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NESTING OCEAN MODELS

Eric Blayo and Laurent Debreu
LMC-IMAG and INRIA Rhône-Alpes, Grenoble, France

Abstract This note is focused on the problem of providing boundary conditions
for regional ocean models. It is shown that usual methods generally do
not address the correct problem, but more or less approaching ones. A
tentative classification of these methods is proposed. Then their theo-
retical foundations are discussed, and recommendations are given.

Keywords: Open boundary conditions, regional models, nesting.

1. Introduction

The use of high resolution regional ocean models has become wide-
spread in recent years, in particular due to the development of oper-
ational oceanography and coastal management systems. An important
point, that has a strong influence on the quality of the results, is the way
that a local model is forced at its open boundaries. Several methods,
whose precise contents, theoretical justification, and practical perfor-
mances are often somewhat difficult to compare precisely, are presently
used in actual applications. In this context, the first aim of this note is
to provide a tentative classification of these methods (section 1). Then
we will discuss the one-way (section 2) and two-way (section 3) inter-
actions, focusing on the theoretical foundations and practical use of the
different approaches. Some final remarks on the available software tools
and on the problem of data assimilation within nested models are given
in sections 4 and 5.

:
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2. A classification of nesting problems

2.1 General framework

We are interested in representing as accurately as possible the ocean
in a local domain Ωloc. The circulation is supposed to be described on
a time period [0, T ] by a model which can be written symbolically

Lloculoc = floc inΩloc × [0, T ] (1)

with convenient initial conditions at t = 0. Lloc is a partial differential
operator, uloc is the state variable, and floc the model forcing. The
conditions at the solid boundaries will never be mentioned in this note,
since they do not interfere with our subject.

Since Ωloc is not closed, a portion of its boundary does not correspond
to a solid wall, and has no physical reality. This artificial interface, also
called open boundary (OB), is denoted Γ. The local solution uloc is
thus in interaction with the external ocean through Γ, and the difficulty
consists in adequately representing this interaction in order to get a good
approximation of uloc in Ωloc × [0, T ].

We also assume that we have at our disposal a (probably less accurate)
representation of the external ocean, either under the form of some data
uext or of an external model

Lextuext = fext in Ωext × [0, T ] (2)

where Ωext is an external oceanic domain. Note that, in our notations,
Ωloc and Ωext do not overlap (Figure 1).

The best way to solve the local problem is then probably to use an
inverse approach (e.g. Bennett, 2002), i.e. for example

Find uloc that minimizes ‖Lloculoc−floc‖
2
Ωloc×[0,T ]+ε ‖uloc−uext‖

2
Γ×[0,T ] (3)

where the norms are defined conveniently and take into account some
statistical knowledge on the errors on uext and on the model (1), and
where ε is a weighting factor. One can also consider that the model is
perfect, and minimize only ‖uloc−uext‖

2
Γ×[0,T ], i.e. control the boundary

values, under the constraint (1) (e.g. Taillandier et al., 2004).
However solving such an inverse problem is quite difficult and expen-

sive. That is why ocean modellers usually use direct approaches. The
goal is then to find uloc satisfying (1) that connects adequately to uext

through Γ. The mathematical formulation of this problem is generally
not expressed clearly in actual applications. Since Γ has no physical real-
ity, the connection between uext and uloc should be as smooth as possible,
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i.e. generally continuous and differentiable. Therefore a correct direct
formulation of the problem can be the following :

∥∥∥∥∥∥∥∥∥∥

Find uloc that satisfies⎧⎨
⎩

Lloculoc = floc in Ωloc × [0, T ]

uloc = uext and
∂uloc

∂n
=

∂uext

∂n
on Γ × [0, T ]

under the constraint Lextuext = fext in Ωext × [0, T ]

(4)

or equivalently :∥∥∥∥∥∥∥∥∥∥

Find uloc and uext that satisfy⎧⎪⎪⎨
⎪⎪⎩

Lloculoc = floc in Ωloc × [0, T ] and Lextuext = fext

in Ωext × [0, T ]

with uloc = uext and
∂uloc

∂n
=

∂uext

∂n
on Γ × [0, T ]

(5)

where n denotes the normal direction. However, in actual applications,
the external model is not always available for online interaction. More-
over it is defined generally on Ωext ∪Ωloc (i.e. it fully overlaps the local
domain), and it would be quite expensive to modify it in order to avoid
this overlapping by implementing an open boundary on Γ. Therefore
most applications generally do not address thecorrect problem (5) itself,
but rather more or less approaching problems.

Remark: the operators Lext and Lloc generally differ, both in their
continuous form (e.g. subgrid scale paramaterizations) and in their dis-
cretized form (the local numerical model often has a higher resolution
than the external model). Moreover the forcings fext and floc, and the
discretized bathymetries defining Ωext and Ωloc can be rather different.
In that case the regularity conditions in (5) cannot be satisfied, and
the connection between uext and uloc is unsmooth, which is of course
non-physical. That is why it is recommended to define the models and
forcings in order to ensure as far as possible the smoothness of the tran-
sition between the two models. This can be done for instance into a
transition zone defined in the vicinity of Γ.

2.2 The different approaches

The usual approaches can be classified as follows:

The open boundary problem. This is the usual case where the
local model only is used. The problem writes

{
Lloculoc = floc inΩloc × [0, T ]
Buloc = g on Γ × [0, T ]

(6)
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Figure 1. A schematic view of the nesting problem

where B denotes an open boundary operator. The choice of B and g
will be discussed in §3.

A particular case: one-way nesting. It is frequent that the
solution uext of an external model covering an area Ωext ∪ Ωloc larger
than Ωloc is available. Therefore this larger scale solution can be used
to force the local model along Γ. The formulation of the problem which
is solved in that approach is:

∥∥∥∥∥∥∥∥

Lextuext = fext in Ωext ∪ Ωloc × [0, T ]
then{

Lloculoc = floc in Ωloc × [0, T ]
Buloc = Buext on Γ × [0, T ]

(7)

This interaction between the two models can be performed on-line (the
two models are run together) or off-line (the external solution is taken
from an archive). In the case of an on-line interaction, uext is available
at every external model timestep, while it is generally subsampled or
averaged (i.e. of lesser quality) in the case of an off-line interaction, in
order to limit the storage volume.

Note that this problem (7) is a particular case of the open boundary
problem (6). It is different from the target problem (5) because uext

is computed not only on Ωext but on the global domain Ωext ∪ Ωloc.
Therefore both the external and the local equations are supposed to
be relevant in Ωloc. This assumption can be rather reasonable in the
particular case where both models are identical except for the resolution,

.
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and uext can be in that case a correct approximation of uloc. However,
as mentioned previously, Lext and Lloc generally differ, as well as the
forcing terms and the bathymetries. The quality of uext is then lesser,
which will degrade the estimation of uloc. Moreover, since this approach
is only one-way, uloc never acts on uext, and the external model cannot
be improved.

Usual two-way nesting. An immediate possibility to address this
shortcoming is to add a feedback from the local model onto the external
one. Formulation (7) then becomes∥∥∥∥∥∥∥∥∥∥∥∥∥

Lextuext = fext in Ωext ∪ Ωloc × [0, T ]
then{

Lloculoc = floc in Ωloc × [0, T ]
Buloc = Buext on Γ × [0, T ]

then
uext = Huloc in Ωloc × [0, T ]

(8)

where H is an update operator, mapping uloc from its time and space
grid onto the grid of the external model. This implies of course that the
external model is fully available, and that both models are run together
with on-line interaction. The update can be performed at each external
model timestep, or less frequently.

In this approach, the local solution has some influence onto the exter-
nal one, the goal being to get closer to the target problem (5) without
having to modify the external model.

Full coupling. As mentioned previously, the correct approach
should be to solve (5). However this implies first to modify the external
model by defining an open boundary on Γ in order to avoid overlapping
Ωloc, and also to find an interaction procedure that makes uloc and uext

satisfy the regularity conditions on Γ. We will see in §4.2 how this can
be done. Such methods are quite recent, and are not yet disseminated
in the ocean and atmosphere modelling community.

2.3 A numerical example

Let us now illustrate the different preceding approaches in the very
simple case of a 1-D ordinary differential equation. The problem is:{

−ν(x)u′′(x) + u(x) = sin nπx x ∈]0, 1[
u(0) = u(1) = 0

(9)

The local domain we are interested in is Ωloc =]a, b[; hence Ωext =
]0, a[∪]b, 1[. ν(x) is displayed on Figure 2a. It is equal to ν0 in Ωext, and
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ν0/
√

2 in Ωloc, except in two small transition zones of width δ, where
it varies smoothly between ν0 and ν0/

√
2. This problem has a unique

solution (Brezis, 1983), denoted uref , which is plotted on Figure 2b.
The elliptic nature of this problem amplifies the influence of the bound-
ary conditions, which will help highlighting the differences between the
nesting approaches described in §2.

Open boundary problem. Solve −ν(x)u′′
obc(x)+uobc(x) = sinnπx,

x ∈]a, b[, with OBCs at a and b. Such OBCs can be for example
Dirichlet conditions uobc(a) = α0, uobc(b) = β0, or Neumann conditions
u′

obc(a) = α1, u
′
obc(b) = β1. If the external data are perfect ( [α0, β0] =

[uref (a), uref (b)] or [α1, β1] = [u′
ref (a), u′

ref (b)] ) then we get the true so-
lution uref . We have plotted in Figure 2b the case of imperfect Dirichlet
data α0 = β0 = 0.

One-way / two-way nesting. Since the problem is not time de-
pendent, both one-way and two-way approaches yield the same solution
unes, defined by :{

−ν0 u′′
ext(x) + uext(x) = sin nπx, x ∈]0, 1[

uext(0) = uext(1) = 0{
−ν(x)u′′

nes(x) + unes(x) = sin nπx, x ∈]a, b[
Baunes(a) = Bauext(a) and Bbunes(b) = Bbuext(b)

(10)

We have plotted in Figure 2b the cases Ba = Bb = Id and Ba = Bb =
∂/∂n. As can be seen clearly, these methods, which are all supposed to
approximate the true problem (9), yield quite different solutions, which
can differ from uref both in Ωloc and Ωext. Note also that the true
problem (9), reformulated as (5), requires two BCs at a and b, while the
approximate formulations require only one BC.

The same type of comparison is displayed in Figure 3, but for the
realistic testcase of a high resolution model of the bay of Biscay coupled
with an eddy-permitting model of the North Atlantic.

3. The open boundary problem

Let us now focus on the main point, central in all approaches, namely
the choice of the open boundary operators B in (6)-(7)-(8). This is a
difficult problem, which has been the subject of numerous studies for
more than 30 years, ranging from purely mathematical approaches to
specific modelling applications. Mathematical results are often obtained
for simplified equations (e.g. linearized and/or inviscid). They generally
address the derivation of OBCs, and the well-posedness of the model
equations using these OBCs. Note that the well-posedness of the system
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Figure 2. a) ν(x) for eq.(9); b) The different solutions (see text): uref (solid line),
uobc (thick solid line), unes with Dirichlet and Neumann OBCs (dashed lines). The
two vertical lines correspond to x = a and x = b.

Figure 3. Averaged temperature at z = 30m in spring 1998, in a 1/15◦regional model
of the bay of Biscay interacting with a 1/3◦model of the north Atlantic. The internal
rectangle corresponds to the limits of the regional model. The model of the north
Atlantic is only partially shown. Three interactions procedures are compared (from
S. Cailleau, 2004).

ensures the uniqueness of the solution and its stability with regard to
initial datum, but does not give any information on its accuracy nor
relevance with regard to the “true” solution uref . On the other hand,
numerical studies can use complex realistic models, but their results seem
often dependent on the test cases. We present here a brief overview
of usual OBCs, and give a tentative explanation of their performance
through the point of view of hyperbolic systems. The contents of this
section is discussed in much more details in Blayo and Debreu (2005).
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3.1 Usual OBCs

Several reviews of OBCs are available, either for ocean and atmo-
sphere models or in a more general context. Let us mention for in-
stance the introductory parts of the papers by Palma and Matano (1998),
Marchesiello et al. (2001), Treguier et al. (2001), or the review papers
by Givoli (1991), Tsynkhov (1998) or Holdstad and Lie (1999). OBCs
are often classified roughly into two categories : global OBCs are usu-
ally accurate, but computationally expensive and difficult to implement;
local OBCs are much cheaper and easier to implement, but also gen-
erally much less accurate and mathematically justified. We will give
now briefly a list of OBCs used in the context of ocean and atmosphere
modelling.

Relaxation methods. The goal of this widely used class of OBCs is
to relax the model solution φ towards the external data φext on (or in the
vicinity of)Γ. The most brutal way to do this is to impose φ = φext on Γ,
i.e. to use a Dirichlet (or clamped) boundary condition. Such a condition
is often used in particular in the context of one-way nesting. However,
a major drawback of this method is that the outflowing information is
totally determined by these external data, and does not depend at all
on the internal solution. Therefore part of the outgoing information
will be reflected into the domain as soon as the external data is not
perfectly consistent with the internal dynamics. One of the conclusions
of a comparative study by Röed and Cooper (1987) in the context of a
simple linear barotropic ocean model is that such a clamped BC should
be avoided in most applications.

It is frequent in practical applications to use a more progressive method,
called flow relaxation scheme. This approach consists in extending the
computational domain Ωloc by defining an additional domain Ωs (the
sponge layer), which interface with Ωloc is Γ. In the original method
proposed by Davies (1976), the model equations are numerically solved
on Ωloc ∪ Ωs, and the solution in Ωs is replaced at each timestep by

(1 − α)φ + αφext (11)

where α is a relaxation function increasing from 0 on Γ to 1 far enough
from Γ. While primarily designed for discretized equations, it can be
shown easily (e.g. Martinsen and Engedahl, 1987) that this correction
scheme can also be interpreted as adding a nudging term to the original
model equations

∂φ

∂t
+ F (φ) = 0 (12)
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which become
∂φ

∂t
+ F (φ) + K(φ − φext) = 0 (13)

where K is a positive function, null on Ωloc and increasing away from
Γ (K depends on α and on the time-discretization scheme). Relaxation
methods are often performed jointly with a sponge layer approach, which
means that the model viscosity is artificially increased in Ωs, in order to
damp the local turbulent activity. Relaxation generally appears to be
one of the best methods in comparative numerical studies (e.g. Röed
and Cooper, 1987; Palma and Matano, 1998; Nycander and Döös, 2003).

Two drawbacks of these methods must however be emphasized. The
first one is the increase of the computational cost induced by the ad-
ditional layers Ωs. The ratio of this additional cost to the cost of the
initial model is roughly equal to |Ωs|/|Ωloc|, and can either be negligible
or reach some tens of percents, depending on the configuration. The
second drawback is the empirical aspect of the governing equation (13)
in the sponge layer.

Finally, note also that perfectly matched layer (PML) methods, which
have been proposed quite recently in the context of electromagnetism
(Berenger, 1994), can be seen as an improvement of relaxation meth-
ods. This methodology consists basically in a convenient splitting of the
equations with addition of relaxation terms with well-chosen coefficients.
PML approach has been applied to the Euler equations (Hu, 1996, 2001)
and to the shallow water equations (Darblade et al., 1997; Navon et al.,
2004), and leads to improved results in academic test cases. It must now
be validated in realistic configurations to get a better evaluation of its
actual effectiveness.

Radiation methods. A very popular class of OBCs are radiation
methods. They are based on the Sommerfeld condition :

∂φ

∂t
+ c

∂φ

∂n
= 0 (14)

which corresponds to the transport of φ through Γ (n is the outward
normal vector) with the velocity c.

Orlanski (1976) proposed a numerical implementation of this condi-
tion for complex flows, including an adaptive evaluation of c. A num-
ber of variants were then derived, using alternative computations of
c, and/or taking into account the tangential derivative, and/or includ-
ing an additional relaxation term (e.g. Camerlengo and O’Brien, 1980;
Miller and Thorpe, 1981; Raymond and Kuo, 1984; Barnier et al., 1998;
Marchesiello et al., 2001).
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Such radiation methods are frequently used in ocean and atmosphere
modelling. However their relevance for such complex flows is far from
obvious. Their reputation is split: they have proved to give rather poor
results in several comparative studies (e.g. Röed and Cooper, 1987;
Palma and Matano, 1998; Nycander and Döös, 2003), while they seem
to have some efficiency in others (e.g. Marchesiello et al., 2001; Tréguier
et al., 2001). In fact the Sommerfeld condition is justified only in the
context of wave equations with a constant phase velocity (Blayo and
Debreu, 2005). Applying such a condition to variables which do not
satisfy at all such equations results in a fundamental nonlinearity, which
has been recently pointed out by Nycander and Döös (2003). Therefore
this condition cannot be mathematically justified in the context of ocean
and atmosphere modelling. However, its actual implementations give an
important role to external data. As indicated previously, the radiation
velocity c is evaluated at each timestep and at each gridpoint on the
open boundary. If c is inward, the model variable is generally set to the
corresponding external value: φ = φext, or strongly relaxed towards it:

∂φ

∂t
= −

φ − φext

τin

(15)

where τin is a short relaxation timescale. If c is outward, then the ra-
diation equation is applied, but often with the addition of a relaxation
term:

∂φ

∂t
+ c

∂φ

∂n
= −

φ − φext

τout

(16)

where τout is a longer relaxation timescale. In their careful analysis of a
simulation of the Atlantic ocean, Tréguier et al. (2001) have observed
that c behaves in some sense like a white noise, and is directed inwards
about half of the time at any location on the open boundaries. Therefore
the model solution at the open boundary never departs significantly
from the external data, and the radiation condition acts in fact nearly
as a clamped condition. So it is probably the strong influence of the
external data through the additional relaxation term in the radiation
conditions that gives them most of their practical efficiency, rather than
the radiation procedure.

Flather condition. Flather (1976) proposed an OBC for 2-D
barotropic flows, which is often classified within the family of radiation
conditions. This condition can be obtained by combining the Sommer-
feld condition for the surface elevation η (with surface gravity waves
phase speed)

∂η

∂t
+

√
gh

∂η

∂n
= 0 (17)
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with a one-dimensional approximation of the continuity equation

∂η

∂t
+ h

∂vn

∂n
= 0 (18)

where g is the gravity, h is the local water depth and vn is the normal
component of the barotropic velocity. Substracting (17) to (18) and
integrating through Γ, one obtains:

vn −

√
g

h
η = vext

n −

√
g

h
ηext (19)

The Flather condition has been used in several comparative studies (e.g.
Palma and Matano, 1998; Marchesiello et al., 2001; Nycander and Döös,
2003), and it always appears to be one of the most efficient conditions.

Model adapted methods. A striking aspect of radiation and
relaxation methods is that the OBCs do not depend on the model equa-
tions. On the opposite, other methods provide OBCs which are adapted
to the system. However, since they are more complicated to handle,
the use of such methods is quite rare and restricted to simple 1-D or
2-D models, and has never been extended to our knowledge to realistic
primitive equations systems.

This is the case of characteristic waves amplitudes methods

(sometimes called Hedström methods), designed for hyperbolic systems.
The basic idea consists in choosing for OBCs the original set of model
equations with as few approximations as possible. Since the only quanti-
ties that cannot be evaluated by the model alone are the incoming char-
acteristics (see §3.2) the approximations must concern only these terms,
and eventually the viscous terms if the model is not inviscid. This results
in setting to zero (or to a value deduced from external data) the normal
derivative of the incoming characteristic variables on Γ. Several papers
developed this idea these last years in the context of direct numerical
simulation of compressible Euler and Navier-Stokes equations, with ap-
parently good experimental results (Poinsot and Lele, 1992; Bruneau,
2000; Bruneau and Creusé, 2001). In the context of ocean modelling, it
is compared to other OBCs by Röed and Cooper (1987), Jensen (1998)
and Palma and Matano (1998), and leads to rather good results.

Another important family of methods are absorbing conditions,
which are exact relations satisfied by the outgoing quantities at the open
boundary. In a reference paper, Engquist and Majda (1977) give a gen-
eral method for obtaining such relations, using time and space Fourier
transforms. However, these conditions are generally global in time and
space, and cannot be used just as it is in practice. That is why they
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must be approximated to give tractable local conditions. A strong in-
terest of this approach is its sound mathematical foundation, and its
practical efficiency in several domains of applications. Several papers
have recently readdressed the derivation of absorbing BCs for the invis-
cid shallow water system, and obtain apparently quite good numerical
results (Lie, 2001; McDonald, 2002, 2003; Nycander and Döös, 2003).

3.2 An hyperbolic point of view

When attempting to draw some synthesis of the numerous previous
studies on OBCs, two keypoints stand out, which seem to be necessary
constituents for any good OBC. The first point is that good results are
obtained when taking primarily into account the hyperbolic part of the
dynamics, and therefore when working on incoming characteristic vari-
ables. The second point is that this must be associated with a consistent
use of some external data.

Incoming characteristic variables. Let us first introduce some
standard definitions concerning hyperbolic systems. The general form
of such a system is

∂Φ

∂t
+ A(Φ)

∂Φ

∂x
= F (20)

where Φ(x, t) is a vector of n functions, A(Φ) is a n × n matrix of
functions of Φ, and F is a forcing term. For the system to be hyperbolic,
A must have n real eigenvalues and n distinct eigenvectors. Let Wk

the kth left eigenvector of A, corresponding to the kth eigenvalue λk:
W T

k A = λk W T
k . Multipliying (20) on the left by W T

k , one gets:

W T
k

dkΦ

dt
= W T

k F with
dk

dt
=

(
∂

∂t
+ λk

∂

∂x

)
(21)

The operator dk/dt represents a total (or directional) derivative in the di-

rection defined by
dx

dt
= λk. To the hyperbolic system (20) correspond n

such families of curves, which are called characteristic curves of the sys-
tem. If the system (20) is linear with constant coefficients, i.e. if A is a
constant matrix, one can define the new variables wk(x, t) = W T

k Φ(x, t).
(20) is then equivalent to the system of n uncoupled transport equations:

∂wk

∂t
+ λk

∂wk

∂x
= W T

k F k = 1, . . . , n (22)

The characteristic curves in that case are the lines x − λkt = constant,
along which the wk (called characteristic variables or Riemann invari-
ants) are conserved. One can notice that, at a given boundary, these
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characteristic variables will be either inflowing or outflowing, depending
on the sign of λk.

A fundamental point is that, for a hyperbolic open boundary problem
to be well-posed, one must prescribe as many boundary conditions as the
number of incoming characteristics. This result is in fact quite intuitive:
the solution can be decomposed into outgoing and incoming charac-
teristics; information on the former is available within the computation
domain, and no additional condition is required, while information on
the latter is not available, and mustbe specified.

Consistency with external data. The second keypoint concerns
the connection with external data. It appears that a reasonable choice
consists in imposing the consistency locally all along the boundary. This
means that the OBC is of the form

Bφ = Bφext (23)

where B is the open boundary operator. B = Id corresponds to the
continuity of φ through the boundary, and B = ∂/∂n to the continuity
of the flux. Such a formulation (23) is quite natural for example if we
consider that the external data φext represents some steady state or far
field solution φ∞. In that case, as detailed for example by Engquist and
Halpern (1988), if we want the model solution to converge to the steady
state solution as t → ∞, then the OBC must also be satisfied by φ∞.

Used together with the point of view of characteristic variables pre-
sented previously, this condition (23) leads to recommending OBCs of
the form

Bw = Bwext (24)

where w is any incoming characteristic variable of the governing equa-
tions.

The extension to non-hyperbolic systems, like for example the Navier-
Stokes equations, is not trivial. A logical approximation consists however
in considering only the hyperbolic part of thesystem, and to use the same
procedures as for the hyperbolic case.

Revisiting usual OBCs. The preceding criteria give a new light
on usual OBCs. It appears indeed that:

the Sommerfeld condition (14) corresponds to prescribing to zero
the incoming characteristic of the wave equation. That is why it
is legitimate for wave equations but not for other systems.
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the Flather condition (14) corresponds to specifying the value of
the incoming characteristic of the shallow water system, fulfilling
the criterion (24) with B = Id the identity operator.

absorbing conditions are closely linked to incoming characteristic
variables, and the conditions proposed by McDonald (2002, 2003)
and Nycander and Döös (2003) can be written under the form (24).

characteristic waves amplitudes methods do also meet the preced-
ing point of view.

since relaxation methods are not local conditions, the criterion
(24) does not apply directly. However, it is obvious from (11) that
the transition from φ to φext is smooth as soon as the additional
domain Ωs is large enough. Similarly the problem of specifying
incoming characteristics and evacuating outcoming characteristics
at the open boundary is treated implicitely: the values of the
incoming characteristics are computed within Ωs, using the relaxed
solution, while the outgoing characteristics are not directly affected
when reaching Γ but are relaxed in Ωs towards their corresponding
external values, and damped by the increased dissipation.

Details on these aspects, as well as an application of the criterion (24) to
shallow-water and primitive equations systems, are discussed in Blayo
and Debreu (2005).

3.3 Some practical remarks

It is important to note that we discussed here only the continuous
form of the equations. However discretized models contain spuri-
ous numerical modes, which nature is different from that of phys-
ical modes, and which have to be handled by the OBCs. There-
fore, once the continuous form of the OBCs is chosen, one has
to perform some specific work in order to adapt their numerical
implementation to the numerical schemes of the model. This diffi-
culty is probably also a reason for the efficiency of relaxation and
radiation-relaxation methods, which tend to automatically damp
these non-physical modes.

Incoming information is entirely given by the external solution φext.
Therefore the quality of these data is of course an important point
in the performance of a regional modelling system.

Another important practical aspect in a regional modelling system
is the initialization problem. The initial condition is generally built
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by interpolation of a larger scale solution, which is not perfectly
consistent with the local model. This can yield an adjustment
phase which can be quite long, and which pollutes the model solu-
tion. A way to avoid (or limit) this problem is to add some relevant
constraints in the computation of the initial condition, as done for
instance by Auclair et al. (2000) using an inverse approach. This
aspect is presently the subject of numerous studies.

4. Two-way interaction

4.1 Two-way nesting

As explained in §2, the usual two-way method differs from the pre-
ceding one-way method by the addition of an update procedure. This
supplementary step aims at improving uext by modifying it locally using
uloc. This retroaction from the local model onto the external model is
performed every external model timestep, or less frequently. The update
operator generally replaces the values of uext at gridpoints located in Ωloc

by copying the corresponding values of uloc, eventually after some time
and space averaging. Such an update is quite brutal, and in particular
does not ensure the balance of mass and tracers fluxes through Γ. For

example,

∫
Γ
Uloc.n �=

∫
Γ
Uext.n, where U denotes the velocity. That is

why a flux correction step is often added, which generally modifies uloc

to distribute the flux misfit all along Γ, to get finally a local solution u∗
loc

which is in flux balance with uext.
The two-way method generally decreases the difficulties that can be

encountered by the one-way method (in particular the instabilities along
Γ), and seems to improve the model solution. That is why it is recom-
mended to use it as far as possible rather than one-way interaction.
However, it is clear that the solution provided by this usual two-way
nesting is not solution of the original problem (5): before the flux cor-
rection step, the connection between uext and uloc is not differentiable,
because their fluxes are not balanced; after the flux correction step, the
connection is no more continuous because uloc has been modified into
u∗

loc, which in addition does not satisfy any longer the local model equa-
tions (1).

4.2 Full coupling - Schwarz methods

Obtaining a solution of the original problem (5) is much more difficult
and expensive than what is done in the above usual algorithms. This is
mainly due to the fact that, since the local and external model equations
are different, their domains of application should not overlap. Therefore
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the external model, which is generally available in a configuration fully
overlapping Ωloc, must be modified to add an open boundary. Moreover,
once this is done, one has to find and implement an algorithm ensur-
ing that the solutions uext and uloc will satisfy the desired regularity
conditions through Γ.

These difficulties explain that this problem has never been addressed
before in ocean and atmosphere modelling. This can be done however
within the mathematical framework of domain decomposition methods.
These methods have been intensively studied and developed since the
end of the eighties due to the advent of parallel computers. With-
out going into details, let us present the global-in-time non-overlapping
Schwarz algorithm, which seems well suited for our ocean coupling prob-
lem. This iterative algorithm can be written as follows:

⎧⎪⎨
⎪⎩

Llocu
n+1
loc = floc in Ωloc × [0, T ]

un+1
loc given at t = 0

Blocu
n+1
loc = Blocu

n
ext on Γ × [0, T ]

and

⎧⎪⎨
⎪⎩

Lextu
n+1
ext = fext in Ωext × [0, T ]

un+1
ext given at t = 0

Bextu
n+1
ext = Bextu

n
loc on Γ × [0, T ]

(25)

where the superscripts denote the number of iterations, and Bloc and
Bext are interface operators to be chosen. Note that, at each iteration,
the two models can be run in parallel over the whole time window [0, T ].
If no parallel computer is available, the interface condition for uext can
be replaced for example by Bextu

n+1
ext = Bextu

n+1
loc , which prevents paral-

lelism but increases the convergence rate of the algorithm.
This rate closely depends of the choice of Bloc and Bext. An obvi-

ous possibility is to choose the operators Id and ∂/∂n. Therefore, once
the algorithm has converged, its solution will satisfy (5). However the
convergence can be quite slow and, given the computational burden of
ocean models, one probably cannot afford numerous iterations of such
an algorithm. That is why the choice of the interface operators must be
optimized. A simple but quite efficient possibility is to use Robin con-
ditions: Bloc = ∂/∂n + rlocId and Bext = ∂/∂n + rextId with rloc �= rext.
This ensures the desired regularity as previously for the converged so-
lution, but a good choice of the coefficients rloc and rext can greatly
speed up the convergence. More sophisticated approaches can be used
to determine good interface operators, which are closely linked to charac-
teristic methods and absorbing conditions. Martin (2003) applied such
approaches to 2-D tracer equations and to the shallow-water system.
She derived very efficient operators, which ensure the convergence of the
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algorithm in some very few iterations. Development of such algorithms 
for realistic ocean models is ongoing research work. 

5. Software tools 
Designing nested or coupled systems starting from existing models 

is quite a difficult and time-consuming practical task. However several 
software tools have been developed these last years, which automatically 
manage an important part of the job. 

The AGRIF package1 (Debreu et al., 2004a) allows an easy integra- 
tion of mesh refinement capabilities within any existing finitedifference 
model written in Fortran. One can therefore design one-way and two- 
way multiply-nested systems, with the possibility of adaptive regridding, 
without reprogramming the model. This package is presently imple- 
mented into several operational ocean models. 

General couplers can also be used to implement nested systems, es- 
pecially in the case when the local and external model codes are totally 
different. The user has then to prescribe the structure of the coupling 
algorithm and the interactions between the different objects, but at a 
rather high level, without having to go too much into programming 
details. In the context of geophysical fluids, we can cite for instance 
 PALM^ or M ~ C C I ~ .  

6. Data assimilation and nesting 
Along with the development of nested ocean modelling systems, the 

problem of assimilating data within these systems is presently strongly 
emerging. Addressing this difficult problem is out of the scope of this 
note. Let us however point out a few related issues. 

The exact mathematical formulation of the data assimilation prob- 
lem for one-way or tweway nested systems is far from obvious. A 
first attempt in this direction for the 4D-Var approach can be 
found in Debreu et al. (2004b). Concerning the stochastic ap- 
proach, interesting ideas can probably be found in the theories of 
multiresolution stochastic models and multiscale estimation. 

Several ad-hoc procedures are already in use in numerous systems. 
A possibility is to perfom the assimilation only on one grid (the 
largest or the finest) of the system. Another way is to "hide" the 

lht tp:  / /m- lmc .  imag. f r/IDOPT/AGRIF 
2http://~.cerfacs .fr/-palm 
3http://m.mpcci .org 
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grid interaction process and to make the assimilation globally on 
a multiresolution state vector (e.g. Barth et  al., 2004). 

It is possible in a variational method to manage simultaneously the 
coupling problem and the assimilation problem. See for instance 
Bounaim (1999) or Taillandier et al. (2004). 

In a multiresolution modelling system, one has to choose which 
data are assimilated on which grid. Since the model dynamics 
depends on the grid resolution, and since the data themselves have 
often been collected or processed with some spatial and temporal 
resolution, this choice is not obvious and has consequences on the 
quality of the identified solution. 
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