
10 WHICH, WHEN AND HOW

USABILITY TECHNIQUES AND

ACTIVITIES SHOULD BE INTEGRATED
Xavier Ferre, Natalia Juristo, Ana M. Moreno

Universidad Politecnica de Madrid, Spain

Abstract

Software development organizations are paying more and more attention to the us-
ability of their software products, as increasing importance is attached to usability as a
critical software quality attribute. The HCI (Human-Computer Interaction) field offers
techniques aimed at producing a software product with a good usability level, but their
use is often not integrated into SE (software engineering) development processes. The
integration of usability techniques into SE practice is not an easy endeavor, since both
fields speak different languages and deal with software development from different
perspectives. This chapter presents a framework for the integration of usability tech-
niques and activities. This framework characterizes selected usability techniques and
activities using SE terminology and concepts, according to what kind of activity they
belong to and at what development stage their application contributes most to the us-
ability of the final software product. Software developers may then manage usability
activities and techniques, include them in their software process, and understand in
which activities usability and SE techniques have to be merged to achieve concurrent
objectives. The proposed framework is aimed at software development organizations
with a defined iterative development process that are looking to enhance their process
with usability aspects.

173

in the Development Process, 173–200.

© 2005 Springer. Printed in the Netherlands. 

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability



174 HUMAN-CENTERED SOFTWARE ENGINEERING

10.1 INTRODUCTION

This chapter reviews some usability and SE methods looking at how they propose to
integrate usability into the overall software development process, and builds an inte-
gration framework for incorporating usability activities and techniques into a defined
software development process. The importance of this framework lies in the fact that
there is now little or no guidance on the integration issue from a SE perspective. Soft-
ware development organizations interested in improving the usability of their software
products are willing to add usability activities and techniques to improve their soft-
ware process, but usability textbooks do not offer support for this concern. This is a
key question bearing in mind that usability techniques and the HCI approach to devel-
opment are still relatively unknown and not well integrated in SE teams (Seffah and
Andreevskaia, 2003). The work presented in this chapter is aimed at software devel-
opment organizations with a strong SE background that are considering incorporating
usability aspects into their practices, and cannot shift to a strictly usability-led devel-
opment approach. For these organizations, usability is an important concern, but not
the main focus, and even if there are some usability experts on their teams, software
developers are expected to apply or be acquainted with some usability techniques.

According to the ACM SIGCHI Curricula for Human Computer Interaction, HCI
is “a discipline concerned with the design, evaluation and implementation of interac-
tive computing systems for human use and with the study of major phenomena sur-
rounding them” (ACM, 1992). It is an established field, and one of its main concerns
is the usability of computer systems. Usability techniques are applied in a variety
of software development projects, where attaining an acceptable usability level is a
very important, if not the main, goal. These projects are mostly developed following
methods peculiar to the HCI field. Where this is not the case, that is, when usability
practices are applied along with SE practices, their integration is tackled on a case-by-
case basis (as in Anderson et al., 2001; Radle and Young, 2001). The main obstacle
to HCI-SE cooperation is that the two fields speak different languages and deal with
software development from different perspectives, as detailed in chapter 5. HCI has a
multidisciplinary essence, including topics related to fields like cognitive psychology,
ergonomics, and sociology. On the other hand, SE is defined in the IEEE Standard
Glossary of Software Engineering Terminology as ”the application of a systematic,
disciplined, quantifiable approach to the development, operation, and maintenance of
software; that is, the application of engineering to software” (IEEE, 1990). Software
engineers have traditionally focused on the internals of software, on its functionality,
reliability, efficiency, and so on, and on the establishment of systematic software de-
velopment practices. They have paid less attention to how the software product may
better support the mental models of the user and the tasks he or she wants to perform.

In particular, the special emphasis it places on making software development sys-
tematic and disciplined has led the SE community to pay special attention to the soft-
ware process. Software process refers to the development roadmap followed by an
organization to produce software systems, that is, the series of activities undertaken
to develop and maintain software systems. Developers follow the software process
established in their organization, which is enforced due to the underlying assumption
that a good process leads to a good product. Every organization may have a differ-



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 175

ent software process, but some activities are common to all software processes. The
software process can be described at different levels, and a feature common to differ-
ent process descriptions is the description of the techniques applied in each process
activity. Due to the emphasis placed on the software process in the SE community,
a considerable amount of effort has gone into software process definition, evalua-
tion, and improvement (Kawalek and Wastell, 1996; Derniame et al., 1999; Fuggetta,
2000). The goal of software process research is to improve software development
practice by proposing: a) better ways of defining and modeling the development and
therefore designing the developer organization processes, b) better ways of assessing
the weaknesses of this organization, and c) better ways of improving this organization
at the level of individual processes and the organization as a whole. Typical reasons
why a software development organization may consider a defined software process
valuable include: facilitating human understanding and communication, supporting
process improvement, supporting process management, providing automated process
guidance and providing automated execution support (Abran et al., 2004).

It should be noted that agile methods have recently appeared in response to all
the importance software development practices attach to the software process. Agile
methods try to shift the focus to other issues, like individuals and their interaction,
and regard the software process as an important but secondary issue in software de-
velopment. The Agile Manifesto (Beck et al., 2001) sets out the main ideas behind
this approach to software development. The agile philosophy is receiving a significant
amount of attention in the SE field, and it looks like a promising approach from a
usability point of view, as highlighted in chapter 12. Nevertheless, it is not yet consid-
ered part of the core practices of SE as defined software processes are. The SWEBOK
(Software Engineering Body of Knowledge), which is a recent effort to gather what is
considered commonly accepted knowledge in the SE field, does not include any refer-
ence to the agile approach in its Trial Version 1.00 (Abran et al., 2004), while defined
software processes have their own chapter. Most software engineers put the accent on
defining the software process in the belief that having and improving a defined pro-
cess, as other production organizations do, is an approach that produces better quality
software.

As they are, usability methods are hard to apply in SE, because of the conceptual
differences between HCI and SE, and because overlaps with SE have not been settled.
In particular, activities related to requirements engineering (an SE subfield) are tackled
by both usability and SE methods. These overlapping areas are not clearly formulated
from a SE viewpoint, forcing software development organizations to undertake costly
research in order to plan the introduction of usability techniques and activities into
such practices. The importance of the integration effort is sometimes mistakenly min-
imized, as a result of a perception of usability common in the SE field: it is considered
to be related to just the UI (user interface). To average developers, the UI is the actual
visual elements with which the user interacts and their response behavior (in visual
terms), and it is therefore regarded as a graphic designer affair. Such misconceptions
simplify the problem of integration in the software process modeler’s mind: being a
graphic designer issue, it only requires the addition of a usability activity in the process
in which these issues are taken care of. In this case, there would be no or only slight



176 HUMAN-CENTERED SOFTWARE ENGINEERING

overlaps. Bearing in mind usability in the software development process, however,
implies including usability activities throughout the entire process, with the challenge
of integrating different development cultures into the same kind of activity.

For the present decade, Dumas & Redish (Dumas and Redish, 1999) predict con-
tinued growth of interest in usability from users to CEOs. Usability is becoming an
important asset for a lot of software development organizations, and they demand
guidelines for integrating usability activities and techniques into their software pro-
cess. This trend towards usability integration throughout software construction is
illustrated by the International Organization for Standardization’s (ISO) decision to
include a new process, called usability process, in the standard for software processes.
This change was introduced in the first amendment to ISO/IEC Standard 12207:1995,
released in 2002 (ISO/IEC, 2002). The fact that an international SE standard stipu-
lates that usability activities should be part of the software development process is an
indication that usability is definitely on the SE agenda with respect to software process
definition.

The goal of the work presented in this chapter is to offer a framework for introduc-
ing usability activities and techniques into any iterative software development process
an organization may have in place. This framework does not define a particular soft-
ware process, but sets out integration information in a way that it can be applied to a
wide range of processes. The framework we propose details which kind of activities
in a SE process are affected by usability techniques and when in development time
each technique yields results that are most useful for the aim of raising the usability
level of the final software product.

The first obstacle to the introduction of usability techniques into the software pro-
cess is the difference in process terminology between HCI and SE. Therefore, for our
purpose of integration, we need to extract the essence, to look at the core ideas behind
the terms to find the connections between the two software development approaches.
We need to identify the motivations behind each activity to find their interrelationships.

Apart from the terminology gap, HCI does not share the SE view of the software
process. Some HCI authors, like Shneiderman, 1998, or Nielsen, 1993, do not struc-
ture usability efforts as activities (in the SE sense), so some usability techniques are
not clearly assigned to activities in the HCI literature. The basic user-centered process
(the HCI term for its process approach) is outlined in ISO Standard 13407 (ISO/IEC,
1999), but each author in the field has a particular vision of how this maps to specific
activities. For effective HCI-SE cooperation, usability techniques need to be mapped
to the most common activities present in user-centered processes.

The research presented in this work has been carried out as part of the STATUS
project, financed by the European Commission (IST-2001-32298). The project goals
include outputting methodological guidelines for integrating usability techniques into
the software process, which we are presenting here. The two industrial partners in the
project consortium have helped us to establish the framework’s underlying premises.
Pragmatically speaking, the industrial partners asked for a roadmap that could tell
them which usability techniques and activities they should incorporate, and when in
development time. They prefer this open solution that fits a wider range of processes
to establishing the ”perfect” software process integrating usability and SE practices.



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 177

The application of such a perfect process from a usability point of view would mean
abandoning their current software process, which they do not wish to do.

Not all processes can be converted into proper user-centered processes by making
just a few modifications. The transformation required for a process or an organiza-
tional culture based on a waterfall lifecycle approach to become user-centered would
be far too drastic. This approach implies that detailed specifications are produced be-
fore any design and implementation is performed. The complexity of the human side
in human-computer interaction makes it almost impossible to create a correct design
at the first go. Cognitive, sociological, educational, physical and emotional issues may
play an important role in any user-system interaction, and they cannot be completely
predicted in advance. Therefore, the candidate for usability integration needs to be
an iterative process. Of the characteristics of a user-centered process, iterativeness is
the only one that is intrinsically inherent to the software process, as stated below in
Section 10.7. Our framework then can help any organization with an iterative pro-
cess to enhance this process with usability activities and techniques. This approach
increases the practical applicability of the framework, since it does not require any
specific original process as long as it is iterative. The appeal for a software develop-
ment organization lies in the fact that it does not have to abandon the in-house process
to adopt improvements, as it only has to modify the existing process.

The following three sections analyze how existing proposals deal with the integra-
tion problem: Section 10.2 details how integration is considered in usability methods,
Section 10.3 details proposals for integrating usability techniques and activities into
widely known SE methods, and Section 10.4 discusses the limitations and advantages
of the proposals in the previous two sections. Section 10.5 details the mapping be-
tween usability and SE activities. Section 10.6 presents the assignment of the selected
usability techniques to activities. Section 10.7 deals with the considerations on when
to apply usability techniques and activities in an iterative development. The basic
premises and context for the solution proposed are discussed in Section 10.8 and, fi-
nally, Section 10.9 presents the conclusions.

10.2 USABILITY METHODS APPROACH TO INTEGRATION

An organization wanting to include usability techniques and activities in the process
may resort to HCI literature for help on the issue. In this section, we consider how
the usability methods described in the HCI literature deal with the integration issue.
We will consider just textbooks and international standards, since they are the sources
more readily available to average developers with a SE background (who do not usu-
ally use conference proceedings and research journals as a source of information).

The Star Life Cycle by Hix & Hartson (Hix and Hartson, 1993) is a user-centered
process that sets out the main usability activities. It does not prescribe a particular
order for activities, but it does allocate a prominent role to usability evaluation, which
is placed in the center of the star that represents the activities in the life cycle. Hix and
Hartson describe the communication paths that should take place between usability
activities (user interaction design) and software design. They strictly separate the
development of the UI from the development of the rest of the software system, with
two activities that connect them: systems analysis and testing/evaluation. The systems



178 HUMAN-CENTERED SOFTWARE ENGINEERING

analysis group feeds requirements to both the problem domain design group and the
user interaction design group. It is a simplistic approach to HCI-SE integration, but
the authors acknowledge that “research is needed to better understand and support the
real communication needs of this complex process” (Hix and Hartson, 1993).

ISO Standard 13407 (ISO/IEC, 1999) provides guidance on human-centered de-
sign activities throughout the life cycle of computer-based interactive systems. It is
neither a method nor a software process, but it characterizes user-centered processes.
Note that the standard authors use the term human-centered as equivalent to user-
centered. We prefer the latter term, since it is more widely used in the HCI literature.

The standard reasons why a user-centered focus should be adopted in interactive
systems, and it includes the characteristics of such a focus: active involvement of
users and clear understanding of user and task requirements; an appropriate alloca-
tion of function between users and technology; the iteration of design solutions; and
multidisciplinary design. It also describes the essential activities in a human-centered
process: understand and specify the context of use; specify the user and organizational
requirements; produce design solutions and evaluate designs against requirements.

The standard also establishes that the human-centered process, including the proce-
dures for integrating the usability activities with other system development activities,
e.g. analysis, design, testing, has to be planned, although this is as far as it goes on the
integration issue. This requirement calls for the development of usability roadmaps
that are useful for fitting usability techniques into the overall software development
process.

Constantine & Lockwood (Constantine and Lockwood, 1999) propose the Usage-
Centered Design method as a collection of coordinated activities that contribute to
usability. Some HCI practitioners would not completely agree in considering usage-
centered design an HCI method, but we have classed this method as such, since it
is focused on the development of interactive systems for human use (and therefore
fits the definition of HCI given in Section 10.1). The usage-centered design activ-
ity model includes some activities that correspond to the larger software development
process (object structure design, concentric construction and architectural iteration),
along with pure usability activities, like task modeling or interface content modeling.
The models that Constantine and Lockwood propose are appealing to software engi-
neers, since they are closer than other usability techniques to the kind of modeling
used in SE. In particular, essential use cases, which are a cornerstone of the usage-
centered approach, are a reinterpretation of the popular object-oriented technique of
use cases. They can, therefore, serve the purpose of acting as a bridge between SE
and HCI models. In fact, there are at least two popular SE reference books (Larman,
2002, and Cockburn, 2001), that acknowledge Constantine and Lockwood’s work on
essential use cases.

Constantine and Lockwood offer some advice on integrating usability and UI de-
sign into the product development cycle, acknowledging that there is no one single
way of approaching this question. Therefore, they leave the issue of integration to be
solved on a case-by-case basis. They state that “good strategies for integrating usabil-
ity into the life cycle fit new practices and old practices together, modifying present
practices to incorporate usability into analysis and design processes, while also tai-



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 179

loring usage-centered design to the organization and its practices” (Constantine and
Lockwood, 1999). Although some techniques that are closer to SE modeling are de-
scribed, Constantine and Lockwood’s proposal is not formalized in process terms, and
their work is more concerned with detailing the techniques than with specifying the
process in terms of dependencies, products and roles.

Mayhew (Mayhew, 1999) proposes the Usability Engineering Lifecycle for the
development of usable UIs. The process structures the activities into three phases:
Requirements Analysis, Design / Test / Development, and Installation. This approach
to the process follows a waterfall lifecycle mindset: an initial Analysis phase, followed
by a Design / Test / Development phase, and finally an Installation phase. The Analysis
stage is only returned to if not all functionality is addressed, and this is, therefore, not
a truly iterative approach to software development.

Nevertheless, it is one of the more complete usability methods from the SE point
of view. Although Mayhew claims that the method is aimed at the development of
the UI only, the activities included in this life cycle embrace an important part of
requirements-related activities (like, for example, Contextual Task Analysis). Links
with the OOSE (Object-Oriented Software Engineering) method (Jacobson, 1992) and
with rapid prototyping methods are identified, but Mayhew acknowledges that the inte-
gration of usability engineering with SE must be tailored and that the overlap between
usability and SE activities is not completely clear. The links with OOSE and rapid
prototyping are very general, and Mayhew presents UI development as an activity that
is quite independent from the development of the rest of the system.

Additionally, the author surprisingly defines software engineering as “an approach
to software development that involves defining application requirements, setting goals,
and designing and testing in iterative cycles until goals are met” (Mayhew, 1999).
Even though this is now the main trend in SE, it is not a valid definition of the disci-
pline, since there are other development approaches that are valid from a SE viewpoint.
A software engineer, taking up this work in search of help with the issue of usability
integration into the software process may be put off by such misconceptions.

10.3 INTEGRATION PROPOSALS BASED ON SE METHODS

As we are trying to offer a solution for organizations that already have a process in
place, this section will review integration proposals that are based on widely known
SE methods. Costabile’s proposal is based on the waterfall lifecycle. MUSE (Method
for USability Engineering) is defined according to the characteristics of a structured
method. Finally, we examine the User Experience addition to the RUP (Rational Uni-
fied Process).

Costabile (Costabile, 2001) offers a way of integrating user-centered practices into
the software process to increase the usability of the software product. She condenses
the user-centered approach into three main principles: analyze users and tasks, design
and implement the system iteratively through prototypes of increasing complexity and
evaluate design choices and prototypes with users. Costabile proposes a way of mod-
ifying the software life cycle to include usability. The basis she takes for such modifi-
cations is the waterfall lifecycle. The proposal adds two extra activities composed of
pure usability activities –user and task analysis, on the one hand, and scenarios and UI



180 HUMAN-CENTERED SOFTWARE ENGINEERING

specifications, on the other–, plus two intermediate activities which include the same
tasks: prototyping and testing. It is possible to go back to a previous phase from any
phase of the life cycle. According to the author, these backtracking paths, along with
the two extra activities, emphasize the iterativeness of software development, which is
necessary from a user-centered point of view.

Costabile’s proposal has an important drawback in the choice of the waterfall life
cycle as a “standard” software life cycle. This model goes against the user-centered
aim of evaluating usability from the very beginning and iterating to a satisfactory so-
lution. Paths that go back in the waterfall life cycle are defined for error correction,
not for completely changing the approach if it proves to be wrong, since it is based
on frozen requirements (Larman, 2002). Glass acknowledges that “requirements fre-
quently changed as product development goes under way [...]. The experts knew that
waterfall was an unachievable ideal” (Glass, 2003). SE literature has gradually come
to accept that an iterative as opposed to a waterfall life cycle approach is the best
for medium to high complexity problems when the development team does not have
in-depth domain knowledge. Larman identifies the following problems with the wa-
terfall life cycle: delayed risk mitigation, speculation and inflexibility of requirements
and design, high complexity and low adaptability (Larman, 2002). Iterative develop-
ment tackles most of these problems. Nevertheless, a waterfall mindset is still deeply
rooted in day-to-day practice among software developers, mainly because it gives the
complex activity of developing software systems an illusion of order and simplicity.

MUSE (Method for USability Engineering) (Lim and Long, 1994) is a method
for designing the UI, and was one of the most well structured usability methods at the
time of its publication (1994). It is divided into three phases: Information Elicitation
and Analysis Phase, Design Synthesis Phase and Design Specification Phase. The
method aims to ease integration with SE methods, and its integration with the JSD
(Jackson System Development) method is described. The primary focus of the MUSE
method is on design specification due to the identified lack of integration in this stage,
whereas, according to the method creators, later stages (usability evaluation) are well
covered in the existing literature.

MUSE is based on the principle of delaying design commitment, ensuring that
detailed design is preceded by appropriate design analysis and conceptual defini-
tion. Comparing MUSE with the rapid prototyping approach, Lim and Long state
that MUSE, as a structured method, emphasizes a design analysis and documentation
phase prior to the specification of a “first-best-guess” solution. Therefore, MUSE fol-
lows a waterfall life cycle, which is an obstacle to the application of a truly iterative
approach.

As MUSE is a structured method, it is presented by its authors as easy to integrate
into any structured SE method. Its integration with JSD is detailed as an example of
this. JSD is presented as a method that is mainly used for the development of real-
time systems. Real-time systems account for a very small part of interactive systems,
so the integration of MUSE with JSD is not very useful from a generic point of view.
Regarding the integration of MUSE with other SE methods, its usage of techniques
like structured diagrams or semantic nets makes it difficult to adapt to current SE
practices, in particular to object-oriented development.



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 181

The BIUSEM project (BIUSEM, 1995) applied MUSE to three software devel-
opment projects in different domains and with different SE methods to evaluate its
applicability. Despite the positive outcome of the project (the application of MUSE
improved the product quality, and the sharing of human factors insight with software
engineers helped to elicit user-centered requirements), the project team acknowledged
that ”the body of published papers and the book describing MUSE are unnecessarily
complicated and act as a deterrent to its wider use” (BIUSEM, 1995).

The Unified Process (Jacobson et al., 1999; Kroll and Kruchten, 2003) is the
process that is currently receiving the greatest attention in SE, since it is sponsored by
the main object-oriented methodologists: James Rumbaugh, Ivar Jacobson and Grady
Booch. It advocates a truly iterative approach. It denotes the activities that the process
encompasses as “disciplines” to avoid the typical identification between activity types
and process stages in the waterfall life cycle. Of the processes that actually have an
iterative approach, the Unified Process is the most widely used. The RUP c© (Rational
Unified Process) is a refinement of the Unified Process sold by IBM (previously by
Rational Software Co.). The approach to usability integration presented in this section
is not comparable to the above proposals in scope. It has been included, however,
because of the current relevance of the Unified Process and RUP in SE.

The RUP does not consider usability directly, but it is use-case driven, and use-case
modeling has some similarities with HCI task modeling. Therefore, use cases could be
used as a starting point for usability integration into the software process. However, the
use-case model in the Unified Process plays a secondary role as compared to system
architecture. The use-case model is very important in cycle planning, but once the
cycle starts, use cases are regarded as a preliminary version of elements of the internal
functionality design. When design elements are labeled as use-case realizations, we
are shifting use cases to the design world and, therefore, away from the user realm,
losing most user-centered advantages with that shift.

The User Experience (UX) (Rational, 2002) plug-in for RUP aims to integrate the
work performed in the web development domain regarding the development of the web
system concept, which usually drives the whole development, into RUP. It is based on
Jim Conallen’s work on web modeling (Conallen, 2003), and there are big similari-
ties between UX aims and classical HCI concerns. According to Conallen, the term
User Experience “is used to describe the team and the activities of those specialists
responsible for keeping the UI consistent with current paradigms and, most impor-
tant, appropriate for the context into which the system is expected to run” (Conallen,
2003). Despite this promising definition, Conallen’s work focuses on modeling, and
he describes the artefacts for which the UX team is responsible as follows: screens and
content descriptions, storyboard scenarios, and navigational paths through the screens.

Although it is an advance towards the aim of integrating usability into the software
process, the UX addition to RUP does not cover the entire process and is limited to a
few models. Nevertheless, it does indicate the growing interest in the web develop-
ment domain for integrating usability expertise and techniques into the development
process.

With regard to usability integration into object-oriented development, the WIS-
DOM method (Nunes, 2001) deserves a mention, even if it is not a commonly used



182 HUMAN-CENTERED SOFTWARE ENGINEERING

method. It includes an extension to UML (Unified Modeling Language) to allow
user-centered models to be employed in conjunction with object-oriented models and,
therefore, to facilitate usability integration in modeling efforts throughout develop-
ment. The WISDOM method offers a comprehensive process for any organization
interested in adopting a new process already integrating usability. The organization
is then forced to adopt the process as a whole, including the underlying assumptions
present in the SE part of the method. For example, the WISDOM method differen-
tiates between an Analysis and a Design workflow, while this distinction (inherited
from object-oriented methods prior to the Unified Process) is not retained in recent in-
terpretations of the Unified Process: Kroll & Kruchten consider a single ”analysis and
design” discipline or workflow (Kroll and Kruchten, 2003), while Larman considers
no analysis discipline and also states that the analysis model in the Unified Process is
not necessary and seldom used (Larman, 2002). Nevertheless, the WISDOM method
is still very interesting for software engineers, since it offers models for dealing with
usability issues. Additionally, the way it deals with some process issues in a user-
centered view could be mapped to processes other than the specific WISDOM method
process.

10.4 SUMMARY OF INTEGRATION PROPOSALS

As presented in Section 10.2, the descriptions of the usability methods considered as
to how they integrate with the overall software development process are not highly
detailed. Actually, the textbooks describing these methods do not intend to detail this
issue, as their main objective is to present the actual usability method. Consequently,
a software engineer looking for an answer to the integration problem may find the
information in these sources defined at a different level of detail than is usual in a
defined SE software process. Some methods just present high-level activities, like
the Star Lifecycle, the ISO Standard 13407, or the Usage-centered Design method.
On the other hand, the Usability Engineering Lifecycle is more detailed, describing
fine-grained activities and techniques that may be applied for each activity. But, as
presented in (Mayhew, 1999), this method encompasses a not so iterative approach
to software development. On top of these difficulties, the four HCI approaches con-
sidered use a terminology that is peculiar to the HCI field. Specifically, the Star and
the Usability Engineering lifecycles are presented as methods for the design of highly
usable UIs. As stated in Section 10.1, SE refers by UI design to just the design of
the actual visual elements that form the UI and the UI response behavior in visual
terms. It does not include any activity related to requirements engineering in the SE
perspective. Nevertheless, both methods include standard requirements activities like
task or user analysis. The terminology gap makes the task of integrating the usability
methods into the overall software process especially difficult.

As for the integration proposals based on SE methods presented in Section 10.3,
we have also identified some of the limitations observed in usability methods, like
them not being truly iterative (in the case of Costabile’s proposal and MUSE) or just
addressing the design of the UI (like MUSE), and therefore confusing software engi-
neers with regard to integration. On the other hand, the UX plug-in for RUP actually
integrates some usability practices into a comprehensive process, but its main goal is



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 183

to incorporate some techniques that are often used in the web development field in-
stead of integrating usability into the process. Therefore, the UX plug-in is limited to
a few usability techniques and does not cover the whole range of activities in which
usability techniques may apply.

Given that the information from the HCI literature is not detailed enough for the
purpose of integration and is not formulated in SE concepts and terminology, and
because SE proposals do not have a proper iterative focus or cover all activities, we
propose a framework that addresses these concerns in the following sections. The
framework is formulated according to a truly iterative approach (expressing time con-
straints in the form of iterative development stages), and it covers the whole range of
SE activities for mapping usability activities and techniques to all relevant kinds of
activities in a software process.

10.5 MAPPING BETWEEN USABILITY AND SE ACTIVITIES

To map usability terminology to SE terminology, the activities that form part of a
user-centered process must be identified. The heterogeneous landscape of methods
and philosophies offered by the HCI field, like, for instance, usability engineering,
usage-centered design, contextual inquiry, and participatory design, is a hurdle for this
ambition. Each author attaches importance to a few techniques, and the terminology
may vary from one author to another. For this reason, we have surveyed the HCI
literature (Ferre et al., 2002a) to identify the most agreed upon usability activities that
should be part of the software development process. We have listed these usability
activities in Figure 10.1, grouped according to what type of development activity they
belong to. Note that the activities are not listed in any time-related order.

There is a lot of consensus in HCI regarding analysis activities. Specification of the
Context of Use is an activity whose aim is to understand and record the implications
of the context of use so that they can be considered during system design. It has
been named following the ISO 13407 Standard terminology (ISO/IEC, 1999), and
it is divided into User and Task Analysis because some authors make a distinction
between the two activities (Mayhew, 1999; Hix and Hartson, 1993; Constantine and
Lockwood, 1999). Usability specifications are quantitative usability goals, which are
used as a guide for ascertaining when a system has the proper usability level. They
can be considered non-functional requirements.

Design activities are less well defined in the HCI literature that we consulted. The
only activity cited by most authors is Prototyping. Prototypes are widely used in SE,
particularly in iterative development. What HCI has to offer, however, is the particular
usage of light prototyping to get more user involvement and for weighing up alterna-
tive designs. The most useful prototypes for this purpose are the less sophisticated
ones, such as paper prototypes. Typical SE prototypes usually involve some degree of
programming, while paper prototypes allow for faster iterations as they do not require
any programming effort.

Develop the Product Concept is based on mental models (Norman, 1990; Preece
et al., 1994): when the product concept is vague, ambiguous, inconsistent or obscure,
there will be a divergence between the user mental model of the system and the de-
sign model that developers work with. The importance of helping the user to grow



184 HUMAN-CENTERED SOFTWARE ENGINEERING

productive mental models for the usability of the system is especially stressed. Good
designers always bear in mind a certain product concept, but making it explicit and
highlighting its importance in the software development process will help to shape the
system in a way that explicitly communicates this product concept to the user.

Interaction Design varies considerably from one author to another, but we have
identified the definition of the interaction that will take place between the user and
the system as a common aim in the design process. It includes designing the user-
system dialogue, that is, the sequence of actions needed to operate the system, and
the user-system information exchange, in detail. By interaction design we mean the
design of the coordination of information exchange between the user and the system.
Apart from tackling UI design (the design of the elements of the UI that will make
the interaction possible), it also includes decisions that affect the internal logic of the
system, to the extent that this internal logic is reflected in the user-system interaction.

Usability evaluation is the activity that is most profusely detailed in HCI literature.
Usability is very difficult to strive for, due to the complex human nature. Without
doing some form of evaluation, it is impossible to know whether or not the design or
system fulfils the needs of the users and how well it fits the physical, social and orga-
nizational context in which it will be used (Preece et al., 1994). Usability evaluation is
a core part of iterative development, in the sense that evaluation activities can produce
design solutions for application in the next design cycle or, at least, more insight into
the nature of the interaction problem at hand. Therefore, evaluation is not seen in HCI
as a mere fail/pass test, but as a part of development. Three big families have been
highlighted within the Usability Evaluation activity in Figure 10.1: Expert Evaluation,
Usability Testing and Follow-Up Studies of Installed Systems.

The set of activities is based on HCI terminology, with which most software devel-
opers are not familiar. Therefore, the terms must be translated to a generally accepted
SE terminology, so that developers know where to plug in the usability additions to
the software process. Wherever possible, the SWEBOK (Abran et al., 2004) has been
used as a basis for defining the activities in a traditional software development process.
HCI terminology has been used for other activities that are new to SE and do not fit
any existing activity.

The mapping of usability activities to development activities considered in this
chapter is shown in Figure 10.1. Each usability activity on the left-hand side of Fig-
ure 10.1 is mapped to a development activity on the right by means of an arrow. Some
activities have been added to the usual SE activities, because they do not match an
existing SE activity. They are highlighted in italics (for example, Interaction Design).
Only activities that are affected by usability are represented on the right, and the other
activities in a software process are not included.

Regarding the analysis-related activities, note that usability activities are inter-
twined with standard analysis activities. Therefore, they can be directly mapped to
the different types of SE analysis efforts. Following the SWEBOK definitions, we
have selected the requirements activities that are likely to be enhanced by the intro-
duction of usability techniques: Requirements Elicitation, Analysis and Negotiation;
Requirements Specification; and Requirements Validation. Four activities, presented
in the HCI literature as being necessary for understanding users, their context and



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 185

their needs, have been highlighted within the Requirements Elicitation, Analysis, and
Negotiation activity: User Analysis, Task Analysis, Develop Product Concept and
Prototyping.

The activities of Develop Product Concept and Prototyping are considered differ-
ently in HCI and in SE. According to the SWEBOK, Prototyping is considered in SE
as a technique that can be used in Requirements Elicitation and Validation. As for
Develop the Product Concept, it is a design activity, but the kind of design that is
known as invention design. According to the SWEBOK, invention design is usually
performed by systems analysts with the objective of conceptualizing and specifying a
system to satisfy the discovered needs and requirements, and it is not addressed in the
chapter of the SWEBOK devoted to software design (Abran et al., 2004). This concep-
tualization activity is usually undertaken as part of requirements elicitation activities,
and is fundamental for the success of requirements engineering efforts. Because of
its close connection with requirements activities and because the SWEBOK consid-
ers invention design as part of the requirements analysis activity, we have considered
Develop the Product Concept as part of Requirements Elicitation, Analysis and Nego-
tiation in our framework.

Figure 10.1 Mapping between usability and SE Activities



186 HUMAN-CENTERED SOFTWARE ENGINEERING

Usability-related design activities are quite separate from general design activities.
Therefore, a new activity, called Interaction Design, has been included under the De-
sign activities. The SWEBOK considers UI Design not as part of SE but as a related
discipline. However, it also states that UI design deals with specifying the external
view of the system and that it should be considered as part of requirements speci-
fication. Nevertheless, the chapter devoted to requirements in the same source (the
SWEBOK) does not include UI. On the other hand, Interaction Design fits the defini-
tion provided by the IEEE Standard Glossary of Software Engineering Terminology
for design: ”the process of defining the architecture, components, interfaces, and other
characteristics of a system or component” (IEEE, 1990). Therefore, we have consid-
ered Interaction Design as a design activity, because it is not clearly located in the
SWEBOK and because it fits the general definition of design.

Regarding evaluation, a new activity, Usability Evaluation is created, since it groups
usability techniques that are unconnected with other general evaluation activities.
However, walkthroughs can be used during requirements validation, so they have been
highlighted within Expert Evaluation (on the left of Figure 10.1) to show this link with
analysis-related activities. Evaluation activities are termed V&V (Verification and Val-
idation) in SE, so this is the label used for evaluation activities.

After having matched usability activities to their respective SE activities, we need
to address the individual techniques to be employed in each activity.

10.6 ASSIGNMENT OF USABILITY TECHNIQUES TO ACTIVITIES

For developers to be able to apply usability techniques, they need to know in which
activities they are applied. The previous section matched the activities in the HCI
literature to their respective SE activities.

Note that the integration framework presented in this chapter is aimed at software
development organizations that do not have a big usability department (if they have
one at all!) and, therefore, need usability concerns to be shared with the developers
throughout development. Nevertheless, for organizations where usability expertise
is widely available, communication problems inside multidisciplinary teams are an
important concern, and the proposed framework would also be of interest in such
cases.

Bearing in mind that, in our approach, the usability techniques could be applied
by non-experts in usability, we have made a selection where there was more than
one usability technique with the same objective available and have included usability
techniques that are less alien to a SE mindset in our framework. From more than 80
techniques described in the HCI literature (Ferre et al., 2002a), the resulting set of
techniques has been reduced to just 36 techniques. They appear in the column furthest
to the right in Table 10.1, which is explained in the next paragraph.

We have used the definition of each usability technique in the literature as regards
its application in a particular activity to allocate usability techniques to activities, and
this definition has again been compared with the definition of activities in the SWE-
BOK. Table 10.1 shows the classification of usability techniques according to activ-
ities. The techniques are grouped according to the activities in a generic software
development process that are listed in the central column.



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 187

10.7 WHEN TO APPLY USABILITY ACTIVITIES AND TECHNIQUES

We examined the HCI literature to identify what characteristics a software develop-
ment process should have for it to be considered user-centered. Shneiderman, 1998,
Nielsen, 1993, ISO/IEC, 1999, Hix and Hartson, 1993, Constantine and Lockwood,
1999, Preece et al., 1994, all agree on considering iterative development as a must for a
user-centered development process. The other two characteristics that are mentioned
by several sources are: active user involvement and a proper understanding of user
and task requirements. These two conditions can be met by introducing usability tech-
niques that can help software developers to integrate users into the design process and
to enhance requirements activities with specific usability aspects. On the other hand,
the first condition (that is, iterativeness) is an intrinsic characteristic of a software pro-
cess, and needs to be stated as a requirement for an existing development process to
be a candidate for the introduction of usability techniques and activities.

The usability practices described in the literature are deeply rooted in this process
characteristic and, for the application of usability techniques, there are indications on
when in development time each technique yields the most useful results for improving
the usability of the final product. These indications on the best time to apply usabil-
ity techniques have to be transmitted to developers. Hence, it is not enough just to
assign usability techniques to development activities, extra guidance also needs to be
provided on what usability techniques are to be applied exactly when in development
time. Consequently, the activities and their techniques need to be interrelated with
development stages. For this purpose, we will now present a generic description for
the stages of any process based on iterative development and then actually interrelate
activities / techniques and stages.



188 HUMAN-CENTERED SOFTWARE ENGINEERING
Ta

bl
e

10
.1

:
A

llo
ca

tio
n

of
us

ab
ili

ty
te

ch
ni

qu
es

to
ac

tiv
iti

es

H
C

I
A

ct
iv

it
ie

s
A

ct
iv

it
ie

s
in

So
ft

w
ar

e
P

ro
ce

ss
U

sa
bi

lit
y

Te
ch

ni
qu

es
A

na
ly

si
s

-
Sp

ec
ifi

ca
tio

n
of

th
e

C
on

-
te

xt
of

U
se

-
U

se
r

A
na

ly
si

s
A

na
ly

si
s

R
eq

ui
re

m
en

ts
E

lic
ita

tio
n,

A
na

ly
si

s
an

d
N

eg
ot

ia
tio

n

E
th

no
gr

ap
hi

c
O

bs
er

va
tio

n
(P

re
ec

e
et

al
.,

19
94

)

C
on

te
xt

ua
l

In
qu

ir
y

(B
ey

er
an

d
H

ol
tz

bl
at

t,
19

98
)

St
ru

ct
ur

ed
U

se
rR

ol
e

M
od

el
(C

on
st

an
tin

e
an

d
L

oc
kw

oo
d,

19
99

)
O

pe
ra

tio
na

l
M

od
el

in
g

(C
on

st
an

tin
e

an
d

L
oc

kw
oo

d,
19

99
)

JE
M

(J
oi

nt
E

ss
en

tia
lM

od
el

in
g)

(C
on

st
an

tin
e

an
d

L
oc

kw
oo

d,
19

99
)

A
na

ly
si

s
-

Sp
ec

.
C

on
te

xt
of

U
se

-
Ta

sk
A

na
ly

si
s

E
ss

en
tia

l
U

se
C

as
es

(C
on

st
an

tin
e

an
d

L
oc

k-
w

oo
d,

19
99

)
D

es
ig

n
-

D
ev

el
op

Pr
od

uc
tC

on
ce

pt
A

ffi
ni

ty
D

ia
gr

am
s

(B
ey

er
an

d
H

ol
tz

bl
at

t,
19

98
)

V
is

ua
lB

ra
in

st
or

m
in

g
(P

re
ec

e
et

al
.,

19
94

)
C

om
pe

tit
iv

e
A

na
ly

si
s

(N
ie

ls
en

,1
99

3)
Sc

en
ar

io
s

(C
ar

ro
ll,

19
97

)
D

es
ig

n
-

Pr
ot

ot
yp

in
g

Pr
ot

ot
yp

es
(p

ap
er

an
d

ch
au

ff
eu

re
d

(C
on

st
an

-
tin

e
an

d
L

oc
kw

oo
d,

19
99

);
an

d
w

iz
ar

d
of

O
z

(P
re

ec
e

et
al

.,
19

94
)

A
na

ly
si

s
-

U
sa

bi
lit

y
Sp

ec
ifi

ca
tio

ns
R

eq
ui

re
m

en
t

Sp
ec

ifi
ca

tio
n

U
sa

bi
lit

y
Sp

ec
ifi

ca
tio

ns
(H

ix
an

d
H

ar
ts

on
,

19
93

)
U

sa
bi

lit
y

E
va

lu
at

io
n

-
E

xp
er

tE
va

lu
a-

tio
n

R
eq

ui
re

m
en

ts
V

al
id

at
io

n
C

og
ni

tiv
e

W
al

kt
hr

ou
gh

(L
ew

is
an

d
W

ha
rt

on
,

19
97

)
Pl

ur
al

is
tic

W
al

kt
hr

ou
gh

(B
ia

s,
19

94
)

C
on

tin
ue

d
on

ne
xt

pa
ge



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 189
Ta

bl
e

10
.1

:
A

llo
ca

tio
n

of
us

ab
ili

ty
te

ch
ni

qu
es

to
ac

tiv
iti

es

H
C

I
A

ct
iv

it
ie

s
A

ct
iv

it
ie

s
in

So
ft

w
ar

e
P

ro
ce

ss
U

sa
bi

lit
y

Te
ch

ni
qu

es
A

na
ly

si
s

-
Sp

ec
.

C
on

te
xt

of
U

se
-

Ta
sk

A
na

ly
si

s
D

es
ig

n
In

te
ra

ct
io

n
D

e-
si

gn
D

et
ai

le
d

U
se

C
as

es
(C

on
st

an
tin

e
an

d
L

oc
k-

w
oo

d,
19

99
)

D
es

ig
n

-
In

te
ra

ct
io

n
D

es
ig

n
Sc

re
en

Pi
ct

ur
es

(H
ix

an
d

H
ar

ts
on

,1
99

3)
C

ar
d

So
rt

in
g

(R
ob

er
ts

on
,2

00
1)

M
en

u-
se

le
ct

io
n

T
re

es
(S

hn
ei

de
rm

an
,1

99
8)

N
av

ig
at

io
na

lP
at

hs
(C

on
al

le
n,

20
03

)
Pr

od
uc

tS
ty

le
G

ui
de

(M
ay

he
w

,1
99

9)
Im

pa
ct

A
na

ly
si

s
(H

ix
an

d
H

ar
ts

on
,1

99
3)

H
el

p
D

es
ig

n
by

U
se

C
as

es
(C

on
st

an
tin

e
an

d
L

oc
kw

oo
d,

19
99

)
E

va
lu

at
io

n
-

E
xp

er
tE

va
lu

at
io

n
V

&
V

U
sa

bi
lit

y
E

va
l-

ua
tio

n
H

eu
ri

st
ic

E
va

lu
at

io
n

(N
ie

ls
en

,1
99

3)

U
sa

bi
lit

y
In

sp
ec

tio
ns

(N
ie

ls
en

an
d

M
ac

k,
19

94
)

C
og

ni
tiv

e
W

al
kt

hr
ou

gh
(L

ew
is

an
d

W
ha

rt
on

,
19

97
)

Pl
ur

al
is

tic
W

al
kt

hr
ou

gh
(B

ia
s,

19
94

)
E

va
lu

at
io

n
-

U
sa

bi
lit

y
Te

st
in

g
T

hi
nk

in
g

al
ou

d
(N

ie
ls

en
,1

99
3)

Pe
rf

or
m

an
ce

M
ea

su
re

m
en

t
(D

um
as

an
d

R
e-

di
sh

,1
99

9)
L

ab
or

at
or

y
U

sa
bi

lit
y

Te
st

in
g

(D
um

as
an

d
R

e-
di

sh
,1

99
9)

Po
st

-T
es

t
Fe

ed
ba

ck
/

U
se

r
Q

ue
st

io
nn

ai
re

s
(M

ay
he

w
,1

99
9)

E
va

lu
at

io
n

-
Fo

llo
w

-u
p

St
ud

ie
s

of
In

-
st

al
le

d
Sy

st
em

s
Q

ue
st

io
nn

ai
re

s
/S

ur
ve

ys
(M

ay
he

w
,1

99
9)

C
on

tin
ue

d
on

ne
xt

pa
ge



190 HUMAN-CENTERED SOFTWARE ENGINEERING
Ta

bl
e

10
.1

:
A

llo
ca

tio
n

of
us

ab
ili

ty
te

ch
ni

qu
es

to
ac

tiv
iti

es

H
C

I
A

ct
iv

it
ie

s
A

ct
iv

it
ie

s
in

So
ft

w
ar

e
P

ro
ce

ss
U

sa
bi

lit
y

Te
ch

ni
qu

es
St

ru
ct

ur
ed

an
d

Fl
ex

ib
le

In
te

rv
ie

w
s

(P
re

ec
e

et
al

.,
19

94
)

D
ir

ec
tO

bs
er

va
tio

n
(H

ix
an

d
H

ar
ts

on
,1

99
3)

V
id

eo
/

A
ud

io
re

co
rd

in
g

(H
ix

an
d

H
ar

ts
on

,
19

93
)

Fo
cu

s
G

ro
up

s
(M

ay
he

w
,1

99
9)

L
og

gi
ng

A
ct

ua
lU

se
(S

hn
ei

de
rm

an
,1

99
8)

O
nl

in
e

U
se

r
Fe

ed
ba

ck
Fa

ci
lit

ie
s

(S
hn

ei
de

r-
m

an
,1

99
8)



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 191

10.7.1 Stages in an Iterative Development Process

Different times or stages can be defined in an iterative process, where one and the same
activity may be more or less important or have a different meaning. For instance,
most requirements discovery and refinement is usually undertaken during the early
iterations (Larman, 2004). These early iterations are packed in a stage: Elaboration. A
stage comprises a sequence of iterations in development with similar basic objectives.

Even though each iterative process has its particular approach and terminology in
terms of development stages, they usually follow a similar pattern in this respect. This
pattern is represented in Figure 10.2. Each stage is represented by a cloud, because it is
not a development phase as in the waterfall life cycle, but a set of iterations organized
according to the moment in time represented by the x-axis.

Figure 10.2 Stages in an iterative software development process

An explanation of the stages in an iterative development follows:

Elaboration cycles: This stage represents the early efforts in the software de-
velopment process, where the problem is delimited and the basic information is
gathered for later development in the iterative cycles.

Iterative cycles (i): These are the iterations found in any iterative approach.
For usability techniques to be applied in the cycles, a distinction will be made
between two moments:

– Central moments: The main part of each cycle.

– Final moments: The last part of each cycle, where certain activities are
performed, typically V&V activities.

Evolution cycles: These iterations represent the cycles that are undertaken after
the system has been installed and is operational at the customer’s site.

Any organization wanting to apply the proposed framework will have to translate these
generic stages to the ones they have in place, using their specific terminology. Even if
our representation of development stages is a common one in iterative processes, not
all iterative development approaches will necessarily match our stage representation.
For example, some projects may not have an elaboration stage, in which case the
techniques to be applied in this stage would be applied in the iterative cycles instead,
since this is the next stage in our representation.



192 HUMAN-CENTERED SOFTWARE ENGINEERING

10.7.2 Time Constraints for Usability Technique Application

Apart from the activity of which they are part, the description of usability techniques
in the HCI literature includes indications on the moments in development time when
they are to be applied. This section details this information, organized according to
the stages in a generic iterative process presented in the previous section. For a com-
prehensive study of the time constraints for usability technique application, (see Ferre
et al., 2002b).

The Elaboration stage corresponds to the initial cycles where the needs are iden-
tified and the general system outline is established. A general aim is for the products
of this stage to be quite stable, even though they are open to changes in the iterative
development cycles.

The following techniques are clearly to be applied at elaboration time, because they
are good for the first examination of the problem for handling an ill-defined solution:
Ethnographic Observation, Contextual Inquiry, Affinity Diagrams, Scenarios, Visual
Brainstorming, and Paper and Chauffeured Prototypes.

Competitive Analysis can be applied later on, but it can help at elaboration time
because it is good for coming up with design ideas on the product concept.

Analyzing the user and his or her environment, and the basic dialogue between
the system and the user is a prerequisite for any development that intends to cater
for the user and the usability of the resulting product. For this reason, the following
techniques should be applied at elaboration time, even though they may be applied
later for completing the models produced:

Essential Use Cases

Structured User Role Model

Operational Modeling

JEM (Joint Essential Modeling)

Cognitive and Pluralistic Walkthrough: Walkthroughs evaluate an interaction
dialogue. So, as soon as these dialogues are defined in the essential use cases,
walkthroughs can be applied as an evaluation technique.

Heuristic Evaluation: Low fidelity prototypes and early designs of the UI may
be evaluated heuristically.

The specifications document should include Usability Specifications. So, this tech-
nique will be applied at elaboration time if such a document is created at this stage,
but it can be completed as development advances.

Techniques related to UI design can be applied at the Elaboration stage, because the
UI is the part of the implementation that the user can understand better. Its design may
be undertaken at the early stages of development in order to get feedback from the user.
Thus, even though these techniques will carry more weight in the iterative cycles, they
are also present at the Elaboration stage. These techniques are Detailed Use Cases,
Screen Pictures, Card Sorting, and Menu-Selection Trees. Only Navigational Paths



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 193

has a predominant role at the Elaboration stage, since it is good for describing the
high-level view of the navigation.

Iterative cycles may include the application of techniques which require a greater
effort than the techniques detailed above, like Product Style Guide or certain prototyp-
ing techniques that demand some implementation, such as Wizard of Oz Prototypes.
Both techniques might fit in well in Elaboration cycles, but they are predominantly to
be applied in iterative cycles in order to avoid bulky elaboration cycles.

Some already mentioned UI design techniques carry more weight during iterative
cycles, but they are fit for both stages (Elaboration and Iterative Cycles): Detailed Use
Cases, Screen Pictures, Card Sorting, and Menu-Selection Trees.

Impact Analysis may be employed at the beginning of any cycle in either the itera-
tive or evolution cycles.

Some techniques are adequate for application at the end of a development cycle,
that is, in the final moments. They are the ones proposed in the literature for usability
evaluation purposes:

Heuristic Evaluation

Usability Inspections: Consistency, conformance and collaborative usability in-
spections.

Thinking Aloud: Constructive interaction, retrospective testing, critical incident
taking, and coaching method.

Performance Measurement

Laboratory Usability Testing

Post-Test Feedback / User Questionnaires

The Evolution stage groups the activities performed after the system has reached ini-
tial operational capability in the customer organization. The usability techniques to
be applied at this time are techniques to evaluate the usability of an installed system.
They are as follows:

Questionnaires / Surveys (they may be used in previous stages as well)

Structured and Flexible Interviews

Direct Observation

Video / Audio Recording (it can be used in previous stages as well)

Focus Groups

Logging Actual Use: Time-stamped keypresses and interaction logging.

Online User Feedback Facilities: Online or telephone consultants, online sug-
gestion box or trouble reporting, online bulletin board or newsgroup, user
newsletters and conferences.



194 HUMAN-CENTERED SOFTWARE ENGINEERING

When the development project involves replacing a system that is already in op-
eration, all of these techniques can also be used as data gathering techniques in the
Elaboration stage of the project.

10.7.3 Mapping of Usability Activities / Usability Techniques /

Development Stages

The description of the techniques to be applied at each stage in the previous section
is summarized in Table 10.2. Techniques highlighted in bold face within a stage carry
more weight in this stage, that is, this is the stage in which they are best suited, even
though they can be applied at other stages.

Figure 10.3 shows another way of looking at the relationship between cycles and
activities. It is a distribution of work across the different activity types, related to
the time in the development process when each effort is performed. Each horizontal
line represents an activity type, and the height of the red line indicates the amount
of work of this kind to be done at that particular development stage. For example,
requirements elicitation, analysis and negotiation activities are mostly performed in
Elaboration cycles (with more emphasis on the early stages), while some elicitation
and analysis activities are performed at the beginning of the central moments within
the Iterative Cycles, and a small amount of work may be done in Evolution cycles.
Slopes in different lines denote some precedence between the different activity types,
like, for example, between the different requirements activities within Iterative cycles:
first, there is some elicitation, analysis and negotiation followed by specification and
then validation. Note that the amount of work on each activity represented in Fig-
ure 10.3 is approximate, it should not be taken literally.



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 195
Ta

bl
e

10
.2

:
U

sa
bi

lit
y

te
ch

ni
qu

es
to

be
ap

pl
ie

d
at

ea
ch

st
ag

e
an

d
th

ei
rs

ig
ni

fic
an

ce

A
ct

iv
iti

es
St

ag
es

E
la

bo
ra

tio
n

St
ag

e
It

er
at

iv
e

C
yc

le
s

(c
yc

le
s
1

to
j)

E
vo

lu
tio

n
St

ag
e

(c
yc

le
s
1

to
i)

ce
nt

ra
lm

om
en

ts
fin

al
m

om
en

ts
(c

yc
le

s
1

to
k

)
R

eq
s.

E
ng

.
R

eq
ui

re
m

en
ts

E
lic

ita
tio

n,
A

na
ly

si
s

an
d

N
eg

ot
ia

tio
n

-
E

th
no

gr
ap

hi
c

O
bs

er
va

ti
on

-
C

on
te

xt
ua

lI
nq

ui
ry

-
A

ffi
ni

ty
D

ia
gr

am
s

-
V

is
ua

lB
ra

in
st

or
m

in
g

-
C

om
pe

ti
ti

ve
A

na
ly

si
s

-
Sc

en
ar

io
s

-
E

ss
en

tia
lU

se
C

as
es

-
P

ap
er

an
d

C
ha

uf
fe

ur
ed

P
ro

-
to

ty
pe

s
-

W
iz

ar
d

of
O

z
Pr

ot
ot

yp
es

-
St

ru
ct

ur
ed

U
se

r
R

ol
e

M
od

el
-

O
pe

ra
ti

on
al

M
od

el
in

g
-

JE
M

(J
oi

nt
E

ss
en

tia
lM

od
el

in
g)

-
C

om
pe

tit
iv

e
A

na
ly

si
s

-
E

ss
en

tia
lU

se
C

as
es

-
St

ru
ct

ur
ed

U
se

r
R

ol
e

M
od

el
-

O
pe

ra
tio

na
lM

od
el

in
g

-
JE

M
(J

oi
nt

E
ss

en
tia

l
M

od
el

in
g)

-
W

iz
ar

d
of

O
z

P
ro

to
-

ty
pe

s

-
C

om
pe

tit
iv

e
A

na
ly

si
s

R
eq

ui
re

m
en

t
Sp

ec
ifi

ca
tio

n
-

U
sa

bi
lit

y
Sp

ec
ifi

ca
tio

ns
-

U
sa

bi
lit

y
Sp

ec
ifi

ca
-

tio
ns

-
U

sa
bi

lit
y

Sp
ec

ifi
ca

-
tio

ns
R

eq
ui

re
m

en
ts

V
al

id
at

io
n

-
C

og
ni

tiv
e

W
al

kt
hr

ou
gh

-
Pl

ur
al

is
tic

W
al

kt
hr

ou
gh

-
C

og
ni

tiv
e

W
al

k-
th

ro
ug

h
-

Pl
ur

al
is

tic
W

al
k-

th
ro

ug
h

-
Pl

ur
al

is
tic

W
al

k-
th

ro
ug

h

C
on

tin
ue

d
on

ne
xt

pa
ge



196 HUMAN-CENTERED SOFTWARE ENGINEERING
Ta

bl
e

10
.2

:
U

sa
bi

lit
y

te
ch

ni
qu

es
to

be
ap

pl
ie

d
at

ea
ch

st
ag

e
an

d
th

ei
rs

ig
ni

fic
an

ce

A
ct

iv
iti

es
St

ag
es

E
la

bo
ra

tio
n

St
ag

e
It

er
at

iv
e

C
yc

le
s

(c
yc

le
s
1

to
j)

E
vo

lu
tio

n
St

ag
e

(c
yc

le
s
1

to
i)

ce
nt

ra
lm

om
en

ts
fin

al
m

om
en

ts
(c

yc
le

s
1

to
k

)
D

es
ig

n
In

te
ra

ct
io

n
D

e-
si

gn
-

D
et

ai
le

d
U

se
C

as
es

-
Sc

re
en

Pi
ct

ur
es

-
C

ar
d

So
rt

in
g

-
M

en
u-

se
le

ct
io

n
T

re
es

-
N

av
ig

at
io

na
lP

at
hs

-
Pr

od
uc

tS
ty

le
G

ui
de

-
H

el
p

D
es

ig
n

by
U

se
C

as
es

-
Im

pa
ct

A
na

ly
si

s
-

D
et

ai
le

d
U

se
C

as
es

-
Sc

re
en

Pi
ct

ur
es

-
C

ar
d

So
rt

in
g

-
M

en
u-

se
le

ct
io

n
T

re
es

-
N

av
ig

at
io

na
lP

at
hs

-
Im

pa
ct

A
na

ly
si

s

C
on

tin
ue

d
on

ne
xt

pa
ge



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 197
Ta

bl
e

10
.2

:
U

sa
bi

lit
y

te
ch

ni
qu

es
to

be
ap

pl
ie

d
at

ea
ch

st
ag

e
an

d
th

ei
rs

ig
ni

fic
an

ce

A
ct

iv
iti

es
St

ag
es

E
la

bo
ra

tio
n

St
ag

e
It

er
at

iv
e

C
yc

le
s

(c
yc

le
s
1

to
j)

E
vo

lu
tio

n
St

ag
e

(c
yc

le
s
1

to
i)

ce
nt

ra
lm

om
en

ts
fin

al
m

om
en

ts
(c

yc
le

s
1

to
k

)
V

&
V

U
sa

bi
lit

y
E

va
l-

ua
tio

n
-

C
og

ni
tiv

e
W

al
kt

hr
ou

gh
-

Pl
ur

al
is

tic
W

al
kt

hr
ou

gh
-

H
eu

ri
st

ic
E

va
lu

at
io

n
-

U
sa

bi
lit

y
In

sp
ec

tio
ns

-
C

og
ni

tiv
e

W
al

k-
th

ro
ug

h
-

Pl
ur

al
is

tic
W

al
k-

th
ro

ug
h

-
H

eu
ri

st
ic

E
va

lu
at

io
n

-
U

sa
bi

lit
y

In
sp

ec
-

ti
on

s
-

T
hi

nk
in

g
al

ou
d

-
P

er
fo

rm
an

ce
M

ea
-

su
re

m
en

t
-

L
ab

or
at

or
y

U
sa

bi
l-

it
y

Te
st

in
g

-
P

os
t-

Te
st

F
ee

db
ac

k
/U

se
r

Q
ue

st
io

nn
ai

re
s

-
V

id
eo

/a
ud

io
re

co
rd

-
in

g

-
Pl

ur
al

is
tic

W
al

k-
th

ro
ug

h
-

T
hi

nk
in

g
al

ou
d

-
Pe

rf
or

m
an

ce
M

ea
su

re
-

m
en

t
-

L
ab

or
at

or
y

U
sa

bi
lit

y
Te

st
in

g
-

Po
st

-T
es

t
Fe

ed
ba

ck
/

U
se

r
Q

ue
st

io
nn

ai
re

s
-

Q
ue

st
io

nn
ai

re
s

/
Su

r-
ve

ys
-

St
ru

ct
ur

ed
an

d
F

le
x-

ib
le

In
te

rv
ie

w
s

-
D

ir
ec

t
O

bs
er

va
ti

on
-

V
id

eo
/a

ud
io

re
co

rd
-

in
g

-
F

oc
us

G
ro

up
s

-
L

og
gi

ng
A

ct
ua

lU
se

-
O

nl
in

e
U

se
r

F
ee

d-
ba

ck
F

ac
ili

ti
es



198 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 10.3 Amount of work on each activity type at the different development stages

10.8 DISCUSSION

HCI and SE take different but complementary views of software development. SE as
a discipline is pervasive in software development organizations all over the world. Its
concepts are the ones with which the majority of developers are familiar, and this is
especially true of senior management at software development organizations. HCI, on
the other hand, has been traditionally considered as a specialist field, and its view of
development is not as present in software development organizations as the SE per-
spective. The approach taken in this chapter for usability integration into the software
process tackles the integration issue from a SE point of view.

Our framework targets organizations that are considering introducing usability into
their practices, but not at any cost. They want to keep the software process they have
in place, because it is a valuable asset, although they aim to continuously improve
this process (by adding usability activities and techniques, for example). For orga-
nizations looking for a more radical shift towards a user-centered approach with an
even higher degree of user participation in design efforts, the principles enumerated in
chapter 2 may apply. The proposed framework can be valuable to organizations where
such principles are in conflict with organizational objectives and concerns, like limited
availability of representative users or geographically distributed teams. Another alter-
native approach to be considered is presented in chapter 13 for organizations wanting
to keep two separate processes (the usability process and the SE process), so that soft-
ware development needs do not take over usability concerns. Our framework may be



WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 199

valuable to organizations that have not identified the need to place usability in such a
prominent place in development, that is, organizations that consider usability an im-
portant quality attribute but not to the extent of considering it as valuable as all the
other quality attributes together.

For the purpose of integrating usability into the process, the user needs to be
placed at the center of the whole development effort. The framework includes sev-
eral techniques (mainly from the Usage-Centered Design method—Constantine and
Lockwood, 1999) for modeling the user and his/her tasks and the interaction between
users and the software system. If the development team considers the user as the fi-
nal measure of software development project success, it has already taken a big step
towards the adoption of a user-centered perspective in development, and models may
support this objective. Other techniques in the framework favor a higher degree of user
participation, facilitating communication in multidisciplinary teams. The application
of some techniques calls for a reformulation of activities that were already in place
before the usability integration, but the biggest part of the development process does
not usually need to be profoundly altered.

The proposed framework serves the purpose of identifying which usability activi-
ties and techniques may be useful for an organization to enrich its software process,
and where they have to be incorporated in the process. But some additional issues,
like how to modify existing practices in order to incorporate the new ones, must be
resolved for an effective integration. The work by Gulliksen and Göransson, 2001,
complements the information expressed in the framework by providing a recipe for
action for evaluating a process for its user-centeredness and modifying it where nec-
essary.

Knowing where to plug usability techniques and activities into the existing software
development process is a necessary starting point, but it does not automatically make
software engineers capable of applying these techniques and activities and adopting a
user-centered focus in development. ‘Caring about usability’ is a change to the philos-
ophy and viewpoint with which developers are accustomed. The framework for usabil-
ity integration presented in this chapter needs to be supplemented by good training for
developers. For the industrial partners of the STATUS project to apply the framework
in practice, their developers needed to take a 24-hour course on usability principles
and techniques. The course was designed to raise their usability awareness, clearing
up common misconceptions about the issue. Chapter 8 presents some practices that
may be helpful for educational purposes and to get buy-in between developers for the
user-centered approach.

10.9 CONCLUSIONS

In this chapter we presented a framework that may allow a more successful introduc-
tion of usability techniques and activities into the software process. Usability activities
and techniques from the HCI field have been positioned in the framework with regard
to standard SE activities. Time constraints for the application of usability techniques
and activities with respect to the stages in a generic iterative process have been de-
tailed as well. The resulting framework targets software development organizations
that have already decided to incorporate usability activities and techniques into their



200 HUMAN-CENTERED SOFTWARE ENGINEERING

current development practices. The only prerequisite for its application is that the soft-
ware development process currently in place must be based on iterative development.
This is necessary, because iterative development is one of the essential principles of
the user-centered approach. This requirement is not especially restrictive from a SE
point of view, because it is in line with the current trends in SE.

The proposal does not have to be adopted as an all-or-nothing issue. It aims to
provide a framework that allows decisions to be made on the inclusion of particular
usability techniques and activities in any iterative software development process. It
responds to the demands of software practitioners who are asking for pragmatic ap-
proaches instead of theoretical constructs that remain on the shelves unused.

Feedback from the industrial partners of the STATUS project has contributed to
refinement of the present proposal, but, as changing as software development practice
is, it is open to further refinement and specification as software development evolves
and, hopefully, incorporates more and more usability aspects. In particular, informa-
tion may be added to the framework on the products of each usability technique and
their possible integration with SE models and documentation.

Acknowledgements

We would like to thank the partners in the STATUS project for their input and their
cooperation, and we would like to acknowledge the support of the European Union
under grant STATUS (IST-2001-32298).

We would also like to thank the anonymous reviewers of the chapter and the editors
of the book for the thorough job they have done, and for the valuable insights their
comments have provided.




