
13 RIPPLE: AN EVENT DRIVEN

DESIGN REPRESENTATION

FRAMEWORK FOR INTEGRATING

USABILITY AND SOFTWARE

ENGINEERING LIFE CYCLES
Pardha S. Pyla,

Manuel A. Pérez-Quiñones, James D. Arthur, and H. Rex Hartson

Department of Computer Science, Virginia Polytechnic Institute and State University,

660 McBryde Hall, Blacksburg, VA 24061, USA

{ppyla, perez, arthur, hartson}@cs.vt.edu

Abstract

Ripple is a database-centered, event-triggered, shared design representation frame-
work that provides a development infrastructure within which the usability engineer-
ing and software engineering life cycles co-exist in cooperative and complementary
roles. Ripple identifies connections and dependencies within each life cycle and be-
tween the two life cycles and provides a framework to represent artefacts generated
at each stage of the two development life cycles. Our approach to integrating these
two development life cycles does not merge them into a single life cycle; rather it
coordinates each life cycle’s activities, timing, scope, and goals using a shared de-
sign representation and management for the two life cycles. Ripple incorporates tech-

245

in the Development Process, 245–265.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

246 HUMAN-CENTERED SOFTWARE ENGINEERING

niques to accommodate communication about design insights and change. In response
to design changes by either the interface or software side, Ripple sends possibly cas-
cading messages (ripples) to inform developers on both sides, asking them to satisfy
associated constraints (dependencies, relationships) affecting related other parts of the
overall design. We describe the motivation, barriers, rationale, arguments, and im-
plementation plan for the need, specification, and potential contributions of such an
integrated design representation framework. We provide a high level description of
this design representation framework and conclude with the usefulness and potential
shortcomings of this approach.

13.1 INTRODUCTION

13.1.1 Parts and Processes of Interactive Software Systems

Interactive software systems have both functional and user interface parts. Although
the separation of code into two clearly identifiable modules is not always possible, the
two parts exist conceptually and each must be designed on its own terms.

The user-interface part, which often accounts for half or more of the total lines of
code (Myers and Rosson, 1992), begins as an interaction design, which is ultimately
implemented in user interface software. Interaction design requires specialized us-
ability engineering (UE) knowledge, training, and experience in topics such as human
psychology, cognition, visual perception, specialized design guidelines, task analysis,
etc. The ultimate goal of UE is to create systems with measurably high usability, i.e.,
systems that are easy to learn, easy to use, and satisfying to their users. A practical
objective is also to provide interaction design specifications that can be used to build
the interactive component of a system by software engineers. In this chapter we define
the UE role as that of the developer who has responsibility for building such specifica-
tions. (We use the term developer to refer to someone who has the skills to participate
in all stages of a software development life cycle and not just a software coding or
implementation expert).

The functional part of a software system, sometimes called the functional core,
is manifest as the non-user-interface software. The design and development of this
functional core requires specialized software engineering (SE) knowledge, training,
and experience in topics such as algorithms, data structures, software architectures,
calling structures, database management, etc. The goal of SE is to create efficient and
reliable software systems containing the specified functionality, as well as integrating
and implementing the interactive portion of the system. We define the SE role as that
of the developer who has the responsibility for this goal.

To achieve the UE and SE goals for an interactive system, i.e., to create an ef-
ficient and reliable system with required functionality and high usability, effective
development processes are required for both the UE (Figure 13.1) and SE life cycles
(Figure 13.2). The UE development life cycle is an iteration of activities for require-
ment analysis (e.g., needs, task, work flow, user class analysis), interaction design
(e.g., usage scenarios, screen designs), prototype development, and evaluation thereby
producing a user interface interaction design specification. The SE development life
cycle consists primarily of concept definition and requirements engineering, design

RIPPLE FRAMEWORK 247

(preliminary and detailed design), design review, implementation, and integration &
testing, I&T).

Requirements
Analysis

Interaction
Design

Interaction
Prototype

User Interface
Specifications

Software Impl.

Summative
Evaluation

Formative
Evaluation

Formative
Evaluation

Formative
Evaluation

Figure 13.1 Usability engineering life cycle

13.1.2 The Problem: Coordinating the Development of the Two Life Cycles

Given the facts that each of these development life cycles is now reasonably mature
and well established, both have the same high level goal of producing software that
the user wants and needs, and that the two must function together to create a single
system, one might expect well-defined connections for collaboration and communica-
tion between the two development processes. However, the two disciplines are still
considered as separate entities and are applied independently with little coordination
during product development. For example, it is not uncommon to find usability engi-
neers being brought into the development process after the SE implementation stage.
They are asked to test and/or ‘fix’ the usability of an already-implemented system,
and then, of course, many changes proposed by the usability engineers that require
significant modifications must be ignored due to budget and time constraints. Those
few changes that actually do get included require a significant investment in terms of
time and effort because they must be retrofitted.

The lack of coordination between the usability and software engineers often leads to
conflicts, gaps, design and requirements mismatches, miscommunication, “spaghetti”
code due to unanticipated changes, brittle software, and other serious problems during
development. The result is a system falling short in both functionality and usability,

248 HUMAN-CENTERED SOFTWARE ENGINEERING

Requirements
Analysis

Preliminary
Design

Detailed
Design

Design
Specifications

Software Impl.

Review
(PDR)

Review
(CDR)

Integration
& Testing

Summative
Evaluation

Figure 13.2 Software engineering life cycle

and in some cases a completely failed project. In particular, for the projects containing
a significant interaction component, there is a need for:

communication between the UE and SE roles, each of which uses different de-
velopment activities, techniques, and vocabularies;

coordination of independent development activities (usability and software en-
gineers coordinating while mostly working separately on role-specific activi-
ties);

identification and understanding of constraints and dependencies between the
SE and UE processes;

synchronization of dependent development activities (timely readiness and
timeliness of making use of respective work products); and the

provision on each side for anticipating and reacting to change on the other side.

Unfortunately, the significance of UE and the importance of the bulleted items above
are not described or prescribed in most of the software development standards that
exist today. For example, the 31-page IEEE-830 standard (IEEE, 1998) on recom-
mended practices for software requirements specification (SRS) contains only about

RIPPLE FRAMEWORK 249

10 lines relating to user interfaces (Section 5.2.1.2), and states that user interface spec-
ifications should be a part of the SRS. This part of the standard takes an ad hoc stab
at a few user interface issues (e.g. required screen formats, page and window layouts,
screen content, availability of programmable function keys, etc.) which seem arbitrar-
ily chosen from the enormous possibilities not mentioned. More importantly, it says
nothing about the UE life cycle process for creating the interaction design, which is
a main part of the user interface software specification. It is misguided (and worse,
misguiding) to expect the user interface specifications to be available that early in the
requirements process without having followed a proper UE design life cycle. We be-
lieve that this document should have a reference to another standard for user interface
software requirements.

Another source of confusion with the IEEE-830 standard is that the items men-
tioned in this document such as required screen formats, page and window layouts, and
screen content are design specifications for usability engineers (the standard includes
nothing about how to design them for usability). For the UE role, ‘requirements’ are
mostly stated in terms of usability attributes such as learnability, subjective satisfac-
tion, ease of use, etc. Even these usability specifications are subject to calibration in
later stages of the UE development process.

However, we do not disagree with the intent behind the idea that user interface re-
quirement specifications for user interface software are properly a part of the SRS. But
in reality it is not possible to generate requirements specifications for user interface
software without going though an iterative process of interaction design and evalu-
ation, but standards such as the above described IEEE-830 (on SRS) and IEEE/EIA-
12207.1 (on software life cycle processes-life cycle data—Software Productivity Con-
sortium, 1997) do not acknowledge the kind of life cycle process that is needed to
develop a high usability interaction design. Neither do they acknowledge the myriad
relations and dependencies between the activities and work products of the SE life
cycle with that of UE and vice versa.

13.1.3 Objective

The objective of our work has been to produce a design representation infrastructure
that:

integrates the two life cycles under one common framework;

retains the two development processes as separately identifiable processes, each
with its own life cycle structure, development activities, and techniques; and

is built upon a database-centered, event-triggered and constraint-based frame-
work, that provides a common ‘overall design representation and management’
approach, shared by the SE and UE roles and activities.

The common ‘design representation and management’ is the key to the coordination of
interface and functional core development activities, and to the communication among
the UE and SE roles. The constraint-based event triggers are important in recognizing
an event with an associated dependency or constraint and sending a message to remind

250 HUMAN-CENTERED SOFTWARE ENGINEERING

the developers to enforce a constraint. The common ‘design representation’ identifies
and addresses the effects of change and also incorporates techniques to record design
reminders. This allows the two life cycle roles to

design for change by keeping the design flexible,

analyze the implications of change in either of the processes,

take necessary corrective action to address change,

mitigate the changes that could be imposed on each life cycle, and to

record design insights and reminders for future development activities.

13.2 BACKGROUND

13.2.1 Operating hypothesis

A strong hypothesis for our work is to maintain UE and SE as separate, but coordi-
nated, life cycle development processes. It is not our goal to merge either development
process into the other, but to establish a development infrastructure in which both can
coexist and function in parallel. UE and SE processes each require special knowledge
and skills. Given the differences in activities and focus, it is not realistic or desirable
to expect the two roles to ‘work together’. A combined life cycle process is unlikely
to give balanced attention to both parts. Trying to combine, for example, the UE life
cycle into the SE life cycle, as done in (Ferre, 2003), creates a risk (and a high like-
lihood) of deciding conflicts in favor of software development needs and constraints,
and against those of usability. The two roles must however communicate, coordinate,
and synchronize as they work on essentially two different parts of a larger design, parts
that must come together for implementation of a single system.

13.2.2 Similarities Between Life Cycles

At a high level, UE and SE share the same objectives:

seeking to understand the client’s, customer’s, and users’ wants and needs;

translating these needs into system requirements;

designing a system to satisfy these requirements; and

testing to help ensure their realization in the final product.

13.2.3 Differences Between Life Cycles

The objectives of the SE and UE are achieved by the two developer roles using differ-
ent development processes and techniques. At a high level, the two life cycles differ in
the requirements and design phases but converge into one at the implementation stage
(Figure 13.3). This is a natural expectation because ultimately software developers
implement the user interface specifications. At each stage, the two life cycles have

RIPPLE FRAMEWORK 251

many differences in their activities, techniques, timelines, iterativeness, scope, roles,
procedures, and focus. Several of the salient differences are identified next.

Different Levels of Iteration and Evaluation. Developers of interaction
designs often iterate early and frequently with design scenarios, screen sketches, pa-
per prototypes, and low-fidelity, roughly-coded software prototypes before much, if
any, software is committed to the user interface. Often this frequent and early itera-
tion is done on a small scale and scope, and primarily as a means to evaluate a part
of an interaction design in the context of a small number of user tasks. Usability
engineers evaluate interaction designs in a number of ways, including early design
walk-throughs, focus groups, usability inspections, and lab-based usability testing.

Requirements
Analysis

Interaction
Design

Interaction
Prototype

User Interface
Specifications

Summative
Evaluation

Formative
Evaluation

Formative
Evaluation

Formative
Evaluation

Requirements
Analysis

Preliminary
Design

Detailed
Design

Design
Specifications

Software Impl.

Review

Review

Integration
& Testing

Summative
Evaluation

Figure 13.3 Current practices: Process without communication/coordination

The primary goal is to find usability problems or flaws in the interaction design.

Software engineers identify the problem, decompose and represent the problem
in the form of requirements (requirements analysis block in Figure 13.2), transform
the requirements into design specifications (preliminary and detailed design blocks
in Figure 13.2), and then implement those design specifications. In the early days
of software engineering, these activities were often performed using the sequential
waterfall model (Royce, 1970). Later, these basic activities were incorporated into
more iterative processes such as the spiral model (Boehm, 1988) (which has a risk
analysis and an evaluation activity at the end of each stage). Even though the more
recent SE development life cycles are evolving towards the UE style by anticipating
and accommodating changes at each iteration, they still stress iteration on a larger
scale and scope. Moreover, testing and validation, which ensures integration accuracy
and conformance to system specifications, are performed more towards the end of the

252 HUMAN-CENTERED SOFTWARE ENGINEERING

development process and can include software for both the functional core and the
user interface.

Differences in Terminology. Even though certain terms in both life cycles
sound similar they often mean different things. For example:

In UE, ‘testing’ is a part of design, and is diagnostic in nature and is used to find
and fix problems in the interaction design (identified as formative evaluation
in Figure 13.1). In SE ‘testing’ is an independent stage where the objective is
to check the implementation of the system and to validate its conformance to
specifications. Analysis and verification of the design specifications performed
in SE is often called ‘review’ (identified in Figure 13.2). When the specifications
pass the review stage, they become a binding document between the client and
the development team.

A (use case) scenario in SE (in object oriented design paradigm) is used to
“identify a thread of usage for the system to be constructed (and) provide a
description of how the system will be used” (Pressman, 2005b). Whereas in UE,
a design usage scenario is “a narrative or story that describes the activities of one
or more persons, including information about goals, expectations, actions, and
reactions (of persons)” (Rosson and Carroll, 2002a).

The SE group refers to the term ‘develop’ to mean creating software code,
whereas the usability engineers use ‘develop’ to mean iterate, refine, and im-
prove usability to create an interaction design.

Overall, the software engineers concentrate on the system whereas the usability engi-
neers concentrate on users. Such fundamental difference in focus is one more reason
why it is difficult to merge these two life cycles.

Differences in Requirements Representation. Most requirement specifi-
cations documented by software engineers use plain English language and are gener-
ally very detailed. These specifications are written specifically to drive the SE devel-
opment process. On the other hand, usability engineers specify interactive component
issues such as feedback, screen layout, colors, etc. using artefacts like prototypes, de-
sign scenarios, and screen sketches. These artefacts are not detailed enough to derive
software design, instead they require additional refinement and reformulation before
implementation. Therefore, they cannot be used to directly drive the software devel-
opment process.

13.3 CURRENT PRACTICES

In spite of the extensive research and maturity levels achieved in the UE and SE life
cycle areas, there has been a marked deficiency of understanding between the cor-
responding developer roles. In general, the two teams do not understand the other’s
goals and needs and do not have an appreciation for the other’s area of expertise (see
Chapter 15 by Battle for more on a practical view of the relationship between the two

RIPPLE FRAMEWORK 253

sides of this issue). One apparent reason for this situation is the way computer sci-
ence courses are typically offered in colleges: SE courses often omit any references to
user interface development techniques (Douglas et al., 2002), and UE courses do not
discuss the SE implications of usability patterns (Pyla et al., 2004).

Some software life cycles in practice today are documentation intensive and static
in nature. The ponderous weight of voluminous static documentation does not allow
effective mechanisms to predict or counter the effects of change, especially changes
that occur very rapidly in early stages of a life cycle. It can be argued that configu-
ration management processes (Joeris, 1997) that exist in SE are an exception to this.
Configuration management tools provide mechanisms and procedures to track changes
in the work artefacts generated in a software development life cycle. However, these
tools and techniques were mostly developed for SE life cycles; whereas, our work
brings some of these principles to the UE side and between the two sides and also
incorporates change prediction.

On the other side of the spectrum, many project managers use intensively hands-
on-project-management principles wherein a project leader walks around managing
and communicating with the various developers in a direct “hands-on” manner taking
individual responsibility to make sure all the details are addressed. This approach is
based on the potential effectiveness of an informal and low-documentation approach
to software development and the fact that a skilled human manager can keep track of
what needs to be done better than an automated system. However, this approach does
not scale up well as projects get more complex because one person cannot keep track
of all the little details and insights about a very large project as it progresses. While
intensively hands-on project management can work for some SE life cycles, they are
not as suitable for a rapidly evolving and changing life cycle like that of UE, and
are even less likely to be effective in communicating all the details of rapid changes
between the SE and UE teams.

The general principles and tools of project management (Reifer, 2002) are useful
and are well studied in the SE literature. We are aware of their existence and acknowl-
edge their usefulness. However, these tools and principles are mostly about high level
issues such as schedules and timelines. Our contribution is more about improving
the communication, collaboration, and synchronization of the SE and UE life cycles
and thereby increasing the awareness of the specific needs, details and insights for the
overall design process. In the process we are hoping to bring some of the advantages
of SE life cycle project management to the UE side.

13.3.1 Lack of Coordination of Development Activities

When translated into development activities, this lack of understanding between the
two developer roles, combined with an urgency to get their own work done, often leads
to working without collaboration (as shown in Figure 13.3), when they could be more
efficient and effective communicating and coordinating with one another. For exam-
ple, both SE and UE roles include field visits to learn about client, customer, and user
needs, but they often do this without coordination. Software engineers elicit functional
requirements (Pressman, 2005b), and determine the physical properties and opera-
tional environments of the system (Lewis, 1992), etc. Usability engineers visit clients

254 HUMAN-CENTERED SOFTWARE ENGINEERING

and users to determine, often through “ethnographic studies” (Blomberg, 1995), how
users work and what computer-based support they need for that work. They seek task
information, inputs for usage scenarios, and user class definitions. Why not coordi-
nate this early systems analysis effort? Much value can be derived from cooperative
system analysis and requirements gathering. Such joint activities help in team build-
ing, communication, and in each life cycle role recognizing the value, and problems,
of the other, in addition to early agreement on goals and requirements. Instead, each
development group reports its results in documentation not usually seen by people
in the other life cycle. Each uses those results to drive only their part of the system
design and finally merge at the implementation stage (Figure 13.3), where it is much
too late to discover the differences, inconsistencies, and incompatibilities between the
two parts of the overall design. Moreover, this lack of coordinated activities presents
a disjointed appearance of the development team to the client. It is likely to cause
confusion on the clients: “why are we being asked similar questions by two different
groups from the same development team?”

Another significant shortcoming of the practice shown in Figure 13.3 is the fact
that the independently generated user interface specifications on the UE side and func-
tional design specifications on the SE side are submitted to the development team at
implementation stage. However, because these specifications were developed without
coordination and communication, when they are now considered together in detail,
developers typically discover that the two design parts do not fit with one another
because of large differences and incompatibilities.

13.3.2 Lack of Synchronization of Development Schedules

In current practices, the life cycle roles must synchronize the work products eventu-
ally for the implementation and testing phases. However, waiting until one absolutely
must synchronize obviously creates problems. Therefore, it is better to have many syn-
chronization points, earlier and throughout the development life cycle. These timely
synchronization points would allow earlier, more frequent, and less costly ‘calibra-
tion’ to keep both design parts on track for a more harmonious final synchronization
with fewer harmful surprises.

However, as shown in Figure 13.3, the more each team works without communica-
tion and collaboration, the less likely they will be able to schedule their development
activities to arrive simultaneously at common checkpoints.

13.3.3 Lack of Communication Among Different Life Cycle Roles

Although the two life cycle roles can successfully do much of their development inde-
pendently and in parallel, a successful project demands that the two roles communicate
so that each knows generally what the other is doing and how that might affect its own
activities and work products. Each group needs to know how the other group’s design
is progressing, what development activity they are currently performing, what features
are being focused on, what insights and concerns they have for the project, and so on.
Especially during the early requirements and design activities, each group needs to be
‘light on its feet’ and able to respond to events and activities occurring in the counter-

RIPPLE FRAMEWORK 255

part life cycle. However, current practices (Figure 13.3) do not permit that necessary
communication to take place because the two life cycles operate independently; that
is, there is no structured development framework to facilitate communication between
these two life cycles.

One might argue that the communication process need not be more formal than it
is right now and that the usability and software engineering practitioners should be
on the same analysis team. Indeed, in their day-to-day life, the two developers are
technically on the same analysis team. But our real world experience has shown that
this is not enough to foster the necessary communication (especially about features
and changes) because each role still focuses almost completely on their own problems
and their own designs. For example, the SE role in general is not concerned about
UE role’s interaction design and vice versa. So the communication focus is not on
being formal, but on being complete. Based on our real world experience, day-to-
day communication processes have proven to be inadequate and often result in nasty
surprises that are revealed only at the end when serious communication finally does
occur. This is often too late in the overall process.

13.3.4 Lack of Constraint Mapping and Dependency Checks

Because each part of an interactive system must operate with the other, many system
requirements have both SE and UE components. If SE component or feature is first
to be captured, it should trigger (or be mapped to) a reminder that a UE counterpart
is needed, and vice versa. When the two roles gather requirements separately and
without communication, it is easy to capture requirements that are conflicting, incom-
patible or one-sided. Even if there is some ad-hoc form of communication between
the two groups, it is inevitable that some parts of the requirements or design will be
forgotten or will “fall through the cracks.”

As an example, software engineers perform a detailed functional analysis from the
requirements of the system to be built. Usability engineers perform a hierarchical task
analysis, with usage scenarios to guide design for each task, based on their require-
ments. Documentation of these requirements and designs is maintained separately and
not necessarily shared. However, each view of the requirements and design has ele-
ments that reflect counterpart elements in the other view. For example, each task in
the task analysis can imply the need for corresponding functions in the SE specifica-
tions. Similarly, each function in the software design can reflect the need for access to
this functionality through one or more user tasks in the user interface. When tasks are
missing in the user interface or functions are missing in the software, the respective
sets of documentation are inconsistent - a detriment to success of the project.

Constraints, dependencies, and relationships exist not only among activities and
work products that cross over between the two life cycles but also within each of the
life cycles. For example, on the UE side, a key task identified in task analysis should
be considered and matched later for a design scenario and a benchmark task. To our
knowledge, there are no life cycle frameworks that help in addressing such internal
and external constraints, dependencies, and relationships among life cycle activities.

In general, design choices made in one life cycle constrain the design options in
the other. In our consulting experience we often encountered situations where the

256 HUMAN-CENTERED SOFTWARE ENGINEERING

user interfaces to software systems were designed from a functional point of view and
the code was factored to minimize duplication on the backend core. The resulting
systems had user interfaces that did not have proper interaction cues to help the user in
a smooth task transition. Instead, a task oriented approach would have supported users
with screen transitions specific to each task; even though this would have resulted in a
possibly “less efficient” composition for the backend. Another case in our consulting
experience was about integrating a group of individually designed web-based systems
through a single portal. Each of these systems was designed for separate tasks and
functionalities. These systems were integrated on the basis of functionality and not on
the way the tasks would flow in the new system. The users of this new system had to
go through awkward screen transitions when their tasks referenced functions from the
different existing systems.

The intricacies and dependencies between user interface requirements and func-
tional core have begun to appear in the literature. For example, in (Bass and John,
2001b), user interface requirements and styles, such as support for undo, are mapped
to particular software architectures required for the implementation of such features
(see Chapter 6 by Adams, Bass, and John).

Because of the constraints on one another, independent application of the two life
cycles (Figure 13.3) is likely to fail. Hence, an integrated design representation frame-
work that facilitates communication and coordination between these two life cycles is
essential.

13.3.5 Lack of Provision for Change

In the development of interactive systems, each phase and each iteration has a po-
tential for change. In fact, at least the early part of the UE process is intended to
change the design iteratively. This change can manifest itself during the requirements
phase (growing and evolving understanding of the emerging system by developers and
users), design stage (evaluation identifies that the interaction metaphor was not eas-
ily understood by users), etc. Such changes often affect both life cycles because of
the various dependencies that exist between and within the two processes. Therefore,
change can conceptually be visualized as a design perturbation that has a ripple ef-
fect on all stages in which previous work has been done. For example, during the
usability evaluation, the usability engineer may recognize the need for a new task to
be supported by the system. This new task requires updating the previously gener-
ated hierarchical task analysis document to reflect the new addition (along with the
rationale). This change to the HTA generates the need to change the functional de-
composition (by adding new functions to the functional core to support this task on
the user interface) on the SE side. These new functions, in turn, mandate a change
to the design, schedules, and in some cases even the architecture of the entire system.
Thus, one of the most important requirements for system development is to identify
the possible implications and effects of each kind of change and to account for them in
the design accordingly. Another important requirement is to try to mitigate the impact
of change by communicating about changes as early as possible, and by directing that
communication directly to the development activities most affected. The more the two
developer roles work without a common structure (Figure 13.3) the greater the possi-

RIPPLE FRAMEWORK 257

bility that inevitable changes in each part will introduce incompatibilities, revealed as
“surprises” when they finally do communicate.

13.3.6 Lack of Provision for Accommodating Design and Development

Insights

Some dependencies between life cycle parts represent a kind of ‘feed-forward’, giving
insight to later life cycle activities. For example, during the early design stages in the
UE life cycle, the usage scenarios provide insights as to how the layout and design
of the user interface might look like. In other words, for development phases that are
connected to one another (in this case, the initial screen design is dependent on or
connected to the usage scenarios), there is a possibility that the designers can forecast
or derive insights from a particular design activity. Therefore, as and when the devel-
oper encounters such premonitions or potential effects on later stages (on the screen
design in this example), there is a need to document them when the process is still in
the initial stages (usage scenario phase). This way, when the developer reaches the
initial screen design stage, the previously documented insights are readily available to
aid the screen design activity. To our knowledge, none of the current approaches to
the development of systems with interactive components provide this capability.

13.4 RIPPLE: A DESIGN REPRESENTATION FRAMEWORK

Ripple, a work-in-progress research effort, is a design representation framework that
draws concepts from graph theory (relations), analogies from physics (perturbations
and ripples), and of course, content from SE and UE. Ripple provides mechanisms
for the two development roles to communicate, collaborate, and synchronize with one
another, while allowing each life cycle role to function independently. Ripple provides
each developer role with activity awareness, information about changes and insights
from the developer’s own life cycle and from the other development life cycle. It uses
a common design representation, which includes an aggregation of the work artefacts
from each development life cycle, and the semantics of various constraints, depen-
dencies and relationships between and within the two life cycles. Ripple addresses
changes and design perturbations using messages that can be passed along (ripples)
among developer roles. Ripple can be implemented within a database-centered tool
using database triggers to recognize events associated with constraints and dependen-
cies and to respond by sending various types of messages to the appropriate develop-
ers.

In this section we provide a high level description of Ripple, our design represen-
tation framework. Ripple embraces:

the definition of the stages and associated activities and work products from
each life cycle in the integrated development effort;

the definition of dependencies, constraints, relationships;

the triggers and messages for enforcement of constraints and dependencies be-
tween and within the two development life cycles; and

258 HUMAN-CENTERED SOFTWARE ENGINEERING

the implementation of a constraint-based, database-centered tool that works
within this framework to support the concepts in the above bullets.

13.4.1 Constraint-based Database-centered Framework

Ripple is a constraint-based framework that supports the complementary existence of
the SE and UE development roles. A constraint is a “relation that must be maintained”
(Borning and Duisberg, 1986). Such relations are generally enforced by “delegat-
ing to the constraints solver the task to satisfy them automatically” (Kwaiter et al.,
1998). In other words, a constraint-based system is one that automatically updates a
predefined set of relations and dependencies between different entities when a change
occurs in one or more of such entities. Constraint-based systems were traditionally
used to specify declaratively the relative layout of interface objects according to pre-
specified rules (Szekely and Myers, 1988). Some of the other important applications
for constraint-based systems include:

specification of relations (constraints) among the user interface objects that
should be maintained upon resizing a given UI window (Mugridge et al.,
1996; Chok and Marriott, 1995),

visual representation of simulation algorithms (Ege, 1988),

automatic updating of (to make consistent) multiple views representing the same
data when the objects in one of the views is changed (Borning and Duisberg,
1986), and

triggering of events based on changes made to objects in a dataset (Bharat and
Hudson, 1995).

It is this last application of constraint-based systems that we focus on. Conceptu-
ally, this framework represents the various products of the shared design process in a
single database with each of the SE and UE roles having two separate views to this
single dataset. When any life cycle role changes or updates the database through their
corresponding view, the system automatically triggers update messages or design re-
minders to all related or connected phases of the integrated development process. Such
reminders or updates are propagated in our framework using messages.

13.4.2 Constraints and Dependencies Among Related Activities

When a new insight is gained into the system being development, or when something
changes in either of the two life cycles, or when the developer roles needs to com-
municate with one another, the system triggers a message of a particular type to the
related and connected phases of the design representation framework. Also, it should
be noted that, constraints and relationships exist among activities and work products
within each of the life cycles as well as those that cross over between the two life cy-
cles. An example of such a relationship on the UE side is when a key task is identified
in task analysis, that task should be flagged for consideration for a design scenario and
a benchmark task later in the life cycle.

RIPPLE FRAMEWORK 259

13.4.3 Messages and Triggering Agents

Messages are the communication and synchronization agents in Ripple. They convey
the ripple effects of change, design insights, notes, and observations made during a
particular development activity on future design stages. The five types of messages
are discussed below:

For Your Information Message. This type of message informs the software
engineers and usability engineers about the completion of a particular activity or phase
in the life cycle and shows the link where the relevant products of this development
stage are located. The developers in the other life cycle or developers at a different
stage of the project (within the same life cycle) can use this link to view the product
(artefacts). This message is generally used when the type of communication is purely
informational and no corresponding action is necessarily required. For example, when
the usability engineers complete the initial screen layouts or the derivation of the con-
ceptual metaphor for the interaction design, they can send this type of message to the
software engineers to peruse. Another example for this type of a message is when the
usability engineer informs the software engineer about the completion of the screen
design so that the user interface can be implemented by the functional core developers
pending the summative evaluation.

Synchronize Activity Message. This type of message informs about the need
for a joint activity by both the SE and UE roles. In other words, this message ad-
dresses the synchronization need for activities that require a combined presence of
the two developer roles. For example, when the usability engineers plan an evalua-
tion session, they can send this type of message to the software engineers to request
them to be present (to help argue the case for required changes in the user interface
when the SE role sees the users having problems). Similarly, early systems analysis
and ethnographic study activities that require joint presence can be arranged using this
kind of message (to help identify the broader constraints of the project and get the
overall context).

Consistency Check Message. This type of message is used to enforce the con-
sistency of data objects in the database. This message informs the developers of the
need to perform a consistency check on the two development roles’ products. For ex-
ample, when the software and the usability engineers complete the hierarchical task
analysis and the functional decomposition, respectively, there is a need for a consis-
tency check to see that every task in the HTA has a function or set of functions in the
SE specifications, and vice-versa. In the object oriented development paradigm, this
type of message can be initiated after the use case specifications phase in the SE life
cycle or the usage scenario descriptions in the UE life cycle. Since these two stages
of development concentrate on two aspects of the same issue: interaction between the
system and user, there is a need to ensure that they are consistent. Another important
example for the need for consistency is after the usability specifications phase in the
UE life cycle and functional requirements in the SE life cycle. A consistency check
message is required here to initiate an analysis that ensures that these specifications are

260 HUMAN-CENTERED SOFTWARE ENGINEERING

supportable by the functional core (and to discuss alternatives if not supportable or ne-
gotiate for middle ground). This type of a message is used to enforce such mandatory
consistency checks.

Change Request Message. This type of message is used to inform the two de-
veloper roles of changes made in one part of the design and the potential effects of that
change in that and other parts of the design. This is perhaps the most useful message
in the development of interactive systems because of the potential for constant and
frequent changes in the products during the development life cycles. As an example,
this message can be used when a new task is identified by the UE role, and that new
addition should be communicated to other development activities within the UE role
and to the SE role. Upon the receipt of the message by the SE role, efforts can be made
to incorporate the necessary functions in the functional specifications to support the
corresponding task. These updates in the functional specifications, in turn, can trigger
changes in various dependent stages’ products in the integrated life cycle.

Response to a Change Request Message. A response to a change request
message is sent by developers to acknowledge a change request message. Because
the control of decisions to make changes or not ultimately resides with the developer
roles, one possible response to change could be ‘change request considered fully, but
declined’ with an explanation or note, for the record, saying why the request was
declined.

Change-in-response-to-change Message. The need for this kind of message
is to avoid endless loops of messages due to cycles in the graph of relations. Suppose

a relation ‘R’ exists from function A to B (A
R−→ B). For example, if A is task

analysis in UE and B is functional decomposition in SE, then R is a relation meaning
that changes in task analysis (A) require related changes to be considered in functional
decomposition (B). The relation R is expressed as a message that is sent whenever a
change occurs in A, informing the developer role in charge of B to consider changing
B accordingly. These dependency relations are often symmetric (i.e. changes in func-
tional decomposition also require consideration of changes if task analysis), so that a

development process could have both A
R−→ B and B

R−→ A among its dependencies.
This could lead to endless loops; a change in A triggers a change in B, which in turn
triggers a change in A, and so on. To break these cycles we introduce a new message
type called the ‘change-in-response-to-change’ message. A change made in B due to
a change request message from A would return a change-in-response-to-change mes-
sage that would not require further changes in A.

Design Reminders. Design reminders are a type of message used to record de-
sign reminders for future development stages. This type of message could be used
as a reminder to handle something later (such as a feature that has been temporarily
stubbed in the current activity, say, in the prototype stage), where there is no time
presently to consider it. For example, while developing a calendar management sys-
tem the developers may “hard wire” the alarm feature to go off 10 minutes before each

RIPPLE FRAMEWORK 261

appointment, but want a reminder to fix the design later by allowing the user to set the
lead time for the alarm.

Framework generated messages are formalized in terms of the life cycle activities
of both the development processes and the communication/dependency relationships
identified. The database implementation of our framework will automatically generate
the consistency and change messages.

In addition to messages automatically generated by Ripple due to pre-defined con-
straints, messages can be sent by developers for design reminders and ‘for your infor-
mation’ purposes. For example, the developers can specify when they would like to
send a “for your information” message to the other groups. Developers can send a “for
your information” message to the other developer role to let them know work is being
done on a certain part of the design, even though the current state of work is not ready
for sharing yet. On the other hand, if they come across new insights or new additions
to the project, they can send a change request message.

13.4.4 The Ripple Framework

Consider the following schematic (Figure 13.4) in which the two development pro-
cesses are shown, simplified as three stages in the life cycles: 1, 2, and 3 for UE stages
and A, B, and C for SE stages. The messages from each phase are labeled using the
<development stage ID><messagecounter>. The different types of communication or
dependency relations are marked using different line widths and styles.

In the example shown in Figure 13.4, the UE cycle triggers three messages in stage
one: M11, M12, and M13. Similarly, SE cycle triggers MA1 and MA2and so on.

A developer using Ripple to work on a particular life cycle stage, will have a list of
waiting messages from other phases in the SE and UE cycles. These waiting lists are
shown on the far right and left sides of the figure as ‘message queues’ at each phase.
These messages can be reminders from

previous stages or constraints or change effects from other stages. Depending on
the type of message, the developer responds accordingly.

When developers make changes to existing documents in the design repository,
those changes, in turn, trigger ripples of new messages. The history of ripple messages
can support traceability of changes in the overall framework, and includes a rationale
for the change and details of who initiated the change and when.

Ripple uses a ‘score card’ approach to list the status of each phase of the develop-
ment life cycle, showing which stages are bottlenecks and which stages need the most
attention.

13.5 CONTRIBUTIONS

13.5.1 Activity Awareness and Life Cycle Independence

Using Ripple (Figure 13.5), each developer role has significant insights into their own
and the other’s life cycle status, activities, the iteration of activities, the timeline, tech-
niques employed or yet to be employed, the artefacts generated or yet to be generated,
and the mappings between the two life cycles if present. The view of each role shows

262 HUMAN-CENTERED SOFTWARE ENGINEERING

1

2

3

A

B

C

M11

M12

M13

M31

MA1

MA2

MB1

Usability
engineering

process

Software
engineering

process

Message
queue at A:

M11

Message
queue at B:
MA2, M11

Message
queue at C:

M12

Message
queue at 3:

M13

Message
queue at 2:
MA1, MB1

Figure 13.4 Message passing and accumulation in the integrated process framework

Communication,
 Synchronization,

and
 Coordination

Requirements
Analysis

Interaction
Design

Interaction
Prototype

User Interface
Specifications

Summative
Evaluation

Formative
Evaluation

Formative
Evaluation

Formative
Evaluation

Requirements
Analysis

Preliminary
Design

Detailed
Design

Design
Specifications

Software Impl.

Review

Review

Integration
& Testing

Summative
Evaluation

Figure 13.5 Ripple: Framework with communication/coordination

RIPPLE FRAMEWORK 263

only those activities that are relevant to that role. Each role views the shared design
representation through its own filters (Figure 13.6). For example, the software en-
gineers see only the software implications that result from the previously mentioned
iterativeness in UE, but not the techniques used or the procedure followed. Similarly,
if software engineers need iteration to try out different algorithms for functionality, it
would not affect the usability life cycle. Therefore, the process of iteration is shielded
from the other role, only functionality changes are viewable through the UE filter.
Each role can also contribute to its own part of the life cycle; Ripple allows each role
to see a single set of design results, but through its own filter. Ripple emphasizes the
placement of these connections and communication more on product design and less
on development activities. This type of ‘filter’ acts as a layer of insulation, between
the two processes, i.e. Ripple helps isolate the parts of the development processes for
one role that are not a concern for the other role. This insulation needs to be concrete
enough to serve the purposes, but not over specified so as to restrict the software de-
sign that will implement the user interface functionality. This prevents debates and
needless concerns emanating from the use of specialized techniques. Because Ripple
does not merge, but coordinates, the two development processes, life cycle roles from
one process need not know the language, terminology, and techniques of the other,
and therefore can function pseudo-independently.

SE Developer

SE Developer

Shared Design Representation

SE and UE
components

SE Filters

UE Filters

Figure 13.6 Shared design representation

13.5.2 User Interface and Functional Core Communication Layer

Ripple advocates the need for the two life cycle roles to specify a common commu-
nication layer between the user interface and the functional core parts. This layer is

264 HUMAN-CENTERED SOFTWARE ENGINEERING

similar to the specification of the communication between the model and the other
two parts (view and controller) in the ‘model view controller’ (MVC) architecture
(Krasner and Pope, 1988). This communication layer describes the semantics and the
constraints of each life cycle’s parts. For example, the usability engineer can specify
that an undo operation should be supported at a particular part of the user interface, and
that in the event of an undo operation being invoked by the user, a predetermined set of
actions must be performed by the functional core. This type of communication layer
specification will be recorded by our design representation framework, and allows the
software engineers to proceed with the design by choosing a software architecture that
supports the undo operation (Bass and John, 2001b). How the undo operation is shown
on the user interface does not affect the SE activities. This type of early specification
of a common communication layer by the two life cycles minimizes the possibility of
change on the two life cycle activities. However, this common communication layer
specification can be difficult to specify and might change with every iteration. These
changes should be made and take into account the implications that such a change will
have on the already completed activities, and/or the ones planned for the future.

13.5.3 Coordination of Life Cycle Activities

Ripple coordinates schedules and specifies the various activities that have commonal-
ities within the two life cycle processes. For such activities, Ripple indicates where
and when those activities should be performed, who the involved stakeholders are,
and communicates this information to the two groups. For example, if the schedule
says it is time for usability engineers to visit the clients/users for ethnographic analy-
sis, Ripple automatically alerts the software engineers and prompts them to consider
joining the usability team and to coordinate the SE’s user related activities such as
requirements analysis, etc.

13.5.4 Communication Between Development Roles

Another important contribution of Ripple is the facilitation of communication between
the two roles. Communication between the two roles takes place at different levels
during the development life cycle. The three main levels in any development effort
are: requirements analysis, architecture analysis, and design analysis. Each of these
stages results in a set of different artefacts based on the life cycle. Ripple has the
functionality to communicate (using messages) these requirements between the two
life cycles. For example, at the end of UE task analysis the usability group enters
the task specifications into the design representation framework and the SE group can
view these specifications to guide their functional decomposition activities. At the end
of such an activity, the SE group enters their functional specifications into Ripple for
the usability people to cross check. This communication also helps in minimizing the
effects of change and the costs to fix these changes. By communicating the documents
at the end of each stage, the potential for identifying errors or incompatibilities early
in the process increases compared to waiting till the usability specifications stage.
This early detection of mismatches is important because the cost to fix an error in the
requirements that is detected in the requirements stage itself is typically four times

RIPPLE FRAMEWORK 265

less than fixing it in the integration phase and 100 times less than fixing it in the
maintenance stage (Boehm, 1981).

13.5.5 Constraints, Dependencies and Provision for Change

Ripple incorporates automatic mapping features, which will map the SE and UE part
of the overall design based on their dependencies on each other. Recall the example of
the many-to-many mapping between the tasks on the user interface side, the functions
on the functional side, and how Ripple will automatically alert the software group
about the missing function(s) and vice versa. So, when the software engineer tries
to view the latest task addition, a description that clearly specifies what the task does
and what the function should do to make that task possible, is provided. This way the
developers can check the dependencies at regular time intervals to see that all the tasks
have functions and vice versa. It also helps ensure that there are no ‘dangling’ tasks
or functions that turn up as surprises when the two roles finally do get together.

13.6 POTENTIAL DOWNSIDES OF RIPPLE

Ripple has the following downsides due to the various overheads and additional tasks
that arise because of the coordination of the two life cycles:

Increase in the overall software development life cycle;

Additional effort required by the roles in each life cycle for document creation
and entry into the design representation framework;

Additional effort required for coordination of various activities and schedules;

Need for stricter verification process than conventional processes to enforce the
various synchronization checkpoints during the development effort; and

Resource overhead to carry out all the above mentioned drawbacks.

13.7 CURRENT STATUS

Ripple is a work-in-progress. We have currently identified many different dependen-
cies and constraints within the UE life cycle. We will do a similar mapping on the
SE life cycle and then on an integrated framework. We are currently working toward
representing the products of a development effort in a database system. We have yet
to implement the triggers and constraints. We also intend to test the framework using
a project in simulated real life settings. We plan to do this by offering the SE and UE
courses in an academic semester and having half the teams use the current practices
and the other half use our framework.

Acknowledgements

The authors would like to thank the reviewers and editors for their insightful comments
and feedback. This feedback helped us address some of the issues we overlooked in
our early versions of this chapter.

