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae.
Plant Physiol. 97:1342-1347. 

Reitz, M., Oger, P., Meyer, A., Niehaus, K., Farrand, S. K., Hallmann, J., and Sikora, R. A. 2002, 
Importance of the O-antigen, core-region and lipid A of rhizobial lipopolysaccharides for the 
induction of systemic resistance in potato to Globodera pallida. Nematology 4:73-79. 

Roberts, D. A., 1983, Acquired resistance to tobacco mosaic virus transmitted to the progeny of 
hypersensitive tobacco. Virology 124:161-163. 

Roman, G., Lubarsky, B., Kieber, J. J., Rothenberg, M., and Ecker, J. R., 1995, Genetic analysis 
of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into 
a stress response pathway. Genetics 139:1393-1409. 

Ross, A. F., 1961, Systemic acquired resistance induced by localized virus infections in plants. 
Virology 14:340-358. 

Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., and Hunt, M. D., 
1996, Systemic acquired resistance. Plant Cell 8:1809-1819. 

Ryu, C. M., Hu, C. H., Reddy, M. S., and Kloepper, J. W., 2003, Different signaling pathways of 
induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of 
Pseudomonas syringae. New Phytol. 160:413-420. 

Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Paré, P. W., 2004, 
Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. 

Schippers, B., Bakker, A. W., and Bakker, P. A. H. M., 1987, Interactions of deleterious and 
beneficial rhizosphere micro-organisms and the effect of cropping practices. Annu. Rev. 
Phytopathol. 25:339-358. 

Schippers, B., Bakker, A.W., Bakker, P. A. H. M., and Van Peer, R., 1991, Beneficial and 
deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. In The 
rhizosphere and plant growth, Keister, D. L., and Cregan, P.B. (eds),  Kluwer, Dordrecht, pp 
211-219. 

Shulaev, V., Leon, J., and Raskin, I., 1995, Is salicylic acid a transported signal of systemic 
acquired resistance in tobacco? Plant Cell 7:1691-1701. 

Siddiqui, I. A., and Shaukat, S. S., 2003, Suppression of root-knot disease by Pseudomonas 
fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-
diacetylpholoroglucinol. Soil Biol. Biochem. 35:1615-1623. 

Siddiqui, I. A., and Shaukat, S. S., 2004, Systemic resistance in tomato induced by biocontrol 
bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid 
production. J .Phytopathol. 152:48-54. 

Singh, D. P., Moore, C. A., Gilliland, A., and Carr, J. P., 2004, Activation of multiple antiviral 
defence mechanisms by salicylic acid. Mol. Plant Pathol. 5:57-63.

Somers, E., Vanderleijden, J., and Srinivasan, M., 2004, Rhizosphere bacterial signalling: a love 
parade beneath our feet. Crit. Rev. Microbiol. 30:205-240. 

Spencer, M., Ryu, C. M., Yang, K. Y., Kim, Y. C., Kloepper, J. W., and Anderson, A. J., 2003, 
Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the 
ethylene pathway. Physiol. Mol. Plant Pathol. 63:27-34. 

Staswick, P. E., and Tiryaki, I., 2004, The oxylipin signal jasmonic acid is activated by an enzyme 
that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117-2127. 

Sticher, L., Mauch-Mani, B., and Métraux, J. P., 1997, Systemic acquired resistance. Annu. Rev. 
Phytopathol. 35:235-270. 

Thomma, B. P. H. J., Eggermont, K., Broekaert, W. F., and Cammue, B. P. A., 2000, Disease 
development of several fungi on Arabidopsis can be reduced by treatment with methyl 
jasmonate. Plant Physiol. Biochem. 38:421-427. 

Thomma, B. P. H. J., Tierens, K. F. M., Penninckx, I. A. M. A., Mauch-Mani, B., Broekaert, W. 
F., and Cammue, B. P. A., 2001, Different micro-organisms differentially induce Arabidopsis 
disease response pathways. Plant Physiol. Biochem. 39:673-680. 



Induced systemic resistance as a mechanism 65

Timmusk, S., and Wagner, E. G. H., 1999, The plant-growth-promoting rhizobacterium 
Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible 
connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 12:951-
959.

Ton, J., Pieterse, C. M. J., and Van Loon, L. C., 1999, Identification of a locus in Arabidopsis 
controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) 
and basal resistance against Pseudomonas syringae pv. tomato. Mol. Plant-Microbe Interact.
12:911-918. 

Ton, J., Van Pelt, J. A., Van Loon, L. C., and Pieterse, C. M. J., 2002, Differential effectiveness of 
salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis.
Mol. Plant-Microbe Interact. 15:27-34.

Turlier, M. F., Eparvier, A., and Alabouvette, C., 1994, Early dynamic interactions between 
Fusarium oxysporum f.sp. lini and the roots of Linum usitatissimum as revealed by transgenic 
GUS-marked hyphae. Can. J. Bot. 72:1605-1612. 

Van Loon, L. C., 1997, Induced resistance in plants and the role of pathogenesis-related proteins. 
Eur. J. Plant Pathol. 103:753-765. 

Van Loon, L. C., 2000, Systemic induced resistance. In: Mechanisms of resistance to plant 
diseases, Slusarenko, A. J., Fraser. R. S. S., and Van Loon, L. C. (eds), Kluwer, 
Dordrecht, pp 521-574. 

Van Loon, L. C., and Antoniw, J. F., 1982, Comparison of the effects of salicylic acid and 
ethephon with virus-induced hypersensitivity and acquired resistance in tobacco. Neth. J. 
Plant Pathol. 88:237-256.

Van Loon, L. C., and Bakker, P. A. H. M., 2003, Signalling in rhizobacteria-plant 
interactions. In: Root ecology, De Kroon, H., and Visser, E. J. W. (eds),  Springer-Verlag, 
Berlin Heidelberg, pp 297-330. 

Van Loon, L. C., and Glick, B. R., 2004, Increased plant fitness by rhizobacteria. In: Molecular 
ecotoxicology of plants, Sandermann, H. (ed), Springer-Verlag, Berlin Heidelberg, pp 177-
205.

Van Loon, L. C., and Van Strien, E. A., 1999, The families of pathogenesis-related proteins, their 
activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol 55:85-
97.

Van Loon, L. C., Bakker, P. A. H. M., and Pieterse, C. M. J., 1998, Systemic resistance induced 
by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483. 

Van Peer, R., and Schippers, B., 1992, Lipopolysaccharides of plant-growth promoting 
Pseudomonas sp. strain WCS417r induce resistance in carnation to fusarium wilt. Neth.  J. 
Plant Pathol. 98:129-139. 

Van Peer, R., Niemann, G. J., and Schippers, B., 1991, Induced resistance and phytoalexin 
accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain 
WCS417r. Phytopathology 81:728-734.

Van Wees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., Van 't Westende, Y., Hartog, F., and Van 
Loon, L. C., 1997, Differential induction of systemic resistance in Arabidopsis by biocontrol 
bacteria. Mol. Plant-Microbe Interact. 10:716-724. 

Van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., Van Loon, L. C., and Pieterse, C. M. J., 
1999, Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not 
associated with a direct effect on expression of known defense-related genes but stimulates the 
expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537-
549.

Van Wees, S. C. M., De Swart, E. A. M., Van Pelt, J. A., Van Loon, L. C., and Pieterse, C. M. J., 
2000, Enhancement of induced disease resistance by simultaneous activation of salicylate- and 
jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA
97:8711-8716.



Van Loon and Bakker 66

Verberne, M. C., Hoekstra, J., Bol, J. F., and Linthorst, H. J. M., 2003, Signaling of systemic 
acquired resistance in tobacco depends on ethylene perception. Plant J. 35:27-32. 

Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H. S., Van Loon, L. C., and Pieterse, C. M. 
J., 2004, The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol. 
Plant-Microbe Interact. 17:895-908. 

Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jahwar, R., Ward, E., Uknes, S., 
Kessmann, H., and Ryals, J., 1994, Salicylic acid is not the translocated signal responsible for 
inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959-
965.

Vidal, S., Eriksson, A. R. B., Montesano, M., Denecke, J., and Palva, E. T., 1998, Cell wall-
degrading enzymes from Erwinia carotovora cooperate in the salicylic acid-independent 
induction of a plant defense response. Mol. Plant-Microbe Interact. 11:23-32. 

Wei, G., Kloepper, J. W., and Tuzun, S., 1991, Induction of systemic resistance of cucumber 
to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. 
Phytopathology 81:1508-1512.

Weller, D. M., Raaijmakers, J. M., McSpadden Gardiner, B. B., and Thomashow, L. S., 2002, 
Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. 
Rev. Phytopathol. 40:309-348. 

Weller D. M., Van Pelt, J. A., Mavrodi, D. V., Pieterse, C. M. J., Bakker, P. A. H. M., and 
Van Loon, L. C., 2004, Induced systemic resistance (ISR) in Arabidopsis against 
Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol (DAPG)-producing 
Pseudomonas fluorescens. Phytopathology 94:S108. 

Whipps, J. M., 2001, Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot.
52:487-511.

Yan, Z., Reddy, M. S., Ryu, C. M., McInroy, J. A., Wilson, M., and Kloepper, J. W., 2002, 
Induced systemic protection against tomato late blight elicited by plant growth-promoting 
rhizobacteria. Phytopathology 92:1329-1333.            

Zhang, S., Moyne, A. L., Reddy, M. S., and Kloepper, J. W., 2002, The role of salicylic acid 
in induced systemic resistance elicited by plant growth-promoting rhizobacteria against 
blue mold of tobacco. Biol. Control 25:288-296.       

 Zipfel, C., Robatzek, S., Navarro. L., Oakeley, E. J., Jones, J. D. G., Felix, G., and Boller, T., 
2004, Bacterial disease resistance in Arabidopsis through flagellin perception. Nature
428:764-767.



Chapter 3 

BIOSYNTHESIS OF ANTIBIOTICS BY PGPR 
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Abstract: Plant growth promoting rhizobacteria (PGPR) play a vital role in crop 
protection, growth promotion and in the improvement of soil health. Some 
well known PGPR strains are Pseudomonas, Bacillus, Azospirillum,
Rhizobium, and Serratia species. The primary mechanism of biocontrol by 
PGPR involves the production of antibiotics such as phenazine-1-carboxyclic 
acid, 2,4-diacetyl phloroglucinol, oomycin, pyoluteorin, pyrrolnitrin, 
kanosamine, zwittermycin-A, and pantocin. A cascade of endogenous signals 
such as sensor kinases, N-acyl homoserine lactones and sigma factors 
regulates the synthesis of antibiotics. The genes responsible for the synthesis 
of antibiotics are highly conserved. The antibiotics pertain to polyketides, 
heterocyclic nitrogenous compounds and lipopeptides have broad-spectrum 
action against several plant pathogens, affecting crop plants. In addition to 
direct antipathogenic action, they also serve as determinants in triggering 
induced systemic resistance (ISR) in the plant system. Though antibiotics play 
a vital role in disease management, their role in biocontrol is questioned due to 
constraints of antibiotic production under natural environmental conditions. 
Environmental and other factors that suppress the antimicrobial action of 
antibiotics have to be studied to exploit the potential of antibiotics of PGPR in 
crop protection. 

Key words:     antibiotics; biocontrol; PGPR. 

1 INTRODUCTION

Plant pathologists are facing major challenges for the management 
of soil-borne plant pathogens. Management of plant pathogens with 
pesticides has resulted in environmental pollution and resistance among 
pathogens. Subsequently, identification of suppressive soils to various soil 
borne plant pathogens such as Gaeumanomyces graminis var. tritici,
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Fusarium oxysporum, F. solani, Phytophthora cinnamomi, Rhizoctonia
solani and Sclerotium cepivorum limited the disease development in spite of 
the favorable environment (Cook and Baker, 1983). The suppressiveness 
was due to the presence of antagonistic microbes. Among various microbes, 
prokaryotes are omnipresent and have been widely explored for plant disease 
management. The prokaryotic cells in earth are 2.6 x 1029 (Whitman et al.,
1998). Among the wide genetic biodiversity of prokaryotes, plant growth 
promoting rhizobacteria (PGPR) plays a vital role in the management of 
plant diseases to increase crop productivity via various mechanisms.  

Considerable progress has been made over the past two decades to 
elucidate the mechanisms by which fluorescent pseudomonads suppress
diseases. The primary mechanism of biocontrol by fluorescent 
pseudomonads involves production of antibiotics such as 2,4-
diacetylphloroglucinol (PHL), pyoluteorin (PLT), pyrrolnitrin (PRN), 
phenazine-1-carboxyclic acid (PCA), 2- hydroxy phenazines and phenazine-
1-carboxamide (PCN). In addition to direct antipathogenic action, antibiotics 
also serve as determinants in triggering induced systemic resistance (ISR) in 
the plant system and contribute to disease suppression by conferring a 
competitive advantage to biocontrol agents. Synergism between antibiotics 
and ISR may further increase host resistance to plant pathogens. Though 
several modes of action are responsible for the suppression of plant 
pathogens, this chapter will focus on new insights and concepts in biocontrol 
of plant pathogens by PGPR through antibiotics. 

2 ANTIBIOTICS OF PGPR 

Utilization of microbial antagonists against plant pathogens in 
agricultural crops has been proposed as an alternate to chemical pesticides. 
Fluorescent pseudomonads and Bacillus species play an active role in 
suppression of pathogenic microorganisms. These bacterial antagonists 
enforce suppression of plant pathogens by the secretion of extracellular 
metabolites that are inhibitory at low concentration. 

Antibiotics produced by PGPR include 2,4 Diacetyl phloroglucinol, 
phenazine-1-carboxyclic acid, phenazine-1-carboxamide, pyoluteorin, 
pyrrolnitrin, oomycinA, viscosinamide, butyrolactones, kanosamine, 
zwittermycin-A, aerugine, rhamnolipids, cepaciamide A, ecomycins, 
pseudomonic acid, azomycin, antitumor antibiotics FR901463, cepafungins 
and antiviral antibiotic karalicin (Table-1). These antibiotics are known to 
possess antiviral, antimicrobial, insect and mammalian antifeedant, 
antihelminthic, phytotoxic, antioxidant, cytotoxic, antitumour and plant 
growth promoting activities. 
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PGPR Antibiotics Reference 

Pseudomonas 
sp.

Antifugal antibiotics 
Phenazines
Phenazine-1-carboxylic 
acid
Phenazine-1-carboxamide 
Pyrrolnitrin 

Pyoluteorin 
2,4diacetylphloroglucinol 
Rhamnolipids  
Oomycin A 
Cepaciamide A
Ecomycins 
DDR
Viscosinamide

Butyrolactones 
N-butylbenzene 
sulphonamide 
Pyocyanin 
Antibacterial antibiotics 
Pseudomonic acid 
Azomycin 
Antitumour antibiotics 
FR901463
Cepafungins
Antiviral antibiotic 
Karalicin

Burkhead et al. (1994) 
Pierson and Pierson (1996) 

Chin-A-Woeng et al. (1998) 
Thomashow and Weller  
(1988)
Howel and Stipanovic (1980) 
Shanahan et al.(1992b)

Kim et al.(2000)
Howie and Suslow (1991) 
Jiao et al.(1996)
Miller et al.(1998)
Hokeberg et al.(1998)
Nielsen et al. (1999)
Thrane et al. (2000) 
Gamard et al.(1997)
Kim et al.(2000)
Baron and Rowe (1981) 

Fuller et al.(1971)
Shoji et al.(1989) 

Nakajima et al.(1996)
Shoji et al.(1990) 

Lampis et al.(1996)

Bacillus sp. Kanosamine 
Zwittermycin A 
Iturin A (Cyclopeptide) 
Bacillomycin 
Plipastatins A and B 

Milner et al.(1996) 
Silo - Suh et al.(1994)
Constantinescu (2001) 
Volpon et al.(1999) 
Volpon et al.(2000) 

The major antibiotics that play a vital role in the suppression of plant 
pathogens are grouped into non-volatile and volatile antibiotics. 

Table 1. Antibiotics produced by rhizobacteria. 
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Non-Volatile antibiotics
Polyketides (2,4 Diacetyl phloroglucinol; Pyoluteorin; 
Mupirocin)
Heterocyclic nitrogenous compounds (Phenazine derivatives) 
Phenylpyrrole (Pyrrolnitrin) 
Cyclic lipopeptides 
Lipopeptides (Iturin, Bacillomycin, Plipstatin, Surfactin) 
Aminopolyols (Zwittermycin –A) 

Volatile antibiotics 
Hydrogen cyanide 
Aldehydes, alcohols, ketones and sulfides 

2.1 Polyketides 

Among the various groups of antibiotics produced by the PGPR, the 
polyketides such as 2,4 Diacetyl phloroglucinol, Pyoluteorin and Mupirocin 
are highly effective in suppression of plant pathogens.  

2.1.1 Diacetyl phloroglucinol (DAPG)  

The ubiquitous distribution of fluorescent pseudomonads in the 
rhizosphere of crop plants has broad spectrum of action in the suppression of 
fungi, bacteria and nematodes (Keel et al., 1992; Haas and Keel, 2003). 
Though several mechanisms are in operation to suppress plant pathogens, 
the antibiotics produced by fluorescent pseudomonads remain as a crucial 
factor in checking disease development and pathogens. Among the various 
extracellular metabolites produced, DAPG is of prime importance in plant 
protection. Three evidences substantiate the involvement of DAPG in crop 
protection.

Mutations in the biosynthetic gene cluster of DAPG reduced 
biocontrol activity of antagonistic bacteria (Keel et al., 1992; 
Nowak-Thompson et al., 1994).  
Population density of DAPG producers and the antibiotic 
production was responsible for disease suppression in different 
soils (Raaijmakers et al., 1999).
Association of different DAPG producers in the rhizosphere of 
crop plants was responsible for disease suppression (Raaijmakers 
et al., 1999). 
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2.1.1.1 Biosynthesis of DAPG 

The polyketide antibiotic DAPG is a phenolic molecule synthesized 
by the condensation of three molecules of acetyl coenzymeA with one 
molecule of malonyl coenzymeA to produce the precursor 
monoacetylphloroglucinol, which is subsequently transacetylated to generate 
PHL utilizing a CHS-type enzyme (Shanahan et al., 1992a). Biosynthetic 
locus of DAPG is highly conserved. It comprises the biosynthetic genes 
phlACBD (Keel et al., 2000).

2.1.1.2 Phenotypes of DAPG producers  

The DAPG producers are grouped into different phenotypes based 
on the extracellular production of different metabolites including antibiotics 
and HCN. The major phenotypic groups of DAPG producers include 

2,4 DAPG and hydrogen cyanide producers  
2,4 DAPG, hydrogen cyanide and pyoluteorin producers (Keel et 
al., 1996) 
2,4 DAPG, pyoluteorin and pyrrolnitrin producers (Nowak-
Thompson, 1999; Sharifi-Tehrani et al., 1998). 

2.1.1.3 Genetic diversity of phlD among DAPG producers 

phlD is an essential gene involved in the synthesis of DAPG. Its 
diversity was evaluated between the isolates of pseudomonads distributed 
worldwide. Potential pseudomonads for disease management may be 
identified functionally, based on their ability to produce 2,4-DAPG. But, all 
DAPG producers could be taxonomically distinguished as different strains 
based on the amplified ribosomal DNA restriction analysis (ARDRA) 
fingerprints. Three to four groups of DAPG producers were distinguished 
through ARDRA fingerprints. However, it does not explain the complete 
diversity (Keel et al., 1996; Sharifi-Tehrani et al., 1998; McSpadden 
Gardener et al., 2000). Hence some other molecular tool has to be deviced 
for the detection of variation among the different DAPG producers.  

As a consequence, utilization of molecular tools such as BOX-PCR 
and enterobacterial repetitive intergeneric consensus (ERIC-PCR) helped in 
identification of thirteen to 15 different genotypes among phl-D containing 
strains (McSpadden Gardener et al., 2000). Sixty-four different RAPD 
genotypes were identified among 150 strains of ARDRA group of phlD
isolates from maize rhizosphere (Picard et al., 2000). Genotypes identified 
through RFLP analysis of phlD gene was conserved between the isolates. 
But RAPD analysis of genomic DNA showed a high degree of 
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polymorphism between DAPG producers (Mavrodi et al., 2001). Hence, 
there exists a greater genetic diversity among the DAPG producers. 
Knowledge on diversity of phlD gene among DAPG producers are important 
for assessing the antagonistic potentiality and frequency of horizontal gene 
transfer between the microbial communities seen in the rhizosphere. It 
provides a fundamental knowledge for developing a rapid genetic screening 
system to identify a potential biocontrol strains. 

2.1.1.4 Cross talk between DAPG producers  

The mechanism of communication between antagonistic 
Pseudomonas and between rhizosphere bacterial communities is gaining 
importance. Interactions between bacterial communities could lead to either 
positive or negative effect. N-Acyl-homoserine lactones (AHL) are the 
signal molecules involved in communication between different bacteria. 
AHL signals are used for communication between several plant bacterial 
communities to control the antibiotic gene expression and cell-to-cell 
communication in a cell density dependent manner termed as quorum 
sensing (Pierson et al., 1998).

2.1.1.5 Positive cross talk   

DAPG induces its own biosynthesis and acts as a diffusible signal at 
intra and inter population levels. DAPG produced by the genetically distinct 
pseudomonads (CHAO and Q2-87) in a mixed bacterial population of wheat 
rhizosphere could be perceived as a positive signal for increasing the 
synthesis of DAPG by increasing the expression of DAPG biosynthetic 
genes (Maurhofer et al., 2004). Thus DAPG acts as a signaling compound 
inducing the expression of its own DAPG biosynthetic genes (Fig 1). 

2.1.1.6 Negative cross talk 

The negative cross talk also exists between the PGPR, plant 
pathogens and the abiotic environment. Extracellular metabolites of plant 
pathogens suppress the expression of biosynthetic genes responsible for 
antibiotic production. Antipathogenic activity of P. fluorescens CHAO
against F. oxysporum f. sp. radicis lycopersici was repressed by fusaric acid 
produced by pathogen. It repressed the expression of DAPG genes of CHAO 
strains and was unable to control tomato root and crown rot (Duffy and 
Defago, 1997; Schnider - Keel et al., 2000). In addition, non-pathogenic 
isolates of Fusarium producing fusaric acid also suppress the expression of 
DAPG gene in the wheat rhizosphere (Notz et al., 2002). Recent evidence 
suggests that besides DAPG and fusaric acid a number of other phenolic 
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metabolites like pyoluteorin and salicylate of microbial and plant origin also 
affect the production of antimicrobial metabolites in fluorescent 
pseudomonads (Pierson et al., 1998; Schnider - Keel et al., 2000; Fig 1). 
Apart from fungal metabolites and phenolic compounds, DAPG by itself 
suppress pyoluteorin produced by other pseudomonads (Haas and Keel, 
2003).  
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synthesis (?) 
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Zinc iron 

DAPG

Fig. 1. Biosynthetic genes of DAPG and factors influencing its expression.
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2.1.1.7 Factors affecting DAPG production 

Biotic and abiotic factors associated with the crop and environment 
affect the performance of fluorescent pseudomonads (Thomashow and 
Weller, 1995; Duffy and Defago, 1997; Notz et al., 2002).  Biotic factors 
such as plant species, plant age, cultivar and pathogens alter the expression 
of the gene phlA (Notz et al., 2001). DAPG production is influenced by 
abiotic factors such as carbon sources and various minerals. Fe3+ and 
sucrose increased DAPG production in P. fluorescens F113, while glucose 
increased DAPG production in P. fluorescens Pf-5 and CHA0 (Nowak-
Thompson et al., 1994; Duffy and Defago, 1999). In P. fluorescens strain 
S272, highest DAPG yield was obtained with ethanol as the sole source of 
carbon. Micronutrients Zn2+, Cu2+ and Mo2+ stimulated DAPG production 
in P. fluorescens CHA0 (Notz et al., 2001).

2.1.2 Pyoluteorin

Pyoluteorin (Plt) is a phenolic polyketide with resorcinol ring. The 
ring is linked to a bichlorinated pyrrole moiety.  Biosynthesis of pyrrole 
moiety is unknown (Kitten et al., 1998; Nowak-Thompsan et al., 1999). It 
was first isolated from P. aeruginosa (Takeda, 1958) followed by P. 
fluoresens Pf-5 and CHAO (Bencini et al., 1983; Bender et al., 1999). Plt 
has bactericidal, herbicidal and fungicidal properties. Application of Plt to 
cotton seeds suppressed cotton damping-off (Howell and Stipanovic, 1980). 

2.1.2.1 Gene locus for the biosynthesis of Plt  

Plt is initiated from proline or a related molecule, which serve as the 
precursor for dichloropyrrole moiety of Plt. It condenses with three acetate 
equivalents coupled to chlorination and oxidation. The formation and 
cyclization of the C-skeleton proceed by the action of a single multienzyme 
complex (Cuppels et al., 1986; Nowak-Thompsan et al., 1999). Ten genes, 
pltLABCDEFG are involved in the biosynthesis of Plt. Among these ten 
genes, pltB and pltC encode type 1 polyketide synthetase. pltG encodes a 
thio esterase, three halogenases are coded by pltA, pltD and pltM. Among 
the plt gene products, PltR is similar to LysR family of the transcriptional 
activators (Pierson et al., 1998; Nowak-Thompsan et al., 1999). 
Furthermore, PltR acts as a positive transcriptional activator linked to phzI 
loci of the Phz biosynthetic locus (Pierson et al., 1998; Chin A-Woeng et al.,
2003).
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2.1.3 Mupirocin 

P. fluorescens produces several inhibitory substances with 
antimicrobial activities. Among the major metabolites pseudomonic acid 
known as mupirocin is also responsible for its bactericidal activity (Fuller et
al., 1971). Mupirocin inhibits isoleucyl-tRNA synthetase and prevents 
incorporation of isoleucine into newly synthesized proteins (Hughes and 
Mellows, 1980). Mupirocin producing strains of P. fluorescens overcomes 
the inhibitory effects of antibiotic by altering the target sites, isoleucyl-tRNA 
synthetase. Mupirocin exhibits a high level of antibacterial activity against 
Staphylococci, Streptococci, Haemophilus influenzae and Neisseria 
gonorrheae. But it is less sensitive against gram positive Bacilli and
anaerobes (Sutherland et al., 1985). Derivatives of monic acid A, the nucleus 
of mupirocin was active against a range of mycoplasma species (Banks et 
al., 1998). 

Mupirocin has a unique chemical structure and contains C9 
saturated fatty acid (9-hydroxynonanoic acid) linked to monic acid A by an 
ester linkage. Mupirocin is derived from acetate. The acetate units are 
incorporated in to monic acid A and 9 - hydroxy nonanoic acid via
polyketide synthesis. Transposon mutagenesis was used to identify a 60 kb 
region required for mupirocin biosynthesis in P. fluorescens NCIB10586 
(Whatling et al., 1995). 

2.2     Heterocyclic nitrogenous compounds 

Several heterocyclic nitrogenous compounds with antimicrobial 
action are produced as an extracellular secretion by rhizobacteria. Among 
those compounds phenazine is a powerful green-pigmented antimicrobial 
compound (Chin-A-Woeng et al., 1998).  

2.2.1 Phenazine  

Phenazine is a low molecular weight secondary metabolite, nitrogen 
containing heterocyclic antimicrobial compound consisting of brightly 
coloured pigment produced by the bacterial genera pertaining to 
Pseudomonas, Burkholderia, Brevibacterium and Streptomyces (Turner and 
Messenger, 1986; Becker et al., 1990; Thomashow et al., 1990; Gealy et al.,
1996; Anjaiah et al., 1998; Tambong and Hofte, 2001). More than 50 
naturally occurring phenazine compounds have been described. Few strains 
of PGPR produce 10 different phenazine derivatives at a same time (Turner 
and Messenger, 1986; Smirnov and Kiprianova, 1990). Commonly identified 
derivatives of phenazine produced by Pseudomonas spp. are pyocyanin, 
PCA, PCN and hydroxy phenazines (Turner and Messenger, 1986). Both 
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PCA and PCN are produced by P. fluorescens 2-79 (Thomashow and 
Weller, 1988), P. aureofaciens 30-84 (Pierson et al., 1995) and P.
chlororaphis (PCL1391) (Chin A- Woeng et al., 1998). Phenazine 
derivatives aid in long-term survival and ecological competence of these 
strains in rhizosphere (Mazzola et al., 1992). Pseudomonas chlororaphis
strain PA-23 was effective in controlling Sclerotinia stem rot of canola in 
greenhouse and field. In vitro assays indicated involvement of antibiotics in 
the inhibition. PA-23 yielded a 1400 bp fragment characteristic of PCA 
biosynthetic genes. Sequence analysis of PCR products showed high 
homology to PCA genes of several Pseudomonas strains deposited in the 
GenBank (Zhang and Fernando 2004a). 

The antimicrobial activity of phenazine depends on the rate of 
oxidative reductive, transformation of the compound coupled with the 
accumulation of toxic superoxide radicals in the target cells (Hassett et al.,
1992 and 1993). Priming the seeds with P. chlororaphis effectively 
controlled seed borne diseases of barley and oats. It is commercially 
marketed as Cedomon (BioAgri AB, Uppsala, Sweden). Though phenazine 
plays a vital role in the management of soil-borne pathogens, the chemo 
taxis and motility of the bacteria decides the antifungal action of the 
antibiotic producers. The strain that lacks motility fails to exert antifungal 
action even if it produces antibiotics, due to the lack of rhizosphere 
colonization. Non-motile Tn5 mutants of P. chlororaphis (PCL1391), 
producer of PCN (chlororaphin) was 1000 fold impaired in competitive 
tomato root tip colonization compared with the wild type, which was 
antagonistic to F. oxysporum f. sp. radicis lycopersici (Chin-A-Woeng et al.,
2003). Ecological competence and persistence of P. fluorescens 2-79 and 
P.aureofaciens strain 30-84 was attributed to phenazine. But Tn5 mutants of 
the same were unable to compete with resident microflora (Mazzola et al.,
1992).

2.2.2 Biosynthesis of phenazine-1-carboxylic acid (PCA) 

The biosynthetic loci of phenazine are highly conserved. Synthesis 
of phenazine compounds and shikimic acid pathway are closely related in 
several microorganisms (Turner and Messenger, 1986). Shikimic acid is the 
basic precursor for synthesis of phenazine and its derivatives (Ingledew and 
Campbell, 1969). Shikimic acid is converted to chorismic acid, which in turn 
branches out with amino-2-deoxyisochorismic acid (ADIC) (Callhoun et al.,
1972). ADIC serves as the branch point compound of PCA formation 
(McDonald et al., 2001). Later ADIC is converted to trans-2, 3-dihydro-3-
hydroxy anthranilic acid (DHHA). Ring assembly by dimerization of two 
DHHA moieties resulted in the formation of first phenazine derivative PCA. 
Dimerization involves oxidation of two molecules of DHHA to the C-3 
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ketone. The molecules react with each other by nucleophilic addition, 
dehydration and tautomerization to give 5,10-dihydroanthranillic acid, which 
is oxidized to PCA (McDonald et al., 2001, Fig.2). 

The biosynthetic genes for production of phenazine derivatives have 
been identified and characterized in several pseudomonads. The production 
of PCA in P. aureofaciens strain 30-84 involves cluster of 5 genes, 
phzFABCD (Pierson et al., 1995). The phenazine biosynthetic operon of P. 
fluorescens 2-79 (Mavrodi et al., 1998; 2004) and P. chlororaphis PCL1391

Erythrose-4-phosphate + Phosphoenol pyruvate 

PhzC       DAHP synthase isozymes

Shikimic acid 

Chorismic acid 

PhzE

2-amino-2-deoxy-isochorismic acid 

PhzD

trans-2-3-dihydro-3-hydroxy anthranilic acid 

PhzD

2,3-dihydro-3-oxo-anthranilic acid 

Phenazine –1-Carboxylic acid  (PCA) 

PhzF, PhzA, PhzB

Fig. 2. Biosynthetic pathway of phenazine-1-carboxylic acid (PCA). 
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(Stover et al., 2000) contain phzABCDEFG genes. The gene phzH located 
downstream of the phenazine operon in P. chlororaphis PCL1391 is an 
aminotransferase gene responsible for the conversion of PCA to phenazine-
1-carboxamide (chlororaphin), the green phenazine compound characteristic 
of P. chlororaphis (Chin-A-Woeng et al., 1998). Nucleotide sequences in 
phenazine producers are homologous and have 70-95% identity. The 
polypeptides encoded by phzA and phzB are common in all phenazine 
producers (Chin-A-Woeng et al., 2001). But these genes are not essential for 
phenazine production instead they code for 163 amino acid, proteins, that 
help in stabilizing PhzF protein. The biosynthetic gene phzG located 
downstream in P. chlororaphis PCL1391 is required for PCN synthesis 
(Chin-A-Woeng et al., 2001).

P. aureofaciens 30-84 contains a novel gene phzO located 
downstream from the core phenazine operon which encode a 55-kDa 
aromatic monooxygenase. Hydroxylation of PCA by monooxygenase led to 
the synthesis of 2-OH-PCA a broad-spectrum antibiotic effective against 
fungal pathogens (Delaney et al., 2001). Two other genes phzM and phzS
were characterized in P. aeruginosa PAO1. It code for enzymes that modify 
phenazine into its related derivativres. The gene phzM is located upstream of 
phZ A1B1C1D1E1F1G1 operon and it is involved in the production of 
pyocyanin. The phzS gene located downstream from phzG1 produce a 402-
residue protein similar to monooxygenases of bacterial origin responsible for 
the production of pyocyanin and 1-hydroxy phenazine in P.aeruginosa
PAO1 (Mavrodi et al., 2001).

P. fluorescens 2-79 has a seven-gene locus phzABCDEFG of 6.8-kb. 
The products of phzC, phzD and phzE genes are similar to shikimic acid and 
chorismic acid metabolism. All these genes coupled with phzF are required 
for the production of PCA. phzG is similar to pyridoxamine-5’-phosphate 
oxidases and serves as a source of co-factor for the enzymes required for 
synthesizing PCA. The genes phzA and phzB are homologous to each other. 
It stabilizes multienzyme complex synthesizing PCA. The two new genes 
phzX and phzY from P. aureofaciens 30-84 produce 2-hydroxy phenazine-1-
carboxyclic acid and 2-hydroxy phenazine (Mavrodi et al., 2004).

2.3     Phenylpyrrole antibiotic 

The antibiotic of PGPR that belongs to phenylpyrrole group receives 
much attention due to its broad-spectrum action. The antibiotic pyrrolnitrin 
belongs to phenylpyrrole group. 
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2.3.1 Pyrrolnitrin  

Pyrrolnitrin (PRN) is a chlorinated phenylpyrrole antibiotic 
produced by several fluorescent and non-fluorescent pseudomonads. It was 
first isolated from Burkholderia pyrrocinia (Arima et al., 1964). 
Pseudomonads species such as P. fluorescens, P. chlororaphis, P. 
aureofaciens, B. cepacia, Enterobacter agglomerans, Myxococcus fulvus 
and Serratia sp also produce PRN antibiotics (Hammer et al., 1999). PRN 
was primarily used as a clinical antifungal agent for treatment of skin 
mycoses against dermatophytic fungus Trichophyton. Subsequently PRN 
was developed as an agricultural fungicide (Elander et al., 1968). PRN 
persists actively in the soil for one month and it does not readily diffuse. But 
it is released after lysis of host bacterial cell, resulting in the slow release. 
PRN is effective against the post harvest diseases of apple, pear and cut 
flowers caused by Botrytis cinerea (Janisiewicz and Roitman, 1988; 
Hammer and Evensen, 1993). It also has strong antifungal action against R. 
solani (El-Banna and Winkelmann, 1988). P. fluorescens strains producing 
PRN reduced take all decline of wheat (Tazawa et al., 2000). P.
chlororaphis strain PA-23 was effective in controlling Sclerotinia stem rot 
disease of canola in the greenhouse and field. In vitro assays indicated 
involvement of antibiotics in the inhibition. PA-23 yielded three fragments 
characteristic of PCA and pyrrolnitrin biosynthetic genes, using primers 
PrnAF/PrnAR. Sequence analysis of PCR products showed high homology 
to pyrrolnitrin genes of several P. fluorescens and Burkholderia sp. strains 
deposited in the GenBank (Zhang and Fernanado, 2004a). 

2.3.2 Genetic organization of pyrrolnitrin 

The biocontrol agent, P. fluorescens BL915 contains four gene 
clusters involved in the biosynthesis of antifungal molecule PRN from the 
precursor tryptophan (Hamill et al., 1970; Chang, 1981). The prn operon of 
5.8 kb DNA (prnABCD) has been completely sequenced. It comprises four 
ORFs, prnA, prnB, prnC and prnD. All four ORFs are located on a single 
transcriptional unit. The four genes encode proteins of identical size. 
Organization of prn genes is identical to the order in which the reactions are 
catalysed in the biosynthetic pathway. Product of prnA gene catalyses 
chlorination of L-trp to 7 chloro-L-trp to form amino pyrrolnitrin (Hammer 
et al., 1997). prnD gene catalyses oxidation of aminopyrrolnitrin to 
pyrrolnitrin (Nakatsu et al., 1995). The regulation of prn operon occurs 
through the global regulatory gene, gacA. de Souza and Raaijmakers (2003) 
developed primers from the conserved sequences of pyrrolnitrin, which 
amplified prnD from 18 Pseudomonas and 4 Burkholderia spp. RFLP 
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analysis revealed polymorphism within 786bp of prnD fragment among 
Pseudomonas and Burkholderia spp.

2.3.3 Biosynthetic pathway of pyrrolnitrin  

prnA gene encodes a tryptophan halogenase that chlorinate 
tryptophan to 7-chlorotryptophan (7 CT). prnB catalyzes 7CT to 
phenylpyrrole and decarboxylate to monodechloroamino pyrrolnitrin 
(MDA). prnC produce MDA halogenase and catalyzes a second chlorination 
in the 3 position of pyrrole ring to form amino-pyrrolnitrin. Enyme coded by 
prnD oxidizes amino group to a nitro group to form pyrrolnitrin ( van Pee et 
al.,1980; Fig 3).  

2.4     Cyclic lipopeptides 

Cyclic lipopeptides (CLPs) are produced by both gram-positive and 
gram-negative bacteria (Katz and Demain, 1977). Production of different 
kinds of CLP is common among fluorescent Pseudomonas spp. (Nielsen et 
al., 2002). All CLPs have either 9 or 11 amino acids in the peptide ring with 
a C10 fatty acid at one of the amino acids (Nielsen et al., 2002). Its synthesis 
is nonribosomal and catalyzed by large peptide synthetase complexes 
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Fig. 3. Pathway for the synthesis of pyrrolnitrin. 
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(Marahiel et al., 1997). CLP is involved in the promotion of bacterial 
swarming (Givskov et al., 1998; Lindum et al., 1998), with antimicrobial 
(Takesako et al., 1993; Gerard et al., 1997; Vollenbroich et al., 1997) and 
biosurfactant properties (Rosenberg and Ron, 1999).

Strains of P. fluorescens DR54, 96.578 and DSS73 produce three 
different CLPs, viscosinamide (Nielsen et al., 2002), tensin (Henriksen et 
al., 2000), and amphisin (Sorensen et al., 2001) which were antagonistic to 
Pythium ultimum (Nielsen et al., 1998; Nielsen et al., 1999; Thrane et al.,
2000) and R. solani (Nielsen et al., 2000 and Nielsen et al., 2002). Apart 
from the antifungal action of viscosinamide it is also involved in the primary
metabolism, cell proliferation and strongly binds to the producing cells of the 
strain DR54 (Nielsen et al., 1999). Tensin and amphisin produced by the 
strains 96.578 and DSS73 are released into the surrounding medium and 
suppress the ingress of the pathogen (Nielsen et al., 2000). 

Amphisin is a new member of a group of dual-functioning 
compounds like tensin, viscosin and viscosinamide that have both 
biosurfactant and antifungal properties. Amphisin is produced at stationary 
phase. amsY gene codes for the synthesis of amphisin synthetase, controlled 
by two-component regulatory system GacA/GacS (Koch et al., 2002). The 
ability of P. fluorescens strain DSS73 to control P. ultimum and R. solani 
arise from amphisin-dependent surface translocation and growth by which 
the bacterium inhibit P. ultimum and R. solani (Andersen et al., 2003).
Synergistic effect of surface motility and the synthesis of antifungal 
compounds could efficiently check and terminate growth of pathogen and 
could prevent the plants from infection by the pathogens. 

2.4.1 Durability of CLP in soil 

Purified CLPs namely viscosinamide, tensin, and amphisin are 
highly stable. It was extracted up to 90% (5 µg g-1) when applied to sterile 
soil. Instead all three compounds degraded within 1 to 3 weeks in nonsterile 
soil. Concentration of viscosinamide decreased within a week in nonsterile 
soils augmented with P. fluorescens strain DR54 with viscosinamide bound 
to its cell wall. Addition of strains 96.578 and DSS73 without tensin or 
amphisin bound to its cell wall did not yield any detectable tensin or 
amphisin in non-sterile soil. In contrast, germination of sugar beet seeds in 
nonsterile soil coated with strain DR54 maintained a high and constant 
viscosinamide level in beet rhizosphere for 2 days. The strains 96.578 and 
DSS73 exhibited significant production of tensin or amphisin till two days 
after germination of sugar beet seeds. All three CLPs were found detectable 
for several days in the rhizosphere. The results thus provide evidence that 
production of CLPs is habitat specific (produced specifically in rhizosphere)
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rather than in the bulk soil, where the rate of degradation is faster (Nielsen et
al., 2002).

2.5      Antifungal lipopeptide antibiotics

Bacillus strains produce a broad spectrum of bioactive peptides. A 
well-known class of such compounds includes the lipopeptides surfactins, 
fengycin and the iturins compounds (iturins, mycosubtilins and 
bacillomycins), which are amphiphilic membrane active biosurfactants and 
peptide antibiotics with potent antimicrobial activities. All these agents 
occur as families of closely related isoforms which differ in length and 
branching of the fatty acid side chains and in the amino acid substitutions in 
the peptide rings (Kowall et al., 1998). The surfactin and iturin compounds 
are cyclic lipoheptapeptides, contain a beta hydroxy fatty acid and a beta 
amino fatty acid respectively as lipophilic components.

2.5.1 Iturins

Several strains of B. subtilis produce cyclic lipopeptides, which 
belong to the family Iturin. Iturin A and other antibiotics of their family 
bacillomycin L, bacillomycin D, bacillomycin F and mycosubtilins are 
powerful antifungal agents. Iturin A is a cyclolipopeptide containing seven 
residues of alpha and one residue of beta amino acid. Iturin A has strong 
antimicrobial action in suppressing P. ultimum, R. solani, F. oxysporum, S. 
sclerotiorum and M. phaseolina (Constantinescu, 2001). Some strains also 
produce bacilysin and bacillomycin L in addition to Iturin. 

Chitarra et al. (2003) reported that B. subtilis YM10 – 20 produced 
Iturin like compound that permeabilizes fungal spores and prevents spore 
germination of Penicillium roqueforti. Bacillus amyloliquefaciens strain RC-
2 produced seven antifungal compounds and inhibited the development of 
mulberry anthracnose caused by Colletotrichum dematium (Hiradate et al.,
2002). The antibiotic (Iturin A2) inhibited other phytopathogenic fungi 
(Rosellina necatrix, Pyricularia oryzae), and bacteria (Agrobacterium
tumefaciens and Xanthomonas campestris pv campestris) besides C. 
dematium in vitro suggesting that the antibiotics produced by RC-2 has 
broad spectrum of action against various plant diseases (Yoshida et al.,
2001; Yoshida et al., 2002). 

Iturin D produced by B. subtilis suppressed C. trifolii. Crude culture 
filtrates reduced germination of C. trifolii conidia and induced lysis of 
conidia and formation of inflated germ tubes on germinating conidia 
(Duville and Boland, 1992).  Besson and Michel (1987) isolated antibiotics, 
iturin D & E from B. subtilis producing iturin A. Tsuge et al. (2001) reported 
that B. subtilis RB 14 produced an antifungal lipopeptide iturin A. The iturin 



Biosynthesis of antibiotics by PGPR  83

A operon is more than 38 kb long and consist four open reading frames, itu 
D, itu A, itu B and itu C. The itu D gene encodes a putative malonyl 
coenzyme A transacylase. The second gene itu A, codes a 449-kDa protein 
similar to fatty acid synthetase, aminoacid transferase, and peptide 
synthetase. The third and fourth gene, itu B and itu C encode 609 and 297 
kDa peptide synthetases. Yu et al. (2002) purified three major antifungal 
compounds from B. amyloliquefaciens strains B 94 which has aminoacids 
Asn, Gln, Ser, Pro and Tyr in a ratio of 3:1:1:1:1. Thus different iturin 
antibiotics also serve as a major determinant in the management of 
phytopathogens due to its broad spectrum of action. 

2.5.2 Bacillomycin

The antifungal lipopeptide bacillomycin of B. subtilis belongs to 
iturin family and acts with a strict sterol – phospholipid dependence on 
biomembranes (Volpon et al., 1999). Bacillomycin Lc, being a new 
antifungal antibiotic of the iturin class differs from Bacillomycin L by 
sequence changes from aspartate-1 to asparagine – 1 and from glutamine – 5 
to glutamate – 5 (Eshita et al., 1995). 

B.subtilis produced an antifungal lipopetide bacillomycin D (Besson 
and Michel, 1992). Similarly Moyne et al. (2001) isolated two peptide 
analogs of bacillomycin D with high antifungal activity against Aspergillus
flavus from culture filtrate of B. subtilis strain Au 195. Peypoux et al. (1985) 
isolated a new antibiotic of the iturin group bacillomycin F which is a 
mixture of homologous petidolipids. Bacillopeptins, a new iturin group of 
antifungal antibiotic was isolated from B.  subtilis FR-2 (Kajimura et al.,
1995). Thus different group of antifungal bacillomycin such as bacillomycin 
Lc, bacillomycin L, bacillomycin D, bacillomycin F and bacillopeptins were 
identified from different strains of B. subtilis were effective against fungal 
pathogens.

2.5.3 Plipastatin

Plipastatins A and B are antifungal antibiotics belonging to a family 
of lipopeptides capable of inhibiting phospholipase (A2) (PLA2) an enzyme 
involved in a various cellular processes such as inflammation, acute 
hypersensitivity and blood platelet aggregation (Volpon et al., 2000). The 
role of plipstatin in plant disease management has to be explored. 

2.5.4 Surfactin

Bacillus subtilis produces another cyclic lipopeptide surfactin with 
surfactant activity. Surfactin has weak antibiotic activity. B. subtilis RB14 
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produced iturin and surfactin, which had antagonistic activity against R.
solani (Asaka and Shoda, 1996). Bacillus sp. CY22 produced both iturin like 
antifungal compound and surfactin like biosurfactant (SooJeong et al.,
2002).  

2.6      Aminopolyols (Zwittermicin A) 

Zwittermicin A is a novel bioactive molecule produced by Bacillus
sp. It is an aminopolyol antibiotic having structural similarities to polyketide 
antibiotics with broad spectrum of action against various microbes (Silo-Suh 
et al., 1998; Elizabeth et al., 1999). The diverse biological activity of this 
novel antibiotics include the suppression of oomycetes diseases of plants and 
also responsible for the insecticidal activity of B. thuringiensis (Emmert et 
al., 2004). Every gram of soil contains a minimum of 104 cfu of 
Zwittermicin A producers world wide (Raffel et al., 1996). Zwittermicin A 
is produced by B. cereus and B. thuringiensis (Raffel et al., 1996) and 
effective against oomycetes and other pathogenic fungi (Silo-Suh et al.,
1998).

2.6.1 Biosynthesis

The gene responsible for the synthesis of Zwittermicin A production 
and resistance was identified in B. cereus UW85 (Silo-Suh et al., 1994). The 
DNA sequence analysis resulted in the identification of three open reading 
frames. Two open reading frames had sequence similarity to acyl-CoA 
dehydrogenases and the acyltransferase domain of polyketide synthases 
respectively.  orf2 is necessary for antibiotic production. ZmaR being the 
part of the gene cluster, it is essential for the bacterial producer to resist its 
own Zwittermicin A, but does not have any role in the production of 
zwittermicin A (Stohl et al., 1999). Synthesis of zwittermicin A has 
similarities to polyketide synthases (Katz and Donadio, 1993). Genes that 
encode zwittermicin A biosynthetic enzymes, are involved in the formation 
of e aminomalonyl-and hydroxymalonyl-acyl carrier protein intermediates 
(Emert et al., 2004). In addition presence of homologs of nonribosomal 
peptide synthetase (NRPS) and polyketide synthase (PKS) suggest that 
zwittermicin A is synthesized by a mixed NRPS/PKS pathway. It enlight 
that the biostynthetic cluster of zwittermicin A consists 9 open reading frame 
for the synthesis of zwittermicin A in B. cereus UW85 (Table 2), the broad 
spectrum antibiotic (Emmert et al., 2004).
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Gene Nucleotide 
position

No.of
amino
acids

Function

orf3 78-341 87 Acyl carrier protein 
orf1 338-1486 382 Acyl-CoA dehydrogenase 
zmaR 1483-2610 375 Acetyl transferase (acetylation 

of zwittermicin A) 
orf2 2630-3847 405 Malonyl-CoA-ACP 

transacylase 
orf4 3888-4736 282 3-hydroxybutyryl-CoA 

dehydrogenase 
orf5 4767-5012 81 Acyl carrier protein 
orf6 5012-6205 397 Acyl-CoA dehydrogenase 
orf7 6202-7779 525 Mycosubtilin synthetase 

subunit C 
orf8 7754-15442 256

2
NRPSs/PKSs 

orf9(partial) 15461-15879 139 Alkanesulfonate 
monooxygenase 

2.7      Volatile antibiotics 

2.7.1    Hydrogen cyanide (HCN) 

Cyanide is a secondary metabolite produced by gram-negative P.
fluorescens, P. aeruginosa, and Chromobacterium violaceum (Askeland and 
Morrison, 1983). Hydrogen cyanide (HCN) and CO2 are formed from 
glycine (Castric, 1977) catalyzed by HCN synthase (Castric, 1994). HCN 
synthase of Pseudomonas sp. oxidize glycine in the presence of electron 
acceptors, e.g., phenazine methosulfate (Wissing, 1974). P. fluorescens
CHA0 is an aerobic, root-colonizing biocontrol bacterium that protects 
several plants from root diseases caused by soil borne fungi (Voisard et al.,
1994). HCN production by strain CHA0 suppresses black root rot of tobacco, 
caused by Thielaviopsis basicola (Sacherer et al., 1994).  GacA-negative 
mutants of strain CHA0, defective in synthesis of HCN, antibiotics, and 
exoenzymes, lost the ability to protect tobacco from black root rot (Voisard 
et al., 1989).  

Table 2. Biosynthetic gene cluster of zwittermicin A and its functions. 
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2.7.2 Aldehydes, alcohols, ketones and sulfides 

P. chlororaphis (PA23) isolated from soybean roots produced 
antifungal volatiles belonging to aldehydes, alcohols, ketones and sulfides. It 
was inhibitory to all the stages of S. sclerotiorum (Fernando et al. 2004).  
Effective antifungal volatiles were benzothiazole, cyclohexanol, n-decanal, 
dimethyl trisulfide, 2-ethyl 1-hexanol, and nonanal. These substances 
completely inhibited the growth of mycelium, germination of ascospores and 
the survival of sclerotia. These volatiles would come in direct contact with 
the overwintering structures and destruct the sclerotial bodies leading to the 
reduction in inoculum potential and thereby prevents the disease occurrence 
(Fernando et al. 2004).  Bacterial volatiles also promote growth of plants 
(Ryu et al., 2003a). 2,3-butadienol, enhanced the growth of Arabidopsis 
thalliana (Ryu et al., 2003a), and inhibited the pathogen Erwinia carotovora 
(Ryu et al, 2003b).  Production of inhibitory volatiles may increase the 
survival rate of bacteria in soil, by eliminating potential competitors for 
nutrients (Mackie and Wheatley, 1999).  

3     REGULATION OF BIOSYNTHESIS OF 
ANTIBIOTICS

Regulation of secondary metabolites production involves: 
1. Environment dependent primary sensing  
2. A secondary or intermediate level responsible for regulation of antibiotic 

biosynthesis with other metabolic processes through global regulation 
and cellular homeostasis 

3. A highly specific tertiary level which requires an involvement of 
regulatory loci that are linked and divergently transcribed from structural 
genes for antibiotic biosynthetic genes (Elander et al., 1968; You et al.,
1998; Duffy and Defago, 1999; Haas et al., 2000; Abbas et al., 2002). 

3.1      Two-component regulatory system 

3.1.1    GacS/GacA system 

It is a trans membrane protein that functions as a sensory kinase 
GacS and the cytoplasmic cognate response regulator GacA protein. It 
mediates changes in gene expression in response to sensor signals. 
Phosphorylation of GacS sensor with the interaction of unknown signals 
activates GacA response regulator. GacA regulates transcription of the target 
genes. GacS/GacA system exerts a positive impact on cell density-dependent 
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gene regulation mediated by signal molecule N-acylhomoserine lactone 
(AHL) in P. aeruginosa, P. syringae and P. aureofaciens.  Similar system 
also operates in P. fluorescens CHAO, which do not produce AHL. 
GacS/GacA modulates the expression of exo enzymes, antibiotics and HCN 
when cells are in transition from exponential to stationary phase (Fuqua et
al., 1994; Sacherer et al., 1994; Blumer et al., 1999; Chancey et al., 1999; 
Elasri et al., 2001; Heeb and Haas 2001). 

Bacterial populations in natural ecosystem communicate with each 
other through chemical signals, released in a cell density-dependent manner, 
which means a minimum cell number is needed to communicate with each 
other known as quorum sensing. It operates through amino acids, short 
peptide hormones and fatty acid-derivatives such as AHLs. The bacteria 
reach a high population density on the rhizosphere and form a biofilm. It 
results in the accumulation of fatty acid-derivative, AHL and regulates 
various physiological processes (Chin A-Woeng et al., 2003). 

3.1.2     LuxI and LuxR proteins based regulation 

Another large family of regulatory systems in biosynthesis of 
antibiotics has similarity to LuxI and LuxR proteins of V. fischeri. This 
system relies cell concentration dependent communication. LuxI-type 
proteins synthesize auto inducer molecule AHLs. It diffuses from producer 
bacteria either passively or by active efflux. AHLs accumulate at high 
population densities, bind and activate LuxR-type receptor proteins that 
function as cytoplasmic transcriptional factors or as repressors (Whitehead et
al., 2001). 

3.2       Sigma factors based regulation 

Another level of antibiotic regulation involves sigma factors, which 
are an integral component of regulation of antibiotics like Phl and Plt as in 
P. fluorescens Pf-5. rpoD gene activates the synthesis of antibiotics. Over 
expression of activator gene rpoD or mutation or deletion of suppressor gene 
rpoS increases Phl or Plt production. The genes rpoD and rpoS encode 
sigma-factor s32 and stationary-phase s38 respectively. s factors are required 
during transcription. Any imbalance of s factors either due to excess of s32
or lack of s38 might enhance the expression of genes coding for the 
synthesis of antibiotics (Bangera and Thomashaw, 1996; Howell and 
Stipanovic, 1979). In addition, pathway-specific regulators have been 
reported in the regulation of Phl biosynthesis. Phl biosynthetic gene cluster 
is negatively regulated by the repressor Phl F and positively regulated by 
PhlH (Delany et al., 2000; Abbas et al., 2002). RNA binding protein RsmA 
and RsmB regulate Phl production at post-transcriptional level. RsmA is a 
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translational repressor protein. Both, GacA and RsmA depend on the same 
specific ‘RBS regions’ (Ribosome Binding Site), which enhances RsmA-
mediated translational repression. Another factor, RsmB exerts a relief to 
repression. Thus, these molecules of RNA bind and sequester the repressor 
proteins. Over expression of a regulatory RNA encoded by prrB homologue 
of RsmB restores Phl production in gacA and gacS mutants. It leads to 
overproduction of Phl in wild-type P. fluorescens (Liu and Romeo, 1997; 
Romeo, 1998; Blumer et al., 1999; Ma et al., 2001; Abbas et al., 2002). 

3.3       Microbial metabolites in antibiotic regulation 

Extracellular secretion of metabolites also regulates the synthesis of 
antibiotics. Synthesis of DAPG is auto induced and repressed by other 
bacterial extracellular metabolites of strain CHAO. Salicylate, fusaric acid 
and pyoluteorin have negative effect on DAPG production. Salicylate 
interacts with repressor PhlF and stabilizes its interaction with phlA
promoter (Abbas et al., 2002).

4     MOLECULAR DETECTION OF ANTIBIOTICS 

Identification of antibiotic producers by the isolation of extracellular 
metabolites and characterization with the standard antibiotic is time 
consuming and laborious. The availability of sequenced biosynthetic and 
regulatory genes aid in the development of primers specific to the desired 
antibiotics of interest. The biosynthetic genes responsible for the production 
of antibiotics such as zwittermycin A produced by B. cereus, 2,4-DAPG, 
phenazine (PHZs), pyrrolnitrin (PRN) and pyoluteorin (PLT) produced by 
different Pseudomonas sp. has been cloned and either partially or fully 
sequenced. It helps to enumerate microorganisms capable to produce 
antibiotics or to evaluate and exploit the diversity among the population 
without cultivating them. These molecular techniques target conserved DNA 
sequences with well-defined biosynthetic gene clusters. The sensitivity and 
specificity of detection depend on the selection or design of appropriate 
targets, probes, or primers, and on control of the stringency of PCR 
amplification or DNA hybridization.  

Target selection requires amplification of full-length genes (Seow et
al., 1997), or the amplification of a well-conserved internal fragment. 
Amplified fragments commonly range in size from about 600 to 1,000 bp or 
more and can be analyzed for DNA sequence or restriction fragment length 
polymorphisms to confirm identity or evaluate genetic diversity within target 
populations.  
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phlD gene is an important gene in the biosynthetic pathway of 
DAPG. Hence the limited distribution of phlD gene among bacterial 
community has made it as a marker gene to fish out DAPG producers. 
McSpadden Gardener and his coworkers during 2001 cloned and sequenced 
the major portion of the phlD open reading frame from five genotypically 
different strains. The sequence was screened for the conserved region of the 
gene specific amplification. Eight different primers were designed and 
screened. The primers B2PF and BPR4 were highly précised to amplify the 
target gene. These primers were highly sensitive to even detect as few as log 
2.4 cells per sample. This method was used for detecting both inoculants and 
indigenous DAPG producing pseudomonads (McSpadden Gardener et al.,
2001).  

Strains that produce Zwittermicin A have a gene responsible for the 
self-resistance against the action of its own antibiotic. The resistance gene 
was zmaR. Usage of zmaR primers as molecular markers was précised in the 
detection of zwittermicin A producers (Raffel et al., 1996). It was a more 
reliable method for identification of zwittermycin A-producers than FAME 
(fatty acid methyl ester) analysis. Giacomodonato et al. (2001) developed 
primers for the conserved sequences in genes involved in biosynthesis of 
peptide antibiotics for screening Bacillus isolates. Among Bacillus isolates
that gave a positive signal in PCR, three had an inhibitory effect to 
Sclerotinia sclerotiorum. The strains that failed to amplify did not inhibit 
fungal growth. Ramarathnam and Fernando (2004) found the presence of 
zwittermycin A self-resistant gene in the endophytes Bacillus cereus strains
E4, E8 and E13 isolated from canola with the product size of 1000 bp using 
the primers 677 and 678. Similarly its presence was also detected in B.
cereus strain BS8, B. cereus strain L and B. mycoides strain S (Zhang and 
Fernando, 2004b). Also Ramarathnam and Fernando (unpublished) have 
developed two novel primers from Zwittermycin A biosynthetic gene. The 
primers used for the detection of various antibiotics from rhizobacteria are 
listed in table 3.

5     BROAD SPECTRUM  ACTION OF ANTIBIOTICS 
BY PGPR 

Antibiotics encompass a chemically heterogeneous group of organic, 
low-molecular weight compounds produced by microorganisms at low 
concentrations that are deleterious to the growth or metabolic activities of 
other microorganisms (Fravel, 1988; Thomashow et al., 1997). Antibiotics 
produced by different PGPR have a broad-spectrum activity. 
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The broad-spectrum activity of pyrrolnitrin, produced by 
Pseudomonas and Burkholderia species, was noticed in 1960s by Japanese 
scientists (Nishida et al., 1965) who tested and further developed this 
antibiotic for therapeutic purposes against human pathogenic bacteria and  

Table 3. Antibiotics and their primers for the detection of antibiotic 

Primer   Sequence Antibiotics
related 

 Reference 

       PHZ1 GGC GAC ATG GTC AAC 
GG

PCA Delaney et al. 
(2001)

PHZ2 CGG CTG GCG GCG TAT AT PCA Delaney et al.
(2001)

PHZX TTT TTT CAT ATG CCT GCT 
TCG CTT TC 

PCA Delaney et al.
(2001)

PHZY TTT GGA TCC TTA AGT 
TGG AAT GCC TCC 

PCA Delaney et al.
(2001)

PCA2a TTG CCA AGC CTC GCT 
CCA AC 

PCA Raaijmakers et al.
(1997)

PCA3b CCG CGT TGT TCC TCG 
TTC AT 

PCA Raaijmakers et al.
(1997)

Phl2a GAG GAC GTC GAA GAC 
CAC CA 

2,4-DAPG Raaijmakers et al.
(1997)

Phl2b ACC GCA GCA TCG TGT 
ATG AG 

2,4-DAPG Raaijmakers et al.
(1997)

BPF2 ACA TCG TGC ACC GGT 
TTC ATG ATG 

2,4-DAPG McSpadden 
Gardener et al.
(2001)

B2BF ACC CAC CGC AGC ATC 
GTT TAT GAG C 

2,4-DAPG McSpadden 
Gardener et al.
(2001)

BPF3 ACT TGA TCA ATG ACC 
TGG GCC TGC 

2,4-DAPG McSpadden 
Gardener et al.
(2001)

BPR2 GAG CGC AAT GTT GAT 
TGA AGG TCT C 

2,4-DAPG McSpadden 
Gardener et al.
(2001)

BPR3 GGT GCG ACA TCT TTA 
ATG GAG TTC 

2,4-DAPG McSpadden 
Gardener et al.
(2001)

producers (Zhang, 2004). 
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Continued table 3. 

BPR4 CCG CCG GTA TGG AAG 
ATG AAA AAG TC 

2,4-DAPG McSpadden  
Gardener et al.
(2001)

PrnAF GTG TTC TTC GAC TTC CTC 
GG

Pyrrolnitrin Carolyn Press, 
personal
communication

PrnAR TGC CGG TTC GCG AGC 
CAG A 

Pyrrolnitrin Carolyn Press, 
personal
communication

PRND1 GGG GCG GGC CGT GGT 
GAT GGA 

Pyrrolnitrin de Souza and 
Raaijmakers, 
(2003)

PRND2 YCC CGC SGC CTG YCT 
GGT CTG 

Pyrrolnitrin de Souza and 
Raaijmakers, 
(2003)

PrnCf CCA CAA GCC CGG CCA 
GGA GC 

Pyrrolnitrin Mavrodi et al.
(2001)

PrnCr GAG AAG AGC GGG TCG 
ATG AAG CC 

Pyrrolnitrin Mavrodi et al.
(2001)

PltCreg1F AGG CAA TCA CTA CCA 
TCC GTG CGC 

Pyoluteorin de Souza and 
Raaijmakers, 
(2003)

PltCreg2r ATG AGG AGC AGG AGG 
TGT CGA GCA C 

Pyoluteorin de Souza and 
Raaijmakers,(2003) 

PLTC1 AAC AGA TCG CCC CGG 
TAC AGA ACG 

Pyoluteorin de Souza and 
Raaijmakers,(2003) 

PLTC2 AGG CCC GGA CAC TCA 
AGA AAC TCG 

Pyoluteorin de Souza and 
Raaijmakers,(2003) 

PltBf CGG AGC ATG GAC CCC 
CAG C 

Pyoluteorin Mavrodi et al.
(2001)

PltBr GTG CCC GAT ATT GGT 
CTT GAC C 

Pyoluteorin Mavrodi et al.
(2001)

Plt1 ACT AAA CAC CCA GTC 
GAA GG 

Pyoluteorin Mavrodi et al.
2001

Plt2 AGG TAA TCC ATG CCC 
AGC

Pyoluteorin Mavrodi et al.
(2001)

678 ATG TGC ACT TGT ATG 
GGC AG 

Zwittermicin A Milner et al. (1996) 

667 TAA AGC TCG TCC CTC 
TTC AG 

Zwittermicin A Milner et al. (1996) 
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fungi. With respect to plant pathogenic fungi, pyrrolnitrin has antifungal 
activity against a wide range of Basidiomycetes, Deuteromycetes, 
Ascomycetes and Oomycetes, including several economically important 
pathogens like R. solani, Verticillium dahliae, Pyricularia oryzae, Alternaria 
sp., Botrytis cinerea, P. aphanidermatum, P. ultimum, Rhizopus sp. 
Aspergillus niger, Fusarium oxysporum, Penicillium expansum, Sclerotinia 
sclerotiorum and Sclerotium rolfsi (Howell and Stipanovic 1979; Homma et
al., 1989; Chernin et al., 1996; Ligon et al., 2000). Furthermore, pyrrolnitrin 
was also reported to be active against several bacteria, such as 
Agrobacterium tumefaciens, Corynebacterium insidiousum, Pseudomonas 
syringae pv. syringae, Xanthomonas campestris, Clavibacterium 
michiganense, Serratia marcescens (Chernin et al. 1996) and in particular 
Streptomyces species (El-Banna and Winkelmann 1998).  

Similarly, DAPG, produced by several strains of P. fluorescens, not 
only have activity against a wide range of plant pathogenic fungi but also 
have antibacterial, antihelminthic and phytotoxic properties (Keel et al.
1992; Thomashow and Weller 1996). Cronin et al. (1997) showed that 
purified DAPG decreased hatching of cysts of the nematode Globodera
rostochiensis and reduced juvenile mobility. Also zwittermycin A, an 
antibiotic produced by B. cereus and B. thuringiensis adversely affects the 
growth and activity of a wide range of microorganisms, including several 
plant pathogens.

Zwittermicin A inhibited a wide spectrum of protists, oomycetes, 
some other fungi and bacteria. The activity was more at alkaline pH. It has 
synergistic action with kanosamine against E.coli and Phytophthora (Silo-
Suh et al., 1998). UW85 suppressed alfalfa damping off (Silo-Suh et al.,
1994), fruit rot of cucumber (Smith et al., 1993) and Phytophthora 
parasitica var. nicotianae infection in tobacco (He et al., 1994). Suppression 
was mainly due to the production of zwittermicin A (Silo-Suh et al., 1994). 

6     ANTIBIOTICS OF PGPR IN THE MANAGEMENT 
OF SOIL-BORNE DISEASES 

The significance of antibiotics in biocontrol, and in microbial 
antagonism has been questioned because of the constraints to antibiotic 
production in natural environments (Williams & Vickers 1986). Recovery 
and detection may be hampered by biotic and abiotic complexity, chemical 
instability of the compound, irreversible binding to soil colloids or organic 
matter, or microbial decomposition (Thomashow et al., 1997). The first line 
of evidence of broad-spectrum activity of antibiotics by PGPR was derived 
from culture filtrates or purified antibiotics (Howell and Stipanovic 1979; 
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Kang et al. 1998; Nakayama et al., 1999). Suppression of Pythium root rot 
of cucumber was improved by enhancing the production of DAPG and 
pyoluteorin in P. fluorescens strain CHA0 (Maurhofer et al., 1992; Fenton et
al., 1992) (Table 4). 

Seed bacterization of tomato and chilli with a talc based consortia 
comprising of P. fluorescens and P. chlororaphis performed better in 
reducing the incidence of damping-off (Kavitha et al., 2003). It also 
increased the biomatter production. In vitro assay explained the role of 
phenazine in suppressing P. aphanidermatum the causal agent of damping-
off. Aerugine [4-hydroxymethyl-2-(2-hydroxyphenyl)-2-thiazoline] was 

Antibiotics PGPR Pathogen Crop Reference 

DAPG

DAPG

Pseudomonas sp. 

P. fluorescens
(CHAO)

P. ultimum 

Theilaviopsis 
basicola

Sugar
beet
Tobacco

Shanahan et al.
(1992b). 
Keel et al. (1992). 

Aerugine P. fluorescens Phytophthora 
C. orbiculare 

Pepper
Cucumber

Lee et al.(2003) 
Lee et al.(2003) 

Phenazine 

PCA

Pseudomonas sp. 

P. fluorescens 

F. oxysporum 

G. g. Var. tritici 

Tomato 

Wheat 

Chin-A-Woeng et 
al. (1998)  
Thomashow and 
Weller  (1988) 

Pyrrolnitrin 

Pyrrolnitrin 

Pyrrolnitrin 

Pyrrolnitrin 

Pyrrolnitrin 

Burkholderia 
cepacia
P. fluorescens 

P. fluorescens 

P. cepacia 

P. cepacia 

F. sambucinum 

R. solani 

V. dahliae 
T. basicola 
F. sambucinum 

Sclerotinia 
sclerotiorum

Potato

Cotton & 
Cucumber
Cotton
Cotton
Potato

Sunflower

Burkhead et 
al.(1994)
Hammer et al.
(1997)
Howell and
Stipanovic (1979) 
Burkhead et al.
(1994)
McLoughlin et al.
(1992)

Viscosinam
ide

P. fluorescens R. solani 
P. ultimum 

Sugar
beet

Nielsen et 
al.(1998)

Pantocin 
A,B 

P. agglomerans Erwinia herbicola Apple Wright et al.
(2001)

Pyoluteorin P. fluorescens Pythium spp. 
Pythium spp 

Cotton
Sugarbeet

Howell and
Stipanovic (1980) 

Table 4. Antibiotics of PGPR in the management of soil-borne diseases. 
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effective against C. orbiculare, P. capsici, and P. ultimum (MICs - 10µg  ml-1).
Treatment  with  aerugine  suppressed  development  of  Phytophthora disease 
on pepper and anthracnose on cucumber (Lee et al., 2003). Spray of PA23 
(P. chlororaphis) to canola during 50 per cent blooming controlled the 
infection of S. sclerotiorum (Savchuk and Fernando, 2004). Application of 
PA23 through rhizome and soil suppressed the incidence of rhizome rot 
caused by P. aphanidermatum (Nakkeeran et al., 2004). 

7     ISR MEDIATED BY BACTERIAL ANTIBIOTICS 

In several PGPR, more than one determinant is operative in 
triggering systemic resistance (ISR) in plant. The involvement of antibiotics 
production in ISR has not been investigated in detail. Pyoluteorin and DAPG 
reduced growth of sweet corn, cress and cucumber and in turn the stress 
caused by these antibiotics may also trigger resistance (Maurhofer et al.,
1992).  Pyocyanin induced ISR in radish against Fusarium wilt of tomato 
(Leeman et al., 1995 and Audenaert et al., 2001; 2002). But a salicylic acid 
or pyocyanine mutant of wild type P. aeruginosa 7NSK2 was unable to 
induce resistance against B. cinerea (Audenaert et al., 2001). It was 
hypothesized that the pyochelin precursor salicylic acid was produced in 
nanograms on roots. It was converted to siderophore pyochelin. The 
pyochelin and pyocyanine act synergistically to produce active oxygen 
species that cause cell damage and it subsequently leads to induced 
resistance (Audenaert et al., 2001). Rhizosphere colonization of P.
fluorescens protected tomato from wilt disease by accumulating the pool of 
DAPG around tomato roots (Aino et al., 1997). Hence the accumulation of 
DAPG in the roots might be as a signal to trigger ISR (Haas and Keel, 
2003).

8     FACTORS MODULATING ANTIBIOTIC 
PRODUCTION AND ITS EFFICACY 

The inconsistencies of antibiotics are attributed to the involvement 
of biotic and abiotic factors. The factors include: 

Physical factors 
Acetylation 
Variation in sensitivity 
Cell concentration 
Growth phase 
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8.1       Physical factors 

8.1.1     pH, temperature and soil moisture 

The physical factors that affect antibiotic production are temperature 
(Shanahan et al. 1992b), soil moisture (Georgakopoulos et al. 1994), and pH 
(Ownley et al. 1992). Chin-A-Woeng et al. (1998) observed that at pH 5.7, 
the in vitro antifungal activity of phenazine-1-carboxamide was 10 times 
higher than phenazine-1-carboxylic acid (PCA). PCA activity was 
completely abolished under less acidic conditions. The activity of DAPG is 
more active against Pythium species at acidic than at neutral to alkaline pH 
in vitro (de Souza et al., 2003).

In general secondary metabolites accumulate until the beginning of 
stationary phase. In P. fluorescens CHA0, 2,4-DAPG and MAPG 
accumulate until the beginning of stationary phase. Subsequently, there after 
the concentrations of the two metabolites decreased. At 18°C accumulation 
and degradation rates of 2,4-DAPG were slowed down and the 
concentrations was doubled than the concentration at 30°C.  

Microbes in the rhizosphere depend on substrates liberated from the 
root or shoot for their growth and for the antibiotic production. Incorporation 
of alfalfa seedling exudates to the culture medium enhanced the production 
kanosamine in B. cereus by 300% (Milner et al., 1996).

8.1.2 Nutrients

Nutrient sources like carbon, inorganic phosphate and minerals 
influence the production of antibiotics by P. fluorescens (Duffy and Defago, 
1999). DAPG production by all the strains was stimulated in glucose-
amended medium. But stimulation of DAPG production by zinc occurred in 
a strain-specific manner. Phosphate repressed DAPG production in B. cereus 
(Millner et al., 1996) and phenazine production in P. fluorescens (Slininger
& Jackson 1992). Zn2+, NH4Mo2+, and glucose stimulated production of 
PHL.  Production of PLT was stimulated by Zn2+, Co2+, and glycerol but was 
repressed by glucose. Fructose, mannitol, and a mixture of Zn2+ and 
NH4Mo2+ increased pyrrolnitrin production. Co2+, fructose, mannitol, and 
glucose increased pyochelin production. Interestingly, production of its
precursor salicylic acid was increased by different factors, i.e., NH4Mo2+,
glycerol, and glucose. The mixture of Zn2+ and NH4Mo2+ with fructose, 
mannitol, or glycerol further enhanced the production of PHL and PLT 
compared with either the minerals or the carbon sources used alone.
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8.2     Level of acetylation 

The phloroglucinol derivative 2,4-DAPG was more antifungal than 
MAPG and PG. The mycelial growth of P. ultimum var. sporangiiferum was 
completely inhibited at a concentration of 32 µg/ml. But for MAPG and PG 
at least a 10 fold higher concentration was necessary to exert antimicrobial 
action. Hence the level of acetylation decides the antimicrobial action of 
DAPG (deSouza et al., 2003). 

8.3     Variation in sensitivity 

The antimicrobial action of the antibiotics found to differ between 
the different stages of life cycle of the pathogen and between the species. 
This is an important factor in the biological efficiency of the antibiotics. 
Various propagules of P. ultimum that are part of the asexual stage of the life 
cycle differed considerably in their sensitivity to DAPG (deSouza et al.,
2003).  

8.4     Cell concentration / Growth stage 

Synthesis of antibiotics by fluorescent pseudomonads responds to
cell density, showing higher expression in stationary phase. For
Pseudomonas aureofaciens 30-84, it has been demonstrated that the cell-
density-dependent regulation response known as quorum sensing interacts 
with this regulatory response (Pierson et al., 1995). A genomic Tn5 insertion 
mutant of P. putida showed 90% decrease in rpoS promoter activity, 
resulting in less RpoS in a cell at stationary phase (Lange et al., 1995; Kojic 
and Venturi, 2001).

9     CONCLUSIONS

Nature is bestowed with an enriched biodiversity of PGPR. The 
dominant bacterial microfloras in the PGPR community include 
Pseudomonas spp., and Bacillus spp. The research over the last decade has 
resulted in the introduction of several well-characterized Pseudomonas spp. 
that helps in understanding regulation and organization of the biosynthetic 
gene clusters involved in the production of antibiotics. The knowledge on 
the regulation of antibiotics will lead to the development of PGPR with 
improved reliability and efficacy. Molecular communication between 
different genera and species of PGPR might help in the selection of 
compatible strains to be released under field conditions. The antibiotic 
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DAPG acts as a signal molecule to trigger the gene expression in the related 
species of Pseudomonas. But at the same time the presence of antibiotic 
producers like pyoluteorin suppress the expression and production of DAPG 
by fluorescent pseudomonads. Though DAPG and pyoluteorin pertains to 
the same class namely polyketides the expression of one type suppress the 
other. Apart from it the communication and interaction of soil-borne 
pathogens with PGPR also suppress the expression of the gene in fluorescent 
pseudomonads for the production of DAPG.  

The research on the communication between different types of 
antibiotic producers, its interaction with abiotic environment, plant 
pathogens and the plant is only in its stage of infancy. Intensification of 
research in this field will help in understanding the interaction of PGPR, 
pathogen, plant and abiotic environment around the rhizosphere. This will 
facilitate the researchers to fish out better biocontrol agents that overcome 
the negative cross talk in the environment around the rhizosphere.  

Knowledge on the distribution of antibiotic genes and the ecology of 
the organisms in the natural environment could facilitate the introduction of 
non-indigenous strains and would also favour in the selection of better 
biocontrol strains that are suited to different ecological conditions and for 
different crops. The increasing understanding of the role of AHL signal 
molecule in the production of antifungal metabolites through quorum 
sensing and the identification of promoters that can be induced or boosted in 
the rhizosphere opens new areas for the development of novel biocontrol 
agents.

Though antibiotics play a vital role in the management of plant 
diseases, chemotaxis and motility of the bacteria decides the antifungal 
action of the antibiotic producers. Antibiotic producers are highly effective 
in suppression of plant pathogens in vitro. However, the quantity of 
antibiotics produced under field conditions in the rhizosphere are below the 
minimal inhibitory concentration required for the suppression of plant 
pathogens. Availability of antibiotics below the minimum level might be due 
to the biotic and abiotic complexity of the soil and due to the irreversible 
binding to soil colloids or organic matter or microbial degradation. Even 
under these circumstances if the antibiotic producers are able to control plant 
diseases it may be due to the involvement of systemic resistance mediated by 
the antibiotics at very low concentration or due to the interaction of 
antibiotics with other extra cellular metabolites that may trigger ISR. The 
interaction effect of antibiotics, hydrolytic enzymes, lipopolysacchrides, 
hydrogen cyanide and active oxygen species involved in induction of 
systemic resistance has to be explored. Though antibiotics of PGPR play a 
key role in plant disease management, the research gaps in suppressing the 
antimicrobial action has to be intensified to exploit the usage of antibiotics in 
disease management. 
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Since the quantum of antibiotic produced in the rhizosphere is less 
than the inhibitory level, understanding of the synergistic action of 
antifungal proteins produced by the rhizobacteria coupled with ISR 
mechanisms will be a promising strategy to overcome the inconsistent 
biocontrol activity against pest and diseases.  Development of consortial 
formulation of PGPR with different modes of action and compatible 
signaling interaction between the bacterial strains should be developed so 
that the sensitive receptors in the plant rhizosphere can perceive the signals 
and trigger resistance in the plant to overcome the attack of the pests and 
pathogens.
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Abstract:      Plant growth promoting rhizobacteria (PGPR) are indigenous to soil and the 
plant rhizosphere and play a major role in the biocontrol of plant pathogens. 
PGPR can profoundly improve seed germination, root development and water 
utilization by plants. These rhizobacteria can stimulate plant growth directly 
by producing growth hormones and improving nutrient uptake or indirectly by 
changing microbial balance in the rhizosphere in favour of beneficial 
microorganisms. They can suppress a broad spectrum of bacterial, fungal and 
nematode diseases. PGPR can also provide protection against viral diseases. 
The use of PGPR has become a common practice in many regions of the 
world. Although significant control of plant pathogens has been demonstrated 
by PGPR in laboratory and greenhouse studies,  results in the field have been 
inconsistent. Recent progress in our understanding of their diversity, 
colonizing ability, mechanisms of action, formulation and application should 
facilitate their development as reliable biocontrol agents  against plant 
pathogens. Some of these rhizobacteria may also be used in integrated pest 
management programmes. Greater  application of PGPR is possible in 
agriculture for biocontrol of plant pathogens and biofertilization.  
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1 INTRODUCTION 

Biocontrol broadly refers the use of one living organism to curtail 
the growth and proliferation of another, undesirable one.   Biocontrol can be 
defined as “any condition under which a practice whereby survival or 
activity of a pathogen is reduced through the agency of another living 
organisms (except by man himself) with the result there is a reduction in 
incidence of disease caused by pathogens” (Garrette,1965). Rhizosphere 
microorganisms may provide a front line defense against pathogen attack 
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and are ideal for use as biocontrol agents (Weller, 1988). Biocontrol 
involves harnessing disease-suppressive microorganisms to improve plant 
health (Handelsman and Stabb, 1996). Disease suppression by biocontrol 
agents is the manifestation of interactions among the plant, the pathogen, the 
biocontrol agent, the microbial community on and around the plant, and the 
physical environment. Biocontrol of plant pathogens is now an established 
sub discipline of plant pathology and more than 80 biocontrol products have 
been marketed worldwide for the control of plant diseases (Paulitz and 
Belanger, 2001). 

 Some bacteria are associated with roots of crop plants and exert 
beneficial effects on their hosts and are referred to as plant growth 
promoting rhizobacteria (PGPR) (Kloepper and Schroth, 1978). PGPR 
inhabit the rhizosphere, the volume of soil under the immediate influence of 
the plant root system, and favors the establishment of a large amount of 
active microbial population. Plants release metabolically active cells from 
their roots and deposit as much as 20% of the carbon allocated to roots in the 
rhizosphere, suggesting a highly evolved relationship between the plant and 
rhizosphere microorganisms (Handelsman and Stabb, 1996). The 
rhizosphere is subject to dramatic changes and the dynamic nature of the 
rhizosphere  creates interactions  that lead to biocontrol of diseases (Rovira, 
1965, 1969, 1991; Hawes, 1991; Waisel et al., 1991). PGPR are free-living 
bacteria that  may impart  beneficial effects on plants.  PGPR enhance 
emergence, colonize roots and stimulate overall plant growth. PGPR also 
improve seed germination, root development, mineral nutrition and water 
utilization. They can also suppress diseases of plants. The manipulation of 
the crop rhizosphere by inoculation with PGPR for biocontrol of plant 
pathogens has shown considerable promise (Handelsman and Stabb, 1996; 
Siddiqui and Mahmood, 1999; Nelson, 2004). Biocontrol of plant diseases is 
particularly complex because these diseases mostly occur in the dynamic 
environment at the interface of the plant root as well as in the aerial parts of 
plants. Numerous recent reviews present comprehensively the variety of 
microbial biocontrol agents (Weller, 1988; Handelsman and Stabb, 1996; 
Siddiqui and Mahmood, 1995a, 1996, 1999; Whipps, 2001; Weller et al., 
2002; Bakker et al., 2003). This chapter presents recent advances in our 
understanding of the biocontrol of plant diseases.  This understanding will 
facilitate the application of PGPR for the biocontrol of plant diseases under 
field conditions.

2         MECHANISMS OF DISEASE SUPPRESSION 

PGPR can directly stimulate plant growth in several different ways. 
They can: 
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Fix atmospheric nitrogen  
Synthesize several plant hormones  
Solubilize minerals  
Synthesize enzymes that can modulate plant hormone levels 

A particular plant growth promoting bacterium may  possess one or 
more of these mechanisms. The indirect promotion of plant growth occurs 
when PGPR lessen or prevent the deleterious effects of one more 
phytopathogenic organism by: 

Producing siderophores that limit the available iron to the pathogen 
Producing antibiotics that kill the pathogen 
Inducing systemic resistance in plant 

PGPR also cause cell wall structural modifications and biochemical/ 
physiological changes leading to the synthesis of proteins and chemicals 
involved in plant defense mechanisms. PGPR has been successfully used for 
the biocontrol of fungal, nematode, bacterial and viral diseases of plants in  
different parts of the world (Tables 1-4). Some of the biocontrol mechanisms 
that have been dealt with in detail and will  be discussed are as follows: 

Interactions of PGPR with pathogens 
Interactions of PGPR with plants 
Interactions of PGPR in the rhizosphere 

Table 1. Effects of PGPR on  fungal diseases of plants. 

PGPR Fungus Effect Reference
P. fluorescens Gaeumannomyces 

graminis var. 
tritici

 Strains of P. fluorescens may 
be involved in the suppression 
of G. graminis var. tritici.

Cook and 
Rovira , 1976 

P. fluorescens Pythium sp. In Pythium contaminated sites, 
significant increases were 
observed in plant height, 
number of heads and grain 
yield of winter wheat.  

Weller    and  
Cook, 1986 

Pseudomonas
spp (fluorescent 
strains)

Gaeumannomyces
graminis

27% yield increase due to 
biocontrol  of bacteria in winter 
wheat under field conditions. 

De Freitas and 
Germida, 1990 

Pseudomonas
fluorescens

Fusarium sp. Observed induced resistance 
and phytoalexin accumulation 
in carnation. 

Van Peer et 
al., 1991 

P. cepacia R55, 
R85
P. putida R104

Rhizoctonia 
solani

Increase of 62-78% of dry 
weight of winter wheat grown 
in R. solani infected soil. 

De Freitas and 
Germida, 1991 

B. licheniformis, 
A. faecalis

Macrophomina
phaseolina

Reduced root-rot disease of 
chickpea. 

Siddiqui and 
Mahmood,
1992
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Continued table 1. 

P. aureofaciens 
Q2-87

G. graminis var. 
tritici

Inhibition of fungus was 
demonstrated both in vitro and 
in vivo.

Harrison et al.,
1993

P. putida  
P. fluorescens 
P. alcaligenes

Sclerotium rolfsii, 
Fusarium

Reduced the incidence of 
disease caused by S. rolfsii in 
bean, and fusarium wilt of 
cotton and tomato. 

Gamliel and 
Katan, 1993 

B. subtilis M. phaseolina B. subtilis was superior to  P.
lilacinus for the management of
M. phaseolina on chickpea. 

Siddiqui and 
Mahmood,
1993

B. subtilis Fusarium udum Increased shoot dry weight and 
reduced wilt of pigeonpea. 

Siddiqui and 
Mahmood,
1995b

B. subtilis M. phaseolina B. subtilis resulted in greater 
shoot dry weight of chickpea 
than with any fungal filtrate. 

Siddiqui and 
Mahmood,
1995c

P. fluorescens F. oxysporum f.
sp. raphani 
A. brassicicola,  
F. oxysporum

Protected radish plants through 
induction of systemic resistance 
against these pathogens. 

Hoffland et al., 
1996

P. chlororaphis 
2E3,O6

Fusarium
culmorum

Strong inhibition of the fungus 
on spring wheat in the field. 

Kropp et al., 
1996

P. putida, 
S. marcescens, 
Flavomonas
oryzihabitans,
B. pumilus

Colletotrichum 
orbiculare

PGPR mediated ISR was 
operative under field conditions 
against naturally occurring 
anthracnose of cucumber. 

Wei et al.,
1996

B. pumilis 
B. subtilis, 

Curtobacterium
flaccumfaciens

Colletotrichum 
orbiculare

 Mixture of these PGPR strains 
as seed treatment caused 
disease reduction on cucumber. 

Raupach  and 
Kloepper,
1998

Pseudomonas
PsJN

Verticillium
dahliae

Reduced disease incidence in 
tomato. 

Sharma and 
Nowak, 1998 

P. fluorescens Fusarium  udum Wilt incidence was reduced in 
pigeonpea.

Siddiqui et al., 
1998

P.  corrugate, 
P. aureofaciens 

Pythium
aphanidermatum

Induced systemic resistance in 
cucumber roots. 

Chen et al., 
1999.

P. putida,  
B. subtilis, 
E. aerogenes, 
E.agglomerans,
B. cereus 

Pythium sp Most strains increased root 
length of cucumber in Pythium-
infected plants in vitro.

Uthede et al., 
1999

B. subtilis 
P. putida 

Pythium
aphanidermatum,
F. o. f. sp.
cucurbitacearum

Growth and yield of lettuce and 
cucumber were increased and 
disease severity reduced. 

Amer and 
Utkhede, 2000 
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Continued table 1. 

B. pumilus SE34 
S. marsescens 
90-166

Cronartium
quercuum f. sp. 
fusiforme

Two bacterial isolates out of 8, 
significantly reduced number of 
galls and induced systemic 
resistance against fusiform rust 
on Loblolly pine. 

Enebak and 
Carey, 2000  

B. subtilis AF1 Aspergillus niger, 
Fusarium udum 

AF1 supplemented with chitin 
or chitin material showed better 
control of crown rot and wilt 
diseases of ground nut and 
pigeonpea.

Manjula and 
Podile, 2001 

Pseudomonas
fluorescens

Rhizoctonia
solani

Mixture of 3 strains reduced 
disease and promoted growth of 
rice.

Nandakumar
et al., 2001.  

S. marcescens 
90-166

Colletotrichum 
orbiculare

Seed treatment suppressed 
anthracnose of cucumber. 

Press et al., 
2001

Pseudomonas
fluorescens

Colletotrichum
capsici

Increased accumulation of 
enzymes involved in phenyl 
propanoid pathway and PR-
proteins in hot pepper. 

Ramamoorthy 
and
Samiyappan, 
2001

P. fluorescens  
4-92

M. phaseolina P. fluorescens increased disease 
resistance by 33% in chickpea. 

Srivastava et 
al., 2001 

Pseudomonas
PsJn

Botrytis cineria PsJn inhibits growth of B. 
cineria by disrupting cellular 
membrane and cell death. 

Barka et al., 
2002

Bacillus species 
BC121

Curvularia lunata Showed high antagonistic 
activity against C. lunata.

Basha  and 
Ulaganathan, 
2002

Pseudomonas
aeruginosa,
Pseudomonas
fluorescens

Colletotrichum
lindemuthianum 

P. aeruginosa induced 
resistance only in resistant 
interactions while P.
fluorescens induced resistance 
in susceptible and moderately 
resistant interactions on bean. 

Bigirimana
and Hofte, 
2002

P. fluorescens  R. solani, 
F. oxysporum

Out of 40 strains, 18 strains 
showed strong antifungal 
activity. 

Kumar et al., 
2002

P. fluorescens 
89B61
B. pumilusSE34

Phytophthora
infestans

Elicited systemic protection 
against late blight of tomato 
and reduced disease severity. 

Yan et al., 
2002

P. fluorescens
strains Pf1, FP7 

Cnaphalocrocis
medinalis

 Mixture of two strains 
performed better than the 
individual strains in reducing 
sheath blight of rice. 

Radja
Commare et
al., 2002 

P. fluorescens
Pf1

F. oxysporum f. 
sp.  lycopersici

Pf1 protected tomato plants 
from wilt disease. 

Ramamoorthy 
et al.,  2002a 

P. fluorescens,  
P. putida 

Pythium
aphanidermatum

P. fluorescens isolate Pf1 was 
effective in reducing the 
damping-off incidence in 
tomato and hot pepper. 

Ramamoorthy 
et al., 2002b  
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Continued table 1. 
P. fluorescens Colletotrichum

falactum
Induced systemic resistance 
against red rot of sugarcane. 

Viswanathan
and
Samiyappan, 
2002

P. aeruginosa 
PNA 1 

Fusarium udum, 
F. oxysporum  f.
sp. ciceris

P. aeruginosa protected 
pigeonpea and chickpea from 
Fusarium wilt. 

Anjaiah et al.,  
2003

Bacillus pumilus Sclerospora
graminicola

Out of 7 PGPR strains, 
maximum vigor index resulted 
from treatment with strain 
INR7 followed by IN937b. 

Niranjan Raj et 
al., 2003 

Pseudomonas
fluorescens

Sclerospora
graminicola

The isolates offered protection 
ranging from 20 to 75% against 
downy mildew to pearl millet.

Niranjan Raj et 
al., 2004 

P. putida F. oxysporum f.
sp. melonis

Control on muskmelon 
achieved by seed treatment of 
P. putida strain 30 was 63% 
and 46-50% for   strain 180. 

Bora et al., 
2004

Bacillus subtilis 
Burkholderia 
cepacia

R. solani Combination of B. subtilis
RB14-C with B. cepacia BY 
can lead to greater damping-off 
suppression than by these 
strains separately. 

Szczech and 
Shoda, 2004 

P. fluorescens
FP7

Colletotrichum 
gloeosporioides 

Suppressed the anthracnose 
pathogen on mango leading to 
improved yield attributes. 

Vivekananthan 
et al.,  2004 

P. fluorescens 
A. chroococcum

Alternaria 
triticina

P. fluorescens caused greater 
reduction in A. triticina
infected leaf area than A. 
chroococcum.

Siddiqui and 
Singh, 2005a 

Bacillus and 
fluorescent 
pseudomonads
isolates 

Fusarium udum Four isolates, namely Pa116, 
P324, B18 and B160, have 
shown antifungal activity. 

Siddiqui et al.,
2005

Table 2. Effects of PGPR on plant parasitic nematodes. 

PGPR Nematode          Effect Reference
Bacillus
thuringiensis

Meloidogyne 
sp.

Prevented M. incognita from 
forming galls on tomato. 

Ignoffo  and 
Dropkin, 1977 

244 isolates M. incognita Only 125 bacterial isolates 
imparted positive effect on tomato 
and cucumber, rarely on both and 
negative effect on nematodes. 

Zavaleta- Mejia 
and  VanGundy, 
1982

Serratia
marcescens

M. incognita Bacterium produced a volatile 
metabolite and was nematoxic. 

Zavaleta-Mejia, 
1985

Number of 
isolates 

 Globodera 
pallida

Seed treatment reduced nematode 
penetration of potato roots. 

Racke and 
Sikora, 1985 
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Continued table 2. 
354 isolates M. incognita P. fluorescens (strains JOB204, 

JOB 209) and Bacillus(JOB203) 
were most effective and  clover 
plants treated with these bacteria  
had fewer galls and large root.

Becker et al., 
1988

Bacillus
subtilis,
B. cereus,  
B. pumilus, 
Pseudomonas

M. incognita, 
Heterodera
cajani,
H. zeae, 
 H. avenae 

Most effective isolates against all 
tested species were B. subtilis and 
B. pumilus. The non-cellular 
extract exhibited high larvicidal 
properties.

Gokte and 
Swarup, 1988 

Bacillus
subtilis

Meloidogyne 
sp. 
Rotylenchulus 
reniformis

Reduced nematode reproduction 
and galling on cotton, tomato, 
peanut and sugar beet. 

Sikora, 1988 

Agrobacterium
radiobacter

Globodera
pallida

Reduced nematode infection by 
40% when sprayed on seed pieces 
of potato. 

Sikora et al., 
1989

290 isolates Heterodera
schachtii

 Eight isolates were antagonistic to 
H. schachtii, 3 isolates were 
identified as P. fluorescens.

Oostendorp and 
Sikora ,1989a 

8 isolates H. schachtii  Nematode penetration was 
reduced by 6 of  8 isolates tested 

Oostendorp and 
Sikora, 1989 b 

Bacillus
licheniformis, 
P. mendocina 

M. incognita B. licheniformis caused greater 
reduction in nematode 
multiplication than P. mendocina
on tomato. 

Siddiqui  and  
Husain, 1991 

Bacillus
licheniformis, 
Alcaligenes 
faecalis 

M. incognita B. licheniformis caused greater 
reduction in nematode 
multiplication than A. faecalis on 
chickpea. 

Siddiqui  and 
Mahmood ,1992 

Pseudomonas
aureofaciens

Criconemella
xenoplax 

 One strain inhibited nematode 
multiplication in greenhouse test. 

Westcott  and 
Kluepfel,  1992 

Pseudomonas
aureofaciens

Criconemella
xenoplax 

Bacteria suppressed population of 
ring nematode. 

Kluepfel et al.,
1993

B. cereus M. javanica Inhibited penetration of nematodes 
on tomato roots. 

Oka et al., 1993 

B. subtilis M. incognita
race3

 B. subtilis reduced nematode 
multiplication and improved 
growth of chickpea. 

Siddiqui  and 
Mahmood, 1993 

P. fluorescens Panagrellus
sp. 

Bacteria cultivated on plate count 
broth reduced nematodes up to 
57.4%.

Weidenborner 
and  Kunz ,1993 

Bacillus
thuringiensis

C.  elegans, 
R. reniformis,  
P. penetrans 

Isolate 371 of bacterium reduced 
nematode populations on tomato 
and strawberry. 

Zuckerman et 
al.,  1993 

Pseudomonas
solanacearum

R. reniformis  Slight inhibition of nematode 
activity on aubergine roots. 

Kermarrec et 
al., 1994 

B. subtilis  M. incognita 
race3

Seed treatment with bacteria 
reduced nematode multiplication 
on chickpea. 

Siddiqui and 
Mahmood,
 1995 c 
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Continued table 2. 

B. subtilis H. cajani Bacteria reduced nematode 
multiplication on pigeonpea. 

Siddiqui and 
Mahmood,
1995b

Endophytic 
bacterial stains 

M. incognita Reduced galling of cotton roots by 
root-knot nematode. 

Hallmann et al., 
1997

P. fluorescens M. javanica Reduced nematode multiplication 
and morphometrics of M. javanica 
females on tomato in different soil. 

Siddiqui and 
Mahmood ,1998 

P. putida, 
P. fluorescens 

R. similis, 
Meloidogyne
spp.

Inhibited invasion of R. similis and 
Meloidogyne spp. in banana, 
maize and tomato. 

Aalten et al.,  
1998

B. sphaericus, 
Agrobacterium
radiobacter

Globodera
pallida

Rhizobacteria systemically 
induced resistance against potato 
cyst nematode. 

Hasky-Gunther 
et al., 1998 

P. fluorescens H.  cajani Reduced multiplication of H. 
cajani on pigeonpea. 

Siddiqui et al., 
1998                      

B.  subtilis M. javanica Greatest growth of tomato and 
high reduction in nematode 
multiplication occurred when 
ammonium sulphate was used with 
B. subtilis and G.  mosseae.

 Siddiqui and 
Mahmood , 
2000

P. fluorescens, 
Azotobacter
chroococcum, 
Azospirillum
brasilense

M. javanica Use of P. fluorescens with Glomus 
mosseae was better at improving 
chickpea growth and reducing 
galling and nematode multi- 
plication than other   treatments. 

Siddiqui and 
Mahmood , 
2001

P.fluorescens
( strains GRP3 
and PRS9)

M. incognita  GRP3 strain was better in 
reducing galling and nematode 
multiplication than PRS9. 

Siddiqui et al.,
2001

P.fluorescens,
Azospirillum
brasilense,
Azotobacter,
chroococcum, 
Microphos

 M. incognita Best management of M. incognita
was obtained when Microphos 
culture (mixture of P. straita, B. 
polymyxa and Aspergillus niger)
was used with A. chroococcum 
and A. brasilense.

Siddiqui et al., 
2002

P. aeruginosa, 
P. fluorescens 

M.  javanica Bare root dip or soil drench 
treatment reduced nematode 
penetration into tomato roots. 

Siddiqui   and 
Shaukat , 2002 

P. fluorescens, 
Azotobacter
chroococcum

M. incognita Greater biocontrol of M. incognita
was observed when P. fluorescens
was used with the straw of Zea 
mays.

 Siddiqui  and 
Mahmood ,2003 

Fluorescent
pseudomonads

Heterodera
cruciferae

Growth and hatching of nematode 
eggs were inhibited 

Aksoy  and  
Mennan ,2004 

P. fluorescens, 
Azotobacter
chroococcum, 
Azospirillum
brasilense

M. incognita P. fluorescens was better at 
improving tomato growth and 
reducing galling and nematode 
multiplication than A. 
chroococcum or A. brasilense.

 Siddiqui, 2004 
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Continued table 2. 

P. straita M. incognita Reduced    reproduction   of 
M. incognita   on pea. 

Siddiqui and 
Singh , 2005b 

Bacillus and 
fluorescent 
pseudomonads
isolates 

M. incognita, 
H. cajani 

Four isolates of Pseudomonas and
2 of Bacllus (Pa70, Pf18, Pa116, 
Pa324, B18 and B160) were 
considered potentially useful for 
the biocontrol of nematodes.   

Siddiqui et al.,
2005

PGPR Pathogenic 
bacteria

Effect References 

P. fluorescens Xanthomonas
compestris pv. 
citri

Control of citrus canker by 
siderophore production. 

Unnamalai and 
Ganamanickam,
1984

Fluorescent
pseudomonads
spp.

Gaeumannomyces
graminis

Two new strains suppressed 
take-all disease in the field. 

Weller et al., 
1985

P. putida
W4P63

Erwinia
carotovora

Increased yield of Rosset 
Burbank potato and suppressed 
soft rot potential of tubers. 

Xu and Gross, 
1986

P. fluorescens 
A506

E. amylovora Reduction in the population 
size of E. amylovora in pear 
flowers with P. fluorescens was 
due to competition. 

Wilson and 
Lindow, 1993 

P. fluorescens 
WCS417

P. syringae pv. 
tomato

P. fluorescens protected radish 
through induction of systemic 
resistance against a virulent 
bacterial leaf pathogen.

 Hoffland et al., 
1996

P. fluorescens
M29 and M40 

P. solanacearum Isolate M40 reduced tomato 
wilt significantly.  

Kim and 
Misaghi, 1996 

P. putida,
S. marcescens,
Flavomonas
oryzihabitans,
B. pumilus

P. syringae pv. 
lachrymans

PGPR strains caused 
significant protection against 
pathogen on cucumber. 

Wei et al., 1996 

P. fluorescens
A506

E. amylovora Strain A506 and antibiotics 
acted additively in the control 
of frost and fire blight disease. 

 Lindow et al.,
1996

B. pumilis,
B.subtilis, 
Curtobacterium
flaccumfaciens

P. syringae pv. 
lachrymans,
Erwinia
tracheiphila

Seed treatment of strains 
mixture caused reduction in 
angular spot and wilt of 
cucumber.  

Raupach  and 
Kloepper, 1998 

Fluorescent
pseudomonads

Ralstonia
solanacearum

All three strains suppressed 
wilt of tomato and increased 
yield. 

Jagadeesh et al., 
2001

Table 3. Effects of PGPR on bacterial diseases of plants. 
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Continued table 3. 

P.  fluorescens Xanthomonas
oryzae pv. 
oryzae

Showed resistance to the rice 
bacterial blight pathogen. 

Vidhyasekaran 
et al., 2001 

Azospirillium
brasilense

P. syringae pv. 
tomato

Prevented bacterial speck 
disease development and 
improved tomato growth. 

Bashan and 
Bashan, 2002 

Serratia J2,
Pseudomonas,
Bacillus BB11

Ralstonia
solanacearum

All the three strains suppress 
wilt of tomato and increase 
yield. 

Guo et al., 2004 

B. cereus,  
B. lentimorbus, 
B. pumilus

Xanthomonas
compestris pv. 
compestris

Incidence and severity of black 
rot of cabbage were reduced 
when antagonists were applied.  

Massomo et al.,
2004

3 INTERACTIONS OF PGPR WITH PATHOGENS 

3.1 Siderophore  production
Iron is an essential nutrient for all living organisms. In the soil it is 

unavailable   for direct assimilation by  microorganisms because   ferric  iron 
(FeIII), which  predominates in nature, is only sparingly soluble and too low 
in concentration to support microbial growth. To survive, soil 
microorganisms synthesize and secrete low-molecular-weight iron-binding 
compounds (400-1,000 daltons) known as siderophores. Siderophores bind 
FeIII with a very high affinity. The bacterium that originally synthesized the 
siderophores takes up the iron siderophore complex by using a receptor that 
is specific to the complex and is located in the outer cell membrane of the 
bacterium. Once   inside the cell, the iron is released and is then available to 
support microbial growth. PGPR can prevent the proliferation of fungal and 
other  pathogens by producing siderophores that bind most of the FeIII in the 
area around the plant root. The resulting lack of iron prevents  pathogens 
from proliferating in this immediate vicinity. The PGPR out-compete the 
pathogens for available iron,  thus causing  death of the latter.  Plants are not 
affected by the localized depletion of soil iron  as most plants can grow at 
much lower iron concentrations (about 1000 fold less) than microorganisms.                      

Microbial siderophores vary widely in  overall structure but most  
contain hydroxamate and catechol groups which are involved in chelating 
the ferric ion (Neilands, 1995). The involvement of the siderophore in 
disease suppression is based on:

Inhibition in the antagonistic activity of PGPR by addition of 
dissolved ferric ion in vitro and in vivo.
Ineffectiveness of siderophore minus PGPR mutants to suppress 
pathogens.
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Inhibition in the growth of pathogens in vitro and increase in plant 
growth by purified siderophores. 

Suppression of soil borne plant pathogens by siderophore producing 
pseudomonads was observed (Bakker et al., 1986, 1987; Becker and Cook, 
1988, Loper, 1988) and the wild type strain was more effective in 
suppressing disease compared to non-siderophore-producing mutants. 
Siderophore production is an important feature for the suppression of plant 
pathogens and promotion of plant growth. Fluorescent siderophore 
production was observed as a mechanism of biocontrol of bacterial wilt 
disease in the fluorescent pseudomonads RBL 101 and RSI 125 (Jagadeesh 
et al., 2001). Press et al. (2001) reported the catechol siderophore 
biosynthesis gene in Serratia marcescens 90-166 and associated with 
induced resistance in cucumber against anthracnose.  

Table 4. Effects of PGPR on viral diseases of plants. 

PGPR Viruses Effects References
Bacillus
uniflagellatus

Tobacco
mosaic virus 

Cultures and extracts from 
cultures reduced numbers of 
lesions from TMV. 

Mann, 1965 

P. fluorescens 
CHAO

Tobacco
necrosis virus 

Reduction in TNV leaf necrosis in 
P. fluorescens treated tobacco 
plants.

Maurhofer et 
al., 1994a 

P. fluorescens,
Serratia
marcescens

Cucumber
mosaic virus 

Treatment of cucumber or tomato 
plants with PGPR induced 
systemic resistance against CMV. 

Raupach et al., 
1996

Bacillus
amyloliquefaciens, 
B. subtilis, 
 B. pumilus 

Tomato 
mottle virus 

Disease severity   ratings were 
significantly less in all PGPR 
powder based treatments. 

Murphy  and 
Zehnder, 2000 

Bacillus
amyloliquefaciens 
B. subtilis, 
 B. pumilus 

Cucumber
mosaic
cucumo 
virus(CCMV)

PGPR mediated ISR occurred 
against CCMV following 
mechanical inoculation on 
tomato. 

Zehnder et al.,
2000

Bacillus
amyloliquefaciens 

Pepper mild 
mottle virus 
(PMMoV)

Bacillus induced systemic 
resistance against PMMoV in 
tobacco via salicyclic acid and 
jasmonic acid dependent 
pathways. 

Ahn et al., 
2002

The capacity to utilize siderophores is important for the growth of 
bacteria in the rhizosphere (Jurkevitch et al., 1992) and on the plant surface 
(Loper and Buyer,1991). Specific siderophore producing Pseudomonas
strains rapidly colonized  roots of several crops and colonization of roots 
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resulted in yield increases (Schroth and Hancock, 1982). Enhanced plant 
growth caused by pseudomonad strains was often accompanied by the 
reduction in  pathogen populations   on the roots. There is  convincing 
evidence to support a direct role of siderophore mediated iron competition in 
the biocontrol activity exhibited by such isolates (Leong, 1986; Loper and 
Buyer, 1991). The antagonism depends on the amount of iron available in 
the medium; siderophores produced by a biocontrol agent and sensitivity of 
target pathogens (Kloepper et al., 1980; Weger et al., 1988).  Production of 
ALS 84 and siderophore may contribute to the biocontrol of crown gall by 
Agrobacterium rhizogenes K84 especially under conditions of iron limitation 
(Penyalver et al., 2001). 

Iron nutrition of the plant influences the rhizosphere microbial 
community structure (Yang and Crowley, 2000) and the role of the 
pyoverdine siderophore produced by many Pseudomonas species has been 
clearly demonstrated in the control of Pythium and Fusarium species (Loper 
and Buyer, 1991; Duijff et al., 1993). Pseudomonads also produce two other 
siderophores, pyochelin and its precursor salicylic acid, and pyochelin is
thought to contribute to the protection of tomato plants from Pythium by 
Pseudomonas aeruginosa 7NSK2 (Buysens et al., 1996). Different 
environmental factors can also influence the quantity of siderophores 
produced (Duffy and Défago, 1999).  

3.2 Antibiotic production
          

One of the most effective mechanisms that PGPR employ to prevent 
proliferation of phytopathogens is the synthesis of antibiotics.  Evidence for 
the direct involvement of antibiotic production in PGPR- mediated disease 
suppression has come from two types of experiments: 

Non-antibiotic producing mutants of several disease-suppressive 
bacterial strains were unable to prevent phytopathogens to cause 
damage in plants.   
When an antibiotic-producing strain was genetically manipulated to 
overproduce antibiotics the resultant strain protected plants against 
pathogens more effectively than the wild type strain. 
There are numerous reports of the production of antifungal 

metabolites by bacteria in vitro that may also have activity in vivo.
Metabolites include ammonia, butyrolactones, 2,4-diacetylphloroglucinol 
(Ph1), HCN, kanosamine, oligomycin A, oomycin A, phenazine-1-
carboxylic acid (PCA), pyoluterin (Plt), pyrrolnitrin (Pln), viscosinamide,
xanthobaccin, and zwittermycin A (Milner et al., 1996; Keel and Défago, 
1997; Whipps, 1997; Kang et al., 1998; Nielsen et al., 1998; Kim et al.,
1999; Nakayama et al., 1999; Thrane et al., 1999). To demonstrate a role for 

.
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antibiotics in biocontrol, mutants lacking production of antibiotics or 
antibiotics over-producing mutants have been used (Bonsall et al., 1997; 
Chin-A-Woeng et al., 1998; Nowak-Thompson et al., 1999). Alternatively, 
the use of reporter genes or probes to demonstrate production of antibiotics 
in the rhizosphere is becoming more common place (Kraus and Loper, 1995; 
Raaijmakers et al., 1997; Chin-A-Woeng et al., 1998). Indeed, isolation and
characterization of genes or gene clusters responsible for antibiotic 
production have now been achieved (Kraus and Loper, 1995; Bangera and 
Thomashow, 1996; Hammer et al., 1997; Kang et al., 1998; Nowak-
Thompson et al., 1999). Significantly, both Phl and PCA have been isolated 
from the rhizosphere of wheat following introduction of biocontrol strains of 
Pseudomonas (Thomashow et al., 1990; Bonsall et al., 1997; Raaijmakers et
al., 1999), confirming that such antibiotics are produced in vivo. Further, 
Ph1 production in the rhizosphere of wheat was strongly related to the 
density of the bacterial population present and the ability to colonize roots 
(Raaijmakers et al., 1999). PCA from Pseudomonas aureofaciens has even
been used as a direct field treatment for the control of Sclerotinia
homeocarpa on creeping bent grass (Powell et al., 2000). 

The first antibiotics clearly implicated in biocontrol  by fluorescent 
pseudomonads were the phenazine derivatives (Handelsman and 
Stabb,1996) that contribute to disease suppression by P. fluorescens strain 2-
79 and P. aureofaciens strain 30-84, which control take-all of wheat (Weller 
and Cook, 1983; Brisbane and Rovira, 1988). P. fluorescens strain CHAO 
produces  hydrogen cyanide, 2,4-diacetylphloroglucinol, and pyoluteorin, 
which directly interfere with growth of various pathogens and contribute to 
disease suppression (Voisard et al., 1989; Keel et al., 1990,1992; Maurhofer 
et al., 1994b). Furthermore, a quantitative relationship between antibiotic 
production and disease suppression is suggested by the enhanced production 
of 2,4-diacetylphloroglucinol and pyoluteorin accomplished by adding extra 
copies of a 22-kb fragment of DNA that improves suppression of Pythium on 
cucumber (Maurhofer et al., 1992). Antibiotic DAPG has been shown to act 
as the inducing agent in CHAO-mediated ISR in tomato against root-knot 
nematode Meloidogyne javanica (Siddiqui and Shaukat, 2003) and suggest 
that more antibiotics may be capable of eliciting ISR in plants. 

3.3 Enzyme Production 

Biocontrol of Phytophthora cinnamomi root rot of Banksia grandis
was obtained using a cellulase-producing isolate of Micromonospora
carbonacea (El-Tarabily et al., 1996) and control of Phytophthora  fragariae
var. rubi causing raspberry root rot was suppressed by the application of 
actinomycete  isolates selected for the production of ß-1,3-, ß-1,4- and ß-1,6- 
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glucanases (Valois et al., 1996). Chitinolytic enzymes produced by both 
Bacillus cereus and Pantoea (Enterobacter) agglomerans also appear to be 
involved in biocontrol of Rhizoctonia solani (Chernin et al., 1995, 1997; 
Pleban et al., 1997). Tn5 mutants of E. agglomerans deficient in chitinolytic
activity were unable to protect cotton and expression of the chiA gene for 
endochitinase in Escherichia coli allowed the transformed strain to inhibit R. 
solani on cotton seedlings. Similar techniques involving Tn5 insertion 
mutants and subsequent complementation demonstrated that biocontrol of 
Pythium ultimum in the rhizosphere of sugar beet by Stenotrophomonas 
maltophila was due to the production of extracellular protease (Dunne et al.,
1997). The incidence of plant disease caused by the phytopathogenic fungi 
Rhizoctonia  solani, Sclerotium rolfsii, and Pythium ultimum was reduced by 
using a ß -1,3-glucanse producing strain of Pseudomonas cepacia which was 
able to degrade fungal mycelia. Many of the bacterial enzymes that can lyse 
fungal cells, including chitinases and ß -1,3- glucanse, are encoded by a 
single gene.

4         INTERACTIONS OF PGPR WITH PLANTS

4.1     Induced Resistance

Induced resistance is a state of enhanced defensive capacity 
developed by a plant when appropriately stimulated (van Loon et al., 1998). 
Use of selected PGPR strains was  shown to trigger a plant mediated 
resistance in above ground plant parts (Van Peer et al., 1991; Wei et al.,
1991). This type of resistance is often referred to as induced systemic  
resistance (ISR) and has been demonstrated in many plant species including  
bean, carnation, cucumber, radish, tobacco, tomato and Arabidopsis thaliana
(van Loon et al.,1998). Rhizobacteria-mediated ISR resembles 
phenotypically with classic pathogen induced resistance, in which non-
infected parts of a previously pathogen infected plant become more resistant 
to further infection. This form of resistance is referred as systemic acquired 
resistance (SAR) (Ross, 1961). The difference between ISR and SAR is that 
ISR is induced by non-pathogenic rhizobacteria while SAR is induced 
systemically after inoculation with necrotizing pathogens. Moreover, ISR is 
independent of salicyclic acid but involves jasmonic acid and ethylene 
signaling while SAR requires salicyclic acid as a signaling molecule in 
plants. ISR is accompanied by the expression of sets of genes distinct from 
the PR genes while SAR is accompanied by the induction of pathogenesis 
related proteins. Both ISR and SAR are effective against a broad spectrum of 
plant pathogens ( Kuc 1982; van Loon et al., 1998).  
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The effectiveness of ISR and SAR to a range of viral, bacterial, 
fungal and oomycete pathogens was  tested on Arabidopsis. Arabidopsis
thaliana L. has many features favoring its use as a model in studies of PGPR 
(O’Callaghan et al., 2000). In this model system, the non-pathogenic 
rhizobacterial strain P. fluorescens WCS417r was used as the inducing agent 
(Pieterse et al., 1996) to trigger ISR in several plant species (Van Peer et al.,
1991; Leeman et al., 1995; Duijff et al., 1998; Bigirimana and Hofte, 2002). 
Colonization of Arabidopsis roots by P. fluorescens WCS417r protected the 
plants against different plant pathogens (Pieterse et al., 1996; Van wees et 
al., 1997.,Ton et al., 2002). Protection against different pathogens was 
expressed both in reduction in disease symptoms and inhibition of pathogen 
growth. Since rhizobacteria were spatially separated from pathogens, the 
mode of disease suppression in the plants is through ISR. The ability to 
develop ISR appears to depend on the host / rhizobacterium combination 
(Pieterse et al., 2002) and suggests that specific recognition between the 
plant and the ISR-inducing rhizobacterium is required for the induction of 
ISR. Several bacterial  components as potential inducers of ISR are involved 
including outer membrane lipopolysaccharides and iron regulated 
siderophores (Leeman et al., 1995; van Loon et al., 1998). 

Changes that have been observed in plant roots exhibiting ISR
include: (1) strengthening of epidermal and cortical cell walls and deposition 
of newly formed barriers beyond infection sites including callose, lignin and 
phenolics (Benhamou et al., 1996a, b, c, 2000; Duijff et al., 1997; Jetiyanon 
et al., 1997; M'Piga et al., 1997); (2) increased levels of enzymes such as 
chitinase, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase
(M'Piga et al., 1997; Chen et al., 2000); (3) enhanced phytoalexin production 
(Van Peer et al., 1991; Ongena et al., 1999); and (4) enhanced expression of 
stress-related genes (Timmusk and Wagner, 1999). However, not all of these 
biochemical changes are found in all bacterial–plant combinations (Steijl et
al., 1999). Protection from diseases by biocontrol and its consistency in the 
field are generally not sufficient to compete with conventional methods of 
disease control. Combine use of antagonistic microorganisms with different 
mechanisms of action may improve efficacy and consistency of biocontrol 
agents (De Boer et al., 1999). Moreover,  combination of ISR and SAR that 
results in an enhanced level of protection against specific bacterial pathogens 
(Van Wees et al., 2000) offers  great potential to integrate both forms of 
induced resistance in agricultural practices. Induced resistance appears to be 
more useful for the management of viral diseases of plants where other 
management strategies are not generally successful. 
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4.2 Root colonization

Rhizosphere colonization is important not only as the first step in 
pathogenesis of soil borne microorganisms but also is crucial in the 
application of microorganisms for beneficial purposes (Lugtenberg et al.,
2001). PGPR generally improves plant growth by colonizing the root system 
and pre-empting the establishment of, or suppressing deleterious rhizosphere 
microorganisms (Schroth and Hancock, 1982). PGPR must be able to 
compete with the indigenous microorganisms and efficiently colonize the 
rhizosphere of the plants to be protected. Colonization is widely believed to 
be essential for biocontrol (Weller, 1983; Parke, 1991) and a biocontrol 
agent should grow and colonize the surface of plant. The ineffectiveness of 
PGPR in the field has often been attributed to their inability to colonize plant 
roots (Benizri et al., 2001; Bloemberg and Lungtenberg, 2001). Colonization 
or even initial population size of the biocontrol agent has been significantly 
correlated with  disease suppression (Parke, 1990; Bull et al., 1991). 

Under field conditions percolating water probably plays an essential 
role in the passive distribution of bacteria on roots (Liddell and Parke, 1989) 
Osmotolerance is also correlated with colonization ability (Loper et 
al.,1985). Cell surface characteristics influence the attachment of bacteria to 
roots which may be necessary for colonization (Vesper, 1987; Anderson et
al., 1988). Certain mutants that affect accumulation of secondary metabolites 
also influence colonization of plant roots in the field (Mazzola et al., 1992, 
Carroll et al., 1995). Analysis of mutants indicates that prototrophy for 
amino acids and vitamin b1, rapid growth rate, utilization of organic acids 
and lipopolysaccharide properties contribute to colonization ( Lugtenberg et
al., 1996). 

Use of confocal laser scanning microscopy (CLSM) in combination 
with organisms differentially labeled with auto fluorescent proteins (AFPs) 
allowed the simultaneous visualization of both the pathogen and the 
biocontrol agent on the root under disease controlling conditions in the 
gnotobiotic system. Seedlings grown in  a gnotobiotic sand system infected 
with pathogen and biocontrol agent may be studied via in vitro setup. These 
studies may contribute to our understanding  of root colonization and 
biocontrol processes.

A variety of bacterial traits and specific genes contribute to 
colonization but only few have been identified (Benizri et al., 2001; 
Lugtenberg et al., 2001). These include motility, chemotaxis to seed and root 
exudates, production of pili or fimbriae, production of specific cell surface 
components, ability to use specific components of root exudates, protein 
secretion and quorum sensing (Lugtenberg et al., 2001). Competition of 
introduced bacteria with indigenous microorganisms already present in the 
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soil and rhizosphere of the developing plant is  another important aspect for 
root colonization. 

4.3 Genetic variations in the host

Plants vary in their ability to support and respond to beneficial 
microorganisms (Handelsman and Stabb, 1996). The ability to support 
certain biocontrol agents varies among plant species and among cultivars. 
Some plants appear to attract and support biocontrol agents which are 
antagonistic to pathogens (Neal et al., 1973; Azad et al., 1985). Legumes 
vary in their response to the PGPR B. polymyxa (Chanway et al., 1988) and 
Bacillus isolates from wheat roots enhanced growth of wheat in a cultivar- 
specific manner (Chanway et al., 1988). Plant species vary in their ability to 
induce genes for pyluteorin biosynthesis in P. fluorescencs (Kraus and 
Loper, 1995) probably due to variation in composition of root exudates 
among  species. Moreover, different cultivars vary in terms of survival or 
disease incidence in the presence of a pathogen and biocontrol agent (Liu et
al., 1995, King and Parke, 1996). Strains of P. fluorescens that overproduce 
pyoluteorin and 2, 4-diacetyl-phloroglucinol provide superior disease 
suppression compared with the parent strain in some host pathogen 
combinations and not others, and effect correlate with host, and not 
pathogen, sensitivity to antibiotics (Maurhofer et al., 1995). 

5 INTERACTIONS OF PGPR IN THE
RHIZOSPHERE

5.1 Interactions with the microbial community

Many biocontrol agents suppress disease effectively in the 
laboratory but fail to do so in the field. These biocontrol agents may be 
affected by indigenous soil microbial communities  and they may also 
influence the community into which they are introduced. Certain fluorescent 
pseudomonads displace resident microflora in some cases reducing 
populations of deleterious microorganisms (Yuen and Schroth, 1986). 
Manipulation of introduced PGPR populations may lead to enhanced 
suppression of other soil borne plant pathogens. Limited induced soil 
suppressiveness can also be achieved through shills in microbial community 
structure and function by several cultural practices (Kloepper et al., 1999). 
This may include the  application of organic manures and plant straw 
(Siddiqui and Mahmood, 2003; Siddiqui, 2004), inclusion of antagonistic 
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plants in cropping systems and other integrated pest management 
approaches.

5.2 Interactions of PGPR strains 

In general, a single biocontrol agent is used for biocontrol of plant 
disease against a single pathogen (Wilson and Backman, 1999). This may 
sometimes account for the inconsistent performance by the biocontrol agent, 
because a single agent is not active in all soil environments or against all 
pathogens that attack the host plant.  On the other hand, mixtures of 
biocontrol agents with different plant colonization patterns may be useful for 
the biocontrol of different plant pathogens  via different mechanisms of 
disease suppression. Moreover, mixtures of biocontrol agents with 
taxonomically different organisms that require different optimum 
temperature, pH, and moisture conditions may colonize roots more 
aggressively, improve plant growth and efficacy of biocontrol. Naturally 
occurring biocontrol results from mixtures of biocontrol agents rather than  
from high populations of a single organism. The greater suppression and 
enhanced consistency against multiple cucumber pathogens was observed 
using strain mixtures of PGPR (Raupach and Kloepper, 1998).  

Incompatibility of the co-inoculants may sometimes arise  and thus 
inhibit each other as well as the target pathogens (Leeman et al., 1996). Thus 
an important prerequisite for successful development of strain mixtures 
appears to be the compatibility of the co-inoculated microorganisms (Baker, 
1990; De Boer et al., 1997). A biocontrol product composed of a mixture of 
strains is more costly than a product composed of single strain due to 
increased costs of  production and registration of such a product. Regardless, 
however, greater emphasis on the development of mixtures of biocontrol 
agents is needed, because they may better adapt to the environmental 
changes that occur throughout the growing season and protect against a 
broader range of pathogens. Mixtures of microorganisms may increase the 
genetic diversity of biocontrol systems that persist longer in the rhizosphere 
and utilize a wider array of biocontrol mechanisms (Pierson and Weller, 
1994).  Multiple organisms may enhance the level and consistency of 
biocontrol by a more stable rhizosphere community and effectiveness over a 
wide range of environmental conditions. In particular, combination of fungi 
and bacteria may provide protection at different times, under different 
conditions, and occupy different or complementary niches. 
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6 A PRACTICAL CONTROL SYSTEM USING PGPR

Selection of effective strains of  bacteria is of prime importance for 
the biocontrol of plant pathogens. Isolation of bacteria from pathogen 
suppressive soils may increase the chances of isolating  effective strains 
(Cook and Baker, 1983). The suppressive soil becomes apparent where the 
severity or incidence of disease is lower than expected as compared to that in 
surrounding soil (Cook and Baker, 1983).  To obtain  the effective strains the 
isolation of bacteria should be conducted  from the same environment in 
which they will be used (Weller et al., 1985). The ability to colonize  roots 
and resistance against antibiotics are  other parameters necessary to screen 
the effective strains (Siddiqui et al., 2005). Screening of biocontrol agents by 
a seedling bioassay chamber is required to determine the compatibility of an 
antagonist with the microflora of a field soil (Randhawa and Schaad, 1985). 
Selection of field effective strains can also be facilitated by a greenhouse 
assay. The important considerations in the development of the assays in the 
greenhouse are the inoculum potential of the pathogen (Weller et al., 1985), 
and environmental conditions and dose of the bacterium (Xu and Gross, 
1986).  Many factors such as temperature, soil moisture and soil texture 
influence the survival and establishment of bacteria. Formulation and 
application methods are often of paramount importance in effecting 
biocontrol (Papavizas and Lumsden, 1980). 

PGPR have great potential in the biocontrol of plant pathogens but 
the use of these rhizobacteria by farmers in the field is still lacking. The 
most obvious reasons for the limited use thus far are the limited numbers of 
PGPR formulations available and inconsistent performance of these 
formulations. A separate chapter is devoted on PGPR formulations in this 
book and aspects related to formulations are not covered in this chapter.  
Mixtures of different strains are required to overcome inconsistency in their 
biocontrol performance. These mixtures of rhizobacteria may be used as 
seed treatment which may be useful in reducing the quantity of bacterial 
inoculum required.  Moreover, this will facilitate systemic spread of the 
bacterial inoculum along the surface of the developing root system, and their 
antagonistic activity on the root surface during the early root infection by the 
pathogens. Rhizobacteria suspensions or formulations can also be mixed 
with organic manures in large vessels. They can be stored  at 30-35oC for 5-
10 days, mixing each day with  water to keep  them moist (Siddiqui and 
Mahmood, 1999). Within 10 days bacteria will attain high populations and 
this organic manure can be used at planting or after planting for the 
biocontrol of plant pathogens and better plant growth in the field. 
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7   CONCLUSION 

Numerous studies have indicated that PGPR have great potential in 
the biocontrol of plant pathogens but most of the studies have been 
conducted  in sterilized soil and in pots. There is an urgent need to conduct 
studies under field conditions. Evaluation of  PGPR by greenhouse assays 
for effective strains is required before their  application as biocontrol agents 
(Siddiqui et al., 2005). Root colonization by PGPR is also important to 
increase their potential as biocontrol agents. Studies on the  physical and 
chemical factors of soil which affect root colonization are needed.  
Moreover, use of mixture of effective strains of PGPR is advisable  
compared with use of single strain.  The use of organic amendments with 
effective strains of PGPR is recommended, as organic materials are thought 
to  encourage the growth of organisms that  compete with or destroy 
pathogens (Siddiqui and Mahmood, 1999). PGPR may also be used with 
fungal biocontrol agents and with arbuscular mycorrhizal fungi for greater 
beneficial effects.  The absence of commercial interest in the biocontrol of 
plant pathogens by PGPR is also a major  obstacle to progress. It is hoped 
that the future will see greater use of PGPR for the biocontrol of plant 
pathogens and biofertilization. 
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Abstract:     Many bacteria and fungi can enhance plant growth. The present review is 
limited to plant growth promoting rhizobacteria (PGPR). However, it includes 
endophytic bacteria that show plant growth enhancing activity as well. Also 
the best studied bacterial mechanisms of plant growth promotion are 
discussed, with a special emphasis on biological nitrogen fixation and 
synthesis of phytohormones, including less understood mechanisms like 
inhibition of plant ethylene synthesis, degradation of organic-P compounds, 
phenazine-related mineral solubilization, and synthesis of lumichrome. In 
addition, examples of PGPR genes that show activation in the interaction with 
plants, and beneficial events resulting from plant-bacterial interactions like 
stress relief and enhancement of other ecological associations are presented. 
Plant growth promoting activity and more precisely, crop yield enhancement 
are the final effects of the different mechanisms that PGPR possess and are the 
applicative goal of the agricultural microbiology research. Despite the 
undoubted economic and ecological benefits of utilizing some PGPR species 
as biofertilizers, the application of such a species must be very carefully 
assessed because of their importance as opportunistic pathogens in nosocomial 
infections and in patients with other diseases. On this basis, PGPR species 
must be selected for producing safe biofertilizers. Strain selection, as also the 
number of the bacterial cells, and characteristics of the bacterial cultures used 
in the production of biofertilizers, as well as, results of inoculation of different 
crops and cultivars with Azospirillum under field conditions are also included 
in the discussion.

Key words:     bacterial inoculation; endophytic bacteria; nitrogen fixation; phytohormones; 
rhizosphere bacteria; plant growth promoting rhizobacteria.
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1  INTRODUCTION 

Plant growth promoting rhizobacteria (PGPR) have been studied for 
long. It has been suggested in the last few years that endophytic N2-fixing
bacteria may be more important than rhizospheric bacteria in promoting 
plant growth because they escape competition with rhizosphere 
microorganisms and achieve close contact with the plant tissues (Assmus et
al., 1995; Döbereiner, 1992). The well known genera of PGPR are 
Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobacter, Klebsiella,
and Pseudomonas, but some of these genera include endophytic species as 
well. The best-characterized endophytic bacteria include Azoarcus spp, 
Gluconacetobacter diazotrophicus, and Herbaspirillum seropedicae. Novel 
Burkholderia species, for instance, B. unamae (Caballero-Mellado et al., 
2004) and B. tropica (Reis et al., 2004) have the potential for promoting 
plant growth (Caballero-Mellado et al., 2003) and are found in rhizospheric 
and endophytic association with different agricultural crops. Bacterial 
mechanisms of plant growth promotion include biological nitrogen fixation 
(BNF), synthesis of phytohormones, environmental stress relief, synergism 
with other bacteria-plant interactions, inhibition of plant ethylene synthesis, 
as well as increasing availability of nutrients like phosphorus, iron and minor 
elements, and growth enhancement by volatile compounds. However, the 
expression of such bacterial activities under laboratory conditions does not 
guarantee in association with a host plant. This is especially true of nitrogen-
fixation as abundantly expressed in culture media by many bacterial species. 
The mechanisms of plant growth promotion have been analyzed in different 
organisms, especially in Azospirillum spp. and in few other PGPR (Vande 
Broek et al., 2000; Lucy et al., 2004). In this review, Azospirillum as a 
model for studying mechanisms of plant growth promotion will only be 
covered briefly but some other models and new mechanisms will be 
presented in more depth. 

Many definitions and interpretations of the term biofertilizer exist 
(Vessey, 2003). In this chapter, a biofertilizer is a product that contains 
living microorganisms, which exert direct or indirect beneficial effects on 
plant growth and crop yield through different mechanisms. The term 
biofertilizer as used here could include products containing bacteria to 
control plant pathogens, but these are frequently referred to as biopesticides 
(Siddiqui and Mahmood, 1999; Burdman et al., 2000; Vessey, 2003). 
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2 MECHANISMS FOR PLANT GROWTH     
PROMOTION

2.1 Associative nitrogen fixation

Many PGPR and endophytic bacteria can grow diazotrophically, and 
either be symbiotic or non-symbiotic. Young (1992) has reviewed the 
phylogenetic classification of nitrogen-fixing organisms, but in the last few 
years many novel N2-fixing species belonging to different genera have been 
described. For instance, the associative Burkholderia species such as B. 
vietnamiensis (Gillis et al. 1995), B. kururiensis (Estrada-de los Santos et al.,
2001), B. unamae, B. xenovorans, and B. tropica (Caballero-Mellado et al.,
2004; Goris, et al., 2004; Reis et al., 2004), as well as the legume nodulating 
species like B. phymatum, B. tuberum (Vandamme, et al., 2002) and 
Ralstonia taiwanensis (Chen et al., 2001); as also the species of Azoarcus
that include A. communis, A. indigens (Reinhold-Hurek et al., 1993) and A.
tolulyticus (Zhou et al., 1995). Furthermore, in the Acetobacteraceae family 
has been described Gluconacetobacter johannae and G. azotocaptans
(Fuentes-Ramírez et al., 2001), Swaminathania salitolerans (Loganathan 
and Nair, 2004), and possibly Asaia bogorensis (Weber et al., 2003a; 
Yamada et al., 2000). A genomic-based survey for nitrogen-fixing genes 
indicates that approximately 5% of prokaryotes could carry nitrogen 
fixation-like genes (Raymond et al., 2004). Nitrogen-fixation genes are 
plasmid borne in some species, but most prokaryotes have chromosomal nif
genes. Hence, it would not be so simple for them to loose nif genes. Hitherto, 
the presence of the novel superoxide-dependent nitrogen fixing system 
detected in Streptomyces thermoautotrophicus (Gadkari, et al., 1992) has not 
been reported in other bacteria, raising the possibility that several known or 
unknown PGPR could have it. 

Many N2-fixing bacteria have been found in rhizospheric and 
endophytic association but the transference of biologically fixed nitrogen has 
been demonstrated only in a few systems. Sugarcane has been a model in 
which BNF has been observed (Boddey, 1995; Yoneyama et al., 1997). 
Nevertheless, the organism(s) responsible(s) for such activity has not been 
fully established. Since the description of Acetobacter diazotrophicus
(Cavalcante and Döbereiner, 1988; Gillis et al., 1989), presently 
Gluconacetobacter diazotrophicus (Yamada, et al., 1997) has been 
suspected as one of the contributors of nitrogen to sugarcane. Sugarcane 
plantlets inoculated with a wild type strain of G. diazotrophicus, and 
incubated in an atmosphere enriched with 15N2, incorporated a significantly 
higher proportion of 15N2 than the plantlets inoculated with a G.
diazotrophicus nifD mutant (Sevilla et al., 2001). 
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As with G. diazotrophicus in sugarcane, the inoculation of Oryza
sativa IR36 with Azoarcus sp. BH72 did improve the plant growth, but this 
was not dependent on nitrogen fixation since a nifK mutant showed the same 
effect as the wild type strain, and besides the presence of NifH was not 
detected in inoculated plantlets (Hurek et al., 1994). Nevertheless, other 
experiments show participation of nitrogen fixation in that association. 
Fusion transcripts of nifH were detected in rice inoculated with Azoarcus sp. 
BH72 when amended with a small amount of carbon source, or even without 
it (Egener et al., 1999), although, in later plants the detection of the reporter 
of nifH was considerably minor and belated. Similarly, in Kallar grass strain 
BH72 was found to contribute to nitrogen incorporation and abundant 
transcripts of nifH were detected in both plants grown in greenhouse and in 
non-inoculated ones grown in the field (Hurek et al., 1997; Hurek et al.,
2002).

Considering carbon supply is one of the limiting factors for 
associative nitrogen fixation in non-legumes (Chelius and Triplett, 2000; 
Vande Broek, et al., 1993), it would be desirable to look for cultivars that 
excrete photosyntates in adequate amounts in order to find effective nitrogen 
fixation in rhizospheric associations. Gyaneshwar et al. (2002) found 
significant uptake of 15N2 by one rice variety that exuded a great quantity of 
carbon compounds.  

For successful plant-bacteria interaction, both genotype of 
organisms and the environmental conditions play very important role. The 
influence of the plant genotype has been documented, for example, wild rice 
species and traditional races of rice support a higher population of Azoarcus
sp. than modern varieties (Engelhard et al., 2000). Even though it has not 
been tested if those associations exhibit nitrogen fixation activity, the wild 
rice Oryza officinalis gave ARA positive activity and also incorporated 15N2
in an inoculation experiment with a homologous Herbaspirillum isolate 
(Elbeltagy et al., 2001). Not only traditional rice varieties, but also some 
modern ones can exhibit nitrogen fixation: thus the variety IR42 inoculated 
with H. seropedicae Z67 showed low, but significant incorporation of 15N2
(James et al., 2002), and rice cultivars NIA-6 and BAS370 inoculated with 
either Azospirillum lipoferum, Azospirillum brasilense, Azoarcus or 
Zoogloea, showed considerable nitrogen fixation activity after six weeks of 
inoculation in gnotobiotic experiments (Malik et al., 1997). The recently 
described acetobacterium species Asaia bogorensis (Yamada et al., 2000) 
has been demonstrated to enhance growth of pineapple plants (Weber et al., 
2003a, 2003b), probably, through N2-fixation activity (Weber et al., 2003a), 
or, by producing phytohormones (Santoyo-Páez, Jiménez-Salgado and 
Fuentes-Ramírez, unpublished results). In plant-bacteria interaction the 
available nitrogen for the roots has great influence. It has been found that the 
amount of accessible nitrogen has a negative relationship with the G. 
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diazotrophicus populations that colonize sugarcane (Fuentes-Ramírez et al.,
1999; Muñoz-Rojas and Caballero-Mellado, 2003; Muthukumarasamy et al., 
1998) and reduce the diversity of diazotrophs associated to wild and modern 
rice (Tan et al., 2003). 

Though biologically fixed nitrogen has been found in a small 
number of non-legumes, this activity could have a great impact on the 
ecology of wild and cultivated ecosystems. The isolation of spontaneous A.
brasilense mutants with greater acetylene reduction activity in vitro
association with wheat (Katupitiya, et al., 1995; Pereg Gerk, et al., 2000), 
indicates that populations in nature are greatly flexible and some highly 
nitrogen-fixing genotypes could be favored in certain conditions. 

The contribution of BNF to the growth of sugarcane plants has been 
observed. It seems to depend on the cultivar (Boddey et al., 1991; Lima et
al., 1987), environmental conditions (Baldani et al., 2002), and 
microorganisms. With a plant-gene expression-approach, an active role of 
the plant was found in the development of the association with bacteria, and 
also a bacterial species-specific response of the plant (Nogueira et al., 2001).
There are fundamentals of BNF that we still do not know i.e. the identity of 
the organisms that have greater potential to transfer nitrogen, or whether 
they are located inside the plant or in the rhizosphere. Endophytes have been 
suggested to be the organisms that have a higher potential to transfer 
nitrogen to the plant, but data indicate that endophytic BNF as a large 
nitrogen source has drawbacks also, for example, the number of nitrogen-
fixing bacteria that inhabit the inside of plants may vary. For instance, 
compared to Rhizobia (109 cells per nodule and around 1011 per plant; James 
et al., 2000) the population of diazotrophs inside the plant is low. There are 
probably no more than 106-107 per g of the plant inside the sections most 
colonized, and even much less in most of the tissues of the plant. Moreover, 
in sugarcane, the G. diazotrophicus numbers decline rapidly as the plant 
grows (Muñoz-Rojas and Caballero-Mellado, 2003). Additionally, the 
bacterial numbers that are active, and the amount of their activity, could be 
restricted in most of the plants, since, endophytes like G. diazotrophicus
have been observed to preferentially colonize the xylem (Fuentes-Ramírez et
al., 1999; James et al., 1994), where carbon sources are limited (Welbaum et 
al., 1992). The rhizosphere is not as adverse an environment for BNF as it 
could be though; the most important plant growth promotion activity of a 
semi-quiescent community of endophytes could be the release of 
phytohormones that are needed in nanograms for exerting positive effects on 
the plant. 
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2.2 Phytohormones

Plant growth regulators participate in the growth and development 
of cells, tissues, organs, and in fact the entire plant. These compounds are 
active in plants in very minute amounts and their synthesis is extremely 
regulated. Plants not only produce phytohormones but also, numerous plant-
associated bacteria both beneficial and harmful, produce one or more of 
these substances (Dobbelaere et al., 2003). Among the PGPR species, 
Azospirillum is well known for its ability to excrete phytohormones such as 
gibberellins (Bottini et al., 1989; Janzen et al., 1992), cytokinins (Tien et al.,
1979) and auxins (Mascarua-Ezparza et. al., 1988; Omay et al., 1993; 
Reynders and Vlassak, 1979). Many studies suggest the involvement of 
indole-3-acetic acid (IAA), produced by Azospirillum, in morphological and 
physiological changes of the inoculated plant roots (Harari et al., 1988; 
Kapulnik et al., 1985; Tien et al., 1979). It is noteworthy that bacterial plant-
dependent response induces IAA synthesis by Pantoea agglomerans (Brandl 
and Lindow, 1997), and also, greater auxin production by rhizospheric 
strains of P. polymyxa than by non-rhizospheric isolates (Lebuhn et al.,
1997). Differential behavior of the isolates in relation to the proximity to 
plant tissues could be linked to a great competitiveness of the more actively 
phytohormone-synthesizing strains. Inoculation experiments of single, or 
mixtures of strains, previously isolated from different distances from roots, 
could help in determining this issue. Also, it would be exciting to determine 
if the rhizosphere gradient of plant exudates participates in determining a 
differential response in the bacterial synthesis and release of phytohormones. 
Particularly for bacterial IAA synthesis, the finding of Vande Broek et al.
(1999) that this phytohormone induces some bacterial genes could be useful 
for designing tools to determine the differential response. In rhizospheric 
colonization of rice by Pseudomonas stutzeri A15, Rediers et al. (2003) 
found expression of miaA whose product could be involved in the 
production of the cytokinin trans-zeatin in association with the plant. Many 
inoculation effects in plants have been attributed to bacterial synthesis and 
release of phytohormones. Expression of an auxin-responsive promoter in 
Arabidopsis indicated that plants really detect the bacterial synthesized IAA 
released in the rhizosphere (O’Callaghan et al., 2001). 

The general effects on the plant can be direct, that is through plant 
growth promotion, or indirect, that is through improving plant nutrition via 
the better development of the roots, and it is difficult to distinguish between 
them. Additionally, plant associated bacteria could induce phytohormones 
synthesis. The elevation of root IAA level in lodgepole pine plantlets, 
inoculated with Paenibacillus polymyxa, and, of dihydroxyzeatin riboside 
root concentration in plants inoculated with Pseudomonas fluorescens (Bent 
et al., 2001), might be attributed to the induction of plant hormone synthesis 
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by the bacteria, however the  uptake of bacterial synthesized phytohormones 
can not be excluded, since both P. polymyxa and Pseudomonas sp. produce 
cytokinins and IAA in vitro (Akiyoshi et al. 1987; Bent et al., 2001; 
Srinivasan et al., 1996; Timmusk, et al., 1999). 

The participation of bacterial IAA in plant growth promotion has 
been demonstrated in the interaction between canola and P. putida GR12-2. 
The roots inoculated with an ipdC mutant, a key gene in the synthesis of 
IAA, grew significantly less than the roots inoculated with the wild type 
strain (Patten et al., 2002). Other bacterial synthesized phytohomones that 
participate in growth promotion are the gibberellins. Exposition of alder 
seedlings to an inhibitor of gibberellin biosynthesis produces a dwarf 
phenotype. Inoculating the plantlets with gibberellin-producing Bacillus 
pumilus and B. licheniformis strains reversed that phenotype, and the same 
effect was observed when GA3 was added (Gutierrez-Manero et al., 2001).
G. diazotrophicus also produces gibberellin GA3, indole-3-acetic acid and
gibberellin GA1 (Bastián et al., 1998; Fuentes-Ramírez et al., 1993). 
Therefore, the induction of sugarcane growth by a nif– mutant of G.
diazotrophicus under conditions of N fertilization (Sevilla et al., 2001) might 
be accredited to the release of any of those phytohormones. TLC extracts of 
supernatant of the acetic bacterium A. bogorensis, and isolates of Asaia spp. 
obtained from the nance (Byrsonima crassifolia) plant, showed that this 
bacterium secretes IAA to the medium (Santoyo-Páez, Jiménez-Salgado and 
Fuentes-Ramírez; unpublished results). This suggests that the growth 
promoting effect of Asaia bogorensis in pineapple, reported by Weber et al.
(2003a, 2003b) could be related to bacterial synthesis and release of IAA. 

Bacteria related to the Rhizobia are nitrogen fixers in legumes and 
are known to contribute to the growth of non-legumes. Inoculation of 
Bradhyrhizobium in cotton improved nutrient uptake, which was attributed 
to IAA (Hafeez et al., 2004). Similarly, growth responses in sunflower 
inoculated with Rhizobium sp. (Alami et al., 2000), and in lettuce plants 
inoculated with R. leguminosarum (Noel et al., 1996), were attributed to an 
increased nitrogen uptake besides bacterial phytohormone synthesis. 

In addition to growth alterations, bacterial synthesized 
phytohormones have effects on the plant metabolism. IAA released by 
Pantoea herbicola seems to induce a much localized nutrient leakage 
affecting only the plant cells closest to the bacterial cells (Brandl and 
Lindow, 1998). Finally, IAA and cytokinins have inhibitory effect on the 
plant hypersensitive response (Robinette and Matthysse, 1990). 

Although in vitro and in vivo activities do not always relate to each 
other, non-identified strains isolated from wheat rhizosphere showed a 
relationship between in vitro production of auxins and growth promoting 
capability. The isolates that in vitro produced higher quantity of auxins also 
had the highest promoting capability (Khalid et al., 2004). This suggests that 
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in vitro screening for promoting mechanisms could be useful for selecting 
strains for potential application. Studies on plant hormone-synthesizing 
bacteria have focused on rhizospheric and endophytic bacteria, but it is 
known that epiphytes also produce such substances (Lindow and Brandl, 
2003). The phytohormone-mediated roles of bacterial ephyphitic 
communities on plants are yet not clear.

The future of biofertilizers based on hormone-producing bacteria 
seems very promising. Large numbers of experiments have shown that 
bacterial participation raises the phytohormone levels in plants. This may be 
via bacterial synthesis or through bacterial induction of plant hormone 
synthesis but both offer economical and ecological advantages. 

2.3 ACC deaminase activity

Ethylene exposition induces different observable changes in plants, 
including reduction in the growth rate (Abeles et al., 1992). This is 
especially true in stressed dicot plants, since monocots are less sensitive to 
ethylene (Holguin and Glick, 2001). It has been proposed that PGPR may 
enhance plant growth by lowering the plant ethylene levels (Glick et al., 
1998). In these cases, the immediate precursor of ethylene is 1-
aminocyclopropane-1-carboxylate (ACC). This compound is hydrolyzed by 
bacteria-expressing ACC-deaminase activity. Ammonia and -ketobutyrate, 
products of this hydrolysis, are used by the ACC-degrading bacterium as 
nitrogen and carbon sources (Honma and Shimomura, 1978). Bacteria 
belonging to phylogenetically distant genera such as Alcaligenes sp., 
Bacillus pumilus, Pseudomonas sp. and Variovorax paradoxus (Belimov et 
al., 2001) as well as, Azoarcus, Azorhizobium caulinodans, Azospirillum
spp., Gluconacetobacter diazotrophicus, Herbaspirillum spp., Burkholderia
vietnamiensis and others (Dobbelaere et al., 2003) were identified by their 
ability to grow on minimal media containing ACC as sole nitrogen source. 
Recently, expression of ACC deaminase activity was found in many strains 
of Burkholderia unamae and B. vietnamiensis, and the ACC deaminase gene 
(acdS) was also detected in these species as well as in B. phymatum, B. 
xenovorans, and B. caribiensis (Onofre-Lemus and Caballero-Mellado, 
unpublished results). It is postulated that ACC can be exuded to the 
rhizosphere and then degraded by plant-associated bacteria resulting in a 
final growth promoting effect (Glick et al, 1998). Mutations in ACC 
deaminase prevent the promoting effect of Pseudomonas putida in canola 
(Glick et al., 1994). The nutrient status of the plant, and the availability of 
nutrients, seems to be determinant for the plant growth activity of ACC 
deaminase carrying bacteria (Belimov et al., 2002). Plants grown under P-
limiting or high N conditions were not enhanced by PGPR (Belimov et al.,
2002). The role of ACC deaminase in growth promotion of plants is evident 
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in an inoculation experiment with A. brasilense Cd. This is a non-ACC 
deaminase strain, carrying an ACC deaminase gene from Enterobacter 
cloacae UW4. This strain promoted more growth of tomato seedlings than 
the wild type strain (Holguin and Glick, 2003). Considering that many 
phylogenetically distant genera are capable of expressing ACC deaminase 
activity, and, in order to determine the applicability of ACC utilizing 
bacteria in extensive cultivation of crops, especially of dicots, field 
experiments are required to determine their real growth promoting effect. 

2.4 Other plant growth promoting mechanisms and expression 
of genes 

Novel plant growth promoting mechanisms include phytase 
degrading organic phosphate compounds, mineral reduction by phenazines, 
synthesis of lumichrome, and production of volatile compounds. It is well 
known that phosphate-solubilizing bacteria can increase the availability of P 
to plants in deficient soils. These bacteria solubilizate phosphate through the 
production of acids, and possibly by means of other mechanisms as well 
(Nautiyal, et al., 2000). Diverse bacteria, including B. subtilis, K. terrigena,
Pseudomonas spp., and Streptomyces griseus produce phytases (Greiner et 
al., 1997; Kerouvo et al., 1998; Moura et al., 2001; Richardson and 
Hadobas, 1997). The role of phytases in raising the accessibility to P in 
organic compounds was demonstrated in maize-Bacillus amyloliquefaciens
interaction experiments (Idriss et al., 2002). Plants inoculated with a phytase 
secreting Bacillus amyloliquefaciens strain, or amended with its culture 
filtrate showed increased growth compared to non-inoculated plants, when 
grown under P-limitation.  

Phenazines produced by bacteria are known for their antifungal 
activity, and consequently, improve the competitiveness of the producing 
strains. Recently, it has been shown that phenazines produced by 
Pseudomonas chlororaphis can reduce minerals (Hernández et al., 2004). 
Hence, such compounds could increase the availability of diverse nutrients, 
including iron, to the associated plants.

Lumichrome, a metabolite of riboflavin, is a molecule that enhances 
the respiratory rate of roots and increases the plant size as well (Phillips et
al., 1999). This compound can be the product of photodegradation of 
riboflavin (Treadwell Jr., and Metzler, 1972). However, it can also be 
synthesized by Sinorhizobium meliloti, Pseudomonas, and possibly other 
plant associated bacteria (Phillips et al., 1999; Yanagita and Foster, 1956). 
Apparently, lumichrome or even riboflavin producing-rhizospheric bacteria 
can benefit through organic carbon as also CO2 release from lumichrome-
induced roots (Phillips et al., 1999; Yang et al., 2002). In addition to other 
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bacterial metabolites, the volatile compounds 2,3-butanediol, and acetoin 
produced by Bacillus spp., were found to promote growth of Arabidopsis 
thaliana (Ryu et al., 2003). The suggested mechanism involves the 
cytokinin-signaling pathway. 

One primary aim in microbial ecology is to determine the activity 
exhibited by the organisms that inhabit a particular habitat, and in particular, 
PGPR-plant associations. The interest is to find out what is needed for 
establishing the interaction, and, what happens when the interaction is 
established. In Pseudomonas fluorescens, a putative recombinase, located in 
the locus xerC/sss, is necessary for colonizing tomato plants (Dekkers et al.,
1998), but, the answer as to why that recombinase is at all required has yet  
not been determined.  

In vivo expression technology (IVET) is an efficient tool that has 
allowed great advances in finding genes that are activated under particular 
environmental conditions (Mahan et al., 1993). The study of plant 
colonization by P. fluorescens using IVET has found that expressed genes 
are related to nutrient acquisition, stress responses, biosynthesis of 
phytohormones, and antibiotics, and also to a type III secretion system, 
antioxidation, chemotaxis, and detoxification of aromatic compounds (Gal et
al., 2003; Preston et al., 2001; Rediers et al., 2003). Loci that seem to have 
special importance are the gene for a type III secretion system, the gene 
coding an acetylated cellulose polymer, and genes for detoxification of 
aromatic compounds. Similarly, genes particularly important for adhesion of 
P. putida to seeds are involved in pathogenesis, and efflux of toxic 
substances. Also genes with phenotypes are implicated with motility and
chemotaxis (Espinosa-Urgel et al., 2000). Seed colonization by E. cloaceae
seems to be highly related to the metabolic capability for using carbon 
sources that are exuded, since phosphofructokinase is needed for successful 
colonization of seeds that exude low amounts of carbohydrates (Roberts et 
al., 1999). In the interaction of Azoarcus sp. with rice seedlings, it has been 
observed that the pilAB locus, encoding type IV pili, is necessary for the 
adhesion of the bacterium to the plant (Dorr et al., 1998). 

2.5 Environmental stress relief 

Several associations between plants and beneficial bacteria show a 
protective response under restrictive environmental conditions. Wheat and 
faba beans  subjected to saline stress showed greater growth when inoculated 
with Azospirillum, compared to non-inoculated plants (Bacilio et al., 2004; 
Hamaoui et al., 2001). This favorable effect may be attributable directly to 
bacteria or indirectly to the effect on plant physiology. The production of 
microbial metabolites like polysaccharides modifies the soil structure, and 
has a positive effect on plants grown in water stress. Growth parameters of 
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sunflower plants under water stress inoculated with an exopolysaccharide 
(EPS)-producing Rhizobium sp. were greater than in uninoculated plants 
(Alami et al., 2000). Promotion effect in wheat plants was also observed 
after inoculation with an EPS-producing Pantoea agglomerans isolate 
(Amelal et al., 1998). In wheat plants inoculated with Paenibacillus 
polymyxa, the aggregation of rhizospheric soil depended on a bacterial 
polysaccharide that enlarged the amount of soil adhering to roots (Bezzate et 
al., 2000; Gouzou et al., 1993). 

Bacteria can also stimulate the plant to turn on particular metabolic 
activity like increasing its exudates, and consequently, improve rhizospheric 
soil qualities (Heulin et al., 1987). In the same way, inoculation of 
Arabidopsis with P. polymyxa the water-stress gene ERD15 is switched on 
(Timmusk and Wagner, 1999). Inoculated plants show improved response 
against pathogenic colonization and drought stress in comparison to control 
plants. Hence it seems that inoculation induces protection against biotic 
agents, and also against abiotic ones.

Overall, PGPR can protect a plant, against aggressive environmental 
and particularly hostile soil conditions through the bacterial release of soil 
structure-improving substances, and by inducing the plant to activate stress 
responsive mechanisms. In hostile soils, the use of bacteria that allow plants 
to thrive are probably the best option to obtain good yields at lesser 
ecological costs. 

2.6 Improvement of other microorganism-plant interactions 

PGPR can improve beneficial associations between Rhizobia and 
leguminous plants, as also between different plants and mycorrhiza. Bean 
plants co-inoculated with Rhizobium etli and R. tropici and Azospirillum 
brasilense had more nodules than plants inoculated only with one of the two 
Rhizobia (Burdman et al., 1996). Nodule occupancy was increased by co-
inoculation of Enterobacter with Bradyrhizobium in green gram (Gupta et
al., 1998). Additionally, the co-inoculation of a Bradyrhizobium strain with 
an Enterobacter or with a Bacillus isolate increased the dry weight of shoots 
and the grain yield in comparison with uninoculated plants or with plants 
inoculated with either of the strains alone (Gupta et al., 1998). Similarly,  the 
co-inoculation of soybean with Serratia proteamaculans 1-102 or S. 
liquefaciens and Bradhyrhizobium japonicum 532C increased nitrogen 
fixation, as well as the  number of root nodules and  the plant biomass, both 
at 25 and 15°C (Bai et al., 2002a; 2002b; Dashti et al., 1998). Generally, the 
benefits for the plant in the rhizobia-plant associations are debilitated at low 
temperatures; therefore, the enhancement of the rhizobial interaction of 
soybean at 15°C has special significance for the cultivation of this legume 
under temperate conditions. The enhancement of the Bradyrhizobium-
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soybean interaction might be associated with substances secreted by S.
proteamaculans 1-102, since it was also observed that the plant weight 
increased by adding the supernatant of the strain 1-102 to the plant (Bai et
al., 2002b). The PGPR mechanism for promoting nodulation is not precisely 
known, the secretion of substances resembling lipo-chitoologosaccharides 
could enhance the nodulation (Bai et al., 2000b; Burdman et al., 1996). 
Additionally, the plant could be induced to produce more flavonoids. For 
instance, in common bean inoculated with Azospirillum the flavonoids 
synthesized by the induction of Azospirillum were able to trigger the nod 
response of R. etli (Burdman et al., 1996). Generally, plant-associated 
bacteria by themselves may synthesize flavonoid-like substances capable of 
activating nodulation by Rhizobia (Parmar and Dadarwal, 1999). 
Additionally, a phytohormone effect on nodulation produced a higher 
density of root hairs, root length, and increased respiration rate in beans 
inoculated with Azospirillum than uninoculated plants (Burdman et al.,
1996; German et al., 2000; Vedder-Weiss et al., 1999; Dobbelaere et al.,
2003).  

Different experiments have shown that mycorrhizal associations can 
be enhanced by the co-inoculation with bacteria. Arbuscular mycorrhization 
of red clover by Glomus mosseae increased when a strain of Paenibacillus
brasilensis was also inoculated (Artursson et al., 2004). The mycorrhizal 
development and alkaline phosphatase activity of extraradical hyphae in 
maize was enhanced by inoculation with P. putida. The leaf area of maize 
was enlarged by the co-inoculation of mycorrhizal fungi and bacteria 
(Vosatka and Gryndler, 1999). Douglas-fir plantlets developed a greater 
height and a higher index of ectomycorrhization with Laccaria bicolor by 
inoculating the plants with Pseudomonas fluorescens (Frey-Klett et al., 
1999). The capability of mycorrhizal formation by related fungi, Laccaria 
fraterna, in Eucaliptus diversicolor was also increased significantly by P. 
fluorescens, B. subtilis, Bacillus sp. or Pseudomonas sp. (Dunstan et al., 
1998). Generally, bacteria belonging to different taxonomic groups can 
enhance the mycorrhizal associations or the growth of mycorrhizal plants or 
both. Even Rhizobia, which contribute to plant growth solely through N2-
fixation in legumes, participate in interactions. Sinorhizobium meliloti
contributed to lettuce growth in mycorrhizal association, where a 
combination with Glomus intraradices increased the shoot biomass more 
than 100% comparing with uninoculated plants (Galleguillos et al., 2000). A 
particular characteristic of at least some enhancing-mycorrhiza bacteria is 
their capability to adhere to the hyphae. It has been observed that bacterial 
extracellular polysaccharides are not only important for cellular adhesion to 
plants but also to mycorrhizal fungi (Bianciotto et al., 2001). The importance 
of the bacterial adherence as a prerequisite for possible improvement of 
mycorrhizal growth or for mycorrhiza-plant interaction is yet not clear. 
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The PGPR can induce mycorrhizal formation by stimulating hyphal 
growth out of the roots and also through-provoking sporulation (Dunstan et
al., 1998; Tiwari et al., 2004). The natural association between the 
mycorrhizal fungi Tuber borchii and unknown nitrogen-fixing bacteria 
suggested the possibility of transfer of fixed nitrogen to the fungi. In fact, 
RT-PCR analysis of fruiting bodies of the fungi identified nifH transcripts, 
indicated a possible nitrogen fixation (Barbieri et al., 2004). Although the 
bacterial mechanisms for enhancing mycorrhization are not entirely known, 
some of them could be the following: transfer of nutrients to the hyphae; 
interacting with bacterial synthesized hormones; synthesis of hyphal growth 
stimulating substances or induction to the plant to produce these substances, 
(Bécard et al., 1992); improved receptiveness of the plant; enhancement of 
soil structure; intervention in the recognition process; stimulation of 
germination; and improvement of hyphal growth (Bécard et al., 1992; 
Burdman et al., 1996; Nair et al., 1991; Parmar and Dadarwal, 1999; Tsai 
and Phillips, 1991; Xie et al., 1995; Garbaje, 1994).  

The applicability of co-inoculations has been proved for certain 
associations, but field experiments with a large number of crops are required 
to determine the real importance of biotic and abiotic factors in these 
interactions.

3 BIOFERTILIZERS, APPLICATIONS AND 
OPINIONS  

Many studies in glasshouse and fields have assessed the effect of 
rhizobacteria and endophytic species on plant growth, grain yield of annual 
crops, and the cultivars of different crops to save fertilizers, or to diminish 
pollution caused by agrochemicals, or, both. Azospirillum head the list of 
PGPR assessed worldwide in tens of experiments (Burdman et al., 2000; 
Dobbelaere et al., 2001 and 2003; Okon and Labandera-González, 1994; 
Lucy et al., 2004; Vessey, 2003). Diverse studies have been published about 
the effects of other rhizobacteria on plant growth (Kennedy et al., 2004; 
Lucy et al., 2004). In addition to Pseudomonas and Bacillus species (Alam, 
et al., 2001; Cakmakci et. al., 2001; Glick et al., 1994; Kokalis-Burelle et 
al., 2002), other PGPR and endophytic bacteria, such as Enterobacter (some 
of them currently Pantoea), Klebsiella pneumoniae, Burkholderia (formerly 
Pseudomonas) cepacia and Stenotrophomonas (formerly Pseudomonas and 
later Xanthomonas) maltophilia, have received increasing attention in recent 
years, because of their association with important crops and potential to 
enhance plant growth (Dong et al., 2003; Chelius and Triplett, 2000; Sturz et
al., 2001; Verma et al., 2001). Despite the undoubted economic and 
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ecological benefits of some bacterial species as biofertilizers the application 
of such PGPR must be very carefully assessed because of their importance 
as opportunistic pathogens in nosocomial infections and in patients with 
diverse diseases. For instance, S. maltophilia is often found in the 
rhizosphere and in association with cultivated plants such as maize, potato, 
wheat, and others (Blondeau, 1980; Garbeva et al., 2001; Heuer and Smalla, 
1999; Juhnke et al., 1987; Lambert et al., 1987; Sturz et al., 2001). 
Moreover, S. maltophilia produces high amounts of indole-3-acetic acid
(Berg and Ballin, 1994; Berg et al., 1996). However, this bacterium has been 
associated with bacteremia, endocarditis, cystic fibrosis, urinary tract 
infections (Friedman et al., 2002; Khan and Mehta, 2002; Marchac et al.,
2004; Vartivarian et al., 1996), and many other diseases in humans 
(Nicholson et al., 2004; Senol, 2004). Similarly, B. cepacia and the nitrogen-
fixing species B. vietnamiensis are often associated with plants (Estrada-de 
los Santos et al., 2001; Dalmastri, et al., 1999; Di Cello, et al., 1997; Fiore et 
al., 2001; Trân Van et al., 1994), and their activity as PGPR has been 
documented (Bevivino et al., 2000; Trân Van et al., 1994; Trân Van et al.,
2000), but, both species have been isolated from patients with cystic fibrosis 
(Coenye et.al; 1999; Frangolias et al., 1999; Vandamme et al., 1997). 
Biofertilizer formulation using opportunistic pathogens must be not justified 
because they are found in most soils and are plant-associated. The analysis 
of phenotypic and genotypic features from clinical and environmental 
isolates of S. maltophilia has revealed that the grouping of strains is 
independent of source (Berg et al., 1999). In fact, it has been suggested that 
environmental sources could be an important mode of transmission of S. 
maltophilia (Denton et al., 1998). On this basis, biofertilizers containing 
opportunistic pathogens commonly found in soils and plants will represent 
significant risk for human health. Bacterial biodiversity is enormous and so 
it is not necessary to use opportunistic pathogens in the production of new 
biofertilizers. It would suffice to search among the myriads of bacteria for 
novel species that promote plant growth and crop yields. 

Among the PGPR, Azospirillum species heads the list of bacteria 
used in commercial products ( Burdman et al., 2000; Lucy et al., 2004).  Yet 
except those formulated with Azospirillum, all these products are applied to 
crops as biopesticides or biocontrol agents. Azospirillum inoculants are 
available for maize in Europe and in South Africa (Dobbelaere et al., 2001). 
This incipient commercialization seems to be based in tens of field 
inoculation experiments with Azospirillum carried out during the 1980s and 
early 1990s. These experiments were carried out on many crops under a 
variety of soil and environmental conditions, which frequently resulted in 
significant yield increases ranging from 5 to 30% (Okon and Labandera-
Gonzalez, 1994). The extensive commercialization of PGPR biofertilizers 
has been limited worldwide, yet Latin America has shown increased interest 
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in the application of Azospirillum inoculants during last few years. For 
instance, in Mexico the Autonomous University of Puebla in collaboration 
with the Rural Development Ministry (Secretaría de Desarrollo Rural) in 
Puebla State, in 2002 produced Azospirillum-based biofertilizers for 15,000 
ha of maize, wheat, barley and sorghum (Mascarúa-Esparza, M. A. and 
Carcaño-Montiel, M., personal communication). Also in Mexico, a large 
field-inoculation program (around 600,000 ha) with maize, wheat, sorghum 
and barley was carried out in 1999 through the Ministry of Agriculture 
Research Institute (INIFAP) in collaboration with the Nitrogen Fixation 
Research Center (CIFN-UNAM). Due to positive responses in 1999 
(Dobbelaere et al., 2001) the demand by farmers reached about 1.5 million 
ha of crop fields in 2000. Presently, the company ASIA (Asesoría Integral 
Agropecuaria, S.A.) in Mexico sells a product for maize and sorghum, and 
another for wheat and barley, containing a mixture of A. brasilense strains. 
Companies in South America are developing new products based on 
Azospirillum species, e.g., Lage & Co. in Uruguay and Nitrasoil and Nitragin 
in Argentina. Despite the numerous positive results, often it is claimed that 
the commercialization of PGPR (especially of Azospirillum species) 
biofertilizers on a large scale has been limited due to the variability and 
inconsistency of field results (Bashan and Holguin, 1997; Lucy et al., 2004; 
Vande Broek et al., 2000; Vessey, 2003). Inconsistency and variability in 
yield responses have been attributed to adverse conditions such as 
interaction of rhizospheric organisms (Lucy et al., 2004; Vande Broek et al., 
2000; Vessey, 2003), physical and chemical conditions of the soil (e.g., low 
pH), poor ability of the PGPR strain to colonize the plant roots, 
environmental factors including high mean temperatures, and, low rainfall 
during the growing season (Lucy et al., 2004; Vande Broek et al., 2000), as 
well as to host cultivars (Vassey, 2003). Undoubtedly, many or all these 
factors could be involved in the lack of consistent responses and successful 
application of biofertilizers. However, often the so-called “variability and 
inconsistency” of field results due to inoculation with Azospirillum, is based 
in the comparison of experiments carried out in different years, and 
consequently, with different environmental conditions, or, with different 
cultivars, as well as, in soils with different characteristics, and, not taking 
into account many others varying factors, such as, strains inoculated, and the 
number and physiological state of the bacterial cells, etc. On the basis of 
such comparisons, it is obvious that there exists a huge “inconsistency and 
variability” in the response of crops to bacterial biofertilizers. This great 
variability and inconsistency has been observed in the application of mineral 
fertilizers in diverse crops cultivated under different environmental and soil 
conditions, and the yield response to mineral fertilizers has been recorded. 
The experiments were carried out in the same or different sites and on the 
same crops, and in different years and varying environmental conditions. 
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The results were reported as “fertilized or control treatments” in studies of 
inoculation with Azospirillum (Albrecht et al., 1981; Zaady et al., 1994; 
Kapulnik et al., 1983; Kapulnik et al., 1987). Unfortunately, researchers who 
emphasize the so-called “variability” of field results when PGPR 
performance is evaluated do not take into account the variability of yield 
response of crops to mineral fertilizers. However, it is well known that soil is 
a highly variable environment and expected results are sometimes hard to 
reach (Bashan 1998) either with PGPR biofertilizers or with mineral 
fertilizers. Table 1 shows the response of crops to Azospirillum inoculation 
and to mineral fertilizers.  

Table 1. Field inoculation of cereals with A. brasilense in different 

                                   Grain yield (kg ha–1)      
State/crop/cultivar   N level  ——————————  Difference 

      kg ha–1  Control*    Inoculated       (%) 
Campeche 
Maize cv. H-515     110     4,590   5,100       + 10 
Chiapas
Maize cv. H-515     120     3,862   4,125       + 6 
Michoacán
Maize cv. H-515     110     6,406   6,887       + 8 
Guanajuato
Sorghum cv. D-65     90     6,235   6,486       + 4 
Morelos†

Sorghum cv. D-65     90     5,335   6,223       + 17  
Sorghum cv. D-65    90     4,105   4,900       + 19 
Puebla
Sorghum cv. D-65    80     7,604   8,025       + 6 
Tlaxcala 
Barley cv. Esmeralda      0     1,444   2,387       + 65 
Hidalgo
Barley cv. Esmeralda      0     1,600   2,590       + 62 
*Non-inoculated control 
†Different sites in the same state 

Data in Table 1 are based on evaluation made by farmers and 
INIFAP agronomists in areas from 1 to 2 ha in a large field-inoculation 
program carried out in 1999 in different states of Mexico. Although the same 
cultivar of maize, sorghum or barley was used, the variability of yield 

regions of México (summer of 1999). 
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response of crops to Azospirillum inoculation, as well as, to mineral 
fertilizers is clear. These results strongly suggest that the variation of the 
response was due to different environmental and soil conditions. However, 
the consistency of field results due to inoculation with Azospirillum is 
noteworthy. 

Although different soil types can influence the effectiveness of 
PGPR (Kloepper et al., 1980), the bacterial strain of a particular species, as 
well as, the number and physiological state of the cells, play an important 
role for obtaining the expected beneficial effect on the plant growth 
promotion. Many inoculation experiments using a particular PGPR strain 
have been carried out as if such a strain could be universally successful in 
any soil and with any host plant. This is particularly true with Azospirillum
brasilense strains Cd or Sp7, which were used worldwide in tens of 
experiments to inoculate a great variety of plant species (Lucy et al, 2004; 
Okon and Labandera-Gonzalez, 1994). Most of the inoculation experiments 
using the strains Cd or Sp7 were successful in increasing plant growth and 
yield of many crops. Nevertheless, negative or poor responses of different 
crops with strains Cd and Sp7 were reported (Baldani et al., 1987; Boddey et
al., 1986; Smith et al., 1984; Wani et al., 1985). Furthermore, clear 
differences were reported between strains of Azospirillum in their ability to 
promote plant growth in greenhouse and field trials (Saric, et al., 1987; 
Venkateswarlu and Rao, 1983), and local Azospirillum strains often 
performed better than introduced ones such as Cd or Sp7 (Caballero-Mellado 
et al., 1992; Paredes-Cardona et al., 1988). The importance of the 
Azospirillum strain appears to be controversial with respect to promotion of 
plant growth (Okon and Labandera-Gonzalez, 1994), however, a single 
strain cannot be universally successful under all soil conditions, and with all 
hosts. A useful alternative is the formulation of multi-strain biofertilizers. 
For successful experiments with Azospirillum, researchers generally paid 
special attention to the optimal number of cells in the inoculant (Vande 
Broek et al., 2000; Okon and Labandera-Gonzalez, 1994) and physiological 
state of cells (Okon and Labandera-Gonzalez, 1994), e.g., a high content of 
poly- -hydroxybutyrate (PHB), formation of cysts and cell aggregation 
(Caballero-Mellado and Mascarúa-Esparza, unpublished results; Neyra et 
al., 1995; Okon and Itzigsohn, 1995; Sadasivan and Neyra, 1985), 
characteristics which are known to differ according to the culture conditions. 
Obviously, changes in pH, dissolved oxygen, and temperature affect the 
replication rates of the bacteria and their physiological state. Aggregating 
Azospirillum cells accumulate high amounts of PHB, but it depends on the 
carbon and nitrogen sources and their concentration in the culture media 
(Burdman et al., 1998; Fallik and Okon, 1996). Importance of cyst formation 
and cell aggregation as well as a high content of PHB are particularly 
relevant features with Azospirillum, because cells are more resistant to  
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Table 2. Field inoculation of traditional and commercial maize cultivars with 
a mixture of A. brasilense strains in different regions of México during 1999 

       No. of  Evaluated  Positive   Yield       Average 
Treatment        evaluated  area (ha)  effects  increase*    increase 

         sites          (%)      (%)   (%) 

SUMMER OF 1999 
Without N-fertilization 

Traditional maize     14   56   96    12-98    42  
Commercial maize     31       124   94      7-76    26  

N-fertilization less than 100 Kg ha–1   
Traditional maize     16   64   54      8-78    34  
Commercial maize     32       128   60      6-56    30  

N-fertilization higher than 110 Kg ha–1   
Commercial maize     34       136   55      6-19    12  

Total             127       508  
Average              72            29 
SUMMER OF 2000 
Without N-fertilization 

Traditional maize       6   12   94    11-99    44  
Commercial maize       8     16   92      4-44    31  

N-fertilization less than 100 Kg ha–1   
Traditional maize       7   14   58     12-79    41  
Commercial maize     10     20   62      6-67    24  

N-fertilization higher than 110 Kg ha–1   
Commercial maize     12     24   50      8-16    10  

Total         43   86  
Average              71            30 

Positive effect (%) is defined as the percentage of experiments where beneficial effects were 

observed.
*Range of grain yield increase above non-inoculated plants. 

desiccation, ultraviolet light and starvation stresses, and PHB can be used as 
an internal carbon and energy source for growth (Tal and Okon, 1985), 
which positively affects their survival in soil. These features also are 
relevant when peat is used for Azospirillum formulations. In Mexico, large-
scale use of Azospirillum multi-strain (selected local strains) biofertilizers 

and 2000. 
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with maize, wheat, sorghum and barley, gave better and consistent results 
when using peat inoculants formulated with PHB-rich cells. For instance, 
grain yields of modern and traditional maize cultivars were evaluated at 127 
sites and in 254 ha with diverse soil and climatic conditions as well as 
different levels of nitrogen fertilization during 1999. Similarly, grain yields 
of maize were evaluated at 43 sites and in 86 ha during 2000. When nitrogen 
fertilizers were not applied to traditional and modern maize cultivars, the 
inoculation with Azospirillum exerted beneficial effects in 95 and 93% of the 
sites evaluated during 1999 and 2000, respectively. However, when 
fertilizers were applied in levels higher than 110 kg N/ha, the positive 
responses on the maize yield were observed only in 55 and 50% of the sites 
evaluated in 1999 and 2000, respectively. Although the yields evaluated in  
1999 and 2000 were from different sites, with different cultivars and levels 
of N fertilizers, the inoculation of maize with Azospirillum showed 
consistent average yield increases in the production of grain of about 30% 
(Table 2). Considering the magnitude of these evaluations, the results show a 
very acceptable consistency and reflect that the large-scale use of 
Azospirillum biofertilizers is possible, but it requires previous well-focused 
strategies of field experimentation (Fages 1994). Recommendations, 
formulation and application technology of Azospirillum inoculants have been 
described (Fages, 1992; Okon and Itzigsohn, 1995). 

Finally, when developing PGPR biofertilizers, the strain(s), the 
inoculum production and, in general, the development of appropriate 
formulations as well as strategies of field experimentations are fundamental 
conditions for a successful application of PGPR species, at least in the case 
of Azospirillum inoculants.  
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Abstract: Plant growth regulators (PGRs) are organic substances that influence the 
physiology and development of plants at very low concentrations. Cytokinins 
are one of the five major groups of PGRs or phytohormones and regulate 
cytokinesis in plant cells. Soil microorganisms are capable of synthesizing 
PGRs such as cytokinins in pure culture, soil and in association with plant 
tissues. This chapter reviews the structure and function of cytokinins in plant 
tissues and their production by plant growth promoting rhizobacteria (PGPR). 
A role for microbially-produced cytokinins in plant growth and development is 
proposed. Cytokinin production by PGPR is an innovative alternative to 
enhance plant growth and may be a sustainable approach to improve the yield 
and quality of agricultural crops. However further research is necessary to 
understand the principles underlying cytokinin production by rhizobacteria and 
to develop cytokinin-producing inoculants for practical application by 
growers.

Key words: cytokinins; phytohormones; plant growth regulators; PGPR; rhizobacteria

1 INTRODUCTION

Plant growth regulators (PGRs) are organic substances that influence 
the physiology and development of plants at very low concentrations. They 
are often effective at internal concentrations lower than 1 M, whereas 
amino acids, organic acids, sugars, and other metabolites necessary for 
growth and development are usually present at concentrations of 1 to 50 
mM. Plant growth and development are likely to be governed by PGR 
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concentration and tissue sensitivity to PGRs (Venis, 1987). PGRs also play a 
crucial role in controlling the way in which plants grow and develop. “While 
metabolism provides the power and building blocks for plant life, it is the 
hormones that regulate the speed of growth of the individual parts and 
integrate them to produce the form that we recognize as a plant” (Davies, 
2005).

Auxins, gibberellins, cytokinins, ethylene and abscisic acid (ABA) 
are the five major groups of PGRs, usually called phytohormones, are 
synthesized endogenously by plants and have beneficial effects on plant 
growth and development (Salisbury and Ross, 1992; Arshad and 
Frankenberger, 1993). Brassinosteroids and polyamines are also PGRs 
endogenously synthesized by plant tissues (Sasse,1991; Galston and 
Sawhney, 1990). PGRs also include synthetic compounds that cause many 
physiological responses when they are exogenously applied to plant tissues 
(Salisbury and Ross, 1992).  

Soil microorganisms can promote plant growth by enhancing soil 
organic matter transformations, mobilizing inorganic nutrients, producing 
PGRs, acting as antagonists against pathogens and by several other 
mechanisms (Bolton et al., 1993). Scientists have attempted to alter the 
microflora of agricultural soils in order to favor plant growth and yield. 
Rhizobacteria that exert beneficial effects on plant growth and development 
have been termed plant growth-promoting rhizobacteria (PGPR) by 
Kloepper and Schroth (1978).  Some PGPR are capable of synthesizing 
PGRs in pure culture and soil and these PGRs can be estimated by different 
techniques (Arshad and Frankenberger, 1993). In this chapter we shall 
discuss the structure, function and analysis of cytokinins. We shall also 
discuss PGRs in the rhizosphere, effects of PGPR on plant growth and 
development and PGPR and PGRs production. 

2         CYTOKININS 

2.1        Structure and function in plant development

Cytokinins are PGRs that regulate cytokinesis in plant cells (Skoog 
et al., 1965). Following the discovery of kinetin (6-furfurylaminopurine), a 
compound isolated from autoclaved herring sperm DNA and exhibiting 
potent cell-division-promoting activity (Miller et al., 1956), a naturally 
occurring kinetin-like compound was isolated from maize, sunflower fruits 
and soybean (Miller, 1961). The first naturally occurring pure crystalline 
cytokinin was isolated from Zea mays and named zeatin (Z) by Letham 
(1963). The structure of zeatin, (E)-4-(hydroxy-3-methyl-but-2-enyl) 
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aminopurine was confirmed by chemical synthesis (Shaw and Wilson, 1964) 
(Fig. 1).  The natural occurrence of Z was confirmed both in Z. mays and in
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Fig. 1. Adenine cytokinins and derivatives after modifications of the purine structure and side 
chain. Compiled from Jameson (1994); Kaminek (1992), Brzobohaty et al., (1994). 
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many other sources (Letham, 1978). Several new cytokinins have been
isolated from natural sources and most of them were N6-substituted adenine 
or substituted derivates and N- or O- glycosides and their phosphorylated 
derivatives (Letham, 1994; Shaw, 1994) (Fig. 1).  

In addition to their widespread occurrence in plant tissues, numerous 
cytokinins have also been isolated from t-RNAs of virtually all organisms 
(Skoog and Armstrong, 1970).  Possible functions of modified nucleosides 
of tRNA include influencing tRNA structure, providing recognition sites, 
affecting the efficiency and accuracy of translation, and having a regulatory 
role. Only modifications found in position 37 are the hypermodified, 
hydrophobic isopentenyl adenosine (IPA) derivatives (Fig. 1) known as 
cytokinins (Taller, 1994), and their distribution among organisms seems to 
show inter-kingdom differences (Skoog and Armstrong, 1970; Sprinzl et al.,
1991).  

Cytokinins can be structurally classified into two categories: the 
adenine cytokinins (Fig. 1) and the diphenylurea cytokinins (Fig. 2) (Shaw 
1994; Shudo, 1994). Both types of cytokinins have similar structure-
relationships and similar biological activity suggesting that adenine and urea 
cytokinins are agonists and both types of cytokinins may act through a 
common receptor (Shudo, 1994). 

Cytokinins have been found in roots, stems, leaves, flowers, fruits 
and seeds and are probably present in all living cells of intact higher plants 
(Salisbury and Ross, 1992). The extremely low levels of the endogenous 
cytokinins in plant tissues and the central role of the most likely precursors 
in cellular metabolism have made it difficult to determine the sites of 
cytokinin biosynthesis (Letham, 1994). However, strong evidence indicates 
that the root is the main site of cytokinin biosynthesis (Neuman et al., 1990; 
Nooden and Letham, 1993). Cytokinins move from roots and embryonic axis 
to other tissues to control diverse aspects of development by interacting with 
other PGRs. 

Elucidation of the metabolic pathways of cytokinins has been 
largely based on the use of exogenous radiolabeled cytokinins (Letham, 
1994). Cytokinins exogenously applied to plant tissues usually are rapidly 
distributed among the respective nucleotide, nucleoside and base forms (Fig. 
1), but are ultimately broken down either by side chain cleavage to the 
corresponding adenine derivates which are irreversibly inactived or by
conjugation into storage or inactive forms (Jameson, 1994). Comprehensive 
reviews on cytokinin metabolism have been published elsewhere (Kaminek, 
1992; Brzobohaty et al., 1994; Frankenberger and Arshad, 1995). Extensive 
studies carried out on several plant species have revealed that metabolic 
differences exist even at the organ and tissue levels (Turner et al. 1985; 
Hocart and Letham, 1990) and specific studies of the biosynthesis and 
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metabolism of any particular system should be defined on the basis of this 
knowledge.

Cytokinins play a major or minor role throughout development, 
from seed germination to leaf and plant senescence and modulate 
physiological processes important throughout the life of the plant, including 
photosynthesis and respiration (Salisbury and Ross, 1992; Mok, 1994; 
Arshad and Frankenberger, 1993). The range of oxidative processes 
controlled by cytokinins includes senescence inhibition, cell growth, 
secondary-compound metabolism, respiration inhibition during senescence 
and stimulation of respiration during development (Musgrave, 1994). The 
variability of cytokinin effects suggests that these PGRs might have different 
mechanisms of action in different tissues, or that they have a common 
primary effect, which is followed by numerous secondary effects that 
depend on the physiological state of the target cells (Salisbury and Ross, 
1992).

2.2       Analysis of Cytokinins 

Following identification of kinetin and its effects on cell division 
and callus growth, research effort in the early 1960s was directed to 
development of cytokinin bioassays (Shaw, 1994). Bioassays have been 
indispensable for the detection of cytokinin activity and for evaluation of the 
activities of numerous compounds (Salisbury and Ross, 1992). A number of 
bioassays has been devised based on the various biological effects of 
cytokinins. The lettuce seed germination assay is based on the relationship 
between kinetin and red-light promotion (Miller, 1958). The Funaria
protonemata (Hahn and Bopp, 1968) and pea lateral bud (Thimann and 
Sachs, 1966) bioassays are related to the ability of cytokinins to promote 
formation of new buds and release buds from apical dominance, 
respectively. The etiolated bean leaf disc (Miller, 1963), Spirodela frond
expansion (Letham, 1967) and radish cotyledon (Letham, 1971) bioassays 
were based on the activity of cytokinins on leaf and cotyledon expansion. 
Senescence bioassays were devised with various plant species (Letham, 
1967; Osborne and McCalla, 1961; Letham et al., 1983). The Amaranthus
bioassay measures the formation of betacyanin (Biddington and Thomas, 
1973; Kohler et al., 1987); and the cucumber cotyledon bioassay (Fletcher et 
al., 1982) depends on the formation of chlorophyll. 

Specificity, high sensitivity and detection of minute quantities are 
the essential attributes determining the efficacy of a bioassay (Skoog and 
Armstrong, 1970). In addition, quantitative bioassays allow comparisons to 
the activity of known standards (Letham et al., 1983). Callus bioassays are 
generally specific, sensitive and quantitative but require a long assay time. A 
comparison of the activities of Z-derived cytokinins showed that tobacco 



178 Garcia de Salamone et al. 

callus bioassays had the highest sensitivity (Letham et al., 1983).  Bioassays 
have been used to assess cytokinin activity of new compounds and cytokinin 
activity of plant extracts. The former demonstrate that a compound, either 
directly or indirectly, exerts cytokinin activity. The latter were essential in 
the earlier period of cytokinin research, but in recent years they have been 
replaced by more precise methods of cytokinin analyses, such as 
chromatography, immunoassays or quantitative mass spectra analyses. 

Numerous analytical procedures have been used for the detection, 
isolation and identification of cytokinins, but few of them were developed 
specifically for cytokinins and they have been borrowed from the field of 
purine chemistry and biochemistry (Horgan, 1978). Most early procedures 
were extremely labor-intensive, time-consuming, imprecise and relatively 
insensitive (MacDonald and Morris, 1985). Several reports have 
demonstrated the advantages of high performance liquid chromatography 
(HPLC), for the separation of cytokinins in bioassays, over the more 
commonly used chromatographic methods of ion-exchange, paper and thin-
layer, Sephadex LH20, and GLC (Challice, 1975; Kannangara et al., 1978;

NHCONH1

N,N'-diphenyl urea

2 NHCONH4

3 2' 3'

4'

R

                 2a: N-3-fluorophenyl-N’-4-fluorophenylurea 
  2b: N-4-nitrophenyl-N’-4-phenylurea 
  2c: N-4-nitro-3-trifluoromethylphenyl-N’-phenylurea 
  2d: N-3, 4-dichlorophenyl-N’-phenylurea 
  2e: N-phenyl-N’-4-pyridylurea (1)

Fig. 2. Basic structures of the diphenylurea cytokinins 
[Compounds (2a-2e) have consistently high or moderate activity in the initiation of cell 
division of tobacco pith but weak activity in the standard tobacco callus bioassay (Takahashi 
et al., 1978). R: indicates possible substitutions of Cl, F, Br, CH3O, OH or NH2 on the 
N’-phenylurea ring which greatly enhance the activity. (1): The pyridyl radical also can be 
attached to the positions 2, 3 of N’-phenylurea ring]. 
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MacDonald et al., 1981). Unfortunately, HPLC in association with bioassays 
is still labour-intensive and time consuming. The introduction of mass 
spectrometric methods in which the cytokinins were converted to volatile 
derivatives and subjected to gas liquid chromatography (GLC) prior to mass 
spectrometry (MS) improved precision but not sensitivity (Summons et al.,
1979). Detailed reviews about GC-MS and related methods for analysis of 
cytokinins have pointed out the necessity of several purification methods 
involving extraction, column separations, thin layer chromatography (TLC), 
HPLC and GC (Horgan, 1978; Palni et al., 1986). The major challenge in the 
application of this technique is the purification of the complex plant extracts 
to a less-complex mixture where the mass spectrometric response may 
specifically correlate with cytokinin content (Hedden, 1986; Teller, 1994). 

Radioimmunoassay (RIA), initially developed to quantify human 
hormones at physiological tissue concentrations, was adapted to determine 
cytokinins and became a highly specific and very sensitive analytical method 
(Weiler, 1980). The past thirty years have witnessed a marked growth in the 
use of specific antibodies in studies of cytokinin biology because cytokinins 
occur in many forms at relatively small concentrations and analytical 
procedures with high sensitivity and selectivity are required. Immunoassays 
were applied to the analysis of cytokinins after it was demonstrated that 
coupling of nucleosides to proteins gave immunogenic conjugates, which 
could be used to produce nucleoside-specific antisera (Constantinidou et al.,
1978; Milstone et al., 1978). Quantification of cytokinins by 
immunoanalysis is based upon the competition of cytokinins present in a 
sample with a known quantity of labeled or immobilized cytokinin for 
binding to an anti-cytokinin antibody. The degree of competition is 
measured using either radiolabeled cytokinin (RIA) or enzyme-linked 
immunosorbent assays (ELISA). A standard curve based upon the addition 
of specific quantities of cytokinins to the assay is used to quantify cytokinins 
present in samples. Since the first report of an anti-cytokinin antibody by 
Hacker et al. (1970), antisera and monoclonal antibodies have been used to 
isolate and quantify endogenous cytokinins from a wide variety of plant 
tissues (Weiler, 1984; Hansen et al., 1988; Saavedra-Soto et al., 1988; 
Doumas et al., 1989) and microbial sources (Muller et al., 1988; Taller and 
Wong, 1989; Kraigher et al., 1991; Morris et al., 1991; Upadhyaya et al.,
1991). As immunoassays have both high specificity and sensitivity with 
detection limits at the femtomole level, plant crude extracts can be used 
(Weiler and Ziegler, 1981; Weiler, 1984; Belding and Young, 1989; Young, 
1989). Other advantages of the immunoassays are that at least one hundred 
samples can be completed in one day and the assay reproducibility is high 
with variation coefficients of triplicates of less than 5% (Weiler, 1984). 
Immunoassays have a wide field of application because they allow a much 
more detailed resolution in time and space of cytokinin levels within whole 
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plants and other plant systems, avoiding or simplifying complicated 
extraction procedures. However, the potential of immunoassay should not be 
overestimated and appropriate assay validation should always be considered
(Banowetz, 1994). Extensive standardization procedures and repetitive 
dilution of the samples are standard for immunoanalysis and compared to 
other assays it has low sample capacity (Weiler, 1984; Banowetz, 1994).  

Although the major analytical difficulties in physiological work, 
namely the rapid and reliable quantification of small amounts of 
physiologically relevant cytokinins as well as other PGRs in large series of 
samples, cannot be solved with the GC-MS technique, this analysis 
undoubtedly will remain as the method of choice for identification of 
cytokinin structures, elucidation of new structures in metabolic studies, and 
validation of immunoassay (Banowetz, 1994). 

3         PGRs IN THE RHIZOSPHERE 

Microflora able to produce PGRs in vitro are present in appreciable 
numbers in the rhizosphere of plants (Kampert et al., 1975; Barea et al.,
1976; Arshad and Frankenberger, 1993). Veselov et al. (1998) isolated a 
high-molecular weight complex of polysaccharide and biologically active 
cytokinins in liquid cultures of Bacillus species commonly isolated from the 
rhizosphere of cultivated plants. The main cytokinins observed using 
enzyme immunoassay and thin-layer chromatography were ZR and a 
nucleotide. Ivanona et al. (2000) also found ZR in the liquid culture of the 
pink-pigmented facultative methylotroph (PPFM) Methylobacterium 
mesophilicum VKM B-2143 and the non-pigmented obligate methylotroph 
Methylovorus mays VKM B-2221. Trotsenko et al. (2001) reviewed the 
potential of aerobic methylotrophic bacteria as phytosymbionts and 
physiological, biochemical and molecular genetic aspects of their 
applications. Ashby (2000) suggested a role for PPFMs in cytokinin 
biosynthesis in plants. 

Soils differ considerably in their PGR-synthesizing capacity, 
depending on their fertility status and organic matter content (Stevenson, 
1986; Arshad and Frankenberger, 1993). Auxins in soil are derived from 
decomposition of carbonaceous materials from dead and living plant 
residues (Whipps and Lynch, 1983). The continuous release of root-derived 
organic carbon compounds in the rhizosphere stimulates an active 
rhizosphere microflora. Auxin- and gibberellin-like components were more 
abundant in the rhizosphere soil of maize than in non-rhizosphere soil, 
especially during seedling emergence while the highest amounts of 
cytokinin-like components were observed during anthesis (Rossi et al.,
1984).
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Van Staden and Dimalla (1976) have observed that cytokinin 
activity in acidic soils supporting Acacia mearnsii yielded high Z activity 
while soil supporting trees in association with mycorrhizal fungi, yielded an 
activity peak corresponding to ZR. However, it was not determined whether 
the cytokinins isolated from soils were leached from senescing leaves or 
were produced by the fungi or other microorganisms. Ho (1986) observed 
that phosphatase, nitrate reductase activities and PGR production differed 
considerably among different isolates of Pisolithus tinctorius. Thus, PGR 
production expressed as micromoles per gram of fungal dry weight was
reported in the range of 22.1-271.4 for cytokinins, 56.0-1045.4 for IAA and 
5.2-19.3 for gibberellins. Variability in ectomycorrhizal development among 
isolates of P. tinctorius has been reported (Molina, 1979; Marx, 1981) and 
was related to PGRs liberated by their mycelia (Navratil and Rochon, 1981). 
However, the significance of these in vitro variations to successful 
inoculation and desired host response needs to be experimentally determined 
in fungus-host-soil systems. 

Although a higher percentage of microorganisms isolated from 
rhizosphere soil than from root-free soil are capable of synthesizing PGRs, 
they can influence plant growth only if the released PGR is taken up by the 
plant and is not metabolized by other microorganisms. Symbiotic 
associations such as mycorrhizal fungi, provide a direct route for PGR 
uptake by plants, establishing a bridge connecting the plant root with the 
surrounding soil microhabitats (Azcon-Aguilar and Bago, 1994). Although, 
mycorrhizae are widespread in the plant kingdom, the physiological effects 
of mycorrhizal PGRs need further study in order to improve their beneficial 
potential in specific plant associations (Arshad and Frankenberger, 1990). 
Moreover, changes in the root exudation patterns, PGR balance of the plant 
and PGR production by rhizosphere microorganisms affect the establishment 
of mycorrhizal fungi in the root cortex (Barea, 1997). Thus, microbe-
microbe interactions are crucial to the understanding of events that occur at 
the root-soil interface (Lynch, 1990).  

3.1       Effects of PGPR on plant growth and development 

PGPR, such as Azotobacter, Azospirillum and Rhizobium induce 
alterations in plant physiology or produce metabolites such as PGRs that 
directly promote plant growth without interactions with native soil 
microflora. Azotobacter species have been extensively used as biofertilizers 
(Arshad and Frankenberger, 1993) and significant effects were found on 
several crops when established in the rhizosphere (Barea and Brown, 1974; 
Hussain et al., 1987).  Although different mechanisms have been suggested, 
the beneficial effect of Azotobacter on plant growth is proposed to be due to 
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the production of PGRs (Brown, 1974; Barea and Brown, 1974; Azcon and 
Barea, 1975; Nieto and Frankenberger, 1989).

The seven species of Azospirillum isolated from the rhizosphere of 
forages, grain crops and other native and cultivated plants (Magalhaes et al.,
1983; Dobereiner and Pedrosa, 1987; Reinhold et al., 1987; Khammas et al.,
1989) are the most studied PGPR (Bashan and Holguin, 1997a; Bashan et al.
2004).Worldwide field experiments indicated 60-70 % success due to 
Azospirillum inoculation with yield increases of 5-30% (Okon and 
Labandera, 1994). This increased yield may be due to nitrogen fixation, 
improved mineral and water uptake, and production of PGRs which may act 
independently and in combination (Bashan and Holguin, 1997b). With 
respect to the two first mechanisms, extensive information is available 
(Kapulnik et al., 1984; Boddey et al., 1986; Dobereiner and Pedrosa, 1987; 
Murty and Ladha, 1988; Sarig et al., 1988; Bashan and Levanony, 1990; 
García de Salamone et al., 1996). The effects of Azospirillum inoculation on 
root morphology can be mimicked by applying IAA (Morgenstern and 
Okon, 1987) or mixtures of auxin, GA3 and kinetin (Hubbell et al., 1979; 
Tien et al., 1979). Inoculation of maize seedlings with Azospirillum
significantly increased root surface area and inoculated roots contained 
higher amounts of both free and bound IAA as compared to the control 
(Fallik et al., 1989). Indole-3-butyric acid (IBA) was also identified and this 
pioneer work proved useful in the detection of changes in endogenous PGRs 
following PGPR inoculation.  

PGR synthesis is involved in the highly specific Rhizobium – 
legume symbiosis in which as much as the 90% of the plant’s requirements 
for nitrogen are supplied by nitrogen fixation (Phillips and Torrey, 1972; 
Puppo and Rigaud, 1978; Morris, 1986; Hirsch et al., 1997, Ferguson and 
Mathesius, 2003). Auxin and cytokinin applications to roots in hydroponic 
media produced morphological changes in the roots, which were similar to 
those observed on plants inoculated with Rhizobium (Skoog et al., 1965; 
Puppo and Rigaud, 1978). Rhizobium can stimulate cell division in the 
cortex and release auxins and cytokinins at the root surface or in the 
infection threads (Sequeira, 1973). Although, the production of active auxin 
might be limited in situ, cytokinin activity was detected in the medium of 
Phaseolus vulgaris plants inoculated with Rhizobium phaseoli, but not in 
medium containing the same amounts of non-inoculated roots or rhizobial 
cells alone (Puppo and Rigaud, 1978).   

PGPR that produce beneficial effects on plant growth include 
Serratia (Zhang et al., 1997), Pseudomonas (Young et al., 1990; Arshad and 
Frankenberger, 1993; Kloepper, 1993), Burkholderia (Pedersen and Reddy, 
1996), Agrobacterium, Erwinia (Ryder and McClure, 1997) Xanthomonas
(De Freitas et al., 1997), Arthrobacter (Kloepper et al., 1990) and Bacillus
(Turner and Blackman, 1991; Mariano et al., 1997)and among these genera, 
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Pseudomonas has received much attention (Schippers et al., 1987; van Loon 
et al., 1997; Loper et al., 1997).  Many strains of pseudomonads have traits 
that appear to aid in colonization of seeds and roots such as fast growth 
rates, motility, chemotaxis to root exudates and ability to catabolize diverse 
nutrient sources (Kloepper, 1993). A core collection of elite PGPR strains, 
including Pseudomonas and Serratia (Kloepper et al., 1988) were screened 
for PGR production and a relationship between induction of root elongation 
and production of threshold concentrations of some cytokinins was observed 
(Young et al., 1990).

 Direct growth promotion by Pseudomonas was first reported by 
Lifshitz et al. (1987).  They observed that P. putida GR12-2 belonging to a 
collection of over 4000 cold-tolerant and nitrogen-fixing pseudomonads 
(Kloepper et al., 1988) directly promoted root growth of Brassica campestris
(canola) in the absence of either plant pathogens or deleterious 
microorganisms. Hong et al. (1991) observed that P. putida GR12-2 fixed N, 
produced fluorescent siderophores and synthesized IAA, concluding that any 
or all of these mechanisms could contribute to root elongation. Now, it has 
been reported that a small number of soil bacteria, including P. putida strain
GR12-2, contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase (Glick, 1995). Wild type bacteria promoted root elongation of 
developing canola seedlings, but the ACC-deaminase mutants did not. ACC 
is a precursor of ethylene in plants. It has been proposed that P. putida strain
GR12-2 might promote root elongation by hydrolyzing some of a plant’s 
ACC, thereby lowering the endogenous ethylene concentration and allowing 
the roots to grow longer (Glick et al., 1994).

Specific PGPR strains stimulate plant growth and nodulation of 
leguminous crops when co-inoculated with both Rhizobium (Grimes and 
Mount, 1984, Chanway et al., 1989) and Bradyrhizobium (Polonenko et al.,
1987) in field experiments. Zhang et al. (1997) concluded that the 
improvement of plant growth, development and physiological activities of 
soybean seedlings after co-inoculation with Bradyrhizobium and certain 
PGPR strains was due to direct effects of PGPR on overall physiology rather 
than specific effects on nitrogen fixation. As the co-inoculation effects vary 
with PGPR and rhizosphere conditions, the mode of action of these nodule 
promoting rhizobacteria needs further research. 

3.2       PGPR and PGRs production 

The amounts of PGRs detected in the rhizosphere are generally less 
than the amounts that are actually synthesized (De Leij and Lynch, 1997). 
Appreciable accumulation of PGRs in the rhizosphere does not occur
because of the heterotrophic activity of the microflora (Lynch, 1990). 
Arshad and Frankenberger (1993) pointed out that the production of PGRs 
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as microbial metabolites in soil has been linked to substrate availability, but 
the number of influencing factors is high. They have also shown that IAA 
and certain cytokinins can be produced in soil incubated with tryptophan and 
specific precursors such as adenine and/or isopentenyl alcohol. Bolton et al.
(1993) reported tryptophan and adenine could be detected in plant root 
exudates. Gibberellin-like bioactivity has been detected in several microbial 
cultures, and it has been suggested that gibberellins, along with other 
microbial metabolites may affect plant growth and development (Arshad and 
Frankenberger, 1993). However, gibberellins are the least studied PGRs in 
soil systems. In contrast, more work has been done on ethylene than other 
PGRs because it is easy to detect. Ethylene has been identified as a common 
constituent of the soil atmosphere as a result of microbial activity. Primrose 
(1979) demonstrated that as little as 10 nL L-1 of an exogenous application of 
ethylene can cause a dramatic physiological response in plants and 
concentrations high enough to affect plant growth are found near the roots 
and could move rapidly from roots to shoots. 

Gonzalez-Lopez et al. (1986) estimated the amounts of PGRs 
produced by Azotobacter vinelandi cultured in dialyzed soil media after 96 
hours. Auxin activity was equivalent to 0.2-2 g IAA mL-1 in oat coleoptile 
bioassay, gibberellin activity was 0.8-3.1 g GA3 mL-1 in a lettuce hypocotyl 
bioassay and cytokinin-like substance activity was 1.8-4.4 g mL-1 in a 
radish cotyledon bioassay. They also observed that the production of auxins, 
gibberellins and cytokinins was influenced by growth and incubation time. 
PGRs were released continuously when Azotobacter was cultured in N-free 
medium and dialyzed soil medium. Cytokinin production was about three 
times higher in dialyzed soil medium than in a defined medium, after 15 
days.  

Three cytokinin-active fractions were detected and identified as Z, 
IPA and IPa in cell-free culture medium following growth of Azotobacter 
vinelandi OP to stationary phase (Taller and Wong, 1989). The total 
cytokinin activity equivalent was 0.75 g of kinetin per liter. Nieto and 
Frankenberger (1989) also detected cytokinins in cultures filtrates of three 
Azotobacter species. The most prolific producer was A. chroococcum and 
the amount of cytokinin produced was 224 nmol of Z equivalents L-1 when 
0.1 mM of both adenine and isopentyl alcohol were added to the medium as 
precursors of cytokinin biosynthesis. The growth of A. chroococcum was 
modified not only by the addition of both cytokinin precursors, but also by 
environmental conditions such as pH, carbon sources, N supply, temperature 
and aeration. 

Azospirillum species also produced several PGRs in pure cultures, 
the amounts were highly variable and strain-specific (Hartmann et al., 1983; 
Zimmer and Bothe, 1988). IAA specifically induced a number of proteins 
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and this bacterium could be used to enhance IAA concentrations in the 
rhizosphere to promote growth of inoculated crops. Muller et al. (1988) 
stated that the formation of IAA by Azospirillum is dependent on tryptophan 
in the medium, which has been detected in root exudates (Strzelczyk and 
Potojska-Burdziej, 1984). However, at least three routes for IAA 
biosynthesis were recently demonstrated in this bacterium (Dosselaere et al.,
1997).

Many strains of Rhizobium are capable of producing either IAA 
(Badenoch-Jones et al., 1982; García-Rodriguez et al., 1984) or cytokinins 
(Wang et al., 1982) or both (Phillips and Torrey, 1972; Newcomb et al.,
1977; Upadhyaya et al., 1991) in pure culture at high cell densities. In pure 
cultures, certain fast-growing strains of Rhizobium can produce large 
quantities of the polyamine aminobutylhomospermidine, a tetramine not 
produced by slowly growing strains, but the physiological effects on roots 
and other plant parts have not been studied (Galston and Sawhney, 1990). 

Effective nodulation of Cajanus cajan with Rhizobium strain IC3342 
induces a systemic response which results in abnormal shoot development, 
with symptoms starting 25-30 d after sowing and inoculation (Letham et al., 
1990). Plant symptoms include typical tip bending, followed by hyponasty, 
curling of leaves, release of apical dominance and proliferation of lateral 
buds. In grafting experiments, a leaf curl-inducing principle was produced in 
the root nodules and translocated to the growing shoots through the xylem. 
A continuous supply was essential for the manifestation of symptoms. They 
also observed that the riboside of the cytokinin BAP, supplied via the root 
system, induced some effects in the shoot, which are characteristic of the 
leaf curl syndrome, especially release of lateral buds from apical dominance 
and hyponasty. The main cytokinin metabolites in the xylem exudates of 
normal nodulated plants and leaf curl plants were the same, but the 
concentrations of the cytokinins in the latter plants were eight times higher 
than those in the former. It is particularly significant that plants inoculated 
with a mutant of IC3342, which did not evoke the leaf curl syndrome, 
contained cytokinin levels similar to those of normal plants. This is a novel 
intact plant system to study the role of endogenous cytokinins in shoot 
development.  

Forty-eight hours after inoculation with Bradyrhizobium, Caba et al.
(2000), compared the levels of different cytokinins in Glycine max [L.] 
Merr. Cv Bragg and its supernodulating mutant nts 382 and observed 
quantitative and qualitative differences in the amount of PGRs in the roots. 
They also observed that root IAA/cytokinin and ABA/cytokinin ratios were 
always higher in Bragg relative to its mutant and responded to inoculation. 
Fei and Vessey (2003) have reported that low concentrations of ammonium 
(<1.0 mM) stimulate nodulation and this stimulation is associated with 
higher levels of Z and lower levels of ZR than the control or nitrate-treated 
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Pisum sativum plants. There was no effect on IAA levels. These data support 
the theory that a high ratio of cytokinin: auxin in roots is favourable for 
nodule initiation and that the ammonium effect is mediated through 
increasing Z levels. This may be a mechanism by which cytokinin-producing 
PGPR could influence nodulation in legumes. 

Blackman and Davies (1985) pointed out that a continuous supply of 
cytokinins from maize roots may be necessary to sustain maximal stomatal 
opening and that a decrease or an interruption of this supply due to soil 
drying may act as a signal of reduced root activity. Roots could 
communicate to the shoot some indications of a perturbation in the soil 
environment and because the roots are the major source of cytokinins to the 
plant, a drying or restrictive soil could reduce leaf cytokinin levels 
sufficiently to affect stomatal behavior (Zhang and Davies, 1989; 1991; 
Tardieu et al., 1992).

Omer et al. (2004) reported a naturally occurring cytokinin 
containing 5´deoxyribose, a derivative of IPA, which is produced along with 
other cytokinins by the bacterium Pantoea agglomerans isolated from barley 
seeds and selected for inducing growth promotion in tomato. Serdyuk et al
(2000) reported cytokinin activity of the 4-hydroxyphenyl alcohol (4-HPEA) 
isolated from the phototrophic purple bacterium Rhodospirillum rubrum and 
classified it as a phenolic non-purine cytokinin-like substance.  

García de Salamone et al. (2001), characterized the production of 
three cytokinins by Pseudomonas fluorescens strain G20-18, one rifampicin 
resistant mutant and two TnphoA-derived mutants with reduced capacity to 
synthesize these PGRs. Using immnunoassays and thin-layer 
chromatography, G20-18 was shown to produce higher amounts of IPA, ZR 
and DHZR than the three mutants during the stationary phase of growth in 
liquid medium. IPA was the major cytokinin produced. No differences were 
observed between strain G20-18 and the mutants in the amounts of IAA 
synthesized, nor were gibberellins detected in filtrates of any of the strains. 
Garcia de Salamone (2000) also detected Z7G, ZOG and an unknown 
metabolite at RF =0.45 on the TLC chromatograms of 14-d-old cultures of 
strain G20-18 and its selected mutants. This indicated that the 
O-glucosyltransferase enzymes were active and competing for the same 
substrate with the Z-reductase and phosphorylase, which metabolize Z to 
produce DHZ and ZR, respectively. The unidentified compound or group of 
cytokinins is another indication that strain G20-18 can produce an array of 
cytokinin metabolites. These results are in contrast with those of Timmusk et
al. (1999) who observed, using HPLC with on-line ultraviolet detection and 
a final step of GC-MS, that a strain of Paenibacillus polymyxa isolated from 
the rhizosphere of wheat produced the cytokinin IPa at a concentration of 1.5 
nM and an unknown cytokinin compound in late stationary phase (20 d). 
García de Salamone (2000) has shown that strain G20-18 could colonize the 
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rhizosphere of wheat and radish and promote growth in contrast to the lack 
of responses obtained with its mutants (García de Salamone et al., 1997). 
Cytokinin metabolism of radish plants was altered by inoculation with this 
PGPR strain resulting in significantly higher amounts of cytokinins in root 
and shoot tissues and different cytokinin ratios between sterile and 
inoculated radish rhizospheres. Garcia de Salamone and Nelson (2000) 
showed that cytokinin production by a Pseudomonas strain was linked to the 
promotion of tobacco callus growth. This is a useful tool for screening 
cytokinin-producing PGPR because a standardized tobacco callus bioassay is 
able to detect cytokinin concentrations as low as 5 pmol L-1. In recent studies 
with Arabidopsis thaliana, the growth promotion response to PGPR was 
controlled by cytokinins and ethylene released in the colonized root systems 
of the treated plants (LiYan and Boland, 2004). 

4       CONCLUSION

 Under sub-optimal environmental conditions plants may not have 
the capacity to synthesize sufficient endogenous PGRs for optimal growth 
and microbial PGR production may have an important compensatory role. 
Thus, the stimulation of microbial biosynthesis of PGRs within the 
rhizosphere using specific PGPR strains may be an effective approach to 
improve plant growth and development. 

 Cytokinin production by PGPR is an innovative alternative to 
enhance plant growth and may be a sustainable approach to improve the 
yield and quality of specific crops. This direct mechanism of plant growth 
promotion by rhizobacteria is poorly understood and attempts to demonstrate 
consistent results in the field have been challenging. Therefore, additional 
research must be initiated in the laboratory, greenhouse and field to 
understand the principles underlying cytokinin production by rhizobacteria 
and to develop cytokinin-producing inoculants for practical application by 
growers.
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Abstract:    Use of plant growth promoting rhizobacteria (PGPR) for the benefits of 

agriculture is gaining worldwide importance and acceptance and appears to be 
the trend for the future. PGPR are bioresources which may be viewed as a 
novel and potential tool for providing substantial benefits to the agriculture. 
These beneficial, free-living bacteria enhance emergence, colonize roots, 
stimulate growth and enhance yield. PGPR are known to induce resistance 
against various plant pathogens in different crops ranging from cereals, pulses, 
ornamentals, vegetables, plantation crops, spices and some trees.  Most studies 
have emphasized exploration and potential benefits of PGPR in agriculture, 
horticulture and forestry. The plausible mechanisms adopted by these 
rhizobacteria in growth promotion and resistance, though abundantly 
documented but still remains to be fully explored. Integrated use of PGPR 
allows the combination of various mechanisms thereby enhancing their 
beneficial abilities. However, their use has not been to the full potential due to 
inconsistency in their performance and their commercialization limited to few 
developed countries. Use of PGPR as bioinoculants, biofertilizers and 
biocontrol agents, advantages and disadvantages, practical potential in 
improved agriculture and future prospects are also discussed. 

Key words:   biocontrol agents; biofertilizers; bioinoculants; growth promotion; induced 
resistance; integrated pest management; rhizobacteria; 
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1 INTRODUCTION 

Many microorganisms are attracted by nutrients exuded from plant 
roots and this “rhizosphere effect” was first described by Hiltner (Hiltner, 
1904)). He observed higher numbers and activity of microorganisms in the 
vicinity of plant roots. The rhizosphere and rhizoplane are colonized more 
intensively by microorganisms than the other regions of the soil. Some of 
these microorganisms not only benefited from the nutrients secreted by the 
plant roots but also beneficially influence the plants, resulting in a 
stimulation of their growth. For instance, rhizobacteria can fix atmospheric 
nitrogen, which is subsequently used by the plants, thereby improving plant 
growth in the soil deficient of nitrogen. Other rhizobacteria can directly 
promote the plant growth by the production of hormones. These 
rhizobacteria positively influence plant growth and health and often referred 
as plant growth promoting rhizobacteria (PGPR). However, their effects are 
complex and cumulative because of interactions of plants, pathogens, 
antagonists, and environmental factors (Schippers, 1992). 

Genera of PGPR include Azotobacter, Azospirillum, Pseudomonas,
Acetobacter, Burkholderia, Bacillus, Paenibacillus, and some are members 
of the Enterobacteriaceae. Direct use of microorganisms to promote plant 
growth and to control plant pests continues to be an area of rapidly 
expanding research. Rhizosphere colonization is one of the first steps in the 
pathogenesis of soil borne microorganisms. It is also crucial for the 
microbial inoculants used as biofertilizers, biocontrol agents, 
phytostimulators, and bioremediators. Pseudomonas spp. are often used as 
model root-colonizing bacteria (Lugtenberg et al., 2001).

The beneficial effects of these rhizobacteria have been variously 
attributed to their ability to produce various compounds including 
phytohormones, organic acids, siderophores, fixation of atmospheric 
nitrogen, phosphate solubilization, antibiotics and some other unidentified 
mechanisms (Glick, 1995). Motile rhizobacteria may colonize the 
rhizosphere more profusely than the non-motile organisms resulting in better 
rhizosphere activity and nutrient transformation. They also eliminate 
deleterious rhizobacteria from the rhizosphere by niche exclusion thereby 
better plant growth (Weller, 1988). Induced systemic resistance has been 
reported to be one of the mechanisms by which PGPR control plant diseases 
through the manipulation of the host plant’s physical and biochemical 
properties.
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2 GROWTH PROMOTION OF CROP PLANTS BY 
RHIZOBACTERIA AND THE MECHANISMS  

PGPR are beneficial for plant growth and also referred as yield 
increasing bacteria (YIB). They can affect plant growth and yield in a 
number of ways and enhancement of vegetative and reproductive growth is 
documented in a range of crops like cereals, pulses, ornamentals, vegetables, 
plantation crops and some trees. Treatments with PGPR  increase  
germination percentage, seedling vigor, emergence, plant stand, root and 
shoot growth, total biomass of the plants, seed weight, early flowering, 
grains, fodder and  fruit yields etc., (van Loon et al., 1998; Ramamoorthy et 
al., 2001). Though the exact mechanisms involved in growth promotion are 
still unclear, various mechanisms have been suggested to explain the 
phenomenon of plant growth promotion. These include increase in the 
nitrogen fixation, production of auxins, gibberellins, cytokinins, ethylene,  
solubilization of phosphorous, oxidation of sulfur, increase in  availability of 
nitrate,  extra cellular production of antibiotics, lytic enzymes, hydrocyanic 
acid, increases in root permeability, strict competition for the available 
nutrients and root sites, suppression of deleterious rhizobacteria, and 
enhancement in the uptake of essential plant nutrients etc.(Subba Rao,1982; 
Pal et al., 1999; Enebak and Carey, 2000).  However, experimental evidence 
suggests that bacterially-mediated phytohormone production is the most 
likely explanation for PGPR activity in the absence of pathogens (Brown, 
1974; Tien et al., 1979; Holl et al., 1988) while siderophore production by 
PGPR may be important for plants growth stimulation when other 
potentially deleterious rhizosphere microorganisms are present in the 
rhizosphere (Kloepper et al., 1980; Bossier et al., 1988).

3 DISEASE CONTROL MECHANISMS  

3.1 Biocontrol

Plant pathogens such as fungi, bacteria, viruses, nematodes etc., 
which cause various diseases in crop plants are controlled by PGPR 
(Raupach et.al., 1996; Hasky-Gunther et.al., 1998; Vidhyasekaran 
et.al.,2001;Viswanathan and Samiyappan,2002 ).  Mechanisms of biocontrol 
may be competition or antagonisms; however, the most studied phenomenon 
is the induction of systemic resistance by these rhizobacteria in the host plant 
(van Loon et al., 1998; Ramamoorthy et al., 2001). PGPR control the 
damage to plants from pathogens by a number of mechanisms including: 
out-competing the pathogen by physical displacement, secretion of 
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siderophores to prevent pathogens in the immediate vicinity from 
proliferating, synthesis of antibiotics and variety of small molecules that 
inhibit pathogen growth, production of enzymes that inhibit the pathogen 
and stimulation of the systemic resistance in the plants. PGPR may also 
stimulate the production of biochemical compounds associated with host 
defense. Enhanced resistance may be due to massive accumulation of 
phytoalexins, phenolic compounds, increases in the activities of PR-proteins, 
defense enzymes and transcripts, and enhanced lignification. Biocontrol may 
also be improved by genetically engineered PGPR to over express one or 
more of these traits so that strains with several different anti-pathogen traits 
can act synergistically (Glick and Bashan, 1997). Rhizobacteria-mediated 
ISR has been reported to be effective against fungi, bacteria and viruses, but 
appears to involve different signaling pathways and mechanisms. 

3.2 Structural mechanisms

PGPR can induce structural changes in the host and these changes 
were characterized by a considerable enlargement of the callose-enriched 
wall appositions deposited onto the inner surface of cell wall in the 
epidermis and outer cortex (Benhamou et al., 1998), callose deposition 
(M’Piga et al., 1997) and lignification (Kloepper, 1993). A strain of 
Pseudomonas  fluorescens functions as an activator of plant disease 
resistance by inducing callose synthesis in tomato (M’Piga et al., 1997). 
Bean roots bacterized with a saprophytic fluorescent pseudomonad, had 
higher lignin content than control (Anderson and Guerra, 1985).  

Treatment of PGPR significantly reduced germination of sporangia 
and zoospores of Phytophthora infestans on the leaf surface of tomato than 
the leaves of the non-induced control. Serratia plymuthica strain R1GC4 
sensitizes susceptible cucumber plants to react more rapidly and efficiently 
against Pythium ultimum attack through the formation of physical and 
chemical barriers at sites of fungal entry (Benhamou et al., 2000). 
Pseudomonas   fluorescens induced accumulation of lignin in pea roots 
(Benhamou et al., 1996a,b). Bacillus pumilus SE34 showed a rapid 
colonization of all tissues including the vascular stele in tomato and induced 
resistance against Fusarium oxysporum (Benhamou et al., 1998). The main 
facets of the altered host metabolism concerned the induction of a structural 
response at sites of fungal entry and the abnormal accumulation of electron-
dense substances in the colonized areas.
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3.3 Biochemical mechanisms

PGPR are known to produce antibiotics, antifungal metabolites, 
enzymes, phenolics, signal compounds and other determinants of defense in 
response to pathogen attack. Various antibiotics like bacilysin, iturin-like 
lipopeptides, diacetylphloroglucinol and pyrrolnitrin, HCN, phenazine-1-
carboxylate are produced by rhizobacteria (Thomashow et al., 1990). 
Rhizosphere colonization by Pseudomonas aeruginosa 7NSK2 activated 
phenlyalanine ammonia lyase (PAL) in bean roots and increased the salicylic 
acid levels in leaves (De Meyer et al., 1999). Increased activity of PAL was 
observed in P. fluorescens treated tomato and pepper plants in response to 
infection by F. oxysporum f. sp. lycopersici and Colletotrichum capsici
(Ramamoorthy and Samiyappan, 2001). In bean, rhizosphere colonization of 
various bacteria induced peroxidase (PO) activity (Zdor and Anderson, 
1992), The higher PO activity was noticed in cucumber roots treated with 
Pseudomonas corrugata and inoculated with Pythium aphanidermatum
(Chen et al., 2000). Foliar application of P. fluorescens increased chitinase 
and glucanase activities in rice (Meena et al., 1999). Groundnut plants, 
sprayed with P. fluorescens strain Pf1, showed significant increase in 
activities of PAL, phenolic contents, chitinase and glucanase 23-kDa 
thaumatin-like protein (TLP) and a 30-kDa glucanase (Meena et al., 2000). 
Earlier and increased activities of phenylalanine ammonia lyase (PAL), 
peroxidase (PO) and polyphenol oxidase (PPO) were observed in P.
fluorescens Pf1 pretreated tomato and hot pepper plants challenged with P.
aphanidermatum.  Phenolic compounds are toxic to pathogens in nature and 
may increase the mechanical strength of the host cell wall. Accumulation of 
phenolics by prior application of P. fluorescens in pea has been reported 
against P. ultimum and F. oxysporum f. sp. pisi (Benhamou et al., 1996a). 
Similarly, Serratia plymuthica induced the accumulation of phenolics in 
cucumber roots following infection by P. ultimum (Benhamou et al. 2000). 
Moreover, P. fluorescens Pf1 isolate also induced the accumulation of 
phenolic substances and PR-proteins in response to infection by F. 
oxysporum f. sp. lycopersici in tomato (Ramamoorthy et al., 2001) and C.
capsici in pepper (Ramamoorthy and Samiyappan, 2001). The levels of a 
PR-protein increased in bean leaves following seed treatment with PGPR 
strains (Hynes and Lazarovits, 1989) while PR-proteins viz., PR-1a, 1b, 1c, 
endochitinase and b-1,3-glucanases were induced in  intercellular fluid in the 
leaves of tobacco plants grown in the presence of P. fluorescens strain 
CHA0( Maurhofer et al., 1994). Increase in lignin content, peroxidase 
activity and 4-coumarate CoA ligase activity were observed after inoculation 
with Xanthomonas oryzae pv. oryzae in rice leaves pre-treated with P. 
fluorescens (Vidhyasekaran et al., 2001). Inoculation of PGPR can induce 
phytoalexin synthesis (Van Peer et al., 1991) and phenol accumulation 
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(M’Piga et al., 1997). Moreover, PGPR-mediated ISR triggered the 
hypersensitive reaction (HR), causing death of individual cell of leaves 
following inoculation with the pathogen. Analysis of H2O2 content, showed 
that H2O2 increased significantly in all treatments 12 h after pathogen 
inoculation, compared to non-induced control (Yan et al., 2002). 

3.4 Molecular mechanisms 

Mechanisms of rhizobacteria-mediated induced systemic resistance 
(ISR) to the large extent are unknown. ISR in Arabidopsis mediated by 
rhizobacteria is not associated with a direct effect on expression of known 
defense-related genes but stimulated the expression of the jasmonate-
inducible gene Atvsp upon challenge. Gene expression studies were 
performed with Arabidopsis gene-specific probes for the defense-related 
genes PR-1., PR-2., PR-5., Hel., ChiB, Pdf1.2, Atvsp, Lox1, Lox2, Pal1, and 
Pin2. Responsiveness of genes to the defense signaling molecules SA, 
ethylene, and jasmonate was verified by analyzing their expression in leaves 
treated with SA, the ethylene precursor 1-aminocyclopropane-1-carboxylate 
(ACC), or methyl jasmonate ( MeJA). Although variation in the expression 
of most genes was apparent, roots and leaves of P. fluorescens WCS417r-
treated plants never showed an enhanced expression of any of the genes, at 
any time tested (van Wees et al., 1997). 

 PPO transcript levels increased in young leaves of tomato when 
mature leaflets were injured (Thipyapong and Steffens, 1997). Increase in 
mRNAs encoding PAL and chalcone synthase were recorded in the early 
stages of the interaction between bean roots and various rhizobacteria (Zdor 
and Anderson, 1992). ISR in A. thaliana by P.  fluorescens WCS417r and 
subsequent  inoculation of Pseudomonas syringae pv. tomato Dc3000(ISR) 
functions independently of salicylic acid but requires an intact response to 
the plant hormones jasmonic acid and ethylene. Rhizobacteria-mediated ISR 
is not based on the induction of changes in the biosynthesis of either JA or 
ethylene. ISR-expressing plants have the capacity to convert 1-
aminocyclopropane-1-carboxylate (ACC) to ethylene providing a greater 
potential to produce ethylene upon pathogen attack (Pieterse et al., 2000). 
Fluorescent pseudomonads are also known to produce salicylic acid, which 
acts as local and systemic signal molecules in inducing resistance in plants 
(De Meyer and Hofte, 1997).  
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4 SIGNALING COMPOUNDS AND PATHWAYS

Salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) are 
involved in the regulation of basal resistance against different pathogens. 
These three signals play important roles in induced resistance as well. SA is 
a key regulator of pathogen-induced systemic acquired resistance (SAR) 
whereas JA and ET are required for rhizobacteria-mediated induced 
systemic resistance (ISR). Both types of induced resistance are effective 
against a broad spectrum of pathogens. Comparison of the effectiveness of 
SAR and ISR using  a fungal, a bacterial, and a viral pathogen in non-
induced Arabidopsis plants, these pathogens are primarily resisted through 
either SA-dependent basal resistance (Perenospora parasitica and Turnip 
crinkle virus (TCV)), JA/ET-dependent basal resistant responses (Alternaria
barssicicola), or a combination of SA-, JA-, and ET-dependent defenses 
(Xanthomonas campestris pv. armoraciae). Activation of ISR resulted in a 
significant level of protection against Alternaria brassicicola, whereas SAR 
was ineffective against this pathogen. Conversely, activation of SAR 
resulted in a high level of protection against Phytophthora parasitica and 
TCV, whereas ISR conferred only weak and no protection against P.
parasitica and TCV, respectively. Induction of SAR and ISR was equally 
effective against X. campestris pv. armoraciae. These results indicate that 
SAR is effective against pathogens that non-induced plants are resisted 
through SA-dependent defenses, whereas ISR is effective against pathogens 
in non-induced plants and resisted through JA/ET-dependent defenses. This 
suggests that SAR and ISR constitute a reinforcement of extant SA- or 
JA/ET-dependent basal defense responses, respectively (Ton et al., 2002).  

Serratia marcescens 90-166 mediates induced systemic resistance to 
fungal, bacterial, and viral pathogens by producing salicylic acid (SA), using 
the salicylate responsive reporter plasmid pUTK21. High-pressure liquid 
chromatography analysis of culture extracts confirmed the production of SA 
in broth culture. Mini-Tn5phoA mutants, which did not produce detectable 
amounts of SA, retained ISR activity in cucumber against the fungus 
Colletotrichum orbiculare. Strain 90-166 induced disease resistance to P.
syringae pv. tabaci in wild-type Xanthi-nc and transgenic NahG-10 tobacco 
expressing salicylate hydroxylase.  Results of the study indicate that SA 
produced by 90-166 is not the primary bacterial determinant of ISR and the 
bacterial-mediated ISR system is affected by iron concentrations (Press et
al., 1997).   

Several genera of bacteria including pseudomonads are known to 
synthesize SA and SA is an intermediate in the biosynthesis of pyochelin 
siderophores (Ankenbauer and Cox, 1988). There are some indications that 
SA may be involved in bacterially mediated ISR since Pseudomonas
fluorescens strain CHAO, which provides ISR in tobacco to tobacco necrosis 
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virus (Maurhofer et al., 1994), produces SA (Meyer et al., 1992; Visca et al.
1993). However, the role of SA production in CHAO-mediated ISR has not 
been reported. Leeman et al., (1996) reported that P. fluorescens strain 
WCS374, which provides ISR in radish against F.  oxysporum f. sp. raphani,
produced SA in quantities that were iron dose-dependent, and they suggested 
that ISR was due to bacterial SA production. Recently, the involvement of 
SA produced by P. aeruginosa 7NSK2 in the induction of resistance against 
Botrytis cinerea on Phaseolous vulgaris has been reported (De Meyer and 
Hofte,1997).

Root colonization of A. thaliana by the nonpathogenic, rhizosphere-
colonizing bacterium P. fluorescens WCS417r has been shown to elicit 
induced systemic resistance (ISR) against P. syringae pv. tomato (Pst)( 
Knoester et al., 1999). Several ethylene-response mutants were tested and 
showed essentially normal symptoms of Pst infection. ISR was abolished in 
the ethylene-insensitive mutant etr1-1, whereas SAR was unaffected. Similar 
results were obtained with the ethylene mutants ein2 through ein7, indicating 
that the expression of ISR requires the complete signal-transduction pathway 
of ethylene known so far. The induction of ISR by WCS417r was not 
accompanied by increased of ethylene production in roots or leaves, and 
neither by increases in the expression of the genes encoding the ethylene 
biosynthetic enzymes 1-aminocyclopropane-1-carboxylic (ACC) synthase 
and ACC oxidase. The etr1 mutant, displaying ethylene insensitivity in the 
roots only, did not express ISR upon application of WCS417r to the roots, 
but did exhibit ISR when the inducing bacteria were infiltrated into the 
leaves. These results demonstrate that, for the induction of ISR, ethylene 
responsiveness is required at the site of application of inducing rhizobacteria 
(Knoester et al., 1999).  

The Bacillus amyloliquefaciens EXTN-1 treated tobacco plants 
showed augmented, rapid transcript accumulation of defense related genes 
including PR-1a, phenylalanine ammonia-lyase, and 3-hydroxy-
3methylglutaryl CoA reductase (HMGR) following inoculation with Pepper 
Mild Mottle Virus ( PMMoV ). Thus, their expression is associated with the 
development of both local and systemic resistance. All these results may 
indicate that EXTN-1 induces systemic resistance via salicylic acid and 
jasmonic acid-dependent pathways and timely recognition followed by rapid 
counter attack against the viral invasion is the key differences between 
incompatible interaction and compatible one (Ahn et al., 2002).

PGPR strains B. pumilus SE34 and P.  fluorescens 89B61, elicited 
systemic protection against the blight on tomato and reduced disease (Yan et 
al., 2002). Induced protection elicited by both PGPR strains was SA-
independent but ethylene- and jasmonic acid-dependent. In Arabidopsis,
selected bacterial strains trigger a SA-independent but JA and ethylene 
dependent pathway that nevertheless, is dependent on the regulatory factor 
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NPR1, which is also part of the SA-dependent pathway. Two non-inducible 
ecotypes of Arabidopsis are impaired in the same gene (ISR1) and have 
reduced sensitivity to ethylene, confirming the importance of ethylene 
sensitivity in ISR signaling (Hammerschmidt et al., 2001).

5 USE OF PGPR ON COMMERCIAL SCALE 

 The development of biological products based on beneficial micro-
organisms can extend the range of options for maintaining the health and 
yield of crops. As early as 1897 a “bacteriological fertilizer for the 
inoculation of cereals” was marketed under the proprietary name Alinit by 
Farbenfabriken vorm. Friedrich Bayer & Co.” of Elberfeld, Germany, 
Today’s Bayer AG. The product was based on a Bacillus species now known 
by the taxonomic name Bacillus subtilis (Kilian et al., 2000). In the mid-
1990s in the USA, B. subtilis started to be used as seed dressing, with 
registrations in more than seven crops and application to more than 2 million 
ha (Backmann et al., 1994). This was the first major commercial success in 
the use of an antagonist. In Germany, FZB 24 B. subtilis has been on the 
market since 1999 and is used mainly as a seed dressing for potatoes (Kilian 
et al., 2000).

In response to environmental and health concerns about extended 
use of pesticides, there is considerable interest in finding alternative control 
approaches for use in integrated pest management strategies for crop 
diseases (Reuveni, 1995). It seems inevitable that fewer pesticides will be 
used in the future and that greater reliance will be placed on biological 
technologies including the use of microorganisms as biocontrol agents 
(Backman et al., 1997; Budge et al., 1995). However, microorganisms as 
biocontrol agents typically have a relatively narrow spectrum of activity 
compared with synthetic pesticides (Baker, 1991; Janisiewicz, 1988) and 
often exhibit inconsistent performance in practical agriculture, resulting in 
limited commercial use of biocontrol approaches for suppression of plant 
pathogens (Backman et al., 1997).

Commercial development has already been accomplished with two 
products marketed as Kodiak and Epic (Gustafson inc.), in which two 
different Bacillus subtilis biocontrol strains were combined with a fungicide 
(Carboxin-PCNB-metalaxyl) for use against soil borne diseases. During the 
1996 season, approximately 5 million ha of crops were treated with these 
products, targeting diseases of roots caused by Rhizoctonia solani and 
Fusarium spp. plus promoting root mass and plant vigor through hormone-
like responses and disease control.

Many root-colonizing bacteria are known to promote plant growth 
by producing gibberellins, cytokinins and indole acetic acid (Dubeikovsky et
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al., 1993) and hence are called as PGPR. The application of five commercial 
chitosan-based formulations of carefully chosen PGPR developed at Auburn 
University, USA has previously shown demonstrable increase in the growth 
of nursery-raised plants such as cucumber, pepper and tomato among others. 
Later, seedlings of three indica rice cultivars, IR24, IP50 and Jyothi raised in 
rice field soil amended with each of the formulations in a 1:40 (formulation: 
soil) ratio have shown significant two-fold increase in root and shoot length, 
and grain yield. The observations do suggest that application of such 
commercial bacterial formulations can serve as microbial inoculants for the 
improvement of rice growth (Vasudevan et al., 2002).   

6 INTEGRATION AND MIXTURES OF PGPR 

In nature biocontrol results from mixtures of antagonists, rather from 
high populations of a single antagonist. Moreover, mixtures of antagonists 
are considered to account for protection of disease-suppressive soils 
(Lemanceau and Alabouvette, 1991; Schippers, 1992). Consequently, 
application of a mixture of introduced biocontrol agents would more closely 
mimic the natural situation and may broaden the spectrum, enhance the 
efficacy and reliability of biocontrol (Duffy and Weller, 1995). Strategies for 
forming mixtures of biocontrol agents could be envisioned including 
mixtures of organisms with differential plant colonization patterns; 
biocontrol agents that control different pathogens; antagonists with different 
mechanisms of disease suppression; taxonomically different organisms and 
antagonists with different optimum temperature, pH and moisture conditions 
for plant colonization (Backman et al., 1997). Combination of various 
mechanisms of biocontrol is useful in achieving the goal without genetic 
engineering (Janisiewicz, 1996).  PGPR strains INR 7 (Bacillus pumilus).
GBO3 (Bacillus subtilis), and ME1 (Curtobacterium flccumfaciens) were 
tested alone and in combinations for biocontrol against Colletotrichum
orbiculare (causing anthracnose), Pseudomonas syringae pv.  lachrymans
(causing angular leaf spot), and Erwinia tracheiphila (causing cucurbit wilt 
disease). Greater suppression and enhanced consistency was observed 
against multiple cucumber pathogens using strains mixture (Raupach and 
Kloepper, 1998).  Studies on combinations of biocontrol agents for plant 
disease control have included mixtures of fungi (Budge et al., 1995; Datnoff 
et al., 1993, 1995; De Boer et al., 1997; Paulitz et al., 1990), mixtures of 
fungi and bacteria (Duffy et al., 1996; Duffy and Weller, 1995; Hassan et 
al., 1997; Janisiewicz, 1988; 1996; Leeman et al., 1996; Leibinger et al., 
1997; Lemanceau and Alabouvette, 1991; Park et al., 1988) and mixtures of 
bacteria (De Boer et al., 1997; Janisiewiez and Bors., 1995; Johnson et al., 
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1993; Mazzola al., 1995; Pierson and Weller, 1994; Raaijmakers et al.,
1995; Roberts et al., 1997; Schisler et al., 1997; Stockwell et al., 1996; Sung 
and Chung, 1997; Waechter-Kristensen et al., 1994; Wei et al., 1996).  
Combinations of a strain of Trichoderma koningii with different 
Pseudomonas spp. isolates provided greater suppression of take-all disease 
than either the fungus or the bacterium alone (Duffy et al., 1996). Increased 
suppression of Fusarium wilt of carnation was observed by combining P.
putida WCS358 with non-pathogenic Fusarium oxysporum Fo47 
(Lemanceau et al., 1992, 1993). The enhanced disease suppression may be 
due to siderophore-mediated competition for iron by WCS358, which makes 
the pathogenic F. oxysporum strain more sensitive to competition for 
glucose by the non-pathogenic strain Fo47. Furthermore, strains of 
nonpathogenic Verticillium lecanii, Acremonium rutilum or Fusarium 
oxysporum with the fluorescent Pseudomonas spp. strains WCS358, 
WCS374 or WCS417 resulted in significantly better suppression of 
Fusarium wilt of radish compared to the single organism ( Leeman et al.
1996). Mixtures of fluorescent pseudomonads were significantly more 
suppressive of take-all than either used alone (Pierson and Weller, 1994; and 
Duffy and Weller, 1995). Similarly, chitinase-producing Streptomyces spp. 
and Bacillus cereus isolates used in conjunction with antibiotic-producing P. 
fluorescens and Burkholderia cepacia isolates had a synergistic effect on the 
suppression of rice sheath blight (Sung and Chung, 1997). Limited numbers 
of compatible and effective mixtures of biocontrol agents are available. The 
majorities of mixtures have no benefit or detrimental effects on biocontrol 
activity. Further, a mixture that improves activity under one set of conditions 
may be antagonistic under another set of conditions. A biocontrol product 
composed of a mixture of strains has a potential economical constraint.  
Production and registration of such a product will be more costly than a 
product composed of single strain. Development of mixtures of biocontrol 
agents should be emphasized, because these may result in better plant 
colonization, better adapt to the environmental changes that occur 
throughout the growing season, have a larger number of pathogen-
suppressive mechanisms and protect against a broader range of pathogens.

 In few cases combinations of biocontrol agents do not result in 
improved suppression of disease (Hubbard et al, 1983; Sneh et al, 1984; 
Miller and May, 1991; Dandurand and Knudsen, 1993). Tomato seedlings 
were treated with the potential biocontrol agents such as nonpathogenic 
strains of Fusarium spp., Trichoderma spp., Gliocladium virens,
Pseudomonas fluorescens, Burkholderia cepacia, and others in the 
greenhouse and transplanted into pathogen-infested field soil. Combinations 
of antagonists like multiple Fusarium isolates, Fusarium with bacteria, and 
Fusarium with other fungi, also reduced disease, but did not provide better 
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control than the nonpathogenic Fusarium (Larkin and Fravel, 1998). Use of 
a T. harzianum strain with a strain of P.  fluorescens were able to suppress 
root rot of pea caused by Aphanomyces euteiches f. sp. pisi but did not result 
in better disease suppression (Dandurand and Knudsen, 1993). Positive and 
negative interactions of introduced microorganisms and indigenous 
microflora can influence their performance in the rhizosphere. For example, 
two groups of microorganisms that occupy the same ecological niche and 
have the same nutritional requirements are bound to compete for nutrients 
(Bakker et al., 1988; Fukui et al., 1994; Janisiewicz and Bors, 1995; 
Raaijmakers et al., 1995). Siderophore-mediated competition for iron 
between the two biocontrol agents P. putida WCS358 and P. fluorescens
WCS374 decreased colonization of radish roots by the latter strain 
(Raaijmakers et al., 1995). Hubbard et al., (1983) described negative effects 
of endemic Pseudomonas spp. on T. harzianum. They suggested that 
negative effects were caused by effective competition for iron by the 
Pseudomonas spp. because addition of iron to naturally infested soil 
suppressed growth inhibition of T. harzianum and also suppressed Pythium
seed rot of pea.  Negative interaction between two biocontrol agents may 
also be due to detrimental effects of secondary metabolites produced by one 
organism on the other (Mew et al., 1994). Thus, an important pre-requisite 
for the desired effectiveness of strains appears to be compatibility of the co-
inoculated microorganisms (Li and Alexander, 1988; Baker, 1990; 
Raaijmakers et al., 1995). Numerous biotic and abiotic factors contribute to 
this inconsistent performance of biocontrol agents (Weller, 1988). 
Inadequate colonization of the rhizosphere, limited tolerance to changes in 
environmental conditions and fluctuation in the production of antifungal 
metabolites are among the most important factors (Duffy et al., 1996; 
Pierson and Weller, 1994). Antagonism between the indigenous microbial 
population and biocontrol agent or mixture of biocontrol agents applied can 
also influence the performance of a biocontrol agent in the rhizosphere.

 These results indicate that specific interactions of biocontrol agents 
influence disease suppression in combination. It is necessary, therefore to 
further investigate microbial interactions that enhance or detract biocontrol 
efficacy (Handelsman and Stabb, 1996) to understand and predict the 
performance of mixtures of biocontrol agents. Increasing the genetic 
diversity of biocontrol systems by the mixture of microorganisms may 
persist longer in the rhizosphere and utilize a wider array of biocontrol 
mechanisms (e.g. induction of resistance, production of antibiotics and 
competition for nutrients) under a broader range of environmental conditions 
(Pierson and Weller, 1994). Multiple organisms may enhance the level and 
consistency of control by providing multiple mechanisms of action, a more 
stable rhizosphere community, and effectiveness over a wide range of 
environmental conditions. In particular combinations of fungi and bacteria 
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may provide protection at different times or under different conditions, and 
occupy different or complementary niches. Such combinations may 
overcome inconsistencies in the performance of individual isolates. Several 
researchers have observed improved disease control using combinations of 
multiple compatible biocontrol organisms (Duffy et al., 1996; Pierson and 
Weller, 1994; Lemanceau, 1991; Lemanceau and Alabouvette 1991; Leeman 
et al., 1996; Park et al., 1988) and have demonstrated enhanced biocontrol of 
Fusarium wilt by combining certain nonpathogenic strains of F. oxysporum
with fluorescent strains of Pseudomonas.

7 DELIVERING PGPR: PROS AND CONS 

Advantages of a seed treatment with PGPR in a biocontrol system 
are: 1) their saprophytic nutritional status makes large scale production 
feasible, 2) only small amounts of inoculum are required, 3) application is 
simple, 4) independence from energy sources for survival, 5) systemic 
spread along the surface of the developing root system, and 6) antagonistic 
activity on the root surface during the economically important phase of early 
root infection by the pathogens. Their versatile metabolism, fast growth, 
active movement, and ability to readily colonize the root surface make these 
rhizobacteria suitable for seed bacterization. Further, seed treatments provide 
targeted application of PGPR, allowing earlier protection than with foliar 
sprays. The additional plant growth-promotion by PGPR treatments in 
comparison to chemical pesticides adds another advantage. However, 
microorganisms as biocontrol agents have a relatively narrow spectrum of 
activity compared with synthetic pesticides (Baker, 1991; Janisiewicz, 1988) 
and often exhibit inconsistent performance in practical agriculture, resulting 
in limited commercial use of biocontrol approaches for suppression of plant 
pathogens (Backman et al., 1997). However, growing popularity of 
biocontrol is its record of safety during the past 100 years. No 
microorganism or beneficial insect deliberately introduced or manipulated 
for biocontrol purposes has, itself, become a pest and there is no evidence 
for negative effects of biocontrol agents on the environment.  Effective 
biocontrol demands thorough knowledge of biological interactions at the 
ecosystem, organismal, cellular, and molecular levers. Biocontrol is also 
likely to be less spectacular than most physical or chemical controls but 
usually more stable and long lasting (Baker and Cook, 1974). Although 
biocontrol is having been used in agriculture for centuries, as an industry 
biocontrol is still in its infancy. 
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8 FUTURE PROSPECTS

Diseases are very common in plants and are responsible for the loss 
of approximately one third of the crop yield (Lugtenberg et al., 1994). 
Chemical pesticides that control plant diseases have become a threat to 
health and the environment and hence being banned worldwide. This has 
increased the interest in biocontrol of plant diseases. PGPR mediated 
agriculture is now gaining worldwide importance and acceptance for an 
increasing number of crops and managed ecosystems as the safe method of 
pest control. Biocontrol has untapped potential and is underused, under 
exploited, underestimated, often untried and therefore unproven. The new 
tools of recombinant DNA technology, mathematical modeling, and 
computer technology combination with a continuation of the more classical 
approaches such as importation and release of natural enemies and improved 
germplasm, breeding, and field testing should quickly move biocontrol 
research and technology into a new era. Although activity and effects of 
biocontrol have been reported for a number of antagonists, the underlying 
mechanisms are not fully understood. This deficiency in our knowledge 
often hinders attempts to optimize the biological activity by employing 
tailored application strategies. One can envision a number of different ways 
in which biocontrol efficacy of PGPR might be improved. Biocontrol 
efficacy of PGPR may be improved by genetically engineering them to over 
express one or more of these traits so that strains with several different anti-
phytopathogen traits can act synergistically. More detailed studies are 
needed on the composition of the rhizosphere population, the effect of 
cultivar on bacterial population dynamics, the influence of inoculum density 
on antagonistic activity, the survival of inoculum under adverse conditions, 
and the role of environmental conditions in altering the activity of 
rhizobacteria. An attempt to overcome problems of varying efficacy may be 
attained by strain mixing, improved inoculation techniques, or gene transfer 
of active genetic source of antagonists to the host plant (Oostendorp and 
Sikora, 1986). The soil microbes are active elements for soil development 
and the basis of sustainable agriculture. Form the point of sustainable 
agricultural development and good eco-environment establishment, we 
propose a scientific fertilizer that is to apply organic, inorganic and 
microbial fertilizers in a balance and rational way to keep high and stable 
yield. 
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Chapter 8 

VISUALIZATION OF INTERACTIONS OF 
MICROBIAL BIOCONTROL AGENTS AND 
PHYTOPATHOGENIC FUNGUS FUSARIUM
OXYSPORUM F. SP. RADICIS-LYCOPERSICI ON 
TOMATO ROOTS 

ANNOUSCHKA BOLWERK AND BEN J. J. LUGTENBERG 
Institute of Biology, Leiden University,Wassenaarseweg 64, 2333 AL Leiden, The Netherlands 

Abstract:       The fungus Fusarium oxysporum f. sp. radicis-lycopersici (F.o.r.l.) causes foot 
and root rot of tomato, which can be controlled by various microbes including 
Pseudomonas, Trichoderma and non-pathogenic Fusarium. Microbes labeled 
with autofluorescent protein (AFP) markers can be visualized in live samples 
using confocal laser scanning microscopy (CLSM). This enables the 
simultaneous determination of both pathogen and biocontrol agent in the 
tomato rhizosphere and provides a better understanding of the biocontrol 
processes. Results of CLSM suggest that mechanisms of biocontrol of plant 
pathogens include inhibition of spore germination, competition for niches and 
nutrients, antibiosis, predation, parasitism, and induction of host resistance.  

Key words:   biocontrol; confocal laser scanning microscopy; Pseudomonas; rhizosphere;
tomato foot and root rot; Trichoderma.

1         THE RHIZOSPHERE 

The rhizosphere is the area in proximity to the root system by which 
it is influenced (Hiltner, 1904). The exudation of carbon sources such as 
organic acids, sugars and amino acids (Vancura and Hovadik, 1965) by the 
root creates a nutrient-rich rhizosphere which stimulates microbial activity. 
The composition of root exudates is influenced by multiple factors such as 
plant species, root region, and abiotic and biotic factors of the surrounding 
soil. Major soluble components of tomato root exudates include sugars, 
organic acids and amino acids (Lugtenberg and Bloemberg, 2004).  The 
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microbial community in the rhizosphere includes viruses, bacteria, fungi, 
nematodes and protozoa. The composition of the microflora and microfauna 
differs in soil types, plant species and surrounding soils where fewer 
nutrients are available. Moreover, interactions between plants and 
microorganisms can be classified as pathogenic, saprophytic and beneficial 
(Lynch, 1990).

2          PATHOGENIC INTERACTIONS 

Pathogenic interactions can occur between microorganisms, such as 
parasitism of one fungus by another one (mycoparasitism) and the 
production of antibiotics by one organism that inhibit or kill other 
microorganism. Another pathogenic interaction involves microorganisms 
and plant roots resulting in plant diseases. Soil-borne plant diseases may be 
caused by nematodes, mites, bacteria, viruses, and fungi. The latter group 
causes the more damage to crop and its interaction with other plant 
pathogens generally has synergistic effect on plant disease. Plants can reject 
pathogens due to resistance and incompatibility and as a result non-host 
plants are not parasitized by the pathogens. Host-plants have a basic 
compatibility with the pathogen which is from the corresponding formae
speciales. These pathogens produce a set of pathogenicity factors that allow 
successful parasitism. Generally plant diseases cause 10-20% loss in 
production (James, 1981).  

3         BIOCONTROL OF PLANT DISEASES 

Biocontrol of plant diseases is generally due to the presence of 
disease-controlling microorganisms collectively labeled biocontrol agents 
(Alabouvette et al., 1979; Schroth and Hancock, 1982; Schippers et al.,
1987; Handelsman and Stabb, 1996). Factors such as soil pH and organic 
matter content contribute indirectly to the biocontrol of diseases by their 
effect on microbial activity. Microbial activity and their metabolites can act 
both directly and indirectly on the pathogen and/or on the plant, resulting in 
disease control (Mazzola, 2002).

Microbial analysis of these suppressive soils may contribute to the 
identification of potential biocontrol agents.  Biocontrol agents are usually 
isolated from naturally suppressive soils (Montesinos, 2003).  Since bacteria 
and fungi are natural enemies occurring in the soil, these organisms can 
proliferate in the plant rhizosphere while their effect on the environment is 
minimal. Different mechanisms of biocontrol have been described 
(Bloemberg and Lugtenberg, 2001; Thomashow and Weller, 1996; Whipps, 
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2001), depending on the biocontrol agent, pathogen, plant species, abiotic 
and biotic features of the soil. 

4 TOMATO FOOT AND ROOT ROT

Fusarium oxysporum spp. are saprophytic fungi which grow and 
survive for long periods on organic matter, in soil and in the rhizosphere of 
many plant species (Garrett, 1970). Some Fusarium species cause wilting or 
root rotting whereas others are non-pathogenic. Both pathogenic and non-
pathogenic Fusarium species can penetrate roots. In contrast to the non-
pathogenic ones, pathogenic strains can penetrate the vascular tissues and 
cause disease (Olivain and Alabouvette, 1997).  Wilt causing Fusarium spp.
are highly host-specific and are classified in many different formae speciales
based on the host plant species (Armstrong and Armstrong, 1981). The 
fungus Fusarium oxysporum f. sp. radicis-lycopersici (F.o.r.l.) causes 
tomato foot and root rot (TFRR) and is a serious constraint for field and 
greenhouse crops (Jarvis, 1988; Roberts et al., 2000). 

5         VISUALIZATION OF BIOCONTROL OF TFRR 

The effects of different biocontrol agents on the pathogen F.o.r.l.
were analysed. For visualization studies, the gnotobiotic sand system 
described by Simons et al. (1996) was used. This system was previously 
useful for visualizing interactions of roots with microbes labeled with 
autofluorescent protein (AFP) markers, such as Pseudomonas (Fig. 1A) 
(Bloemberg et al., 1997; Bloemberg et al., 2000) and the pathogen F.o.r.l.
(Figs. 1B through D) (Lagopodi et al., 2002). Quartz sand was used because 
it could easily be removed from the roots by gentle washing, after which the 
roots can be examined using CLSM. In contrast, the removal of soil from the 
root is difficult and subsequent microscopy studies are hampered due to the 
autofluorescence of the soil particles. The quartz sand system focuses well 
on the interactions between the pathogen and biocontrol agent due to the 
absence of other rhizosphere microorganisms which are present in non-
sterile soil systems.

Due to the absence of competing indigenous bacteria, the use of 
quartz sand results in a very high disease incidence (70-100%) and very 
efficient biocontrol   (6-15% diseased plants in the presence of Pseudomonas
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Fig. 1. Confocal laser scanning microscopical analysis of tomato root 

Two-day-old tomato seedlings were inoculated at time zero with cells of Pseudomonas
harboring a reporter plasmid expressing the rfp gene, which here appear as red cells (Panel A) 
and subsequently grown in a gnotobiotic sand system. Or two-day-old tomato seedlings were 
grown in a gnotobiotic sand system containing spores of F.o.r.l. (FCL14) (Panel B-D). F.o.r.l.
(FCL14) harbors a constitutively expressed sgfp gene and appears as green. Walls of tomato 
root cells appear as red due to autofluorescence. 
Panel A, Pseudomonas cells colonizing the intercellular junctions of root cells of an 
inoculated seedling planted in sterile sand three days after planting. Panel B, Initial 
colonization of the tomato root by F.o.r.l. (similar for Fo47) ‘attachment’ to root hairs three 
days after planting. Panels C and D (picture taken by A. Lagopodi), F.o.r.l. hyphae growing 
along the intercellular junctions five days after planting. The size bar represents 10 µm in all 
panels.

colonization by Pseudomonas and Fusarium.
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chlororaphis PCL1391). For example, one of the mutants (P. chlororaphis 
PCL1119) which is impaired in biocontrol when tested in non-sterile potting 
soil, could significantly reduce disease incidence to 38-60% in the 
gnotobiotic system (Bolwerk et al., 2003). This is likely due to the absence 
of indigenous bacteria, which allows higher levels of the mutant strain. As a 
result strain PCL1119 can effectively compete with the pathogen for root 
colonization.

Using CLSM in combination with organisms differentially labeled 
with AFPs allowed the simultaneous visualization of both pathogens and the 
biocontrol agent on the root under disease controlling conditions in the 
gnotobiotic system. The biocontrol agents tested belong to Pseudomonas,
Fusarium oxysporum and Trichoderma. For these analyses, tomato seedlings 
were grown for seven days in the gnotobiotic sand system and sand was 
infested with F.o.r.l.. The biocontrol agents  were inoculated  when (i) 
tomato seedlings were incubated with a bacterial suspension or a suspension 
of germinated Trichoderma spores (ii) fungi were mixed in the sand, either 
as spores (non-pathogenic F. oxysporum) or as mycelium (Trichoderma
spp.).

To obtain more insight, in vitro studies were carried out on the effect 
of biocontrol agents at the initial stage of spore germination by F.o.r.l..
Spore germination was analysed in tomato root exudates and in culture 
supernatants of the biocontrol agents. These in vivo and in vitro studies 
contributed to our understanding of disease control by the biocontrol agents. 

6.         MECHANISMS OF BIOCONTROL OF TFRR 

6.1  Antibiosis 

Pseudomonas chlororaphis strain PCL1391 produces the antifungal 
metabolite (AFM) phenazine-1-carboxamide (PCN). Analysis of the PCN-
biosynthetic mutant P. chlororaphis PCL1119 indicated that the production 
of PCN is required for biocontrol of TFRR in potting soil (Chin-A-Woeng et
al., 1998). Analysis of interactions of strains PCL1391 and PCL1119 or of 

causes stress on the pathogen, both on agar and in the tomato rhizosphere 
(Bolwerk et al., 2003). On agar, in the absence of bacteria, Fusarium hyphae 
grew straight in radial orientation with a low frequency of branching (Fig. 
2A). In the presence of either PCL1391 cells or of purified PCN growth 
directionality of the hyphae was altered; hyphae crossed    each  other while 

purified PCN with the pathogen at the cellular level indicated that PCN 
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Fig. 2. Differential interference contrast microscopy analysis of in vitro
effects of Pseudomonas chlororaphis PCL1391 on hyphal growth by and 

morphology of F.o.r.l.

F.o.r.l. was grown on microscopy glass slides covered with a thin layer of LB agar. Three 
days after growth F.o.r.l. hyphae were examined for effects of P. chlororaphis PCL1391 on 
growth and spore formation. Panel A, Growth of F.o.r.l. in the absence of bacteria. B through 
E, Growth of F.o.r.l. towards P. chlororaphis PCL1391, which is located (outside the picture) 
in the upper right corner (panel B, D and E) or at the left (panel C). B, Overview of the region 
close to the inhibition zone caused by PCL1391. B through D, Disturbance of hyphal growth 
directionality. C, Chlamydospores curly growing hyphae as well as thickening of hyphae was 
observed (arrow heads). D, Spiral growth of a hyphe. E, Increased branching frequency.  

growing in different directions (Fig. 2B) and some hyphae showed curly 
growth (Fig. 2C) or formed spirals (Fig. 2D). Additionally, chlamydospore-
like structures and swollen hyphae were observed (Fig. 2C, indicated by 
arrowheads) and branching frequency was increased (Fig. 2E). On agar, 
stress effects were not observed in the presence of cells of the PCN-
biosynthetic mutant PCL1119, indicating that PCN is causing the stress in 
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the presence of PCL1391 cells. In the tomato rhizosphere, cells of PCL1391 
and purified PCN were observed to cause comparable stress on the pathogen 
F.o.r.l. (Bolwerk et al., 2003). In the presence of either cells of PCL1391 or 
purified PCN, growth directionality was altered as indicated by the abrupt 
changes in growth direction (Fig. 3A) and by curly growth of hyphae (Fig. 
3B). Hyphal morphology was affected as well; the number of vacuoles (Fig. 
3C) and the diameter of some hyphae increased (Fig. 3D). In the presence of 
PCL1391 and purified PCN an altered branching pattern was observed: fork-
like branching structures consisted of three branched hyphae, whereas in the 
absence of bacteria the structures consisted of two branched hyphae 
(Bolwerk et al., 2003) 

Chin-A-Woeng et al. (2000) demonstrated previously that efficient 
colonization of the tomato root system is essential for suppression of TFRR 
by strain PCL1391. Root colonization is considered to be the delivery 
system for AFMs, resulting in inhibition of the pathogen over the total root.  

6.2        Competitive spore germination limiting root colonization 

Spore germination of a biocontrol agent F. oxysporum Fo47 is more 
efficient than F.o.r.l. in tomato root exudates and in solutions of glucose as 
well as citric acid (Bolwerk, 2005). Consequently, Fo47 utilizes more 
nutrients and subsequently proliferates stronger. In addition, the inoculum of 
Fo47 required for efficient biocontrol is fifty times higher than F.o.r.l.. As a 
result Fo47 hyphae reach the root earlier and in higher numbers compared to 
the hyphae of the pathogen and subsequent root colonization by F.o.r.l. is 
reduced in the presence of Fo47. A prediction which was confirmed by the 
CLSM visualization studies. In these studies tomato seedlings were grown in 
sand infested with spores of Fo47 and/or F.o.r.l.. Subsequently, whole roots 
(from crown to root tip) were analyzed for colonization by either fungi. Fo47 
hyphae were observed at two to five sites per root whereas F.o.r.l. hyphae 
could not be observed or was observed at one site after three days of growth. 
The total root area colonized by F.o.r.l. was reduced up to 10 times in the 
presence of Fo47 during the seven days of the experiment. Additionally, the 
intensity of root colonization by F.o.r.l. was reduced as indicated by the 
absence of ‘heavy colonization’ in the presence of Fo47 (Bolwerk, 2005).  

6.3        Secondary metabolites produced by biocontrol agents 

The ability of biocontrol agents to inhibit spore germination of the 
pathogen F.o.r.l. can contribute to the biocontrol of TFRR. Pilot experiments 
indicated that culture supernatants of both P. fluorescens WCS365 and P. 
chlororaphis PCL1391; grown in King’s medium B (KB; King et al., 1994), 
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limit spore germination of F.o.r.l. from 40% to 30% and 4%, respectively. 
When bacteria were grown in minimal BM medium (Meyer and Abdallah, 
1978), the percentage of spore germination was lowered from 84% to 58% 
and 37% by strains WCS365 and PCL1391, respectively. Analysis of a GacS 
minus mutant of strain PCL1391 indicated that secondary metabolites, under 
the regulation of the two component system GacA/GacS, produced both in 
KB and BM media, contribute to the inhibition of spore germination by 
PCL1391.

Culture supernatant of T. harzianum T22 was shown to inhibit the 
germination of F.o.r.l. spores from 57 to 33% in vitro. Similarly, culture 
filtrate of T. atroviride P1 reduced germination of F.o.r.l. spores from 57% 
to 1-3% (Bolwerk, 2005).These observations indicate that these strains 
produce extracellular compounds which inhibit spore germination. Mutant 
analysis of strain P1 showed that both the CHIT42 endochitinase and 
CHIT73 exochitinase produced by P1 contribute to the inhibition of spore 
germination. It is likely that these extra-cellular compounds inhibit spore 
germination in the rhizosphere as well. As a result, the subsequent growth of 
F.o.r.l. towards the root, and colonization of the tomato root by F.o.r.l. is 
reduced. This mode of action is  supported by CLSM analysis which showed 
that severity of root colonization and total area colonized by F.o.r.l. were 
significantly reduced in presence of the wild type strain P1 but not in the 
presence of the endo- and exochitinase mutants. These mutants were also 
impaired in their ability to control TFRR, both in non-sterile potting soil and 
in the gnotobiotic sand system (Bolwerk, 2005). CLSM analysis showed that 
like strain P1, strain T22 also significantly reduced the severity and total root 
colonization by F.o.r.l..  This effect is likely due to the production of 
chitinases and glucanases that limit spore germination of the pathogen 
F.o.r.l. (Bolwerk, 2005).  

6.4         Competition for niches and nutrients on the tomato root 

 Analyzing roots of seedlings coated with bacteria grown in sand 
infested with spores of F.o.r.l., showed that cells of strains PCL1391 and 
WCS365 colonize the root faster than the pathogen. Biocontrol agents 
occupy the same niche, i.e., the cellular junctions of the tomato root cells 
occupied by F.o.r.l.  (Figs. 1A and 1D). At these sites root exudate is 
thought to be secreted (Chin-A-Woeng et al., 1997; Lagopodi et al., 2002). 
As a result Pseudomonas can effectively compete for both niches and 
nutrients and reduce root colonization of F.o.r.l.  up to 80% (Bolwerk et al., 
2003).  

Analyses of tomato root colonization and disease development of 
seedlings grown in sand infested with spores of both F.o.r.l. and Fo47 
showed that at least a 50-fold excess of biocontrol agent over pathogen was 
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required to obtain control of TFRR. Root colonization by Fo47 and F.o.r.l.
involves the same niches at the root but root colonization by Fo47 is slower, 
less aggressive and occurs to a lesser extent than that of the pathogen despite 
its fifty-fold higher inoculum (Fig. 3E with 3F). High Fo47 inoculum is 
required to compensate for the difference in root colonization efficiency and 
is necessary to allow Fo47 to effectively compete for niches and nutrients 
when both fungi reach the rhizoplane after spore germination in the 
rhizosphere. This is confirmed by the decrease in root colonization by the 
pathogen at increasing concentrations of Fo47 (Bolwerk, 2005). 

The growth of T. atroviride T22 strongly depends on the nutrient 
and mineral composition present in the gnotobiotic system. CLSM studies 
on root colonization by T22 showed differences in root colonization with 
increasing hyphal biomass in sand moisturized with (i) plant nutrient 
solution (PNS; Hoffland et al., 1989), (ii) PNS with sucrose and (iii) 
hydroponic solution (HPS; Yedidia et al., 1999). Comparison of the mineral 
composition of PNS and HPS showed that the latter contains more minerals 
(K, Ca and NH4NO3) and the concentration of trace elements is up to 5000 
times higher. This indicates that growth of strain T22, and its ability to 
compete for niches and nutrients, strongly depends on the composition and 
concentration of minerals and/or trace elements.  

6.5       Colonization of hyphae 

Cells of Pseudomonas strains PCL1391 and WCS365 colonize 
hyphae in addition to root colonization (Fig. 3G). Several pilot experiments 
indicated that Pseudomonas could grow on the exudates and culture 
supernatants of F.o.r.l. (de Weert and Kamilova, personal communication).
Consequently, bacteria that attach to the hyphae may feed on the hyphae, 
which could be the basis of the observed extensive hyphal colonization (Fig. 
3G and 3H). The pathogenicity of the fungus might be negatively affected 
by feeding of bacteria.  

6.6        Predation and parasitism 

The PCN biosynthetic mutant P. chlororaphis PCL1119 and its 
parental strain PCL1391 cause comparable stress on pathogens in the 
gnotobiotic system, although the mutant does so with a delay of three days 
(Bolwerk et al., 2003). We therefore hypothesize (a) that the production of 
extra-cellular metabolites other than PCN, such as chitinase, hydrogen 
cyanide and/or protease (Chin-A-Woeng et al., 1998) cause stress; (b) that 
PCN accelerates the occurrence of these stresses within the pathogen 
(Bolwerk et al., 2003); and (c) the production of chitinase and protease
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Fig. 3. Confocal laser scanning microscopical analysis of tomato root 
colonization by Fusarium and Pseudomonas.
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Two-day-old tomato seedlings were coated with Pseudomonas bacteria harboring a reporter 
plasmid expressing the rfp gene, which here appear as red cells (panel A-D, G-H). Seedlings 
were grown in a gnotobiotic sand system containing spores F.o.r.l. (FCL14) (Panel A-E, G-
H) or spores of Fo47 (FCL31) (panel F). F.o.r.l. (FCL14) harbors a constitutively expressed 
sgfp gene and appears as green. Fo47 (FCL31) harbors a constitutively expressed ecfp gene 
and appears as blue. Walls of tomato root cells appear as red due to autofluorence (panel A-D, 
G-H) or gray due to contrast light (panel E and F). Panel A-D, in presence of P. chlororaphis
PCL1391 different stress effects are observed within F.o.r.l. hyphae. A, Abrupt changes in 
growth direction of F.o.r.l. hyphae (indicated by arrow heads). B, Curly growth of F.o.r.l.
hyphe. C, Increased number of vacuoles in F.o.r.l. hyphae. D, Thickening of F.o.r.l. hyphae. 
Panel E and F, highest density of hyphal network of F.o.r.l. (E) and Fo47 (F) colonizing the 
tomato root. Panel G and H (picture taken by A.H.M.Wijfjes), Colonization of F.o.r.l. hyphae 
by Pseudomonas bacteria. The size bar represents 10 µm in all panels. 

enables strain PCL1391 to attack the cell wall of the fungus and bacterial 
cells subsequently utilize the released compounds. 

6.7       Induction of systemic resistance 

Extensive root colonization by P. fluorescens WCS365 (Dekkers et
al., 2000), in contrast to strain PCL1391 (Chin-A-Woeng et al., 2000), is not 
essential for biocontrol of TFRR. Apparently for WCS365 the presence of 
cells at the top of the root is sufficient to cause biocontrol. Gerrits and 
Weisbeek (1996) showed that strain WCS365 triggers induced systemic 
resistance (ISR) in Arabidopsis thaliana. Therefore, ISR is thought to be 
involved in the control of TFRR by P. fluorescens WCS365. 

Analyses of tomato root colonization and disease development after 
coating the seedlings with Fo47 showed that, despite the lack of distribution 
of its hyphae over the root, Fo47 was able to reduce the disease incidence. 
This resembles the above observation of strain WCS365 and suggests that 
when Fo47 spores are coated on seedlings, competition for niches and 
nutrients plays a moderate role, if any, and that another mechanism 
(inducing systemic resistance) is more important for the reduction of the 
number of diseased plants. Fuchs et al. (1997) illustrated the ability of strain 
Fo47 to protect tomato plants against F. oxysporum f. sp. lycopersici Fol8 
when inoculated separately in time or space, an observation which also 
indicates that F. oxysporum Fo47 is able to induce systemic resistance in 
tomato.

Incubation of seedlings in suspensions of T. atroviride P1 and T.
harzianum T22 induced altered root formation: a new main root emerged 
from the original seed-generated root, which did not grow further and 
developed a brown color. In addition, this newly emerged root was generally 
shorter than the corresponding root structure of non-treated seedlings 
(Bolwerk, 2005). Interestingly, the mutants D11 and P1ND1, impaired in the 
production of chitinases (Woo et al., 1999; Brunner et al., 2003), did not 
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cause the development of new roots (Bolwerk, 2005). In tomato, chitinases 
and glucanases have been described as pathogenesis-related proteins (Duijff 
et al., 1998; Fuchs et al., 1997; Joosten and De Wit, 1988). Other studies 
showed that chitinase deposition was correlated with pathogen distribution
in F.o.r.l.-infected tomato roots (Benhamou et al., 1990). Possibly, 
chitinases and glucanases produced by T. atroviride P1 and T. harzianum
T22 could enhance plant defense responses by a positive feedback 
mechanism. The induction of plant defense responses could be a mechanism 
of biocontrol of TFRR by T. atroviride P1 and T. harzianum T22. The ability 
of Trichoderma spp. to induce a defense response within tomato plants was 
described by De Meyer et.al. (1998) who showed that T. harzianum T39, 
spatially separated from Botrytis cinerea, reduced disease symptoms in 
tomato.

7          CONCLUDING  REMARKS 

Biocontrol is an attractive alternative to chemical control of plant 
diseases. Unfortunately, biological control is not always effective, especially 
in field trials. To improve the consistency of biocontrol, an extensive 
fundamental knowledge of various steps of biocontrol of disease is needed. 
Visualization studies of interactions between plant root, pathogen, and 
biocontrol agent deepened our insight in the following aspects: (i) The 
ecology of a biocontrol agent with respect to its survival and fitness in 
different growth substrates and conditions. The development of T.
harzianum T22 in the tomato rhizosphere was shown to be strongly 
dependent on the mineral composition of the gnotobiotic system. (ii) The 
biocontrol traits of the agents that contribute to disease control. Hyphal 
colonization (this chapter, 6.5) and parasitism (this chapter, 6.6) by 
Pseudomonas may represent an efficient mechanism of biocontrol by these 
bacteria. (iii) Our studies indicated that the preferential spore germination by 
the non-pathogenic F. oxysporum Fo47 is likely to contribute to the control 
of TFRR. Inhibition of spore germination of F.o.r.l. due to the production of 
extra-cellular enzymes is considered to be the main mechanism of biocontrol 
by both Trichoderma strains analyzed. (iv) The interactions between plant 
root, pathogen and biocontrol agent and their visualization studies in the 
rhizosphere contributed to a better understanding of the temporal/spatial 
mechanisms in which the biocontrol agents affect the pathogen F.o.r.l..

The complexity of the interactions between plant, biocontrol agent 
and pathogen influence the efficiency of biological control of plant diseases. 
Analysis of gene expression in the pathogen and the biocontrol agent on the 
tomato root will provide more information on the regulation of pathogenicity 
and biocontrol traits. To explore the role of hyphal colonization in the 
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biocontrol of TFRR by Pseudomonas, attachment and subsequent 
colonization of the hyphae should be studied in more detail, focusing on 
gene expression profiles, stress responses of the pathogen and biocontrol 
ability of the bacteria. 
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Chapter 9 

A PROTEOMICS PERSPECTIVE ON 
BIOCONTROL AND PLANT DEFENSE 
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Abstract:  Plants are invaded by a large number of pathogens and they resist pathogen 
attacks with preformed defenses and by inducing defense responses. Nature is 
bestowed with many biocontrol agents including plant growth promoting 
rhizobacteria (PGPR) and Trichoderma species. PGPR colonise the 
rhizosphere and regulate plant growth by inducing defense responses in plants 
via an induced systemic resistance (ISR) and/or a systemic acquired resistance 
(SAR), increase the availability of nutrients to plants, produce growth 
hormones, suppress phytopathogens, release volatile compounds, secrete anti-
microbial metabolites and decrease phytotoxic microbial communities in the 
rhizosphere. Trichoderma harzianum controls phytopathogenic fungi by 
secreting cell wall-degrading enzymes, antibiosis and stimulating plants to 
produce their own anti-microbial compounds. Though genome sequencing has 
already been done for some symbiotic and phytopathogenic bacteria, genome 
sequencing of five PGPR has been only established recently. Agrobacterium
radiobacter K84 and four strains of Pseudomonas fluorescens, Pf0-1, Pf-5, 
Q8r1 and SBW-25, are being sequenced. The utilization of proteomics to 
explore biocontrol agents and their mechanisms in plant disease management 
is in the stage of infancy. It has the potential to revolutionize the way research 
is conducted on the biocontrol agents and plant defense mechanisms. The 
interaction between a biocontrol agent, a phytopathogen and a plant brings 
significant changes to the plant proteome and metabolism. Recently, globular 
and organellar proteomics approaches have been employed to study the 
changes in plant proteome after treating with biocontrol agent. In addition to 
biocontrol agents, proteomics studies on plant defense mechanisms against 
fungal, bacterial and viral pathogens are also discussed. 

Key words: biocontrol; defense proteins; globular proteomics; HPLC; induced resistance; 
mass spectrometry, organellar proteomics; PGPR; phytopathogen; 
Trichoderma; two-dimensional electrophoresis. 
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1 INTRODUCTION 

1.1 Induced resistance 

Plants are attacked by many pathogens and they resist pathogen 
invasion both by inducing defense responses and with preformed defenses 
such as anti-microbial secondary compounds. Localised and systemic 
induced resistance occurs in most plants in response to attack by pathogenic 
microbes, physical damage due to insects or other factors, treatment with 
various chemical inducers and the presence of rhizobacteria (Harman et al.,
2004a). There are three generally recognised pathways of induced resistance 
in plants. The production of pathogenesis-related (PR) proteins takes place 
by the attack of pathogenic micro-organisms in the first pathway. In the 
second pathway, PR proteins are generally produced as a result of wounding 
or necrosis-inducing organisms such as herbivory by insects. Typically, the 
pathogen-induced pathway relies on salicylic acid (SA) produced by the 
plant as a signalling molecule, whereas the herbivory-induced pathway 
depends on jasmonic acid (JA) as a signalling molecule. The latter pathway 
is designated as induced systemic resistance (ISR). This term is also used to 
refer resistance induced by plant growth promoting rhizobacteria (PGPR), 
non-pathogenic root-associated bacteria. Recently, rhizobacteria-induced 
systemic resistance (RISR) was classified as the third pathway (Harman et 
al., 2004a). Different pathways are induced by different challenges, although 
there seems to be cross talk or competition between pathways (Pieterse and 
van Loon, 1999; Harman et al., 2004a). The JA- and SA-induced pathways 
are characterised by the production of a cascade of PR proteins. These 
include antifungal chitinases, glucanases and thaumatins, and oxidative 
enzymes such as peroxidases, polyphenol oxidases and lipoxygenases. Low 
molecular weight compounds with anti-microbial properties (phytoalexins) 
can also accumulate. Any plant-wide process that results in the direct 
accumulation of PR proteins or phytoalexins is referred as systemic acquired 
resistance (SAR), which requires SA and confers long-lasting protection in 
both local and systemic tissues against a broad spectrum of micro-organisms 
(Durrant and Dong, 2004; Harman et al., 2004a).

Induced defense can be activated upon recognition of elicitors of 
pathogen. Plant disease resistance (R) proteins detect the disease-causing 
organisms by recognising specific pathogen effector molecules produced 
during infection process (Martin et al., 2003). Based on the combination of 
structural motifs, five classes of effector-specific R proteins are known, and 
their sequences suggest roles in both effector recognition and signal 
transduction. Although some R proteins may act as  primary  receptors of  
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pathogen effector proteins, most appear to play indirect roles in this process. 
The functions of various R proteins require phosphorylation, protein 
degradation or specific localisation within the host cell. Some signalling 
components are shared by many R gene pathways whereas others appear to 
be pathway specific. Readers can refer the comprehensive review written by 
Martin et al. (2003) for details about five classes of R proteins and other 
proteins that do not fit into five classes. New technologies arising from the 
proteomics revolution will greatly expand our ability to investigate the role 
of R proteins in plant disease resistance (Martin et al., 2003).

1.2 Biocontrol

Three types of bacteria-plant interactions are found in nature, which 
are symbiotic, pathogenic and associative (Puhler et al., 2004). The 
symbiotic interaction results in the formation of root nodules in plants. The 
physiological and biochemical status of nodules and symbiotic relationship 
change depending on the environmental conditions (Gurusamy et al., 1999; 
2000; Chinnasamy and Bal, 2003a,b,c; Chinnasamy et al., 2003a,b). Genes 
from both the plant and rhizobia play a major role in the establishment and 
maintenance of symbiosis, in which the plant supplies reduced carbon to the 
bacteroid in exchange for fixed nitrogen (Perret et al., 2000). 
Phytopathogens produce diverse interactions. They employ specific methods 
to attack plant cells and to use plant substances for their growth. In the 
associative interaction, both the bacteria and plant benefit each other. Many 
of these associative bacteria act as biocontrol agents.  Fungi, viruses and 
other micro-organisms also form different kinds of association with plants, 
which may be harmful or beneficial to plant growth. Recently, many micro-
organisms are increasingly used as inoculants for biocontrol, biofertilisation 
and phytostimulation, though some inoculants such as Rhizobium and 
Bradyrhizobium have been successfully marketed for more than a century 
(Bloemberg and Lugtenberg, 2001; Ping and Boland, 2004).  

Biocontrol is the process by which a pathogenic organism is 
maintained at low inoculum density or controlled or eradicated by beneficial 
organisms. Several microbes and insects present in the natural environment 
serve as potential biocontrol agents. They are non-pathogenic, 
environmental-friendly, cheaper to produce and easy to handle, and may 
create long-lasting effects. Biocontrol agents such as PGPR and 
Trichoderma harzianum act as attractive alternative to pesticides. Kloepper 
and Schroth (1978) first defined PGPR, which include soil bacteria that 
colonise the roots of plants following inoculation onto seed and enhance 
plant growth. PGPR regulate plant growth and suppress pathogen ingress 
into the plant system by various mechanisms, which include: induction of 



 Chinnasamy, G.236

defense responses in plants through an ISR and /or a SAR, increase the 
availability of nutrients, and produce growth hormones, volatile compounds 
and anti-microbial metabolites (Rodriguez and Fraga, 1999; Bloemberg and 
Lugtenberg, 2001; Walling, 2001; Persello-Cartieaux et al., 2003; Mew et
al., 2004; Ping and Boland, 2004). These processes can cause substantial 
changes to the plant proteome and metabolism. Root colonisation by 
antagonistic fungi T. harzianum enhances root growth and development, 
crop productivity, resistance to abiotic stress, and uptake and use of nutrients 
(Harman, 2000; Yedidia et al., 1999, 2000; Harman et al., 2004a). Bacillus
subtilis GB03, MBI205, MBI600, B. amyloliquefaciens GB99 (IN037a), B.
cereus UW85, B. pumilis GB34 (INR-7), BacJ, Burkholderia ambifaria
AMMDR1, Methylobacter extorquens, Pantoea agglomerans C9-1, 
Pasteuria penetrans, Pseudomonas fluorescens A506, Pf0-1, Pf-5, Q8r1, 
SBW-25, P. aureofaciens 30-84, Streptomyces griseoviridis K61, S. lyticus,
Aspergillus flavus and T. hamatum T382 are also used as biocontrol agents 
(Fravel, 1988; Stohl et al., 1999; Knox et al., 2000; Ryu et al., 2003, 2004; 
Puhler et al., 2004). Most of these strains have been recently recommended 
as prioritised biocontrol agents for genome sequencing. 

1.3 Proteomics 

Proteomics is a leading field of science with huge potential. Wilkins 
and co-workers conceptualised the term ‘proteome’ to define the expressed 
complement of a genome (Wasinger et al., 1995; Wilkins et al., 1995). 
Proteomics is defined as the systematic analysis and documentation of all 
protein species and their post-translational modifications in an organism or a 
specific type of tissue or a cell or an organelle at a given time (Wasinger et
al., 1995; Blackstock and Weir, 1999; Cahill et al., 2000; Pandey and Mann, 
2000; Graves and Haystead, 2002; Patterson and Aebersold, 2003; Phizicky 
et al., 2003; Simpson, 2003). Proteomes are modified in function of biotic 
and abiotic factors. Though proteomics is advanced in animals and micro-
organisms, it is still at the initial phase in plant science. Some of the 
important factors that influence the plant proteomes are disease states, insect 
damages, developmental stages, cell and tissue types, environmental stresses 
and soil conditions. The possibility to monitor alterations in protein profiles 
through the cutting edge proteomics technology is valuable for a deeper 
understanding of plant defense strategies against diseases and molecular 
mechanisms behind the biocontrol. 

Proteomics predominantly employs the classical techniques of two-
dimensional gel electrophoresis (2-DGE) and mass spectrometry (MS) 
(Westermeier and Naven, 2002; Simpson, 2003, 2004). In 2-DGE, proteins 
are separated by isoelectric focusing (IEF) in the first dimension based on 
their charge and then resolved by sodium dodecyl sulphate-polyacrylamide  
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gel electrophoresis (SDS-PAGE) in the second dimension based on their 
molecular weight (Graves and Haystead, 2002; Salekdeh et al., 2002). 
Separated proteins have been visualised by numerous staining methods or by 
autoradiography. They can be identified by comigration with known 
proteins, immunoblotting, N-terminal sequencing, peptide mass 
determination by MS, peptide sequencing by tandem MS, and correlating the 
mass and sequence data with information in protein, genome and expressed 
sequence tag (EST) databases (McDonald and Yates III, 2000; Graves and 
Haystead, 2002; Patton, 2002). Alternative approaches that are becoming 
more popular are based on separation of proteins using multidimensional 
liquid chromatography followed by identification of proteins using MS or 
tandem MS (Palfree et al., 2003; Simpson, 2003; Apale et al., 2004).  

Research on biocontrol agents, phytopathogens and plant defense 
mechanisms is changing dramatically in the advent of genomics and 
proteomics technologies. Most of the genome sequencing works have been 
directed towards phytopathogenic and symbiotic organisms (Kaneko et al.,
2000; Simpson et al., 2000; Galibert et al., 2001; Goodner et al., 2001; 
Wood et al., 2001; da Silva et al., 2002; Kaneko et al., 2002; Salanoubat et
al., 2002; Van Sluys et al., 2002; Buell et al., 2003; Weidner et al., 2003; 
Puhler et al., 2004). Though many genome sequencing projects are 
completed for plant pathogenic and symbiotic organisms, no genome project 
is yet finished for associative PGPR and other biocontrol agents. Currently, 
Agrobacterium radiobacter K84 and four strains of Pseudomonas 
fluorescens namely Pf0-1, Pf-5, Q8r1 and SBW-25 are being sequenced 
(Table 1). 

Table 1. Genome sequencing projects undergoing for root colonising plant 
growth promoting rhizobacteria. 

Organism Web-site 
A. radiobacter K84 http://depts.washington.edu/agro/homeM.htm 
P. fluorescens Pf0-1 http://genome.jgi-

psf.org/draft_microbes/psefl/psefl.home.html 
P. fluorescens Pf-5 http://www.ars-grin.gov/ars/PacWest/ 

Corvallis/hcrl/Pf5genome/status.htm 
P. fluorescens Q8r1 http://www.wsu.edu/~mavrodi/q8r1.htm 
P. fluorescens SBW-25 http://www.sanger.ac.uk/Projects/P_fluorescens/

Accumulation of vast amount of genomic data paved the way to 
analyse and compare the gene products, proteins, using a powerful 
proteomics technology. In recent years, proteomics have been used to study 
the interactions of symbiotic (Natera et al., 2000; Saalbach et al., 2002; 
Rolfe et al., 2003; Wienkoop and Saalbach, 2003; Bestel-Corre et al., 2004; 
Djordjevic, 2004; Hoa et al., 2004) and pathogenic (Konishi et al., 2001; 
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Rep et al., 2002; Keon et al., 2003; Smolka et al., 2003; Ventelon-Debout et 
al., 2004) organisms with plants. However, application of proteomics 
strategies in elucidating the mechanisms of biocontrol and induced 
resistance is not yet common. 

In this chapter, I focus on the current status of proteomics-based 
studies in biocontrol and plant defense mechanism against fungal, bacterial 
and viral pathogens.  

2 PROTEOMICS RESEARCH IN BIOCONTROL

Grinyer et al. (2004b) first time reported the proteome of the 
biocontrol fungus T. harzianum, which is a soil-borne filamentous fungus 
that can prevent the growth of a range of pathogenic fungi on many types of 
crop plants, providing an environmentally benign alternative to chemical 
fungicides. Twenty five protein spots belonging to 22 different genes were 
identified from a whole-cell protein reference map of T. harzianum by 
employing a combination of 2-DGE, matrix-assisted laser 
desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS), 
liquid chromatography tandem mass spectrometry (LC MS/MS) and de novo
sequencing. Studying proteomes of target cell organelles termed as 
subcellular or organellar proteomics is a promising approach because they 
represent discrete functional units and their complexity in protein 
composition is reduced relative to whole cells (Taylor et al., 2003). 
Subcellular proteomics has the capability to screen not only previously 
unknown gene products but also to assign them, along with other known but 
poorly characterised gene products, to particular subcellular structures 
(Dreger, 2003). Grinyer et al. (2004a) mapped the mitochondrial proteins of 
T. harzianum using a systematic proteomic approach. The mitochondrial 
proteins identified include: several proteins of tricarboxylic acid cycle and 
electron transport chain, chaperones, other protein-binding and import 
proteins, ketol-acid reductoisomerase, probable elongation factor EF-Tu and 
ADP/ATP carrier protein. T. harzianum secretes a range of cell wall-
degrading enzymes that break down the cell wall of phytopathogenic fungi, 
leading to death (Harman and Kubicek, 1998). Antibiotics are also secreted 
from T. harzianum during the attack on phytopathogenic fungi (Lorito et al., 
1996). Trichoderma species produce a wide range of antibiotic substances, 
more than 100 different metabolites. They also strongly stimulate plants to 
produce their own anti-microbial compounds (Sivasithamparam and 
Ghisalberti, 1998; Harman et al., 2004a). Therefore, T. harzianum alone or 
in combination with chemical fungicides gives some plants adequate 
protection against phytopathogens (Lorito et al., 1994). 
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Proteome analysis of Trichoderma strain-22 (T-22) revealed 
proteins that are homologues of Avr4 and Avr9 from Cladosporium fulvum.
Similar proteins were also produced by T. atroviride strain P1 (Woo, 2003; 
Harman et al., 2004a). Proteomes from five-day old maize seedlings grown 
from seeds either treated or not treated with T-22 were fractionated by 2-
DGE. Approximately 40% of the proteins that were seen in the presence of 
T-22 were not visible in gels that contained proteins from untreated plants 
(Harman et al., 2004a, b). Similar results have been obtained using bean and 
T-22 (Harman et al., 2004a, b). These results indicate that biocontrol fungi 
strongly modify plant metabolism, which in most cases benefits the plant 
(Harman et al., 2004a). Sonawane et al. (2003) used 2-DGE, MS and N-
terminal sequencing to identify number of enzymes and transporters 
involved in amino acid uptake and metabolism in P. fluorescens ATCC 
13525 and P. putida KT2440. 

In all ecosystems, micro-organisms have to compete with each other 
for space and nutrients. Numerous antibiotics produced by a variety of 
bacteria and other microbes play a prominent role in antagonistic 
interactions. Proteomics approaches were used to elucidate the complex 
cellular responses of B. subtilis (Bandow et al., 2003) and Staphylococcus
aureus (Singh et al., 2001) to antibiotics. However, they have not yet been 
applied to study the antibiotic proteins and peptides produced by beneficial 
micro-organisms such as PGPR in relation to biocontrol.  

Recently, the effect of an antibiotic (concanamycin A) produced by 
S. halstedii on protein levels in the filamentous fungus A. nidulans was 
studied (Melin et al., 2002). Proteins such as concanamycin induced protein 
A (CipA) [homologous to cadmium induced protein 1 (CIP1) in Candida
sp.], CipB (homologous to LovC, an enoyl reductase involved in the 
biosynthesis of lovastatin, a secondary metabolite identified in A. terreus), 
CipC (homologous to an EST sequence from A. niger), and CipD were up 
regulated. At the same time, concanamycin repressed protein A (CrpA) was 
down regulated and it was homologous to cross pathway control B (CpcB) 
protein that controls the global amino acid synthesis and the initiation of 
sexual development in A. nidulans. CrpB protein, homologous to 
glyceraldehyde-3-phosphate dehydrogenase A (GpdA), was also down 
regulated, which may reflect a response to antibiotic induced stress with a 
concomitant change in intracellular conditions (Melin et al., 2002). It 
indicates that proteome analysis is an useful tool for studying effects on gene 
expression during competitive interactions between bacteria and fungi. 

A proteomic approach involving two-dimensional differential gel 
electrophoresis, MS and function-based activity profiling has been used to 
examine changes in the gut proteins of Indian-meal moth larvae resistant to 
insecticidal proteins (Cry toxins) of B. thuringiensis (Candas et al., 2003). 
This approach found an increased glutathione utilisation, elevation in 



 Chinnasamy, G.240

oxidative metabolism, differential maintenance of energy balance, alteration 
in a low molecular mass acidic protein homologous to F1F0-ATPase and 
decrease in the level of chymotrypsin-like proteinase in the resistant larvae. 
Several Streptomycetes species have been shown to be effective biocontrol 
agents for plant diseases (Doumbou et al., 2001). During the interaction 
between aquatic plant (Lemna minor) and saprophytic Streptomycetes 
coelicolor, 31 proteins were either induced or repressed in S. coelicolor
(Langlois et al., 2003). The induced proteins were involved in energetic 
metabolism (glycolysis, pentose phosphate pathway and oxidative 
phosphorylation), protein synthesis, degradation of amino acids, alkenes, or 
cellulose, tellurite resistance, and growth under general physiological or 
oxidative stress conditions. The repressed proteins were synthesised under 
starvation. This study suggests that carbon and energy are acquired through 
degradation of compounds found in plant exudates. Bacteria utilise this 
additional carbon source in adaptations to physiological and oxidative stress. 
These traits might be essential for rhizosphere competence (Langlois et al.,
2003). The setup of two-dimensional protein reference map for three-way 
interaction between plant, pathogen and biocontrol agent will provide a solid 
understanding on the molecular mechanisms behind this interaction and the 
role of biocontrol agent in plant disease control. It will also help in the 
characterisation of plant defense proteins, PR proteins, antibiotics and post-
translational modifications of proteins during the three-way interaction. 

3 PROTEOMICS RESEARCH IN PLANT DEFENSE 
MECHANISM

3.1 Plant defense responses to fungal attack 

Proteomic analysis using one-dimensional gel electrophoresis (1-
DGE), immunoblotting, peptide mass finger printing and mass spectrometric 
sequencing identified two isoforms of PR protein (PR-1a and PR-1b), -1,3-
glucanases (PR-2 and PR-Q’b), chitinase (PR-3) and PR-5x in tomato xylem 
sap infected with the vascular wilt fungus Fusarium oxysporum during 
compatible or incompatible interactions (Rep et al., 2002). In an 
incompatible interaction, the fungus was apparently contained within the 
vessel it had invaded, where as in a compatible interaction, it invaded 
neighbouring parenchyma tissue and had spread laterally to other vessels, 
eventually colonising the entire vascular system (Gao et al., 1995; Mes et
al., 2000). PR-5x is very closely related to basic vacuolar PR-5 proteins. It 
accumulates in the xylem sap of tomato relatively early after infection. It is  



A proteomics perspective on biocontrol                      241

the only protein produced in high amounts in an incompatible interaction, 
whereas other PR proteins accumulate only in compatible interactions, 
concomitantly with the appearance of disease symptoms (Rep et al., 2002). 
Shepherd et al. (2003) employed proteomics to examine changes in the 
specific stages in the life cycle of Phytophthora palmivora, which causes 
black pod diseases in cocoa and other economically important tropical crops 
(Erwin and Ribeiro, 1996). Approximately 1% of proteins appeared to be 
specific for each of the mycelial, sporangial, zoospore, cyst and germinated 
cyst stages of the life cycle (Shepherd et al., 2003).  

Twelve proteins appeared to change in leaf blades of rice plants that 
were grown under different levels of nitrogen nutrient and were infected 
with blast fungus Magnaporthe grisea (Konishi et al., 2001). PR proteins 
were pointed out as the reason for incompatible interaction in rice plants 
following blast fungus infection. A proteomics approach utilising 
polyethylene glycol prefractionation, 2-DGE and N-terminal sequencing or 
internal amino acid sequencing has enabled to identify 12 new pathogen- 
and elicitor-responsive proteins including low abundant proteins, from 6 
different genes in rice cells in response to the rice blast fungus infection 
(Kim et al., 2003). Rice PR protein class 10 (OsPR-10), isoflavone 
reductase-like (IRL) protein, -glucosidase and putative receptor-like protein 
kinase (RLK) were among those induced by rice blast fungus. Six isoforms 
of probenazole-inducible protein 1 (PBZ1) and two isoforms of salt-induced 
(SaIT) protein responded differentially to blast fungus, elicitor, and signal 
molecules such as JA and SA. Recently, two RLKs, two -1,3-glucanases 
(Glu1, Glu2), thaumatin-like protein (TLP) and peroxidase (POX 22.3) were 
also identified as differentially displayed proteins in rice leaves inoculated 
with M. grisea (Kim et al., 2004). The induction of PBZ1, OsPR-10, SaIT, 
RLK and TLP in incompatible interactions was slightly stronger and faster 
than in compatible interactions (Kim et al., 2003, 2004). Callose deposition 
and hypersensitive response were observed in incompatible interactions but 
excessive invading of fungal hypha with branches were seen in compatible 
interactions (Kim et al., 2004). In the rice-blast fungus interaction, infection 
with an incompatible pathogen results in rapid cell death with limited 
hypersensitivity, whereas the compatible pathogen causes a slower reaction. 
In this type of pathosystem, many defense-related genes such as PBZ1 and 
PR-1b were induced more strongly and earlier by an incompatible pathogen 
than by compatible pathogen (Lee et al., 2001; Agrawal et al., 2002). Thus, 
proteome analysis can distinguish differences in the timing and amount of 
protein expression induced by pathogens and other signals in incompatible 
and compatible interactions (Kim et al., 2003).  

Twenty four hours after treatment with two fungal pathogen 
elicitors, chitosan and extracts of Fusarium moniliforme, the extracellular 
matrix of Arabidopsis thaliana cell suspension culture displayed an increase 
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in the level of two classical cell proteins (a putative enodochitinase and a 
polygalacturonase inhibiting protein) and two novel proteins (a putative 
receptor-like protein kinase and a probable apospory-associated protein) 
(Ndimba et al., 2003). The level of an unknown protein and a hypothetical 
protein, which has some homology to serine carboxypeptidases, were 
decreased at the same time. Two pathogen elicitor responsive proteins 
namely a xyliglucan endo-1-4- -D glucanases (XEG) and a peroxidase were 
identified in the culture filtrate extracts. The perception of microbial signal 
molecules is part of the strategy evolved by plants to survive attacks by 
potential pathogens. In most cases, phosphorylation of plant proteins is 
required to initiate responses to microbial signals. AtPhos43, a plant specific 
protein, in Arabidopsis and related proteins in tomato and rice are 
differentially phosphorylated after treatment with flagellin, a bacterial 
elicitor, and chitin fragments, an elicitor from fungal cell walls (Peck et al.,
2001). The directed proteomics identified that phosphorylation of AtPhos43 
after flagellin treatment but not chitin treatment is dependent on FLS2, a 
receptor-like kinase involved in flagellin perception. Induction by both 
elicitors is not dependent on SA or EDS1 (enhanced disease susceptibility), a 
putative lipase involved in defense signalling (Peck et al., 2001). Recently a 
number of additional proteins has been identified that are phosphorylated in 
response to microbial elicitors. One of these proteins, a syntaxin, is 
phosphorylated in vitro by a calcium-dependent kinase, indicating a link 
between elicitor-induced calcium fluxes and change in protein 
phosphorylation (Ramonell and Somerville, 2002). The classical proteomic 
work reported by Ndimba et al. (2003) also showed that putative receptor-
like kinase, XEG and putative endochitinase possess phosphorylated 
tyrosine residues. The identification of phosphorylated bona fide cell wall 
proteins and a putative extracellular receptor-like kinase with no 
transmembrane domain implicates the existence of an extracellular 
phosphorylation network, which could be involved in intercellular 
communication (Ndimba et al., 2003).

3.2 Pathogenesis and plant defense responses to bacterial 
attack

The bacteria Xylella fastidiosa is the causative agent of a number of 
economically important crop diseases, including citrus variegated chlorosis 
(CVC) (Smolka et al., 2003). The complete genome sequencing of the CVC 
strain 9a5c was published in 2000 and represents the first complete genome 
sequence of a plant pathogen (Simpson et al., 2000). Using combined 
proteomics techniques for protein separation, the products of 142 genes were 
recently identified in a whole cell extract and in an extracellular fraction of 
X. fastidiosa (Smolka et al., 2003). Proteins putatively  associated  with three  
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different adhesion systems (type IV fimbriae, mrk pili and hsf surface fibrils) 
were found to be constitutively coexpressed. This suggests the presence of 
structures possessing different adhesive properties that may be important for 
X. fastidiosa to colonise hosts with different tissue structural organisations. 
Last two adhesion systems were detected as multimeric complexes, which 
may be related to their function in forming large adhesive structures. The 
extracellular fraction of X. fastidiosa revealed the presence of 30 proteins 
with varied functions, suggesting that intracellular space is a multifunctional 
microenvironment containing proteins related to in vivo bacterial survival 
and pathogenesis. They may be important for the bacteria to colonise and 
successfully parasitize the hosts. A codon usage analysis of the most 
expressed proteins from the whole cell extract of X. fastidiosa showed a low 
biased distribution, which is proposed as a reason to the slow growing nature 
of these bacteria and this weakness may be used in a strategy for disease 
control (Smolka et al., 2003). 

Several bacterial pathogens of plants have been intensively studied 
for quorum sensing (QS), the abilities of bacteria to assess their local 
population density and/or physical confinement via the secretion and 
detection of small, diffusible signal molecules (von Bodman et al., 2003). 
QS critically controls genes for pathogenicity and colonisation of host 
surfaces. N-acyl-homoserine lactones (AHLs) are the most commonly 
reported type of QS signals. Proteome analysis showed that eukaryotic host, 
the model legume Medicago truncatula, was able to detect nanomolar to 
micromolar concentrations of AHLs from both pathogenic (Pseudomonas
aeruginosa) and symbiotic (Sinorhizobium meliloti) bacteria (Mathesius et
al., 2003). The host plant responded in a global manner by showing changes 
in the accumulation of over 150 proteins. The accumulation of specific 
proteins and isoforms depend on AHL-structure, concentration and time of 
exposure. Along with many traits, QS also regulate the production of 
antibiotics, degradative enzymes, Hrp protein and epiphytic fitness (von 
Bodman et al., 2003). In addition, exposure to AHLs was found to induce 
changes in the secretion of compounds by the plants that mimic QS signals, 
which have potential to disrupt QS in associated bacteria (Mathesius et al., 
2003). As pointed out by von Bodman et al. (2003), proteomics has huge 
potential to expand our perspective on QS regulation in plant pathogenic 
species. AHLs produced by PGPR play a vital role in the production of 
antibiotics such as phenazine and diacetyl phloroglucinol. Hence, proteomics 
studies on the effect of beneficial and pathogenic bacteria on plant system 
will help in elucidation of differential display of proteins, which could aid in 
differentiation of proteins induced by both beneficial and inimical bacterial 
species.

Xanthomonas axonopodis pv. passiflorae is the casual agent of 
bacteriosis or premature death of passion fruit. 2-DGE and N-terminal 
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sequencing were used to identify differentially displayed proteins during the 
treatment of X. axonopodis pv. passiflorae in media containing leaf extract 
of the compatible (passion fruit) and incompatible (tomato) hosts (Tahara et
al., 2003). The global expression of proteins was almost identical in cells 
grown in medium containing leaf extract of the incompatible host. However, 
four proteins including two induced and two up regulated were identified in 
cells grown in medium containing leaf extract of the compatible host. A 
putative membrane-related protein and a hypothetical protein were novel 
proteins induced specifically by the leaf extract of the compatible host, 
whereas an inorganic pyrophosphatase and a hypothetical protein, that 
showed similarity to the yciF gene of Salmonella thyphimurium, were up 
regulated in the same condition. X. axonopodis pv. citri was cultured in the 
presence of leaf extracts from a susceptible host plant (sweet orange), a 
resistant host plant (ponkan) and a non-host plant (passion fruit). The protein 
profiles were analysed using 2-DGE and N-terminal sequencing (Mehta and 
Rosato, 2001). Five differentially expressed proteins (pseudouridine 
synthase, elongation factor P, large subunit of ribulose 1,5-biphosphate 
carboxylase/oxygenase, sulfate-binding protein and heat shock protein G) 
were sequenced and their functions assigned by homology searching. 
Recently, proteome reference map of the soft-rot disease-causing Erwinia
chrysanthemi has been created using 2-DGE, mutant analysis, Western 
blotting and MALDI-TOF MS (Kazemi-Pour et al., 2004).   

Protein phosphorylation is one of the pivotal processes that take 
place during plant-pathogen interactions, induced resistance and plant 
defense (Xing et al., 2002). It can alter intrinsic biological activity of a 
protein, subcellular location and half-life. It can be important for the extent 
and duration of defense response. Many protein kinases and phosphatases 
have been identified that connect signal perception mechanism to plant 
defense responses (Romeis, 2001; Xing et al., 2002). Genomics and 
proteomics have already identified new components and will continue to 
influence the study of phosphorylation profoundly in plant-pathogen 
interactions (Xing et al., 2002). The phosphorylation of a chloroplast 
protein, oxygen-evolving enhancer 2 (OEE2), was induced in Arabidopsis
infected with avirulent Pseudomonas syringae (Yang et al., 2003). OEE2 is 
also suggested as a molecule downstream of AtGRP-3 (glycine rich 
protein)/WAK1 (cell wall-associated kinase), which may be involved in 
defense signalling against pathogen. The changes in protein phosphorylation 
pattern of tobacco cells were analysed by 2-DGE in response to elicitation 
with cryptogein (Lecourieux-Ouaked et al., 2000). Recently, a protein 
reference map for the bacterial plant pathogen A. tumefaciens was reported 
(Rosen et al., 2004). It contains more than 300 proteins with an isoelectric 
point (pI) between 4 and 7. Quantitative analysis pointed out that some of 
these   proteins   were  subjected  to  post-translational  modifications.  Rapid  
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changes reflecting kinase signalling processes have been detected when 
Arabidopsis cells pulse-labelled with radioactive orthophosphate during a 
treatment with the flagellin elicitor (Peck et al., 2001). 

Transcription factors control the expression of specific genes, which 
are crucial for a variety of essential processes such as plant defense 
responses to biotic and abiotic stresses, plant growth and development, and 
metabolic regulation (Singh et al., 2002; Chinnasamy et al., 2004). More 
than 5% of the genes in the Arabidopsis genome encode transcription 
factors. Research carried out in the past few years has been productive in 
identifying various plant transcription factors, namely ERF, bZIP, 
AP2/EREBP, WRKY, MYB and SA-inducible DOF proteins, and their 
responses to pest attacks (Liu et al., 1999; Riechmann and Ratcliffe, 2000; 
Singh et al., 2002). Most of the transcription factors have been characterised 
through traditional genetics (forward genetics), reverse genetics, RNA 
interference (RNAi), virus-induced gene silencing, mutagenesis, T-DNA 
tagging, yeast two-hybrid system, steroid-inducible CO in combination with 
suppression subtraction hybridisation, genomics-based DNA microarray and 
mRNA-profiling technology (Riechmann and Ratcliffe, 2000). Recently, 
proteomics is emerging as an efficient methodology to characterise plant 
transcription factors. Proteomics-based approach was employed to study the 
roles of redox-sensitive plastid transcription factor in mustard chloroplast 
(Loschelder et al., 2004) and 10 different transcription factors in wheat seed 
development (Chinnasamy et al., 2004). However, proteomics is not yet 
fully used to analyse roles of transcription factors in biocontrol mediated 
plant defense against pathogens. A comprehensive view on the activation, 
regulation, function and interaction of various transcription factors in 
induced resistance, plant defense, antibiosis and biocontrol will emerge in 
the near future from the proteomics studies.  

3.3 Plant defense responses to viral attack 

The identification of plant viruses remains cumbersome despite the 
existence of an abundance of procedures to facilitate the process (Matthews, 
1991). Unlike other techniques, MS offers the promise to identify an 
unknown virus without performing numerous other experiments. Peptide 
mass fingerprinting has been shown to be successful in the direct 
identification of purified viral strains (Lewis et al., 1998; She et al., 2001). 
In a proof-of-concept proteomics experiment, Cooper et al. (2003) 
successfully identified tobacco mosaic virus proteins from total protein 
extracts of infected tobacco leaves through 2-DGE followed by high 
performance liquid chromatography tandem mass spectrometry (HPLC 
MS/MS). They also demonstrated that the proteomic approach could be used 
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to characterise unknown viruses in infected plants. A virus that had 
previously been tentatively identified as a tobacco rattle virus was proved as 
a strain of potato virus X (Cooper et al., 2003). This type of methodology 
with further developments may be of significant value in plant pathology 
and plant disease diagnosis as more genomic sequence data is deposited in 
the public domain. 

Proteomic analysis of rice cellular suspensions infected with rice 
yellow mottle virus (RYMV) showed changes in 64 proteins that were 
involved in defense, pathogenesis, stress, metabolism, translation and protein 
turnover (Ventelon-Debout et al., 2004). Both PR protein (PR-10A) and salt 
stress-induced protein were non-specific responsive proteins and were 
induced late at RYMV infection in a susceptible cultivar. Proteins such as 
dehydrins and enzymes involved in glycolytic pathway have been suggested 
as more specific to RYMV infection. Dehydrins have potential 
phosphorylation sites and its activity might be dependent upon 
phosphorylation status under RYMV infection. Ethylene is one of the signal 
molecules important for defense against a variety of pathogens. A decrease 
in the relative abundance of ethylene-inducible protein has been correlated to 
the susceptibility of rice cultivar to RYMV attack (Ventelon-Debout et al.,
2004). According to Zaitlin and Palukaitis (2000), genomics coupled with 
proteomics technology could lead to the elucidation of the pathways 
determining susceptibility versus resistance, and the molecular basis of 
pathogenicity. The information available in proteomics research indicates 
that it is a reliable technology to study infection process, disease 
development, resistant strategies, specific genes and gene products involved, 
and biocontrol mechanisms. Using specific and narrow range IEF strips 
would be helpful to observe a more precise picture of less abundant protein 
variations during plant-phytopathogen-biocontrol agent interactions. 

4         CONCLUSIONS AND FUTURE DIRECTIONS

Preformed and induced defense mechanisms play a vital role in the 
survival of plants against a diverse group of pathogens. Nature is filled with 
plenty of microbes and some of them, for example PGPR and Trichoderma
harzianum, act as biocontrol agents that can invoke the defense mechanisms 
in plants. PGPR enhance plant growth by inducing defense responses, 
increasing availability of nutrients, producing growth hormones, volatile 
compounds and anti-microbial metabolites, suppressing phytopathogens, and 
decreasing pathogenic microbes in the rhizosphere. T. harzianum controls 
phytopathogenic fungi by secreting cell wall-degrading enzymes, producing 
antibiotics and stimulating plants to produce their own anti-microbial 
compounds. Using  biocontrol  agents   against   pests  and  diseases  will  be  
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helpful to achieve efficient and sustainable agricultural production systems. 
While chemical pesticides have their place in disease control, there is a 
growing awareness that biologically-based pest management (BBPM) and 
integrated pest management (IPM) strategies provide more environmentally 
sound and economically viable alternatives for agriculture. Despite years of 
research and development, significant questions regarding the molecular, 
physiological and ecological constraints that limit biological controls remain 
unanswered.

The advent of proteomics is revolutionising the study of plant-
pathogen interactions and plant defense mechanisms, and is revealing a 
complex web of signalling cascades involved in plant defense responses. 
Study of all proteins through proteomics from a given cell, organelle or 
tissue simultaneously with respect to properties, such as expression levels, 
post-translational modifications, interactions with other molecules, functions 
and structures, is ready to contribute valuable information about cellular 
processes and metabolic pathways. This will result in an integrated global 
view of disease developmental processes, cellular mechanisms and networks 
at the protein level.  

Both proteomics and genomics are not yet vigorously applied to 
elucidate the roles of biocontrol agents in plant defense and disease 
resistance. All of the sequenced genomes belongs to symbiotic and plant 
pathogenic organisms (Puhler et al., 2004). Most of the on-going genome 
sequencing works are directed towards symbiotic and phytopathogenic 
organisms. Recently, genome sequencing projects for five biocontrol agents 
have been initiated. A. radiobacter K84 and four strains of P. fluorescens
namely Pf0-1, Pf-5, Q8r1 and SBW-25 are being sequenced. Given the 
importance of biocontrol in environmental sustainability and other benefits, 
efforts should be taken in the near future to sequence genomes of many 
biocontrol agents. It would be of interest to investigate the pattern, function 
and efficacy of antibiotic proteins and peptides produced by PGPR and other 
biocontrol agents in free-living state and in the presence of plant and/or 
pathogen in laboratory and field conditions with the combination of different 
soil, nutrient, biotic and abiotic factors. Application of globular and 
organellar proteomic approaches in various plant organs and tissues at 
different developmental stages of plants and time of plant-pathogen-
biocontrol agent interactions would be able to highlight proteome difference 
in whole plants as well as individual cell organelles. These findings will be 
useful to understand roles of proteins at both cellular and organellar levels in 
plants during the development of induced resistance and defense 
mechanisms mediated by biocontrol agents.  

Proteomic and genomic tools offer new possibilities for improving 
the selection, characterisation and management of biocontrols. Systematic 
investigations of the molecular mechanisms by which biocontrol agents 
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colonise and protect plants from pathogens can now be done with proteomic 
and genomic tools. In addition, proteomic and genomic studies of biocontrol 
agents will provide fundamental insights into the microbial ecology of the 
phytosphere (the environment immediately surrounding and including the 
plant), which encompasses the primary loci of biocontrol. Whether acting by 
competitive exclusion, biochemical antagonism, or induction of host 
defenses, biocontrol agents must be well adapted for survival and functional 
activity in the phytosphere. The genetic modification of biocontrol agents to 
produce higher levels as well as higher release rates of plant growth 
promoting compounds, pathogen suppressing metabolites and resistance 
inducing substances might give promising benefits to the sustainable 
agriculture and environment.  Recent improvements made to proteomics 
technology along with cellular, molecular, biochemical, genetic, genomic 
and bioinformatic advancements have capability to achieve many important 
tasks in future, which will enhance our knowledge on biocontrols and plant 
defense mechanisms.  
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Abstract: The export oriented agricultural and horticultural crops depends on the export 
of residue free produce and has created a great potential and demand for the 
incorporation of biopesticides in crop protection. To ensure the sustained 
availability of biocontrol agent’s mass production technique and formulation 
development protocols has to be standardized to increase the shelf life of the 
formulation. It facilitates the industries to involve in commercial production of 
plant growth promoting rhizobacteria (PGPR). PGPR with wide scope for 
commercialization includes Pseudomonas fluorescens, P. putida,  
P. aeruginosa, Bacillus subtilis and other Bacillus spp. The potential PGPR 
isolates are formulated using different organic and inorganic carriers either 
through solid or liquid fermentation technologies. They are delivered either 
through seed treatment, bio-priming, seedling dip, soil application, foliar 
spray, fruit spray, hive insert, sucker treatment and sett treatment. Application 
of PGPR formulations with strain mixtures perform better than individual 
strains for the management of pest and diseases of crop plants, in addition to 
plant growth promotion. Supplementation of chitin in the formulation 
increases the efficacy of antagonists. More than 33 products of PGPR have 
been registered for commercial use in greenhouse and field in North America. 
Though PGPR has a potential scope in commercialization, the threat of certain 
PGPR (P. aeruginosa, P. cepacia and B. cereus) to infect human beings as 
opportunistic pathogens has to be clarified before large scale acceptance, 
registration and adoption of PGPR for pest and disease management.  

Key words:     biocontrol; biopesticides; commercialization; formulations; PGPR. 
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1         INTRODUCTION 

Despite the use of available means of plant protection, about one 
third of the crops produced are destroyed by pests and diseases. The 
discovery of synthetic chemicals has contributed, greatly to the increase of 
food production industry by controlling pests and diseases. However, the use 
of these synthetic chemicals during the last three decades has raised a 
number of ecological problems. In the recent years, scientists have diverted 
their attention towards exploring the potential of beneficial microbes, for 
plant protection measures. Bio-control agents are easy to deliver, improve 
plant growth, and activate resistance mechanism in the host, and increase 
biomass production and yield. These antagonists act through antibiosis, 
secretion of volatile toxic metabolites, mycolytic enzymes, parasitism and 
through competition for space and nutrients.  

Though bio-control with PGPR is an acceptable green approach, the 
proportion of registration of biocontrol agents for commercial availability is 
very slow. In addition, the present day bio-products can be further improved 
to obtain greater levels of disease reduction. Development of formulations 
with increased shelf life and broad spectrum of action with consistent 
performance under field conditions could pave the way for 
commercialization of the technology at a faster rate. 

2     CHARACTERISTICS OF A SUCCESSFUL PGPR 
FOR FORMULATION DEVELOPMENT

To develop a successful PGPR formulation, rhizobacteria should possess 
a. High rhizosphere competence 
b. High competitive saprophytic ability 
c. Enhanced plant growth 
d. Ease for mass multiplication 
e. Broad spectrum of action  
f. Excellent and reliable control 
g. Safe to environment  
h. Compatible with other rhizobacteria  
i. Should tolerate desiccation, heat, oxidizing agents and UV 

radiations (Jeyarajan and Nakkeeran, 2000). 

3 FORMULATION DEVELOPMENT

Major research on biocontrol is centered with the use of cell 
suspensions of PGPR directly to seed. Technologies become viable only 
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when the research findings are transferred from the lab to field. Though 
PGPR have a very good potential in the management of pests and diseases, it 
could not be used as cell suspension under field conditions. Hence, the cell 
suspensions of PGPR should be immobilized in certain carriers and should 
be prepared as formulations for easy application, storage, commercialization 
and field use.

4 CHARACTERISTICS OF AN IDEAL 
FORMULATION

a. Should have increased shelf life 
b. Should not be phytotoxic to the crop plants 
c. Should dissolve well in water and should release the bacteria  
d. Should tolerate adverse environmental conditions  
e. Should be cost effective and should give reliable control of plant 

diseases 
f. Should be compatible with other agrochemicals 
g. Carriers must be cheap and readily available for formulation 

development (Jeyarajan and Nakkeeran, 2000). 

5 CARRIERS IN FORMULATION DEVELOPMENT 

Commercial application of PGPR either to increase crop health or to 
manage plant diseases depend on the development of commercial 
formulations with suitable carriers that support the survival of bacteria for a 
considerable length of time. Carriers may be either organic or non-organic. It 
should be economical and easily available.   

5.1 Organic/Non-organic Carriers

The organic carriers used for formulation development include peat, 
turf, talc, lignite, kaolinite, pyrophyllite, zeolite, montmorillonite, alginate, 
pressmud, sawdust, and vermiculite, etc. Carriers increase the survival rate 
of bacteria by protecting it from desiccation and death of cells (Heijnen et 
al., 1993). The shelf life of bacteria varies depending upon bacterial genera, 
carriers and their particle size (Table 1). Survival of 
P. fluorescens (2-79RN10, W4F393) in montmorillonite, zeolite and 

vermiculite with smaller particle size increased the survival rate than in 
kaolinite, pyrophyllite and talc with bigger particle size. The carriers with 
smaller particle size have increased surface area, which increase resistance 
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to desiccation of bacteria by the increased coverage of bacterial cells 
(Dandurand et al., 1994).  

5.1.1 Talc / Peat / Kaolinite / Lignite / Vermiculite based formulations 

Formulations of fluorescent Pseudomonas were developed through 
liquid fermentation technology. The fermenter biomass was mixed with 
different carrier materials (Talc/ Peat/ Kaolinite/ Lignite/ Vermiculite) and 
stickers (Vidhyasekaran and Muthamilan, 1995). Krishnamurthy and 
Gnanamanickam (1998) developed talc based formulation of P. fluorescens 
for the management of rice blast caused by Pyricularia grisea, in which 
methyl cellulose and talc was mixed at 1: 4 ratio and blended with equal 
volume of bacterial suspension at a concentration of 1010cfu/ml. 
Nandakumar et al. (2001) developed talc based strain mixture formulation of 
fluorescent pseudomonads. It was prepared by mixing equal volume of 
individual strains and blended with talc as per Vidhyasekaran and 
Muthamilan (1995). Talc based strain mixtures were effective against rice 
sheath blight and increased plant yield under field conditions than the 
application of   individual  strains. Talc and peat      based      formulations of  
P. chlororaphis and B. subtilis were prepared and used for the management 
of turmeric rhizome rot (Nakkeeran et al., 2004).  

One school of thought explains that CMC is added as a sticker at 1: 
4 ratio to talc. Though it is effective in disease management, it would lead to 
the increase in the production cost, which would prevent the growers to 
adopt the technology. More over another school of thought explain that 
CMC and talc should be used at 1:100 ratios. Hence feasibility of the 
technique and shelf life of the product has to be evaluated to make the 
technology as a viable component in disease management so as to promote 
organic farming.  

5.1.2     Microencapsulation

Microcapsules of rhizobacteria consists of a cross linked polymer 
deposited around a liquid phase, where bacteria are dispersed. Microparticles 
are characterized based on the distribution of particle size, morphology and 
bacterial load. The process of microencapsulation involves mixing of gelatin 
polyphosphate polymer pair (81:19 w/w) at acidic pH with rhizobacteria 
suspended in oil (Charpentier et al., 1999). Though rhizobacteria has been 
formulated through microencapsulation method, its shelf life declines at a 
faster rate, since polymers serve as a barrier for oxygen. This was later 
improved by developing microcapsules by spray drying. The release of  
P. fluorescens-putida from the microencapsulated pellets occurred after 15 
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min immersion in aqueous buffer. It showed that water served as triggering 
material for the bacterial release (Charpentier et al., 1999).  

Though, microencapsulation aids in formulating bacteria, still the 
technology has to be well refined for early release of bacterial cells and for 
the establishment in the infection court to counter attack the establishment of 
pathogens. Most of the experiments on microencapsulation have been 
restricted only to lab. The technology should be standardized for the 
industrial application so that the technical feasibility could be assessed to 
popularize the same for field use.

6         FORMULATIONS AND SHELF LIFE 

6.1       Talc formulation 

Talc is a natural mineral referred as steatite or soapstone composed 
of various minerals in combination with chloride and carbonate. Chemically 
it is referred as magnesium silicate (Mg3Si4O10(OH)2 and available as 
powder form from industries suited for wide range of applications. It has 
very low moisture equilibrium, relative hydrophobicity, chemical inertness, 
reduced moisture absorption and prevent the formation of hydrate bridges 
that enable longer storage periods (http://www.luzenac.com/food.htm). 
Owing to the inert nature of talc and easy availability as raw material from 
soapstone industries it is used as a carrier for formulation development.  

Kloepper and Schroth (1981) demonstrated the potentiality of talc to 
be used as a carrier for formulating rhizobacteria. The fluorescent 
Pseudomonads did not decline in talc mixture with 20% xanthum gum after 
storage for two months at 4 C. P. fluorescens isolate Pf1 survived up to 240 
days in storage. The initial population of Pf1 in talc-based formulation was 
37.5 x 107cfu/g and declined to 1.3 x 107cfu/g after 8 months of storage 
(Vidhyasekaran and Muthamilan, 1995). Amendment of sucrose (0.72M) in 
King’s B medium increased population and shelf life of P. fluorescens
(P7NF, TL3) in talc-based formulation up to 12 months (Caesar and Burr, 
1991). P. putida strain 30 and 180 survived up to 6 months in talc based 
formulations. The population load at the end of 6th month was 108 cfu/g of 
the product (Bora et al., 2004).  

6.2 Peat formulations

Peat (Turf) is a carbonized vegetable tissue formed in wet conditions 
by decomposition of various plants and mosses. It is formed by the slow 
decay of successive layers of aquatic and semi aquatic plants, e.g., sedges, 
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reeds, rushes, and mosses. Peat soils are used as carrier materials to 
formulate PGPR. Though peat carriers are cheap to use, it harbors lot of 
contaminants. The quality of peat is variable and not readily available 
worldwide. Sterilization of peat through heat releases toxic substances to the  

Carrier Bacteria Shelf life Reference 
Talc Rhizobacteria 2 months Kloepper and Schroth 

(1981)
Talc P. fluorescens

(P7NF, TL3) 
12 months (8.4 Log 
cfu/g)

Caesar and Burr 
(1991)

Talc P. fluorescens (Pf1) 8 months (1.3 x 
107cfu/g)

Vidhyasekaran and 
Muthamilan (1995) 

Talc B. subtilis 45  days (1.0 x 106

cfu/g)
Amer and Utkhede 
(2000)

Talc P. putida 45  days (1.0 x 103

cfu/g)
Amer and Utkhede 
(2000)

Talc P. putida strain 
30 and 180 

6 moths (>1 x 108cfu/g)
(not estimated during 
subsequent months) 

Bora et al. (2004) 

Lignite P. fluorescens (Pf1) 4 months (2.8 x 
106cfu/g)

Vidhyasekaran and 
Muthamilan (1995) 

Peat P. fluorescens (Pf1) 8 months (7.0 x 
106cfu/g)

Vidhyasekaran and 
Muthamilan (1995) 

Peat 
supplemente-
d with chitin 

B. subtilis 6 moths (>1 x 109cfu/g)
(not estimated during 
subsequent months) 

Manjula and Podile 
(2001)

Peat P. chlororaphis
(PA23) and 
B. subtilis (CBE4) 

6 moths (>1 x 108cfu/g)
(not estimated during 
subsequent months) 

Nakkeeran et al.
(2004)

Vermiculite P. fluorescens (Pf1) 8 months (1.0 x 
106cfu/g)

Vidhyasekaran and 
Muthamilan (1995) 

Vermiculite B. subtilis 45 days (>1.0 x 106

cfu/g)
Amer and Utkhede 
(2000)

Vermiculite P. putida 45  days (>1.0 x 103

cfu/g)
Amer and Utkhede 
(2000)

Farm yard 
manure

P. fluorescens (Pf1) 8 months (1.0 x 
106cfu/g)

Vidhyasekaran and 
Muthamilan (1995) 

Kaolinite P. fluorescens (Pf1) 4 months (2.8 x 
106cfu/g)

Vidhyasekaran and 
Muthamilan (1995) 

bacteria and there by reduce bacterial viability (Bashan, 1998). Peat based 
formulation of Azospirillum brasilense had a shelf life up to 4 months. The 
population load after 4 months of storage was 107 cfu/g of the product 
(Bashan, 1998). This population was sufficient for successful plant 
inoculation (Garcia and Sarmiento, 2000). Vidhyasekaran and Muthamilan 

Table 1. Shelf life of formulations in different carrier materials.
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(1995) reported that the shelf life of P. fluorescens in peat-based formulation 
was maintained up to 8 months (2.8 x 106cfu/g). Shelf life of P. chlororaphis 
(PA23) and B. subtilis (CBE4) in peat carriers was retained for more than six 
months (Kavitha et al., 2003; Nakkeeran et al., 2004).  

6.3 Press mud formulation

Press mud is a byproduct of sugar industries. It was composted using 
vermin-composting technique and later used as a carrier for Azospirillum
spp. This carrier maximizes the survival of Azospirillum spp than lignite, 
which is predominantly used as a carrier material in India 
(Muthukumarasamy et al., 1997).  

6.4 Vermiculite formulation 

Vermiculite is a light mica-like mineral used to improve aeration 
and moisture retention. It is widely used as potting mixture and used as a 
carrier for the development of formulations for harboring microbial agents. 
Vermiculite based formulation of P. fluorescens (PF1) retained shelf life for 
a period of 8 months. The viable load of bacteria in the formulation was 
1x106cfu/g (Vidhyasekaran and Muthamilan, 1995). Shelf life of 
Azospirillum in vermiculite-based formulation was retained up to 10 months. 
The viable cells after 44 weeks of storage were 1.3 x 107 cfu/g  (Saleh et al.,
2001).  

7         DELIVERY SYSTEMS

            Plant growth promoting rhizobacteria are delivered through several 
means based on survival nature and mode of infection of the pathogen. It is 
delivered through seed, soil, foliage, rhizomes, setts, or through combination 
of several methods of delivery. 

7.1       Seed treatment 

Seed treatment with cell suspensions of PGPR was effective against 
several diseases. Delivering of Serratia marcescens strain 90-166 as seed dip 
before planting and soil application of 100 ml of the same at the rate of 108

cfu/ml to the sterilized soil less planting mix after seeding reduced bacterial 
wilt of cucumber and controlled cucumber beetles besides increasing the 
fruit weight (Zehnder et al., 2001). Transfer of technology for commercial 
use could be possible if PGPR strains are made available as a product. After 
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realization of the same, several carriers were used for formulation 
development. Talc based formulation of P. fluorescens Pf1 was coated on to 
seeds at the rate of 4g/Kg (107cfu/g) of chickpea seeds (cv.Shoba) for the 
management of chickpea wilt. Sowing of treated chickpea seeds resulted in 
establishment of rhizobacteria on chickpea rhizosphere (Vidhyasekaran and 
Muthamilan, 1995). Treatment of cucumber seeds with strain mixtures 
comprising of Bacillus pumilus - INR7, B. subtilis – GB03 and 
Curtobacterium flaccumfaciens – ME1 with a mean bacterial density of 
5x109cfu/seed reduced intensity of angular leaf spot and anthracnose 
equivalent to the synthetic elicitor Actigard and better than seed treatment 
with individual strains (Raupach and Kloepper, 1998). Treatment of 
pigeonpea seeds with talc based formulation of P. fluorescens (Pf1) 
effectively controlled fusarial wilt of pigeonpea under greenhouse and field 
conditions (Vidhyasekaran et al., 1997). Soaking of rice seeds in water 
containing 10g of talc based formulation of P. fluorescens consisting 
mixture of PF1 and PF2 (108cfu/g) for 24h controlled rice sheath blight 
under field condition (Nandakumar et al., 2001). Seed treatment of lettuce 
with either vermiculite or kaolin based carrier of B. subtilis (BACT-0) 
significantly reduced root rot caused by P. aphanideramtum and it also 
increased the fresh weight of lettuce under greenhouse conditions. Seed 
treatment with vermiculite based P. putida reduced fusarium root rot of 
cucumber and increased the yield and growth of cucumber (Amer and 
Utkhede, 2000). Treatment of tomato seeds with powder formulation of 
PGPR (B. subtilis, B. pumilus) reduced symptom severity of ToMoV and 
increased the fruit yield (Murphy et al., 2000).  

7.2       Bio-priming 

A successful antagonist should colonize rhizosphere during seed 
germination (Weller, 1983). Priming with PGPR increase germination and 
improve seedling establishment. It initiates the physiological process of 
germination, but prevents the emergence of plumule and radicle. Initiation of 
physiological process helps in the establishment and proliferation of PGPR 
on the spermosphere (Taylor and Harman, 1990). Bio-priming of seeds with 
bacterial antagonists increase the population load of antagonist to a tune of 
10 fold on the seeds thus protected rhizosphere from the ingress of plant 
pathogens (Callan et al., 1990). Chickpea seeds treated with talc-based 
formulation of Pf1 was primed by incubating the treated seeds for 20h at 
25 C over sterile vermiculite moistened with sterile water. Population of Pf1 
increased up to 100% in the rhizosphere, indicating that it provides a 
congenial microclimate for proliferation and establishment of bacterial 
antagonist (Vidhyasekaran and Muthamilan, 1995). Drum priming is a 
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commercial seed treatment method followed to treat seeds with pesticides. 
Drum priming of carrot and parsnip seeds with P. fluorescens Pf CHAO 
proliferated well on the seeds and could be explored for realistic scale up of 
PGPR (Wright et al., 2003). 

7.3       Seedling dip 

PGPR is delivered through various means for the management of 
crop diseases based on the survival nature of pathogen. In several crops 
pathogens gain entry into plants either through seed, root or foliage. In rice, 
sheath blight incited by Rhizoctonia solani is a major obstacle in rice 
production. As the pathogen is soilborne, it establishes host parasite 
relationships by entering through root. Hence, protection of rhizosphere 
region by prior colonization with PGPR will prevent the establishment of 
host-parasite relationship. Delivering of P. fluorescens strain mixtures by 
dipping the rice seedlings in bundles in water containing talc based 
formulation of strain mixtures (20g/l) for 2h and later transplanting it to the 
main field suppressed sheath blight incidence (Nandakumar et al., 2001). 
Similarly dipping of rice seedlings in talc based formulation of                    
P. fluorescens (PfALR1) prior to transplanting reduced sheath blight severity 
and increased yield in Tamil Nadu, India (Rabindran and Vidhyasekaran, 
1996). Dipping of strawberry roots for 15 minutes in bacterial suspension of 
P. putida (2 x 109 cfu/ml) isolated from strawberry rhizosphere reduced 
Verticillium wilt of strawberry by 11% compared to untreated control (Berg 
et al., 2001). Dipping of Phyllanthus amarus seedlings in talc based 
formulation of B. subtilis (BSCBE4) or P. chlororaphis (PA23) for 30 
minutes prior to transplanting reduced stem blight of P. amarus
(Mathiyazhagan et al., 2004). 

7.4 Soil application  

 Soil being as the repertoire of both beneficial and pathogenic 
microbes, delivering of PGPR strains to soil will increase the population 
dynamics of augmented bacterial antagonists and thereby would suppress the 
establishment of pathogenic microbes on to the infection court. 
Vidhyasekaran and Muthamilan (1995) stated that soil application of peat 
based formulation of P. fluorescens (Pf1) at the rate of 2.5 Kg of formulation 
mixed with 25 Kg of well decomposed farm yard manure; in combination 
with seed treatment increased rhizosphere colonization of Pf1 and 
suppressed chickpea wilt caused by Fusarium oxysporum f.sp. ciceris.
Broadcasting of talc based formulation of strain mixtures ( Pf1 and FP7 ) by  
blending 2.5 kg of formulation with 50 kg of sand after 30 days of 
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transplanting paddy seedlings to main field significantly reduced sheath 
blight and increased yield under field conditions (Nandakumar et al., 2001). 
Incorporation of commercial chitosan based formulations LS254 
(comprising of Paenobacillus macerans + B. pumilus) and LS255 
(comprising of P. macerans + B. subtilis) into soil at the ratio of 1: 40 
(Formulation: Soil) increased bio-matter production by increasing both root 
and shoot length and yield (Vasudevan et al., 2002). Soil application of the 
strain mixture formulations LS256 and LS257 comprising of two different 
Bacillus spp., was better than seed treatment and suppressed downy mildew 
under greenhouse and field conditions (Niranjan Raj et al., 2003). 

7.5 Foliar spray 

The efficacy of biocontrol agents for foliar diseases is greatly 
affected by fluctuation of microclimate.  Phyllosphere is subjected to diurnal 
and nocturnal, cyclic and non-cyclic variation in temperature, relative 
humidity, dew, rain, wind and radiation.  Hence water potential of 
phylloplane microbes will be varying constantly.  It will also vary between 
leaves or the periphery of the canopy and on sheltered leaves.  Higher 
relative humidity could be observed in the shaded, dense region of the plant 
than that of peripheral leaves.  The dew formation is greater in centre and 
periphery. The concentration of nutrients like amino acid, organic acids and 
sugars exuded through stomata, lenticels, hydathodes and wounds varies 
highly.  It affects the efficacy and survival of antatognist in phylloplane 
(Andrews, 1992).

Delivering of Pseudomonas to beet leaves actively compete for 
amino acids on the leaf surface and inhibited spore germination of Botrytis
cinerea, Cladosporium herbarum and Phoma betae (Blakeman and Brodie, 
1977). Application of B. subtilis to bean leaves decreased incidence of bean 
rust (Uromyces phaseoli) by 75% equivalent to weekly treatments with the 
fungicide mancozeb (Baker et al., 1983).  Application of P. fluorescens  on 
to foliage (1kg of talc based formulation /ha) on 30, 45, 60, 75 and 90 days 
after sowing reduced leaf spot and rust of groundnut under field conditions 
(Meena et al., 2002). Preharvest foliar application of talc based fluorescent 
pseudomonads strain FP7 supplemented with chitin at fortnightly intervals 
(5g/l; spray volume 20l/ tree) on to mango trees from pre-flowering to fruit 
maturity stage induced flowering to the maximum, reduced the latent 
infection by C. gloeosporioides beside increasing the fruit yield and quality 
(Vivekananthan et al., 2004). Though seed treatment and foliar application 
of P. fluorescens reduce the severity of rust and leaf spot under field 
conditions, it is not technically feasible due to increased dosage and 
economy realized from the crop. Hence, dosage and frequency of application 
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has to be standardized based on the crop value, which could be as a reliable 
and practical approach.

7.6      Fruit spray 

Pseudomonas syringae (10% wettable powder) in the modified 
packing line was sprayed at the rate of 10 g/l over apple fruit to control blue 
and grey mold of apple.  The population of antagonist increased in the 
wounds more than 10 fold during 3 months in storage (Janisiewicz and 
Jeffers, 1997). Research on the exploration of PGPR have to go a long way 
to explore its usage to manage post harvest diseases.  

7.7       Hive insert 

Honey bees and bumble bees serve as a vector for the dispersal of 
biocontrol agents for the control of diseases of flowering and fruit crops 
(Sandhu and Waraich, 1985, Kevan et al., 2003). An innovative method of 
application of bio-control agent right in the infection court at the exact time 
of susceptibility was developed by Thomson et al. (1992). A dispenser is 
attached to the hive and loaded with powder formulation of the PGPR or 
with other desired biocontrol agent. The foragers when exit the hive, the 
antagonist get dusted on to bee and delivered to the desired crop, while 
attempting for sucking the nectar. Erwinia amylovora causing fire blight of 
apple infects through flower and develops extensively on stigma. 
Colonisation by antagonist at the critical juncture is necessary to prevent 
flower infection.  Since flowers do not open simultaneously the bio-control 
agent P. fluorescens has to be applied to flowers repeatedly to protect the 
stigma.  Nectar seeking insects like Aphis mellifera can be used to deliver  
P. fluorescens to stigma.  Bees deposit the bacteria on the flowers soon after 
opening due to their foraging habits. Honey bees have also been used for the 
management of gray mold of strawberry and raspberry (Peng et al., 1992; 
Sutton, 1995; Kovach et al., 2000).  

7.8       Sucker treatment 

Plant growth promoting rhizobacteria also play a vital role in the 
management of soilborne diseases of vegetatively propagated crops. The 
delivery of PGPR varies depending upon the crop. In crops like sugarcane 
and banana rhizobacteria are delivered through sett treatment or rhizome 
treatment respectively. Banana suckers were dipped in talc based  
P. fluorescens suspension (500g of the product in 50 liters of water) for 10 
min after pairing and pralinage. Subsequently it was followed by capsule 
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application (50 mg of P. fluorescens per capsule) on third and fifth month 
after planting. It resulted in 80.6 per cent reduction in panama wilt of banana 
compared to control (Raguchander et al., 2000).  

7.9       Sett treatment 

Red rot of sugarcane is a major production constraint in sugarcane 
cultivation. Usage of chemical fungicides for the management of red rot was 
less effective to protect the crop. Since, PGPR act as a predominant 
prokaryote in the rhizosphere, fluorescent pseudomonads were explored for 
the management of red rot under field conditions. Viswanathan and 
Samiyappan (2002) delivered fluorescent pseudomonads through sett 
treatment. Two budded sugarcane setts were soaked in talc formulation of  
P. fluorescens (20g/l) for one hour and incubated for 18h prior to planting. 
Planting of treated setts increased cane growth, sugar recovery and reduced 
red rot incidence under field conditions. 

7.10     Multiple delivery systems 

Plant pathogens establish host parasite relationships by entering 
through infection court such as spermosphere, rhizosphere and phyllosphere. 
Hence, protection of sites vulnerable for the entry and infection of pathogens 
would offer a better means for disease management. Seed treatment of 
pigeonpea with talc based formulation of fluorescent pseudomonads at the 
rate of 4g/kg of seed followed by soil application at the rate of 2.5 kg/ha at 0, 
30, and 60 days after sowing controlled pigeonpea wilt incidence under field 
conditions. The additional soil application of talc based formulation 
improved disease control and increased yield compared to seed treatment 
alone (Vidhyasekaran et al., 1997). Delivering of P. fluorescens as seed 
treatment followed by three foliar applications suppressed rice blast under 
field conditions (Krishnamurthy and Gnanamanickam, 1998). Combined 
application of talc based formulation of fluorescent pseudomonads 
comprising of Pf1 and FP7 through seed treatment, seedling dip, soil 
application and foliar spray suppressed rice sheath blight and increased plant 
growth better than application of the same strain mixture either through seed, 
seedling dip or soil (Nandakumar et al., 2001). Application of strain mixture 
based formulation of Pf1 and FP7 with or without chitin through seed, 
seedling dip and foliar spray suppressed leaf folder damage and sheath blight 
in rice under field conditions (Radja Commare et al., 2002). Seed and foliar 
application of talc based fluorescent pseudomonas reduced leaf spot and rust 
of groundnut under field conditions (Meena et al., 2002). The increased 
efficacy of strain mixtures through combined application might be due to 
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increase in the population of fluorescent pseudomonads in both rhizosphere 
and phyllosphere (Viswanathan and Samiyappan, 1999). Delivering of 
rhizobacteria through combined application of different delivery systems 
will increase the population load of rhizobacteria and thereby might suppress 
the pathogenic propagules.   

8 EFFICACY OF FORMULATIONS AGAINST 
PLANT DISEASES 

Plant diseases are in association with crop plants since agriculture 
began and was managed through synthetic pesticides to increase food 
production. But continuous usage of pesticides has resulted in the outbreak 
of pathogens resistant to fungicides apart from environmental pollution.  
Introduction of PGPR for increasing plant growth promotion during 1950s 
from the research findings in Soviet Union and in Western countries 
(Backman et al., 1997) opened new vistas to use PGPR as an alternate to 
chemical pesticides for the management of soilborne pathogens (Dunleavy, 
1955; Kloepper, 1993). Application of PGPR either as single strain or strain 
mixtures based formulations checked pest and disease spread besides 
increasing growth and yield (Table 2). 

8.1       Individual strain based formulations 

Plant growth promoting rhizobacteria has diverse applications for 
the management of plant diseases in agriculture, horticulture and forestry. In 
addition it also plays a vital role in environmental remediation (Lucy et al., 
2004). Fluorescent pseudomonads were first developed as talc based 
formulation for the treatment of potato seed tubers for growth promotion 
(Kloepper and Scroth, 1981). Treatment of chickpea seeds with  
P. fluorescens (Pf1) through seed followed by root zone application after 30 
days of sowing increased seedling emergence, reduced Fusarial wilt 
incidence caused by Fusarium oxysporum f.sp. ciceris and increased the 
yield under field conditions. In addition it also increased the population of 
Pf1 strain in the rhizosphere (Vidhyasekaran and Muthamilan, 1995). Talc 
based formulation of P. fluorescens strain Pf1 and Pf2 increased grain yield 
of pigeonpea besides the control of pigeonpea wilt (Vidhyasekaran et al.,
1997). Seed treatment of groundnut and pigeonpea with peat based 
formulation of B. subtilis supplemented with 0.5% chitin or with 0.5% of 
sterilized Aspergillus mycelium controlled crown rot and wilt of groundnut 
and pigeon pea respectively. It also increased growth promotion even in the 
presence of inoculum pressure (Manjula and Podile, 2001). Chitin 
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supplementation enhances the biocontrol efficacy of formulations. But 
incorporation of chitin will increase the production cost of biopesticides. 
Hence, identification of cheap and easy available source of chitin is 
essential. Seed treatment and soil application of P. aeruginosa strain 78 
reduced root knot incidence of mungbean besides the reduction in the 
population density of Meloidogyne javanica under field conditions (Ali et
al., 2002). Seed treatment with wettable powder formulation of P. putida
strain 30 and 180 suppressed wilt of musk melon to the extent of 63 and 
50% after 90 days of transplanting muskmelon in the field. But seed 
treatments with strain mixtures were not as effective as that of individual 
strains (Bora, 2004). The decrease in efficacy might be due to the 
incompatibility of the isolates, which might suppress the genetic expression 
of defense genes in either bacterial strain.  

8.2       Strain mixtures based formulations 

Several research outcomes on formulations explain that a single 
biocontrol agent has the ability to combat a plant pathogen. But, usage of 
single biocontrol agent in disease management might be also responsible for 
its inconsistent performance under field conditions. A single biocontrol 
agent may not perform well at all times in all kinds of soil environment to 
suppress plant pathogens (Raupach and Kloepper, 1998). In addition 
application of single biocontrol agent based formulation might have resulted 
in inadequate colonization, inability to tolerate the extremes of soil pH, 
moisture and temperature and fluctuations in the production of antimicrobial 
substances (Weller and Thomashow, 1994). Inconsistent performance of 
biocontrol agents was overcome by the combined application of several 
biocontrol strains that mimic the natural environment (Schisler et al., 1997; 
Raupach and Kloepper, 1998). Development of cocktail formulation with 
compatible isolates will improve disease control through synergy in cross 
talk between the isolates that lead to increased production of antibiotics at 
the site of colonization and thereby could suppress the establishment of 
pathogenic microbes. Advantages of strain mixtures include, broad spectrum 
of action, enhanced efficacy, reliability and also allow combination of 
various traits without genetic engineering (Janisiewicz, 1996). Application 
of mixed PGPR strains based formulations to field might ensure at least one 
of the mechanism to operate under variable environment that exist under 
field conditions (Duffy et al., 1996).  
 Application of talc based strain mixture formulation of fluorescent 
pseudomonads through seed, root, soil and foliage to rice crop suppressed 
sheath blight under field conditions better than individual strains based 
formulations. The average disease reduction for mixtures was 45.1% 
compared to 29.2% for individual strains. In addition to disease reduction 
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strain mixtures increased biomatter production and yield compared to 
individual strains (Nandakumar et al., 2001). Combined application of 
Pichia guilermondii and Bacillus mycoides (B16) reduced the infection of 
Botrytis cinerea by 75% on fruits in strawberry plants grown commercially 
under greenhouse conditions. But the individual application of either 
antagonist resulted in 50% reduction of strawberry fruit infection. Population 
of yeast increased when applied as mixture rather than single application 
(Guetsky et al., 2002).   Delivering of talc based strain mixtures of  
P. fluorescens strains (Pf1 and FP7) through seed, soil and foliar reduced 
sheath blight and leaf folder incidence in rice under greenhouse and field 
conditions. It also reduced the feeding behavior of leaffolder, reduced larval 
and pupal weight, and increased larval mortality. Besides, population of 

Commare et al., 2002).  

promotion. 

Formulation Crop  Results Reference
Talc based  
P. fluorescens

Potato Significant plant growth 
promotion.

Kloepper and 
Scroth (1981) 

Talc based 
P. fluorescens

Winter wheat Significant plant growth 
promotion.

De Freitas and 
Germida(1992)

Peat based  
P. fluorescens

Cotton Significant reduction of 
cotton seedling diseases.  

Hagedorn et al.
(1993)

Talc based  
P. fluorescens 

Chickpea Significant increase in 
grain yields and controlled 
fusarial wilt under field 
conditions. 

Vidhyasekaran 
and Muthamilan, 
(1995)

Talc based 
P. fluorescens 

Pigeonpea Control of pigeonpea wilt 
and significant increase in 
grain yield. 

Vidhyasekaran et 
al. (1997) 

Chitosan based 
B. pumilus

Tomato Induced resistance against 
F. oxysporum.

Benhamou et 
al.(1998)

Methyl cellulose 
 and talc based  
P. fluorescens.

Rice Suppressed rice blast both 
in nursery and field 
conditions. 

Krishnamurthy 
and
Gnanamanickm 
(1998)

B. subtilis strain  
LS213(commercial
product)

Watermelon
and
muskmelon 

Increased plant growth, and 
improved yield. 

Vavrina (1999)  

Table 2. Efficacy of PGPR formulations against plant disease and growth   

parasitoids and spiders also increased in PGPR treated plots (Radja 
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Continued table 2. 

B. subtilis
Formulations

Cucumber, 
Watermelon,
squash,
ornamentals,
vegetables,
pepper,
tobacco,
loblolly pine 
and lodge 
pine.

Significant induction of 
resistance against various 
different pathogens. 

Reddy et al.
(1999); Kenney 
et al. (1999); 
Martinez- Ochoa 
et al. (1999) ; 
Ryu et 
al.(1999) ;Yan et 
al. (1999) and 
Zhang et al
(1999).

Chitosan based 
B. subtilis strain

LS213 (commercial 
product)

Tomato, 
tobacco,
cucumber and 
pepper

Reduced the incidence of 
bacterial spot and late 
blight of tomato, angular 
leaf spot of cucumber and 
blue mold of tobacco.  

Reddy et al.
(1999)

Talc based 
 formulation of  
P. fluorescens
(CHAO and Pf1) 

Sugarcane Increased germination of 
sugarcane seeds, plant 
growth besides the supper- 
ssion of damping- off. 

Viswanathan and 
Samiyappan 
(1999)

Vermiculite based  
P. fluorescens

Sugarbeet Significant control of 
damping off 

Moenne-Loccoz
et al. (1999)

Talc based  
P. fluorescens

Rice Significant reduction of 
sheath blight under field 
conditions.  

Vidhyasekaran 
and Muthamilan 
(1999);
Nandakumar et 
al. (2000).  

Talc based  
P. fluorescens

Banana Significant reduction of 
panama wilt of banana 

Raguchander et 
al. (2000)  

Vermiculite  
and Kaolin
based B. subtilis 

Lettuce Suppressed root rot of 
lettuce caused by P. 
aphanidermatum and 
increased fresh weight of 
lettuce. 

Amer and 
Utkhede (2000)  

Vermiculite  
based P. putida

Cucumber Significantly reduced root 
rot caused by Fusarium
oxysporum f. sp. 
cucurbitacearum

Amer and 
Utkhede (2000)  

Talc based  
P. fluorescens
(Pf1)

Urdbean and 
Sesame 

Increased growth 
promotion and reduced root 
rot caused by  
M. phaseolina.

Jayashree et 
al.(2000)

Talc based  
rhizobacterial  
mixtures of 
fluorescent 
pseudomonads

Rice Significant plant growth 
promotion and suppression 
of rice sheath blight. 

Nandakumar et 
al. (2001) 

Peat based B. 
subtilis
supplemented
 with chitin 

Groundnut
and pigeon 
pea

Significant control of 
groundnut root rot and 
pigeon pea wilt.  

Manjula and 
Podile (2001) 
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Continued table 2. 

Chitosan based 
mixed formulation 
of Paenobacillus  
 macerans and  
B. subtilis (LS255) 

Rice Increased plant growth and 
yield in rice cultivars, 
IR24, IR50 and Jyothi. 

Vasudevan et al.
(2002)

Chitin based  
formulation of  
B. subtilis strain 
GB03+B. pumilus
strain INR7(LS256) 
and B. subtilis strain 
GB03+B. subtilis
strain IN937b 

Tomato and 
Pepper

Increased yield of pepper 
and tomato. 

Burelle et al.
(2002)

Talc based  
P. aeruginosa strain 
78

Mung bean Reduced the incidence of 
root knot and population 
density of Meloidogyne 
javanica under field 
conditions.  

Ali et al. (2002)  

Talc based 
fluorescent 
Pseudomonads

Sugarcane Significant increase in sett 
germination, increased cane 
growth and reduced red rot 
incidence. 

Viswanathan and 
Samiyappan 
(2002)

Talc based  
P. fluorescens

Rice Significant reduction of 
rice sheath blight, leaf 
folder and increased yield. 
Beside it also increased the 
population of insect 
parasites and predators. 

Radja Commare 
et al. (2002) 

Talc based  
P. fluorescens

Groundnut Significant reduction of 
leaf spot and rust of 
groundnut.

Meena et al.
(2002)

Talc based 
formulation of 
B. subtilis and  

P. chlororaphis 
(PA23)

Tomato Increased growth 
promotion and significant 
reduction of damping off. 

Kavitha et al.
(2003)

Chitosan based 
mixed formulation 
of B. subtilis strain 
GB03+B. pumilus
strain INR7(LS256) 
and B. subtilis strain 
GB03+B. pumilus
strain T4(LS257) 

Pearl millet Reduced downy mildew 
and increased plant growth 
promotion in pearl millet. 

Niranjan Raj et 
al. (2003)  

Talc based 
P. fluorescens FP7 
supplemented with 
chitin. 

Mango Significant reduction of 
anthracnose coupled with 
increase in fruit yield and 
quality. 

Vivekananthan 
et al.(2004). 
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Continued table 2.

Talc based B. 
subtilis (BSCBE4)
and P.chlororaphis
(PA23)

Turmeric Significant reduction of 
rhizome rot and yield 
increase of rhizomes. 

Nakkeeran et al.
(2004)

Talc based B. 
subtilis (BSCBE4), 
P. chlororaphis
(PA23) and
P. fluorescens
(ENPF1)

Phyllanthus 
amarus

Significant reduction of 
stem blight caused by 
Corynespora cassicola
under field conditions. 

Mathiyazhagan 
et al. (2004) 

Talc based P.
putida

Muskmelon Effective control of wilt 
caused by Fusarium
oxysporum f. sp. melonis.

Bora et al., 
(2004)

9         COMMERCIAL PRODUCTS 

Research inventions from China, Russia and several other western 
countries during the early 1950 have proved the potential use of bacteria to 
be explored for plant disease management (reviewed by Backman et al.,
1997). Owing to the potential of PGPR, the first commercial product of  
B. subtilis was introduced during 1985 for the use of growers by 
Gustafson,Inc. (Plano, Texas) in US (Broadbent,s et al., 1977). The strains 
of B. subtilis A-13, GB03, GB07 were sold for the management of soilborne 
pathogens under the trade names of Quantum@, Kodiak@ and Epic@ 
respectively (Broadbent,s et al., 1977). Release of Bacillus based products 
during 1985 has resulted in the increase in market size for the usage of 
bacterial products in crop disease management. Backman et al. (1977) stated 
that 60-75% of the cotton crop in US is treated with B. subtilis for the 
management of soilborne pathogens encountered in cotton ecosystem. 
Among several PGPR strains Bacillus based products gains momentum for 
commercialization. Because, Bacillus spp., produce endospores tolerant to 
extremes of abiotic environments such as temperature, pH, pesticides and 
fertilizers (Backman et al., 1997). Owing to the potentiality of Bacillus spp., 
18 different commercial products of Bacillus origin are sold in China to 
mitigate soilborne diseases (Backman et al., 1997). The registered 
commercial products of PGPR are listed in Table 3. Details of registered 
products are in the web sites: 
http://www.ippc.orst.edu/biocontrol/biopesticides/;
http://www.epa.gov/pesticides/biopesticides/. 
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10       IMPROVEMENT OF FORMULATION EFFICACY

In general, though biocontrol agents perform well in the 
management of plant diseases, they are highly sensitive to the fluctuations in 
environmental conditions and are inconsistent in their performance. The 
consistency of biocontrol agents could be enhanced through several means 
without going in for genetic engineering. Since nature is bestowed with 
millions of beneficial microbes, development of compatible cocktail of 
beneficial microbes would increase the efficiency of their performance. 
Strategies to enhance the efficacy of biocontrol organisms include 

1. Development of compatible consortia.  
2. Strains that induce synergistic expression of biocontrol genes. 
3. Adjuvants, spreaders and stickers. 
4. Genetic engineering of PGPR strains. 
5. Formulations comprising of compatible PGPR strains and plant 

inducers of chemical origin. 

Product Target 
pathogens/disease
s

Crops
recommended

Manufactur
er

Bio-Save 10, 11, 
100, 110, 1000 TM – 
P. syringae ESC-100 

Botrytis cinerea, 
Penicillium spp, 
Mucor pyroformis, 
Geotrichum 
candidum

Pome fruit 
(Biosave 100) and 
Citrus (Biosave 
1000) 

Eco Science 
Corp, 
Produce 
Systems 
Div., Orlando 

Blight Ban A506 – 
P. fluorescens A 
506 

Erwinia amylovora
and russet - 
inducing bacteria 

Almond, Apple, 
Apricot, Blueberry, 
Cherry, Peach, 
Pear, Potato, 
Strawberry,Tomato 

Plant Health 
Technologies
, USA 

CedomonTM – 
P. chloroaphis

leaf stripe, net 
blotch,  Fusarium 
sp, spot blotch, leaf 
spot and others 

Barley and Oats, 
potential for wheat 
and other cereals 

Bio Agri AB, 
Sweden 

Campanion – 
B. subtilis GB03 

Rhizoctonia, 
Pythium, Fusarium 
and Phytophthora 

Horticultural crops 
and turf 

Growth 
products, 
USA 

Conquer TM -
P. fluorescens 

P. tolassii Mushrooms Mauri Foods, 
Australia 

Table 3. Commercial products of PGPR in plant disease management. 
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Continued table 3. 

VictusTM – 
P. fluorescens

P. tolassii Mushrooms Mauri Foods, 
Australia 

BioJect  Spot – less 
– P. aureofaciens

Dollar spot, 
Anthracnose and 
P. aphanidermatum 

Turf and other 
crops

Eco Soil 
Systems, San 
Diego, CA 

BioJet TM – 
Pseudomonas sp + 
Azospirillum

Brown batch  and 
Dollar spot disease 

Turf and other 
crops

Eco Soil 
Systems, San 
Diego, CA 

Deny - 
Burkholderia 
cepacia 
(Pseudomonas
cepacia ) 

Rhizoctonia, 
Pythium, Fusarium 
and diseases caused 
by lesion, spiral, 
lance, and sting 
nematodes.

Alfalfa, Barley, 
Beans,    Clover, 
Cotton, Peas, 
Sorghum, 
Vegetable crops 
and Wheat 

Stine 
Microbial
Products, 
Shawnee, KS 

Intercept TM-
P. cepacia 

Rhizoctonia solani, 
Fusarium sp.,
Pythium sp. 

Maize, Vegetables, 
Cotton 

Soil 
Technologies 
Corp, USA 

KodiakTM, Kodiak 
HBTM, EpicTM,
Concentrate TM,
Quantum 4000 and 
System 3 TM –
B. subtilis GB03 

Rhizoctonia solani, 
Fusarium spp, 
Alternaria spp, and 
Aspergillus spp 

Cotton, Legumes Gustafson, 
Inc., Dallas, 
USA 

Bio Yield – 
Combination of 
B. subtilis and 
B.amyloliquefaciens

Broad spectrum 
action against 
greenhouse 
pathogens 

Tomato, 
Cucumber, Pepper  
and Tobacco 

Gustafson, 
Inc., Dallas, 
USA 

Rhizo-Plus – 
B. subtilis strain 
FZB24

Against R.  solani,
Fusarium spp., 
Alternaria spp., 
Sclerotinia and
Verticillium.

Greenhouses 
grown crops,forest 
tree seedlings, 
ornamentals, 
and shrubs. 

KFZB
Biotechnik 
GMBH, 
Berlin, 
Germany. 

Serenade – 
B. subtilis strain 
QWT713. Available 
as wettable powder. 

Powdery mildew, 
Downy mildew, 
Cercospora leaf 
spot, early blight, 
late blight, brown 
rot, fire blight  and 
others. 

Cucurbits, Grapes, 
Hops, Vegetables, 
Peanuts, Pome 
fruits, stone fruits 
and others 

AgraQuest, 
Inc., Davis, 
USA. 
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Continued table 3.

Rhapsody –
B. subtilis strain 
QST713. Aqueous 
suspension 
formulation 

Powdery mildew, 
sour rot, downy 
mildew, and early 
leaf spot, early 
blight, late blight, 
bacterial spot, and 
walnut blight 
diseases.

Cherries, cucurbits, 
grapes, leafy 
vegetables,peppers, 
potatoes, tomatoes, 
and walnuts. 

AgraQuest, 
Inc., Davis, 
USA. 

Subtilex - B. subtilis 
MB1600 

Fusarium spp., 
Rhizoctonia spp. 
and Pythium spp. 

Ornamental and 
vegetable crops 

Becker
Underwood, 
Ames. 

GB 34 Concentrate 
Biological Fungicide 
- B. pumilus

Rhizoctonia and 
Fusarium, which 
attack developing 
soybean roots 

Soybean Gustafson 
LLC1400 
Preston Road 
TX 75093 

SonataTM ASO 
B. pumilus strain 
QST 2808 

Fungal pests such 
as molds, mildews, 
blights, rusts and to 
control Oak death 
syndrome 

Used in nurseries, 
landscapes, oak 
trees and green 
house crops 

Agra Quest, 
Inc.,Davis, 
USA 

System 3 - Bacillus
subtilis GB03 and
chemical pesticides

Seedling pathogen Barley, Beans, 
Cotton, Peanut, 
Pea, Rice, Soybean 

Helena
Chemical 
Co.,Memphis 
USA 

AtEze
P. chlororaphis
strain 63-28 

Pythium spp.,
Rhizoctonia solani, 
Fusarium 
oxysporum

Ornamentals and 
vegetables 

EcoSoil 
Systems, 
Inc., San 
Diego, CA 

Pix plus plant 
regulator, B. cereus
BPO1 technical, -
B. cereus strain 
UW85

Used as growth 
regulator 

Cotton Micro Flo 
Company, 
Lakeland,
FL 33807

Bio-save 10LP, 110 
– P. syringae

Botrytis cinerea,
Penicillium spp., 
Geotrichum 
candidum

Pome fruit, Citrus, 
Cherries and 
Potatoes 

Eco Science 
Corp., FL  
32779. 

10.1     Development of compatible consortia 

Biological control of plant pathogens in disease suppressive soil is 
due to the existence of mixture of microbial antagonists (Lemanceau and 
Alabouvette, 1991). Hence, augmentation of compatible strain mixtures of 
PGPR strains to infection court will mimic the natural environment and 
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could broaden the spectrum of biocontrol against different plant pathogens 
(Janisiewicz, 1988). Efficiency of biocontrol agents could be increased by 
the development of compatible strain mixtures of different biocontrol 
organisms by considering the following norms (Raupach and Kloepper, 
1998).  

1. Strain mixtures that differ in the pattern of plant colonization 
2. Strain mixtures with broad spectrum of action against different 

plant pathogens 
3. Strain mixtures with different modes of action 
4. Strain mixtures with genetically different organisms having the 

capability to perform in different pH, moisture, temperature and 
relative humidity. 

Vidhyasekaran and Muthamilan (1995) found that P. fluorescens - 
Pf1 was not inhibitory to nitrogen fixing bacteria, Rhizobium and 
Azospirillum. Development of strain mixtures with non-competitive nature 
of these bacterial strains will have an additive effect in increasing the yield 
and growth. Strain mixtures of Pseudomonads in combinations with other 
bacteria were found effective than the application of individual organisms 
(Duijff et al., 1999). Application of the mixture of phloroglucinol producers 
of P. fluorescens F113 and a proteolytic rhizobacterium suppressed sugar 
beet damping-off (Dunne et al., 1998). Combination of iron chelating 
Pseudomonas strains and inducers of systemic resistance suppressed 
Fusarium wilt of radish better than the application of individual strains (de 
Boer et al., 2003). 

10.2 Strains that induce synergistic expression of biocontrol 
genes

Development of products with strains that induce the expression of 
biocontrol genes can also increase the bioefficacy of PGPR strains under 
field conditions. Combination of CHAO and Q287 of fluorescent 
pseudomonads enhanced the expression of the genes that code for diacetyl 
phloroglucinol. This would lead to the increase of DAPG pool in the 
rhizosphere and will suppress the disease causing organisms (Raaijmakers et 
al., 1999). 

10.3     Adjuvants, spreaders and stickers 

In general, the performance of PGPR formulations in controlling 
plant diseases is inconsistent. Since, disease suppression is the outcome of 
interactions between biocontrol agents, pathogen, plant and environment, 
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any fluctuations in growing seasons; environmental conditions and high 
inoculum pressure alter the efficacy of biocontrol formulations. Integrating 
the usage of formulations with other management strategies that aims at 
increasing the productivity of the crop could enhance the efficacy of 
formulations (Larkin et al., 1998). Performance of biocontrol agents in the 
formulations can be increased by the incorporation of water-soluble 
adjuvants, oils, stickers and emulsions. It increases the efficacy of biocontrol 
agents by supplying nutrients and by protecting the microbes from 
desiccation and death (Connick et al., 1991; Bateman et al., 1993; Barnes 
and Moore, 1997; Green et al., 1998; Ibrahim et al., 1999). Incorporation of 
carboxy methyl cellulose (CMC) in formulations serves as stickers in 
uniform seed coating of microbes. Though adjuvants and stickers increase 
the efficacy of bio-products it has its own demerits. Adjuvants/stickers in the 
formulations will be diluted when exposed to rain or heavy dew. It would 
alter the efficacy of formulations by reducing the establishment or 
colonization of PGPR onto the infection court. Sometimes spray application 
of emulsions or oil-based formulations may be toxic to plants. Hence, a 
thorough knowledge on the usage of adjuvants, stickers is essential for 
increasing the efficacy of formulations. 

10.4     Genetic engineering of PGPR strains 

Genomic tinkering of naturally occurring PGPR strains with genes 
that are beneficial to plants will lead to the accentuated expression of the 
genomic products which could alleviate the attack of both pests and diseases. 
This will facilitate for the introduction of a single bacterium with multiple 
modes of action to benefit the growers to save their crop with increased 
returns by reducing the inputs invested for plant protection measures. 
However, the release of genetically modified organisms is a policy decision 
to be made by the policy makers. Hence, appraising of policy makers about 
the safe usage of beneficial bacteria will be a boon to the farming 
community and environment. 

10.5  Formulations of PGPR strains compatible with plant 
inducers of chemical origin 

Plant inducers of chemical origin are used to trigger systemic 
resistance at very low concentrations against pests and diseases. The 
chemical inducer benzothiadiazole (Bion) is commercially used for inducing 
resistance in crop plants against pests and diseases (Gorlach et al., 1996). 
Hence, identification of PGPR strains that has compatibility with chemical 
inducers will have a synergistic action against pests and diseases. 
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11       COMMERCIALIZATION 

Industrialization of biocontrol agents requires linkage between 
corporate and academic bodies. The success and commercialization of a 
scientific innovation depends on the availability of the technology to the end 
users. It depends on the linkages between the scientific organization and 
industries. Biocontrol technology could become as a successful component 
of plant protection only when it is commercialized.  

11.1     Stages of commercialization  

 Stages of commercialization include isolation of antagonist, 
screening, pot test and field efficacy, mass production and formulation 
development, fermentation methods, formulation viability, toxicology, 
industrial linkages and quality control (Sabitha Doraiswamy et al., 2001). 

11.1.1   Isolation of antagonist 

 Isolation of an effective strain plays a prime role in disease 
management. It is done from the pathogen suppressive soils either by 
dilution plate technique or by baiting the soil with fungal structures like 
sclerotia of pathogen. Consortium of biocontrol agents could be established 
by isolating the location specific and crop specific isolates. It could be used 
for the development of mixtures of biocontrol agents suited for different 
ecological niche. 

11.1.2   Screening of antagonist 

 All the strains isolated from the different cropping system have to be 
ascertained for its virulence and broad spectrum of action against different 
pathogens causing serious economic threat to cultivation. Selection of an 
effective strain decides the viability of the technology. Hence a proper 
yardstick should be developed to screen the antagonistic potentiality of the 
biocontrol agents. In vitro screening of the antagonist through dual culture 
technique alone could not be an effective method for strain selection. To be 
an effective antagonist it should possess a high level of competitive 
saprophytic ability, antibiosis, should have the ability to secrete increased 
level of cell wall lytic enzymes (chitinases, glucanases and proteases), 
antibiotics and plant growth promotion.  Hence the yardstick should be 
developed, comprising of above-mentioned components. Each component 
should be given weightage depending upon their role in disease 
management. This type of rigorous and meticulous screening will lead to 



PGPR formulations 281

identification of an effective biocontrol strain suited for commercialization. 
Twenty rhizobacterial isolates from strawberry rhizosphere were evaluated 
for its antifungal action against Verticillium dahliae. The selection of best 
antagonistic bacterial isolate was done by screening for the antifungal action 
against different soilborne pathogens apart from the target pathogen. In 
addition it was also tested for the antifungal mechanism of the rhizobacteria 
for the production of lytic enzymes (chitinases, glucanases and proteases) 
and plant growth promotion. Collectively all these parameters were 
combined based on bonitur scale (28 points). The strain that had the highest 
score was selected for testing its efficacy under greenhouse. Among twenty 
strains, P. putida E2 had the maximum bonitur scale of 28 points and was 
highly effective in suppressing Verticillium wilt of strawberry under 
greenhouse conditions. It was found to perform better than the commercial 
product Rhizovit (Berg et al., 2001). This clearly explains that selection of 
bacterial antagonist plays a major role in commercialization of the bacteria 
for disease management. Initial mistake committed in strain selection will 
lead to complete failure of the technology. 

11.1.3   Pot test and field efficacy 

 The plant, pathogen and antagonists are co exposed to controlled 
environmental conditions. Exposure of the host to the heavy inoculum 
pressure of the pathogen along with the antagonist will provide ecological 
data on the performance of the antagonist under controlled conditions. 
Promising antagonists from controlled environment are tested for its efficacy 
under field conditions along with the standard recommended fungicides. 
Since the variation in the environment under field condition influence the 
performance of biocontrol agent, trials on the field efficacy should be 
conducted for at least 15 – 20 locations under different environmental 
conditions to promote the best candidate for mass multiplication and 
formulation development (Jeyarajan and Nakkeeran, 2000). 

11.1.4   Mass production and formulation development 

 The first major concern in commercial production systems involves 
the achievement of adequate growth of the biocontrol agent. In many cases 
biomass production of the antagonist is difficult due to the specific 
requirement of nutritional and environmental conditions for the growth of 
organism. Mass production is achieved through liquid and semisolid and 
solid fermentation techniques. The commercial success of biocontrol agents 
requires

Economical and viable market demand  
Consistent and broad spectrum action 
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Safety and stability 
Longer shelf life 
Low capital costs 
Easy availability of career materials (Jeyarajan and Nakkeeran, 
2000)

11.1.5 Fermentation

 Liquid and solid fermentation methods are used for the mass 
production of PGPR. 

11.1.5.1  Liquid fermentation  

This fermentation system has been adopted for the mass 
multiplication of fungal bacterial biocontrol agents. For mass multiplication 
the selected medium should be inexpensive and readily available with 
appropriate nutrient balance. Kings’ B broth or nutrient broths are used for 
the mass production of Pseudomonas and Bacillus spp., through liquid 
fermentation technology (Kloepper and Schroth, 1981; Vidhyasekaran and 
Muthamilan, 1995; Manjula and Podile, 2001; Nakkeran et al., 2004). 

11.1.5.2 Solid fermentation 

 In nature wide range of organic substrates could be used for the 
solid-state fermentation for mass multiplication. Solid fermentation media 
consisting of inert carriers with food bases was used for mass production of 
biocontrol agents (Lewis, 1991).The media with relatively low microbial 
content would be suited for solid-state fermentation and for the amendment 
of biocontrol agents. Solid substrates include straws, wheat bran, sawdust, 
moistened bagasse, sorghum grains, paddy chaff, and decomposed coir pith, 
farmyard manure and other substrates rich in cellulose for inoculum 
production. Siddiqui and Mahmood (1999) stated that bacteria had great 
potential to manage plant parasitic nematodes. But the practicality of the 
same could be done by incorporating the antagonistic bacteria to organic 
manures, followed by incubation at 35 C for 5-10 days coupled with 
frequent mixing under sterile environment along with water so as to 
maintain the organic manure under moist conditions, which aid in the 
proliferation of the bacteria. The enriched organic manure with biocidal 
value could be used for the management of nematodes and plant growth 
promotion.  
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11.1.6 Formulation viability 

Shelf life of the formulations decides the commercialization of 
biocontrol agents. Formulations should support the viable nature of the 
product for the increased period of storage. Bio control product should have 
the minimum shelf life of 8-12 months for industrialization. Carrier material 
should not affect the viable nature of the biocontrol agent. 
Commercialization of the bioproducts is mainly hampered due to the poor 
shelf life. Hence research should be concentrated to increase the shelf life of 
the formulation by developing superior strains that support the increased 
shelf life, or the organic formulations that support the maximum shelf life 
with low level of contaminants must be standardized for making biocontrol 
as a commercial venture. 

11.1.7 Toxicology 

 Safety and environmental considerations could not be taken for 
granted and it is crucial that biopesticides are regulated in an appropriate 
way to confirm the international standards. The regulatory environment is 
generally favorable for the bio-pesticides than the chemical pesticides. 
However the cost of carrying out the toxicological study for registration is 
still prohibitive.  Toxicology includes information of antagonist on the safety 
to men, plants, animals and soil microflora. Cost incurred for the 
toxicological studies is high. These studies have to be done separately for 
each and every biocontrol organism separately. The huge investment on the 
toxicological studies warrants for the linkages between stakeholders and 
research organizations (Jeyarajan and Nakkeeran, 2000; Sabitha 
Doraiswamy et al., 2001).   

11.1.8   Industrial linkages 

 The research institutes carry out the initial discovery of an effective 
organism, genetic manipulation of organisms to develop superior strains, and 
studies on mechanisms, field efficacy and protocols for the development of 
formulations. But to take this technology to entire country depends on the 
partnership between the stakeholders and institutes. Corporate resources are 
required for the large-scale production, toxicology, wide scale field-testing, 
registration and marketing. Entrepreneurship may be defined as the 
exchange of intellectual property for research grants, and a royalty stream, 
with the establishment of University – Industry partnership for the benefit of 
both. The first requirement for the entrepreneurship requires a patent 
application on the strain and the related technology, especially on the 
efficacy data, identity of the organism, toxicological data and delivery 
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system. Ideally the process of entrepreneurship will result in an academic 
corporate research team working towards a common goal. 

11.1.9   Quality control 

 This is very much required to retain the confidence of the farmers on 
the efficacy of biocontrol agents. Being the living organisms their population 
in a product influences the shelf life. The population load of the antagonists 
decides the minimum level of requirement for bringing the effective 
biological control of the plant diseases. Depending on the type of the 
antagonist (bacteria or fungal), and formulation, the moisture content and 
population load varies. The other contaminating organisms should be also 
under the permissible limits. 

12       CONSTRAINTS TO COMMERCIALIZATION

 The success of microbial pesticides to suppress pests and diseases 
depends on the availability of microbes as a product or formulation, which 
facilitate the technology to transfer from lab to land. The constraints to 
biopesticides development and utilization mirror some of those factors that 
limit the development worldwide. Constraints include 

Lack of suitable screening protocol for the selection of promising 
candidate of PGPR.
Lack of sufficient knowledge on the microbial ecology of PGPR 
strains and plant pathogens 
Optimization of fermentation technology and mass production of 
PGPR strains 
Inconsistent performance and poor shelf life 
Lack of patent protection
Prohibitive registration cost (Schisler and Slininger, 1997; Fravel et 
al., 1998; Fravel et al., 1999) 
Awareness, training and education shortfalls 
Lack of multi disciplinary approach 
Technology constraints     (Sabitha Doraiswamy et al. 2001). 

 12.1    Screening and selection of potential PGPR strain

Success of commercialization of PGPR strains depends on the 
selection of effective strains after adopting rigorous screening strategies. 
Because, any mistake during strain selection will be a costly mistake in 
product development (Schisler and Slininger, 1997). The potentiality of the 
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PGPR strain in the suppression of plant pathogen should be carried out at 
both lab and field conditions in different soil types with diversified microbial 
communities and climatic conditions (Roberts and Lohrke, 2003). It would 
lead to the development of a viable PGPR strain.  

12.2     Microbial ecology and interaction 

Suppression of plant disease is a four-way interaction of biocontrol 
agents, plants, pathogens and the environment. Hence, understanding of 
interaction between all these components is essential for developing a 
suitable biocontrol agent in disease management (Handelsman and Stabb, 
1996; Larkin et al., 1998).  Extracellular metabolites produced by PGPR 
strains interact with microbial community (plant pathogens and other 
microbes) and plant in rhizosphere or spermosphere or phyllosphere and 
result in the suppression of pathogenic propagules either by direct action of 
antibiotics or through elicitation of induced systemic resistance activated by 
the molecular determinants (lipopolysaccharide, salicylic acid), global 
regulators and siderophores of bacterial origin (Larkin et al., 1998; 
Thomashow et al., 1990; Thomashow and Weller, 1988; Loper and Henkels, 
1999). However, knowledge on the influence of biotic and abiotic 
environment on PGPR strains to express its antimicrobial action has to be 
studied in depth under in vivo to improve the efficacy of PGPR strains. This 
will facilitate to identify bacterial strains that could perform well under 
diverse environmental conditions around the court of infection. 

12.3     Fermentation technology and shelf life of formulations
Optimization of fermentation technology (Liquid or solid 

fermentation) with suitable medium (synthetic or semi-synthetic) for mass 
multiplication and identification of suitable carrier material (organic or 
inorganic) for formulation development with increased shelf life is a barrier 
in the commercial success of formulation development. Slininger et al.
(1996) reported that liquid culture and formulation technologies has to be 
optimized for the commercial exploitation of P. fluorescens 2-79 for the 
management of take all disease of wheat. Commercial biomass production of 
bacterial antagonists requires large-scale fermenters. The biomass 
production and efficacy of biocontrol agents to suppress plant pathogens 
varies depending on the nutrient composition of the medium (Schisler and 
Slininger, 1997). Hence, the medium selected for biomass production should 
support the growth and efficacy of antagonist and the cost of medium should 
be economical so that the technology remains viable.  
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12.4     Patent protection and prohibitive registration cost 

The environmental protection agency in developed and developing 
countries should relax the formalities and registration cost to promote 
registration of biocontrol agents either by universities or private companies. 
The patent protection rights for the effective products should be strengthened 
to encourage the organizations involved in identification and development of 
commercial biocontrol agents.  

12.5     Awareness, training and education shortfalls 

The general level of awareness among stakeholders about the 
potential value of biopesticides is lacking. There is a need for 

Awareness level among the policy makers of the potential for 
biopesticides, their efficacy and their effect in reducing the health 
and environmental problems. 
The opportunities offered by the commercialization in terms of 
generation of wealth and employment are to be promoted.  
Entrepreneurs and investors need to be informed about the 
opportunities that exist for establishing commercial companies to 
manufacture market and sell biopesticides.  
Government extension workers have to be trained in biopesticides 
and the communication between research and extension sectors have 
to be intensified. 
The nature and mode of action of biopesticides have to be explained 
to farmers who are used to chemical insecticides, which are often 
fast acting and are visibly effective (Sabitha Doraiswamy et al.,
2001).

12.6      Lack of multidisciplinary approach

The process of biopesticides development to complete product 
requires research in areas of screening, formulation, field application, 
production, storage, toxicology as well as the steps necessary for 
commercialization, such as scale up production, registration and regulatory 
matters. Most of the research efforts undertaken with the use of biopesticides 
are confined only to the exploration, collection, isolation and identification 
of biocontrol agents combined with laboratory based bioassays. But in the 
process of product development the above research aspects shares only a 
fraction of work required to develop a complete product. Product 
development requires a multidisciplinary approach to biopesticides research 
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and development. Rarely a complete range of expertise exists in a single 
institute or organization. 

12.7     Technology constraints 

12.7.1   Delivery system 

Success in biocontrol depends on understanding and use of delivery 
system. The research on delivery system is well below that of chemical 
insecticides. The attention on the application technology can improve 
biopesticides performance.  

12.7.2   Biopesticides quality 

The major problem in the field of biopesticides production is the 
product quality and stability. In small-scale production, contamination of 
inoculum is a common problem. The long -term shelf life of the product is 
highly essential to attract the multinational companies to invest on a large 
scale.

13       STRATEGIES TO PROMOTE 
COMMERCIALIZATION 

            Commercialization of biocontrol could be promoted by 
Popularization of biocontrol agents 
Industrial linkages 

13.1     Popularization of biocontrol agents 

Motivating the growers through 
a. Publicity 
b. Field demonstrations  
c. Farmers days 
d. Biovillage adoption
e. Conducting periodical trainings for commercial producers and 

farmers to increase / improve the supply. 
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13.2 Industrial linkages 

a. Technical support should be made available to entrepreneurs on      
quality control and registration. 
b. Regular monitoring is essential to maintain the quality. 
c. Constant research support should be extended to standardize the    
dosage, storage, and delivery systems. Positive policy support from 
Government to use more of biocontrol agents in crop protection. 

14 CONCLUSION

Increase in public concern about the environment has increased the 
need to develop and implement effective biocontrol agents for crop 
protection. An effective PGPR could be developed for disease control only 
after understanding its performance in the environment in which it is 
expected to perform. In nature agriculture crops are exposed to diverse 
environmental conditions and gambling of monsoons, which alter the 
microclimatic conditions existing around the infection court. A thorough 
knowledge on the mechanisms and performance related to disease control 
will help in the selection of promising candidates that suits industries to 
produce reliable commercial products (Collins et al., 2003).  

Introduction of PGPR strains to phyllosphere, spermosphere or 
rhizosphere may be moderately effective or sometimes totally ineffective 
under field conditions to control plant diseases (Duffy et al., 1996).
Inefficacy of the strains under field conditions may be due to the variation in 
climatic conditions that suppress growth and survival of biocontrol agents 
(Guetsky et al., 2001). In addition both pathogen and biocontrol agents does 
not have similar ecological niche for their growth and survival. Hence the 
efficacy of biocontrol agents could be improved through the usage of 
compatible mixed inoculum of biocontrol agents which could have a 
consistent performance under diverse environmental conditions (Guetsky et
al., 2001; Janisiewicz, 1996)  

PGPR formulations comprising of bacterial strain mixtures having 
the capability to induce chitinase in plant play an important role in 
hydrolyzing chitin, the structural component in gut linings of insects and 
would lead to better control of insect pest (Broadway et al., 1998). In 
addition certain PGPR strains also activate octadecanoid, shikimate and 
terpenoid pathways. This in turn alters the volatile production in the host 
plant leading to the attraction of natural enemies (Bell and Muller, 1993). 
Identification of entomopathogenic PGPR strains that have the capability to 
colonize phylloplane in a stable manner will be a breakthrough in the 
management of foliar pests (Otsu et al., 2004). Combined application of 
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entomopathogenic strains with compatible PGPR strains that have the ability 
to suppress plant diseases has to be developed for broad spectrum  action.

On the contrary, certain studies explain that some strain mixtures 
perform even lower than that of individual strains. So, the basic knowledge 
on molecular signaling mechanisms between related strains and species has 
to be understood for the development of a better formulation that could 
suppress a broad spectrum of pathogens and pests besides plant growth 
promotion.

The formalities involved in registration of formulation   are very 
stringent and the cost incurred for registration of individual strains is also 
high. At this juncture, the cost incurred for the registration of formulations 
with mixed strains should not be prohibitive to the industrialist to venture in 
to the field of commercialization of the organism. If it is found to be 
prohibitive than the research developments from the lab would not reach the 
end-users.

But one cannot compensate the quality and safety of the product for 
the use of farming community. The advocates of biocontrol also face a tough 
time to convince the environmental protection agencies about the safety of 
the organisms. Because, acceptance, registration, transfer of technology and 
adoption of the biocontrol agents at field level relies on the safety of the 
organism to be used. Biocontrol researchers cannot deny that several well 
known bacterial biocontrol agents have a threat to become as an 
opportunistic pathogen. Occurrence of immune compromising infectious 
diseases and tissue transplants has made opportunistic pathogens as a visible 
threat to human health.

Several potential biocontrol agents used for plant disease 
management behave as opportunistic human pathogens. Though  
P. aeruginosa is a potential biocontrol agent of gray leaf spot on turf, it is 
also a virulent opportunistic pathogen which infects wounds and severe 
burns. P. cepacia, which is used for the management of pea root rot, has the 
capability to infect lungs of the patients having cystic fibrosis. Bacillus
cereus, being a potential candidate for the management of damping-off and 
root rot of soybean, it is also a food contaminant and closely mimics Bacillus
anthracis, the causal agent of anthrax disease. The confusions involved in 
distinguishing between the related strains that turn as opportunistic 
pathogens for humans has to be solved to convince the policy makers and 
environmental protection agencies to promote acceptance, registration, 
transfer of technology and adoption. 

Amidst these obstacles, since PGPR has its own potentiality in plant 
disease and pest management several products have been registered for the 
practical use of farming community. Sixty to 75% of cotton crops raised in 
U.S. are treated with commercial product of B. subtilis (Kodiak) effective 
against soilborne pathogens such as Fusarium and Rhizoctonia. It is also 
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used in peanut, soybean, corn, vegetables and small grain crops (Backman et 
al., 1997). In China, PGPR has been in commercial development for over 
than two decades and are referred as yield increasing bacteria (YIB). It is 
applied over an area of 20 million hectares of different crop plants (Chen et
al., 1996; Kilian et al., 2000). In India, more than 40 stakeholders from 
different provinces have registered for mass production of PGPR with 
Central Insecticide Board, Faridabad, Haryana through collaboration with 
Tamil Nadu Agricultural University, Coimbatore, India for the technical 
support and information (Ramakrishnan et al., 2001). Though the market 
size for PGPR usage is increasing constantly under greenhouse and field 
conditions, finding solutions for the above obstacles will create a break 
through in the adoption of biocontrol agents for field applications.  
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Chapter 11 

BIOCONTROL OF PLANT DISEASES BY 
GENETICALLY MODIFIED 
MICROORGANISMS: CURRENT STATUS AND 
FUTURE PROSPECTS 
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Abstract: The biocontrol of plant diseases by microorganisms is a promising alternative 
to the chemical pesticides. Serratia marcescens strain B2 effectively controls 
fungal diseases of cyclamen and rice. Biocontrol by S. marcescens strain B2 is 
mediated by the combined effects of plural chitinases, antibiotic prodigiosin, 
induced systemic resistance. Activity of S. marcescens is often negatively 
affected by abiotic and biotic factors and antibiotic biosynthesis of this 
bacterium is reduced under the influence of rice-associated bacteria. A 
genetically modified rice-indigenous bacterium was developed by introducing 
genes encoding for antifungal factors. Disease inhibitory genes were isolated 
from S. marcescens and put under the control of several types of promoters, 
which were isolated from the recipient. These genetically modified 
microorganisms effectively suppressed rice blast disease caused by 
Pyricularia oryzae and are not affected by abiotic or biotic factors. 
Introduction of disease inhibitory genes controlled by promoters and derived 
from the recipient is a useful technology for the development of biocontrol 
agents.

Key words: biocontrol; counteraction; chitinases; environmental factors; genetically 
modified microorganisms; indigenous microorganisms; promoters

1 INTRODUCTION

Public concern about the impact of chemical fungicides on human 
health and the environment has intensified the search for alternative methods 
to control plant diseases. The biocontrol of plant diseases by antagonistic 
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microorganisms such as bacteria and fungi holds great promise (Campbell 
1989). Biocontrol activities of microorganisms include the production of 
antibiotics, lytic enzymes and induction of systemic resistance in the host 
plant (Figure 1). The effectiveness of biocontrol agents can be influenced by 
a myriad of environmental factors, both abiotic and biotic. This results in 
less disease suppression and insufficient reduction of pathogens. Therefore, 
biocontrol achieved is often unpredictable, and results are too variable for 
agricultural use. The molecular pathways by which abiotic factors such as 
nutrient conditions, temperature, humidity, light, etc., affect the expression 
of antagonistic activities of biocontrol agents have been studied under 
laboratory conditions. However, little is known about the mechanism by 
which biotic factors affect the activity of biocontrol agents on 
phytopathogens, particularly in the rhizosphere and on the plant surface. 

2 BIOCONTROL OF PHYTOPATHOGENS BY 
ANTAGONISTIC BACTERIUM SERRATIA 
MARCESCENS

Many bacteria including Pseudomonas spp., Bacillus spp., 
Burkholderia spp. and Enterobacter spp. etc. have been identified as 
biocontrol agents (Cook 1996, Cook et al. 1996, Desai et al. 2002, 
Mukohara 1998, Vidhyasekaran 2004). Serratia spp., has also been 
identified as a useful biocontrol agent and plant growth-promoting bacterium 
(Guo et al. 2004, Okamoto et al. 1998, Ordentlich et al. 1988, Raupach et al.
1996, Wei et al. 1996), as well as an opportunistic mammal or plant 
pathogen (Bruton et al. 2003, Grimont and Grimont 1978, Hejazi and 

Fig. 1. Mechanisms of biocontrol  for phytopathogens.
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Falkiner 1997, Rascoe et al. 2003). One of its strains, S. marcescens strain 
B2, has been isolated from the tomato plant. Strain B2 colonizes the 
rhizosphere of cyclamen and rice plants, and effectively controls fungal 
diseases of cyclamen and rice (Iyozumi et al. 1996, Someya et al. 2000, 
2005a).

2.1 Mechanisms of biocontrol by antagonistic bacteria 

Antagonistic bacteria employ different mechanisms for biocontrol of 
phytopathogens: competition may lead to niche exclusion, production of 
antibiotics, lysis of the pathogen, or induction of systemic resistance in the 
host plants (Campbell 1989). S. marcescens produces several chitinolytic 
enzymes, including both exo- and endo-type chitinases. These chitinases are 
potentially useful inhibitors of phytopathogenic fungi that contain chitin as a 
major structural component (Akutsu et al. 1993, Gooday 1990, Herrera-
Estrella and Chet 1999, Kobayashi et al. 1995, Ordentlich et al. 1988). 
Strain B2 produces at least four chitinolytic enzymes (Someya et al. 2001). 
Each chitinolytic enzyme inhibits the growth of phytopathogenic fungi and 
synergistic antifungal activity of endo- and exo-type chitinolytic enzymes 
has also been observed (Someya et al. 2001). Serratia marcescens also 
produces prodigiosin, a tripyrrole antibiotic that functions as an antifungal 
factor. In addition, some strains of the Serratia spp., including strain B2, 
induce systemic resistance in the host plant against various diseases (Liu et
al. 1995, Raupach et al. 1996, Someya et al. 2002, Wei et al. 1996). 

3 INFLUENCE OF ENVIRONMENTAL FACTORS 
ON THE ACTIVITY OF BIOCONTROL  AGENTS 

Abiotic factors can influence the activity of biocontrol agents and 
these factors include pH, temperature, moisture, light conditions, soil type, 
nutrients, components of the soil atmosphere, inorganic or organic soil 
constituents, and pesticide application (Adams and Wong 1991, Burpee 
1990, Duffy and Défago 1999, Kredics et al. 2003, Landa et al. 2001, 
Ownley et al. 1992, 2003, Schmidt et al. 2004, Shanahan et al. 1992, 
Someya et al. 2004, van Rij et al. 2004). These factors have the impact on 
the interactions of phytopathogenic fungi and microbial antagonists. The 
combined effects of both abiotic and biotic factors (such as resident 
microflora) under field condition have an influence on the expression of 
antagonistic effects of biocontrol agents (Duffy et al. 2003, Haas and Keel 
2003).
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3.1 Influence of plant-associated indigenous microbes on 
biocontrol activity 

Serratia marcescens suppresses various plant diseases but biocontrol 
of disease often fails when inoculation of pathogen preceded bacterial 
inoculation by a prolonged period, even though S. marcescens remains 
present in the plant rhizosphere soil (Someya et al. 2003a). This caused 
decline in antibiotic and chitinase production in the plant rhizosphere 
following inoculation. Although S. marcescens colonizes the rhizosphere, 
but the influence of indigenous bacteria apparently prevents antibiotic and 
chitinase biosynthesis by this bacterium. More than 75% of bacterial isolates 
from rice plants were able to inhibit antibiotic biosynthesis of S. marcescens,
without inhibiting its growth (Someya et al. 2003a) (Figure 2). Some 
bacterial isolates were also capable of inhibiting chitinase biosynthesis in S. 
marcescens strain B2 (Someya et al. 2005b). This clearly demonstrates that 
plant-associated microbes can affect the expression of antagonistic traits of 
biocontrol agents. 

Fig. 2. Lytic enzymes and antibiotic biosynthesis by biocontrol agent Serratia marcescens
strain B2 under the influence of rice-associated bacteria. Rice-associated bacterium RI206 

(Pantoea spp.) inhibited the antibiotic prodigiosin biosynthesis by strain B2, and RI315 
(Klebsiella spp.) inhibited both lytic enzyme chitinase and antibiotic prodigiosin biosynthesis. 

Scale = 10 mm. 

3.2 Influence of phytopathogens on biocontrol activity

Some phytopathogens produce metabolites and influence the 
effectiveness of biocontrol agents. Pseudomonas fluorescens produces 
antibiotic 2,4-diacetylpholoroglucinol (2,4-DAPG) and suppresses various 
plant pathogens (Bonsall et al. 1997, Dowling and O'Gara 1994, 
Raaijmakers et al. 1997) while Fusarium oxysporum produces the 
phytotoxic fusaric acid, which counteracts the biosynthesis of 2,4-DAPG or 
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pyoverdine by Pseudomonas spp. (Duffy and Défago 1997, Duffy et al.
2003, Landa et al. 2002, Notz et al. 2002). Fusarium oxysporum interfere 
with autoregulation of 2,4-DAPG biosynthesis as a defense strategy to 
thwart antagonism. In addition, a phytopathogen metabolite, deoxynivalenol, 
produced by F. graminearum, acts as a negative signal resulting in reduced 
expression of a specific chitinase gene in the fungal biocontrol agent 
Trichoderma atroviride (Lutz et al. 2003). Expression of antibiotic 2,4-
DAPG in P. fluorescens is also repressed by the bacterial extracellular 
metabolites salicylate and pyoluteolin in addition to fusaric acid (Schnider-
Keel et al. 2000). 

3.3 Influence of host plant on biocontrol activity

Plant host genotype, age, root exudates, and pathogen infection can 
affect bacterial antibiotic biosynthesis by P. fluorescens (Kraus and Loper 
1995, Kravchenko et al. 2003, Notz et al. 2001). Moreover, higher plants 
secrete a variety of signal-mimic compounds that can stimulate or inhibit 
behaviors in bacteria, which are regulated by N-acyl homoserine lactone 
(AHL) signal molecules (Bauer and Teplitski 2001, Teplitski et al. 2000, 
Walker et al. 2003). Many of the mechanisms of biocontrol are important for 
the plant disease control by bacteria such as biosynthesis of antibiotics and 
lytic enzymes and regulated by quorum sensing via AHLs (Chernin et al.
1998, Horng et al. 2002, Pierson and Pierson 1996, Swift et al. 1996, 
Thomson et al. 2000, Zhou et al. 2003). 

The success of biocontrol by antagonistic bacteria is dependent on 
complex interactions between plants, phytopathogens, and biocontrol agent 
under field conditions (Figure 3). The combined effect of these interactions 
can both suppress and enhance the activity of biocontrol agents. The 
application of a mixture of biocontrol agents or the restoration of biocontrol 
activity by AHLs, can result in synergistic interactions between the different 
components (De Boer et al. 2003, Fray et al. 1999, Fukui 2003, Fukui et al.
1999, Pierson and Weller 1994, Schisler et al. 1997, Wood et al. 1997). Our 
group developed a new biocontrol agent whose activity is not influenced by 
either biotic or abiotic factors to make biocontrol more predictable and 
reliable.

4 DEVELOPMENT OF GENETICALLY        
MODIFIED BIOCONTROL AGENT 

The use of genetically modified microorganisms as biocontrol 
agents has been reported throughout last decade. Genetically modified 
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microorganisms with increased expression of biocontrol traits have been 
developed in certain cases to improve biocontrol potential (Delany et al.
2001, Giddings 1998, Maurhofer et al. 1992). Chitinolytic enzyme gene has 
been introduced into certain microbes for the control of phytopathogenic 
fungi (Chernin et al. 1997, Downing and Thomson 2000, Hirayae et al.
1996, Ikeda et al. 1996, Shapira et al. 1989, Sundheim et al. 1988, Toyota et 
al. 1994). This resulted in enhanced activity of the genetically modified 
microbe against phytopathogenic fungi but chitinolytic activities of such 
transformants are low, possibly because these chitinase genes are under the 
control of relatively weak promoters which were isolated from other 
organisms (Chernin et al. 1997, Fuchs et al. 1986). Later, we tried to add a 
biocontrol trait in Erwinia ananas by the introduction of the chitinolytic 
enzyme gene from S. marcescens, which was expressed under the control of 
E. ananas promoters. 

4.1       Promoter trapping from plant-associated bacterium 

Rice epiphytic bacterium E. ananas NR1 colonizes rice leaves but 
NR1 does not produce antifungal factors such as lytic enzymes or 
antibiotics. First, we constructed a promoter-trap vector pEGFP-V1 for the 
recipient bacterium E. ananas NR1 (Figure 4). This plasmid contains a 
promoterless gene that encodes the enhanced green fluorescent protein, 
EGFP (Numata et al. 2004). 

We trapped various promoters from the E. ananas genomic DNA by 
shotgun cloning. Approximately 3,500 clones were obtained, 300 of which 
exhibited fluorescence (Figure 5). The relative activity of the trapped 
promoters was compared with expression of EGFP placed under the control 

Fig. 3. Factors affecting the biocontrol of phytopathogens by biocontrol bacteria. 
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of the Escherichia coli lac promoter also in pEGFP-V1. Nine clones (pcf1, 
pcf9, pcf10, pcf15, pcf51, pcf52, pcf53, pcf55 and pcf85) with particularly 
strong fluorescence were selected for further experiments. Sequence 
similarities of those fragments containing promoter activity are indicated in 
Table 1. 

Fig. 5. Clones trapped fragments containing promoter activity using pEGFP-V1. 300 clones, 
which showed GFP expression, were obtained from approximately 3,500 clones. Arrows 

indicate GFP expressing clones. 

4.2      Chitinolytic gene expression driven by entrapped 
promoters in rice epiphytic bacterium E. ananas

S. marcescens chiA, encoding the 58-kDa endochitinase ChiA, was 
cloned from strain B2. The endochitinase gene was then placed under the 
control of the promoters isolated from E. ananas, as described above, and a 
broad-host-range plasmid vector was used to introduce chiA into the rice 
epiphytic bacterium E. ananas NR1. The constructed vectors were  

Fig. 4. Promoter-trap vector pEGFP-V1. 
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Table 1. Sequence similarity of promoter-containing fragments (pcf) isolated 

Clone Insert size 
(bps)

Sequence similarity 
(most similar protein, significance) 

pcf1

pcf9

pcf10
pcf15

pcf51

pcf52
pcf53
pcf55

pcf85

411

458

1,100
214

800

251
154
650

240

The promoter region of E. coli envA gene encoding a 
lipopolysaccharide-synthesizing enzyme 
The promoter region of E. coli fabA gene encoding the D-3-
hydroxydecanoyl dehydratase 
-
The promoter and 5’-terminal region of R100 pemI plasmid 
stable inheritance protein 
The promoter and 5’-terminal region of E. coli lysC encoding 
the lysine-sensitive aspartokinase 
-
-
The promoter region of Salmonella thphimurium smvA
encoding the methyl viologen resistance protein 
The promoter region of Yersinia enterocolitica sodA encoding 
the superoxide dismutase 

-: no sequence homology 

designated for their respective promoters, for example pchiA-V1pcf9 and 
pchiA-V1pcf53 (Someya et al. 2003b). One of the transformants, E. ananas
NR1/pchiA-V1pcf9, did not produce lytic enzyme chitinase under low 
nutrient conditions; however, transformant E. ananas NR1/pchiA-V1pcf53 
did produce chitinase under the same nutritional conditions (Figure 6). 
Therefore, depending on the promoter, chitinase expression by transformants 
is not necessarily influenced by nutrient conditions. 

Fig. 6. Chitin degradation on chitin-supplemented LB and M9 (low nutrient) agar plates by E. 
ananas NR1 (WT), E. ananas NR1/pchiA-V1pcf9 (pcf9), and E. ananas NR1/pchiA-V1pcf53 

(pcf53), respectively. 

from E. ananas chromosomal DNA by promoter trapping. 
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4.3       Influence of rice-associated bacterium on chitinase 
production by genetically modified E. ananas

The influence of rice-isolated bacteria on the chitinase expression in 
E. ananas transformants was examined. Chitinase production was not 
inhibited by rice-isolated bacteria in the transformants, although the same 
rice-isolated bacteria efficiently inhibited chitinase biosynthesis in S.
marcescens (Someya et al. 2005b) (Figure 7). The mechanism by which the 
rice-isolated bacteria inhibited chitinase production in S. marcescens was not 
evaluated. Our results clearly indicate that the genetically modified E.
ananas escapes suppression of chitinase production by rice-indigenous 
microbes.

Fig.7. Chitinase biosynthesis by the genetically modified E. ananas NR1/pchiA-V1pcf53. 
Transformant produced chitinase under the influence of rice-associated bacterium RI315 

(Klebsiella spp.), which inhibited the chitinase biosynthesis by S. marcescens strain B2 (in Fig. 2). 

4.4       The biocontrol efficacy by transformants in vivo

The antifungal activity of ChiA produced by transformed E. ananas
NR1 was demonstrated in vitro by the inhibition of hyphal growth of 
phytopathogens (Someya et al. 2003b). In addition, the transformed E.
ananas suppressed the incidence of rice blast caused by Pyricularia oryzae
under greenhouse conditions and the magnitude of the suppressive effect 
depended on the promoter used (Someya et al. 2003b) (Figure 8). Therefore, 
the introduction of antagonistic factor genes combined with several different 
promoters, derived from the recipient, is a useful technology for the 
development of new biocontrol agents. 

4.5   Risk assessments for the agricultural use of genetically 
modified biocontrol agents 

Genetic manipulation of microorganisms and their deliberate release 
into the  environment  have  potential advantages, but certain  associated   risks 
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Fig. 8. Biocontrol effect of E. ananas NR1 (WT), genetically modified E. ananas NR1/pchiA-
V1pcf9 (pcf9), and E. ananas NR1/pchiA-V1pcf53 (pcf53) on rice blast caused by 
Pyricularia oryzae. Each bacterium inoculated the rice foliage 1 hr before pathogen 

inoculation. As comparison, fungicide probenazole (PBZ) applied 3 days before pathogen 
inoculation. Disease incidence was calculated 1 week after pathogen inoculation. The letters 

indicate statistical significance as determined by the Tukey method (p = 0.05). 

may also exist. Many scientists are convinced from the benefits that can be 
obtained by use of genetically modified microorganisms (GMOs) but 
general public are suspicious by use of a technology that they do not 
understand. They believe that GMOs, that they can not understand may pose 
a threat to their environment and health and meddles with the basis of life 
(Amarger 2002, Stephenson and Warnes 1996). However, no differences 
could be detected between GMOs and corresponding unmodified 
microorganisms in terms of survival, spread, persistence in the field, and 
ecological impact (De Leij et al. 1995, Natsch et al. 1997). Obviously, 
naturally occurring biocontrol agents can also affect the agricultural ecology 
(Gullino et al. 1995). In the biocontrol, biocontrol agent is either naturally 
occurring or genetically modified, it is based on promotion of a specific 
antagonistic microbe, and thus may interferes with the natural ecological 
balance. Regardless, the development of uniform and scientifically based 
guidelines for the release of genetically modified microorganisms in order to 
facilitate more routine screening in the environment is critical (Cook 1996, 
Cook et al. 1996, Giddings 1998, Ryder 1994, Wilson and Lindow 1993, 
Yoda 2004). 

5 CONCLUSIONS

The commercial application of biocontrol agents is still subject to 
debate (Mathre et al. 1999, Stewart 2001, Utkhede 1996, Walsh et al. 2001). 
Over the past few decades, plant pathologists have made substantial progress 
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in the commercialization of biocontrol agents for plant disease control. 
There are numerous commercial products available worldwide (Desai et al.
2002). However, only one biopesticide, Trichoderma, which was developed 
in the 1950s, has been widely available in Japan. Recently, some newer 
biopesticides have been developed, including BioKeeper (Central Glass Co. 
Ltd., Tokyo, Japan), Botokiller, Biotrust (Idemitsu Kosan Co. Ltd., Tokyo, 
Japan) (Mukohara 1998), Eco-Hope (Kumiai Chemical Industry Co., Ltd., 
Tokyo, Japan) and Serunae-Genki (Taki Chemical Co., Ltd., Hyogo, Japan). 
A growing knowledge about biocontrol of plant diseases will support and 
lead to development of sophisticated and useful biopesticides. Proper use of 
biopesticides with restraint will play an important role in sustainable 
agriculture in the 21st century. 

Many scientists share the belief that the artificial re-creation of 
suppressive soil (Schroth and Hancock 1982, Shipton et al. 1973) through 
biocontrol can play a part in disease control and may decrease the use of 
chemical pesticides. Although biocontrol is still in its infancy in reality, the 
growing understanding of the molecular mechanisms as well as the increased 
interest by biotechnology companies, will assure the future development and 
commercialization of biocontrol. The use of genetically modified 
microorganism is likely to play a significant role in this development. 
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