
2 KEY PRINCIPLES FOR

USER-CENTRED SYSTEMS DESIGN
Jan Gulliksen, Bengt Göransson, Inger Boivie,

Jenny Persson, Stefan Blomkvist, Åsa Cajander

Uppsala University,

Department of Information Technology, Human-Computer Interaction,

PO Box 337, SE-751 05 Uppsala, Sweden;

e-mail: Jan.Gulliksen@hci.uu.se

Note: This chapter is reproduced from Gulliksen et al., 2003b,
with permission from Taylor & Francis

Abstract

The concept of user-centered systems design (UCSD) has no agreed upon definition.
Consequently, there is a great variety in the ways it is applied, which may lead to poor
quality and poor usability in the resulting systems, as well as misconceptions about
the effectiveness of UCSD. The purpose of this chapter is to propose a definition of
UCSD. We have identified 12 key principles for the adoption of a user-centered de-
velopment process, principles that are based on existing theory, as well as research in
and experiences from a large number of software development projects. The initial
set of principles were applied and evaluated in a case study and modified accordingly.
These principles can be used to communicate the nature of UCSD, evaluate a develop-

17

in the Development Process, 17–36.

© 2005 Springer. Printed in the Netherlands. 

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability



18 HUMAN-CENTERED SOFTWARE ENGINEERING

ment process or develop systems development processes that support a user-centered
approach. We also suggest activity lists and some tools for applying UCSD.

2.1 PURPOSE AND JUSTIFICATION

This chapter describes the results of our current research on UCSD and our experi-
ences of applying UCSD in software development projects. Our purpose has been to
compile knowledge and experiences of UCSD, in order to give the concept a more
precise meaning and to increase its power. The main point in our chapter is that ap-
plying UCSD requires a profound shift of attitudes in systems development, and our
main goal is to promote that attitude shift.

2.2 BACKGROUND

Our main concern has been the lack of an agreed upon definition of UCSD, turning
it into a concept with no real meaning. UCSD was originally coined by Norman and
Draper, 1986. They emphasized the importance of having a good understanding of the
users (but without necessarily involving them actively in the process):

‘But user-centered design emphasizes that the purpose of the system is to serve the
user, not to use a specific technology, not to be an elegant piece of programming.
The needs of the users should dominate the design of the interface, and the needs
of the interface should dominate the design of the rest of the system.’ (Norman
and Draper, 1986)

Several other definitions and understandings have been proposed over the years.
The lack of a shared understanding of the meaning of UCSD (or User-Centered De-
sign, UCD) has actually been pointed out as a quality in its own right by Karat:

‘For me, UCD is an iterative process whose goal is the development of usable
systems, achieved through involvement of potential users of a system in system
design.’ (Karat et al., 1996) ‘I suggest we consider UCD an adequate label un-
der which to continue to gather our knowledge of how to develop usable systems.
It captures a commitment the usability community supports—that you must in-
volve users in system design—while leaving fairly open how this is accomplished.’
(Karat, 1997)

The consequence of such general and non-specific definitions of user-centered de-
sign is that it, in practice, becomes a concept with no real meaning. We have therefore
identified a set of key principles1 for UCSD.

The principles summarize our research results and experiences from software de-
velopment projects in a large number of organizations and projects. They are based
on principles specified elsewhere (Gould et al., 1997; ISO/IEC, 1999), and on our ex-
periences made from trying to apply UCSD in systems development projects using
processes such as the Rational Unified Process (Kruchten, 1998). Our principles also
take into account the Scandinavian tradition of extensive user involvement in the de-
velopment process (Greenbaum and Kyng, 1991) in some communities known as par-

1A principle is a commonly accepted fundamental rule or law that can be used to define other principles.



KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 19

ticipatory design. Other well-known approaches such as contextual design (Beyer and
Holtzblatt, 1998), goal-directed design (Cooper, 1999), usability engineering (Nielsen,
1993; Mayhew, 1999) have also contributed to the result.

Below we describe one of the projects that had particular impact on the principles
in that it was conducted with the explicit goal to capture critical success factors for
UCSD.

2.3 THE PROJECT

The pilot project was an in-house development project within the Swedish National
Tax Board with the purpose to develop a new computerized case-handling tool for
administrators working with national registration. We were able to follow the project
from the very start. In the first project meeting we emphasized the importance of
following a UCSD approach and introduced our set of principles to the project team.

These principles were specific for the organization and had been identified in an
earlier research effort (Gulliksen and Göransson, 2001). They were:

The work practices of the users control the development. Early focus on users
and tasks. The designer must understand the users, their cognitive behavior,
attitudes and the characteristics of their work tasks. Appropriate allocation of
function between the user and the system is also important to prevent unneces-
sary control;

Active user participation throughout the project, in analysis, design, develop-
ment and evaluation. This requires a careful user selection process emphasizing
the skills of typical users, including both:

– work domain experts (continuously through the development project);

– and actual end-users (for interviews and observations as well as evaluation
of design results).

Early prototyping to evaluate and develop design solutions and to gradually
build a shared understanding of the needs of the users as well as their future
work practices;

Continuous iteration of design solutions. A cyclic process of design, evaluation
and redesign should be repeated as often as necessary. The evaluation process
should include empirical measurement in which tests are conducted where users
perform real tasks on prototypes. The users’ reactions and attitudes should be
observed and analyzed;

Multidisciplinary design teams. Mainly achieved by including a usability de-
signer (Göransson and Sandbäck, 1999) in the process;

Integrated design. The system, the work practices, on-line help, training, orga-
nization, etc. should be developed in parallel.

The project decided to act in accordance with the above principles.



20 HUMAN-CENTERED SOFTWARE ENGINEERING

2.3.1 Research Methods

We used an action research approach in the project, i.e. our aim was to introduce
changes in the development process as regards user involvement and usability issues,
and to observe and record the outcomes of these changes. Our activities included
introducing a set of UCSD principles as described above, and facilitating the project
team’s commitment to these principles. We also facilitated collaborative prototyping
activities with users.

To observe the outcomes of the activities and actions, we used qualitative data
collection methods as described below.

Observations of the work of the development team, for instance, by continu-
ously participating in the project meetings of the software development team

Observations of the current work practices (mainly paper-based) of the admin-
istrators working with national registration

Semi-structured interviews based on open-ended questions with software de-
velopers and user representatives about their attitudes to and experiences with
working with users and usability

Semi-structured interviews based on open-ended questions with users about
their work

Continuous discussions with members of the software development team and
representatives for the current work practices to check possible discrepancies in
our interpretation of the observed activities and actions

Meanwhile, we continued working with the principles. As a result of intermediate
findings in the pilot project and findings in other, parallel, research efforts we modified
the set of principles to cover the twelve key principles described in this chapter. The
applicability of these principles was then assessed in a number of workshops with
researchers and practitioners.

2.3.2 Results

As a result of the introductory meeting, the project group decided to apply UCSD as
defined by the initial set of principles.

We could not influence the choice and customization of the development process
– the organization had recently shifted to using the Rational Unified Process (RUP)
(Kruchten, 1998). We were, however, able to introduce additional activities to com-
plement the process as needed, e.g. activities for performing a thorough user and task
analysis, for developing design solutions iteratively and in cooperation with the users,
and for including a usability designer throughout the project.

One of the more successful events was a collaborative prototyping activity in which
the users could develop their vision of the future system and work situation, integrating
a future system and future work practices (Figure 2.1).

These collaborative prototyping sessions were facilitated by a usability designer in
cooperation with a researcher. The users brought sketches illustrating their own view



KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 21

Figure 2.1 Collaborative prototyping in which the usability designer facilitates the users’

of the future system as a basis for a negotiation on the most appropriate design of the
system.

Low-level prototyping tools were used since the users regarded them as the most
flexible tool for their purpose (Figure 2.2).

Prior to the collaborative design sessions the usability designer had conducted a
user analysis and created personas. According to Calde et al., 2002, user models, or
personas, are fictional, detailed archetypical characters that represent distinct group-
ings of behaviors, goals and motivations observed and identified during the research
phase. Cooper, 1999, describes personas as a tool for communication and design
within the group of designers, software developers, managers, customers and other
stakeholders. The purpose is not to give a precise description or a complete theoretical
model of a user. Instead, it is aiming at a simple, but good enough description of the
user to make it possible to design the system. (Figure 2.3).

From the software engineering side they had been performing use case modeling to
specify the detailed requirements on the system. A use case specifies the sequence of
actions, including alternatives of the sequence, that the system can perform, interact-
ing with actors of the system (Jacobson et al., 1999). Use case modeling is today one
of the most widely used software engineering techniques to specify user requirements.
Unified Modeling Language (UML) is one of the most common formal notations to de-
scribe use cases (Fowler and Scott, 1997). Rational Unified Process (RUP) (Kruchten,
1998) builds heavily upon these techniques.

According to the users, the personas gave a much more concrete picture of typical
users than what came out of the use case modeling sessions running in parallel with
the collaborative prototyping activities.

production of mock-ups



22 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 2.2 Low-fidelity prototyping tools were used as these were the most convenient for

Halfway through the project all participants were very satisfied with the activities
so far and the results achieved. The project was committed on all levels to UCSD. The
principles communicated the essentials of UCSD very well.

From then on, however, there was a gradual increase of problems and obstacles to
the user-centered approach. Despite efforts from our side and from the project, the
problems were never really resolved. Some of them were outside the control of the
project.

The major problems in the project are briefly described below. The problems reflect
why the initial principles were not sufficient and therefore each of the problems is
related to the subsequent definition and 12 key principles of User Centered Systems
Design. The outcome of the project can be compared with the consolidated list of
twelve key principles, and each problem in the project map well against one or more
of the principles.

No lifecycle perspective on UCSD. The developers focused on short-term
goals, such as, producing models and specifications prescribed by RUP. The
long-term goals and needs of the users regarding their future work situation
were ignored or forgotten. Moreover, towards the end of the project, meeting
the project goals and deadlines became much more important than achieving
some sort of minimum level of usability. We believe, that had the project
decided to give the usability activities higher priority than, for example, to de-
velop absolutely all the functionality the end result could have been a lot better,
without any of the missing functionality causing any big problems in the long
run. We emphasize the importance of a lifecycle perspective in our definition of

visualizing the future use situation without limiting the design space



KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 23

Figure 2.3 Personas were used to describe typical users. In this example, the persona

‘Gudrun’ is described based on personal background, the work setting, colleagues and con-

UCSD in the next chapter as well as in a number of the principles, for instance,
the user involvement principle and the usability champion principle. The lack

tacts



24 HUMAN-CENTERED SOFTWARE ENGINEERING

of lifecycle perspective also indicates that there was no real commitment to
UCSD in the project which points to an attitude problem.

Usability designers were ignored. Despite the skilful and experienced work
that the usability designers performed, their results and their opinions were ig-
nored in the later phases of the project. The usability champion principle points
out that the usability champion/designer2 should have the mandate to decide on
usability matters. The project ignoring the input of the usability designer clearly
indicates that this was not the case2.

Use case mania. When the project started, the organization did not have enough
experience with use case modeling. The modeling went out of hand and the
results could not be used efficiently in the development process. The project
got literally bogged down in use cases, but did not really know what to do with
them. The use case mania indicates that there was a problem with user focus in
the project. Despite the confusion regarding the use of the use cases, producing
them became more important than understanding the users’ real needs.

Poor understanding of the design documentation. The design was docu-
mented in UML and the users were invited to evaluate it. The users had severe
difficulties predicting their future use situation based on the UML notation. One
of the users said that after having worked with use case modeling, the collabora-
tive prototyping was like ‘coming out of a long dark tunnel’. The design repre-
sentation principle emphasizes the importance of using representations that are
easy to understand for all the stakeholders, in particular as regards the future
work/use situation. UML is clearly not suitable in that respect.

Major changes in the project. Halfway through the project a strategic decision
was made within the organization, against our advice, to change the technical
platform and continue the development in a web-based environment. The de-
cision was crucial in that it made it very difficult to meet the usability require-
ments. Insufficient experience with and expertise in the new technology as well
as the page metaphor in html created problems. The decision was made with
little or no attention to usability matters. This indicates that there was a problem
with the attitudes to UCSD and usability within the organization and a problem
with user focus.

Problems establishing a user centered attitude. Single individuals in a project
can make a crucial difference when it comes to UCSD. We noticed, for instance,
problems with resolving conflicts between personal goals and business goals
within the project, on an individual level. Again, this indicates that there was
a problem with attitudes and user focus in the organization. It also indicates

2To us the usability designer is a role that has a clear position in the development project (see for instance
Göransson and Sandbäck, 1999). Usability champion has more of a mentor status and is not a role that
somebody can shoulder. To be able to act as a usability champion you must have extensive knowledge and
experience of the work in practice and also an ability to act as a mentor.



KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 25

problems with the professional attitude described in the principle on multidisci-
plinary design.

This case describes how a project with explicit intentions to apply UCSD, never-
theless ran into several problems and obstacles that made it very difficult to pursue the
UCSD approach. Our conclusion is that one needs to be very specific about what it
takes from the process to comply with UCSD to prevent problems such as the ones
described in the pilot study.

Based on the results of the project, we concluded that the principles listed in Gould
et al., 1997, and ISO 13407 are not sufficient to maintain a UCSD approach in a project
or in an organization. We therefore modified our initial set of principles to clearly
indicate that it takes much more to work in a user-centered fashion. We have also run
a number of workshops with researchers and practitioners to discuss and confirm the
principles. The resulting set is listed below together with a definition of UCSD.

Figure 2.4 User-centered system design (UCSD) is a process focusing on usability through-

out the entire development process and further throughout the system life cycle



26 HUMAN-CENTERED SOFTWARE ENGINEERING

2.4 DEFINITION AND KEY PRINCIPLES

User-centered system design (UCSD) is a process focusing on usability3 throughout
the entire development process and further throughout the system life cycle
(Figure 2.4). It is based on the following key principles:

User focus – the goals of the activity, the work domain or context of use, the
users’ goals, tasks and needs should early guide the development (Gould
et al., 1997; ISO/IEC, 1999). All members of a project must understand the
goals of the activity, the context of use, who the users are, their situation, goals
and tasks, why and how they perform their tasks, how they communicate, co-
operate and interact, etc. This helps in creating and maintaining a focus on the
users’ needs instead of a technical focus. Activities, such as identifying user
profiles, contextual inquiries and task analysis, must be a natural part of the
development process. Make sure that all project members have met real or po-
tential users, for instance, by visiting the workplace. Descriptions of typical
users, tasks and scenarios could be put up on the walls of the project room/area
to maintain a user focus.

Active user involvement – representative users should actively participate,
early and continuously throughout the entire development process and
throughout the system lifecycle (Gould et al., 1997; ISO/IEC, 1999; Nielsen,
1993). The users should be directly involved, both in the development project
and in related activities, such as, organizational development and designing new
work practices (Greenbaum and Kyng, 1991). The users must be representative
of the intended user groups. Plans for involving users should be specified from
the very start of the project. Identify appropriate phases for user participation
and specify where, when and how users should participate4. Emphasize the
importance of meeting the users in context, for instance, at their workplace.

Evolutionary systems development – the systems development should be
both iterative and incremental (Gould et al., 1997; Boehm, 1988). It is im-
possible to know exactly what to build from the outset. Hence, UCSD requires
an approach which allows continuous iterations with users and incremental de-
liveries. This, so that design solutions can be evaluated by the users before they
are made permanent. An iteration should contain a proper analysis of the users’
needs and the context of use, a design phase, a documented evaluation with con-
crete suggestions for modifications and a redesign in accordance with the results
of the evaluation. These activities do not have to be formal. An iteration could
be as short as half an hour, as long as it contains all three steps. Incremental

3Usability is defined as ‘the extent to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction, in a specified context of use’ (ISO/IEC, 1998), Please
note that this definition includes the concept of utility or usefulness, often seen as separate from usability.
4Please note that involving users on a full-time basis in a project quickly turns them into domain experts
rather than representative users. It is therefore important to involve user representatives on a temporary
basis as well.



KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 27

development means that, based on an overall picture of the system under devel-
opment (SUD), priorities are set and the system is divided into parts that can be
delivered for real use. Each increment is iterated as described above. Evalua-
tions of the increments in real use should influence the design of the subsequent
increments. Let the software grow into the final product.

Simple design representations – the design must be represented in such
ways that it can be easily understood by users and all other stakeholders
(Kyng, 1995). Use design representations and terminology that are easily under-
stood by all users and stakeholders so that they can fully appreciate the conse-
quences of the design on their future use situation. Use, for instance, prototypes
(sketches and mock-ups) and simulations. Abstract notations, such as use cases,
UML diagrams or requirements specifications are not sufficient to give the users
and stakeholders a concrete understanding of the future use situation (Bödker,
1998; Mathiassen and Munk-Madsen, 1986). The representations must also be
usable and effective. The goal is that all parties involved share an understanding
of what is being built.

Prototyping – early and continuously, prototypes should be used to visu-
alize and evaluate ideas and design solutions in cooperation with the end
users (Gould et al., 1997; Nielsen, 1993). Use multiple paper sketches, mock-
ups and prototypes to support the creative process, elicit requirements and vi-
sualize ideas and solutions. The prototypes should be designed and evaluated
with real users in context (contextual prototyping). It is essential to start with
low-fidelity materials, for instance, quick sketches, before implementing any-
thing in code. Start with the conceptual design on a high level and do not move
on to detail too quickly. If possible produce several prototypes in parallel, since
this helps the designers in maintaining an openness and creative attitude to what
is being built. Far too often the design space is unnecessarily limited by only
sticking with the first set of designs produced.

Evaluate use in context – baselined usability goals and design criteria
should control the development (Gould et al., 1997; Nielsen, 1993). Critical
usability goals should be specified and the design should be based on specific
design criteria. Evaluate the design against the goals and criteria in cooperation
with the users, in context. Early in the development project, one should observe
and analyze the users’ reactions to paper sketches and mock-ups. Later in
the project, users should perform real tasks with simulations or prototypes.
Their behavior, reactions, opinions and ideas should be observed, recorded and
analyzed. Specify goals for aspects that are crucial for the usability and that
cover critical activities as well as the overall use situation.

Explicit and conscious design activities – the development process should
contain dedicated design activities (Cooper, 1999). The user interface design
and the interaction design are of undisputed importance for the success of the
system. Remember that to the users the user interface is the system. The design
of the SUD as regards the user interaction and usability should be the result of



28 HUMAN-CENTERED SOFTWARE ENGINEERING

dedicated and conscious design activities. The construction of the SUD should
adhere to that design. Far too often, the UI and interaction design ‘happens’ as
a result of somebody doing a bit of coding or modeling rather than being the
result of professional interaction design as a structured and prioritized activity.

A professional attitude – the development process should be performed by
effective multidisciplinary teams (ISO/IEC, 1999). Different aspects and parts
of the system design and development process require different sets of skills
and expertise. The analysis, design and development work should be performed
by empowered multidisciplinary teams of, for instance, system architects, pro-
grammers, usability designers, interaction designers and users. A professional
attitude is required and so are tools that facilitate the cooperation and efficiency
of the team.

Usability champion – usability experts should be involved early and con-
tinuously throughout the development lifecycle (Kapor, 1990). There should
be an experienced usability expert (usability designer) or possibly a usability
group on the development team. The usability designer should be devoted to the
project as an ‘engine’ for the UCSD process from the beginning of the project
and throughout the development process and system lifecycle (Buur and Bödker,
2000). The usability designer must be given the authority to decide on matters
affecting the usability of the system and the future use situation.

Holistic design – all aspects that influence the future use situation should be
developed in parallel (Gould et al., 1997). Software does not exist in isolation
from other parts of, for instance, a work situation. When developing software
for the support of work activities, the work organization, work practices, roles,
etc, must be modified. All aspects should be developed in parallel. This includes
work/task practices and work/task organization, user interface and interaction;
on-line help; manuals; user training, work environment, health and safety as-
pects, etc. Other parts of the context of use such as: hardware, and social and
physical environments, must also be considered in the integrated design process.
One person or team should have the overall responsibility for the integration of
all aspects.

Processes customization – the UCSD process must be specified, adapted
and/or implemented locally in each organization. Usability cannot be
achieved without a user-centered process. There is, however, no one-size-fits-
all process. Thus the actual contents of the UCSD process, the methods used,
the order of activities, etc, must be customized and adapted to the particular
organization and project based on their particular needs. A UCSD process can
be based on a commercial or in-house software development process, where
activities are added, removed or modified. Existing methods and techniques
may well be re-used, if they comply with the key principles.

A user-centered attitude should always be established. UCSD requires a
user-centered attitude throughout the project team, the development organiza-
tion and the client organization. All people involved in the project must be



KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 29

aware of and committed to the importance of usability and user involvement,
but the degree of knowledge may differ depending on role and project phase
(Boivie et al., 2003). The key principles defined in this chapter can serve as a
common ground.

The above 12 principles facilitate the development, communication and assessment
of user-centered design processes for creating usable interactive systems, covering
analysis, design, evaluation, construction and implementation. Several benefits come
with applying the principles, such as their help in maintaining the focus on the users
and the usability throughout the entire development process. The UCSD poster is
reprinted in Appendix 1.

We fully appreciate that it will be more or less impossible to implement all the
principles in one strategic shift. Adopting them gradually is probably more feasible
and practicable. It is, however, important to comply with the principles to as high a
degree as possible at any point in time.

2.5 TOOLS FOR APPLYING UCSD

The principles are, necessarily, general and rather abstract in nature, and cannot be
applied as is in practice. We are therefore currently working on activity lists, with
potential tools and techniques, for each principle. These lists will provide support for
applying the principles and help in understanding and assessing them.

2.5.1 Activity List

The purpose of the activity list that accompanies each principle is to elaborate on what
it takes to apply a principle. The activity list suggests activities of a general nature
alongside appropriate methods, tools and techniques. The principles are general but
the activity lists should be developed specifically to fit each organization.

2.5.2 Complying with the Activity Lists

The lists suggest activities and it is important to evaluate the applicability of each
activity within the current project. If one chooses not to perform a particular activity,
it is important to make clear why, and that all parties involved agree with the decision.
The activity list serves as both a To-do list and a checklist, where each item can be
‘ticked off’. There are three options for each activity:

No = we decided to not perform this activity. We gave rationales for this decision
and had a general agreement on the motives.

Yes = we performed this activity, in full or to the extent that the project team
and management, found appropriate.

N/A = we found that this activity was not applicable. The rationales for this were
clearly stated and agreed on. We have conducted other actives to compensate
for this.

Below is a draft activity list for the principle User focus:



30 HUMAN-CENTERED SOFTWARE ENGINEERING

2.5.3 Activity List, Tools and Methods for the Principle; User Focus

Vision, purpose goal and constraints of the target activity analyzed and under-
stood by all project members.

– Tools and methods: Goals analysis, Focus groups

Identification, description and prioritization of all user groups.

– Tools and methods: User analysis, personas

Visualization and characteristics of target user groups made available to every-
one in the project.

– Tools and methods: Decorate a project room with artefacts, etc. that illus-
trate the users’ work situation, environment and characteristics.

Potential limitations and restrictions in the users’ capabilities (for instance vi-
sion impairments or language problems) are clear to everyone in the project.

The development team has focused on the needs of target user groups.

The users have expressed their impressions of current system and expectations
on future system.

– Tools and methods: Users asked about good things and bad things in their
current work situation, Think-out loud.

Users observed as they were performing their tasks in context.

– Tools and methods: Analysis of information utilization, Context-of-use
analysis, Field studies, Contextual inquiry.

Use situation documented

– Tools and methods: Video and still camera, scenarios, personas

Tasks analyzed.

– Tools and methods: Task analysis

Copies of artefacts (forms, documents archives, notebooks, etc.) used by the
users collected.



KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 31

2.6 APPLICATION

In the pilot project described above, an initial set of principles was used to define a
UCSD process. The consolidated list of principles was subsequently used to identify
mismatches between the development process and a UCSD approach. The definition
and principles for UCSD can, however, be used for a number of purposes as listed
below::

Explanation model – to analyze and communicate why organizations, projects
or processes did not meet their goals as regards usability

Process development – for defining a UCSD process

Process/Organization customization – to customize or adapt an organization,
project or development process to UCSD, for instance, a commercial develop-
ment process, such as Rational Unified Process— RUP (Kruchten, 1998). Even
though RUP prevents rather than promotes UCSD, it may be modified to inte-
grate some of its features (Gulliksen and Göransson, 2001).

Process/Organization assessment – to assess the user-centeredness of an orga-
nization, project or process. Using the principles to identify mismatches, prob-
lems may be identified in time to do something about them, which increases the
chances of producing a usable piece of software.

Knowledge transfer – to teach and transfer knowledge about UCSD and to com-
municate the basic philosophy of UCSD,

Procurement support –support for procurers as a basis for specifying require-
ments on the design process as such

In client-contractor relations—the client can demand that the contractor work in
accordance with the definition and key principles for UCSD. At present, usabil-
ity is often taken for granted. Clients do not understand that it takes systematic
work according to a UCSD philosophy to achieve usability.

Our definition and key principles originate from our experiences and research in con-
tract and in-house development of bespoke software for work situations. We nev-
ertheless see a potential for applying them in other types of development projects.
Regardless of the project and the organization, the principles must always be adapted
to the context.

2.7 AGILE APPROACHES AND UCSD

Recently, agile approaches to software development have gained a lot of attention.
The rationale behind the agile perspective is to shift the overall focus of software de-
velopment to a more agile or ‘lightweight’ perspective. This shift can be seen as a
contrast to more formal commercial processes. Agile is not a single, well-defined pro-
cess; instead, it is a generic name for several different processes or methods, sharing
a set of core ideas, values and principles of software development. The principles are



32 HUMAN-CENTERED SOFTWARE ENGINEERING

defined in the Agile Manifesto (Agile Alliance, 2001). The most well known of the
agile processes is probably eXtreme Programming, XP.

What is interesting about agile methods is that they are addressing some of the
problems of the development process that we found in our research project. For in-
stance, the project focused on short-term goals such as producing models and other
artefacts while loosing the overall goal of delivering a usable system. Other problems
include use-case mania and poor understanding of the design documentation. Agile
processes emphasize the pragmatic use of light, but sufficient rules of project behav-
ior and the use of human and communication oriented principles (Cockburn, 2002).
Hence, people are more important than processes and tools. Working software is
more important than comprehensive documents and model building, Models and arte-
facts are only means of communication; consequently prototyping and simple design
representations are preferred. Agile developers argues that projects should be com-
munication centric, which implies that effective human communication with project
members and users are important, e.g. face-to-face is the ideal way of communicate
within a project and with users. Usually, there is a direct collaboration with users
and customers – preferably, users and developers should sit in the same room during
development.

The problems with the agile approach, is that the different processes have not paid
much attention to usability and UCSD. The main focus of agile methods is on deliv-
ering working software. This is of course excellent, as usable software also must be
delivered and be working. But to get there, the development is focused on making
coding effective and there is a risk that usability issues gets lost, as there is no explicit
user-centered focus. Agile projects include some roles that are supposed to work with
user interface design and user requirements, but this is in most cases not enough. The
whole project must be committed to the importance of usability. Another problem is
that the users involved in the development are not always end users. Sometimes they
are customers or domain experts. The agile methods seldom make a difference.

Agile processes do not in itself apply to all the key principles of UCSD. But, so far
we have not seen any reason why agile processes could not be customized or adapted
to UCSD.

2.8 DISCUSSION/CONCLUSIONS

The reader may ask why we have defined yet another set of principles for user-centered
systems design, since those existing are not used or do not work they way they were
intended. Below, we discuss some of the main reasons why we believe a more precise
definition of UCSD is required.

Our pilot study shows that even with an explicit commitment to user-centered de-
sign and a usability focus, usability may get lost in the software development process.
Since few projects have the explicit goal to produce systems with poor usability, we
believe that there are obstacles to usability and user involvement in the actual develop-
ment process. Such obstacles have been described in numerous studies, for instance,
Poltrock and Grudin, 1994, and Wilson et al., 1996; Wilson et al., 1997. Our main
concern has therefore been to address shortcomings and obstacles in the development
process that derail the focus on usability and users’ needs.



KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 33

User-centered design (UCD) methods have gained a great deal of attention recently.
According to a recent study (Vredenburg et al., 2002) the opinion is that user-centered
methods generally increase the utility and usability of computer systems. However,
the degree to which organizations adopt UCD methods varies significantly. There is,
according to the study, no information on whether or not it is possible to save time
and resources by adopting UCD methods. Cost-benefit tradeoffs are, nevertheless, a
key consideration when adopting UCD methods (see for example Donahue, 2001).
This calls for close integration of UCD methods into the development process. Un-
fortunately, the most common approach is to perform single usability activities using
informal UCD methods (Hudson, 2001). Such an add-on approach to usability in-
creases the risk of its being cut out when deadlines get tight. We believe that usability
faces the risk of becoming a sidecar problem – if somebody in the project is pointed
out as having the responsibility for usability all others involved resign from their part
of the responsibility. Thus, cost-benefit analysis may in certain situations be used as
an argument against usability activities rather than for if they are not tightly integrated.

In a survey examining the attitude about strategic usability (Rosenbaum et al.,
2000) the authors identified the following obstacles to UCD:

Resource constraints (28.6 %)

Resistance to UCD/usability (26.0 %)

Lack of understanding/knowledge about what usability is (17.3 %)

Better ways to communicate impact of work and results (13.3 %)

Lack of trained usability/HCI engineers (6.1 %)

Lack of early involvement (5.1 %)

No economic need – customers not asking for usability (3.6 %)

We believe that all of these factors are related to a lack of knowledge on how to apply
UCD methods and their potential benefits which provides another reason for defining
and describing UCSD in more specific terms.

Many organizations pay lip service to usability and UCSD but seem at a loss as to
how to achieve it. We have studied organizations that claim that they are committed
to usability and UCSD but who are not willing to change their practices in developing
software. The same problem applies on the individual level. There is a growing con-
cern among software developers about the usability of the products or software they
release on the users. But they often do not know what to do about it.

Yet another reason for a more precise definition of UCSD is that many organiza-
tions still do not recognize the benefits of involving users in the development process,
despite the fact that active user involvement was judged to be the number one criterion
on how to be successful in IT-development projects in the CHAOS-report (Standish
Group, 1995). Clegg et al., 1997, for instance, report that most projects in their study
had failed to involve users in a satisfactory manner. Nor did they adopt an integrated
approach. The impact of new technology on work organization and job design was



34 HUMAN-CENTERED SOFTWARE ENGINEERING

considered ‘. . . hugely important but largely ignored in practice’ and if addressed, it
was usually late in the process and because it was discovered that the new piece of
technology was going to change job designs.

UCD has also been criticized on the grounds of its being ambiguous and vague.
Constantine, 2002, for example, claim that UCD is a ‘. . . loose collection of human-
factors techniques united under a philosophy of understanding users and involving
them in design’. . . ’Although helpful, none of these techniques can replace good de-
sign. User studies can easily confuse what users want with what they truly need. Rapid
iterative prototyping can often be a sloppy substitute for thoughtful and systematic de-
sign. Most importantly, usability testing is a relatively inefficient way to find problems
you can avoid through proper design.’ (Constantine, 2002, p. 43). Their remedy is
‘usage-centered engineering’ where the emphasis is on the usage, not the users, and
on model-driven development. We readily agree with the critique against UCD, but
not with the remedy. Model-driven approaches rely on skilful designers/developers
using abstract models of the domain to base their design on. Model-driven approaches
represent a move away from user-centered design, reducing user involvement to that
of the users being informants rather than co-designers. We believe, and argue in this
chapter, that user participation is a key success factor for designing for usability (see
also the CHAOS report, Gould et al., 1997, and ISO/IEC, 1999) and that software de-
velopment needs to move towards a user-centered approach rather than away from it.
Computer systems (in particular in a work context) must support not only the ‘official’
rules and version of the work practices but also the particularities in each situation
(Sachs, 1995; Beyer and Holtzblatt, 1998; Harris and Henderson, 1999), which re-
quires a deep understanding of the context of use. Few development teams have that
understanding, and we believe that writing requirements documents or creating ab-
stract models is simply not enough to create that kind of understanding. Only the
users themselves can provide that. This view is also supported by Harris and Hen-
derson, 1999, as they argue for computer systems that must be much more flexible to
meet the evolving human organizations.

To summarize the above discussion, we believe that user-centered systems design
must be defined in terms of a process where usability work and user involvement are
tightly integrated with the development process. Adding the key principles, further-
more, helps in communicating the essence of UCSD where user involvement is an
essential part. By providing a more precise definition of UCSD, we can also avoid
problems with ambiguity and vagueness and argue against the use of approaches that
are not user-centered.

Hence, the main aim of our definition and key principles is to support the develop-
ment process. This can be achieved by incorporating roles, activities and artefacts for
maintaining a focus on usability and users’ needs throughout the entire system life-
cycle. The definition and key principles may also be used when specifying a UCSD
process or when customizing a commercial development process, such as Rational
Unified Process – RUP (Kruchten, 1998). The key principles originate from our ex-
periences and research in contract and in-house development of bespoke software for
work situations. We nevertheless see a potential for applying them in other types of
development projects.



KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 35

Our research, as well as our experiences, shows that by applying the definition of
and key principles for UCSD, the chances increase of identifying problems in time to
do something about them. Consequently, the chances of producing usable software
increase.

Finally, we would like to emphasize that what we want to achieve is not simply yet
another usability method. We see UCSD as, a new paradigm requiring a profound shift
of attitudes towards systems development and user involvement. The attitudes that are
required for a truly user-centered approach are embodied in the key principles.

Acknowledgements

This project was performed with financial support from the National Agency for In-
novation Research, the Council for Work Life and Social Science Research, and the
Swedish National Tax Board. The input received from the number of seminars leading
up to the principles, such as IFIP TC 13, and our industrial partners Enea Redina AB,
Tieto Enator AB and Antrop AB was greatly appreciated.



36 HUMAN-CENTERED SOFTWARE ENGINEERING

Appendix 1: The UCSD Poster

Figure 2.5 UCSD poster




