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OCEAN DATA ASSIMILATION

USING SEQUENTIAL METHODS
BASED ON THE KALMAN FILTER

From theory to practical implementations

Pierre Brasseur
CNRS/LEGI, Grenoble, France

Abstract The main purpose of this chapter is to review the fundamentals of the
Kalman Filter for ocean data assimilation and to expose the basic ingre-
dients of practical assimilation algorithms developed for applied ocean
research and operational forecasting, focusing mainly on high-resolution
applications. Important implementation issues such as the reduction
in dimensionality of the estimation problem, the simplification of the
schemes based on static error covariances, the formulation of low-rank
filters, the problem of consistency verification, and the concepts of adap-
tivity and incremental analysis updating will be addressed using scien-
tific and operational examples. Finally, the discussion will conclude
with a number of key questions related to the assimilation challenges of
the next decade.
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1. Introduction

Operational ocean prediction systems are being developed with a va-
riety of objectives in mind, such as ocean current hindcasting and short-
range forecasting, estimation of the thermodynamic state of the ocean
for seasonal and climate predictions, and production of retrospective
analyses of the changing ocean through the merging of models and data.
In addition to simply combining model estimates with observations,
data assimilation provides a means to systematically compare theoretical
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models with reality, leading to potential improvements in modelling and
observing systems. It is therefore likely that applied ocean research will
benefit strongly from operational progress, and vice versa. The question
concerning the dominant energetic activity of the mesoscale ocean, its
non-deterministic nature and the interactions with the large-scale cir-
culation make the challenge unique, requiring sophisticated numerical
models and assimilation methods that make the best use of sparse ob-
servations. To produce reliable forecasts, the models must be initialized
with conditions that represent as accurately as possible the actual state
of the ocean at eddy-resolving resolution. Due to the chaotic proper-
ties of ocean dynamics, the forecast range cannot be extended beyond
the limit of predictability of the system and the model has to be re-
initialized intermittently by correcting the forecast with the most recent
observations. Fortunately, the arrival of satellite observations, in partic-
ular satellite altimetry, has provided the observational basis needed to
respond appropriately to the “high-resolution challenge”. In order to ex-
tract the best possible information from the new data, it is necessary to
assess how reliable the model forecast and the observations are. There-
fore, error estimates on the measurements and the model prediction are
inherent in the assimilation process.
Data assimilation is traditionally formulated as a least-squares estima-

tion problem. Among the various methodological approaches, the theory
of optimal statistical estimation, and more specifically the Kalman fil-
tering approach, is well suited to provide a solution to the Best Linear
Unbiased Estimation. Since Kalman in 1960, sequential filtering meth-
ods have been thoroughly explored and applied to state estimation. An
extended version of the Kalman Filter (KF) has been derived for non-
linear models, known as the Extended Kalman Filter (EKF) [Jazwinski,
1970; Gelb, 1974]. In spite of a fairly simple theoretical framework,
the question of its applicability in assimilating observations into high-
resolution, non-linear numerical models of the ocean circulation is far
from trivial. As stated by Courtier [1997], the scientific di culty asso-
ciated with data assimilation is in finding algorithms which simplify the
search for an a ordable solution in terms of computer resources, while
preserving some of the essential characteristics. A hierarchy of approxi-
mations to the Kalman filter has been defined to make the methodology
suitable for solving large-dimension problems. These developments rep-
resent a substantial part of the research e ort devoted to oceanic and
atmospheric data assimilation over the past 10 years.
Compared with variational approaches such as the 4D-VAR, statisti-

cal algorithms require less initial investment in terms of coding and are
naturally designed to incorporate gradual developments. This is one of
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several reasons why most assimilation methods used today in operational
forecasting systems are inspired by the statistical approach. In the con-
text of GODAE (Global Ocean Data Assimilation Experiment), one ob-
jective will be to test and compare the bunch of algorithms implemented
in operational systems, in order to better understand the importance of
the various possible approximations made in each of these.
The objectives of this chapter are to review the fundamentals of se-

quential data assimilation for ocean state estimation and to expose the
basic ingredients of practical assimilation algorithms developed for ap-
plied ocean research and operational systems, focusing mainly on high-
resolution applications. Section 2 is dedicated to the fundamentals of
applied estimation methods leading to the KF equations. Numerical rep-
resentations of the mathematical objects introduced by the theory will
then be illustrated using oceanographic examples in Section 3. Section
4 will provide a brief description of traditional simplifications of the KF.
In Section 5, we discuss various approaches to reduce the size of the esti-
mation problem and, in Section 6, we derive the framework of low-rank
Kalman filters. The important question of the verification of consistency
will be addressed in Section 7, where the concept of adaptivity is also
mentioned. Finally, a number of advanced implementation issues such
as the transition to incremental/smoothing algorithms will be discussed
in Section 8, before concluding the chapter.

2. Kalman filtering: Fundamentals

2.1 Problem definition

In this section, we introduce the basic assimilation problem in the
state space using the conventional notations proposed by Ide et al.
[1997]. The goal here is not to present a rigorous and comprehensive
derivation of the Kalman filter, which can be found elsewhere in dedi-
cated text books (e.g., Gelb [1974]), but rather to introduce a simplified
framework that still contains the essential characteristics needed to illus-
trate the more advanced concepts and implementation issues discussed
in the following sections.
To start, let us assume that some a priori knowledge about the state

of the ocean is available at time ti, represented by vector xai . A physical
model is also available to describe the transition of the state vector
from time ti to time ti+1, which is represented by a numerical (matrix)
operator M(ti, ti+1). A linear model will be considered at this stage.
The dimension of the state space is noted as n. The state vector x
contains the minimum set of independent variables needed to perfectly
characterize the state of the system at any time. The model can be used
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to simulate the transition of the state vector up to time ti+1,

x
f
i+1 =M(ti, ti+1)x

a
i (1)

where xfi+1 is the vector describing the “forecast” state of the system.
At instant ti+1, another piece of useful information is available about
the state, collected in the observation vector yi+1 of dimension p. From

the two independent pieces of information xfi+1 and yi+1, how can the
true state of the system xti+1 be best estimated at time ti+1? To answer
this question, we need to know more about the precision of the di erent
pieces of information.

2.2 Uncertainties and PDFs

The precision of the forecast xfi+1 can be quantified in terms of errors
on the initial guess and numerical model errors. The di erence between
the initial guess xai and the true state at time ti is the error vector noted
a
i= x

a
i xti . Of course, its value is unknown but we can make a number

of assumptions about its statistical properties: we will assume that the
estimation xai is unbiased (

a
i = 0, where the overbar represents the

expected value), and its error a
i is distributed as a gaussian, multivariate

random variable. The corresponding probability density function (pdf)
is

a
i N(0,Pai ) exp

1

2
aT
i P

a 1

i
a
i (2)

where Pai =
a
i
aT
i is the n× n error covariance matrix associated with

xai and
T denotes the transpose. Error covariances are formally obtained

by multiplying an error vector by its transpose and averaging over many
realizations, leading to symmetric and positive definite matrices. Mor-
rison [1988] contains excellent background information on multivariate
statistical methods. Similarly, the model operator M(ti, ti+1) is imper-
fect and the simulation error is noted as follows:

=M(ti, ti+1)x
t
i xti+1 (3)

Again, the individual realization of this error is unknown (otherwise a
perfect model operator could be run) but its statistical distribution is
assumed to be gaussian and centered ( = 0):

N(0,Q) exp
1

2
TQ 1 (4)

where Q = T is the n× n model error covariance matrix. We assume
in addition that a

i and are uncorrelated: a
i
T = 0. In general, these
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statistical assumptions are quite crude approximations of the actual error
distributions (in particular, a bias in the model is very common), but
they are very convenient in deriving a baseline of optimal estimation. A
schematic description of the error diagram in the state space is illustrated
in figure 1.

Figure 1. Vector diagram of analysis and forecast errors in the state space.

With the definitions introduced above, the forecast error f
i+1 can be

broken down as :

f
i+1 = x

f
i+1 xti+1 =Mx

a
i (Mxti ) =M a

i + (5)

and the statistical properties of the forecast error can be determined
easily if the model is linear. Indeed, Eqs. (5), (2) and (4) implies

that the forecast state is unbiased ( fi+1 = M
a
i + = 0) and normally

distributed, i.e.

f
i+1 N(0,Pfi+1) exp

1

2
fT

i+1P
f 1

i+1
f
i+1 (6)

with the forecast error covariance matrix given by:

P
f
i+1 =

f
i+1

fT

i+1 =M
a
i
aT
i M

T + T =MPaiM
T +Q (7)

This equation is the first fundamental equation of the KF which can be
interpreted as follows: the error on the initial state is transformed during
the forecast step by the model dynamics (the error being amplified by
unstable modes, while it is damped by stable modes) and by the model
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imperfections which increase the forecast error covariance. Understand-
ing the actual benefits and the practical limitations of error covariance
propagation through model dynamics has been a major research issue
over recent years. Although simple in its algebraic form, this equation
contains several major di culties that prevent an explicit computation
in the context of realistic models, as discussed in the following sections.
In order to optimally combine the forecast with new data, the pre-

cision of the observations arising at time ti+1 must be quantified. The
vector of observations is related to the true state as follows:

yi+1 =Hx
t
i+1 +

o
i+1 (8)

where H is the observation operator which computes the equivalent of
the observations from the model state. The observational errors o

i+1are

assumed to be centered ( oi+1 = 0), uncorrelated with the forecast error

and having a covariance matrix R = o
i+1

oT
i+1. Observation errors mea-

sure the misfit between the data and the equivalent of the observations
in the true state, i.e. Hxti+1. They include not only the errors of the
observational system but also the errors associated with the operator
H arising, for example, from the numerical interpolation of the data.
Again, a gaussian pdf can be assumed for the statistical distribution of
the observation errors

o
i+1 N(0,R) exp

1

2
oT
i+1R

1 o
i+1 (9)

to make the rest of the development easier and derive the KF equations.

2.3 Optimal analysis

The pdf given by (6) determines the a priori statistical distribution
of the true state P (xti+1), while (9) provides the probability of getting
measurements yi+1 given the true state, i.e. P (yi+1 | x

t
i+1). It is then

straightforward to deduce the a posteriori probability of the truth, given
the observations, by using the Bayes formula:

P (xti+1 | yi+1) =
P (yi+1 | x

t
i+1) P (x

t
i+1)

P (yi+1)
(10)

The state maximizing the posterior probability distribution is the max-
imum likelihood solution of this inverse problem. A comprehensive for-
mulation of data assimilation and inverse methods using the bayesian
approach has been proposed by van Leeuwen and Evensen [1996]. In
Eq. (10), the denominator is just a scaling factor (the integral of the
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numerator for all possible states) which can be ignored in determining
the maximum of the posterior pdf. The gaussian distributions (6) and
(9) imply that

P (yi+1 | x
t
i+1) P (x

t
i+1) exp

1

2
oT
i+1R

1 o
i+1 +

f T
i+1P

f 1

i+1
f
i+1

(11)
and the optimal estimation of xti+1 is the state vector maximizing (11)
or, equivalently, minimizing

J = oT
i+1R

1 o
i+1 +

f T
i+1P

f 1

i+1
f
i+1 (12)

As a result of error definitions, the optimal combination of the fore-
cast and observed information corresponds to the minimum of the cost
function

J(x) = (yi+1 Hx)TR 1(yi+1 Hx)+(xfi+1 x)TPf
1

i+1 (x
f
i+1 x). (13)

This quadratic form contains two terms measuring the misfit with the
data and the misfit with the forecast, weighted by the inverse of their
respective error covariances. Using the calculus of variations, an implicit
equation for the optimal state noted xai+1 is obtained:

J(x) = 0 xai+1= x
f
i+1 +P

f
i+1H

TR 1(yi+1 Hxai+1) (14)

which can be solved explicitly after some algebra, yielding

xai+1= x
f
i+1 +P

f
i+1H

T (HPfi+1H
T +R) 1(yi+1 Hx

f
i+1) (15)

The optimal state is obtained by correcting the forecast with a weighted
measure of the misfit between the observations and the prior estimate

(i.e. the innovation vector di+1 = yi+1 Hx
f
i+1). The analysis is thus

simply the result of the combination of two Gaussian probability density
functions. The weight matrix of dimensions n× p

Ki+1= P
f
i+1H

T (HPfi+1H
T +R) 1 (16)

is the so-called Kalman gain, which involves the forecast and observation
error covariance matrices. It can be interpreted as a ratio between the
error variance of the forecast and the total error variance (the sum of the
forecast and the observation error variance) projected in the observation
space: the larger the forecast errors, the larger the correction to the
forecast. In the limit of perfect observations (R 0) of the whole state
vector (H I), the Kalman gain matrix converges towards the identity
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and the optimal estimate becomes a perfect fit of the observations. By
contrast, if the forecast is extremely accurate (Pf 0) compared with
the observations, the correction is negligible. Interesting similarities be-
tween this equation and scalar formulations of least squares problems
can be found in Kalnay [2003]. Equation (15) is the second fundamen-
tal equation of the Kalman filter.

2.4 The sequential assimilation cycle

The optimal state estimate (15) at time ti+1 can be used as the ini-
tial conditions for a new forecast up to time ti+2 when new observations
become available, and the process can be repeated recursively. To sum
up, the algorithm of an assimilation cycle contains two main steps: the
forecast step for transitioning the model state and the associated error
covariance between time ti and time ti+1, and the analysis step for cor-
recting the forecast using the data available at time ti+1. We reproduce
here the complete set of the KF equations extended to non-linear models
M and observation operators H.
Starting from initial conditions xai and P

a
i , the forecast step equations

are:

x
f
i+1 =M(ti, ti+1) {x

a
i } (17)

and

P
f
i+1 =MP

a
iM

T +Q (18)

where M is the tangent linear operator derived from M(ti, ti+1). Thus,
a linearization of the model about the non-linear evolution between ti
and ti+1 is performed to propagate the error covariance.
The forecast step is followed by an analysis step in which yi+1 is used

to correct xfi+1:

xai+1 = x
f
i+1 +Ki+1 yi+1 H x

f
i+1 (19)

using the Kalman gain

Ki+1 = P
f
i+1H

T [HPfi+1H
T +R] 1 (20)

where H is the gradient of H computed about xfi+1. It can be demon-
strated that the matrix Ki+1 corresponds to the minimization of the
trace of the analysis error covariance on xai+1 [Miller 1989], given by

Pai+1 = P
f
i+1 P

f
i+1H

T [HPfi+1H
T +R] 1HP

f
i+1 = [I Ki+1H]P

f
i+1
(21)
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This allows us to write the gain also as

Ki+1 = P
a
i+1H

TR 1, (22)

provided that R is invertible. Equation (21) shows that the uncertainty
in the forecast is reduced during the analysis according to the amount
of additional information assimilated in the system.
A sequential assimilation run is then conducted by repeating this fore-

cast/analysis cycle in sequence. Since only data from the past influence
the best estimate at a given time, the assimilation procedure belongs
to a class of filtering methods. These contrast with smoothing methods
(e.g. Fukumori [2001]) in which data from both the past and the future
are used to estimate the optimal state of the system at a given time. The
analysis error covariance reflects the competition in the Kalman filter be-
tween this accumulation of past information and the error growth due to
instability mechanisms and model imperfections. Figure 2 conceptually
illustrates the filtering process in sequential data assimilation.

Figure 2. Conceptual representation of filtering with sequential assimilation.

3. From theory to real ocean applications

The Kalman Filter has been primarily developed in the context of bal-
listic applications, involving dynamical models of fairly low dimension.
The more recent interest in the KF in Earth sciences (numerical weather
prediction or oceanography) has raised new issues related to the huge
number of degrees of freedom taken into account by the models, with
consequences for the size of the discretized operators and the quantity of
information to be manipulated. It is therefore important to examine at

OCEAN DATA ASSIMILATION
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this stage the practical representation of the mathematical objects intro-
duced in the previous section, with examples taken from high-resolution
circulation systems developed from an operational perspective.

3.1 The state vector and model operator

The state vector x is a discrete representation of the variables involved
in the description of the system state. It characterizes information about
the space variability of the physical or biological quantities, and about
the multivariate relationships between the di erent dynamical variables.
In a numerical model of the Primitive Equations (PE), x typically con-
tains the 3D discretized temperature, salinity, zonal and meridional
velocities, and the 2D sea-surface height or barotropic streamfunction
field computed prognostically at every gridpoint of a finite-di erence
mesh. The typical size of a PE state vector n is approximately given by
NX ×NY× (NZ × 4 variables + 1 variable), where NX , NY and NZ are
the horizontal and vertical grid dimensions. The length n of the state
vector is typically 106 to 108 in scientific or operational applications.
A biological state vector would contain, for instance, the concentration
distributions of nutrients, plankton, dissolved and particulate matter,
etc. [Carmillet et al., 2001].
Let us consider, for example, the 1/12 model configuration of the

North Atlantic ocean that has been developed using the HYbrid Coor-
dinate Ocean Model (HYCOM) with a horizontal grid size of approx-
imately 1400 x 1400, and 26 layers in the vertical direction. Figure 3
shows a snapshot extracted from a simulation, illustrating the space
variability described by the multivariate HYCOM state vector.
Note that the vertical hybrid coordinate used in HYCOM is a com-

bination of geometric and dynamic vertical coordinates that evolves dy-
namically with the state of the system itself [Bleck, 2002]. Due to the
occurrence of outcropping layers at the base of the mixed layer, the
number of discrete variables may be di erent from one timestep to
another, and the dimension of the state vector is therefore dynamically-
dependent. This feature slightly complicates the handling of the state
vector [Brankart et al., 2003; Birol et al., 2004], compared with more
conventional models based on static vertical coordinates such as OPA.
The size problems arise mainly from equations (18), (20) and (21)

which involve the manipulation of n×nmatrices.With a state dimension
of 108, the storage of a full n × n matrix would require a memory of
105 gigabytes, representing about 1000 times the capacity of the largest
computers available today. For this reason, it is necessary to by-pass the
explicit representation of such matrices in the algorithms. For instance,
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the model M(ti, tj) will never be available as an explicit operator (even
for linear dynamics) but the numerical code of the ocean model will be
used as a routine to compute the time evolution of the model state and
forecast error components, as required by (17) and (18).

Figure 3. Physical representation of a portion of the HYCOM state vector in a North

Atlantic model. The panel on the right shows a snapshot of the SSH field ; the panels

on the left show a vertical section in the 3D temperature and salinity fields at 30 W,

superimposed to the vertical grid oriented along the layer interfaces. The full state

vector also includes the velocity components (not shown here).

3.2 The observation vector

The dimension p of the observation vector y depends on the capacity
of the observation system and the frequency of data assimilation, but in
general it is much smaller than the dimension of the state vector. The
data sets available to control ocean circulation models in scientific or
operational exercises can be categorized into measurements from space,
which primarily reflect the surface signature of the ocean circulation and
ocean-atmosphere interactions, and in situ measurements devoted to the
monitoring of the ocean’s interior.
Oceanic quantities measured from space include essentially Sea-Surface

Temperature (SST), Sea-Level Anomalies (SLA) and ocean colour (which
can be used to estimate the chlorophyll concentration in the upper
ocean). Note that other important satellite data types will become avail-
able in the near future, such as surface salinity measurements from the
SMOS (Soil Moisture and Ocean Salinity) mission and sea-ice obser-
vations from CRYOSAT. Unlike conventional measurements from field
campaigns, satellite-based instruments are operated in routine over long

OCEAN DATA ASSIMILATION
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periods of time and provide considerable information about the ocean’s
horizontal and temporal variability. Figure 4 illustrates a typical SST
picture obtained from composite AVHRR (Advanced Very High Resolu-
tion Radiometer) images, and a network of altimetric ground tracks cov-
ered by two satellites flying simultaneously over a 7-day period. Along
the altimeter tracks, the measurements are available every 7 km and the
separation between two tracks of Topex-Poseidon is about 300 km at the
Equator. These data can be assimilated “along track” as shown in fig-
ure 4, providing in principle the best possible utilization of the observed
information if the assimilation scheme is optimally tuned. Otherwise,
the raw measurements can be transformed into gridded products using
sub-optimal interpolation methods before assimilation.
The surface nature of satellite data poses specific challenges with

regard to data assimilation because the surface information has to be
projected downward to reconstruct the 3D-content of the ocean signal.
As illustrated in the next section, the extrapolation process is achieved
through the use of 3D, multivariate error covariances in the assimilation
scheme. These surface data remain insu cient, however, for describing
aspects of sub-surface variability, and other data available in the form of
vertical temperature and salinity profiles from hydrographic casts, moor-
ings or expandable bathythermographs (XBT) and profiling floats from
the ARGO international program provide valuable information about
the vertical stratification. It is therefore essential to assimilate both data
types in a consistent manner.
Two additional operators related to the data must be introduced:

the observation error covariance matrix R and the observation operator
H (or a non-linear H). The observation operator converts the fore-
cast state into “first guesses” of the observations. This conversion is
needed because the observed variables may not be located on the model
grid points so that horizontal or vertical interpolations are necessary.
In addition, relationships of varying complexity may exist between the
observed quantity and the model variables. One example is the ocean
colour, which is related to the phytoplankton concentration through a
fairly complex, and sometimes approximate, relationship. Another ex-
ample is the relationship between sea-level (measured by altimetry) and
the prognostic variables of a rigid-lid ocean model [Pinardi et al., 1995].
In order to avoid too complex observation operators in the algorithms,
it is sometimes advisable to augment the state vector with diagnostic
variables (such as the surface pressure of a rigid-lid model which can be
diagnosed as a function of the prognostic variables) that can be linked
to the observed variables more easily.
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Figure 4. Multi-satellite data set collected during the week August 19-26, 1993,

illustrating the di erent sampling properties. On the left: altimeter measurements

(in cm) obtained by merging the Topex/Poseidon and ERS ground tracks; on the

right: composite AVHRR picture of the sea-surface temperature.

The observation error accounted for byR has di erent possible sources.
One source is the instrumental error which can often be considered as
spatially uncorrelated. Another is the so-called “representativeness er-
ror”, associated with variability described by the data at scales that
cannot be faithfully represented by the model grid. A third source is
the error associated with the mapping H between the model and the
observation space. The spectrum of these errors is mainly concentrated
on the short scales, and it is often a reasonable approximation to repre-
sent R by a diagonal matrix of error variances. Note, however, that the
reduction in the dimensionality of the estimation problem introduced in
Section 5 will possibly be a source of correlated observation error.

3.3 Error covariance matrices

As mentioned above, the assimilation sequence must be initialized
with some initial guess for the state x0 and the associated error covari-
ance P0. The initialization of P critically determines the functioning
of the filter beyond the first assimilation stages through the process of
error dynamics [Ballabrera et al., 2001]. In order to understand the role
played by error covariance matrices, let us consider the idealized case of
an analysis step with one single observation, 0. The observed variable,
noted , is assumed to be one of the discrete elements of the state vector

OCEAN DATA ASSIMILATION



284 PIERRE BRASSEUR

for simplicity, so that y is a scalar (p = 1) and H is a single-row vector
of the form

H = [0, ..., 0, 1, 0, ..., 0] (23)

The Kalman gain (20) is then a single-column vector which simplifies as

K =
1

p + 2
{P0} (24)

where 2 is the error variance of the single observation, p is the error
variance of the observed variable (the -diagonal element of P0) and
{P0} is the -column of the error covariance matrix. The correction

to the initial guess is then proportional to {P0} weighted by the prior
model-data misfit:

xa x0 =
1

p + 2
{P0} ( 0) (25)

Thus, any row or column of the error covariance matrix can be inter-
preted as a multivariate influence function associated with the observed
state variable. This explains the crucial role of the error structures speci-
fied inP0 and shows the importance of considering dynamically-balanced
error covariance matrices.
The last operator to be prescribed is the model error covariance ma-

trix Q. This includes all the errors associated with the various physical
parameterizations necessary in the model (mixing, di usion, turbulent
closure, hydrostatic approximation, etc.), the errors in the atmospheric
forcings and more generally in the boundary conditions, and the er-
rors due to the numerical discretization on the horizontal and vertical
dimensions. Note that Q represents the model error statistics accumu-
lated during an assimilation interval, and should not be confused with
errors generated at every time step. Those errors are clearly distributed
over a wide spectrum of space scales, and it would be extremely di cult
to prescribe a full Q matrix. By considering the prior misfit between
model simulations and observations, it is possible to derive some general
properties of the model errors as manifested in the observation space.
These di culties promote the adoption of simplified parameterizations
for Q following, for instance, the approach proposed by Dee [1991], and
to adjust those parameterizations by sensitivity experiments. Note that
systematic biases in the models often make the statistical assumption (4)
inappropriate: such biases can be detected by examining the statistics of
the innovation sequence, and in principle they should be removed from
the forecast to preserve the essential properties of optimal analysis.
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4. Simplified schemes based on static
background errors

In the KF algorithm, the forecast error covariance is updated before
every analysis step by using the model dynamics. Equation (18) can be
rewritten as

P
f
i+1 =M(MP

a
i )
T +Q (26)

showing that the model code has to be used to propagate the n columns
of Pai (in addition to propagate the model state itself). Given the huge
size of realistic ocean models, this leads to computing requirements that
even the largest computers in the world will not meet in a foreseeable fu-
ture. In addition, the many imperfections inherent in the representation
of the error covariance matrices Pai andQmake the explicit computation
of this equation questionable.
If the flow of assimilated observations is fairly regular over time, it

makes sense to assume that the errors in an assimilation sequence tend
to fluctuate around some average level after a couple of cycles. This as-
ymptotic behaviour reflects a balance between the increase of uncertainty
during the forecast step and the error reduction during the analysis step.

The existence of such an asymptotic limit for Pfi+1 provides justification
for simply using a static error covariance, noted B for “background er-
ror” (a term usually adopted when the error statistics are not propagated
from one assimilation cycle to the next), instead of explicitly comput-
ing the forecast error according to (18). Di erent techniques have been
developed to prescribe the background error covariances in ocean and
atmospheric assimilation schemes. These are discussed below.

4.1 Optimal Interpolation

Optimal Interpolation (OI) designates a wide range of statistical as-
similation schemes in which the B matrix is pre-determined empirically.
The main advantages of OI methods are their cost, their ease of use and
the possibility of conducting sensitivity studies to test many di erent
models of error covariances. Today, the vast majority of operational sys-
tems involved in GODAE (e.g., FOAM, MFS, HYCOM, MERCATOR)
are based on OI schemes. In contradiction with its name however, OI is
a sub-optimal assimilation process and it would actually be more correct
to designate this class of methods as “statistical interpolation” [Daley,
1991].
Any covariance matrix can be normalized into a correlation matrix C,

dividing each component by the product of the error standard deviations.

OCEAN DATA ASSIMILATION
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Thus, B can still be written as

B = D1/2CD1/2 (27)

where D is the diagonal matrix of the variances. OI schemes commonly
adopt further simplifications for modelling the background error covari-
ances. Assuming that the correlations are functions of the distance only,
analytical functions with open parameters such as correlation scales have
been used for a long time to buildC (e.g. Thiebaux [1985]). A significant
property of well-posed correlation functions is their compact support
which reflects the negligible influence of observations at large distances.
It is also generally assumed that the correlations can be separated into
a product of horizontal and vertical correlations. The concept of sepa-
rability is related to the predominant role of stratification and the very
di erent scales involved horizontally and vertically in the open ocean.
However, di erent behaviours are expected near boundaries and coastal
regions [Echevin et al., 2000]. The SOFA (System for Ocean Forecasting
and Analysis) scheme used in the first operational MERCATOR proto-
type performs OI in the horizontal direction to combine altimeter data
with the model predictions [De Mey and Benkiran, 2002]. It o ers the
possibility of using di erent error covariance models, such as :

C(xi,xj) = (1 + al +
1

3
a2l2)e al with l = dist(xi,xj) (28)

where the parameter a determines the horizontal correlation scale [Gavart
et al., 1999]. Fine tuning of these correlation parameters can be achieved
objectively via sensitivity studies or Monte-Carlo experiments [Auclair
et al., 2003]. In the MERCATOR system, the value of a is defined geo-
graphically, reflecting longer horizontal correlation scales in the tropics
than at high latitudes.
It is worth noting that some applications of (27) allow for the error

variances to be updated during the assimilation sequence using empirical
prediction schemes, while still keeping the correlation matrix unchanged
[Rienecker and Miller, 1991].

4.2 Asymptotic approximation

Other interesting approaches such as the time-asymptotic filter ap-
proximation have been proposed to determine a background error co-
variance matrix that is consistent with the error dynamics of the KF
[Fu et al., 1993; Fukumori et al., 1993; Fukumori and Malanotte-Rizzoli,
1995]. In equations (18) , (20) and (21) above, operatorsM, H, Q, and
R have been assumed time-invariant for simplicity. Satellite altimeters,
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for instance, can be considered as a time-invariant observation system
given that the mission tracks are repeated in an exact manner. By com-
bining (18) and (21), the so-called Riccati equation is obtained:

P
f
i+1 =M P

f
i P

f
iH

T [HPfiH
T +R] 1HP

f
i MT +Q (29)

which can be iterated prior to the assimilation sequence. It can be shown
that the solution of the Riccati equation converges towards a steady-state
solution, say Bf , provided the M, H and Q matrices have desirable
properties. The details of these conditions are explained in Fukumori et
al. [1993]. In addition, a fast convergence can be obtained by using
appropriate recursion methods. The Bf solution results from a balance
between three e ects: evolution due to model dynamics, increase due to
model errors and decrease due to the new information from assimilated
data. Interestingly, the utility of a stationary Bf matrix in the Kalman
gain was demonstrated even in the presence of evolving properties of the
observation system [Fukumori, 1995].
The interest of steady-state filters has been illustrated in a number of

oceanographic case studies, although additional approximations such as
order reduction and model simplifications are generally needed to make
the assimilation e ective with realistic models.

5. Reduced-order Kalman filters

The previous section has shown that OI-based assimilation schemes
over-simplify the propagation of errors by neglecting dynamical princi-
ples and statistical information. An alternative way to make the KF
tractable with large-size models has been explored with the concept of
reduced order, which aims at decreasing the computational burden of the
algorithm while preserving the essential characteristics of error dynam-
ics. Experiences from atmospheric re-analyses indicate the importance
of the “errors of the day” which can be dominated by short time scales,
and which are ignored when the forecast error is approximated by a con-
stant as with OI [Kalnay et al., 1997]. Similar behaviour is observed in
the ocean, especially at scales dominated by instability mechanisms such
as the scale of eddies, western boundary currents, etc [Ballabrera et al.,
2001].
Several arguments support the concept of order reduction. Firstly, the

ocean can be considered as a driven/dissipative dynamical system gov-
erned by an “attractor” of finite dimension. The existence of a global
attractor has been proved for the Navier-Stokes equations, with a di-
mension bounded by a function of the Reynolds number [Lions et al.,
1997]. Geostrophy, for instance, is one of the dominant properties of
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the ocean attractor which cannot be ignored during the assimilation
process. Therefore, it makes sense to renounce making corrections in
the directions where the errors eventually die away because of the at-
tractive nature of the system. Secondly, the state space as defined in
Section 3 is determined by the number of degrees of freedom implied by
the model discretization, which is much larger than the actual number
of dynamical features of interest in the system. Thirdly, less is probably
known about the errors than about the dynamics, and the lack of statis-
tical information will make a full KF superfluous anyway [Cane et al.,
1996], especially in the ocean where the flow of observations accumulates
at a fairly slow rate.
Reducing the dimensionality of the problem can be formulated in

terms of state space or error space with quite di erent implications. A
variety of approaches widely used in oceanography are discussed below.

5.1 Reducing the dimensionality of the state
space

The reduced state can be defined explicitly using a transformation
operator T to convert the full model state x (of dimension n) into a
reduced state w of dimension r < n :

w = Tx (30)

The statistical properties of x such as error covariance matrices can be
easily transformed in the low-dimension space using (30). Dynamical
equations can be derived for w using a pseudo-inverse of T and the KF
can be entirely reformulated in the low-dimension space, with the condi-
tion that the null space associated with (30) be dynamically uncoupled
from the reduced space [Fukumori and Malanotte-Rizzoli, 1995]. By in-
troducing this transformation, the r elements of w become the actual
degrees of freedom of the estimation problem.
Many possibilities exist for defining the transformation, such as a

truncation of the model spectrum or a selection of multivariate modes
of system variability [Cane et al., 1996]. Another approach explored
by Dee [1991] takes advantage of physical relationships between certain
model variables. The reduction of the state space dimension can also
be achieved simply by building the estimation vector from a selection
of model state variables on a coarser grid [Fukumori, 1995] or with dy-
namical variables closely correlated with the observed signal. It is worth
noting that, for sub-spaces which only preserve the scales larger than
those of the observed signal, an extra term must be added to the ob-
servation error covariance matrix R to account for the truncated modes
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[Cane et al., 1996]. This kind of representativeness error typically cor-
responds to spatially correlated signals, and in this case o -diagonal
elements must be included in R.
In the open ocean, dynamical considerations can justify the omission

of some of the PE variables in the state vector, such as the horizon-
tal velocity components which are expected to adjust very quickly to
the density properties. Di erent choices of estimation space, motivated
also by the faith in the error statistics to be prescribed for the selected
variables, are discussed by Brankart et al. [2003] for primitive equation
circulation models.
The question of assimilating satellite altimetric data into ocean circu-

lation models has been approached many times by reducing the statis-
tical estimation problem to the surface variables. The downward pene-
tration of assimilated information is then achieved empirically, using a
variety of statistical (e.g. Hurlburt [1986]; Mellor and Ezer [1991]; De
Mey and Benkiran [2002]) or physical (e.g. Cooper and Haines [1996];
Oschlies and Willebrand [1996]) extrapolation schemes on the vertical
direction. These di erent vertical projection methods, as well as the
dynamical adjustment process described by Brankart et al. [2003] in the
context of HYCOM, can be considered as approximations of the pseudo-
inverse of T needed to convert the reduced state back to the full model
space after statistical estimation.

5.2 Reducing the dimensionality of the error
space

A number of other methods are based on approximations of the error
with fewer degrees of freedom than the model itself. Error sub-spaces
are built with the aim of selectively correcting the model state along
the most representative directions of the forecast error. The concept fits
well with statistical assimilation schemes because the analysis increment
computed by (20) can only take place within the sub-space spanned by
the forecast error covariance. The unknown are the coe cients of the
correction projected along the multivariate error directions. The concept
of Error Subspace Statistical Estimation (ESSE) introduced by Lermu-
siaux [1999] has been developed on the basis of this principle. Note that
recent oceanographic studies have also started to explore the potential
benefit of order reduction using variational assimilation methods [Robert
et al., 2005].
The sub-space can be prescribed as a time-invariant set of error direc-

tions. The success of assimilation depends essentially on the capacity of
the sub-space to capture the observed variability of the system. A num-
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ber of applications have been conducted successfully along these lines
in the tropical oceans, where the dynamics is “slow” and nearly linear
[Verron et al., 1999]. Alternatively, the error sub-space can be allowed
to evolve using deterministic or stochastic approaches, or a mixture of
both. Evolving sub-spaces are in general more suitable to track the non-
linear evolution of “fast” energetic error modes, or to dynamically ad-
just the unbalanced components of the sub-space [Lermusiaux, 2001].
Related concepts have been introduced in the context of atmospheric
data assimilation by Cohn and Todling [1996], who proposed approxi-
mate schemes for error covariance propagation in the case of stable and
unstable dynamics.

5.3 Low-rank error covariance matrix

By construction, a covariance matrix is symmetric and positive def-
inite and can always be decomposed as P = N NT . The columns of
N are formed by the orthonormalized eigenvectors nk of P, and is
a diagonal matrix formed with the corresponding eigenvalues k. The
inverse of P is then given by P 1 = N 1NT . The pdf defined by (9)
can be refomulated as follows:

N(0,P)
n

k=1
exp

1

2
1

k
2
k (31)

where k is the component of the error vector in the nk direction.
A reduced-order Kalman filter can be implemented by approximating

the error covariance matrix P with only the “leading” columns of N
associated with the r largest eigenvalues. The pdf defined by such a
low-rank matrix is obtained by taking the limit of (31) when k 0
for k > r (assuming that the eigenvalues have been sorted in decreasing
order). Equation (31) shows that the probability tends to zero if k = 0
and the error vectors are confined in a sub-space of dimension r. From
a stochastic point of view, the leading vectors describe the principal
axes of the probability ellipsoid oriented along the dominant directions
of uncertainty; from an algebraic point of view, they define the basis of
a sub-space where the error is expected to lie.

5.4 Specification of error sub-spaces using EOFs

Several strategies can be adopted to determine the leading directions
of the error sub-space. One of them is the Singular Value Decomposition
(SVD) of a covariance matrix constructed with prescribed analytical
functions. Other methods have been proposed in the literature which
utilize singular, Lyapunov or breeding vectors of the transition matrix
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(e.g., Miller and Erhet [2002]). An approach based on EOFs was put
forward by Cane et al. [1996] to elaborate a reduced state Kalman
filter, and by Pham et al. [1998] in the context of the Singular Evolutive
Extended Kalman (SEEK) filter.
A practical way to estimate a low-rank error covariance matrix is to

perform an EOF analysis of state vectors generated by a prior model
simulation. The EOF analysis provides a compact description of the
spatial and temporal variability of the model in terms of orthogonal
functions. Usually, most of the variance of the time sequence is described
by the first few orthogonal functions whose patterns may then be linked
to dynamical mechanisms [Emery and Thomson, 1998]. In order to
compute an EOF basis, a series of smodel state vectors x(ti) is extracted
at regular intervals from a free model simulation, and the vectors

x(ti) x(ti)

s 1
(32)

form the columns of a “scatter matrix” X of dimensions n × s. The
normalization factor 1

s 1
is introduced so that the unbiased estimation

of the covariance matrix is given by the product XXT . The size s of
the sample is always much smaller than the dimension n of state vec-
tors involved in realistic ocean models. The EOFs correspond to the
orthonormalized eigenvectors N of the n × n matrix XXT which has
a rank necessarily smaller than or equal to s. The explicit calculation
of the matrix XXT is not required to compute the eigenmodes. Indeed,
the matrix XTX of much lower dimensions (s× s) has the same eigen-
values , and its eigenvectors V allow the computation of the “large”
eigenmodes N by simple multiplication, N = XV. This provides a first
practical method to calculate the EOFs. A second possible approach is
to perform a singular value decomposition of the matrix X directly, us-
ing standard SVD algorithms [Kelly, 1988; Emery and Thomson, 1998].
This provides a decomposition of the form:

X =N VT (33)

The EOFs determined by the two methods are identical, but the SVD
has the advantage of greater computational stability. One should keep
in mind that the EOF decomposition of multivariate state vectors also
depends on the units adopted to represent the di erent physical quan-
tities, and the choice of a particular metric may be more critical than
computational stability in determining the structure and ordering of the
dominant EOFs.
The r dominant eigenvectors form the columns of an array noted

N0 with dimensions n × r , and the diagonal matrix of the associated
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eigenvalues is noted 0. The covariance can be approximated by the
matrix

XXT N0 0N0
T = S0S

T
0 (34)

of rank r, where S0 =N0 0 contains dimensional quantities. Assimi-
lation experiments can be initialized using S0S

T
0
as a guess of the initial

error covariance.
The minimum dimension of the error sub-space has to be determined

by practical considerations. A condition of stability for a reduced-rank
KF in idealized conditions (linear model and autonomous system) is
shown to be that r should be larger than r , where r is the number
of eigenvalues of M having an absolute value larger than or equal to 1
(Pham et al. [1998]; Carme et al., [2001]). Since this number cannot be
systematically evaluated with large ocean models, more pragmatic crite-
ria must be considered to define the truncation threshold. For example,
the statistical representativity of the r retained EOFs can be measured
by the percentage

I =

r

k=1
k

s

k=1
k

where the k are the eigenvalues. The choice of an acceptable thresh-
old of explained variance provides a means to determine the minimum
dimension of the EOF basis for practical assimilation problems. This
number typically ranges from a few tens to a few hundreds.
The assumption underlying the procedure described above is that the

model is unbiased (which is a necessary condition for the Kalman fil-
ter to yield optimal estimations) and su ciently “good” for its intrinsic
variability to be statistically representative of real world variability. The
hypothesis that a model provides an unbiased simulation implies the use
of the mean vector x(ti) as a first guess. Sometimes, these ideal con-
ditions are not verified with a free model simulation and more complex
strategies must be developed. For example, an assimilation sequence
may be carried out in a first stage with a simplified method which does
not require EOFs (such as an OI or nudging scheme) so as to bring the
model and observations together; an EOF analysis of the resulting fields
is then performed, and a new assimilation sequence can be obtained in
a second stage with a reduced-rank KF. The process can be iterated
several times to provide an improved EOF basis which combines the
variabilities of the model dynamics and of the observations.
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5.5 Examples of sub-spaces based on EOFs

The EOFs calculated with primitive-equation models are fully multi-
variate and three-dimensional, and cover the whole model domain: all
the variables of the state vector (SSH, temperature, salinity, zonal and
meridional velocities) are considered together in a dynamically consistent
manner. The extrapolation of the data from observed to non-observed
variables is performed along the directions represented by these EOFs
which connect all grid points of the numerical domain.

Figure 5. Sea-surface height component of the first EOF (in cm) of the interannual

variability of the circulation in the Tropical Pacific (Parent [2000]).

The physical nature of an EOF basis is discussed by Parent et al.
[2003], who studied the variability of the circulation in the Tropical Pa-
cific ocean during the period 1994-1998 using a primitive-equation model
of the Equatorial basin between 20 N and 20 S and a SEEK filter to
assimilate satellite altimeter data. They computed an EOF decomposi-
tion of the simulated variability over the 5-year integration period and
selected the first 15 EOFs to build a reduced basis for assimilation. The
first dominant EOF illustrates the well-known west-east seesaw, which
is the most important feature of the El Niño and La Niña phases of the
ENSO phenomenon. In 1997, the warm pool of the western basin mi-
grated towards the eastern basin and produced a positive SLA, whereas
during the La Niña phase (second part of 1998), the opposite movement
was observed (figure 5).
An issue of practical interest is the estimation of small correlations as-

sociated with distant variables, which is a well-known di culty of finite
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sampling procedures such as that described above. As pointed out by
Houtekamer and Mitchell [1998], the accurate estimation of small corre-
lation coe cients would necessitate a very large number of independent
model samples to guarantee the statistical convergence of the computa-
tions. In order to keep the number of samples within tractable limits and
prevent the data from exerting a spurious influence at remote distances
through large-scale signatures in the EOFs, a technique based on EOFs
with compact support has been setup by Testut et al. [2003] in which
regional sub-domains of adjustable size are considered to characterize
the error sub-space. From a theoretical point of view this approxima-
tion can be justified by the argument that, when the ocean surface is
divided into local regions of moderate size, the background error in such
regions tends to lie in a sub-space of much smaller dimension than the
full ocean state. Similar hypotheses have been put forward to develop
local ensemble Kalman filters for atmospheric data assimilation [Ott et
al., 2004].

Figure 6. Multivariate local EOFs of the mesoscale ocean variability in the Gulf

Stream region simulated by an eddy-permitting model: surface signature of tempera-

ture and sea-surface height of the first three dominant modes, and associated vertical

extensions of the temperature and salinity structures (reproduced from Testut [2000]).
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This technique has been developed more specifically for eddy-resolving
ocean assimilation models in which the signal dominates in the small
scales. Figure 6 illustrates the surface signature and vertical extension
of the three dominant modes calculated with an eddy-permitting model
in the Gulf Stream region. Theses modes reflect to some extent the
anisotropic nature of the multivariate covariances associated with the
local dynamics, with smaller scales represented by higher modes.
The local representation of the error sub-space has been shown to be

particularly e ective for capturing the mesoscale features of the turbu-
lent ocean. In the example described by Pendu et al. [2002], an assim-
ilative system based on local EOFs was implemented in a 1/3 South
Atlantic OPA model to perform hindcast experiments for the 1993-1996
period. The assimilated data are similar to those shown in figure 4, con-
sisting of composite AVHRR observations of SST and altimetric mea-
surements of the sea-level anomalies. The results show that the assim-
ilation is able to successfully reproduce the Agulhas Rings present at
that time in the real ocean. In addition to correcting the variables ob-
served at the surface, the three-dimensional multivariate properties of
the EOFs also permitted a correction of the non-observed variables in
the ocean’s interior. The beneficial impact of the assimilation was par-
ticularly impressive on the mean salinity in the Confluence region down
to about 1500 meters depth.

6. Low-rank Kalman filters

Several low-rank filters based on static or evolving error sub-spaces
have been developed over the past ten years, such as the SEEK filter
introduced by Pham et al. [1998] and the Reduced-Rank-SQuare-RooT
(RRSQRT) formulation explored by Verlaan and Heemink [1997]. Many
features of the Ensemble Kalman Filter (EnKF) put forward by Evensen
[1994] can be discussed using a similar framework.
The Ensemble OI scheme [Evensen, 2003] and the SEEK filter with

static error sub-space are two sub-optimal schemes which preserve a
number of important properties of statistical estimation but require only
a small fration of the computer resources needed by the model. In con-
trast to those simplified schemes, the EnKF or the SEEK filter with
evolutive sub-space propagate the error statistics according to the model
dynamics, but they need the simultaneous integration of model states
perturbed along each direction of the error sub-space.
The consequences of using a low-rank error covariance matrix to com-

pute the forecast and analysis steps of the KF are examined in the
following sections.
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6.1 Forecast error with a reduced basis

The reduced basis concept allows drastic simplifications to compute
the evolution of the error statistics over the assimilation window. A
hierarchy of algorithms of increasing sophistication and computer re-
quirements has been proposed to compute the forecast step. Assuming
that the analysis error covariance is represented as a low-rank matrix at
time ti

Pai = S
a
i (S

a
i )
T , (35)

where Sai (of dimension n×r) defines the error sub-space associated with
xai , Eq. (18) becomes

P
f
i+1 = S

f
i+1 S

f
i+1

T
+Q with S

f
i+1 =MS

a
i . (36)

The computer load associated with Eq. (36) is primarily determined
by the rank r of Pai which specifies the number of model integrations
needed to evaluate the forecast error covariance matrix. As originally
proposed by Pham et al. [1998], this algorithmic variant known as “Ex-
tended Evolutive Basis” requires the derivation of the tangent linear
model M(ti, ti+1) to update the error directions, i.e. the r columns of

Sai . The evolved sub-space S
f
i+1 reflects how the model dynamics a ects

uncertainty during the forecast.
An alternative scheme to Eq. (36) can be used for the calculation of

the time evolution of the reduced basis as follows :

S
f
i+1

j
=
1
M(ti, ti+1) xai + {Sai }j M(ti, ti+1) {x

a
i } (37)

where {}j is the jth column of the matrix, and is an adjustable pa-
rameter that determines the size of the perturbations along each error
direction. Equation (37) is a finite-di erence approximation of the linear
error evolution if is small. However, the value of is usually taken
to be of the order of 1 to simulate the non-linear evolution of model
perturbations that have an amplitude comparable to the error covari-
ances. This algorithm known as “Interpolated Evolutive Basis” has a
two-fold benefit: firstly, it avoids the computation of the tangent linear
model which numerically can be a delicate task; and secondly, it seems
more robust with regard to the model non-linearities because the finite
di erence takes into account the amplitude of the uncertainties, while
the classic linearization does not.
Due to the recursive character of the Kalman filter, Pfi+1 should

have the same rank as Pai in order to preserve the advantage of a low-
dimension space for the subsequent assimilation cycles. The di culty
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arises from the fact that the rank of Pfi+1 intimately depends on the
structure of Q. A possible method is simply to project the error vec-
tor i and its associated covariance on the sub-space generated by the

columns of Sfi+1. As it is often impossible to specify the model error
perfectly, for the reasons discussed above, a simple parameterization of
system noise can be introduced, assuming for instance that

Q =
1

S
f
i+1 S

f
i+1

T
(38)

where is a scalar quantity called the “forgetting factor” (0 < < 1), by
analogy with the approach used in automatic control algorithms. This
kind of model error parameterization leads to a forecast error covariance
matrix of the form :

P
f
i+1 =

1
S
f
i+1 S

f
i+1

T
= Sfi+1 S

fT
i+1 with S

f
i+1 =

1
S
f
i+1 (39)

which is singular and has the same rank r as the previous analysis error
covariance. The forgetting factor is one of the many possible options
for accounting for some simple form of model error in the assimilation
scheme. Other approaches may be implemented, however, such as using a

perturbed modelM (ti, ti+1) instead of the original model to dynamically
update the error modes through Eq. (37). For instance, in most EnKF
implementations, stochastic perturbations are introduced in the surface
forcings to update each ensemble member, accounting in this way for
the uncertainty in the atmospheric fluxes.
With respect to Eq. (36), an even more drastic simplification of the

forecast step can be obtained by simply neglecting the dynamical trans-
formation of the error directions during the assimilation period (ti, ti+1),
leading to the “Fixed Basis” algorithm:

S
f
i+1 =MS

a
i ISai (40)

where I is the identity matrix. As in the Ensemble OI scheme [Evensen,
2003], temporal persistence of the error sub-space basis is assumed in
this variant. Static error sub-spaces have been successfully used in a
variety of assimilation applications (Verron et al. [1999]; Gourdeau et
al. [1999]; Parent et al. [2003]; Pendu et al. [2002]), being justified by
two basic arguments. The first one is of practical interest: the cost of a
Fixed Basis assimilation experiment is of the same order of magnitude
as a model simulation, with only a few additional computations needed
to perform the algebraic operations of the analysis step. This makes the
algorithm extremely useful in evaluating the overall performance of the
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system, testing new parameterizations, examining the impact of di er-
ent observation configurations, etc. The second argument constitutes a
more objective justification in terms of statistical estimation: it is often
impossible to properly characterize the statistical structure of the model
error originating from imperfections in the model forcings, discretiza-
tion schemes, space/time resolution, etc. As a result, the approximation
made by assuming persistence of the error sub-space directions is often
negligible compared to the mis-specification of the systematic errors.
When the amplitude of the model error increment Q dominates the dif-
ference between Pa and MPaMT in the error propagation Eq. (18), it
is a waste of CPU resources to explicitly compute the error propagation
with the model dynamics, because the result will eventually be polluted
by mis-specified model error estimates. In such situations, it is sensible
to by-pass the error propagation equation and concentrate on identify-
ing the dominant forecast error directions using, for instance, adaptivity
mechanisms as described in Section 7.

6.2 Analysis step with a reduced basis

The linear variance-minimizing analysis (19) can be re-formulated
nicely when the forecast error covariance used to compute the Kalman
gain is of low rank. Using equations (20), (39) and the matrix equality

X1 +X12X
1

2
X21

1
= X 1

1
X 1

1
X12 X2 +X21X

1

1
X12

1
X21X

1

1
,

(41)
the expression for the Kalman gain, after some mathematical manipula-
tions, can be transformed as follows :

Ki+1 = S
f
i+1[I+ (HS

f
i+1)

TR 1(HSfi+1)]
1(HSfi+1)

TR 1. (42)

Equation (42) shows that the size of this inversion problem is determined
by the error sub-space dimension, while the original Kalman gain (20)
requires an inversion in the observation space. As the number of obser-
vations is usually much larger than the rank of the error sub-space, the
inversion step becomes less expensive than the corresponding computa-
tion of the original Kalman gain. By combining equations (19) and (42),
the correction of the forecast state can be written as a linear combination
of the error modes

xai+1 x
f
i+1 = S

f
i+1ci+1 (43)

with

ci+1 = [I+ (HS
f
i+1)

TR 1(HSfi+1)]
1(HSfi+1)

TR 1 yoi+1 Hxfi+1
(44)
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The vector ci+1 contains the r amplitudes of the error modes that need
to be estimated at each analysis step. Finally, the scheme evaluates the
analysis error as follows

Pai+1 = [I Ki+1H]P
f
i+1 = S

a
i+1 S

aT
i+1 (45)

and updates the vectors of the reduced basis according to

Sai+1 = S
f
i+1[I+ (HS

f
i+1)

TR 1(HSfi+1)]
1/2. (46)

This shows that, if the rank of Pfi+1 is r, then the rank of P
a
i+1 is equal

to r also; therefore, recursivity in the forecast/analysis cycles is allowed.
For better numerical conditioning, it is possible to re-orthonormalize the
reduced basis by recomputing a SVD decomposition of the analysis error
covariance matrix.
There is one additional consideration that should be mentioned con-

cerning the practical computation of the Kalman gain in the reduced
space (42). The robust estimation of small correlations associated with
remote observations is a common di culty that can be avoided by com-
puting EOFs with compact support, as mentioned above. Instead of
computing local EOFs, a simplification of the analysis scheme can be
designed by enforcing to zero the error covariances between distant vari-
ables which are believed to be uncorrelated in the real ocean [Houtekamer
and Mitchell, 1998].
This simplification is implemented by assuming that distant obser-

vations have negligible influence on the analysis. The global system is
split into sub-systems, and for each of these the traditional analysis is
computed. Only data points located within individual regions, centered
on a sub-domain of one or several grid points to be updated, actually
contribute to the gain in (42). This approach can be understood as a
tuning of the observation operator according to the sub-domain in ques-
tion. Intuitively, this approximation makes sense because only data
points located in the neighborhood of a model grid point should objec-
tively have an impact on the analysis for that grid point. The size of the
regions is determined in such a way that the distribution of the observa-
tions available on the model domain always provides at least a few data
points within each region of influence (if there were no data available
in the region of influence, no correction would apply). This algorithmic
simplification also improves the analysis because it enables a larger part
of the estimation space to be spanned over a particular subdomain (see,
for instance, Brusdal et al. [2003]).
Other interesting procedures exist for addressing the locality issue.

One of these is the partitioning of the large estimation problem into
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a series of separate smaller calculations using the partitioned Kalman
filter and smoother proposed by Fukumori [2002]. The objective of the
partition is to make global eddy-resolving data assimilation problems
computationally viable. In their example, the reduced state consists of
perturbations of the barotropic mode and the first five baroclinic modes
defined in eight overlapping cells covering the globe.

6.3 Stochastic vs. deterministic filters

In a low-rank filter like SEEK, the error directions are determined at
the initialization step and their evolution can be anticipated in a deter-
ministic way. As these filters do not require any further randomization,
they are termed deterministic filters in contrast to the EnKF which can
be considered as a stochastic filter because ramdomization has to be
repeated at each assimilation cycle.
Evensen [2003] reviews the theoretical formulation and practical im-

plementation of the EnKF. The EnKF was introduced to avoid the occur-
rence of instabilities found with the Extended KF due to the non-linear
evolution of the probability density functions [Evensen 1994]. However,
the EnKF only solves half of the non-linearity problems because it still
combines the model prediction and the data by using only the first
two moments of the pdfs, assuming that the distributions are nearly
Gaussian. The non-linear analysis equations would be more di cult to
use in practical applications, as discussed by Evensen and van Leeuwen
[2000].
The EnKF was initially proposed by Evensen [1994] based on the fol-

lowing general procedure: a sampling of the state space is achieved using
Monte-Carlo methods to generate an ensemble of r model states xa,ji rep-
resenting the spread of possible initial conditions at time ti around the

mean xa,ji . Each member is then propagated individually as

x
f,j
i+1 =M(ti, ti+1) x

a,j
i + j , j = 1, ..., r (47)

using the non-linear model with stochastic perturbations. The vectors
j have a covariance matrix Q and are generally introduced through the

perturbation of the atmospheric forcings. The new ensemble xf,ji+1provides
implicitly the forecast error covariance matrix

P
f
i+1 =

1

r 1

r

j=1

x
f,j
i+1 x

f,j
i+1 x

f,j
i+1 x

f,j
i+1

T
. (48)
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The statistical analysis equation of the KF is then applied to each indi-
vidual member,

x
a,j
i+1 = x

f,j
i+1 +Ki+1 yi+1 H x

f,j
i+1 , j = 1, ..., r (49)

providing implicitly the analysis error covariance matrix

Pai+1 =
1

r 1

r

j=1

x
a,j
i+1 x

a,j
i+1 x

a,j
i+1 x

a,j
i+1

T
. (50)

In order to avoid the problem of systematic underestimation of the analy-
sis covariance that occurs when the same data and the same gain are used
in the set of analysis equations, an ensemble of perturbed observations
yi+1 is considered in (49) instead of the original yi+1 [Houtekamer and
Mitchell, 1998; Burgers et al., 1998]. The stochastic nature of the EnKF
filter arises as a consequence of using perturbed observations [Lawson
and Hansen, 2004]. Deterministic variants of the EnKF, which do not
require perturbed observations, have been proposed recently involving
square-root analysis schemes [e.g. Whitaker and Hamill, 2002].
An interpretation of the error propagation scheme in the SEEK filter

has been proposed by Ballabrera et al. [2001] in terms of ensemble
model integrations. Indeed, Eq. (37) depicts the natural dispersion of
an ensemble of di erent model trajectories initialized in the vicinity of
the initial guess; it represents the amplification of unstable error modes
(or the damping of stable modes) inherent in the system’s dynamics. A
more exhaustive exploration of the similarities and di erences between
the SEEK and Ensemble Kalman Filter (EnKF) is discussed in Brusdal
et al. [2003] and Nerger [2004].

7. Statistical consistency of assimilation schemes

A key issue concerning statistical assimilation systems relates to their
capacity to produce reliable error statistics about the ocean state esti-
mates, and to propagate those error statistics properly from one assimi-
lation cycle to the next. In the linear KF, the specification of the system
noise Q, the observation error R and the background error covariance at
the initial time P0 perfectly determines the subsequent evolution of the
error statistics throughout the assimilation sequence. This is because
the observations actually control the trajectory of the model state, but
they have no impact on the evolution of the error statistics themselves
(except through the observation network H). For a KF to yield optimal
performances, it is necessary to provide the correct a priori description
of these error covariance matrices. As only guesses of these quantities
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are available in real cases, it is necessary to verify the consistency of the
underlying assumptions.
Comparisons with independent information provide, of course, the

ideal way to assess the quality of the assimilation and to detect what
has possibly gone wrong in the system. Testing the ability to produce a
forecast from an analyzed state (i.e., using data that have yet to be as-
similated) is also very helpful in checking whether the dynamical model
and assimilation scheme are consistent with one another. The most com-
mon test is to compare the forecast to persistence [De Mey et al., 2002].
Additionally, information acquired during system operation can be used
to verify if the prior error statistics have been prescribed in a way which
represents the actual errors in the model and the observations. The
di erence between the observations y used in the assimilation system
and the forecast or analysis fields (called innovations d and residuals
r, respectively) provide two series of data that contain a wealth of im-
portant information about the consistency of the prior error estimates.
It can be shown that examining diagnostics on the innovation vector is
essentially equivalent to examining them on the residual vector, but in
practice some features of the analysis may be easier to diagnose from
one or the other vector [Talagrand, 1999].
In the section below, we will examine a number of useful criteria that

can be diagnosed from the sequence of innovations and residuals to de-
tect imperfections in the specification of the error statistics. Since such
imperfections can be a source of drift in the assimilation system or, even
more dramatically, can a ect the stability of the filter, we will introduce
the concept of adaptivity, the aim of which is to enforce consistency be-
tween the error statistics predicted by the filter and the observed misfits.

7.1 Verification of statistical consistency

Simple diagnostics can be implemented quite easily in assimilation
systems, providing interesting tools to monitor overall performance and
detect anomalies in system operations. A first-order check can be made
by computing the mean innovation, which is expected to vanish over a
su ciently long assimilation sequence:

di = yi Hx
f
i =Hx

t
i +

o
i H(xti +

f
i ) =

o
i H

f
i = 0 (51)

A non-centered innovation sequence is the obvious indication of biases
in the model and/or observations which in principle should be removed
from the assimilation system. If the source of bias is in the model, di only
provides information about the projection of this bias in the observation
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space, and the di culty remains of inversing this information back to
the model space.
Similarly, the expectation of the residual ri = yi Hxai should be zero

for an optimal system as well as the mean incrementH(xai x
f
i ) = di ri

[Talagrand, 1999]. Figure 7 illustrates the mean assimilation increment
of sea-surface height computed from a 10-year analysis sequence of the
MERCATOR global prototype (at 2 × 2 horizontal resolution) assim-
ilating altimeter data during the 1993-2003 period [Ferry et al., 2005].
Over large portions of the ocean, the amplitude of the increment is indeed
very small, but in some regions the assimilation system systematically
corrects the predicted sea-surface pressure towards higher (e.g. in the
southern oceans) or lower values (e.g. in the sub-polar gyre). Ferry et al.
[2005] discuss how the detection of such biases can be used to improve
the modelling or assimilation components of the MERCATOR system.

Figure 7. Mean SLA increment (in cm) diagnosed from the global MERCATOR

prototype assimilating along-track altimeter data (according to Ferry et al. [2005]).

By taking the covariance of the innovation and remembering the as-
sumptions made in Section 2 about observation and forecast errors, we
obtain

did
T
i = (

o
i H

f
i )(

o
i H

f
i )
T = R+HPfiH

T (52)

if the error covariances are correctly specified. The comparison between

the matrix didTi and the sum of the observation and forecast error co-
variances used by the assimilation scheme indicates whether the forecast
misfits “seen” by the filter are compatible with the prior information.
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As all these quantities are full covariance matrices in the data space, the
comparison is often made by looking only at a few selected diagnostics
such as the trace of the matrix or its diagonal elements. After simple
manipulations, it can be shown using the residuals that

rir
T
i = R HPaiH

T (53)

This formula accounts for the fact that the same observation error a ects
both the data and the analysis. It shows that, for an asymptotically
perfect estimation system (with Pai 0), the residual error covariance
converges towards the observation error.
Another more synthetic diagnostic can be implemented in both sta-

tistical and variational assimilation systems. If the covariances are cor-
rectly estimated, the scalar quantity

Ji = d
T
i (HP

f
iH

T +R) 1di (54)

behaves as a chi-squared variable with as many degrees of freedom as
there are independent data (say, p) [Bennett, 1992]. It can be regarded
as a particular norm (the so-called Mahalanobis norm) of the innova-
tion vector. Significance tests may therefore be used to accept or reject
the covariance models. In the context of low-rank KFs based on the
decomposition (39), the norm (54) can be written as

Ji = d
T
i (HSfi )(HS

f
i )
T +R

1

di (55)

and can be used to objectively evaluate the suitability of the error sub-

space Sfi . Instead of testing the complete
2
p behaviour of Ji, only the

first and second statistical moments need to be examined. These should
show that

Ji = p and V ar(Ji) = p (56)

In particular, a too small (resp. large) value of Ji is symptomatic of an
overestimated (resp. underestimated) innovation amplitude, which may
be the consequence of too large (resp. small) observation or forecast
error covariances.

7.2 Adaptivity

In most applied assimilation systems, large deviations may be ob-
served with respect to the theoretical criteria (51), (52), (53) or (56), re-
flecting some flaws in the prior statistical assumptions. Feedback mech-
anisms can be implemented on-line or o -line to adjust the prior error
statistics in such a way as to restore consistency between the errors diag-
nosed by the filter and the innovation or residual information. Inherent
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in the family of techniques used for this purpose is the concept of adap-
tivity. A comparison between di erent sophisticated adaptive KFs is
provided by Blanchet et al. [1997]. In this section, we examine more
closely di erent examples of adaptive methods that have been explored
in the literature to identify and correct model biases, to tune the para-
meterization of model errors and to build the error sub-space of low-rank
KFs.
Research e orts aimed at improving error covariance modelling in as-

similation systems are of limited interest if biases are left in the models
or the observations, i.e. if criterion (51) is not verified. The correction
for biases in operational systems is expected to have a very strong impact
on assimilation performances. In the context of sequential assimilation,
Dee and Da Silva [1998] proposed a rigorous method for estimating the
forecast bias and correcting the forecast prior to the analysis, assum-
ing unbiased observations. The algorithm is designed to perform on-line
and its implementation does not require substantial modifications to the
assimilation system. The basic idea consists in running a simplified KF-
type algorithm to estimate di in addition to the KF for the state itself.
Assuming temporal persistence of the bias, the extra cost of the method
is equivalent to one additional computation of the statistical analysis
step.
The question of model error parameterization can been addressed by

means of adaptive methods too. In many practical studies, the model
error covariance Q is probably the least well known statistical quantity
impacting the forecast error. Mitchell and Houtekamer [2000] developed
an adaptive EnKF using a maximum likelihood method to estimate the
parameterization of model errors from the innovation sequence. The ap-
proach recently developed by Brankart et al. [2003] can also be viewed
as an adaptive parameterization of the model error. By adjusting the
coe cient of Eq. (38) according to the local innovation variance, the

method is able to account for regional properties of the ocean dynamics.
The estimation of the innovation variance is based on a weighted aver-
age of the latest innovations, using a weight that decreases exponentially
with the age of the innovation.
This mechanism was explored in the context of hindcast experiments

conducted for the 1993-1996 period. The SEEK filter was implemented
in two di erent models : the 1/3 North Atlantic OPA model of the
MERCATOR prototype system, and the Atlantic/Arctic MICOMmodel
of the European DIADEM system. Sea-surface temperature from the
NASA Pathfinder project and altimetric data from the Topex/Poseidon
and ERS missions were assimilated in both systems every 10 days. Tes-
tut [2000] studied the distribution of the 10-day forecast error in the
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OPA system once the assimilation experiment had reached an asymp-
totic regime (figure 8). The largest forecast errors are found along the
Gulf Stream path between Cape Hatteras and 40 N, where the standard
deviation exceeds 20 cm in some places. Local maxima are also detected
in the North Atlantic Current extension and along the Azores Current
at 35 N. Using the MICOM system, Brankart et al. [2003] compared
the estimated innovation variance with the sum of the observation and
forecast error variance diagnosed by the filter in a zonal section across
the Gulf Stream region at 30 N. The comparison indicates a fairly good
agreement between the 2 estimates in most regions, reflecting a success-
ful adaptive procedure.

Figure 8. Distribution of the 10-day forecast error diagnosed with the adaptive SEEK

filter implemented in the OPA model (reproduced from Testut [2000]).

Another interesting application of the adaptivity concept is the up-
date of the initial structure of the error sub-spaces. Using a low-rank
KF with an idealized primitive-equation model of the Gulf Stream, the
assimilation error dynamics was investigated by Ballabrera et al. [2001].
They examined how the filter performances were a ected by imperfect
specifications of the initial error statistics. They observed that the trun-
cation error does not impact the control of the solution when at least one
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of the following three conditions is met: (i) the initial error is perfectly
described by the reduced basis; (ii) the truncation error is dynamically
uncoupled with the error components of the low-dimension space; (iii)
the sub-space must contain all the components of the growing error
during the forecast time period. As these three conditions are never
perfectly verified in realistic assimilation systems, an adaptive proce-
dure was developed in order to introduce some feedback between the
data and the error sub-space used by the filter. The algorithm proposed
by Brasseur et al. [1999] updates the error sub-space of the SEEK fil-
ter along the geostrophic attractor by extracting information left in the
residual vector after each analysis step. This update of the reduced basis
is performed in such a way as to attenuate the truncation error and to
improve the projection of the next innovation onto the error sub-space:
this leads to the concept of adaptive sub-space. An advantage of this
variant of the SEEK filter is that it allows the evolution of the error sub-
space without incurring the cost of propagating the whole set of error
directions dynamically.

8. Intermittent vs. time-continuous filtering

In the basic assimilation problem introduced in Section 1, two major
simplifications were considered: (i) the observations were available at
discrete time intervals, and (ii) the analysis was performed at the exact
time of the measurements. In oceanographic and atmospheric applica-
tions, the situation is quite di erent since the flow of observations can
be considered as almost continuous in time (for instance, the acquisition
of altimeter data). Therefore, ocean data assimilation with intermittent
sequential filters necessarily involves approximations.
In principle, sequential filters could perform an analysis step as of-

ten as a new piece of information arrives. Time-continuous formulations
of the KF exist [Gelb 1974] and have been applied to analogic signal
processing. However, their application to oceanographic or atmospheric
models is inappropriate: for practical reasons, it would be impossible
to incorporate the data at their exact time of acquisition. Experience
shows that it is necessary to accumulate a certain number of observa-
tions between two successive analysis steps to correct the ocean state
with su cient impact. Besides, operational assimilation systems must
be scheduled on a regular temporal basis so as to avoid unnecessary
algorithmic complications, to account for human intervention, delay in
data delivery, etc.
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8.1 Computing innovations using FGAT

Typical lengths of assimilation cycles are 3 to 7 days for mesoscale
ocean current predictions, and 10 to 30 days for initialization of the
oceanic component of seasonal climate predictions. In spite of the fact
that the ocean cannot be considered as static over these time scales,
intermittent sequential filters incorporate at one single instant the set of
observations collected during the whole assimilation interval. This is a
major di erence with 4D-VAR algorithms, which can take full advantage
of the temporal distribution of the data within an assimilation window.
Fairly simple solutions can be set up to alleviate these problems in

the context of statistical filters. For example, the FGAT (First Guess
at Appropriate Time) method initially introduced in meteorology can
be used to evaluate the innovation vector more correctly: instead of
computing the di erence between the time-distributed data set and the
model forecast at time ti+1 as in Eq. (19), the innovation is evaluated
“on the flight” by cumulating the di erences between each piece of ob-
servation and the corresponding element of the model forecast at the
measurement time. This approach has also been used with 3D-VAR
assimilation systems [Weaver et al., 2003] to benefit from the temporal
dimension. Due to the fast propagation of equatorial waves, the FGAT
feature may be particularly important in the tropical oceans.

8.2 Incremental Analysis Update

A direct consequence of intermittency is the discontinuity of the fore-
cast/analysis estimates, which is recognized as a major drawback of se-
quential methods. Two related problems, - shocks to the model and data
rejection -, arise with intermittent corrections. It is found that observa-
tions assimilated into models may introduce transient waves excited by
the impulsive insertion. These waves are often the result of imperfections
in the corrected state associated with physically unbalanced error covari-
ances. In the example illustrated in figure 9, six vertical profiles of tem-
perature and salinity measurements are assimilated into the HYCOM
model using the SEEK filter. The profiles are inserted in distant regions
(Labrador Basin, Irminger Sea, Gulf Stream, Azores and North Brazil
currents and Caribbean Sea) in order to avoid mutual interference. The
corrected state is then integrated using the model with realistic forcings
for one month after analysis time. Figure 9 depicts the SSH increment
after 3 days of simulation, showing the occurrence of spurious transients
(particularly in the Gulf Stream region) which the model generates to
dynamically adjust the new state.
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Figure 9. SSH increment (in m) obtained with the HYCOM model 3 days after

assimilation of vertical T/S profiles.

In order to incorporate analysis increments in a more gradual manner,
a new algorithm based on Incremental Analysis Updates (IAU) has been
proposed by Bloom et al. [1996], which combines aspects of intermittent
and continuous assimilation schemes. Using the regular KF equations,

the IAU algorithm first computes the analysis correction (xai+1 x
f
i+1).

This correction is then distributed (uniformly or not) over the assimila-
tion window and inserted gradually into the model. The state obtained
at the end of the assimilation window can be used as the initial condi-
tions for the next assimilation cycle, leading to time-continuous filtered
trajectories. The concept of IAU can also be implemented by comput-
ing corrections to the atmospheric forcing or by introducing dynamical
relaxation terms in the prognostic equations, according to the analysis
increments. The IAU temporal strategy can be complemented by the
FGAT scheme which computes the innovation “on the flight”.
A possible implementation of the IAU scheme in primitive equation

models may include the following steps: (i) first-guess model integration
and evaluation of the innovation vector using FGAT; (ii) computation
of the analysis increment using the Kalman gain; (iii) second integration
on (ti, ti+1) using primitive equations modified by the increment. The
additional cost incurred by this process will be one model integration or
less, depending on the details of the algorithmic implementation. Noting
by T the increment of the temperature field, a possible modification of
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the PE equation for the temperature may be written as follows:

T

t
+ u. hT +w

T

z
= Dh(T ) +

z
(

T

z
) +

T

(ti+1 ti)
(57)

where T/(ti+1 ti) is a new term acting as a body force, in a similar
way to the nudging assimilation technique [Verron and Holland, 1989;
Blayo et al., 1994]. The extra term is, however, di erent from newtonian
relaxation since it does not explicitly involve the current value of T
and has the advantage of being multivariate in general and weighted
consistently with error statistics. A linear analysis of the IAU procedure
shows that it has the properties of a low-pass temporal filter. Variants of
the IAU procedure are currently being explored with the MERCATOR
assimilation systems.

9. Conclusions

The Kalman filter provides a theoretical framework from which a hier-
archy of algorithms of increasing sophistication and increasing computer
requirements can be derived. These algorithms range from Optimal In-
terpolation schemes, which require only a few percent of the computer
resources allocated to run the model, to non-linear Kalman filters such
as the SEEK or the EnKF, which require the simultaneous integration
of perturbed model trajectories in equal number to the dimension of
the error sub-space. The research conducted in support of operational
oceanography has shown that error statistics is at the heart of applied
assimilation systems and remains a major challenge for ocean data as-
similation. In this respect, the derivation of a hierarchy of simplified
filters o ers a unique possibility to test di erent approaches for speci-
fying and calibrating the background, systematic and observation error
statistics.
A salient feature of statistical estimation methods is their multivariate

nature : observations related to several di erent model variables (e.g.,
SST, SLA, SSS, in situ temperature and salinity data) are used to correct
the whole model state in a consistent manner. This opens promising
avenues for e ectively envisaging the simultaneous assimilation of in
situ data with satellite data from di erent sensors. Error bars on state
estimates can be computed by the algorithms on a rigorous basis, making
the schemes useful in qualifying the reliability of di erent forecasts, or
comparing the relevance of di erent observation systems. For practical
implementations, the adjoint of the model code is not necessarily needed
as with 4D-VAR, and the basic architecture of the algorithms is modular.
The transition from one model version to another, or from one model
code to another can be made smoothly without much recoding.
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The large variety of sequential statistical methods developed in the
context of scientific or operational applications is an indication that a
given assimilation technique cannot be considered as a “plug-and-play”
system, capable of solving universal problems. To design the best pos-
sible assimilation system, it is necessary to clearly define the purpose of
data assimilation (forecast initialization, reanalysis, model error detec-
tion, etc.), the physical characteristics of the processes of interest, the
sampling properties of the observation systems, and the limitations of the
assimilation techniques. Moving towards hybrid sequential/variational
methods is probably an astute way of taking the best from both ap-
proaches. Due to the complexity of models and algorithms, the success
of an assimilation system also depends on the community of people work-
ing within a common framework. In the future, the sharing of generic
assimilation tools between operational and research teams should ac-
celerate the progress of the methods and provide feedback from more
intensive utilizations.
A number of important issues for ocean data assimilation have yet to

be fully resolved, such as the incorporation of inequality constraints in
statistical estimation algorithms. Such constraints are needed, e.g. in
the context of tracer data assimilation to maintain the positiveness of
tracer concentrations, or for the proper handling of the physical prop-
erties of the water column such as static stability. Another important
challenge will be to further develop assimilation systems for coupled
physical-biological models, with the aim of demonstrating the capacity
to estimate and forecast marine ecosystems and biogeochemical variables
in the ocean on a routine basis. As a first step, the incorporation of
biogeochemical models into the physical assimilative systems developed
within GODAE will provide new “bio-metrics” to evaluate the repre-
sentation of the physical processes of critical importance to biology. A
further challenge will be to implement suitable methods to assimilate
ocean colour data in the coupled assimilative systems.
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