

HUMAN-CENTERED SOFTWARE ENGINEERING - INTEGRATING USABILITY

IN THE SOFTWARE DEVELOPMENT LIFECYCLE

HUMAN-COMPUTER INTERACTION SERIES

VOLUME 8

Editors-in-Chief

John Karat, IBM Thomas Watson Research Center (USA)

Jean Vanderdonckt, Université Catholique de Louvain (Belgium)

Editorial-Board

Gregory Abowd, Georgia Institute of Technology (USA)

Gaëlle Calvary, IIHM-CLIPS-IMAG (France)

John Carroll, School of Information Sciences & Technology, Penn State University (USA)

Gilbert Cockton, University of Sunderland (United Kingdom)

Mary Czerwinski, Microsoft Research (USA)

Steve Feiner, Columbia University (USA)

Elizabeth Furtado, University of Fortaleza (Brazil)

Kristiana Höök, SICS (Sweden)

Robert Jacob, Tufts University (USA)

Peter Johnson, University of Bath (United Kingdom)

Kumiyo Nakakoji, University of Tokyo (Japan)

Philippe Palanque, Université Paul Sabatier (France)

Oscar Pastor, University of Valencia (Spain)

Fabio Paternò, CNUCE-CNR (Italy)

Costin Pribeanu, National Institute for Research & Development

in Informatics (Romania)

Marilyn Salzman, Salzman Consulting (USA)

Chris Schmandt, Massachussetts Institute of Technology (USA)

Markus Stolze, IBM Zürich (Switzerland)

Gerd Szwillus, Universität Paderborn (Germany)

Manfred Tscheligi, Center for Usability Research and Engineering (Austria)

Gerrit van der Veer, Vrije Universiteit Amsterdam (The Netherlands)

Shumin Zhai, IBM Almaden Research Center (USA)

Robin Jeffries, Google (USA)

Human-Centered Software

Edited by

Ahmed Seffah

and

Ecole Polytechnique de Montreal,

Jan Gulliksen

Michel C. Desmarais

Uppsala University, Sweden

Concordia University, Montreal,

Quebec, Canada

Quebec, Canada

in the Software Development Lifecycle

Engineering - Integrating Usability

A C.I.P. Catalogue record for this book is available from the Library of Congress

ISBN-10 1-4020-4027-X (HB)

ISBN-13 978-1-4020-4027-6 (HB)

ISBN-10 1-4020-4113-6 (e-book)

ISBN-13 978-1-4020-4113-6 (e-book)

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springeronline.com

Printed on acid-free paper

All Rights Reserved

© 2005 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

Contents

List of Figures xi

List of Tables

Preface xvii

Contributing Authors

Part I Introductory Chapter

1
An Introduction to Human-Centered Software Engineering:

Integrating Usability in the Development Process
3

Ahmed Seffah, Jan Gulliksen, and Michel C. Desmarais
1.1 Introduction 4

1.2 Major Obstacles for Effective Integration 5

1.3 The Series of Workshops on HCI/SE Integration 9

1.4 Why Human Centered Software Engineering? 10

1.5 Audience 12

1.6 A Quick Tour of The Book 12

Part II Principles, Myths and Challenges

2
Key Principles for User-Centred Systems Design 17

Jan Gulliksen, Bengt Göransson, Inger Boivie, Jenny Persson, Stefan Blomkvist, Åsa Cajander
2.1 Purpose and Justification 18

2.2 Background 18

2.3 The Project 19

2.4 Definition and Key Principles 26

2.5 Tools for Applying UCSD 29

2.6 Application 31

2.7 Agile Approaches and UCSD 31

2.8 Discussion/Conclusions 32

v

Dedication xxi

xv

xxiii

vi HUMAN-CENTERED SOFTWARE ENGINEERING

3
HCI, Usability and Software Engineering Integration: Present and Future 37
Ahmed Seffah, Michel C. Desmarais, and Eduard Metzker

3.1 Introduction 38

3.2 Development Processes 40

3.3 Artefacts 45

3.4 Design Knowledge 49

3.5 Organisational Approaches 52

3.6 Conclusion 56

4
Surveying the Solitudes: An Investigation into the Relationships between Hu-

man Computer Interaction and Software Engineering in Practice
59

Bill Jerome, Rick Kazman

4.1 Introduction 60

4.2 The State of the Research 60

4.3 The State of the Practice 63

4.4 Knowledge of SE and HCI 64

4.5 Working Together in the Workplace 65

4.6 Software Process Interactions 65

4.7 Implications of the Process Issues 67

4.8 Use of HCI Methods 68

4.9 Conclusions/Recommendations 68

4.10 Future Research 69

5
Convergence or Competition between Software Engineering and Human Com-

puter Interaction
71

Allistair G. Sutcliffe

5.1 Introduction 72

5.2 Design Processes and Methods 73

5.3 Design Representations in SE and HCI 76

5.4 Viewpoints in HCI and SE 79

5.5 Theoretical Underpinnings 80

5.6 Conclusions 83

Part III

6
Experience with Using General Usability Scenarios on the Software Architecture

of a Collaborative System
87

Rob J. Adams, Len Bass, and Bonnie E. John

6.1 Introduction 88

6.2 Usability and Software Architecture 88

6.3 The Usability and Software Architecture Project 89

6.4 Prior Use of U&SA Materials 98

6.5 Questions for a Real-world Case 99

6.6 The Merboard Project 100

6.7 U&SA’S Application to Merboard 102

Requirements, Scenarios, and Use-cases

vii

6.8 Summary of Findings 109

6.9 Ongoing Work 110

7
Linking User Needs and Use Case-driven Requirements Engineering 113
Sari Kujala

7.1 Introduction 114

7.2 Understanding User Needs 116

7.3 Linking User Needs to User Requirements 117

7.4 Writing User Requirements from the User Point of View 120

7.5 Evaluating the Approach in Industry 122

8
Guiding Designers to the World of Usability: Determining Usability Require-

ments Through Teamwork
127

Timo Jokela

8.1 Introduction 128

8.2 Related Methods 130

8.3 Development of KESSU URD 131

8.4 General Features of KESSU URD 132

8.5 Steps of KESSU URD 136

8.6 Findings from the Case Studies 140

8.7 Conclusions 141

8.8 Discussion 142

9
Transforming Usability Engineering Requirements Into Software Engineering

Specifications:
From PUF to UML

147

Jim A. Carter, Jun Liu, Kevin Schneider, David Fourney

9.1 Introduction 147

9.2 The Putting Usability First (PUF) Methodology 148

9.3 The Unified Modeling Language 152

9.4 Applying PUF in UML 155

9.5 Implementing These Additions in UML 164

9.6 Example Transformations 166

9.7 Conclusion 168

Part IV UCD, Unified and Agile Processes

10
Which, When and How Usability Techniques and Activities Should Be

Integrated
173

Xavier Ferre, Natalia Juristo, Ana M. Moreno

10.1 Introduction 174

10.2 Usability Methods Approach to Integration 177

10.3 Integration Proposals Based on SE Methods 179

10.4 Summary of Integration Proposals 182

10.5 Mapping Between Usability and SE Activities 183

10.6 Assignment of Usability Techniques to Activities 186

CONTENTS

viii HUMAN-CENTERED SOFTWARE ENGINEERING

10.7 When to Apply Usability Activities and Techniques 187

10.8 Discussion 198

10.9 Conclusions 199

11
Coping with Complexity 201
Dave Roberts

11.1 Introduction 201

11.2 The Designers’ Model 204

11.3 User Engineering Modeling 206

11.4 Continued Development 217

12
Towards a Model for Bridging Agile Development and User-Centered Design 219
Stefan Blomkvist

12.1 Introduction 220

12.2 Software Development Risks – Reasons for the Agile Approach 221

12.3 Characteristics of Agile Development 224

12.4 User-Centered Design 229

12.5 User-Centered Design Qualities in Agile Development 230

12.6 Discussion 238

12.7 Towards a Model for Bridging Agile and UCD 239

13
Ripple: An Event Driven Design Representation Framework for Integrating

Usability and Software Engineering Life Cycles
245

Pardha S. Pyla, Manuel A. Pérez-Quiñones, James D. Arthur, and H. Rex Hartson

13.1 Introduction 246

13.2 Background 250

13.3 Current Practices 252

13.4 Ripple: A Design Representation Framework 257

13.5 Contributions 261

13.6 Potential Downsides of Ripple 265

13.7 Current Status 265

Part V UCD Knowledge and UI design Patterns

14
Integrating User-Centered Design Knowledge With Scenarios 269
Steven R. Haynes, John M. Carroll, Mary Beth Rosson

14.1 Introduction 269

14.2 What’s in Design? 270

14.3 An Integrative Example 276

14.4 A Design Knowledge Research Agenda 277

14.5 Related Work 284

14.6 Conclusion 285

ix

Lisa Battle
15.1 Introduction 287

15.2 Pattern A: Foot in the Door
(for internal usability group) 290

15.3 Pattern B: Foot in the Door
(for external consultants) 294

15.4 Pattern C: UCD Focus on Early Definition and Design 297

15.5 Pattern D: UCD in Every Phase 303

15.6 Conclusion 308

16
UI Design Patterns: Bridging Use Cases and UI Design 309
John M. Artim

16.1 Introduction 309

16.2 Tree—An Example of a UI Pattern 312

16.3 Composed UI Design Patterns in Use 321

16.4 Pattern Descriptions in Practice 325

16.5 Future Work 328

16.6 Conclusions 329

17
UI Design Patterns: From Theory to Practice 331
Janet Wesson and Lester Cowley

17.1 Introduction 331

17.2 Pattern Identification 332

17.3 Pattern Use: The Dome Case Study 335

17.4 Pattern Evaluation 344

17.5 Further Research 350

17.6 Conclusions 351

References 353

Authors Index 379

Subject Index 387

CONTENTS

15
Patterns of Integration: Bringing User Centered Design Into The Software

Development Lifecycle
287

List of Figures

2.1 Collaborative prototyping in which the usability designer facilitates
the users’ production of mock-ups. 21

2.2 Low-fidelity prototyping tools were used as these were the most con-
venient for visualizing the future use situation without limiting the
design space. 22

2.3 Personas were used to describe typical users. In this example, the
persona ‘Gudrun’ is described based on personal background, the
work setting, colleagues and contacts. 23

2.4 User-centered system design (UCSD) is a process focusing on usabil-
ity throughout the entire development process and further throughout
the system life cycle. 25

2.5 UCSD poster 36

3.1 The two system perspectives. 39

3.2 Carroll and Rosson’s scenario-based framework (adapted from Car-
roll and Rosson, 2002). 41

3.3 Constantine and Lockwood’s usage-centered design (adapted from
Constantine and Lockwood, 1999). 44

3.4 Meta-Model for institutionalizing UCD methods 53

5.1 Use of scenarios and models in different phases of the HCI/SE design
process 75

5.2 Scope of modelling in HCI and SE 80

5.3 Craft, engineering and science framework for HCI and SE, adapted
from Long and Dowell (1989). 82

6.1 The J2EE Model-View-Controller software architectural separation
pattern (Sun Microsystems Inc., 2003). Arrows represent control
flow, while boxes represent the major software components. The
layered boxes indicate the existence of several instances of the com-
ponent type. 89

6.2 The “Reusing Information” general scenario description 91

xi

xii HUMAN-CENTERED SOFTWARE ENGINEERING

6.3 The Usability Benefits Hierarchy. For each scenario, the U&SA tech-
nique describes which specific benefits (the “leaves” of the hierarchy)
apply and which do not. 92

6.4 Allocation of “Reusing Information” to the Usability Benefits Hier-
archy 92

6.5 Responsibilities for reusing information 93

6.6 Sample architectural pattern for Reusing Information Manually 94

6.7 Allocation of Responsibilities for Reusing Information Manually.
This figure describes the mappings between the Reusing Information
Manually responsibilities and the components shown in the sample
architectural pattern in Figure 6.6 95

6.8 Software Architecture Tactics Hierarchy. For each scenario, we list
the tactics used in our sample solution pattern. 98

6.9 A photograph of the MERBoard’s whiteboard screen (MERBoard
User’s Guide, NASA Ames Research Center, September 10, 2003,
by permission). 101

6.10 The MERBoard development timeline. We applied the U&SA ma-
terials during the architecture redesign phase at the September 2002
architecture review for usability concerns and follow-on teleconfer-
ences. 102

6.11 MERBoard architecture diagram proposed by FED prior to the sec-
ond teleconference. The developer created this diagram after being
exposed to the U&SA materials, but before consulting with U&SA
researchers in detail about each scenario. 107

6.12 The modified MERBoard architecture diagram, developed collabora-
tively by the FED and U&SA researchers during the teleconference
where the proposed architecture was discussed with reference to the
U&SA scenarios relevant to the January 2004 release. The changes
made are labeled C1 through C6 (these labels do not appear in the
architecture diagram used by the developers). 108

7.1 The human-centered design activities in ISO 13407 (ISO/IEC, 1999) 115

8.1 Usability activities (yellow circles) provide design drivers (the dou-
ble lines) to design activities (grey circles) 129

8.2 A KESSU URD workshop session 133

9.1 The five foci of PUF specifications 151

9.2 High level relationships between PUF and UML components 156

9.3 UML notation for associating PUF properties to user and task 165

9.4 UML notation for associating PUF properties to attributes and oper-
ations 166

9.5 Users in the e-Commerce application 167

9.6 Use cases in the e-Commerce application 169

10.1 Mapping between usability and SE Activities 185

10.2 Stages in an iterative software development process 191

LIST OF FIGURES xiii

10.3 Amount of work on each activity type at the different development
stages 198

11.1 Modeling and the design space. 205

11.2 The relationship between the User Engineering models. 205

11.3 Examples of artefacts created to provide concrete descriptions of ab-
stract elements. 206

11.4 Fragment of a stakeholder-goal diagram. 208

11.5 Modeling in the Understanding Users Phase. 210

11.6 A fragment of a user-task model. 210

11.7 A fragment of a user-goal diagram. 211

11.8 A fragment of a goal-use case diagram. 211

11.9 Modeling during Initial Design. 213

11.10 A fragment of an object-view diagram. 214

11.11 Traceability within the Designers’ Model. 215

12.1 UCD methods integrated in agile development 240

12.2 Agile methods integrated in UCD 241

12.3 Balanced integration: cross-pollination between agile development
and UCD 242

13.1 Usability engineering life cycle 247

13.2 Software engineering life cycle 248

13.3 Current practices: Process without communication/coordination 251

13.4 Message passing and accumulation in the integrated process framework 262

13.5 Ripple: Framework with communication/coordination 262

13.6 Shared design representation 263

14.1 A design repository component architecture 281

15.1 Foot in the door (for internal usability groups) 291

15.2 Foot in the door (for external consultants) 295

15.3 UCD focus on early definition and design 298

15.4 UCD in every phase 304

16.1 A chunk of UI based on the tree pattern 314

16.2 Object model for the tree pattern 316

16.3 A UML class diagram of the biologist’s taxonomy domain. 318

16.4 Domain metamodel class diagram. 319

16.5 The mapping of a tree pattern onto the Taxonomy domain. 320

16.6 Fragment 1. DTD content describing the tree UI pattern 321

16.7 Fragment 2. A fragment of the 127 lines of XML specifying the
Figure 16.1 UI 322

16.8 A use case diagram for taxonomy learning tasks. 323

16.9 A complete UI design, a taxonomy Field Guide Explorer. 327

17.1 Architecture of TP PL (Kok, 2004) 336

17.2 Manage Data Pattern (Part 1) (Kok, 2004) 337

17.3 Manage Data Pattern (Part 2) (Kok, 2004) 338

xiv HUMAN-CENTERED SOFTWARE ENGINEERING

17.4 Find Data Pattern (Kok, 2004) 339

17.5 Maintain chemical information UI (Kok, 2004) 341

17.6 Add new chemical UI (Wentling et al., 2000) 342

17.7 Maintain building structure UI (Griffiths and Pemberton, 2000) 342

List of Tables

5.1 Contributions of software engineering to theory, methods and tools 73

5.2 Contributions of HCI to theory, methods and tools 74

6.1 The Benefits / Tactics Matrix (see page left). The usability benefits
are listed across the top of the table, the architectural tactics are listed
down the side. The numbers in the cells refer to the specific scenario
packages that give the column’s benefit and employ the row’s tactic.
An additional scenario, Supporting Personalization, was added after
this matrix was created. 97

7.1 Interview topics 118

7.2 An example of a user need table 119

7.3 An example of a use case description 121

7.4 The research problems and data gathering methods 123

7.5 The results of the studies 124

7.6 The results of the comparative usability test in Study III 125

8.1 A KESSU URD workshop session 135

8.3 Key features of workshops 139

8.5 Usability requirements table 145

9.1 The general format of PUF possibilities records 153

9.2 Mappings from tasks and scenarios to use cases 157

9.3 Mapping from users to actors 159

9.4 Mapping from content to attributes 162

9.5 Mapping from tools to operations 163

9.6 Stereotypes used to identify PUF usability properties in UML 165

10.1 Allocation of usability techniques to activities 188

10.1 Allocation of usability techniques to activities 189

10.1 Allocation of usability techniques to activities 190

10.2 Usability techniques to be applied at each stage and their significance 195

10.2 Usability techniques to be applied at each stage and their significance 196

10.2 Usability techniques to be applied at each stage and their significance 197

xv

xvi HUMAN-CENTERED SOFTWARE ENGINEERING

11.1 User engineering roles 202

11.2 Elements modeled during Business Opportunity phase 208

11.3 Elements modeled during Understanding Users phase 209

11.4 Elements modeled during Initial Design phase 213

12.1 Boehm and Turner, 2003, characterization of agile methods 228

15.1 Overview of patterns 290

16.1 Descriptions of the tasks from Figure 16.9 and matching UI Patterns 326

17.4 QUIS results 343

17.6 Research questions 347

17.8 Results of post-questionnaire 349

Preface

Human-Centered Software Engineering:

Bridging HCI, Usability and Software Engineering

From its beginning in the 1980’s, the field of human-computer interaction (HCI) has
been defined as a multidisciplinary arena. By this I mean that there has been an explicit
recognition that distinct skills and perspectives are required to make the whole effort
of designing usable computer systems work well. Thus people with backgrounds in
Computer Science (CS) and Software Engineering (SE) joined with people with back-
grounds in various behavioral science disciplines (e.g., cognitive and social psychol-
ogy, anthropology) in an effort where all perspectives were seen as essential to creating
usable systems. But while the field of HCI brings individuals with many background
disciplines together to discuss a common goal - the development of useful, usable,
satisfying systems - the form of the collaboration remains unclear. Are we striving
to coordinate the varied activities in system development, or are we seeking a richer
collaborative framework? In coordination, Usability and SE skills can remain quite
distinct and while the activities of each group might be critical to the success of a
project, we need only insure that critical results are provided at appropriate points in
the development cycle. Communication by one group to the other during an activity
might be seen as only minimally necessary. In collaboration, there is a sense that each
group can learn something about its own methods and processes through a close part-
nership with the other. Communication during the process of gathering information
from target users of a system by usability professionals would not be seen as some-
thing that gets in the way of the essential work of software engineering professionals.
Knowing how software engineers will turn the requirements into a functioning system
would not be seen as an unnecessary detail to HCI staff.

The distinction between cooperation and collaboration is subtle but important to
understanding what the form of the bridge between HCI, Usability and Software Engi-
neering should be and what tools might be used to form the bridge. In the case where
coordination is seen as sufficient, a “human-centered software engineering aware”
project planning tool - something that was aware of best-practice methods in the dif-
ferent fields - might be all that we need to connect the fields. For coordination, the dif-

xvii

xviii HUMAN-CENTERED SOFTWARE ENGINEERING

ferent disciplines need to be only generally aware of the methods of the other groups.
Deep knowledge about SE by Usability researchers or staff might be intellectually
satisfying for some, but in general it would be unnecessary and not seen as worth the
cost of additional training. If collaboration is required or seen as beneficial beyond its
costs, we might need to jointly explore how to better communicate the methods and
practice in one specialty to the other and not just the results needed by one group to
carry out their own part of the development process.

I raise this point because I am not sure we in the HCI field know whether we are
looking for a bridge that facilitates cooperation between distinct communities or one
that facilitates mixing of cultures. The researcher in me favors the notion that mix-
ing the knowledge and approaches of behavioral and technical specialists is beneficial
because it will lead to broader, improved perspectives by all. Building a bridge here
would mean working closely with software engineers as partners in discovering how
to design and develop our systems. However, the practitioner in me is aware that de-
velopment of large complex systems can require resources that might be more efficient
if they are specialized and coordinated. Building a bridge here would mean provid-
ing the knowledge of what part of the task is mine and what part is someone else’s.
What I actually believe is that most of the researchers in HCI would like to think that
collaboration and thus joint exploration of how to approach system development is
necessary, but that most real world system development proceeds on the assumption
that coordination of specific tasks is what is required. Researchers like to think that
interesting and wonderful things can emerge from the chaos of mixing perspectives.
Practical development calls for more structure and predictability in processes.

I believe that progress can be made in building both bridges for cooperation and
bridges for collaboration. Specialists in usability can work on developing and docu-
menting methods for best practice in informing system design from an understanding
of the needs of people and organizations. Specialists in software engineering can work
on developing and documenting best practice in developing quality software systems -
in all that that entails - from requirements. We can recognize that there are differences
between HCI and SE and go about the necessary task of focusing on what is necessary
for one community to know about the other. This is a practical approach that acknowl-
edges that a very broad range of skills are necessary and that individuals are not likely
to be able to possess them all. It is also a statement that some dialogue between dis-
ciplines is important to the broader field. At a minimum each discipline needs to be
able to distinguish what is important for development of skills within its area from
what is important knowledge for others to have about its processes. I contend that
currently Usability and SE communities focus primarily on their own disciplines and
have not had as much to say on the issues that arise out of multidisciplinarity. Cer-
tainly these professionals know that they do not exist in a vacuum - they understand
that they make fairly specific contributions to the design of a wide range of systems.
There is nothing wrong with having a focus on the core of one’s discipline. How-
ever, there is also considerable value in looking beyond that discipline - beyond User
Centered Design (UCD) or SE to look for ways to improve a process which involves
many skills and perspectives. Beyond the dialog necessary for cooperation, I also see

PREFACE xix

value in efforts aimed at the more difficult task of collaborating to improve the overall
activity in which both Usability and SE play a role.

I think that bridging behavioral approaches and SE approaches to the development
of usable systems has been a constant issue within HCI. I was focused on this in my
own research in the early 90’s through a series of workshops devoted to slightly dif-
ferent views of the problem. In 1990, I conducted a workshop at the ACM Special
Interest Group on Computer-Human Interaction with the a general theme of bringing
behavioral science and computer science focused individuals together to talk about
methods that each thought were important to designing usable systems. The book
that emerged in 1991 from this workshop (Taking software design seriously: Practical
techniques for human-computer interaction design, Academic Press), represented the
sort of result one might expect at the time. UCD and SE researchers and practitioners
described what they did, and hoped that description of the methods of each field would
inform and benefit the other. While this was and is certainly useful - particularly when
there are multiple specific skills that are recognized as contributing to an activity - it
takes more than just describing one specialty’s activity to the other specialty to make
for a productive dialogue. In addition, in 1989 and again in 1993, I was a part of
workshops organized at IBM TJ Watson Research in which a specific effort was made
to bring the HCI and Object-Oriented software development communities together to
explore common threads in the use of scenarios as a unifying representation for bridg-
ing Usability and SE. It became clear in these workshops and the contributions that
went into the books that resulted that the SE and Usability communities had very dif-
ferent notions of what constituted “success” or “quality” in design and development.
Specifically, “meeting requirements” had a much more specific sense for SE than it
did for Usability work. I view the emergence of Usability Engineering, with a focus
on more specific identification and measurement of usability objectives, and the de-
velopment of scenario based techniques as positive outcomes of these early dialogues,
and examples of bridges that are emerging between the communities.

In this book assembled by Seffah, Gulliksen and Desmarais, the editors and con-
tributors have provided much more than an unconnected of chapters that are vaguely
about the same thing: integrating HCI and Software Engineering (SE). They represent
the efforts of people who are making a real effort to “advance the dialogue” between
two groups. What I find in this volume is evidence that HCI and SE specialists have
listened each others works, have formulated questions to help understand the role it
plays in the shared mission of developing usable systems, and have used that under-
standing to propose new ways of moving forward.

I believe that the reader will find that this book provides an exciting glimpse into
a world in which the pains of mulidisciplinarity “pay off” though new insights and
methods for developing the technology that will impact all of our lives.

JOHN KARAT

Research Staff Member IBM T.J. Watson Research Center
Past Chair IFIP Technical Committee on Human-Computer Interaction (TC13)

Dedicated to our beloved ones,

xxi

Anna, Fanny, Johanna and Jonas,

Béatrice, Laurence, and Linda.

Pour la cheminée de Papa !

Contributing Authors

Robin James Adams is pursuing a Master’s degree part-time while working as a Re-
search Associate with Drs. Bonnie John and Len Bass on their Usability and Software
Architecture (U&SA) project. In the recent past, he graduated from Virginia Tech
with a degree in Computer Science, then went to Orca Computer, Inc. to architect and

James D. Arthur is an Associate Professor in the Department of Computer Science
at Virginia Tech. He is a member of the Department’s Software Engineering Research
Group that is focused on Distributed Software Engineering issues. His research inter-
ests include Software Engineering (Requirements Engineering, Verification and Vali-
dation, and Methods and Methodologies supporting the Assessment of Software Qual-
ity and IV & V Effectiveness), Parallel Computation, and User Support Environments.

John M. Artim is a consultant working for Expert Support, Inc. in Mountain View,
California. John has been a practitioner since 1988 when he started work at the IBM
Santa Teresa Usability Group. His practice includes software specification and use
case authoring, user interface design, business process and software development pro-
cess analysis, technical documentation, joint designer-user-customer specification re-
view, and teaching and mentoring.

Len Bass is a Senior Member of the Technical Staff at the Software Engineering In-
stitute (SEI) and participates in the High Dependability Computing Program. He has
written two award winning books in software architecture as well as several other
books and numerous papers in a wide variety of areas of computer science and soft-
ware engineering. He is currently working on techniques for the methodical design of
software architectures and to understand how to support usability through software ar-
chitecture. He has been involved in the development of numerous different production
or research software systems ranging from operating systems to database management
systems to automotive systems.

implement the Evaluation Environment, Orca’s flagship web application.

xxiii

HUMAN-CENTERED SOFTWARE ENGINEERING

Lisa Battle is a senior designer at Lockheed Martin. She has consulted on user in-
terface usability and designed software applications and web sites for a variety of
government and commercial clients. Her career began with the design of information
resources, and progressed to electronic performance support systems and then to user
interface design. In her current position at Lockheed Martin, she leads user-centered
design for web-based applications at the Social Security Administration, as well as
contributing to standards definition, integration of user-centered methods into project
lifecycles, and mentoring project teams in user-centered methods. She holds a master’s
degree in cognitive psychology/human factors from George Mason University. She is
a member of the Usability Professionals’ Association (UPA) and the Association for
Computing Machinery (ACM-CHI).

Stefan Blomkvist is a Ph.D. student in Human-Computer Interaction from Uppsala
University, Sweden. He is also a usability designer and systems developer at the com-
pany Profdoc AB and has more than six years of experience of developing IT-systems,
mainly for healthcare organizations. His research interests are in Usability and User
Centered Design and its integration with Software Engineering, as well as Information
visualization.

Inger Boivie is a PhD student at the Department of Information Technology, Uppsala
University, Sweden. Inger is presently at the last stages of her PhD studies. She has co-
authored and published papers in international journals and conferences on usability
issues and users’ needs in practical software development. Before becoming a PhD
student, Inger worked for more than 10 years as an IT consultant, with usability and
users’ needs in software

John M. Carroll is Edward Frymoyer Chair Professor of Information Sciences and
Technology at the Pennsylvania State University. His research interests include meth-
ods and theory in human-computer interaction, particularly as applied to networking
tools for collaborative learning and problem solving, and the design of interactive in-
formation systems. He has written or edited 14 books, including Making Use (MIT
Press, 2000) and HCI Models, Theories, and Frameworks (Morgan-Kaufmann, 2003).
He serves on 9 editorial boards for journals, handbooks, and series; he is a member
of the US National Research Council’s Committee on Human Factors and Editor-in-
Chief of the ACM Transactions on Computer-Human Interactions. He received the
Rigo Award and the CHI Lifetime Achievement Award from ACM, the Silver Core
Award from IFIP, the Alfred N. Goldsmith Award from IEEE, and is an ACM and
IEEE Fellow.

Jim A. Carter is a Professor of Computer Science and Director of the Usability En-
gineering Research (USER) Lab at the University of Saskatchewan, in Saskatoon,
Canada. He is a Canadian technical expert involved in the development of various

xxiv

CONTRIBUTING AUTHORS

international standards in the fields of Ergonomics (ISO TC 159) and User Interfaces
(ISO/IEC JTC 1 / SC 35).

Åsa Cajander is a Ph.D. student in Human-Computer Interaction from Uppsala Uni-
versity, Sweden. Her research interests include Usability and User Centered Design
with a special focus on occupational health. She has also several years of industrial
expertise as a IT consultant.

Lester Cowley is a Senior Lecturer in the Department of Computer Science and In-
formation Systems at the Nelson Mandela Metropolitan University (NMMU) in Port
Elizabeth, South Africa and Vice-head of the NMMU Centre of Excellence in Dis-
tributed Multimedia Applications. His research interests include UI design patterns
and their use in user-centred system design, multimedia computing and E-learning.

Michel C. Desmarais is an Assistant Professor of Computer Engineering at École
Polytechnique de Montréal, Canada, since 2002. Before that position, he lead the HCI
group at the Computer Research Institute of Montreal for ten years before managing
software engineering teams in a private software company for four years. Besides
user-centered engineering, his research interest are in Artificial Intelligence and User
modeling.

Xavier Ferre is an Assistant Professor of Software Engineering with the Computing
School at the Universidad Politecnica de Madrid in Spain since 1999. He has been a
Visiting PhD Student at CERN (European Laboratory for Particle Physics) in Switzer-
land, and at the HCIL (Human-Computer Interaction Laboratory) at the University of
Maryland (USA). He is a member of the ACM and its SIGCHI group. His primary re-
search interest is the integration of Usability into Software Engineering development
practices.

David Fourney is a graduate student completing a Master’s of Science degree in Com-
puter Science at the University of Saskatchewan, Saskatoon, Canada. He is a Canadian
technical expert involved in the development of various international standards in the
fields of Ergonomics (ISO TC 159 / SC 4) and User Interfaces (ISO/IEC JTC 1 /
SC 35). A Researcher with the Usability Engineering Research (USER) Lab of the
Department of Computer Science, his primary research interest is in Universal Usabil-
ity.

Bengt Göransson is a senior usability expert, Usability Designer, at the IT-
consultancy Guide Redina in Sweden. He is the leading architect behind their UCSD
profile, and has co-authored a number of books and scientific papers on how to make
usability and user-centered systems design applicable in practice. Bengt has a PhD in
HCI from Uppsala University, Sweden.

xxv

HUMAN-CENTERED SOFTWARE ENGINEERING

Jan Gulliksen is a professor in human computer interaction from Uppsala university.
He has a master in engineering physics and a PhD in Systems analysis. Jan is the
chairman of IFIP WG 13.2 on “Methodologies for User Centered Systems Design”
and a member of ISO standardization on Software Ergonomics and human computer
dialogues and human centered design processes for interactive systems. Jan runs a re-
search group on Usability and User centered systems design that does applied research
in cooperation with several industries and public authorities.

H. Rex Hartson is a Professor Emeritus of Computer Science at Virginia Tech, where
he has been a faculty member since 1975. In 1979, he founded a pioneering HCI pro-
gram at Virginia Tech. His research interests include usability engineering, usability
development methods and support tools, and integration of usability engineering and
software engineering development processes.

Steven R. Haynes is Assistant Professor of Information Sciences and Technology at
The Pennsylvania State University. His research interests include design rationale,
design evaluation, human-computer interaction with complex systems, and explana-
tion. He has worked at Apple Computer, Adobe Systems, and several start-up software
companies in the United States and Europe as a programmer, designer, analyst, and
application development project manager.

Bill Jerome is a Research Programmer/Project Director at Carnegie Mellon University
working for the Open Learning Initiative. Having obtained a B.S. in computer science
and then a Masters in HCI from CMU, he currently is focused on using both skills to
produce software infrastructures and evaluate their use for putting full courses online.
Research interests have also included user community development via online tools
in online gaming environments and the interaction of software engineers and usability
experts in the non-academic world.

Bonnie John is a professor at Carnegie Mellon University’s Human-Computer Inter-
action Institute and director of the Master of Human-Computer Interaction Program.
She teaches courses in HCI design and evaluation methods. She was hounoured the
National Science Foundation Young Investigator Award in 1994 and she is the authors
of many influencial papers in the domains of usability, HCI techniques and cognitive
modeling. She also work on bridging the gap between HCI and software engineering,
specifically including usability concerns in software architecture design.

Timo Jokela is an acting professor in the Department of Information Processing Sci-
ence at Oulu University, Finland, since 1999. In his earlier carrieer he has worked e.g.
at Nokia Mobile Phones where he was setting up and pioneering usability engineering
activities. His research interests are processes, methods and organizational issues of
user-centered design.

xxvi

CONTRIBUTING AUTHORS

Natalia Juristo is a Full Professor of Software Engineering with the Computing
School at the Universidad Politecnica de Madrid in Spain since 1997. She has been
the Director of the UPM MSc in Software Engineering for ten years. She has been fel-
low of the European Centre for Nuclear Research (CERN) in Switzerland and staff of
the European Space Agency (ESA) in Italy. During 1992 she was resident affiliate of
the Software Engineering Institute at CMU (Pittsburgh, USA). She has been program
chair for SEKE in 1997 and 2005 and for ISESE in 2004, and general chair in 2001
for SEKE and for SNPD in 2002. Prof. Juristo has been key speaker for CSEET03.
She has been guest editor of special issues in several journals. Dr. Juristo has been
member of several editorial boards, including IEEE Software. She is senior member of
IEEE CS. Her main research interests are Empirical Software Engineering, Usability
and Software Architectures, and Software Testing.

Rick Kazman is a Senior Member of the Technical Staff at the Software Engineering
Institute of Carnegie Mellon University and Associate Professor at the University of
Hawaii. His primary research interests are software architecture, design and analysis
tools, software visualization, and software engineering economics. He also has in-
terests in human-computer interaction and information retrieval. He is the author of
over 70 papers, and co-author of several books, including “Software Architecture in
Practice”, and “Evaluating Software Architectures: Methods and Case Studies”. Kaz-
man received a B.A. and M.Math from the University of Waterloo, a M.A. from York
University, and a Ph.D. from Carnegie Mellon University.

Sari Kujala is a researcher in Software Business and Engineering Institute, at the
Helsinki University of Technology, Finland. She has degrees in Psychology and Cog-
nitive Science, including a Ph.D. in Computer Science. Her research interests are in
User-Centered Design and Requirements Engineering.

Jun Liu is a Master’s of Science candidate in the Human Computer Interaction (HCI)
Lab of the Department of Computer Science at the University of Saskatchewan, in
Saskatoon, Canada. His research interests are in Computer Supported Cooperative
Work (CSCW), Usability Engineering and Tangible User Interfaces (TUI).

Eduard Metzker is a researcher and consultant at the software technology devision
of the DaimlerChrysler Research Center, Ulm, Germany. He received a M.Sc. and
a Ph.D. in Computer Science from the University of Ulm. He is doing research in
requirements engineering and usability engineering processes and tools for Mercedes
Benz Car Group and Mercedes Benz Commercial Vehicle Group. His research inter-
ests lie in requirements engineering for automotive software systems as well as in the
intersection of the fields of software engineering process improvement and usability
engineering.

xxvii

HUMAN-CENTERED SOFTWARE ENGINEERING

Ana M. Moreno is an Associate Professor with the Computing School at the Uni-
versidad Politecnica de Madrid in Spain since 2001. She is Director of the UPM
MSc in Software Engineering since 2001. She has been visiting scholar at the Vrije
Universiteit (The Netherlands) and visiting professor at the University of Colorado
at Colorado Springs (USA). She was program chair for NLDB’01 and SNPD’02 and
general chair for CSEET03. She has published papers in relevant journals like IEEE
Software, Data & Knowledge Engineering or the Journal of Systems and Software. In
2001 she has published a book titled “Basics on Software Engineering Experimenta-
tion”. Her main research interests are Empirical Software Engineering, and Usability
and Software Architectures.

Manuel A. Pérez-Quiñones is an Assistant Professor of Computer Science at Virginia
Tech. He is the lead of the research group on Multi-Platform User Interfaces, and
a member of the Center for Human-Computer Interaction at Virginia Tech. He has
taught at the University of Puerto Rico-Mayaguez, the US Naval Academy, and as a
research scientist at the US Naval Research Laboratory in Washington DC. He has
many years of experience doing software development for personal computers and
web applications. His research interests are in Human-Computer Interaction, Multi-
Platform User Interfaces, and Cultural Effects on Usability Engineering Methods.

Jenny Öhman Persson is working with the Swedish State Audit Institution. She has
a PhD in Human Computer Interaction from Uppsala university. Her research dealt
with basic values in software development and organizational change.

Pardha S. Pyla is a PhD candidate in the Department of Computer Science and a
member of the Center for Human-Computer Interaction at Virginia Tech. His research
interests include Usability Engineering, Software Engineering, Human-Computer In-
teraction, and Computer Science Education.

Dave Roberts is a Senior Designer working in IBM’s Ease of Use Strategy and Design
group in Warwick, UK. Dave has been with IBM since 1974. He has worked in many
areas of computer development and support, including hardware design, systems sup-
port and the design of OS/2 Presentation Manager. Since 1986 he has worked on user
interface architecture topics including all versions of Common User Access. He was
a principal architect of the 1992 version of CUA. Since 1992, Dave has worked with
Tony Temple on the ease-of-use of new technologies, and the creation of methods and
guidelines for the development of user interfaces. Dave is also working as a consultant
on ease-of-use for several IBM clients.

Mary Beth Rosson is Professor of Information Sciences and Technology at Pennsyl-
vania State University. Her research interests include scenario-based design and eval-
uation, the use of network technology to support collaboration, especially in learning
contexts, and the psychological issues associated with use of high-level programming

xxviii

CONTRIBUTING AUTHORS

languages and tools. She is co-author of Usability Engineering: Scenario-Based De-
velopment of Human-Computer Interaction (Morgan Kaufmann, 2002), author of In-
structor’s Guide to Object-Oriented Analysis and Design with Application (Benjamin
Cummings, 1994), as well as numerous articles, book chapters, and tutorials. Dr.
Rosson is active in both ACM SIGCHI and ACM SIGPLAN, serving in numerous
technical program as well as conference organization roles for the CHI and OOPSLA
annual conferences.

Kevin Schneider is an Associate Professor of Computer Science at the University of
Saskatchewan, Saskatoon, Canada. His primary research interests include: software
architecture, software transformation, reengineering, domain specific languages, and
human computer interaction. From 1995 to 2000 he was president and chief executive
officer of Legasys Corporation, a software technology company specializing in legacy
software system analysis and renovation. Professor Schneider received his B.Sc. in
Computational Science from the University of Saskatchewan in 1980, and his M.Sc.
and Ph.D. in Computing and Information Science from Queen’s University in 1990
and 2000, respectively. Dr. Schneider is a member of the Association of Computing
Machinery (ACM), IEEE Computer Society, and the IFIP Working Group 2.7/13.4
(User Interface Engineering).

Ahmed Seffah is an associate professor in the department of computer science and
software engineering. Since 2000, he is the Concordia research chair on human-
centered software engineering, a term he coined. His research interested are at the
intersection of human-computer interaction, psychology and software engineering,
with an emphasis on usability and quality in use metrics and measurement, human
experiences modeling as well as patterns as a vehicle for capturing and incorporating
empirically valid best human-centric users and developers experiences into software
engineering processes. He is the co-founder of the Usability and Empirical Studies
Lab which provides an advanced facility to support research and development in the
field of human-centered software. Dr. Seffah is the vice chair of the IFIP working
group on user-centered systems design methodologies and the co-chair of the first
Working conference on Human-Centered Software Engineering.

Alistair Sutcliffe is a full Professor of Systems Engineering, and Director of the Cen-
tre for HCI Design, in the School of Informatics, University of Manchester, UK. His
research spans software engineering, human computer interaction and cognitive sci-
ence. He is a leading authority on multimedia user interfaces, has authored 6 books
and 200+ publications.

Janet Wesson is Professor and Interim Head of Department of the Department of
Computer Science and Information Systems at the Nelson Mandela Metropolitan Uni-
versity (NMMU) in Port Elizabeth, South Africa. Janet is also the Head of the NMMU
Centre of Excellence in Distributed Multimedia Applications. Janet completed her

xxix

HUMAN-CENTERED SOFTWARE ENGINEERING

PhD at the University of Port Elizabeth in 1997 with a title “An Investigation into
Design Methodologies for Usability”. Her current research areas include user in-
terface (UI) design patterns, information visualization, mobile computing and user-
centred design. She is South Africa’s national representative on IFIP TC.13 (Human-
Computer Interaction), vice-chair of TC.13, secretary of WG13.2 (User-centred De-
sign) and vice-chair of CHI-SA (the South African chapter of ACM SIGCHI).

xxx

I Introductory Chapter

1 AN INTRODUCTION TO

HUMAN-CENTERED SOFTWARE

ENGINEERING:

INTEGRATING USABILITY IN THE DEVELOPMENT PROCESS

Ahmed Seffah*, Jan Gulliksen**,

and Michel C. Desmarais*** with inputs from the book contributors

*Human-Centered Software Engineering Group, Concordia University, Canada

**Uppsala University, Sweden

***École Polytechnique de Montréal, Canada

Abstract

This book aims at bridging the gap between the field of software engineering (SE)
and Human Computer Interaction (HCI), and addresses the concerns of integrating
usability and user centered systems design into the development process. This can be
done by defining techniques, tools and practices that can fit into the entire software
engineering lifecycle as well as by defining ways of addressing the knowledge and
skills needed, and the attitudes and basic values that a user centered development
methodology requires. This introductory chapter highlights the major challenges and
obstacles in integrating usability and user-centered design techniques in the software
engineering lifecycle. The discussion is centered on the following key issues:

When and how to involve users and user interface design specialists in the design
and development process

3

in the Development Process, 3–14.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

4 HUMAN-CENTERED SOFTWARE ENGINEERING

Practical experiences of using usability engineering techniques and artefacts in
the analysis, design and evaluation processes

Organizational obstacles to user-centered design

Role of the UCD facilitator and usability professionals in the development pro-
cesses and teams

Communication problems that occur when usability experts with varied skills
and expertise communicate with software and computer scientists

The chapter also provides some basic definitions especially about usability, its mea-
surement and its place in the mainstream development lifecycle. Most of the integra-
tion problems briefly discussed in this chapter are detailed in other chapters.

1.1 INTRODUCTION

Usability tests and user-centered design techniques are now recognized as important
milestones in the development of interactive applications including Graphical User In-
terface (GUI) oriented applications, e-commerce web sites, mobile services and even-
tually wearable technology. However, the problems suffered by many application de-
velopment projects suggest that this recognition has yet to be reflected into Software
Engineering methods.

Several studies have shown that 80% of total maintenance costs are related to user’s
problems with the system and not technical bugs (Boehm, 1991). Among them, 64%
are usability problems (Landauer, 1995). A survey of over 8000 projects undertaken
by 350 US companies revealed that one third of the projects were never completed
and one half succeeded only partially, that is, with partial functionalities, major cost
overruns, and significant delays (Standish Group, 1995). Executive managers iden-
tified the major source of such failures from poor requirements (about half of the
responses) — more specifically, the lack of user involvement (13%), requirements
incompleteness (12%), changing requirements (11%), unrealistic expectations (6%),
and unclear objectives (5%). For a more detailed discussion of cost-justifying usability
efforts as a whole, independent of specific UE methods, consult for example Mayhew,
1999, Landauer, 1995, Karat, 1997, and Donahue, 2001,.

These problems are mainly due to the fact that in developing highly interactive soft-
ware with a significant user interface, most software engineering methodologies do not
propose any mechanisms for: (1) explicitly and empirically identifying and specifying
user needs and usability requirements, and (2) testing and validating requirements with
end-users before, during, and after the development. As a consequence, the developed
systems generally meet all functional requirements, and yet are difficult to use with ef-
fectiveness, efficiency and satisfaction. The lack of adequate methodologies explains
a large part of the frequently observed phenomenon whereby large numbers of change
requests to modify are made after its deployment.

Human-centered design (HCD) philosophy and related usability engineering (UE)
methods provide powerful solutions to such problems (Norman and Draper, 1986;
Vredenburg, 2003; Mayhew, 1999). However, widespread software engineering meth-
ods, such as RUP (Rational Unified Process) or the more recent agile development

INTRODUCTION TO HUMAN-CENTERED SOFTWARE ENGINEERING 5

approaches, still lack explicit integration of HCI/UE methods and processes (Kazman
et al., 2003; Seffah and Metzker, 2004).

Today, even if software development teams recognize its appropriateness and pow-
erfulness, usability remains the province of visionaries, isolated departments, enlight-
ened software practitioners and large organizations, rather than the everyday practice
of the typical software developer. Knowledge and theory is still scarce about how to ef-
ficiently and smoothly incorporate UE methods into established software development
processes. While standards such as ISO 13407 (Human-Centered Design Processes
for Interactive Systems) provide a detailed description of the major UCD activities
as well as strategies to assess an organization’s capability to adopt HCD practices,
they lack guidance on how to effectively integrate usability in a specific development
team, project or context. Often, it remains unclear to software and UE professionals
if, and why, certain UE tools and methods are better suited than others in a certain
development context.

Moreover, HCD has been historically presented as the opposite, and sometimes as a
replacement, to the system-driven philosophy generally used in software engineering
(Norman and Draper, 1986). The reality is that UE and software engineering tech-
niques each have their own strengths and weaknesses and their objectives overlap in
some areas but differ in others. UE methods should be a core part of every software
development activity, yet despite their well-documented paybacks, they remain to be
widely adopted. We argue that an integrated framework that incorporates design, de-
velopment and evaluation principles from both fields will bring more effective use of
UE within software development.

However, the empirical evidence required can be extracted indirectly by deploying
UE methods in practice and studying their adoption by practitioners. In industrial
software development projects, data on the perceived quality of UE techniques can
help in understanding how to integrate UE on a case by case basis.

1.2 MAJOR OBSTACLES FOR EFFECTIVE INTEGRATION

Taking into account usability in the software development lifecycle is not an easy
endeavor. The path is littered with major fallacies, myths and obstacles that have
hampered efforts to bridge HCI and SE concerns together in an integrative perspective.
Here, we summarize some of the major obstacles; an exhaustive discussion of the
obstacles can be found in Seffah and Metzker, 2004.

1.2.1 The Meaning of Usability

Usability means different things to different people. For many, it simply means “ease-
of-use” or “user friendly”, a term introduced in the early days of HCI. It is the expres-
sion we still find in many project requirements definitions, standing alone among other
non-functional requirements, as though this term encompasses all there is to know
about the field. The IEEE Std.610.12-1990 standard reflects this definition: “The ease
with which a user can learn to operate, prepare inputs for, and interpret outputs of a
system or component”

6 HUMAN-CENTERED SOFTWARE ENGINEERING

HCI specialists have borrowed concepts grounded in psychology and cognition to
define usability as a set of attributes such as user performance (task completion and
execution time, error rate), satisfaction and learnability. The following definition il-
lustrates this view: “The capability of the software product to be understood, learned,
used and attractive to the user, when used under specified conditions” (ISO/IEC 9126-
1, 2000)

A more recent view of usability refers to it as software quality with respect to the
context of use, which is a fundamental element in usability studies (Bevan, 1999;
Maguire, 2001a):“The extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use” (ISO 9241-11, 1998).

As software engineering teachers, we are often surprised at how few students under-
stand usability beyond the basic ease-of-use concept, and how students have little idea
of how to decompose or measure it. As consultants in software engineering projects,
we are also surprised at how usability is viewed as a “window dressing” discipline
with a focus on style guides as the ultimate usability reference for the project.

1.2.2 The People Gap

UE specialists, who are often psychologists, are sometimes regarded as mere nui-
sances who get in the way of those who, in the end, will really deliver the product, the
software engineers. User interface development is seldom allocated sufficient time in
the crucial early phases of the development schedule even if the user interface code is
often more than half of the whole code for a project and takes a comparable amount
of development effort (Myers and Rosson, 1992).

This “people gap” is exacerbated by the fact that the two groups do not share the
same culture. They do not share the same perspective and they do not understand the
respective constraints under which each group has to operate. It has been our experi-
ence that when the UE specialist is also a strong programmer and analyst, UE methods
are systematically much better accepted by the software engineers and integrated in
the development process.

Furthermore, software engineers need to understand and master usability engineer-
ing in their own languages and cultural contexts. Usability specialists often do not
understand why and how technical choices and constraints influence a product’s de-
sign.

Seffah, 2003, describes a list of 14 HCI design skills that are needed by developers
in order for them to do a good job of designing interfaces. The paper recommends es-
tablishing several “usability advocates” within the company. The paper also proposes
offering a 3-day user interface design workshop in which the project team works with
end-users to design part of their project. The workshop is also an opportunity for
both groups to learn HCI design methods. Another way for the usability professional
to educate technology-driven professionals in user-centered approaches would be to
provide them with a comprehensive step-by-step framework that lays out the entire
process. This is an effective way for software organizations and engineers to learn
from usability engineering and at the same time to improve collaboration between
usability engineering and software engineering.

INTRODUCTION TO HUMAN-CENTERED SOFTWARE ENGINEERING 7

1.2.3 The Responsibilities Gap

The role of user interface is often perceived as that of decorating a thin component
sitting on top of the software, with the software being the “real” system. Software
engineers build the software and all its functionality, and once the bulk of the work is
done, the usability people make the interface layer user-friendly. The usability people,
on the other side, view their role as designing the interface first; it is only later on, once
all the functionality is defined and validated, that the software engineers implement the
back-end to support this design, under constant revision by usability inspectors.

These views of each other’s role are of course in direct opposition and often result
in frustrations within one group for not being given sufficient influence on the final
product.

One view is that if usability engineering is an engineering discipline, it has to share
some basic values with engineering. Usability specialists have to think and work like
engineers (Mayhew, 1999). Although this view may not be shared by all, it is worth
considering as it addresses this important gap.

1.2.4 The Modularity Fallacy

Traditional interactive system architectures such as MVC and PAC decompose the
system into subsystems that are relatively independent, thereby allowing the design
work to be partitioned between the user interface and underlying functionalities. Such
architectures extend the independence assumption to usability, approaching the design
of the user interface as a sub-system that can be designed and tested independently
from the underlying functionality. This Cartesian dichotomy can be dangerous, as
functionalities buried in the application’s logic can sometimes affect the usability of
the system.

In the field of interactive systems engineering, architectures of the 1980s and 1990s
such as MVC and PAC are based on the principle of separating the functionality from
the user interface. The functionality is what the software actually does and what infor-
mation it processes. The user interface defines how this functionality is presented to
end-users and how the users interact with it. The underlying assumption is that usabil-
ity, the ultimate quality factor, is primarily a property of the user interface. Therefore
separating the user interface from the application’s logic makes it easy to modify, adapt
or customize the interface after user testing. Unfortunately, this assumption does not
ensure the usability of the system as a whole.

We now realize that system features can have an impact on the usability of the sys-
tem, even if they are logically independent from the user interface and not necessarily
visible to the user. Bass observed that even if the presentation of a system is well
designed, the usability of a system can be greatly compromised if the underlying ar-
chitecture and designs do not have the proper provisions for user concerns (Bass and
John, 2001b). We propose that software architecture should define not only the techni-
cal interactions needed to develop and implement a product, but also interactions with
the users.

At the core of this vision is that invisible components can affect usability. By in-
visible components, we mean any software entity or architectural attribute that does

8 HUMAN-CENTERED SOFTWARE ENGINEERING

not have visible cues on the presentation layer. They can be an operation, data, or a
structural attribute of the software. Examples of such phenomena are commonplace
in database modeling. Queries that were not anticipated by the modeler, or that turn
out to be more frequent than expected, can take forever to complete because the log-
ical data model (or even the physical data model) is inappropriate. Client-server and
distributed computer architectures are also particularly prone to usability problems
stemming from their “invisible” components.

Designers of distributed applications with Web interfaces are often faced with these
concerns: They must carefully weigh what part of the application logic will reside on
the client side and what part will be on the server side in order to achieve an appropriate
level of usability. User feedback information, such as application status and error
messages, must be carefully designed and exchanged between the client and server
part of the application, anticipating response time of each component, error conditions
and exception handling, and the variability of the computing environment. Sometimes,
the Web user interface becomes crippled by the constraints imposed by these invisible
components because the appropriate style of interactions is too difficult to implement.

Like other authors Bass and John, 2001b; Folmer et al., 2003, we argue that both
software developers implementing the systems features and usability engineers in
charge of designing the user interfaces should be aware of the importance of this in-
timate relationship between features and the user interfaces. This relationship can
inform architecture design for usability. With the help of patterns, this relationship
can help integrate usability concerns in software engineering.

1.2.5 Dispensability of UE

Some software managers feel that their project cannot afford to spend so much time
on usability. They worry that the UE iterations will never end, due to HCI people
trying to get everything perfect. There are two answers to this. First of all, there
should be measurable usability objectives set as part of the project plan. And secondly,
these managers should consider the longer-term effect of quality work on the self-
esteem (and hence productivity) of their developers. When deciding on how user
interface development is going to be integrated into the wider development process,
managers should keep in mind the “Hawthorne Effect”. DeMarco and Lister state
this as: “people perform better when they’re trying something new” – because of this,
they recommend that each project should vary the techniques used just for the sake of
variety (DeMarco and Lister, 1999).

1.2.6 Shortage of Training and UE Expertise

Another barrier to the wider practice of UE methods is that their techniques are still
relatively unknown and difficult to master, making them inaccessible to small and
medium-sized software development teams and individual developers. While software
developers may have high-level familiarity with such basic concepts as requirements
analysis and usability testing, few understand the complete process well enough to
incorporate it into the larger software development lifecycle. Furthermore, although
some software engineering standards adhere to goals similar to those promoted in ISO

INTRODUCTION TO HUMAN-CENTERED SOFTWARE ENGINEERING 9

standard 13407, in practice the standards often seem very different. This is because
they are formulated using different terminology, notations and languages. An example
of this would be the IEEE standards on software quality and the ISO collection on
quality in use (see IEEE-1061 Standard on Software Quality Metric Methodology and
ISO/IEC-9126 Standard on Quality Characteristics and Guidelines for their Use).

1.2.7 Organizational Shift

The organizational learning approach asserts that the integration of UE into software
engineering lifecycles is not primarily a problem of a lack of UE methods: The orga-
nization’s natural inertia is the obstacle and the solution must be also understood as a
problem of organizational learning and software process improvement.

In organizational terms, UE must be understood not merely as a process improve-
ment to SE, but as a paradigm shift. In conditions of paradigm shift, those who fol-
low the old paradigm tend to reject new paradigms, even when the new paradigm is
heavily supported by scientific evidence (Kühn, 1962). Kühn was relatively cynical
about paradigm shift, concluding that followers of the old paradigm never convert,
and that a successful paradigm shift requires replacing them with followers of the new
paradigm. Contemporary management approaches often take the more humanistic po-
sition that organizations and individuals can change (for example, Senge, 1999). The
truth likely lies somewhere between these two extremes: Organizations and individu-
als can change, but change is hard and requires openness and intent.

1.2.8 Empirical Evidence

The existence of a credible body of evidence concerning the actual value of specific
UE and UCD methods is often believed to be a prerequisite for organizational learning
and process improvement in UE. Unfortunately several surveys on information system
methodology research indicate that, in most cases, empirical studies of the effects and
acceptance of proposed techniques is largely missing (Glass, 1995; Zelkowitz and
Wallace, 1998; Basili et al., 1999).

There is a reason for this lack of empirical evidence. To empirically evaluate the
value of a specific UE method using classical scientific techniques, it would be neces-
sary to compare the same project repeated under conditions employing UE techniques
versus not employing UE techniques, while controlling for skill, motivation, SE ap-
proach and other possible differences between the two project teams. This challenging
experiment would need to be repeated many times with different project teams, differ-
ent software engineering frameworks and on different projects in order for the results
to achieve statistical validity.

1.3 THE SERIES OF WORKSHOPS ON HCI/SE INTEGRATION

This book originates in good part from several workshops that have been orga-
nized over the last decade with the explicit focus of attacking the problem of
cross-pollinating between the fields of HCI and SE (Artim et al., 1998; Seffah and
Hayne, 1999; Gulliksen et al., 1998; Gulliksen et al., 2001; Gulliksen and Boivie,

10 HUMAN-CENTERED SOFTWARE ENGINEERING

2001; Harning and Vanderdonckt, 2003; Kazman et al., 2003; John et al., 2004a)
The starting point of all these workshops was the two workshops organized by
Artim et al at CHI’97 and CHI’98 conferences on Object-Oriented Models in User
Interface Design and on incorporating Task Analysis Into Commercial And Industrial
Object-Oriented Systems Development (Artim et al., 1998).

The conclusions of these investigations brought to light some of the major integra-
tion issues, which applied in particular to object-oriented methodologies, including:

1. Mediating and improving the communication line between users, usability ex-
perts and developers (Kujala et al., 2001a; Antunes et al., 2001).

2. Extending software engineering artefacts for UI specification and conceptual-
ization, such as annotating use cases with task descriptions (Constantine and
Lockwood, 1999; Rosson, 1999; Dayton et al., 1996),

3. Enhancing object-oriented software engineering notations and models (Nunes
and e Cunha, 2000; Artim and van Harmelen, 1998; Kruchten, 1999; da Silva
and Paton, 2001).

4. Extending requirements engineering methods for collecting information about
users and usability. Examples are field observations and interviews, scenario,
task models and use cases modeling techniques and personae (Cooper and
Reimann, 2000) as a way to understand and model end-users.

5. Developing new processes for interactive systems design such as (Nielsen,
1999; Mayhew, 1999; Roberts, 1998), as well as approaches complement-
ing existing use cases-driven methodologies. (Constantine and Lockwood,
1999; Kruchten, 1999).

6. Representing design artefacts including prototypes using different formalisms
that convey the same information about an object but in different forms and
terms which are more suitable to developers or usability experts

7. Conveying UCD attitudes, not just tools and methods, to support UCD activi-
ties. UCD must be escalated to management level by means of, for instance,
business cases. One way is to create a demand for usability guarantees on the
consumer/user side.

1.4 WHY HUMAN CENTERED SOFTWARE ENGINEERING?

As defined by Pressman, 2005a, Software engineering is “a well-established discipline
that encompasses the process associated with software development, the methods used
to analyze, design and test computer software, the management techniques associated
with the control and monitoring of software projects and the tools used to support
process, methods, and techniques.”

By adding that SE should be human-centered, we want to emphasize that there is a
need for a shift of focus in systems development towards putting the goals, needs, and
wishes of the users in the first room.

INTRODUCTION TO HUMAN-CENTERED SOFTWARE ENGINEERING 11

By “humans” we do not only mean the ultimate end-users of the system but also
the secondary users of the system. For example, while a particular physician might
be the ultimate end-user of a system, there are several other users: the patients that
are affected by their doctor’s use of technology and the professionals involved in the
development of the technology. All of these users need tools:

to be able to capture and assemble requirements;

to be able to use their imagination, skills and innovative abilities in designing
new and well-functioning solutions to meet these requirements;

to be able to construct technology that enables these designs;

to be able to test and improve the systems; and finally

to deploy, maintain, and eventually de-install the system.

We are not saying that one of these groups have preference above the others, but that
all of these need tools that can enable them to interact efficiently to produce the desired
outcome.

1.4.1 Requirements on Human-Centered Software Engineering

We need to acknowledge the needs of these different stakeholders in our attempts to
bridge the gap between HCI and SE.

1. From the user side. Users are valuable and often underused resources in the
software development process. Users are the only ones who actually have the
potential of explaining how they interact with the system and how they use
the system as a support to achieve their other tasks. But on the other hand,
we know that users may have difficulties expressing their ways of interacting,
since a lot of the interaction is tacit knowledge (Polanyi, 1966). This has been
emphasized in the book in which the concept of User-centered systems design
was coined in Donald Norman’s theory of action (Norman and Draper, 1986).
Therefore we need to apply methods to observe and analyze the users to be able
to get some evidence to help deducting these requirements. But on the other
hand, active involvement of the users can improve the user’s ability to develop
their understanding of the potential of the technology and also helping them
to see how their tasks could develop and change due to the impact of the new
technology. Several studies show great benefits in involving the users actively
in the design process (Greenbaum and Kyng, 1991; Göransson and Gulliksen,
2003).

2. From the developer side. Developers have for a long time been suffering from
the limitations in existing tools to turn requirements into designs that will work
under the limitations that existing technology provides. Most developers that
we have seen have, contrary to what many others report, been very happy to get
more help in the process of making design decisions. The saying that such tools

12 HUMAN-CENTERED SOFTWARE ENGINEERING

that help the developers do better design would take the fun out of software de-
velopment is a myth. Developers want to do a good job, they want to produce
a system with the highest possible level of usability. But developers also work
under restrictions: restrictions in time and budget, and restrictions imposed by
the limitations of the technology and the methods used. Therefore it is natu-
ral that developers can express some hesitation towards too much of their time
being consumed by cooperation with the users.

3. From the usability professional’s side. Usability professionals are interesting
to study in this process since they often get the responsibility of vouching for
the usability of the system in the project. In many cases they face the risk of
becoming surrogate users (Boivie et al., 2003; Gulliksen et al., 2003a).

1.5 AUDIENCE

Since the purpose of this book is to bridge the gap between two communities, Human-
Computer Interaction (HCI) and Software Engineering (SE), it is written for both soft-
ware developers and usability experts as well as educators. The frameworks described
in this book can support any person interested in the general problem of promoting
user-centered design in the software development community. These frameworks can
be useful for usability and software practitioners and researchers who are interested in
the development of methodologies and standards, who have researched or developed
specific user-centered design techniques or who have worked with software develop-
ment methodologies. They also offer insights, for software development organiza-
tions, in how to integrate user-centered design techniques and tools with software en-
gineering courses and tutorials. Software engineering students and educators can use
them to extend and improve their skills, and to learn techniques for communicating
with usability “guru” and supporters.

1.6 A QUICK TOUR OF THE BOOK

The book is divided into 5 parts. This introductory chapter highlights some the funda-
mental challenges in integrating usability in the software engineering lifecycle. It also
summarizes the major contributions of this book.

Part 2 discusses “Principles, Myths and Challenges”. It comprises four chapters
that all together give a solid and deep analysis of the multiple integration faces. In
Chapter 2, Gulliksen and others propose a definition of UCSD – user-centered sys-
tems design. We have identified 12 key principles for the adoption of a user-centered
development process, principles that are based on existing theory, as well as research
in and experiences from a large number of software development projects. Seffah,
Desmarais and Metzker review in Chapter 3 some of the most relevant frameworks.
It assesses their strengths and weaknesses as well as how far the objective of inte-
grating HCI methods and principles within different software engineering methods
has been reached. Finally, it draws conclusions about research directions towards the
development of a generic framework that can: (1) facilitate the integration of usabil-
ity engineering methods in software development practices and, (2) foster the cross-
pollination of the HCI and software engineering disciplines. Kazman and Jerome from

INTRODUCTION TO HUMAN-CENTERED SOFTWARE ENGINEERING 13

Carnegie Mellon and the University of Hawaii, provide a supplement of the state of
the research that lies at the conjunction of HCI and Software Engineering. They also
present the results of a survey that examines how HCI practitioners and software engi-
neers interact in industry. The survey shows a substantial lack of mutual understanding
among software engineers and HCI specialists, and the results from research do not
appear to be strongly influencing this interaction. The chapter by Sutcliffe reviews dif-
ferent conceptions of scenarios, artefacts, theories and models with contributions they
make to the design process in SE and HCI. It explores the potential for constructive
contrasts between scenarios as concrete, grounded examples and generalized, abstract
models in an integrated view of systems development that encompasses both HCI and
SE.

Part 3 is dedicated to Requirements, scenarios, and use-cases. Adams, Bass and
John introduced in Chapter 6, the concept of architecturally sensitive usability sce-
narios as an important usability concerns that require early consideration in software
design so that architectural support can render them easy and cost-effective to imple-
ment. They also report an experience of applying this type of scenario to the design
of MERBoard, a wall-sized interactive system developed by NASA to assist Mars
Rover science teams with collaborative data analysis. In Chapter 7, Kujala justifies
the need to bridge the gap between informal user need descriptions and formal user
requirements. She details how user-centered requirements analysis can be effectively
integrated to use case-driven requirements engineering. She proposes a three-stage ap-
proach to gather user needs directly from users using semi-structured, small-scale field
studies. The results are then summarized in user need tables to ease their utilization
and their linking to use case descriptions. The user need tables are transformed into
use case descriptions. Timo Jokela, in Chapter 8, suggests a teamwork method for de-
termining usability requirements based on the definition of usability in ISO 9241-11.
A usability specialist facilitates a software development team in determining usability
requirements in a set of workshop sessions. The concrete outcome of the workshops
is a set of measurable usability requirements (in the form of a usability requirements
table) that informs design drivers for the later phases of software design. Another
outcome of the workshops is of educational and motivational nature. In Chapter 9,
Carter et al. propose the Putting Usability First (PUF)UML methodology of Usability
Engineering as an approach to solving the limitations of Unified Modeling Language
(UML). PUF identifies and specifies usability and context related information that are
transformed into UML diagrams.

Part 4 provides a deeper analysis and comparison of the UCD, Unified and Ag-
ile Processes. In Chapter 10, Ferre et al. propose to characterize selected usability
techniques and activities using SE terminology and concepts, according to what kind
of activity they belong to and at what development stage their application contributes
most to the usability of the final software product. Software developers may then
manage usability activities and techniques, include them in their software process,
and understand in which activities usability and SE techniques have to be merged to
achieve concurrent objectives. The proposed framework is aimed at software devel-
opment organizations with a defined iterative development process that are looking to
enhance their process with usability aspects. Dave Roberts from IBM, in Chapter 11

14 HUMAN-CENTERED SOFTWARE ENGINEERING

introduces one of the most comprehensive UCD methods, IBM User Engineering.
This method provides a process that guides teams though a complex project. It uses
CASE tools to help to manage information. It includes abstraction paths that help the
team to understand the whole problem before they divide it. IBM User Engineering
helps the development team to build the solution; providing many heuristics to guide
progress. Pardha S. Pyla, M.A. Perez-Quinones, James D. Arthur, and R. Hartson
present in their chapter another methodology to bridge HCI and SE called Ripple. It
is a database-centered, event-triggered, shared design representation framework that
provides a development infrastructure within which the usability engineering and soft-
ware engineering life cycles co-exist in cooperative and complementary roles. Com-
pared to IBM User Engineering, Ripple does not merge HCI and SE processes into a
single life cycle; rather it coordinates each life cycle’s activities, timing, scope, and
goals using a shared design representation and management for the two life cycles.
Ripple incorporates techniques to accommodate communication about design insights

The last part of this book, entitled UCD Knowledge and UI design Patterns, ex-
plores avenues related to integration, management, and use of multidisciplinary sys-
tem design knowledge. First, Steven R. Haynes, John M. Carroll, and Mary Beth
Rosson from the School of Information Sciences and Technology, The Pennsylvania
State University, outline the need for repositories and other points of exchange for
system design knowledge, and conceptual catalysts to support value-added integration
of the results from multidisciplinary design research and practice. In Chapter 15, Lisa
Battle, from Lockheed Martin, presents four process-sensitive patterns that illustrate
best practices for integrating user-centered design with the software development life-
cycle. Process patterns describe a proven, successful approach or series of actions
(Coplien, 1995; Ambler, 1998), and are based on the idea of design patterns origi-
nally introduced in architecture by Christopher Alexander (Alexander et al., 1977). In
Chapter 16, John Artim describes a formal and recursive UI design pattern description
supporting UI design work subsequent to use-case-based specification. The multi-
part representation described in this chapter balances the need to define task elements
supported by the pattern, the design elements comprising the pattern’s prototypical
solution, as well as the elements needed to map from the pattern to a specific domain
of use. Chapter 17 written by Janet Wesson et al. shows how, in the context of an e-
commerce Website development, patterns can help to bridge requirement and design.

Acknowledgements

We thank all the reviewers of this book that are listed in the beginning of this book. Our
thanks also to the individual authors of each chapter as well as those authors whose
chapter we could not fit into this book. We received 27 submissions and accepted 14.
All chapters were peer reviewed by at least two reviewers.

and change.

II Principles, Myths and
Challenges

2 KEY PRINCIPLES FOR

USER-CENTRED SYSTEMS DESIGN
Jan Gulliksen, Bengt Göransson, Inger Boivie,

Jenny Persson, Stefan Blomkvist, Åsa Cajander

Uppsala University,

Department of Information Technology, Human-Computer Interaction,

PO Box 337, SE-751 05 Uppsala, Sweden;

e-mail: Jan.Gulliksen@hci.uu.se

Note: This chapter is reproduced from Gulliksen et al., 2003b,
with permission from Taylor & Francis

Abstract

The concept of user-centered systems design (UCSD) has no agreed upon definition.
Consequently, there is a great variety in the ways it is applied, which may lead to poor
quality and poor usability in the resulting systems, as well as misconceptions about
the effectiveness of UCSD. The purpose of this chapter is to propose a definition of
UCSD. We have identified 12 key principles for the adoption of a user-centered de-
velopment process, principles that are based on existing theory, as well as research in
and experiences from a large number of software development projects. The initial
set of principles were applied and evaluated in a case study and modified accordingly.
These principles can be used to communicate the nature of UCSD, evaluate a develop-

17

in the Development Process, 17–36.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

18 HUMAN-CENTERED SOFTWARE ENGINEERING

ment process or develop systems development processes that support a user-centered
approach. We also suggest activity lists and some tools for applying UCSD.

2.1 PURPOSE AND JUSTIFICATION

This chapter describes the results of our current research on UCSD and our experi-
ences of applying UCSD in software development projects. Our purpose has been to
compile knowledge and experiences of UCSD, in order to give the concept a more
precise meaning and to increase its power. The main point in our chapter is that ap-
plying UCSD requires a profound shift of attitudes in systems development, and our
main goal is to promote that attitude shift.

2.2 BACKGROUND

Our main concern has been the lack of an agreed upon definition of UCSD, turning
it into a concept with no real meaning. UCSD was originally coined by Norman and
Draper, 1986. They emphasized the importance of having a good understanding of the
users (but without necessarily involving them actively in the process):

‘But user-centered design emphasizes that the purpose of the system is to serve the
user, not to use a specific technology, not to be an elegant piece of programming.
The needs of the users should dominate the design of the interface, and the needs
of the interface should dominate the design of the rest of the system.’ (Norman
and Draper, 1986)

Several other definitions and understandings have been proposed over the years.
The lack of a shared understanding of the meaning of UCSD (or User-Centered De-
sign, UCD) has actually been pointed out as a quality in its own right by Karat:

‘For me, UCD is an iterative process whose goal is the development of usable
systems, achieved through involvement of potential users of a system in system
design.’ (Karat et al., 1996) ‘I suggest we consider UCD an adequate label un-
der which to continue to gather our knowledge of how to develop usable systems.
It captures a commitment the usability community supports—that you must in-
volve users in system design—while leaving fairly open how this is accomplished.’
(Karat, 1997)

The consequence of such general and non-specific definitions of user-centered de-
sign is that it, in practice, becomes a concept with no real meaning. We have therefore
identified a set of key principles1 for UCSD.

The principles summarize our research results and experiences from software de-
velopment projects in a large number of organizations and projects. They are based
on principles specified elsewhere (Gould et al., 1997; ISO/IEC, 1999), and on our ex-
periences made from trying to apply UCSD in systems development projects using
processes such as the Rational Unified Process (Kruchten, 1998). Our principles also
take into account the Scandinavian tradition of extensive user involvement in the de-
velopment process (Greenbaum and Kyng, 1991) in some communities known as par-

1A principle is a commonly accepted fundamental rule or law that can be used to define other principles.

KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 19

ticipatory design. Other well-known approaches such as contextual design (Beyer and
Holtzblatt, 1998), goal-directed design (Cooper, 1999), usability engineering (Nielsen,
1993; Mayhew, 1999) have also contributed to the result.

Below we describe one of the projects that had particular impact on the principles
in that it was conducted with the explicit goal to capture critical success factors for
UCSD.

2.3 THE PROJECT

The pilot project was an in-house development project within the Swedish National
Tax Board with the purpose to develop a new computerized case-handling tool for
administrators working with national registration. We were able to follow the project
from the very start. In the first project meeting we emphasized the importance of
following a UCSD approach and introduced our set of principles to the project team.

These principles were specific for the organization and had been identified in an
earlier research effort (Gulliksen and Göransson, 2001). They were:

The work practices of the users control the development. Early focus on users
and tasks. The designer must understand the users, their cognitive behavior,
attitudes and the characteristics of their work tasks. Appropriate allocation of
function between the user and the system is also important to prevent unneces-
sary control;

Active user participation throughout the project, in analysis, design, develop-
ment and evaluation. This requires a careful user selection process emphasizing
the skills of typical users, including both:

– work domain experts (continuously through the development project);

– and actual end-users (for interviews and observations as well as evaluation
of design results).

Early prototyping to evaluate and develop design solutions and to gradually
build a shared understanding of the needs of the users as well as their future
work practices;

Continuous iteration of design solutions. A cyclic process of design, evaluation
and redesign should be repeated as often as necessary. The evaluation process
should include empirical measurement in which tests are conducted where users
perform real tasks on prototypes. The users’ reactions and attitudes should be
observed and analyzed;

Multidisciplinary design teams. Mainly achieved by including a usability de-
signer (Göransson and Sandbäck, 1999) in the process;

Integrated design. The system, the work practices, on-line help, training, orga-
nization, etc. should be developed in parallel.

The project decided to act in accordance with the above principles.

20 HUMAN-CENTERED SOFTWARE ENGINEERING

2.3.1 Research Methods

We used an action research approach in the project, i.e. our aim was to introduce
changes in the development process as regards user involvement and usability issues,
and to observe and record the outcomes of these changes. Our activities included
introducing a set of UCSD principles as described above, and facilitating the project
team’s commitment to these principles. We also facilitated collaborative prototyping
activities with users.

To observe the outcomes of the activities and actions, we used qualitative data
collection methods as described below.

Observations of the work of the development team, for instance, by continu-
ously participating in the project meetings of the software development team

Observations of the current work practices (mainly paper-based) of the admin-
istrators working with national registration

Semi-structured interviews based on open-ended questions with software de-
velopers and user representatives about their attitudes to and experiences with
working with users and usability

Semi-structured interviews based on open-ended questions with users about
their work

Continuous discussions with members of the software development team and
representatives for the current work practices to check possible discrepancies in
our interpretation of the observed activities and actions

Meanwhile, we continued working with the principles. As a result of intermediate
findings in the pilot project and findings in other, parallel, research efforts we modified
the set of principles to cover the twelve key principles described in this chapter. The
applicability of these principles was then assessed in a number of workshops with
researchers and practitioners.

2.3.2 Results

As a result of the introductory meeting, the project group decided to apply UCSD as
defined by the initial set of principles.

We could not influence the choice and customization of the development process
– the organization had recently shifted to using the Rational Unified Process (RUP)
(Kruchten, 1998). We were, however, able to introduce additional activities to com-
plement the process as needed, e.g. activities for performing a thorough user and task
analysis, for developing design solutions iteratively and in cooperation with the users,
and for including a usability designer throughout the project.

One of the more successful events was a collaborative prototyping activity in which
the users could develop their vision of the future system and work situation, integrating
a future system and future work practices (Figure 2.1).

These collaborative prototyping sessions were facilitated by a usability designer in
cooperation with a researcher. The users brought sketches illustrating their own view

KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 21

Figure 2.1 Collaborative prototyping in which the usability designer facilitates the users’

of the future system as a basis for a negotiation on the most appropriate design of the
system.

Low-level prototyping tools were used since the users regarded them as the most
flexible tool for their purpose (Figure 2.2).

Prior to the collaborative design sessions the usability designer had conducted a
user analysis and created personas. According to Calde et al., 2002, user models, or
personas, are fictional, detailed archetypical characters that represent distinct group-
ings of behaviors, goals and motivations observed and identified during the research
phase. Cooper, 1999, describes personas as a tool for communication and design
within the group of designers, software developers, managers, customers and other
stakeholders. The purpose is not to give a precise description or a complete theoretical
model of a user. Instead, it is aiming at a simple, but good enough description of the
user to make it possible to design the system. (Figure 2.3).

From the software engineering side they had been performing use case modeling to
specify the detailed requirements on the system. A use case specifies the sequence of
actions, including alternatives of the sequence, that the system can perform, interact-
ing with actors of the system (Jacobson et al., 1999). Use case modeling is today one
of the most widely used software engineering techniques to specify user requirements.
Unified Modeling Language (UML) is one of the most common formal notations to de-
scribe use cases (Fowler and Scott, 1997). Rational Unified Process (RUP) (Kruchten,
1998) builds heavily upon these techniques.

According to the users, the personas gave a much more concrete picture of typical
users than what came out of the use case modeling sessions running in parallel with
the collaborative prototyping activities.

production of mock-ups

22 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 2.2 Low-fidelity prototyping tools were used as these were the most convenient for

Halfway through the project all participants were very satisfied with the activities
so far and the results achieved. The project was committed on all levels to UCSD. The
principles communicated the essentials of UCSD very well.

From then on, however, there was a gradual increase of problems and obstacles to
the user-centered approach. Despite efforts from our side and from the project, the
problems were never really resolved. Some of them were outside the control of the
project.

The major problems in the project are briefly described below. The problems reflect
why the initial principles were not sufficient and therefore each of the problems is
related to the subsequent definition and 12 key principles of User Centered Systems
Design. The outcome of the project can be compared with the consolidated list of
twelve key principles, and each problem in the project map well against one or more
of the principles.

No lifecycle perspective on UCSD. The developers focused on short-term
goals, such as, producing models and specifications prescribed by RUP. The
long-term goals and needs of the users regarding their future work situation
were ignored or forgotten. Moreover, towards the end of the project, meeting
the project goals and deadlines became much more important than achieving
some sort of minimum level of usability. We believe, that had the project
decided to give the usability activities higher priority than, for example, to de-
velop absolutely all the functionality the end result could have been a lot better,
without any of the missing functionality causing any big problems in the long
run. We emphasize the importance of a lifecycle perspective in our definition of

visualizing the future use situation without limiting the design space

KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 23

Figure 2.3 Personas were used to describe typical users. In this example, the persona

‘Gudrun’ is described based on personal background, the work setting, colleagues and con-

UCSD in the next chapter as well as in a number of the principles, for instance,
the user involvement principle and the usability champion principle. The lack

tacts

24 HUMAN-CENTERED SOFTWARE ENGINEERING

of lifecycle perspective also indicates that there was no real commitment to
UCSD in the project which points to an attitude problem.

Usability designers were ignored. Despite the skilful and experienced work
that the usability designers performed, their results and their opinions were ig-
nored in the later phases of the project. The usability champion principle points
out that the usability champion/designer2 should have the mandate to decide on
usability matters. The project ignoring the input of the usability designer clearly
indicates that this was not the case2.

Use case mania. When the project started, the organization did not have enough
experience with use case modeling. The modeling went out of hand and the
results could not be used efficiently in the development process. The project
got literally bogged down in use cases, but did not really know what to do with
them. The use case mania indicates that there was a problem with user focus in
the project. Despite the confusion regarding the use of the use cases, producing
them became more important than understanding the users’ real needs.

Poor understanding of the design documentation. The design was docu-
mented in UML and the users were invited to evaluate it. The users had severe
difficulties predicting their future use situation based on the UML notation. One
of the users said that after having worked with use case modeling, the collabora-
tive prototyping was like ‘coming out of a long dark tunnel’. The design repre-
sentation principle emphasizes the importance of using representations that are
easy to understand for all the stakeholders, in particular as regards the future
work/use situation. UML is clearly not suitable in that respect.

Major changes in the project. Halfway through the project a strategic decision
was made within the organization, against our advice, to change the technical
platform and continue the development in a web-based environment. The de-
cision was crucial in that it made it very difficult to meet the usability require-
ments. Insufficient experience with and expertise in the new technology as well
as the page metaphor in html created problems. The decision was made with
little or no attention to usability matters. This indicates that there was a problem
with the attitudes to UCSD and usability within the organization and a problem
with user focus.

Problems establishing a user centered attitude. Single individuals in a project
can make a crucial difference when it comes to UCSD. We noticed, for instance,
problems with resolving conflicts between personal goals and business goals
within the project, on an individual level. Again, this indicates that there was
a problem with attitudes and user focus in the organization. It also indicates

2To us the usability designer is a role that has a clear position in the development project (see for instance
Göransson and Sandbäck, 1999). Usability champion has more of a mentor status and is not a role that
somebody can shoulder. To be able to act as a usability champion you must have extensive knowledge and
experience of the work in practice and also an ability to act as a mentor.

KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 25

problems with the professional attitude described in the principle on multidisci-
plinary design.

This case describes how a project with explicit intentions to apply UCSD, never-
theless ran into several problems and obstacles that made it very difficult to pursue the
UCSD approach. Our conclusion is that one needs to be very specific about what it
takes from the process to comply with UCSD to prevent problems such as the ones
described in the pilot study.

Based on the results of the project, we concluded that the principles listed in Gould
et al., 1997, and ISO 13407 are not sufficient to maintain a UCSD approach in a project
or in an organization. We therefore modified our initial set of principles to clearly
indicate that it takes much more to work in a user-centered fashion. We have also run
a number of workshops with researchers and practitioners to discuss and confirm the
principles. The resulting set is listed below together with a definition of UCSD.

Figure 2.4 User-centered system design (UCSD) is a process focusing on usability through-

out the entire development process and further throughout the system life cycle

26 HUMAN-CENTERED SOFTWARE ENGINEERING

2.4 DEFINITION AND KEY PRINCIPLES

User-centered system design (UCSD) is a process focusing on usability3 throughout
the entire development process and further throughout the system life cycle
(Figure 2.4). It is based on the following key principles:

User focus – the goals of the activity, the work domain or context of use, the
users’ goals, tasks and needs should early guide the development (Gould
et al., 1997; ISO/IEC, 1999). All members of a project must understand the
goals of the activity, the context of use, who the users are, their situation, goals
and tasks, why and how they perform their tasks, how they communicate, co-
operate and interact, etc. This helps in creating and maintaining a focus on the
users’ needs instead of a technical focus. Activities, such as identifying user
profiles, contextual inquiries and task analysis, must be a natural part of the
development process. Make sure that all project members have met real or po-
tential users, for instance, by visiting the workplace. Descriptions of typical
users, tasks and scenarios could be put up on the walls of the project room/area
to maintain a user focus.

Active user involvement – representative users should actively participate,
early and continuously throughout the entire development process and
throughout the system lifecycle (Gould et al., 1997; ISO/IEC, 1999; Nielsen,
1993). The users should be directly involved, both in the development project
and in related activities, such as, organizational development and designing new
work practices (Greenbaum and Kyng, 1991). The users must be representative
of the intended user groups. Plans for involving users should be specified from
the very start of the project. Identify appropriate phases for user participation
and specify where, when and how users should participate4. Emphasize the
importance of meeting the users in context, for instance, at their workplace.

Evolutionary systems development – the systems development should be
both iterative and incremental (Gould et al., 1997; Boehm, 1988). It is im-
possible to know exactly what to build from the outset. Hence, UCSD requires
an approach which allows continuous iterations with users and incremental de-
liveries. This, so that design solutions can be evaluated by the users before they
are made permanent. An iteration should contain a proper analysis of the users’
needs and the context of use, a design phase, a documented evaluation with con-
crete suggestions for modifications and a redesign in accordance with the results
of the evaluation. These activities do not have to be formal. An iteration could
be as short as half an hour, as long as it contains all three steps. Incremental

3Usability is defined as ‘the extent to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction, in a specified context of use’ (ISO/IEC, 1998), Please
note that this definition includes the concept of utility or usefulness, often seen as separate from usability.
4Please note that involving users on a full-time basis in a project quickly turns them into domain experts
rather than representative users. It is therefore important to involve user representatives on a temporary
basis as well.

KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 27

development means that, based on an overall picture of the system under devel-
opment (SUD), priorities are set and the system is divided into parts that can be
delivered for real use. Each increment is iterated as described above. Evalua-
tions of the increments in real use should influence the design of the subsequent
increments. Let the software grow into the final product.

Simple design representations – the design must be represented in such
ways that it can be easily understood by users and all other stakeholders
(Kyng, 1995). Use design representations and terminology that are easily under-
stood by all users and stakeholders so that they can fully appreciate the conse-
quences of the design on their future use situation. Use, for instance, prototypes
(sketches and mock-ups) and simulations. Abstract notations, such as use cases,
UML diagrams or requirements specifications are not sufficient to give the users
and stakeholders a concrete understanding of the future use situation (Bödker,
1998; Mathiassen and Munk-Madsen, 1986). The representations must also be
usable and effective. The goal is that all parties involved share an understanding
of what is being built.

Prototyping – early and continuously, prototypes should be used to visu-
alize and evaluate ideas and design solutions in cooperation with the end
users (Gould et al., 1997; Nielsen, 1993). Use multiple paper sketches, mock-
ups and prototypes to support the creative process, elicit requirements and vi-
sualize ideas and solutions. The prototypes should be designed and evaluated
with real users in context (contextual prototyping). It is essential to start with
low-fidelity materials, for instance, quick sketches, before implementing any-
thing in code. Start with the conceptual design on a high level and do not move
on to detail too quickly. If possible produce several prototypes in parallel, since
this helps the designers in maintaining an openness and creative attitude to what
is being built. Far too often the design space is unnecessarily limited by only
sticking with the first set of designs produced.

Evaluate use in context – baselined usability goals and design criteria
should control the development (Gould et al., 1997; Nielsen, 1993). Critical
usability goals should be specified and the design should be based on specific
design criteria. Evaluate the design against the goals and criteria in cooperation
with the users, in context. Early in the development project, one should observe
and analyze the users’ reactions to paper sketches and mock-ups. Later in
the project, users should perform real tasks with simulations or prototypes.
Their behavior, reactions, opinions and ideas should be observed, recorded and
analyzed. Specify goals for aspects that are crucial for the usability and that
cover critical activities as well as the overall use situation.

Explicit and conscious design activities – the development process should
contain dedicated design activities (Cooper, 1999). The user interface design
and the interaction design are of undisputed importance for the success of the
system. Remember that to the users the user interface is the system. The design
of the SUD as regards the user interaction and usability should be the result of

28 HUMAN-CENTERED SOFTWARE ENGINEERING

dedicated and conscious design activities. The construction of the SUD should
adhere to that design. Far too often, the UI and interaction design ‘happens’ as
a result of somebody doing a bit of coding or modeling rather than being the
result of professional interaction design as a structured and prioritized activity.

A professional attitude – the development process should be performed by
effective multidisciplinary teams (ISO/IEC, 1999). Different aspects and parts
of the system design and development process require different sets of skills
and expertise. The analysis, design and development work should be performed
by empowered multidisciplinary teams of, for instance, system architects, pro-
grammers, usability designers, interaction designers and users. A professional
attitude is required and so are tools that facilitate the cooperation and efficiency
of the team.

Usability champion – usability experts should be involved early and con-
tinuously throughout the development lifecycle (Kapor, 1990). There should
be an experienced usability expert (usability designer) or possibly a usability
group on the development team. The usability designer should be devoted to the
project as an ‘engine’ for the UCSD process from the beginning of the project
and throughout the development process and system lifecycle (Buur and Bödker,
2000). The usability designer must be given the authority to decide on matters
affecting the usability of the system and the future use situation.

Holistic design – all aspects that influence the future use situation should be
developed in parallel (Gould et al., 1997). Software does not exist in isolation
from other parts of, for instance, a work situation. When developing software
for the support of work activities, the work organization, work practices, roles,
etc, must be modified. All aspects should be developed in parallel. This includes
work/task practices and work/task organization, user interface and interaction;
on-line help; manuals; user training, work environment, health and safety as-
pects, etc. Other parts of the context of use such as: hardware, and social and
physical environments, must also be considered in the integrated design process.
One person or team should have the overall responsibility for the integration of
all aspects.

Processes customization – the UCSD process must be specified, adapted
and/or implemented locally in each organization. Usability cannot be
achieved without a user-centered process. There is, however, no one-size-fits-
all process. Thus the actual contents of the UCSD process, the methods used,
the order of activities, etc, must be customized and adapted to the particular
organization and project based on their particular needs. A UCSD process can
be based on a commercial or in-house software development process, where
activities are added, removed or modified. Existing methods and techniques
may well be re-used, if they comply with the key principles.

A user-centered attitude should always be established. UCSD requires a
user-centered attitude throughout the project team, the development organiza-
tion and the client organization. All people involved in the project must be

KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 29

aware of and committed to the importance of usability and user involvement,
but the degree of knowledge may differ depending on role and project phase
(Boivie et al., 2003). The key principles defined in this chapter can serve as a
common ground.

The above 12 principles facilitate the development, communication and assessment
of user-centered design processes for creating usable interactive systems, covering
analysis, design, evaluation, construction and implementation. Several benefits come
with applying the principles, such as their help in maintaining the focus on the users
and the usability throughout the entire development process. The UCSD poster is
reprinted in Appendix 1.

We fully appreciate that it will be more or less impossible to implement all the
principles in one strategic shift. Adopting them gradually is probably more feasible
and practicable. It is, however, important to comply with the principles to as high a
degree as possible at any point in time.

2.5 TOOLS FOR APPLYING UCSD

The principles are, necessarily, general and rather abstract in nature, and cannot be
applied as is in practice. We are therefore currently working on activity lists, with
potential tools and techniques, for each principle. These lists will provide support for
applying the principles and help in understanding and assessing them.

2.5.1 Activity List

The purpose of the activity list that accompanies each principle is to elaborate on what
it takes to apply a principle. The activity list suggests activities of a general nature
alongside appropriate methods, tools and techniques. The principles are general but
the activity lists should be developed specifically to fit each organization.

2.5.2 Complying with the Activity Lists

The lists suggest activities and it is important to evaluate the applicability of each
activity within the current project. If one chooses not to perform a particular activity,
it is important to make clear why, and that all parties involved agree with the decision.
The activity list serves as both a To-do list and a checklist, where each item can be
‘ticked off’. There are three options for each activity:

No = we decided to not perform this activity. We gave rationales for this decision
and had a general agreement on the motives.

Yes = we performed this activity, in full or to the extent that the project team
and management, found appropriate.

N/A = we found that this activity was not applicable. The rationales for this were
clearly stated and agreed on. We have conducted other actives to compensate
for this.

Below is a draft activity list for the principle User focus:

30 HUMAN-CENTERED SOFTWARE ENGINEERING

2.5.3 Activity List, Tools and Methods for the Principle; User Focus

Vision, purpose goal and constraints of the target activity analyzed and under-
stood by all project members.

– Tools and methods: Goals analysis, Focus groups

Identification, description and prioritization of all user groups.

– Tools and methods: User analysis, personas

Visualization and characteristics of target user groups made available to every-
one in the project.

– Tools and methods: Decorate a project room with artefacts, etc. that illus-
trate the users’ work situation, environment and characteristics.

Potential limitations and restrictions in the users’ capabilities (for instance vi-
sion impairments or language problems) are clear to everyone in the project.

The development team has focused on the needs of target user groups.

The users have expressed their impressions of current system and expectations
on future system.

– Tools and methods: Users asked about good things and bad things in their
current work situation, Think-out loud.

Users observed as they were performing their tasks in context.

– Tools and methods: Analysis of information utilization, Context-of-use
analysis, Field studies, Contextual inquiry.

Use situation documented

– Tools and methods: Video and still camera, scenarios, personas

Tasks analyzed.

– Tools and methods: Task analysis

Copies of artefacts (forms, documents archives, notebooks, etc.) used by the
users collected.

KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 31

2.6 APPLICATION

In the pilot project described above, an initial set of principles was used to define a
UCSD process. The consolidated list of principles was subsequently used to identify
mismatches between the development process and a UCSD approach. The definition
and principles for UCSD can, however, be used for a number of purposes as listed
below::

Explanation model – to analyze and communicate why organizations, projects
or processes did not meet their goals as regards usability

Process development – for defining a UCSD process

Process/Organization customization – to customize or adapt an organization,
project or development process to UCSD, for instance, a commercial develop-
ment process, such as Rational Unified Process— RUP (Kruchten, 1998). Even
though RUP prevents rather than promotes UCSD, it may be modified to inte-
grate some of its features (Gulliksen and Göransson, 2001).

Process/Organization assessment – to assess the user-centeredness of an orga-
nization, project or process. Using the principles to identify mismatches, prob-
lems may be identified in time to do something about them, which increases the
chances of producing a usable piece of software.

Knowledge transfer – to teach and transfer knowledge about UCSD and to com-
municate the basic philosophy of UCSD,

Procurement support –support for procurers as a basis for specifying require-
ments on the design process as such

In client-contractor relations—the client can demand that the contractor work in
accordance with the definition and key principles for UCSD. At present, usabil-
ity is often taken for granted. Clients do not understand that it takes systematic
work according to a UCSD philosophy to achieve usability.

Our definition and key principles originate from our experiences and research in con-
tract and in-house development of bespoke software for work situations. We nev-
ertheless see a potential for applying them in other types of development projects.
Regardless of the project and the organization, the principles must always be adapted
to the context.

2.7 AGILE APPROACHES AND UCSD

Recently, agile approaches to software development have gained a lot of attention.
The rationale behind the agile perspective is to shift the overall focus of software de-
velopment to a more agile or ‘lightweight’ perspective. This shift can be seen as a
contrast to more formal commercial processes. Agile is not a single, well-defined pro-
cess; instead, it is a generic name for several different processes or methods, sharing
a set of core ideas, values and principles of software development. The principles are

32 HUMAN-CENTERED SOFTWARE ENGINEERING

defined in the Agile Manifesto (Agile Alliance, 2001). The most well known of the
agile processes is probably eXtreme Programming, XP.

What is interesting about agile methods is that they are addressing some of the
problems of the development process that we found in our research project. For in-
stance, the project focused on short-term goals such as producing models and other
artefacts while loosing the overall goal of delivering a usable system. Other problems
include use-case mania and poor understanding of the design documentation. Agile
processes emphasize the pragmatic use of light, but sufficient rules of project behav-
ior and the use of human and communication oriented principles (Cockburn, 2002).
Hence, people are more important than processes and tools. Working software is
more important than comprehensive documents and model building, Models and arte-
facts are only means of communication; consequently prototyping and simple design
representations are preferred. Agile developers argues that projects should be com-
munication centric, which implies that effective human communication with project
members and users are important, e.g. face-to-face is the ideal way of communicate
within a project and with users. Usually, there is a direct collaboration with users
and customers – preferably, users and developers should sit in the same room during
development.

The problems with the agile approach, is that the different processes have not paid
much attention to usability and UCSD. The main focus of agile methods is on deliv-
ering working software. This is of course excellent, as usable software also must be
delivered and be working. But to get there, the development is focused on making
coding effective and there is a risk that usability issues gets lost, as there is no explicit
user-centered focus. Agile projects include some roles that are supposed to work with
user interface design and user requirements, but this is in most cases not enough. The
whole project must be committed to the importance of usability. Another problem is
that the users involved in the development are not always end users. Sometimes they
are customers or domain experts. The agile methods seldom make a difference.

Agile processes do not in itself apply to all the key principles of UCSD. But, so far
we have not seen any reason why agile processes could not be customized or adapted
to UCSD.

2.8 DISCUSSION/CONCLUSIONS

The reader may ask why we have defined yet another set of principles for user-centered
systems design, since those existing are not used or do not work they way they were
intended. Below, we discuss some of the main reasons why we believe a more precise
definition of UCSD is required.

Our pilot study shows that even with an explicit commitment to user-centered de-
sign and a usability focus, usability may get lost in the software development process.
Since few projects have the explicit goal to produce systems with poor usability, we
believe that there are obstacles to usability and user involvement in the actual develop-
ment process. Such obstacles have been described in numerous studies, for instance,
Poltrock and Grudin, 1994, and Wilson et al., 1996; Wilson et al., 1997. Our main
concern has therefore been to address shortcomings and obstacles in the development
process that derail the focus on usability and users’ needs.

KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 33

User-centered design (UCD) methods have gained a great deal of attention recently.
According to a recent study (Vredenburg et al., 2002) the opinion is that user-centered
methods generally increase the utility and usability of computer systems. However,
the degree to which organizations adopt UCD methods varies significantly. There is,
according to the study, no information on whether or not it is possible to save time
and resources by adopting UCD methods. Cost-benefit tradeoffs are, nevertheless, a
key consideration when adopting UCD methods (see for example Donahue, 2001).
This calls for close integration of UCD methods into the development process. Un-
fortunately, the most common approach is to perform single usability activities using
informal UCD methods (Hudson, 2001). Such an add-on approach to usability in-
creases the risk of its being cut out when deadlines get tight. We believe that usability
faces the risk of becoming a sidecar problem – if somebody in the project is pointed
out as having the responsibility for usability all others involved resign from their part
of the responsibility. Thus, cost-benefit analysis may in certain situations be used as
an argument against usability activities rather than for if they are not tightly integrated.

In a survey examining the attitude about strategic usability (Rosenbaum et al.,
2000) the authors identified the following obstacles to UCD:

Resource constraints (28.6 %)

Resistance to UCD/usability (26.0 %)

Lack of understanding/knowledge about what usability is (17.3 %)

Better ways to communicate impact of work and results (13.3 %)

Lack of trained usability/HCI engineers (6.1 %)

Lack of early involvement (5.1 %)

No economic need – customers not asking for usability (3.6 %)

We believe that all of these factors are related to a lack of knowledge on how to apply
UCD methods and their potential benefits which provides another reason for defining
and describing UCSD in more specific terms.

Many organizations pay lip service to usability and UCSD but seem at a loss as to
how to achieve it. We have studied organizations that claim that they are committed
to usability and UCSD but who are not willing to change their practices in developing
software. The same problem applies on the individual level. There is a growing con-
cern among software developers about the usability of the products or software they
release on the users. But they often do not know what to do about it.

Yet another reason for a more precise definition of UCSD is that many organiza-
tions still do not recognize the benefits of involving users in the development process,
despite the fact that active user involvement was judged to be the number one criterion
on how to be successful in IT-development projects in the CHAOS-report (Standish
Group, 1995). Clegg et al., 1997, for instance, report that most projects in their study
had failed to involve users in a satisfactory manner. Nor did they adopt an integrated
approach. The impact of new technology on work organization and job design was

34 HUMAN-CENTERED SOFTWARE ENGINEERING

considered ‘. . . hugely important but largely ignored in practice’ and if addressed, it
was usually late in the process and because it was discovered that the new piece of
technology was going to change job designs.

UCD has also been criticized on the grounds of its being ambiguous and vague.
Constantine, 2002, for example, claim that UCD is a ‘. . . loose collection of human-
factors techniques united under a philosophy of understanding users and involving
them in design’. . . ’Although helpful, none of these techniques can replace good de-
sign. User studies can easily confuse what users want with what they truly need. Rapid
iterative prototyping can often be a sloppy substitute for thoughtful and systematic de-
sign. Most importantly, usability testing is a relatively inefficient way to find problems
you can avoid through proper design.’ (Constantine, 2002, p. 43). Their remedy is
‘usage-centered engineering’ where the emphasis is on the usage, not the users, and
on model-driven development. We readily agree with the critique against UCD, but
not with the remedy. Model-driven approaches rely on skilful designers/developers
using abstract models of the domain to base their design on. Model-driven approaches
represent a move away from user-centered design, reducing user involvement to that
of the users being informants rather than co-designers. We believe, and argue in this
chapter, that user participation is a key success factor for designing for usability (see
also the CHAOS report, Gould et al., 1997, and ISO/IEC, 1999) and that software de-
velopment needs to move towards a user-centered approach rather than away from it.
Computer systems (in particular in a work context) must support not only the ‘official’
rules and version of the work practices but also the particularities in each situation
(Sachs, 1995; Beyer and Holtzblatt, 1998; Harris and Henderson, 1999), which re-
quires a deep understanding of the context of use. Few development teams have that
understanding, and we believe that writing requirements documents or creating ab-
stract models is simply not enough to create that kind of understanding. Only the
users themselves can provide that. This view is also supported by Harris and Hen-
derson, 1999, as they argue for computer systems that must be much more flexible to
meet the evolving human organizations.

To summarize the above discussion, we believe that user-centered systems design
must be defined in terms of a process where usability work and user involvement are
tightly integrated with the development process. Adding the key principles, further-
more, helps in communicating the essence of UCSD where user involvement is an
essential part. By providing a more precise definition of UCSD, we can also avoid
problems with ambiguity and vagueness and argue against the use of approaches that
are not user-centered.

Hence, the main aim of our definition and key principles is to support the develop-
ment process. This can be achieved by incorporating roles, activities and artefacts for
maintaining a focus on usability and users’ needs throughout the entire system life-
cycle. The definition and key principles may also be used when specifying a UCSD
process or when customizing a commercial development process, such as Rational
Unified Process – RUP (Kruchten, 1998). The key principles originate from our ex-
periences and research in contract and in-house development of bespoke software for
work situations. We nevertheless see a potential for applying them in other types of
development projects.

KEY PRINCIPLES FOR USER-CENTRED SYSTEMS DESIGN 35

Our research, as well as our experiences, shows that by applying the definition of
and key principles for UCSD, the chances increase of identifying problems in time to
do something about them. Consequently, the chances of producing usable software
increase.

Finally, we would like to emphasize that what we want to achieve is not simply yet
another usability method. We see UCSD as, a new paradigm requiring a profound shift
of attitudes towards systems development and user involvement. The attitudes that are
required for a truly user-centered approach are embodied in the key principles.

Acknowledgements

This project was performed with financial support from the National Agency for In-
novation Research, the Council for Work Life and Social Science Research, and the
Swedish National Tax Board. The input received from the number of seminars leading
up to the principles, such as IFIP TC 13, and our industrial partners Enea Redina AB,
Tieto Enator AB and Antrop AB was greatly appreciated.

36 HUMAN-CENTERED SOFTWARE ENGINEERING

Appendix 1: The UCSD Poster

Figure 2.5 UCSD poster

3 HCI, USABILITY AND SOFTWARE

ENGINEERING INTEGRATION: PRESENT

AND FUTURE
Ahmed Seffah*, Michel C. Desmarais**, and Eduard Metzker***

* Human-Centered Software Engineering Group Computer Science Department,

Concordia University,

** Computer Engineering Department,

École Polytechnique de Montreal, Quebec, Canada

*** Software Technology Lab, Daimler Chrysler Research and Technology Centre,

Ulm, Germany

Abstract

In the last five years, several studies and workshops have highlighted the gap between
software design approaches in HCI (Human Computer Interaction) and software en-
gineering. Although the fields are complementary, these studies emphasize that they
are not well integrated with each other. Several frameworks have been proposed for
integrating HCI and usability techniques into the software development lifecycle. This
chapter reviews some of the most relevant frameworks. It assesses their strengths and
weaknesses as well as how far the objective of integrating HCI methods and principles
within different software engineering methods has been reached. Finally, it draws con-
clusions about research directions towards the development of a generic framework
that can: (1) facilitate the integration of usability engineering methods in software

37

in the Development Process, 37–57.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

38 HUMAN-CENTERED SOFTWARE ENGINEERING

development practices and, (2) foster the cross-pollination of the HCI and software
engineering disciplines.

3.1 INTRODUCTION

It is no coincidence that the titles of some chapters in this book evoke the terms
“solitudes” and “competition” to characterize the relation between the fields of HCI
(Human-Computer Interaction) and SE (Software Engineering) (cf. Jerome and Kaz-
man, chapter 4; Sutcliffe, chapter 5). This uneasy cohabitation dates back to the early
days of HCI when human-centered design has been presented as the opposite, and
sometimes as a replacement, to the system-driven philosophy generally used in soft-
ware engineering (Norman and Draper, 1986). Although numerous HCI researchers
and practitioners view User Centered Design (UCD) as a process and as a set of spe-
cific methodologies to design and develop interactive software applications, HCI is
by no means considered a central topic in SE. For example, the SWEBOK, an IEEE
initiative for the definition of SE knowledge and practices, defines HCI as a “related
discipline”, termed “software ergonomics” (Abran et al., 2004). Usability is consid-
ered one of many non functional requirements and quality attributes. No reference
is made to specific UCD methods such as those found in the ISO 13407 standard,
“Human-centred design processes for interactive systems” (ISO/IEC, 1999).

The reality is that UCD and software engineering techniques do have overlapping
objectives of defining which methods to use in the software development process,
what kind of artefacts (documents and deliverables) to use, and what quality attributes
to prioritize. However, we argue that they have different perspectives on the software
development process itself, as depicted in figure 3.1. The SE community focuses on
the “system 1” perspective in Figure 3.1: software development is driven by specifica-
tions provided for defining the application, including the interface. The user interface
has to meet the functional and usability requirements, but the requirements are tied
to the system, that corresponds to the application itself. The focus is on the software
application and the interface is one of many components that has to meet certain re-
quirements.

In contrast, the proponents of UCD, and more specifically the “quality in use” ap-
proach (Bevan, 1999), focus on the “system 2” perspective: The priority is to ensure
that each class of users can perform a given set of tasks with the application. The ulti-
mate requirements are tied to what the user can perform with the application. Conse-
quently, the software development process is driven by the need to define and validate
these requirements and closely depends on the tasks defined and the users’ capabilities
and characteristics.

The two perspectives do not differ solely from their philosophical stance. The can
have significant impacts on the how the software development process will be defined
and planned, which activities will be conducted, which tools will be used, and the
expertise of the team members and its leader. The impacts are particularly important
with regards to the requirements management and quality control activities.

While both perspectives are valid, the SE approach is always necessary, since there
necessarily is a “system 1” perspective. It either stands alone in the absence of a
significant user interface component, or it is embedded in the “system 2” perspective

HCI, USABILITY AND SOFTWARE ENGINEERING INTEGRATION 39

Figure 3.1

otherwise. But when the application’s degree of interactivity and interface complexity
is high, the “system 2” perspective, we argue, should prevail. The whole development
process must then put the emphasis on defining, validating, and measuring what the
use can do with the application. Thus the need to integrate UCD approaches to the SE
development process.

Bringing together the SE and UCD approaches was the major goal of several work-
shops organized during the last decade, as well as the goal of a number of research
efforts. These workshops highlighted the UCD and SE (Software Engineering gaps
and the importance of addressing them (van Harmelen et al., 1997; Artim et al.,
1998; Seffah and Hayne, 1999; Nunes and e Cunha, 2000; Gulliksen et al., 1998; Gul-
liksen et al., 2001; Harning and Vanderdonckt, 2003; Kazman et al., 2003; John et al.,
2004b). The starting point of all these workshops was the two workshops organized
by van Harmelen et al at CHI’97 and CHI’98 conferences on Object-Oriented Models
in User Interface Design and on incorporating Task Analysis Into Commercial And In-
dustrial Object-Oriented Systems Development (van Harmelen and Wilson, 1997; Ar-
tim et al., 1998).

As will be detailed in this chapter, the conclusions of these investigations brought
to light some of the major integration issues, including:

Extending software engineering artefacts for user interface specification, such as
annotating use cases with task descriptions (Constantine and Lockwood, 1999;
Rosson, 1999; Cockburn, 1997; Dayton et al., 1996),

Enhancing object-oriented software engineering notations and models (Nunes
and e Cunha, 2000; Artim et al., 1998; Kruchten, 1999; da Silva and Paton,
2001).

Possible extensions of UCD methods for requirements gathering through field
observations and interviews, deriving a conceptual design model from scenario,
task models and use cases (Rosson, 1999; Paternò, 2001; Benyon and Macaulay,

The two system perspectives

40 HUMAN-CENTERED SOFTWARE ENGINEERING

2002) and using personae (Cooper and Reimann, 2000) as a way to understand
and model end-users.

New methodologies for interactive systems design such as those introduced
by Nielsen (1995, 1993), Mayhew (1999), and Roberts (1998), as well as ap-
proaches complementing existing methodologies (Constantine and Lockwood,
1999; Kruchten, 1999).

We will review the these different issues and the frameworks proposed for integrat-
ing UCD and SE in the following sections.

3.2 DEVELOPMENT PROCESSES

HCI practitioners and researchers have proposed a number of development processes
that take into account the particular problems encountered in the engineering of highly
interactive systems. Examples of the large number of methodologies are the Star Life-
cycle (Hix and Hartson, 1993), LUCID (“Logical User-Centered Interface Design”
method of Smith and Dunckly, 1998), the Usability Engineering Lifecycle (Mayhew,
1999), Usage-Centered Design (Constantine, 1999), SANE Toolkit for cognitive mod-
eling and user-centered design (Bosser et al., 1992), SEP (for user-centered require-
ments using scenarios) (McGraw, 1997) and IBM-OVID (Object, View, Interaction
and Design) (Roberts, 1998; see also Roberts, chapter 11 in this book).

Reviewing of all these approaches would go beyond the scope of this chapter. Some
of these methods, and in particular those aiming to bridge object-oriented models,
scenarios, and task models are detailed in Van Harmelen (1997). In the following
sections, we focus some of the main approaches, namely scenario-based approach
(Carroll, 2000), contextual design (Beyer and Holtzblatt, 1998), the star lifecycle
(Hix and Hartson, 1993), the usability engineering lifecycle (Mayhew, 1999), and
usage-centered design (Constantine and Lockwood, 1999). We also refer the reader to
Roberts’ recent coverage of the OVID and IBM’s approaches (see Roberts, chapter 11
in this book) and the Cognetic’s corporation’s LUCID framework1.

3.2.1 Scenario-Based Design

Carroll and Rosson (Carroll, 2000; Rosson and Carroll, 2002) developed a usability
engineering approach centered around different stages of scenario definition (see Fig-
ure 3.2). Scenarios are not a novel concept. They are known by both the human factors
community, for conducting task analysis, and by the software engineering community,
as instances of use-cases. However, the scenario-based usability engineering process
places a much greater emphasis, and provides greater details on their role during the
early phases of the software lifecycle.

Scenarios are used for clarifying usability requirements and for driving the iter-
ative design process. Scenarios describe an existing or envisioned system from the
perspective of one or more real or realistic users. They are used to capture the goals,

1See http://www.cognetics.com/lucid/index.html.

HCI, USABILITY AND SOFTWARE ENGINEERING INTEGRATION 41

Figure 3.2 Carroll and Rosson’s scenario-based framework (adapted from Carroll and

intentions, and reactions of the user. Carroll attributes several merits to scenarios, in
particular improving the communication between users, designers and stakeholders.
As previously mentioned, communication with different groups involved in the design
process is one of the major integration obstacles for UCD methods. Because scenarios
are formulated in plain natural language, they have the advantage of being understood
both by users and designers. This enables all project participants to share in the design
process and discuss potential solutions.

Claims are the second core concept of scenario-based design (see section 3.4.4).
Claims are developed in parallel to scenarios. The core elements that are addressed
in a scenario are listed with their potential advantages and drawbacks. This clarifies
which effects each element has on the usability of the system. If the drawbacks of an
element outweigh the advantages, it is usually discarded.

3.2.2 Contextual Design

Contextual design, developed by Beyer and Holtzblatt (Beyer, 1998), stresses the be-
havioral aspects of the system design process. In their view, almost all of the system
design process is driven by these aspects. Software requirements engineering, as a
subsequent phase, is viewed as a response to the systems design process. In other
words, the complete system design process should be an input to the software require-
ments engineering process. The key activities of contextual design are: Observe and
interview the customer, construct and consolidate work models, redesign work mod-
els, and design the system.

Beyer and Holtzblatt (Beyer, 1998) emphasize that “the ability to see, manipulate,
and design a process for delivering systems is a fundamental skill when it comes to

Rosson, 2002)

42 HUMAN-CENTERED SOFTWARE ENGINEERING

establishing their techniques in software development processes”. However, they have
provided only very generic recommendations for adapting and tailoring the overall
approach to different project configurations. They recommend for example ‘to recog-
nize which parts are critical and which are less necessary in each case’, ‘what works
for a two-person team won’t work for a fifteen person team’, ‘what works to design
a strategy for a new market venture won’t work for the next iteration of a 10-year old
system’, ‘tailor things you pick up to your problem, team and organization’ and finally
‘what you do with it is up to you’ (Beyer, 1998).

3.2.3 Star Lifecycle

The star lifecycle proposed by Hix and Hartson (1993), focuses on usability evaluation
as the hub process activity. Placed around this central task are the following activities:
(1) system, task, functionality, user analysis, requirements and usability specifications,
(2) design, design representation and rapid prototyping, (3) software production and
deployment. The results of each activity are subjected to an evaluation before moving
on to the next process activity. It is possible to start with almost any development
activity. The bi-directional links between the central usability evaluation task and all
other process activities cause the graphical representation of the model to assume a
star shape.

One of the drawbacks of this approach is outlined by Hix and Hartson (1993).
Project managers tend to have problems with the highly iterative nature of the model.
They find it difficult to decide when a specific iteration is completed, thus complicating
the management of resources and limiting their ability to control the overall progress
of the development process. An obvious solution to this problem is to establish control
mechanisms such as quantitative usability goals that serve as stopping rules.

Hix and Hartson give some basic advice on tailoring the overall approach to a
specific development context. They suggest a top down approach if the development
team has some experience with and prior knowledge of the target system structure.
Otherwise they favour a more experimental bottom-up approach. They suggest that
the overall approach should be configured to accommodate the size of the project, the
number of people involved, and the management style. They explicitly emphasize the
necessity to view usability engineering as a process, but they agree that the design
phase is one of the least understood development activities. They provide special
methods and notations to support the process. For example, the user action notation
(UAN) specifies user interaction in a way that is easily readable and yet unambiguous
for implementing the actual interface. Usability specification tables are employed for
defining and tracing quantitative usability goals.

3.2.4 Usability Engineering Lifecycle

Proposed by Deborah Mayhew, the usability engineering lifecycle is an attempt to
redesign the complete software development process around usability engineering
knowledge, methods, and activities (Mayhew, 1999). This process starts with a struc-
tured requirements analysis concerning usability issues. The data gathered from the
requirements analysis is used to define explicit, measurable usability goals for the pro-

HCI, USABILITY AND SOFTWARE ENGINEERING INTEGRATION 43

posed system. The usability engineering lifecycle accomplishes the defined usability
goals via an iteration of usability engineering methods such as conceptual model de-
sign, user interface mock-ups, prototyping and usability testing. The iterative process
terminates if the usability goals have been met or the resources allocated for the task
have been consumed.

As outlined by Mayhew (1999), the usability engineering lifecycle has been suc-
cessfully applied in various projects. However, some general drawbacks were dis-
covered by Mayhew during these case studies. One key concern is that redesigning
the overall development process around usability issues often poses a problem to the
organizational culture of software engineering organizations. The well-established de-
velopment processes of an organization cannot easily be turned into human-centered
processes during a single project. Furthermore, development teams often have insuf-
ficient knowledge to perform the UCD activities, which hampers the establishment
of UCD activities in the engineering processes. Precisely how the UCD activities
proposed in the usability engineering lifecycle should be integrated smoothly into en-
gineering processes practiced by software development organizations was declared by
Mayhew to be an open research issue.

Mayhew names several success factors for practicing UCD. First, all project team
members should carry out UCD process steps. Mayhew stresses the importance of ulti-
mately formalizing UCD within a development organization and methodology. Project
team participation is necessary and having a design guru on board is not enough.

3.2.5 Usage-Centered Design

Usage-centered design, developed by Constantine and Lockwood (1999), is based on
a process model called the activity model for usage-centered design (see figure3.3).
The activity model describes a concurrent UCD process that starts with the activities
of collaborative requirements modeling, task modeling, and domain modeling in order
to elicit basic requirements of the planned software system. The requirements analysis
phase is followed by the design activities of interface content modeling and implemen-
tation modeling. These activities are continuously repeated until the system passes the
usability inspections carried out after each iteration. The design and test activities are
paralleled by help system and documentation development and standards definition for
the proposed system. This general framework of activities is supplemented by special
methods like essential use case models or user role maps.

Constantine and Lockwood provide many case studies where usage centered de-
sign was successfully applied, yet they encountered many of the same organizational
obstacles as Mayhew (Mayhew, 1999) when integrating their UCD approach into the
software engineering processes in practice. They propose that ‘new practices, pro-
cesses, and tools have to be introduced into the organization and then spread beyond
the point of introduction’. A straightforward solution to these problems is the estab-
lishment of training courses for all participants of UCD activities offered by external
consultants. However, this solution is regarded as time consuming and cost intensive
in the long run. Also, it tends to have only a temporary effect and thus does not pro-
mote organizational learning in UCD design methods. Constantine and Lockwood
conclude that it is necessary to build up an internal body of knowledge concerning

44 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 3.3 Constantine and Lockwood’s usage-centered design (adapted from Constantine

UCD methods, best practices and tools, in a way that is tailored to the needs of the
development organization.

3.2.6 ISO Standards 13407

This review of process oriented integration of UCD and SE would be incomplete with-
out mentioning the ISO 13407 standard (ISO/IEC, 1999). This standard defines the
characteristics of what a user-centered development project must hold. It does not de-
fine a user-centered process by itself, only its characteristics. Neither is it meant to be
a replacement, but instead it is intended to suggest a number of complementary means
of addressing usability engineering issues.

A total of 36 activities are identified for the “human-centered design” framework
(Maguire, 2001). They are classified into five categories that represent different phases
of the development lifecycle: (1) planning, (2) context of use analysis, (3) require-
ments analysis (4) design, and (5) evaluation. Example of such activities for each
respective phases are usability planning and scoping, task analysis, scenarios of use,
paper prototyping, and participatory evaluation. ISO 13407 can also be used in con-
junction with ISO TR 18529 for assessing the development process according to the
“usability maturity model” (Earthy et al, 2001).

3.2.7 The Status UCD and SE Processes in Reality

The UCD processes we briefly surveyed provide frameworks for planning the soft-
ware development processes and activities. How widespread they are used, and how
deeply they affect the software development and management processes remains an
open question.

Jerome and Kazman’s chapter in this book (4) suggest that their penetration in the
real world of software engineering is relatively low. Roberts (chapter 11) and Vredenburg

and Lockwood, 1999)

HCI, USABILITY AND SOFTWARE ENGINEERING INTEGRATION 45

(2003) point out the importance of UCD and the OVID methodology at IBM, but
there is no quantitative figures to assess the impact in reality. There are compelling
accounts that some UCD processes are adopted and that they drive the whole devel-
opment process. Some examples can be found in Rosson and Carroll’s (2002) or in
Landauer’s book (1995). However, such examples do not constitute evidence of a
trend itself. Our own experience is that the application of UCD processes remain an
exception in general.

Our own assessment is that what is likely a mainstream practice is the adoption
of some HCI practices, such as usability testing. Such fundamental UCD activities
are probably widespread in many projects and corporations, but the whole software
development process does not necessarily qualify as a UCD process.

While this section covered processes and activities, we now turn to another ap-
proach of integrating UCD and SE that relies on artefacts and documents.

3.3 ARTEFACTS

Besides activities, artefacts—the intermediate and final deliverables of software de-
velopment project—are the elements that characterize an SE methodology. A number
of researchers have attempted to identify artefacts that can help bridge UCD and SE
approaches and techniques. They have looked for similarities and complementarity
that could help merging typical UCD and SE approaches. We will focus on artefacts
around scenarios (Carroll, 2000, Benyon, 2002), use cases (Cockburn, 1997; Sef-
fah, 1999; Constantine, 1999), object-oriented notations such as UML (Paterno, 2001;
Krutchen, 1999; da Silva, 2001; Markopoulos, 2000) and task models (Artim, 1998;
Dayton, 1996; Rosson, 1999).

These investigations demonstrate that in use case-driven software development,
human-centered design processes in general and task analysis approaches in particular
are highly compatible. This may be considered as a starting point for cross-pollinating
functional and user requirements engineering techniques and tools. For example, user-
centered requirement artefacts such as task and user models can substantially improve
certain basic weaknesses of the functional requirements approach. One weakness ad-
dressed by the user-centered approach is in identifying the context of use.

3.3.1 Scenarios as a Vehicle for Bridging Object Oriented Analysis and

Design

As an artefact for capturing user requirements, scenarios have been promoted both in
HCI (Carroll, 2000) and software engineering (Jarke, 1999). However the concept
of scenarios has not been consistently defined. Jarke (1999) proposed to clarify the
purpose and manner of using scenarios in the modeling process, since scenarios can
be used in very different manners. Jarke points out that scenarios are used in software
engineering as intermediate design artefacts while Carroll argued that scenarios could
be used as a driving force in the entire design process.

Rosson (1999) suggests enhancing the object-oriented analysis and designing ap-
proach with a scenario-based approach. Once scenarios are completed, she proposes
first extracting elements that are potential computational objects, and then organizing

46 HUMAN-CENTERED SOFTWARE ENGINEERING

them as a network of collaborating objects. The next step is to focus on a specific
object and try to assign functionality to it. This object-by-object analysis is supported
by the Point-Of-View Browser that maintains user-relative descriptions of each object.
The communication approach is middle-out, since it iteratively elaborates a set of user
tasks (described in user interaction scenarios) in two directions: toward networks of
collaborating computational objects on the one hand, and toward detailed user inter-
action episodes on the other. This is the opposite of prototyping tools such as Visual
Basic, which are outside in, because the focus is on screen design.

Such an approach guarantees a good object model as well as satisfying the need to
take into account the user’s point of view. It also addresses our main concern: The in-
corporation of the user’s needs in the software development process. However, in this
technique the user interface design relies only on the user’s description of their tasks
and usability claims. Rosson already determined that this would cause mismatches
with the user’s view, which she says to be minor compared to the need of structure
in the task model (needed for evocativeness). She defines an intermediate philosophy.
The aim is not the user and their needs, or a good structure of the software; the aim
is to have a good midpoint construct that helps establish a good interface as well as a
good program structure. This solution did not seem to develop in the industry market,
perhaps because it is too different from the methods currently in use.

Similar to Rosson’s work, Jarke (1999) also proposed to clarify the purpose and
manner in which to use scenarios in the modeling process. He defines scenarios as
constructs that describe a possible set of events that might reasonably take place; they
offer “middle-ground abstraction between models and reality”. Scenarios are typically
used in four approaches:

Capture a sequence of work activities

View a sequence of representations or interfaces

View the purpose of users in the use of the software

View the lifecycle of the product.

One of the major weaknesses of scenarios as an integration artefact is the fact that
informal representations of scenarios, generally statements in natural language, are
often insufficient for overcoming the difficulty of communication between users, de-
velopers, usability expert and stakeholders with differing backgrounds. Scenarios in
natural languages suffer from ambiguity and imprecision. Formal representations of
scenarios provide a solution to the ambiguity problem and facilitate formal proof and
analysis of properties of requirements. However these formal specifications are often
difficult to understand and develop for newcomers to this area. A trade-off is needed
between the precision of formal representations and the ease of communication of
scenarios in the context of accomplishing a task. Designers and users need to able to
develop and reason about scenario descriptions throughout the development lifecycle
in a variety of media, purposes, and views, either to discuss existing options or to
stimulate imagination.

HCI, USABILITY AND SOFTWARE ENGINEERING INTEGRATION 47

3.3.2 Bridging Task Analysis and Object-Oriented Models

In model-based task analysis as practiced in HCI, the objective is normally to achieve
a generic and thus abstract model of the user tasks, typically in a hierarchical form of
goals, sub-goals and methods for achieving the hierarchy of goals. In object-oriented
development, use cases are often employed in gathering functional requirements. Can
task analysis models be improved by use case techniques? Can use cases be improved
by the incorporation or consideration of formal task models? Are there ways of in-
tegrating the two approaches? Such questions have been widely discussed (Dayton,
1996, Artim, 1998; Seffah and Hayne, 1999; Forbrig, 1999; Engelberg, 2001).

Cockburn (1997), for one, recognizes that use-cases are not well defined and many
different uses coexist, with differences in purpose, content, plurality and structure. He
proposes to structure them with respect to goals or tasks. Although this approach may
appear unusual as a structure for requirements, it follows a natural hierarchical orga-
nization typical of task analysis techniques (Dayton, 1996). The goals are structured
as a tree containing “Summary goals” as high-level goals, and “User goals” as atomic
goals (e.g. performing summary goal A involves performing user goal A1 then A2).

3.3.3 Extending UML Notation for User Interface Modeling

Several research investigations have been conducted with a view to improving the uni-
fied modeling language (UML) for user interfaces and interactive systems engineering.
Nunes and Cunha (2000) proposed the Whitewater Interactive System Development
with Objects Models (WISDOM), as a lightweight software engineering methodol-
ogy that uses UML to support Human-Computer interaction techniques. WISDOM
is evolutionary in the sense that the project evolves incrementally through an itera-
tive process. A novel aspect of this work is the addition of extensions to UML to
accommodate task analysis. The modeling constructs have to accommodate:

A description of users and their relevant characteristics

A description of user behavior/intentions in performing the envisioned or sup-
ported task

A specification of the abstract and concrete user interface.

WISDOM applies many changes and additions to UML to support this: change
of class stereotype boundary, control and entity; add of task, interaction space, class
stereotype, add-ons of the associations communicate, subscribe, refine task, navigate,
contains, etc. But concerns arise about the frequent communication misadventures
between HCI and Software Engineering specialists, as well as the tendency to mis-
interpret constructs such as use-cases, caused by different cultures having a different
understanding of a versatile language like UML.

In the same vein as this work, Markopoulos (2000) and da Silva (2001) also pro-
posed extensions to UML for interactive systems. In contrast, a task is represented as
classes in WISDOM and by activities in the UMLi framework proposed by (da Silva,
2001). Mori, Paterno et al (2002) also suggested an extension of their task modeling
notation, CTT (Concurrent Task Tree).

48 HUMAN-CENTERED SOFTWARE ENGINEERING

The above research shows that UML suffers from a lack of support for UI modeling.
For example, class diagrams are not entirely suitable for modeling interaction, which is
a major component in HCI. The IBM-OVID methodology is an attempt to provide an
iterative process for developing an object-oriented model by refining and transforming
a task model (Roberts, 1998).

3.3.4 Augmenting Use Cases for User Interface Prototyping

Artim (1998), Constantine and Lockwood (1999), and Kruchten (1999) all tried to
augment use cases to support interface design and prototyping. This integration is
based on the synchronization of the problem specification and the solution specifica-
tion; these two specifications are updated at each iteration through an assessment of
impact of the changes in the models.

Theoretically, having a consistent use cases model that provides simple views for
any actor and automatically includes the user’s concerns should be enough to enable
the software engineers to keep track of the user’s needs during their design process.
However, as Artim and the participants in his workshop (Artim, 1998) pointed out,
the culture of software engineering does not include collaborating with the user in the
process of building a better system. These sociological forces within development
teams severely limit the user’s impact in the development of the system, thus provid-
ing a system that fits to user interface specifications, rather than optimizing the fit to
the user’s needs. Thus, even though the development method directly determines the
product being created, it is not the only factor.

Constantine and Lockwood (1999) try to harness the potential of use-cases with the
goal of replacing task models and scenarios, which are generally proposed as a starting
point for UI prototyping. They structure their method into five kinds of artefacts,
organizing the three center ones by a map, so we respectively have the following:

Maps:

– User Role Map structuring the user roles (which hold the user informa-
tion),

– Navigation Map structuring the content models (which hold the interface
views),

– Use Case Map structuring the use cases (which hold the task descriptions),

Domain Model, which holds glossary, data and class models,

Operational Model, which holds environmental and contextual factors.

These maps and models can be developed or enhanced concurrently, which departs
from more traditional (albeit iterative) sequential approaches. In the attempt to com-
pletely specify the design methodology, they define the notion of essential use-cases.
These essential use-cases aim to enhance usability by focusing on intention rather
than interaction, and simplification rather than elaboration. The use-cases provide an
inventory of user intentions and system responsibilities, focusing only on information
considered essential and hiding unneeded information; this approach helps use-cases

HCI, USABILITY AND SOFTWARE ENGINEERING INTEGRATION 49

adapt to eventual technological or environmental changes. Constantine gives a struc-
ture to essential use-cases, at the same time defining the syntax of the narratives. He
also acknowledges the limitations of essential use-cases in the domain of software en-
gineering; for this reason he advocates the use of essential use-cases only in the core
process, where usability characteristics are essential.

Krutchen (1999) proposes to add a new artefact to the Rational Unified Process:
the use-case storyboard. This artefact provides a high-level view of dynamic window
relationships such as window navigation paths and other navigation paths between
objects in the user interface. Use-case storyboards have to be written at analysis time,
at the same time as the use-cases. They include many useful constructs such as:

1. Flows of events, also called storyboards. These are textual user-centered de-
scriptions of interactions.

2. Class Diagrams. These are classes that participate in the use-cases.

3. Interaction Diagrams. These describe the collaboration between objects.

4. Usability Requirements. These are textual version of usability requirements.

5. References to the User-Interface Prototype. This is a text description of the
user-interface prototype.

6. Trace dependency. This is a type of map of the use cases.

Krutchen (1999) also proposed guidelines on how to use this new construct. He
recommends that a human factors expert should write these documents, because tradi-
tional software engineers will not design or use this artefact correctly, not being used
to its philosophy. A big concern about this new technique comes from its practice
of specifying the interface and the interactions at the beginning, rather that deriving
them from the UI design, thus “putting the cart before the horse” and limiting the pos-
sibilities of the interface (Constantine, 1999). This also illustrates that use-cases can
adapt to usability engineering, but there is no assurance that designers will use them
adequately.

3.4 DESIGN KNOWLEDGE

In addition to efforts made by the UCD and SE communities to bridge the techni-
cal aspects of their methods, communication factors are also important. Like others
(Sutcliffe, 2000; Henninger, 2000), we strongly argue that methods and tools for cap-
turing and disseminating HCI and usability design knowledge and best practices can
facilitate the integration and cross-pollination of the HCI and software engineering
disciplines.

HCI has a long tradition of devising ways to capture knowledge so as to guide
the design and evaluation of interactive systems. Prominent examples are guidelines
(Vanderdonckt, 1999), interaction patterns (Erickson, 2000; Tidwell, 1998) and claims
(Sutcliffe, 2000). Here, we summarize these methods and discuss how they can be
extended to support effective integration.

50 HUMAN-CENTERED SOFTWARE ENGINEERING

3.4.1 Guidelines

Vanderdonckt, (1999) defines a guideline as “a design and/or evaluation principle to be
observed in order to get and/or guarantee the usability of a user interface for a given
interactive task to be carried out by a given user population in a given context”. A
prominent example of a guideline collection is Smith and Mosier’s set of 944 general-
purpose guidelines (Smith, 1986).

A detailed analysis of the validation, completeness and consistency of existing
guideline collections has shown that there are a number of problems with guidelines
(Vanderdonckt, 1999). Guidelines are often too simplistic or too abstract, they can be
difficult to interpret and select, they can be conflicting and they often have authority
issues concerning their validity. One of the reasons for these problems is that most
guidelines suggest a context-independent validity framework but in fact, their applica-
bility depends on a specific context.

The general utility of detailed design guidelines for augmenting development pro-
cesses has also been questioned. We argue that the massive context information that
is necessary to describe the context of use of a guideline together with the problem of
conflicting guidelines makes guidelines virtually useless for developers who are not
experts in usability. Hartson and Hix (1993) noted that applying guidelines to spe-
cific situations requires a higher level of expert knowledge and experience than most
interaction designers have.

Although guidelines remain an important tool for teaching user interface design,
their utility to professionals is questioned and, until we find better means to help people
apply them in specific context, they cannot be considered a successful avenue for the
integration of HCI practices and SE.

3.4.2

A style guide is a document that contains descriptions of the usage and style of particu-
lar interaction components such as menus, dialogue boxes and messages. Commercial
style guides such Apple “Human Interface Guidelines” (Apple, 1987), the Microsoft
Windows Interface Style Guide (Microsoft, 1995), or the Java Look and Feel style
guide from Sun Microsystems (Sun Microsystems, 1999) are often associated with a
commercially available toolkit. They can act as a basis for customized style guides
that are tailored for the products of an organization.

Style guides are mainly used during development and usability inspection of user
interfaces to ensure consistency of user interaction designs. The development of a
style guide is an important early activity for project teams. Style guides are a useful
way to capture and document design decisions and to prevent constantly revisiting
these decisions.

Although more specific than guidelines, style guides suffer from many of the
same problems, such as conflicts, inconsistencies, and ambiguities. Furthermore style
guides are limited to a very particular type of application or computing platform.
Therefore, their ability to disseminate established HCI and usability practices to a
wide audience is limited.

Style Guides

HCI, USABILITY AND SOFTWARE ENGINEERING INTEGRATION 51

3.4.3 HCI and Usability Design Patterns

The limitations of guidelines and style guides motivated some researchers to introduce
interaction patterns, also called HCI patterns (Erickson, 2000, Tidwell, 1998). An
HCI pattern is described in terms of a problem, a context and a solution. The solution
is assumed to be a proven one to a stated and well-known problem. Many groups
have devoted themselves to the development of patterns and patterns languages for
user interface design and usability. Among the heterogeneous collections of patterns,
Common Ground, Experiences and Amsterdam play a major role in this field (Tidwell,
1998).

Patterns provide more useful and specific information than guidelines, by explic-
itly stating the context and the problem and by providing a design rationale for the
solution. Patterns contain more complex design knowledge and often several guide-
lines are integrated in one pattern. Patterns focus on “do this” only and therefore are
constructive and less abstract.

In contrast, guidelines are usually expressed in a positive or negative form; do or
don’t do this. Therefore guidelines are useful for evaluation purposes. They can easily
be transformed into questions for evaluating a UI.

Erickson (2000) proposed to use pattern languages as a descriptive device, a lingua
franca for creating a common ground among people who lack a shared discipline or
theoretical framework. In contrast, both Alexander (1977) (the father of patterns)
and the software pattern community tend to use patterns more prescriptively. The
software pattern community focuses on using patterns to capture accepted practice
and to support generalization; Alexander’s central concern is using patterns to achieve
the ineffable “quality without a name,” which characterizes great buildings and houses.
HCI design patterns are generalizations of specific design knowledge that can increase
quality of design.

Certain issues remain to be addressed in patterns and current HCI patterns lan-
guages. To begin with, there are no standards for the documentation of patterns. The
Human-Computer Interaction community has no uniformly accepted pattern form.
Furthermore, when patterns are documented (usually in narrative text), there are no
tools to formally validate them. There should be formal reasoning and methodology
behind the creation of patterns, and in turn, pattern languages. A language in computer
science has syntax and semantics. None of the current pattern languages follow this
principle; rather they tend to resort to narrative text formats as illustrated in the Expe-
riences example. Finally, the interrelationships described in the patterns are static and
not context-oriented. This is a major drawback since the conditions underlying the use
of a pattern are related to its context of use.

3.4.4 Claims

Another approach to capturing HCI design knowledge is claims (Sutcliffe, 2000).
Claims are psychologically motivated design rationales that express the advantages
and disadvantages of a design as a usability issue, thereby encouraging designers to
reason about trade-offs rather than accepting a single guideline or principle. Claims
provide situated advice because they come bundled with scenarios of use and artefacts

52 HUMAN-CENTERED SOFTWARE ENGINEERING

that illustrate applications of the claim. The validity of claims has a strong grounding
in theory. This is also a weakness of claims, because each claim is situated in a specific
context provided by the artefact and usage scenario. This limits the scope of any one
claim to similar artefacts.

3.5 ORGANISATIONAL APPROACHES

We now turn to organisational approaches to filling the current gap between UCD and
SE.

3.5.1 Evidence Based Usability Engineering

Evidence-based Usability Engineering (EBUE) is an approach that addresses the prob-
lem of the integration, adoption, and improvement of UCD methods at the organi-
zational level (Metzker, 2003). It acknowledges that a team and an organization in
general has to adopt new techniques in a progressive manner, first by recognizing and
assessing the strengths of certain approaches and then by a process of selecting and re-
fining these techniques. EBUE is art of an integrative framework - a UCD meta-model
- to support measurement-based integration of usability concerns in any software en-
gineering process.

EBUE discards the philosophy of a static, one-size-fits-all UCD process model.
Instead, it proposes using a configurable pool of UCD methods. Examples of UCD
methods considered for the UCD method pool are heuristic evaluations, card sorting,
cognitive walkthroughs and user role maps.

Based on the characteristics of the project at hand, specific methods are selected
from the UCD method pool. The selected methods form a UCD process kit, which is
tailored to the characteristics of the project at hand. During the course of a project,
qualitative feedback such as comments on and extensions of UCD methods is gathered
from the project team and used to improve the method pool. This could be done in
post-mortem sessions, which are already successfully used in software development
projects to reflect on software processes (Birk, 2002). Additionally, quantitative feed-
back on the utility and usability of UCD methods from the perspective of the project
team should be collected in the form of quick assessments. The results of such as-
sessments are a measure of the quality of UCD methods as perceived by project team
members.

The quantitative feedback is accumulated and integrated across project boundaries
and used to extract relationships between UCD methods, project characteristics and
the perceived utility of UCD methods. These relationships can be exploited in future
projects as a body of evidence to choose optimal UCD method configurations for
defined project characteristics. Figure 3.4 provides an overview of the UCD meta-
process as suggested by EBUE.

The first cross-organizational studies on the acceptance of the EBUE framework by
practitioners show a high level of acceptance of the approach and a good compatibility
with current industrial software development practices (Metzker, 2003).

HCI, USABILITY AND SOFTWARE ENGINEERING INTEGRATION 53

Figure 3.4 Meta-Model for institutionalizing UCD methods

In our view, adoption-centric approaches such as EBUE have a high potential im-
pact on current software development practice, helping to overcome the lag between
usability engineering research and practice.

3.5.2 Concurrent Evolution of Interface and Software Components

There is a compelling need to define a more flexible and efficient software devel-
opment process that can support concurrency in the design process and requirement
process. If software architecture and UI design are interdependent, as Bass and his
colleagues have demonstrated (Bass and John, 2003), how should the software devel-
opment process be organized? Although a better understanding of these interdepen-
dencies is emerging, it is not yet clear how to represent and coordinate them in the
software development process.

3.5.3 Concurrent Processes and Cultures

Throughout most of the previous sections, we have assumed that a software engineer-
ing approach is already established in a software development team, and that the task is
to determine where user-centered design techniques could be incorporated. Although
this is correct in many cases, the inverse can also occur. A development process may
be dominated by HCI concerns and we may fail to integrate a software engineering
method into it. For example, Web site design and development is often driven by
an information content management paradigm or one of graphical interface design.
However, Web sites are evolving toward providing advanced features such as elec-

54 HUMAN-CENTERED SOFTWARE ENGINEERING

tronic payment and intranet services. In this context, we are moving away from a
paradigm of online brochure to one where Web sites are Internet-based transactional
services. Web designers have to consider new design issues such as software mainte-
nance, quality management, security, etc.

Web development is not the sole example. To some extent, the computer gaming
industry is another domain where software development is driven by non-traditional
methods. In this industry, the entertainment perspective is the dominant paradigm.
Role playing and user experience are often at the core of the game development cycle.
Although game producers do have software engineering processes in place, it is quite
common to find the production department struggling with the problem of interfacing
the creative team with the developers, or struggling to implement a rigorous software
quality process in a culture that thrives on creativity.

It remains an integration challenge to determine how to merge traditional soft-
ware engineering techniques into a culture and a process dominated by methods in-
spired from other fields such as content publishing, entertainment and HCI driven
approaches.

3.5.4 Supporting Continuous Improvement

The integration of HCI and SE will obviously not yield a one-size-fits-all solution. A
better understanding will be required of the appropriateness of solutions to contexts.
What are the factors that should be involved in adapting or improving an integration
framework in a given context? This question needs to be addressed in the following
four dimensions:

1. Activity, including synchronization between activities;

2. Actor, including team organizations and communication schemes;

3. Artefact, including the formats and structure of the artefacts;

4. Tool, including the use of tools to facilitate the communication.

In developing any integration framework, three types of improvements can be sup-
ported in the software development lifecycle:

Elementary improvements are modifications that affect only one element of the
SDL (software development lifecycle). For example we can change a very specific
artefact, and thereby indirectly change the way to perform the corresponding activity.
A typical example is what Krutchen called use-case storyboards. Another elementary
improvement can be the addition of usability inspection in certain activities.

Complementary improvements consist in adding new elements in the SDL. For
example, we can propose a framework for using usability research methods (usability
walkthrough, user testing) in the SDL. This approach complements the existing SDL
and does not force a change in the structure.

Structural improvements affect the communication process or the structure of the
SDL. They add a set of activities in the SDL that can change the sequence of activities.
Constantine uses an outside-in communication scheme in his usage-centered design.

HCI, USABILITY AND SOFTWARE ENGINEERING INTEGRATION 55

Nunes adopts a loose communication scheme that is only constrained by the need to
support the dual model (analysis model, interaction model).

3.5.5 Agile Methods and UCD

Agile methods are gaining significant acceptance, or at least visibility, in the software
engineering field, and they are also gaining adepts in industry and even in some engi-
neering schools. The Agile approach emerged as a response to highly organized and
documentation intensive processes such as RUP(c©), the Rational Unified Process that
is widely in use nowadays, and other proprietary processes. The claim made by the ag-
ile community is that heavy documentation and processes create latency, inefficiency,
and a tendency for the development team to adhere to inappropriate requirements in-
stead of responding to changes in their definitions. Because user requirements are
particularly prone to changes as the users uncover new needs and correct their ini-
tial requirements as the software application unfolds, this claim appears to address an
important issue in HCI.

Moreover, the Agile movement also emphasizes the importance of human factors in
the development process as expressed by two of their four core values: (1) individuals
and interactions over processes and tools, and (2) customer collaboration over contract
negotiations (see http://www.agilemanifesto.org). Here, again, the agile
movement appears to lean towards a user-centered approach.

In spite of these principles that suggest the approach is user-oriented, agile pro-
cesses have come under criticism from the UCD community, such as this quote from
Constantine (2001):

Informants in the agile process community have confirmed what numer-
ous colleagues and clients have reported to me. XP and the other light
methods are light on the user side of software. They seem to be at their
best in applications that are not GUI-intensive. As Alistair Cockburn ex-
pressed it in email to me, this “is not a weak point, it is an absence.”
User-interface design and usability are largely overlooked by the agile pro-
cesses. With the possible exception of DSDM [(http://dsdm.org)] and FDD
http://www.featuredrivendevelopment.com/, users and user
interfaces are all but ignored.

Amongst the most important shortcomings addressed to agile methods, the lack
of distinction between the client and the user is probably the most critical. Because
clients are often represented by people from marketing or from management, user
needs are often misunderstood. Moreover, Agile methods do not provide guidance on
how to validate user requirements. There is no reference to principles such as those
found in ISO 13407 or Maguire (Maguire, 2001b) and, thus, the resulting application
could still miss important user requirements. This problem is particularly important in
software designed for teamwork where social interactions and business processes are
difficult to anticipate; the problem is also common in software with a high degree of
novelty.

However, recent efforts are addressing the shortcomings in agile methodologies by
integrating UCD principles. Patton (2002), for one, reports a successful experience in
integrating the interaction design approach in an agile approach already in place. But

56 HUMAN-CENTERED SOFTWARE ENGINEERING

more research is required to arrive at a comprehensive integration of agile approaches
and UCD.

3.6 CONCLUSION

In this chapter, we highlighted some of the obstacles to integrating HCI and usability
concerns in mainstream software development. We surveyed many of the approaches
proposed for filling in the current gaps between HCI, usability and software engineer-
ing. The fundamental questions addressed in this chapter are:

1. How can the software engineering lifecycle be re-designed so that end users and
usability engineers can participate actively?

2. Which usability artefacts are relevant and what are their added values and rela-
tionships to software engineering artefacts?

3. What are the usability techniques and activities for gathering and specifying
these relevant usability artefacts?

4. How can these usability artefacts, techniques and activities be presented to soft-
ware engineers, as well as integrated in the software development lifecycle in
general? What types of notations and tool support are required?

The frameworks summarized in this chapter provide partial answers to these ques-
tions. Although the answers are not complete, they are useful for usability and soft-
ware specialists who are interested in the development of methodologies and stan-
dards, who have researched or developed specific user-centered design techniques or
who have worked with software development methodologies. They offer insights in
how to integrate user-centered best practices and user experiences with software engi-
neering methodologies.

Patterns and use cases are useful artefacts for bridging gaps between HCI and SE.
Boundary objects serve each discipline in its own work and also act as a communica-
tion tool to coordinate work across disciplines. For example, a designer uses patterns
to explore design ideas in the space of presentation and navigation; a usability expert
uses them to perform an early usability test; a software engineer uses them as part of
the specification of the interface code. The patterns perform different functions for
each discipline, yet provide common ground for sharing knowledge.

However, we have not covered all aspects of integration. In particular, the cultural
gaps between the SE and HCI is an important aspect that is not addressed here. We
refer the reader to the chapters in this book by Jerome and Kazman (chapter 4), Sut-
cliffe (chapter 5), and also Blomkvist (chapter 12). We could also have raised the
issue of academic and professional training, which are key factors to cultural and in-
terdisciplinary team integration. It is our own teaching experience that some software
engineering students are enlightened by sunddenly discovering the importance of hu-
man factors in designing interactive software. Yet, most of them will have very little
training in HCI. The same could be said about software project managers who are
often the ones responsible for implementing the development process, defining and

HCI, USABILITY AND SOFTWARE ENGINEERING INTEGRATION 57

staffing the activities, etc. Our knowledge of software management processes indi-
cates that it suffers a lack of awareness of the need to integrate UCD and SE practices.
All these issues would deserve to be covered.

Finally, we believe a forum is required for promoting and improving HCI and us-
ability engineering techniques and software engineering approaches in the two com-
munities. An example of this type of forum would be to combine the IEEE-ICSE and
ACM-SIGCHI conferences for one year where avenues for:

Sharing ideas about potential and innovative ways to cross-pollinate the two
disciplines

Disseminating successful and unsuccessful experiences in how to integrate us-
ability into the software engineering lifecycle, in different sizes of organization

Building a tighter fit between HCI and software engineering practices and re-
search.

Acknowledgements

The authors would like to express their sincere thanks to all of the participants in
the workshops that they organized over the last five years. Thanks also to the National
Science and Engineering Research Council of Canada and Daimler Chrysler, Software
Technology Centre, for their financial support. We are also grateful to Fran cois Aubin
for sharing with us figure 3.1’s perspective.

4 SURVEYING THE SOLITUDES: AN

INVESTIGATION INTO THE

RELATIONSHIPS BETWEEN HUMAN

COMPUTER INTERACTION AND

SOFTWARE ENGINEERING IN PRACTICE
Bill Jerome, Rick Kazman

Human Computer Interaction Institute, Carnegie Mellon University; ITM Department,

University of Hawaii and Software Engineering Institute, Carnegie Mellon University

Abstract

In this chapter, we analyze the state of software engineering and Human-Computer
Interaction research and practice. In particular we are interested in the overlaps and
interfaces between these two influential fields. We begin with an analysis of the state
of the research that lies at the conjunction of these two areas, and then present the
results of a survey that examines how HCI practitioners and software engineers inter-
act in industry. The main findings of the survey are disturbing: there is a substantial
lack of mutual understanding among software engineers and HCI specialists, and the
results from research do not appear to be strongly influencing this interaction. Fur-
thermore, there appear to be important differences in how software engineers and HCI
practitioners view their interaction in the software engineering life cycle. The final,
and perhaps most serious, finding of this chapter is that software engineers and HCI

59

in the Development Process, 59–70.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

60 HUMAN-CENTERED SOFTWARE ENGINEERING

practitioners tend to interact and communicate with each other late in the software life
cycle; too late to fix the most fundamental usability problems.

4.1 INTRODUCTION

Almost half of the software in systems being developed today and thirty-seven to
fifty percent of efforts throughout the software life cycle are related to the system’s
user interface (Myers and Rosson, 1992). For this reason the issues, methods and
practices from the field of human-computer interaction (HCI) affect the overall process
of software engineering (SE) tremendously. Given the enormous efforts that go in
to implementing the user interface portion of a system, one would naturally assume
that software engineers (typically in charge of the overall system development) would
need to work closely with and interact early and often with HCI experts. One would
be wrong in this assumption.

Despite the strong need amongst development organizations to practice and apply
effective HCI methods and integrate these smoothly into the overall product devel-
opment life cycle, it is evident that there still exist major gaps between suggested
practice, primarily coming from academic communities, and how software is actually
developed in industry. And, not surprisingly, there are major gaps of communication
between HCI and SE groups within software development organizations.

More specifically, the application of HCI methods continues to be an afterthought
in the development of software despite many suggested practices of tightly intertwin-
ing HCI methods with software development processes. There is an apparent lack of
overlap between current formally defined SE processes and HCI methods. Software
engineers’ and HCI practitioners’ misconceptions about each others’ fields further
exacerbate the problems created by misalignments between SE processes and HCI
methods. To ensure that software is developed efficiently while guaranteeing optimal
usability, it is important to minimize problems resulting from these points of misalign-
ment.

This chapter identifies a number of problematic issues in the relationship between
the fields of SE and HCI through discussion of the current state of the intersection
between the two respective fields. Discussion of these issues is broken into two sec-
tions: the first section consists of a background overview of the current state of the
research at the intersection of the SE and HCI fields. The second section discusses SE
and HCI in practice by examining how SE and HCI professionals interact in practice,
in addition to assessing their respective knowledge of each others’ fields. Data in the
second section is drawn from the results of a survey that we administered to 96 SE and
HCI professionals — 63 HCI practitioners and 33 software engineers.

We will begin by looking at the state of the research in both fields (obviously at a
high level of granularity) to try to gain an appreciation for the level of mutual under-
standing and cooperation that is possible when trying to combine these two fields.

4.2 THE STATE OF THE RESEARCH

While HCI, as a distinct field of study, is not as old as SE, the processes and tools
for the design and development of interactive systems have steadily expanded and ma-

SURVEYING THE SOLITUDES 61

tured. The final goal of this evolution is a true engineering discipline (Shaw, 1990)
for achieving system usability. HCI methods focus on developing systems that sup-
port users to accomplish their tasks effectively, efficiently, and with high satisfaction
(Hefley et al., 1994), and to do this within the project’s budget and schedule con-
straints. This is consistent with being, or attempting to be, an engineering discipline.
How does this then relate to software engineering?

To understand and gauge the amount of mutual understanding between the SE and
HCI fields, we begin by examining the research trends in both fields, concentrating on
the intersection between the fields.

Historically, the most obvious ties between SE and HCI manifested themselves
through software design patterns and architectures for interactive systems, such as
the Model View Control (MVC) paradigm originally applied to GUI development in
SmallTalk (Krasner and Pope, 1988), and the Presentation Abstraction Control (PAC)
pattern (Coutaz, 1987). Other advancements in formally defined software architec-
tures continue to influence user interface development in both SE and HCI (Jambon
et al., 2001).

In the evolution of HCI establishing itself as a distinct discipline within computer
science, a number of methods have developed that have focused more on product
development—contextual inquiry and design, for example—as opposed to pure R&D
such as hardware interaction. Such methods focus on the processes used to develop
artefacts that directly address end user concerns (Whiteside et al., 1988). More recent
literature (1998 though 2002) including publications of the International Conference
on Software Engineering (ICSE) workshops on SE-HCI tends to show HCI embrac-
ing methods for designing software akin to product design methods typically used in
human factors. Semi-formal Human-Centered Design (HCD) methods, for example,
attempt to gather software requirements data through forms of ethnographic interview-
ing and observation before SE processes begin (Metzker and Offergeld, 2001) and
throughout the software development phases. Traditional HCD methods have been
modified for HCI to cope with organizational obstacles typically found in industrial
software development organizations. For example, maintaining a degree of emotive
sensitivity towards users needs is addressed through participatory design and in de-
signing for cultural aspects. Formerly only associated with HCI, these semi-formal
methods of design appear to be becoming increasingly relevant in research relating to
both SE and HCI (Makarainen et al., 2001).

GOMS modeling (Gray et al., 1993) has proven to be a powerful example of HCI
adopting structured methods as a way of performing task analysis. While not an adop-
tion of SE processes, it is a clear illustration of HCI methods approaching stricter,
more scientific basis. These models have proven their value via empirical methodolo-
gies, further legitimizing the formal nature of HCI as a field.

Formal, empirical methods used in gathering requirements and specifications for
developing user interfaces include the MAD (Scapin and Pierret-Goldbreich, 1990)
and the User Action Notation (UAN) (Hix and Hartson, 1993); or Hierarchical Task
Analysis (HTA) (Paternò, 2001) and GOMS (Gray et al., 1993), used for formal task-
based evaluation and modeling. Such methods continue to be commonly referenced
in current HCI research, although this does not imply widespread use outside of the

62 HUMAN-CENTERED SOFTWARE ENGINEERING

research community. In fact, there are a growing number of attempts to use (and
extend) the UML as a tool to help link these existing formal HCI methods with more
broadly accepted SE practices. Already frequently used in object-oriented software
development, the UML is a widely embraced standard. The UML provides a lingua
franca through which it is conceptually possible to link SE development practice to
HCI practice (Paternò, 2001). This is done through object models derived from task
analysis and modeling (Artim et al., 1998).

However, attempts to find a means to directly link SE processes to HCI methods
extend beyond the UML. HCD methods have been integrated into the software devel-
opment process by applying the framework of the Usability Maturity Model (UMM)
(Earthy, 1999; Metzker and Offergeld, 2001). This reference model has a number
of HCD activities from different human-centered design approaches. The UMM is
based in part on the Capability Maturity Model (CMM) from the Software Engineer-
ing Institute (Paulk et al., 1993). The CMM defines five maturity levels for software
processes and describes the processes that are typically in place in organizations at
each maturity level. The CMM offers specific guidance about how to appropriately
conduct software development by prioritizing improvement activities. Similarly, the
UMM enables usability professionals to maintain an efficient process by using us-
ability data to determine which HCI methods should be used during which stage of
software development. The UMM makes a concerted attempt to create a model that
mimics the CMM. The CMM benefits both HCI practitioners and software engineers
by offering a means by which both groups can work in parallel on the CMM and the
UMM respectively since their process models are similar to each other. These parallel
activities can benefit both groups by allowing and managing process overlaps in SE
and in the application of HCI methods. The similarities between the CMM and the
UMM potentially make it possible for both sides to understand and interact with each
other more easily.

Computer supported collaborative work (CSCW) has recently developed as a
bridge between SE and HCI. The HCI approach towards CSCW has begun to neces-
sitate a SE influence because of the complicated architectures required for CSCW
systems (Dewan, 1996; Prakash et al., 1999). Systems such as desktop sharing,
application sharing, shared virtual worlds, and remote file management all require
complicated software architectures, bringing SE to bear on the subject (Dourish,
1999).

There are a number of other topics being heavily researched that necessitate a strong
bridge between SE and HCI: toolkit development, new input/output devices, user in-
terface plasticity, ubiquitous computing, wearable computers, and mobile computing.
These areas are relatively new to computing research in general; both the SE and HCI
camps are involved more or less from the inception of this research and so overlap in
work being done is not surprising here. These topics continue to be major research
areas for SE and HCI.

This has been a high level view of the state of the research that bridges HCI and
SE. Any such overview must necessarily be brief and high level. The point is not
to present an exhaustive overview of all research at the intersection of SE and HCI,
but to point out the major themes in the research, as a guide to investigating how it

SURVEYING THE SOLITUDES 63

has been affecting practice (or not). Such research is commonly 3-10 years ahead of
practice. While it is important and necessary for researchers to lead, in an engineering
discipline we must also look long and hard at the current state of the practice. This is
important for two reasons:

1. understanding the state of the practice helps us gauge how effective and influ-
ential past research has been on changing the way that software professionals develop
their products. There is no point leading where no-one is willing to follow, and

2. this feedback can guide and focus the research community in our future efforts.
Understanding the state of the practice points out areas that are in immediate and
pressing need of assistance.

This need to examine software development practices leads to the second major
portion of this chapter. In this portion we take a close look at software development
practices and attitudes within software development organizations, from the dual per-
spectives of software engineers and HCI practitioners.

4.3 THE STATE OF THE PRACTICE

In an effort to assess the current state of SE and HCI knowledge and practices in indus-
try, we electronically distributed a pair of surveys to groups of software professionals
from both of the disciplines. The survey was distributed in two forms to the two dif-
ferent audiences; one survey was aimed at software engineers, and one was aimed at
HCI practitioners.

The surveys attempted to gauge each individual’s knowledge of their own field
as well as the field with which he or she was not directly involved. In one survey we
asked software engineers about their knowledge of HCI, and in the other we asked HCI
practitioners about their knowledge of SE. 96 software professionals completed the
survey in total (63 HCI practitioners and 33 software engineers), which was delivered
via a web site. We solicited involvement in the survey via electronic mailing lists to the
SE and HCI practitioner communities such as the British HCI Group, various SIGCHI
chapters, the International Software Engineering Research Network (ISERN) mailing
list, as well as Carnegie Mellon’s HCI and SE alumni mailing lists. Participation was
voluntary and unpaid.

Each survey consisted of twenty questions, eighteen of which contained a multiple
choice component. Most questions were single-select options, although some allowed
respondents to select multiple responses. Fifteen of the questions contained at least
one open text field for free responses related to the question, such as places to specify
details when selecting “Other” as an answer to a question. Respondents were asked
to identify their field of work and were asked about their general knowledge of HCI
or SE principles. Software engineers were asked primarily about HCI principles and
vice-versa in an effort to gauge the level of familiarity the respondent had with the
field that they are not primarily involved in practicing. Following these questions,
respondents were asked how their organizations involved software engineers and HCI
specialists on projects (if at all) via a series of questions regarding product life cycles
and the frequency of interactions with the other group.

What we found from the surveys was disturbing: the application and adoption of
methods and processes from SE and HCI research has not yet trickled down into in-

64 HUMAN-CENTERED SOFTWARE ENGINEERING

dustry. Not only has the research not reached industry, but the collaboration between
software engineers and HCI practitioners has not yet grown as it has in the respective
research areas. The two fields are still relative islands. The usability engineering life
cycle and the software engineering life cycle are not aligned—sometimes they even
use different names for the same activities. And the two groups of practitioners even
have differing perceptions regarding how often they communicate.

4.4 KNOWLEDGE OF SE AND HCI

An overwhelming majority of these professionals learn about each other’s field not
through taking courses or through reading published material, but rather through per-
sonal contact with other professionals.

12 of the 54 HCI practitioners answered they didn’t keep up with SE at all. In fact,
only 13 of the 63 practitioners claim to have a degree in HCI or a related field, and
only 5 others claimed to have taken classes in HCI methods. Thus, the vast majority of
our HCI practitioners are self-taught. The HCI practitioners’ knowledge of software
engineering follows much the same pattern: 35 of 62 respondents claim that their
knowledge stems from interactions with software professionals, 5 have a degree in
software engineering, and 6 have taken classes in the field.1

Similarly 18 of 26 software engineers who answered the question said they learned
about HCI entirely through informal processes. A mere 6 had a degree in software en-
gineering and a further 2 claimed to have taken classes in the field. Their knowledge of
HCI was also relatively informally grounded: 10 of 31 claimed that they learned about
HCI through interaction with HCI professionals (who, as we have seen from the pre-
vious discussion are themselves seldom formally trained in the field), only 3 software
engineers, fewer than 10%, reported having taken a class in HCI, and the remainder
learned from books and “other”. Furthermore, our sampling, if anything, should have
been biased in favor of academics, and practitioners who have had academic training
(since we used several academic mailing lists, e.g. alumni lists, in our dissemination
of the survey). Given this potential bias these results seem even more troubling.

We also asked our two groups of survey respondents “What methods or channels
of communication do you use to keep abreast of research developments in [the other
field]?” The results were, from our perspective, not encouraging. 33% of software
engineers (8 of 24 relied on ad hoc means, to keep up with HCI: “Personal com-
munication with field specialists”. A full 38% (9 of 24 replied “none”; they did not
keep up at all with HCI. The HCI practitioners answered similarly, saying that they
kept abreast of developments in SE primarily through personal communications (28 of
54 or 52%) or “none” (12 of 54 or 22%). Only a small minority of practitioners in both
groups read journals or mailing lists, or attended conferences.

1Note that we have made no attempt to analyze these numbers for statistical significance. This is because the
sample populations were not controlled for; for example, we did not draw track whether the SEs and HCI
practitioners came from a single corporation or, more likely, from a wide variety of corporations. Hence
we do not feel that any statistical inferences made from such a diverse population would be interesting. We
have therefore chosen to simply present summarizations of the data as we received it, and leave it to the
reader to determine whether they agree with the conclusions that we draw from the available evidence.

SURVEYING THE SOLITUDES 65

4.5 WORKING TOGETHER IN THE WORKPLACE

However, the majority of our survey respondents reported a distinct separation be-
tween the roles of software engineers and HCI practitioners. The literature in both SE
and HCI strongly advises that professionals from both fields work closely together in
the design and implementation of software. Yet, according to our survey results, most
professionals do not closely collaborate with other professionals outside of their area.

For example, we have evidence that key software design decisions that affect the
user interface are made by software engineers without consulting HCI practitioners
(13 of 19, or 68% indicated that this was the case). An even greater percentage, 91%
(52 of 57), of HCI practitioners believed that software engineers were making cru-
cial design decisions without consulting the HCI practitioners. Why did they do such
things? Several of our respondents claimed that time constraints often prevent soft-
ware engineers from waiting for HCI data to be collected—and that HCI data could
potentially affect the underlying software architecture. One respondent said that the
reason some HCI recommendations were not implemented was that “. . . they were an
issue of time to implement, not ability to implement.” There are two implications that
arise from the responses to this question: 1) there is a large disconnect in the percep-
tions of software engineers and HCI practitioners regarding their shared development
process; and 2) a substantial number of user interface design decisions are made pri-
marily by software engineers, and these decisions are made without the benefit of
usability data.

There is also a large difference of opinion regarding how internal testing of the
usability of software is conducted. 50% of software engineers (14 of 28) answered
that “Quality assurance handles usability”. A further 10 of 28 answered that software
engineers conduct the usability testing, and 4 of 28 responded that “other departments
suggest usability changes”. This is in stark contrast to the HCI practitioners who
responded overwhelmingly that they conduct the usability testing (48 of 53, or 91%).
The remaining 9% is split between “quality assurance” (2 or 53 respondents) and
“outsourced quality assurance” (3 of 53 respondents). Software engineers did not rate
even a single mention by the HCI practitioners as internal usability testers. There two
views of the world are obviously irreconcilable.

These results are particularly significant, and troubling, in relation to the software
engineers who took part in our survey. Almost half claimed that they are directly
responsible for applying and practicing HCI methods at their organizations. Thus, a
majority of the organizations whose members participated in our study expect their
software engineers to perform the dual duties of both software engineer and HCI ex-
pert.

4.6 SOFTWARE PROCESS INTERACTIONS

Another difference of opinion lies in the two groups’ beliefs about how often they
interact. HCI practitioners have the perception that they have frequent contact and
correspondence with software engineers. Software engineers, on the other hand, are
more likely to believe they have little or no contact with HCI practitioners. 40% of HCI
practitioners (24 of 60) say that this contact happens “very frequently” and another

66 HUMAN-CENTERED SOFTWARE ENGINEERING

43% (26 of 60) of them said “occasionally” when asked how often they correspond
with software engineers. Thus the vast majority of HCI practitioners thought that
they had at least occasional contact with their SE colleagues. When we turn to the
software engineers, we once again see a different view of the world. Their responses
were split down the middle: 20% (4 of 20) felt that they “correspond with each other
in the software development process” “very frequently”, with 30% (6 of 20) saying
that this happens “occasionally”. On the other hand another 20% (4 of 20) said that
this happens “rarely”, and a full 30% (6 of 20) said that it “never” happens. One
possible explanation is found in this HCI practitioner’s comment: “I think there is
more reluctance for Software Engineers to adopt HCI processes than for HCI people
to ‘fit in’ with Software Engineers.”

As the research trends presented in the first portion of this chapter suggest, a shared
software development process is crucial for efficient and productive interaction be-
tween software engineers and HCI practitioners. Such a process provides for common
names for things, common techniques, checkpoints and measures for success.

The received wisdom is that the earlier a problem can be eliminated in the soft-
ware process, the less costly that problem will be. So we would expect, or at least
hope, that software engineers and HCI practitioners correspond with each other often,
particularly in the early phases of the software life cycle. Just the opposite is, unfor-
tunately, the case. 29% of software engineers (6 of 21) said they corresponded with
HCI practitioners during the coding phase of software development. 33% of software
engineers said they corresponded with HCI practitioners after software development
had been completed (during the testing or release phases) and 24% (5 of 21) indicate
that they have no correspondence at all with their HCI “colleagues”. Only 1 software
engineer responding to this survey claimed to correspond with HCI practitioners in the
gathering and writing of software specifications.

The HCI practitioners reported slightly different numbers, but these were similarly
bleak in their implication. 78% (47 of 60) indicated that they corresponded with the
software engineers during the testing or release phases of the software—i.e. far too
late to fix usability problems economically and with minimal user impact. A mere 3%
(2 of 60) claimed that they worked with software engineers during the specification
phase of the project. This is consistent with the numbers reported by the software
engineers.

To add further evidence to this result, we also questioned both groups about when
HCI methods are used in the software development process. The vast majority of
HCI specialists (43 of 61 or 70%) indicated that these methods were used when the
software was “already in production”, and a mere 8% (5 of 61) said that these meth-
ods were used at the requirements stage. One practitioner spoke of the result of this
problem, saying “In extreme cases, products sometimes need to be re-architected to
improve consistency or usability.” Similarly, one response included the comment “we
work closely with the product team to influence the design decisions. There are also
cases we cannot change most of the UI because we get involved late in the product
development cycle.” The pattern of the software engineers was similar, but not as pro-
nounced. 30% of the responses (6 of 20) indicated that the software engineers believe
that HCI methods are used when the software is in development and 25% (5 of 20)

SURVEYING THE SOLITUDES 67

claim that this occurs when the software is in production. In contrast, just 20% (4 of
20) believed that such methods were used at the requirements phase. The magnitudes
of the discrepancies were different among the software engineers and the HCI practi-
tioners, but the results are still demoralizing: HCI methods are being used far too late
in the life cycle to be truly cost and time efficient. One software engineer noting this
situation stated “HCI and design occur simultaneously to reduce development time.
Sometimes this requires later re-design.” Another pragmatic response talks about a
“web interface in which the architecture of the design is often mixed with the User
Interface. Not that it is right, but it happens.”

4.7 IMPLICATIONS OF THE PROCESS ISSUES

When you consider the last few results, it becomes clear that there is little collabo-
ration happening between software engineers and HCI practitioners in industry. Fur-
thermore, what little collaboration there is, is occurring too late in the life cycle to be
effective.

A lack of collaboration between software engineers and HCI practitioners, coupled
with different perceptions about how and when collaboration occurs, suggests that
HCI practitioners are less involved in the design of software than they think. In fact,
few practicing HCI professionals are aware when changes occur in the software pro-
cesses that are used by their organization. The same is true with regards to software
engineers’ knowledge of when new HCI methods are adopted at their organizations.
Only about 40% of survey respondents could name an exact type of process or method,
outside of their own field, that was being adopted at their organization. 52% of HCI
respondents could not even give a time frame as to approximately when such processes
or methods were adopted.

Software engineers and HCI practitioners are not keeping informed about changes
being made in each other’s development processes. This could explain why software
engineers are often forced to make decisions that impact the user interface without
HCI practitioners having the opportunity to perform a full analysis. One HCI practi-
tioner, in a comment field, said “The constraints are not on the part of the HCI, but of
the SE methods; in general SE methods do not take the user into account much, or if
they do, when the testing is done mostly programmers and the designer team run the
walkthroughs, which in some cases leaves out most of the target audience who have
different expectations than programmers and designers.” A software engineer signaled
agreement in the statement that “Many times the current architecture or toolkit doesn’t
allow us to do what we intend, and we are blocked by architecture redesign. For in-
stance, we would like to use a single-field control for entering dates with a spin button
and masked controls, but our toolkit doesn’t provide one, and we need to work on the
toolkit so that it does.” One HCI practitioner said “Designers have to work around the
architectural decisions of the SW Engineers” while another respondent, commenting
on compromises between SE and HCI professionals said “None. [Software engineer-
ing] always wins.”

68 HUMAN-CENTERED SOFTWARE ENGINEERING

4.8 USE OF HCI METHODS

One section of the survey aimed at the HCI practitioners enquired about their use of
HCI methods and tools. 27% (46 of 173) of the tools utilized were cognitive walk-
throughs; 24% (41 of 173) utilized were rapid interface prototyping; another 27%
(47 of 173) were think aloud protocols; and a slightly lower 19% (33 of 173) was
made up by ethnographic interviewing. The unexpected result from the survey was
the lack of adoption of heuristic evaluation (HE) (Nielsen, 1993). A mere 3% (6 of
173) of the tools used by those surveys was given to HE. Given that HE is one of the
least expensive methods that can be used to evaluate software usability (heuristic eval-
uations can be quickly performed by individuals—even those involved directly with
the implementation of software—by going through a checklist of about ten usability
heuristics) this was surprising. HE may not be the most reliable of available methods,
but it

Software engineers also do not use heuristic evaluation as a means to evaluate the
usability of the software they develop; not a single software engineer reported doing
so. The software engineers reported relying primarily on rapid interface prototyping
(33% or 14 of 43). 12% of the responses (5 of 43) indicated that software engineers
use no HCI methods and a further 3 of 43 didn’t know what HCI methods their orga-
nization used.

Surprisingly, both HCI practitioners and software engineers regularly use the HCI
“think aloud” method to evaluate the usability of their organizations’ software (ap-
proximately 27% of methods used in both cases). The think aloud method requires
an independent third party to be used for testing software and is often more expensive
and time consuming than many other techniques (such as heuristic evaluations).

When asked about the usability tools, methods, and languages that HCI practition-
ers used in their organizations, computer-based mockups and paper prototypes were
the primary responses—88% of the respondents used one of these to do rapid prototyp-
ing for usability. Of these tools, about 34% (53 of 158) of them were paper mockups
of an interface, 11% were Flash, 15% were Visual Basic, and 28% were HTML to
prototype their interfaces.

4.9 CONCLUSIONS/RECOMMENDATIONS

There is a strong strain of research in the areas of HCI and SE that reflects a cross
breeding of ideas between the two fields and a genuine concern to work on shared
problems, and to produce shared methods, processes, notations and tools. This cross
breeding of ideas is much more pervasive throughout today’s SE and HCI literature
than it was even five years ago. The publications of five years ago that involved the
interaction of these fields were limited to specialist conferences and workshops, such
as the International Conference on Software Engineering’s Software Engineering/HCI
workshop in 1992 or the tri-ennial EHCI (Engineering for Human Computer Interac-
tion) conferences. This interaction was not important enough to be discussed outside
such these relatively rarified forums, or perhaps in the occasional software engineer-
ing or HCI textbook. Today there is a small but noticeable change in this trend. For
example, the inclusion of usability considerations into the UML and the creation of

SURVEYING THE SOLITUDES 69

maturity models for usability indicate a growing awareness of the need for the fields
of software engineering and human-computer interaction to interact.

Yet despite these growing trends in research that are steering organizations towards
the use of an amalgamation of SE and HCI activities, most industry professionals have
yet to follow suggestions from the academic and industrial research communities. For
the most part, software engineers and HCI practitioners continue to work separately—
they are relative solitudes. While collaboration between the two groups does occur (as
it must, since products do eventually get produced and these products frequently have
a user interface), the collaboration does not happen frequently enough or early enough
in the software development life cycle. Infrequent contact leads to misperceptions
about what is happening in the software development process. We have certainly seen
such misperceptions and miscommunications as indicated by the responses to our pair
of surveys.

HCI methods should be used to design usable software from the ground up. HCI
methods should not be applied as patches to software after major development has
already occurred; nevertheless that is exactly what is continuing to occur in industry
today. To ensure successful system development it is necessary to increase emphasis
on defining appropriate HCI processes and to integrate such processes with existing
system and software development processes. We, as a community, need to be advo-
cates for both education and industry, to ensure that this happens.

4.10 FUTURE RESEARCH

Our surveys have provided an initial glimpse into the divide between SE and HCI
in practice, although a more thorough inspection should yield more insight into the
causes of the problem and hopefully allow us to make further recommendations.

In particular, we are currently pursuing the application of a modified form of our
survey within a single organization. This will allow us to claim with more confidence
that the data that we collect reflects true divisions among the HCI and SE groups,
and is not an artefact of a self-selection bias or some other obfuscating factor. Going
further in this direction, collecting this information among people who are working
under the same conditions, most specifically on the same projects, would allow for
more direct comparisons among the responses.

Finally, we hope to be able to perform this sort of research at a broad selection
of institutions, where the surveys could be augmented by interviews and data about
software life cycles and communications among software engineers and HCI practi-
tioners.

Acknowledgements

The authors wish to thank Bonnie John for putting us together to work on this project.
We would also like to thank Len Bass for his help in providing us with some early
guidance in our research. We extend a thanks to those individuals and groups that dis-
tributed information about our surveys to their memberships. Finally we must thank
the members of IFIP WG 2.7/13.4 who provided the initial motivation for this

70 HUMAN-CENTERED SOFTWARE ENGINEERING

research as well as defining the original set of background research topics that lie at the
intersection of SE and HCI.

Notes

1. The full text of the surveys can be found at: http://www.billjerome.
com/seihci/new/index.php.

2. Note that not all questions were answered by all survey participants. This ques-
tion, for example, was only answered by 26 of the 33 SE survey respondents.

5 CONVERGENCE OR COMPETITION

BETWEEN SOFTWARE ENGINEERING

AND HUMAN COMPUTER INTERACTION
Allistair G. Sutcliffe

Centre for HCI Design, School of Informatics, University of Manchester

Abstract

HCI and SE share design as a common concern but have different roots in theory,
processes for design and views on design representations. Models are essential for
engineering approaches to design, assumed in SE and HCI. Both disciplines also use
scenarios and artefacts. Models inevitably have limitations in their comprehensibil-
ity even with informal notations, but formal models have become embedded in SE.
Scenarios have received much attention as an effective means of user-designer com-
munication; in SE, they are seen as a starting point for generating models, while in
HCI scenarios are used as prostheses for design inspiration. The chapter reviews dif-
ferent conceptions of scenarios, artefacts, theories and models with contributions they
make to the design process in SE and HCI. It explores the potential for constructive
contrasts between scenarios as concrete, grounded examples and generalised, abstract
models in an integrated view of systems development that encompasses both HCI and
SE.

71

in the Development Process, 71–84.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

72 HUMAN-CENTERED SOFTWARE ENGINEERING

5.1 INTRODUCTION

Software Engineering (SE) and Human Computer Interaction (HCI) are both con-
cerned with design. They both aim to design software systems although with different
emphases. One only has to inspect text books in each discipline (e.g. Dix et al., 1998,
for HCI; Sommerville, 2002, for SE) to see that the two disciplines “tread on each
other’s turf”. For instance, formal models of interaction and software (CSP) appear
in Dix et al., 1998, while Sommerville, 2002, has a chapter on the user interface and
system context. This overlap can be viewed either as competition between the disci-
plines or convergence towards a synthesised design discipline. While I suspect a true
synthesis is unlikely because of social rather than intellectual reasons, in this chapter
I will examine the competitive advantage that both SE and HCI may lay claim to. I
will examine two perspectives, the design approach adopted by each discipline and
the theoretical underpinning of the design process. If readers are curious about why I
do not expect a synthesis to emerge the explanation lies in the sociology of academia.
Disciplines tend to have self-perpetuating mechanisms since they form communities
that mutually support individual survival via peer review; HCI and SE occupy sepa-
rate ecological niches with little incentive to merge so long as they fulfil the career
ambitions of their members.

To return to my prime theme, the design process can be characterised along a di-
mension from more or less engineering-oriented, i.e. formal and model-based, to
informal exploratory design. SE has tended to take a model-based approach to design
either as informal graphical models, exemplified by the Unified Modelling Language,
or as more formal models. However, more lightweight model-based approaches have
been advocated for some time in RAD methods (DSDM, 1995), and this trend has
been augmented by the appearance of agile methods and extreme programming. Sim-
ilarly, HCI has had a model-based tradition of design driven by task analysis, although
this has never been as influential as conceptual modelling in SE. Both HCI and SE
communities have been influenced more recently by use of scenarios, examples and
use cases in the design process. Underlying these developments is a tension between
model-driven and example-driven approaches to design, which this chapter sets out to
examine. Models, scenarios, and artefacts (prototypes) are shared by both disciplines
but they are interpreted from different viewpoints with different design agendas. I will
examine how the role of knowledge in HCI or SE, from the designer’s perspective,
influences the roles that boundary objects, shared by both disciplines, play.

Theory is a vexed topic for both disciplines, which tend to be regarded by their
parent subject, computer science, as more peripheral to theoretic, process-oriented
subjects (EPSRC, 2002). The theoretical core of computer science, e.g. algorithmic
complexity and computability, hardly seems relevant. Both SE and HCI have sought
theoretical underpinning for design. I will review the progress made in developing
theory within the disciplines as well as connecting theories drawn from other subjects
to the design process.

The rest of this chapter is structured as follows. First, contributions of models,
scenarios and artefacts to the design process are examined, then their role in HCI and
SE. How HCI and SE view these design representations is followed by a review of

CONVERGENCE OR COMPETITION 73

Table 5.1 Contributions of software engineering to theory, methods and tools

Contribution Examples Validation approaches
Theory Formal Models, CSP, CCS

Jackson, Problem frames?
Formal reasoning, peer cita-
tion

Design process:
methods

SSADM, RUP-UML, OO
methods, RAD and Agile
methods, Requirement
methods:Volere, VORD,
ScenIC, win-win, scenarios,
use cases

Utility demonstration, case
study, use in practice, effec-
tiveness in practice

Product (support
tools)

CASE tools, Rationale
ROSE, UML model editors,
DOORS, Goal modellers,
Model checkers

Utility demonstration, case
study, use in practice, effec-
tiveness in practice

Analysis methods Ethnographic studies, some
surveys

Experiments, insight gained,
triangulation of results

the role of theory, and the final discussion section concludes with reflections on the
competitive advantage for each discipline.

5.2 DESIGN PROCESSES AND METHODS

SE has a long tradition of producing methods and effective uptake of such method in
industry (see Table 5.1); however, it is debatable whether the source of SE methods has
been academic research or pragmatic invention by practitioners. Structured methods
such as SSADM and their object-oriented successors have evolved into the de facto
standard RUP (Rationale Unified Process) which accompanies UML (Unified Mod-
elling Language—Rational Software Corporation, 1999). SE also has an extensive
tradition of “cut-down or lightweight” methods which have been created in reaction to
the perception of structured methods as being too ponderous and cumbersome to use.
Rapid Applications Development (DSDM, 1995) has been followed by agile meth-
ods, allied to the XP (extreme programming) movement in the new millennium (Beck,
2000). Process-methodological research is relatively immature in the requirements
area of SE, although it has made significant process. For instance, the Inquiry Cycle
(Potts et al., 1994) uses scenarios as specific contexts to test the utility and accept-
ability of system output. By questioning the relevance of system output for a set of
stakeholders and their tasks described in a scenario, the analyst can discover obsta-
cles to achieving system requirements. Other methods, such as Volere (Robertson and
Robertson, 1999) and Viewpoint-oriented Requirements Engineering (Sommerville
and Sawyer, 1997), have influenced industrial practice, as have more limited negoti-
ation methods such as win-win (Boehm et al., 1994). Formal Methods such as VDM
(Jones, 1986) have been an important contribution of SE towards creating reliable soft-
ware; however, their mathematical basis has created a barrier to update, and evidence
for widespread adoption in industry is difficult to find (Fenton and Neil, 1999). HCI

74 HUMAN-CENTERED SOFTWARE ENGINEERING

has also shared an interest in formal specification (Thimbleby, 1990), but with similar
minimal impact on industrial practice.

HCI process-design methods (see Table 5.2) have, in comparison to SE, had only
modest success. Task analysis, functional allocation and task design have been the
prime deliverables from HCI but their influence on mainstream software development
practice has been minimal. HCI task models all contain variations on a narrow range
of semantic components, e.g. actions, events, states, objects, agents, goals, attributes
and relationships, although some richer models describe the role of work artefacts
in ecological interface design (Vicente, 2000) and communication between agents in
collaborative tasks (van Lamsweerde and Letier, 2000; Sutcliffe, 2000). However,
user-centred design (ISO/IEC, 1999), which is a development approach rather than a
structured method, has become influential in industrial practice, and adopted in or-
ganisations favouring prototyping styles of development. HCI has produced copious
guidelines which have become incorporated in international standards, e.g. ISO 9241,
ISO 14915, so it may claim to have influenced design. HCI can also can claim con-
siderable success in evaluation and quality assurance, where a range of methods are
widely practised, from quick and dirty heuristic evaluation (Nielsen, 1993) to analysis
of observed user problems (Monk et al., 1993) and cognitive walkthroughs (Wharton
et al., 1994).

Table 5.2 Contributions of HCI to theory, methods and tools

Contribution Examples Validation approaches
Theory ACT-R, EPIC, GOMS, Nor-

man’s action model, Activ-
ity Theory, Distributed Cog-
nition

Experiments, Computer
Models, design influence,
principles

Process Task Analysis methods,
User-centred design, Eval-
uation methods, scenarios
Principles & Guidelines,
ISO standards

Usability, utility, use in prac-
tice, effectiveness in practice

Product User Interface Design Envi-
ronments, UI tool kits, widg-
its

Usability, utility, use in prac-
tice, effectiveness in practice

Analysis Ethnographic studies and
experimental analysis of UI
designs

Experiments, insight gained,
triangulation of results

Scenario-based design has emerged as an important design approach from the con-
vergence of HCI and Interaction Design (Carroll, 2000). Scenarios are arguably the
starting point for all modelling and design, and contribute to several parts of the de-
sign process (see Figure 5.1). Scenarios are gathered as examples of system use during
requirements analysis and form the subject matter for creating models. The process
of generalisation inevitably loses detail and the analyst has to make judgements about
when unusual or exceptional behaviours are omitted. Models have to omit detail which

CONVERGENCE OR COMPETITION 75

may be vital, while scenarios can gather such detail but at the price of effort in captur-
ing and analysing a “necessary and sufficient” set of scenarios.

Figure 5.1 Use of scenarios and models in different phases of the HCI/SE design process

Some SE-RE methods, e.g. Inquiry Cycle (Potts et al., 1994), use scenarios as spe-
cific contexts to test the utility and acceptability of system output. By questioning the
relevance of system output for a set of stakeholders and their tasks described in a sce-
nario, the analyst can discover obstacles to achieving system requirements. Obstacle
analysis has since been refined into a formal process for discovering the achievabil-
ity of system goals with respect to a set of environmental states taken from scenarios
(van Lamsweerde and Letier, 2000). Scenarios, therefore, can fulfil useful roles ei-
ther as test data, as a stimulant to reasoning in validating system requirements, or by
providing data for formal model checking.

HCI uses scenarios in a similar manner in usability evaluation, although the role
of scenarios is not articulated so clearly. Carroll has proposed several different roles
for scenarios in the design process including as envisionment for design exploration,
requirements elicitation and validation (Carroll, 1995). Other roles are usage scenar-
ios that illustrate problems, and initiating or visioning scenarios that stimulate design
of a new artefact, and projected use scenarios that describe future use of an artefact
that has been designed (Sutcliffe and Carroll, 1999). Stories, which are scenarios by
another name, appear in the agile movement in SE, and are associated with use cases
in object oriented development (Cockburn, 2001), so scenario-based approaches are
one area of convergence between HCI and SE. There are some signs of methodologi-
cal convergence in Contextual Enquiry (Beyer and Holtzblatt, 1998) which provides a
structured method that addresses HCI issues and socio-technical systems design with
models and processes that analyse the users’ work context as well as functional re-
quirements. In the human factors area, Ecological Interface Design (Vicente, 2000)
follows a similar approach with more emphasis on design of interface metaphors and
representations to match users’ mental models. However, in SE incorporation of HCI

76 HUMAN-CENTERED SOFTWARE ENGINEERING

design concerns into the design process has been limited to treating user interface de-
sign as a simple matter of configuring user interact components such as menus and
form-filling dialogues.

HCI has also contributed methods for analysis of data collected in experiments,
surveys and case studies. These methods have been borrowed from psychology. An-
alytic research in HCI has also adopted ethnographic approaches for requirements
analysis (Vicente, 2000) and evaluation. Some case study and field research has been
carried out on HCI methods and tools in practice, but these studies are infrequent.
Analytic research is not common in SE, although some field studies and surveys have
been carried out on perceptions of requirements problems and practices in industry
(Greenspan et al., 1982; Rengell and Horst, 2001). In addition, SE has adopted ethno-
graphic methods as part of its requirements analysis toolbox in methods, which have
focused on problems in real world settings with an intent to provide insight for design
rather than study of the requirements process itself.

5.3 DESIGN REPRESENTATIONS IN SE AND HCI

Both SE and HCI take a model-based systematic approach to design; furthermore,
both also advocate an informal design approach using prototypes and scenarios. The
interesting question is how the designers’ concerns affect the role of models, scenarios
and artefacts in both disciplines.

5.3.1 Scenarios

Scenarios have a host of definitions (Rolland et al., 1998), ranging from narrative de-
scriptions of system use expressed in natural language, frequent in HCI and the inter-
active systems design communities, to more formal representations of event sequences
in SE (Kaindl, 1995). The range of definitions mirrors how scenarios are transformed
into models by a process of generalisation from specific examples. Use cases are
usually considered to be models but they may be supported by narrative scenarios on
which they are based. The tension between concrete detail and abstract models under-
lies design in both HCI and SE; however, little investigation has been directed towards
understanding how scenarios and models can be profitably integrated in the design
process. Scenarios are used in SE as part of the requirements engineering process to
discover new requirements by testing models. Scenarios are primarily interpreted as
event sequences or event pathways through a model. Model checking is carried out,
in effect, by testing the possible legal or illegal states in the system given the event
sequence contained in the scenario. In contrast, HCI views scenarios in many differ-
ent forms, ranging from rich description of a systems context, to specific sequences
of interaction or vision of future systems usage. Scenarios play a design exploration
role, being used to elicit requirements and consider how requirements might be re-
alised in design (Carroll, 2000). Scenarios have been linked with generalised design
principles by claims analysis in task artefact theory (Carroll and Rosson, 1992) which
argues that scenarios of use with an example of the design artefact provide the con-
text to understand a design principle. The results of evaluations are recorded in usage
scenarios that describe the problem that motivated a general design principle, called

CONVERGENCE OR COMPETITION 77

a claim, with trade-offs expressed as upsides and downsides (Carroll, 2000; Sutcliffe
and Carroll, 1999).

Scenarios, examples and use cases can be used as lightweight instruments that
guide thought and support reasoning in the design process (Carroll, 2000). However, a
scenario, or even a set of scenarios, does not explicitly guide a designer towards a cor-
rect model of the required system. An extreme scenario might bias reasoning towards
exceptional and rare events, or towards the viewpoint of an unrepresentative stake-
holder. These biases are an acknowledged weakness of scenarios; however, we could
trust designers as knowledgeable, responsible people who are capable of recognising
such biases and dealing with them productively.

At first sight the use and format of scenarios are very different in HCI and SE;
however there are several similarities, as illustrated in Figure 5.1. In HCI the repre-
sentation is informal, in a variety of media (text, image and video), and use focuses
on design exploration as well as evaluation, where “scenarios of use” are employed
as test scripts. In contrast, SE uses more formally represented scenarios often with
modelling notations, and employs them for model refinement and testing. However,
there are overlaps in usage in the requirements engineering area. Informal narrative
scenarios have been used as test challenges to validate requirements in ScenIC (Potts,
1999) whereby the scenario expresses an obstacle to the realisation of a requirement
when implemented in a system. For example in a meeting scheduling system, allocat-
ing a two-hour meeting to a non-smoking room might be challenged by the scenario
that “Ann the convenor of the meeting smokes and can’t stand meetings of two hours
without a break”. The notation of obstacles was then taken up in the SE community
more formally as a set of states which expressed constraints on system input or output,
and allowed formal reasoning about how scenario-expressed states might be fulfilled
or violated by a system specification in the KAOS language (van Lamsweerde and
Letier, 2000). This is a good example of how scenarios as a boundary object can
transform their role while crossing the boundary between HCI and SE.

5.3.2 Models

Models play a key role in both disciplines although, regrettably, there is evidence of
a waning role in HCI. In HCI, modelling concerns vary from cognitively motivated
models (e.g. GOMS—John and Kieras, 1995) which tend to be analytic in focus, to
design models which represent goals, plans and actions of the user, i.e. task mod-
els. The transition to design and the derivation of design from such models has never
been one of HCI’s strong points, and has tended to be driven via functional alloca-
tion principles or underspecified mappings to dialogue and presentation design. The
transformation to design illustrates the tension between the disciplines. Once func-
tional allocation decisions have been taken, design moves into the realm of SE, and
HCI specifications adopt SE notations, as illustrated in HCI text books (Dix et al.,
1998). SE, in contrast, has a rich tradition of notations, which enable transforma-
tion and refinement of specifications from requirements to detailed designs. Models,
therefore, form one class of boundary object between the disciplines, where HCI has
adopted SE models. An open question is whether SE will adopt HCI influences to aug-
ment the space of software-oriented modelling notations with others which represent

78 HUMAN-CENTERED SOFTWARE ENGINEERING

people-oriented concerns. The notations in contextual enquiry (Beyer and Holtzblatt,
1998) show where the boundary might move to, although software engineers would
currently not even consider social issues in analysis, so affinity diagrams have yet to
become part of the shared language.

A limitation of conceptual models is that they do not capture the richness of in-
teraction that occurs in the real world; in contrast, scenario narratives concentrate on
contextual description (Kyng, 1995). SE and HCI task models all contain variations
on a narrow range of semantic components, e.g. actions, events, states, objects, agents,
goals, attributes and relationships. Models in both the HCI and SE traditions may be
criticised for not representing the relationships between agents, activity and organisa-
tional structures, although these concepts are described in socio-technical system de-
sign frameworks such as ORDIT (Eason et al., 1996); and in requirements modelling
languages such as i* that analyses the dependencies between agents, tasks, goals and
resources (Mylopoulos et al., 1999). In HCI, richer models describe the role of work
artefacts in ecological interface design (Vicente, 2000) and communication between
agents in collaborative tasks (van Lamsweerde, 2000; Sutcliffe, 2000).

5.3.3 Artefacts and Prototypes

Artefacts play several roles in HCI and tend to be more embedded in the design process
than they are in SE. For example, artefacts in HCI can be early design conceptions
manifest as storyboards, mock-ups, or Wizard of Oz simulations. Prototypes, either
fully functional or lightweight concept demonstrators, are shared by both traditions.
In SE, artefacts are code, or code in embedded systems as prototypes, so the focus of
use tends towards testing. While HCI, too, evaluates prototypes, it also uses a wide
variety of artefacts for design exploration or requirements discovery (Carroll, 2000).
Indeed, in Carroll’s task artefact cycle, an example of a design is integrated with a
claim representing design knowledge and a scenario of use. In SE, prototypes can be
involved in design exploration and testing in agile development, although the emphasis
on requirements exploration is less pronounced in SE/agile development literature.

Prototypes are shared between both disciplines, although their roles tend to be dif-
ferent. Whereas prototypes have played a central role in user-centred design (ISO/IEC,
1999), in SE they have had a less important role. The advent of agile development
has refocused attention on the prototype, although the process by which design is
gained for inspecting or testing artefacts is not articulated in agile methods. The pro-
cess is assumed and prototypes have played an important role in the precursors of
XP and agile methods in RAD approaches, such as DSDM (Dynamic Systems De-
velopment Method). Indeed, RAD methods shared many concerns with user-centred
design approaches, so iterative development and prototypes also play a shared role in
both communities. The testing questions asked about them, however, differ. Also, in
SE, prototype-led development has tended to be viewed with some suspicion, since
prototyping could be seen as a rival for more systematic methodical development. In
HCI this tension rarely exists outside safety-critical domains. One consequence is that
prototypes in SE have a closer relationship to models, because models are formally
verified specifications of requirements which can be validated by user inspection of
prototypes. In contrast, scenarios and prototypes have a closer relationship in HCI

CONVERGENCE OR COMPETITION 79

where the prototype is validated as a realisation of a future vision of use expressed in
a scenario.

5.4 VIEWPOINTS IN HCI AND SE

In this section I explore the concern in both disciplines and how these lead to different
views on scenarios, models and artefacts, and additionally the semantics expressed
with models.

A key difference between the disciplines is the scope of the modelled world and
the aspects of the design system within it. A layers model (Figure 5.2) illustrates
the point. HCI concerns itself with social, cognitive and interactive phenomena. SE,
while it may acknowledge all these phenomena in complex systems, e.g. the London
Ambulance Service as a much discussed exemplar of system failure, is ultimately not
deeply interested in social and cognitive issues. SE’s mission is the design of software,
the process of construction, architecture, reliable functioning and design for utility.
The latter concern is shared with HCI, where fit-for-purpose is also seen as fit-for-use
and ease of learning.

To unpack these layers in more depth: the social layer concerns how people inter-
act with each other, with artefacts in the environment (technology-enabled or other-
wise), how groups form and work together, social norms, attitudes, etc. The parent
disciplines in this layer are sociology and social psychology, and HCI draws several
theories from these areas, e.g. Distributed Cognition (Hutchins, 1995a), Activity The-
ory (Nardi, 1993) and Small Groups as Complex Systems (Arrow et al., 2000) to name
but a few. Although HCI has embraced the concerns of these theories, it has not led
to much influence on HCI methods or models. Indeed, the connection between theory
and design at this level is articulated in terms of principles or heuristics, if it is artic-
ulated at all. The social layer may be acknowledged in SE but the phenomena are not
investigated, so this is one area where the two disciplines could have a synergetic rela-
tionship, especially as ICT systems are become increasingly multiparty in Computer
Mediated Communication, Computer Supported Collaborative Work, Internet, etc.

The cognitive layer draws on the parent discipline of psychology and represents
one of HCI’s central missions, how to bring knowledge of the user to bear upon the
design process. Models in this layer are usually detailed models of how the cognition
of problem solving, perception and memory work, and how these relate to interact-
ing with computers (Kieras and Meyer, 1997; Anderson and Lebiere, 1998). Once
again the connection between theory and design practice has been difficult, although
a transfer mechanism has been proposed via bridging models, claims and other means
of representing design-applicable but theory-based knowledge (Sutcliffe, 2000). The
GOMS family of models presents the most successful and enduring means of linking
theory and design, albeit in an evaluative mode. SE treats the user as a black box, so
cognitive theory and its influence on design is not a direct concern.

The interaction layer is the user interface where HCI and SE meet, but their view-
points are different. Both communities, while trying to separate the user interface
from underlying functionality for architectural reasons, acknowledge that the user in-
terface and system functionality are linked. Whereas HCI focuses on design properties
of the user interface for ease of use and increasing aesthetics, affective reaction and

80 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 5.2 Scope of modelling in HCI and SE

attractiveness, SE focuses on how functional requirements will be delivered to the
user. This difference is reflected in model and development approaches. Take Jack-
son’s view of the interface between the real world and the design machine (Jackson,
2001). The interface determines functional requirements in terms of the properties of
the world that the machine must deal with (e.g. laws of physics) and the user require-
ments which will be behaviours of the systems and interactive functions. The view
here is one of understanding requirements as dependencies of a computer system’s
future behaviour and the way the real world constrains such behaviour. The HCI view
of interaction, expressed in Norman’s model of interaction (Norman, 1988) and others
focus on the same boundary but with a different perspective on understanding how the
user will interpret the possibilities for action in the world (affordances for Norman)
and then understand feedback from the system’s action. The interaction layer presents
another interesting yet largely unexplored synergy. Interaction involves understanding
not only what the user needs (functional requirements) but also how those require-
ments are delivered by interaction (HCI design). As many functions are interactive,
i.e. the partitioning between people and machine is split, integrated modelling inter-
action from both an SE and HCI perspective could improve the design of decision
support systems. Decision support systems are often considered to be a sub-set of in-
formation systems, yet nearly any interactive system involves helping the user decide.
A combination of dependency-based SE modelling with interactive modelling may be
the way forward. Integrating the cognitive and social layers is a further challenge for
both communities.

5.5 THEORETICAL UNDERPINNINGS

In SE the need for theory has not been a pressing concern—see Table 5.1. Most soft-
ware engineers cite formal semantics as the theoretical basis for modelling, which is

CONVERGENCE OR COMPETITION 81

a key part of the engineering approach. So the foundations of formal methods, e.g.
CSP (Hoare, 1969) or CCS (Milner, 1989) underpin formal methods such as VDM
(Jones, 1986), and model-checking tools, e.g. SPIN. Theories of formal semantics, if
indeed they are theories rather than methods of logical representation and reasoning,
generally belong to computer science as a parent discipline rather than SE. However,
SE can claim to have developed and applied formal semantics in many variations,
although the utility of this theoretical influence in delivering practical software solu-
tions is still open to debate, with sceptics (Finney et al., 1999) and advocates (Hall and
Chapman, 2002).

SE may also have nascent theoretical underpinnings which are beginning to emerge.
In requirements engineering, understanding the dependencies between laws of the nat-
ural world, the behaviour of external agents, and the correct behaviour of software to
achieve goals (or user requirements) has led to the problem-frames approach (Jackson,
2001), which is cited as a theoretical basis for requirements specification. Problem
frames distinguish between indicative requirements which are imposed by the exter-
nal world, domain descriptions which model them, and optative requirements which
express the desired behaviour of a software system that achieves a user goal. The
concept of dependency has been explored further in the i* modelling language (My-
lopoulos et al., 1999; Castro and Kolp, 2002) and by formal refinement of goal system
behaviours that achieve (goal) states. Barriers in the external world which may prevent
goals being achieved have led to new approaches to understanding how requirements
can be formally specified (van Lamsweerde, 2000; van Lamsweerde and Letier, 2000).
Taken together these modelling approaches can be viewed as a proto-theory that de-
scribes and predicts how software systems should be constructed to behave correctly
when faced with different types of problems or real world environments.

As well as being concerned with process, SE involves architecture of software sys-
tems. No theory has emerged in this area, although architectural frameworks have
been influential, whether in the patterns movement (Gamma et al., 1995), or in sys-
tems architecture (Shaw, 1991). The relationship between software architecture and
problem abstractions in the real world has emerged pragmatically via the development
of application frameworks (Fayad and Johnson, 2000) and Enterprise Resource Plans
(Keller and Teufel, 1998), but little research has been devoted to theories of abstraction
apart from some work in requirements engineering (Sutcliffe, 2000; Jackson, 2001).

In contrast, HCI has been obsessed by the need to connect theories from cognitive
and social science to the design process, as well as attempting to develop theories
of interaction in its own right, see Table 5.2. A protracted effort to connect cognitive
theory to design was made in the AMODEUS project (Barnard and May, 1999), which
tried to connect a cognitive architecture, Interacting Cognitive Sub-systems, to design
via design rationale, and programmable user models (Bellotti et al., 1995). Although
this attempt at integration failed, Barnard and colleagues continued their quest with
syndectic (design-oriented) modelling, arguing for a series of bridging models that
could transfer influences from psychological models to models that could be directly
applied to design: cognitive task models (Barnard et al., 2000). Several computational
cognitive theories, notably ACT-R (Anderson and Lebiere, 1998) and EPIC (Kieras
and Meyer, 1997) have been applied to HCI design, but the criticism is that these

82 HUMAN-CENTERED SOFTWARE ENGINEERING

models can only deal with small-scale problems, and scaling up makes the modelling
effort prohibitive (Sutcliffe, 2000).

More applicable models which have some theoretical basis have proved more suc-
cessful. The GOMS (Goals Operators Methods Selection rules) family has stood the
test of time (Card et al., 1983; John and Kieras, 1995) and demonstrated practical
applications in evaluating interactive systems and informing design. Unfortunately
GOMS also suffers from scaling problems since the granularity of modelling is at the
micro level of keystrokes and mouse movements. Other pragmatic models predict the
comprehensibility of menu and object names on interfaces (Blackmon et al., 2003), but
these depend on considerable manual input to describe the user interface. Within HCI,
models of interaction (Norman, 1988) can be regarded as proto-theoretical frame-
works. Norman’s model described the cycle of cognitive and physical actions a user
undertakes during interaction. This model has been elaborated to account for multime-
dia and virtual reality user interfaces (Sutcliffe, 2003). In this elaboration a rule-based
framework was proposed for each stage of Norman’s model that described the suffi-
ciency conditions for successful interaction in terms of design features supplied to the
user interface and knowledge held by the user. This provides one means of bridging
cognitive influences into an interaction model that can be applied to design; however,
many aspects of cognitive psychology, such as emotion, have yet to be connected to
design (Norman, 2004).

Craft

Engineering

Science

Theory

Craft

Engineering

Science

Theory?

Methods/Tools
UML-RUP

Models
Formalisms- CSP
Jackson
Problem frames
Architecture ?

Methods
Task analysis

Experiments

Interaction
Theory

Norman, GOMS
Cognitive theory
ACT-R, ICS, EPIC

Ad hoc
Practice

Systematic
Process

Foundations

Principles

HCI SE

Figure 5.3 Craft, engineering and science framework for HCI and SE, adapted from Long

HCI has been eclectic in using a wide variety of theory to inform the design pro-
cess, although in most cases the connection between theory and design is not explicit.
For instance, Activity Theory (Nardi, 1993) has been cited as an influence on under-
standing the socio-environmental context of design; however, apart from providing a

and Dowell (1989)

CONVERGENCE OR COMPETITION 83

framework for thought, the connection from theory to design is hard to discern. The
range of theories used by HCI research from linguistics, psychology and sociology is
reviewed in an edited volume of contributions (Carroll, 2003).

The position of theory in both disciplines is summarised in Figure 5.3. Both HCI
and SE aim to improve the design process from craft (i.e. expertise collected by expe-
rience) to a systematic engineering approach.

In HCI, knowledge is recruited into the engineering process from experiments in
psychology as well as from several theories. The connection between theory, science
and design has primarily been via guidelines and principles, although some theories
have been transformed into analytic techniques, e.g. GOMS (John and Kieras, 1995).
HCI has also produced proto-interaction theories which can be directly applied to de-
sign, but these theories have a long way to travel before they become truly predictive
theories. SE, in contrast, has few theoretical influences, although it has applied its
main influence from formal semantics directly into models and tools that support the
engineering process. SE has also developed proto-theory; moreover, an interesting
convergence is that both HCI and SE concern interaction albeit with different view-
points. In SE the focus is on interaction between the natural world and the software
system to ensure correct behaviour, whereas HCI seeks to understand interaction be-
tween the user and the machine so design can support people more effectively.

5.6 CONCLUSIONS

In its use of theory, HCI is more mature than SE. It acknowledges that design is a mul-
tidisciplinary endeavour and applies theories from other disciplines with great gusto.
The effectiveness of application may vary; nevertheless, this quest may have a com-
petitive advantage in the long run if the connection from theory to design can be made
to produce quality improvements. At present, while SE has been more successful in
transforming the design process from craft to engineering, the two disciplines may
converge in the future as design diversifies from heavyweight methods to a spectrum
of approaches. Models, scenarios and artefacts play different roles in HCI and SE. Fur-
thermore, the roles and content of these representations are influenced by the scope of
concerns ranging from the interactive, cognitive to social levels. So is there a synthesis
for model-analytic and creative scenario-exploration approaches to design which can
be loosely mapped to SE and HCI respectively? A partial answer is acknowledging
the “horses for courses” argument. Model-analytic and creative exploratory design ap-
proaches will be necessary for safety-critical applications on the one hand, and those
oriented to entertainment, education, and general commerce on the other. A more
satisfactory answer is to examine the nature of methodological interventions in the
design process. Methods, guidelines, principles and models are rarely used explicitly
by expert designers (Guindon, 1987). Novices might use them ab initio, but design
knowledge soon becomes internalised as the designer’s skill. I argue that reusable
knowledge in the form of generic models, claims and design rationale should become
part of the skill-set of all system designers (Sutcliffe, 2002). Models can contribute
by providing representation for reusable knowledge via documentation. Scenarios can
support the design process at run time as they probe to test assumptions and stimulate
creation. As scenarios have become established in both SE and HCI traditions they

84 HUMAN-CENTERED SOFTWARE ENGINEERING

can form the common ground between the disciplines, and furthermore need to be
integrated into development processes throughout the life cycle. Understanding the
contributions models and scenarios make to design may help to integrate SE and HCI
within system development.

III Requirements, Scenarios,
and Use-cases

6 EXPERIENCE WITH USING

GENERAL USABILITY SCENARIOS ON

THE SOFTWARE ARCHITECTURE OF A

COLLABORATIVE SYSTEM
Rob J. Adams, Len Bass, and Bonnie E. John

Carnegie Mellon University

Abstract

Architecturally-sensitive usability scenarios are important usability concerns that re-
quire early consideration in software design so that architectural support can render
them easy and cost-effective to implement. Examples include providing the ability to
cancel a command, undo commands, aggregate data, etc. This chapter reports on our
experiences applying these scenarios to the design of MERBoard, a wall-sized interac-
tive system developed by NASA to assist Mars Rover science teams with collaborative
data analysis. We applied the scenarios during a major redesign of the software archi-
tecture that introduced usability as a valued quality attribute. In the process, we found
that the scenarios were well-received by developers who readily understood how they
related to MERBoard, that they applied to a collaborative workspace despite having
been initially developed for a single-user desktop system, that they had a real impact
on the architecture redesign, and that the scenario consideration process was quick and
not too onerous for any of the team members.

87

in the Development Process, 87–112.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

88 HUMAN-CENTERED SOFTWARE ENGINEERING

6.1 INTRODUCTION

The usability analyses or user test data are in; the development team is poised to
respond. The software had been carefully modularized so that modifications to the UI
would be fast and easy. When the usability problems are presented, someone around
the table exclaims, “Oh, no, we can’t change THAT!” The requested modification or
feature reaches too far in to the architecture of the system to allow economically viable
and timely changes to be made. Even when the functionality is right, even when the UI
is separated from that functionality, architectural decisions made early in development
have precluded the implementation of a system with an acceptable level of usability.
The members of the design and development teams are frustrated and disappointed
that despite their best efforts, despite following current best practice, they must ship a
product that is far less usable than they know it could be.

Over the past five years, our research group has worked to analyze the causes of the
problem described above and to develop materials to help prevent it from occurring in
common practice. This chapter describes these materials and relates our experiences
applying them to the NASA MERBoard software development project. First, we re-
view the relevant prior work on bringing usability concerns to software architecture
design. Next, we describe the Usability and Software Architecture (U&SA) project’s
approach to the problem and provide an overview of the materials we have developed.
We list the questions we had about our technique prior to our intervention with the
MERBoard team, describe the procedure we went through during our intervention,
and then conclude with our answers to our initial questions and an overview of our
current ongoing work.

6.2 USABILITY AND SOFTWARE ARCHITECTURE

Historically, software engineers viewed usability as relevant to software architecture
design solely through modifiability (Bass, Clements and Kazman, 1998, p. 78). If the
user interface was sufficiently separate from the main application functionality, they
argued, then the interface designers could make modifications through iterative design
and testing throughout the project’s life cycle, thereby maximizing usability. These
engineers developed “separation patterns”, or generalized architecture designs that
separated the user interface into components that could change independently from
the core application functionality. The Java 2 Platform, Enterprise Edition (J2EE)
Model-View-Controller (MVC) pattern, shown in Figure 6.1, is an example of one of
these (Sun Microsystems Inc., 2003).

The separation patterns are highly successful at making “screen-deep” interface
changes easy, for example, changing the size of the fonts to make them easier to read
or the order of screens in a wizard to provide a more intuitive flow. Unfortunately,
as our opening story illustrates, many important usability concerns are difficult to add
late in the development process, even when the architecture is designed to follow one
of the separation patterns. For example, often designers discover during testing that
users want to cancel long-running commands. To add this functionality to a MVC-
based architecture, however, requires changing the View to add a cancel button, adding
a Controller that runs on a separate thread (thus possibly introducing multi-threading

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 89

in a single-threaded application) to listen for the cancel request, and modifying the
command itself in the Model so it can cleanly cancel its execution and roll back to its
initial state. As a result, the development team frequently finds that making commands
cancelable is too expensive a change to make late in the development process. The
software is released without this capability, and as a result is less usable than the team
knew it could have been had they considered the cancellation requirement up front.

Figure 6.1 The J2EE Model-View-Controller software architectural separation pattern

(Sun Microsystems Inc., 2003). Arrows represent control flow, while boxes represent the

major software components. The layered boxes indicate the existence of several instances

6.3 THE USABILITY AND SOFTWARE ARCHITECTURE PROJECT

Since its inception, the Usability and Software Architecture (U&SA) project has
worked to prevent the story that began this chapter. We envision a world in which
routine practice brings important usability concerns to the table early enough that
architectural limitations do not prevent them from getting implemented. To bring this
about, we have the following goals:

1. Have usability recognized as a software quality attribute at architecture design
time along with other quality attributes such as performance, maintainability,
reliability, and security.

2. Understand and codify how usability impacts the architecture of software sys-
tems.

of the component type

90 HUMAN-CENTERED SOFTWARE ENGINEERING

3. Improve communication between usability professionals1 and software devel-
opers at the critical architecture design phase.

4. Provide guidance on designing architectures that support usability concerns.

For these goals to become a reality, we hypothesized that development teams required
materials that clearly defined how to bring the knowledge and skills of the usability
professionals and designers as well as the outputs of their design processes into the
architecture design stage of the software development lifecycle. We developed the
U&SA materials to satisfy this need.

6.3.1 U&SA Materials

In brief, our materials include a list of architecturally-sensitive usability scenarios, or
generalized usability concerns that require difficult-to-change architectural support.
Each scenario is connected to a hierarchy of usability benefits that break down usabil-
ity into various components, such as accelerating error-free portion of routine perfor-
mance, preventing mistakes and supporting problem solving which help give usability
professionals a sense of what positive impacts implementing the scenario will have
on the system’s overall usability. The scenarios are decomposed into responsibilities
of the software, which define the tasks the system must perform to properly imple-
ment the scenario as a list of requirements. For assistance with implementing the re-
sponsibilities, we provide architectural patterns that describe example implementation
strategies within a particular architectural context. Finally, we describe the software
engineering tactics that we employed in developing this implementation solution.

Architecturally-Sensitive Scenarios. At the time of this writing, we have
identified 27 architecturally-sensitive usability scenarios. By architecturally-sensitive,
we mean that support for each scenario affects the functional core in a software archi-
tectural pattern based on separation of the UI, such as the J2EE-MVC. These scenarios
are common to many interactive software systems and are not related to the domain
functionality of any one system.

We generated scenarios by (1) reading several standard HCI textbooks and used
their examples and definitions of usability to inspire scenarios (e.g. Gram and Cock-
ton, 1996; Newman and Lamming, 1995; Nielsen, 1993; Shneiderman, 1998), (2)
from our own experiences, and (3) through discussion with colleagues. Thus, the
generation process was bottom-up, not theory-driven, systematic or comprehensive.
However, it was sufficient to demonstrate that common usability concerns had impli-
cations for software architecture design.

The full list of scenarios can be found in table 6.1, page 96 (or see Bass and John,
2003, or Bass and John, 2001b, for the scenarios themselves). A few examples are

1In this chapter we use the term “usability professionals” to include usability specialists, human factors
specialists, ethnographers, interaction designers, graphic designers and other members of the project team
who are primarily concerned with user-centered issues as opposed to primarily concerned with software
architecture or detailed software design and implementation.

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 91

“Supporting Undo”, “Canceling Commands”, and “Reusing Information” (which will
be our running example). Each scenario consists of a name and a paragraph or two
describing the situation in which it occurs. The scenario for “Reusing Information” is
shown in Figure 6.2.

Reusing Information
A user may wish to move data from one part of a system to another. For example, an
administrative assistant may need to move a large list of business contacts from a word
processor to a database. Re-entering this data by hand could be tedious and/or exces-
sively time-consuming. Users should be provided with automatic (e.g., data propaga-
tion) or manual (e.g., cut and paste) data transports between different parts of a system.
When such transports are available and easy to use, the user’s ability to gain insight
through multiple perspectives and/or analysis techniques will be enhanced.

Figure 6.2 The “Reusing Information” general scenario description

The scenarios are intended to assist designers and usability professionals in iden-
tifying usability concerns that have architectural implications. Scenarios have a long
history of applicability to user-interface design (Carroll and Rosson, 1992) and many
designers and usability professionals are already familiar with them. In the spirit of
Rosson & Carroll, our scenarios are “the things users characteristically want to do
and need to do” (p. 183), but they are a lower level than the functionality-level of
Rosson & Carroll’s use scenarios, because usability issues show up at a lower level
and architectural decisions must be made to support that level of use. Scenarios also
appear in software development (albeit in different forms) in the Architecture Tradeoff
Analysis MethodSM (ATAMSM , Kazman et al., 2000) and in UML (Fowler, 2003b)
in the form of use cases, growth, and exploratory scenarios. Our scenarios are perhaps
most similar to customer stories in Extreme Programming (Beck, 2000), as they are
“one thing the customer wants the system to do” (p. 179) that is testable and can be
implemented in one to five weeks. Thus, we hypothesized that they would serve as an
effective cross-cultural communication device.

Usability Benefits Hierarchy. Each architecturally-sensitive usability sce-
nario is allocated to the Usability Benefits Hierarchy, shown in Figure 6.3. The
Usability Benefits Hierarchy describes the specific usability attributes of the system
that implementing the scenario will enhance. Because there was no guarantee
that architecturally-sensitive usability scenarios would span previous definitions of
usability, we again used a bottom-up approach, affinity diagramming (or KJ-method,
Kawakita, 1982), to organize the scenarios into topics. Although it is not directly
derived from other published definitions of usability, the Benefits Hierarchy covers
the same general concepts of efficiency, error prevention and tolerance, and user
satisfaction, as other popular usability definitions (e.g., ISO 9241-11:1998; Newman
and Lamming, 1995; Nielsen, 1993; Shneiderman, 1998). It does not cover user
satisfaction in any depth, however, neglecting concepts like physical discomfort, for
example (ISO 9241-11:1998). However, it includes benefits relating to reducing the
impact of system errors that other usability definitions do not include.

92 HUMAN-CENTERED SOFTWARE ENGINEERING

Increases individual user effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance
Reduces the impact of routine user errors (slips)

Improves non-routine performance
Supports problem-solving
indent Facilitates learning

Reduces the impact of user errors caused by lack of knowledge (mistakes)
Prevents mistakes
Accommodates mistakes

Reduces the impact of system errors
Prevents system errors
Tolerates system errors

Increases user confidence and comfort

Figure 6.3 The Usability Benefits Hierarchy. For each scenario, the U&SA technique

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance
In most cases, it is more efficient for systems to transport information from
place to place than it is for users to re-enter this information by hand. Thus,
systems that support information reuse accelerate routine performance.

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips
Automatic data transportation and/or re-entry require fewer human actions
(e.g., typing, mouse movements) than re-entering data by hand. Since per-
forming more actions introduces more opportunities for error, systems that
support information reuse can prevent slips.

Increases individual effectiveness
Improves non-routine performance

Supports problem-solving
When users can import and export data from one place to another easily,
they may try different applications to gain additional insight while solving
problems. For example, a user may export data from a traditional text-based
statistics application to a data visualization application. Thus, systems that
support information reuse facilitate problem-solving.

Figure 6.4 Allocation of “Reusing Information” to the Usability Benefits Hierarchy

describes which specific benefits (the “leaves” of the hierarchy) apply and which do not

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 93

Manual Reuse Responsibilities

R1. Provide information to be reused (from Information Source)

R2. Store information to be reused (in Information Repository)

R3. Provide feedback on the stored information

R4. Retrieve stored information (from Information Repository)

R5. Receive information (into Information Sink)

R6. Provide feedback on the retrieved information

Automatic Reuse Responsibilities

R1. Know which data to store and retrieve from repository (e.g., via a data
dictionary)

R2. Provide information to be reused (from Information Source)

R3. Store information to be reused (in Information Repository)

– Retrieve stored information on request, or

– Broadcast newly stored information

R4. Receive information (into Information Sink)

Figure 6.5 Responsibilities for reusing information

For each scenario, the U&SA technique describes which specific benefits (the
“leaves” of the hierarchy) apply and which do not. Figure 6.4 contains the alloca-
tion of the “Reusing Information” scenario to the Benefits Hierarchy. For each benefit
allocation, we include a short justification for why the benefit applies to this scenario.

Responsibilities. 2

Each scenario package includes a list of system responsibilities that can serve as a
specification to developers, detailing what the system must do.3 Like any specifica-
tion, the responsibilities are intended to describe the functions of the system without
dictating a particular implementation. The responsibilities for “Reusing Information”
are divided into two sections: manual reuse (i.e., copy&paste) and automatic reuse
(data propagation). These responsibilities are shown in Figure 6.5.

Architectural Patterns. To provide more guidance to software developers, we
have included a sample architectural pattern in each U&SA scenario package that
fulfills the implementation-independent responsibilities. These patterns are similar to

2Responsibility is a term from object-oriented design that means “an obligation to perform a task or know
information” (Wirfs-Brock & Mckean, 2003, p. 3).
3At the time of the intervention with the NASA development team, only 6 scenarios out of 27 included this
list of responsibilities. Work continues to fill these in for every scenario.

94 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 6.6 Sample architectural pattern for Reusing Information Manually

software patterns (Gamma et al., 1995) insofar as they describe generalized solutions
that could be realized in a wide variety of systems, but most are at a level of abstraction
similar to software architecture patterns (Buschmann et al., 1996).

Because the architectural patterns that support usability are always situated within
an overarching architecture (usually a separation-based architecture discussed above),
our examples must be given with respect to some overarching architecture. We have
chosen to situate our examples within the J2EE Model-View-Controller architecture
because that pattern is very popular in modern system development (Figure 6.6). How-
ever, the concepts illustrated in each example can be applied to other overarching ar-
chitectures.

Note that the pattern defines generic, high-level components and the interactions
between them. Each responsibility, listed in the previous section, is allocated to a
particular component, as described in Figure 6.7.

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 95

Allocation of Responsibilities for Reusing Information Manually

View

Accept copy/paste commands from the user (R1)

Send data to the Controller (R1)

Provide feedback about the copied data. (R3)

Provide feedback about the pasted data. (R6)

Controller

Send data to the Information Reuse Repository (R1)

Send information about the copy operation to the View. (R3)

Model

Receive data from the Information Reuse Repository (R5)

Information Reuse Repository (which is a Model)

Receives data to be reused, e.g., from the Controller in response to a copy
request (R2)

Stores information to be reused (R2)

Accepts commands to retrieve stored information, e.g., paste to the Model
(R4)

Dispense information to be reused to requesting Models. (R4)

Provide information to the View for user feedback about the repository
contents. (R3)

Figure 6.7 Allocation of Responsibilities for Reusing Information Manually. This figure

describes the mappings between the Reusing Information Manually responsibilities and the

components shown in the sample architectural pattern in Figure 6.6

96 HUMAN-CENTERED SOFTWARE ENGINEERING

Ta
bl

e
6.

1

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 97

Key to scenarios (left page)
1 Aggregating data 14 Modifying interfaces
2 Aggregating commands 15 Supporting multiple activity
3 Canceling commands 16 Navigating within a single view
4 Using applications concurrently 17 Observing system state
5 Checking for correctness 18 Working at the user’s pace
6 Maintaining device independence 19 Predicting task duration
7 Evaluating the system 20 Supporting comprehensive searching
8 Recovering from failure 21 Supporting Undo
9 Retrieving forgotten passwords 22 Working in an unfamiliar context
10 Providing good help 23 Verifying resources
11 Reusing information 24 Operating consistently across views
12 Supporting international use 25 Making views accessible
13 Leveraging human knowledge 26 Supporting visualization

Table 6.1: The Benefits / Tactics Matrix (see page left). The usability
benefits are listed across the top of the table, the architectural tactics
are listed down the side. The numbers in the cells refer to the specific
scenario packages that give the column’s benefit and employ the row’s
tactic. An additional scenario, Supporting Personalization, was added

Software Tactics. The last part of a U&SA scenario package includes a list of
the architectural tactics employed by the sample architectural pattern to implement the
scenario. These architectural tactics, design decisions that influence quality attributes
like usability or performance, were developed to codify best-practice solution tech-
niques for common software design problems (Bass et al., 2003). The software tactics
hierarchy for usability appears in Figure 6.8.

In the case of Reusing Information Manually, the sample architectural pattern uses
the data intermediary tactic to implement the information reuse repository component.
Most of the architecture examples for the other usability scenarios employ multiple
tactics to implement a solution.

Benefits / Tactics Matrix. In addition to our list of scenario packages, we de-
veloped a tool to help apply the U&SA materials to a development effort: the Benefits
/ Tactics Matrix, shown in Figure 6.1.

When a project team wishes to determine which scenarios are important for their
system, they first assess which usability benefits are critical for fulfilling their usability
goals. Then they read down the column of each benefit and find the scenarios they
must consider during the architecture design phase.

After the development team has determined that their architecture design includes
support for all the usability scenarios they have deemed critical, or if an architecture
is already in place, the team may use the matrix to identify additional scenarios that
may be easy to support. They enter the Benefits / Tactics Matrix through the software

after this matrix was created

98 HUMAN-CENTERED SOFTWARE ENGINEERING

Software Architecture Tactics Hierarchy
Localize modifications

Hide information
Separate data from commands
Separate data from the view of that data
Separate authoring from execution

Maintain multiple copies
Data
Commands

Use an intermediary
Data
Function

Recording
Preemptive scheduling policy
Support system initiative

Task model
User model
System model

Figure 6.8 Software Architecture Tactics Hierarchy. For each scenario, we list the tactics

engineering tactics they have already employed and read across the rows to identify
which scenarios may be easy for them to support with their existing design. Even
though these scenarios are not critical, the team may wish to consider implementing
them if the architecture they have chosen will support them without much additional
effort.

6.4 PRIOR USE OF U&SA MATERIALS

The U&SA materials described above had been developed and disseminated over the
course of more than five years. Since we began work on this project in 1999, we
have run several industry-focused tutorials on applying our materials (Bass et al.,
2004; John et al., 2004c; John et al., 2004a), presented our work at usability and soft-
ware engineering conferences,4 and published information on the U&SA materials in
Software Engineering Institute technical reports and software engineering magazines.
We have also applied the information in the scenario packages informally in a few
architecture design reviews. For example, we used a few of the scenarios as part of the
ATAMSM on a large commercial information system (Bass and John, 2003). How-
ever, the full set of scenarios had never been explicitly applied to a real-world software
system undergoing a major architectural redesign. Therefore, although our materials
appear useful, we still needed to subject them to the test of real-world use.

4For a full list of references, see http://www.uandsa.org

used in our sample solution pattern

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 99

6.5 QUESTIONS FOR A REAL-WORLD CASE

We set out to test our materials by using them as the main discussion points for an
architectural review of a real-world software project with significant architectural de-
sign problems and an emphasis on usability. Although we recognized that no single
case could give us definite, generalizable answers to all our questions, we hoped to get
feedback, suggestions, and new ideas that would help us refine our materials in prepa-
ration for more rigorous empirical studies. We set out with three specific questions,
detailed below.

Would a real-world software development team accept the U&SA materials as the
main discussion point of an architecture design meeting?

Traditionally, development teams have not considered usability as a software qual-
ity attribute at the architecture design phase. Usability issues are introduced much
later in the life cycle through user testing and design iteration and earlier in the life
cycle through ethnography, contextual inquiry, and other field techniques. Our expe-
rience has been that usability professionals are frequently not invited to architecture
design meetings, and when they are, they feel they have little to contribute because
they have no training in software architecture design or its implications for produc-
ing usable systems. We created the U&SA materials to a framework within which
usability professionals could contribute to a software architecture design meeting.

We had successfully introduced our scenarios for enhancing usability as a qual-
ity attribute alongside more traditional architectural quality attributes such as perfor-
mance, security, and reliability during broad architectural reviews. However, as of
mid-2002, usability had never been the main topic of discussion in a large-scale, real-
world architecture design meeting. We were interested in discovering whether a de-
velopment team confronting a larger software architecture design effort would accept
usability as an architectural quality attribute and whether both the developers and us-
ability professionals on the team would be able to use our scenarios to participate in a
discussion about the system’s proposed architectural design.

Would usability scenarios generated by considering single-user-at-a-desktop ap-
ply to a real-world design problem that may involve other domains (such as col-
laborative workspaces, web-based environments, etc)?

The U&SA scenarios were initially developed through literature investigations and
examinations of usability problems in common desktop applications and operating
system interfaces. Most of these “single-user-at-a-desktop” applications followed
the classic WIMP paradigm, executed on a single machine only, and did not sup-
port multiple-user collaboration. Single-user-at-a-desktop does not cover all possible
environments that have potential software architecture and usability issues, however.
Modern systems are designed to support domains with requirements that span a wide
variety of paradigms, including collaborative computer-supported cooperative work
environments, real-time embedded systems, ubiquitous computing, and so on. We
hoped to discover how many of our scenarios would apply in these other environments,
which are different in many respects from the one we had in mind while developing
the scenarios. Although no single case can cover all these environments, applying our

100 HUMAN-CENTERED SOFTWARE ENGINEERING

materials to a system in any environment off the desktop is a step toward answering
this question.

Would our architecture design suggestions contribute to a real design project?

Ultimately, the U&SA materials are designed to improve architectural decisions
made early in the life cycle with respect to their support for usability. Thus, the
purpose of the scenarios is to generate design suggestions for software architectures
which, when followed, help to prevent the “We can’t change THAT!” problem de-
scribed in the introduction. In applying our materials to a real-world development
project, we wanted to discover whether the scenarios could, in fact, suggest design
changes to the proposed architecture of a real software system so we could learn
whether our materials were effective at all. We also hoped to discover whether real
development teams would find these suggestions compelling enough to change their
architecture design.

With these questions in mind we began to collaborate with the development team
of the MERBoard project, a software development project at NASA Ames Research
Center that is a participant in the High Dependability Computing Program5. As a par-
ticipant in the HDCP, the MERBoard development team agreed to allow intervention
by software engineering researchers for the purpose of testing new methods and tools.

6.6 THE MERBOARD PROJECT

The MERBoard Project is a software development effort by NASA Ames Research
Center6 to create a collaborative tool to support the engineers and scientists on the
Mars Exploration Rovers (MER) mission.7

Two robotic probes landed on Mars in January 2004. The MER mission’s scientific
goals include searching for and characterizing a wide range of rocks and soils that
hold clues to past water activity on Mars. The MER collects soil samples and other
geological data from the Martian surface and transmits this information to NASA sci-
entists back on Earth for analysis. Each MER is solar powered; during the Martian
day, it collects data based on instructions sent to it from Earth. When night comes, it
transmits this data back to Earth and goes into a low-power, low-activity mode until
the sun rises in the morning. During the Martian night, scientists back on Earth must
analyze the data received from the MER to determine what instructions to send to the
robot in the morning. For instance, if the data indicate that there is a high probability
that an old water channel might lie to the left, scientists must send orders to the MER
to investigate that area in the morning. The scientists must be able to analyze the data
and make decisions under strict deadlines, so that the MER does not sit idle.

To facilitate communication, the scientists work in a collocated, “war-room” style
environment. Their initial technology support consisted of desktop and laptop com-

5For information about the HDCP, see http://www.cebase.org/HDCP/frames.html?/HDCP/
aboutus.htm
6For information about MERBoard, see http://ic.arc.nasa.gov/story.php?sid=104
7For information about the MER mission, see http://marsrovers.jpl.nasa.gov/home/
index.html.

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 101

Figure 6.9 A photograph of the MERBoard’s whiteboard screen (MERBoard User’s Guide,

puters running a variety of software applications, projection screens, and paper flip
charts to facilitate group thinking and discussion. The MERBoard Project introduced
new technology to support collaborative activities like annotating images and strategic
planning with storage, retrieval and sharing capabilities (Tollinger et al., 2004).

The MERBoard is a wall-sized collaborative workspace intended to facilitate
shoulder-to-shoulder collaboration (Figure 6.9). The physical hardware consists of a
large touch-sensitive plasma display. The software consists of four major components:
a web browser for on-the-fly internet research, a collaborative whiteboard for creating
and annotating visualizations of data, a remote login (VNC) client for connecting the
MERBoard to the scientists’ desktop and laptop computers, and MERSpace, a shared
document repository for saved MERBoard sessions.

Usability had always been a key goal for the MERBoard project; their slogan was
that the final system had to be to be “Palm Pilot simple”. The MERBoards are intended
to enhance the productivity of the scientists, who have a wide variance in their comfort
with new technology, are too busy to spend much time becoming familiar with the tool
before the mission, and have tight deadlines during the mission. Thus, the system must
be both easy to learn and efficient to use, two key aspects of usability.

6.6.1 MERBoard Project Timeline

The MERBoard team has operated in several phases with defined deliverables (Fig-
ure 6.10). For the first phase, beginning in Fall 2001, the MERBoard project team

NASA Ames Research Center, September 10, 2003, by permission)

102 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 6.10 The MERBoard development timeline. We applied the U&SA materials

during the architecture redesign phase at the September 2002 architecture review for usability

conducted ethnographic field studies and user research to determine the real needs of
the engineers and scientists. They then began development on a working prototype
that could be user tested in the 2002 summer field tests with other MER technology.
After those field tests were completed, the team took the issues identified in the user
tests and began a ground-up rewrite effort, this time with an emphasis on sound ar-
chitectural design for extensibility, performance, and reliability. They began with an
architecture redesign meeting to set their goals for the January 2004 landing of this
MER mission and for the 2009 MER mission as well.

Our intervention began at the September 2004 architecture review meeting and
continued through teleconferences with a MERBoard developer.

6.7 U&SA’S APPLICATION TO MERBOARD

Since MERBoard had articulated usability as a primary goal of their system from the
beginning, we proposed that it be considered as an architectural quality attribute along
with their other stated attributes of extendibility, performance, and reliability. Since
classic architecture design and analysis techniques do not address usability as a quality
attribute, we offered to help the MERBoard team apply our U&SA materials to their
proposed architecture redesign.

Our intervention took place over the course of four meetings: a face-to-face meet-
ing where the lead architect walked through an overview of the proposed architecture
redesign, a face-to-face meeting to introduce the MERBoard team to the U&SA mate-
rials and prioritize their usability goals, a teleconference with the front-end developer
to review his understanding of the U&SA scenario packages, and a second teleconfer-
ence with the front-end developer to review his application of the scenario packages
to the details of his proposed architecture design.

concerns and follow-on teleconferences

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 103

6.7.1 Face-to-face Meetings: Architecture Overview and U&SA Materials

The first meeting was an architecture overview for the MERBoard project team. It
took place in the MERBoard project lab and involved the entire MERBoard project
team, including the project manager, the usability professionals (including an ethnog-
rapher, several cognitive modelers, HCI specialists, and a graphic designer), the lead
architect and several software developers. The second and third authors were primar-
ily observers at this architecture overview, although we were invited to ask clarifying
questions. The lead architect of the MERBoard system presented the proposed archi-
tecture redesign and discussed technical concerns such as what library to use to handle
gesture input, how to structure the components to support future extensibility, etc. The
project manager and software developers asked questions; the second author asked a
few clarifying questions; the usability professionals were generally silent listeners.
The meeting took approximately four hours.

There was then a break for dinner and the majority of the MERBoard team returned
to hear us describe the U&SA materials and to prioritize the scenarios for the MER-
Board release (one designer had a previous commitment and could not return). We
gave a short overview of the U&SA motivation and approach, and then presented our
list of scenarios that form the core of our scenario packages. We led the team through
a review of their architectural requirements by going over each of our twenty-seven
scenarios in turn. For each scenario, the team decided whether:

The scenario applied to the current, January 2004 target (i.e., it must be sup-
ported by the redesigned architecture and implemented in the current release).

The scenario applied, but they did not anticipate needing it until the distant 2009
release (i.e., it was safe to delay).

The scenario did not apply to MERBoard.

In this meeting everyone, including the usability professionals, contributed to the dis-
cussion. Unlike the previous architecture overview, the entire team debated the needs
of their users and what impact this would have on their architectural requirements.

By the end of the meeting, the design and development team had found that 25 of
the 27 scenarios were applicable to MERBoard. Seventeen of these scenarios were
considered essential for the January 2004 release and were targeted for the next field
trial. Eight were determined less critical and were postponed for the longer-term re-
lease.

Since 93% our scenarios were judged applicable by the development team, we
conclude that they were highly relevant to MERBoard, a real-world project with a
significant architecture design challenge. Moreover, the team accepted our scenarios
as a means of discussing usability as a software quality attribute that applied to their
system’s architecture. Even more encouraging was the nature of the discussion our
technique fostered in the team; the usability experts and software experts had common
ground on which to discuss critical design decisions at a sufficiently early stage for
changes to be made.

104 HUMAN-CENTERED SOFTWARE ENGINEERING

6.7.2 Teleconference to Review U&SA Materials

At the initial face-to-face meetings, the MERBoard management determined that most
of the relevant U&SA scenarios applied to the design of the front-end of MERBoard,
as opposed to the back-end (or server-side). Therefore, we arranged follow-up discus-
sions with the front-end architect and developer (hereafter, FED). It was arranged that
these discussions would be via teleconference because the authors and the MERboard
team were separated by 3000 miles and travel budget for both groups was limited.
We provided FED with a copy of our technical report on the U&SA scenarios (Bass
and John, 2001b) as well as the notes packet to our 2002 CHI tutorial on applying
the U&SA technique (John et al., 2004a). FED read these materials during a four-day
period that spanned a weekend, while he redesigned the front-end architecture.

The following week, we had a teleconference with FED to get his reaction to the
scenario packages and our technical report. There were four participants in this tele-
conference: FED (at NASA Ames in California), architecture expert Len Bass, us-
ability expert Bonnie John, and research associate Rob Adams (at Carnegie Mellon
University in Pittsburgh, Pennsylvania). We solicited the FED’s opinions on the pat-
terns, whether and how he felt they applied to MERBoard’s architecture design, and
clarified those issues about which he was uncertain. We discussed his general im-
pressions of the U&SA materials as a whole, and then went through each scenario
package in order to get his specific impressions on those that the team had decided
were critical for the current release. FED described to us how he foresaw each sce-
nario package influencing the technical decisions he was facing. The entire discussion
lasted approximately one hour.

FED’s reactions to the U&SA materials were primarily positive. Referring to the
U&SA scenario packages as a whole (i.e. the scenarios, usability benefits, architecture
patterns and software engineering tactics), he said

“It’s nice to explicitly describe it like this. I mean I managed to avoid any actual
classes that actually taught architecture, this kind of design patterns, you know
software engineering. So this is basically how I would write... I think I’d write
[the architecture like this] anyway but it’s definitely is nice to have it laid out and
drawn up and written up for you. And then you can say okay this is how we’re
going to do it. As opposed to here’s my, sort of, thoughts on the matter.”

“. . . it’s also nice just keeping a list [of scenario packages] next to me so when
I’m doing my design decision I can glance at it to make sure, you know, I haven’t
forgotten anything.”

About the architecture patterns associated with each scenario, FED said they were
“very clear” even though he did not have experience in software patterns or architec-
ture patterns prior to using the U&SA materials. About applying them to the MER-
Board front-end architecture redesign he said,

“So, they’re pretty interesting. . . Of the ones that tools actually used, the patterns,
some patterns were somewhat useful others weren’t... [some patterns] didn’t re-
ally apply. And I guess some were sort of already there.., [the pattern in the U&SA
documents] described something that already exists [in the MERBoard architec-
ture]. So it’s not actually wrong, it’s confirmation that we’re doing something
right.”

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 105

For example, regarding the Aggregating Command Scenario, FED judged the pro-
posed architecture for the MERBoard’s whiteboard as “very very similar to this pattern
. . . the grouping manager and command cluster . . . have this separation described in
the pattern.”

Unsolicited by the researchers, FED mentioned that having a separate list of respon-
sibilities fulfilled by the pattern was helpful (such a list was available for six patterns
at the time of this intervention, in John et al., 2004a).

“. . . the breakdown of responsibilities was quite nice, I felt. It wasn’t critical but
it definitely made it a lot easier to think about.”

On a less positive note, when speaking about the software engineering tactics, FED
was polite, as would be expected in such a discussion with researchers who developed
the materials under discussion. He said they were “probably definitely helpful”, but
could not think of any concrete instances of how these tactics were useful to him. He
thought they would be more useful if they were integrated into the description of the
example architecture patterns as “key ideas” used in each pattern.

In summary, FED expressed that he was able to understand the U&SA materials and
connect them to the MERBoard front-end architecture he was designing. We arranged
to have an additional teleconference once he had documented his architecture design
and review that design with respect to the scenarios.

6.7.3 Teleconference to Specifically apply U&SA Materials

In advance of our second teleconference (with the same participants), FED sent us a
diagram of his proposed architecture design. We went through all the scenario pack-
ages that the design and development team had deemed necessary for the 2004 release
and discussed how the proposed architecture supported each scenario package. The
architecture expert and FED each proposed changes to the diagramed architecture in
light of the considerations raised by the scenario packages, then discussed and decided
on those changes. This meeting ran for approximately one hour.

General Impressions of the Application of U&SA Materials. The dis-
cussion in this teleconference was a collaboration between FED, who was an expert on
MERBoard but had no formal training in software architecture (as had been uncovered
during the first teleconference), and the U&SA researchers, primarily the software ar-
chitecture expert. The conversation reflects this collaboration in that 46% of the words
were uttered by FED, indicating that it was not a “lecture” by the architecture expert,
who uttered 44% of the words. Had it been a lecture by the architecture expert, a
larger percentage of the words would have been uttered by that researcher. Nor was
it a “seeded” design review where the architecture expert throws out an idea and the
domain expert then dominates, or a larger percentage of the words would have been ut-
tered by FED. Since the development team had already decided which scenarios were
important to the MERBoard, the usability experts’ input to this discussion was small
(5% of the words), primarily asking clarifying questions in order to take notes and
revise the architecture diagram. The more junior research associate primarily asked
clarifying questions (5% of the words).

106 HUMAN-CENTERED SOFTWARE ENGINEERING

In the previous teleconference, FED expressed confidence in his understanding of
the U&SA materials and in this teleconference he seemed readily able to apply the
general scenarios to his specific architecture design problem; each scenario immedi-
ately brought to mind a specific technical challenge he was facing and he was able to
use these scenarios to brainstorm potential implementation solutions. However, FED
seemed less able to apply the component-level patterns we provided in the technical
report to MERBoard without additional support from the U&SA team, as evidenced
by the large number of changes we made during this review, described below. In one
respect this shows that U&SA materials and expertise can have a influence on archi-
tecture design. On the other hand, this is evidence that the U&SA materials need to
be improved for them to become a stand-alone resource for software architects in the
real world.

Moving from general impressions to specific content of the teleconference, the next
section details the proposed MERBoard front-end architecture and the changes we
made during this teleconference.

Results of the U&SA Intervention on the MERBoard Architecture.
The architecture diagram FED sent us at the beginning of the second teleconference
is shown in Figure 6.11. The architecture that resulted from the discussions during
that teleconference is shown in Figure 6.12. The components in Figure 6.12 and their
responsibilities are as follows.

The GUI contains all the user interface widgets that appear on the MERBoard
and handles user input processing logic. The GUI is implemented using the Java
Swing user interface toolkit.

The Dispatcher receives user actions from the GUI and either handles them
itself or forwards them to the appropriate component for processing.

The Administrator handles all user management and personalization functions.

The Selector provides a number of utilities relating to the display and manipula-
tion of user and personalization information, thereby acting as a bridge between
the user interface and the Administrator.

The Save / Restore Interface takes snapshots of the MERBoard’s current state
and sends them to the server over the network. This allows the MERBoard to be
restored in case of a system crash, minimizing data loss. It also handles manual
requests for saving and restoring data.

The Recorder logs usage data for later analysis by the usability professionals
to identify usability breakdowns and areas that need improvement. These data
are intended to feed into future collaborative systems developed by NASA.

The Network Interface provides an abstraction layer for communication with
the remote server component on which the MERBoard’s data is saved. The
remote server is not shown on the diagram.

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 107

The Plugins implement specific functionality extensions to the MERBoard. The
plugins developed by the MERBoard team include the whiteboard, the web
browser, the VNC-based plugin for connection to a remote computer, and a
specialized tool for the Long-Term Planning group called the “Sol Tree Tool”.

Figure 6.11 MERBoard architecture diagram proposed by FED prior to the second tele-

conference. The developer created this diagram after being exposed to the U&SA materials,

Comparing Figure 6.11 and 6.12, it is easy to see that almost every component and
communication line was either modified or added because of the detailed discussion
of the U&SA scenarios. We audio taped the teleconference, which allowed us to iden-
tify when these changes were made in the discussion and determine what information
content led to each change. Below, we examine each change by considering whether
the U&SA scenario packages directly caused the change or if other aspects of this ar-
chitecture walkthrough steered the design. Figure 6.12 labels each change, C1 through
C6.

The first modification (C1) involved the addition of a representation of the MER-
Board user to the diagram, thus giving a sense of where the user fits into the system.
This constituted a simple omission on FED’s part, a common occurrence when doc-
umenting complex systems from a software engineering point of view. The usability
expert suggested the addition to keep the user evident in the architecture documenta-
tion. It is possible that any review of the diagram by an independent person taking
a human-centered approach could have turned up this omission; no special U&SA
scenario package can be credited with this addition.

The next modification (C2) involved altering the communication paths between the
Plugins, the Dispatcher, and the other components. The intent of this modification was

but before consulting with U&SA researchers in detail about each scenario

108 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 6.12 The modified MERBoard architecture diagram, developed collaboratively by

the FED and U&SA researchers during the teleconference where the proposed architecture

was discussed with reference to the U&SA scenarios relevant to the January 2004 release.

The changes made are labeled C1 through C6 (these labels do not appear in the architecture

to simplify the communication between the Plugin and the worker components (the
Administrator, Save / Restore Interface, and Recorder) so that these potentially heavy
communication channels would not all have to be routed through the Dispatcher. This
change arose from a general discussion of the architecture. The architecture expert
suggested this change to improve the overall conceptual integrity of the MERBoard
design (a quality attribute he called “buildability”). There was no explicit reference to
any U&SA scenario package.

The addition of the “Reuse Repository” in the Dispatcher (C3) addresses the need
for an explicit sink for copied and pasted data (commonly known as a clipboard) and
also speaks to the need for defined mechanisms for handling and transporting clip-
board data between components. This addition arose as the result of a long discussion
of U&SA’s Reusing Information scenario package. The front-end developer explained
his implementation of information reuse in the MERBoard and the merits of vari-
ous alternatives with the architecture expert. Unlike the previous two examples, this
change arose directly from the discussion of U&SA materials.

C4 is an annotation on the diagram to document the responsibilities of a “good”
plugin, that is, a plugin that supports the level of usability required by the MERBoard
developers and its users. Since third parties often develop the plugin components,
comprehensive documentation of any architectural decision to allocate responsibilities
to a plugin must be provided so that these parties realize what conditions their code
is expected to handle. This annotation came from a discussion of U&SA’s Supporting

diagram used by the developers)

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 109

Undo, Working at the User’s Pace, and Observing System State scenario packages.
Unlike the previous change, this change emerged from the discussion of several sce-
nario packages rather that just one. This suggests that the combined effects of several
scenario packages may produce considerations that do not arise when those scenario
packages are considered singly.

The Plugin Services component (C5) was added in response to a discussion of the
U&SA scenario Operating Consistently Across Views. This was the first scenario
discussed to bring up the idea of having different views on the same data, therefore,
it initiated a discussion of views themselves. The architecture expert connected this
discussion to preliminary ideas about an object model presented at the first face-to-
face meeting. He noted that there would be a lot of commonality between functions
that manipulate aspects of the object model and proposed that common code inherited
into the plugins would be better than making each plugin implement these common
functions themselves. FED agreed and added the Plugin Services component with the
View Manager as an example.

Finally, the E-mail Manager (C6) was added shortly after the Plugin Services com-
ponent as the discussion of multiple views continued. The MERBoard designers had
envisioned that scientists may collaborate for a while using MERBoard, then ana-
lyze data in various ways on their own laptop or desktop computers, depending on
individual interests. Thus, they expected that data on the MERBoard would have to
be transferred to other computers. While discussing other aspects of multiple views,
FED explained that this may be done through e-mail. As soon as he mentioned using
e-mail, he noticed that he had not included a component representing the e-mail man-
ager and added it. Although the e-mail function is not specifically tied to maintaining
multiple views of data (the discussion underway), its omission was discovered as a
direct consequence of discussing U&SA scenarios.

In summary, many changes were made to the proposed architecture to better sup-
port the usability goals of the MERBoard team. These changes included changing
communication paths, adding components, and documenting aspects of the architec-
ture not represented by lines and boxes. The first few changes were not linked to
any specific U&SA scenario and might have been made during any architecture de-
sign walkthrough that included a usability expert (not usually present in current prac-
tice) and an architecture expert. However, when we examined each scenario in turn,
we made some changes that specifically supported the scenario under consideration.
Some changes related to only one scenario; others to a collection of scenarios that trig-
gered a single solution. These cases clearly show that the U&SA materials influenced
the final design of the MERBoard architecture.

6.8 SUMMARY OF FINDINGS

As we’ve shown above, the application of our U&SA materials to MERBoard’s archi-
tecture enjoyed a measure of success. Now, we revisit the questions, expressed earlier,
that we hoped a real-world application would be able to answer.

Would a real-world software development team accept the U&SA materials as the
main discussion point of an architecture design meeting?

110 HUMAN-CENTERED SOFTWARE ENGINEERING

We found that the entire MERBoard design and development team was not only
willing to accept U&SA as the main discussion point, but actively participated in a
three hour review of their system based around our scenario packages. Moreover,
we found that the discussion of our scenario packages included the participation of
usability professionals who were silent during the conventional architecture presen-
tation. This is encouraging, for it provides evidence that U&SA helps to improve
communication between the software development and usability communities, one of
its stated goals.

Would usability scenarios generated by considering single-user-at-a-desktop ap-
ply to a real-world design problem that may involve other domains (such as col-
laborative workspaces, web-based environments, etc)?

The MERBoard is a wall-sized collaborative workspace intended for use in a co-
located, war-room style environment. It is a far cry from the single-user-at-a-desktop
paradigm that we originally considered when developing the list of scenario packages,
yet the MERBoard team still identified 25 of our 27 scenarios as applicable to their
project; 17 of these being critical for the 2004 MER mission. Moreover, the team
was able to give concrete examples of how the scenarios were realized for their users,
often from their experiences performing direct observations of user behavior in the
field trials.

We are encouraged to discover that so many scenarios were applicable in a CSCW
application, since it implies that the scope of our technique lies beyond the single-
user-at-a-desktop paradigm. Although we currently do not know how far our materi-
als’ range extends, this case provides evidence that they can be useful in at least one
additional domain.

Would our architecture design suggestions contribute to a real design project?

As we have shown, the proposed architecture redesign for the MERBoard was heav-
ily influenced by the front-end developer reading the U&SA documents and partici-
pating in an architectural review with the research team. The front-end developer felt
that most of the materials were clear and relevant to his design. He especially liked the
list of responsibilities the software must fulfill to support a usability scenario. During
the detailed review, a majority of the architecture’s components were modified to take
into account the issues raised by U&SA scenario packages. U&SA clearly contributed
to the architecture design of MERBoard.

However, we found that the architecture design patterns were less usable for the
front-end developer than we had hoped and that he seemed to think the software tactics
were irrelevant to his design. We have thus changed our approach with respect to these
patterns, as discussed in the next section.

6.9 ONGOING WORK

Our ongoing work was influenced in several ways by our findings from applying
U&SA materials to the MERBoard architecture redesign. In particular, we have re-
designed our scenario packages and we are testing the efficacy of the different com-
ponents of those packages in a more controlled setting.

EXPERIENCE WITH USABILITY SCENARIOS ON SOFTWARE ARCHITECTURE 111

We have found, both through our work with MERBoard and our experience teach-
ing the U&SA materials, that the architecture design patterns we provide (Bass and
John, 2001b) as part of the scenario package are often insufficient for development
purposes. Most developers find that our patterns are either not sufficiently general to
be applicable to their system, or are so general that they have difficultly seeing how to
apply them to their system. At the same time, both the MERBoard front-end developer
and the participants in recent tutorials and classes find the architecture-independent
lists of responsibilities that must be fulfilled to support a scenario extremely useful.
This feedback led us to distinguish between architecture-independent responsibilities,
architectural support for those responsibilities, and overarching architectural decisions
related to aspects of the system other than usability. We have redesigned our scenario
packages around this distinction, emphasizing responsibilities and rationale for the
responsibilities (John et al., 2004c), in packages that are called usability-supporting
architectural patterns (USAPs).

Encouraged that USAPs will be useful in software architecture design, we have
collaborated with researchers on the European Union project called STATUS.8 Some
members of STATUS have also investigated the relationship between usability and
software architecture (e.g., Bosch and Juristo, 2003; Folmer and Bosch, 2004; Folmer
et al., 2003; Juristo et al., 2003). We expect that our combined effort will produce
more USAPs than our research group could alone.

To investigate whether different pieces of the scenario packages contribute to the
quality of a resulting architecture design, we are currently conducting a controlled
laboratory experiment with software architects. The experiment compares three con-
ditions: (1) only a scenario is given and the software architect is free to make archi-
tecture design changes as he or she sees fit, (2) giving both a scenario and the list of
architecture-independent responsibilities to support that scenario, and (3) giving a sce-
nario, the list of responsibilities, and a sample architecture pattern expressed in UML
component and sequence diagrams. Preliminary analyses show a significant improve-
ment in the number of responsibilities considered by software designers when using
responsibilities and UML diagrams over the scenario alone, and a trend toward im-
provement when using the list of responsibilities alone (Golden et al., 2005). We are
continuing the analysis to assess quality of the architecture design. These data provide
guidance to support future development of USAPs.

Finally, we realize that this chapter provides just part of the story about the useful-
ness of considering usability in architecture design. This chapter stops at an informal
analysis of the creation of an architecture component diagram that supports the desired
usability aspects of a system. However, there are many other questions to answer in
the full development process. Did support for the scenarios get implemented at all?
Was the architecture as designed sufficient to support the actual implementation of
the scenarios or was it changed along the way? Did the end-users of MERBoard need
the usability features supported by the architecture? Did they need even more support?
We are currently analyzing many aspects of the development process, the implemented

8See the STATUS website http://www.ls.fi.upm.es/status/

112 HUMAN-CENTERED SOFTWARE ENGINEERING

code, documentation, and actual user data during the MER 2004 mission to construct
a more formal case study of this experience.

We also realize that a single case study cannot answer all questions regarding our
materials. We are actively soliciting additional development groups wanting to explore
their architecture designs from a usability viewpoint to gain more insight into the
extent of U&SA materials’ applicability and usefulness and to improve their design
for the software architects who are our users.

Acknowledgements

The authors would like to thank the MERBoard development team for their willing-
ness to participate in this research and for their insightful feedback on the U&SA mate-
rials. The Computational Sciences Division at NASA Ames Research Center provided
support for MERBoard development and the MERBoard team’s participation in our
intervention. The High-Dependability Computing Program (HDCP) provided funding
for the development of U&SA materials and through its testbed program provided us
access to the MERBoard project for the purposes of testing the materials. Carnegie
Mellon University’s Software Engineering Institute (SEI) provided funding for the
early development of U&SA via funding to Bonnie John as well as continuing support
for the work of Len Bass.

7 LINKING USER NEEDS AND USE

CASE-DRIVEN REQUIREMENTS

ENGINEERING
Sari Kujala

Software Business and Engineering Institute, Helsinki University of Technology, Finland

Abstract

Requirements engineering is the first and the most critical step in software develop-
ment. One of the basic questions in requirements engineering is how to find out what
customers and users really need. In addition, user needs must be expressed by struc-
tured, formal user requirements. Use cases are often seen as supporting the process of
capturing requirements from the user’s point of view. In addition, there is increasing
evidence that involving users as the main source of information in requirements engi-
neering is a vital prerequisite in successful projects. The human-computer interaction
community has developed a variety of methods for understanding the context of use
and eliciting user needs directly from the users themselves. The challenge has been to
bridge the gap between informal user need descriptions and formal user requirements.
This chapter presents an approach that shows how user-centered requirements analysis
can be effectively integrated to use case-driven requirements engineering. Firstly, user
needs are gathered directly from users using semi-structured, small-scale field studies.
Secondly, the results are summarized in user need tables to ease their utilization and
their linking to use case descriptions. Thirdly, the user need tables are transformed
into use case descriptions. The approach has been validated by several industrial cases
in real development contexts.

113

in the Development Process, 113–125.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

114 HUMAN-CENTERED SOFTWARE ENGINEERING

7.1 INTRODUCTION

Requirements engineering is the first and the most critical step in software develop-
ment. One of the basic questions in requirements engineering is what is it that cus-
tomers and users really need. The success of the product depends on its ability to
provide the right solution for the customers and the users. The internal functioning of
the system is not really of great concern to the users and customers, but they do want
to perform their tasks with the system in a specific way.

Requirements engineering can also be identified as an essential activity from the
usability point of view. As John Karat (Karat, 1997) writes, the acceptability of any
software product is no longer seen as being dependent solely on user interface features,
but on the way a system fits into its context of use. Thus, user-centered design and
user interface design cannot be separated from the rest of the system development.
Usability should be considered from the very beginning of the development when a
“ground plan” of the system is decided.

There is increasing evidence that involving users as the main source of informa-
tion in requirements engineering is a vital prerequisite in successful projects (Kujala,
2003). However, user involvement should not be viewed as being trivial. Require-
ments elicitation is often seen as being a difficult problem, as communication between
developers and users may be poor. Developers may not even be motivated to commu-
nicate with users, as the developers do not know what it is that they should be asking.
In addition, users may not know what they want and may also have difficulties in ar-
ticulating their needs. One difficulty is that part of the users’ knowledge has become
tacit through automation (Mitchell and Chi, 1984; Wood, 1997). In well-learned tasks,
much of the relevant knowledge is no longer consciously available for the individual
and non-verbal skills and everyday self-evidences are difficult to articulate.

The human-computer interaction community has developed a variety of approaches
and methods for involving users. User-centered design, participatory design, ethnog-
raphy, and contextual design may be considered the main approaches, although the
roots and methods of these approaches are closely linked and overlapping (Kujala,
2003). In addition, task analysis covers a wide range of methods in order to analyze
a system function in terms of user goals and the sub-goals inherent in performing the
task (Johnson, 1989; Kirwan and Ainsworth, 1993; Hackos and Redish, 1998). Much
of the task analysis literature is devoted to the analysis of data, but task analysis also
involves the users as informants (Jeffries, 1997).

Moreover, field studies are particularly focused on discovering tacit knowledge
from users. Field studies provide a collection of techniques for studying users, their
tasks, and their environments in the actual context of those environments (Wixon et al.,
2002). Hackos and Redish (Hackos and Redish, 1998) describe an extensive range of
field methods from observing to ethnographic interviewing. Field studies can be seen
as overlapping many approaches, but the general idea is not just to ask what users want
but to study their actual behavior and context of use.

Thus, field study results help to understand those tacit user needs that users cannot
articulate directly. The new system is not used in a vacuum; users have needs relating
to the new system depending on the context of use. For example, user needs man-

LINKING USER NEEDS AND USE CASE-DRIVEN REQUIREMENTS ENGINEERING 115

Identify need for
human-centred design

1. Understand and
specify the context of

use

2. Specify the user
and organizational

requirements

3. Produce
design

solutions

4. Evaluate designs
against

requirements

Figure 7.1 The human-centered design activities in ISO 13407 (ISO/IEC, 1999)

ifest themselves as either problems that hinder users in achieving their goals, or as
opportunities to improve the likelihood of users achieving their goals.

Field studies support the first activity of human-centered design: “understand and
specify the context of use” as described in the international standard ISO 13407
(ISO/IEC, 1999). Figure 7.1 shows the interdependence between human-centered de-
sign activities. According to ISO 13407, the characteristics of the users, tasks and
the organizational and physical environments define the context in which the system
is used; users are seen as a valuable source of this knowledge. Furthermore, user
involvement and participation is seen to increase user acceptance and commitment.
Understanding and specifying the context of use also helps in identifying relevant us-
ability goals and test cases.

Understanding context of use and discovering user needs is, however, not in itself
enough. Analyzing an overwhelming amount of raw data is a frequently mentioned
problem of qualitative field studies; this was brought out in Kujala’s (Kujala, 2003) lit-
erature review. Moreover, fieldworkers have been found to have problems with com-
municating results to system developers and with effecting design work (Plowman
et al., 1995).

In user-centered design, a context of use description is a starting point for the user
and their organizational requirements (ISO/IEC, 1999). However, the context of use
description is separate from user requirements and these two documents should be
linked to facilitate the information flow and the transition from activity one to activity
two in Figure 7.1.

Use cases are often seen as supporting the process of capturing requirements from
the user’s point of view (e.g. Rumbaugh, 1994). However, in our industrial cases,
use cases were often written by software engineers who had not met the users, so
the use case documents were not shown to the users as Jacobson (Jacobson, 1992)
recommends. The software engineers were therefore not familiar with user needs.

116 HUMAN-CENTERED SOFTWARE ENGINEERING

As their use cases described the internal functioning of the system and the technical
details, they were nearly impossible for the users to understand.

On the other hand, use cases are widely accepted among developers and they pro-
vide an opportunity to transmit user needs to requirements engineering and many
researchers have already presented their ideas of reconciling user-centered design
(e.g. Seffah et al., 2001) or user interface design (e.g. Constantine and Lockwood,
2001) to use case-driven requirements engineering.

This book chapter presents an approach to how user-centered requirements analysis
can be effectively integrated to use case-driven requirements engineering. Firstly, user
needs are gathered directly from users using semi-structured, small-scale field studies.
Secondly, the results are summarized in user need tables to ease their utilization and
their linking to use case descriptions. Thirdly, the user need tables are transformed
into use case descriptions. Finally, we describe how the approach has been validated
by several industrial cases in real development contexts.

7.2 UNDERSTANDING USER NEEDS

As previously stated, field studies provide a way of understanding tacit user needs.
Field study techniques go beyond gathering just verbal data by incorporating obser-
vations made in the user’s environment (Wixon et al., 1990). At the same time field
studies are often seen to be time consuming, providing a vast amount of unstructured
data that is difficult to use in development (e.g. Bly, 1997, Hynninen et al., 1999).

In our experience gained from several industrial cases, field study methods can be
very useful even when the investment is modest. The field studies need to be simple
and cost-efficient enough to be practical in real-life development projects character-
ized by tight schedules. In our approach, efficiency is gained by combining simple
basic methods and using a top-down approach to focus the study.

Field studies are new for many companies and have to be introduced for the first
time. An effective strategy seems to be to use small-scale pilots to introduce simple
and easy to learn field study methods (Kujala et al., 2003). In addition, guidelines,
checklists, training and personal support facilitate the adoption of new methods.

A good strategy is to start with basic interviewing and observing, as described
by Hackos and Redish (Hackos and Redish, 1998), Redish and Wixon (Redish and
Wixon, 2003) and Wood (Wood, 1996; Wood, 1997). Interviewing may not be the
best method for eliciting non-verbal, tacit information, but it is very cost-effective in
understanding the high-level context of use and the users’ main goals and problems.
Interviewing is easy-to-learn and important information can be discovered directly
and effectively from users in a short time. However, interviews should be carried
out in the natural setting of the potential users and using their own task-related lan-
guage. The natural setting helps the user to remember details by seeing and maybe
showing and trying the tools and artefacts being discussed. In addition, observing or
talking-aloud supports interviewing by providing non-verbal information (Kujala and
Mäntylä, 2000b). Beyer and Holzblatt (Beyer and Holtzblatt, 1998) offer good basic
principles for facilitating the interviewer-interviewee relationship.

In order to be cost-efficient field studies need to be focused. A study team sets
objectives for the study and identifies the most critical themes for each study. Some-

LINKING USER NEEDS AND USE CASE-DRIVEN REQUIREMENTS ENGINEERING 117

times it may be difficult to find the critical themes if the team does not know the users’
world. Wood (Wood, 1997) describes how Grand Tour questions can be used to en-
courage the user to verbally “show the analyst around” the physical, temporal, and
conceptual space of the work domain. In this way, a high-level picture of the users’
world is gained and this information can be used to guide the rest of the interview.

In addition, a top-down approach helps in identifying interviewing themes and
keeping the amount of data at a manageable level (Kujala and Mäntylä, 2000b). In
the top-down approach, certain details of understanding may be lost as it does not start
from scratch; however it is easier to learn and an overwhelming amount of raw data
is avoided. The top-down approach means that we use semi-structured interviewing
in which the most important interviewing themes are predefined and used in prepar-
ing questions. The goal is to gather critical information from each topic and keep the
topics in mind while observing users and their environment. A basic set of top-down
interviewing topics are shown in Table 7.1. The idea is not to follow the prepared
questions strictly, but to use them as a checklist and to try to understand the users’
perspective.

7.3 LINKING USER NEEDS TO USER REQUIREMENTS

Understanding user needs is in itself not enough. It is impossible to meet all user
needs; there are so many needs and some of them conflict with each other. User needs
must be discovered, but also analyzed, prioritized, and described. Finally, informal
user needs must be expressed by structured user requirements if they are to be useful
to system developers.

Contextual information is often represented in a textual form, such as stories (Imaz
and Benyon, 1999). In our first industrial cases, we also used written reports with
figures, photographs and video recordings (Kujala and Mäntylä, 2000a; Kujala and
Mäntylä, 2000b; Kujala et al., 2001b; Kujala et al., 2001a). Developers evaluated the
reports, photographs and videos as useful. However, in one company, we found that it
was not so easy for a technically oriented developer to use written descriptions in prod-
uct development (Kujala et al., 2001a). He could not see how to use the documents in
user requirements definition, even though he had written the documents himself. Thus,
we realized that a slightly more formal way of representing user needs was needed,
so that developers could use information in analyzing and rationally selecting a good
combination of user needs for inclusion in their future systems.

We therefore developed user need tables to offer a link between context of use
descriptions and structural user requirements (Kujala et al., 2001a), see Table 7.2.
The technically oriented developer derived insights from a user need table which we
created for him. He got enthusiastic and wanted to make such tables from all of his
field study findings. His project manager assessed that he could describe 70% of the
preliminary requirements of the project using the user need tables.

User need tables represent user needs as users’ problems and also as possibilities,
and link them to a task sequence which is an essential part of the context of use (Ta-
ble 7.2).

Several kinds of user information can be summarized in the form of user prob-
lems and possibilities. Problems are obstacles that arise from users’ characteristics,

118 HUMAN-CENTERED SOFTWARE ENGINEERING

Table 7.1 Interview topics

Topic Description
Background
information

Background information helps the analyst to inter-
pret the results and classify users. Typical questions
are about personal characteristics such as age, sex,
profession, technical orientation, previous computer
and work experience. In addition users’ task related
characteristics such as motivation, work role and fre-
quency of use or geographic and social characteris-
tics such as location, culture and social connections
may be asked.

Users’ goals and
preferences

The goal is to understand what users want to achieve,
what is important for them, and how an intended
application can support their tasks and create better
ways of achieving the goals.

Users’ knowledge,
skills and experiences

The goal is to discover what users can and cannot
do, and how they employ objects and symbols in ac-
complishing their goals. Thus, it would be possible
to utilize their existing knowledge, skills, and con-
ceptual models in product development.

Current processes Understanding current processes helps in identifying
task hierarchies and task sequences that are natural
for users, and gives timing and other benchmarks for
the performance criteria of a future solution.

Context of use
It includes user characteristics, tasks, equipment,
and a physical and social environment in which a
product is used (ISO/IEC, 1999).

Pros and cons of
current processes and
tools

In redesigning the current process it is necessary to
identify advantages that users are unwilling to give
up. An intended system should include most of the
benefits and solve the current problems.

LINKING USER NEEDS AND USE CASE-DRIVEN REQUIREMENTS ENGINEERING 119

Table 7.2 An example of a user need table

Task sequence Problems and possibilities
Step 1: When trapped in an
elevator, passenger makes an
emergency alarm.

Problem: Passengers want to get out of the eleva-
tor as soon as possible.

Problem: All kinds of passengers must be able to
make an alarm call (blind, foreigners etc.).

Problem: Sometimes passengers may make false
alarms unintentionally.

Problem: Passengers may be in panic.

Problem: Passengers need instant confirmation
that they have created a connection to the service
center operator and that they are going to get help.

Step 2: Unoccupied service
centre operator receives the
emergency alarm call and
asks for information.

Problem: Different versions and types of remote
monitoring systems.

Problem: Passenger is the only information
source.

Problem: Service center operator does not notice
the emergency alarm call.

Step 3: Service center oper-
ator completes transmission
of information to the system
and sends it to the area ser-
viceman.

Problem: Laborious phase for the service center
operator.

Problem: Simultaneous calls must be differenti-
ated.

Problem: Serviceman cannot see all information.

Problem: Inadequate information from a site sys-
tem.

Possibility: Instructions as to how to operate the
system.

Possibility: Possibility to open phone line from
Call Center to the elevator.

Step 4: Service center oper-
ator calls the serviceman and
reads the description of the
failure.

Problem: Extra work for the service center opera-
tor.

120 HUMAN-CENTERED SOFTWARE ENGINEERING

their physical and social environment, and the overall situation. Possibilities repre-
sent users’ more implicit needs, and suggest how users’ tasks can be supported and
improved.

In addition to a task sequence and problems and possibilities, a high priority column
can also be added to the table, so that it becomes possible to attach priority information
to the user need tables. It may be difficult to specify any priority order for the needs,
but usually the most essential needs are often identified.

User need tables are not able to present all user needs; other representations such
as user profiles and photographs can be used in parallel. However, the purpose of user
need tables is to summarize several kinds of user information and to facilitate the use
of this information when user requirements are defined.

7.4 WRITING USER REQUIREMENTS FROM THE USER POINT OF

VIEW

User need tables form the basis of writing user requirements and in particular they
help developers to write use cases from the user point of view. A use case driven
approach is one way of defining user requirements. Originally Jacobson (Jacobson,
1992; Jacobson, 1995) introduced use cases as a part of object-oriented methodology.
Rumbaugh (Rumbaugh, 1994) describes use cases as the possible sequences of inter-
actions between the system and one or more actors. Thus, use cases provide a more
holistic and dynamic view of user requirements than the traditional single-requirement
statements alone.

Jacobson (Jacobson, 1992) employs a graphical use case model which shows the
system as being bounded by a box, with each actor being represented by a person out-
side the box, and use cases represented as ellipses inside the box. Rumbaugh (Rum-
baugh, 1994) complemented the model by proposing a written description of the use
case including name, summary actors, preconditions, description, exceptions, and post
conditions.

Use cases can be written in a wide variety of forms and at different levels, but we
have found that the original black-box view is the most useful one from the user point
of view. Thus, only the external functioning or services to the user are described. The
idea is to give high level descriptions of the basic functions and not to describe user
interface details. In Table 7.3, the example use case description includes some details
because the system in question was a new version of an existing system and it was
known that some of the details were not going to be changed.

We have found that these kinds of high-level use case descriptions have value in
facilitating communication among the project team. Use case descriptions help the
project team to gain a coherent view of the system. Definition work did not proceed
too quickly along technical lines.

We have used Rumbaugh’s (Rumbaugh, 1994) description of use cases, except that
we organized the written description of the use case in steps with numbers and con-
nected the exceptions to steps identified by numbers. We also describe the goal of the
user in preconditions-part: what users are trying to accomplish and why (Constantine,
1995).

LINKING USER NEEDS AND USE CASE-DRIVEN REQUIREMENTS ENGINEERING 121

Table 7.3 An example of a use case description

Use case: Making An Emergency Alarm Call
Summary: An entrapped passenger pushes the emergency alarm but-

ton in order to get help. A service center operator receives
the emergency alarm call and informs the passenger that
a serviceman will come and let the passenger out of the
elevator.

Actors: Passenger and service center operator.
Preconditions: An elevator has stopped between floors and there is a pas-

senger in the elevator. The goal of the passenger is to get
out of the elevator safely and as quickly as possible.

Basic sequence: Step 1: The passenger presses the emergency alarm but-
ton.
Step 2: The service center operator gets a visible notifi-
cation of the emergency alarm call on the screen with an
optional audio signal.
Step 3: The service center operator accepts the emer-
gency alarm call.
Step 4: The system opens a voice connection between the
service center operator and the passenger.
Step 5: The system indicates to both the passenger and
the service center operator that the voice connection is
open.
Step 6: The system guides the service center operator as
to what information to ask of the passenger.
Step 7: The service center operator

Exceptions: Step 1: If an entrapped passenger does not push the alarm
button long enough (less than 3 seconds), the system
alerts the passenger with a voice announcement.
Step 7: If the passenger has pressed the emergency alarm
button by accident, the service center operator informs
the system that the emergency alarm call is false. The
system resets the emergency alarm call.

Post conditions: The entrapped passenger knows that the service center
operator will contact a serviceman who will help the pas-
senger out of the elevator safely as soon as possible.

122 HUMAN-CENTERED SOFTWARE ENGINEERING

Inventing use case steps is difficult if developers do not know the users’ tasks and
needs. For example, in one of our industrial cases, the use case descriptions lacked the
necessary level of detail and also the user-point of view when user need information
was not available (Kujala et al., 2001a). In addition, we found that gathering user
feedback with use cases is not enough. Users still interpret use cases on the basis of
their present way of performing the tasks. If something is missing from the use case,
they assume that it will nevertheless be implemented in the product. These implicit
assumptions undermine the mutual understanding between users and developers.

User need tables inform developers as to how the task should be carried out and
what the basic problems to be solved are. In addition, the tasks and objects are de-
scribed in the users’ language. In table form the information is in an organized form
and the developer can consider user problems step by step and avoid the perception of
having to deal with an overwhelming amount of data.

User need tables and use case descriptions complement each other, thus it is easy to
move from one to another. The difference is that a user need table describes a specific
present state user situation and context of use and there can be several versions of it,
whereas the use case describes the general solution to how the task is performed with
the new system. The idea is not to copy the task sequence as such, but to redesign
all the necessary parts in order to solve user problems or realize the opportunities.
Otherwise, the task sequence familiar to users is retained merely for the sake of con-
venience.

7.5 EVALUATING THE APPROACH IN INDUSTRY

The approach of linking user needs to use case-driven requirements engineering was
developed and evaluated in several published, and a few unpublished, industrial cases
in realistic product development settings. A summary of the published studies and
related research problems and data gathering methods are described in Table 7.4. The
case-study research strategy and multiple sources of evidence were used, as recom-
mended by Yin (Yin, 1994). The costs and benefits of the approach were evaluated by
using documentation, participant-observations, interviews, and questionnaires.

In most of the cases the approach was piloted in companies by real developers
and the role of the researchers was that of an expert or a consultant who provided
information, instructions, training, and support for the practitioners. Thus, it could
be seen that the approach was practical enough to be used by real developers in real
product development context.

The products under development were a PDA-device, a portable communications
device, elevators and escalators, an information system for building designers, and
weather measurement instruments. The size of the involved companies varied from
small to large.

As a result of the studies, a practical field study approach was synthesized and
evaluated. The general results of the studies are summarized in Table 7.5. It was
found that the approach was useful even in a short time frame with relatively low costs.
The total cost of the field studies varied from 46 to 277 person hours. Developers, a
usability expert, and salesmen evaluated the results of the field studies as being very

LINKING USER NEEDS AND USE CASE-DRIVEN REQUIREMENTS ENGINEERING 123

Table 7.4 The research problems and data gathering methods

Study Name Problem Data gathering
method

I User involvement: A
review of the benefits
and challenges (Kujala,
2003)

What are the benefits
and challenges of user
involvement in product
development?

Literature review

II Studying users for
developing usable and
useful products (Kujala
and Mäntylä, 2000b)

How can field studies
be applied in product
development?

Participant-
observation, interview

III How effective are user
studies? (Kujala and
Mäntylä, 2000a)

What are the benefits
and costs of the pro-
posed approach to early
user involvement com-
pared to usability test-
ing?

Documentation, exper-
iment (replicated prod-
uct design), interview

IV Bridging the gap be-
tween user needs and
user requirements (Ku-
jala et al., 2001a)

How can user needs
be represented and
translated into user re-
quirements in industrial
product development
cases?

Participant-observation

V Introducing user needs
gathering to product
development: increas-
ing innovation and
customer satisfac-
tion (Kujala et al.,
2001b; Kujala et al.,
2003)

How can the proposed
approach be introduced
to product development
cases?

Participant-
observation, ques-
tionnaire, interview

124 HUMAN-CENTERED SOFTWARE ENGINEERING

Table 7.5 The results of the studies

Study Problem Results
I What are the benefits and

challenges of user involve-
ment in product develop-
ment?

User involvement has clearly positive ef-
fects on system success and user satisfac-
tion. The communication between users
and developers poses challenges to prod-
uct development work. Field study meth-
ods should be more cost-effective to use.

II How can field studies be
applied in product develop-
ment?

A field study approach was developed. The
approach was tested in one industrial case,
and the results were evaluated to be useful
although the resources invested were mod-
est.

III What are the benefits and
costs of the proposed ap-
proach to early user involve-
ment compared to usability
testing?

The field study approach was evaluated
to provide useful information for product
development. Preliminary evidence sug-
gested that field studies are a more effective
way of improving usability of the product
than iterative usability testing.

IV How can user needs be rep-
resented and translated into
user requirements in indus-
trial product development
cases?

User need tables were developed to repre-
sent user needs. It was discovered that the
user needs tables help developers to bridge
the gap between the user needs and user re-
quirements when the use case approach is
used.

V How can the proposed ap-
proach be introduced to
product development cases?

In introducing field studies to product de-
velopment small-scale pilot studies mo-
tivated the developers. Developers and
salesmen found user studies useful. Inno-
vation and customer satisfaction were in-
creased.

useful in interviews and questionnaires that were conducted. In addition, the field
studies provided new product ideas and improvements to existing products.

Customer satisfaction seemed to increase, although it was not directly measured. In
Study V, the customer evaluated the product development company as being superior
compared to others after the field study. The product development company achieved
direct financial benefits as the customer signed a service contract with the company.

Furthermore, user need tables were found to help developers to utilize the field
study results and to write more complete and correct use cases. The developers could
more easily understand user needs and write use cases from the user point of view.
If user need tables were not available, the use case descriptions missed the necessary
level of detail as the developers were not aware of all the steps necessary to achieve
the users’ goal.

Use cases helped designers to gain a coherent view of the product. Undefined
missing details were identified and definition work did not proceed too quickly along

LINKING USER NEEDS AND USE CASE-DRIVEN REQUIREMENTS ENGINEERING 125

Table 7.6 The results of the comparative usability test in Study III

Product User group
Number of

users
Problems

Mean time
spent
(min)

Existing Experienced 4 9 9.51
Changed Novices 4 8 8.18

technical lines. The developers said that they could use the use cases as checklists
to guide the definition work and write instructions. They also noticed that use cases
could be used as test cases.

In addition to the case studies, empirical data was gathered from an experiment
in Study III (Kujala and Mäntylä, 2000a). The field study approach was evaluated by
redesigning the functionality of an existing product based on a field study and compar-
ing the process and results with the baseline design process, in which the functionality
was first developed. The field study included six users; the total time spent on the
study was 46 person hours. The baseline design process was very iterative and rapid
prototyping was used. The only direct link to users was through usability tests. An
estimation of the time spent on design was not available, but a rough estimation of
the resources allocated to the usability test can be derived from the fact that 33 users
participated in them.

The Study III provided preliminary evidence that field studies represent a more
effective way of improving the usability of the product than iterative usability testing.
For example, the results of both field study process and baseline design process were
evaluated in a comparative usability test. As shown in Table 7.6 four experienced
users of the baseline product spent slightly more time performing the tasks than the
four novices using the changed product.

Usability evaluation techniques “react” to an existing design and thus are aimed
at “improving” rather than “creating” (Wixon et al., 1994). It seems to be easier to
do this improving with usability testing if the user needs are properly understood at
the beginning and the system is aimed in the right direction. In addition, the success
of a usability test depends on how representative the test task and environment are
and this information is gained from field studies. However, even if the user needs are
understood their meaning needs to be interpreted and translated to a system. Thus,
field studies provide essential information about user needs and use scenarios; usabil-
ity testing has its own role in validating interpretations and evaluating the usability of
the practical solution.

In summary, we have presented how user-centered requirements analysis can be
integrated to use case-driven requirements engineeringw. The proposed approach de-
scribes step-by-step how user needs can be discovered and utilized in requirements en-
gineering. Our case studies indicate that the approach is simple and practical enough
to be used in real development contexts.

8 GUIDING DESIGNERS TO THE

WORLD OF USABILITY: DETERMINING

USABILITY REQUIREMENTS THROUGH

TEAMWORK
Timo Jokela

Oulu University

Abstract

A teamwork method for determining usability requirements based on the definition
of usability of ISO 9241-11 is proposed. A usability specialist facilitates a software
development team in determining usability requirements in a set of workshop sessions.
The concrete outcome of the workshops is a set of measurable usability requirements
(in a form of usability requirements table) which form design drivers for the later
phases of software design. Another outcome of the workshops is of educational and
motivational nature. We found that the workshops are effective training of usability
and make the design team committed towards user-centered design. On the other
hand, systematic determination of usability requirements following the definition of
usability of ISO 9241-11 was found to be a complex process, and it is challenging to
fully determine the usability requirements.

127

in the Development Process, 127–145.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

128 HUMAN-CENTERED SOFTWARE ENGINEERING

8.1 INTRODUCTION

Usability is one of the most important quality characteristics of software intensive
products. Usable systems are easy to learn, efficient to use, not error-prone, and sat-
isfactory in use (Nielsen, 1993). Usability brings many benefits, which include “in-
creased productivity, enhanced quality of work, improved user satisfaction, reductions
in support and training costs and improved user satisfaction” (ISO/IEC, 1999).

Usability has not been defined consistently, and various definitions exist. Probably
the best-know definition of usability is by Jacob Nielsen (Nielsen, 1993) usability is
about learnability, efficiency, memorability, errors, and satisfaction. However, the def-
inition of usability from ISO 9241-11 (ISO/IEC, 1998) – “the extent to which a product
can be used by specified users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use” - is becoming the main reference of
usability. In addition that it is largely recognized in recent literature, the new Com-
mon Industry Format, CIF, for usability testing (ANSI/INCITS, 2001)—supported by
a number of corporations and other stakeholders - uses this standard definition as the
reference of usability. In our study, we took this definition as the reference of usability.

In this chapter, we describe the KESSU URD1 method for determining usability
requirements and experiences on using the method. The method has two objectives.
First, it aims to be a systematic approach for the determining usability requirements
based on ISO 9241-11 definition of usability. Second, it aims to help integration of
usability into software development through making project staff understand and get
committed to design usability. A specific feature of the method is that it is imple-
mented as teamwork where the designers and other project staff are the key stakehold-
ers of the process.

Based on the definition of usability from ISO 9241-11, we consider usability re-
quirements as of effectiveness, efficiency and satisfaction of users achieving their goals
in the defined contexts of use. In other words, we talk about measurable requirements
which are critically important to be determined as a part of development process (
Good et al., 1986; Wixon and Wilson, 1997; Jokela and Pirkola, 1999; Göransson and
Gulliksen, 2003; also Chapter 2 of this book). As stated in Good et al., 1986: “Without
measurable usability specifications, there is no way to determine the usability needs
of a product, or to measure whether or not the finished product fulfills those needs. If
we cannot measure usability, we cannot have usability engineering”.

Determination of usability requirements is an important factor in the process of
integrating usability into the product and software design process. Usability require-
ments – which include the definitions of the users, users’ goals, environments of use
etc. – are design drivers. Design drivers do not provide technical solutions but guide,
probably implicitly, the project team towards designing usable software. We use the
KESSU UCD process model (Jokela, 2004b; Figure 8.1) – which is elaborated from
the well-known process model of ISO 13407 - as generic reference for user-centered
design. A specific feature in the KESSU model is that it presents usability data ex-
plicitly as design drivers. The usability requirements process covers the three first

1KESSU = name of a research project; URD = usability requirements determination

GUIDING DESIGNERS TO THE WORLD OF USABILITY 129

activities of the usability lifecycle (Figure 8.1): Identification of user groups; Context
of use analysis; and User requirements determination.

User task
redesign

Usability
verification

Context of
use of user

group 1

Context of
use of user

group 1

Context of
use of

analysis

Identifica-
tion of user

groups

design guidelines,
style guides

User requirements
determination

Software
(prototype)

Usability
evaluation

Design activities:
Interaction design,

SW design etc.

Software
(delivered)

Figure 8.1 Usability activities (yellow circles) provide design drivers (the double lines) to

design activities (grey circles)

Usability requirements, however, are effective design drivers only when the soft-
ware designers and other members of a design team are truly committed in achieving
the usability requirements. There is a risk is that usability requirements may be cast
aside if time is running out in the development project (McCoy, 2002). Our basic
means for achieving commitment is through active role of each member of the project
team in the process of usability requirements determination. Citing the well know
phrase of Stephen R. Covey, 1994: “Without involvement, there is no commitment”
(Covey, 1994).

Other chapters of this book present related approaches. A user needs analysis
method is proposed in by Kujala (Chapter 7 of this book) where user needs are repre-
sented as problems and possibilities in a user needs table and transformed into use case
descriptions, including definition of actors, pre- and post-conditions, task sequences
and exceptions. The PUF method (Chapter 9) has related elements as our method
does (definition of users and tasks) but really does not address to usability require-
ments and mainly focuses on integration of usability to UML. Our approach provides
a complementary view through describing how usability requirements in the meaning
of ISO 9241-11 can be determined as teamwork.

In the next section, we briefly discuss existing methods and relate our method with
them. Then we present the general features of the method, and thereafter the steps of
the method. Finally, the lessons learnt and the ways how the method can be altered
are discussed.

130 HUMAN-CENTERED SOFTWARE ENGINEERING

8.2 RELATED METHODS

The standard ISO 9241-11 and the evolving Common Industry Format for Usability
Requirements, CIF-R, NIST, 2004, provide guidelines and examples for how to de-
termine usability requirements following the definition of usability of ISO 9241-11.
They mainly focus describing and exploring the concepts and formats related to the
definition of usability: how to define measures for effectiveness, efficiency and satis-
faction, and how to define context of use. Research carried out in European projects
has produced guidance and templates—such as Maguire, 1998, and Thomas and Be-
van, 1996—for describing users, tasks, and environments of use.

These guidelines, however, provide only limited guidelines for the process of de-
termining usability requirements. For example, ISO 9241-11 states that usability mea-
sures can be specified “for overall goals (e.g. produce a letter) or for narrower goals
(e.g. perform search and replace)” and “focusing . . . on the most important user goals
may mean ignoring many functions, but is likely to be he most practical approach”.
CIF-R focuses on describing the contents of usability requirements document, and
does not provide guidelines for how to generate the requirements. The handbook of
Maguire, 1998, provides general techniques such as stakeholder or context meetings,
interviews, observations, questionnaires and task analysis. The standard ISO 13407
(ISO/IEC, 1999) identifies a process ‘Specify the user and organizational require-
ments’, including statements such as “provide measurable criteria against which the
emerging design can be tested”, and that the requirements should “be stated in terms
that permit subsequent testing and should be confirmed or updated during the life of
the project”. The experience report by Bevan & et al. (Bevan and Claridge, 2002)
guides: “For each chosen task and user type, estimate. . . ” and “usability for the new
system should be at least as good as for the old system”.

Most of other usability engineering literature such as Nielsen, 1993, Wixon and
Wilson, 1997, Beyer and Holtzblatt, 1998, Hackos and Redish, 1998, Mayhew, 1999,
Rosson and Carroll, 2002b, do not explicitly use the ISO 9241-11 definition. They,
however, do provide guidance for individual aspects of determining usability require-
ments: for identifying user groups, determining user goals and environments of use;
and specifying measurable usability requirements. Some of these guidelines are rather
abstract. For example, for determining user goals Nielsen presents statements such as
“the users’ overall goals should be studied” and “a typical outcome of a task analysis
is a list of all the things users want to accomplish with the system” (Nielsen, 1993).
Wixon & Wilson (Wixon and Wilson, 1997) define a six-step process for determin-
ing usability requirements but the guidance is given at rather high level of abstraction.
Contextual Design, CD (Beyer and Holtzblatt, 1998) has a strong focus on under-
standing users’ work: the three first phases of the methodology are about gathering
data from users and analyzing it. CD implicitly recognizes that there are different user
groups. It, however, does not provide any systematic method specifically for iden-
tifying those. It neither discusses the determination of quantitative usability goals.
Altogether, we found the existing guidance quite general.

But, naturally, there exist also concrete guidelines. For example, Mayhew, 1999,
has a specific step for determining ‘usability goals’. She first emphasizes the im-

portance of quantitative goals and then discusses the different types of quantitative

GUIDING DESIGNERS TO THE WORLD OF USABILITY 131

usability goals: ease-of-use vs. ease-of-learning goals; absolute vs. relative goals;
and performance vs. preference vs. satisfaction goals. She then provides a step-by-
step procedure to determine quantitative usability goals: first determine qualitative
goals, and then determine quantitative goals in the categories of “ease-of-learning”,
“ease-of-use” and “satisfaction” that are “relatively high in priority”. In other words,
Mayhew addresses the topic, provides guidance but not systematically driven by the
ISO definition.

Further, there are only few empirical studies on the use the definition of usability
if ISO 9241-11 in practical usability requirements determination. Case studies, such
as Bevan and Claridge, 2002, have been contacted on how to use the definition in
usability testing. However, there is a gap in research on how to use the definition
systematically when determining usability requirements.

Our study complements the existing research by presenting the KESSU URD
method that specifically aims for usability requirements that conform to the ISO 9241-
11 definition of usability. Further, the method specifically aims to overcome the com-
munication gaps between usability and software and other designers.

8.3 DEVELOPMENT OF KESSU URD

The development of the method stems from our experiences when carrying out usabil-
ity maturity assessments. Usability maturity assessment is about examination of the
user-centredness of a development organisation2. In an assessment, one may examine
the extent to which development projects include user-centred activities, the extent to
which UCD is part of the quality system of a company, the extent to which developers
have received training on UCD, etc. The usefulness of usability maturity assessments
is in the hypothesis that knowing the strengths and weaknesses in UCD provides a
good basis for choosing those organizational areas where to improve the performance
of UCD in the development organisation.

Probably the best-known approach for usability maturity assessment is process as-
sessment, an approach that is widely used in software process improvement. There are
specific models developed for process assessment of UCD processes: ISO/TR 18529
(ISO/IEC, 2000a) and ISO/PAS 18152 (ISO/IEC, 2003). These kinds of process as-
sessment models are typically used for the examining on how user-centred activities
are managed across a development organization.

In our assessments – lessons learnt of which are reported in Jokela, 2004a—we
found reasonable to limit our focus on assessing the user-centredness of individual
development projects (and pay less attention on management issues). Therefore, we
ended up to have a simplified model of process assessment (Jokela, 2004b). A specific
feature of our KESSU assessment model is that it uses the definition of usability from
ISO 9241-11 as the reference of usability.

In one assessment case our finding was that the development project under assess-
ment had included practically no UCD activities: the users of the product had not been
identified, the user goals had not been determined, user tasks had not been analyzed,

2In other words, usability maturity assessment is not about evaluation the usability of the product or system.

132 HUMAN-CENTERED SOFTWARE ENGINEERING

etc. We did not find it constructive to report these kinds of ‘poor’ results to the project
team. Instead, we organized a workshop where we started to explore together with
the project team what kinds of things user-centred design had concretely meant in the
context of that specific project. We brainstormed together with the project team the
different kinds of user data that should have been generated: who would be the users
of the product, what kinds of goals the users might have, etc.

Our experience was so positive that we used the approach also later as a kick-off
of user-centred activities in other development projects. Step by step it evolved into
an approach that we describe in this chapter. In total, we have had used the approach
eleven times in different contexts. The applications have included mobile services,
telecommunication software, and transportation and healthcare systems.

Some cases composed of several workshop sessions while other cases were carried
out during one day. There was variation in the styles in which the workshops were car-
ried out. The variation was not only due to the different time available but also due to
the challenges that we met. We found that the determination of usability requirements
(using the ISO 9241-11 definition as a reference) is not an easy task.

One aspect, however, remained stable throughout the cases: we used the ISO 9241-
11 definition of usability as the reference. This is also probably one of our key find-
ings: the ISO 9241-11 definition of usability was sense-making both to us - usability
practitioners and researchers - and to the designers. We did not consider taking any
other definition as the basis; we perceived determining usability requirements using
the ISO 9241-11 definition not easy but most motivating.

8.4 GENERAL FEATURES OF KESSU URD

The KESSU URD method generally implements the principles of UCD such as user
focus, iteration, and specifically multidisciplinary teamwork. On the other hand, we
have typically not included end users in the requirements process, which basically
violates ‘user involvement’, one of the basic principles of UCD (although one of the
objectives of the method is that it motivates to user involvement at a later stage of
development cycle).

Technically, our approach for determining usability requirements is a set of work-
shop sessions where usability requirements are brainstormed as teamwork. The
method is a systematic process from the identification of users to the determination
of usability requirements, following the definition of usability from ISO 9241-11.

At the stage of requirements determining, we do not pay attention on how to later
test the designs against the requirements. As Wixon & al. (Wixon and Wilson, 1997)
state: “The greatest impacts of usability engineering are related to the initial stages of
goals setting. Even if you do not test at all, designing with a clearly stated usability
goal is preferable”.

In the workshops, the grounded knowledge that the design staff has on users – i.e.
knowledge from user contacts from various situations such as customer visits, cus-
tomer service, etc. – is systematically elicited and analyzed. As such, the approach re-
sembles context of use sessions (Thomas and Bevan, 1996) and stakeholder meetings
(UsabilityNet, 2003). As developments compared to these approaches, our approach

GUIDING DESIGNERS TO THE WORLD OF USABILITY 133

has some specific features at the levels of detail: the exact steps of the workshops; the
working methods used; the share of responsibilities; prioritizing of issues, etc.

The outcome of the workshop is usability requirements table which contains user
group definitions, user goal definitions; measurable usability requirements, etc. (see
8.8.3).

8.4.1 The Participants and Roles

An essential feature is that all those persons who are involved in design and deci-
sion making related to the user interaction design of the product participate in the
requirements process. These people include software and user interface designers but
typically also the project manager, the product manager, representatives from tech-
nical documentation and customer service, etc. The workshops are facilitated by an
experienced usability specialist. A workshop setting is illustrated in Figure 8.2.

Figure 8.2 A KESSU URD workshop session

There are four specific roles in the workshop sessions:

A facilitator: a person who facilitates and guides the workshops. He or she is
typically an experienced usability professional and not a member of the project
team.

A usability responsible: a person who is responsible of usability issues in the
project team. He or she is the main contact with the facilitator, takes care of the
note keeping during the process and of the action points between the workshop
sessions.

134 HUMAN-CENTERED SOFTWARE ENGINEERING

The decision maker: a person who is the final decision maker in different deci-
sion making situations during the processes. He or she is typically the project
manager.

Analysts: all the other members of the workshop who contribute in the team-
work. Also the usability responsible and the decision maker are analysts (but
not the facilitator).

The participants are divided into teams of 2–4 persons. Each team works parallel. The
usability specialist and the project manager are also members of some of the teams.
The facilitator is the only person that does not belong to a team. The facilitator’s role
is to follow how the teams proceed in their assignments, give feedback and hints to the
teams.

The facilitator has the responsibility of running the sessions but can also take care
of the documentation of the results together with the usability specialist. He or she
takes pictures of the notes on the wall as well as writes down the required data with a
word processor.

8.4.2 General Flow of the Process

In the first cases, we started with all-day long workshops but found it reasonable to
break them into sessions. Our experience is that people feel longer sessions too tiring,
and the risk that they do not show up in the next sessions is bigger. One session should
last approximately three hours – it should not last longer than four hours.

The number of sessions varies, depending on the resources available. In three ses-
sions, one can systematically go through some instances of all the steps – from the
identification of user groups to determining usability requirements. Three sessions,
however, are not adequate for processing the requirements fully. On the other hand,
we have also conducted workshops of one session only.

The sessions compose of a set of break-outs for team work. Each break-out takes
5 to 30 minutes. After each break-out, the results are analyzed and agreed, and the
assignments for the next break-out sub session are given.

8.4.3 Working Techniques

Various teamwork techniques are utilized:

Each team (of 2 to 4 persons) works as a team, discussing and producing the
outcomes that are assigned to the team.

Depending on the phase of the process, the different teams may work on the
same subject parallel, or each team may have a different subject

If the teams have worked on the same subject, the results are put on the wall,
and board walking (a technique that is used e.g. in Contextual Design (Beyer
and Holtzblatt, 1998) is used to combine and organize the results.

GUIDING DESIGNERS TO THE WORLD OF USABILITY 135

If the teams work on different assignments, the outcomes are presented to the
other teams. The other teams may comment the results. The results are com-
monly agreed.

Post-it notes are used for documenting the outcomes. The outcomes are further
put on the wall of the meeting room.

Voting is used when one needs to prioritise the results. Each participant is in an
equal position (except the facilitator who does not vote).

After each step, a reality check is done: do the results appear sensible. The
project manager has the final word.

The facilitator has an important role. During break-outs, he or she goes from team to
another and checks whether the teams are understood the assignment correctly, and
whether they are producing appropriate outcomes. This is an important task. Our
experience is that “usability” means a new kind of thinking to many people, and they
really need guidance and probing so that they understand what kinds of outcomes to
produce.

Post-it notes are the key artefacts that the participants work with. The post-it notes
on the wall are recorded with a digital camera. Simultaneously the results are doc-
umented into a usability requirements table (8.8.3), either by the facilitator or the
usability expert. The requirements table - projected to a screen - is reviewed by the
participants especially at the later phases of the process.

8.4.4 Summary

The key features of the workshops are summarized in Table 8.1.

Table 8.1 A KESSU URD workshop session

Every project team member participates and contributes. Actually, the outcomes of
the workshop, the usability requirements, are produced by the project data (not by the
usability specialists).
Various teamwork techniques are utilized to achieve the involvement and contribution
of everyone.
The user data is elicited from the grounded knowledge of users that the participants
have.
The role of the usability specialist is to facilitate, not to produce the data. He or she
guides the process and the makes sure that the required outcomes are produced.
The project manager has the authority to make decisions.
The results are commonly agreed.
Each session lasts half a day in the maximum.

136 HUMAN-CENTERED SOFTWARE ENGINEERING

8.5 STEPS OF KESSU URD

Above, we have described the general features of the workshop sessions. In this sec-
tion, we describe the steps of the method. Each step provides an outcome which is
documented. One should understand that, as discussed in later sections, the process is
not a mechanical one.

8.5.1 Step 1. Objectives, Scope, Organization

The facilitator first briefs the participants about the objectives and contents of the
workshop. This includes a brief introduction to usability and user-centred design.
Some participants may expect that one would design user interfaces in the workshop.
Therefore we have found it sensible to emphasize that the purpose of the workshop is
not to design user interface.

Second, one needs to make everyone agree and understand what product or system
is the focus of the workshop. This is the task of the project manager. Unlike some
other approaches, such as the stakeholder meeting (UsabilityNet, 2003) we do not
determine the business success factors of the project at this stage. Vice versa, we find
that usability related business success factors could be determined based on the results
of the workshop.

Third, three or four working teams are formed. Depending on the number of the
participants, the number of persons in the teams may vary (two in minimum).

8.5.2 Step 2. Identify the Users

The first ‘usability’ step is to determine the users of the product. Each working team
identifies different users and writes down the user groups on post-it notes, one group
in one note. All the notes are put on the wall, and the final set of user groups are
mutually agreed on. We do not try to achieve the final truth of the ‘right’ set of user
groups at this stage – our experience is that the following steps of the process clarify
what is the appropriate set of users.

We have found it sensible to guide identifying user groups by the job role of the
users. To keep to process manageable, we do not identify the user groups based on the
experience of the users (novices, intermediate, experts etc.) nor on the cultural aspects
(international users). These issues are relevant, but they can be taken into account later
when usability evaluations are planned.

8.5.3 Step 3: Prioritise the Users

Next, the user groups are prioritised: which group is the most important one, which
one comes next, etc. The user groups are prioritised in order to determine the working
order: the most important user groups will be processed first in next phases of the
process.

Voting is used to determine the priority. Each member of the workshop - except the
facilitator - has an equal amount of votes (three).

GUIDING DESIGNERS TO THE WORLD OF USABILITY 137

8.5.4 Step 4: Identify the User Accomplishments

The next step is to brainstorm the accomplishments (goals) that the users may want
to achieve with the product. Because different user groups have different accomplish-
ments, this step needs to be done separately for each user group. We start with the
most important user groups, and assign one user group for each working team. Then
we ask the teams to identify the different accomplishments (goals) that users would
want to gain with the product under development.

We have found this to be one of the most challenging parts of the whole process.
It seems to be so much easier to think of tasks of users than the accomplishments
what users should achieve. The facilitator’s role at this stage is critical. The facilitator
should challenge the teams and constructively not to accept too simple answers.

In our first cases, we used just brainstorming for the identification of the tasks. In
some cases it worked but in other cases the teams had difficulties in identifying the
variety of the different tasks that users typically have. In the latest cases, we used
scenarios and personas to aid in the process of identifying user accomplishments.

A Typical Sub-step: Re-identify the Users. We have often found neces-
sary to go back and check whether refinements in the set of user groups are required.
When determining accomplishments, one often realizes that the original set of user
groups was not the right one.

8.5.5 Step 5: Prioritise Accomplishments

The next step is to prioritise the accomplishments. We have used the following criteria
for guiding the prioritisation:

Accomplishments the achievement of which is critical

Tasks that users do frequently (to reach an accomplishment)

Tasks that are time critical

Tasks that are error critical

A typical sub-step: Redefine Accomplishments. This stage, again, may
lead to iteration. One is often able to refine the set of user accomplishments when the
task attributes are brainstormed. For example, one may realize at there are different
accomplishments related to ‘testing’ if one kind of testing is done frequently while
another kind of testing is carried out only quite seldom.

8.5.6 Step 6: Identify Critical Accomplishments

A user-task matrix - such as proposed in Hackos and Redish, 1998 - is created. The
matrix reveals whether a specific task is performed by one user group or several user
groups. All the accomplishments of all the user groups are consolidated into a single
table.

We ask the teams to check the priorities of the accomplishments of all the user
groups, and to produce a consolidated list of most critical user accomplishments. This

138 HUMAN-CENTERED SOFTWARE ENGINEERING

outcome, the priorities of all accomplishments of all user groups, is a very central re-
sult of the workshop. We now know which accomplishments by which user groups
form the basis for the usability requirements of the product or software under devel-
opment.

8.5.7 Step 7: Consolidate accomplishments

At this phase, we may have quite a large number of accomplishments that may be pri-
oritised critical. While too many usability goals are impractical, one should plan how
to consolidate those accomplishments into a reasonable number of usability require-
ments. Different approaches may be used. For example Jokela and Pirkola, 1999, used
an approach where the criteria are determined with the average performance of tasks.

8.5.8 Step 8: Produce Qualitative Usability Requirements

We distribute the most important accomplishments to the working teams, and ask them
to define descriptive statements about how the requirements are successfully achieved.
The statements should reflect the critical attributes of the accomplishments:

A task that is performed frequently, would probably lead to a qualitative require-
ment such as: “Users should be able to do the task very quickly and with little
effort”.

A qualitative requirement for a task when a user configures the system: “This
task is a ‘one-shot’ tasks and it is utmost important that the outcome of the task
is correct. On the other hand, the task is not very time-critical”.

8.5.9 Step 9: Produce Quantitative Requirements

The qualitative goals are transformed into quantitative ones. This is another step –
in addition to the determination of user accomplishments - that is typically very chal-
lenging for the participants.

Generally, we recommend setting goals in relation to the old version of the product
(or a competitive product). This is where we have often found lack of information:
the members of the project team do not know about the performance of the existing
product.

8.5.10 Step 10: Do the Final Reality Check

When the final set of usability requirements are produced, we take a step backwards
and make a reality check. We especially remind that much of the results of this kind of
work are based on the knowledge of the participants. In this case one should consider
to which extent do we really know the world of user – how valid is the data that we
derived?

GUIDING DESIGNERS TO THE WORLD OF USABILITY 139

8.5.11 Summary

The steps, with the descriptions of outcomes and comments, are summarised in Ta-
ble 8.3. Our experience is that one needs three 3-hours sessions in order to go through
all the steps for one user group.

Table 8.3 Key features of workshops

No Step Outcome Comment
1 Workshop objectives Definition of the scope of the

workshop (what is the prod-
uct)

The project manager has a
critical role

2 Identification of user groups A set of user groups: names,
brief descriptions

Identified through job role

3 Prioritizing user groups An ordered list of user
groups

Based on the size or critical-
ity of the user group

4 Identification of user
accomplishments

A set of user accomplish-
ments per user group
Refinements in the set of
user groups (typically more
than identified in step 2)

Describe the accomplish-
ment (not the task perfor-
mance). Perceived challeng-
ing but useful. The role of
the facilitator critical.

5 Prioritizing
accomplishments

An ordered list of accom-
plishments
Refinements in the set of
accomplishments (typically
more than identified in
step 4)

Frequency, time criticality,
error criticality used as guid-
ing factors.

6 Identifying critical
accomplishments

A list of critical accomplish-
ments of all user groups

A core intermediate result

7 Consolidating requirements Baseline for goal setting Challenge to cope if a large
number of critical accom-
plishments

8 Qualitative descriptions Qualitative descriptions of
achieving goals successfully

Describe successful task
performance, not the ac-
complishment

9 Quantitative measures Transform qualitative goals
into quantitative ones.

Challenging to determine
the measures. Even more
challenging to determine the
‘right’ requirement values.

10 Final reality check Potentially refinements in
the quantitative goals.

Taking a step backwards,
taking an overview of the re-
sults.

140 HUMAN-CENTERED SOFTWARE ENGINEERING

8.6 FINDINGS FROM THE CASE STUDIES

We used the method – or more precisely, the method evolved – in a set of cases. In
other words, the method was not exactly similar from one case to another. Some
characteristics of the method, however, were stable. The requirements process was
conducted in workshops, teamwork was utilised, the definition of usability from
ISO 9241-11 drove the requirements process etc.

8.6.1 On the Definition of Usability of ISO 9241-11

Generally, we found that the ISO 9241-11 definition of usability means that the deter-
mination of usability requirements is a complex task. A product typically has many
different user groups. Each user group may have many different goals. The levels of
different goals may be different in terms of effectiveness, efficiency, and satisfaction.
We truly met a challenge in how to manage all this complexity. We used prioritising -
e.g. focused on the most important user groups only. Still, we were able to carry out
the process totally through only in one, not very complex case.

Another specifically challenging part of the definition relates to the identification
of user goals (accomplishments) and determining measurable target levels for the us-
ability attributes (effectiveness, efficiency, satisfaction). It was not easy for the partici-
pants to work on these issues. In the last case, we used the concept of persona (Cooper,
1999) to help in identifying users and user goals. This seemed to work clearly better
than brainstorming.

On the other hand, the ISO 9241-11 definition of usability was sense-making both
to us (usability practitioners and researchers) and to the participants. Determining
usability requirements using the ISO 9241-11 definition was not easy but motivating.
The participants gave comments such as “a new and meaningful way of thinking” and
“we definitely should have done this in earlier projects”. We (researchers) did not even
consider giving up from using the definition.

8.6.2 On Teamwork

Overall, the participants, software designers and other members of a project team
found the workshops process interesting, useful and effective training of usability.
Participants reported that the process has ‘opened their eyes’ and the results represent
a “totally new and meaningful” perspective to product requirements. In our last case
(three consecutive half-day sessions), two product managers from the marketing de-
partment – typically very busy people - actively participated in all the sessions. The
number of participants increased in the last session when representatives from other
department of the company were invited to follow the process. The participants gen-
erally liked to do teamwork. (“I assume that we do teamwork today, too!”)

On the other hand, three sessions in a row seemed to be the practical maximum.
Finding time for more workshops would have been difficult. In our last case, it was
agreed that the usability specialist would continue the determination work as an indi-
vidual effort.

GUIDING DESIGNERS TO THE WORLD OF USABILITY 141

A considerable set of user data could be determined in the workshops, based on
elicitation and analysis of the project team’s knowledge on users. The process clearly
helped the participants realize whether they do or do not have true knowledge on users.

Facilitating workshops was not a mechanical task. First, the facilitator had to con-
tinuously consider how to manage the complexity: which the issues to be worked and
which ones to postpone or omit. Especially with systems with many different user
groups and a large number of tasks, one has to tackle with ‘space explosion’ all the
time (the number of items, and their combinations becomes so large). Second, the
facilitator needed to guide the participants towards the ‘right track’ in the break-out
session. Especially, the facilitator needed to guide the participants to determine user
goals.

8.6.3 On Results

One limitation of the case studies was that we could not follow the process ‘to the
end’. In other words, we do not have any evidence on the impact of the usability
requirements that were determined in the workshops on the final product. We neither
have evidence on whether the apparent interest and commitment of the participants
lasted throughout the project.

Anyway, some innovative design drivers were identified during the workshops.
This happened especially when the teams brainstormed (measurable) target levels for
efficiency for specific goals. For example, in two cases it was brainstormed and agreed
(in step 8 of the process) that the achievement of specific user goals (which had been
identified in step 4) actually should be automated: “Hey, actually this should happen
automatically, without any user actions!”

8.7 CONCLUSIONS

Based on the findings of the case studies, we can draw the following conclusions.
Overall, we conclude that the method provides some help for the integration of UCD
to software development.

One obstacle of integration of usability and software engineering is that the es-
sential contents and meaning of usability is often not understood by designers (see
Chapter 3 in this book) and designers not understand what usability is “beyond the
basic ease-of-use concept” (Chapter 2). We conclude that our method provides help in
overcoming this problem. The workshops proved to be an effective training occasion
on usability and help designer to get committed to usability. The definition of usabil-
ity of ISO 9241-11 made sense to designers and other project staff such as marketing
representatives. Usability requirements are a complex thing but on the other hand very
logical and sense-making, helping participants understand what usability essentially
is. The definition looks complex but makes sense to people after it is systematically
explored.

We also find that the method helps in overcoming the people and responsibilities
gaps (Chaper 2) and lack of collaboration (Chapter 9) through guiding software de-
signers (and other projects staff) and usability professionals communicate and work
together. There are no communication problems between usability specialists and

142 HUMAN-CENTERED SOFTWARE ENGINEERING

designers because the designers themselves generate the usability requirements. Ev-
eryone is involved, contributes and is listened to – and thereby gets committed (“no
commitment without involvement”). Designers do not need to be “forced” to do us-
ability but they make it voluntarily because they find it sense making.

Further, the workshops seem to be a true order for user studies. We did not include
users in the sessions, apart from the first one. We find, however, that this kind of setting
makes a good basis for UCD activities with true user involvement. The workshops
help designers to understand the need for user studies and also understand what kind
of data to expect from the studies.

Finally, our approach represents a case study which is an important resource in
learning UCD skills (Seffah, 2003).

On the other hand, the method also has limitations. The inherent complexity of
usability makes it challenging to determine the usability requirements systematically
‘to the end’. One would need many more resources than we had to complete the
requirements process. The number of workshop session would be quite many, and one
cannot assume that people would have time and be motivated to participate in many
more sessions.

The outcomes of the workshop are typically based only partially on true user data.
The quality of the outcome (i.e. the validity of usability requirements) depends on
the grounded knowledge that the participants have about users. The idea behind the
workshops is that the results – usability requirements - would be later refined based on
true user data. However, there is a risk that the refinement work will not take place.

The process is not a matured one. Its nature is not mechanical – although systematic
– especially due to the complex nature of usability. The role of the facilitator is critical.
It well may be, although we do not have evidence, that (the quality of) the results
depends on the personal characteristics and viewpoints of the facilitator.

8.8 DISCUSSION

A teamwork method for determining usability requirements based on the definition
of usability of ISO 9241-11 is proposed. A usability specialist facilitates a software
development team in determining usability requirements in a set of workshop sessions.
The concrete outcome of the workshops is a set of measurable usability requirements
(in a form of usability requirements table) which form design drivers for the later
phases of software design. Another outcome of the workshops is of educational and
motivational nature. We found that the workshops are effective training of usability
and make the design team committed towards user-centered design. On the other
hand, systematic determination of usability requirements following the definition of
usability of ISO 9241-11 was found to be a complex process, and it is challenging to
fully determine the usability requirements.

8.8.1 Limitations

An obvious limitation of the case studies is that we were not able to determine usability
requirements fully, apart one relatively simple case. Therefore, we do not have data to

GUIDING DESIGNERS TO THE WORLD OF USABILITY 143

which extent it is feasible to systematically determine usability ‘to the end’ in a typical
case, and how to make practical use of such apparently large set of requirements.

Another clear limitation is that we could not follow-up most of the case studies.
In other words, we do not have evidence on whether the interest and commitment of
the participants lasted throughout the project, nor whether the usability requirements
would truly have impact on the final product.

All of our cases have been product development projects – both consumer and
business-to-business products. We have not had a single system development project
so far. It, however, might be that the process would easier in the case of a system de-
velopment project. Especially, it could be easier to understand the ‘right’ user groups,
and the number of user groups probably would be smaller. Thereby, the process might
be less complex.

8.8.2 Implications

We suggest the KESSU URD method as a useful means for determining usability re-
quirements. If it is not feasible to assign resources for several workshops, one could
make use of the method for training and motivating designers towards usability. For
that purpose, even one day workshop could be enough. Anyway, the case should be
real, i.e. a development project that is about to start. We suggest using a ‘narrow’ ap-
proach. One could start by identifying the different user groups but then start working
on one (important) user group only. Further, one should continue working with the
main user accomplishments only. Anyway, one should aim to go all the steps through
so that at least some measurable usability requirements are determined.

The results of this study indicate that the ISO 9241-11 definition of usability a use-
ful reference in practical usability work. There exist different definitions of usability,
and there is a need for commonly agreed definition (Seffah and Metzker, 2004). We
propose that the definition of ISO 9241-113 could be used as the ‘basic’ definition of
usability’.

Our experiences show that it is not feasible to determine the requirements fully in
workshops. Individual work is required, too. One solution could be to first run two or
three workshops with the whole team, and then let the usability team to complete the
work. Finally, a final workshop could be organized where the results are shared and
agreed on with all the development team. It is important that there are resources are
planned for the work to be carried out from the very beginning.

8.8.3 Further Research Topics

We find a true need for ‘full’ cases where the usability requirements could be explored
‘to the end’ and one could be able to follow the impact of the requirements through-
out the project life-cycle. This kind of study would help in finding solutions to the
management of complexity of the requirements, as well as finding effective solutions

3There are some minor problems in the definition of usability of ISO 9241-11, not discussed in this chapter.

144 HUMAN-CENTERED SOFTWARE ENGINEERING

to other challenges of the requirements process, such as determining the ‘right’ target
levels of effectiveness, efficiency, and satisfaction.

The method could be expanded by coupling financial incentives of a development
project (project bonuses that given to the project staff) with usability requirements.
There is evidence (Jokela and Pirkola, 1999) that when such incentives are coupled
with the achievement of usability requirements, the designers truly consider the re-
quirements and produce highly usable design solutions.

Acknowledgements

The author would like to express sincere thanks to all the participants in the work-
shops: from the companies Buscom, Elbit, Nokia, Polar Electro, and TeamWARE and
from the research projects KESSU and ITEA Nomadic Media. The research projects
were performed with financial support from Tekes, the National Technology Agency
of Finland.

GUIDING DESIGNERS TO THE WORLD OF USABILITY 145
A

p
p
en

d
ix

T
a
b
le

8
.5

U
sa

b
ili

ty
re

q
u
ir
em

en
ts

ta
b
le

Ta
sk

na
m

e
In

iti
al

st
at

e
A

cc
om

pl
is

hm
en

t
na

m
e

A
ttr

ib
ut

es
of

th
e

ac
co

m
pl

is
hm

en
t

U
sa

bi
lit

y
re

qu
ir

em
en

t,
qu

al
ita

tiv
e

de
sc

ri
pt

io
n

Q
ua

nt
ita

tiv
e

us
ab

ili
ty

re
qu

ir
em

en
t

(i
n

te
rm

s
of

ef
fe

ct
iv

en
es

s,
ef

fic
ie

nc
y

or
sa

tis
-

fa
ct

io
n)

T
he

re
fe

re
nc

e
le

ve
l

T
he

ta
rg

et
le

ve
l

9 TRANSFORMING USABILITY

ENGINEERING REQUIREMENTS INTO

SOFTWARE ENGINEERING

SPECIFICATIONS:

FROM PUF TO UML
Jim A. Carter, Jun Liu, Kevin Schneider, David Fourney

University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Abstract

The Unified Modeling Language (UML) is widely used by Software Engineers as the
basis of analysis and design in software development. While UML is very strong at
specifying the structure and functionality of the application, it is seldom used to its
potential to specify usability-related information. The Putting Usability First (PUF)
methodology of Usability Engineering identifies and specifies usability-related infor-
mation. This chapter discusses how requirements and other contextual information
from the PUF methodology can be transformed into UML in order to specify the con-
text information of the application to ensure the usability of the application.

9.1 INTRODUCTION

While the need for integrating human factors with software engineering has been rec-
ognized for over a decade (e.g., Carter, 1991; Evans, 2002), the reality has yet to

147

in the Development Process, 147–169.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

148 HUMAN-CENTERED SOFTWARE ENGINEERING

happen to any realistic extent. Attempts to integrate human-computer interaction /
usability engineering with software engineering rely on their acceptance by software
engineers, who control most development projects. This is largely dependent on the
impact of any proposed additions to the current software engineering practice.

This has not taken place in the process realm, where the 32 software engineering
processes defined in ISO TR 15504 (ISO, 1998) failed to include any human-computer
interaction processes. To meet this omission, software ergonomists developed ISO
TR 18529 (ISO/IEC, 2000a) which defined 43 additional human-system life cycle
processes. Considering that ISO TR 15504 expects each of these processes to be
evaluated in terms of 26 generic practices, this could result in 1,950 sub-processes. In
practice, developers recognize a smaller set of processes to get the job done. Clearly,
there is a gap between the expectations of these process assessment standards and
actual practice by developers.

The goal of integrating human factors with software engineering is to improve the
resulting system. Rather than focus on processes, our approach involves integrating
the documentation used to develop this resulting system.

Our starting point is a set of usability engineering requirements developed by the
Putting Usability First (PUF) methodology (Carter, 1997). PUF is a user-centered ap-
proach to systems development. It identifies and structures a use model based on an
interrelated set of task, user, content, tool and scenario descriptions. These descrip-
tions provide a context of use description, as recommended by ISO 13407 (ISO/IEC,
1999) Human Centered Design Processes for Interactive Systems (ISO/IEC, 1999) that
can easily be used to integrate usability concerns within other software development
activities.

Our target is a set of software engineering specifications expressed by the Uni-
fied Modeling Language (UML) (Booch et al., 1999), which are currently pervasive
throughout major software developments. By assisting in developing UML specifica-
tions, it is anticipated that PUF can gain greater acceptance from software engineers
than previous usability engineering methodologies. Applying the PUF methodology
in UML can ensure the application is developed in a context rich information environ-
ment that minimizes the occurrence of usability problems.

The transformations of usability requirements to software engineering specifica-
tions, which we identify in this chapter, allow usability engineers and software engi-
neers to perform their own processes in their own manners while being able to better
integrate their efforts.

9.2 THE PUTTING USABILITY FIRST (PUF) METHODOLOGY

Putting Usability First (PUF) is a usability engineering methodology that has evolved
from previous work on Multi-Oriented Task Analysis (MOST) (Carter, 1990; Carter,
1991). It has been applied to a variety of application areas including: e-Commerce
(Carter, 2002a) and educational multimedia (Carter, 2002b).

The concept behind PUF is that for a usability engineering methodology to suc-
ceed, it must be usable by developers as well as result in a usable system for end
users. ISO 9241-11 Guidance on Usability defines usability as, “the extent to which
a product can be used by specified users to achieve specified goals with effectiveness,

FROM PUF TO UML 149

efficiency and satisfaction in a specified context of use” (ISO/IEC, 1998). PUF in-
volves a thorough consideration of usability issues in each activity of the development
life cycle. Being thorough does not require following a single formalized highly pre-
scriptive approach to usability. Rather, it recognizes all development decisions should
be based on usability evaluations. These usability evaluations provide qualitative and
quantitative information that can guide the development process.

Effectiveness is defined as, “the accuracy and completeness with which users
achieve specified goals” (ISO, 1998). PUF structures requirements to assist develop-
ers in accurately and completely identifying specific user groups, tasks, content types,
tools and scenarios that provide the context of use for the new system being developed.

Efficiency is defined as, “the resources expended in relation to the accuracy and
completeness with which users achieve goals” (ISO/IEC, 1998). The PUF methodol-
ogy recognizes the usefulness of a number of usability methods and allows developers
the flexibility to choose those methods that are most efficient within a particular con-
text of use. PUF provides the developers with guidance and flexibility in choosing
among the usability methods identified in ISO 16982 Usability Methods Supporting
Human Centered Design (ISO, 2002) to assess usability characteristics. These meth-
ods may be used to identify usability requirements (including user, task, environment,
and system related characteristics) and/or to evaluate a system or a model of a system.

Satisfaction is defined as, “positive attitudes to the use of the product and freedom
from discomfort in using it” (ISO/IEC, 1998). PUF enhances satisfaction for devel-
opers by supporting the integration of usability engineering and software engineering
activities and specifications.

PUF recognizes that for many applications it is impractical to try and develop the
perfect system all at once. Development is often spread across a series of different
releases. PUF supports release-based development in its inclusion of possibilities in
its analysis of the environment of current development. Iteration is crucial in allowing
release-based development to respond to changing needs as well as to needs previously
identified. This iteration involves ongoing cycles of analysis, design, and evaluation
within each of the development activities identified in PUF.

9.2.1 Major Processes within PUF

PUF focuses on four major life cycle processes that work cooperatively towards the
development of a system. These processes include: possibilities analysis, require-
ments analysis, design, and implementation. It is notable that testing is not considered
a separate process in PUF. That is because PUF considers evaluation, which is broader
than traditional testing, to be an integral part of each of these other activities. Dealing
with testing in this manner ensures that it is performed when it is most effective and
that it is significant in determining the usability of the resulting system.

Possibilities analysis attempts to identify and briefly describe all the main scenar-
ios, tasks, user groups, content chunks, and tools related to the intended application
system for all its potential releases. Evaluation of existing possibilities plays an impor-
tant role in identifying further possibilities beyond those currently existing or obvious.
Possibilities analysis starts with recording narratives of existing scenarios and moves
to develop records describing each possibility. Possibilities analysis involves: iden-

150 HUMAN-CENTERED SOFTWARE ENGINEERING

tifying possibilities, identifying relationships between different types of possibilities,
and identifying environmental factors influencing each possibility. Possibility records
describe the current and future environment for the system being developed. Pos-
sibilities analysis is far broader and more comprehensive than initial investigations
typically performed by software engineering. This comprehensiveness is essential in
establishing a user-centered context of use both for usability engineers and for soft-
ware engineers. While it is hoped that this work leads to a PUF requirements analysis,
even this initial activity can significantly improve the usability of the resulting system.

A PUF requirements analysis expands the understanding of those possibilities that
have been selected as the basis for the development of the current release. It evolves
their possibility records into requirement records by adding specific usability-related
information and requirements. The set of additional information and requirements is
based on the particular type of possibility being analyzed. Requirements analysis in
PUF focuses to a greater extent on usability requirements and to a lesser extent on
technical requirements than requirements analysis typical in software engineering life
cycles.

Because of the considerable overlap, it would be ideal for software engineers to
make use of a PUF requirements analysis as a starting point for adding technical re-
quirements. This can benefit software engineers by reducing the amount of work they
need to do, especially in the area of gathering technical requirements. This, in turn,
benefits usability engineers and end users by ensuring that usability requirements are
part of future development decisions.

A PUF design focuses on new tools, scenarios and interactions that can be added to
the current environment. Whereas the previous activities can easily be conducted by
usability engineers apart from their software engineering colleagues, it is more likely
that software engineers will be involved and often in charge of major design activities.
PUF requirements need to be integrated with other software engineering requirements
to ensure usability is properly considered in design.

Regardless of whether interface design is allocated to usability engineers or is in-
cluded within the main design activity, PUF can provide assistance in identifying and
evaluating usability issues related to this design. Design specifications recorded as or
translated into PUF records combined with existing PUF records specify a use model
(Rubinstein et al., 1984) that can be subject to evaluation prior to being implemented.
These new records also provide an up-to-date context for the development of future
releases.

Implementation is usually in the hands of software engineers. To ensure that us-
ability engineering requirements will be considered in implementation, it is essential
that these requirements be included within the formal specifications being used to con-
struct and test the resulting system.

9.2.2 Possibility Types within PUF

The PUF methodology identifies and structures requirements based on an interrelated
set of five types of possibilities: tasks, users, content, tools and scenarios, as illus-
trated in Figure 9.1. The combination of these records meets all the requirements of
ISO 13407 (ISO/IEC, 1999) for consideration of users, goals, and the environment.

FROM PUF TO UML 151

The user records in PUF specify information about the users’ characteristics. The task
records in PUF specify information about the users’ goals. All the records and their
linkage information and environmental information identify the context of the user.

Scenarios

Users Tasks

ToolsContent

Figure 9.1 The five foci of PUF specifications

Users are not all the same and thus it is important to understand the characteristics
of different user groups. Severe usability problems can occur in systems designed for
a “generic” user who seldom exists. Users, while of penultimate importance, are only
users if they use the system and thus are closely linked with the tasks that each of
groups of users performs.

Tasks are specific accomplishments of one or more individuals in a group of users.
The degree of accomplishment of a task is generally more important than the method
of achieving it. Thus each of the users should be allowed to select the methods which
are most usable for them. Tasks are the basis for individuals becoming users. This
analysis of tasks should not be limited to only those tasks that are currently considered
to be part of what an application should accomplish. The analysis of tasks should be
expanded to include similar tasks and other potential tasks that may not be currently
performed.

Content is the material processed by computer systems. Data can be presented in
a variety of formats and can be processed to higher levels such as information and
knowledge. Content serves the users accomplishing their desired tasks, and should be
kept subservient to both users and tasks. Considerable usability problems can arise
from structuring applications around their content rather than around how this content
will be used. The content oriented “Field of Dreams” syndrome of “if you build it,
they will come” (that is especially prevalent in the design of Web sites but also exists
with many other applications) puts the ego of the developer ahead of the needs of the
potential users.

152 HUMAN-CENTERED SOFTWARE ENGINEERING

Tools are any of the many things (computerized or non-computerized) that help a
person accomplish some task (or set of tasks). Both developers and end users need
and use tools. Developers use their tools to create or modify other tools (including
software systems) for the end users. Different tools (or sets of tools) can be used to
accomplish the same task. Tools exist at (and are designed for) various levels: from
entire application systems down to individual controls within the system. Tools, like
content, serve the tasks and users. Premature focusing on tools can lead to choosing
tools that are “neat” to the developer but which are impractical due to various usability
problems for the user.

Scenarios are specific instantiations of specific combinations of {users, tasks, con-
tent, and tools}. Each of the tasks, tools, users, and content can pose their own us-
ability concerns. Further usability concerns arise in the specific interactions between
them.

9.2.3 The PUF Record Structure

PUF uses a common format to record information and requirements for each possibil-
ity (scenario, user group, task, content, and tool), which is illustrated in Table 9.1.

The amount of information recorded about a particular possibility depends on the
level of treatment that it has received in the development. As soon as a possibility is
identified, the identification section of a PUF record can be filled out giving the possi-
bility a unique name and a narrative description, and identifying the type of possibility
that it is describing. A possibility analysis will add information about other related
possibilities and some initial information about the environment of the possibility. A
requirements analysis will add detailed specifications and requirements that are based
on a variety of detailed analysis questions (Carter, 1991). Design adds additional
records and modifies information in existing records.

9.3 THE UNIFIED MODELING LANGUAGE

Unified Modeling Language (UML) is a meta-language for specifying, visualizing,
and constructing the artefacts of a software-intensive system (OMG, 2003). The meta-
language basis of UML already has the majority of the attributes necessary to record
usability engineering requirements. However, due to the distributed nature of the lo-
cation of these attributes and the lack of usability engineering experience of most
people utilizing UML, few usability requirements are actually recorded in most devel-
opments.

Use cases are applied to capture the intended behavior of the system being devel-
oped, without having to specify how behavior is implemented. Use cases provide a
way for developers to come to a common understanding with the system’s end users
and domain experts. In addition, use cases serve to help validate and verify a system as
it evolves during development. A use case can model the context of a system, subsys-
tem, or class, or model the requirements of the behavior of the elements (Constantine
and Lockwood, 1999). However, UML says nothing about the content of a use case.

FROM PUF TO UML 153

Table 9.1 The general format of PUF possibilities records

Identification Information
name a unique, meaningful identifier
type scenario/user/task/tool/content
description clarifies meaning of name distinguishes this

component from others
Linkage Information
who identifies related user groups
what identifies related tasks
how identifies related tools
with which content identifies related content chunks
scenarios identifies related scenarios
Environmental Information
when identifies current and potential temporal at-

tributes
where identifies current and potential physical at-

tributes
how much quantifies the current and potential future occur-

rences of the possibility
why identifies and evaluates the justifications for

possibility
Detailed Requirements
answers to specific questions based on the possibility type
Formal Specification
UML translation of the above information

9.3.1 Use Cases and Actors

Jacobson introduced the concept of a use case which has taken on an increasingly
important role in software development. He recognized two levels of use cases: es-
sential use cases and use case instances (which are also known as “scenarios”). “An
essential use case describes interaction independent of implicit or explicit assumptions
regarding the technology or mechanisms of implementation.” (Jacobson, 1992).

Constantine and Lockwood, 1999, discussed the role of essential use cases in user
interface design. Constantine, 1995, recognized the importance of the context for use
cases and recommended that the developers should have the capability to represent and
manipulate context as the resources for application development. He also separates the
use case context into materials, tools and work areas.

Use case development is a discovery process. It is a process of finding out which
information does not yet exist, and which may not yet be understood. This information
is generally entered into one of the many templates available for working with UML
(e.g., Cockburn, 1998). Few developers, even among those who have written numer-
ous use cases, understand that the dynamic process for describing the use case is a
process for finding new information and revising inappropriate specifications (Evans,
2002).

154 HUMAN-CENTERED SOFTWARE ENGINEERING

Malan and Bredemeyer, 1999, believed that the current use case specification is not
very appropriate for documenting usability requirements. One of the shortcomings for
the use case is that it uses a “non-functional” field to specify the usability requirements.
Also usability requirements are not specific to use cases. A use case defines a goal-
oriented set of interactions between actors and systems, both of which are documented
elsewhere in UML. A use case specification needs to integrate who (actors) does what
(interaction) with the system, for certain purposes (goals).

Various authors have suggested that use cases should include a greater amount
of usability-related information. Lilly, 2000, stated that a good use case specifica-
tion should at least answer the following questions: Who (actors), why (goals and/or
context), when (the triggering events), what (normal flow) and what else (alternative
and/or exceptional flow). These same questions are the basis of requirements in PUF.
Cockburn, 2001, advocated that use case descriptions should include the context and
all the circumstances of the primary actor’s goal. Also, van Lamsweerde, 2003, dis-
cussed a model of the goal specification that contains types, taxonomic categories,
attributes and linkages.

Few use case templates have the fields to document usability-related information,
such as combining the context of use with the users/actors and goals. Most of them
treat usability information as “non-functional requirements” that are not able to be
specified or applied in UML. Thus, UML does not ensure that resulting systems are
usable.

While use cases can provide a starting point for incorporating usability-related in-
formation, the current structure and practice does not go far enough to meet all the
information needs identified in PUF.

UML uses actors to, “represent a coherent set of roles that users of use cases play
when interacting with these use cases” (Booch et al., 1999). This purpose is equivalent
to that of user groups in PUF. UML does not provide any particular guidance about
what information should be recorded concerning actors. Rather UML allows devel-
opers to specify their own stereotypes to describe actors and other objects. Cockburn
recognized the importance of specifying actor and stakeholder interests, but did not
present a particular template for specifying properties of actors. He suggested that,
“the use case’s name is the primary actor’s goal” (Cockburn, 1998).

Chapter 7 provides an alternate method of obtaining use case information. We have
found that PUF specifications involve more elements of UML than just use cases.

9.3.2 Classes

Whereas use cases are used to document requirements, UML class diagrams are com-
monly used to document design. “A class is a description of a set of objects that share
the same attributes, operations, relationships, and semantics. A class implements one
or more interfaces.” (Booch et al., 1999). Despite the goal of implementing one or
more interfaces, classes do not directly document how they meet the interaction needs
of actors. Rather, UML uses a set of associations between classes, use cases, and
actors.

Because of their emphasis on designing software, class attributes and operations
tend to be focused on technical aspects of classes. However, from a functional per-

FROM PUF TO UML 155

spective, attributes and operations provide the closest concepts in UML to the PUF
concepts of content and tools.

9.3.3 The Need to Add Usability Requirements to UML

Since current UML separates usability-related requirements from the development
procedure, there is a need for some form of usability engineering, such as PUF, to
supply usability-related requirements to the development. If the PUF methodology is
applied ahead of the UML development, it will bridge the gap between usability re-
quirements and functional requirements and help produce a more usable application.

9.4 APPLYING PUF IN UML

This section will consider the candidate notations in UML that can contain the PUF
data and then, how each field in the PUF records can be mapped into these notations.

Figure 9.2 illustrates the high level mapping from PUF to UML. The components
on the left side are from PUF and those on the right side are from UML. The layout
of the PUF components has been simplified from that of Figure 9.1, to focus on the
correspondence of PUF to UML components. Because scenarios are the hub of the
other components in the PUF methodology, the tasks, users, content and tools serve
together as the context of use for the scenarios. The layout of the UML components
includes: use cases, actors, and classes. These components are linked with each other
by association relationships. Use cases include both essential use cases and use case
instances. Attributes and operations are subcomponents of classes that relate to PUF
components. The component level mappings identified here are based on similarity of
purpose. The information contained in corresponding components is often at different
levels of granularity.

Tasks in PUF correspond to essential use cases and map to use cases in UML.
Scenarios in PUF correspond to use case instances and also map to use cases in UML.
As discussed, use case instances are sometimes also referred to as scenarios in the use
case community. A scenario highlights the interaction between the user, the context,
and the system.

Users in PUF map to actors in UML. Both user records and actors focus on the role
of the user and relate users to other components that need to be designed to meet the
needs of these users.

Contents in PUF map to attributes in UML. Content is used by PUF to describe
the widest range of data types and modalities involved in an application. Attributes
specify the data and information used in the application. Content information in PUF
is usually more abstract than attribute information in UML.

Tools in PUF map to operations in UML. The tools in PUF exist at various abstrac-
tion levels from a complete application to individual operations. The operations in
UML are focused on specific operations performed by a given object. Both tools and
operations deal with how a task/use case is accomplished.

Chapter 16 describes an example of transforming use cases, which can be devel-
oped from PUF specifications, to design using design patterns.

156 HUMAN-CENTERED SOFTWARE ENGINEERING

Putting Usability First Unified Modeling Language

T
o
o
l

C
o
n
te

n
t

U
s
e
r

A
c
to

r

A
tt

ri
b
u
te

O
p
e
ra

ti
o
n

Scenario

Task

Use Case

Instance

Essential Use

Case

Classes

Use Cases

Figure 9.2 High level relationships between PUF and UML components

The following sections provide details on mapping PUF tasks/scenarios, users, con-
tent and operations to UML. Usability properties that do not directly map to a concept
in UML are also discussed for each PUF component.

9.4.1 Tasks, Scenarios and Use Cases

Constantine and Lockwood’s definition of essential use case indicates that, like the
task record in PUF, the essential use case specifies what should be done without spec-
ifying how to do it.

An essential use case is a structured narrative, expressed in the language of
the application domain and of users, comprising a simplified, generalized abstract,
technology-free and implementation-independent description of one task or interac-
tion that is complete, meaningful, and well-defined from the point of view of users in
some role or roles in relation to a system and that embodies the purpose or intentions
underlying the interaction (Constantine and Lockwood, 1999).

According to Rosson, 1999, scenarios, “are similar to instances of use-cases in that
they capture a single thread of execution in a given usage context” . The scenario in
PUF can map to use case instances. Scenarios can be more elaborate than use case
instances because they narrate not only the interaction events but also the experience
of the user(s) – the user’s goals, expectations and reactions convey information about
the system’s usefulness and usability.

PUF task records map to essential use cases and PUF scenario records map to use
case instances based on Cockburn’s basic use case template (Cockburn, 1998) and his
one-column table format of a use case (Cockburn, 2001). In UML diagrams, most
of this information is not available. Table 9.2 illustrates the mapping from PUF task

FROM PUF TO UML 157

records to UML use case diagrams. This table shows that the identification and linkage
information in PUF task records can easily be modeled in UML. This provides a good
starting point for ensuring that records can be mapped successfully.

Table 9.2 Mappings from tasks and scenarios to use cases

PUF: Task / Scenario UML: Use cases
Identification Information
name use case name
type: task /
scenario

use cases

description – via a new property
Linkage Information
who associated actors
what (other) associated use cases
how operations associated via classes and use cases
with which content attributes associated via classes and use cases
scenarios (other) associated use cases
Environment Information
when – via a new property
where – via a new property
how much – via a new property
why – via a new property
Detailed Requirements
task operations – via a new property
requirements of users – via a new property
communications – via a new property
learning – via a new property
error handling – via a new property
problem details – via a new property

Some of the detailed requirements fields in PUF task records also readily link with
UML specifications. Task operations map to actions in the use cases and to operations
in classes. Requirements of users map to actors.

In the Environmental Information section, the why, which is used to record justifi-
cation details, does not map into the current use case template. Detailed requirements
in PUF task records that do not map into UML specifications include: communica-
tions, learning, error handling and problem details. These PUF fields need to be added
as new properties to UML essential use case specifications.

The use case template also includes some information not provided by PUF. Use
cases may specify a sequence of actions, the specified route of achieving the task,
either success or failure, kinds of association and interface interactions. PUF only
identifies that there are relationships among components, while UML subdivides these
relationships into include and extend associations. The interface attribute describes
the interaction between actors and use cases. The PUF task record only specifies the
context information and does not specify the kinds of linkage and interaction.

158 HUMAN-CENTERED SOFTWARE ENGINEERING

Chapter 6 focuses on architectural design based on scenarios. PUF specifications
may be able to provide additional guidance based on additional information they con-
tain beyond scenarios.

9.4.2 Additional Usability-Related Properties for Use Cases

Although the use case and other linked UML components provide a location for some
of the following information, there may be a need for additional properties to fur-
ther expand upon. The following new properties should be added to UML use case
diagrams, to record additional usability-related information provided by PUF:

When and Where task used. The use case may be limited by its environment,
or might be used in a broader environment to achieve some greater benefits. If the
use case is used in a different location, different frequency of use, and/or different
distribution of peak usage, the design for the use case will be different. Designers
should know how to design the use case to make it still achievable in various situations.

Why. Justification is an important predictor of potential future success. If a use
case does not fit the overall development, or costs of the use case exceed either the
benefits of serving it or available resources, it will be impractical to develop special
tools for the use case. Developers should know the factors that will influence the
feasibility and acceptability of possible designs.

Task operations. This PUF field describes operational concerns. Elaboration is
needed to understand the operations of essential use cases to evaluate how well cur-
rent operations work and how future operations might provide improvements. When
designers start interaction design, they should know whether the interaction meets the
goal of the use case, whether there are alternatives to achieve the use case, and what
feedbacks the use case should provide.

Requirements of users. It is important to recognize the requirements that use
cases place on actors. The developers should know how to design the interfaces or
interactions for the use case to meet users’ current skills and mental and physical
capabilities. This information may require additional use cases or tools to help users
reduce the impact of these factors.

Communications. When users interact with the application, communications take
place. The task may require users to communicate with other users or tools. Devel-
opers should know how to design the current use case for different language, different
frequency, different media, and different security levels in communications or whether
to create some new potential use cases to better serve these communications.

Learning. To accomplish a use case, users need to learn how to interact with the
application. This implies that there might be a new use case for training. Training
learning through different methods, feedback, time and environments, create different
learning outcomes. Developers should consider the learning needs and capabilities of
the intended users. Developers should know how to design a usable learning system
and be aware that different methods, feedback, time and environments could influence
the users’ learning results.

Error handling. Use cases should acknowledge where and when errors may occur.
Developers should recognize these situations and determine how to help users avoid
or handle them.

FROM PUF TO UML 159

Problem details. When developers design the solution for problems, the problem
details should be thoroughly known. This information will help developers develop a
more effective and more efficient design solution.

9.4.3 Users and Actors

PUF identifies different user groups based on their different characteristics and inter-
action needs. An actor in UML identifies a role that a user can play without necessarily
specifying any characteristics or interaction needs. Table 9.3 illustrates the mapping
from PUF user records to UML actors based on UML specification version 1.5 (OMG,
2003) and the UML user guide (Booch et al., 1999). This table shows that most identi-
fication and linkage information in PUF user records can easily be transferred directly
to UML. This provides a good starting point for ensuring that records can be mapped
successfully.

Many useful fields in PUF user records are not found in current UML actor records.
Without recording and using this information, there is no way of ensuring that resulting
systems will meet the unique usability needs of different groups of users. A UML
stereotype can be used to define these additional properties of actors for transferring
user description from PUF.

Table 9.3 Mapping from users to actors

PUF: User UML: Actor
Identification Information
name actor name
type: user actor
description – via a property of a stereotype
Linkage Information
who other associated actors
what associated essential use cases
how operations associated via classes and use cases
with which content attributes associated via classes and use cases
scenarios associated use case instances
Environment Information
when – via a property of a stereotype
where – via a property of a stereotype
how much – via a property of a stereotype
why – via a property of a stereotype
Detailed Requirements
physical characteristics – via a property of a stereotype
mental characteristics – via a property of a stereotype
social characteristics – via a property of a stereotype
group characteristics – via a property of a stereotype

The user record description field specifies the users’ characteristics of membership
in this group, especially focusing on how the user group is different from other related
groups.

160 HUMAN-CENTERED SOFTWARE ENGINEERING

If we want to build a more usable application, we should identify all the possible
contents and tools that might be used by users. Although UML does not have di-
rect linkages from actors to operations and attributes, actors can indirectly touch the
operations and attributes through linkage between use case and class responsibility.
However, without more direct linkages, developers may fail to recognize situations
where new tools need to be compatible with existing tools and content.

While some environmental information can be obtained by linkages to use case in-
stances, this structure does not allow easy identification and differentiation of environ-
mental factors that are unique to a particular user group. In user detailed requirements,
PUF specifies the physical characteristics and capabilities, mental characteristics and
capabilities, and social characteristics and capabilities of individuals, and characteris-
tics of groups. This information can further help the designers to design the application
according to the users’ unique characteristics.

9.4.4 Additional Usability-Related Properties for Actors

The following new properties should be added as a basic structure for stereotypes for
UML actors, to record additional usability-related information provided by PUF:

When and Where actors operate. Different users may operate in different envi-
ronments. Each different environment, may involve different usability and accessibil-
ity challenges that need to be handled by a system for it to successfully meet the needs
of that group of users.

How much. Different users may have differing levels of involvement with different
use cases. High levels of involvement generally mean that users will stay familiar with
the operations of systems used for the use case. Infrequent involvement may suggest
the need for refresher style retraining before performing a use case or higher levels of
help to assist in their performance.

Why. Justification is an important predictor of potential future success. If a user’s
needs do not fit the overall development, or the cost of serving the user exceeds the
resources available or the benefits of such service, it will be impractical to develop
special tools for the user. Developers should know the factors that will influence the
feasibility and acceptability of possible designs.

Physical. There are various physical limitations and impairments the users may
experience. Identifying this information, developers should consider how to design
the application to fit the range of physical capabilities experienced by intended users,
and whether they should design some new tools for users to reduce the impact of any
physical limitations.

Mental. Users’ mental characteristics influence how they typically react to a vari-
ety of interactions and interfaces. Developers should consider whether to create new
tools and how to design the application to fit or change actors’ mental capabilities.

Social characteristics and capabilities. Users may come from various social com-
munities with different social backgrounds. This information is important for design-
ers to determine how to design the interfaces and interaction sequences for users who
have cultural and/or linguistic differences with each other.

FROM PUF TO UML 161

Groups. Membership in a group and or acting as a representative of a group may
influence a user’s actions. Developers should be made aware of group membership
situations that may influence the actions of a user.

9.4.5 Content and Attributes

PUF content records specify high level logical content chunks of data or information.
Attributes in a class identify particular data components, generally at a detailed level.
PUF content records map to high level data structures of attributes in UML. The con-
tent component in PUF may be implemented by one or more attributes in UML.

Table 9.4 illustrates the mapping from PUF content records to UML attributes based
on UML specification version 1.5 (OMG, 2003) and the UML user guide (Booch et al.,
1999). This table shows that most identification and linkage information in PUF user
records can easily be transferred directly to UML. This provides a good starting point
for ensuring that records can be mapped successfully. PUF detailed requirements are
generally closer to implementation considerations and also map to UML components.

ISO 14915-3 defines content in terms of various information types that serve par-
ticular tasks and users (ISO, 2003). It classifies content type using various dimensions
including: physical or conceptual content and static or dynamic content. PUF content
chunks, while serving tasks and users, need not be limited to a single set of dimensions.
PUF uses content descriptions to identify relevant dimensions and other attributes that
may influence the use and usability of the content chunk.

UML attributes currently focus on the data contents of the attribute without con-
sidering its environment. New properties of attributes are necessary to incorporate
descriptions of the content and environmental information about content chunks from
PUF.

9.4.6 Additional Usability-Related Properties for Attributes

The following new properties should be added to UML descriptions of attributes, to
record additional usability-related information provided by PUF:

When and Where attributes are used. Attributes may need to be handled differ-
ently in different temporal and environmental situations. For example, some situations
may call for precise details while others may prefer summary data. Each different
situation may involve different usability and accessibility challenges that need to be
handled by a system for it to successfully work with an attribute.

How much. Attributes may be used in a system at considerably different frequen-
cies of use. High frequencies of use generally mean that users will stay familiar with
the meaning, format, and use of attributes. Infrequent use may suggest the need for
higher levels of assistance in working with particular attributes.

Why. Justification is an important predictor of potential future success. If the
cost of including an attribute exceeds the resources available or the benefits of such
inclusion, it will be impractical to consider it for inclusion. Developers should know
the factors that will influence the feasibility and acceptability of possible designs.

Although various UML components provide a location for some of the following
information, there may be a need for additional properties to further expand upon:

162 HUMAN-CENTERED SOFTWARE ENGINEERING

Table 9.4 Mapping from content to attributes

PUF: Content UML: Attribute
Identification Information
name attribute name
type: content attribute within a class
description – via a new property
Linkage Information
who actors associated via use cases,

with visibility
what associated essential use cases
how operations within the class
with which content other attributes within the class
scenarios associated use case instances
Environment Information
when – via a new property
where – via a new property
how much – via a new property
why – via a new property
Detailed Requirements
structure via subclasses

also includes multiplicity
semantics via constraints
requirements on users visibility
how content handled operations associated via classes & associated

use case instances
when content used state machines associated to operations
where content comes from &
is used

interaction diagrams

Structure. Interface designers should consider where it is necessary to organize
several linked attributes or whether they should create some new attributes to design
more meaningful information for the users.

Semantics. The interface designer should understand the purpose of the attribute,
and consider how to design the attribute to let users understand the information so that
it can be used for different purposes in various use cases.

Requirements on users. There are many users who will use the attribute. The in-
terface designer should consider where it is necessary to design the same information
in different manners to be easily understood for various users with different character-
istics.

How content handled. Attributes will be operated by users with various tools.
Developers should know how to design a more usable attribute that can be easily
handled by all of the input tools, output tools and operation tools.

When and where content is used and comes from. This concerns the environ-
ment in which the attribute is obtained and used, and what environmental factors may
limit the usability of the attribute.

FROM PUF TO UML 163

9.4.7 Tools and Operations

The PUF perspective on tools is that they are developed and used to serve the needs of
users and tasks and contents. Tools include: physical tools, software tools, and proce-
dural tools. An operation is a service that an instance of the class may be requested to
perform. Operations are detailed software tools.

Table 9.5 illustrates the mapping from PUF tool records to UML operations based
on UML specification version 1.5 (OMG, 2003) and the UML user guide (Booch et al.,
1999). This table shows that most identification and linkage information in PUF user
records can easily be transferred directly to UML. This provides a good starting point
for ensuring that records can be mapped successfully.

PUF uses a tool record to provide an initial narrative description of the nature and
operations of the tool. This description is later refined in the detailed requirements.
However, it remains useful for help narratives and other more general purposes. UML
operations currently focus on the internal processing of the operation without consid-
ering its environment or many of the usage-related detailed requirements identified by
PUF. PUF detailed requirements of tools are critical because they relate directly with
detailed requirements of tasks. This relationship is important in insuring that tools
are designed to meet usability requirements identified for the tasks they serve. New
properties of operations are necessary to incorporate descriptions of the operations,
environmental information, and detailed requirements about tools from PUF.

Table 9.5 Mapping from tools to operations

PUF: Tool UML: Operation
Identification Information
name operation name
type: tool operation within a class
description – via a new property
Linkage Information
who actors associated via use cases
what associated essential use cases
how other operations within the class
with which content attributes within the class
scenarios associated use case instances
Environment Information
when – via a new property
where – via a new property
how much – via a new property
why – via a new property
Detailed Requirements
tool operations actions of use cases
requirements of users – via a new property
communications – via a new property
learning – via a new property
error handling – via a new property
problem details – via a new property

164 HUMAN-CENTERED SOFTWARE ENGINEERING

9.4.8 Additional Usability-Related Properties for Operations

The following new properties should be added to UML descriptions of operations, to
record additional usability-related information provided by PUF:

When and Where attributes are used, How much, Why. The rationale is similar
to that for attributes discussed in section 9.4.6.

Requirements of users. Different tools require different skills and abilities to op-
erate them successfully. It is important to recognize the abilities and skills that will be
necessary for a given tool and then to compare them with the skills and abilities of the
various proposed users.

Communications. Tools are created to communicate with users and other tools.
Developers should consider the potential impact of different media and methods that
might be used to communicate with users and with other linked tools. This involves
recognizing the effectiveness of various current media and methods.

Learning. Developers should consider the learning needs and capabilities of the
intended users. It is possible that additional tools must be built to help users learn tools
being developed that serve application-related use cases.

Error handling. Tools should acknowledge what errors might occur from the user-
side and tool-side. Developers should recognize these situations and determine how
to help users avoid or handle them.

Problem details. This field/property is used to document known problems with
this tool and tools that it is designed to replace.

9.5 IMPLEMENTING THESE ADDITIONS IN UML

As noted in Section 9.4, a number of the concepts in PUF are directly supported in
UML. For example, PUF users are mapped directly to UML actors, PUF tasks are
mapped to UML use cases, PUF contents are mapped to UML attributes and PUF tools
are mapped to UML operations. As well, linkage information between users, tasks,
content and tools are captured in UML with associations. The additional usability-
related properties discussed in Section 9.4 that are not directly supported in UML
include descriptions, environment information and detailed requirements. However,
UML was designed to be extensible using annotations, stereotypes, constraints and
tagged values. In this section we describe how UML can be used to express these
additional PUF usability-related properties. We describe one approach; alternative
approaches are possible given the flexibility of UML.

In our approach, each usability property that does not map directly to a UML con-
cept is associated with a stereotype (Table 9.6). These additional stereotypes will
be associated with actors, use cases, attributes, and operations either using notes or
classes.

Classes with compartments for “description”, “environment information” and “de-
tailed requirements” are used to associate usability property stereotypes with users and
tasks. To distinguish a class as being an actor or a user case, an actor icon or a use
case oval icon is positioned in the top right corner of the class rectangle. Figure 9.3 is
an example of an actor (a) and a use case (b) using this notation.

FROM PUF TO UML 165

Table 9.6 Stereotypes used to identify PUF usability properties in UML

Stereotype Use Cases Actors Attributes Operations
“description” X X X X
“environment information” X X X X
“when” X X X X
“where” X X X X
“how much” X X X X
“why” X X X X
“detailed requirements” X X X X
“task operations” X
“requirements of users” X X
“communications” X X
“learning” X X
“error handling” X X
“problem details” X X
“physical characteristics” X
“mental characteristics” X
“social characteristics” X
“group characteristics” X

Stereotyped notes are used to annotate attributes and operations with usability in-
formation. The note is attached to the attribute or operation with a dependency re-
lationship. The note will be stereotyped depending on the information that has been
provided and may be structured with multiple stereotypes to reduce clutter. To further
reduce clutter in the diagram, the note may be used to link to a document with the de-
tailed information. Figure 9.4 shows examples of using stereotyped notes to express
the PUF usability properties for attributes and operations.

Established
Customer

«description»
 ...

«environment information»
«when» ...
«where» ...
«how much» ...
«why» ...

«detailed requirements»
 ...

Ordering Selected
Items

«description»
 ...

«environment information»
«when» ...
«where» ...
«how much» ...
«why» ...

«detailed requirements»
 ...

(a) (b)

Figure 9.3 UML notation for associating PUF properties to user and task

166 HUMAN-CENTERED SOFTWARE ENGINEERING

«description»
 ...

«detailed requirements»
 ...

«environment information»
«when» ...
«where» ...
«how much» ...
«why» ...

Ordering Selected Items
using e-Commerce

customer information: CustInfo
customer shopping cart: ----
product information: ----
order information: ----
confirms / modifies order
provides customer id. / info.
selects shipping options
reviews completed order
confirms order

Figure 9.4 UML notation for associating PUF properties to attributes and operations

9.6 EXAMPLE TRANSFORMATIONS

This section provides examples of transformations of two PUF records from an e-
Commerce application: a user record describing established customers and a task
record describing placing an order for items already in a virtual shopping cart.

9.6.1 User Example

Consider the following PUF user record:

Identification Information
Name: established customer
Type: user
Description: a customer who has an existing account and who has made previous

purchases from this e-Commerce site.

Linkage Information
Who: a specialization of a customer
What: identifying items to order; selecting and deselecting items; ordering selected

items; enquiring about the status of orders; returning items.
How: the user may choose to perform tasks via telephone, via e-Commerce, in

person at a physical location, or using some combination of these three tools.
With which content: customer information, customer shopping cart contents, prod-

uct information, order information.
Scenarios: created from all combinations of tasks (from What) and tools (from

How) performed by established customers.

Environment Information
When: whenever the user needs one or more products.
Where: at home; in an office; in an internet café; in a store.
How much: between 1 and 6 times a month.
Why: either to meet personal needs or the needs of some organization.

Detailed Requirements
Physical characteristics: requires the ability to use the methods specified in the

scenarios; may include disabilities that will require use of assistive technologies.

FROM PUF TO UML 167

Mental characteristics: ability to make purchase decisions; may want help to un-
derstand processing options and product features.

Social characteristics: understands English language.
Group characteristics: may act as an individual or as a member of an organization;

greater accountability will be expected of purchases made for an organization
Figure 9.5 shows how the user “Established Customer” fits into the inheritance

structure of users involved in the e-Commerce application. As well, the stereotypes
outlined in Section 9.5 are used to specify the usability properties. Common properties
need only be specified once for the common ancestor.

identifying
items to order

selecting /
deselecting items

returning items

ordering
selected items

using
e-commerce

establish
account

inquiring about
status of orders

ordering selected
items

ordering
selected items
using physical

location

ordering
selected items

using telephone

Customer

New
Customer

«extend»
(e-Commerce)

«extend»
(Physical Location)

«extend»
(Telephone)

[have existing order]

[have existing order]

[have account]

Established
Customer

Figure 9.5 Users in the e-Commerce application

9.6.2 Task Example

Consider the following PUF task record:

Identification Information
Name: ordering selected items using e-Commerce
Type: task
Description: placing an order for items already selected and currently in the cus-

tomer’s virtual shopping cart.

Linkage Information
Who: customers; sales clerks

168 HUMAN-CENTERED SOFTWARE ENGINEERING

What: associated with selecting and deselecting items; enquiring about the status
of orders.

How: part of an e-Commerce application.
With which content: customer information, customer shopping cart contents, prod-

uct information, order information.
Scenarios: new customer ordering selected items; established customer ordering

selected items; sales clerk ordering selected items.

Environment Information
When: after selecting items for shopping cart.
Where: via the internet from home; in an office; in an internet café; in a store.
How much: 2 minutes per order times 1000 customer orders per day.
Why: to allow ordering from a wide range of locations is expected to increase sales

by 2000 items per day.

Detailed Requirements
Task operations: user confirms / modifies order; user provides customer identifica-

tion / information; user selects shipping options; user reviews completed order; user
confirms order.

Requirements of users: must have credit card; must use supported Web browser;
must understand English language.

Communications: this task involves formal interactive communications between a
single user and the e-Commerce system

Learning: the system must be self-descriptive and not require any training; the user
may wish to access descriptive help while performing this task.

Error handling: the system should validate data at each step before proceeding and
should help the user identify and make any required changes; the system should allow
the user to edit all user input fields prior to confirming the order; items in an established
customer’s virtual shopping cart should remain until the customer deselects or orders
them or until they have remained there for over one month.

Problem details: the system must be at least as usable as Amazon.com.
Figure 9.6 shows the task “Ordering Selected Items using e-Commerce” as a use

case in the context of other use cases in the e-Commerce application. As well, its
linkage with the actors is shown. Since “Customer” is able to “Order Selected Items”
it is possible, given the generalization relationships, for an “Established Customer” to
“Order Selected Items using e-Commerce”.

The task may be implemented as a class as design proceeds. The class will con-
tain attributes and operations corresponding to the content and tools of the task (Fig-
ure 9.6). Note that when a task corresponds one-to-one to a class it is possible to use
additional compartments in the class to repeat the task’s PUF usability properties.

9.7 CONCLUSION

Putting Usability First (PUF) methodology is a user centered approach to systems
development. In this chapter we describe a mapping of PUF descriptions to a common
software modeling language: the Unified Modeling Language (UML). It is hoped that
expressing the PUF methodology in UML can ensure the application is developed

FROM PUF TO UML 169

Ordering Selected Items
using e-Commerce

customer information: CustInfo
customer shopping cart: ----
product information: ----
order information: ----
confirms / modifies order
provides customer id. / info.
selects shipping options
reviews completed order
confirms order

CustInfo
 ...

Figure 9.6 Use cases in the e-Commerce application

in a context rich information environment that minimizes the occurrence of usability
problems.

We describe how many of the concepts in PUF are directly expressed in UML. We
also describe how PUF usability properties can be specified using UML annotations
and stereotypes. Mapping PUF to UML makes it possible to trace the usability re-
quirements to the design specified in UML and helps bridge the gap between usability
engineering and software engineering. As the design is refined during the software
engineering process the usability properties can also be maintained and refined.

The transformations of usability requirements to software engineering specifica-
tions described here allow usability engineers and software engineers to integrate their
efforts while performing their own processes. This correspondence between usabil-
ity and software design will hopefully result in more usable software products and
improve the traceability of usability requirements.

IV UCD, Unified and Agile
Processes

10 WHICH, WHEN AND HOW

USABILITY TECHNIQUES AND

ACTIVITIES SHOULD BE INTEGRATED
Xavier Ferre, Natalia Juristo, Ana M. Moreno

Universidad Politecnica de Madrid, Spain

Abstract

Software development organizations are paying more and more attention to the us-
ability of their software products, as increasing importance is attached to usability as a
critical software quality attribute. The HCI (Human-Computer Interaction) field offers
techniques aimed at producing a software product with a good usability level, but their
use is often not integrated into SE (software engineering) development processes. The
integration of usability techniques into SE practice is not an easy endeavor, since both
fields speak different languages and deal with software development from different
perspectives. This chapter presents a framework for the integration of usability tech-
niques and activities. This framework characterizes selected usability techniques and
activities using SE terminology and concepts, according to what kind of activity they
belong to and at what development stage their application contributes most to the us-
ability of the final software product. Software developers may then manage usability
activities and techniques, include them in their software process, and understand in
which activities usability and SE techniques have to be merged to achieve concurrent
objectives. The proposed framework is aimed at software development organizations
with a defined iterative development process that are looking to enhance their process
with usability aspects.

173

in the Development Process, 173–200.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

174 HUMAN-CENTERED SOFTWARE ENGINEERING

10.1 INTRODUCTION

This chapter reviews some usability and SE methods looking at how they propose to
integrate usability into the overall software development process, and builds an inte-
gration framework for incorporating usability activities and techniques into a defined
software development process. The importance of this framework lies in the fact that
there is now little or no guidance on the integration issue from a SE perspective. Soft-
ware development organizations interested in improving the usability of their software
products are willing to add usability activities and techniques to improve their soft-
ware process, but usability textbooks do not offer support for this concern. This is a
key question bearing in mind that usability techniques and the HCI approach to devel-
opment are still relatively unknown and not well integrated in SE teams (Seffah and
Andreevskaia, 2003). The work presented in this chapter is aimed at software devel-
opment organizations with a strong SE background that are considering incorporating
usability aspects into their practices, and cannot shift to a strictly usability-led devel-
opment approach. For these organizations, usability is an important concern, but not
the main focus, and even if there are some usability experts on their teams, software
developers are expected to apply or be acquainted with some usability techniques.

According to the ACM SIGCHI Curricula for Human Computer Interaction, HCI
is “a discipline concerned with the design, evaluation and implementation of interac-
tive computing systems for human use and with the study of major phenomena sur-
rounding them” (ACM, 1992). It is an established field, and one of its main concerns
is the usability of computer systems. Usability techniques are applied in a variety
of software development projects, where attaining an acceptable usability level is a
very important, if not the main, goal. These projects are mostly developed following
methods peculiar to the HCI field. Where this is not the case, that is, when usability
practices are applied along with SE practices, their integration is tackled on a case-by-
case basis (as in Anderson et al., 2001; Radle and Young, 2001). The main obstacle
to HCI-SE cooperation is that the two fields speak different languages and deal with
software development from different perspectives, as detailed in chapter 5. HCI has a
multidisciplinary essence, including topics related to fields like cognitive psychology,
ergonomics, and sociology. On the other hand, SE is defined in the IEEE Standard
Glossary of Software Engineering Terminology as ”the application of a systematic,
disciplined, quantifiable approach to the development, operation, and maintenance of
software; that is, the application of engineering to software” (IEEE, 1990). Software
engineers have traditionally focused on the internals of software, on its functionality,
reliability, efficiency, and so on, and on the establishment of systematic software de-
velopment practices. They have paid less attention to how the software product may
better support the mental models of the user and the tasks he or she wants to perform.

In particular, the special emphasis it places on making software development sys-
tematic and disciplined has led the SE community to pay special attention to the soft-
ware process. Software process refers to the development roadmap followed by an
organization to produce software systems, that is, the series of activities undertaken
to develop and maintain software systems. Developers follow the software process
established in their organization, which is enforced due to the underlying assumption
that a good process leads to a good product. Every organization may have a differ-

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 175

ent software process, but some activities are common to all software processes. The
software process can be described at different levels, and a feature common to differ-
ent process descriptions is the description of the techniques applied in each process
activity. Due to the emphasis placed on the software process in the SE community,
a considerable amount of effort has gone into software process definition, evalua-
tion, and improvement (Kawalek and Wastell, 1996; Derniame et al., 1999; Fuggetta,
2000). The goal of software process research is to improve software development
practice by proposing: a) better ways of defining and modeling the development and
therefore designing the developer organization processes, b) better ways of assessing
the weaknesses of this organization, and c) better ways of improving this organization
at the level of individual processes and the organization as a whole. Typical reasons
why a software development organization may consider a defined software process
valuable include: facilitating human understanding and communication, supporting
process improvement, supporting process management, providing automated process
guidance and providing automated execution support (Abran et al., 2004).

It should be noted that agile methods have recently appeared in response to all
the importance software development practices attach to the software process. Agile
methods try to shift the focus to other issues, like individuals and their interaction,
and regard the software process as an important but secondary issue in software de-
velopment. The Agile Manifesto (Beck et al., 2001) sets out the main ideas behind
this approach to software development. The agile philosophy is receiving a significant
amount of attention in the SE field, and it looks like a promising approach from a
usability point of view, as highlighted in chapter 12. Nevertheless, it is not yet consid-
ered part of the core practices of SE as defined software processes are. The SWEBOK
(Software Engineering Body of Knowledge), which is a recent effort to gather what is
considered commonly accepted knowledge in the SE field, does not include any refer-
ence to the agile approach in its Trial Version 1.00 (Abran et al., 2004), while defined
software processes have their own chapter. Most software engineers put the accent on
defining the software process in the belief that having and improving a defined pro-
cess, as other production organizations do, is an approach that produces better quality
software.

As they are, usability methods are hard to apply in SE, because of the conceptual
differences between HCI and SE, and because overlaps with SE have not been settled.
In particular, activities related to requirements engineering (an SE subfield) are tackled
by both usability and SE methods. These overlapping areas are not clearly formulated
from a SE viewpoint, forcing software development organizations to undertake costly
research in order to plan the introduction of usability techniques and activities into
such practices. The importance of the integration effort is sometimes mistakenly min-
imized, as a result of a perception of usability common in the SE field: it is considered
to be related to just the UI (user interface). To average developers, the UI is the actual
visual elements with which the user interacts and their response behavior (in visual
terms), and it is therefore regarded as a graphic designer affair. Such misconceptions
simplify the problem of integration in the software process modeler’s mind: being a
graphic designer issue, it only requires the addition of a usability activity in the process
in which these issues are taken care of. In this case, there would be no or only slight

176 HUMAN-CENTERED SOFTWARE ENGINEERING

overlaps. Bearing in mind usability in the software development process, however,
implies including usability activities throughout the entire process, with the challenge
of integrating different development cultures into the same kind of activity.

For the present decade, Dumas & Redish (Dumas and Redish, 1999) predict con-
tinued growth of interest in usability from users to CEOs. Usability is becoming an
important asset for a lot of software development organizations, and they demand
guidelines for integrating usability activities and techniques into their software pro-
cess. This trend towards usability integration throughout software construction is
illustrated by the International Organization for Standardization’s (ISO) decision to
include a new process, called usability process, in the standard for software processes.
This change was introduced in the first amendment to ISO/IEC Standard 12207:1995,
released in 2002 (ISO/IEC, 2002). The fact that an international SE standard stipu-
lates that usability activities should be part of the software development process is an
indication that usability is definitely on the SE agenda with respect to software process
definition.

The goal of the work presented in this chapter is to offer a framework for introduc-
ing usability activities and techniques into any iterative software development process
an organization may have in place. This framework does not define a particular soft-
ware process, but sets out integration information in a way that it can be applied to a
wide range of processes. The framework we propose details which kind of activities
in a SE process are affected by usability techniques and when in development time
each technique yields results that are most useful for the aim of raising the usability
level of the final software product.

The first obstacle to the introduction of usability techniques into the software pro-
cess is the difference in process terminology between HCI and SE. Therefore, for our
purpose of integration, we need to extract the essence, to look at the core ideas behind
the terms to find the connections between the two software development approaches.
We need to identify the motivations behind each activity to find their interrelationships.

Apart from the terminology gap, HCI does not share the SE view of the software
process. Some HCI authors, like Shneiderman, 1998, or Nielsen, 1993, do not struc-
ture usability efforts as activities (in the SE sense), so some usability techniques are
not clearly assigned to activities in the HCI literature. The basic user-centered process
(the HCI term for its process approach) is outlined in ISO Standard 13407 (ISO/IEC,
1999), but each author in the field has a particular vision of how this maps to specific
activities. For effective HCI-SE cooperation, usability techniques need to be mapped
to the most common activities present in user-centered processes.

The research presented in this work has been carried out as part of the STATUS
project, financed by the European Commission (IST-2001-32298). The project goals
include outputting methodological guidelines for integrating usability techniques into
the software process, which we are presenting here. The two industrial partners in the
project consortium have helped us to establish the framework’s underlying premises.
Pragmatically speaking, the industrial partners asked for a roadmap that could tell
them which usability techniques and activities they should incorporate, and when in
development time. They prefer this open solution that fits a wider range of processes
to establishing the ”perfect” software process integrating usability and SE practices.

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 177

The application of such a perfect process from a usability point of view would mean
abandoning their current software process, which they do not wish to do.

Not all processes can be converted into proper user-centered processes by making
just a few modifications. The transformation required for a process or an organiza-
tional culture based on a waterfall lifecycle approach to become user-centered would
be far too drastic. This approach implies that detailed specifications are produced be-
fore any design and implementation is performed. The complexity of the human side
in human-computer interaction makes it almost impossible to create a correct design
at the first go. Cognitive, sociological, educational, physical and emotional issues may
play an important role in any user-system interaction, and they cannot be completely
predicted in advance. Therefore, the candidate for usability integration needs to be
an iterative process. Of the characteristics of a user-centered process, iterativeness is
the only one that is intrinsically inherent to the software process, as stated below in
Section 10.7. Our framework then can help any organization with an iterative pro-
cess to enhance this process with usability activities and techniques. This approach
increases the practical applicability of the framework, since it does not require any
specific original process as long as it is iterative. The appeal for a software develop-
ment organization lies in the fact that it does not have to abandon the in-house process
to adopt improvements, as it only has to modify the existing process.

The following three sections analyze how existing proposals deal with the integra-
tion problem: Section 10.2 details how integration is considered in usability methods,
Section 10.3 details proposals for integrating usability techniques and activities into
widely known SE methods, and Section 10.4 discusses the limitations and advantages
of the proposals in the previous two sections. Section 10.5 details the mapping be-
tween usability and SE activities. Section 10.6 presents the assignment of the selected
usability techniques to activities. Section 10.7 deals with the considerations on when
to apply usability techniques and activities in an iterative development. The basic
premises and context for the solution proposed are discussed in Section 10.8 and, fi-
nally, Section 10.9 presents the conclusions.

10.2 USABILITY METHODS APPROACH TO INTEGRATION

An organization wanting to include usability techniques and activities in the process
may resort to HCI literature for help on the issue. In this section, we consider how
the usability methods described in the HCI literature deal with the integration issue.
We will consider just textbooks and international standards, since they are the sources
more readily available to average developers with a SE background (who do not usu-
ally use conference proceedings and research journals as a source of information).

The Star Life Cycle by Hix & Hartson (Hix and Hartson, 1993) is a user-centered
process that sets out the main usability activities. It does not prescribe a particular
order for activities, but it does allocate a prominent role to usability evaluation, which
is placed in the center of the star that represents the activities in the life cycle. Hix and
Hartson describe the communication paths that should take place between usability
activities (user interaction design) and software design. They strictly separate the
development of the UI from the development of the rest of the software system, with
two activities that connect them: systems analysis and testing/evaluation. The systems

178 HUMAN-CENTERED SOFTWARE ENGINEERING

analysis group feeds requirements to both the problem domain design group and the
user interaction design group. It is a simplistic approach to HCI-SE integration, but
the authors acknowledge that “research is needed to better understand and support the
real communication needs of this complex process” (Hix and Hartson, 1993).

ISO Standard 13407 (ISO/IEC, 1999) provides guidance on human-centered de-
sign activities throughout the life cycle of computer-based interactive systems. It is
neither a method nor a software process, but it characterizes user-centered processes.
Note that the standard authors use the term human-centered as equivalent to user-
centered. We prefer the latter term, since it is more widely used in the HCI literature.

The standard reasons why a user-centered focus should be adopted in interactive
systems, and it includes the characteristics of such a focus: active involvement of
users and clear understanding of user and task requirements; an appropriate alloca-
tion of function between users and technology; the iteration of design solutions; and
multidisciplinary design. It also describes the essential activities in a human-centered
process: understand and specify the context of use; specify the user and organizational
requirements; produce design solutions and evaluate designs against requirements.

The standard also establishes that the human-centered process, including the proce-
dures for integrating the usability activities with other system development activities,
e.g. analysis, design, testing, has to be planned, although this is as far as it goes on the
integration issue. This requirement calls for the development of usability roadmaps
that are useful for fitting usability techniques into the overall software development
process.

Constantine & Lockwood (Constantine and Lockwood, 1999) propose the Usage-
Centered Design method as a collection of coordinated activities that contribute to
usability. Some HCI practitioners would not completely agree in considering usage-
centered design an HCI method, but we have classed this method as such, since it
is focused on the development of interactive systems for human use (and therefore
fits the definition of HCI given in Section 10.1). The usage-centered design activ-
ity model includes some activities that correspond to the larger software development
process (object structure design, concentric construction and architectural iteration),
along with pure usability activities, like task modeling or interface content modeling.
The models that Constantine and Lockwood propose are appealing to software engi-
neers, since they are closer than other usability techniques to the kind of modeling
used in SE. In particular, essential use cases, which are a cornerstone of the usage-
centered approach, are a reinterpretation of the popular object-oriented technique of
use cases. They can, therefore, serve the purpose of acting as a bridge between SE
and HCI models. In fact, there are at least two popular SE reference books (Larman,
2002, and Cockburn, 2001), that acknowledge Constantine and Lockwood’s work on
essential use cases.

Constantine and Lockwood offer some advice on integrating usability and UI de-
sign into the product development cycle, acknowledging that there is no one single
way of approaching this question. Therefore, they leave the issue of integration to be
solved on a case-by-case basis. They state that “good strategies for integrating usabil-
ity into the life cycle fit new practices and old practices together, modifying present
practices to incorporate usability into analysis and design processes, while also tai-

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 179

loring usage-centered design to the organization and its practices” (Constantine and
Lockwood, 1999). Although some techniques that are closer to SE modeling are de-
scribed, Constantine and Lockwood’s proposal is not formalized in process terms, and
their work is more concerned with detailing the techniques than with specifying the
process in terms of dependencies, products and roles.

Mayhew (Mayhew, 1999) proposes the Usability Engineering Lifecycle for the
development of usable UIs. The process structures the activities into three phases:
Requirements Analysis, Design / Test / Development, and Installation. This approach
to the process follows a waterfall lifecycle mindset: an initial Analysis phase, followed
by a Design / Test / Development phase, and finally an Installation phase. The Analysis
stage is only returned to if not all functionality is addressed, and this is, therefore, not
a truly iterative approach to software development.

Nevertheless, it is one of the more complete usability methods from the SE point
of view. Although Mayhew claims that the method is aimed at the development of
the UI only, the activities included in this life cycle embrace an important part of
requirements-related activities (like, for example, Contextual Task Analysis). Links
with the OOSE (Object-Oriented Software Engineering) method (Jacobson, 1992) and
with rapid prototyping methods are identified, but Mayhew acknowledges that the inte-
gration of usability engineering with SE must be tailored and that the overlap between
usability and SE activities is not completely clear. The links with OOSE and rapid
prototyping are very general, and Mayhew presents UI development as an activity that
is quite independent from the development of the rest of the system.

Additionally, the author surprisingly defines software engineering as “an approach
to software development that involves defining application requirements, setting goals,
and designing and testing in iterative cycles until goals are met” (Mayhew, 1999).
Even though this is now the main trend in SE, it is not a valid definition of the disci-
pline, since there are other development approaches that are valid from a SE viewpoint.
A software engineer, taking up this work in search of help with the issue of usability
integration into the software process may be put off by such misconceptions.

10.3 INTEGRATION PROPOSALS BASED ON SE METHODS

As we are trying to offer a solution for organizations that already have a process in
place, this section will review integration proposals that are based on widely known
SE methods. Costabile’s proposal is based on the waterfall lifecycle. MUSE (Method
for USability Engineering) is defined according to the characteristics of a structured
method. Finally, we examine the User Experience addition to the RUP (Rational Uni-
fied Process).

Costabile (Costabile, 2001) offers a way of integrating user-centered practices into
the software process to increase the usability of the software product. She condenses
the user-centered approach into three main principles: analyze users and tasks, design
and implement the system iteratively through prototypes of increasing complexity and
evaluate design choices and prototypes with users. Costabile proposes a way of mod-
ifying the software life cycle to include usability. The basis she takes for such modifi-
cations is the waterfall lifecycle. The proposal adds two extra activities composed of
pure usability activities –user and task analysis, on the one hand, and scenarios and UI

180 HUMAN-CENTERED SOFTWARE ENGINEERING

specifications, on the other–, plus two intermediate activities which include the same
tasks: prototyping and testing. It is possible to go back to a previous phase from any
phase of the life cycle. According to the author, these backtracking paths, along with
the two extra activities, emphasize the iterativeness of software development, which is
necessary from a user-centered point of view.

Costabile’s proposal has an important drawback in the choice of the waterfall life
cycle as a “standard” software life cycle. This model goes against the user-centered
aim of evaluating usability from the very beginning and iterating to a satisfactory so-
lution. Paths that go back in the waterfall life cycle are defined for error correction,
not for completely changing the approach if it proves to be wrong, since it is based
on frozen requirements (Larman, 2002). Glass acknowledges that “requirements fre-
quently changed as product development goes under way [...]. The experts knew that
waterfall was an unachievable ideal” (Glass, 2003). SE literature has gradually come
to accept that an iterative as opposed to a waterfall life cycle approach is the best
for medium to high complexity problems when the development team does not have
in-depth domain knowledge. Larman identifies the following problems with the wa-
terfall life cycle: delayed risk mitigation, speculation and inflexibility of requirements
and design, high complexity and low adaptability (Larman, 2002). Iterative develop-
ment tackles most of these problems. Nevertheless, a waterfall mindset is still deeply
rooted in day-to-day practice among software developers, mainly because it gives the
complex activity of developing software systems an illusion of order and simplicity.

MUSE (Method for USability Engineering) (Lim and Long, 1994) is a method
for designing the UI, and was one of the most well structured usability methods at the
time of its publication (1994). It is divided into three phases: Information Elicitation
and Analysis Phase, Design Synthesis Phase and Design Specification Phase. The
method aims to ease integration with SE methods, and its integration with the JSD
(Jackson System Development) method is described. The primary focus of the MUSE
method is on design specification due to the identified lack of integration in this stage,
whereas, according to the method creators, later stages (usability evaluation) are well
covered in the existing literature.

MUSE is based on the principle of delaying design commitment, ensuring that
detailed design is preceded by appropriate design analysis and conceptual defini-
tion. Comparing MUSE with the rapid prototyping approach, Lim and Long state
that MUSE, as a structured method, emphasizes a design analysis and documentation
phase prior to the specification of a “first-best-guess” solution. Therefore, MUSE fol-
lows a waterfall life cycle, which is an obstacle to the application of a truly iterative
approach.

As MUSE is a structured method, it is presented by its authors as easy to integrate
into any structured SE method. Its integration with JSD is detailed as an example of
this. JSD is presented as a method that is mainly used for the development of real-
time systems. Real-time systems account for a very small part of interactive systems,
so the integration of MUSE with JSD is not very useful from a generic point of view.
Regarding the integration of MUSE with other SE methods, its usage of techniques
like structured diagrams or semantic nets makes it difficult to adapt to current SE
practices, in particular to object-oriented development.

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 181

The BIUSEM project (BIUSEM, 1995) applied MUSE to three software devel-
opment projects in different domains and with different SE methods to evaluate its
applicability. Despite the positive outcome of the project (the application of MUSE
improved the product quality, and the sharing of human factors insight with software
engineers helped to elicit user-centered requirements), the project team acknowledged
that ”the body of published papers and the book describing MUSE are unnecessarily
complicated and act as a deterrent to its wider use” (BIUSEM, 1995).

The Unified Process (Jacobson et al., 1999; Kroll and Kruchten, 2003) is the
process that is currently receiving the greatest attention in SE, since it is sponsored by
the main object-oriented methodologists: James Rumbaugh, Ivar Jacobson and Grady
Booch. It advocates a truly iterative approach. It denotes the activities that the process
encompasses as “disciplines” to avoid the typical identification between activity types
and process stages in the waterfall life cycle. Of the processes that actually have an
iterative approach, the Unified Process is the most widely used. The RUP c© (Rational
Unified Process) is a refinement of the Unified Process sold by IBM (previously by
Rational Software Co.). The approach to usability integration presented in this section
is not comparable to the above proposals in scope. It has been included, however,
because of the current relevance of the Unified Process and RUP in SE.

The RUP does not consider usability directly, but it is use-case driven, and use-case
modeling has some similarities with HCI task modeling. Therefore, use cases could be
used as a starting point for usability integration into the software process. However, the
use-case model in the Unified Process plays a secondary role as compared to system
architecture. The use-case model is very important in cycle planning, but once the
cycle starts, use cases are regarded as a preliminary version of elements of the internal
functionality design. When design elements are labeled as use-case realizations, we
are shifting use cases to the design world and, therefore, away from the user realm,
losing most user-centered advantages with that shift.

The User Experience (UX) (Rational, 2002) plug-in for RUP aims to integrate the
work performed in the web development domain regarding the development of the web
system concept, which usually drives the whole development, into RUP. It is based on
Jim Conallen’s work on web modeling (Conallen, 2003), and there are big similari-
ties between UX aims and classical HCI concerns. According to Conallen, the term
User Experience “is used to describe the team and the activities of those specialists
responsible for keeping the UI consistent with current paradigms and, most impor-
tant, appropriate for the context into which the system is expected to run” (Conallen,
2003). Despite this promising definition, Conallen’s work focuses on modeling, and
he describes the artefacts for which the UX team is responsible as follows: screens and
content descriptions, storyboard scenarios, and navigational paths through the screens.

Although it is an advance towards the aim of integrating usability into the software
process, the UX addition to RUP does not cover the entire process and is limited to a
few models. Nevertheless, it does indicate the growing interest in the web develop-
ment domain for integrating usability expertise and techniques into the development
process.

With regard to usability integration into object-oriented development, the WIS-
DOM method (Nunes, 2001) deserves a mention, even if it is not a commonly used

182 HUMAN-CENTERED SOFTWARE ENGINEERING

method. It includes an extension to UML (Unified Modeling Language) to allow
user-centered models to be employed in conjunction with object-oriented models and,
therefore, to facilitate usability integration in modeling efforts throughout develop-
ment. The WISDOM method offers a comprehensive process for any organization
interested in adopting a new process already integrating usability. The organization
is then forced to adopt the process as a whole, including the underlying assumptions
present in the SE part of the method. For example, the WISDOM method differen-
tiates between an Analysis and a Design workflow, while this distinction (inherited
from object-oriented methods prior to the Unified Process) is not retained in recent in-
terpretations of the Unified Process: Kroll & Kruchten consider a single ”analysis and
design” discipline or workflow (Kroll and Kruchten, 2003), while Larman considers
no analysis discipline and also states that the analysis model in the Unified Process is
not necessary and seldom used (Larman, 2002). Nevertheless, the WISDOM method
is still very interesting for software engineers, since it offers models for dealing with
usability issues. Additionally, the way it deals with some process issues in a user-
centered view could be mapped to processes other than the specific WISDOM method
process.

10.4 SUMMARY OF INTEGRATION PROPOSALS

As presented in Section 10.2, the descriptions of the usability methods considered as
to how they integrate with the overall software development process are not highly
detailed. Actually, the textbooks describing these methods do not intend to detail this
issue, as their main objective is to present the actual usability method. Consequently,
a software engineer looking for an answer to the integration problem may find the
information in these sources defined at a different level of detail than is usual in a
defined SE software process. Some methods just present high-level activities, like
the Star Lifecycle, the ISO Standard 13407, or the Usage-centered Design method.
On the other hand, the Usability Engineering Lifecycle is more detailed, describing
fine-grained activities and techniques that may be applied for each activity. But, as
presented in (Mayhew, 1999), this method encompasses a not so iterative approach
to software development. On top of these difficulties, the four HCI approaches con-
sidered use a terminology that is peculiar to the HCI field. Specifically, the Star and
the Usability Engineering lifecycles are presented as methods for the design of highly
usable UIs. As stated in Section 10.1, SE refers by UI design to just the design of
the actual visual elements that form the UI and the UI response behavior in visual
terms. It does not include any activity related to requirements engineering in the SE
perspective. Nevertheless, both methods include standard requirements activities like
task or user analysis. The terminology gap makes the task of integrating the usability
methods into the overall software process especially difficult.

As for the integration proposals based on SE methods presented in Section 10.3,
we have also identified some of the limitations observed in usability methods, like
them not being truly iterative (in the case of Costabile’s proposal and MUSE) or just
addressing the design of the UI (like MUSE), and therefore confusing software engi-
neers with regard to integration. On the other hand, the UX plug-in for RUP actually
integrates some usability practices into a comprehensive process, but its main goal is

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 183

to incorporate some techniques that are often used in the web development field in-
stead of integrating usability into the process. Therefore, the UX plug-in is limited to
a few usability techniques and does not cover the whole range of activities in which
usability techniques may apply.

Given that the information from the HCI literature is not detailed enough for the
purpose of integration and is not formulated in SE concepts and terminology, and
because SE proposals do not have a proper iterative focus or cover all activities, we
propose a framework that addresses these concerns in the following sections. The
framework is formulated according to a truly iterative approach (expressing time con-
straints in the form of iterative development stages), and it covers the whole range of
SE activities for mapping usability activities and techniques to all relevant kinds of
activities in a software process.

10.5 MAPPING BETWEEN USABILITY AND SE ACTIVITIES

To map usability terminology to SE terminology, the activities that form part of a
user-centered process must be identified. The heterogeneous landscape of methods
and philosophies offered by the HCI field, like, for instance, usability engineering,
usage-centered design, contextual inquiry, and participatory design, is a hurdle for this
ambition. Each author attaches importance to a few techniques, and the terminology
may vary from one author to another. For this reason, we have surveyed the HCI
literature (Ferre et al., 2002a) to identify the most agreed upon usability activities that
should be part of the software development process. We have listed these usability
activities in Figure 10.1, grouped according to what type of development activity they
belong to. Note that the activities are not listed in any time-related order.

There is a lot of consensus in HCI regarding analysis activities. Specification of the
Context of Use is an activity whose aim is to understand and record the implications
of the context of use so that they can be considered during system design. It has
been named following the ISO 13407 Standard terminology (ISO/IEC, 1999), and
it is divided into User and Task Analysis because some authors make a distinction
between the two activities (Mayhew, 1999; Hix and Hartson, 1993; Constantine and
Lockwood, 1999). Usability specifications are quantitative usability goals, which are
used as a guide for ascertaining when a system has the proper usability level. They
can be considered non-functional requirements.

Design activities are less well defined in the HCI literature that we consulted. The
only activity cited by most authors is Prototyping. Prototypes are widely used in SE,
particularly in iterative development. What HCI has to offer, however, is the particular
usage of light prototyping to get more user involvement and for weighing up alterna-
tive designs. The most useful prototypes for this purpose are the less sophisticated
ones, such as paper prototypes. Typical SE prototypes usually involve some degree of
programming, while paper prototypes allow for faster iterations as they do not require
any programming effort.

Develop the Product Concept is based on mental models (Norman, 1990; Preece
et al., 1994): when the product concept is vague, ambiguous, inconsistent or obscure,
there will be a divergence between the user mental model of the system and the de-
sign model that developers work with. The importance of helping the user to grow

184 HUMAN-CENTERED SOFTWARE ENGINEERING

productive mental models for the usability of the system is especially stressed. Good
designers always bear in mind a certain product concept, but making it explicit and
highlighting its importance in the software development process will help to shape the
system in a way that explicitly communicates this product concept to the user.

Interaction Design varies considerably from one author to another, but we have
identified the definition of the interaction that will take place between the user and
the system as a common aim in the design process. It includes designing the user-
system dialogue, that is, the sequence of actions needed to operate the system, and
the user-system information exchange, in detail. By interaction design we mean the
design of the coordination of information exchange between the user and the system.
Apart from tackling UI design (the design of the elements of the UI that will make
the interaction possible), it also includes decisions that affect the internal logic of the
system, to the extent that this internal logic is reflected in the user-system interaction.

Usability evaluation is the activity that is most profusely detailed in HCI literature.
Usability is very difficult to strive for, due to the complex human nature. Without
doing some form of evaluation, it is impossible to know whether or not the design or
system fulfils the needs of the users and how well it fits the physical, social and orga-
nizational context in which it will be used (Preece et al., 1994). Usability evaluation is
a core part of iterative development, in the sense that evaluation activities can produce
design solutions for application in the next design cycle or, at least, more insight into
the nature of the interaction problem at hand. Therefore, evaluation is not seen in HCI
as a mere fail/pass test, but as a part of development. Three big families have been
highlighted within the Usability Evaluation activity in Figure 10.1: Expert Evaluation,
Usability Testing and Follow-Up Studies of Installed Systems.

The set of activities is based on HCI terminology, with which most software devel-
opers are not familiar. Therefore, the terms must be translated to a generally accepted
SE terminology, so that developers know where to plug in the usability additions to
the software process. Wherever possible, the SWEBOK (Abran et al., 2004) has been
used as a basis for defining the activities in a traditional software development process.
HCI terminology has been used for other activities that are new to SE and do not fit
any existing activity.

The mapping of usability activities to development activities considered in this
chapter is shown in Figure 10.1. Each usability activity on the left-hand side of Fig-
ure 10.1 is mapped to a development activity on the right by means of an arrow. Some
activities have been added to the usual SE activities, because they do not match an
existing SE activity. They are highlighted in italics (for example, Interaction Design).
Only activities that are affected by usability are represented on the right, and the other
activities in a software process are not included.

Regarding the analysis-related activities, note that usability activities are inter-
twined with standard analysis activities. Therefore, they can be directly mapped to
the different types of SE analysis efforts. Following the SWEBOK definitions, we
have selected the requirements activities that are likely to be enhanced by the intro-
duction of usability techniques: Requirements Elicitation, Analysis and Negotiation;
Requirements Specification; and Requirements Validation. Four activities, presented
in the HCI literature as being necessary for understanding users, their context and

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 185

their needs, have been highlighted within the Requirements Elicitation, Analysis, and
Negotiation activity: User Analysis, Task Analysis, Develop Product Concept and
Prototyping.

The activities of Develop Product Concept and Prototyping are considered differ-
ently in HCI and in SE. According to the SWEBOK, Prototyping is considered in SE
as a technique that can be used in Requirements Elicitation and Validation. As for
Develop the Product Concept, it is a design activity, but the kind of design that is
known as invention design. According to the SWEBOK, invention design is usually
performed by systems analysts with the objective of conceptualizing and specifying a
system to satisfy the discovered needs and requirements, and it is not addressed in the
chapter of the SWEBOK devoted to software design (Abran et al., 2004). This concep-
tualization activity is usually undertaken as part of requirements elicitation activities,
and is fundamental for the success of requirements engineering efforts. Because of
its close connection with requirements activities and because the SWEBOK consid-
ers invention design as part of the requirements analysis activity, we have considered
Develop the Product Concept as part of Requirements Elicitation, Analysis and Nego-
tiation in our framework.

Figure 10.1 Mapping between usability and SE Activities

186 HUMAN-CENTERED SOFTWARE ENGINEERING

Usability-related design activities are quite separate from general design activities.
Therefore, a new activity, called Interaction Design, has been included under the De-
sign activities. The SWEBOK considers UI Design not as part of SE but as a related
discipline. However, it also states that UI design deals with specifying the external
view of the system and that it should be considered as part of requirements speci-
fication. Nevertheless, the chapter devoted to requirements in the same source (the
SWEBOK) does not include UI. On the other hand, Interaction Design fits the defini-
tion provided by the IEEE Standard Glossary of Software Engineering Terminology
for design: ”the process of defining the architecture, components, interfaces, and other
characteristics of a system or component” (IEEE, 1990). Therefore, we have consid-
ered Interaction Design as a design activity, because it is not clearly located in the
SWEBOK and because it fits the general definition of design.

Regarding evaluation, a new activity, Usability Evaluation is created, since it groups
usability techniques that are unconnected with other general evaluation activities.
However, walkthroughs can be used during requirements validation, so they have been
highlighted within Expert Evaluation (on the left of Figure 10.1) to show this link with
analysis-related activities. Evaluation activities are termed V&V (Verification and Val-
idation) in SE, so this is the label used for evaluation activities.

After having matched usability activities to their respective SE activities, we need
to address the individual techniques to be employed in each activity.

10.6 ASSIGNMENT OF USABILITY TECHNIQUES TO ACTIVITIES

For developers to be able to apply usability techniques, they need to know in which
activities they are applied. The previous section matched the activities in the HCI
literature to their respective SE activities.

Note that the integration framework presented in this chapter is aimed at software
development organizations that do not have a big usability department (if they have
one at all!) and, therefore, need usability concerns to be shared with the developers
throughout development. Nevertheless, for organizations where usability expertise
is widely available, communication problems inside multidisciplinary teams are an
important concern, and the proposed framework would also be of interest in such
cases.

Bearing in mind that, in our approach, the usability techniques could be applied
by non-experts in usability, we have made a selection where there was more than
one usability technique with the same objective available and have included usability
techniques that are less alien to a SE mindset in our framework. From more than 80
techniques described in the HCI literature (Ferre et al., 2002a), the resulting set of
techniques has been reduced to just 36 techniques. They appear in the column furthest
to the right in Table 10.1, which is explained in the next paragraph.

We have used the definition of each usability technique in the literature as regards
its application in a particular activity to allocate usability techniques to activities, and
this definition has again been compared with the definition of activities in the SWE-
BOK. Table 10.1 shows the classification of usability techniques according to activ-
ities. The techniques are grouped according to the activities in a generic software
development process that are listed in the central column.

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 187

10.7 WHEN TO APPLY USABILITY ACTIVITIES AND TECHNIQUES

We examined the HCI literature to identify what characteristics a software develop-
ment process should have for it to be considered user-centered. Shneiderman, 1998,
Nielsen, 1993, ISO/IEC, 1999, Hix and Hartson, 1993, Constantine and Lockwood,
1999, Preece et al., 1994, all agree on considering iterative development as a must for a
user-centered development process. The other two characteristics that are mentioned
by several sources are: active user involvement and a proper understanding of user
and task requirements. These two conditions can be met by introducing usability tech-
niques that can help software developers to integrate users into the design process and
to enhance requirements activities with specific usability aspects. On the other hand,
the first condition (that is, iterativeness) is an intrinsic characteristic of a software pro-
cess, and needs to be stated as a requirement for an existing development process to
be a candidate for the introduction of usability techniques and activities.

The usability practices described in the literature are deeply rooted in this process
characteristic and, for the application of usability techniques, there are indications on
when in development time each technique yields the most useful results for improving
the usability of the final product. These indications on the best time to apply usabil-
ity techniques have to be transmitted to developers. Hence, it is not enough just to
assign usability techniques to development activities, extra guidance also needs to be
provided on what usability techniques are to be applied exactly when in development
time. Consequently, the activities and their techniques need to be interrelated with
development stages. For this purpose, we will now present a generic description for
the stages of any process based on iterative development and then actually interrelate
activities / techniques and stages.

188 HUMAN-CENTERED SOFTWARE ENGINEERING
Ta

bl
e

10
.1

:
A

llo
ca

tio
n

of
us

ab
ili

ty
te

ch
ni

qu
es

to
ac

tiv
iti

es

H
C

I
A

ct
iv

it
ie

s
A

ct
iv

it
ie

s
in

So
ft

w
ar

e
P

ro
ce

ss
U

sa
bi

lit
y

Te
ch

ni
qu

es
A

na
ly

si
s

-
Sp

ec
ifi

ca
tio

n
of

th
e

C
on

-
te

xt
of

U
se

-
U

se
r

A
na

ly
si

s
A

na
ly

si
s

R
eq

ui
re

m
en

ts
E

lic
ita

tio
n,

A
na

ly
si

s
an

d
N

eg
ot

ia
tio

n

E
th

no
gr

ap
hi

c
O

bs
er

va
tio

n
(P

re
ec

e
et

al
.,

19
94

)

C
on

te
xt

ua
l

In
qu

ir
y

(B
ey

er
an

d
H

ol
tz

bl
at

t,
19

98
)

St
ru

ct
ur

ed
U

se
rR

ol
e

M
od

el
(C

on
st

an
tin

e
an

d
L

oc
kw

oo
d,

19
99

)
O

pe
ra

tio
na

l
M

od
el

in
g

(C
on

st
an

tin
e

an
d

L
oc

kw
oo

d,
19

99
)

JE
M

(J
oi

nt
E

ss
en

tia
lM

od
el

in
g)

(C
on

st
an

tin
e

an
d

L
oc

kw
oo

d,
19

99
)

A
na

ly
si

s
-

Sp
ec

.
C

on
te

xt
of

U
se

-
Ta

sk
A

na
ly

si
s

E
ss

en
tia

l
U

se
C

as
es

(C
on

st
an

tin
e

an
d

L
oc

k-
w

oo
d,

19
99

)
D

es
ig

n
-

D
ev

el
op

Pr
od

uc
tC

on
ce

pt
A

ffi
ni

ty
D

ia
gr

am
s

(B
ey

er
an

d
H

ol
tz

bl
at

t,
19

98
)

V
is

ua
lB

ra
in

st
or

m
in

g
(P

re
ec

e
et

al
.,

19
94

)
C

om
pe

tit
iv

e
A

na
ly

si
s

(N
ie

ls
en

,1
99

3)
Sc

en
ar

io
s

(C
ar

ro
ll,

19
97

)
D

es
ig

n
-

Pr
ot

ot
yp

in
g

Pr
ot

ot
yp

es
(p

ap
er

an
d

ch
au

ff
eu

re
d

(C
on

st
an

-
tin

e
an

d
L

oc
kw

oo
d,

19
99

);
an

d
w

iz
ar

d
of

O
z

(P
re

ec
e

et
al

.,
19

94
)

A
na

ly
si

s
-

U
sa

bi
lit

y
Sp

ec
ifi

ca
tio

ns
R

eq
ui

re
m

en
t

Sp
ec

ifi
ca

tio
n

U
sa

bi
lit

y
Sp

ec
ifi

ca
tio

ns
(H

ix
an

d
H

ar
ts

on
,

19
93

)
U

sa
bi

lit
y

E
va

lu
at

io
n

-
E

xp
er

tE
va

lu
a-

tio
n

R
eq

ui
re

m
en

ts
V

al
id

at
io

n
C

og
ni

tiv
e

W
al

kt
hr

ou
gh

(L
ew

is
an

d
W

ha
rt

on
,

19
97

)
Pl

ur
al

is
tic

W
al

kt
hr

ou
gh

(B
ia

s,
19

94
)

C
on

tin
ue

d
on

ne
xt

pa
ge

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 189
Ta

bl
e

10
.1

:
A

llo
ca

tio
n

of
us

ab
ili

ty
te

ch
ni

qu
es

to
ac

tiv
iti

es

H
C

I
A

ct
iv

it
ie

s
A

ct
iv

it
ie

s
in

So
ft

w
ar

e
P

ro
ce

ss
U

sa
bi

lit
y

Te
ch

ni
qu

es
A

na
ly

si
s

-
Sp

ec
.

C
on

te
xt

of
U

se
-

Ta
sk

A
na

ly
si

s
D

es
ig

n
In

te
ra

ct
io

n
D

e-
si

gn
D

et
ai

le
d

U
se

C
as

es
(C

on
st

an
tin

e
an

d
L

oc
k-

w
oo

d,
19

99
)

D
es

ig
n

-
In

te
ra

ct
io

n
D

es
ig

n
Sc

re
en

Pi
ct

ur
es

(H
ix

an
d

H
ar

ts
on

,1
99

3)
C

ar
d

So
rt

in
g

(R
ob

er
ts

on
,2

00
1)

M
en

u-
se

le
ct

io
n

T
re

es
(S

hn
ei

de
rm

an
,1

99
8)

N
av

ig
at

io
na

lP
at

hs
(C

on
al

le
n,

20
03

)
Pr

od
uc

tS
ty

le
G

ui
de

(M
ay

he
w

,1
99

9)
Im

pa
ct

A
na

ly
si

s
(H

ix
an

d
H

ar
ts

on
,1

99
3)

H
el

p
D

es
ig

n
by

U
se

C
as

es
(C

on
st

an
tin

e
an

d
L

oc
kw

oo
d,

19
99

)
E

va
lu

at
io

n
-

E
xp

er
tE

va
lu

at
io

n
V

&
V

U
sa

bi
lit

y
E

va
l-

ua
tio

n
H

eu
ri

st
ic

E
va

lu
at

io
n

(N
ie

ls
en

,1
99

3)

U
sa

bi
lit

y
In

sp
ec

tio
ns

(N
ie

ls
en

an
d

M
ac

k,
19

94
)

C
og

ni
tiv

e
W

al
kt

hr
ou

gh
(L

ew
is

an
d

W
ha

rt
on

,
19

97
)

Pl
ur

al
is

tic
W

al
kt

hr
ou

gh
(B

ia
s,

19
94

)
E

va
lu

at
io

n
-

U
sa

bi
lit

y
Te

st
in

g
T

hi
nk

in
g

al
ou

d
(N

ie
ls

en
,1

99
3)

Pe
rf

or
m

an
ce

M
ea

su
re

m
en

t
(D

um
as

an
d

R
e-

di
sh

,1
99

9)
L

ab
or

at
or

y
U

sa
bi

lit
y

Te
st

in
g

(D
um

as
an

d
R

e-
di

sh
,1

99
9)

Po
st

-T
es

t
Fe

ed
ba

ck
/

U
se

r
Q

ue
st

io
nn

ai
re

s
(M

ay
he

w
,1

99
9)

E
va

lu
at

io
n

-
Fo

llo
w

-u
p

St
ud

ie
s

of
In

-
st

al
le

d
Sy

st
em

s
Q

ue
st

io
nn

ai
re

s
/S

ur
ve

ys
(M

ay
he

w
,1

99
9)

C
on

tin
ue

d
on

ne
xt

pa
ge

190 HUMAN-CENTERED SOFTWARE ENGINEERING
Ta

bl
e

10
.1

:
A

llo
ca

tio
n

of
us

ab
ili

ty
te

ch
ni

qu
es

to
ac

tiv
iti

es

H
C

I
A

ct
iv

it
ie

s
A

ct
iv

it
ie

s
in

So
ft

w
ar

e
P

ro
ce

ss
U

sa
bi

lit
y

Te
ch

ni
qu

es
St

ru
ct

ur
ed

an
d

Fl
ex

ib
le

In
te

rv
ie

w
s

(P
re

ec
e

et
al

.,
19

94
)

D
ir

ec
tO

bs
er

va
tio

n
(H

ix
an

d
H

ar
ts

on
,1

99
3)

V
id

eo
/

A
ud

io
re

co
rd

in
g

(H
ix

an
d

H
ar

ts
on

,
19

93
)

Fo
cu

s
G

ro
up

s
(M

ay
he

w
,1

99
9)

L
og

gi
ng

A
ct

ua
lU

se
(S

hn
ei

de
rm

an
,1

99
8)

O
nl

in
e

U
se

r
Fe

ed
ba

ck
Fa

ci
lit

ie
s

(S
hn

ei
de

r-
m

an
,1

99
8)

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 191

10.7.1 Stages in an Iterative Development Process

Different times or stages can be defined in an iterative process, where one and the same
activity may be more or less important or have a different meaning. For instance,
most requirements discovery and refinement is usually undertaken during the early
iterations (Larman, 2004). These early iterations are packed in a stage: Elaboration. A
stage comprises a sequence of iterations in development with similar basic objectives.

Even though each iterative process has its particular approach and terminology in
terms of development stages, they usually follow a similar pattern in this respect. This
pattern is represented in Figure 10.2. Each stage is represented by a cloud, because it is
not a development phase as in the waterfall life cycle, but a set of iterations organized
according to the moment in time represented by the x-axis.

Figure 10.2 Stages in an iterative software development process

An explanation of the stages in an iterative development follows:

Elaboration cycles: This stage represents the early efforts in the software de-
velopment process, where the problem is delimited and the basic information is
gathered for later development in the iterative cycles.

Iterative cycles (i): These are the iterations found in any iterative approach.
For usability techniques to be applied in the cycles, a distinction will be made
between two moments:

– Central moments: The main part of each cycle.

– Final moments: The last part of each cycle, where certain activities are
performed, typically V&V activities.

Evolution cycles: These iterations represent the cycles that are undertaken after
the system has been installed and is operational at the customer’s site.

Any organization wanting to apply the proposed framework will have to translate these
generic stages to the ones they have in place, using their specific terminology. Even if
our representation of development stages is a common one in iterative processes, not
all iterative development approaches will necessarily match our stage representation.
For example, some projects may not have an elaboration stage, in which case the
techniques to be applied in this stage would be applied in the iterative cycles instead,
since this is the next stage in our representation.

192 HUMAN-CENTERED SOFTWARE ENGINEERING

10.7.2 Time Constraints for Usability Technique Application

Apart from the activity of which they are part, the description of usability techniques
in the HCI literature includes indications on the moments in development time when
they are to be applied. This section details this information, organized according to
the stages in a generic iterative process presented in the previous section. For a com-
prehensive study of the time constraints for usability technique application, (see Ferre
et al., 2002b).

The Elaboration stage corresponds to the initial cycles where the needs are iden-
tified and the general system outline is established. A general aim is for the products
of this stage to be quite stable, even though they are open to changes in the iterative
development cycles.

The following techniques are clearly to be applied at elaboration time, because they
are good for the first examination of the problem for handling an ill-defined solution:
Ethnographic Observation, Contextual Inquiry, Affinity Diagrams, Scenarios, Visual
Brainstorming, and Paper and Chauffeured Prototypes.

Competitive Analysis can be applied later on, but it can help at elaboration time
because it is good for coming up with design ideas on the product concept.

Analyzing the user and his or her environment, and the basic dialogue between
the system and the user is a prerequisite for any development that intends to cater
for the user and the usability of the resulting product. For this reason, the following
techniques should be applied at elaboration time, even though they may be applied
later for completing the models produced:

Essential Use Cases

Structured User Role Model

Operational Modeling

JEM (Joint Essential Modeling)

Cognitive and Pluralistic Walkthrough: Walkthroughs evaluate an interaction
dialogue. So, as soon as these dialogues are defined in the essential use cases,
walkthroughs can be applied as an evaluation technique.

Heuristic Evaluation: Low fidelity prototypes and early designs of the UI may
be evaluated heuristically.

The specifications document should include Usability Specifications. So, this tech-
nique will be applied at elaboration time if such a document is created at this stage,
but it can be completed as development advances.

Techniques related to UI design can be applied at the Elaboration stage, because the
UI is the part of the implementation that the user can understand better. Its design may
be undertaken at the early stages of development in order to get feedback from the user.
Thus, even though these techniques will carry more weight in the iterative cycles, they
are also present at the Elaboration stage. These techniques are Detailed Use Cases,
Screen Pictures, Card Sorting, and Menu-Selection Trees. Only Navigational Paths

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 193

has a predominant role at the Elaboration stage, since it is good for describing the
high-level view of the navigation.

Iterative cycles may include the application of techniques which require a greater
effort than the techniques detailed above, like Product Style Guide or certain prototyp-
ing techniques that demand some implementation, such as Wizard of Oz Prototypes.
Both techniques might fit in well in Elaboration cycles, but they are predominantly to
be applied in iterative cycles in order to avoid bulky elaboration cycles.

Some already mentioned UI design techniques carry more weight during iterative
cycles, but they are fit for both stages (Elaboration and Iterative Cycles): Detailed Use
Cases, Screen Pictures, Card Sorting, and Menu-Selection Trees.

Impact Analysis may be employed at the beginning of any cycle in either the itera-
tive or evolution cycles.

Some techniques are adequate for application at the end of a development cycle,
that is, in the final moments. They are the ones proposed in the literature for usability
evaluation purposes:

Heuristic Evaluation

Usability Inspections: Consistency, conformance and collaborative usability in-
spections.

Thinking Aloud: Constructive interaction, retrospective testing, critical incident
taking, and coaching method.

Performance Measurement

Laboratory Usability Testing

Post-Test Feedback / User Questionnaires

The Evolution stage groups the activities performed after the system has reached ini-
tial operational capability in the customer organization. The usability techniques to
be applied at this time are techniques to evaluate the usability of an installed system.
They are as follows:

Questionnaires / Surveys (they may be used in previous stages as well)

Structured and Flexible Interviews

Direct Observation

Video / Audio Recording (it can be used in previous stages as well)

Focus Groups

Logging Actual Use: Time-stamped keypresses and interaction logging.

Online User Feedback Facilities: Online or telephone consultants, online sug-
gestion box or trouble reporting, online bulletin board or newsgroup, user
newsletters and conferences.

194 HUMAN-CENTERED SOFTWARE ENGINEERING

When the development project involves replacing a system that is already in op-
eration, all of these techniques can also be used as data gathering techniques in the
Elaboration stage of the project.

10.7.3 Mapping of Usability Activities / Usability Techniques /

Development Stages

The description of the techniques to be applied at each stage in the previous section
is summarized in Table 10.2. Techniques highlighted in bold face within a stage carry
more weight in this stage, that is, this is the stage in which they are best suited, even
though they can be applied at other stages.

Figure 10.3 shows another way of looking at the relationship between cycles and
activities. It is a distribution of work across the different activity types, related to
the time in the development process when each effort is performed. Each horizontal
line represents an activity type, and the height of the red line indicates the amount
of work of this kind to be done at that particular development stage. For example,
requirements elicitation, analysis and negotiation activities are mostly performed in
Elaboration cycles (with more emphasis on the early stages), while some elicitation
and analysis activities are performed at the beginning of the central moments within
the Iterative Cycles, and a small amount of work may be done in Evolution cycles.
Slopes in different lines denote some precedence between the different activity types,
like, for example, between the different requirements activities within Iterative cycles:
first, there is some elicitation, analysis and negotiation followed by specification and
then validation. Note that the amount of work on each activity represented in Fig-
ure 10.3 is approximate, it should not be taken literally.

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 195
Ta

bl
e

10
.2

:
U

sa
bi

lit
y

te
ch

ni
qu

es
to

be
ap

pl
ie

d
at

ea
ch

st
ag

e
an

d
th

ei
rs

ig
ni

fic
an

ce

A
ct

iv
iti

es
St

ag
es

E
la

bo
ra

tio
n

St
ag

e
It

er
at

iv
e

C
yc

le
s

(c
yc

le
s
1

to
j)

E
vo

lu
tio

n
St

ag
e

(c
yc

le
s
1

to
i)

ce
nt

ra
lm

om
en

ts
fin

al
m

om
en

ts
(c

yc
le

s
1

to
k

)
R

eq
s.

E
ng

.
R

eq
ui

re
m

en
ts

E
lic

ita
tio

n,
A

na
ly

si
s

an
d

N
eg

ot
ia

tio
n

-
E

th
no

gr
ap

hi
c

O
bs

er
va

ti
on

-
C

on
te

xt
ua

lI
nq

ui
ry

-
A

ffi
ni

ty
D

ia
gr

am
s

-
V

is
ua

lB
ra

in
st

or
m

in
g

-
C

om
pe

ti
ti

ve
A

na
ly

si
s

-
Sc

en
ar

io
s

-
E

ss
en

tia
lU

se
C

as
es

-
P

ap
er

an
d

C
ha

uf
fe

ur
ed

P
ro

-
to

ty
pe

s
-

W
iz

ar
d

of
O

z
Pr

ot
ot

yp
es

-
St

ru
ct

ur
ed

U
se

r
R

ol
e

M
od

el
-

O
pe

ra
ti

on
al

M
od

el
in

g
-

JE
M

(J
oi

nt
E

ss
en

tia
lM

od
el

in
g)

-
C

om
pe

tit
iv

e
A

na
ly

si
s

-
E

ss
en

tia
lU

se
C

as
es

-
St

ru
ct

ur
ed

U
se

r
R

ol
e

M
od

el
-

O
pe

ra
tio

na
lM

od
el

in
g

-
JE

M
(J

oi
nt

E
ss

en
tia

l
M

od
el

in
g)

-
W

iz
ar

d
of

O
z

P
ro

to
-

ty
pe

s

-
C

om
pe

tit
iv

e
A

na
ly

si
s

R
eq

ui
re

m
en

t
Sp

ec
ifi

ca
tio

n
-

U
sa

bi
lit

y
Sp

ec
ifi

ca
tio

ns
-

U
sa

bi
lit

y
Sp

ec
ifi

ca
-

tio
ns

-
U

sa
bi

lit
y

Sp
ec

ifi
ca

-
tio

ns
R

eq
ui

re
m

en
ts

V
al

id
at

io
n

-
C

og
ni

tiv
e

W
al

kt
hr

ou
gh

-
Pl

ur
al

is
tic

W
al

kt
hr

ou
gh

-
C

og
ni

tiv
e

W
al

k-
th

ro
ug

h
-

Pl
ur

al
is

tic
W

al
k-

th
ro

ug
h

-
Pl

ur
al

is
tic

W
al

k-
th

ro
ug

h

C
on

tin
ue

d
on

ne
xt

pa
ge

196 HUMAN-CENTERED SOFTWARE ENGINEERING
Ta

bl
e

10
.2

:
U

sa
bi

lit
y

te
ch

ni
qu

es
to

be
ap

pl
ie

d
at

ea
ch

st
ag

e
an

d
th

ei
rs

ig
ni

fic
an

ce

A
ct

iv
iti

es
St

ag
es

E
la

bo
ra

tio
n

St
ag

e
It

er
at

iv
e

C
yc

le
s

(c
yc

le
s
1

to
j)

E
vo

lu
tio

n
St

ag
e

(c
yc

le
s
1

to
i)

ce
nt

ra
lm

om
en

ts
fin

al
m

om
en

ts
(c

yc
le

s
1

to
k

)
D

es
ig

n
In

te
ra

ct
io

n
D

e-
si

gn
-

D
et

ai
le

d
U

se
C

as
es

-
Sc

re
en

Pi
ct

ur
es

-
C

ar
d

So
rt

in
g

-
M

en
u-

se
le

ct
io

n
T

re
es

-
N

av
ig

at
io

na
lP

at
hs

-
Pr

od
uc

tS
ty

le
G

ui
de

-
H

el
p

D
es

ig
n

by
U

se
C

as
es

-
Im

pa
ct

A
na

ly
si

s
-

D
et

ai
le

d
U

se
C

as
es

-
Sc

re
en

Pi
ct

ur
es

-
C

ar
d

So
rt

in
g

-
M

en
u-

se
le

ct
io

n
T

re
es

-
N

av
ig

at
io

na
lP

at
hs

-
Im

pa
ct

A
na

ly
si

s

C
on

tin
ue

d
on

ne
xt

pa
ge

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 197
Ta

bl
e

10
.2

:
U

sa
bi

lit
y

te
ch

ni
qu

es
to

be
ap

pl
ie

d
at

ea
ch

st
ag

e
an

d
th

ei
rs

ig
ni

fic
an

ce

A
ct

iv
iti

es
St

ag
es

E
la

bo
ra

tio
n

St
ag

e
It

er
at

iv
e

C
yc

le
s

(c
yc

le
s
1

to
j)

E
vo

lu
tio

n
St

ag
e

(c
yc

le
s
1

to
i)

ce
nt

ra
lm

om
en

ts
fin

al
m

om
en

ts
(c

yc
le

s
1

to
k

)
V

&
V

U
sa

bi
lit

y
E

va
l-

ua
tio

n
-

C
og

ni
tiv

e
W

al
kt

hr
ou

gh
-

Pl
ur

al
is

tic
W

al
kt

hr
ou

gh
-

H
eu

ri
st

ic
E

va
lu

at
io

n
-

U
sa

bi
lit

y
In

sp
ec

tio
ns

-
C

og
ni

tiv
e

W
al

k-
th

ro
ug

h
-

Pl
ur

al
is

tic
W

al
k-

th
ro

ug
h

-
H

eu
ri

st
ic

E
va

lu
at

io
n

-
U

sa
bi

lit
y

In
sp

ec
-

ti
on

s
-

T
hi

nk
in

g
al

ou
d

-
P

er
fo

rm
an

ce
M

ea
-

su
re

m
en

t
-

L
ab

or
at

or
y

U
sa

bi
l-

it
y

Te
st

in
g

-
P

os
t-

Te
st

F
ee

db
ac

k
/U

se
r

Q
ue

st
io

nn
ai

re
s

-
V

id
eo

/a
ud

io
re

co
rd

-
in

g

-
Pl

ur
al

is
tic

W
al

k-
th

ro
ug

h
-

T
hi

nk
in

g
al

ou
d

-
Pe

rf
or

m
an

ce
M

ea
su

re
-

m
en

t
-

L
ab

or
at

or
y

U
sa

bi
lit

y
Te

st
in

g
-

Po
st

-T
es

t
Fe

ed
ba

ck
/

U
se

r
Q

ue
st

io
nn

ai
re

s
-

Q
ue

st
io

nn
ai

re
s

/
Su

r-
ve

ys
-

St
ru

ct
ur

ed
an

d
F

le
x-

ib
le

In
te

rv
ie

w
s

-
D

ir
ec

t
O

bs
er

va
ti

on
-

V
id

eo
/a

ud
io

re
co

rd
-

in
g

-
F

oc
us

G
ro

up
s

-
L

og
gi

ng
A

ct
ua

lU
se

-
O

nl
in

e
U

se
r

F
ee

d-
ba

ck
F

ac
ili

ti
es

198 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 10.3 Amount of work on each activity type at the different development stages

10.8 DISCUSSION

HCI and SE take different but complementary views of software development. SE as
a discipline is pervasive in software development organizations all over the world. Its
concepts are the ones with which the majority of developers are familiar, and this is
especially true of senior management at software development organizations. HCI, on
the other hand, has been traditionally considered as a specialist field, and its view of
development is not as present in software development organizations as the SE per-
spective. The approach taken in this chapter for usability integration into the software
process tackles the integration issue from a SE point of view.

Our framework targets organizations that are considering introducing usability into
their practices, but not at any cost. They want to keep the software process they have
in place, because it is a valuable asset, although they aim to continuously improve
this process (by adding usability activities and techniques, for example). For orga-
nizations looking for a more radical shift towards a user-centered approach with an
even higher degree of user participation in design efforts, the principles enumerated in
chapter 2 may apply. The proposed framework can be valuable to organizations where
such principles are in conflict with organizational objectives and concerns, like limited
availability of representative users or geographically distributed teams. Another alter-
native approach to be considered is presented in chapter 13 for organizations wanting
to keep two separate processes (the usability process and the SE process), so that soft-
ware development needs do not take over usability concerns. Our framework may be

WHICH, WHEN AND HOW TO INTEGRATE USABILITY TECHNIQUES 199

valuable to organizations that have not identified the need to place usability in such a
prominent place in development, that is, organizations that consider usability an im-
portant quality attribute but not to the extent of considering it as valuable as all the
other quality attributes together.

For the purpose of integrating usability into the process, the user needs to be
placed at the center of the whole development effort. The framework includes sev-
eral techniques (mainly from the Usage-Centered Design method—Constantine and
Lockwood, 1999) for modeling the user and his/her tasks and the interaction between
users and the software system. If the development team considers the user as the fi-
nal measure of software development project success, it has already taken a big step
towards the adoption of a user-centered perspective in development, and models may
support this objective. Other techniques in the framework favor a higher degree of user
participation, facilitating communication in multidisciplinary teams. The application
of some techniques calls for a reformulation of activities that were already in place
before the usability integration, but the biggest part of the development process does
not usually need to be profoundly altered.

The proposed framework serves the purpose of identifying which usability activi-
ties and techniques may be useful for an organization to enrich its software process,
and where they have to be incorporated in the process. But some additional issues,
like how to modify existing practices in order to incorporate the new ones, must be
resolved for an effective integration. The work by Gulliksen and Göransson, 2001,
complements the information expressed in the framework by providing a recipe for
action for evaluating a process for its user-centeredness and modifying it where nec-
essary.

Knowing where to plug usability techniques and activities into the existing software
development process is a necessary starting point, but it does not automatically make
software engineers capable of applying these techniques and activities and adopting a
user-centered focus in development. ‘Caring about usability’ is a change to the philos-
ophy and viewpoint with which developers are accustomed. The framework for usabil-
ity integration presented in this chapter needs to be supplemented by good training for
developers. For the industrial partners of the STATUS project to apply the framework
in practice, their developers needed to take a 24-hour course on usability principles
and techniques. The course was designed to raise their usability awareness, clearing
up common misconceptions about the issue. Chapter 8 presents some practices that
may be helpful for educational purposes and to get buy-in between developers for the
user-centered approach.

10.9 CONCLUSIONS

In this chapter we presented a framework that may allow a more successful introduc-
tion of usability techniques and activities into the software process. Usability activities
and techniques from the HCI field have been positioned in the framework with regard
to standard SE activities. Time constraints for the application of usability techniques
and activities with respect to the stages in a generic iterative process have been de-
tailed as well. The resulting framework targets software development organizations
that have already decided to incorporate usability activities and techniques into their

200 HUMAN-CENTERED SOFTWARE ENGINEERING

current development practices. The only prerequisite for its application is that the soft-
ware development process currently in place must be based on iterative development.
This is necessary, because iterative development is one of the essential principles of
the user-centered approach. This requirement is not especially restrictive from a SE
point of view, because it is in line with the current trends in SE.

The proposal does not have to be adopted as an all-or-nothing issue. It aims to
provide a framework that allows decisions to be made on the inclusion of particular
usability techniques and activities in any iterative software development process. It
responds to the demands of software practitioners who are asking for pragmatic ap-
proaches instead of theoretical constructs that remain on the shelves unused.

Feedback from the industrial partners of the STATUS project has contributed to
refinement of the present proposal, but, as changing as software development practice
is, it is open to further refinement and specification as software development evolves
and, hopefully, incorporates more and more usability aspects. In particular, informa-
tion may be added to the framework on the products of each usability technique and
their possible integration with SE models and documentation.

Acknowledgements

We would like to thank the partners in the STATUS project for their input and their
cooperation, and we would like to acknowledge the support of the European Union
under grant STATUS (IST-2001-32298).

We would also like to thank the anonymous reviewers of the chapter and the editors
of the book for the thorough job they have done, and for the valuable insights their
comments have provided.

11 COPING WITH COMPLEXITY
Dave Roberts

IBM

Abstract

IBM User Engineering provides a process that guides teams though a complex project.
It uses CASE tools to help to manage information. It includes abstraction paths that
help the team to understand the whole problem before they divide it. User Engineering
then leads the team to the solution; providing many heuristics to guide progress.

This chapter provides an overview of User Engineering. It describes the key arte-
facts and the processes that relate them. The chapter focuses on the parts of User
Engineering that relate to software engineering. It shows how the UE process leads
the team through the research and design needed to create a compelling user interface.
It describes how the artefacts of design are assembled within a CASE tool and used to
provide an unambiguous specification for the software engineering processes that are
interlinked with User Engineering.

11.1 INTRODUCTION

User Engineering (IBM 2004) is a method developed by IBM over the last 15 years.
The first outline of the approach was published as part of “Common User Access”
(CUA) in the early 1990s (IBM 1992). A UML based version was published later
that decade under the name OVID (Roberts et al, 1998). User Engineering is both
user and stakeholder centred. It is driven from the goals and values of each of the
user and stakeholder groups. The process includes continuous validation with both
stakeholders and users.

201

in the Development Process, 201–217.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

202 HUMAN-CENTERED SOFTWARE ENGINEERING

User Engineering is designed for teams. It is based on a structured set of phases
(See Section 11.1.2). It uses the notions of UE Activities and Work Products, each
allocated to various team members. Team members have designated UE roles (Ta-
ble 11.1). Specified roles lead the UE Activities to produce Work Products. The Work
Products form the main means of ensuring team communication. Further details of
the UE Roles, Activities and Work Products are available from the IBM web site (IBM
2004).

Table 11.1 User engineering roles

Role Goal
User eXperience Leadership
Overall responsibility for superior user sat-
isfaction

Satisfy Project Goals
Maximum value delivered to users and
stakeholders

Market Planning
Core information on business opportunity

Business Driven Offering
Comprehensive definition of business and
market expectations

User eXperience Research
All required information about users

Complete User Requirements
Comprehensive understanding of users’
domain

User eXperience Design
Model, structure and flow of the user inter-
face

Leadership
Design Leadership and productive user ex-
perience

Visual & Industrial Design
Overall appearance, form-factor, layout
and style

Physical Appeal
Physical and emotional experience repre-
sents the brand

User eXperience Evaluation
User studies to continually assess design
progress

Cost Effective Evaluations
Objective design evaluations

UE also suggests the use of CASE tools to hold all the Work Products for the
project. The recommended tools are from the Rational family. However, these could
be substituted with any others that are capable of creating and managing UML dia-
grams and connecting them with related artefacts.

The central core for any UE project is a UML model, the Designers’ Model, which
links both the user’s views of the system and the implementers’ understanding of the
solution. These areas of the model are connected to give traceability from the problem
to the solution. Each Work Product is either created within the Designers’ Model or is
associated with some other element of that model.

11.1.1 Pragmatic Usage

Although User Engineering can, at first inspection, appear to be a very prescriptive
approach, it is not. UE provides a framework which allows teams to select the UE
Activities that they need. One of the first Work Products that emerge from the Business
Opportunity phase is the draft version of the User Engineering Plan. This describes,
in outline, the UE Activities and Work Products that will be used for this project.

COPING WITH COMPLEXITY 203

This pragmatic approach also extends to the tools that are used to facilitate the pro-
cess. UE is based on the use of a UML enabled CASE tool. However, other solutions
can be adopted if they are more appropriate to the situation. For example, when the
stakeholders (customers) already have a preferred method for distributing information.
However, User Engineering relies on a subset of UML to provide a language to portray
the design in an unambiguous form. When UML is not used it increases the risk that
information will be degraded during the process.

11.1.2 Overview of Phases

User Engineering consists of a set of phases. These phases each end with a checkpoint
that controls the start of the next phase.

1. Business Opportunity - Identifies a marketplace opportunity and relates it to
business goals.

2. Understanding Users - Establishes user requirements in accordance with the
business and market requirements.

3. Initial Design - Used to establish the conceptual design.

4. Development - Establishes the detailed design.

5. Deployment - Used to verify the implementation in the users’ domain.

6. Life Cycle - Captures relevant user experience feedback that can be used as
input for subsequent projects.

Although this series of phases may appear similar to a traditional waterfall approach
to development, this is not the intention. The phases are designed to ensure that the
project does not proceed until prior work has been validated, or at least the status is
well known. The whole process is iterative and it is possible that a finding in a later
stage might return a project to an earlier phase.

The first four phases of UE are described in more detail later in this chapter.

11.1.3 Tools

User Engineering suggests that as much information as possible is held in Computer
Aided Software Engineering (CASE) tools. These tools have developed over many
years to hold information for software engineering teams. The tools typically have a
number of characteristics that allow the team to work effectively with the project.

1. Provide for the ownership of the information by the appropriate team member.

2. Provide facilities to create versions of a project with different elements included
in each version.

3. Allow the team to document and follow the relationships between various ele-
ments.

204 HUMAN-CENTERED SOFTWARE ENGINEERING

4. Check the validity of the information against a variety of heuristics.

5. Create prototypes of new information based on the existing information.

Teams can use the facilities provided within the tools to cope with the complexity of
the project. Large projects can be divided into smaller, manageable units.

UML (Unified Modeling Language) is commonly used in software engineering to
describe the design of software projects. The use of UML in other areas is growing.
Some use is being made of UML for business process modeling (Cesare 2003). User
Engineering promotes the use of UML for all user related (HCI) information. Using
UML avoids the reliance of the interpretation, and misinterpretation, of natural lan-
guage as design medium. The cross-disciplinary use of UML as the lingua franca of
the team is one of the keys to coherent transfer of knowledge.

User Engineering suggests ways in which UML can be used to describe all the
elements of the project. This includes elements that are not normally modelled in
this way such as stakeholders and their goals. At the same time, User Engineering
recognises the need to convey design in other ways.

Many users and stakeholders are not able to understand a design when it is ex-
pressed as UML. So the design team acts as a gatekeeper to the model. The team will
create artefacts that portray the design to those who need to understand some part of it
to give feedback. This might be in the form of a prototype that is used when commu-
nicating or testing with users. It could be in the form of a Persona when sharing role
descriptions with a stakeholder.

11.2 THE DESIGNERS’ MODEL

One premiss of User Engineering is that even in a complex situation a complicated
system must not be delivered to the users. At the heart of the design phases is a
conceptual model which is called the Designers’ Model. The Designers’ Model is a
description of the system that will be constructed. It can be considered as the mental
image that the most astute user (should such a user exist) would develop of the system.
Elements of this model are shared by all users. However, as each user’s experience
of the system will be unique then many users will not adopt the entire model of the
system.

Overall, the process of obtaining a good solution can be envision on a two dimen-
sional space (Figure 11.1). From left to right the space represents the transition from
a problem to a solution. From bottom to top the space represents the change from the
concrete to the abstract.

At the bottom left, the existing problem is concrete. At the bottom right, the solu-
tion will be concrete at the end of the deployment. A development process moves a
project from the problem to a solution. Different methods take different paths between
problem and solution. During most development processes a series of models, with
varying degrees of abstraction are built. User Engineering focuses on a Designers’
Model with a relatively high degree of abstraction.

The system is implemented as a series of perspectives on the Designers’ Model.
Each perspective is designed for use by one or more of the user roles. Because all the
perspectives are based on a single conceptual model the roles have a known amount

COPING WITH COMPLEXITY 205

Figure 11.1

of shared knowledge. This shared knowledge, or common ground, allows each of the
users to communicate about the system.

11.2.1 Related Models

User Engineering also recognises two other models: the User’s Model and the Im-
plementers’ Model. These two models are related to the Designers’ Model and the
finished product as shown in Figure 11.2.

Figure 11.2

User’s Model. A User’s Model only exists in the mind of each of the users. It
is formed by each user as they experience the product. They may see advertising
or training material related to the product and this will begin the formation of the
user’s model. They may interact with the product and continue the development of the
model. But each of these experiences is unique to each user. In UE the researchers try

Modeling and the design space

The relationship between the User Engineering models

206 HUMAN-CENTERED SOFTWARE ENGINEERING

to discover what models will be formed. They contact users by whatever means they
have available (survey, focus group, field study, workshop. . .) to gather information.
They record this information during the Understanding Users phase. The information
then forms the basis of the design.

The designers create, within the Designers’ Model, a collection of model fragments
that represents their best understanding of the aggregate user’s model for each of the
recognised user roles. These model fragments are described as objects and views.
During the objects and views will be validated. In a typical validation study a sample
of users will be presented with materials that are derived from the Designers’ Model.
Users might be asked to work with or discuss these materials, or to perform typical
tasks to confirm that the model is a reasonable representation of the users internal
model.

11.2.2 Implementers’ Model

The Implementers’ Model is the basis for the construction of the product. It will
include elements such as software that has to be created, software components that are
used and hardware that is used. In UE the Implementers’ Model should be constructed
within the same CASE tool as the Designers’ Model.

Implementers take the Designers’ Model as a specification for elements of the
implementers model. This is described in more detail later in this chapter (Sec-
tion 11.3.4).

11.3 USER ENGINEERING MODELING

A UML model, the Designers’ Model, is at the core of the User Engineering pro-
cess. This model integrates all of the information that the project team has gathered or
created.

Figure 11.3 Examples of artefacts created to provide concrete descriptions of abstract

The model is an abstract expression of both the problem and the solution. For many
stakeholders and most users the model will not be easy to understand. The project team

elements

COPING WITH COMPLEXITY 207

acts as a gateway to the model. They interpret the model for the stakeholders and users
as they need to. They also take information from the stakeholders and users and feed
it into the model.

Throughout the project there will be abstract descriptions of an element and then
one or more concrete descriptions of the same element (Figure 11.3). For example,
during a field study a task analysis may be conducted. A report of the study will be
created in some form. In the CASE tool an activity diagram will be created for the
designers to use. The report of the study will be attached to the activity diagram so
that full details of the study are available when required. Further, the activity diagram
will be connected to the actor that represents the user role that was studied.

As a further example, in the Understanding Users phase the user roles provide
and abstract description of the users and the corresponding personas (Cooper 1999)
provide a more concrete description. The personas would be attached to the user role
within the CASE tool. Similarly, the solution model from Initial Design is an abstract
form; this is made concrete as a low fidelity prototype.1

User Engineering defines a number of UML stereotypes. The stereotypes iden-
tify the role of the elements of the Designers’ Model. For example, the stereotype
<<ougoal>>2 is used to identify a user goal and the stereotype <<osgoal>> iden-
tifies a stakeholder goal. Further details of the stereotypes are given in the sections
below.

11.3.1 Business Opportunity

The Business Opportunity phase provides the key goals for the project. These are
the stakeholder’s goals that will measure the final outcome of the project. They are
not expressed in terms of the implementation that is to be created, but rather in terms
of what the project will achieve for the business. For example, a goal at this stage
might be that the new sales method will increase sales by 10%. The first phase also
provides an outline of the market into which a project will be launched: the competing
solutions; the intended audience.

As with many other UE elements models are created using the stereotype fea-
ture of UML. To represent the stakeholders an actor is created with the stereotype
<<osrole>>. Attributes of the actor and the associated documentation are used to
record the details. Goals are modeled as classes with the stereotype <<osgoal>>.
Attributes record details of the goal. In particular the attributes record the measures
that will be used to check if the project meets these goals. Relationships are added
between the stakeholder and the goals to indicate which stakeholders are interested in
which goals. Other relationships are added to show how the goals are connected to
one-another. Figure 11.4 shows a fragment of a stakeholder/goal diagram connections
that could be shown. Table 11.2 lists the model elements and how they are used.

During this phase an outline view of the users of the project will be documented.
This information is recorded as actors with the stereotype of <<ourole>>. These

1Those familiar with object oriented concepts might consider this as a class/instance pairing. For example,
a role is a class and a persona is an instance of that class.
2<<ougoal>> can be read as OVID User Goal.

208 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 11.4

will be refined during the next phase. Further detail of this is included in the next
section.

Table 11.2 Elements modeled during Business Opportunity phase

Element Description Model
Stakeholder Someone who has an inter-

est in the outcome of the
project.

Actor <<osrole>>

Stakeholder Goal Some state that one or
more stakeholders wish the
project to achieve.

Class <<osgoal>>
Attributes defined measures
of the goal.

User Role (draft) Someone who will use the
result of the project in some
way.

Actor <<ourole>>

Other information gathered or created during the business opportunity is not mod-
eled in UML. Work products such as the draft of the User Engineering Plan will be
documented in the most appropriate format for the team. This might be as a docu-
ment created by a word processor or as a plan within a project planning tool. Further
description of these work products is not included as they do not have a direct rela-
tionship with the user engineering models or the software engineering process.

11.3.2 Understanding Users

The business opportunity phase produces clear documentation of the stakeholders and
their goals for the project. But this information only provides an outline of the detail
that will be needed for the project. In the Understanding Users phase the process
continues with a variety of research activities that discover the missing information
which is added to the Designer’s Model. The phase seeks to document, in detail, the
roles of all the users with all the significant attributes and relationships between them.

Fragment of a stakeholder-goal diagram

COPING WITH COMPLEXITY 209

It will describe the relationships between the users and the stakeholders. It may also
refine the descriptions of the stakeholders.

The UE Activities also document the current tasks that the users undertake to
achieve goals that are related to the project. These two collections of information
are the main input to the project. Table 11.3 lists the elements that are added to the
Designers’ Model during this phase.

Table 11.3 Elements modeled during Understanding Users phase

Element Description Model
User Role Someone who will use the

result of the project in some
way.

Actor <<ourole>>
Attributes define character-
istics of the users in detail.

User Goal Some state that one or more
users wish the project to
achieve.

Class <<ougoal>>
Attributes defined measures
of the goal.

User Task A description of something
a user currently does to
achieve one or more user
goals.

Class <<outask>>
Activity diagrams or other
attached documents are used
to describe the task.

Use Case A description of something
the project will include to al-
low a user to achieve a goal.

Use Case

Proposed Task
(draft)

An ideal process for com-
pleting one of the tasks that
some of the users need to
perform.

An Activity diagram.
Swimlanes represent users
and system.

The techniques chosen for each activity will depend on the project type. For ex-
ample, for a small, known audience the UE Activities might include more contextual
research or collaborative design. For a widely distributed audience such as ‘the buying
public’ the research might tend towards mass market techniques. Whichever technique
is employed, the ultimate aim is to provide a roles and goals model as an abstraction
that will lead to the use-case model for the system.

During this phase current or competing products are examined. Models are created
as an abstraction of these environments. As shown in Figure 11.5, this starts with
refinement of the user roles and recording of the current task processes. This infor-
mation is abstracted to a goal model and design begins by documenting the use-cases
that will be implemented.

Capturing Users’ Current Tasks. The UML Activity diagrams are used to
describe the way users go about doing their tasks today. The diagrams allow the re-
searchers to capture procedures in detail. Studies are made of any competing solutions;
whether they are competing products or existing methods. The information forms a
baseline for performance comparisons. The models also allow the researchers to in-
vestigate the ‘pain points’ in any existing solutions: the place where current solutions
fail.

210 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 11.5

Figure 11.6

As well as providing information to feed the abstraction process (see Defining the
Goals) the detailed task information has several uses later in UE. It collects the names
and descriptions of the objects that the users are dealing with. This will be of use
during Initial Design. Further, the information is used in comparison to the final task
description. This provides essential information to feed the creation of training pro-
grammes.

Defining the Goals. A third model created during the Understanding Users is
often called the ‘roles and goals’ model. It contains the Users and Stakeholders model
and adds the goals of both the users and the stakeholders. Many of the stakeholder
goals may have been expressed as ‘requirements’. The user’s goals are discovered as
the desired outcomes of the tasks. Any new goals that are not related to existing tasks

Modeling in the Understanding Users Phase

A fragment of a user-task model

COPING WITH COMPLEXITY 211

are added to these. All of the goals, for both stakeholder and users, are described with
completion criteria. These are measures of what has to be achieved to claim that a goal
has been reached. They are also measures of related requirements such as how long it
should take to reach a goal.

Figure 11.7

The goals are each connected with the roles that hold that goal (Figure 11.7). They
are also connected to the other goals, where any relationship can be established. The
key to this stage is to keep asking ‘Why?’ For each user goal there must be a higher
goal that provides the reason for that goal being important. System related goals are
noted, but these might be ignored later, the new system may not need to satisfy prior
system goals. Ultimately, each of the user’s goals will connect to a stakeholder goal.

Research activities are used to validate the goals with both stakeholders and users;
ensuring that the final version of each goal and their relationships are correct. The
research should also provide detail of the frequency with which each goal is reached.
This later information, along with the number of user roles related to the goal, give a
measure of the importance of a goal in the formation of the objects in the Designers’
Model.

Figure 11.8

Each goal should have a number of measures. Each measure is a statement of
some condition that must be satisfied in order to achieve that goal. The measures are
prescriptions for how the goal might be measured during the development process.
The measures may be direct or indirect. For example, a cash issuing machine design
might have a goal about delivering cash. Delivering the right amount of cash is a direct

A fragment of a user-goal diagram

A fragment of a goal-use case diagram

212 HUMAN-CENTERED SOFTWARE ENGINEERING

measure of the goal; doing this within 15 seconds is an indirect measure3. In cases
where it is difficult to assign measures to a goal then the goal can be decomposed, to
a collection of sub-goals, until useful measures can be determined.

Define User Experience Use Cases. Having modelled users, goals and cur-
rent tasks, the next step is to make a statement of which goals the new project will
satisfy. User experience use cases are added to the model. Each case describes a well
defined function that will allow the user to reach one or more goals (Figure 11.8).

The first step in defining the use cases is to review all the goals. The process starts
with the most important goals; those that need to be reached most frequently or by
most users. The use cases are named with verb phrases that describe the process that
will be used to reach the goal. These may coincide with current tasks. The designers
must judge the balance between matching current tasks (which may reduce training
costs) or differing from current tasks (potentially increasing training costs but reducing
operating costs). The use case names and descriptions can be validated by a variety of
user research activities.

11.3.3 Initial Design

In the Initial Design phase a collection of models are created that describe the user’s
experience with the new system. Starting with the use cases that meet the most impor-
tant goals the first step is to create a collection of user objects. At the same time as the
objects are defined, the tasks in which they are used and the views that the users will
need are also defined. Table 11.4 lists the elements that are added to the Designers’
Model during this phase.

Throughout the phase the artefacts are validated with users. This often involves a
translation of the UML models in to forms that can be readily understood by the users.
The phase continues until the validation activities show that a successful outcome is
likely.

Figure 11.9 shows the modeling during this phase. The goal and use-case model is
used as the main source of information. A cycle of modeling begins that includes user
objects, new task models, views, object and view states and detailed task flows. This
process continues until validation indicates that the design will meet the goals.

Designers’ Object Model. The Designers’ Model contains a UML class model
that defines the objects that the users will find in the system. The objects4 represent
the concepts that the users will internalise to form their User’s Model.

These objects must be well defined with short, meaningful names and clear descrip-
tions. Using heuristics to guide the process, the most important objects form the core
of the model. The objects are described by classes with attributes showing the infor-

3Indirect measures are sometimes called ‘non-functional requirements’ or ‘usability requirements’ in some
development methods.
4The objects do not represent the interactive elements the users will meet. User Engineering represents the
interactive elements as views which are described later.

COPING WITH COMPLEXITY 213

Table 11.4 Elements modeled during Initial Design phase

Element Description Model
Object An object that some users

are expected to include in
their internal model of the
system

Class <<ouo>>
Attributes define character-
istics of the object in detail.

View Some state that one or more
users wish the project to
achieve.

Class <<oav>>
Attributes defined attributes
of the related object that are
visible.

Proposed Task An ideal process for com-
pleting one of the tasks that
some of the users need to
perform.

An Activity diagram or a Se-
quence diagram.
Swimlanes/lifelines repre-
sent users and views.

Object or View
states

A description of the way
an object or a view changes
during usage.

A Harel diagram and a state
transition table.

Figure 11.9

mation that users will understand about those objects. Connections are made between
the classes to describe the relationships that the users will know.

Candidate objects are obtained from the goal and task descriptions. A candidate
object, from the problem, will not be included in the solution until a new task design
proves the need for that object. When the object is included, the name and description
of the object and its attributes are all written in the terms that the user will be exposed
to (Figure 11.10). The language must match both the user’s capabilities (such as read-
ing age) and the domain jargon (the user’s domain, not the technology domain). The

Modeling during Initial Design

214 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 11.10

names and descriptions must be validated with the users; typically using a low fidelity
prototype.

The object model is a key asset in teaching users what they should know about the
system.

New Task Model. Outline task models for the new system are created, using
activity diagrams, in a similar way to the models that describe the current tasks. The
new task models normally use two swim-lanes to describe the breakdown between
user and system elements of the tasks. This is the designer’s chance to remove the
pain points found in current tasks. The activities must all be described in terms of
processes that operate on the objects in the class model. Operations are added to the
objects to support their roles in each task.

Abstract Views. Utilizing the designers’ object model and task model, the ab-
stract views define the selection of attributes of each object that are required to support
a given task (Figure 11.10).

During early iterations the easiest process is to create a new view for each of the
objects that are needed in any task. Views are needed at any point in a task where
control passes between the swim lanes of the activity diagrams.

Operations are added to each view to describe each of the functions that can be
initiated from that view. Connections are made between views to show the navigation
paths for the system. (Navigation paths all carry the implicit action of ‘navigate this
path’; these are not added as operations.) During the development phase, the designers

A fragment of an object-view diagram

COPING WITH COMPLEXITY 215

will choose whether the paths will be implemented as a change of page/window or as
an embedding of the subsequent information.

As the design process iterates the views are consolidated so that a minimum number
can be provided. This reuse of views helps both the development team (they have less
to create) and the user (they have less to understand).

Detailed Task Flows. Detailed task flows are developed using either activity
diagrams or sequence diagrams. These diagrams elaborate the new task models with
details of which of the views are used at which stages of the task. Creating these
diagrams allows for validation of the navigation paths and the operations of each of
the views.

In the refined task diagrams the users are only shown to interact with the views, not
the objects. The views then have connections to the objects to obtain and change data
or to initiate operations.

Object and View States. Object states are modelled to describe the way in
which objects change as a consequence of users interaction with the object (through
views). The states are mainly a transcription of each of the detailed task flows, from
the perspective of a single object. As well as using the state charts in UML (which
use the Harel notation) the states are transcribed to a state/action table. This allows
the designers to inspect all of the potential state/action cases without clutter in the
diagram.

In some cases there is a need to develop state models for a view as well as for the
object that it represents. This might be used when delays in the connection between a
view and the related object are introduced because of system or user needs. The state
models are developed in the same way as those for objects.

11.3.4 Development

In User Engineering development begins with a validated Designers’ Model. During
the development phase, each element of the Designers’ Model is translated into an
appropriate, concrete form ready for deployment.

Figure 11.11 Traceability within the Designers’ Model

216 HUMAN-CENTERED SOFTWARE ENGINEERING

For each of the element types there will be a related series of recipes5 that might
be applied. Each of these might be applied by some automatic system: some form
of generator. They could also be applied manually by a team of skilled people such
as programmers or graphic designers. Whichever element, recipe or process is con-
cerned; the general activity is the same.

Development will also include a variety of validation activities. Tests are conducted
without users, to ensure that these concrete elements are faithful to their abstract spec-
ifications. Tests are conducted with users to ensure that all the agreed measures (of
goals) are met.

Activities. The Designers’ Model includes one or more activity diagrams for each
of the use cases. These diagrams show the flow from the user’s perspective. The
diagrams have several uses during the Development Phase. Each diagram can be:

1. the basis of a test case;

2. the basis of a user test;

3. the outline of training material, either online or offline;

4. an outline for an element of the help system.

Writers and/or trainers are presented with a well specified outline of a user’s activities.
This can be readily converted into the forms required for their work. Further, when
the information is presented in a CASE tool, they can trace the activities to the related
goals and the measures of those goals. From a combination of the goals and the role
descriptions they can understand the context of use. They can also see the equivalent
activity diagrams for the prior ways of working. This allows them to consider the
learning needs of a user who is migrating from one solution to another.

Where testing is concerned, the same access to a full context for each task allows
for a complete specification of a test. The goals include the success criteria that must
be measured. The roles include the information that is needed when screening users
who will participate in tests and trials.

Objects. The Designers’ Model contains a description of all the objects that the
users need. Each object has full descriptions of the attributes and the user triggered
operations. For objects with interesting life cycles, there is a state model showing how
the operations change the objects. The activity diagrams explain when and where each
object is used. This complete description allows a user object to be implemented as a
business object within the project. The biggest benefit comes from the use of a CASE
tool.

As the specification for the objects is held in a CASE tool the process of convert-
ing from abstract to concrete is facilitated. Software engineering artefacts are linked

5Depending on the environment these recipes may be called: patterns, recipes, heuristics, standards or
guidelines.

COPING WITH COMPLEXITY 217

directly to their counterparts in the Designers’ Model. When changes are implied by
tests during development, the impact can be traced back to earlier decisions. Hence,
the delivered version of the system is less likely to become disconnected from the
specification.

Views. In a similar way to objects, the views that have been defined during the ini-
tial design have a full specification: attributes, user actions, links to other views, state
models and activity diagrams to provide context. Further, the user’s characteristics
and their goals are available. This combination provides a clear starting point for the
development of the web pages, dialogs or physical artefacts that instantiate a view.

Where a project requires interaction in different contexts, such as pervasive inter-
faces that might appear both on a PC and via a telephone, further view specifications
can be created. For example, an abstract view might imply too much content to fit
on the screen of a mobile phone. Further view classes can be added to the model that
show how it is to be broken down into appropriate sections. Conversely, groups of
abstract views might be combined when there is a larger screen available to the user.
These decisions are all captured by refinement of the Designers’ Model.

Standard patterns of views can be used to fit the implementation to the user’s needs.
These may be incorporated at the abstract level: such as a pattern of view classes
implementing a wizard; or at a lower level; a group of attributes is mapped to a defined
set of controls (widgets). Different patterns might be implemented for different users
or for different delivery devices.

11.4 CONTINUED DEVELOPMENT

This chapter has outlined the processes and tools that are used by IBM’s User Engi-
neering. The principal benefit is comes from a well defined process based on informa-
tion in cross-disciplinary notation held in a store with well controlled access. There
are further benefits to be gained from the capability of many CASE tools to provide

Proof of concept projects such as the one presented at the TUPIS workshop
(Azevedo et al, 2000) demonstrate how information in the Designers’ Model can be
transformed into implementation elements. The project took an object-view model
and generated a simple user interface. Similar code-generation processes can be ap-
plied to reduce the manual effort in applying the recipes needed to a UML model.
This brings the major benefit of reducing the gap between the specification and the
implementation because the cost of keeping these in step is reduced.

User Engineering also allows organisations to improve the transfer of information
between projects. If an organisation adopts UE for a number of projects there is sig-
nificant potential for transferring information between them in a more tractable form.
This sharing can occur at many levels: from sharing role descriptions to sharing view
implementations.

User Engineering continues to evolve as it is used in different contexts. For exam-
ple, the early ideas came from the examination of IBM’s internal development pro-
cesses, but it is now being applied directly to customer problems; this brings new
insights into the flexibility required.

12 TOWARDS A MODEL FOR

BRIDGING AGILE DEVELOPMENT AND

USER-CENTERED DESIGN
Stefan Blomkvist

Dept. of Information Technology/Human-Computer Interaction

Uppsala University

PO Box 337, SE-751 05 Uppsala, Sweden

Abstract

As a reaction to the complexity and rigor of commercial software development pro-
cesses, “agile” software development methods have gained increasing attention. Agile
methods prioritize delivering working software over producing extensive models and
documentation. Agile processes focus on the people involved and the required inter-
action instead of on processes and tools. Furthermore, it emphasizes that responding
to the changes that invariably take place over the course of a project is more impor-
tant than strictly adhering to a contract or plan. From the perspective of usability
and user-centered design, however, agile methods do not inherently provide the re-
quired support to the development process. This being said, the agile philosophy does
not prevent focusing on usability during the design process: in fact, the agile and
user-centered approaches have the potential to work very well together. This chapter
intends to describe the core principles of agile development and investigate to what ex-
tent usability-enhancing activities can be supported within the agile approaches. As a
conclusion, it will outline a model for integrating agile development and user-centered
design.

219

in the Development Process, 219–244.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

220 HUMAN-CENTERED SOFTWARE ENGINEERING

12.1 INTRODUCTION

Developing interactive software is all about people: not only about the people that
will use the software, but also about those who develop it. Most developers of in-
teractive software deliver some sort of enhanced support for end-users, and as such,
their knowledge about the users and the use situation is crucial to the outcome of the
process. Although there are numerous methods and techniques to capture information
about the users and tasks, it is the attitude and basic values of those who develop the
software that will inevitably make a difference in the results.

For some time now, one of the main ways of introducing usability and user-centered
design into systems development is to focus on the processes by which the systems are
designed and developed. The importance of this was stressed in 1991 by Liam Bannon
(Bannon, 1991):

“. . . more attention needs to be paid to the process of design, to working with
users in all stages of design, to see the iterative nature of design, and the changing
conception of what one is designing as a result of the process itself. This is in
contrast to a view of design that proceeds from a set of fixed requirements without
iteration, and without involvement of the users.”

More recently, it has been recognized that processes alone cannot guarantee usable
systems. Göransson, 2004, argues that systems that fit well into the workplace are
ultimately the product of some kind of user-centered development process and a user-
centered focus during development. This means that the real users and their needs,
goals, context of use, abilities and limitations should be guiding development, instead
of development being driven by technology. Persson, 2003, opines that development
processes are mainly controlled by time and money, and that there is an increasing
trend to rely on whatever models and methods are currently in vogue. This approach
reflects the organization’s basic values, as well as a lack of awareness regarding the
consequences of various strategic decisions.

Agile approaches to software development (Agile Alliance, 2001; Cockburn, 2002;
Ambler, 2002; Highsmith, 2002; Fowler, 2003a), such as Extreme Programming, XP
(Beck, 2000), have recently received increasing attention. They place less emphasis
on the process and its deliverables, and center instead on the people involved and
their cooperation in order to produce results more quickly with reduced risk of failure
or delays. The driving force behind the agile perspective is to impart more agile or
‘light-weight’ qualities on software development.

One issue related to the various agile processes is that they do not sufficiently ad-
dress usability and user-centered design (or UCD) concerns (Constantine and Lock-
wood, 2002; Hudson, 2003; Armitage, 2004; Jokela and Abrahamsson, 2004). The
main focus of agile processes is how to organize the required tasks to reach the over-
all goal of delivering working software. Delivering working software is obviously a
mandatory condition for any usable system. However, agile development focuses on
making coding more efficient, and usability issues can potentially fall to the wayside
since an explicit user-centered focus is lacking.

The overall focus of the agile approach is somewhat different from that of UCD.
Agile values and practices are concerned primarily with project management and team
organization in combination with detailed coding tactics. UCD, on the other hand,

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 221

focuses more on methods for usability design and evaluation. The two disciplines do
not target the same systems development issues. Nonetheless, both perspectives deal
essentially with the development of IT systems, therefore it is possible to compare the
approaches, at least to a certain extent. Furthermore, this similitude raises the ques-
tion of to what extent agile approaches are user-centered. Is it possible to integrate
user-centered values and practices in agile processes? Can the two disciplines cross-
pollinate each other with new ideas and practices? User-centered processes could
benefit from becoming more agile and paying closer attention to internal project is-
sues. In UCD, the people using the software are the focus (as they should be), but the
approach is less concerned with the individuals working on the project. Agile values
deal considerably with these issues, for example, team communication, individuals’
skills, overtime work and the developers’ responsibilities. These issues can be viewed
as a parallel to the discussions about user participation and empowerment that were
broached in the Scandinavian Tradition and Participatory Design (Ehn 1989).

This article is a first step towards bridging the gap between agile software engineer-
ing and UCD. As our perspective is spawned from the precepts of UCD, it is natural
to discuss the user-centeredness of the agile approach. This will be done by analyzing
the user-centered design qualities in the agile software development approach. An-
other topic we will cover is how to integrate the two perspectives – if at all possible.

A challenge inherent to this evaluation is that neither the agile approach nor user-
centered design is comprised of a single, clearly-defined process. Agile is an umbrella
term for a number of different processes that share a set of core ideas on software de-
velopment, as described concisely in the Agile Manifesto (Agile Alliance, 2001). The
best-known agile process is Extreme Programming, XP (Beck, 2000). User-centered
design is in a similar position. There is no agreed-upon definition of user-centered
design, however; Gulliksen et al. (2003b, also Chapter 2 of this volume) propose a
definition whereby where UCD is characterized by a set of 12 key principles.

It is beyond the scope of this article to compare specific agile processes with their
UCD counterparts. A first step is to analyze the essence of the agile and UCD ap-
proaches. Consequently, we will base the following discussion on the most primary
material on agile: writings/publications by Cockburn and Fowler, as well as the Agile
Manifesto. Though the discussion will be general, some concrete examples from Ex-
treme Programming will be given, owing to its unique position in the agile community.
The main source on UCD is the key principles provided in Gulliksen et al. (Chapter 2
of this volume).

12.2 SOFTWARE DEVELOPMENT RISKS – REASONS FOR THE

AGILE APPROACH

The software engineering community has long been searching for a “silver bullet” to
solve the typical problems that are ubiquitous in systems development. Although if
we now realize that there is no such panacea, methods and processes have long been
regarded as one of the primary strategies to tackle these problems. Over the years,
various proposals for the ultimate process have come upon the scene– only to later
fade away.

222 HUMAN-CENTERED SOFTWARE ENGINEERING

The traditional approach to software development is to focus on extensive planning
and structured processes in order to mold development into an efficient and predictable
activity (Boehm, 2002). According to the proponents of the latest trend in software
engineering, agile development, this approach is not the best strategy to employ for
successful software projects. Instead, agile developers call for a shift in the overall
focus to a more agile or ‘light-weight’ perspective. Below, we will summarize four of
the major problems in traditional software development that agile approaches attempt
to address.

12.2.1 Changeability

Systems development is variously affected by a number of external and internal
changes. These changes are either caused by new or evolving conditions during devel-
opment, or stem from the fact that not all requirements could be clarified early on in the
development process. Such new or changing conditions may involve anything from
volatile technical or business conditions to updates in work tasks and organization.
Introducing new or modified features after freezing the requirements specification is
difficult, time consuming and expensive. According to Boehm’s Life Cycle Cost Dif-
ferential theory (Highsmith and Cockburn, 2001, p.120), the costs related to reacting
to changes increase as the project develops. The problem is classical; for example,
Brooks, 1987, identified the changeability of software as one of the major software
engineering difficulties. In addition, today’s development projects must contend with
a higher degree and speed of change that was introduced during the Internet era in the
mid-nineties.

According to the CHAOS report (Standish Group, 1995), as many as 83% of all
projects fail in one way or another, e.g. cancellation, increased costs and delays.
Incomplete and changing requirements are among the most important problems for
impaired and/or challenged projects.

Generally speaking, changeability can be handled in two ways. One alternative is
to authorize few or no modifications once the requirements specification has been es-
tablished. The drawback is that the system may be inadequate or outdated before it
has been launched. Another approach is to allow changes in the requirements specifi-
cation. However, this will introduce the risk of changes that are difficult to cope with
in the development process, leading to delays and budget overrun, or even cancelled
projects. Since the latter scenario is far too common, many projects strive to freeze
the requirements at different junctures in the development process.

12.2.2 Software’s Complex and Intangible Nature

The waterfall model and similar traditional processes assume that we can predict
the complete set of requirements on a new system beforehand, if only we try hard
enough (Highsmith and Cockburn, 2001, p.120). The argument against exhaustive,
pre-prepared specifications is that systems consisting of software, people, organiza-
tions and hardware are often enormously complex, and consequently it is exceedingly
difficult to predict all requirements.

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 223

In reality, requirements are pervasive, dynamic and rarely well-defined. And even if
possible, traditional requirements analysis tends to be time-consuming. The difficulty
is also related to software’s intangible nature. In Brooks’ list of software engineering
difficulties (Brooks, 1987), he refers to this characteristic as the invisibility of soft-
ware. The requirements stipulated by users are not always easy to specify since a
lot of the users’ knowledge is tacit. The problems in software engineering are often
considered wicked problems lacking an unambiguous solution (Poppendieck, 2002).
Consequently, systems are difficult to entirely specify in advance. Fowler, 2003a, de-
scribes the problem as follows:

Estimation of requirements and cost is hard for many reasons. Part of it is that
software development is a design activity, and thus hard to plan and cost. Part
of it is that the basic materials keep changing rapidly. Part of it is that so much
depends on which individual people are involved, and individuals are hard to
predict and quantify.

Another argument against specifying requirements in advance is that even if it were
possible to capture a complete set of requirements early on in the project, they will
probably change as the project develops. Half a year after the project starts, the re-
quirements will most likely have changed.

12.2.3 Heavy Processes and Lack of Feedback

According to the agile approach, the true problem is the inability within the tradi-
tional software development methods to handle changes without causing delays and
increasing costs, and not the changes themselves as such. Prohibiting or restricting
changes leads to rigid systems that age quickly and are poorly adapted to the users’
current needs. Changes are inevitable, according to the agile proponents, and must
therefore be permitted and treated carefully throughout the system lifecycle (High-
smith and Cockburn, 2001, p.120). In addition to the above arguments, there exists
the business argument that we must be able to deliver product development according
to customers’ demands.

But why are traditional methods so ineffective at managing change? According to
Boehm, 2002, traditional methods can be characterized as plan-driven because they
focus on extensive planning and structured processes to make development into an
efficient and predictable activity. According to the agile proponents, however, this
approach does not work well in a world characterized by rapid changes.

Engineering methods tend to try to plan out a large part of the software process in
great detail for a long span of time; this works well until things change. So their
nature is to resist change.

(Fowler, 2003a)

Since specifying requirements is such a problematic process in a changing world,
other mechanisms are needed to specify a system, such as requirements that grow
over time through feedback from the development work. Traditional development pro-
cesses tend to have lengthy feedback cycles. Extended periods of time are dedicated
to planning, documentation of requirements, and modeling. A considerable amount
of development time will elapse before the software reaches a state in which it can be

224 HUMAN-CENTERED SOFTWARE ENGINEERING

exposed to the users. Feedback from users on what is being developed is thus far too
slow in coming. At the worst, feedback will not arrive until the project is completed
and the system has been delivered. It is only then, that the crucial discovery is made
that the requirements specification was erroneous and that the system does not match
the user’s task.

12.2.4 Process Focus

The problems inherent to software engineering were discovered long ago (Brooks,
1987), but many of them still remain. The findings from the Standish Group (Standish
Group, 1995), reporting that an average 83% of all projects fail in one way or an-
other, are an indicator thereof. Methods and processes have always been important in
managing the problems, mainly processes that are disciplined, engineering oriented,
predictable and repeatable. There is a belief that such processes can solve all prob-
lems. This has led to an increasing focus on the process per se, and following a process
has come to be recognized as one of the key success factors. Fowler, 2003a, criticizes
the heavy focus on processes:

Methodologies impose a disciplined process upon software development with the
aim of making software development more predictable and more efficient. They do
this by developing a detailed process with a strong emphasis on planning inspired
by other engineering disciplines. The most frequent criticism of these method-
ologies is that they are bureaucratic. There’s so much stuff to do to follow the
methodology that the whole pace of development slows down.

Modeling is an essential part of today’s software development. But according to
Cockburn, 2002, thinking of software development as model building leads to an inap-
propriate focus, since the interesting parts of what we want to express are not captured
in models. Models are useful in many ways, but cannot serve as an overall metaphor.
Fundamentally speaking, software development is not model building. A model is a
medium of communication, and is sufficient as soon as it permits others to move on
with their work.

Software development processes are not truly repeatable. Furthermore, software
development has much more to do with individual skill and adaptability than strictly
following plans and process descriptions. Predictable processes require components
that behave in predictable ways. However, people are not quite as predictable and
display significant differences from one to the next. Too often, the problem is that
methodology has been opposed to the notion that people are the first-order factor in
project success (Fowler, 2003a).

12.3 CHARACTERISTICS OF AGILE DEVELOPMENT

“For many people the appeal of these agile methodologies is their reaction to
the bureaucracy of the monumental methodologies. These new methods attempt
a useful compromise between no process and too much process, providing just
enough process to gain a reasonable payoff.”

(Fowler 2003a)

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 225

Various solutions to the problems inherent to software engineering have been pro-
posed over the years. One current trend that started in the 1990s is based on the
idea of developing software using a more “light-weight” or agile approach. This
trend can be seen as a response to more traditional software processes. Not all con-
cepts in the light-weight processes were completely new; they had been practiced in
a number of projects for some years already (Abrahamsson et al., 2003). For ex-
ample, pair programming was a well-established practice prior to XP (Constantine
and Lockwood, 2002). The ideas originated primarily from practical development
projects, and not from theoretical studies. These new methods gradually evolved into
a number of different software development processes, including Extreme Program-
ming (Beck, 2000), SCRUM, DSDM, Crystal and Lean Development (Abrahamsson
et al., 2003; Highsmith, 2002). XP is in a unique position, in that it has attracted the
most attention and is better known than “agile” overall.

An important step was taken in 2001. A group of leading software methodolo-
gists gathered in Snowbird, Utah, USA, to discuss light-weight development practices
(Cockburn, 2002; Fowler, 2002). Those assembled included Kent Beck, Alistair Cock-
burn, Ward Cunningham, Jim Highsmith and Ken Schwaber. To support their ideas on
light-weight software development, the group agreed to describe the lowest common
denominator, in the form of four core values and twelve other principles expounded
in greater detail. They did not ultimately succeed in agreeing on a more detailed level
– detailed project tactics. They did, however, conclude that this was in fact advan-
tageous in order to foster the development of competing software processes. For the
same reason, they agreed not to create a “unified light methodology.” These values
and principles constitute the Agile Manifesto (Agile Alliance, 2001), in which the
term “agile,” instead of light-weight was adopted.

Consequently, agile is not a distinct, well-defined process. Instead, it is a generic
term and common ground for several different processes or methods, each sharing a
set of software development core ideas, values and principles. In order to describe the
gist of agile development without describing each and every agile process, a natural
place to begin would be the content of the Agile Manifesto.

The four key values of agile software development (Agile Alliance, 2001) are de-
scribed below. According to the agile founders, these values are not antithetical to
other approaches to software development. Each of the following values should be
interpreted thus: “while there is value in the items on the right, we give preference to
the items on the left.”

1. Individuals and Interactions over processes and tools.
It is people, not processes and tools, who develop software. Therefore, each in-
dividual’s skills and interpersonal communication are crucial – dialoging face-
to-face is the most effective way to communicate (Cockburn, 2002). Pair pro-
gramming, for example, is a result of this.

2. Working Software over comprehensive documentation.
Requirements, documents, models and other intermediate products are only per-
tinent as means of communication during development. Although they can be
highly practical, they should only be worked on as long as they serve a purpose
in delivering working and useful software (Cockburn, 2002).

226 HUMAN-CENTERED SOFTWARE ENGINEERING

3. Customer Collaboration over contracted negotiation.
This value describes the relationship between the people who want the system,
and those who are building it. Successful projects involve systematic and fre-
quent customer feedback. Instead of depending solely upon contracts, the cus-
tomers work in close collaboration with the development team – if at all possi-
ble, customers and developers should work in the same room during the project.

4. Responding to Change over following a plan.
Plans are useful in software development, and each of the agile methods in-
cludes planning activities. The agile approach advocates planning for and adapt-
ing to changes, as opposed to prescribing strict conformity to a plan in every sit-
uation (Cockburn, 2002). This is necessary because the prerequisites for most
systems will evolve during development. Moreover, the initial requirements will
be influenced by the fact that communication between people is always more or
less incomplete.

Agile developers do not deny the value of engineering- or model-based methods
of software engineering. However, they do believe that the answers to successful
software development have much more to do with craft, community, pride and learn-
ing. The essence of agile is the pragmatic utilization of light, but sufficient, rules of
project behavior and the use of human- and communication-oriented rules (Cockburn,
2002). Agile developers embrace individual skills, communication, swift adaptation
to change and delivering working, useful software. They are trying to strike a balance
between a pragmatic, soft approach and a non-rigorous, sufficient use of engineering
methods.

The agile values are described in greater detail by the twelve principles below (Ag-
ile Alliance, 2001):

1. The highest priority is to satisfy the customer through the early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from every few weeks to every few
months, with a preference for the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build the projects around motivated individuals. Give them the environment
and support they need, then trust them to get the job done.

6. The most efficient and effective method of conveying information to and within
a development team is a face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers
and users should be able to maintain a constant pace indefinitely.

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 227

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

11. The best architectures, requirements and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
readjusts its behavior accordingly.

These four values and twelve principles constitute the Manifesto’s definition of
agile software development. However, in order to understand the essence of agile, this
definition requires greater precision. Other definitions could help to achieve a broader
understanding.

According to Lindvall et al., 2002, agile methods can be defined as:

Iterative – Delivers a full system initially, then changes the functionality of
each subsystem upon each subsequent release.

Incremental – The system, as specified in the requirements, is partitioned into
smaller subsystems by functionality. New functionality is added upon each new
release.

Self-Organizing – The team has the autonomy to organize itself in order to best
complete the work items.

Emergent – Technology and requirements are “allowed” to emerge through the
product development cycle.

Boehm and Turner, 2003, characterize agile methods by four main categories: ap-
plication, management, technical and personnel (Table 12.1).

12.3.1 Extreme Programming

As Extreme Programming has a unique position in the agile community, a concise
description of XP should interest those who are unfamiliar with it. Because there are
also some examples from the XP process in the subsequent parts of this chapter, a
cursory understanding of it and some related key concepts would be beneficial.

Constantine and Lockwood, 2002, gives the following brief description of XP:

“The rules of the agility game are relatively simple. Work in short release cycles.
Do only what is needed without embellishment. Don’t waste time in analysis or
design, just start cutting code. Describe the problem simply in terms of small,
distinct pieces, then implement these pieces in successive iterations. Develop a
reliable system by building and testing in increments with immediate feedback.
Start with something small and simple that works, then elaborate on successive
iterations. Maintain tight communication with clients and among programmers.
Test every piece in itself and regression test continuously.”

A user story is a short textual description of something that the customer wants the
system to do. User stories are a very high-level requirement, and should as such be

228 HUMAN-CENTERED SOFTWARE ENGINEERING

Table 12.1 Boehm and Turner, 2003, characterization of agile methods

Characteristic Description as Pertaining to Agile
Application
Primary Goals Rapid value, responding to change
Size Smaller teams and projects
Environment Turbulent, high change, project focused
Management
Customer Relations Dedicated on-site customers, focused on prioritized in-

crements
Planning and Control Internalized plans, qualitative control

Communications Tacit interpersonal knowledge
Technical
Requirements Prioritized informal stories and test cases, undergoing un-

foreseeable change(s)
Development Simple design, short increments, refactoring is assumed

to be inexpensive
Tests Executable test cases define requirements, testing
Personnel
Customers Dedicated, collocated, collaborative, representative, au-

thorized, committed, knowledgeable performers
Developers At least 30% highly skilled; no developers with below-

average skills (this is a rough approximation based on val-
ues from Boehm and Turner’s model of developer skills)

Culture Comfort and empowerment via many degrees of freedom
(thriving on chaos)

testable (Beck, 2000). They are usually written by customers/users on index cards.
A story is first written in succinct terms, along with its name and purpose. It is a
driver for the rest of the development effort and is elaborated if needed during the
project. Stories are divided into tasks that are in turn implemented in code. Automated
functional tests are later run to verify that the story is wholly and accurately reflected
by the code’s behavior. Functional or acceptance tests are written in cooperation with
customers.

Refactoring is the method of changing a piece of software in such a way that it
does not alter the external behavior of the code, yet improves its internal structure
in areas such as simplicity, flexibility, understandability or performance (ibid). In
XP, the activity of programming is regarded as a technical design process (not to be
confused with user interface design), where a particular feature is implemented in the
system. Once the feature has been implemented and the code verified by tests, the
code must be improved through refactoring. Ideally, refactoring should not change
the implemented feature’s external behavior. This is measured by running a series of

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 229

prewritten automatic test cases. If the test cases are still running, the external behavior
is unchanged.

Testing is an essential activity in XP, and it is preferably automated in order to
fast-track development. An automated test case runs without human intervention and
checks that the code calculates the excepted values (Beck, 2000, p.177). There are
several categories of tests, each serving a different purpose. Unit tests are used to
verify code units. Functional or acceptance tests are specified by the users/customers
and are used to verify a user story in its entirety.

12.4 USER-CENTERED DESIGN

User-Centered Design (UCD) is a way to consciously work towards producing sys-
tems that are highly usable and meet the expectations and needs of their real users.
Unfortunately, UCD has become a buzzword in software development, denoting some
vague sort of quality, but for most people meaning an approach to development that
involves iterative design and user involvement (e.g. ISO/IEC, 1999, or Gould et al.,
1997). The problem with such a vague definition of the concept is that more or less
anyone can state that their product follows the tenets of user-centered design – without
having to make any commitments about what to do or even knowing what it actually
means. This confusion was epitomized by John Karat in a proposal whereby any ap-
proach focusing on producing usable systems, iterative design and user involvement
can be considered as UCD (Karat et al., 1996). The consequence of this can be a
process that in itself involves little or no active user participation, as is manifest in the
following quotation:

“A user-centered design process is one that sets users or data generated by users
as the criteria by which a design is evaluated or as the generative source of design
ideas.”

Dennis Wixon, cited in Karat et al., 1996

To resolve these issues, Gulliksen et al. (Chapter 2 of this volume,) have defined
user-centered systems design as:

“. . . a process focusing on usability throughout the entire development process
and further throughout the system lifecycle. It is based on the following key prin-
ciples”:

User Focus – The goals of the activity, the work domain or context of use, the
users’ goals, tasks and needs should all guide the development from the very
beginning.

Active User Involvement – Representative users should actively participate,
early on and continually, throughout the entire development process and sys-
tem lifecycle.

Evolutionary Systems Development – The systems development should be both
iterative and incremental.

Simple Design Representations – The design must be represented such that it
can be easily understood by users and all other stakeholders.

230 HUMAN-CENTERED SOFTWARE ENGINEERING

Prototyping – Early on and continuously throughout, prototypes should be used
to visualize and evaluate ideas and design solutions in cooperation with the end
users.

Evaluate Use in Context – Base-lined usability goals and design criteria should
control the development. Evaluate the design against the goals and criteria in
cooperation with the users, in context.

Explicit and Conscious Design Activities – The development process should
contain dedicated design activities.

A Professional Attitude – The development process should be performed by
effective multidisciplinary teams. A professional attitude is required, as are the
tools that facilitate the team’s cooperation and efficiency.

Usability Champion – Usability experts should be involved early on and contin-
ually throughout the development lifecycle.

Holistic Design – All aspects that influence the future use situation should be
developed in parallel.

Process Customization – The UCD process must be specified, adapted and/or
implemented locally in each organization.

A User-Centered Attitude should always be established.

To be equally clear about their understanding of the usability concept, Gulliksen
et al., 2003b (also Chapter 2 in this volume) refer to ISO 9241-11’s definition of us-
ability, given below:

“. . . the extent to which a product can be used by specified users to achieve spec-
ified goals, with effectiveness, efficiency and satisfaction in a specified context of
use.” (ISO/IEC, 1998)

The purpose of such a definition is to provide further guidance to stakeholders who
wish to orient their process towards focusing on users and usability. This chapter
will, in its discussion of the agile approaches, adhere to this perspective of what user-
centered design is or should be.

There exist several user-centered processes that are more or less complete and with
varying interpretations of UCD, such as Contextual Design (Beyer and Holtzblatt,
1998) and the Usability Engineering Lifecycle (Mayhew, 1999). Two other UCD-
related processes are Goal-Directed Design (Cooper, 1999) and Usage-Centered De-
sign (Constantine and Lockwood, 2002). The latter process emphasizes models and
‘usage.’

12.5 USER-CENTERED DESIGN QUALITIES IN AGILE

DEVELOPMENT

Is there support for a user-centered design approach in agile software development, or
do agile methods prevent focusing on usability and the users’ needs? This question

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 231

highlights a potential problem with the various agile processes: they are not explicitly
concerned with users, usability and user-centered design. Nevertheless, there may be
other aspects in agile processes that implicitly support UCD or facilitate integration
with user-centered methods. It is therefore necessary to examine to what degree the
user-centered approach is either promoted or hindered by agile values, principles and
practices.

As stated in the Introduction, this analysis is based on the set of twelve key princi-
ples of user-centered design that was presented in Chapter 2. We have compared each
principle with the values and practices prescribed in agile development and analyzed to
what extent the principle is either supported or prevented. The results are summarized
and discussed below. The agile view is mainly based on writings by Cockburn, Fowler
and Beck, as well as the Agile Manifesto. Until now, only a few articles concerning
the issue of agile software development and UCD have been produced, namely Con-
stantine and Lockwood, 2002, Hudson, 2003, Kane, 2003, Armitage, 2004, and Jokela
and Abrahamsson, 2004. These articles are also included in the following discussion.

12.5.1 Project Organization and the Roles of Usability People

In many respects, the agile approach is concerned with strategies for effective team-
work, project management and organization culture. In contrast, UCD is less con-
cerned with these issues, even though these issues are targeted by the UCD principles
of professional attitude, usability champion and process customization. The agile val-
ues regarding ‘individuals and interactions’ and ‘customer collaboration’ have many
implications in this area. For example, the following values are also considered im-
portant in UCD:

Communication between people is essential, i.e. face-to-face conversations are
preferred.

Build projects around motivated and skilled individuals; trust them and give
them the support and the environment they need.

Cooperation and responsibilities for business people and developers is vital.

Promote sustainable development. The people involved should be able to main-
tain a constant pace without burning out (e.g. in XP projects, people should
normally work no more than 40 hours a week and should have fun at work in
order to perform at their best).

The project should be organized into small, effective, multi-disciplinary teams,
where collaboration and communications are present on all levels. Self-
organizing teams yield the best results.

The team should reflect on how to become more effective and fine-tune its be-
havior at regular intervals, if needed.

A direct result of valuing people, skills and teamwork is empowering the various
roles in a project to make decisions and take responsibility for their area of profes-
sion. For example, programmers are the best placed to decide on technical matters,

232 HUMAN-CENTERED SOFTWARE ENGINEERING

business people should be responsible for business matters, etc. Analogous with this
thinking, projects should have skilled usability experts with the authority to rule on
matters affecting usability during the system life cycle. In practice, however, many
agile processes have a narrow view on what competencies are needed in a system
development project. The roles of programmers, business people and customers are
usually filled, but interaction designers and other usability experts are routinely over-
looked. Although roles to work with use cases and user interface design/programming
are defined for some projects, customers (not necessarily end users) often contribute
by providing user stories, reviewing use cases and writing acceptance tests. Their input
then becomes the source for the developers when designing the system’s user interface.
Without specialists devoted to the design and evaluation of usability, as well as related
activities such as writing help systems and training material, the chances of producing
usable systems are slight. This is a serious weakness affecting most agile processes.
The lack of awareness is probably due to an inadequate grasp of the importance of
usability. Heightened awareness of usability matters could lead to the basic values of
agile promoting the UCD principle that states that the development process should be
performed by empowered multidisciplinary teams, including usability champions.

12.5.2 User Participation

A key UCD principle is that users should be actively involved when designing the
system. The agile approach comprises a number of values that can promote active in-
volvement. Agile developers value people, communication and pragmatic collabora-
tion with different stakeholders, which should include users or customers. In practice,
these values emphasize the following:

The participation of users (or customers) in the development process is the most
effective way of communicating the users’ needs to the developers. Users and
developers should preferably be co-located in order to take part in the work.

Extreme Programming captures user needs through user stories. Other agile
processes opt for use cases instead.

Users test software on different levels. Frequently delivering software incre-
ments makes it possible for users to evaluate the software under real conditions.

It is ultimately people, not processes and tools, who create working software.

These practices sound promising from a UCD standpoint. However, a common
stumbling block is that agile processes seldom distinguish between customers and
users – all too often, they are regarded as one and the same. For this reason, the agile
approach pays too little attention to the end-users and their roles in the development
process. According to Armitage, 2004: “. . . the agile community rarely mentions
users or user interfaces at all, which means that either they neglect the user experience
or are focusing on projects with less need for sophistication in user experience.”

Customers/users participate in agile development by writing and prioritizing sys-
tem features (known as user stories in XP) and specifying acceptance tests. Users can
express what they need to a certain extent, but on their own, it is difficult for them to

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 233

actually design a new system. User stories or use cases, which are often used to spec-
ify user needs, fail to capture many aspects of user interaction. Hudson, 2003 (pp.2-3),
summarizes a number of problems with the agile approach to user participation:

Too little user participation

Users are not customers

The challenge of selecting the right users to work with (i.e., distinguishing be-
tween typical and atypical users)

Users and tasks in a context

By letting the users write their user stories themselves, there is a risk that the devel-
opers will transfer the responsibility of the system’s usability to the users/customers
(Jokela and Abrahamsson, 2004).

Even if confusion often arises between the different roles of users and customers,
Beck, 2000, p.143 suggests that the best customers are those who will actually use the
system. Therefore, nothing in the agile philosophy prevents the active involvement of
real, typical users.

12.5.3 Simple Design Representations

The values espoused by proponents of the agile approach promote communication
and simplicity. Communication between project team members is therefore essential.
Simplicity emphasizes the need to minimize unnecessary work, e.g. never produce
artefacts for their own sake. Models and other design representations are seen as
valuable means of communication between people in a project, otherwise they are
considered to be pointless activities. This is in accordance with the use of concrete
and simple UCD design artefacts, such as sketches, mock-ups and paper prototypes.
On the other hand, showing abstract notations such as UML diagrams to the user
should be avoided. This does not imply that model-based approaches are invalid,
however. Constantine and Lockwood, 2002, opines that a model-based approach is
necessary for developing usable systems with agile methods. Agile modeling (Ambler,
2002; Highsmith, 2002) is another approach that emphasizes modeling, as suggested
by its name. A risk inherent to modeling approaches is that the project’s focus will
shift towards producing models instead of producing a usable working system; a risk
that agile processes strive to eliminate. One example is the use case mania reported
by Gulliksen et al., 2003b, (Chapter 2 of this volume). Furthermore, models are by
definition a simplification of the real world, and as such carry the risk that important
information such as the context of use will be overlooked.

12.5.4 Evolutionary Systems Development

Evolutionary systems development, i.e., development that is iterative and incremental,
is a fundamental part of agile processes. The primary objective is to manage change
in the development process, which is expressed in the fourth agile value: Responding
to change over following a plan. Responding to change is also an essential element of

234 HUMAN-CENTERED SOFTWARE ENGINEERING

user-centered design. Evolutionary design, along with prototyping, provides support
for the need to respond elegantly to change, which is also in keeping with the agile
values.

It is important that users be involved in the evolutionary process. In agile devel-
opment, the customers/users are the main source for the system’s design; in XP, for
example, customers write user stories. Because working increments of software are
finished and tested on a frequent basis (such as every few days or weeks), providing
feedback on the usability of the end system by both users and developers is facilitated.
In longer iterations (such as every few months), parts of the system are delivered and
deployed at the target environment, providing the opportunity to test under real con-
ditions. The feedback generated from the hands-on experience with the real working
system (or parts thereof) benefits developers and users alike in their understanding of
the system under development, user interaction and context of use.

Many agile processes rely on very short iterations that range from hours to days
or even weeks. However, according to Armitage, 2004 (p.18), there is a difference
between how iterative development is used in agile processes and UCD, respectively:
“. . . while iterative design [in UCD] typically seeks to model, assess, and revise larger
systems at low and high fidelities, XP builds and releases smaller systems strictly at
extremely high fidelities.”

Two reasons for this dissimilarity are the methods of automated testing and refac-
toring. Automated testing is a prerequisite for rapid development in agile processes,
and involves completing tasks such as verifying refactored code. Refactoring is a
method in which a piece of software is changed, preferably without altering the fea-
tures’ external behavior (described previously). The extent to which external behavior
has been affected is measured by running a series of prewritten automatic test cases.
However, doing so only verifies functions that lend themselves to automatic testing
– which is rarely the case for usability measurements. This means that a refactored
piece of program may have changed its appearance or interactive behavior from its ini-
tial design, which complicates maintaining a coherent usability design. Also, due to
its automated nature, this type of testing is not very useful when evaluating usability.
According to Constantine and Lockwood, 2002, automated user-interface testing is
difficult, if not impossible, except at the most elementary level. Unfortunately, testing
user interfaces is labor intensive and time consuming, as compared to automated tests.

Automated functional tests and customer acceptance tests need to be complemented
by explicit usability evaluations, either separate from or integrated with the other tests.
However, such evaluations can also introduce new issues, of which Kane, 2003, iden-
tifies three different scenarios:

1. Conducting usability testing at the end of the development process means there
is a risk of having inadequate time and resources to respond to the usability
issues raised in the testing.

2. Performing usability acceptance tests early on in the process has the potential
side-effect of introducing usability defects in later iterations, since there is no
regression usability capability like there is for feature validation.

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 235

3. Attempting to carry out usability tests as frequently as feature acceptance tests
will drive costs to exorbitant levels.

In sum, one of the strengths of agile practices and their focus on iterative and in-
cremental development is the possibility to test real software in real settings, such as
at the users’ workplaces. Tests can be carried out at different levels, from simple eval-
uations of paper prototypes to full-scale beta testing. However, in order to validate
that the system fulfills the specified usability goals, the evaluation must be performed
methodically, with real end users, and in the proper context. Real usability evaluations
must be completed in addition to the usual software/acceptance tests. The acceptance
test that is used in XP, for example, does not usually fulfill these conditions.

12.5.5 Big Design Up Front Versus Evolutionary Development

Another recurring debate focuses on evolutionary development versus the so-called
heavy or Big Design Up Front (BDUF) development, where all aspects of the sys-
tem’s usability are tackled and resolved in an early and explicit design phase. The
agile design process minimizes the big design up front and relies instead on repeated
refinements to shape the user interface. Armitage (2004, pp.20-21) argues for the agile
evolutionary approach in order to handle change:

“The effort to eliminate changes to requirements has always been a losing bat-
tle [. . .] The more work that is done on a project, the more the project context
changes. Agile methods seek to benefit from the intelligence of experiencing the
real product’s existence, and the sooner the better. Design, conversely, aims to
predict what the entire product will be before it exists. Proponents of heavy up-
front design, such as Alan Cooper, claim that adequate product intelligence should
reside in a specification. This can be true, but in cases where technology is new
or untried, requirements are volatile, the domain unfamiliar, or the complexity
immense, it can be too risky to heavily invest in assumptions without adequate
‘reality checks’.”

However, there are also arguments against the more radical processes based upon
evolutionary design:

“The most critical shortcoming of nearly all techniques that are based on iterative
expansion and refinement in small increments is the absence of any comprehen-
sive overview of the entire architecture. For internal elements of the software, this
shortcoming is not fatal, because the architecture can be refined and restructured
at a later time. [..] User interfaces are a different story. [. . .] Iterative proto-
typing is an acceptable substitute for thorough UI design only when the problems
are not too complicated. We need a more sophisticated model-driven approach.”

(Constantine and Lockwood, 2002)

Although agile processes devote very little time to an explicit design phase and
BDUF, there are nevertheless a few activities that also support the design of a more
holistic view of the system’s usability:

Users participate to various degrees in the development, which makes it possible
for them to point out many aspects of their tasks/work practices, work context,
need for training, etc.

236 HUMAN-CENTERED SOFTWARE ENGINEERING

Iterative development and responding to change. Many aspects that influence a
system under development are complex or tacit, and therefore difficult to specify
in advance. The depth of understanding of the users and their work will grow
during development. Software that is tested or used under realistic conditions
will enhance understanding even further. It is then possible to evaluate and
comprehend a fuller range of aspects affecting usability, and generate feedback
to the next development iteration. A process that is flexible to changes after the
initial specification is advantageous.

However, without explicit and coordinated usability design activities, the agile ap-
proach is generally insufficient. There is a critical risk that many elements that are
not obvious parts of the user interface (context of use, user diversity, health and safety
aspects, social environments, user training) will be overlooked during development.
Although certain aspects are possible to detect and address through iterative and in-
cremental development methods, there is still a need to design and coordinate the
system’s usability.

A similar problem related to agile processes is the lack of methods to determine
and specify usability goals that can direct the iterative development effort. Agile pro-
cesses do not entail an explicit analysis of usability goals, regardless of the users’
(or customers’) participation in the development effort. It is also unrealistic to expect
users to elaborate detailed accounts of their needs, while working more or less on their
own. Usability designers are required to perform an in-depth analysis with users, and
transform the information they collect into usability goals and design criteria. The
techniques employed in agile processes in order to capture the users’ needs, for ex-
ample, user stories in XP (Beck, 2000) and use cases in Crystal (Cockburn, 2002)
are too coarse to define many usability goals. For example, Jokela and Abrahamsson,
2004, reported on a study of a typical XP project, where user stories proved to be
more or less functional requirements without any explicit analysis of the users’ goals.
These techniques failed to capture many significant aspects of the full context of use.
Hudson, 2003, identified a number of these shortcomings as follows:

Would real users do that?

How would they know?

Where does that information or understanding come from?

Is the required behavior consistent?

Does the story fit in with their work flow?

Is it reasonable to expect that the whole story can be completed without inter-
ruption, or is greater flexibility required?

At best, the UI design is developed iteratively by skilled designers and users. At
worst, the design is the fortuitous result of someone simply writing some code then
refactoring it. As a general rule, agile processes leave out dedicated techniques and
activities for usability design. There is rarely a specialized role in the team with the

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 237

skills and responsibility to coordinate the interaction design work. The upshot is that
usability design lies in the hands of the customers/users and the developers. Users are
supposed to know what features they want, prioritize them, then inform the developers
(e.g. by writing user stories). Users can often express what they need, but it is more
challenging for them to devise solutions for how the system should support their tasks,
or attempt to design the user interface itself. An even worse case arises if the real users
are replaced by “customers” who will not be using the software. The real users need
to participate in the design process alongside usability people.

12.5.6 Prototyping

Although there reigns a positive attitude towards prototyping in the agile community,
prototypes are not a fundamental driver of design. Instead, agile processes rely heav-
ily on iterative and incremental methods and focus on delivering working software.
This is not contradictory—iterative development and prototyping work well together.
Finely-incremented software can, of course, be seen as a sort of prototype, especially
because it is allowed to change. However, using prototyping as a means to increase the
understanding of usage and design user interfaces is not a common tradition in agile
practice.

Agile processes value simplicity, which obviously applies to the use of models and
prototypes in the development process. Methods that are sufficiently straightforward
in order to develop and evaluate prototypes are preferred. The important aspect of
prototypes (and other models), as far as agile processes are concerned, is that they are
a medium of communication, and are adequate as soon as they enable developers to
move on with their work (Cockburn, 2002).

Simple prototypes, such as those presented on paper, are a well-established tool
in UCD (Gould et al., 1997) and are also used in some agile methods. Nevertheless,
Constantine and Lockwood, 2002 (p.5), is skeptical. They argue that paper prototypes
are not a complete substitute for usability tests of working software. However, they
maintain that paper prototypes are highly-valuable tools for design and evaluation
throughout the design phase, especially in the early stages. User reactions to paper
prototypes are constructive when evaluating different design solutions (Hudson, 2003;
p. 11, Kane, 2003; Nielsen, 1993; Gould et al., 1997). The greatest benefit of paper
prototypes is their intrinsic simplicity – it is possible to explore and evaluate different
design solutions rapidly, without turning to expensive usability labs. With highly-
complicated models and prototypes, however, time restrictions prevent building more
than only a few, and the design space is thus limited.

12.5.7 Process Customization

Although agile processes value individuals and interactions over processes and tools,
processes still have an important role to play; however, this role must be adaptive and
actively support the work of skilled individuals and communication on all levels. The
idea behind the Agile Manifesto is that there is no single process that fits all purposes;
consequently, there is no unified agile process. Each software development process
must be selected, adapted and customized to suit each project. One agile principle

238 HUMAN-CENTERED SOFTWARE ENGINEERING

indicates that the team should reflect and fine-tune its behavior at regular intervals, if
needed. This attitude works well with the UCD principle of process customization.

In UCD, a tailored, user-centered process is a component that is essential to achiev-
ing usability. Agile developers do not deny the value of a prescribed software develop-
ment process, yet rely to a greater extent on talented developers and good management
in order to make a difference. In practice, this could be misinterpreted as a ‘license to
hack’, leaving out anything that could be regarded as a method or process.

Another issue is the heavy reliance on talented people instead of processes. As
Constantine and Lockwood, 2002, writes: “There are only so many Kent Becks in the
world to lead the team.” This makes the need for premium programmers, managers
and designers a critical issue. Finding all these skillful and experienced individuals is
another challenge altogether.

12.6 DISCUSSION

12.6.1 Is Agile Development User-Centered?

To summarize the arguments presented above, there are a number of qualities inherent
to agile project culture that can provide a solid foundation for a user-centered attitude:
a focus on people, communication, customer collaboration, adaptive processes and
customer/user needs. The question is whether this is enough to label agile development
as user-centered design.

The Agile Manifesto does not cover all the key principles of UCD. Consequently,
the answer is no – agile development processes do not fully qualify as user-centered
design. The main reason is not that agile values work explicitly against UCD; in-
stead, it is because they do not reflect the necessary focus on users and usability.
Furthermore, some of the agile processes’ prioritized areas of interest can prevent a
user-centered attitude: a focus on programming and programmers, automated tests,
very short iterations and fast increments, and executable software as a measure. Other
problem areas are the confusion between users and customers, unsatisfactory tech-
niques for modeling users and tasks (i.e., user stories and use cases), the fear of early
design, as well as insufficient activities for interaction design.

However, there is no contradiction between agile approaches and UCD; in fact,
there are several basic values that the two approaches share, as presented above. It
should therefore be possible to integrate the basic values and principles of agile devel-
opment with UCD. So far, there is no predominant reason why agile processes could
not be customized or adapted to UCD, or vice-versa.

It may also be fully possible to integrate specific agile methods and techniques
with UCD, at least to a certain level. The diversity of the various agile methods and
techniques makes it impossible to make any blanket recommendations, however. For
example, SCRUM, is actually more of a project management model; whereas XP
concerns both project management and detailed techniques for coding. The former
category might be easier to integrate with UCD because it covers the different aspects
of a process. However, each method/technique must be carefully examined in order to
determine if it can be integrated with usability methods, and what the consequences
will be.

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 239

12.6.2 Is User-Centered Design Agile?

The pace of technology change brings with it some new challenges. Although
behavioral science provides us with many tools and theoretical frameworks for
observing behavior, they are generally tuned for use in a fairly stable environment
and not for providing design advice in a rapidly changing one.

(Karat and Karat, 2003, p.539)

An ongoing debate is whether UCD can occasionally become too unwieldy and
resource consuming. As a reaction, lighter methods, such as Discount Usability En-
gineering (Nielsen, 1993), have emerged. Also, usability professionals have been
criticized for focusing on “studies” instead of generating designs and products (Siegel
and Dray, 2003). Hence, UCD can benefit from becoming more agile. For example,
Karat and Karat, 2003, argue for a shift towards design methods that work better in
rapidly-changing technological environments.

12.7 TOWARDS A MODEL FOR BRIDGING AGILE AND UCD

The key point at issue is how to bridge the gap between agile software development
and user-centered design. Several viable strategies can be envisioned, depending on
the aim of the integration. Should the goal be to improve an agile process so it becomes
more user-centered, or should the goal be to define a complete new agile-user-centered
process? A number of related objectives are also conceivable.

Another aspect of integration is the kind of integration to discuss. There are at least
two possible levels. On a concrete level, topics to discuss might include how to inte-
grate specific processes, for example XP and Contextual Design. On a more abstract
level, the focus would shift to how to best integrate the basic values and principles of
agile and UCD respectively. We have chosen the abstract level for this chapter, and
complemented it with selected examples from concrete methods. We believe that any
discussion of how to bridge this gap must start at this abstract level so it may serve as
a foundation for more concrete attempts.

We have outlined an abstract-level model for bridging the gap between agile soft-
ware development and user-centered design. This model is described from three dif-
ferent integration perspectives, all of which are briefly discussed below. The model’s
third approach is the preferred method and is hence discussed in greater detail.

In the first approach, UCD methods are integrated, along with basic values, in an
agile development framework (Figure 12.1). The level of integration can range from
incorporating only a few UCD techniques to coordinating a more complete set of
methods and techniques with agile methods. Regardless of the level of integration,
however, the agile values still constitute the fundamental framework. The underly-
ing principles of agile development permeate the developing organization, and UCD
methods will to some degree become more agile.

An advantage of this approach is that organizations that are familiar with agile
development in general or that use a specific agile process can deliver more usable
systems without abandoning their established methods.

The disadvantage is that the usability work can act like cake-frosting – by adding
it on top of an agile process, we might believe that all usability problems have been

240 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 12.1 UCD methods integrated in agile development

managed. As discussed above, however, user-centered design is more than doing a
little design here and a little testing there. Furthermore, the entire project must be
committed to the importance of usability. Another disadvantage is that some UCD
methods are simply too cumbersome for easy integration in agile development. It
must be possible to adapt the selected methods to an agile environment.

Some examples of how to integrate UCD in an agile development framework are
discussed by Hudson, 2003, and Kane, 2003. Hudson suggests that an XP project
require the following basic UCD techniques as a starting point in order to produce
more usable systems:

Context of use

Personas

Modifying user stories to include the context of use

Conceptual models

Paper prototypes for design and early evaluation

Usability testing

Involving usability specialists

Kane, 2003, discusses how to incorporate discount usability engineering techniques
(Nielsen, 1993) with agile development, as well as with the agile process, SCRUM,
(see for an example Highsmith, 2002). The rationale for attempting to blend them is
that both disciplines share the same underlying values of advocating simple and low-
cost techniques. Kane, 2003, suggests a few representative “discount” techniques that
can improve specific gaps in agile development:

Scenarios for eliciting user feedback implemented in simple paper prototypes

Simplified thinking aloud: an interview technique where users verbalize their
actions while testing a user interface

Heuristic evaluation: usability experts evaluate a user interface (a simple proto-
type or a working system) from a set of usability guidelines

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 241

Card sorting: a technique that explores the users’ conceptual models for the
future system. Features or concepts of the system are written on index cards,
then sorted and grouped by the users

In the second approach of the integration model, agile methods and techniques
as well as basic values are all integrated in a user-centered design framework (Fig-
ure 12.2). This approach is similar to the first one, only the roles of the two disciplines
have been reversed. Although the integration can be carried out to a greater or lesser
degree, user-centered values remain the fundamental framework. Agile methods must
be more or less adapted to suit user-centered processes. Some of these methods, such
as pair programming, can be easily integrated in UCD. Others, such as refactoring,
need a more careful incorporation.

Figure 12.2 Agile methods integrated in UCD

The question is how much more agile does the resulting UCD process become once
the agile methods and techniques have been integrated. If the primary goal is to have
a design process that is both truly user-centered and more light-weight and adaptive, it
can most likely be achieved through this integration. If agility is an equally important
goal, however, another approach may be considered.

Constantine and Lockwood, 2002, describes an attempt at integration that is com-
parable to this approach, in which a simplified variant of a UCD-like process called
usage-centered design and agile methods are outlined. In the resulting process, a min-
imal set of usage-centered activities is used in association with agile methods. How-
ever, usage-centered design places emphasis on modeling, which is not shared by agile
approaches. The integrated process still focuses on models, but uses simplified models
based on index cards. XP’s user stories are used here, but in a different manner. Users’
tasks are modeled through index cards.

12.7.1 A Balanced Integration Between Agile Development and UCD

The problems related to the first two integration approaches suggest the integration
and coordination of a more complete set of user-centered methods and agile methods.
However, this is no easy task because the integration must strike a balance between
the two perspectives in order to maintain their core values.

The disciplines of UCD and agile development do not target precisely the same
issues in systems development. Agile values and practices are more concerned with
project management and organizational issues, as well as making coding more effi-
cient. UCD, on the other hand, has a closer focus on design methods and user involve-

242 HUMAN-CENTERED SOFTWARE ENGINEERING

ment. This distinction is, in fact, advantageous when it comes to integrating UCD and
agile development, and results in a balanced cross-pollination between the two disci-
plines (Figure 12.3). By combining UCD and agile development, both basic values
and methods/techniques can be better adapted to suit and complement one another.

Figure 12.3 Balanced integration: cross-pollination between agile development and UCD

This type of cross-pollination integration can occur at different levels. On a small
scale, values and methods from one perspective can complement or fill gaps in the
other perspective. Usability testing, for example, can complement acceptance tests.
Agile values regarding people and face-to-face communication can be utilized to im-
prove communication between users and developers, as well as between developers
and usability designers.

On a larger scale, the integration can result in new hybrid methods, or even com-
plete hybrid processes, which are both agile and user-centered. Such methods and
processes should be based on a foundation that integrates the basic values of each dis-
cipline, as well as process-specific activities. An example of this sort of integration is
discussed by Armitage, 2004. He describes how he, along with colleagues, developed
a hybrid iterative design method, integrating iterative techniques from both XP and
UCD. Design work occurred both on a detailed low level in short iterations (typical
XP) and on higher levels to facilitate an overall design (typical usability design).

A hybrid process can be created more or less ‘from the ground up’. From the
ground up means that specific processes do not serve as a basic foundation; instead,
existing methods and techniques from the diverse field of agile development and UCD
are selected and integrated into a new process. The resulting process should be con-
sistent with the values and principles of agile development and UCD. Another way is
to start with two specific processes – fusing an existing agile process with a UCD pro-
cess. This approach has both strengths and weaknesses. On the positive side is the fact
that the processes may be both well-tried and familiar to the developers. However, a
process fusion involves a greater degree of coordination than does the cross-pollination
approach. There is also a greater risk of encountering detailed activities that do not fit
with each other or even that are incompatible. In addition, the approach may be more
labor-intensive and complex than simply creating a new process from scratch.

Some concrete suggestions on how to achieve a more balanced integration of agile
development and UCD are listed below.

The prime objective is delivering working and usable software. Usability activ-
ities are important, but too much time devoted to endless user studies or pro-
totyping is not going to benefit the users in the end. There must be a balance

MODEL FOR BRIDGING AGILE DEVELOPMENT AND USER-CENTERED DESIGN 243

between actually releasing products and improving the usability of the system
one step further. A system is not usable unless it is both released and put to use.
Releasing increments of the real system is beneficial because the developers can
learn from actual usage.

There is often a need to prioritize the system’s features in order to deliver on-
schedule. It is the users who should ultimately decide which features they need;
however, the usability designers should assist them with their decision so the
system retains a high degree of usability.

The individuals involved in the development process are important — both de-
velopers and users alike. How the development team and work practices are
organized must be taken into consideration. Ultimately, people are more impor-
tant than processes.

Actively involve users (not just customers) in all phases of development. Users
should be co-located with the developers for at least some parts of the develop-
ment process. At the very least, the developers should visit the users workplace
in order to grasp the details of the users’ context.

Development projects require skilled usability designers. They should be em-
powered to make decisions about matters that affect the system’s usability.

Improve team communication by working in pairs. In addition to pair program-
ming, pairing users with usability designers and/or usability designers with pro-
grammers will contribute to boosting communication.

Usability validation is needed at different stages of the development cycle. Us-
ability tests cannot be carried out at the same frequency as the automatic func-
tional tests, for example. However, if users are ready at hand, simple low-scale
usability tests can be performed frequently. By using lo-fi prototypes, it is pos-
sible to conduct simple usability tests early on and frequently. These basic us-
ability tests must nonetheless be complemented with more thorough usability
acceptance tests in which more complete parts of the system are validated.

Evolutionary development is essential for several reasons. Many aspects that
influence a system under development are complex or tacit, and therefore diffi-
cult to specify in advance. A process must allow for changes in requirements.
However, the agile approach and UCD implement iterative and incremental de-
velopment differently, as described above. Armitage’s (Armitage, 2004) hybrid
method, also described earlier, represents a potentially-successful solution.

The process should include suitable methods to determine and specify usability
goals that can direct the course of the iterative development. Users are generally
unable to specify all the details of their needs on their own; however, techniques
such as user stories and use cases are not sufficient to capture usability require-
ments. For these reasons, usability designers are required to complete a full
analysis together with users and transform the information into usability goals
and design criteria.

244 HUMAN-CENTERED SOFTWARE ENGINEERING

An evolutionary approach must be combined with early and coordinated usabil-
ity design activities, such as user and task analysis, personas, scenarios, con-
ceptual models and paper prototypes, as well as the iterative design method
suggested by Armitage, 2004.

Relatively simple models such as paper prototypes and lo-fi. mock-ups should
be used as part of development. These models can be utilized, for example,
as basic methods to create and test design solutions in rapid iterations. It is
more effective to develop and test simple prototypes than released increments
of the system; as such, some of the increments can be effectively replaced by
prototypes. The added value of paper prototypes is their simplicity – through
them, it is feasible to explore and evaluate different design solutions quickly,
without resorting to expensive usability labs.

12.7.2 Conclusion

Deciding which is the better approach for integrating agile development and UCD
depends on a number of factors, such as the developing and user organizations, the
tradition of processes in use and the personnel’s level of skill. Ultimately, the integra-
tion approach should be selected based on the different prerequisites and the process
should be tailored to the specific project.

This being said, in our opinion, the integration approach with the likeliest chances
for success is balanced integration (3). We opine that the other approaches (1 and 2)
can be risky because they could be implemented by simply adding new features on
top of an existing tradition. In such a case, there is no coordination of the methods
with each other, nor with the basic values and the process. Methods that are plugged
into an existing process may not work with the basic values that already exist or may
require so much adaptation that they become too undermined to be beneficial. The
coordination of methods, people, basic values and process is more likely to succeed
with the cross-pollination approach.

12.7.3 Future Work

Future work should fall into two main areas:
The first is to continue with the present work on a more detailed level by studying

specific agile and UCD processes, i.e., how they relate to each other and to what
degree they support the agile and UCD values.

The second is to study the various integration approaches currently in practice and
evaluate the integration work, as well as the resulting development project. The results
can be used to help design new development processes that bridge agile development
and user-centered design.

13 RIPPLE: AN EVENT DRIVEN

DESIGN REPRESENTATION

FRAMEWORK FOR INTEGRATING

USABILITY AND SOFTWARE

ENGINEERING LIFE CYCLES
Pardha S. Pyla,

Manuel A. Pérez-Quiñones, James D. Arthur, and H. Rex Hartson

Department of Computer Science, Virginia Polytechnic Institute and State University,

660 McBryde Hall, Blacksburg, VA 24061, USA

{ppyla, perez, arthur, hartson}@cs.vt.edu

Abstract

Ripple is a database-centered, event-triggered, shared design representation frame-
work that provides a development infrastructure within which the usability engineer-
ing and software engineering life cycles co-exist in cooperative and complementary
roles. Ripple identifies connections and dependencies within each life cycle and be-
tween the two life cycles and provides a framework to represent artefacts generated
at each stage of the two development life cycles. Our approach to integrating these
two development life cycles does not merge them into a single life cycle; rather it
coordinates each life cycle’s activities, timing, scope, and goals using a shared de-
sign representation and management for the two life cycles. Ripple incorporates tech-

245

in the Development Process, 245–265.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

246 HUMAN-CENTERED SOFTWARE ENGINEERING

niques to accommodate communication about design insights and change. In response
to design changes by either the interface or software side, Ripple sends possibly cas-
cading messages (ripples) to inform developers on both sides, asking them to satisfy
associated constraints (dependencies, relationships) affecting related other parts of the
overall design. We describe the motivation, barriers, rationale, arguments, and im-
plementation plan for the need, specification, and potential contributions of such an
integrated design representation framework. We provide a high level description of
this design representation framework and conclude with the usefulness and potential
shortcomings of this approach.

13.1 INTRODUCTION

13.1.1 Parts and Processes of Interactive Software Systems

Interactive software systems have both functional and user interface parts. Although
the separation of code into two clearly identifiable modules is not always possible, the
two parts exist conceptually and each must be designed on its own terms.

The user-interface part, which often accounts for half or more of the total lines of
code (Myers and Rosson, 1992), begins as an interaction design, which is ultimately
implemented in user interface software. Interaction design requires specialized us-
ability engineering (UE) knowledge, training, and experience in topics such as human
psychology, cognition, visual perception, specialized design guidelines, task analysis,
etc. The ultimate goal of UE is to create systems with measurably high usability, i.e.,
systems that are easy to learn, easy to use, and satisfying to their users. A practical
objective is also to provide interaction design specifications that can be used to build
the interactive component of a system by software engineers. In this chapter we define
the UE role as that of the developer who has responsibility for building such specifica-
tions. (We use the term developer to refer to someone who has the skills to participate
in all stages of a software development life cycle and not just a software coding or
implementation expert).

The functional part of a software system, sometimes called the functional core,
is manifest as the non-user-interface software. The design and development of this
functional core requires specialized software engineering (SE) knowledge, training,
and experience in topics such as algorithms, data structures, software architectures,
calling structures, database management, etc. The goal of SE is to create efficient and
reliable software systems containing the specified functionality, as well as integrating
and implementing the interactive portion of the system. We define the SE role as that
of the developer who has the responsibility for this goal.

To achieve the UE and SE goals for an interactive system, i.e., to create an ef-
ficient and reliable system with required functionality and high usability, effective
development processes are required for both the UE (Figure 13.1) and SE life cycles
(Figure 13.2). The UE development life cycle is an iteration of activities for require-
ment analysis (e.g., needs, task, work flow, user class analysis), interaction design
(e.g., usage scenarios, screen designs), prototype development, and evaluation thereby
producing a user interface interaction design specification. The SE development life
cycle consists primarily of concept definition and requirements engineering, design

RIPPLE FRAMEWORK 247

(preliminary and detailed design), design review, implementation, and integration &
testing, I&T).

Requirements
Analysis

Interaction
Design

Interaction
Prototype

User Interface
Specifications

Software Impl.

Summative
Evaluation

Formative
Evaluation

Formative
Evaluation

Formative
Evaluation

Figure 13.1 Usability engineering life cycle

13.1.2 The Problem: Coordinating the Development of the Two Life Cycles

Given the facts that each of these development life cycles is now reasonably mature
and well established, both have the same high level goal of producing software that
the user wants and needs, and that the two must function together to create a single
system, one might expect well-defined connections for collaboration and communica-
tion between the two development processes. However, the two disciplines are still
considered as separate entities and are applied independently with little coordination
during product development. For example, it is not uncommon to find usability engi-
neers being brought into the development process after the SE implementation stage.
They are asked to test and/or ‘fix’ the usability of an already-implemented system,
and then, of course, many changes proposed by the usability engineers that require
significant modifications must be ignored due to budget and time constraints. Those
few changes that actually do get included require a significant investment in terms of
time and effort because they must be retrofitted.

The lack of coordination between the usability and software engineers often leads to
conflicts, gaps, design and requirements mismatches, miscommunication, “spaghetti”
code due to unanticipated changes, brittle software, and other serious problems during
development. The result is a system falling short in both functionality and usability,

248 HUMAN-CENTERED SOFTWARE ENGINEERING

Requirements
Analysis

Preliminary
Design

Detailed
Design

Design
Specifications

Software Impl.

Review
(PDR)

Review
(CDR)

Integration
& Testing

Summative
Evaluation

Figure 13.2 Software engineering life cycle

and in some cases a completely failed project. In particular, for the projects containing
a significant interaction component, there is a need for:

communication between the UE and SE roles, each of which uses different de-
velopment activities, techniques, and vocabularies;

coordination of independent development activities (usability and software en-
gineers coordinating while mostly working separately on role-specific activi-
ties);

identification and understanding of constraints and dependencies between the
SE and UE processes;

synchronization of dependent development activities (timely readiness and
timeliness of making use of respective work products); and the

provision on each side for anticipating and reacting to change on the other side.

Unfortunately, the significance of UE and the importance of the bulleted items above
are not described or prescribed in most of the software development standards that
exist today. For example, the 31-page IEEE-830 standard (IEEE, 1998) on recom-
mended practices for software requirements specification (SRS) contains only about

RIPPLE FRAMEWORK 249

10 lines relating to user interfaces (Section 5.2.1.2), and states that user interface spec-
ifications should be a part of the SRS. This part of the standard takes an ad hoc stab
at a few user interface issues (e.g. required screen formats, page and window layouts,
screen content, availability of programmable function keys, etc.) which seem arbitrar-
ily chosen from the enormous possibilities not mentioned. More importantly, it says
nothing about the UE life cycle process for creating the interaction design, which is
a main part of the user interface software specification. It is misguided (and worse,
misguiding) to expect the user interface specifications to be available that early in the
requirements process without having followed a proper UE design life cycle. We be-
lieve that this document should have a reference to another standard for user interface
software requirements.

Another source of confusion with the IEEE-830 standard is that the items men-
tioned in this document such as required screen formats, page and window layouts, and
screen content are design specifications for usability engineers (the standard includes
nothing about how to design them for usability). For the UE role, ‘requirements’ are
mostly stated in terms of usability attributes such as learnability, subjective satisfac-
tion, ease of use, etc. Even these usability specifications are subject to calibration in
later stages of the UE development process.

However, we do not disagree with the intent behind the idea that user interface re-
quirement specifications for user interface software are properly a part of the SRS. But
in reality it is not possible to generate requirements specifications for user interface
software without going though an iterative process of interaction design and evalu-
ation, but standards such as the above described IEEE-830 (on SRS) and IEEE/EIA-
12207.1 (on software life cycle processes-life cycle data—Software Productivity Con-
sortium, 1997) do not acknowledge the kind of life cycle process that is needed to
develop a high usability interaction design. Neither do they acknowledge the myriad
relations and dependencies between the activities and work products of the SE life
cycle with that of UE and vice versa.

13.1.3 Objective

The objective of our work has been to produce a design representation infrastructure
that:

integrates the two life cycles under one common framework;

retains the two development processes as separately identifiable processes, each
with its own life cycle structure, development activities, and techniques; and

is built upon a database-centered, event-triggered and constraint-based frame-
work, that provides a common ‘overall design representation and management’
approach, shared by the SE and UE roles and activities.

The common ‘design representation and management’ is the key to the coordination of
interface and functional core development activities, and to the communication among
the UE and SE roles. The constraint-based event triggers are important in recognizing
an event with an associated dependency or constraint and sending a message to remind

250 HUMAN-CENTERED SOFTWARE ENGINEERING

the developers to enforce a constraint. The common ‘design representation’ identifies
and addresses the effects of change and also incorporates techniques to record design
reminders. This allows the two life cycle roles to

design for change by keeping the design flexible,

analyze the implications of change in either of the processes,

take necessary corrective action to address change,

mitigate the changes that could be imposed on each life cycle, and to

record design insights and reminders for future development activities.

13.2 BACKGROUND

13.2.1 Operating hypothesis

A strong hypothesis for our work is to maintain UE and SE as separate, but coordi-
nated, life cycle development processes. It is not our goal to merge either development
process into the other, but to establish a development infrastructure in which both can
coexist and function in parallel. UE and SE processes each require special knowledge
and skills. Given the differences in activities and focus, it is not realistic or desirable
to expect the two roles to ‘work together’. A combined life cycle process is unlikely
to give balanced attention to both parts. Trying to combine, for example, the UE life
cycle into the SE life cycle, as done in (Ferre, 2003), creates a risk (and a high like-
lihood) of deciding conflicts in favor of software development needs and constraints,
and against those of usability. The two roles must however communicate, coordinate,
and synchronize as they work on essentially two different parts of a larger design, parts
that must come together for implementation of a single system.

13.2.2 Similarities Between Life Cycles

At a high level, UE and SE share the same objectives:

seeking to understand the client’s, customer’s, and users’ wants and needs;

translating these needs into system requirements;

designing a system to satisfy these requirements; and

testing to help ensure their realization in the final product.

13.2.3 Differences Between Life Cycles

The objectives of the SE and UE are achieved by the two developer roles using differ-
ent development processes and techniques. At a high level, the two life cycles differ in
the requirements and design phases but converge into one at the implementation stage
(Figure 13.3). This is a natural expectation because ultimately software developers
implement the user interface specifications. At each stage, the two life cycles have

RIPPLE FRAMEWORK 251

many differences in their activities, techniques, timelines, iterativeness, scope, roles,
procedures, and focus. Several of the salient differences are identified next.

Different Levels of Iteration and Evaluation. Developers of interaction
designs often iterate early and frequently with design scenarios, screen sketches, pa-
per prototypes, and low-fidelity, roughly-coded software prototypes before much, if
any, software is committed to the user interface. Often this frequent and early itera-
tion is done on a small scale and scope, and primarily as a means to evaluate a part
of an interaction design in the context of a small number of user tasks. Usability
engineers evaluate interaction designs in a number of ways, including early design
walk-throughs, focus groups, usability inspections, and lab-based usability testing.

Requirements
Analysis

Interaction
Design

Interaction
Prototype

User Interface
Specifications

Summative
Evaluation

Formative
Evaluation

Formative
Evaluation

Formative
Evaluation

Requirements
Analysis

Preliminary
Design

Detailed
Design

Design
Specifications

Software Impl.

Review

Review

Integration
& Testing

Summative
Evaluation

Figure 13.3 Current practices: Process without communication/coordination

The primary goal is to find usability problems or flaws in the interaction design.

Software engineers identify the problem, decompose and represent the problem
in the form of requirements (requirements analysis block in Figure 13.2), transform
the requirements into design specifications (preliminary and detailed design blocks
in Figure 13.2), and then implement those design specifications. In the early days
of software engineering, these activities were often performed using the sequential
waterfall model (Royce, 1970). Later, these basic activities were incorporated into
more iterative processes such as the spiral model (Boehm, 1988) (which has a risk
analysis and an evaluation activity at the end of each stage). Even though the more
recent SE development life cycles are evolving towards the UE style by anticipating
and accommodating changes at each iteration, they still stress iteration on a larger
scale and scope. Moreover, testing and validation, which ensures integration accuracy
and conformance to system specifications, are performed more towards the end of the

252 HUMAN-CENTERED SOFTWARE ENGINEERING

development process and can include software for both the functional core and the
user interface.

Differences in Terminology. Even though certain terms in both life cycles
sound similar they often mean different things. For example:

In UE, ‘testing’ is a part of design, and is diagnostic in nature and is used to find
and fix problems in the interaction design (identified as formative evaluation
in Figure 13.1). In SE ‘testing’ is an independent stage where the objective is
to check the implementation of the system and to validate its conformance to
specifications. Analysis and verification of the design specifications performed
in SE is often called ‘review’ (identified in Figure 13.2). When the specifications
pass the review stage, they become a binding document between the client and
the development team.

A (use case) scenario in SE (in object oriented design paradigm) is used to
“identify a thread of usage for the system to be constructed (and) provide a
description of how the system will be used” (Pressman, 2005b). Whereas in UE,
a design usage scenario is “a narrative or story that describes the activities of one
or more persons, including information about goals, expectations, actions, and
reactions (of persons)” (Rosson and Carroll, 2002a).

The SE group refers to the term ‘develop’ to mean creating software code,
whereas the usability engineers use ‘develop’ to mean iterate, refine, and im-
prove usability to create an interaction design.

Overall, the software engineers concentrate on the system whereas the usability engi-
neers concentrate on users. Such fundamental difference in focus is one more reason
why it is difficult to merge these two life cycles.

Differences in Requirements Representation. Most requirement specifi-
cations documented by software engineers use plain English language and are gener-
ally very detailed. These specifications are written specifically to drive the SE devel-
opment process. On the other hand, usability engineers specify interactive component
issues such as feedback, screen layout, colors, etc. using artefacts like prototypes, de-
sign scenarios, and screen sketches. These artefacts are not detailed enough to derive
software design, instead they require additional refinement and reformulation before
implementation. Therefore, they cannot be used to directly drive the software devel-
opment process.

13.3 CURRENT PRACTICES

In spite of the extensive research and maturity levels achieved in the UE and SE life
cycle areas, there has been a marked deficiency of understanding between the cor-
responding developer roles. In general, the two teams do not understand the other’s
goals and needs and do not have an appreciation for the other’s area of expertise (see
Chapter 15 by Battle for more on a practical view of the relationship between the two

RIPPLE FRAMEWORK 253

sides of this issue). One apparent reason for this situation is the way computer sci-
ence courses are typically offered in colleges: SE courses often omit any references to
user interface development techniques (Douglas et al., 2002), and UE courses do not
discuss the SE implications of usability patterns (Pyla et al., 2004).

Some software life cycles in practice today are documentation intensive and static
in nature. The ponderous weight of voluminous static documentation does not allow
effective mechanisms to predict or counter the effects of change, especially changes
that occur very rapidly in early stages of a life cycle. It can be argued that configu-
ration management processes (Joeris, 1997) that exist in SE are an exception to this.
Configuration management tools provide mechanisms and procedures to track changes
in the work artefacts generated in a software development life cycle. However, these
tools and techniques were mostly developed for SE life cycles; whereas, our work
brings some of these principles to the UE side and between the two sides and also
incorporates change prediction.

On the other side of the spectrum, many project managers use intensively hands-
on-project-management principles wherein a project leader walks around managing
and communicating with the various developers in a direct “hands-on” manner taking
individual responsibility to make sure all the details are addressed. This approach is
based on the potential effectiveness of an informal and low-documentation approach
to software development and the fact that a skilled human manager can keep track of
what needs to be done better than an automated system. However, this approach does
not scale up well as projects get more complex because one person cannot keep track
of all the little details and insights about a very large project as it progresses. While
intensively hands-on project management can work for some SE life cycles, they are
not as suitable for a rapidly evolving and changing life cycle like that of UE, and
are even less likely to be effective in communicating all the details of rapid changes
between the SE and UE teams.

The general principles and tools of project management (Reifer, 2002) are useful
and are well studied in the SE literature. We are aware of their existence and acknowl-
edge their usefulness. However, these tools and principles are mostly about high level
issues such as schedules and timelines. Our contribution is more about improving
the communication, collaboration, and synchronization of the SE and UE life cycles
and thereby increasing the awareness of the specific needs, details and insights for the
overall design process. In the process we are hoping to bring some of the advantages
of SE life cycle project management to the UE side.

13.3.1 Lack of Coordination of Development Activities

When translated into development activities, this lack of understanding between the
two developer roles, combined with an urgency to get their own work done, often leads
to working without collaboration (as shown in Figure 13.3), when they could be more
efficient and effective communicating and coordinating with one another. For exam-
ple, both SE and UE roles include field visits to learn about client, customer, and user
needs, but they often do this without coordination. Software engineers elicit functional
requirements (Pressman, 2005b), and determine the physical properties and opera-
tional environments of the system (Lewis, 1992), etc. Usability engineers visit clients

254 HUMAN-CENTERED SOFTWARE ENGINEERING

and users to determine, often through “ethnographic studies” (Blomberg, 1995), how
users work and what computer-based support they need for that work. They seek task
information, inputs for usage scenarios, and user class definitions. Why not coordi-
nate this early systems analysis effort? Much value can be derived from cooperative
system analysis and requirements gathering. Such joint activities help in team build-
ing, communication, and in each life cycle role recognizing the value, and problems,
of the other, in addition to early agreement on goals and requirements. Instead, each
development group reports its results in documentation not usually seen by people
in the other life cycle. Each uses those results to drive only their part of the system
design and finally merge at the implementation stage (Figure 13.3), where it is much
too late to discover the differences, inconsistencies, and incompatibilities between the
two parts of the overall design. Moreover, this lack of coordinated activities presents
a disjointed appearance of the development team to the client. It is likely to cause
confusion on the clients: “why are we being asked similar questions by two different
groups from the same development team?”

Another significant shortcoming of the practice shown in Figure 13.3 is the fact
that the independently generated user interface specifications on the UE side and func-
tional design specifications on the SE side are submitted to the development team at
implementation stage. However, because these specifications were developed without
coordination and communication, when they are now considered together in detail,
developers typically discover that the two design parts do not fit with one another
because of large differences and incompatibilities.

13.3.2 Lack of Synchronization of Development Schedules

In current practices, the life cycle roles must synchronize the work products eventu-
ally for the implementation and testing phases. However, waiting until one absolutely
must synchronize obviously creates problems. Therefore, it is better to have many syn-
chronization points, earlier and throughout the development life cycle. These timely
synchronization points would allow earlier, more frequent, and less costly ‘calibra-
tion’ to keep both design parts on track for a more harmonious final synchronization
with fewer harmful surprises.

However, as shown in Figure 13.3, the more each team works without communica-
tion and collaboration, the less likely they will be able to schedule their development
activities to arrive simultaneously at common checkpoints.

13.3.3 Lack of Communication Among Different Life Cycle Roles

Although the two life cycle roles can successfully do much of their development inde-
pendently and in parallel, a successful project demands that the two roles communicate
so that each knows generally what the other is doing and how that might affect its own
activities and work products. Each group needs to know how the other group’s design
is progressing, what development activity they are currently performing, what features
are being focused on, what insights and concerns they have for the project, and so on.
Especially during the early requirements and design activities, each group needs to be
‘light on its feet’ and able to respond to events and activities occurring in the counter-

RIPPLE FRAMEWORK 255

part life cycle. However, current practices (Figure 13.3) do not permit that necessary
communication to take place because the two life cycles operate independently; that
is, there is no structured development framework to facilitate communication between
these two life cycles.

One might argue that the communication process need not be more formal than it
is right now and that the usability and software engineering practitioners should be
on the same analysis team. Indeed, in their day-to-day life, the two developers are
technically on the same analysis team. But our real world experience has shown that
this is not enough to foster the necessary communication (especially about features
and changes) because each role still focuses almost completely on their own problems
and their own designs. For example, the SE role in general is not concerned about
UE role’s interaction design and vice versa. So the communication focus is not on
being formal, but on being complete. Based on our real world experience, day-to-
day communication processes have proven to be inadequate and often result in nasty
surprises that are revealed only at the end when serious communication finally does
occur. This is often too late in the overall process.

13.3.4 Lack of Constraint Mapping and Dependency Checks

Because each part of an interactive system must operate with the other, many system
requirements have both SE and UE components. If SE component or feature is first
to be captured, it should trigger (or be mapped to) a reminder that a UE counterpart
is needed, and vice versa. When the two roles gather requirements separately and
without communication, it is easy to capture requirements that are conflicting, incom-
patible or one-sided. Even if there is some ad-hoc form of communication between
the two groups, it is inevitable that some parts of the requirements or design will be
forgotten or will “fall through the cracks.”

As an example, software engineers perform a detailed functional analysis from the
requirements of the system to be built. Usability engineers perform a hierarchical task
analysis, with usage scenarios to guide design for each task, based on their require-
ments. Documentation of these requirements and designs is maintained separately and
not necessarily shared. However, each view of the requirements and design has ele-
ments that reflect counterpart elements in the other view. For example, each task in
the task analysis can imply the need for corresponding functions in the SE specifica-
tions. Similarly, each function in the software design can reflect the need for access to
this functionality through one or more user tasks in the user interface. When tasks are
missing in the user interface or functions are missing in the software, the respective
sets of documentation are inconsistent - a detriment to success of the project.

Constraints, dependencies, and relationships exist not only among activities and
work products that cross over between the two life cycles but also within each of the
life cycles. For example, on the UE side, a key task identified in task analysis should
be considered and matched later for a design scenario and a benchmark task. To our
knowledge, there are no life cycle frameworks that help in addressing such internal
and external constraints, dependencies, and relationships among life cycle activities.

In general, design choices made in one life cycle constrain the design options in
the other. In our consulting experience we often encountered situations where the

256 HUMAN-CENTERED SOFTWARE ENGINEERING

user interfaces to software systems were designed from a functional point of view and
the code was factored to minimize duplication on the backend core. The resulting
systems had user interfaces that did not have proper interaction cues to help the user in
a smooth task transition. Instead, a task oriented approach would have supported users
with screen transitions specific to each task; even though this would have resulted in a
possibly “less efficient” composition for the backend. Another case in our consulting
experience was about integrating a group of individually designed web-based systems
through a single portal. Each of these systems was designed for separate tasks and
functionalities. These systems were integrated on the basis of functionality and not on
the way the tasks would flow in the new system. The users of this new system had to
go through awkward screen transitions when their tasks referenced functions from the
different existing systems.

The intricacies and dependencies between user interface requirements and func-
tional core have begun to appear in the literature. For example, in (Bass and John,
2001b), user interface requirements and styles, such as support for undo, are mapped
to particular software architectures required for the implementation of such features
(see Chapter 6 by Adams, Bass, and John).

Because of the constraints on one another, independent application of the two life
cycles (Figure 13.3) is likely to fail. Hence, an integrated design representation frame-
work that facilitates communication and coordination between these two life cycles is
essential.

13.3.5 Lack of Provision for Change

In the development of interactive systems, each phase and each iteration has a po-
tential for change. In fact, at least the early part of the UE process is intended to
change the design iteratively. This change can manifest itself during the requirements
phase (growing and evolving understanding of the emerging system by developers and
users), design stage (evaluation identifies that the interaction metaphor was not eas-
ily understood by users), etc. Such changes often affect both life cycles because of
the various dependencies that exist between and within the two processes. Therefore,
change can conceptually be visualized as a design perturbation that has a ripple ef-
fect on all stages in which previous work has been done. For example, during the
usability evaluation, the usability engineer may recognize the need for a new task to
be supported by the system. This new task requires updating the previously gener-
ated hierarchical task analysis document to reflect the new addition (along with the
rationale). This change to the HTA generates the need to change the functional de-
composition (by adding new functions to the functional core to support this task on
the user interface) on the SE side. These new functions, in turn, mandate a change
to the design, schedules, and in some cases even the architecture of the entire system.
Thus, one of the most important requirements for system development is to identify
the possible implications and effects of each kind of change and to account for them in
the design accordingly. Another important requirement is to try to mitigate the impact
of change by communicating about changes as early as possible, and by directing that
communication directly to the development activities most affected. The more the two
developer roles work without a common structure (Figure 13.3) the greater the possi-

RIPPLE FRAMEWORK 257

bility that inevitable changes in each part will introduce incompatibilities, revealed as
“surprises” when they finally do communicate.

13.3.6 Lack of Provision for Accommodating Design and Development

Insights

Some dependencies between life cycle parts represent a kind of ‘feed-forward’, giving
insight to later life cycle activities. For example, during the early design stages in the
UE life cycle, the usage scenarios provide insights as to how the layout and design
of the user interface might look like. In other words, for development phases that are
connected to one another (in this case, the initial screen design is dependent on or
connected to the usage scenarios), there is a possibility that the designers can forecast
or derive insights from a particular design activity. Therefore, as and when the devel-
oper encounters such premonitions or potential effects on later stages (on the screen
design in this example), there is a need to document them when the process is still in
the initial stages (usage scenario phase). This way, when the developer reaches the
initial screen design stage, the previously documented insights are readily available to
aid the screen design activity. To our knowledge, none of the current approaches to
the development of systems with interactive components provide this capability.

13.4 RIPPLE: A DESIGN REPRESENTATION FRAMEWORK

Ripple, a work-in-progress research effort, is a design representation framework that
draws concepts from graph theory (relations), analogies from physics (perturbations
and ripples), and of course, content from SE and UE. Ripple provides mechanisms
for the two development roles to communicate, collaborate, and synchronize with one
another, while allowing each life cycle role to function independently. Ripple provides
each developer role with activity awareness, information about changes and insights
from the developer’s own life cycle and from the other development life cycle. It uses
a common design representation, which includes an aggregation of the work artefacts
from each development life cycle, and the semantics of various constraints, depen-
dencies and relationships between and within the two life cycles. Ripple addresses
changes and design perturbations using messages that can be passed along (ripples)
among developer roles. Ripple can be implemented within a database-centered tool
using database triggers to recognize events associated with constraints and dependen-
cies and to respond by sending various types of messages to the appropriate develop-
ers.

In this section we provide a high level description of Ripple, our design represen-
tation framework. Ripple embraces:

the definition of the stages and associated activities and work products from
each life cycle in the integrated development effort;

the definition of dependencies, constraints, relationships;

the triggers and messages for enforcement of constraints and dependencies be-
tween and within the two development life cycles; and

258 HUMAN-CENTERED SOFTWARE ENGINEERING

the implementation of a constraint-based, database-centered tool that works
within this framework to support the concepts in the above bullets.

13.4.1 Constraint-based Database-centered Framework

Ripple is a constraint-based framework that supports the complementary existence of
the SE and UE development roles. A constraint is a “relation that must be maintained”
(Borning and Duisberg, 1986). Such relations are generally enforced by “delegat-
ing to the constraints solver the task to satisfy them automatically” (Kwaiter et al.,
1998). In other words, a constraint-based system is one that automatically updates a
predefined set of relations and dependencies between different entities when a change
occurs in one or more of such entities. Constraint-based systems were traditionally
used to specify declaratively the relative layout of interface objects according to pre-
specified rules (Szekely and Myers, 1988). Some of the other important applications
for constraint-based systems include:

specification of relations (constraints) among the user interface objects that
should be maintained upon resizing a given UI window (Mugridge et al.,
1996; Chok and Marriott, 1995),

visual representation of simulation algorithms (Ege, 1988),

automatic updating of (to make consistent) multiple views representing the same
data when the objects in one of the views is changed (Borning and Duisberg,
1986), and

triggering of events based on changes made to objects in a dataset (Bharat and
Hudson, 1995).

It is this last application of constraint-based systems that we focus on. Conceptu-
ally, this framework represents the various products of the shared design process in a
single database with each of the SE and UE roles having two separate views to this
single dataset. When any life cycle role changes or updates the database through their
corresponding view, the system automatically triggers update messages or design re-
minders to all related or connected phases of the integrated development process. Such
reminders or updates are propagated in our framework using messages.

13.4.2 Constraints and Dependencies Among Related Activities

When a new insight is gained into the system being development, or when something
changes in either of the two life cycles, or when the developer roles needs to com-
municate with one another, the system triggers a message of a particular type to the
related and connected phases of the design representation framework. Also, it should
be noted that, constraints and relationships exist among activities and work products
within each of the life cycles as well as those that cross over between the two life cy-
cles. An example of such a relationship on the UE side is when a key task is identified
in task analysis, that task should be flagged for consideration for a design scenario and
a benchmark task later in the life cycle.

RIPPLE FRAMEWORK 259

13.4.3 Messages and Triggering Agents

Messages are the communication and synchronization agents in Ripple. They convey
the ripple effects of change, design insights, notes, and observations made during a
particular development activity on future design stages. The five types of messages
are discussed below:

For Your Information Message. This type of message informs the software
engineers and usability engineers about the completion of a particular activity or phase
in the life cycle and shows the link where the relevant products of this development
stage are located. The developers in the other life cycle or developers at a different
stage of the project (within the same life cycle) can use this link to view the product
(artefacts). This message is generally used when the type of communication is purely
informational and no corresponding action is necessarily required. For example, when
the usability engineers complete the initial screen layouts or the derivation of the con-
ceptual metaphor for the interaction design, they can send this type of message to the
software engineers to peruse. Another example for this type of a message is when the
usability engineer informs the software engineer about the completion of the screen
design so that the user interface can be implemented by the functional core developers
pending the summative evaluation.

Synchronize Activity Message. This type of message informs about the need
for a joint activity by both the SE and UE roles. In other words, this message ad-
dresses the synchronization need for activities that require a combined presence of
the two developer roles. For example, when the usability engineers plan an evalua-
tion session, they can send this type of message to the software engineers to request
them to be present (to help argue the case for required changes in the user interface
when the SE role sees the users having problems). Similarly, early systems analysis
and ethnographic study activities that require joint presence can be arranged using this
kind of message (to help identify the broader constraints of the project and get the
overall context).

Consistency Check Message. This type of message is used to enforce the con-
sistency of data objects in the database. This message informs the developers of the
need to perform a consistency check on the two development roles’ products. For ex-
ample, when the software and the usability engineers complete the hierarchical task
analysis and the functional decomposition, respectively, there is a need for a consis-
tency check to see that every task in the HTA has a function or set of functions in the
SE specifications, and vice-versa. In the object oriented development paradigm, this
type of message can be initiated after the use case specifications phase in the SE life
cycle or the usage scenario descriptions in the UE life cycle. Since these two stages
of development concentrate on two aspects of the same issue: interaction between the
system and user, there is a need to ensure that they are consistent. Another important
example for the need for consistency is after the usability specifications phase in the
UE life cycle and functional requirements in the SE life cycle. A consistency check
message is required here to initiate an analysis that ensures that these specifications are

260 HUMAN-CENTERED SOFTWARE ENGINEERING

supportable by the functional core (and to discuss alternatives if not supportable or ne-
gotiate for middle ground). This type of a message is used to enforce such mandatory
consistency checks.

Change Request Message. This type of message is used to inform the two de-
veloper roles of changes made in one part of the design and the potential effects of that
change in that and other parts of the design. This is perhaps the most useful message
in the development of interactive systems because of the potential for constant and
frequent changes in the products during the development life cycles. As an example,
this message can be used when a new task is identified by the UE role, and that new
addition should be communicated to other development activities within the UE role
and to the SE role. Upon the receipt of the message by the SE role, efforts can be made
to incorporate the necessary functions in the functional specifications to support the
corresponding task. These updates in the functional specifications, in turn, can trigger
changes in various dependent stages’ products in the integrated life cycle.

Response to a Change Request Message. A response to a change request
message is sent by developers to acknowledge a change request message. Because
the control of decisions to make changes or not ultimately resides with the developer
roles, one possible response to change could be ‘change request considered fully, but
declined’ with an explanation or note, for the record, saying why the request was
declined.

Change-in-response-to-change Message. The need for this kind of message
is to avoid endless loops of messages due to cycles in the graph of relations. Suppose

a relation ‘R’ exists from function A to B (A
R−→ B). For example, if A is task

analysis in UE and B is functional decomposition in SE, then R is a relation meaning
that changes in task analysis (A) require related changes to be considered in functional
decomposition (B). The relation R is expressed as a message that is sent whenever a
change occurs in A, informing the developer role in charge of B to consider changing
B accordingly. These dependency relations are often symmetric (i.e. changes in func-
tional decomposition also require consideration of changes if task analysis), so that a

development process could have both A
R−→ B and B

R−→ A among its dependencies.
This could lead to endless loops; a change in A triggers a change in B, which in turn
triggers a change in A, and so on. To break these cycles we introduce a new message
type called the ‘change-in-response-to-change’ message. A change made in B due to
a change request message from A would return a change-in-response-to-change mes-
sage that would not require further changes in A.

Design Reminders. Design reminders are a type of message used to record de-
sign reminders for future development stages. This type of message could be used
as a reminder to handle something later (such as a feature that has been temporarily
stubbed in the current activity, say, in the prototype stage), where there is no time
presently to consider it. For example, while developing a calendar management sys-
tem the developers may “hard wire” the alarm feature to go off 10 minutes before each

RIPPLE FRAMEWORK 261

appointment, but want a reminder to fix the design later by allowing the user to set the
lead time for the alarm.

Framework generated messages are formalized in terms of the life cycle activities
of both the development processes and the communication/dependency relationships
identified. The database implementation of our framework will automatically generate
the consistency and change messages.

In addition to messages automatically generated by Ripple due to pre-defined con-
straints, messages can be sent by developers for design reminders and ‘for your infor-
mation’ purposes. For example, the developers can specify when they would like to
send a “for your information” message to the other groups. Developers can send a “for
your information” message to the other developer role to let them know work is being
done on a certain part of the design, even though the current state of work is not ready
for sharing yet. On the other hand, if they come across new insights or new additions
to the project, they can send a change request message.

13.4.4 The Ripple Framework

Consider the following schematic (Figure 13.4) in which the two development pro-
cesses are shown, simplified as three stages in the life cycles: 1, 2, and 3 for UE stages
and A, B, and C for SE stages. The messages from each phase are labeled using the
<development stage ID><messagecounter>. The different types of communication or
dependency relations are marked using different line widths and styles.

In the example shown in Figure 13.4, the UE cycle triggers three messages in stage
one: M11, M12, and M13. Similarly, SE cycle triggers MA1 and MA2and so on.

A developer using Ripple to work on a particular life cycle stage, will have a list of
waiting messages from other phases in the SE and UE cycles. These waiting lists are
shown on the far right and left sides of the figure as ‘message queues’ at each phase.
These messages can be reminders from

previous stages or constraints or change effects from other stages. Depending on
the type of message, the developer responds accordingly.

When developers make changes to existing documents in the design repository,
those changes, in turn, trigger ripples of new messages. The history of ripple messages
can support traceability of changes in the overall framework, and includes a rationale
for the change and details of who initiated the change and when.

Ripple uses a ‘score card’ approach to list the status of each phase of the develop-
ment life cycle, showing which stages are bottlenecks and which stages need the most
attention.

13.5 CONTRIBUTIONS

13.5.1 Activity Awareness and Life Cycle Independence

Using Ripple (Figure 13.5), each developer role has significant insights into their own
and the other’s life cycle status, activities, the iteration of activities, the timeline, tech-
niques employed or yet to be employed, the artefacts generated or yet to be generated,
and the mappings between the two life cycles if present. The view of each role shows

262 HUMAN-CENTERED SOFTWARE ENGINEERING

1

2

3

A

B

C

M11

M12

M13

M31

MA1

MA2

MB1

Usability
engineering

process

Software
engineering

process

Message
queue at A:

M11

Message
queue at B:
MA2, M11

Message
queue at C:

M12

Message
queue at 3:

M13

Message
queue at 2:
MA1, MB1

Figure 13.4 Message passing and accumulation in the integrated process framework

Communication,
 Synchronization,

and
 Coordination

Requirements
Analysis

Interaction
Design

Interaction
Prototype

User Interface
Specifications

Summative
Evaluation

Formative
Evaluation

Formative
Evaluation

Formative
Evaluation

Requirements
Analysis

Preliminary
Design

Detailed
Design

Design
Specifications

Software Impl.

Review

Review

Integration
& Testing

Summative
Evaluation

Figure 13.5 Ripple: Framework with communication/coordination

RIPPLE FRAMEWORK 263

only those activities that are relevant to that role. Each role views the shared design
representation through its own filters (Figure 13.6). For example, the software en-
gineers see only the software implications that result from the previously mentioned
iterativeness in UE, but not the techniques used or the procedure followed. Similarly,
if software engineers need iteration to try out different algorithms for functionality, it
would not affect the usability life cycle. Therefore, the process of iteration is shielded
from the other role, only functionality changes are viewable through the UE filter.
Each role can also contribute to its own part of the life cycle; Ripple allows each role
to see a single set of design results, but through its own filter. Ripple emphasizes the
placement of these connections and communication more on product design and less
on development activities. This type of ‘filter’ acts as a layer of insulation, between
the two processes, i.e. Ripple helps isolate the parts of the development processes for
one role that are not a concern for the other role. This insulation needs to be concrete
enough to serve the purposes, but not over specified so as to restrict the software de-
sign that will implement the user interface functionality. This prevents debates and
needless concerns emanating from the use of specialized techniques. Because Ripple
does not merge, but coordinates, the two development processes, life cycle roles from
one process need not know the language, terminology, and techniques of the other,
and therefore can function pseudo-independently.

SE Developer

SE Developer

Shared Design Representation

SE and UE
components

SE Filters

UE Filters

Figure 13.6 Shared design representation

13.5.2 User Interface and Functional Core Communication Layer

Ripple advocates the need for the two life cycle roles to specify a common commu-
nication layer between the user interface and the functional core parts. This layer is

264 HUMAN-CENTERED SOFTWARE ENGINEERING

similar to the specification of the communication between the model and the other
two parts (view and controller) in the ‘model view controller’ (MVC) architecture
(Krasner and Pope, 1988). This communication layer describes the semantics and the
constraints of each life cycle’s parts. For example, the usability engineer can specify
that an undo operation should be supported at a particular part of the user interface, and
that in the event of an undo operation being invoked by the user, a predetermined set of
actions must be performed by the functional core. This type of communication layer
specification will be recorded by our design representation framework, and allows the
software engineers to proceed with the design by choosing a software architecture that
supports the undo operation (Bass and John, 2001b). How the undo operation is shown
on the user interface does not affect the SE activities. This type of early specification
of a common communication layer by the two life cycles minimizes the possibility of
change on the two life cycle activities. However, this common communication layer
specification can be difficult to specify and might change with every iteration. These
changes should be made and take into account the implications that such a change will
have on the already completed activities, and/or the ones planned for the future.

13.5.3 Coordination of Life Cycle Activities

Ripple coordinates schedules and specifies the various activities that have commonal-
ities within the two life cycle processes. For such activities, Ripple indicates where
and when those activities should be performed, who the involved stakeholders are,
and communicates this information to the two groups. For example, if the schedule
says it is time for usability engineers to visit the clients/users for ethnographic analy-
sis, Ripple automatically alerts the software engineers and prompts them to consider
joining the usability team and to coordinate the SE’s user related activities such as
requirements analysis, etc.

13.5.4 Communication Between Development Roles

Another important contribution of Ripple is the facilitation of communication between
the two roles. Communication between the two roles takes place at different levels
during the development life cycle. The three main levels in any development effort
are: requirements analysis, architecture analysis, and design analysis. Each of these
stages results in a set of different artefacts based on the life cycle. Ripple has the
functionality to communicate (using messages) these requirements between the two
life cycles. For example, at the end of UE task analysis the usability group enters
the task specifications into the design representation framework and the SE group can
view these specifications to guide their functional decomposition activities. At the end
of such an activity, the SE group enters their functional specifications into Ripple for
the usability people to cross check. This communication also helps in minimizing the
effects of change and the costs to fix these changes. By communicating the documents
at the end of each stage, the potential for identifying errors or incompatibilities early
in the process increases compared to waiting till the usability specifications stage.
This early detection of mismatches is important because the cost to fix an error in the
requirements that is detected in the requirements stage itself is typically four times

RIPPLE FRAMEWORK 265

less than fixing it in the integration phase and 100 times less than fixing it in the
maintenance stage (Boehm, 1981).

13.5.5 Constraints, Dependencies and Provision for Change

Ripple incorporates automatic mapping features, which will map the SE and UE part
of the overall design based on their dependencies on each other. Recall the example of
the many-to-many mapping between the tasks on the user interface side, the functions
on the functional side, and how Ripple will automatically alert the software group
about the missing function(s) and vice versa. So, when the software engineer tries
to view the latest task addition, a description that clearly specifies what the task does
and what the function should do to make that task possible, is provided. This way the
developers can check the dependencies at regular time intervals to see that all the tasks
have functions and vice versa. It also helps ensure that there are no ‘dangling’ tasks
or functions that turn up as surprises when the two roles finally do get together.

13.6 POTENTIAL DOWNSIDES OF RIPPLE

Ripple has the following downsides due to the various overheads and additional tasks
that arise because of the coordination of the two life cycles:

Increase in the overall software development life cycle;

Additional effort required by the roles in each life cycle for document creation
and entry into the design representation framework;

Additional effort required for coordination of various activities and schedules;

Need for stricter verification process than conventional processes to enforce the
various synchronization checkpoints during the development effort; and

Resource overhead to carry out all the above mentioned drawbacks.

13.7 CURRENT STATUS

Ripple is a work-in-progress. We have currently identified many different dependen-
cies and constraints within the UE life cycle. We will do a similar mapping on the
SE life cycle and then on an integrated framework. We are currently working toward
representing the products of a development effort in a database system. We have yet
to implement the triggers and constraints. We also intend to test the framework using
a project in simulated real life settings. We plan to do this by offering the SE and UE
courses in an academic semester and having half the teams use the current practices
and the other half use our framework.

Acknowledgements

The authors would like to thank the reviewers and editors for their insightful comments
and feedback. This feedback helped us address some of the issues we overlooked in
our early versions of this chapter.

V UCD Knowledge and UI
design Patterns

14 INTEGRATING USER-CENTERED

DESIGN KNOWLEDGE WITH SCENARIOS
Steven R. Haynes, John M. Carroll, Mary Beth Rosson

School of Information Sciences and Technology,

The Pennsylvania State University

Abstract

This chapter explores issues related to integration, management, and use of multi-
disciplinary, user-centered system design knowledge. A pressing need exists for the-
ory, techniques, and tools for management of the knowledge emergent in complex
system development efforts. Challenges to effective system design knowledge man-
agement are many, and span the range of engineering, psychological, and social sci-
ences. We need repositories and other points of exchange for system design knowl-
edge, and conceptual catalysts to support value-added integration of the results from
multi-disciplinary, user-centered design research and practice. This chapter outlines
a research program for design knowledge management based on the use of scenarios
as anchors for design rationale, and on the importance of interaction activity design
as a means to make this knowledge accessible. We describe an example of how the
approach is being applied and report on our on-going projects in the area.

14.1 INTRODUCTION

An increasingly large proportion of society’s intellectual activity is directed at the de-
sign of software-intensive systems. On a typical implementation project, software de-
velopers, domain subject matter experts, and prospective system users combine forces

269

in the Development Process, 269–286.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

270 HUMAN-CENTERED SOFTWARE ENGINEERING

to determine requirements and create system designs to reflect their stance towards
work or other activity in a target domain. In the process they bring to the surface, albeit
too briefly, a wealth of domain, task, user, and technology knowledge, and carefully
consider how this knowledge should be reified in software data structures, algorithms,
objects, interfaces (both system and human-computer), and supporting material such
as documentation, training, and help facilities.

The artefacts that emerge from most system development projects are, however,
an incomplete representation of the knowledge applied to their creation. Much of
the complete design space, the software engineering, human-computer interaction,
domain knowledge, and contextual detail including the full range of use scenarios, de-
sign questions, solution alternatives, and a variety of design constraints, is lost to future
developers, and even to the developers who first generated the knowledge. More ef-
fective capture and management of user-centered system design knowledge and more
fully realizing its value are the focus of this chapter.

The value embedded in design is more than metaphorical, information technolo-
gies now account for 3.3% of gross domestic product in the United States, a doubling
since 1991, with software systems now providing over half this contribution (Man-
del, 2002). What the GDP statistic does not measure however is the value of the
knowledge and experience generated in the design and production of these technolo-
gies, though researchers and practitioners increasingly recognize the importance of
more effectively capturing and exploiting the lessons learned from information tech-
nology research and development activities (Baskerville and Pries-Heje, 1999; Kautz
and Thaysen, 2001). Of particular importance is the especially ephemeral knowledge
emergent when designers and users work in concert to envision how a new technol-
ogy, such as an information system, will support and improve performance of complex
activities in context.

Accumulated principles of design may be especially important in software systems
where the forces that guide and constrain design are not apparent to the end user.
These principles emerge from and are applied in the interaction of designers with
their tools and materials. The causal chain represented in this interaction leads to the
form the artefact finally takes, but is invisible to those who use it. Casaday (Casaday,
1996) argues that to effectively evaluate systems, something must be “offered up”,
made visible in order to evoke meaningful feedback. By making apparent the ratio-
nale underlying the structure and behavior of the tools they employ, system users are
empowered to provide meaningful feedback on the design and to guide the design’s
evolution to better fit their work context.

14.2 WHAT’S IN DESIGN?

Many say we are living in the age of the knowledge economy (Webber, 1993), sug-
gesting that knowledge is a good that can be traded and that value in this economy
is a function of the quantity, quality, and utility of the knowledge that is exchanged
between traders in a market. Implicit in this view is that knowledge is something that
can be identified, measured, and transferred, but this view may be deeply problematic
for a number of reasons. Measuring or even estimating the value of knowledge is no-
toriously difficult (Armour, 2004; Glazer, 1998; Stewart et al., 2000). Different market

INTEGRATING USER-CENTERED DESIGN KNOWLEDGE WITH SCENARIOS 271

goods can have either or both high value in exchange (e.g., diamonds) or high value in
use (e.g., water), with the latter perspective suggesting that the value of knowledge is
highly dependent on how the knowledge is used in context. The implication of these
views is that regardless of which perspective is taken, knowledge that is never ex-
changed or that is never used is essentially valueless. While knowledge management
is acknowledged as an important strategy for firms to capitalize on the intellectual
assets they possess, clear conceptions on the nature of knowledge, and solution strate-
gies for proving IT support for knowledge management all remain relatively under
specified (Hahn and Subramani, 2000).

Attempts to develop a useful definition for the concept knowledge are legion yet
little consensus exists as to its exact formulation. One approach to conceptualizing
knowledge is as part of a hierarchy that also includes data, information, and, some-
times, wisdom (Ackoff, 1989). These four concepts are considered to exist in a pyra-
mid extending with increasing utility and value from data, to information, to knowl-
edge and on through to wisdom. Data are the elemental symbols in the system and
have no meaning on their own, for example, the points on a graph. Information is
data coupled in an attribute-value form that gives meaning to the embedded data, the
points on a graph combined with axes, labels, and a legend. Understanding what the
graph means and how to use it in some effective activity is knowledge. WISDOM ob-
tains when this knowledge is considered in the light of experience with using graphs,
and the successes and failures that resulted from applying their knowledge in different
scenarios and contexts.

The graph-building example suggests that knowledge (and wisdom) result from ad-
ditive functions performed on data and information. As symbols are combined with
others to form attribute-values and then with meaning and experience they become
more useful and presumably more valuable. Moreover, the addition is heterogeneous
in that the knowledge combined emerges from consideration of design criteria from
a range of topic areas including the mathematics underlying the graph form, the cog-
nitive ergonomics underlying how best to represent the graph data, and the domain
context supplying the graph with significance relative to an activity such as planning
or evaluation.

14.2.1 System Design Knowledge is Inscribed

Complex information technologies and especially computer-based software applica-
tions embed significant value over and above that which is apparent in the arte-
fact. Several theoretical positions of technology design and use suggest that de-
signers and developers inscribe knowledge into artefacts, knowledge that extends far
beyond the engineering know-how required to build them (Bowker and Leigh-Star,
1994; Hutchins, 1995a; Latour and Woolgar, 1986). This inscribed knowledge con-
sists of patterns of human activity that can be predicted as stable within a domain,
along with the intent of the designers and design initiators and the constraints im-
posed by a myriad of sources from standards bodies to development tool vendors to
the demeanor of a design team at the time of a particular design decision.

Conceptualizations such as Actor-Network Theory (Akrich, 1992; Latour, 1991)
suggest that technologies and systems are actors in knowledge networks of humans

272 HUMAN-CENTERED SOFTWARE ENGINEERING

and non-humans and that non-humans are inscribed by their designers with motives,
aspirations, and prejudices, among other attributes, that represent an intention or pre-
diction related to how they will be used in context. Through these inscriptions design-
ers essentially delegate responsibility for ensuring that scenarios of use are flexibly
supported in different contexts. In Latour’s view, these inscriptions for action can be
weaker or stronger depending on the domain and the desired balance of explicit pro-
tocol support versus flexible interpretation by individual users (human actors). For
example, the strength of the inscriptions in a system to operate a weapons system are
likely to be greater than those for one supporting computer-mediated communication
because of the need for accuracy and safety in the former versus flexible support for
human social processes in the latter.

In a similar vein, distributed cognition (DCog) is a perspective on work practice
that attempts to account for the interplay between the cognitive capacities of individ-
ual actors, their tools and other artefacts, and the active environment in which tools
are used (Hutchins, 1995a; Hutchins, 1995b). Distributed cognition considers the pri-
mary level of analysis to be systems that are made up of people, technology, and these
other artefacts. The DCog perspective posits that the “representational states” of dif-
ferent nodes in the system, and the inter-nodal communicative activities (dialogue,
gesture, digital and analog information transfer) that cause these states to be trans-
formed, are the nexus of knowledge and intelligent information processing (Rogers
and Ellis, 1994).

Hutchins (Hutchins, 1995b) provides perhaps the most complete explication of the
role of inscribed knowledge. In his study of the aircraft landing task, he describes how
determination of appropriate landing speeds for different aircraft configurations is pre-
computed and represented in the aircraft cockpit as a book of tables. Pilots combine
the knowledge inscribed in these tables along with readings from appropriate gauges,
for example, speed and landing weight, in a simple look-up task which replaces what
would otherwise be time-consuming, cognitively demanding, and knowledge intensive
sequence of steps. The landing speed tables combine knowledge of aircraft structure
and behavior, axioms of aeronautics, and data on the effects of environmental factors
(e.g., wind) into an accessible and easy to use knowledge base. Tools may therefore
be conceived of as embodying a theory of how different factors mediate the activities
performed as humans interact with them.

Information technologies have been described as representing “frozen organiza-
tional discourse” (Bowker and Leigh-Star, 1994), a stance towards activity in some
domain, which embodies current thinking about the best way to work in the domain.
Of course not all of this knowledge is explicit in these inscriptions and software-based
information systems, with their lack of physical structure and other cues to help un-
derstand their design, are even more difficult to comprehend prima facie with respect
to the design space from which they emerged. This embedded knowledge receives
little attention from its owners. Among the reasons for this are its embeddedness and
its invisibility, and, importantly, a relative lack of success stories from use that can be
evoked to highlight the benefits derived from extracting and exploiting this knowledge.

INTEGRATING USER-CENTERED DESIGN KNOWLEDGE WITH SCENARIOS 273

14.2.2 System Design Knowledge is Invisible

A major barrier to understanding and effective use of software-intensive systems is
the invisibility of the underlying structure of these systems relative to the functions
that they perform. Users and other stakeholders of a system do not necessarily un-
derstand the process by which these abstract systems are derived from the concrete
use contexts they do understand and that make up the domain in which the system is
intended for use. Scenarios of use (Carroll, 1995; Carroll, 2000; Carroll and Rosson,
1992) act as a starting point for system design, but as analysis, design, and construc-
tion progresses the design that evolves to realize these requirements is molded and
distorted by a diverse array of factors including the material constraints of hardware
and software performance, the psychological constraints of cognition, organizational
constraints of time and other resources, and social constraints imposed by standards
bodies and accepted professional best practice. This disjunction, Norman (Norman
and Draper, 1986) has called it the “gulf of understanding”, that exists between the
system’s (really, the designer’s) understanding of the use context and the understand-
ing by users and other stakeholders of how the system fits this context is one of the
key challenges to design knowledge management.

Clancey (Clancey, 1983) developed a conceptual framework to help understand
the nature of the knowledge inscribed into systems, in particular into knowledge-
based systems. This framework consist of three categories of knowledge: strategic,
structural, and support. Strategic knowledge consists of the methods and high-level
problem-solving approaches underlying the behavioral aspects of the system. This be-
havioral dimension consists of high-level flows, data transformations, aspects, meth-
ods, and algorithms that represent the heuristic knowledge embedded in software engi-
neering designs. A good user-interface design exposes some of this strategy in the way
that it represents navigation through a task, for example, but the abstraction and indi-
rection inherent in even the best designs means that though exposed, domain strategies
are often opaque to system users.

Structural knowledge refers to information embedded in the static design underly-
ing the foundation of a system. In Clancey’s examples these are the rule hierarchies
and orderings in a production system but conceptually the idea applies just as well to
the design of an object-oriented analysis model, or to the entity-relationship structure
of a database schema. Extracting the rationale implicit in a system’s structural de-
sign is crucial to understanding the mental model underlying a design (Wenger, 1987).
Structural knowledge acts as the bridge between the abstract, generic problem solving
and representational entities identified at the strategic level, and the domain-specific
engineering hypotheses, objectives, and rules in a particular application.

This engineering knowledge inscribed into system structure may be especially im-
portant for supporting conceptual understanding of a system. In an empirical study
of structural knowledge, for example, Lamberti and Wallace (Lamberti and Wallace,
1990) examined the relationship between the level of task uncertainty, the proficiency
of the user (expert or novice), and the nature of the explanation content provided to
system users. They found that access to this structural knowledge supported both ex-
perts and novices as they attempted to form mental linkages and relationships between
the elements of a given problem domain as represented in the system design.

274 HUMAN-CENTERED SOFTWARE ENGINEERING

By support knowledge, Clancey was referring to the low-level, detailed information
that was used to relate a design element to an underlying causal process in the world,
the facts that justify the existence of the given design element. Support knowledge is
used to connect strategic and structural properties in a design to observed phenomena
and empirically supported generalizations in the problem domain. Support knowledge
is further sub-divided into four types of justifications: identification, causal mecha-
nism, world fact, and domain fact. Identification knowledge is used to classify an
entity or event, to show that an entity or event is an instance of a given concept or
has properties that relate it to a concept. Causal mechanism knowledge refers to facts
and arguments that may be linked together to demonstrate the mechanistic structure
of a domain or sub-domain. These causal links may be well understood or may be
only suggested by empirical evidence in the domain. World fact knowledge is char-
acterized as “common sense” knowledge about the world. Included in this category
is what Clancey calls “social patterns of behavior”. His example describes an army
recruit, whose living conditions in close proximity to others puts him at increased risk
of a given disease (the example domain is diagnosis of infectious disease). The final
category of knowledge used in the justification of a rule is domain facts, which are
well-established heuristics that help with problem solving in a particular domain, for
example, to have been administered adequately, a drug must be detectable in the body
at a certain concentration.

Clancey described the missing link between the high-level strategies and the
domain-specific facts as focusing principles. These focusing principles, which he
felt could take the form of an argument or a justification, were thought to be crucial
in attempting to teach novices in a domain since they connected ambiguous, high-
level, problem-solving strategies with the facts of a single system use scenario. He
argued that an important aid to making these links was the causal chain behind the
phenomenon to be explained, how it describes the knowledge roles that particular
pieces of information play in system comprehension, and how certain these pieces of
information are combined to help make sense of system entity or an event. The exis-
tence of underlying causal forces, and our ability to connect explanatory facts to these
forces, are key components in the process of understanding the knowledge embedded
in a design of interest.

14.2.3 Evoking and Integrating with Design Rationale

A number of challenges attenuate efforts to more effectively manage design knowl-
edge from systems development projects. Software systems are inherently complex,
and the source or rationale for this complexity is largely invisible to all but those with
intimate knowledge of how different factors interacted to realize a design (Brooks,
1987). Devanbu and colleagues (Devanbu et al., 1991) argue that especially on larger
projects, the interaction between complexity and invisibility combined with inevitable
personnel turnover eventually results in a critical dissipation of the knowledge a devel-
opment team may initially possess. As a system evolves through enhancements and
repairs, the knowledge underlying the original architectural model further dissipates
from its original, assumedly coherent and known design basis. In the use context, the
problem’s scope is multiplied as project stakeholders such as users, managers, and

INTEGRATING USER-CENTERED DESIGN KNOWLEDGE WITH SCENARIOS 275

system support staff attempt, in the system maintenance and use contexts, to under-
stand how the design relates to the task domain. Because the system architectural
model is essentially invisible, efforts to establish or re-establish the level of compre-
hension once possessed by the original architects are faced with potentially intractable
problems of knowledge reconstruction (Brooks, 1987).

Much of the knowledge surfaced in the software-intensive systems design process,
for example, in design meetings, in conversation and e-mail, and by designers and
developers working independently, is not captured for use and later reuse. Informa-
tion captured about the decisions made in systems design typically consists of only
the course-of-action decided, not the rich knowledge content emerging from the indi-
vidual and group deliberations that led to the decision. This body of information has
been described as a design space (MacLean et al., 1996) and the tools and techniques
developed to help capture, represent, and use this information are part of an approach
to design known as design rationale (Moran and Carroll, 1996). A design space repre-
sents an organization’s stance or posture towards some problem domain. As a design
team ‘moves’ through a design space they surface a wealth of knowledge to resolve
emerging design questions. Capturing the full breadth and depth of a design space
and effectively using and reusing this knowledge promises a number of benefits, but
realizing these benefits poses significant scientific and engineering challenges.

Design rationales represent a base of knowledge about the domain and tasks for
which the artefact is intended, its purpose; the physical, natural, psychological, or-
ganizational, social, and other constraints that were seen by the design team as most
important to design option selection; and about the pragmatic, bounded-rationality of
the design process itself. Though design rationale formalisms and tools often em-
bed prescriptive or normative guidelines for how the design process should proceed,
their importance to the knowledge management goal is that they show what did hap-
pen, regardless of whether decisions were appropriate or correct. Later reflection on a
complete design space may allow for these evaluations and judgments, but their power
in the knowledge management context is that they are available to be reflected upon.

Designs always include structure, the assemblies of sub-systems, components,
and raw materials that interact to deliver behaviors or capabilities (Jeffries et al.,
1981; Leveson, 2000). The precise form of the behaviors and structure that emerge
from a design effort are a result of decisions, and other cognitive and social processes,
carried out in the course of trying to provide the highest quality solution, or most sat-
isficing resolution (Arias et al., 2000) that meets the intention underlying the design
effort. Design moves necessarily involve retrieving, generating, and organizing data
and information into operationalized problem solving knowledge. A significant pro-
portion of the effort invested in a systems design effort is dedicated to co-construction
of this design knowledge as team members and project stakeholders seek to maintain
a common understanding of the evolving design (Curtis et al., 1988).

Fischer (Fischer, 1999) has argued that design rationale and related approaches can
support closer integration of system producers and consumers and, ideally, evolve con-
sumers (users and other stakeholders) into system producers. This closer integration
of producers and consumers may also result in more complete rationale capture, to
include the consumers’ domain-oriented input to the design deliberations. Fischer’s

276 HUMAN-CENTERED SOFTWARE ENGINEERING

work incorporates a social model where producers and consumers of the IS product
work together closely towards system evolution, creating in essence a representation
of the principles underlying a community of practice. The critical knowledge needed
to understand a system relative to its application domain is often concentrated in the
minds of one or two exceptional system architects (Curtis et al., 1988), and more gen-
eral studies of organizational competence suggest a significant trend towards the con-
trol by expert knowledge workers of the critical information assets of the organizations
that they serve (Albert and Bradley, 1997). To surface and leverage these knowledge
assets more broadly across the span of stakeholders, including system users, organi-
zations require well-defined approaches and facilitating tools to capture both system
knowledge and knowledge of the domains of user activity supported by these tech-
nologies.

14.3 AN INTEGRATIVE EXAMPLE

An example helps to illustrate the range of different knowledge brought to bear in
development of a complex system and how it is inscribed in the process of design.
Since spring of 2002, the first author has been working with the United States Ma-
rine Corps (USMC) on the analysis, design, and development of a cognitive aid to
support decision making in the domain of defensive anti-terrorism (AT) resource al-
location (Haynes et al., 2005). The basic requirement is to provide Marine and Navy
officers and civilian engineers with a decision model and software system for allo-
cating constrained funds to the most important and deserving AT mitigation projects.
The projects span the range of those defensive building construction and augmentation
mitigations that can help to lessen the effects of car and truck bomb and other attacks
on service facilities. Mitigations can include window coatings and other glazing en-
hancements, various wall hardening techniques, vehicle stand-off barriers, fences, and
so on. The basic decision model includes three central activities: prioritizing facilities,
for example, a headquarters building versus an airfield versus base family housing;
determination of mitigation project utility, deriving a value to represent the protective
benefit of different mitigations relative to their cost; and identifying the set of projects
to be selected based priority and utility subject to the AT budget constraint.

The project has involved marshaling an array of knowledge and incorporating it into
the system design. First and foremost is ensuring the usability of the system realized
to support the requirement. From early in the project is became clear that one of the
key trade-offs would be resolving the tension between providing the most accurate
results from the allocation process, and building a system for a user population with
diverse backgrounds and different training and ease-of-use requirements. Resource
allocation models become more complex and laborious to use as they are engineered
to be more accurate. Parameter data requirements especially become more demanding,
which necessitates both more data entry by the user and more integration with source
systems to provide this information. The latter issue introduces its own set of design
trade-offs and knowledge requirements. More data entry decreases usability and user
satisfaction, especially when the data exists in other systems, but building interfaces
between systems is costly and time consuming, increases complexity, and weakens
system reliability.

INTEGRATING USER-CENTERED DESIGN KNOWLEDGE WITH SCENARIOS 277

Design and development of the system has involved interacting with about 100
different people – including Marine commanders, anti-terrorism officers, military po-
lice, Navy civil engineers, civilian engineers and facilities planners, among others –
to determine requirements and then to assess increasingly more complete designs and
prototypes. At each of these reviews additional knowledge was collected, interpreted,
translated into design (including design of training and help facilities), and then in-
scribed into the system. We regularly give demonstrations of the system and we are
using it as a test-bed apparatus for research into the usability and performance sup-
port requirements for cognitive aids to AT decision making. In these contexts we are
regularly asked why a particular feature exists, why it has been implemented a certain
way, and why it has the particular user interface characteristics that it does. At this
point, two years into the project, these questions are often difficult to answer with real
fidelity, even by core members of the design team.

The system has been implemented as a set of discrete web services each of which
implements either a component of the decision model, a significant user interface func-
tion such as sensitivity analysis, or a necessary administrative feature. The rationale
behind using the web services approach for development included our desire to en-
sure that each major unit of functionality could be reused or re-purposed in related
domains. For example, prioritization of alternatives is an element of many decision
problems and we hope to use the web service developed for AT in other projects. To
effectively reuse or re-purpose the service requires knowledge of how it works and
why it works the way that it does. Future users of the service may also want to know
which other approaches to prioritization we considered, and why we chose the one
(actually, two) that we did. As it stands now this knowledge exists but is distributed in
elements of the system itself, in the help and training system content, in design doc-
umentation, in notes from field research, in digital recordings of design reviews and
cognitive walkthroughs, and in the minds of different members of the design team.
This situation is not uncharacteristic of the complex systems design process but is
problematic nonetheless and is emblematic of the issues addressed throughout this
chapter and is the target of the research agenda discussed in the section that follows.

14.4 A DESIGN KNOWLEDGE RESEARCH AGENDA

This discussion so far suggests that system design knowledge is characterized by its
multi-disciplinary nature, by its embeddedness, and by its invisibility in the artefacts
where it is inscribed. Design rationale is one potential approach to evoking and inte-
grating this knowledge, but significant challenges confront both researchers and prac-
titioners who attempt to apply its methods. Our work in this area is focused on devel-
oping software tools and content to support large-scale studies of design knowledge
ecologies. We are particularly interested in identifying and understanding the causal
and mediating factors that lead from a design’s inception to the artefact in its context
of use, its design rationale. The number, range, and intractability of many of these
factors presents a substantial challenge to researchers in systems design. Our belief is
that the development of a system design knowledge management infrastructure, and
evolving communities of practice around its use, will lead to and facilitate more inte-
grative studies to inform and extend current theory.

278 HUMAN-CENTERED SOFTWARE ENGINEERING

14.4.1 Nurturing Design Knowledge Communities

Knowledge only exists, can only be measured, and only has value to the extent that
it is used (Glazer, 1998). Knowledge has been described as existing only in the in-
teraction between individuals and social systems and evolving only as it is translated
between its tacit and explicit forms (Nonaka, 1994). Providing support for collabo-
rative communities of interest and practice is a critical dimension of next generation
design knowledge management systems and design knowledge management research
(Poltrock et al., 2003). A necessary step in development of the multi-disciplinary de-
sign knowledge management field is fostering recognition and appreciation for the
value of design knowledge. We need communities of interested, practicing design
knowledge management researchers to make progress on the difficult problems inher-
ent in multi-disciplinary, socio-technical design.

Glazer (Glazer, 1998) argues that unlike many commodities, knowledge creation is
a “self-regenerative” process. New knowledge creates demand and opportunities for
added value in use as well as for the creation of additional new knowledge. Critical
mass has been elsewhere identified as one of the key factors in the use of collaborative
technologies within communities of interest and practice (Grudin, 1988). One of the
goals of the design repository project discussed in the next section is to lay the founda-
tion for development of a critical mass of systems design knowledge that can achieve
self-sustaining growth through use.

Promoting recognition and appreciation of design knowledge value is a prerequi-
site to growth of interested communities. Making design knowledge readily amenable
to transportation, translation, and reuse requires a motivated investment of time, en-
ergy, and other resources (von Hippel, 1998). Nowhere may this be more true than in
the knowledge maintenance and evolution strategies employed to ensure that captured
design is cultivated for less effortful and more productive use. Though maintenance
remains a critical problem in software knowledge management (Selfridge et al., 1992),
field research indicates that even somewhat out-of-date design content can still be use-
ful to developers, especially for higher level, more abstract types of design information
that are more likely to generalize across projects and domains (Lethbridge et al., 2003).

Participatory design suggests design teams, prospective users, and other stakehold-
ers can actively engage in co-development of artefacts for use. Practical constraints,
however, often impede attempts to operationalize this concept. End users almost al-
ways have more work than will allow them to become system designers (Carroll and
Rosson, 1987), and they typically do not have the expertise to make their participa-
tion in design efficient (Clancey, 1983). What is needed are tools to support informed
participation (Arias et al., 2000) that is at once effective and efficient. Providing in-
centives is another means to motivate potential contributors to codify and submit their
knowledge to a repository, but this approach has proven problematic when, for exam-
ple, experts contribute volume but the value of their contributions is minimal in terms
of its utility in reuse (Hahn and Subramani, 2000).

One perspective on the transferability of knowledge from one individual or com-
munity of practice to another is that some knowledge is inherently expensive, and
“sticky” to transfer (von Hippel, 1998). Central to the challenge of creating trans-
portable, reusable knowledge is overcoming this local embeddedness through reflec-

INTEGRATING USER-CENTERED DESIGN KNOWLEDGE WITH SCENARIOS 279

tion on what is general and what is particular to a situation and context. It may be
however that this local reflection is best evoked at the point of use rather than as a
process of analysis and reification practiced during knowledge capture. Knowledge
may in fact be more useful with all of its local details accessible to potential re-users.
One challenge is to provide access to a critical mass of design knowledge where a
designer is likely to find useful components within an environment that facilitates ease
of navigation, retrieval, and comprehension.

14.4.2 Building Design Knowledge Repositories

Information systems design and development research still lacks a critical mass of
design knowledge accessible and useable as a large-scale, distributed case base for in-
teractive software system designs. The idea of software repositories is not at all new.
However, to-date no large-scale software design repository has been created and eval-
uated longitudinally in multiple contexts using a theory-driven, principled approach to
the technical, psychological, and social phenomena that appear to bear most heavily as
factors in the success or failure of such projects. The complexity of most significant
design efforts involving interactive software systems is such that no one person can
be expected to maintain a comprehensive knowledge base representative of what is in
the design (Curtis et al., 1988). Technology support is therefore needed to provide for
distributed, collaborative design2 knowledge capture and use.

Central to the research agenda we propose is developing, populating, and studying
the use of a design repository, a case base, for system design knowledge management.
The objective driving this facet of the research agenda is creation of a system design
resource equivalent in utility to popular source code repositories such as SourceForge
and FreshMeat. These repositories are enjoying enormous success. SourceForge for
example currently hosts almost 80,000 projects and has over 800,000 registered users,
yet to-date no equivalent base of system designs exists. Among the foci of the pro-
posed project are three parallel efforts. The first is to construct a set of web appli-
cations and a supporting data store derived from our own existing designs and code
and to provide interactive services identified as essential to design knowledge capture,
management, and use. The second is analysis and capture of the design space for a set
of identified seed projects including some of our ongoing projects in community com-
puting, anti-terrorism resource allocation, and, self-referentially, the design repository
itself. These first two efforts enable the third, which is studying design knowledge
use and usability with different representational schemata and access tools. We hope
to achieve a state of productive use in which work and results from each of the three
parallel efforts informs work on the other two in an iterative cycle of design-build-
evaluate-report.

Knowledge capture is among the most significant challenges confronting this task.
A central problem with design knowledge capture interventions is preserving the fluid-
ity of the design process while at the same time capturing design-relevant deliberations
wherever or whenever they occur. Design knowledge capture strategies should enable
capturing all the valuable knowledge that is reified, however briefly, in design deliber-
ations, whenever and wherever such discussions occur. This requires development of
usable, pervasive capture strategies and tools. Design capture technologies should be

280 HUMAN-CENTERED SOFTWARE ENGINEERING

easy to use with minimal training, they should be mobile, relatively inexpensive, and
integrated with existing tools and representations. Crucially, they should provide user
services that justify and provide incentives for use.

Tools and techniques for capturing information generated during the different
phases of the systems development lifecycle must integrate as unobtrusively as possi-
ble into the day-to-day activities of the team responsible for the system (Moran and
Carroll, 1996). Increasingly, this integration is seen as best accomplished through in-
tegration with other software tools used routinely by design team members and com-
ponents of the design capture core should themselves be tightly integrated and easy to
learn. Challenges associated with this integration are becoming more acute as system
development methods move away from the more formal and towards the ‘agile’.

Tacit knowledge (Polanyi, 1958) has long been recognized as the gadfly of knowl-
edge acquisition, management, and reuse. Early on in artificial intelligence research it
emerged that even with the most careful methods applied to the knowledge elicitation
task, experts in complex domains experienced considerable difficulty articulating the
full range of skilled thought that was brought to bear for problem solving (Clancey,
1983). Knowledge management has been described as consisting of two essential
challenges: resolving and balancing questions related to its location, in databases and
documents, or in people’s heads and their social networks; and deciding upon an ap-
propriate degree of structure and formality, the extent to which the knowledge is not
only explicit but codified for representation, storage, and retrieval (Hahn and Sub-
ramani, 2000). These are among the target criteria considered central to our own
repository development efforts.

The approach we are taking to designing the repository is one of service-based
computing, in particular, the use of discrete web services to implement the essential
services required for a design knowledge capture and management repository (critical
aspects of design interaction are discussed in the next section). The service approach
overcomes some of the problems that have plagued researchers building software tools
for research infrastructure including development continuity and succession planning
as student developers move through a graduate program and especially the inevitable
research focus shifts that occur and which can make monolithic applications obsolete
overnight. By decomposing the design repository solution space into discrete web
services, we hope to build units of functionality that are fundamental to the design
task but that can be recomposed into aggregate applications to conform to higher-level
task and functional models in response to empirical findings from studying repository
use.

A web service-based architecture supports access to design services by prescribing
a browser as the only requirement for global access. This degree of accessibility is
essential to facilitate the kind of multi-disciplinary usage that we hope to promote.
An illustration of the architecture we are developing appears in the UML component
diagram below and its different elements are described in the sections that follow.

The scenarios of use component captures the intent underlying a design effort. De-
sign intent is implicitly defined as developing a design specification and corresponding
artefacts so that scenarios of use are supported in a manner that minimizes the negative
tension expressed in the design rationale subject to domain and contextual constraints.

INTEGRATING USER-CENTERED DESIGN KNOWLEDGE WITH SCENARIOS 281

Figure 14.1 A design repository component architecture

This is a user and use-centric perspective, in which design proceeds in response to a set
of human requirements expressed as concrete, envisioned examples of the technology
in action. This component will provide services to capture and maintain scenarios, as
well as to publish them for use by both repository users and other repository services.

The design rationale component is the engine at the core of the repository archi-
tecture. It uses information from the scenarios component as the grist for design de-
liberations. This component also uses the evaluation component in cases of design
reuse, re-design, and design evolution to help assess prior deliberations with respect
to performance and perceptions of the resulting artefacts in scenarios of use. Design
rationale is a complex component providing a range of services for capturing design
moves relative to stated requirements (scenarios) as well as publishing information to
serve as the input to design specifications and explanations of the resulting artefacts.

The design specifications component is an integration component that manages the
flow of design decisions from the rationale component to and from standard system
modeling environments such as Rationale Rose and other computer-aided software
engineering (CASE) tools. A key objective underlying the architecture is to make
the knowledge embedded in scenarios and design rationale available from within both
standard modeling environments and through application performance and learning
support tools such as online documentation, help, and explanation facilities.

The artefact component, like the design specifications component provides a bridge
from the knowledge contained in other repository components and the targets of this
knowledge, the built technology.

282 HUMAN-CENTERED SOFTWARE ENGINEERING

The explanation component exists as an interpreter of design rationale and scenario
information. This component is responsible for providing views into these bases of
knowledge that are tractable for users inquiring from different perspectives.

Finally, the evaluation component is responsible for managing and integrating in-
formation generated from studies of repository-based systems back into the knowledge
base of scenarios and design rationale. This is a unique dimension of our work sup-
porting both design knowledge evolution and acting as a knowledge base in its own
right by supporting grounded reflection on the design rationale and the way in which
designers responded to the design intent as expressed in identified scenarios.

Martin and Sommerville (Martin and Somerville, 2004) describe their efforts to de-
velop a repository of enthnographically-informed patterns of cooperative interaction.
Their work draws heavily from socio-technical perspectives on systems development
and from Christopher Alexander’s design patterns approach (Alexander et al., 1977),
which they are using to inform development of a web-annotatable pattern library for
researchers and practitioners. This work is very similar to ours in its intent, but their
pattern-focused approach does not include explicit linking between designed artefacts
and the scenarios of use (requirements) that initiate the design intent. Nor does it
focus on the rationale produced from translating requirements into artefact specifica-
tions, and links between the rationale and the specifications and artefacts themselves.
We believe these are among the more important aspects of design knowledge man-
agement and use and they weigh heavily both in the schemas we are developing to
represent design knowledge and the interactions we envision for users of the reposi-
tory.

14.4.3 Designing Design Interactions

Relatively little research has examined the usability and other factors that impact the
efficacy of different software engineering environments and representations (Agarwal
et al., 1999). This is a critical gap in the extant research and one directly targeted by
this aspect of the design knowledge management research program we are undertak-
ing. In the late 1980s and early 1990s significant efforts were undertaken to understand
how programmers used languages and tools and created documentation (see (Shnei-
derman and Carroll, 1988)). However, this stream of research has not continued at
the same pace to account for the different languages and especially the range of so-
phisticated computer-aided software engineering systems and application frameworks
commonly used by today’s designers and developers.

Schön (Schön, 1983) describes design as a sort of “reflective conversation with ma-
terials” where designers engage in a cycle of trial, assessment, re-trial, and reflection.
Tools to support interactive design of systems where materials are almost infinitely
malleable and constraints range from those of computability to those introduced by
the social, organizational, and psychological aspects of interactive system interven-
tions themselves require careful design and especially identification of those issues
apparently common across different scenarios of use. Design support tools should
provide a certain freedom of movement to preserve the nuanced fluidity of the design
process, while at the same time acting to help guide designers towards a satisfactory
resolution in the design solution space.

INTEGRATING USER-CENTERED DESIGN KNOWLEDGE WITH SCENARIOS 283

Design activity consists of moves through a design space motivated by some inten-
tion or purpose and resulting the specification of behaviors and structure all subject
to the myriad of constraints that emerge from both the domain and from the mate-
rials that are used to implement the design. Complex, interactive software systems,
like almost all technology, are designed in response to an identified requirement, an
intention to support humanity at work (or at play) (Pitt, 2000). Complex, interactive
software system design is characterized by a set of processes found to be common
across different domains but to differ somewhat in their application by designers with
different backgrounds and skill levels (Jeffries et al., 1981). The most prevalent of
these common processes are decomposition, evaluation of alternatives, and retrieval
of applicable solutions or partial solutions resulting from prior design efforts.

Creative proposal and then evaluation are the pillars of design activity. Creative
proposal is the instantiation of design solution elements in response to a perceived
design question. Evaluation is the act of considering whether the proposed solution
is appropriate to the challenge or question that has been raised. Evaluation also helps
identify incrementally more appropriate solutions from the deficiencies identified in
prior evaluations. Both creative proposal and evaluation are typically better when the
designer is able to bring to bear the full range of criteria and constraints that might
impact a proposal. This ability to actively manage large numbers of information el-
ements is of course one of the strengths of computer-based systems and one where a
design interaction environment might conceivably add cognitive value to the demand-
ing task faced by the designer. The challenge is to provide access to large amounts of
information where, when, and how the designer needs it (Fischer et al., 1993).

As an activity, design drives information needs that result in individual and collab-
orative information seeking and information assessment (Poltrock et al., 2003). Com-
plex interactive systems design is characterized by the very broad range of knowledge
required to understand an entire architecture at any degree of completeness (Curtis
et al., 1988). Design may also be viewed as a cycle of trials, breakdowns, interpreta-
tion, and reflection (Fischer et al., 1993). All these conceptions point to the need for
studies to help understand and design technology support for one of the most basic yet
most complex of human activities.

Among the questions driving research into interactive design environments are
those that ask whether and how to support these different design ‘moves’. Design
interactions occur at the cognitive level, when a single designer uses a support tool to
work through a design problem, and at the distributed-cognitive or social level where
groups of designers interact both with the materials of the evolving design and with
prospective users and other project stakeholders. These two dimensions present very
different challenges for tool design and both are important to ensure that the work of
individuals is appropriately supported within their social network.

Design critiquing systems consist of a rule base for analyzing an evolving design,
a signaling mechanism to inform the designer when a design representation deviates
from the normative model in the rule base, and an advice-giving system for helping the
designer to recover from the error or breakdown and to continue with design resolution
(Sumner et al., 1997). More active design environments such those that include critics,
are enticing but themselves introduce a number of difficult issues, such as the need for

284 HUMAN-CENTERED SOFTWARE ENGINEERING

accurate task and user modeling required to ensure that interventions are appropriately
timed with the appropriate content (Fischer et al., 1993). Design of environments for
interacting with design knowledge must avoid embedding too strict a process model
for an activity that is characterized as much by serendipity and opportunism as it is by
any single characterization. A key challenge therefore is providing a set of useful but
loosely coupled service that support design cognition in its variety of forms with aids
designed specifically to enhance creativity, evaluation, reflection, and learning.

To be useful and therefore to have value, design knowledge generated in an interac-
tive environment must be retrievable, comprehensible, and then mappable to appropri-
ate, analogous problem domains and solution spaces. Designing interaction support
for these activities involves studying designers and design information retrieval and
use, and developing new human-computer interaction models to account for the com-
plexity, pervasiveness, and uniqueness of design as human activity. We are interested,
for example, in how to design scenario taxonomies so that scenarios and related ratio-
nales informing a current design challenge can be easily retrieved and applied. One of
the strengths of design rationale is that it provides rich, context-specific details of how
a design solution emerged from consideration of prospective scenarios. The amount of
information collected as scenarios and design rationale from a complex development
project can be large, however, and among our other core interests is how different in-
formation design and architecture strategies can be integrated with modern approaches
to information retrieval to facilitate exploration and reuse of these prior design cases.

14.5 RELATED WORK

Our work in this area is largely derivative of the design rationale movement of the
1980s and 1990s. See Moran and Carroll’s collection (Moran and Carroll, 1996) and
more recent work such as Sutcliffe’s domain theory (Sutcliffe, 2002) for more on
the design rationale research program. The domain theory is an approach to reusing
design knowledge that relies on an interleaved set of models including object system
models that describe transaction-oriented problems (see Chapter 5 of this volume) and
generic tasks that describe human activity in the domain. Each of these model types is
elaborated with generic requirements that describe when a given model is potentially
appropriate.

One key differentiator of our approach involves the level of formalization we apply
to knowledge taxonomy and representation. While we acknowledge that more struc-
tured representations of stored knowledge enable a broader range of computational
services, we feel that the demands and overhead of design knowledge capture still off-
set the advantages gained from more highly structured data capture. It is hard to ask
designers and design teams to consider classification and categorization issues for ev-
ery potentially useful element of knowledge they uncover in their work. Our approach
to design knowledge management is somewhat less rigorous than that described in the
domain theory. We use claims as an adaptive unit of design knowledge capture, analy-
sis and reuse. Though claims are relatively unstructured, designers can choose to apply
more or less fine-grained claims taxonomies to suit their needs, or they can choose to
incrementally formalize and refactor their design knowledge as opportunities arise for
reuse.

INTEGRATING USER-CENTERED DESIGN KNOWLEDGE WITH SCENARIOS 285

The BORE (Building an Organizational Repository of Experiences) project (Hen-
niger, 2003) is one of the most mature research software knowledge repositories.
BORE is a repository toolset that extends the experience factory concept (Basili and
Rombach, 1988) to include rule-based support for software development process en-
gineering, and organizational learning. Unlike the approach we have described here,
BORE focuses on the engineering process knowledge accumulated from development
activities. Though knowledge of development best practices and lessons learned is
critically important, especially given the so-called ‘software crisis’, we are more con-
cerned here with the design knowledge linking domain concepts to the system design
moves made in response. This knowledge, expressed as claims and anchored to scenar-
ios, may fill an important knowledge gap between the relative abstraction of a design
pattern and the raft of particular solutions available to today’s designer/developer.

Significant effort has been invested in development of forms and methods to ease
and ensure the reuse of design. The design patterns movement (Gamma et al., 1995)
has probably enjoyed the most success and though certainly software patterns are be-
ing written and disseminated, in spite of these efforts to foster large-scale reuse of
software designs, this appears to still rarely occur in practice (Ockerman and Mitchell,
1999; Prieto-Diaz, 1993). The lure of generic design knowledge that can be pulled off
the shelf and applied to a myriad of situations and problems is great and has given rise
to substantial works in theory and practice In addition to the design patterns work see
also (Jackson, 2001; Sutcliffe, 2002).

14.6 CONCLUSION

In the course of a systems development or software implementation project, individ-
uals and organizations bring to the surface knowledge regarding the domain in which
the system is intended for use, about the individual’s and organization’s stance to-
wards the domain, and, ideally, innovative approaches to addressing specific problems
emergent within the domain. Software-intensive, interactive systems embed inscribed
knowledge about their domain, about their users, about tasks, about software engi-
neering, about human-computer interaction, about the social dimensions of comput-
ing, about standards and regulations; the list goes on. But, this design knowledge
is complex, and at the same time both evolving and entropic. Consideration of the
knowledge vested in a complex system design increases the value of the design and
artefact to an extent only insomuch as the knowledge can be extracted or evoked from
the artefact for subsequent re-use and application.

We have proposed the use of scenarios and design rationale as an orienting frame-
work of concepts, techniques, and tools for addressing the design knowledge man-
agement challenge. Research on design rationale has been less active since its peak
of research activity in the early and mid 1990s. One reason for the lack of current
interest may be that a number of studies pointed to (or resurfaced) some difficult prob-
lems with the usability and especially with the reusability of design rationales (Shum,
1996; Shum and Hammond, 1994). However, these studies were relatively small-scale
and did not attempt to integrate modern information retrieval and other user-interface
technology into the experimental design.

286 HUMAN-CENTERED SOFTWARE ENGINEERING

There is a recognized dearth of industrial strength experiences of design rationale
in use within real organizations. One of the few exceptions is (Conklin and Burgess-
Yakemovic, 1996), where design rationale techniques were applied longitudinally on
an actual design project. They found that the use of design rationales improved de-
sign meetings by providing an agenda and capturing results of previous meetings, and
assisted in the processes of training and acclimating new team members to a project.
They also found the results accumulated were effective for communicating the sta-
tus of different issues in the evolving design. We need more ecologically valid field
studies of design knowledge management in the field both to better understand the
cost-benefit profile of these efforts and to identify criteria for advanced technology
designs.

This lack of empirical support, or convincing disprovals, in design rationale studies
is not unique. In general, studies of designers at work are scarce and there are few
replications of results that have been obtained from prior research. Still, this situa-
tion has left the design rationale program appearing as a set of unfulfilled promises.
The promises are potentially rich however, and are deserving of larger-scale empirical
studies.

Though significant work has addressed the form and content of reusable units of
design knowledge, for example, as design patterns, less success has been achieved in
attempts to ease capture and access to large bases of design knowledge. Larger orga-
nizations tend to be better at producing design documentation, but even these have a
poor understanding of how to maintain and use this resource to gain the value embed-
ded within it. Fostering recognition of and commitment to programs of intervention in
this milieu requires ‘bootstrapping’ cases to act as proof-of-concept examples of the
value lost through inattention to design knowledge management.

Studies of the systems development process in large organizations suggest that as
often as not this process is characterized by no small degree of chaos and ad hocery,
rather than the rational, methodical process descriptions commonly attributed to soft-
ware engineering. The interplay between people and technology, and between design
and use, results in a complex web of knowledge describing human activity within a
problem domain. Technologies are both a source of knowledge (e.g., as scientific in-
struments), and repositories for knowledge and experience (e.g., as cognitive aids), but
so much of the knowledge they evoke in development and in use is invisible to those
who might benefit from access and reuse.

Approaching design knowledge management requires that we understand a net-
work of factors within which people, technologies, and other artefacts interact to un-
derstand, structure, and design solutions to important problems in complex domains.
Any single study finding or single technology development effort is unlikely to resolve
the critical issues attending design knowledge management; we need infrastructure
and programs to facilitate coordinated streams of research in this important domain.

15 PATTERNS OF INTEGRATION:

BRINGING USER CENTERED DESIGN

INTO THE SOFTWARE DEVELOPMENT

LIFECYCLE
Lisa Battle

Lockheed Martin

Abstract

Faced with a need to integrate user-centered methods into existing software develop-
ment lifecycles, many practitioners lack clear direction and continue to negotiate the
scope of their involvement on a project-by-project basis. There are best practices that
can be adopted, however. This chapter distills the experiences of many practitioners
into a collection of process patterns that describe an evolutionary path towards full
integration.

15.1 INTRODUCTION

Despite the increasing recognition of the value of usability and user-centered design
in the software industry (Butler, 1996; Trenner and Bawa, 1998) integrating user-
centered methods into existing software development lifecycles remains a significant
challenge. As discussed in Chapter 2, some organizations claim to be committed to
usability but seem to be at a loss as to how to achieve it. The challenge may arise from
the fact that the software engineering community already has techniques and tools for

287

in the Development Process, 287–308.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

288 HUMAN-CENTERED SOFTWARE ENGINEERING

managing the whole development lifecycle, and it is unclear where to integrate user-
centered methods (Antunes et al., 2001). Differences in terminology and language
may impede communication, since practitioners of usability and human-computer in-
teraction (HCI) typically come from non-engineering disciplines (Ferre, 2003). Or,
the techniques of user-centered design (UCD) may appear subjective or disorganized
when viewed by developers and analysts who are not familiar with the process (Que-
senbery, 2000). There is evidence in Chapter 4 that communication between engineers
and HCI professionals remains limited at best.

At the same time, the software industry remains frustrated with the problem of re-
quirements. It has long been recognized that requirements analysis is the most error-
prone part of the development process, and errors in requirements not detected at an
early stage can lead to expensive system failures (Hofmann and Lehner, 2001; Boehm,
1981). In the 1990s, the field of requirements engineering (RE) gained much more
prominence as a discipline, as evidenced by the emergence of several new confer-
ences and journals dedicated to the subject (Nuseibeh and Easterbrook, 2000). RE
researchers have proposed a variety of methods for improving requirements elicita-
tion and the communication between users and analysts (Valenti et al., 1998). It has
been suggested that these methods would benefit from integration with complementary
human-computer interaction approaches (Sutcliffe, 1995).

15.1.1 Representing Practitioner Experiences as Patterns

The question of how to integrate UCD into mainstream software development pro-
cesses has been discussed by groups of UCD practitioners and software engineers in
several recent conferences and workshops (Gulliksen et al., 2003a; Seffah and Forbrig,
2001; Kreitzberg and Quesenbery, 1999; Seffah and Engelberg, 1999). IEEE Software
magazine published a special issue on usability engineering in January 2001, suggest-
ing an interest in cross-fertilization. Several case studies have also been published
from a practitioner perspective on the experience of introducing UCD into organiza-
tions (Wheeler et al., 2003; Anderson et al., 2001; Carlshamre and Rantzer, 2000).
However, UCD/HCI practitioners in many organizations continue to negotiate their
role and the scope of their involvement on a project-by-project basis. The need for
clearer direction to guide practitioners towards strategies for integration prompted our
workshop at the Usability Professionals’ Association (UPA) Conference (Battle et al.,
2003). In the workshop, UCD practitioners discussed their experiences and shared
examples of how UCD was integrated into their organizations’ software development
lifecycles.

This chapter is based on the ideas generated during that workshop, a written sur-
vey of usability practitioners conducted at the same conference, feedback received
from local UPA chapters in response to presentations of this material, and lessons
learned from the author’s experience. The information is distilled into process pat-
terns that describe best practices for integrating user-centered design with the soft-
ware development lifecycle. Process patterns are derived from the idea of design
patterns originally introduced in architecture by Alexander et al., 1977, and adapted
more recently for user interface and software design. Process patterns draw on
combined experiences to describe a proven, successful approach or series of

PATTERNS OF INTEGRATION 289

actions (Coplien, 1995; Ambler, 1998). Although patterns are widely accepted by
both UCD and software engineering communities (see Ambler’s process patterns
at http://www.ambysoft.com/processPatternsPage.html, for exam-
ple), the author has not found any previous work describing the integration of UCD
and software engineering in terms of process patterns.

15.1.2 Can Integration be Described in a Generic Way?

Several challenges arise when trying to describe the integration of user-centered meth-
ods in a generic way. Many decisions are influenced by the context in which the meth-
ods are being integrated, including the lifecycle model, the organizational culture, and
the position of the UCD practitioner.

Different lifecycle models. The type of lifecycle model, such as waterfall or iterative,
may suggest different opportunities for integration of UCD. Chapters 14 and 15 in this
book provide more detail on integrating UCD with two popular lifecycle models: Ag-
ile development and the Rational Unified Process (RUP). Although it could certainly
be argued that there is no such thing as a “generic” software development lifecycle,
the illustrations in this chapter attempt to represent generic phases by labeling them
“Early,” “Middle,” and “Late,” along with examples of actual phase names that are
used in specific lifecycles. This approach is based on a compromise made during the
UPA workshop, when it became clear that the differences in terminology from one
lifecycle to another were so significant that any attempt to label the phases would risk
miscommunication. In the future, it may be useful to introduce variations of these
process patterns to reflect customization for different lifecycle models.

Different organizational cultures. The organizational culture may vary in terms of
its openness to new approaches, who the decision makers are, the formality and/or
maturity of the existing process, and level of management support for UCD in the
organization. For example, in some organizations, a marketing department may be the
most powerful decision maker with regard to new products; in other organizations, the
culture may be that the developers know best. Some organizations follow a formally
documented lifecycle, while others do not. Although some of these differences are
discussed in the patterns, it may be valuable in the future to refine the patterns for
specific organizational contexts.

Different perspectives. In the UPA workshop and survey, it quickly became clear
that an internal usability group and an external consultant have different experiences
when bringing user-centered design into an organization. This led to the creation of
two different patterns describing how practitioners can get a “foot in the door” for
user-centered design.

15.1.3 Overview of the Process Patterns

The four patterns described in this chapter, outlined in Table 15.1, represent an evolu-
tionary process, from the first introduction of user-centered design to a full integration
of methods.

290 HUMAN-CENTERED SOFTWARE ENGINEERING

Table 15.1 Overview of patterns

Area of Focus in a
“Generic” Lifecycle

Pattern Early Middle Late
Foot in the door (for internal usability group) x
Foot in the door (for external consultants) x
UCD focus on early definition and design x
UCD in every phase x x x

Although this chapter approaches the topic of integration from the UCD practi-
tioner’s perspective, it is hoped that the ideas contained in it will be of value to devel-
opers, requirements analysts, and project managers as well.

15.2 PATTERN A: FOOT IN THE DOOR

(FOR INTERNAL USABILITY GROUP)

Integrating UCD into a software development lifecycle does not happen all at once.
The idea typically has to be introduced and piloted on a small scale. For an internal
usability group, introducing UCD into an existing process becomes an exercise in
organizational change. This pattern describes how an internal usability group gets a
“foot in the door” to demonstrate the value of UCD as a first step towards integrating
the methods.

15.2.1 Initial Context

In the beginning, the organization has an existing process or lifecycle that does not
involve user-centered design. There is little or no awareness of user-centered methods.

15.2.2 Problem

The challenge is to introduce user-centered design practices into an organization and
its existing software development lifecycle. From the perspective of the software de-
velopment group, which may have no awareness of UCD/HCI, the introduction of this
new profession may be confusing or threatening. From the perspective of manage-
ment, a new method needs to prove its value before it can be widely introduced into
the organization.

15.2.3 Solution

For an internal usability group, the key to getting a foot in the door is to find targeted
opportunities to influence an early lifecycle phase (the name of this phase, of course,
varies from one organization to another). As indicated in Figure 15.1, the UCD prac-
titioner focuses on creating or enhancing a key deliverable in a way that incorporates
a user-centered perspective.

PATTERNS OF INTEGRATION 291

Figure 15.1 Foot in the door (for internal usability groups)

The deliverable to focus on is typically a low-fidelity prototype, a requirements doc-
ument, or a specification document. The UCD practitioner should choose the deliv-
erable that is most appropriate given the existing lifecycle and organizational context,
and contribute to it from a UCD perspective. For example, if the UCD practitioner
notices that a specification document is typically handed off from a user representa-
tive to the development team with little or no communication, the UCD practitioner
might initiate a collaborative review of this document, introducing a usability perspec-
tive while at the same time starting a dialogue between the user representatives and
developers. If the project team has not used low-fidelity prototypes before, the UCD
practitioner can create them as input to the specification document, drawing upon any
information available about the users and tasks, as well as standard principles of HCI.
The resulting specification document will likely be much more complete.

Best Practices for UCD Practitioners. The UCD practitioner who is work-
ing to apply this pattern is encouraged to follow these best practices.

Evaluate the organization and understand what it needs.

Analyzing the organizational environment and conducting an informal gap anal-
ysis can identify some of the weaknesses in the existing process where UCD
might help.

If the organization has a formally documented lifecycle, become familiar with
the phases in the lifecycle and the deliverables produced in each phase.

If the organization has more informal methods, start building relationships with
people and understanding their roles in the process.

292 HUMAN-CENTERED SOFTWARE ENGINEERING

Stop “telling people that their baby is ugly.” If the organization conducts end-of-
the-line usability testing, but does not incorporate UCD/HCI methods in the early de-
sign phase, the usability input is probably ignored because it comes too late. Usability
specialists in such an organization are constantly in the position of giving bad news
immediately before a product is released, and they realize that this is not productive.
They will need to overcome the organization’s perception of usability as a research
discipline. A practitioner working in this context should:

Seek training in user-centered analysis and design techniques

Consider involving an outside consultant (at least temporarily) as a catalyst
for change. Some internal employees have found that it is easier to convince
decision-makers by bringing in an outside expert.

Get out of a role that focuses primarily on reviewing a finished product. If pos-
sible, start turning away requests for this type of testing, and explain to project
teams why end-of-line usability testing alone is not effective.

Be opportunistic. At the beginning, seek any opportunity to get involved in an early
design phase activity. Look for ways to help people:

When a project team is low on resources, the UCD practitioner can offer to share
the workload.

When the project team finds itself arguing about the same issue over and over,
the UCD practitioner can point out that there is a method of resolving the dis-
pute, and offer to lead or facilitate the process of collecting user input, testing
design alternatives, etc.

When the project team receives negative feedback from a customer, the UCD
practitioner can offer to investigate the problem and recommend a solution.

Show real value on a small scale first. Starting small can be less disruptive and easier
for the organization to accept.

Identify a small pilot project as an opportunity to try the new process. This
should not be a mission-critical project, and it should not be under too much
deadline pressure.

Do not try to apply too many UCD activities in the first few projects. While it is
important to do enough to demonstrate the benefit, it does not pay to overwhelm
the project team.

Get people talking to each other. It is surprising how often the lack of communica-
tion is a barrier to success on project teams.

Facilitate working sessions. The UCD/HCI practitioner is often more comfort-
able than technical staff in facilitating conversations within a project team, be-
tween stakeholders, or between users and developers.

PATTERNS OF INTEGRATION 293

Facilitate meetings involving users. This may be considered an unpleasant task,
and your colleagues may be relieved that someone else is willing to do it.

Invite people from different groups to the same meeting. If you do nothing
more than fostering communication between groups, you may still be seen as
adding tremendous value. This can also be a first step towards multidisciplinary
teamwork.

Partner with advocates of quality or customer focus.

Look for other groups within the organization that are also interested in im-
proving existing processes. These might include quality assurance specialists,
process improvement specialists, or new high-level managers who are interested
in improving products or making their mark on the organization.

Start to build strategic partnerships with these groups, engage them in dia-
logue, and explain how you can help them achieve their goals by applying user-
centered methods.

Take advantage of new quality initiatives or executive mandates. For exam-
ple, in one organization, a new executive challenged project teams to aim for
“demonstrably superior” products. UCD methods were able to help those teams
achieve the goal and articulate how the products they produced were superior to
the competition. In another organization, a new executive promoted the idea of
a customer-centered organization, which paved the way for UCD as a standard
part of requirements gathering.

Common Challenges.

Organizational change is difficult. General resistance to change is an initial chal-
lenge for any new process, and introducing user-centered design to an organization is
no exception. Experts in organizational change recommend seeking advocates both at
the high level and at the grass-roots level (Senge, 1999). Some UCD practitioners be-
gin by making presentations to high-level managers about the potential value of UCD
to the bottom line. This approach should target especially those high-level managers
who would likely benefit from the results of UCD. A high-level champion for usability
can help to establish organizational commitment, provide resources, and create oppor-
tunities for process change. However, some UCD practitioners start by educating and
gathering support at a grassroots level, recognizing that new way of working cannot be
sustained without buy-in from individual developers, analysts, and project managers.
Ultimately, support at all levels of the organization is needed.

Adopting a UCD process all at once is too difficult for most organizations. UCD
practitioners who try to do too much at once may end up alienating others in the orga-
nization (Vutpakdi, 2004). Prioritize UCD activities, keeping in mind how they will fit
into the corporate culture. Suggest small steps that developers, marketers, and others
can take immediately to become more user-focused. Adopt the organization’s own
language/terminology if possible rather than forcing new terms and work practices.

294 HUMAN-CENTERED SOFTWARE ENGINEERING

Phase in the implementation of UCD, recognizing that large-scale change does not
occur rapidly.

There is a lack of support for involving users in product design. Sometimes UCD
practitioners find that they cannot get access to users for input because the organiza-
tion does not see the value of user involvement. One strategy for dealing with this
situation is to keep asking detailed questions about the users’ tasks and context that
the organization cannot answer without user involvement. Another option is to spend
time interviewing the people who have the most direct contact with users, which may
include the technicians who configure software at the client site, service representa-
tives, or help desk personnel. When starting to introduce new methods, it is sometimes
necessary to do the best you can with whatever information you have, keeping in mind
that the short-term goal is to get a foot in the door.

Existing timelines do not allow for any new steps. When there is no time to add
UCD activities to an existing schedule, practitioners can still participate, for example
by contributing to a work product that is already in the lifecycle. If any meetings
with users are already scheduled—for example, marketing focus groups or customer
site implementation visits—try to get invited. If time has already been allotted to the
activity, having one more person attend will not affect the deadline.

UCD practitioners may become discouraged. When they feel that their work is far
from the ideal user-centered design process, UCD practitioners may be frustrated. The
key is to be patient, share ideas and experiences with other practitioners, and remind
each other that even small accomplishments are worthwhile. Each project where UCD
adds value provides more leverage to incorporate user-centered activities earlier in the
next project.

15.2.4 Resulting Context

As a result of performing the process pattern, UCD has been shown to add value to
some deliverables, and positive feedback has been received from some colleagues or
project team members. There is now potential to progress to the next level: UCD focus
on early definition and design.

15.3 PATTERN B: FOOT IN THE DOOR

(FOR EXTERNAL CONSULTANTS)

The experience for an external consultant trying to introduce UCD is different than
the experience for an internal usability group. The end-of-line testing role that can
become a trap for internal usability groups is in fact the most common starting point
for an external consultant. This pattern describes how an external consultant gets a
foot in the door to begin applying UCD.

15.3.1 Initial Context

A software development organization that does not follow user-centered methods sus-
pects that it has a usability problem, possibly as a result of negative feedback from

PATTERNS OF INTEGRATION 295

customers on an existing product. This organization makes an initial contact with a
UCD/HCI consultant.

15.3.2 Problem

The challenge is to sell user-centered design services to a client organization that is
not normally interested in usability, and to make a big impact while keeping costs low.

15.3.3 Solution

For external consultants, the key to getting a foot in the door is to communicate with
the client in business terms and show results quickly. Because the client may be in a
“firefighting” mode, the external consultant must focus on fixing the immediate prob-
lem and helping the client to achieve quick “wins,” while at the same time beginning
to present a longer-term vision.

Figure 15.2 Foot in the door (for external consultants)

Figure 15.2 shows that an external consultant typically starts by evaluating the ex-
isting product, identifying issues to be addressed, and making recommendations for
improvement. Sometimes the consulting service includes facilitating a usability test.
This solution is quite different from the internal usability group’s strategy of focusing
on adding value to an early design deliverable. The external consultant’s ability to
influence an existing product is aided by the fact that the client already recognizes the
need for some type of improvement. The UCD/HCI consultant typically has his/her
own model of the UCD process. However, due to the nature of the consultation and
the typical time pressures, the question of how best to integrate the consultant’s model
of UCD with the client organization’s existing processes may not arise at all at this
stage.

296 HUMAN-CENTERED SOFTWARE ENGINEERING

Best Practices for UCD Practitioners. The UCD practitioner who is work-
ing to apply this pattern is encouraged to follow these best practices.

Position your involvement in business terms.

Evaluate the organization’s business goals and discuss the usability issues from
the perspective of what motivates the company, whether this is the need to com-
ply with regulations and standards, competitiveness with other products on the
market, customer loyalty, or return on investment.

Avoid UCD jargon, which may seem confusing or overly academic to executives
who are focused on business issues (Dodd, 2003).

Target decision-makers at the highest possible level in the organization. External
consultants often have the opportunity to come into an organization at a higher
level than is typically possible for an internal usability group. This may provide
opportunities to talk with decision makers about strategic issues.

Conduct an expert evaluation. The external consultant may begin by conducting an
expert review of the existing product and identifying issues.

Find out as much as possible about the real users and their tasks as input to this
evaluation. Walkthroughs based on typical user tasks are more valuable than
walkthroughs based on standard heuristics alone.

Conduct competitive evaluations, which compare the existing product with sim-
ilar products, to produce valuable insights.

Conduct usability tests and use video clips to demonstrate issues.

Encourage usability testing with real users as soon as possible. The voice of the
customer can be powerful in making a business case.

Videotape the tests and create a presentation of highlights. Video clips of real
users having problems are highly persuasive.

Comparative usability tests showing users trying similar tasks with two compet-
ing products can also be persuasive.

Provide a vision that will lead into the next phase.

Short-term recommendations give the client a tangible solution to the usability
problem, proving the value of UCD involvement (and your value as a consul-
tant).

Follow up with longer-term recommendations and help the client to articulate
a vision for the product that achieves business goals while meeting user needs.
Getting a foot in the door can often lead to an opportunity to work with the client
on the design of the next generation product.

PATTERNS OF INTEGRATION 297

Common Challenges.

Funding is limited. The external consultant typically has to work within the con-
straints of a tight budget, a short time frame, or both, at least for the initial engagement.
This increases the pressure to show the maximum value with minimum effort.

The existing process is fundamentally flawed. While internal usability groups nor-
mally feel a need to fit into the existing process, an external consultant may be more
free to work outside of the existing process. If appropriate, the consultant may con-
sider advising the client that the existing process is broken and suggesting changes to
the process.

15.3.4 Resulting Context

As a result of performing the process pattern, the consultant’s evaluation has led to
short-term fixes and a longer-term vision for the product. There is now potential to
progress to the next level: UCD focus on early definition and design.

15.4 PATTERN C: UCD FOCUS ON EARLY DEFINITION AND

DESIGN

UCD practitioners agree that they need to be involved as early as possible in a project
in order to analyze the real needs and influence the design of a usable solution. This
pattern describes how UCD is integrated with an early lifecycle phase.

15.4.1 Initial Context

The organization has recognized the benefit that a user-centered perspective has added
in past projects, whether in early design phase deliverables (outcome of pattern A) or
in recommendations for improvement (outcome of pattern B). UCD involvement is
now more formally requested at the beginning of projects. There is some management
support for UCD, at least at the project manager level if not at higher levels in the
organization.

15.4.2 Problem

The challenge is to integrate standard user-centered analysis and design activities as
early as possible in the project, while being sensitive to existing processes and roles.

15.4.3 Solution

The UCD practitioner chooses methods that fit in well with the organization and pro-
duce outcomes that are seen as valuable. Figure 15.3 shows how typical UCD activities
such as identifying user and business goals, analyzing user needs, iterative prototyp-
ing, and the creation of a user interface (UI) specification, are integrated with early
phases of the lifecycle.

The key is to coordinate UCD activities with other requirements engineering ac-
tivities that happen during the early phase. UCD activities such as user/task analysis

298 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 15.3 UCD focus on early definition and design

and iterative design can be central to eliciting the right requirements. The UCD prac-
titioner should work as closely as possible with other team members throughout these
activities to promote multidisciplinary collaboration and ensure that the outcomes of
the UCD activities feed into downstream deliverables.

Best Practices for UCD Practitioners. The UCD practitioner who is work-
ing to apply this pattern is encouraged to follow these best practices.

Focus on eliciting and clarifying user and business requirements.

Gather as much information as possible about the users, tasks, and context, fol-
lowing best practices of UCD. For example, apply contextual inquiry methods
to interview or observe users, and apply low-fidelity paper prototyping methods
to test proposed designs as early as possible with real users.

If direct access to users is not possible, gather information from others in the
organization who do have direct frequent contact with them, such as trainers,
technicians who go to customer sites to implement new systems or fix problems,
help desk personnel, etc.

Learn about the organization’s requirements engineering function (in different
organizations, requirements may be defined by marketing groups, internal cus-
tomer groups, technical groups, or some combination of these). If it does not
exist, UCD practitioners may need to fill that role. If it does exist, UCD practi-
tioners need to coordinate with it.

Learn about the types of requirements defined in your organization and the lan-
guage used in describing them (for an example of types of requirements, (see

PATTERNS OF INTEGRATION 299

Wiegers, 1999), so that you can take an active role in translating your analysis
findings into requirements.

Focus on the next release, not the current one. Some UCD practitioners find that
they never have the time to conduct user analysis because they are always working on
an immediate deadline.

Focusing on the next release while the current one is still in development creates
a little bit of breathing room in the schedule, and it gets you involved at the
beginning of a next generation product.

If necessary, ask for a small pilot project in which you can focus on a future
release and demonstrate the benefits of a more complete user-centered analysis
and design.

Communicate the vision and the design. UCD practitioners have an important role
in communicating the design to the project team, stakeholders, and developers. Build-
ing a shared understanding of the vision among the team and stakeholders improves
the project’s chances of success (Beyer and Holtzblatt, 1998).

Present highlights of the analysis to decision makers. By describing real needs
and showing how the resulting design meets those needs, you can also demon-
strate to decision-makers how UCD activities are improving the overall quality
of the products.

Communicate the design clearly to developers. This is essential to ensure that
the design is built as intended.

Evaluate how well the UCD deliverables are working as communication tools,
and iterate them to ensure that they are communicating as well as possible.

Create detailed user interface specifications. Although detailed documentation can
be tedious to produce, doing so is in the best interests of both the UCD practitioners
and the project team:

Requirements analysts can use these specifications as input to their detailed
functional requirements.

Developers can refer to them throughout the development process.

People in the quality assurance and testing roles can use them as the basis for
creating test plans.

Create UCD deliverables to feed into other project deliverables. There is a risk
that valuable requirements information gathered during a UCD analysis will be lost as
it is reinterpreted into functional specifications and code (Coble et al., 1997; Butler,
1996). To reduce this risk:

300 HUMAN-CENTERED SOFTWARE ENGINEERING

Coordinate work products between UCD practitioners and other team mem-
bers who use other styles of deliverables, such as those based on UML. For
example, if the UCD practitioners describe the user’s work in scenarios, and the
requirements analysts create use cases, discuss the relationship between these
deliverables and decide how scenarios can provide input to use cases (Degler
et al., 2003). If the UCD practitioners create low-fidelity prototypes, ensure that
those prototypes are documented in a way that directly feeds into the creation
of the specifications or functional requirements needed by other members of
the project team. Coordinating effort can reduce everyone’s workload, prevent
misunderstandings, and preserve the information collected during analysis.

Find out how your deliverables are being used by the people in downstream
processes. Then, improve the your deliverables iteratively to ensure that they
provide the information and the level of detail that those people need.

Ensure that UCD deliverables are built into the project plan. If your project
manager creates a “release schedule” that defines all major activities and deliv-
erables, make sure that UCD activities and deliverables are included. In some
organizations, such a plan may be created a full year prior to a major software
release.

Work collaboratively with multidisciplinary teams. UCD is inherently multidisci-
plinary and encourages the involvement of people with different specialties because
doing so results in better products. For example, meeting with developers to walk
through preliminary prototypes provides early insights into technical constraints and
opportunities.

Expose people from across the organization to user-centered perspectives and
encourage the whole project team to take ownership of the outcomes of the
UCD process.

Making decisions throughout the project in a team setting, rather than handing
over a complete design at the end. This allows everyone to participate and
reduces the chance of arbitrary changes later.

If the involvement of UCD resources may not continue into the development
phase, it is a good strategy to involve a developer in all UCD activities, so that
later he or she can explain the design rationale to other developers.

Common Challenges.

A role for UCD on the project team may overlap with (or change) the roles of
other team members. Chapter 5 addresses some of the overlaps in roles and skills
between software engineering and UCD/HCI. Creating a new role for the UCD group
may cause other people’s roles to change, and in some cases it may threaten their
traditional “ownership” of certain decisions.

Try to come to an agreement on the roles that different people will play in the
new process.

PATTERNS OF INTEGRATION 301

Make it clear that people from various disciplines play a critical role in analysis
and design activities.

Be sensitive to people’s feelings. Some developers who consider the UI to be an
opportunity for their creativity may feel frustrated if UCD practitioners appear
to be taking it over, and they should be included in collaborative design and
prototyping activities. Other developers who are not interested in the UI will be
pleased to devote more of their time to back-end processes.

Be sensitive to the additional pressure that some developers may feel when
asked to work from detailed UI specifications. If this is new to them, it in-
troduces the possibility that they may fail to meet the requirements and need to
justify any changes. To minimize the risk that developers will feel “trapped” by
UI designs, UCD practitioners should be prepared to respond quickly and work
collaboratively unforeseen implementation issues arise during development.

The relationship between requirements and design may be confusing. While re-
quirements definition is typically thought of as an analysis process, it actually encom-
passes design activities as well, and includes the design of the user interface (Paech
and Kohler, 2003). Requirements emerge through design activities (Carroll et al.,
1997), and elicitation of requirements using artefacts or prototypes can be extremely
effective (Sutcliffe, 1995; Wiegers, 1999). If there are requirements analysts in your
organization, work collaboratively with them on analysis and design activities that will
lead to both high-level requirements and UI design. Involving analysts in paper proto-
typing and iterative testing sessions can encourage them to understand prototyping as
one valuable method of gathering and clarifying user requirements.

The organization may not understand what the UCD group does. Some com-
munication methods include publishing articles in the company newsletter, offering
“lunch and learn” training sessions, publishing an Intranet site for the UCD group,
and providing a basic orientation to UCD for project teams.

The design may change during development. Some UCD practitioners have re-
ported that developers assume that the final product has to look similar to the UI
specification but not exactly like it. In this situation, it is best for project managers
to communicate clearly that UI specifications are not suggestions but requirements.
Even without this misunderstanding, it is common for changes to be introduced dur-
ing development. If the organization does not have a change control process, the first
step is to introduce one. If it does have change control, ensure that UCD practitioners
participate in decisions about handling changes.

Release dates are determined as soon as the project/function is identified. Unreal-
istic dates can be a challenge for all members of a project team. In organizations where
this happens often, there may be a need to develop a more realistic planning process,
enlisting the support of various groups in the organization who share an interest in this.
Some organizations have tried a phased approach to sizing/scoping projects, in which
the initial time estimate is a ballpark figure, and checkpoints are built into the process
to refine the estimate as more details become known. It is also useful to introduce an

302 HUMAN-CENTERED SOFTWARE ENGINEERING

“Evaluate” phase at the end of the project lifecycle to gather metrics and use them to
improve estimating for future projects.

The UCD group may not have the resources to support all projects. The UCD
group cannot afford to become a bottleneck. Even with the addition of more resources
to the UCD group, many organizations will find that there are not enough resources
to dedicate UCD specialists to each project. This leads to a need to prioritize involve-
ment and focus resources on projects where UCD can have the greatest impact (Battle,
2004).

The organization may perceive that UCD slows down the lifecycle. This percep-
tion, whether or not it has any basis in reality, can become a significant obstacle. It
makes sense for UCD practitioners to anticipate it and to address it with several dif-
ferent strategies simultaneously. These strategies may include:

1. Cost-justify the process to management. Discuss return on investment and look
at the whole range of costs, including the costs of training, returned products, or
help desk support. Demonstrate the difference in quality between projects that
involve user input and those that do not.

2. Use executive champions to foster a culture that places more value on the cus-
tomer. This shift in focus may motivate technical groups to spend more time
with the customers understanding their needs.

3. Conduct UCD activities in conjunction with other existing activities, and show
management how this results in adding value without adding calendar time. For
example, UCD activities can be incorporated into typical walkthroughs, cus-
tomer meetings, and requirements gathering activities.

4. Ensure that the outcomes of user-centered design activities are merged into
“downstream” deliverables, so that they are not seen as “extra” but as input
to existing documents. For example, work closely with requirements analysts to
ensure that UCD deliverables feed into the functional requirements document,
and work closely with quality assurance specialists to ensure that UCD deliver-
ables feed into test plans.

5. Ask people in the downstream processes how UCD deliverables can be im-
proved to save time—and ask them to tell management when they do see a time
savings. For example, quality assurance specialists may report that they save
time when they receive more complete UI specifications, or when they receive
them earlier in the process.

6. As early as possible in the project, separate the parts of the system that directly
affect the user experience from those parts that are invisible to the user. Then,
you can work on the parts that do affect the user, while others work on the back
end processes. However, remember that keeping concurrent activities coordi-
nated requires some “touch points” built into the process.

7. Become part of the project team and stay with them throughout the lifecycle.
Some UCD practitioners report that when they are perceived as team members,

PATTERNS OF INTEGRATION 303

the time spent on their activities draws less attention than if they are perceived
as outside consultants stepping into the project briefly to pass judgment or add
requirements.

8. Work towards integrating user-centered methods into all phases of the lifecycle
and building infrastructure to make user-centered activities more efficient (see
pattern D).

15.4.4 Resulting Context

As a result of performing the process pattern, many projects in the organization in-
corporate user-centered analysis and design activities during an early lifecycle phase.
There is now a potential to progress to the next level: UCD in Every Phase.

15.5 PATTERN D: UCD IN EVERY PHASE

UCD practitioners seem to have a shared vision or goal of introducing UCD into ev-
ery phase of the lifecycle. This goal surfaced in the UPA 2003 workshop, when it was
noted that most UCD practitioners talked about their work as if UCD was included
in, or should be included in, each phase of the lifecycle. This was confirmed in dis-
cussing the workshop results with groups of practitioners at UPA chapter meetings.
Although this degree of integration must be phased in gradually, it is not unrealistic—
many organizations already conduct UCD activities in multiple phases throughout the
lifecycle. This pattern consolidates those experiences to describe how an organization
might apply UCD in every phase.

15.5.1 Initial Context

The organization typically incorporates user-centered design in an early phase of the
lifecycle (outcome of pattern C). There is support for UCD among mid-level and upper
management.

15.5.2 Problem

The challenge is to become a more customer-focused organization, streamline devel-
opment, and improve strategic decision-making by incorporating UCD into all phases
of the lifecycle.

15.5.3 Solution

The key is to create a continuous, interconnected flow of communication and feed-
back mechanisms throughout the lifecycle, from initial product concept to post-
implementation. Figure 15.4 shows how UCD involvement starts even earlier, influ-
encing vision and strategic planning. It also continues after the early phase, taking on a
role in change management during development and participating in ongoing reviews
to ensure that the design is implemented as specified. After the product is released,
UCD activities include a post-release evaluation, user surveys, longitudinal studies

304 HUMAN-CENTERED SOFTWARE ENGINEERING

with actual users of the product, and analysis of usage or management information
(MI) data.

Figure 15.4 UCD in every phase

Information about the users, tasks, and context collected during analysis and design
activities, as well as feedback from a variety of sources, are provided to executives as
input to visioning and strategic planning for future releases and new products. As a
result, the organization is able to make more informed business decisions.

Best Practices for UCD Practitioners. The UCD practitioner who is work-
ing to apply this pattern is encouraged to follow these best practices.

Stay with the project team throughout development. It can be all too easy for a
UCD practitioner to get pulled into another project immediately after handing over a
design or specification. When this happens, it introduces the risk that the design will
change in development, as described in the previous pattern. Responsibilities for the
UCD practitioner during development include:

Participate actively in change management. At the level of formal process, the
organization should implement change management procedures in which the
UCD practitioner is included as a member of the change control board. This
helps to ensure that any necessary changes can be discussed and decisions made
that balance the usability requirements with technical feasibility.

Encourage team members to ask for clarification when needed, extending the
collaborative working relationships beyond the early phase. The UCD practi-
tioner says, in essence, “If you’re not sure which way it should be done, call me.
I’ll help you figure it out and document the decision.”

PATTERNS OF INTEGRATION 305

Review the product during development. Some organizations implement what
they call “value checkpoints” during the development phase, in which UCD
practitioners who were involved in the design are asked to review the code
to make sure it meets the requirements and specifications. UCD practitioners
should make time to participate in review meetings like these during develop-
ment, even if their time is limited.

Keep the specifications updated. In addition to creating a detailed specification,
the UCD practitioner should take the responsibility for maintaining it throughout the
lifecycle. Because of the level of detail involved in most specifications, this can require
a significant investment of time. However, making this the routine responsibility of the
UCD practitioner provides a valuable service to the project team and again reduces the
risk of changes being introduced in the development phase due to miscommunication
of requirements.

Use the tools of the software development team.

If the team uses an automated tool to track requirements and ensure traceability,
learn to use it, and become an owner (or at least a reviewer) of the requirements
that are identified through UCD activities such as user analysis, prototyping,
and UI specification.

Learn to use the bug-tracking system to log usability problems. This at least
puts the issues on the list and increases the communication between the UCD
practitioner and the development team.

Try to document issues and resolutions in a central location for everyone’s future
reference. Avoid too much reliance on email for addressing issues, because
people may be inadvertently left out of the thread, and answers may be harder
to find later.

Create an infrastructure that enables UCD activities to be done more efficiently.
As the UCD process matures in the organization, there are opportunities to improve
efficiency and reuse. Some examples include:

Create and use templates for UCD deliverables.

Create style guides and standards for user interface design.

Create a library of personas and scenarios that have been produced through UCD
activities on past projects, which can be reused in future generations of similar
products.

Initiate a “design partner program,” or a panel of users who are signed up in
advance to participate in usability tests and give feedback on short notice. This
can facilitate quick iterative testing.

Implement Web-based questionnaires, and standard questionnaire templates, to
facilitate quick collection of feedback from end users.

306 HUMAN-CENTERED SOFTWARE ENGINEERING

Evaluate user feedback on an ongoing basis. An organization with a mature UCD
practice seeks opportunities to collect user feedback not just through usability testing,
but through multiple channels and over the long term. This is typically done through a
combination of usage tracking, management information (MI) data, help desk reports,
surveys, customer meetings, and longitudinal studies. The UCD practitioner can be
instrumental in helping the organization design these feedback collection mechanisms,
analyzing and interpreting the feedback, and determining how to use it as input to the
design of new projects.

Influence strategic decisions and long-range project planning. The information
collected in analysis and through feedback mechanisms can be valuable to high-level
decision makers when considering new products or new releases. If the organization’s
initial product concepts or business goals are sketchy and incomplete, UCD practition-
ers may be able to assist in shaping and “concept testing” new ideas, using standard
UCD methods. Information about the users and goals helps to define a broad vision
for the future, not just for the current project.

Influence architecture decisions. The usability of a product may be compromised
because of architectural constraints (see Chapter 6 for more information on usability
and architecture). Traditionally, system architects and other technical leaders have
had few tools or examples of ways that usability can be embedded in system design
at the architecture level (Comstock and Duane, 1996). This is beginning to change
as usability researchers are drawing connections between specific aspects of usability,
such as the ability to “undo,” and software architecture (Bass and John, 2001a). UCD
practitioners can collect examples of usability needs that have not been met and initiate
dialogues with the people responsible for designing architectures to seek longer-term
solutions.

Encourage people from different roles to take more responsibility for user ex-
perience. Sharing the responsibility reduces the risk that only a small percentage of
projects will have a usability focus due to resource constraints. To encourage this
sharing, UCD practitioners should:

Avoid dogmatism, which can alienate others. UCD practitioners must recognize
that usability is just one of several perspectives, and is not always the most
important development priority.

Provide educational opportunities for people from other disciplines. When us-
ability becomes the responsibility of other members of the project team, devel-
opers must at least understand the importance of usability and acquire basic HCI
skills (Seffah, 2003).

Ensure that the standard software development process and infrastructure used
by all project teams incorporates a usability perspective. When standard pro-
cesses are documented or when templates are created for deliverables, try to
insert a UCD perspective. For example, a description of the analysis activities
in the lifecycle can be augmented with a description of user profiling.

PATTERNS OF INTEGRATION 307

Common Challenges.

Projects do not necessarily follow the documented processes. Even when there is
a documented lifecycle, there is frequently a gap between the documented lifecycle
and the steps that are actually followed in a given project. There is also a natural
variation between projects in terms of the steps followed and the degree of importance
given to usability. In a written survey of attendees at the UPA 2003 conference, about
25% of those who said that their organization integrated UCD into multiple phases
of the project lifecycle also wrote in the margins comments like “but not on every
project” and “less than half of the time.” Especially in organizations that are trying to
achieve Capability Maturity Model (CMM) certification, teams are required to follow
repeatable processes; however, in reality projects do cut corners in response to various
pressures. Addressing these discrepancies in practices becomes a challenge not just
for the UCD practitioner, but for project management in general.

The lifecycle does not support iteration. Iteration is a key principle of user-centered
design (Butler, 1996). If the software development lifecycle itself does not support
iterative refinement, it is difficult to integrate it with an essentially iterative UCD pro-
cess. One researcher suggests that the existing development process must be based
on iterative refinement as a prerequisite to introducing usability techniques and ac-
tivities (Ferre, 2003). At least, UCD practitioners must realize that project managers
and developers alike are uncomfortable with an unknown number of iterations, and
become better at estimating, scheduling, and managing iterative activities. For exam-
ple, project schedules can include placeholders for several iterations of early design
concepts. The creation of a more mature UCD infrastructure as described above may
also help make an iterative process quicker and more predictable. For example, an
organization that has a standard process in place for collecting quick feedback from
users through web questionnaires may be able to iterate a design more rapidly.

The optimal structure of the UCD group needs to be defined. As UCD is practiced
more widely in the organization, the question arises whether UCD practitioners should
be centralized or dispersed throughout the organization. There are advantages to the
UCD practitioners themselves in being a centralized group, where members act as
consultants to project teams, but maintain their identity as a group and are able to
work collaboratively with one another. However there are also advantages to being co-
located with the project teams and seen as team members who stay with the projects
throughout the lifecycle. A matrix organization has the potential to allow the best of
both options, but it is not always implemented successfully in practice.

15.5.4 Resulting Context

As a result of performing the process pattern, the organization has become more user-
focused and the quality of its products continues to improve through better communi-
cation and feedback mechanisms throughout the lifecycle. Strategic decisions about
product concepts and architecture are based on real data about users, tasks and context,
collected over time from a variety of reliable sources.

308 HUMAN-CENTERED SOFTWARE ENGINEERING

15.6 CONCLUSION

This chapter has described a set of process patterns that synthesize the experience of
many UCD practitioners in integrating user-centered methods with existing software
development lifecycles. The evolutionary nature of these process patterns is important,
because in reality user-centered methods cannot be assimilated all at once. Each step
towards integration brings its own rewards and challenges.

More research and case studies are needed in several areas. First, best practices for
integrating UCD deliverables with other project deliverables should be explored and
documented. Second, approaches to integrating UCD activities with different lifecy-
cle models (such as iterative, incremental, waterfall) should be further refined. Third,
more research is needed to determine the best way to teach usability/HCI skills and
perspectives to other professional groups such as developers, analysts, and user repre-
sentatives. Finally, practitioners of UCD and RE should encourage sharing techniques
and working more collaboratively towards our common goals of better understanding
and meeting the needs of the business and the end users.

Acknowledgements

I would like to thank my colleagues, Brenda D’Angelo and Darrell Taylor, who co-
facilitated the UPA 2003 workshop with me. I am grateful for the thoughtful discus-
sion of the people who participated in that workshop: Valerie Arneson, Larry Constan-
tine, Chris Jasek, Dave Kellmeyer, Kristina McBlain, Joi Roberts, and David Travis.
I appreciate the opportunities provided by the Montreal Chapter and the Washington,
DC Chapter of UPA to speak on this subject at local chapter meetings and the valuable
feedback that I received from their members. Finally, I would like to thank Ahmed
Seffah and Jan Gulliksen for their support and encouragement.

16 UI DESIGN PATTERNS:

BRIDGING USE CASES AND UI DESIGN
John M. Artim

Expert Support, Inc.

201 San Antonio Circle, Suite 102

Mountain View, California 94040-1234 USA

Abstract

This chapter describes a formal and recursive UI design pattern description supporting
UI design work subsequent to use-case-based specification. The multipart representa-
tion described in this chapter balances the need to define task elements supported by
the pattern, the design elements comprising the pattern’s prototypical solution, as well
as the elements needed to map from the pattern to a specific domain of use.

16.1 INTRODUCTION

The pattern language work of the architect, Christopher Alexander (1977), has had
profound effect on the way in which object-oriented technologists think about and ex-
press expertise in object-oriented design. Object technologists have put a great deal of
effort into building up libraries of design patterns. The focus of these cataloging ef-
forts ranges from domain-specific patterns in telecommunication, to analysis patterns,
to patterns capturing accepted norms of computer language idiom, to extending the
repertoire of proven design elements.

At the same time, HCI practitioners have explored the use of patterns in express-
ing user interface (UI) designs that have demonstrated utility and usability. Jennifer

309

in the Development Process, 309–329.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

310 HUMAN-CENTERED SOFTWARE ENGINEERING

Tidwell has been working on a catalog of UI patterns since 1998 (Tidwell, 2004). Tid-
well’s patterns form a language of UI design. That is, her pattern catalog describes
proven design elements in broad use by human-computer interaction (HCI) profes-
sionals.

Erik Nilsson (Nilsson, 2002) extends this notion of UI pattern through formal de-
scriptions. Nilsson formalizes the description of a UI pattern with a UML class model
of the presentation elements defining each UI pattern. Nilsson defined the optimum
level of abstraction for these UI patterns as cross-platform—that is, at a level that
abstracts cross-platform design differences.

The real contribution in Nilsson’s paper is in the discussion of mapping of a pattern
onto concrete design solutions and in the recursive nature of a UI pattern language.
For Nilsson, pattern mapping from abstract design pattern to concrete solution entails
identifying the concrete use of low-level pattern features corresponding to low-level
presentation mechanisms. For example, Nilsson in describing the mapping for the
tree-view (composite) pattern would focus on presentation mechanisms such as choice
of icon in representing each component or the meaning of a single- or double-click on
a component.

Recognizing the complexity of real-world design solutions Nilsson also notes the
importance of a mechanism for recursively coupling UI patterns. Coupling supports
recombination of patterns into the complex compositional presentation hierarchy that
corresponds to a real-world domain task. Nilsson does not, however, describe a mech-
anism to support pattern coupling.

On the face of it, these two threads of effort—UI patterns on the one hand and pat-
terns of object-based design on the other—converge in the sense that both emphasize
abstract models of the components used to build solutions for a particular domain.
For the UI practitioner these patterns focus on presentation elements. The object-
technologist’s patterns describe how to construct well-designed code implementing
applications on the computer.

Alexander, in his keynote address (Alexander, 1996) to the OOPSLA96 conference,
suggested the possibility of a deeper connection. In this address he described his sense
of building architecture pattern language as a vast composition of design elements.
Each level of design supports some aspect of human living and working. At the level
of finest detail there are work spaces supporting specific task domains the user of the
architected space needs or wants to engage in.

As I listened to this keynote address I was struck by the similarities between
Alexander’s sense of unfolding spaces and the HCI professional’s sense of unfold-
ing task description. Each task in a task composition will ultimately be matched with
the space in which the task can be completed. The HCI sense of space often involves
windows within a WIMP interface or some sort of dedicated interface—that is, phys-
ical control panel or surface. These surfaces of interest to the HCI professional are in
fact lower-level design elements in the composition envisioned by Alexander.

While Nilsson focuses on recursive composition—that is, recursive coupling—of
UI design patterns he fails to address the composition of primary importance to both
the building architect and the human-computer interface designer—the hierarchy of
tasks of interest to the end-user.

UI DESIGN PATTERNS: BRIDGING USE CASES AND UI DESIGN 311

Fabio Patterno (Paternò, 2000) in his work on concur task trees describes a no-
tation for modeling user tasks and task patterns. Daniel Sinnig (Sinnig et al., 2005)
describes a taxonomy of UI design patterns divided into presentation, task, and dialog
patterns. These approaches emphasize the importance of task patterns in moving from
descriptions of user work—typically in the form of use cases or other task models—to
user interface design. What is missing is a unified approach to UI design patterns that
is task-based in its pattern-selection criteria but which covers the gamut of UI design
patterns as elaborated by Sinnig.

The remainder of this chapter discusses a formal pattern representation that ad-
dresses the nature of the coupling between UI design patterns. This coupling comple-
ments techniques using a use-case-based task decomposition and the concrete domain
entities manipulated by these tasks. This formal approach to UI design pattern mod-
eling has implications for use case modeling, UI design, UI implementation, and the
teaching of HCI techniques.

This formal UI pattern model includes:

A description of the task characteristics defining the context of use where the
pattern is correctly applied. This abstract description defines the kind of prob-
lem space addressed by the pattern.
The characteristics determine which pattern applies to a particular use case—
that is, to a particular user task.

An object model defining the problem space representation or representation el-
ements provided by the pattern.
This model describes the common user interface elements defined by the
pattern—that is to say it describes the chunk of UI design prescribed by the
pattern. This corresponds to the kind of pattern element models proposed by
Nilsson.

A composable metamodel of the required and optional domain mappings needed
to apply the pattern to a domain of use.
This metamodel itemizes the elements needed to map the abstract problem space
representation described by a design pattern to the elements of a user’s domain.
The mapping describes the chunk of presentation needed to support a corre-
sponding chunk of user tasks.
These domain mappings combined with the object model of the elements of the
pattern form the specification of user interface framework support for the design
pattern including the complete property mapping required to support graphical
construction environments.

This approach is based on a model-based understanding of human-computer in-
teraction and software engineering methods as previously described by Artim, 2001.
A model-based understanding of these methods need not require formal modeling in
practice but does require a formal understanding of the underpinnings of the methods.

The formal descriptions of UI design patterns proposed here bridge the gap be-
tween use case scenarios used in software functional specification and the analysis of

312 HUMAN-CENTERED SOFTWARE ENGINEERING

these use cases to derive a usable user interface design. This bridge step uses the com-
mon task characteristics to analyze use case scenario text to identify the appropriate
UI design pattern—that is, problem space representation—that supports the problem
space described within the scenario text. The final link is the description of mapping
elements bridging between the elements of the domain described in the scenario text
and the elements of the UI design pattern.

16.2 TREE—AN EXAMPLE OF A UI PATTERN

Tree is a good UI design pattern to illustrate the current approach. Tree is also known
as Hierarchical Set Tidwell’s catalog (Tidwell, 2004). Current graphical operating
system interfaces, including those for the Apple R©, Microsoft R©, and X Window plat-
forms, provide a file browser which features a tree widget to aid in visualizing the file
hierarchy.

In the pattern approach described here, a tree pattern is described and defined in a
number of ways.

First of all, a tree is operationally defined as:

The tree design pattern is used to browse and manipulate a whole-part structure.
The whole-part structure is often complex in its associations and large in its ex-
tent.

Alternately, a tree design pattern is used to browse and manipulate a subset of a
domain network. The domain network subset must be composed of associations
forming a tree topology. In this alternative case a set of domain associations are
behaving as though they are whole-part relationships. That is, these associations
are being used to define the composition of some root entity.

This operational definition provides a coherent overview of the primary and im-
portant alternative uses of the pattern. Though operational definitions are useful in
gaining an initial understanding of a pattern, a more systematic breakdown of pattern
usage is needed. In the current approach this systematic breakdown of correct pat-
tern usage is provided through a list of the user task characteristics supported by the
pattern. These characteristics describe the kinds of user tasks to which the pattern is
well-suited.

For the tree pattern this list includes:

The task space is a whole-part structure from a domain network rooted on a
single entity. In this structure each node in the network decomposes into child
nodes by traversing one step in the whole-part hierarchy. Each step consists of
one or more whole-part associations. If more than one whole-part association
forms one step in the hierarchy, the child nodes reached by traversing each of
these sibling whole-part associations are of equivalent meaning with respect to
the task space.

Or the task is a domain network rooted on a single entity. From the root entity
instance the network is traversed in steps. Each step consists of one or more as-
sociations collectively forming a single one-to-many expression. Each of these
traversal steps has domain significance. Each step may be defined by multiple

UI DESIGN PATTERNS: BRIDGING USE CASES AND UI DESIGN 313

one-to-many expressions but where multiple expressions are defined they must
be of equivalent meaning with respect to the task space.

Task completion involves search through successive steps in the hierarchy.
Or task completion involves exploration through successive steps in the hierar-
chy.
Or task completion involves comparison of two or more paths through the hier-
archy.

Each step of the hierarchy represents a domain categorization. The user knows
the meaning and use of the categories at all—or at least most—levels within the
hierarchy and arrives at a task solution by traversing the hierarchy through one
or more paths.

C Traversing each step—that is expanding a node—typically results in at most
seven to ten child nodes.

Nodes that expand to greater than ten or so child nodes impose greater cog-
nitive load on the user. This load is typically large enough that categorization
of the children of that node should be treated as a secondary task demanding
a share of the attention that could otherwise be devoted to the primary task.

The preceding text describes four characteristics of the tree pattern.
The first paragraph of the first characteristic describes the use of tree to visualize a

whole-part structure. The second paragraph is a continuation providing an equivalent
alternative to the first paragraph. It allows use of the tree pattern when visualizing
domain associations other than whole-part associations.

The second characteristic describes what sorts of tasks the user does that involve the
whole-part structure. This characteristic is defined in three equivalent bullet points—
that is, each of these three types of task equivalently describe what the user might be
doing when needing to visualize a whole-part hierarchy.

The third characteristic defines what it means, in terms of a user domain, to traverse
a level in the hierarchy.

Finally, the point labeled with a C denotes a potential constraint on the use of this
pattern. A particular user task might violate this constraint and still, in principal at
least, appropriately use the tree pattern. Constraints indicate when the designer might
experience difficulty in appropriately using a pattern—that is, when usability problems
might result even from the correct application of the pattern.

Potential uses of this pattern appear everywhere since whole-part structures pervade
our conceptual world. To illustrate use of the tree pattern let’s look at an example from
biology. Classification of organisms is a critical part of biological theory. Taxonomy
is the systematic classification of organisms into a whole-part structure or hierarchy.
For the zoologist, this classification scheme includes seven major levels: Kingdom,
Phylum, Class, Order, Family, Genus, and Species. As you explore this whole-part
structure there are more entries as you descend each level of the structure. Each level
categorizes the species in question into an increasingly more specific and therefore
smaller category. Figure 16.1 illustrates the tree pattern by showing a few inverte-

314 HUMAN-CENTERED SOFTWARE ENGINEERING

brate species and the taxonomic classification for them. Each leaf node in this tree
represents a species in the taxonomy.

One species shown in Figure 16.1 is Luidia alternata1 . To determine how L. alter-
nata fits into higher-level taxonomic categories read down the tree from the root down
to the leaf node of interest. For L. alternata, this reads: Kingdom Animalia, Phyla
Echinodermata, Class Asteroidia, Order Platyasterida, Family Luidiidae, Genus Lu-
idia, Species alternata.

Taxonomists have built into their domain terminology an interesting feature. Tax-
onomic names are all based on Latin’s rules of construction. Taxonomists take this
one step further and have created stylized suffixes for each level in the taxonomy.
For example, Family names typically end in the ae suffix. In addition to the icons
representing each of the taxonomic levels, the professional taxonomist has the names
themselves as an aid indicating taxonomic level.

It is not essential to understand biological taxonomy to see that this domain features
a large whole-part classification scheme and that this whole-part structure can be well-
represented by a tree display.

Figure 16.1 A chunk of UI based on the tree pattern

16.2.1 Tree Metamodel

A tree is a root node that contains other nodes. Each node represents an instance
of an entity in the user’s domain—in Figure 16.3 each node represents a biologists’

1Taxonomists identify species by their genus and species only—each genus and species combination is
unique across all other taxonomic categories. Subsequent references to one genus on one page are abbrevi-
ated by the first letter of the genus name when such an abbreviation is unambiguous.

UI DESIGN PATTERNS: BRIDGING USE CASES AND UI DESIGN 315

taxonomy category. Each node is presented as a glyph that indicates to the user the
type of domain entity the node represents. The node is also presented using a text label
whose value uniquely identifies the node. The composition of one node within other
nodes is the only relationship depicted in a tree— Figure 16.1 shows the composition
of taxonomic groups.

An object-model description of a tree pattern is shown in Figure 16.2. This diagram
includes:

A Tree starts with a root Tree Node

Tree Nodes, including the root, can contain other Tree Nodes

Each Tree Node contains a Tree Node Creation Map describing how to derive the
next level of Tree using an entry, a Tree Node Creation Mapping, for each type
of domain entity that can be contained in this level of the whole-part hierarchy.
Each Tree Node Creation Mapping consists of the following:

– A glyph to represent the domain entity type

– A description of how to trace through the domain from the last node’s
entity to the collection of entities composing the current branch

– Another map representing part levels in the hierarchy below the current
level

In order to apply the tree pattern to the biologists’ taxonomy domain we need a
domain model of taxonomy concepts.

16.2.2 Simplified Taxonomy Domain Model

The taxonomy domain is illustrated in Figure 16.3. This figure includes the units
of taxonomy—Phylum, for example—shown as classes in a UML class diagram and
the whole-part relationships among the taxa shown as UML whole-part—that is,
aggregation—relationships.

16.2.3 Domain Metamodel

The elements in Figure 16.3 represent the concepts that make up a task domain—in
this case the domain of biological taxonomy. To successfully apply any UI pattern,
the UI practitioner must map the UI pattern onto a specific task domain. The domain
metamodel shown in Figure 16.4 defines the generalized model of concepts used by
the UI pattern approach described in this chapter to map a pattern onto a task domain’s
concepts.

Figure 16.4 describes a straightforward concept model where an Entity represents
a domain concept, an Attribute represents a characteristic of an Entity, and different
kinds of relationship—such as Whole-Part Relationship—represent the ways in which
concepts are defined in terms of other concepts. This approach to concept modeling is
described elsewhere by Artim (Artim, 2001).

To understand this example, think of a whole-part relationship as a kind of compo-
sition where the whole composition is defined by the kinds of parts that make it up.

316 HUMAN-CENTERED SOFTWARE ENGINEERING

Visual_Formalism

(UserConceptModeling.PresentationModeling)

+doLayout()
+render(aFormalism : Visual_Formalism)

Formalism_Element

(UserConceptModeling.PresentationModeling)

+render(aPresentor : Presenter)

Tree_Node_Creation_Mapping

+getExpansionAspectChain()
+getGlyph()
+getMap()
+Tree_Node_Creation_Mapping()

<<interface>>
Multiple_Selection_Holder

(PresentationSupport)

+getSelection()
+setSelection()

Tree_Node_Creation_Map

+addNodeMapping()
+addNodeMapping()
+getMappingFor()
+Tree_Node_Creation_Map()

Tree_Node

-expanded : boolean
-Glyph : Glyph
-Label : Attribute_Adapter
-Model : Entity_Adapter
-visuallyExpanded : boolean

+isExpanded() : boolean
+visuallyContractNode()
+visuallyExpandNode()

Tree

-RootModel : Entity_Adapter
-ShowRoot : boolean

+addNode()
+getNodes()
+removeNode()
+setShowRoot()
+Tree()

<<interface>>
Single_Selection_Holder

(PresentationSupport)

+getSelection()
+setSelection()

Glyph_Map

(PresentationSupport)

+addGlyphMapping()
+changeGlyphMappingFor()
+getGlyphFor()

Map

(Data types.Utilitity types)

Mapping

(Data types.Utilitity type

-key : Object
-value : Object

<<interface>>
Selectable_Item

(PresentationSupport)

+isSelected()
+setSelect()

implements

implements

0..*

implements

1

0..1

1

0..*

1

1

Figure 16.2 Object model for the tree pattern

For example, a car can be defined as being composed of a body, two or more doors, a
number of windows, four wheels, steering and speed control for the driver, and some
sort of engine. In this case the car is the whole and the body, doors, windows, and
what not are the parts.

UI DESIGN PATTERNS: BRIDGING USE CASES AND UI DESIGN 317

Figure 16.5 applies this domain metamodel to the mapping of a chunk of the tax-
onomy domain model onto the taxonomy tree presentation shown in Figure 16.1. For
brevity, only a portion of the taxonomy tree is depicted in this diagram. Two versions
of the diagram are shown. In each version, the entities and relationships of the taxon-
omy domain are shown down the left-hand side of this diagram. The right-hand side
of each version shows the parts of the taxonomy tree display: this abbreviated diagram
includes the Kingdom Node representing the root node of the tree, the Kingdom Ex-
pansion Node representing the presentation ability to expand a node into its children2,
and the Phylum Node representing child nodes of the root node.

The left-hand version of the diagram depicts the domain concepts of Kingdom and
Phylum as UML classes (boxes) and the whole-part relationship between them as a
UML composition relationship (the link with a diamond at its origin). In this version
the mapping from the Kingdom Node Expansion is drawn pointing to the whole-part
relationship. This representation of a link pointing to another link is not supported
notation in UML.

The second version of the diagram depicts the whole-part relationship between
Kingdom and Phylum as a class to which the Kingdom Node Expansion can be di-
rectly linked. First note that the diagram makes explicit the domain’s whole part
relationships—such as Kingdom to Phylum WholePart rel—as first-class objects.
From this class diagram you can immediately see the benefits and the liabilities of rep-
resenting relationships as objects. The mapping from UI pattern—Kingdom Node Ex-
pansion for example—to domain—Kingdom to Phylum WholePart Rel in this case—is
explicit. While this does help emphasize that the whole-part relationships are them-
selves concepts it also makes the diagram larger and somewhat unwieldy. This dia-
gram represents only two out of seven taxonomic concepts and one out of six whole-
part relationships yet the diagram is already large. Also, using the same notation for
a domain entity and for relationships among entities makes this representation much
harder to understand. While the right-hand diagram version shown in Figure 16.5
strictly adheres to UML notation standards I believe the left-hand version provides a
clearer sense of the mapping of a chunk of presentation onto a chunk of domain.

The other problem with the representation in Figure 16.5 is that in use, UI patterns
are nested into elaborate compositions supporting real-world tasks. Figure 16.5 shows
the tree pattern as its component display elements: Kingdom Node, Kingdom Node
Expansion, and Phylum Node. Though nested UI patterns can be shown as a nesting of
their display elements this kind of diagram gives no indication of which compositions
are valid and which are not. It is not that there is any inherent difficulty in representing
compositions of patterns in this way—there simply is not any indication of correctness
nor completeness.

The class diagrams in this section help illuminate the problem of mapping UI pat-
terns to user domains. But, because the class diagram representation of the mapping is
both unwieldy and lacks support for validation, other compositional tools are required.

2This is shown as a plus-minus control in Windows R© or an upward or sideways pointing arrow on the
Macintosh R©.

318 HUMAN-CENTERED SOFTWARE ENGINEERING

Kingdom

-kingdom type : kingdom enumeration
...

Property

-name : string
-value : string
-value enumeration type : string

Location

-description : string
-latitude : angle measure
-longitude : angle measure

Sample

...

Phylum

...

Class

-level : taxa level enum
...

Environment Property

Order

-level : taxa level enum
...

Species

-level : taxa level enum
...

Genus

...

Family

...

Organism Property

Taxa

-description : string
-name : string

Division

...

-secondary characteristics

*

-key characteristics

*

-secondary characteristics

*

-key characteristics

*

0..*

0..*1

0..*

0..*

0..*

*

*

**

*

*

* *

Figure 16.3

16.2.4 Mapping Presentation to the User’s Domain with XML

What is needed to create a compact, verifiable representation of a UI pattern to user
domain mapping is a simple declarative representation of the structure. XML (Ex-
tensible Markup Language) provides a straightforward and extensible mechanism for
building declarative representations.

A UML class diagram of the biologist’s taxonomy domain

UI DESIGN PATTERNS: BRIDGING USE CASES AND UI DESIGN 319

Entity

-definition : string
-name : string

+getTypeName() : string

Association_Relationship

-name : string

Whole_Part_Relationship

destination_cardinality

-cardinality
-name : string

Attribute

-name[1] : string

Kind_of_Relationship

origin_cardinality

-cardinality
-name : string

Relationship

-definition : string

Is_A_Relationship

-subordinate_categories

0..*
destination

-superordinate_category

1
origin

<<implicit>>

origin

1origin

1..*
{ordered}

destination

-type

0..*
origin

-kind

0..*

destination

<<implicit>>

destination

-whole
1origin

-part
0..*destination

0..*

Figure 16.4

There are two parts to XLM structures: a meta-description of document content—
the Document Type Definition (DTD)—and valid XML documents based on a meta-
description.

Typically, an XML document is thought of as specified by one DTD. In practice,
DTDs can be nested one within another to create a document meta-description. In
the present approach to composable UI patterns, each pattern is described by a DTD.
These pattern DTDs define two aspects of each pattern:

1. Connection points between the pattern and a user domain

2. Connection points between patterns

Figure 16.6 shows the DTD describing the tree UI pattern. This DTD defines:

The icons (glyphs) mapping to each domain entity type (lines 3 and 4)

The chain of aspects to follow to get a label for each node (lines 7 and 8)
The chain of aspects are directions for tracing a path through the domain from
an Entity to be represented as a tree node to the attributes of that entity that
specify the tree node’s label.

The definition of a Root as an Entity and a mapping describing the Aspects of
the domain that define the expansion of each level of the tree (line 9, 10)

Domain metamodel class diagram

320 HUMAN-CENTERED SOFTWARE ENGINEERING

Tree-Mapping Diagram Fragment

Kingdom Node Expansion

Taxonomic Tree

Kingdom Node

Phylum Nodedisplays in context

displays in context

displays in context

1..*

0..*0..*

1..*

Phylum

Kingdom

UML-Conforming Version
of the Same Fragment

Kingdom to Phylum
WholePart Rel

Kingdom Node Expansion

Taxonomic Tree

Kingdom Node

Phylum Nodedisplays in context

displays in context

displays in context

1..*

0..*

1

0..*

1

1

1..*

Phylum

Kingdom

Figure 16.5

This mechanism provides a nested description of the domain expansion that
defines the nodes of the tree as well as the attributes used for labels for each
node. This corresponds to the nested sequence of destinations of the Display
in Context links off of each node expansion—for example in Figure 16.5, the
whole-part relationship pointed to by the link from the Kingdom Node Expan-
sion is the first aspect in the Taxonomy Tree’s description.

The mechanism for describing the preceding nested mapping description (line
12 to 15)

Lines 3 to 8 and 16 to 23 are reusable mechanisms used throughout the pattern
set

This DTD provides a relatively compact and complete specification of a UI Pattern.
The next test is to see how reasonable it is to build representations of pattern to domain
mappings using XML based on a pattern’s DTD.

Figure 16.7 is a partial listing of the XML description of the chunk of user interface
shown in Figure 16.1 (the taxonomy tree UI). The XML shown describes the domain
mapping for the first two levels in the hierarchy: Kingdom and Phylum. The XML
to describe icon mapping, the selection mechanism, and the remainder of the tree
decomposition is omitted. The entire description is 127 lines long.

This representation is not too cumbersome. Each level in the hierarchy is described
by nine XML elements:

A DisplayMapping element and a DisplayMapEntry (lines 10 and 11, for exam-
ple) form the mapping for one level in the hierarchy

The EntityType that applies to the DisplayMapEntry which is provided in case
there are multiple entity types supported at one level in the whole-part hierarchy
(line 12, for example)

The mapping of a tree pattern onto the Taxonomy domain

UI DESIGN PATTERNS: BRIDGING USE CASES AND UI DESIGN 321

1.) <!ELEMENT Tree (IconMapping?, SelectionHolder?, Root)>
2.) <!ATTLIST Tree ID CDATA #REQUIRED >
3.) <!ELEMENT IconMapping (IconMapEntry+)>
4.) <!ELEMENT IconMapEntry (EntityType, IconType)>
5.) <!ATTLIST EntityType TypeName CDATA #REQUIRED>
6.) <!ATTLIST IconType TypeName CDATA #REQUIRED>
7.) <!ELEMENT LabelMapping (LabelMapEntry+)>
8.) <!ELEMENT LabelMapEntry (EntityType, Aspect+)>
9.) <!ELEMENT Root (PresentationParent | Entity,
10.) DisplayMapping+)>
11.) <!ATTLIST PresentationParent ID CDATA #REQUIRED >
12.) <!ELEMENT DisplayMapping (DisplayMapEntry+,
13.) DisplayMapping?) >
14.) <!ELEMENT DisplayMapEntry (EntityType, Aspect+,
15.) LabelMapping)>
16.) <!ATTLIST Aspect AspectName CDATA #REQUIRED>
17.) <!ELEMENT SelectionHolder (SingleSelectionHolder |
18.) MultipleSelectionHolder)>
19.) <!ATTLIST SelectionHolder ID CDATA #REQUIRED>
20.) <!ELEMENT SingleSelectionHolder (Entity)>
21.) <!ELEMENT MultipleSelectionHolder (Entity+)>
22.) <!ELEMENT Entity (EntityType)>
23.) <!ATTLIST Entity ID CDATA #REQUIRED >

Figure 16.6 Fragment 1. DTD content describing the tree UI pattern

The Aspect that describes how to retrieve the entities for the level in the hierar-
chy described by the DisplayMapEntry (line 13, for example)

The LabelMapping, LabelEntry, EntityType, and Aspect that describe how to de-
rive the label for nodes representing the entities retrieved for the DisplayMapEn-
try (lines 14 to 19, for example)

This representation is adequately compact, at least for the purpose of experimenting
with composition of UI patterns. The next section of this chapter discusses a more
complete example use of patterns and pattern composition.

16.3 COMPOSED UI DESIGN PATTERNS IN USE

This section focuses on the use of UI design patterns in software design and construc-
tion. In particular, the section focuses on the use of UI design patterns in conjunction
with use case descriptions of functional requirements.

16.3.1 Extending the Taxonomy Example

The example discussed in the remainder of the chapter describes a zoology student
learning taxonomic concepts. The UML use case diagram shown in Figure 16.8 lists
the tasks that make up this user task domain.

The overall task is Explore Zoological Taxonomy. This task includes Browse Taxo-
nomic Relationships and Browse Individual Taxon—that is, browse an individual fam-
ily, species, or the like.

322 HUMAN-CENTERED SOFTWARE ENGINEERING

1). <Tree ID="TaxonomyTree">
2). <SelectionHolder ID="SelectedTaxa">
3). <SingleSelectionHolder>
4). <Entity ID="">
5). <EntityType TypeName=""/>
6). </Entity>
7). </SingleSelectionHolder>
8). </SelectionHolder>
9). <Root>
10). <DisplayMapping>
11). <DisplayMapEntry>
12). <EntityType TypeName="Kingdom"/>
13). <Aspect AspectName="Whole-Part"/>
14). <LabelMapping>
15). <LabelMapEntry>
16). <EntityType TypeName="Kingdom"/>
17). <Aspect AspectName="Name"/>
18). </LabelMapEntry>
19). </LabelMapping>
20). </DisplayMapEntry>
21). <DisplayMapping>
22). <DisplayMapEntry>
23). <EntityType TypeName="Phylum"/>
24). <Aspect AspectName="Whole-Part"/>
25). <LabelMapping>
26). <LabelMapEntry>
27). <EntityType TypeName="Phylum"/>
28). <Aspect AspectName="Name"/>
29). </LabelMapEntry>
30). </LabelMapping>
31). </DisplayMapEntry>
32). ...
33). </DisplayMapping>
34). </DisplayMapping>
35). </Root>
36). </Tree>

Figure 16.7 Fragment 2. A fragment of the 127 lines of XML specifying the Figure 16.1

UI

The selection of a UI pattern to provide presentation support for a particular user
task focuses on scenario text for the use case describing that user task. Scenario text
describes, in episodic form, the procedural content of a task. We start our analysis
with the normal success scenario for the highest-level task—Explore Taxonomy in this
example. This scenario includes the following steps:

1. Browse the relationships among zoological taxonomic categories. This step is
described in detail in the Browse Taxonomic Relationships use case. This step
culminates in selection of one taxon in the taxonomic hierarchy.

2. Browse the specifics of the individual taxonomic category selected in the pre-
vious step. This step is described in detail in the Browse Taxon Definition use
case.

UI DESIGN PATTERNS: BRIDGING USE CASES AND UI DESIGN 323

3. Repeat the preceding steps in a free-form exploration of zoological taxonomic
concepts.

Browse Taxonomic Relationships Browse Taxon Definition

Browse Higher
Taxonomic Group

Definition

Browse Parent Taxa
for a Single Taxon

Browse
Non -Speci fic Taxon

Browse Species
Definition

Explore Taxonom y

Compare Species

Compare
Multiple Taxa

Expan d a Taxon

Zoolo gy Student

<<incl ude>>
<<incl ude>>

<<incl ude>>

<<incl ude>>

Figure 16.8

Even this short scenario tells us three things about the presentation needed to sup-
port this use case. First, there will be two main parts to this presentation: one to
support the Browse Taxonomic Relationships use case and one to support the Browse
Individual Taxon use case. Second, the presentation supporting the Browse Individual
Taxa use case presents the details of the taxonomic category selected in the presenta-
tion for the Browse Taxonomic Relationships use case. Third, the overall presentation
comprised of the Browse Taxonomic Relationships presentation and the Browse Indi-
vidual Taxon presentation must support ad hoc exploration—that is, the user will be
repeatedly performing first one and then the other of these two use cases.

The main success scenario for Browse Taxonomic Relationships includes the fol-
lowing steps:

1. The user completes one of the specialized versions of this use case.

This scenario text indicates that the generic use case, Browse Taxonomic Relation-
ships, has no concrete scenario associated with it. The scenarios for the specific use
cases derived from Browse Taxonomic Relationships describe how this task is accom-
plished.

A use case diagram for taxonomy learning tasks

324 HUMAN-CENTERED SOFTWARE ENGINEERING

The scenario for the Expand a Taxon use case includes the following steps:

1. The user chooses one of the currently displayed taxa.

2. The user expands this taxon to display its sub-taxa.

The main scenario for the Browse Parent Taxa for a Single Taxon use case includes
the following steps:

1. The user expands a taxon of interest. This step is described in the Expand a
Taxon use case.

2. The user chooses one of the sub-taxa newly displayed by the previous step and
expands this taxon. This step is described in the Expand a Taxon use case. This
step is repeated, as needed.

3. The user, finding the taxon of interest, can now follow the chain of expanded
taxa from the leaf taxon up through progressively more general taxa until they
reach the phylum for the taxon of interest and then, ultimately, the kingdom
Animalia.

The main scenario for the Compare Multiple Taxa use case includes these steps:

1. The user selects and browses the first taxon of interest. This step is described in
the Browse Parent Taxa for a Single Taxon use case.

2. The user selects and browses subsequent taxa of interest at the same taxonomic
level as the taxon selected in the previous step. This step is described in the
Browse Parent Taxa for a Single Taxon use case. This step is repeated, as
needed.

3. The user compares the selected taxa. The user may be interested in common
branches in the taxonomic tree or simply in comparing the expansion of taxo-
nomic categorization for two or more organisms.

To illustrate this scenario in a more extended context, consider the user-interface
mock-up in Figure 16.9. This mock-up is typical of what might be seen in a story-
board illustrating the content of this set of use cases.

Figure 16.9 shows the state of the UI after the user has expanded first the branch
leading to Callyspongia plicifera (the vase-shaped Caribbean sponge pictured in the
mock-up). Upon reading the image caption the user expands the taxonomic path lead-
ing to Oreaster reticulatus, the brittle star whose arms are seen protruding from the
vase-shaped sponge. The user compares the two co-occurring species by alternately
selecting one species in the tree widget in the left-hand portion of the UI then select-
ing the other species. This change in selection changes the content of the right-hand
portion of this UI to reflect the details of first one and then the other species.

By analyzing the Browse Taxonomic Relationships use case and its specific use
cases the UI designer would see a strong match with task characteristics described for
the tree pattern.

UI DESIGN PATTERNS: BRIDGING USE CASES AND UI DESIGN 325

The right-hand portion of the UI mock-up is described in the Browse Taxon Defini-
tion use case. Consider the main scenario which includes the following steps:

1. The user reads the name of the taxon.

2. The user reads a description of where the taxon is found. This includes a
description of habitat and of the geographic range of the taxon.

3. The user reads a physical description of the taxon including its static structure
and dynamic behavior.

4. The user compares the physical description from the preceding step with an
image—either photographic or diagrammatic—of the taxon.

The Browse Taxon Definition use case is specialized in the Browse Species Definition
use case whose main scenario steps include:

1. The user reads the latin binomial designation for the species—that is, the full
species name. This includes the genus name and species name.

2. The user reads a description of where the species is found. This includes a
description of the species habitat and the geographic range throughout which
the species is found.

3. The user reads a physical description of the species including the salient
features distinguishing this species from other, visually similar organisms and
this species dynamic behavior including differences in behavior from other,
visually similar species.

4. The user compares the physical description from the preceding step with a set
of images of the species including one or more photographs representative of
the range of its appearance and one or more diagrams of its salient physical
features.

Analyzing this and the remainder of the use cases and scenarios results in the list of
patterns shown in Table 16.1, “Descriptions of the tasks from Figure 16.9 and match-
ing UI Patterns.”

This set of composed patterns ultimately leads to an XML description approxi-
mately 170 lines long describing the UI mock-up shown in Figure 16.9.

16.4 PATTERN DESCRIPTIONS IN PRACTICE

The UI design pattern description outlined in this chapter is used differently and has
a different affect depending on the role of the stakeholder considered. In this section
these differences among key stakeholders are explored.

326 HUMAN-CENTERED SOFTWARE ENGINEERING

Table 16.1 Descriptions of the tasks from Figure 16.9 and matching UI Patterns

Task Names Task Step Supporting Patterns
Explore Taxonomy • Composition of Patterns: patterns for Browse

Taxonomic Relationships and Browse Taxon
Definition compose to form overall
presentation

• Selection Dependence: Browse Taxon
Definition presentation based on selected taxon
in Browse Taxonomic Relationships
presentation

Browse Taxonomic
Relationships,
Compare Multiple
Taxa, Browse Parent
Taxa for a Single
Taxon, Expand a Taxon

• Tree

Browse Species Defini-
tion

Read taxon name • Grouping Box

• Static Label

• Text Box

Read where found • Group Box

• Static Label

• Text Box or Text Area

Read physical de-
scription • Grouping Box

• Static Label

• Text Area

See appearance • Graphic Area

• Grouping Box

• Static Label

• Text Box

UI DESIGN PATTERNS: BRIDGING USE CASES AND UI DESIGN 327

Figure 16.9

16.4.1 Use Case Author

For the use case author, the task characteristics listed for each pattern guide the con-
struction of scenario text. The task characteristics are worded to avoid polluting anal-
ysis with design decisions—including decisions regarding the design of the user inter-
face.

As the use case author gains experience in UI design patterns they come to recog-
nize these patterns in the tasks they document. As a consequence, the task descriptions
are cleaner and better reflect the user’s requirements for optimal problem space repre-
sentations.

Too often in current software requirements practice the use case author goes beyond
requirements and on to specifying UI design. A UI design pattern catalog structured
as described in this chapter provides the use case author with increased sensitivity to
the distinction between presentation requirements and UI design.

16.4.2 User Interface Designer

The user interface designer’s interest in the pattern descriptions primarily focuses on
the task characteristics that define proper use of each pattern. The UI designer uses
these characteristics to choose the appropriate pattern to support each user task. If the

A complete UI design, a taxonomy Field Guide Explorer

328 HUMAN-CENTERED SOFTWARE ENGINEERING

patterns are documented in a catalog or UI style guide that also provides examples of
use of each pattern the designer might use these examples to verify pattern choices.

The UI designer is also concerned, either explicitly or implicitly, with the pattern
to domain mapping for each pattern. The UI designer must completely map how each
UI design pattern used in the final design onto the portion of the user’s domain that is
to be displayed.

Use of the components of a pattern description may shift in more futuristic situa-
tions as when, for example, a tool such as described by Sinnig (Sinnig et al., 2005),
is used to construct a user interface out of parameterized component patterns. In this
envisioned situation the designer, after selecting patterns based on the task charac-
teristics described in use case scenario text, might use a diagram editor to create the
mapping links between each pattern’s elements and the concepts of the user’s domain.

A pattern catalog structured as described in this chapter provides the UI designers
with an awareness of the relationship among the presentation elements in their design
and between these presentation elements and the user tasks the elements must serve.

16.4.3 UI Architect

Even in project contexts making use of today’s tools UI architects use many aspects
of the pattern descriptions outlined in this chapter. When discussing difficult design
decisions with peer architects the object model or XML parameterized descriptions of
patterns help to formalize problems and highlight sources of conflict in design. When
selecting class libraries or other implementation support for user interface the archi-
tect can use these same object models or XML descriptions as feature checklists to
compare implementation alternatives. And, should the architect need to merge im-
plementation services from multiple sources these formal descriptions can serve as a
blueprint for how to approach design of the merged software.

16.4.4 UI Services Designer

Whether implementing a conventional class library, or a framework of user interface
services, or a construction environment as described by Sinnig (Sinnig et al., 2005), the
designer of UI services requires the level of requirements details provided by the for-
mal pattern descriptions outlined in this chapter—especially the level of detail found
in the mapping DTDs.

16.5 FUTURE WORK

The author is compiling a pattern catalog listing common UI design patterns covering:

Visual formalisms—such as Tree, Form, and Table

Formalism elements—such as Text Box, Static Label, and Group Box

Mechanisms—such as Single and Multiple Selection

Architectural Elements—such as Window and Desktop

Task patterns—such as Task Order Guidance and Mandatory Task Order

UI DESIGN PATTERNS: BRIDGING USE CASES AND UI DESIGN 329

This pattern catalog will be published in open-source format at http:www.
primaryview.org. It is the author’s intention to include information on use of
the pattern entries in authoring UI style guides.

The application of a catalog of pattern descriptions in the design of UI frameworks
and UI-enabling tools such as described by Sinnig (Sinnig et al., 2005) are obvious
and would provide a more complete validation of the formal content of the pattern
descriptions.

16.6 CONCLUSIONS

When formalizing descriptions of UI design patterns object models provide compact
and useful descriptions of a pattern’s metamodel. This chapter extends this static
model of UI design patterns by examining pattern composition. Patterns and pattern
composition can be documented and verified through the use of DTD descriptions
of the mapping elements each pattern requires to describe its mapping to a user task
domain. Descriptions of specific domain instantiations of a UI design pattern are
compactly and usably expressed in a by the XML markup instantiating the DTDs
defining the pattern. This explicit mapping from user tasks to design elements places
the focus of UI design patterns squarely back on the user.

17 UI DESIGN PATTERNS: FROM

THEORY TO PRACTICE
Janet Wesson and Lester Cowley

Nelson Mandela Metropolitan University, South Africa

Abstract

In this chapter, we discuss how user interface (UI) design patterns can assist in bridg-
ing the gap between requirements and design in software development, and the re-
search challenges posed by their use. Completed and ongoing research done by the
authors and co-workers on UI pattern use in transaction processing and E-commerce
system development and evaluation is used to illustrate the discussion.

17.1 INTRODUCTION

Software design patterns have proved useful at the coding level in object-orientated
software engineering (SE). There is some empirical evidence that the quality of soft-
ware produced using patterns is better than that of equivalent software produced
through conventional means (Schmidt and Cleeland, 2000). A number of large en-
terprises have successfully made use of software design patterns. Many developers
know about patterns and a number of books have been published on the subject. UI
design patterns, however, have yet to prove themselves in the way that software de-
sign patterns have and there is little empirical evidence that the quality of interfaces
produced using UI design patterns is better than that of equivalent interfaces produced
through conventional UI design methods (e.g. using guidelines). Thus studies of the

331

in the Development Process, 331–351.

© 2005 Springer. Printed in the Netherlands.

A. Seffah (eds.), Human-Centered Software Engineering – Integrating Usability

332 HUMAN-CENTERED SOFTWARE ENGINEERING

process of using UI patterns and pattern languages (PLs) and the quality of the arte-
facts (patterns and designs) used and produced are necessary.

Studying the process of using UI patterns in more detail is necessary for three
reasons. Firstly, it would clarify how useful UI patterns really are. Secondly, knowing
how designers and developers actually use patterns would enable one to formalise UI
pattern use within the software development process, train software engineers in the
use of patterns and manage the process (Wesson, 2001). Thirdly, once the use of
patterns is properly understood, usable tool support for them can be developed.

We present a study by Kok and Wesson of the use of UI design patterns in the devel-
opment of transaction processing (TP) systems that has yielded interesting information
on the process of using UI patterns from a developer’s perspective (Section 17.3). This
study revealed that existing pattern collections provide patterns suitable for lower-level
UI design but not for higher level design. New high-level TP patterns were identified
deductively by constructing a generalised task model from a number of extant systems
and comparing this model with a normative task model for TP.

The UI pattern study also presents evidence that suggests that if developers use
good-quality UI patterns, the usability of the systems they develop might be better. The
quality of the TP PL was evaluated as good using Fincher’s properties (Fincher, 1999)
and the usability of the UIs produced was measured as good by means of usability
testing. These results provide empirical evidence that UI patterns are useful tools for
supporting the design process.

Pattern quality is difficult to measure (Wesson and Cowley, 2003). Lea (Lea, 1994)
and Fincher (Fincher, 2000) have proposed different pattern property lists that can be
used to evaluate patterns statically. The surface (static) features of a pattern, however,
do not fully reveal its dynamic quality in use. It seems reasonable to assume, therefore,
that a competent designer or developer using good-quality UI patterns, as described
in the case study in Section 17.3, will produce UIs of good usability. The usability of
these systems can be measured quite easily using standard techniques.

In this chapter, a study by Cowley and Wesson which is currently in the data anal-
ysis stage, is described (Section 17.4). This study aims to understand the process
of pattern-based design and to determine the attitudes of a sample of designers and
developers to using UI patterns in the design and development of E-commerce web
sites.

The next section discusses how UI patterns should be identified.

17.2 PATTERN IDENTIFICATION

Pattern identification is the process of discovering new patterns. Apart from new pat-
terns, the process may reveal relationships (connections) between these patterns and
between them and pre-existing patterns. It may be possible to describe the type of each
relationship (subordinate, supra-ordinate, etc.) (Salingaros, 2000). The new patterns
and relationships may extend and modify existing pattern languages, and reveal new
ones.

Although over 200 UI patterns exist in several pattern collections (for example, see
Tidwell, 1998a; Alexander, 1979; Duyne et al., 2002, the need for pattern identifi-
cation has not fallen away. UI design is still developing, the pattern collections are

UI DESIGN PATTERNS: FROM THEORY TO PRACTICE 333

tentative and evolving and there are application domains which have not been studied
yet. It is quite likely that there are numbers of UI patterns as yet unidentified (the
DOME case study presented in Section 17.3 describes several new TP patterns which
were recently identified). Thus it is important for pattern researchers and users to
understand the pattern identification process.

UI pattern identification may be done in one of two ways: finding patterns by
studying existing practice and knowledge (Section 17.2.1); or generating them through
the UI design (UID) lifecycle (Section 17.2.2).

17.2.1 Pattern Identification Through Induction

Finding patterns by studying existing practice and knowledge is the most common
means of pattern identification and has yielded most of the UI patterns currently in
collections. This process is called pattern mining (Appleton, 2000). Pattern mining is
an inductive process; by identifying and studying sufficient examples of good practice,
patterns are identified through generalisation.

Pattern mining may be done by studying the static form and dynamic behaviour
of a number of good quality systems to find good designs, and by learning from the
accumulated design and development experience of designers and developers of good
quality systems.

Mining patterns is very difficult and time-consuming. Alexander (Alexander et al.,
1977) gives a three step process to follow in order to identify a pattern, which Griffiths
and Pemberton (Griffiths and Pemberton, 2000) have elaborated for the identification
of UI patterns:

Identify the subject of the pattern, by finding usable and useful examples of an
interface artefact in existing systems.

Identify the problem that the pattern resolves, and the set of conflicting forces
that shape a solution to the problem.

Identify invariance, by examining the interface artefact exemplified in a num-
ber of existing systems to see how successful solutions balance the forces and
unsuccessful solutions fail to do this.

The evolving, tentative pattern (or protopattern) needs to be captured in a standard
format and this activity is called pattern writing. Vlissides (Vlissides, 1995) suggests
seven habits that pattern writers should cultivate in order to successfully mine pat-
terns. Meszaros and Doble (Meszaros and Doble, 2000) present a pattern language for
pattern writing. This pattern language models a software design pattern format that
may be unsuitable for UI patterns and the language contains internal inconsistencies.
Nevertheless it can be a useful aid for pattern writers.

At least three instances of a successful design solution should exist onto which a
pattern can be mapped (Appleton, 2000). This so-called “Rule of Three” is a rule of
thumb to help ensure that the pattern identified is a recurring phenomenon and not just
an isolated case.

Learning from the design and development experience of designers and developers
can be done in a number of ways. Rising, discussing software design pattern iden-

334 HUMAN-CENTERED SOFTWARE ENGINEERING

tification in businesses, presents several of these drawn from her experiences at AG
Communication Systems (Rising, 2001):

Interviewing expert designers and developers;

Borrowing between businesses in the same domain that can share information;

Teaching pattern writing classes;

Pattern mining in workshops;

Mining personal experience;

Mining in meetings; and

Mining in training classes.

It would be preferable if the people identifying patterns were not the designers and
developers of the systems yielding the patterns, to make pattern mining more objective.
However, this may not be practical or possible in practice and introspection has been
very valuable in contributing patterns to the existing UI pattern collections.

17.2.2 Pattern Identification Through Deduction

At this stage in the evolution of UI design and UI patterns, it may be difficult to find
sufficient (or any) examples of good practice in a particular application domain. Thus
it may be necessary to identify patterns deductively, instead of inductively. The work
done by Richter at Siemens AG in identifying B2B patterns using the UID lifecycle
(Richter, 2003) is an example of how this can be done, although it must be noted that
the Siemens group became aware that van Welie (van Welie and Traetteberg, 2001)
had begun to publish similar patterns on his website at a later stage of their project.

The Siemens group identified patterns by means of the following process: appli-
cations of interest to the company were identified. Through participatory design, re-
quirements were gathered, and UIs were designed, evaluated and redesigned. The
redesigned UIs were described as patterns, using a modified Alexandrian format. The
set of patterns obtained included Product Finder, Product Catalogue, Configuration,
Product Comparison and Listed Results.

Patterns obtained deductively following Richter’s method should be regarded as
more tentative than those obtained though studying existing practice and knowledge
for two main reasons. Firstly, such patterns may be grounded in single cases and sec-
ondly, the people identifying the patterns were probably closely involved in designing
the UIs from which the patterns came (reducing objectivity).

In Kok and Wesson’s DOME case study discussed in Section 17.3 below, a method
for identifying UI patterns, which differs from Richter’s, is described. In this study,
TP patterns were identified deductively by constructing a generalised task model from
a number of extant systems and comparing it with a normative TP task model. This
revealed a number of new TP patterns (Section 17.3.1). Since Kok and Wesson’s
method considers several extant systems, patterns identified through this method are

UI DESIGN PATTERNS: FROM THEORY TO PRACTICE 335

likely to have a higher degree of invariance than those identified through Richter’s
method.

We note that the experiences documented below are the type of useful design
knowledge that Haynes et al. make a strong case for in Chapter 14 (“Integrating Multi-
Disciplinary Design Knowledge”). Even if structured methodologies that integrate UI
design pattern use into software engineering are in place, it is possible that appropri-
ate patterns are not known and must be discovered through the process of creating a
system.

17.3 PATTERN USE: THE DOME CASE STUDY

The recent study by Kok and Wesson resulted in the development of a pattern language
for TP systems (Kok, 2004; Kok and Wesson, 2002). This research was motivated by
a finding that UI design knowledge gained by experienced software developers was
not being transferred to new, inexperienced developers within companies developing
TP systems. The hypothesis was that a TP pattern language could be constructed to
contain UI design knowledge to support the development of the UI for a TP system.
A further hypothesis was that the usability of the UIs produced using this PL would
be good.

The DOME system was developed by Kok for the Nuclear Energy Corporation of
South Africa (NECSA) in 2003 to manage the exposure of employees to occupational
hazards. This section will discuss the development of the TP PL, the application of
this PL to produce the UI for the DOME system and the usability evaluation of the
resulting system.

17.3.1 The TP Pattern Language

A TP system provides tools and techniques to automate transactions found in common
application domains such as communications or manufacturing. A TP system in its
simplest form can be represented as comprising the following tasks: View data, Add
data, Change data and Delete data (Kok, 2004). Currently available pattern collections
such as those from Tidwell (Tidwell, 1998a) and van Welie and Trætteberg (van Welie
and Traetteberg, 2001) focus more on general aspects of UI design or on specific
application domains such as the World Wide Web (Duyne et al., 2002). No other PL
focuses specifically on TP or the development of UIs for TP systems.

A two-level structure was used to organize the patterns in the TP PL. This simple
structure allowed a clear separation between patterns relating to TP and patterns relat-
ing to general UI design. A diagram illustrating the architecture of the TP PL is given
in Figure 17.1 below.

The first level corresponds closely to the posture and experience levels as proposed
by van Welie and van de Veer (van Welie and van de Veer, 2003) and comprises pat-
terns relating specifically to TP. The second level corresponds to the task and action
level patterns as proposed by van Welie and van de Veer and consists of patterns relat-
ing to more general UI design.

Different methods were used to develop the patterns in the TP PL. The UI patterns
were sourced from existing pattern collections including Tidwell (Tidwell, 1998a; Tid-

336 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 17.1 Architecture of TP PL (Kok, 2004)

well, 2004) and van Welie and Trætteberg (van Welie and Traetteberg, 2001). These
patterns were re-formatted and rewritten in a tabular style using a similar format to
that used by van Welie and Trætteberg (for example, see Figure 17.2 and Figure 17.3).
The patterns used and the original authors are the following: Form, Hierarchical Set,
Sortable Table, Tabular Set, Toolbox, Top-level Navigation and Visual Framework
(Tidwell, 1998a); and Continuous Filter and Focus (van Welie and Traetteberg, 2001).

Two new, additional UI patterns were also developed: Group Data and UI Name.
These additional patterns were identified by analysing existing systems such as Mi-
crosoft Outlook and Microsoft Word. The Group Data pattern supports the grouping
of related data to facilitate dynamic reordering on a specific column. The UI Name
supports the identification of each UI with a unique name or current status.

The UI patterns in the TP PL in Figure 17.1 form the foundation of the TP PL and
serve as building blocks for the TP patterns. The Capture Data, Modify Data and
Find Data patterns are derived from the Form pattern which in turn uses the UI Name
pattern. The Manage Data pattern uses the UI Name, Tabular Set and Hierarchical Set
patterns. The Tabular Set pattern is comprised of the Continuous Filter, Focus, Group
Data and Sortable Table patterns. The Top-level Navigation and Visual Framework
patterns can be used independently of the other patterns for the design of the TP system
as a whole.

The TP patterns were identified deductively by constructing a generalised task
model from four existing TP systems (Section 17.2.2). This analysis revealed that
all four of the related systems had a requirement for managing data. This data man-
agement included the display of information in a clear and concise manner, while
providing the user with the facility to perform other operations such as capturing,
changing and deleting data. This process of viewing, capturing, changing and deleting
data was repeated in other areas of the different systems.

UI DESIGN PATTERNS: FROM THEORY TO PRACTICE 337

The TP patterns identified using the above process were Manage Data, View Data,
Capture Data and Modify Data (Figure 17.1). The key usability principles inherent
in the design solution of these patterns are efficiency and error prevention since fast,
error-free data entry is an inherent requirement of all TP systems. The Manage Data
pattern is illustrated in Figures 17.2 and 17.3 below.

Property Description
Name Manage Data
Author Dirk Kok
Problem The user needs to perform a set of tasks on a dataset.

These tasks include adding data, modifying data, view-
ing data and deleting data.

Usability Principle Efficiency, Consistency
Context Most TP systems require that users manage various sets

of data. These datasets can range from small data lists to
large sets of hierarchical data.

Forces Data needs to be displayed in a presentable and under-
standable way. Users must be able to locate the proper
data effectively. Users must be able to perform their tasks
with ease and minimum effort.

Solution This pattern makes use of a large variety of micro UI pat-
terns. In its simplest form it makes use of a UI Name pat-
tern with a Toolbox pattern below and then a Tabular Set
pattern, which takes up the rest of the screen space. The
UI Name pattern describes the data being managed using
this pattern. The Toolbox pattern contains all the func-
tionality that can be performed on the data. The Tabular
Set pattern is used to present the data. The Tabular Set
pattern also relies on the Current Focus pattern to con-
vey the current data selection to the user. Variations on
this simple form can include the use of the Group Data,
Sort Data and Continuous Filter patterns. This pattern
can also be used to represent hierarchical data relation-
ships by reusing it in conjunction with the Hierarchical
Set pattern.

Rationale This pattern makes use of various UI patterns to provide
the user with a centralised data management platform. It
serves as an effective tool for presenting data and allow-
ing the user to interact with the data.

Figure 17.2 Manage Data Pattern (Part 1) (Kok, 2004)

All of the example TP systems also require users to work with large sets of data;
browsing through long lists in order to locate specific records. The Find Data pat-
tern was thus identified to support the task of locating records efficiently according to
specific criteria (Figures 17.4).

338 HUMAN-CENTERED SOFTWARE ENGINEERING

Property Description

Examples

Known Uses Microsoft Windows Explorer

Figure 17.3 Manage Data Pattern (Part 2) (Kok, 2004)

17.3.2 Task Analysis

The task analysis for the DOME system was performed by analysing an extant legacy
system and conducting user interviews. The two main tasks identified were the fol-
lowing:

Maintain system information: This includes building and workplace structure,
possible stressors (hazardous forces), tests to be conducted per stressor, types of
radiation, hazardous chemicals, and testing and examination methods.

Maintain employee occupational exposure information: This represents the
main goal of the system. Information kept here includes employee informa-
tion, employees per workplace, exposure of employees to stressors, and testing
information.

The workplace, stressor and testing information must be recorded for each of the
employees in the system. Historical data has to be kept for 30 years, which implies that
a large volume of data must be stored and displayed for each employee. Users should
therefore be able to work with current data and request historical data on demand.

The results of medical examinations and routine testing need to be captured for
each employee. Health and safety regulations require NECSA to routinely monitor
the exposure of each employee to occupational hazards. This monitoring is performed
on a daily basis and captured per test and per employee. The system must also provide
functionality to schedule testing and medical examinations per employee in order to

UI DESIGN PATTERNS: FROM THEORY TO PRACTICE 339

Property Description
Name Find Data
Author Dirk Kok
Problem The user needs to find a record in a set of records.
Usability Principle Efficiency
Context The user needs to locate a record in a dataset in order to

perform a task on this data.
Forces The user effort must be minimised. The search mecha-

nism must be transparent to the user. The search results
must be visible to the user.

Solution Provide the user with a floating UI that is always on top.
This UI should allow the user to enter the search criteria.
The search results can be displayed by placing the focus
on the found record. Allow the user to cycle between the
correct results. Inform the user if no matching records
were found.

Rationale The floating UI that is always on top does not interfere
with the user’s workspace. The search results are pre-
sented with the data and the user doesn’t have to go to
another “place” to view the results.

Examples
Microsoft Visual Basic 6 Find screen

Known Uses Microsoft Visual Basic

Figure 17.4 Find Data Pattern (Kok, 2004)

ensure that the correct employees are tested at the correct time, thereby improving the
organization’s adherence to health and safety regulations.

17.3.3 Pattern Selection

The UI design of the DOME system was derived from the task analysis and user con-
straints discussed in the previous section. Appropriate pattern selections were made
from the TP PL in Figure 17.1 by matching the system tasks to the relevant patterns.
These patterns were then used as a basis for the development of the various UIs in
order to meet the system requirements.

The two main tasks identified in Section 17.3.2 were subsequently expanded to
include the following five tasks: Maintain chemical information; Maintain building

340 HUMAN-CENTERED SOFTWARE ENGINEERING

structure information; Maintain employee occupational exposure information; Main-
tain employee testing information; and Capture employee testing information.

The following discussion is given to illustrate how the different patterns in the TP
PL were selected to be used for the design of the UIs to support the above tasks:

Maintain chemical information: The user tasks involved here include viewing
the current chemicals in the system, adding new chemical records, modifying
existing chemical records and deleting obsolete chemical records. Based on
these tasks, the Manage Data pattern was selected as the main UI component
(Figure 17.2 and 17.3). This pattern provides a workspace from which the op-
erations of viewing data, adding data, modifying data and deleting data can be
performed. The Capture Data pattern was then used to provide users with a
workspace from which to capture new chemicals into the system. The Mod-
ify Data pattern was also used to facilitate changes to the hazardous chemical
records. This standardized pattern-based approach to design allowed the design
of UIs that behave in the same way regardless of the underlying data.

Maintain building structure information: The task involved here includes
managing the hierarchical relationship between buildings and workplaces which
is typical of many master-detail relationships. The user must be able to manage
data for the buildings and their related workplaces. The Manage Data pattern
was used again to represent this hierarchical relationship with the Capture Data
and Modify Data patterns being used to maintain building and workplace infor-
mation.

Maintain employee occupational exposure information: This task had the
most complex user constraints and requirements since the user needs to be able
to manage employee information, employee workplace information and em-
ployee stressor information. Each of these subtasks was solved, however, by
re-using the Manage Data pattern in a nested fashion. The additional tasks of
adding, changing and deleting data were solved by using the Capture Data and
Modify Data patterns for each of the data sets represented. The user is provided
with filter capabilities in terms of the Continuous Filter pattern and specific
views are provided to meet the requirement of providing historical data.

Maintain employee testing information: This task requires the user to manage
the testing information for employees. The user needs to view currently sched-
uled tests, schedule new tests, change testing information and delete incorrect
test results. This task was accomplished by using the Manage Data pattern as
discussed above together with the Capture Data and Modify Data patterns.

Capture employee testing information: This task represents one of the most
frequently used tasks in the system as test details are captured on a daily basis.
The nature of the task requires the user to capture a sheet of information for
a group of employees. The Capture Data pattern could therefore not be used
as it is more suited to capturing a single record at a time. The same layout
as the paper-based form was therefore used to reduce the amount of user input
required.

UI DESIGN PATTERNS: FROM THEORY TO PRACTICE 341

17.3.4 UI Design

The UI design was completed using the pattern selections as described in the previ-
ous section. The DOME system was developed using the Microsoft Visual Basic 6
programming environment. The main application workspace was based on the Visual
Framework and Top-level Navigation patterns. The following section will discuss the
development of some of the UIs in order to illustrate how the TP patterns were used
to support the design process.

The Maintain Chemical Information UI represents the simplest of the data man-
agement tasks in the DOME system. The workspace is based on the Manage Data
pattern and is illustrated in Figure 17.5 below. The toolbar, which is based on the
Toolbox pattern, contains the main user tasks, i.e. add, edit, delete and print records.
The data is presented using a grid with an arrow and navy coloured bar indicating
the current record as described in the Tabular Set and Current Record patterns. In
order to add new records, the user selects the New task from the toolbar and is pre-
sented with the Add New Chemical UI (Figure 17.6). This workspace is based on the
Capture Data pattern. A similar workspace is provided for editing existing chemical
information, based on the Modify Data pattern.

Figure 17.5 Maintain chemical information UI (Kok, 2004)

The Maintain Building Structure UI represents the master-detail relationship be-
tween buildings and the workplaces that belong to each building (Figure 17.7). This
UI is also based on the Manage Data pattern; the master-detail relationship being
represented by two nested Manage Data patterns. The top area contains the build-
ing information and the bottom area contains the workplaces for the currently selected
building. As a different building is selected; the information for the related workplaces
is displayed.

The Maintain Employee Occupation Exposure UI is designed similarly to the
Maintain Building Structure UI, using three nested Manage Data patterns to repre-
sent the hierarchical relationships between employees, workplaces and the stressors to
which these employees are exposed in these workplaces.

The Maintain Employee Testing UI is also designed similarly to the Maintain
Building Structure UI, using two nested Manage Data patterns to represent the re-

342 HUMAN-CENTERED SOFTWARE ENGINEERING

Figure 17.6 Add new chemical UI (Wentling et al., 2000)

Figure 17.7 Maintain building structure UI (Griffiths and Pemberton, 2000)

lationships between employees and the tests scheduled for these employees. This UI
also provides extended data grouping and filtering using the Group Data and Con-
tinuous Filter patterns. The data grouping feature allows the user to sort the list of
employees by any of the employee attributes, e.g. surname, to facilitate easy retrieval.
The data filtering feature allows the user to filter the list of employees according to

UI DESIGN PATTERNS: FROM THEORY TO PRACTICE 343

user-specified criteria, e.g. complete or partial surname, to facilitate locating specific
records efficiently in a large dataset.

Most of the UIs for the DOME system could be designed using the TP PL. The only
exception to this was the Capture Employee Test Results UI which was designed so
that the test results could be captured in the same order as the paper-based form. The
pattern-based design approach had several benefits including reduced development
time and consistency which also resulted in improved learnability.

17.3.5 Evaluation

The usability of the UIs produced using the TP PL was assessed by means of a heuris-
tic evaluation and a user questionnaire. The heuristic evaluation was conducted us-
ing Nielsen’s ten usability heuristics (Nielsen, 1994) and involving three evaluators.
The only usability problems identified were in the areas of user control and freedom,
flexibility and efficiency of use and aesthetic and minimalist design. The usability
problems identified were the following (Kok, 2004):

User control and freedom: The evaluators felt that they could not change the
UIs sufficiently to suit their needs.

Flexibility and efficiency of use: The evaluators felt that some of the system
tasks were implemented too rigidly since events seldom occur in a fixed order.

Aesthetic and minimalist design: The evaluators thought that the Maintain
Employee Occupation Exposure UI was too cluttered (Section 17.3.4). A sug-
gestion was made to split the hierarchical information into two separate UIs,
which was implemented.

The NECSA employees were also asked to complete a modified version of the
Questionnaire for User-Interaction Satisfaction (QUIS) (Norman, 1995). Several
questions were asked in each section and the users were asked to rate their satisfaction
with the user interface using a 5-point Likert scale, with 1=Very poor and 5=Excellent.
The results obtained for this questionnaire are contained in Table 17.4 below.

Table 17.4 QUIS results

No. Section Mean Std. Dev.
3 Overall User Reactions 4.24 0.82
4 Terminology and System Information 4.38 0.70
5 Learning 4.19 0.86
6 System Capabilities 4.47 0.59
7 Screen Design 4.15 0.88

All of the sections received mean responses above 4.0 (Table 17.4). We can thus
deduce that the users were generally satisfied with the overall system design, the ease
of learning, the system capabilities and the UI design.

344 HUMAN-CENTERED SOFTWARE ENGINEERING

The only significant problems identified in the questionnaire were the ease of cap-
turing and changing data on the grid with respect to the Capture Employee Test
Results UI (Section 17.3.4). This UI was not designed according to the Capture Data
and Modify Data patterns as discussed previously. The initial idea was to capture the
results in the order in which they appeared in the reports. In practice, however, the
results never came back in this order. This problem was solved by redesigning this UI
using the original TP patterns for capturing and modifying data.

From the above discussion, we can conclude that the general usability of the UIs
produced using the TP PL was good. Some minor changes had to be made, but these
were in order to make the final UI design closer to the original pattern specifications.
This evaluation also revealed, however, that existing methods for evaluating patterns
are not well defined. It should also be noted that the same person was responsible for
the development of the TP PL as well as the DOME system. The usefulness of these
patterns could therefore not be measured objectively (Section 17.2.1). This problem
is explored in more detail in the next section.

17.4 PATTERN EVALUATION

As noted in Chapter 3 by Seffah et al. (“HCI, Usability and Software Engineering
Integration”), although UI patterns and pattern languages are potentially useful for UI
design and integration in the software engineering lifecycle, they have various unre-
solved problems. The existing pattern collections are works in progress and the quality
of the patterns and pattern languages contained within them is largely unknown. The
patterns may be flawed in their content or their format may be deficient. The pat-
tern languages may be lacking (as is the case with pattern catalogues), fragmentary
or inconsistent. Empirical evidence about pattern use, either as a design aid or an
evaluation tool, is limited (Wesson and Cowley, 2003). As an evaluation tool, there is
some evidence that guidelines may be easier and more effective to use than patterns.
More research is needed to empirically validate and refine current pattern collections.
Several research questions are unanswered, most notably how to evaluate patterns in
their static form and dynamically in use.

In order to gather more empirical evidence about pattern use, the NMMU UI De-
sign Patterns Evaluation Project is currently underway. The aim of this project is to
understand how usable UI patterns are and how to measure this (pattern evaluation).
Three aspects of patterns that can be evaluated are:

The extent to which the solution embodied in a pattern (its content) is a good
solution.

The extent to which different pattern formats are a good means of capturing
design knowledge for the intended users (designers, developers and end users
involved in participatory design).

The extent to which a pattern collection (in the form of a catalogue or pattern
language) is usable by its intended users.

As part of the Project, a study was recently conducted which focused on the at-
titudes of designers and developers to using UI patterns in UI design, their design

UI DESIGN PATTERNS: FROM THEORY TO PRACTICE 345

activities and the artefacts produced. The results are currently being analysed. The
following aspects of the pilot study are discussed: advantages of pattern use, research
questions, research design and preliminary results.

17.4.1 Advantages of UI Pattern Use

The advantages of UI pattern use as described in the literature are useful for grounding
the research questions of the study. Griffiths and Pemberton state the advantages of
UI patterns by comparing them to guidelines (Griffiths and Pemberton, 2000):

Patterns record useful meta-information for design that guidelines with their
imperative structure do not.

Pattern use emphasises the process of developing and using guidelines, rather
than the product produced.

Pattern languages, being structured, allow large amorphous collections of guide-
lines to be navigated with confidence.

Patterns, due to their form and development process, are engaging to their users.

Pattern language use could possibly promote participatory design (involving
users as participants).

According to Dearden et al. (Dearden et al., 2002), UI pattern language use exhibits
three classical Alexandrian outcomes:

It empowers users to participate in UI design.

It supports generative design.

It produces life-enhancing outcomes for the designers and users.

Experimental work done by Dearden et al. on the use of pattern languages in
participatory design provides evidence that supports this.

van Welie and van der Veer (van Welie and van de Veer, 2003) suggest two func-
tions of pattern languages for designers:

Pattern languages make the mental models of pattern-writers visible and acces-
sible to others.

Pattern languages can function as shared design languages between designers.

Although van Welie and van der Veer do not state this explicitly, pattern language
sharing can take place directly (synchronously) between designers or indirectly (asyn-
chronously) via languages in analogue or digital repositories (UI pattern collections).

Tidwell (Tidwell, 1998a) lists the advantages of pattern use in more detail than
encountered in other sources. According to her, pattern use can:

Help individual designers build better interfaces.

346 HUMAN-CENTERED SOFTWARE ENGINEERING

Give designers a shared design language.

Help designers achieve the “Quality without a Name” (QWAN) in artefacts.

Diversify design solutions.

Draw on design knowledge in related fields.

Preserve design knowledge that otherwise might become lost over time.

17.4.2 Research Questions

The research questions focus on designers and developers’ attitudes towards UI pat-
tern use, and are grounded in the three aspects of patterns listed in Section 17.4, the
literature discussed in Section 17.4.1, and several ways that UI patterns could be em-
ployed in the software lifecycle. In iterative development/prototyping, the following
are possible modes of pattern use:

Heuristic evaluation of the usability of existing systems (either existing systems
or as part of an iterative design process).

Support for the redesign of existing systems to correct potential usability prob-
lems.

Support for the design of user interfaces from specifications (initial prototype).

These modes of use correspond to those highlighted in the process patterns in Chap-
ter 10 by Battle (“Patterns of Integration”). Heuristic evaluation of the usability of
existing systems (either existing systems or as part of an iterative design process) and
support for the redesign of existing systems to correct potential usability problems is
described in the Foot in the Door (for External Consultants), UCD Focus on Early
Definition and UCD in Every Phase patterns. Support for the design of user interfaces
from specifications (initial prototype) is described in the Foot in the Door (for Internal
Usability Groups) pattern.

The research questions are divided into a primary research question and fifteen
secondary questions based on the primary question. The secondary questions focus
on the mode of pattern use as listed above, their format, content, organisation, ease
of learning and ability to function as a design language. The questions that deal with
the mode of pattern use are expressed in terms of the three standard components of
usability (efficiency, effectiveness and user satisfaction), measured for a particular user
group in a specific context of use. The research questions are presented in tabular form
in Table 17.6 below.

17.4.3 Research Design

A group of 33 postgraduate (Masters and Honours level) students registered for the
2004 E-Commerce module at the former University of Port Elizabeth, now incorpo-
rated within NMMU, were recruited for the study. These students had some experience
of design and development from a software engineering perspective, as well as HCI,

UI DESIGN PATTERNS: FROM THEORY TO PRACTICE 347

Table 17.6 Research questions

No. Research Question
1. Primary Research Question:

To what extent do developers consider UI patterns to be useful during the
development process?

2. Secondary Research Questions:
To what extent do developers consider UI patterns to be:

2.1 An efficient evaluation aid (enabling rapid identification of potential usabil-
ity problems in existing designs)?

2.2 An effective evaluation aid (enabling identification of a significant number
of potential usability problems in existing designs)?

2.3 Satisfying to use as an evaluation aid?
2.4 An efficient redesign aid (enabling rapid correction of potential usability

problems in existing designs)?
2.5 An effective redesign aid (enabling successful correction of potential usabil-

ity problems in existing designs)?
2.6 Satisfying to use as a redesign aid?
2.7 An efficient design aid (enabling rapid generation of designs)?
2.8 An effective design aid (embodying and producing good designs)?
2.9 Satisfying to use as a design aid?
2.10 Expressed in a useful format (their parts and how these are arranged)?
2.11 Useful in terms of their content (the information embodied in the parts)?
2.12 Useful when linked together into a pattern language (organisation)?
2.13 Easy to become familiar with when first encountered?
2.14 A personal design language to use when designing UIs?
2.15 A means of sharing design knowledge between designers?

as a result of their academic education and training, at a novice to intermediate level.
Consequently, they did not inhabit the balkanised work spaces common in software
production environments described by Seffah et al. in Chapter 3. The group was di-
vided into an experimental and a control group. The experimental group were required
to perform design tasks using UI design patterns, whereas the control group were re-
quired to perform the same tasks using design guidelines. The objective of this was to
obtain a comparison of the usability and capabilities of UI design patterns compared
to a generally accepted design aid like guidelines.

Stratified sampling was employed to split the group into two equivalent groups,
based on two attributes, namely postgraduate degree registered for and average mark
obtained for third year Computer Science modules. It was important to ensure that
the mark distribution for each degree type was the same or nearly the same in the two
groups in order to remove any performance bias.

The UI design patterns selected for use in this study by the experimental group were
van Welie’s Amsterdam Pattern Collection (van Welie and Traetteberg, 2001) and van

348 HUMAN-CENTERED SOFTWARE ENGINEERING

Duyne et al’s Design of Sites Pattern Browser (Duyne et al., 2002). The design guide-
lines selected for use by the control group were Barnard’s E-commerce guidelines
(Barnard and Wesson, 2003), which are based on those proposed by Nielsen et al
(Nielsen et al., 2001). Permission was obtained from the owners of these resources to
use them for the study.

The study involved the capture of quantitative and qualitative data. The subjects’
biographical and background information and existing perceptions of pattern use were
captured by means of a Pre-Questionnaire. A Project Diary was used to record indi-
vidual experiences during the pilot study. A Post-Questionnaire was used to capture
feedback on the use of the UI design patterns and guidelines after the pilot study.

The pilot study comprised three assignments which were done individually within
the two groups over a period of six weeks. The goal of Assignment 1 was to per-
form a heuristic evaluation of the Porcupine Ceramics web site (http://www.
porcupine.co.za/), to produce a heuristic evaluation report and to evaluate the
content of the design aids used in the heuristic evaluation. The goal of Assignment 2
was to redesign the Porcupine Ceramics web site and to evaluate the content of the de-
sign aids used in the redesign. The artefacts to be produced were a site (or navigation)
map, a collection of wireframes that described the web pages and a report that anal-
ysed the usefulness of the content of the design aids used. The goal of Assignment 3
was to design a new E-commerce web site using the design aids, and to evaluate the
form of the design aids used in the design. The artefacts to be produced were a site (or
navigation) map, a collection of wireframes and a report that analysed the usefulness
of the design aids used and the Project Diary.

17.4.4 Preliminary Results

Preliminary results were obtained for the Post-Questionnaire and are summarised in
Table 17.8. The questions in the Post-Questionnaire were divided into five categories:
Evaluation, Redesign, New design, Format & Content and General. The subjects were
asked to rate their experiences with using the respective design aids in these five cat-
egories using a 5-point Likert scale, with 1 indicating Strongly Disagree, and 5 in-
dicating Strongly Agree. Several questions were asked in each of these categories,
relating to the research questiosn in Table 17.6, expressend as hypotheses. Descrip-
tive statistics were calculated for each of the questions including means and standard
deviations.

With regard to the use of guidelines as compared with patterns as an evaluation tool,
the mean ratings obtained from the guideline users were all higher than the pattern
users (Table 17.8). The mean ratings obtained from the pattern users were, however,
above 3.5 for efficiency (3.6) and effectiveness (3.5) but lower for user satisfaction
(3.1). We can thus provisionally accept hypotheses 2.1 and 2.2 and deduce that devel-
opers consider patterns to be an efficient and effective evaluation aid (Table 17.6).

With regard to the use of guidelines as compared with patterns as a means of re-
designing an existing system, the mean ratings for both groups were very similar for
efficiency, effectiveness and satisfaction. The mean ratings for satisfaction (3.3), how-
ever, were lower than those for efficiency and effectiveness. We can thus provisionally

UI DESIGN PATTERNS: FROM THEORY TO PRACTICE 349

Table 17.8 Results of post-questionnaire

C
at

eg
or

y

Property

H
yp

ot
he

si
s Guideline Users

N

M
ea

n

S
td

D
ev

Pattern Users

N

M
ea

n

S
td

D
ev

R
es

u
lt

R
ed

es
ig

n

Efficiency
Effectiveness
Satisfaction

2.4
2.5
2.6

20 3.6 0.8
20 3.7 0.7
20 3.3 0.8

31 3.6 0.9 A
31 3.6 0.9 A
31 3.3 1.2 N

N
ew

D
es

ig
n

Efficiency
Effectiveness
Satisfaction

2.7
2.8
2.9

40 3.3 0.8
40 3.7 0.8
40 3.3 0.9

60 3.5 1.1 A
29 3.8 0.8 A
30 3.6 1.1 A

Fo
rm

at
/C

on
te

nt

Form
Content
Organisation

2.10
2.11
2.12

21 3.4 1.2
20 3.3 1.3
10 4.3 0.7

34 3.4 1.1 A
34 3.5 1.0 A
33 3.5 1.0 A

G
en

er
al Learnability

Personal Lang.
Shared Lang.
Future use

2.13
2.14
2.15

33 3.4 1.0
11 3.5 0.7
8 3.1 1.0
11 4.1 0.7

48 3.4 1.0 N
16 3.7 0.9 A
15 3.1 1.1 N
16 4.1 1.1 A

accept hypotheses 2.4 and 2.5 and deduce that developers consider patterns to be an
efficient and effective redesign aid (Table 17.6).

With regard to the use of guidelines as compared with patterns as a means of de-
signing a new system, the mean ratings for both groups were very similar for effec-
tiveness only. The mean rating obtained from the pattern users for efficiency (3.5) was
higher than that obtained for the guideline users (3.3). Similarly, the mean rating ob-
tained from the pattern users for satisfaction (3.6) was higher than that obtained from
the guideline users (3.3). We can thus provisionally accept hypotheses 2.7, 2.8 and 2.9
and deduce that developers consider patterns to be an efficient, effective and satisfying
design aid for designing new systems (Table 17.6).

With regard to the format and content of the guidelines as compared with the pat-
terns, the mean ratings for both groups were very similar. The mean rating obtained
from the guideline users for the organisation and structure of the guidelines (4.3) was
significantly higher than that obtained from the pattern users (3.5). The mean ratings

350 HUMAN-CENTERED SOFTWARE ENGINEERING

obtained from the pattern users for this category were, however, all above 3.5. We
can thus provisionally accept hypotheses 2.10, 2.11 and 2.12 and deduce that devel-
opers consider the format, content and organisation of the pattern collections used to
be generally useful (Table 17.6).

With regard to the ease of learning of guidelines as compared with patterns, the
mean rating for both groups was the same (3.4). Similar ratings were also obtained
for both groups in terms of personal usage, sharing of knowledge and future usage.
For this category, only the mean ratings obtained from the pattern users for personal
usage (3.7) and future usage (4.1) were above 3.5. We can thus provisionally accept
hypothesis 2.14 and deduce that developers consider patterns to be a personal design
language that can be used when designing UIs (Table 17.6). Both groups indicated
strongly that they would consider using guidelines and patterns respectively in the
future (4.1).

Further qualitative analysis still needs to be performed to analyse the general com-
ments provided by the subjects in the Post-Questionnaire, the reports and the project
diary in order to understand the participants’ mental models and processes. The qual-
ity of the design artefacts produced also needs to be evaluated to determine if there
were any significant differences in quality between the designs produced by the two
groups.

The study did not span the entire software engineering lifecycle from requirements
to delivery of a production system. The UI design patterns were used “as is” from the
collections, according to a heuristic specified by the researchers. We note the possi-
bilities of a formal UI pattern model, like that described by Artim in Chapter 15 (“UI
Design Patterns: Bridging Use Cases and UI Design”) in making UI design pattern
use more structured and productive of standardized high-quality outcomes.

17.5 FURTHER RESEARCH

Over the last five years, interest in UI patterns has shifted from determining what
patterns are to studying how usable and useful they are in practice.

Further research needs to be done to clarify the following issues:

Continuing empirical evaluation of the usability of UI patterns in the UI design
process (for heuristic evaluation, redesign and design from specifications);

Development of heuristic evaluation techniques for UI patterns based on format,
content and properties;

The effect of format on the usability of UI patterns and pattern languages by
designers and developers;

The effect of content on the usability of UI patterns and pattern languages by
designers and developers;

The quality of the content of the patterns and pattern languages contained within
the existing UI pattern collections;

The usability of the existing UI pattern collections (print and online format) as
reference tools;

UI DESIGN PATTERNS: FROM THEORY TO PRACTICE 351

Integration techniques for pattern-based design in the Software Engineering life-
cycle; and

Requirements for Software Engineering tool support for UI patterns.

17.6 CONCLUSIONS

Pattern-based UI design has the potential to bridge the gap between high-level require-
ments and UI design. Unlike software design patterns which are used by developers to
build the internals of a system, UI design patterns provide a shared language between
designers and users, which is closer to Alexander’s vision for architectural design
patterns (Section 17.1). UI design patterns could be used effectively by software en-
gineers once they are grounded in theory and empirical research (Section 17.2 and
17.3).

Design patterns offer many opportunities for UI design but existing pattern col-
lections are flawed and empirical evidence of pattern use is limited (Section 17.4).
More research is needed to empirically validate and refine current pattern collections.
Several research questions also remain to be answered, most notably how to evaluate
patterns (Section 17.5).

The pattern evaluation study conducted in South Africa in 2004 has shown that
designers and developers generally consider patterns to be a useful tool for evaluat-
ing existing systems, redesigning existing systems and designing new systems (Sec-
tion 17.4.4). Patterns can thus play an important role in the software development
lifecycle and assist with bridging the gap between software engineering and user in-
terface design.

Acknowledgements

The authors wish to acknowledge the contributions of Dirk Kok with respect to the
DOME case study and Martijn van Welie in the planning of the pattern evaluation
study.

Abrahamsson, P., Warsta, J., Siponen, M., and Ronkainen, J. (2003). New directions
on agile methods: A comparative analysis. In Proceedings of the 25th International
Conference on Software Engineering, pages 244–254, Portland, Oregon, USA.

Abran, A., Moore, J. W., Bourque, P., Dupuis, R., and Tripp, L. L. (2004). SWEBOK:
Guide to the Software Engineering Body of Knowledge. IEEE.

Ackoff, R. L. (1989). From data to wisdom. Journal of Applied Systems Analysis,
16:3–9.

ACM (1992). ACM SIGCHI curricula for human-computer interaction. ACM Press.
Agarwal, R., De, P., and Sinha, A. P. (1999). Comprehending object and process mod-

els: An empirical study. IEEE Transactions on Software Engineering, pages 541–
556.

Agile Alliance (2001). Manifesto for agile software development. Technical report,
Agile Alliance. http://www.agilealliance.org.

Akrich, M. (1992). The de-scription of technical objects. In Bijker, W. E. and Law, J.,
editors, Shaping Technology/Building Society: Studies in Sociotechnical Change,
pages 205–224. Cambridge, MA: MIT Press.

Albert, S. and Bradley, K. (1997). Managing Knowledge: Experts, Agencies and Or-
ganizations. Cambridge, UK: Cambridge University Press.

Alexander, C. (1979). A Timeless Way of Building. New York: Oxford University
Press.

Alexander, C. (1996). Keynote address at the OOPSLA96 conference held in san jose,
california, usa.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., and An-
gel, S. (1977). A Pattern Language. New York: Oxford University Press.

Ambler, S. (1998). Process Patterns. Cambridge University Press.
Ambler, S. (2002). Agile Modeling: Effective Practices for EXtreme Programming and

the Unified Process. New York: J. Wiley.
Anderson, J., Fleek, F., Garrity, K., and Drake, F. (2001). Integrating usability tech-

niques into software development. IEEE Software, 18(1):46–53.
Anderson, J. R. and Lebiere, C. (1998). Representing Cognitive Activity in Complex

Tasks. Lawrence Erlbaum Associates, Mahwah NJ.

353

REFERENCES

354 HUMAN-CENTERED SOFTWARE ENGINEERING

ANSI/INCITS (2001). ANSI/INCITS-354: Common Industry Format for Usability Test
Reports. NCITS 354-2001.

Antunes, H., Seffah, A., Radhakrishnan, T., and Pestina, S. (2001). Unifying user-
centered and use-case driven requirements engineering lifecycle. In (Gulliksen and
Boivie, 2001). Summary of the INTERACT’00-workshop. Also available as tech-
nical report from the department of information technology, Uppsala university,
Report number 2001-026. (http://www.it.uu.se/research/reports/
2001-026/2001-026.pdf).

Apple Computer, I. (1987). Human Interface Guidelines: The Apple Desktop Inter-
face. Addison-Wesley Publishing, Reading, MA. OCLC 17424669.

Appleton, B. (2000). Patterns and software: Essential concepts and terminology
[online]. Technical report, http://www.enteract.com/˜bradapp/doc/
patterns/patterns-intro.html.

Arias, E., Eden, H., Fischer, G., Gorman, A., and Scharff, E. (2000). Transcending
the individual human mind — creating shared understanding through collaborative
design. ACM Transactions on Computer-Human Interaction, 7:84–113.

Armitage, J. (2004). Are agile methods good for design? Interactions, 11(1):14–23.
Armour, P. G. (2004). Beware of counting LOC. Communications of the ACM, 47:21–

24.
Arrow, H., McGrath, J. E., and Berdahl, J. L. (2000). Small groups as complex sys-

tems: Formation, coordination, development and adaptation. Sage Publications,
Thousand Oaks CA.

Artim, J. and van Harmelen, M. (1998). Incorporating work, process and task anal-
ysis into commercial and industrial object-oriented systems development. In Pro-
ceedings of ACM CHI 98 Conference on Human Factors in Computing Systems
(Summary), volume 2 of Workshops, page 198.

Artim, J., van Harmelen, M., Butler, K. A., Gulliksen, J., Henderson, A., Kovacevic,
S., Lu, S., Overmyer, S., Reaux, R., Roberts, D., Tarby, J.-C., and Linden, K. V.
(1998). Incorporating work, process and task analysis into commercial and indus-
trial object-oriented systems development. SIGCHI Bull., 30(4):33–36.

Artim, J. M. (2001). Entity, task, and presenter classification in user interface archi-
tecture: an approach to organizing HCI practice, pages 115–158. Addison-Wesley
Longman Publishing Co., Inc.

Bannon, L. (1991). From human factors to human actors. In Greenbaum, J. M. and
Kyng, M., editors, Design at work: Cooperative Design of Computer Systems,
page 34. Hillsdale, N.J.: L. Erlbaum Associates.

Barnard, L. and Wesson, J. L. (2003). Usability issues for e-commerce in South Africa:
an empirical investigation. In SAICSIT ’03: Proceedings of the 2003 annual re-
search conference of the South African institute of computer scientists and infor-
mation technologists on Enablement through technology, pages 258–267. South
African Institute for Computer Scientists and Information Technologists.

Barnard, P. J. and May, J. (1999). Representing cognitive activity in complex tasks.
Human-Computer Interaction, 14(1-2):93–158.

Barnard, P. J., May, J., Duke, D., and Duce, D. (2000). Systems, interactions and
macrotheory. ACM Transactions on Computer-Human Interaction, 7(2):222–262.

REFERENCES 355

Basili, V. R. and Rombach, H. D. (1988). The TAME project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engineering,
14:758–773.

Basili, V. R., Shull, F., and Lanubile, F. (1999). Building knowledge through families
of experiments. IEEE Transactions on Software Engineering.

Baskerville, R. and Pries-Heje, J. (1999). Knowledge capability and maturity in soft-
ware management. The Data Base for Advances in Information Systems, 30:26–43.

Bass, L., Clements, P., and Kazman, R. (1998). Software Architecture in Practice.
Reading, Massachusetts: Addison-Wesley, 1 edition.

Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in Practice.
Reading, Massachusetts: Addison-Wesley., 2 edition.

Bass, L. and John, B. E. (2001a). Achieving usability through software architecture.
In ICSE ’01: Proceedings of the 23rd International Conference on Software Engi-
neering, page 684. IEEE Computer Society.

Bass, L. and John, B. E. (2001b). Supporting usability through software architecture.
Computer, 34(10):113–115.

Bass, L. and John, B. E. (2003). Linking usability to software architecture patterns
through general scenarios. Journal of Systems and Software, 66(3):187–197.

Bass, L., John, B. E., Juristo, N., and Sanchez-Segura, M.-I. (2004). Usability and soft-
ware architecture. In Tutorial materials presented at the 26th International Confer-
ence on Software Engineering, ICSE 2004, Edinburgh, Scotland.

Battle, L. (2004). When your group can’t do it all: Investing UCD resources wisely. In
Usability Professionals’ Association 13th Annual Conference.

Battle, L., D’Angelo, B., and Taylor, D. (2003). Integrating user-centered design into
the software development lifecycle. In Usability Professionals’ Association 12th
Annual Conference.

Beck, K. (2000). Extreme Programming Explained: Embracing Change. Boston, Mas-
sachusetts, USA: Addison-Wesley.

Beck, K., Cockburn, A., Jeffries, R., and Highsmith, J. (2001). Agile manifesto. Tech-
nical report, The Agile Alliance.

Bellotti, V., Buckingham, S. S., MacLean, A., and Hammond, N. (1995). Multidisci-
plinary modelling in HCI design: Theory and practice. In Katz, I. R., Mack, R.,
Marks, L., Rosson, M. B., and Nielsen, J., editors, Human Factors in Computing
Systems: CHI 95 Conference Proceedings, pages 146–153. New York: ACM Press.

Benyon, D. and Macaulay, C. (2002). Scenarios and the HCI-SE design problem. In-
teracting with Computers, 14(4):397–405.

Bevan, N. (1999). Quality in use: Meeting user needs for quality. The Journal of Sys-
tems and Software, 49(1):89–96.

Bevan, N. and Claridge, N. (2002). Guide to Specifying and Evaluating Usability as
Part of a Contract, Version1.0. PRUE project. London, Serco Usability Services:
47.

Beyer, H. and Holtzblatt, K. (1998). Contextual Design: Defining Customer-Centered
Systems. San Francisco, CA: Morgan Kaufmann.

Bharat, K. A. and Hudson, S. E. (1995). Supporting distributed, concurrent, one-way
constraints in user interface applications. In UIST ’95: Proceedings of the 8th

356 HUMAN-CENTERED SOFTWARE ENGINEERING

annual ACM symposium on User interface and software technology, pages 121–132.
ACM Press.

Bias, R. G. (1994). The pluralistic usability walkthrough: coordinated empathies. In
Usability Inspection Methods, pages 63–76. John Wiley & Sons, Inc.

Birk, A., Dingsøyr, T., and Stålhane (2002). Postmortem: Never leave a project without
it. IEEE Software, 19(3):43–45.

BIUSEM (1995). Final report biusem. benefits of integrating usability and software
engineering methods. Technical report, BIUSEM Consortium.

Blackmon, M. H., Kitajima, M., , and Polson, P. G. (2003). Repairing usability prob-
lems identified by the cognitive walkthrough for the web. In CHI 2003 Conference
Proceedings: Conference on Human Factors in Computing Systems, pages 497–
504.

Blomberg, J. L. (1995). Ethnography: Aligning field studies of work and system de-
sign. In Monk, A. F. and Gilbert, N., editors, Perspectives on HCI: Diverse ap-
proaches, pages 175–198. London: Academic Press.

Bly, S. (1997). Field work: is it product work? Interactions, 4(1):25–30.
Bödker, S. (1998). Understanding representation in design. Human-Computer Inter-

action, 13(2):107–125.
Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs, N.J.:

Prentice-Hall.
Boehm, B. (1988). A spiral model of software development and enhancement. Com-

puter, 21(5):61–72.
Boehm, B. (1991). Software risk management: Principles and practice. IEEE Software,

8(1):32–41.
Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1):64–69.
Boehm, B., Bose, P., Horowitz., E., and Lee, M. J. (1994). Software requirements as

negotiated win conditions. In Proceedings: Requirements Engineering ’94, pages
74–83.

Boehm, B. and Turner, R. (2003). Observations on balancing discipline and
agility. In Agile Development Conference, Salt Lake City, Utah, USA. http://
agiledevelopmentconference.com/2003/files/P4Paper.pdf.

Boivie, I., Åborg, C. Persson, J., and Löfberg, M. (2003). Why usability gets
lost, or usability in in-house software development. Interacting with Computers,
15(4):623–639.

Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The Unified Modeling Language
user guide. Reading MASS.: Addison-Wesley.

Borning, A. and Duisberg, R. (1986). Constraint-based tools for building user inter-
faces. ACM Trans. Graph., 5(4):345–374.

Bosch, J. and Juristo, N. (2003). Designing software architectures for usability. In
Tutorial materials presented at the 25th International Conference on Software En-
gineering, ICSE 2003, Portland, Oregon.

Bosser, T. and Melchior, E.-M. (1992). The SANE toolkit for cognitive modelling and
user-centred design. In Galer, M., Harker, S., and Ziegler, J., editors, Methods and
Tools in User-Centred Design for Information Technology, number 4 in 1 – Sup-

REFERENCES 357

porting the Design Process from Conception to Use, pages 93–125. North-Holland,
Elsevier Science Publishers, Amsterdam.

Bowker, G. and Leigh-Star, S. (1994). Knowledge and infrastructure in international
information management: Problems of classification and coding. In Bud-Frierman,
L., editor, Information Acumen: The understanding and use of knowledge in mod-
ern business. London: Routledge.

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20:10–19.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). Pattern-
Oriented Software Architecture: A System of Patterns., volume 1. John Wiley &
Sons.

Butler, K. A. (1996). Usability engineering turns 10. Interactions, 3(1):58–75.
Buur, J. and Bödker, S. (2000). From usability lab to “design collaboratorium”: re-

framing usability practice. In DIS ’00: Proceedings of the conference on Designing
interactive systems, pages 297–307. ACM Press.

Calde, S., Goodwin, K., and Reimann, R. (2002). SHS Orcas: The first integrated in-
formation system for long-term healthcare facility management. In CHI ’02: Case
studies of the CHI2002/AIGA Experience Design Forum, Minneapolis, Minnesota.
New York, NY: ACM Press.

Card, S. K., Moran, T. P., and Newell, A. (1983). The Psychology of Human-Computer
Interaction. Lawrence Erlbaum, Hillsdale.

Carlshamre, P. and Rantzer, M. (2000). Dissemination of usability: The failure of a
success story. Interactions, 8(1):31–41.

Carroll, J. M., editor (1995). Scenario-based design: Envisioning work and technology
in system development. New York: Wiley.

Carroll, J. M. (1997). Scenario-based design. In Helander, M., Landauer, T. K., and
Prabhu, P. V., editors, Handbook of Human-Computer Interaction. Second Edition,
pages 383–406. Amsterdam; New York: Elsevier, 2 edition.

Carroll, J. M. (2000). Making use: Scenario-based design of human-computer inter-
actions. Cambridge MA: MIT Press.

Carroll, J. M. (2003). HCI Models, Theories, and Frameworks: Toward a Multidisci-
plinary Science. San Francisco: Morgan Kaufmann.

Carroll, J. M. and Rosson, M. B. (1987). Paradox of the active user. In Carroll, J. M.,
editor, Interfacing Thought: Cognitive Aspects of Human-Computer Interaction,
pages 80–111. Cambridge, MA: MIT Press.

Carroll, J. M. and Rosson, M. B. (1992). Getting around the task-artifact cycle: how to
make claims and design by scenario. ACM Transactions on Information Systems,
10(2):181–212.

Carroll, J. M., Rosson, M. B., Chin, G., and Koenemann, J. (1997). Requirements
development: stages of opportunity for collaborative needs discovery. In DIS ’97:
Proceedings of the Conference on Designing Interactive Systems, pages 55–64.
ACM Press.

Carter, J. A. (1990). Juggling concern for completeness and consistency with con-
cerns for flexibility and adaptability using most. In Proceedings of the 34th Annual
Meeting of the Human Factors Society, pages 341–345.

358 HUMAN-CENTERED SOFTWARE ENGINEERING

Carter, J. A. (1991). Combining task analysis with software engineering in a method-
ology for designing interactive systems, pages 209–234. Academic Press Profes-
sional, Inc.

Carter, J. A. (1997). Putting usability first in the design of web sites. In Lobodzinski,
S. and Tomek, I., editors, WebNet, Proceedings of WebNet 97 - World Conference
on the WWW, Internet & Intranet, Toronto, Canada, November 1-5, 1997, pages
142–148. AACE.

Carter, J. A. (2002a). Developing E-commerce Systems. Upper Saddle River, N.J.:
Prentice Hall.

Carter, J. A. (2002b). A framework for the development of multimedia systems for use
in engineering education. Computers and Education, 39(2):111–128.

Casaday, G. (1996). Rationale in practice: Templates for capturing and applying design
experience. In Moran, T. and Carroll, J. M., editors, Design Rationale: Concepts,
Techniques, and Use, pages 361–372. Mahwah, NJ: Lawrence Erlbaum.

Castro, J. and Kolp, M. (2002). Towards requirements-driven information systems en-
gineering: the tropos project. Information Systems.

Chok, S. S. and Marriott, K. (1995). Automatic construction of user interfaces from
constraint multiset grammars. In VL ’95: Proceedings of the 11th International
IEEE Symposium on Visual Languages, pages 242–249. IEEE Computer Society.

Clancey, W. J. (1983). The epistemology of a rule-based expert system - a framework
for explanation. Artificial Intelligence, 20:215–251.

Clegg, C., Axtell, C., Damodaran, L., Farbey, B., Hull, R., Lloyd-Jones, R., Nicholls,
J., Sell, R., and Tomlinson, C. (1997). Information technology: a study of perfor-
mance and the role of human and organizational factors. Ergonomics, 40(9):851–
871.

Coble, J. M., Karat, J., and Kahn, M. G. (1997). Maintaining a focus on user require-
ments throughout the development of clinical workstation software. In CHI ’97:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 170–177. ACM Press.

Cockburn, A. (1997). Structuring use cases with goals. Object-Oriented Programming,
Sept-Oct.

Cockburn, A. (1998). Basic use case template (tr 96.03a, version 2). Technical re-
port, http://alistair.cockburn.us/usecases/uctempla.htm (Personal Web Site of Alis-
tair Cockburn).

Cockburn, A. (2001). Writing Effective Use Cases. Boston: Addison-Wesley.
Cockburn, A. (2002). Agile Software Development. Boston, MA: Addison-Wesley.
Comstock, E. M. and Duane, W. M. (1996). Embed user values in system architec-

ture: The declaration of system usability. In CHI ’96: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 420–427. ACM Press.

Conallen, J. (2003). Building Web Applications with UML. Boston: Addison-Wesley.
Conklin, E. J. and Burgess-Yakemovic, K. C. (1996). A process-oriented approach

to design rationale. In Moran, T. and J. M. Carroll, E., editors, Design Rationale:
Concepts, Techniques and Use, pages 393–427. Mahwah, NJ: Lawrence Erlbaum.

Constantine, L. L. (1995). Essential modeling: use cases for user interfaces. Interac-
tions, 2(2):34–46.

REFERENCES 359

Constantine, L. L. (2002). Process agility and software usability: towards lightweight
usage-centered design. In Information Age. http://www.foruse.com/
articles/agiledesign.pdf.

Constantine, L. L. and Lockwood, L. A. D. (1999). Software for Use: A Practical
Guide to the Models and Methods of Usage-Centered Design. Addison-Wesley,
Reading, Massachusetts.

Constantine, L. L. and Lockwood, L. A. D. (2001). Structure and style in use cases
for user interface design. In van Harmelen, M., editor, Object Modeling and User
Interface Design, pages 245–279. Boston: Addison-Wesley.

Constantine, L. L. and Lockwood, L. A. D. (2002). User-centered engineering for web
applications. IEEE Software, 19(2):42–50.

Cooper, A. (1999). The Inmates Are Running the Asylum: Why High Tech Products
Drive Us Crazy and How To Restore The Sanity. Sams, Indianapolis, IN.

Cooper, A. and Reimann, R. (2000). About Face 2.0: The Essentials of User Interface
Design. John Wiley and Sons.

Coplien, J. O. (1995). A generative development-process pattern language, pages 183–
237. ACM Press/Addison-Wesley Publishing Co.

Costabile, M. F. (2001). Usability in the software life cycle. In Chang, S. K., editor,
Handbook of Software Engineering and Knowledge Engineering, pages 179–192.
World Scientific Publishing, Singapore.

Coutaz, J. (1987). PAC: an implementation model for dialog design. In Proceedings
Interact’87, pages 431–436.

Covey, S. R. (1994). Daily Reflections for Highly Effective People: Living The 7 Habits
Of Highly Successful People Every Day. Fireside.

Curtis, B., Krasner, H., and Iscoe, N. (1988). A field study of the software design
process for large systems. Communications of the ACM, 31:1268–1287.

da Silva, P. P. and Paton, N. W. (2001). A UML-based design environment for interac-
tive applications. In UIDIS ’01: Proceedings of the Second International Workshop
on User Interfaces to Data Intensive Systems (UIDIS’01), page 60. IEEE Computer
Society.

Dayton, T., Kramer, J., McFarland, A., and Heidelberg, M. (1996). Participatory GUI
design from task models. In Proceedings of ACM CHI 96 Conference on Human
Factors in Computing Systems, volume 2 of Tutorial 25, pages 375–376.

Dearden, A., Finaly, J., Allgar, E., and McManus, B. (2002). Using pattern languages
in participatory design. In Proceedings of Participatory Design Conference (PDC)
2002.

Degler, D., Battle, L., and Taylor, D. (2003). Sharing the vision = designs that get built.
In Usability Professionals’ Association 12th Annual Conference.

DeMarco, T. and Lister, T. (1999). Peopleware, Productive Projects and Teams. Dorset
House, 2nd edition.

Derniame, J. C., Kaba, B. A., and Wastell, D. (1999). Software Process: Principles,
Methodology and Technology. Berlin; New York: Springer.

Devanbu, P., Brachman, R. J., Selfridge, P. G., and Ballard, B. W. (1991). LaSSIE:
A knowledge-based software information system. Communications of the ACM,
34:34–49.

360 HUMAN-CENTERED SOFTWARE ENGINEERING

Dewan, P. (1996). Multiuser architectures. In Proceedings of the IFIP TC2/WG2.7
Working Conference on Engineering for Human-Computer Interaction, pages 247–
270. Chapman & Hall, Ltd.

Dix, A., Findlay, J., Abowd, G., and Beale, R. (1998). Human Computer Interaction,
(2nd ed.). Prentice Hall: New York.

Dodd, J. (2003). Speaking their language: Placing usability on the board room table.
Donahue, G. M. (2001). Usability and the bottom line. IEEE Software, 18(1):31–37.
Douglas, S., Tremaine, M., Leventhal, L., Wills, C. E., and Manaris, B. (2002). In-

corporating human-computer interaction into the undergraduate computer science
curriculum. In SIGCSE ’02: Proceedings of the 33rd SIGCSE technical symposium
on Computer science education, pages 211–212. ACM Press.

Dourish, P. (1999). Software infrastructures. In Beaudouin-Lafon, editor, Computer
Supported Cooperative Work. JohnWiley & Sons Ltd.

DSDM (1995). DSDM Consortium: Dynamic Systems Development Method. Tesser-
act Publishers: Farnham Surrey.

Dumas, J. S. and Redish, J. (1999). A Practical Guide to Usability Testing. Revised
Edition. Norwood, N.J.: Ablex Pub. Corp.

Duyne, D. K. V., Landay, J., and Hong, J. I. (2002). The Design of Sites: Patterns, Prin-
ciples, and Processes for Crafting a Customer-Centered Web Experience. Addison-
Wesley Longman Publishing Co., Inc.

Earthy, J. (1999). Human centred processes, their maturity and their improvement. In
IFIP TC.13 International Conference on Human-Computer Interaction (INTER-
ACT’99), volume 2, pages 117–118.

Earthy, J., Sherwood-Jones, B., and Bevan, N. (2001). The improvement of human-
centred processes – facing the challenge and reaping the benefit of ISO 13407.
International Journal of Human-Computer Studies, 55(4):553–585.

Eason, K. D., Harker, S. D. P., and Olphert, C. W. (1996). Representing socio-technical
systems options in the development of new forms of work organisation. European
Journal of Work and Organisational Psychology, 5(3):399–420.

Ege, R. K. (1988). Constraint-based user interfaces for simulations. In WSC ’88: Pro-
ceedings of the 20th conference on Winter simulation, pages 263–271. ACM Press.

Engelberg, D. (2001). Workshop summary: integrating human factors analysis meth-
ods with use cases. In Branaghan, R., editor, Proceedings of UPA 99, Design for
People: Essays on Usability.

EPSRC (2002). Report on International Review of Computer Science. EPSRC.
Erickson, T. (2000). Lingua francas for design: sacred places and pattern languages.

In Proceedings of DIS’00: Designing Interactive Systems: Processes, Practices,
Methods, & Techniques, Pattern Languages, pages 357–368.

Evans, G. (2002). Why are use cases so painful? [online: http://www.
evanetics.com/articles/Modeling/UCPainful.htm]. Technical re-
port, Evanetics.

Fayad, M. E. and Johnson, R. E. (2000). Domain-specific application frameworks:
Frameworks experience by industry. New York: Wiley.

Fenton, N. E. and Neil, M. (1999). Software metrics: success, failures and new direc-
tions. J. Syst. Softw., 47(2-3):149–157.

REFERENCES 361

Ferre, X. (2003). Integration of usability techniques into the software development
process. In Proceedings of the Workshop on Bridging the Gaps Between Soft-
ware Engineering and Human-Computer Interaction at International Conference
on Software Engineering (ICSE ’03).

Ferre, X., Juristo, N., and M., M. A. (2002a). STATUS project. deliverable d.5.1. se-
lection of the software process and the usability techniques for consideration. Tech-
nical report, Software Architecture that supports Usability (STATUS).

Ferre, X., Juristo, N., and M., M. A. (2002b). STATUS project. deliverable d.5.2. spec-
ification of the software process with integrated usability techniques. Technical re-
port, Software Architecture that supports Usability (STATUS).

Fincher, S. (1999). Analysis of design: an exploration of patterns and pattern languages
for pedagogy. Journal of Computers in Mathematics and Science Teaching: Special
Issue CS-ED Research, 18(3):331–348.

Fincher, S. (2000). Capture of practice: Is it obvious? In Proceedings of BCS HCI
Group/IFIP WG13.2 Workshop on HCI Patterns.

Finney, K., Fenton, N. E., and Fedorec, I. (1999). The effects of structure on the com-
prehensibility of formal specifications. IEEE Software, 146(4):193–202.

Fischer, G. (1999). Domain-oriented design environments: supporting individual and
social creativity. In Gero, J. and Maher, M. L., editors, Computational Models of
Creative Design IV, Key Centre of Design Computing and Cognition, pages 83–
111, Sydney, Australia.

Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., and Sumner, T. (1993). Embedding
computer-based critics in the contexts of design, human factors in computing sys-
tems. In presented at INTERCHI’93 Conference Proceedings, Amsterdam, Nether-
lands.

Folmer, E. and Bosch, J. (2004). Architecting for usability. Journal of systems and
software, 70(1):61–78.

Folmer, E., van Gurp, J., and Bosch, J. (2003). Investigating the relationship between
software architecture and usability. In Software Process - Improvement & Prac-
tice: Special Issue on Bridging the Process and Practice Gaps between Software
Engineering and Human Computer Interaction.

Forbrig, P. (1999). Task- and object-oriented development of interactive systems –
how many models are necessary? In Duke, D. J. and Puerta, A., editors, Design,
Specification and Verification of Interactive Systems ’99, Eurographics, pages 225–
237, Wien. Springer-Verlag. Proceedings of the Eurographics Workshop in Braga,
Portugal, June 2 – 4, 1999.

Fowler, M. (2002). The agile manifesto: Where it came from and where
it might go. Technical report, http://martinfowler.com/articles/
agileStory.html.

Fowler, M. (2003a). The new methodology. Technical report, http://www.
martinfowler.com/articles/newMethodology.html.

Fowler, M. (2003b). UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Reading, Massachusetts: Addison-Wesley, 3 edition.

362 HUMAN-CENTERED SOFTWARE ENGINEERING

Fowler, M. and Scott, K. (1997). UML distilled: applying the standard object modeling
language. In Fowler, M., editor, UML Distilled. Addison Wesley Longman Inc.,
Reading, MA.

Fuggetta, A. (2000). Software process: A roadmap. In ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, pages 25–34. ACM Press.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley Professional Computing
Series. Addison Wesley. http://www.aw.com.

Glass, R. A. (1995). A structure-based critique on contemporary computing research.
Journal of Systems and Software, 28:3–7.

Glass, R. L. (2003). Facts and Fallacies of Software Engineering. Boston, MA:
Addison-Wesley.

Glazer, R. (1998). Measuring the knower: towards a theory of knowledge equity. Cal-
ifornia Management Review, 40(175-194).

Golden, E., John, B. E., and Bass, L. (2005). The value of a usability-supporting ar-
chitectural pattern in software architecture design: A controlled experiment. In Pro-
ceedings of the Intrenational Conference on Software Engineering, ICSE 2005, St.
Louis, Missouri.

Good, M., Spine, T. M., Whiteside, J., and George, P. (1986). User-derived impact
analysis as a tool for usability engineering. In CHI ’86: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 241–246. ACM Press.

Göransson, B. (2004). User-Centred Systems Design: Designing Usable Interactive
Systems in Practice. Phd thesis, Uppsala, Sweden: Acta Universitatis Upsaliensis.
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science
and Technology, ISSN 1104-232X; 981.

Göransson, B. and Gulliksen, J. (2003). The usability design process — integrating
user-centred systems design in the software development process. Software Pro-
cess: Improvement and Practice, 8(2):63–65.

Göransson, B. and Sandbäck, T. (1999). Usability designers improve the user-centred
design process. In Proceedings for INTERACT’99, Edinburgh, UK.

Gould, J. D., Boies, S. J., and Ukelson, J. (1997). How to design usable systems.
In Helander, M., Landauer, T. K., and Prabhu, P., editors, Handbook of Human-
Computer Interaction. Amsterdam: Elsevier Science B.V.

Gram, C. and Cockton, G. (1996). Design Principles for Interactive Systems. Chapman
and Hall, London, England.

Gray, W. D., John, B. E., and Atwood, M. E. (1993). Project ernestine: A validation
of GOMS for prediction and explanation of real-world task performance. Human-
Computer Interaction, 8(3):237–209.

Greenbaum, J. and Kyng, M. (1991). Design at Work: Cooperative Design of Com-
puter Systems. Hillsdale, NJ, Lawrence Erlbaum Associates.

Greenspan, S. J., Mylopoulos, J., and Borgida, A. (1982). Capturing more world
knowledge in the requirements specification. In Proceedings of the 6th Inter-
national Conference on Software Engineering, pages 225–235. IEEE Computer
Society Press.

REFERENCES 363

Griffiths, R. N. and Pemberton, L. (2000). Don’t write guidelines write patterns!
[online]. Technical report, http://www.it.bton.ac.uk/staff/lp22/
guidelinesdraft.html.

Grudin, J. (1988). Why CSCW applications fail: Problems in the design and evaluation
of organizational interfaces. In presented at Proceedings of CSCW’88.

Guindon, R. (1987). A model of cognitive processes in software design: An analy-
sis of breakdowns in early design activities by individuals. Technical Report MCC
Technical Report STP-283-87, Microelectronics and Computer Technology Corpo-
ration, Austin TX.

Gulliksen, J. and Boivie, I. (2001). Usability throughout the entire software de-
velopment lifecycle. SIGCHI Bulletin, 33(3). Summary of the INTERACT’00-
workshop. Also available as technical report from the department of information
technology, Uppsala university, Report number 2001-026. (http://www.it.
uu.se/research/reports/2001-026/2001-026.pdf).

Gulliksen, J., Forbrig, P., Seffah, A., van Welie, M., and Borchers, J. (2003a). The
role of patterns. In 2nd Workshop on Software and Usability Cross-Pollination,
INTERACT 2003’ Conference.

Gulliksen, J. and Göransson, B. (2001). Reengineering the systems development pro-
cess for user centered design. In Hirose, M., editor, Proceedings of INTERACT
2001. IOS Press.

Gulliksen, J., Göransson, B., Boivie, I., Blomkvist, S., Persson, J., and Cajander, Å.
(2003b). Key principles for user-centred systems design. Behaviour and Informa-
tion Technology, 22(6):397–409. reproduced with permission in this book (chap. 2).

Gulliksen, J., Lantz, A., and Boivie, I. (1998). User-centered design in practice – prob-
lems and possibilities. SIGCHI Bulletin, 31(2):25–35. Summary of the PDC’98
workshop on User Orientation in Practice - Problems and Possibilities. Also avail-
able with all accepted contributions as technical report TRITA-NA-D9813, CID-40
. (www.nada.kth.se/cid/pdf/cid_40.pdf).

Gulliksen, J., Lantz, A., and Boivie, I. (2001). How to make user centred design usable.
SIGCHI Bulletin, 33(3). Summary of the INTERACT’00-workshop on How to
make user centred design usable. Also available with all accepted contributions as
technical report TRITA-NA-D0006, CID-72. (http://cid.nada.kth.se/
pdf/cid_72.pdf).

Hackos, J. T. and Redish, J. (1998). User and Task Analysis for Interface Design. New
York: Wiley.

Hahn, J. and Subramani, M. R. (2000). A framework of knowledge management sys-
tems: Issues and challenges for theory and practice. In Proceedings of the Twenty-
first International Conference on Information Systems, pages 302–312, Brisbane,
Australia.

Hall, A. and Chapman, R. (2002). Correctness by construction: Developing a com-
mercial secure system. IEEE Software, 19(1):18–25.

Harning, M. B. and Vanderdonckt, J. (2003). Closing the gaps: Software
engineering and human-computer interaction. In Workshop at the Ninth
IFIP TC13 International Conference on Human-Computer Interaction (IN-

364 HUMAN-CENTERED SOFTWARE ENGINEERING

TERACT 2003). [online: http://www.interact2003.org/workshops/
ws9-description.html.

Harris, J. and Henderson, A. (1999). A better mythodology for system design. In
Williams, M. G., Altom, M. W., Ehrlich, K., and Newman, W., editors, CHI 1999
Conference on Human Factors in Computing Systems Proceedings. ACM Press.

Haynes, S. R., Kannampallil, T. G., Larson, L. L., and Garg, N. (2005). Optimizing
anti-terrorism resource allocation. Journal of the American Society for Information
Science and Technology, 56:299–309.

Hefley, W. E., Buie, E. A., Lynch, G. F., Muller, M. J., Hoecker, D. G., Carter, J. A., and
Roth, J. T. (1994). Integrating human factors with software engineering practices.
In Proceedings of the 1994 Annual Meeting of the Human Factors and Ergonomics
Society, pages 315–319. Carnegie Mellon University.

Henniger, S. (2003). Tool support for experience-based software development method-
ologies. Advances In Computers, 59:29–82.

Henninger, S. (2000). A methodology and tools for applying context-specific usability
guidelines to interface design. Interacting With Computers, 12(3):225–243.

Highsmith, J. (2002). Agile Software Development Ecosystems. Boston, Mas-
sachusetts, USA: Pearson Education.

Highsmith, J. and Cockburn, A. (2001). Agile software development: The business of
innovation. Computer, 34(9):120–122.

Hix, D. and Hartson, H. R. (1993). Developing User Interfaces: Ensuring Usability
Through Product and Process. John Wiley & Sons, New York, New York. OCLC
QA 76.9 U83 H59.

Hoare, C. A. R. (1969). An axiomatic basis of computer programming. Communica-
tions of the ACM, 12:576–580.

Hofmann, H. F. and Lehner, F. (2001). Requirements engineering as a success factor
in software projects. IEEE Software., 18(4):58–66.

Hudson, W. (2001). Toward unified models in user-centered and object-oriented de-
sign. In van Harmelen, M., editor, Object Modeling and User Interface Design:
Designing Interactive Systems. Addison-Wesley: Boston.

Hudson, W. (2003). Adopting user-centered design within an agile process: A conver-
sation. Cutter IT Journal, 16(10). http://www.syntagm.co.uk/design/
articles/ucd-xp03.pdf.

Hutchins, E. (1995a). Cognition in the wild. Cambridge, Mass.: MIT Press.
Hutchins, E. (1995b). How a cockpit remembers its speeds. Cognitive Science,

19:265–288.
Hynninen, T., Liukkonen-Olmiala, T., and Kinnunen, T. (1999). No pain, no gain,

applying user-centered design in product concept development. In Brewster, S.,
Cawsey, A., and Cockton, G., editors, Proceedings of the Seventh IFIP Conference
on Human-Computer Interaction, INTERACT’99, volume 2, pages 201–205. IOS
Press.

IEEE (1990). IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineer-
ing Terminology. IEEE, New York NY.

IEEE (1998). IEEE 830: Recommended Practice for Software Requirements Specifi-
cations. IEEE.

REFERENCES 365

Imaz, M. and Benyon, D. (1999). How stories capture interactions. In In Sasse, M. A.
and Johnson, C., editors, Proceedings of the Seventh IFIP Conference on Human-
Computer Interaction, INTERACT’99, pages 321–328. IOS Press.

ISO (1998). ISO/IEC Technical Report 15504-2: Information technology – Software
process assessment. ISO.

ISO (2002). ISO Technical Specification 16982: Ergonomics of human-system inter-
action – Usability methods supporting human centered design. ISO.

ISO (2003). ISO 14915-3: Software ergonomics for multimedia user interfaces – Me-
dia selection and combination. ISO.

ISO/IEC (1998). ISO/IEC 9241-11: Ergonomic requirements for office work with vi-
sual display terminals (VDT)s - Part 11 Guidance on usability. ISO/IEC 9241-11:
1998 (E).

ISO/IEC (1999). ISO/IEC 13407: Human-Centred Design Processes for Interactive
Systems. ISO/IEC 13407: 1999 (E).

ISO/IEC (2000a). ISO/IEC 18529: Human-centred Lifecycle Process Descriptions.
ISO/IEC TR 18529: 2000 (E).

ISO/IEC (2000b). ISO/IEC 9126: Information Technology, Software Product Evalua-
tion, Quality, Characteristics and Guidelines for their Use. ISO/IEC 926: 2000.

ISO/IEC (2002). International Standard: Information Technology. Software Life Cy-
cle Processes. Amendment 1. ISO/IEC Standard 12207:1995/Amd.1:2002. ISO,
Geneva, Switzerland.

ISO/IEC (2003). ISO/IEC 18152: A specification for the process assessment of human-
system issues. ISO/PAS 18152: 2003.

Jackson, M. (2001). Problem Frames: Analysing and Structuring Software Develop-
ment Problems. Reading, MA: Addison-Wesley.

Jacobson, I. (1992). Object-oriented software engineering: A use case driven ap-
proach. Reading, MA.: Addison-Wesley.

Jacobson, I. (1995). The use-case construct in object-oriented software engineering. In
Scenario-based design: envisioning work and technology in system development,
pages 309–336. John Wiley & Sons, Inc.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development
Process. Addison Wesley Longman Inc., Reading, Mass., U.S.A.

Jambon, F., Girard, P., and Ait-Ameur, Y. (2001). Interactive system safety and usabil-
ity enforced with the development process. In EHCI ’01: Proceedings of the 8th
IFIP International Conference on Engineering for Human-Computer Interaction,
pages 39–56. Springer-Verlag.

Jarke, M. (1999). Scenarios for modeling. Communications of the ACM, 42(1):47–48.
Jeffries, R. (1997). The role of task analysis in the design of software. In Helander,

M., Landauer, T. K., and Prabhu, P., editors, Handbook of Human-Computer Inter-
action, pages 347–359. Amsterdam: Elsevier, 2 edition.

Jeffries, R., Turner, A. T., Polson, P. G., and Atwood, M. E. (1981). The processes
involved in designing software. In Anderson, J. R., editor, Cognitive Skills and
Their Acquisition, pages 255–283. Hillsdale, NJ: Lawrence Erlbaum.

Joeris, G. (1997). Change management needs integrated process and configuration
management. In ESEC ’97/FSE-5: Proceedings of the 6th European conference

366 HUMAN-CENTERED SOFTWARE ENGINEERING

held jointly with the 5th ACM SIGSOFT international symposium on Foundations
of software engineering, pages 125–141. Springer-Verlag New York, Inc.

John, B. E., Bass, L., Juristo, N., and Sanchez-Segura, M.-I. (2004a). Avoiding “we
can’t change THAT!”: Software architecture and usability. In Tutorial materials
presented at CHI 2004, Vienna, Austria.

John, B. E., Bass, L., Kazman, R., and Chen, E. (2004b). Identifying gaps between hci,
software engineering, and design, and boundary objects to bridge them. In CHI ’04:
CHI ’04 extended abstracts on Human factors in computing systems, pages 1723–
1724, New York, NY, USA. ACM Press.

John, B. E., Bass, L., Sanchez-Segura, M.-I., and Adams, R. J. (2004c). Bringing
usability concerns to the design of software architecture. In Proceedings of The
9th IFIP Working Conference on Engineering for Human-Computer Interaction
and the 11th International Workshop on Design, Specification and Verification of
Interactive Systems, Hamburg, Germany.

John, B. E. and Kieras, R. E. (1995). The GOMS family of user interface analysis
techniques: Comparison and contrast. ACM Transactions on Computer-Human In-
teraction, 3:320–351.

Johnson, P. (1989). Supporting system design by analyzing current task knowledge.
In Diaper, D., editor, Task Analysis for Human-Computer Interaction. UK: E. Hor-
wood Press.

Jokela, T. (2004a). Evaluating the user-centredness of development organisations:
Conclusions and implications from empirical usability capability maturity assess-
ments. Interacting with Computers, 16(6):1095–1132.

Jokela, T. (2004b). The KESSU usability design process model. Technical report, Oulu
University. Version 2.1.

Jokela, T. and Abrahamsson, P. (2004). Usability assessment of an extreme program-
ming project: close co-operation with the customer does not equal to good usability.
Lecture Notes in Computing Science, 3009(2004):393–407.

Jokela, T. and Pirkola, J. (1999). Using quantitative usability goals in the design of a
user interface for cellular phones. INTERACT’99.

Jones, C. B. (1986). Systematic software development using VDM. London: Prentice
Hall.

Juristo, N., Lopez, M., Moreno, A. M., and Sanchez-Segura, M.-I. (2003). Improving
software usability through architectural patterns. In Proceedings of the ICSE 2003
Workshop Bridging the Gaps Between Software Engineering and Human-Computer
Interaction, pages 12–19, Portland, Oregon, USA.

Kaindl, H. (1995). An integration of scenarios with their purposes in task modeling. In
Olson, G. M. and Schuon, S., editors, Proceedings of the Symposium on Designing
Interactive Systems: Processes, Practices, Methods and Techniques, pages 227–
236, New York. ACM Press.

Kane, D. (2003). Finding a place for discount usability engineering in agile develop-
ment: throwing down the gauntlet. In Proceedings of the Agile Development Con-
ference, pages 40–46.

Kapor, M. (1990). Software design manifesto. In Winograd, T., editor, Bringing De-
sign To Software. Addison-Wesley.

REFERENCES 367

Karat, J. (1997). Evolving the scope of user-centered design. Commun. ACM,
40(7):33–38.

Karat, J., Atwood, M. E., Dray, S. M., Rantzer, M., and Wixon, D. R. (1996). User cen-
tered design: quality or quackery? In CHI ’96: Conference companion on Human
factors in computing systems, pages 161–162. ACM Press.

Karat, J. and Karat, C. M. (2003). The evolution of user-centered focus in the human-
computer interaction field. IBM Systems Journal, 42(4):532–541.

Kautz, K. H. and Thaysen, K. (2001). Knowledge, learning and IT support in a small
software company. Journal of Knowledge Management, 5:349–357.

Kawalek, P. and Wastell, D. G. (1996). Organizational design for software develop-
ment: A cybernetic perspective. In EWSPT ’96: Proceedings of the 5th European
Workshop on Software Process Technology, pages 258–270. Springer-Verlag.

Kazman, R., Bass, L., and Bosch, J. (2003). Workshop overviews: Bridging the gaps
between software engineering and human-computer interaction. In Proceedings of
the 25th international conference on Software engineering. IEEE Computers Soci-
ety.

Kazman, R., Klein, M., and Clements, P. (2000). ATAM: Method for architecture eval-
uation. Technical report, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA. Technical Report No. CMU/SEI-2000-TR-004.

Keller, G. and Teufel, T. (1998). SAP/R3 process oriented implementation. Reading,
MA: Addison Wesley-Longman.

Kieras, D. E. and Meyer, D. E. (1997). An overview of the EPIC architecture for cog-
nition and performance with application to human-computer interaction. Human-
Computer Interaction, 12(4):391–438.

Kirwan, B. and Ainsworth, L. K. (1993). A guide to task analysis. London ; Washing-
ton, DC: Taylor & Francis.

Kok, D. (2004). An investigation into a HCI pattern language for transaction process-
ing systems. Technical report, Department of Computer Science & Information
Systems. University of Port Elizabeth.

Kok, D. and Wesson, J. L. (2002). Designing transaction processing systems: a pat-
terns approach. In SAICSIT ’02: Proceedings of the 2002 annual research confer-
ence of the South African institute of computer scientists and information technol-
ogists on Enablement through technology, pages 257–257. South African Institute
for Computer Scientists and Information Technologists.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the model-view con-
troller user interface paradigm in Smalltalk-80. Journal of Object Oriented Pro-
gram, 1(3):26–49.

Kreitzberg, C. and Quesenbery, W. (1999). Crossing the chasm: A methodology
framework for promoting usability in the software development community. In Us-
ability Professionals’ Association 8th Annual Conference.

Kroll, P. and Kruchten, P. (2003). The Rational Unified Process Made Easy: A Practi-
tioner’s Guide to the RUP. Boston, MA: Addison-Wesley.

Kruchten, P. (1998). The Rational Unified Process - An Introduction. Addison Wesley
Longman Inc., Reading, Mass., USA.

368 HUMAN-CENTERED SOFTWARE ENGINEERING

Kruchten, P. (1999). Use-case storyboards in the rational unified process. In Proceed-
ings of the Workshop on Object-Oriented Technology, pages 249–250. Springer-
Verlag.

Kühn, T. S. (1962). The Structure of Scientific Revolutions. University of Chicago
Press, Chicago , IL , USA.

Kujala, S. (2003). User involvement: a review of the benefits and challenges. Be-
haviour & Information Technology, 22(1):1–16.

Kujala, S., Kauppinen, M., Nakari, P., and Rekola, S. (2003). Field studies in practice:
Making it happen. In Proceedings of INTERACT 2003, pages 359–366.

Kujala, S., Kauppinen, M., and Rekola, S. (2001a). Bridging the gap between user
needs and user requirements. In Avouris, N. and Fakotakis, N., editors, Advances in
Human-Computer Interaction I, (Proceedings of the Panhellenic Conference with
International Participation in Human-Computer Interaction, PC-HCI 2001), pages
45–50. Typorama Publications.

Kujala, S., Kauppinen, M., and Rekola, S. (2001b). Introducing user needs gathering
to product development: Increasing innovation and customer satisfaction. In Pro-
ceedings of Interact 2001 Conference, pages 856–861. IOS Press.

Kujala, S. and Mäntylä, M. (2000a). How effective are user studies? In Proceedings of
HCI’2000 Conference, pages 61–71.

Kujala, S. and Mäntylä, M. (2000b). Studying users for developing usable and use-
ful products. In Proceedings of the 1st Nordic Conference on Computer-Human
Interaction, pages 1–11.

Kwaiter, G., Gaildrat, V., and Caubet, R. (1998). Modelling with constraints: A bib-
liographical survey. In IV ’98: Proceedings of the International Conference on In-
formation Visualisation, pages 211–220. IEEE Computer Society.

Kyng, M. (1995). Making representations work. Comm. of the ACM, 38(9):46–55.
Lamberti, D. M. and Wallace, W. A. (1990). Intelligent interface design: An empirical

assessment of knowledge presentation in expert systems. MIS Quarterly, 14:279–
311.

Landauer, T. K. (1995). The Trouble with Computers. MIT Press.
Larman, C. (2002). UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and the Unified Process. Upper Saddle River, NJ: Prentice Hall PTR, 2
edition.

Larman, C. (2004). Agile and Iterative Development: A Manager’s Guide. Boston,
MA: Addison-Wesley.

Latour, B. (1991). Technology is society made durable. In A Sociology of Monsters.
Essays on Power, Technology and Domination, pages 103–131. London: Routledge.

Latour, B. and Woolgar, S. (1986). Laboratory life: The construction of scientific facts
(reprint edition). Princeton, NJ: Princeton University Press.

Lea, D. (1994). Christopher alexander: an introduction for object-oriented designers.
SIGSOFT Softw. Eng. Notes, 19(1):39–46.

Lethbridge, T., Singer, J., and Forward, A. (2003). How software engineers use docu-
mentation: The state of the practice. IEEE Software, 20:35–39.

Leveson, N. G. (2000). Intent specifications: An approach to building human-centered
specifications. IEEE Trans. Software Eng., 26:15–35.

REFERENCES 369

Lewis, C. and Wharton, C. (1997). Cognitive walkthroughs. In Helander, M., Lan-
dauer, T. K., and Prabhu, P. V., editors, Handbook of Human-Computer Interaction,
chapter 30, pages 717–732. Elsevier, Amsterdam, 2 edition.

Lewis, R. O. (1992). Independent verification and validation: A life cycle engineering
process for quality software. New York: Wiley.

Lilly, S. (2000). How to avoid use-case pitfalls. Technical report, Software Develop-
ment Magazine.

Lim, K. Y. and Long, J. (1994). The MUSE Method for Usability Engineering. Cam-
bridge; New York: Cambridge University Press.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., Tesoriero, R.,
Williams, L., and Zelkowitz, M. V. (2002). Empirical findings in agile methods. In
Proceedings of XP/Agile Universe 2002 Conference, Chicago, Illinois, USA.

Long, J. and Dowell, J. (1989). Conceptions of the discipline of HCI: Craft, applied
science, and engineering. In Proceedings of the HCI’89 Conference on People and
Computers V, Conference Theme Invited Keynote Paper, pages 9–32.

MacLean, A., Young, R. M., Bellott, V. M. E., and Moran, T. (1996). Questions, op-
tions, and criteria: Elements of design space analysis. In Moran, T. P. and Car-
roll, J. M., editors, Design Rationale: Concepts, Techniques and Use, pages 21–51.
Mahwah, NJ: Lawrence Erlbaum.

Maguire, M. (1998). RESPECT user-centred requirements handbook. version 3.3.
Technical report, HUSAT Research Institute (now the Ergonomics and Saftety Re-
search Institute, ESRI), Loughborough University, UK.

Maguire, M. (2001a). Context of use within usability activities. Int. J. Hum.-Comput.
Stud., 55(4):453–483.

Maguire, M. (2001b). Methods to support human-centred design. Int. J. Hum.-
Comput. Stud., 55(4):587–634.

Makarainen, M., Tiitola, J., and Konkka, K. (2001). How cultural needs affect user
interface design.

Malan, R. and Bredemeyer, D. (1999). Functional requirements and use cases. Tech-
nical report, Bredemeyer Consulting.

Mandel, M. J. (2002). Tech’s weakness is only relative: Its share was much lower
in ’91. In Business Week, page 30.

Markopoulos, P. and Marijnissen, P. (2001). UML as a representation for interaction
design. In Proceedings of OZCHI 2000, pages 240–249.

Martin, D. and Somerville, I. (2004). Patterns of cooperative interaction: Linking eth-
nomethodology to design. ACM Transactions on Computer-Human Interaction,
11:59–89.

Mathiassen, L. and Munk-Madsen, A. (1986). Formalizations in systems development.
Behaviour and Information Technology, 5(2):145–155.

Mayhew, D. J. (1999). The Usability Engineering Lifecycle: A Practitioner’s Guide to
User Interface Design. Morgan Kaufmann Publishers Inc., San Francisco, CA.

McCoy, T. (2002). Usability, who cares?: An analysis of indifference towards usability
within the IT industry. In Proceedings of the IFIP 17th World Computer Congress
- TC13 Stream on Usability, pages 283–294. Kluwer, B.V.

370 HUMAN-CENTERED SOFTWARE ENGINEERING

McGraw, K. L. and Harbison, K. (1997). User-centered requirements: The scenario-
based engineering process. Lawrence Erbaum Associates, NJ.

Meszaros, G. and Doble, J. (2000). A pattern language for pattern writing
[online]. Technical report, http://hillside.net/patterns/writing/
patternwritingpaper.htm.

Metzker, E. (2003). An experimental process metrics support environment and a cross-
organizational study on its acceptance by practitioners. In METRICS ’03: Proceed-
ings of the 9th International Symposium on Software Metrics, page 135. IEEE Com-
puter Society.

Metzker, E. and Offergeld, M. (2001). An interdisciplinary approach for successfully
integrating human-centered design methods into development processes practiced
by industrial software development organizations. In EHCI ’01: Proceedings of the
8th IFIP International Conference on Engineering for Human-Computer Interac-
tion, pages 19–34. Springer-Verlag.

Microsoft Corporation (1995). The windows interface guidelines for software design.
Microsoft Press, Redmond, WA.

Milner, R. (1989). Communication and concurrency. Hemel Hempstead: Prentice-
Hall.

Mitchell, A. A. and Chi, M. T. H. (1984). Measuring knowledge within a domain. In
P., N., editor, The Representation of Cognitive Structures. Toronto: Ontario Institute
for Studies in Education.

Monk, A., Wright, P., Haber, J., and Davenport, L. (1993). Improving your Human-
Computer Interface: A Practical Technique. London: Prentice Hall.

Moran, T. P. and Carroll, J. M. (1996). Design Rationale: Concepts, Techniques, and
Use. Mahwah, N.J.: L. Erlbaum Associates.

Mori, G., Paternò, F., and Santoro, C. (2002). CTTE: support for developing and
analyzing task models for interactive system design. IEEE Trans. Softw. Eng.,
28(8):797–813.

Mugridge, W. B., Hosking, J. G., and Grundy, J. (1996). Towards a constructor kit
for visual notations. In OZCHI ’96: Proceedings of the 6th Australian Conference
on Computer-Human Interaction (OZCHI ’96), pages 169–176. IEEE Computer
Society.

Myers, B. A. and Rosson, M. B. (1992). Survey on user interface programming. In
CHI ’92: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 195–202. ACM Press.

Mylopoulos, J., Chung, L., and Yu, E. (1999). From object-oriented to goal-oriented
requirements analysis. Commun. ACM, 42(1):31–37.

Nardi, B. (1993). A small matter of programming. Cambridge MA: MIT Press.
Newman, W. and Lamming, M. (1995). Interactive System Design. Wokingham, Eng-

land: Addison-Wesley Publishing.
Nielsen, J. (1993). Usability Engineering. Boston, MA: Academic Press Inc.
Nielsen, J. (1994). Top 10 heuristics for usability [online]. Technical report, http://
www.useit.com/papers/heuristic/heuristic_list.html.

REFERENCES 371

Nielsen, J. (1995). Scenarios in discount usability engineering. In Carroll, J. R., editor,
Scenario-based design: envisioning work and technology in system development,
pages 59–83. John Wiley & Sons, Inc.

Nielsen, J. and Mack, R. L. (1994). Usability Inspection Methods. New York: Wiley.
Nielsen, J., Molich, R., Snyder, C., and Farrell, S. (2001). E-commerce user experi-

ence: High-level strategy. Technical report, Nielsen Norman Group.
Nilsson, E. G. (2002). Combining compound conceptual user interface components

with modelling patterns — a promising direction for model-based cross-platform
user interface development. In DSV-IS ’02: Proceedings of the 9th International
Workshop on Interactive Systems. Design, Specification, and Verification, pages
104–117. Springer-Verlag.

NIST (2004). Proposed industry format for usability requirements. Technical report,
NIST.

Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organi-
zation Science, 5:14–37.

Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.
Norman, D. A. (1990). The Design of Everyday Things. Doubleday.
Norman, D. A. (2004). Emotional Design: Why We Love (or Hate) Everyday Things.

New York: Basic Books.
Norman, D. A. and Draper, S. W. (1986). User Centered System Design: New Perspec-

tives on Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale,
NJ.

Norman, K. (1995). QUIS: The questionnaire for user interaction satisfaction [online].
Technical report, http://www.cs.umd.edu/hcil/quis/.

Nunes, N. J. (2001). Object Modeling for User-Centered Development and User In-
terface Design: The Wisdom Approach. PhD thesis, Universidade da Madeira, Por-
tugal.

Nunes, N. J. and e Cunha, J. F. (2000). Towards a UML profile for interaction design:
the wisdom approach. In Evans, A., Kent, S., and Selic, B., editors, UML 2000
- The Unified Modeling Language. Advancing the Standard. Third International
Conference, York, UK, October 2000, Proceedings, volume 1939 of LNCS, pages
101–116. Springer.

Nuseibeh, B. and Easterbrook, S. (2000). Requirements engineering: A roadmap. In
Proceedings of the Conference on The Future of Software Engineering, pages 35–
46.

Ockerman, J. J. and Mitchell, C. M. (1999). Case-based design browser to support
software reuse: theoretical structure and empirical evaluation. International Jour-
nal of Human-Computer Studies, 51:865–893.

OMG (2003). OMG unified modeling language specification, version 1.5. Technical
report, Object Management Group, Inc.

Paech, B. and Kohler, K. (2003). Usability engineering integrated with requirements
engineering. In Workshop at the conference “Bridging the Gaps Between Software
Engineering and Human-Computer Interaction”, IEEE International Conference
on Software Engineering.

372 HUMAN-CENTERED SOFTWARE ENGINEERING

Paternò, F. (2000). Model-based design of interactive applications. Intelligence,
11(4):26–38.

Paternò, F. (2001). Towards a UML for interactive systems. In EHCI ’01: Proceedings
of the 8th IFIP International Conference on Engineering for Human-Computer
Interaction, pages 7–18. Springer-Verlag.

Patton, J. (2002). Hitting the target: adding interaction design to agile software devel-
opment. In OOPSLA ’02: OOPSLA 2002 Practitioners Reports, pages 1–ff. ACM
Press.

Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V. (1993). Capability maturity
model, version 1.1. IEEE Software., 10(4):18–27.

Persson, J. (2003). Basic values in software development and organizational change.
Licentiate thesis 2003-002, Uppsala, Sweden: Uppsala University.

Pitt, J. C. (2000). Thinking About Technology: Foundations of the Philosophy of Tech-
nology. New York: Seven Bridges.

Plowman, R., Rogers, Y., and Ramage, M. (1995). What are workplace studies for? In
Proceedings of the Fourth European Conference on Computer-Supported Cooper-
ative Work, pages 309–324. Kluwer.

Polanyi, M. (1958). Personal Knowledge: Towards a Post-Critical Philosophy. Uni-
versity of Chicago Press.

Polanyi, M. (1966). The tacit dimension. Garden City, N.Y., Doubleday.
Poltrock, S., Grudin, J., Dumais, S., Fidel, R., Bruce, H., and Pejtersen, A. M. (2003).

Information seeking and sharing in design teams. In presented at Proceedings of
Group’03, Sanibel Island, FL.

Poltrock, S. E. and Grudin, J. (1994). Organizational obstacles to interface design and
development: Two participant observer studies. ACM Transactions on Computer-
Human Interaction, 1(1):52–80.

Poppendieck (2002). Wicked problems. Software Development Magazine.
Potts, C. (1999). ScenIC: A strategy for inquiry-driven requirements determination.

In Proceedings: 4th IEEE International Symposium on Requirements Engineering,
pages 58–65. IEEE Computer Society Press.

Potts, C., Takahashi, K., and Anton, A. I. (1994). Inquiry-based requirements analysis.
IEEE Software, 11(2):21–32.

Prakash, A., Shim, H. S., and Lee, J. H. (1999). Issues and tradeoffs in CSCW systems.
IEEE Transactions on Data and Knowledge Engineering, 11(1):213–227.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., and Carey, T. (1994).
Human-Computer Interaction. Addison Wesley, Harlow, England.

Pressman, R. S. (2005a). Software Engineering: A Practitioner’s Approach. McGraw-
Hill, 6 edition.

Pressman, R. S. (2005b). Software Engineering: A Practitioner’s Approach. McGraw-
Hill, 5 edition.

Prieto-Diaz, R. (1993). Status report: Software reusability. IEEE Software, 10:61–66.
Pyla, P. S., Pérez-Quiñones, M. A., Arthur, J. D., and Hartson, H. R. (2004). What

we should teach, but don’t: Proposal for a cross pollinated HCI-SE curriculum. In
Proceedings of the Frontiers in Education (FIE 2004) Conference.

REFERENCES 373

Quesenbery, W. (2000). Crossing the chasm: Promoting usability in the software de-
velopment community. UPA Common Ground, 10(1).

Radle, K. and Young, S. (2001). Partnering usability with development: How three
organizations succeeded. IEEE Software, 18(1):38–45.

Rational (2002). What’s new in rational development accelerators? version 2002.
Technical report, Rational Software Corporation.

Rational Software Corporation (1999). UML: Unified Modelling Language method.
http://www.rational.com.

Redish, J. and Wixon, J. (2003). Task analysis. In Jacko, J. A. and Sears, A., editors,
The human-computer interaction handbook: fundamentals, evolving technologies,
and emerging applications, pages 922–940. Mahwah, N.J.: Lawrence Erlbaum As-
sociates.

Reifer, D. J. (2002). Software Management. Los Alamitos, CA: IEEE Computer Soci-
ety Press, 6 edition.

Rengell, B. and Horst, M. (2001). An industrial case study on distributed prioritisation
in market driven requirements engineering for packaged software. Requirements
Engineering, 6(1):51–62.

Richter, A. (2003). Generating user interface design patterns from web-based e-
business applications. In Proceedings of IFIP INTERACT ’03 Workshop on Soft-
ware & Usability Cross-Pollination: The Role of Usability Patterns.

Rising, L. (2001). Patterns mining [online]. Technical report, http://www.agcs.
com/supportv2/techpapers/patterns/papers/mining.htm.

Roberts, D., Berry, D., Isensee, S., and Mullaly, J. (1998). Designing for the User
with OVID: Bridging the Gap Between Software Engineering and User Interface
Design. Macmillan Technical Publishing.

Robertson, J. (2001). Information design using card sorting. Technical report, Step
Two Designs Pty Ltd.

Robertson, J. and Robertson, S. (1999). Mastering the Requirements Process. Addison
Wesley, Harlow.

Rogers, Y. and Ellis, J. (1994). Distributed cognition: an alternative framework for an-
alyzing and explaining collaborative working. Journal of Information Technology,
9:119–128.

Rolland, C., Ben Achour, C., Cauvet, C., Ralyt, R., Sutcliffe, A. G., Maiden, N. A. M.,
Jarke, M., Haumer, P., Pohl, K., Dubois, E., and Heymans, H. (1998). Proposal for a
scenario classification framework. Requirements Engineering Journal, 3(1):23–47.

Rosenbaum, S., Rohn, J. A., and Humburg, J. (2000). A toolkit for strategic usabil-
ity: results from workshops, panels and surveys. In Turner, T., Szwillius, G., Cz-
erwinski, M., and Paternò, F., editors, CHI 2000 Conference on Human Factors in
Computing Systems Proceedings. ACM Press.

Rosson, M. B. (1999). Integrating development of task and object models. Commun.
ACM, 42(1):49–56.

Rosson, M. B. and Carroll, J. M. (2002a). Usability Engineering: Scenario-based De-
velopment of Human-Computer Interaction. San Fancisco: Academic Press.

374 HUMAN-CENTERED SOFTWARE ENGINEERING

Rosson, M. B. and Carroll, J. M. (2002b). Usability Engineering: Scenario-Based De-
velopment of Human-Computer Interactions. Morgan Kauffmann, San Francisco,
CA.

Royce, W. W. (1970). Managing the development of large scale software systems. In
Proceedings of the IEEE WESCON, pages 1–9.

Rubinstein, R., Hersh, H. M., and Ledgard, H. F. (1984). The Human Factor: Design-
ing Computer Systems for People. Maynard, MA: Digital Press.

Rumbaugh, J. (1994). Getting started - using use cases to capture requirements. Jour-
nal of Object-Oriented Programming, 7(5):8–23.

Sachs, P. (1995). Transforming work: collaboration, learning, and design. Communi-
cations of the ACM, 38(9):36–44.

Salingaros, N. A. (2000). The structure of pattern languages. Architectural Research
Quarterly, 4:149–161.

Scapin, D. and Pierret-Goldbreich, C. (1990). Toward a method for task description:
MAD. In Proceedings of Work and Display Units 89. Elsevier Science Publishers
B.V. North Holland.

Schmidt, D. C. and Cleeland, C. (2000). Applying a pattern language to develop ex-
tensible orb middleware. In Rising, L., editor, Design patterns in communications
software, pages 393–438. Cambridge University Press.

Schön, D. A. (1983). The Reflective Practicioner: How Professionals Think in Action.
New York: Basic Books.

Seffah, A. (2003). Learning the ropes: human-centered design skills and patterns for
software engineers’ education. Interactions, 10(5):36–45.

Seffah, A. and Andreevskaia, A. (2003). Empowering software engineers in human-
centered design. In ICSE ’03: Proceedings of the 25th International Conference on
Software Engineering, pages 653–658. IEEE Computer Society.

Seffah, A., Djouab, R., and Antunes, H. (2001). Comparing and reconciling usability-
centered and use case-driven requirements engineering processes. In AUIC ’01:
Proceedings of the 2nd Australasian conference on User interface, pages 132–139.
IEEE Computer Society.

Seffah, A. and Engelberg, D. (1999). Integrating human factors analysis techniques
with use cases and OO methods. In Usability Professionals’ Association 8th Annual
Conference.

Seffah, A. and Forbrig, P. (2001). Software and usability engineering cross-pollination:
A roadmap for integrating usability in software engineering. In Workshop at Inter-
act 2001.

Seffah, A. and Hayne, C. (1999). Integrating human factors into use cases and object-
oriented methods. Lecture Notes in Computer Science, 1743:240–250.

Seffah, A. and Metzker, E. (2004). The obstacles and myths of usability and software
engineering. Commun. ACM, 47(12):71–76.

Selfridge, P. G., Terveen, L. G., and Long, M. D. (1992). Managing design knowledge
to provide assistance to large-scale software development. In presented at Proceed-
ings of KBSE 1992, McLean, VA.

Senge, P. M. (1999). The Dance of Change. Currency/Doubleday, New York.

REFERENCES 375

Shaw, M. (1990). Prospects for an engineering discipline of software. IEEE Software,
7(6):15–24.

Shaw, M. (1991). Heterogenous design idioms for software architecture. In Proceed-
ing of the Sixth International Workshop on Software Specification and Design, Soft-
ware Engineering Notes, pages 158–165, Como, Italy. IEEE Computer Society.

Shneiderman, B. (1998). Designing the User Interface. Reading, MA: Addison-
Wesley, 3 edition.

Shneiderman, B. and Carroll, J. M. (1988). Ecological studies of professional pro-
grammers (introduction to the special section). Communications of the ACM,
31:1256–1258.

Shum, S. B. (1996). Analyzing the usability of a design rationale notation. In Moran,
T. P. and Carroll, J. M., editors, Design Rationale: Concepts, Techniques, and Use,
pages 185–215. Hillsdale, NJ: Lawrence Erlbaum Associates.

Shum, S. B. and Hammond, N. (1994). Argumentation-based design rationale: What
use at what cost? International Journal of Human-Computer Studies, 40:603–652.

Siegel, D. and Dray, S. M. (2003). Living on the edges: user-centered design and the
dynamics of specialization in organizations. Interactions, 10(5):18–27.

Sinnig, D., Ashraf, G., Reichart, D., Forbrig, P., and Seffah, A. (2005). Patterns in
model-based engineering.

Smith, A. and Dunckley, L. (1998). Using the LUCID method to optimize the accept-
ability of shared interfaces. Interacting with Computers, 9(3):335–345.

Smith, S. L. and Mosier, J. N. (1986-08). Guidelines for designing user interface soft-
ware. Technical Report ESD-TR-86-278, The MITRE Corporation, Bedford, MA
01730. Electronic Systems Division Available as DOS software as NaviText SAM
from Northern Lights Software Corp., Westford, MA 01886.

Software Productivity Consortium (1997). ISO/IEC 12207: Software life Cycle
Processes–life Cycle Data. Software Productivity Consortium.

Sommerville, I. (2002). Software Engineering. Addison Wesley: London.
Sommerville, I. and Sawyer, P. (1997). Requirements Engineering: A Good Practice

Guide. Wiley.
Standish Group (1995). The CHAOS report. Technical report, Standish Group.
http://www.scs.carleton.ca/˜beau/PM/Standish-Report.
html.

Stewart, K. A., Baskerville, R., Storey, V. C., Senn, J. A., Raven, A., and Long, C.
(2000). Confronting the assumptions underlying the management of knowledge:
an agenda for understanding and investigating knowledge management. The Data
Base for Advances in Information Systems, 31:41–53.

Sumner, T., Bonnardel, B., and Harstad, B. (1997). The cognitive ergonomics of
knowledge-based design support systems. In presented at Proceedings of the Con-
ference on Human Factors in Computing Systems (CHI’97), Atlanta, GA.

Sun Microsystems, I. and Javasoft (1999). Java Look & Feel Design Guidelines.
Addison-Wesley Longman Publishing Co., Inc.

Sun Microsystems Inc. (2003). Model-view controller. Java blueprints. Technical re-
port, Sun Microsystems Inc. Retrieved September 18th, 2003 from http://
java.sun.com/blueprints/patterns/MVC-detailed.html.

376 HUMAN-CENTERED SOFTWARE ENGINEERING

Sutcliffe, A. G. (1995). Requirements rationales: integrating approaches to require-
ment analysis. In DIS ’95: Proceedings of the conference on Designing interactive
systems, pages 33–42. ACM Press.

Sutcliffe, A. G. (2000). On the effective use and reuse of HCI knowledge. ACM Trans-
actions on Computer-Human Interaction, 7(2):197–221.

Sutcliffe, A. G. (2002). The Domain Theory: Patterns for Knowledge and Software
Reuse. Lawrence Erlbaum.

Sutcliffe, A. G. (2003). Multimedia and Virtual Reality: Designing Multisensory User
Interfaces. Mahwah NJ: Lawrence Erlbaum Associates.

Sutcliffe, A. G. and Carroll, J. M. (1999). Designing claims for reuse in interactive sys-
tems design. International Journal of Human-Computer Studies, 50(3):213–241.

Szekely, P. and Myers, B. (1988). A user interface toolkit based on graphical objects
and constraints. In OOPSLA ’88: Conference proceedings on Object-oriented pro-
gramming systems, languages and applications, pages 36–45. ACM Press.

Thimbleby, H. (1990). User interface design. Reading MA: ACM / Addison Wesley.
Thomas, C. and Bevan, N. (1996). Usability context analysis: A practical guide. ver-

sion 4.04. teddington. Technical report, National Physical Laboratory.
Tidwell, J. (1998a). Common ground: A pattern language for human-computer inter-

face design [online]. Technical report, http://www.mit.edu/˜jtidwell/
common_ground.html.

Tidwell, J. (1998b). Interaction design patterns. In PLOP’98 Conference on Pattern
Languages of Programming.

Tidwell, J. (2004). UI patterns and techniques [online]. Technical report, http://
time-tripper.com/uipatterns/index.php.

Tollinger, I., McCurdy, M., Vera, A., and Tollinger, P. (2004). Collaborative knowl-
edge management supporting mars mission scientists. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work, CSCW 2004, Chicago.

Trenner, L. and Bawa, J. (1998). The politics of usability: a practical guide to design-
ing usable systems in industry. Springer-Verlag: London, New York.

UsabilityNet (2003). Stakeholder meeting. Technical report, UsabilityNet.
Valenti, S., Panti, M., and Cucchiarelli, A. (1998). Overcoming communication ob-

stacles in user-analyst interaction for functional requirements elicitation. SIGSOFT
Software Engineering Notes, 23(1):50–55.

van Harmelen, M., Artim, J., Butler, K. A., Henderson, A., Roberts, D., Rosson, M. B.,
Tarby, J.-C., and Wilson, S. (1997). Object models in user interface design: A CHI
97 workshop. ACM SIGCHI Bulletin, 29(4):55–62.

van Harmelen, M. and Wilson, S. (1997). Object Modeling and User Interface Design:
Designing Interactive Systems. Object-Oriented Series. Addison-Wesley, Reading,
Massachusetts.

van Lamsweerde, A. (2000). Requirements engineering in the year 00: A research per-
spective. In Proceedings: 22nd International Conference on Software Engineering,
pages 5–19. New York: ACM Press.

van Lamsweerde, A. (2003). Goal-oriented requirements engineering: from system
objectives to uml models to precise software specifications. In ICSE ’03: Proceed-

REFERENCES 377

ings of the 25th International Conference on Software Engineering, pages 744–745.
IEEE Computer Society.

van Lamsweerde, A. and Letier, E. (2000). Handling obstacles in goal-oriented re-
quirements engineering. IEEE Transactions on Software Engineering, 26(10):978–
1005.

van Welie, M. and Traetteberg, H. (2001). The Amsterdam collection of patterns
in user interface design [online]. Technical report, http://www.cs.vu.nl/
˜martijn/patterns/index.html.

van Welie, M. and van de Veer, G. (2003). Pattern languages in interaction design:
Structure and organisation. In Proceedings of IFIP INTERACT ’03. Zurich, Switzer-
land: IOS Press.

Vanderdonckt, J. (1999). Development milestones towards a tool for working with
guidelines. Interacting with Computers, 12(2):81–118.

Vicente, K. J. (2000). HCI in the global knowledge-based economy: Designing to
support worker adaptation. ACM Transactions on Computer-Human Interaction,
7(2):263–280.

Vlissides, J. (1995). Seven habits of successful pattern writers [online]. Technical re-
port, http://hillside.net/patterns/papers/7habits.html.

von Hippel, E. (1998). Economics of product development by users: The impact of
“sticky” local information. Management Science, 44:629–644.

Vredenburg, K. (2003). Building ease of use into the IBM user experience. IBM Syst.
J., 42(4):517–531.

Vredenburg, K., Mao, J.-Y., Smith, P. W., and Carey, T. (2002). A survey of user-
centered design in practice. In Proceedings of CHI’2002 Conference on Human
Factors in Computing Systems Proceedings, pages 471–478, Amsterdam.

Vutpakdi, R. (2004). Too much usability? In Usability Professionals’ Association 13th
Annual Conference.

Webber, A. M. (1993). What’s so new about the new economy? Harvard Business
Review, pages 4–11.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos, CA: Mor-
gan Kaufmann.

Wentling, T. L., Waight, C., Gallaher, J., La Fleur, J., Wang, C., and Kanfer, A. (2000).
E-learning — a review of literature [online]. Technical report, Knowledge and
Learning Systems Group, NCSA, University of Illinois at Urbana-champaign.

Wesson, J. L. (2001). The role of HCI design patterns in software development. Jour-
nal of Research and Practice in Information Technology, 33(1).

Wesson, J. L. and Cowley, L. (2003). Designing with patterns: Possibilities and pit-
falls. In Proceedings of IFIP INTERACT’03 Workshop on Software & Usability
Cross-Pollination: The Role of Usability Patterns.

Wharton, C., Reiman, J., Lewis, C., and Polson, P. (1994). The cognitive walkthrough
method: A practitioners guide. In Nielsen, J. and Mack, R. L., editors, Usability
Inspection Methods, pages 105–140. New York: Wiley.

Wheeler, S., D’Angelo, B., and Battle, L. (2003). Nurturing change: Introducing user-
centered design to a large software development organization. In Dickelman, G.,

378 HUMAN-CENTERED SOFTWARE ENGINEERING

editor, EPSS Revisited: A Lifecycle for Developing Performance-centered Systems.
International Society for Performance Improvement.

Whiteside, J., Bennett, J., and Holtzblatt, K. (1988). Usability engineering: Our ex-
perience and evolution. In Helander, M., editor, Handbook of Human Computer
Interaction. Amsterdam: North-Holland.

Wiegers, K. E. (1999). Software Requirements. Microsoft Press.
Wilson, S., Bekker, M., Johnson, H., and Johnson, P. (1996). Cost and benefits of

user involvement in design: Practitioners’ views. In Sasse, A., Cunningham, J.,
and Winder, R., editors, People and Computers, pages 221–240. Springer Verlag,
London.

Wilson, S., Bekker, M., Johnson, H., and Johnson, P. (1997). Helping and hindering
user involvement - a tale of everyday design;. In Ware, C. and Dixon, D., editors,
Proceedings of ACM CHI’97.

Wirfs-Brock, R. and Mckean, A. (2003). Object Design: Roles, Responsibilities, and
Collaborations. Addison Wesley.

Wixon, D. R., Holtzblatt, K., and Knox, S. (1990). Contextual design: An emergent
view of system design. In Proceedings of CHI’90, Conference of Human Factors
in Computing Systems, ACM, pages 329–336.

Wixon, D. R., Jones, S., Tse, L., and Casaday, G. (1994). Inspections and design re-
views: Framework, history, and reflection. In Nielsen, J. and Mack, R. L., editors,
Usability Inspection Methods, pages 77–104. New York: Wiley.

Wixon, D. R., Ramey, J., Holtzblatt, K., Beyer, H., Hackos, J. T., Rosenbaum, S., Page,
C., Laakso, S. A., and Laakso, K.-P. (2002). Usability in practice: Field methods
evolution and revolution. In CHI ’02: CHI ’02 extended abstracts on Human factors
in computing systems, pages 880–884. ACM Press.

Wixon, D. R. and Wilson, C. (1997). The usability engineering framework for prod-
uct design and evaluation. In Helander, M., Landauer, T. K., and Prabhu, P. V.,
editors, Handbook of Human-Computer Interaction, pages 653–688. Amsterdam;
New York: Elsevier, 2 edition.

Wood, L. E. (1996). The ethnographic interview in user-centered work/task analysis.
In Wixon, D. and Ramey, J., editors, Field Methods Casebook for Software Design,
pages 35–56. John Wiley & Sons, Inc.

Wood, L. E. (1997). Semi-structured interviewing for user-centered design. Interac-
tions, 4(2):48–61.

Yin, R. K. (1994). Case Study Research: Design and Methods. Thousand Oaks, CA:
SAGE Publications, 2 edition.

Zelkowitz, M. V. and Wallace, D. (1998). Experimental models for validating com-
puter technology. IEEE Computer.

Åborg, J., C. Persson 12, 29
Abowd, G. 72, 77
Abrahamsson, P. 220, 225, 231, 233, 236
Abran, A. 38, 175, 184, 185
Ackoff, R. L. 271
ACM 174
Adams, R. J. 98, 111
Agarwal, R. 282
Agile Alliance 32, 220, 221, 225, 226
Ainsworth, L. K. 114
Ait-Ameur, Y. 61
Akrich, M. 271
Albert, S. 276
Alexander, C. 14, 51, 282, 288, 309, 310,

332, 333
Allgar, E. 345
Ambler, S. 14, 220, 233, 289
Anderson, J. 174, 288
Anderson, J. R. 79, 81
Andreevskaia, A. 174
Angel, S. 14, 51, 282, 288, 309, 333
ANSI/INCITS 128
Anton, A. I. 73, 75
Antunes, H. 10, 116, 288
Apple Computer, Inc. 50
Appleton, B. 333
Arias, E. 275, 278
Armitage, J. 220, 231, 232, 234, 242–244
Armour, P. G. 270
Arrow, H. 79
Arthur, J. D. 253
Artim, J. 10, 39, 45, 47, 48, 62
Artim, J. M. 311, 315
Ashraf, G. 311, 328, 329
Atwood, M. E. 18, 61, 229, 275, 283

Axtell, C. 33

Ballard, B. W. 274
Bannon, L. 220
Barnard, L. 348
Barnard, P. J. 81
Basili, V. 227
Basili, V. R. 9, 285
Baskerville, R. 270
Bass, L. 5, 7, 8, 10, 39, 53, 88, 90, 97, 98,

104, 105, 111, 256, 264, 306
Bass, Len 39
Battle, L. 288, 300, 302
Bawa, J. 287
Beale, R. 72, 77
Beck, K. 73, 91, 175, 220, 221, 225, 228,

229, 233, 236
Bekker, M. 32
Bellott, V. M. E. 275
Bellotti, V. 81
Ben Achour, C. 76
Bennett, J. 61
Benyon, D. 10, 40, 45, 117, 183, 184, 187,

188, 190
Berdahl, J. L. 79
Berry, D. 40, 48
Bevan, N. 6, 38, 44, 130–132
Beyer, H. 19, 34, 40, 41, 75, 78, 114, 116,

130, 134, 188, 230, 299
Bharat, K. A. 258
Bias, R. G. 188, 189
Birk, A. 52
BIUSEM 181
Blackmon, M. H. 82

379

AUTHORS INDEX

380 HUMAN-CENTERED SOFTWARE ENGINEERING

Blomberg, J. L. 254
Blomkvist, S. 17, 221, 230, 233
Bly, S. 116
Bödker, S. 27, 28
Boehm, B. xvi, 4, 26, 73, 222, 223, 227,

228, 251, 265, 288
Boies, S. J. 18, 25–28, 34, 229, 237
Boivie, I. 10, 12, 17, 29, 39, 221, 230,

233, 354
Bonnardel, B. 283
Booch, G. 21, 148, 154, 159, 161, 163,

181
Borchers, J. 12, 288
Borgida, A. 76
Borning, A. 258
Bosch, J. 5, 8, 10, 39, 111
Bose, P. 73
Bosser, T. 40
Bourque, P. 38, 175, 184, 185
Bowker, G. 271, 272
Brachman, R. J. 274
Bradley, K. 276
Bredemeyer, D. 154
Brooks, F. P. 222–224, 274, 275
Bruce, H. 278, 283
Buckingham, Shum S. 81
Buie, E. A. 61
Burgess-Yakemovic, K. C. 286
Buschmann, F. 94
Butler, K. A. 10, 39, 45, 47, 48, 62, 287,

299, 307
Buur, J. 28

Cajander, Å. 17, 221, 230, 233
Calde, S. 21
Card, S. K. 82
Carey, T. 33, 183, 184, 187, 188, 190
Carlshamre, P. 288
Carroll, J. M. 10, 40, 45, 74–78, 83, 91,

130, 188, 252, 273, 275, 278, 280, 282,
284, 301

Carter, J. A. 61, 147, 148, 152
Casaday, G. 125, 270
Castro, J. 81
Caubet, R. 258
Cauvet, C. 76
Chapman, R. 81
Chen, Eugene 39
Chi, M. T. H. 114
Chin, G. 301

Chok, S. S. 258
Chrissis, M. B. 62
Chung, L. 78, 81
Clancey, W. J. 273, 278, 280
Claridge, N. 130, 131
Cleeland, Chris 331
Clegg, C. 33
Clements, P. 53, 88, 91, 97
Coble, J. M. 299
Cockburn, A. 32, 39, 45, 47, 75, 153, 154,

156, 175, 178, 220, 222–226, 236, 237
Cockton, G. 90
Comstock, E. M. 306
Conallen, J. 181, 189
Conklin, E. J. 286
Constantine, L. L. 10, 34, 39, 40, 43, 45,

48, 55, 116, 120, 152, 153, 156, 178,
179, 183, 187–189, 199, 220, 225, 227,
230, 231, 233–235, 237, 238, 241

Cooper, A. 10, 19, 21, 27, 40, 140, 230
Coplien, J. O. 14, 289
Costa, P. 227
Costabile, M. F. 179
Coutaz, J. 61
Covey, S. R. 129
Cowley, L. 332, 344
Cucchiarelli, A. 288
Curtis, B. 62, 275, 276, 279, 283

da Silva, P. P. 10, 39, 45, 47
Damodaran, L. 33
D’Angelo, B. 288
Dangle, K. 227
Davenport, L. 74
Dayton, T. 10, 39, 45, 47
De, P. 282
Dearden, A. 345
Degler, D. 300
DeMarco, T. 8
Derniame, J. C. 175
Devanbu, P. 274
Dewan, P. 62
Dingsøyr, T. 52
Dix, A. 72, 77
Djouab, R. 116
Doble, J. 333
Dodd, J. 296
Donahue, G. M. 4, 33
Douglas, S. 253
Dourish, P. 62

INDEX 381

Dowell, J. 82
Drake, F. 174, 288
Draper, S. W. 4, 5, 11, 18, 38, 273
Dray, S. M. 18, 229, 239
DSDM 72, 73
Duane, W. M. 306
Dubois, E. 76
Duce, D. 81
Duisberg, R. 258
Duke, D. 81
Dumais, S. 278, 283
Dumas, J. S. 176, 189
Dunckley, L. 40
Dupuis, R. 38, 175, 184, 185
Duyne, D. K. Van 332, 335, 348

e Cunha, J. F. 10, 39, 47
Earthy, J. 44, 62
Eason, K. D. 78
Easterbrook, S. 288
Eden, H. 275, 278
Ege, R. K. 258
Ellis, J. 272
Engelberg, D. 47, 288
EPSRC 72
Erickson, T. 49, 51
Evans, G. 147, 153

Farbey, B. 33
Farrell, S. 348
Fayad, M. E. 81
Fedorec, I. 81
Fenton, N. E. 73, 81
Ferre, X. 183, 186, 192, 250, 288, 307
Fidel, R. 278, 283
Fiksdahl-King, I. 14, 51, 282, 288, 309,

333
Finaly, J. 345
Fincher, S. 332
Findlay, J. 72, 77
Finney, K. 81
Fischer, G. 275, 278, 283, 284
Fleek, F. 174, 288
Folmer, E. 8, 111
Forbrig, P. 12, 47, 288, 311, 328, 329
Forward, A. 278
Fowler, M. 21, 91, 220, 223–225
Fuggetta, A. 175

Gaildrat, V. 258

Gallaher, J. xiv, 342
Gamma, E. 81, 94, 285
Garg, N. 276
Garrity, K. 174, 288
George, P. 128
Girard, P. 61
Glass, R. A. 9
Glass, R. L. 180
Glazer, R. 270, 278
Golden, E. 111
Good, M. 128
Goodwin, K. 21
Göransson, B. 11, 17, 19, 24, 31, 128,

199, 220, 221, 230, 233
Gorman, A. 275, 278
Gould, J. D. 18, 25–28, 34, 229, 237
Gram, C. 90
Gray, W. D. 61
Greenbaum, J. 11, 18, 26
Greenspan, S. J. 76
Griffiths, R. N. xiv, 333, 342, 345
Grudin, J. 32, 278, 283
Grundy, J. 258
Guindon, R. 83
Gulliksen, J. 10–12, 17, 19, 31, 39, 45, 47,

48, 62, 128, 199, 221, 230, 233, 288,
354

Haber, J. 74
Hackos, J. T. 114, 116, 130, 137
Hahn, J. 271, 278, 280
Hall, A. 81
Hammond, N. 285
Harbison, K. 40
Harker, S. D. P. 78
Harning, M. B. 10, 39
Harris, J. 34
Harstad, B. 283
Hartson, H. R. 40, 42, 50, 61, 177, 178,

183, 187–190, 253
Haumer, P. 76
Hayne, C. 10, 39, 45, 47
Haynes, S. R. 276
Hefley, W. E. 61
Heidelberg, M. 10, 39, 45, 47
Helm, R. 81, 94, 285
Henderson, A. 10, 34, 39, 45, 47, 48, 62
Henniger, S. 285
Henninger, S. 49
Hersh, H. M. 150

382 HUMAN-CENTERED SOFTWARE ENGINEERING

Heymans, Heymans 76
Highsmith, J. 175, 220, 222, 223, 225,

233, 240
Hix, D. 40, 42, 50, 61, 177, 178, 183,

187–190
Hoare, C. A. R. 81
Hoecker, D. G. 61
Hofmann, H. F. 288
Holland, S. 183, 184, 187, 188, 190
Holtzblatt, K. 19, 34, 40, 41, 61, 75, 78,

114, 116, 130, 134, 188, 230, 299
Hong, J. I. 332, 335, 348
Horowitz., E. 73
Horst, M. 76
Hosking, J. G. 258
Hudson, S. E. 258
Hudson, W 220, 231, 233, 236, 237, 240
Hull, R. 33
Humburg, J. 33
Hutchins, E. 79, 271, 272
Hynninen, T. 116

IEEE 174, 186, 248
Imaz, M. 117
Iscoe, N. 275, 276, 279, 283
Isensee, S. 40, 48
Ishikawa, S. 14, 51, 282, 288, 309, 333
ISO 148, 149, 161
ISO/IEC xii, 6, 18, 26, 28, 34, 38, 44, 74,

78, 115, 118, 128, 130, 131, 148–150,
176, 178, 183, 187, 229, 230

Jackson, M. 80, 81, 285
Jacobson, I. 21, 115, 120, 148, 153, 154,

159, 161, 163, 179, 181
Jacobson, M. 14, 51, 282, 288, 309, 333
Jambon, F. 61
Jarke, M. 45, 46, 76
Javasoft 50
Jeffries, R. 114, 175, 275, 283
Joeris, G. 253
John, B. E. 7, 8, 10, 61, 77, 82, 83, 90, 98,

104, 105, 111, 256, 264, 306
John, Bonnie E. 39
Johnson, H. 32
Johnson, P. 32, 114
Johnson, R. 81, 94, 285
Johnson, R. E. 81
Jokela, T. 128, 131, 138, 144, 220, 231,

233, 236

Jones, C. B. 73, 81
Jones, S. 125
Juristo, N. 10, 98, 104, 105, 111, 183,

186, 192

Kaba, B. Ali 175
Kahn, M. G. 299
Kaindl, H. 76
Kane, D. 231, 234, 237, 240
Kanfer, A. xiv, 342
Kannampallil, T. G. 276
Kapor, M. 28
Karat, C. M. 239
Karat, J. 4, 18, 114, 229, 239, 299
Kauppinen, M. 10, 116, 117, 122, 123
Kautz, K. H. 270
Kawalek, P. 175
Kazman, R. 5, 10, 39, 53, 88, 91, 97
Kazman, Rick 39
Keller, G. 81
Kieras, D. E. 79, 81
Kieras, R. E. 77, 82, 83
Kinnunen, T. 116
Kirwan, B. 114
Kitajima, M. 82
Klein, M. 91
Knox, S. 116
Koenemann, J. 301
Kohler, K. 301
Kok, D. xiii, xiv, 335–339, 341, 343
Kolp, M. 81
Konkka, K. 61
Kovacevic, S. 10, 39, 45, 47, 48, 62
Kramer, J. 10, 39, 45, 47
Krasner, G. E. 61, 264
Krasner, H. 275, 276, 279, 283
Kreitzberg, C. 288
Kroll, P. 181, 182
Kruchten, P. 10, 18, 20, 21, 34, 39, 40, 45,

48, 181, 182
Kühn, T. S. 9
Kujala, S. 10, 114–117, 122, 123, 125
Kwaiter, G. 258
Kyng, M. 27, 78

La Fleur, J. xiv, 342
Laakso, K.-P. 114
Laakso, S. A. 114
Lamberti, D. M. 273
Lamming, M. 90, 91

INDEX 383

Landauer, T. K. 4, 45
Landay, J. 332, 335, 348
Lantz, A. 10, 39
Lanubile, F. 9
Larman, C. 178, 180, 182, 191
Larson, L. L. 276
Latour, B. 271
Lea, D. 332
Lebiere, C. 79, 81
Ledgard, H. F. 150
Lee, J. H. 62
Lee, M. J. 73
Lehner, F. 288
Leigh-Star, S. 271, 272
Lethbridge, T. 278
Letier, E. 74, 75, 77, 81
Leventhal, L. 253
Leveson, N. G. 275
Lewis, C. 74, 188, 189
Lewis, R. O. 253
Lilly, S. 154
Lim, K. Y. 180
Linden, K. Vander 10, 39, 45, 47, 48, 62
Lindvall, M. 227
Lister, T. 8
Liukkonen-Olmiala, T. 116
Lloyd-Jones, R. 33
Lockwood, L. A. D. 10, 39, 40, 43, 45, 48,

116, 152, 153, 156, 178, 179, 183,
187–189, 199, 220, 225, 227, 230, 231,
233–235, 237, 238, 241

Löfberg, M. 12, 29
Long, C. 270
Long, J. 82, 180
Long, M. D. 278
Lopez, M. 111
Lu, S. 10, 39, 45, 47, 48, 62
Lynch, G. F. 61

M., Moreno A. 183, 186, 192
Macaulay, C. 10, 40, 45
Mack, R. L. 189
MacLean, A. 81, 275
Maguire, M. 6, 44, 55, 130
Maiden, N. A. M. 76
Makarainen, M. 61
Malan, R. 154
Manaris, B. 253
Mandel, M. J. 270
Mäntylä, M. 116, 117, 123, 125

Mao, J.-Y. 33
Marijnissen, P. 45, 47
Markopoulos, P. 45, 47
Marriott, K. 258
Martin, D. 282
Mathiassen, L. 27
May, J. 81
Mayhew, D. J. 4, 7, 19, 40, 42, 43, 130,

179, 182, 183, 189, 190, 230
McCoy, T. 129
McCurdy, M. 101
McFarland, A. 10, 39, 45, 47
McGrath, J. E. 79
McGraw, K. L. 40
Mckean, A. 93
McManus, B. 345
Melchior, E.-M. 40
Meszaros, G. 333
Metzker, E. 5, 52, 61, 62, 143
Meunier, R. 94
Meyer, D. E. 79, 81
Microsoft Corporation 50
Milner, R. 81
Mitchell, A. A. 114
Mitchell, C. M. 285
Molich, R. 348
Monk, A. 74
Moore, J. W. 38, 175, 184, 185
Moran, T. 275
Moran, T. P. 82, 275, 280, 284
Moreno, A. M. 111
Mori, G. 47
Mosier, Jane N. 50
Mugridge, W. B. 258
Mullaly, J. 40, 48
Muller, M. J. 61
Munk-Madsen, A. 27
Myers, B. 258
Myers, B. A. 6, 60, 246
Mylopoulos, J. 76, 78, 81

Nakakoji, K. 283, 284
Nakari, P. 116, 123
Nardi, B. 79, 82
Neil, M. 73
Newell, A. 82
Newman, W. 90, 91
Nicholls, J. 33

384 HUMAN-CENTERED SOFTWARE ENGINEERING

Nielsen, J. 19, 26, 27, 40, 68, 74, 90, 91,
128, 130, 176, 187–189, 237, 239, 240,
343, 348

Nilsson, E. G. 310
NIST 130
Nonaka, I. 278
Norman, D. A. 4, 5, 11, 18, 38, 80, 82,

183, 273
Norman, K. 343
Nunes, N. J. 10, 39, 47, 181
Nuseibeh, B. 288

Ockerman, J. J. 285
Offergeld, M. 61, 62
Olphert, C. W. 78
OMG 152, 159, 161, 163
Ostwald, J. 283, 284
Overmyer, S. 10, 39, 45, 47, 48, 62

Paech, B. 301
Page, C. 114
Panti, M. 288
Paternò, F. 10, 40, 45, 47, 61, 62, 311
Paton, N. W. 10, 39, 45, 47
Patton, J. 55
Paulk, M. C. 62
Pejtersen, A. M. 278, 283
Pemberton, L. xiv, 333, 342, 345
Pérez-Quiñones, M. A. 253
Persson, J. 17, 220, 221, 230, 233
Pestina, S. 10, 288
Pierret-Goldbreich, C. 61
Pirkola, J. 128, 138, 144
Pitt, J. C. 283
Plowman, R. 115
Pohl, K. 76
Polanyi, M. 11, 280
Polson, P. 74
Polson, P. G. 82, 275, 283
Poltrock, S. 278, 283
Poltrock, S. E. 32
Pope, S. T. 61, 264
Poppendieck 223
Potts, C. 73, 75, 77
Prakash, A. 62
Preece, J. 183, 184, 187, 188, 190
Pressman, R. S. 10, 252, 253
Pries-Heje, J. 270
Prieto-Diaz, R. 285
Pyla, P. S. 253

Quesenbery, W. 288

Radhakrishnan, T. 10, 288
Radle, K. 174
Ralyt, Ralyt 76
Ramage, M. 115
Ramey, J. 114
Rantzer, M. 18, 229, 288
Rational 181
Rational Software Corporation 73
Raven, A. 270
Reaux, Ray 10, 39, 45, 47, 48, 62
Redish, J. 114, 116, 130, 137, 176, 189
Reichart, D. 311, 328, 329
Reifer, D. J. 253
Reiman, J. 74
Reimann, R. 10, 21, 40
Rekola, S. 10, 116, 117, 122, 123
Rengell, B. 76
Richter, A. 334
Rising, L. 334
Roberts, D. 39, 40, 48
Roberts, Dave 10, 39, 45, 47, 48, 62
Robertson, J. 73, 189
Robertson, S. 73
Rogers, Y. 115, 183, 184, 187, 188, 190,

272
Rohn, J. A. 33
Rohnert, H. 94
Rolland, C. 76
Rombach, H. D. 285
Ronkainen, J. 225
Rosenbaum, S. 33, 114
Rosson, M. B. 6, 10, 39, 40, 45, 60, 76,

91, 130, 156, 246, 252, 273, 278, 301
Roth, J. T 61
Royce, W. W. 251
Rubinstein, R. 150
Rumbaugh, J. 115, 120, 148, 154, 159,

161, 163

Sachs, P. 34
Salingaros, N. A. 332
Sanchez-Segura, M-I. 10, 98, 104, 105,

111
Sandbäck, T. 19, 24
Santoro, C. 47
Sawyer, P. 73
Scapin, D. 61

INDEX 385

Scharff, E. 275, 278
Schmidt, Douglas C. 331
Schön, D. A. 282
Scott, K. 21
Seffah, A. 5, 6, 10, 12, 39, 45, 47, 116,

142, 143, 174, 288, 306, 311, 328, 329
Selfridge, P. G. 274, 278
Sell, R. 33
Senge, P. M. 9, 293
Senn, J. A. 270
Sharp, H. 183, 184, 187, 188, 190
Shaw, M. 61, 81
Sherwood-Jones, B. 44
Shim, H. S. 62
Shneiderman, B. 90, 91, 176, 187, 189,

190, 282
Shull, F. 9, 227
Shum, S. Buckingham 285
Siegel, D. 239
Silverstein, M. 14, 51, 282, 288, 309, 333
Singer, J. 278
Sinha, A. P. 282
Sinnig, D. 311, 328, 329
Siponen, M.T. 225
Smith, A. 40
Smith, P. W. 33
Smith, Sidney L. 50
Snyder, C. 348
Software Productivity Consortium 249
Somerville, I. 282
Sommerlad, P. 94
Sommerville, I. 72, 73
Spine, T. M. 128
Stahl, G. 283, 284
Stal, M. 94
Stålhane 52
Standish Group 4, 33, 222, 224
Stewart, K. A. 270
Storey, V. C. 270
Subramani, M. R. 271, 278, 280
Sumner, T. 283, 284
Sun Microsystems, Inc 50
Sutcliffe, A. G. 49, 51, 74–79, 81–83, 284,

285, 288, 301
Szekely, P. 258

Takahashi, K. 73, 75
Tarby, J.-C. 39
Tarby, Jean-Claude 10, 39, 45, 47, 48, 62
Taylor, D. 288, 300

Terveen, L. G. 278
Tesoriero, R. 227
Teufel, T. 81
Thaysen, K. 270
Thimbleby, H. 74
Thomas, C. 130, 132
Tidwell, J. 49, 51, 310, 312, 332, 335,

336, 345
Tiitola, J. 61
Tollinger, I. 101
Tollinger, P. 101
Tomlinson, C. 33
Traetteberg, H. 334–336, 347
Tremaine, M. 253
Trenner, L. 287
Tripp, L. L. 38, 175, 184, 185
Tse, L. 125
Turner, A. T. 275, 283
Turner, R. xvi, 227, 228

Ukelson, J. 18, 25–28, 34, 229, 237
UsabilityNet 132, 136

Valenti, S. 288
van de Veer, G.C. 335, 345
van Gurp, J. 8, 111
van Harmelen, M. 39, 40
van Lamsweerde, A. 74, 75, 77, 78, 81,

154
van Welie, M. 12, 288, 334–336, 345, 347
Vanderdonckt, J. 10, 39, 49, 50
Vera, A. 101
Vicente, K. J. 74–76, 78
Vlissides, J. 81, 94, 285, 333
von Hippel, E. 278
Vredenburg, K. 4, 33, 45
Vutpakdi, R. 293

Waight, C. xiv, 342
Wallace, D. 9
Wallace, W. A. 273
Wang, C. xiv, 342
Warsta, J. 225
Wastell, D. 175
Wastell, D. G. 175
Webber, A. M. 270
Weber, C. V. 62
Wenger, E. 273
Wentling, T. L. xiv, 342
Wesson, J. L. 332, 335, 344, 348

386 HUMAN-CENTERED SOFTWARE ENGINEERING

Wharton, C. 74, 188, 189
Wheeler, S. 288
Whiteside, J. 61, 128
Wiegers, K. E. 299, 301
Williams, L. 227
Wills, C. E. 253
Wilson, C. 128, 130, 132
Wilson, S. 32, 39, 40
Wirfs-Brock, R. 93
Wixon, D. R. 18, 114, 116, 125, 128, 130,

132, 229

Wixon, J. 116
Wood, L. E. 114, 116, 117
Woolgar, S. 271
Wright, P. 74

Yin, R. K. 122
Young, R. M. 275
Young, S. 174
Yu, E. 78, 81

Zelkowitz, M. V. 9, 227

activities
assignment, 186
coordination, 259–261, 264
coordination (lack of), 253
in IBM User Engineering method, 216
list, 29–31
mapping between processes, 183, 194
of human-centered design, 44
timing, 187

activity list, 29–30
actors, 165

and PUF, 159–161
and usability properties, 160
and use cases, 153–154
and users, 159

agile approach, 221–244
and UCD, 55–56
and UCSD, 31
and user participation, 232–233
and user requirements, 32
client/user distinction, 55
extreme programming, 55, 73, 227, 228,

231, 232, 234–236, 240
FDD, 55
integration, 239–244
principles, 226
prototyping, 237
UCD, 238–239
user participation, 55
values, 55, 225

AMODEUS project, 81
architecture tradeoff analysis method, 91
artefacts, 45–49

and prototypes, 78–79
maps, 48
scenarios, 45
task analysis, 47
UML notation, 47
use cases, 48

ATAM, see architecture tradeoff analysis
method

best practices, 291–293, 296, 298, 304
BIUSEM, 181
BORE project, 284

case studies
Dome, 335
KESSU URD, 140–141
published, 288
Sweedish National Tax Board, 19–20
United States Marine Corps (USMC),

276–277
UPE/Satama, 344–350

challenges (to integration), see integration
champion, 231, 293

executive, 302
usability, 23, 24, 28, 232

CHAOS report, 33, 34, 222
CIF-R, 130
claims, 41, 46, 51, 76, 79, 83, 284
CMM, 62, 307
Common Industry Format for Usability Re-

quirements, see CIF-R1
concurrent processes, 53
constraint-based development tool, 258
context of use, 6, 26, 28, 34, 44, 115, 118, 128,

148, 149, 183, 188, 189, 230, 240
contextual design, 19, 40–42, 114, 130, 134,

230, 239
contextual inquiry, 30, 61, 99, 183, 188, 192,

195, 298
CSCW, 62, 110
CTT (Concurrent Task Tree), 47
cultural gaps between the SE and HCI, 56
cultures, see organization

design
documentation, 24
holistic, 28

387

SUBJECT INDEX

388 HUMAN-CENTERED SOFTWARE ENGINEERING

knowledge, 49, 269–286, 335, 346, 347
knowledge repositories, 279–282
knowlege management, 269–286
rational, 51, 81, 83, 274, 275, 277, 280,

281, 284–286
representations, 27, 32, 76, 229, 233

design knowledge and scenarios, see scenarios
design patterns, 14, 282, 285

architecture, 110, 111
HCI, 51
UI, see chapter 17

DSDM, 55, 72, 73, 78, 225

EBUE, see evidence based UE
ecological interface design, 74, 75, 78
ethnography, 73, 74, 99, 264

in MERBoard project, 102
in requirements analysis, 76
interviewing, 68, 114
observation, 61, 188, 192, 197
studies, 254, 259

evidence based UE, 52
extreme programming, see agile approach

FED (front-end architect and developer), 104

goal use case, 211
guidelines, 50

HCI methods, see UCD
survey, 68

HCI patterns, see patterns
HTA

seetask analysis, 61

i*, 78, 81
IBM User Engineering method, 201–217

phases, 203
IEEE standards

12207.1, 249
610.12-1990, 5
830, 248, 249
1061, 9

Inquiry cycle, 73, 75
integration (of UCD and SE)

agile approach, 239–244
and use cases, 47
case studies, 288
challenges, see obstacles, 293–294, 297,

300, 306
design processes, 73–76
design representations, 76–79
obstacles, see obstacles, 5–9, 22–25

change (of design), 301
change (resistance to), 293
communication among roles, 254
constraint and dependency, 255

coordination, 252–257
documentation, 307
existing process flawed, 297
funding, 297
group structure, 307
organizational changes, 293
provision for change, 256
requirements, 301
resources, 302
role overlap, 300
schecule synchronization, 254
support for iteration, 307
time pressure, 294
UCD delay, 302
UCD group misunderstood, 301
UCD practitionners motivation, 294
unrealistic dates, 301
user participation support, 294

organisational approaches, 52
patterns of, see chapter 15
proposals, 179–183
requirements differences, 252
Ripple tool, 249–265
survey of state of practice, 63–69
survey of state of research, 60
terminology differences, 252
usability methods approach, 177–179
use case, 45
use cases, 181
workshops, 10, see workshops

interaction patterns, 51
ISO standards

14915-3, 161
9241-11, 13, 127–132, 140–143, 148, 230

usability definition, 140
9126, 9
9241, 6, 74
12207, 176
13407, 5, 8, 25, 38, 44, 115, 128, 130,

148, 150, 178, 182
14915, 74
15504, 148
16982, 149
18152, 131
18529, 44, 131, 148

iterative development, 26, 177, 180, 187, 191,
193, 227, 234, 236, 243, 307, 346

iterative process, see iterative development

KESSU URD, 131–135
steps, 136–139

knowledge management
in design, see design

knowledge of SE and HCI
survey, 64–65

lifecycle, 54
activity coordination, 247

INDEX 389

differences, 250–251
models, 289
phases, 203
similarities, 250
Star, 42
Usability engineering, 42

low-fidelity prototyping, see prototyping
LUCID, 40

MAD, 61
MERBoard project, 100–102
mockups, see prototyping
multidisciplinary teams, 300

attitude, 28
MUSE, 179–182
MVC (Model View Controller), 7, 61, 88, 90,

264

object oriented
and task analysis, 46–47
design, 45
scenarios, 252

object oriented software engineering method,
179

obstacles
architecture modularity fallacy, 7
attitude, 24
compelling empirical evidence (lack of),

9
design documentation understanding, 24
differing views, 79
dispensability of usability, 8
lack of UCD perspective, 22
organizational changes, 9
people gap, 6
requirements changes, 24
roles and responsabilities, 7
Rosenbaum list, 33
training and education, 8
UI designers ignored, 24
usability (meaning of), 5
use case mania, 24

obstacles (to integration), see integration
ORDIT, 78
organization

change (resistance to), 293
culture, 28
cultures, 53, 289
support for user participation (lack of),

294
usability roles, 231–232

OVID, 40, 45, 201, 207

PAC (Presentation Abstraction Control), 7, 61
pattern language

TP, see TP pattern langugage
patterns, see design patterns

advantages, 345–346
and HCI-SE integration, 287–308
practioner experiences, 288
process, 289
UI design, 309–329
usability design, 51

personas, 21, 23, 30, 137, 207, 240, 244, 305
example, 23

procurement, 31
prototyping, 27, 48, 179, 183, 188, 193, 195,

230, 235, 251
and agile approach, 237
and artefacts, 78–79
as design artifacts, 10
collaborative, 20, 21
difference between HCI and SE, 185
early, 19
low fidelity, 21, 192, 233, 240, 243, 244,

291, 298, 300, 301
low-fidelity, 22
substitute for design, 34
utilization statistics, 68
vs. systematic development, 78

PUF, 13
PUF method, 129, 147–168

and UML, 152–164

quality in use, 9, 38

RAD, see Rapid Application Development
Rapid Application Development, 72, 73, 78
Rational Unified Process, 4, 18, 20, 21, 31, 34,

181, 289
and agile approach, 55
and use-case storyboard, 49
user experience (UX), 181

requirements engineering, 10, 113, 114, 116,
122, 125, 175, 182, 185, 288, 297,
298

and use cases, 13
Ripple, 257–265
RUP, see Rational Unified Process

SANE Toolkit, 40
scenarios, 13, 40, 72, 73, 76–77, 83, 152, 153,

156, 240, 244
and design, 83
and design knowledge, see chapter 14
and Inquiry cycle, 75
and object oriented design, 45–46
and prototypes, 79
and PUF, 30, 155–159, 197
design, 40–41, 74, 251, 255
differences, 252
in HCI and SE, 71
in phases of HCI/SE, 75
in use case OO, 252
mapping from tasks, 157

390 HUMAN-CENTERED SOFTWARE ENGINEERING

narratives, 78
type of usages, 75–76
usage, 255, 257
use case, 48, 153, 305, 311, 322–325

scenarios (and software architecture), see chap-
ter 6

SCRUM, 225, 238, 240
SDL (software development lifecycle)

seesoftware development lifecycle, 54
software architecture, 7, 53, 65, 81, 256, 264,

306
and scenarios, 90–91
and usability, 88–90
patterns, 93–97

software architecture (and scenarios), see chap-
ter 6

software development
risks, 221

software engineering, see integration (of UCD
and SE)

software management, 57
Software processes

Unified process, 181
software processes

agile, see agile approach, 55
customization, 28
evolutionary, 235–237
interactions survey, 65–67
iterative development, see iterative devel-

opment
LUCID, see LUCID
MUSE, see MUSE
OVID, see OVID
Star lifecycle, see Star lifecycle
Usability engineering lifecycle, see Us-

ability engineering lifecycle
usage centered design, see usage centered

design
software processess

documentation, 307
software requirements specifications (SRS),

248, 249
software specifications, 66
SSADM, 73
standards, see ISO standards,IEEE standards
Star lifecycle, 40, 42–182
style guides, 6, 50–51, 305
survey of practices, 63–69
SWEBOK, 38, 175, 184–186

task analysis, 26, 40, 44, 45, 62, 72, 114, 130,
244, 246, 255, 256, 258, 260, 297

and GOMS, 61
and UML, 47
GOMS, 74, 77, 79, 82
hierarchical task analysis (HTA), 61
in Dome case study, 338

MOST, 148
tasks

and PUF, 156–159
and UML, 209
in IBM User Engineering method, 214
transformation, 167

TP pattern language, 335–337
Tree metamodel, 314
two system perspectives, 39

UAN, see User Action Notation
UCD, see integration (of UCD and SE)

and agile processes, 55
best practices, see best practices
definition, 18
development processes, 40
LUCID, see LUCID
MUSE, see MUSE
OVID, see OVID
SANE toolkit, see SANE toolkit
standards, see ISO standards,IEEE stan-

dards
Star lifecycle, see Star lifecycle
survey of methods, 68
system perspectives, 39
time constraints, 192
UMM, see UMM
Usability engineering lifecycle, see Us-

ability engineering lifecycle
usage-centered design, see

usage-centered design
UCSD, see UCD

and agile approach, 31
and agile approaches, 31
attitude, 28
key principles, 26

UI architect, 328
UI designer, 327
UI services designer, 328
UML, 13, 21, 24, 27, 45, 62, 68, 73, 91, 111,

154, 201–204, 206–209, 212, 215,
217, 233, 280, 300, 310, 315, 317

and PUF, see chapter 9, 152–164
and task analysis, 47
and WISDOM method, 182
biologist’s taxonomy domain, 318
extending for UCD, 47–48
use cases, 21

UMLi framework, 47
UMM, 44, 62, 131
Unified Modeling Language, see UML
usability

ISO 9241-11 definition, 140
usability advocates, 6
usability champion, see champion
usability engineering, see UCD
Usability engineering lifecycle, 40, 42–43, 64,

179, 182, 230

INDEX 391

usability evaluation, 27, 149, 251
Usability Maturity Model, see UMM
usability requirements, 145
usage centered design, 40, 43–44, 178, 179, 183,

199, 230, 241
USAP (usability-supporting architectural pat-

terns), 111
use case-driven requirements

linking with user needs, see chapter 7
use cases, 21, 152, 154, 155, 157, 159, 162–164,

232, 300, 311, 312, 321, 323–325
and actors, 153–154
and PUF, 155–159
and requirements engineering, 13
and task models, 47
author, 327
essential, 43, 156, 178
extensions, 10, 39, 48–49
goal, 211
mania, 24, 233
mapping from tasks, 157
mapping to class objects, 160
scenarios, see scenarios
storyboard, 49
usability properties, 158–159
user experience, 212

User Action Notation (UAN), 61
user engineering, see IM User Engineering

method203
user focus, 30
user involvment, see user participation
user needs, see user requirements, 13, 129

and agile method, 55

and user requirements, 117–122
and user stories, 232, 233
understanding, 116–117

user participation, 26
agile approach to, 233
in agile approach, 55
in agile processes, 232–233
in product design, 294

user requirements, see user needs, 13, 45, 81,
129, 202, 203

and agile approach, 32, 55
and prototyping, 301
and scenarios, 45
fixed, 220

users
and actors, 159

U&SA, 89–106
materials, 90–101

WISDOM, 47, 271
WISDOM method, 181
workshops

ICSE, 61
ICSE, EHCI, 68
on HCI-SE integration, 9–288
TUPIS, 217
UI design, 6
UPA, 288, 289, 303, 308
with usability specialist, see chapter 8,

132

XP, see agile approach, extreme programming

	Untitled

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

