
CHAPTER 7

ON THE QUANTUM POTENTIAL

1. RESUMÉ

We have seen already how the quantum potential arises in many contexts as
a fundamental ingredient connected with quantum matter, and how it provides
linkage between e.g. statistics and uncertainty, Fisher information and entropy,
Weyl geometry, and quantum Kähler geometry. We expand further on certain
aspects of the quantum potential in this Chapter aafter the resumé from Chapters
1-6 Moreover we have seen how the trajectory representation à la deBroglie-Bohm
(dBB) can be used to develop meaningful insight and results in quantum field
theory (QFT) and cosmology. This is achieved mainly without the elaborate ma-
chinery of Fock spaces, Feynman diagrams, operator algebras, etc. in a straight-
forward manner. The conclusion seems inevitable that dBB theory is essentially
all pervasive and represents perhaps the most powerful tool available for under-
standing not only QM but the universe itself. There are of course many papers
and opinions concerning such conclusions (some already discussed) and we will
make further comments along these lines in this Chapter. We remark that there
is some hesitation in postulating an ensemble interpretation when using dBB the-
ory in cosmology with a wave function of the universe for example but we see no
obstacle here, once an ensemble of universes is admitted. This is surely as reason-
able as dealing with many string theories as is now fashionable. In any event we

1.1. THE SCHRÖDINGER EQUATION. We list some examples pri-
marily concerned with QM.

(1) The SE in 1-dimension with ψ = Rexp(iS/�) and associated HJ and
continuity equations are

(1.1) − �2

2m
ψxx + V ψ = i�ψt; St +

S2
x

2m
+ V + Q = 0;

Q = −�2R′′

2mR
; ∂t(R2) +

1
m

(R2Sx)x = 0

Here P = R2 = |ψ|2 is a probability density, p = mẋ = Sx (with S
not constant!) is the momentum, ρ = mP is a mass density, and Q
is the quantum potential of Bohm. Classical mechanics involves a HJ
equation with Q = 0 and can be derived as follows (cf. [304]). Consider
a Lagrangian L = pẋ−H with Hamiltonian H = (p2/2m)+V and action

275

begin with a resumé of highlights from Chapters 1-6 and gather some material
→here (see also [1026] for information on the map SE Q).
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S =
∫ t2

t1
dtL(x, ẋ, t). One computes

(1.2) δS =
∫ t2

t1

dt

[
p

d

dt
δx + ẋδp− δH −H

d

dt
δt

]
where δH = Hxδx + Hpδp + Htδt = Vxδx + (p/m)δp + Htδt. Then

(1.3) δS =
∫ t2

t1

dt

[
p

d

dt
δx + ẋδp− Vxδx− p

m
δp−Htδt−H

d

dt
δt

]
=

=
∫ t2

t1

dt

{
d

dt
[pδx−Hδt] + δp

(
ẋ− p

m

)
− δx

(
dp

dt
+ Vx

)
+ δt[Ḣ −Ht]

}
Consequently, writing δS = (Sxδx + Stδt)|t2t1 one arrives at

(1.4) ẋ =
p

m
; ṗ = −Vx; Ḣ = Ht; p = Sx; St + H = 0

Note here the “surface” term (from integration) is G = pδx − Hδt and
δS = G2 − G1 which should equal δS = (∂S/∂x1)δx1 + (∂S/∂x2)δx2 +
(∂S/∂t1)δt1 + (∂S/∂t2)δt2 where x1 = x(t1) and x2 = x(t2) One sees
then directly how the addition of Q to a classical HJ equation produces
a quantum situation.

(2) Another classical connection comes via hydrodynamics (cf. Section 1.1)
where (1.1) can be put in the form

(1.5) ∂t(ρv) + ∂(ρv2) +
ρ

m
(∂V + ∂Q) = 0

which is like an Euler equation in fluid mechanics moduo a pressure
term −ρ−1∂P on the right. If we identify (ρ/m)∂Q = ρ−1∂P ≡ P =
∂−1(ρ2/m)∂Q (with some definition of ∂−1 - cf. [205]) then the quantum
term could be thought of as providing a pressure with Q corresponding
e.g. to a stress tensor of a quantum fluid. We refer also to Remark 1.1.2
and work of Kaniadakis et al where the quantum state coressponds to
a subquantum statistical ensemble whose time evolution is governed by
classical kinetics in phase space.

(3) The Fisher information connection à la Remarks 1.1.4 - 1.1.5 involves a
classical ensemble with particle mass m moving under a potential V

(1.6) St +
1

2m
(S′)2 + V = 0; Pt +

1
m

∂(PS′)′ = 0

where S is a momentum potential; note that no quantum potential is
present but this will be added on in the form of a term (1/2m)

∫
dt(∆N)2

in the Lagrangian which measures the strength of fluctuations. This
can then be specified in terms of the probability density P as indicated
in Remark 1.1.4 leading to a SE where by Theorem 1.1.1 (∆N)2 ∼
c
∫

[(P ′)2/P ]dx. A “neater” approach is given in Remark 1.1.5 leading in
1-D to

(1.7) St +
1

2m
(S′)2 + V +

λ

m

(
(P ′)2

P 2
− 2P ′′

P

)
= 0

Note that Q = −(�2/2m)(R′′/R) becomes for R = P 1/2 an equation
Q = −(�2/8m)[(2P ′′/P ) − (P ′/P )2]. Thus the addition of the Fisher
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information serves to quantize the classical system via a quantum po-
tential and this gives a direct connection of the quantum potential with
fluctuations.

(4) The Nagasawa theory (based in part on Nelson’s work) is very revealing
and fascinating. The essense of Theorem 1.1.2 is that ψ = exp(R + iS)
satisfies the SE iψt + (1/2)ψ′′ + iaψ′ − V ψ = 0 if and only if

(1.8) V = −St +
1
2
R′′ +

1
2
(R′)2 − 1

2
(S′)2 − aS′; 0 = Rt +

1
2
S′′ + S′R′ + aR′

Changing variables (X = (�/
√

m)x and T = �t) one arrives at i�ψT =
−(�2/2m)ψXX − iAψX + V ψ where A = a�/

√
m and

(1.9) i�RT + (�2/m2)RXSX + (�2/2m2)SXX + ARX = 0;

V = −i�ST + (�2/2m)RXX + (�2/2m2)R2
X − (�2/2m2)S2

X −ASX

The diffusion equations then take the form

(1.10) �φT +
�2

2m
φXX + AφX + c̃φ = 0; −�φ̂T +

�2

2m
φ̂XX −Aφ̂X + c̃φ̂ = 0;

c̃ = −Ṽ (X,T )− 2�ST −
�2

m
S2

X − 2ASX

It is now possible to introduce a role for the quantum potential in this
theory. Thus from ψ = exp(R + iS) (with � = m = 1 say) we have ψ =
ρ1/2exp(iS) with ρ1/2 = exp(R) or R = (1/2)log(ρ). Hence (1/2)(ρ′/ρ) =
R′ and R′′ = (1/2)[(ρ′′/ρ) − (ρ′/ρ)2] while the quantum potential is
Q = (1/2)(∂2ρ1/2/ρ1/2) = −(1/8)[(2ρ′′/ρ) − (ρ′/ρ)2]. Equation (1.8)
becomes then

(1.11) V = −St +
1
8

(
2ρ′′

ρ
− (ρ′)2

ρ2

)
− 1

2
(S′)2 − aS′ ≡

≡ St +
1
2
(S′)2 +V +Q+aS′ = 0; ρt +ρS′′ +S′ρ′ +aρ′ = 0 ≡ ρt +(ρS′)′ +aρ′ = 0

Thus −2St − (S′)2 = 2V + 2Q + 2aS′ and one has

PROPOSITION 1.1. The creation-annihilation term c in the dif-
fusion equations (cf. Theorem 1.1.2) becomes

(1.12) c = −V − 2St − (S′)2 − 2aS′ = V + 2Q

where Q is the quantum potential.

(5) Going to Remarks 1.1.6-1.1.8 we set

(1.13) Q̃ =
�2

2m2

∂2√ρ
√

ρ
= − 1

m
Q; D =

�

2m
; u = D∂(log(ρ)) =

h

2m

ρ′

ρ

Then u is called an osmotic velocity field and Brownian motion involves
v = −u for the diffusion current. In particular

(1.14) Q̃ =
1
2
u2 + D∂u
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One defines an entropy term S = −
∫

ρlog(ρ)dx leading, for suitable
regions of integration and behavior of ρ at infinity, and using ρt = −∂(vρ)
from (1.1), to

(1.15)
∂S

∂t
= −

∫
ρt(1 + log(ρ)) =

∫
(1 + log(ρ))∂(vρ) =

= −
∫

vρ′ =
∫

uρ′ = D

∫
(ρ′)2

ρ

Note also

(1.16) Q̃ =
D2

2

(
2ρ′′

ρ
−
(

ρ′

ρ

)2
)
⇒

∫
ρQ̃ = −D2

2

∫
(ρ′)2

ρ

Thus generally ∂S/∂t ≥ 0 and F = −(2/D2)
∫

ρQ̃ is a functional form
of Fisher information with St = DF.

(6) The development of the SE by Nottale, Cresson, et al in Section 1.2 is
basically QM and is peripheral to scale relativity as such. The idea is
roughly to to imagine e.g. continuous nondifferentiable quantum paths
and to describe the velocity in terms of an average V = (1/2)(b+ + b−)
and a discrepancy U = (1/2)(b+− b−) where b± are given by (2.1). Not-
tale’s derivation is heuristic but revealing and working with a complex
velocity he captures the complex nature of QM. In particular the quan-
tum potential can be written as Q = −(m/2)U2−(�/2)∂U corresponding
to (1.14) via Q̃ = −(1/m)Q. As indicated in Proposition 1.2.1 this re-
veals the quantum potential as a manifestation of the “fractal” nature
of quantum paths - smooth paths correspond to Q = 0 which seems to
preclude smooth trajectories for quantum particles. In such a case the
standard formula ẋ = (�/2m)�[ψ∗∂ψ/|ψ|2] requires a discontinuous ẋ
wich places some constraints on ψ and the whole guidance idea. This
whole matter should be addressed further along with considerations of
osmotic velocity, etc. Another approach to quantum fractals is given in
Section 1.5.

(7) In section 2.3.1 we sketched some of the Bertoldi-Faraggi-Matone (BFM)
version of Bohmian mechanics and in particular for the stationary quan-
tum HJ equation (QHJE) (1/2m)S2

x + W = E (W = V + Q), arising
from −(�2/2m)ψ′′ + V ψ = Eψ, one can extract from [347] the formulas
for trajectories (using Floydian time t ∼ ∂S/∂E). Thus (∂EW = ∂EQ)

(1.17) t ∼ ∂E

∫
Sxdx = ∂E

∫
[E −W ]1/2dx =

(m

2

)1/2
∫

(1− ∂EQ√
E −W

dx

Hence

(1.18)
dt

dx
=
(m

2

)1/2 1− ∂EQ√
E −W

⇒ ẋ =
Sx

m

1
1− ∂EQ

Thus m(1 − ∂EQ)ẋ = mQẋ = Sx and this is defined as p with mQ

representing a quantum mass. Note ẋ �= p/m and we refer to [194,
191, 347, 373, 374] for discussion of all this. Further via p′ = m′

Qẋ +
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mQ(ẍ/ẋ), etc., one can rewrite the QSHJ as a third order trajectory (or
microstate) equation (see also Remark 7.4)

(1.19)
m2

Q

2m
ẋ2 + V − E +

�2

4m

(
m′′

Q

mQ
− 3

2

(
m′

Q

mQ

)2

−
m′

Q

mQ

ẍ

ẋ2
+

...
x

ẋ3
− 5

2
ẍ2

ẋ4

)
= 0

In Remark 2.2.2 with Theorem 2.1 we observed how the uncertainty prin-
ciple of QM can be envisioned as due to incomplete information about
microstates when working in the Hilbert space formulation of QM based
on the SE. It was shown how ∆q∆x = O(�) arises automatically from a
BFM perspective. Thus the canonical QM in Hilbert space cannot see a
single trajectory and hence is obliged to operate in terms of ensembles
and probability. We have also seen how a probabilistic ensemble picture
with quantum fluctuations comes about with the fluctuations correspond-
ing to the quantum potential (see Item 3 above). This suggests that a
background motivation for the Hilbert space may really exist (beyond
its pragmatic black magic) since these fluctuations represent a form of
information (and uncertainty). The hydrodynamic and diffusion models
are also directly connected to this and produce as in Item 5 above a
connection to entropy.

1.2. DEBROGLIE-BOHM. There are many approaches to dBB theory
and in fact much of the book is concerned with this. David Bohm wrote exten-
sively about the subject but we have omitted much of the philosophy (implicate
order, etc.). The book by Holland [471] is excellent and a modern theory is be-
ing constructed by Dürr, Goldstein, Zanghi, et al (cf. also the work of Bertoldi,
Farragi, Matone, and Floyd). Some new directions in QFT, Weyl geometry, and
cosmology are also covered in the book, due to Barbosa, Pinto-Neto, Nikolić, A.
and F. Shojai, et al, and we will try to summarize some of that here.

(1) The BFM theory is quite novel (and profound) in that it is based en-
tirely on an equivalence principle (EP) stating that all physical systems
can be connected by a coordinate transformation to the free situation
with vanishing energy. One bases the stationary situation of energy E
in the nonrelativistic case with the SE as in Item 7 above. In the rela-
tivistic case (Remark 2.2.3) one can work in the same spirit directly with
a Minkowski metric to obtain the Klein-Gordon (KG) equation with a
relativistic quantum potential

(1.20) Qrel = − �2

2m

�R

R

Note that the probability aspects concerning R appear to be absent in the
relativistic theory. It is interesting to note (cf. Remark 2.2.1) that the
EP implies that all mass can be generated by a coordinate transformation
and since mass can be expressed in terms of the quantum potential Q
this provides yet another role for the quantum potential.

(2) Some quantum field theory (QFT) aspects of the Bohm theory are de-
veloped in [471] and sketched here in Example 2.1.1. One arrives at a
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formula, namely

(1.21) �ψ = − δQ[ψ(x), t]
δψ(x)

∣∣∣∣
ψ(x)=ψ(x,t)

; Q[ψ, t] = − 1
2R

∫
d3x

δ2R

δψ2

More recently there have been some impressive papers by Nikolić in-
volving Bohmian theory and QFT. First there are papers on bosonic
and fermionic Bohmian QFT sketched in Sections 3.2 and 3.3. These
are lovely but even more attractive are two newer papers [708, 713] by
Nikolić which we displayed in Sections 2.4 and 2.6. In [708] one utilizes
the deDonder-Weyl formulation of QFT (reviewed in Appendix A) and
a Bohmian formulation is not postulated but derived from the technical
requirements of covariance and consistency with standard QM. One in-
troduces a preferred foliation of spacetime with Rµ normal to the leaf Σ
and writes R([φ],Σ) =

∫
Σ

dΣµRµ with S([φ], x) =
∫
Σ

dΣµSµ. This pro-
duces a covariant version of Bohmian mechanics with Ψ = Rexp(iS/�)
via

(1.22)
1
2

dSµ

dφ

dSµ

dφ
+ V + Q + ∂µSµ = 0;

dRµ

dφ

dSµ

dφ
+ J + ∂µRµ = 0

(1.23) Q = − �2

2R

δ2R

δΣφ2(x)
; J =

R

2
δ2S

δΣφ2(x)

In [713] one uses the many fingered time (MF) Tomonaga-Schwinger
(TS) equation where a Cauchy hypersurface Σ is defined via x0 = T (x)
with x corresponding to coordinates on Σ. The TS equation is

(1.24) i
δΨ[φ, T ]
δT (x)

= ĤΨ[φ, T ]

Take a free scalar field for convenience with

(1.25) Ĥ(x) = −1
2

δ2

δφ2(x)
+

1
2
[(∇φ(x))2 + m2φ2(x)]

Then for a manifestly covariant theory one introduces parameters s =
(s1, s2, s3) to serve as coordinates on a 3-dimensional manifold Σ in space-
time with xµ = Xµ(s) the embedding coordinates. The induced metric
on Σ is

(1.26) qij(s) = gµν(X(s))
∂Xµ(s)

∂si

∂Xν(s)
∂sj

Similarly a normal (resp. unit normal - transforming as as a spacetime
vector) to the surface are

(1.27) ñ(s) = εµαβγ
∂Xα

∂s1

∂Xβ

∂s2

∂Xγ

∂s3
; nµ(s) =

gµν ñν√
|gαβñαñβ |

Then for x→ s and δ
δT (x) → nµ(s) δ

δXµ(s) the TS equation becomes

(1.28) Ĥ(s)Ψ[φ,X] = inµ(s)
δΨ[φ,X]
δXµ(s)
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and the Bohmian equations of motion are (Ψ = Rexp(iS) )

(1.29)
∂Φ(s, T ]
∂τ(s)

=
1

|q(s)|1/2

δS

δφ(s)

∣∣∣∣
φ=Φ

;
∂

∂τ(s)
≡ limσx→0

∫
σx

d3snµ(s)
δ

δXµ(s)

In the same spirit the quantum MFT KG equation is

(1.30)

[(
∂

∂τ(s)

)2

+∇i∇i + m2

]
Φ(s, X] = − 1

|q(s)|1/2

∂Q(s, φ,X]
∂φs)

∣∣∣∣
φ=Φ

where ∇i is the covariant derivative with respect to si and

(1.31) Q(s, φ,X] = − 1
|q(s)|1/2

1
2R

δ2R

δφ2(s)

(3) The QFT model in Section 2.5 involving stochastic jumps is quite techni-
cal and should be read in conjunction with Nagasawa’s book [674]. The
idea (cf. [326]) is that for the Hamiltonian of a QFT there is associated
a |ψ|2 distributed Markov process, typically a jump process (to accound
for creation and annihilation processes) on the configuration space of a
variable number of particles. One treats this via functional analysis, op-
erator thery, and probability, which leads to mountains of detail, only a
small portion of which is sketched in this book.

(4) In Section 3.2 we give a sketch of dBB in Weyl geometry following A.
and F. Shojai [873]. This is a lovely approach and using Dirac-Weyl
methods one is led comfortably into general relativity (GR), cosmology,
and quantum gravity, in a Bohmian context. Such theories dominate
Chapters 3 and 4. First one looks at the relativistic energy equation
ηµνpµpν = m2c2 generalized to

(1.32) ηµνPµP ν = m2c2(1 +Q) = M2c2; Q = (�2/m2c2)(�|Ψ|/|Ψ|)

(1.33) M2 = m2

(
1 + α

�|Ψ|
|Ψ|

)
; α =

�2

m2c2

(obtained e.g. by setting ψ =
√

ρexp(iS/�) in the KG equation). Here
M2 is not positive definite and in fact (1.32) is the wrong equation!
Some interesting arguments involving Lorentz invariance lead to better
equations and for a particle in a curved background the natural quantum
HJ equation is most comfortably phrased as

(1.34) ∇µ(ρ∇µS) = 0; gµν∇µS∇νS = M
2c2; M

2 = m2eQ; Q =
�2

m2c2

�g|Ψ|
|Ψ|

This is equivalent to

(1.35)
(

m2

M2

)
gµν∇µS∇νS = m2c2

showing that the quantum effects correspond to a change in spacetime
metric gµµ → g̃µν = (M2/m2)gµν . This is a conformal transformation
and leads to Weyl geometry where (1.35) takes the form g̃µν∇̃µS∇̃νS =



282 7. ON THE QUANTUM POTENTIAL

m2c2 with ∇̃µ the covariant derivative in the metric g̃µν . The particle
motion is then

(1.36) M
d2xµ

dτ2
+ MΓµ

νκuνuκ = (c2gµν − uµuν)∇νM

and the introduction of a quantum potential is equivalent to introduc-
ing a conformal factor Ω2 = M2/m2 in the metric (i.e. QM corre-
sponds to Weyl geometry). One considers then a general relativistic
system containing gravity and matter (no quantum effects) and links it
to quantum matter by the conformal factor Ω2 (using an approximation
1 + Q ∼ exp(Q) for simplicity); then the appropriate Einstein equations
are written out. Here the conformal factor and the quantum potential
are made into dynamical fields to create a scalar-tensor theory with two
scalar fields. Examples are developed and we refer to Section 3.2 and
[873] for more details. Back reaction effects of the quantum factor on
the background metric are indicated in the modified Einstein equations.
Thus the conformal factor is a function of the quantum potential and the
mass of a relativistic particle is a field produced by quantum corrections
to the classical mass. In general frames both the spacetime metric and
the mass field have quantum properties.

(5) The Dirac-Weyl theory is developed also in [873] via the action

(1.37) A =
∫

d4x
√
−g(FµνFµν − β2 WR+ (σ + 6)β;µβ;µ + Lmatter

The gravitational field gµν and Weyl field φµ plus β determine the space-
time geometry and one finds a Bohmian theory with β ∼ M (Bohmian
quantum mass field). We will say much more about Dirac-Weyl theory
below.

(6) There is an interesting approach by Santamato in [840, 841] dealing with
the SE and KG equation in Weyl geometry (cf. Section 3.3 and [189,
203]). In the first paper on the SE one assumes particle motion given
by a random process qi(t, ω) with probability density ρ(q, t), q̇i(t, ω) =
vi(q(t, ω), t), and random initial conditions qi

0(ω) (i = 1, · · · , n). One be-
gins with a stochastic construction of (averaged) classical type Lagrange
equations in generalized coordinates for a differentiable manifold M in
which a notion of scalar curvature R is meaningful (this is where statis-
tics enters the geometry). It is then shown that a theory equivalent to QM
(via a SE) can be constructed where the “quantum force” (arising from
a quantum potential Q) can be related to (or described by) geometric
properties of space. To do this one assumes that a (quantum) Lagrangian
can be constructed in the form L(q, q̇, t) = LC(q, q̇, t) + γ(�2/m)R(q, t)
where γ = (1/6)(n− 2)/(n − 1) with n = dim(M) and R is a curvature
scalar. Now for a Riemannian geometry ds2 = gik(q)dqidqk it is standard
that in a transplantation qi → qi +δqi one has δAi = Γi

k�A
�dqk, and here

it is assumed that for � = (gikAiAk)1/2 one has δ� = �φkdqk where the φk

are covariant components of an arbitrary vector of M (Weyl geometry).
Thus the actual affine connections Γi

k� can be found by comparing this
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with δ�2 = δ(gikAiAk) and one finds

(1.38) Γi
k� = −

{
i

k �

}
+ gim(gmkφ� + gm�φk − gk�φm)

Thus we may prescribe the metric tensor gik and φi and determine via
(1.38) the connection coefficients. Covariant derivatives are defined via
commas and the curvature tensor Ri

k�m in Weyl geometry is introduced
via Ai

,k,� − Ai
,�,k = F i

mk�A
m from which arises the standard formula of

Riemannian geometry Ri
mk� = −∂�Γi

mk+∂kΓi
m�+Γi

n�Γ
n
mk−Γi

nkΓn
m� where

(1.38) must be used in place of the Riemannian Christoffel symbols. The
Ricci symmetric tensor Rik and the scalar curvature R are defined via
Rik = R�

i�k and R = gikRik, while

(1.39) R = Ṙ + (n− 1)[(n− 2)φiφ
i − 2(1/

√
g)∂i(

√
gφi)]

where Ṙ is the Riemannian curvature built by the Christoffel symbols.
Now the geometry is to be derived from physical principles so the φi

cannot be arbitrary but are obtained by the same (averaged) least action
principle giving the motion of the particle (statistical determination of
geometry) and when n ≥ 3 the minimization involves only (1.39). One
shows that ρ̂(q, t) = ρ(q, t)/

√
g transforms as a scalar in a coordinate

change and this will be called the scalar probability density of the random
motion of the particle. Starting from ∂tρ + ∂i(ρvi) = 0 a manifestly
covariant equation for ρ̂ is found to be

(1.40) ∂tρ̂ + (1/
√

g)∂i(
√

gviρ̂) = 0

Some calculation then yields a minimum over R when

(1.41) φi(q, t) = −[1/(n− 2)]∂i[log(ρ̂)(q, t)]

This shows that the geometric properties of space are indeed affected
by the presence of the particle and in turn the alteration of geometry
acts on the particle through the quantum force fi = γ(�2/m)∂iR which
according to (1.39) depends on the gauge vector and its derivatives. It is
this peculiar feedback between the geometry of space and the motion of
the particle which produces quantum effects. In this spirit one goes next
to a geometrical derivation of the SE. Thus inserting (1.41) into (1.39)
one gets

(1.42) R = Ṙ + (1/2γ
√

ρ̂)[1/
√

g)∂i(
√

ggik∂k

√
ρ̂)]

where the value γ = (1/6)[(n− 2)/(n− 1)] has been used. On the other
hand the HJ equation can be written as

(1.43) ∂tS + HC(q,∇S, t)− γ(�2/m)R = 0

When (1.42) is introduced into (1.43) the HJ equation and the continuity
equation (1.40), with velocity field given by vi = (∂H/∂pi)(q,∇S, t), form
a set of two nonlinear PDE which are coupled by the curvature of space.
Therefore self consistent random motions of the “particle” are obtained
by solving (1.40) and (1.43) simultaneously. For every pair of solutions
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S(q, t, ρ̂(q, t)) one gets a possible random motion for the particle whose
invariant probability density is ρ̂. The present approach is so different
from traditional QM that a proof of equivalence is needed and this is only
done for Hamiltonians of the form HC(q, p, t) = (1/2m)gik(pi−Ai)(pk−
Ak) + V (which is not very restrictive) leading to

(1.44) ∂tS +
1

2m
gik(∂iS −Ai)(∂kS −Ak) + V − γ

�2

m
R = 0

(R in (1.43)). The continuity equation (1.40) is

(1.45) ∂tρ̂ + (1/m
√

g)∂i[ρ̂
√

ggik(∂kS −Ak)] = 0

Owing to (1.42), (1.44) and (1.45) form a set of two nonlinear PDE which
must be solved for the unknown functions S and ρ̂. Then a straightfor-
ward calculation shows that, setting ψ(q, t) =

√
ρ̂(q, t)exp](i/�)S(q, t)]

the quantity ψ obeys a linear SE

(1.46) i�∂tψ =
1

2m

{[
i�∂i

√
g

√
g

+ Ai

]
gik(i�∂k + Ak)

}
ψ +

[
V − γ

�2

m
Ṙ

]
ψ

where only the Riemannian curvature Ṙ is present (any explicit reference
to the gauge vector φi having disappeared).

We recall that in the nonrelativistic context the quantum potential
has the form Q = −(�2/2m)(∂2√ρ/

√
ρ) (ρ ∼ ρ̂ here) and in more di-

mensions this corresponds to Q = −(�2/2m)(∆
√

ρ/
√

ρ). The continuity
equation in (1.45) corresponds to ∂tρ + (1/m

√
g)∂i[ρ

√
ggik(∂kS)] = 0

(ρ ∼ ρ̂ here). For Ak = 0 (1.44) becomes ∂tS + (1/2m)gik∂iS∂kS + V −
γ(�2/m)R = 0. This leads to an identification Q ∼ −γ(�2/m)R where
R is the Ricci scalar in the Weyl geometry (related to the Riemann-
ian curvature built on standard Christoffel symbols via (1.39). Here
γ = (1/6)[(n− 2)/(n− 1)] which for n = 3 becomes γ = 1/12; further by
(1.41) the Weyl field is φi = −∂ilog(ρ). Consequently for the SE (1.46)
in Weyl space the quantum potential is Q = −(�2/12m)R where R is
the Weyl-Ricci scalar curvature. For Riemannian flat space Ṙ = 0 this
becomes via (1.42)

(1.47) R =
1

2γ
√

ρ
∂ig

ik∂k
√

ρ ∼ 1
2γ

∆
√

ρ
√

ρ
⇒ Q = − �2

2m

∆
√

ρ
√

ρ

as desired; the SE (1.46) reduces to the standard SE i�∂tψ = −(�2/2m)∆ψ+
V ψ (Ak = 0). Moreover (1.39) provides an interaction between gravity
(involving Ṙ and g) and QM (which generates φi via ρ and R via Q).

(7) In [841] the KG equation is also derived via an average action principle
with the restriction of a priori Weyl geometry removed. The spacetime
geometry is then obtained from the average action principle to be of
Weyl type with a gauge field φµ = ∂µlog(ρ). One has a kind of “moral”
equivalence between QM in Riemannian spaces and classical statistical
mechanics in a Weyl space. Traditional QM based on wave equations and
ad hoc probability calculus is merely a convenient tool to overcome the
complications arisin from a nontrivial spacetime geometrical structure.
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In the KG situation there is a relation m2 − (R/6) ∼ M2 ∼ m2(1 + Q)
(approximating m2exp(Q)) and Q ∼ �

√
ρ/m2√ρ which implies R/6 ∼

−�
√

ρ/
√

ρ.
(8) Referring to Item 3 in Section 6.1.1 we note that for φµ ∼ Aµ = ∂µlog(P ) (P ∼

ρ) one can envision a complex velocity pµ + iλAµ leading to

(1.48) |pµ + i
√

λAµ|2 = p2
µ + λA2

µ ∼ gµν

(
∂S

∂xµ

∂S

∂xν
+

λ

P 2

∂P

∂xµ

∂P

∂xν

)
This is exactly the term arising in a Fisher information Lagrangian

(1.49)

LQM = LCL + λI =
∫

P

{
∂S

∂t
+

1
2
gµν

[
∂S

∂xµ

∂S

∂xν
+

λ

P 2

∂P

∂xµ

∂P

∂xν

]
+ V

}
dtdnx

where I is the information term (see Section 3.1)

(1.50) I = gikIik =
gik

2

∫
1
P

∂P

∂yi

∂P

∂yk
dny

known from φµ. Hence we have a direct connection between Fisher in-
formation and the Weyl field φµ along with a motivation for a complex
velocity (cf. [223]). Further we note, via [189] and quantum geometry
in the form ds2 ∼

∑
dp2

j/pj on a space of probability distributions, that
(1.50) can be defined as a Fisher information metric (positive definite via
its connection to (∆N)2) and

(1.51) Q ∼ −2�2gµν

[
1

P 2

∂P

∂xµ

∂P

∂xν
− 2

P

∂2P

∂xµ∂xν

]
(corresponding to −(�2/2m)(∂2√ρ/

√
ρ) = −(�2/8m)[(2ρ′′/ρ)−(ρ′/ρ)2]).

Further from u = −D�φ with Q = D2((1/2)|u|2−∇ · �φ), one expresses Q
directly in terms of the Weyl vector. This enforces the idea that QM is
built into Weyl geometry and moreover that fluctuations generate Weyl
geometry.

(9) In Section 3.3 the WDW equation is treated following [876, 870] from
a Bohmian point of view. One builds up a Lagrangian and Hamiltonian
in terms of lapse and shift functions with a quantum potential

(1.52) Q =
∫

d3xQ; Q = �2NqGijk�
1
|ψ|

δ2|ψ|
δqijδk�

The quantum potential changes the Hamiltonian constraint algebra to
require weak closure (i.e. closure modulo the equations of motion); reg-
ularization and ordering are not considered here but will not affect the
constraint algebra. The quantum Einstein equations are derived in the
form

(1.53) G
ij = − 1

N

δQ

δqij
; G

0µ =
Q

2
√−g

g0µ

The Bohmian HJ equation is

(1.54) Gijk�
δS

δqij

δS

δqk�
−√q (3R−Q) = 0
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where S is the phase of the WDW wave function and this leads to the
same equations of motion (1.53). The modified Einstein equations are
given in Bohmian form via

(1.55) G
ij = −κT

ij − 1
N

δ(QG + Qm)
δgij

; G
0µ = −κT

0µ +
QG + Qm

2
√−g

g0µ

(1.56) Qm = �2 N
√

q

2
1
|ψ|

δ2|ψ|
δφ2

; QG = �2NqGijk�
1
|ψ|

δ2|ψ|
δqij ; δqk�

QG =
∫

d3xQG; Qm =
∫

d3xQm

In the third paper of [876] the Ashtekar variables are employed and it
is shown that the Poisson bracket of the Hamiltonian with itself changes
with respect to its classical counterpart but is still weakly equal to zero
(modulo regularization, etc.); we refer to [876] and Section 4.3.1 for
details.

1.3. GEOMETRY, GRAVITY, AND QM. We have already indicated
some interaction of QM and geometry via Bohmian mechanics and remark here
upon other aspects.

(1) It is known that one can develop a quantum geometry via Kähler geom-
etry on a preHilbert space P (H) (see e.g. [54, 153, 188, 189, 203,
244, 245, 246, 247, 248]). Thus P (H) is a Kähler manifold with a
Fubini-Study metric based on (|dψ⊥ >= |dψ > −|ψ >< ψ|dψ >)

(1.57)
1
4
ds2

PS = [cos−1(| < ψ̃|ψ > |)]2 ∼ 1− | < ψ̃|ψ > |2 =< dψ⊥|dψ⊥ >

where ds2
PS =

∑
dp2

j/pj =
∑

pj(d log(pj))2 gives the connection to prob-
ability distributions. We have already seen in Item 8 of Section 6.1.2 how
this probability metric is related to Fisher information, fluctuations, and
the quantum potential.

(2) There is a fascinating series of papers by Arias, Bonal, Cardenas, Gonza-
lez, Leyva, Martin, and Quiros dealing with general relativity (GR) and
conformal variations (cf. Section 3.2.2). We omit details here but simply
remark that conformal GR with ĝab = Ω2gab is shown to be the only con-
sistent formulation of gravity. Here consistent refers to invariance under
the group of transformations of units of length, time, and mass.

(3) In Section 4.5.1 one goes into the Bohmian interpretation of quantum
cosmology à la [770, 772, 774, 961] for example (cf. also [123, 124,
571, 572, 573]). Thus write H =

∫
d3x(NH + N jHj) where for GR

with a scalar field

(1.58) Hj = −2Diπ
i
jπφ∂jφ; H = κGijk�π

ijπk� +
1
2
h−1/2π2

φ+

+h1/2

[
−κ−1(R(3) − 2Λ) +

1
2
hij∂iφ∂jφ + U(φ)

]
The canonical momentum is

(1.59) πij = −h1/2(Kij − hijK) = Gijk�(ḣk� −DkN� −D�Nk);
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Kij = − 1
2N

(ḣij −DiNj −DjNi)

K is the extrinsic curvature of the 3-D hypersurface Σ in question with
indices lowered and raised via the surface metric hij and its inverse) and
πφ = (h1/2/N)(φ̇−N j∂jφ) is the momentum of the scalar field (Di is the
covariant derivative on Σ). Recall also the deWitt metric

(1.60) Gijk� =
1
2
h−1/2(hikhj� + hi�hjk − hijhk�)

The classical 4-metric and scalar field which satisfy the Einstein equations
can be obtained from the Hamiltonian equations

(1.61) ds2 = −(N2 −N iNi)dt2 + 2Nidxidt + hijdxidxj ;

ḣij = {hij ,H}; π̇ij = {πij ,H}; φ̇ = {φ,H}; π̇φ = {πφ,H}
One has the standard constraint equations which when put in Bohmian
form with ψ = Aexp(iS/�) become

(1.62)

−2h�iDj
δS(hijφ)

δh�j
+

δS(hij , φ)
δφ

∂iφ = 0; −2h�iDj
δA(hij , φ)

δh�j
+

δA(hij , φ)
δφ

= 0

These depend on the factor ordering but in any case will have the form

(1.63) κGijk�
δS

δhij

δS

δhk�
+

1
2
h−1/2

(
δS

δφ

)2

+ V + Q = 0

Q = −�2

A

(
κGijk�

δ2A

δhijδhk�
+

h−1/2

2
δ2A

δφ2

)

(1.64) κGijk�
δ

δhij

(
A2 δS

δhk�

)
+

1
2
h−1/2 δ

δφ

(
A2 δS

δφ

)
= 0

Now in the dBB interpretation one has guidance relations

(1.65) πij =
δS(hab, φ)

δhij
; πφ =

δS(hij , φ)
δφ

One then develops the Bohmian theory and from (1.65) results

(1.66) ḣij = 2NGijk�
δS

δhk�
+ DiNj + DjNi; φ̇ = Nh−1/2 δS

δφ
+ N i∂iφ

The question posed now is to find what kind of structure arises from
(1.66). The Hamiltonian is evidently HQ =

∫
d3x

[
N(H + Q) + N iHi

]
;

HQ = H + Q and the first question is whether the evolution of the fields
driven by HQ forms a 4-geometry as in classical gravitational dynamics.
Various situations are examined and (for Q of a specific form) some-
times the quantum geometry is consistent (i.e. independent of the choice
of lapse and shift functions) and forms a nondegenerate 4-geometry (of
Euclidean type). However it can also be consistent and not form a non-
degenerate 4-geometry. In general, and always when the quantum po-
tential is nonlocal, spacetime is broken and the evolving 3-geometries do
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not stick together to form a nondegenerate 4-geometry. These are very
interesting results and mandate further study.

(4) Next (cf. Section 4.6) one goes to noncommutative (NC) theories folow-
ing [77, 78, 79, 772]. First from [77, 78] one considers canonical co-
mutation relations [X̂µ, X̂ν ] = iθµν and develops a Bohmian theory for
a noncommutative QM (NCQM) via a Moyal product

(1.67) (f ∗ g) =
1

(2π)n

∫
dmkdnpei(kµ+pµ)xµ−(1/2)kµθµνpν f(k)g(p) =

For θ0i = 0 one has a Hilbert space as in commutative QM with a NC
SE

(1.68) i�
∂ψ(xi, t)

∂t
= − �2

2m
∇2ψ(xi, t) + V (xi) ∗ ψ(xi, t) =

=
�2

2m
∇2ψ(xi, t) + V

(
xj + i

θjk

2
∂k

)
ψ(xi, t)

The operators X̂j = xj + iθjk∂k

2 are the observables with canonical co-
ordinates xi and ρd3x = |ψ|2d3x is intepreted as the porbability that
the system is in a region of volume d3x around x at time t. One writes
ψ = Rexp(iS/�) and there results

(1.69)
∂S

∂t
+

(∇S)2

2m
+V +Vnc +QK +QI = 0; Vnc = V

(
xi − θij

2�
∂jS

)
−V (xi);

QK = �
(
− �2

2m

∇2ψ

ψ

)
−
(

�2

2m
(∇S)2

)
= − �2

2m

∇2R

R
;

QI = �
(

V [xj + (iθjk/2)∂k]ψ
ψ

)
− V

(
xi − θij

2�
∂jS

)
One arrives at a formal structure involving

(1.70) X̂j = xi + iθjk∂k/2; Xi(t) = xi(t)− (θij/2�)∂jS(xi(t), t);

dxi(t)
dt

=
[
∂iS(�x, t)

m
+

θij

2�

∂V (Xk)
∂Xj

+
Qi

2

]∣∣∣∣
xi=xi(t)

One finds then

(1.71)
∂ρ

∂t
+

∂(ρẋi

∂xi
− ∂

∂xi

[
ρ

(
θij

2�

∂V (Xk)
∂Xj

+
Qi

2

)]
+ Σθ = 0

so for equivariance (ρ = |ψ|2) it is necessary that the sum of the last
two terms in (1.71) vanish and when V (Xi) is linear or quadratic this
holds. In [77, 78] one also looks at NC theory in Kantowski-Sachs (KS)
universes and at Friedman-Robertson-Walker (FRW) universes with a
conformally coupled scalar field. Many specific situations are examined,
especially in a minisuperspace context.
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(5) Next (cf. Item 3 in Section 6.1.1 and Item 8 in Section 6.1.2) we con-
sider [449, 444]. One gives a new derivation of the SE via the exact
uncertainty principle and a formula

(1.72) H̃q[P, S] = H̃c[P, S] + C

∫
dx
∇P · ∇P

2mP

for the quantum situation. Consider then the gravitational framework

(1.73) ds2 = −(N2 − hijNiNj)dt2 + 2Nidxidt + hijdxidxj

One introduces fluctuations via πij = (δS/δhij) + f ij and arrives at a
WDW equation

(1.74)
[
−�2

2
δ

δhij
Gijk�

δ

δhk�
+ V

]
Ψ = 0

Note that an operator ordering is implicit and thus ordering ambiguities
do not arise (similarly for quantum particle motion). The work here in
[449, 444] is significant and very interesting; it is developed in some
detail in Section 4.7.

(6) In Section 4.1 we followed work of M. Israelit and N. Rosen on Dirac-
Weyl geometry (see in particular [498, 499, 817]). Recall that in Weyl
geometry gµν → g̃µν = exp(2λ)gµν is a gauge transformation and for a
vector �B of length B one has dB = Bwνdxν where wν ∼ φν is the Weyl
vector. The Weyl connection coefficients are

(1.75) ∆Bλ = BσKλ
σµνdxµδxν ; ∆B = BWµνdxµδxν

and under a gauge transformation wµ → w̄µ = wµ + ∂µλ. One writes
Wµν = wµ,ν − wν,µ (where commas denote partial derivatives). The
Dirac-Weyl action here is given via a field β (β → β̄ = exp(−λ)β under
a gauge transformation) in the form

(1.76) I =
∫

[WλσWλσ − β2R + β2(k − 6)wσwσ + 2(k − 6)βwσβ,σ+

+kβ,σβ,σ + 2Λβ4 + LM ]
√
−gd4x

Note here the difference in appearance from (1.37) or the Dirac form
in Appendix D; these are all equivalent after suitable adjustment (cf.
Remark 6.1). Under parallel transport ∆B = BWµνdxµδxν so one
takes Wµν = 0 via wν = ∂νw and we have what is called an inte-
grable Weyl geometry with generating elements (gµν , w, β). Further set
bµ = ∂µ(log(β)) = βµ/β and use a modified Weyl connection vector
Wµ = wµ + bµ. Then varying (1.76) in w and gµν gives

(1.77) 2(κβ2W ν);ν = S; Gν
µ = −8π

T ν
µ

β2
+

+16πκ

(
W νWµ −

1
2
δν
µW σWσ

)
+ 2(δν

µbσ
;σ − bν

;µ) + 2bνbµ + δν
µbσ

σ − δν
µβ2Λ
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where S is the Weyl scalar charge 16πS = δLM/δw, Gν
µ is the Einstein

tensor, and the energy momentum tensor of ordinary matter is

(1.78) 8π
√
−gTµν = δ(

√
−gLM )/δgµν

Finally variation in β gives an equation for he β field

(1.79) R + k(bσ
;σ + bσbσ) = 16πκ(wσwσ − wσ

;σ) + 4β2Λ + 8πβ−1B

(here 16πB = δLM/δβ is the Dirac charge conjugate to β). Note

(1.80) δIM = 8π
∫

(Tµνδgµν + 2Sδw + 2Bδβ)
√
−gd4x

yielding the energy momentum relation Tλ
µ;λ−Swµ−βBbµ = 0. Actually

via (1.77) with S + T = βB one obtains again (1.79) which is seen
therefore as a corollary and not an independent equation. One derives
now conservation laws etc. and following [817] produces an equation of
motion for a test particle. Thus consider matter made up on identical
particles of rest mass m and Weyl scalar charge qs, being in the stage of
a pressureless gas so Tµν = ρUµUν where Uν is the 4-velocity and note
also Tλ

µ;λ − Tbµ = SWµ. Then one arrives at

(1.81)
dUµ

ds
+
{

µ
λ σ

}
UλUσ =

(
bλ +

qs

m
Wλ

)
(gµλ − UµUλ)

Further a number of illustrations are worked out involving the creation of
mass like objects from Weyl-Dirac geometry, in a FRW universe for ex-
ample (i.e. an external observer sitting in Riemannian spacetime would
recognize the object as massive). Cosmological models are also con-
structed with the Weyl field serving to create matter. The treatment is
extensive and profound.

REMARK 7.1.1. We have encountered Dirac-Weyl-Bohm (DWB) in Section
2.1 (Section 7.1.2, Item 5) and Dirac-Weyl geometry in Section 4.1 and Appendix
D (Section 7.1.3, Item 6). The formulations are somewhat different and we try
now to compare certain features. In Section 7.1.2 one has

(1.82) A =
∫

d4x
√
−g(FµνFµν − β2 WR+ (σ + 6)β;µβ;µ + Lmatter

for the action; in Section 7.1.3 the action is

(1.83) I =
∫

[WλσWλσ − β2R + β2(k − 6)wσwσ + 2(k − 6)βwσβ,σ+

+kβ,σβ,σ + 2Λβ4 + LM ]
√
−gd4x

and in Appendix D we have (for the simplest vacuum equations and g =
√−g)

(1.84) I =
∫

[(1/4)FµνFµν − β2R + 6βµβµ + cβ4]gd4x

We recall the idea of co-covariant derivative from Appendix D where for a scalar
S of Weyl power n one has S∗µ = S;µ = nwµS ≡ Sµ − nwµS (Sµ = ∂µS) and I in
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(1.84) is originally

(1.85) I =
∫

[(1/4)FµνFµν − β2∗R + kβ∗µβ∗µ + cβ4]gd4x

However β is a co-scalar of weight −1 and β∗µβ∗µ = (βµ + βwµ)(βµ + βwµ) so
using

(1.86) −β2∗R + kβ∗µβ∗µ = −β2R + kβµβµ + (k − 6)β2κµκµ+

+6(β2κµ):µ + (2k − 12)βκµβµ

one obtains (1.84) for k = 6. Further recall that Wµ = wµ+∂µlog(β) so Wµν = Fµν

and c in (1.84) corresponds to Λ in (1.83). The notation WR in (1.82) is the same
as R and β;µ ∼ βµ = ∂µβ so (σ+6) = 6 provides a complete identification (modulo
matter terms to be added in (1.84)); note σ = k−6 from [817]. Now in [872, 873]
one takes a Dirac-Weyl action of the form (1.82) and relates it to a Bohmian theory
as in Section 3.2.1. The same arguments hold also for σ = 0 here with

(1.87) β ∼M;
8πT

R
∼ m2; α =

�2

m2c2
∼ − 6

R
; ∇νT

µν − T
∇µβ

β
= 0

Note also 16πT = βψ where ψ = δLM/δβ ∼ 16πB so B ∼ T/β. One assumes
here that 16πJµ = δLM/δwµ = 0 where wµ ∼ φµ.

REMARK 7.1.2. We recall from Section 3.2 that β ∼ M and M2/m2 =
exp(Q) is a conformal factor. Further for β0 → β0exp(−Ξ(x)) one has wµ →
wµ + ∂µΞ where −Ξ = log(β/β0) showing an interplay between mass and geom-
etry. Recall also the relation ∇µ(βwµ + β∇µβ) = 0. This indicates a number of
connections between the quantum potential, geometry, and mass. Hence virtually
any results in Dirac-Weyl theory models will involve the quantum potential. This
is made explicit in Section 3.2 from [873] and could be developed for the examples
and theory from [499] once wave functions and Bohmian ideas are inserted.

1.4. GEOMETRIC PHASES. We go now to [283] for some remarks on
geometric phase and the quantum potential. One refers back here to geometric
phases of Berry [108] and Levy-Leblond [603] for example where the latter shows
that when a quanton propagates through a tube, within which it is confined by
impenetrable walls, it acquires a phase when it comes out of the tube. Thus
consider a tube with square section of side a and length L. Before entering the tube
the quanton’s wave function is φ = exp(ipx/�) where p is the initial momentum.
In the tube the wave function has the form

(1.88) ψ = Sin
(
nxπ

x

a

)
Sin

(
nyπ

y

a

)
exp(ip′x/�)

with appropriate transverse boundary conditions. After entering the tube the
energy E of the quanton is unchanged but satisfies

(1.89) E =
(p′)2

2m
(n2

x + n2
y)

π2

2ma
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For the simplest case nx = ny = 1 it was found that after the quanton left the
tube there was an additional phase

(1.90) ∆Φ =
π2�2

pa2
L

Subsequently Kastner [539] related this to the quantum potential that arises in
the tube. Thus let the wave function in the tube be Rexp[(iS/�)+(ipx/�)] in polar
form. The eventual changes in the phase of the wave function, due to the tube,
are now concentrated in S. In order to single out the influence of the tube on the
wave function write ψ1 = ψexp(ipx/�) and the quantum potential corresponding
to ψ is then

(1.91) Q = − �2

2m

∆R

R
=

π2�2

ma2

Now turn to the laws of parallel transport where for the Berry phase the law of
parallel transport for the wave function is (cf. [892])

(1.92) � < ψ|ψ̇ >= 0

For the Levy-Leblond phase the law of parallel transport is given by

(1.93) � < ψ|ψ̇ >= −1
�
Q|ψ|2

In this approach the wave function acquires an additional phase after the quanton
has left the tube in the form

(1.94) ψ(t + ∆t) = exp(−iQ∆t/�)ψ(t)

which after expansion in ∆t leads to the law of parallel transport in (1.93). Indeed

(1.95) Q∆t =
π2�2

ma2
∆t =

π2�2

ma2

mL

p
=

π2�2

pa2
L = ∆Φ

If we use the polar form for the wave function (1.93) gives (∂S/∂t) = −Q and this
means that this new law of parallel transport eliminates the quantum potential
from the quantum HJ equation. The whole quantum information is now carried by
the phase of the wave function. One can see that the nature of this phase is quite
different from Berry’s phase; it is related to the presence or not of constraints in
the system (in this case the tube).

Now consider a quite different type of constrained system where again a new
geometric phase will arise. Look at a quantum particle constrained to move on a
circle. The wave function has the form ψ ∼ sin(ns/ρ0) where ρ0 is the radius of
the circle and s is the arc length with origin at a tangent point. Then the wave
function will have a node at this tangent point. For a circle the value n = 1/2 is
also allowed (cf. [467, 570]) and the corresponding quantum potential for n = 1/2
is

(1.96) Q =
h2

8mρ2
0

which is exactly equal to the constant E0 appearing in the Hamiltonian for a
particle on a circle with radius ρ0 following the Dirac quantization procedure
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for constrained systems (cf. [846]). The phase which a quanton would acquire
traveling along the circle is then

(1.97) Q
2πρ0m

p
=

π�2

4ρ0p

Note that if the circle becomes very small then the geometrical phase can not get
bigger than ∼ (�/m). This limit is imposed by the Heisenberg uncertainty relation
ρ0p ∼ �. This is not the case for the Levy-Leblond phase which can get very large
provided L >> a.

1.5. ENTROPY AND CHAOS. Connections of the quantum potential to
Fisher information have already been recalled in e.g. Section 7.1.1 and we recall
here from Chapter 6 a few matters.

(1) An extensive discussion relating Fisher information (as a “mother” infor-
mation) to various forms of entropy is developed in Chapter 6 and this
gives implicitly at least many relations between entropy, kinetic theory,
uncertainty, and the quantum potential.

(2) A particular result of interest in Section 6.2.1 shows how the quantum
potential acts as a constraining force to prevent deterministic chaos.

2. HYDRODYNAMICS AND GEOMETRY

We mentioned briefly some hydrodynamical aspects of the SE in Sections 1.1
and 1.3.2 and return to that now following [294]. Here one wants to limit the role
of statistics and measurement to unveil some geometric features of the so called
Madelung approach. Thus, with some repetition from Section 1.1, consider a SE
(�/i)ψt + H(x, (�/i)∇)ψ = 0 with ψ = Rexp(iS/�) to arrive at

(2.1)
∂S

∂t
+ H(x,∇S)− �2

2m

∆R

R
= 0;

∂P

∂t
+

∂

∂xi
(Pẋi) = 0; ẋi =

[
∂H

∂pi

]
p=∇S

(where P = R2), and Madelung equations of the form (cf. (1.5))

(2.2)
∂S

∂t
+ H(x,∇S)− �2

2m

∆
√

ρ
√

ρ
= 0;

∂ρ

∂t
+

∂

∂xi
(ρẋi) = 0

where, in a continuum picture, ρ = mP is the mass density of an extended particle
whose shape is dictated by P. Setting vi = ẋi one has then an Euler equation of
the form

(2.3)
∂

∂t
(ρvi) +

∂

∂xk
(ρvivk) = − ρ

m

∂V

∂xi
+

∂

∂xk
τ ik

Following [924] one has expressed the quantum force term here as the divergence
of a symmetric “quantum stress” tensor

(2.4) τij =
(

�

2m

)2

ρ
∂2(log(ρ))

∂xi∂xj
; pi =

�2

2m2
ρ

∂2σ

∂(xi)2

where pi denotes diagonal elements or principal stresses expressed in normal co-
ordinates (with ρ = exp(2σ)). The stress pi is tension like (resp. pressure like) if
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pi > 0 (resp. pi < 0) and the mean pressure is

(2.5) p̄ = −1
3
Tr(τij) = − �2

6m2
ρ∆σ

In classical hydrodynamics negative pressures are often associated with cavitation
which involves the formation of topological defects in the form of bubbles. For
an ideal fluid one would need τij = −p̄δoj and this occurs if and only if the mass
density is Gaussian σ ∝ −xixi in which case p̄ ∝ (�2/2m)ρ. Generally the stress
tensor will not be isotropic, and not an ideal fluid; moreover if one had a viscous
fluid one would expect τij to be coupled to the rate of deformation tensor (derived
from Dv). Since this does not occur one does not call this form of matter a fluid
but rather a Madelung continuum, corresponding to something like an inviscid
fluid which also supports shear stresses, whereas the Gaussian wave packet of QM
corresponds to an ideal compressible irrotational fluid medium.

If now one adds time as the zeroth coordinate and extends the velocity vector
by v0 = 1 then, defining the energy momentum tensor as

(2.6) T
µν = ρ

[
vµvν −

(
�

2m

)2
∂2(log(ρ))
∂xµ∂xν

]
then the Euler and continuity equations can be combined in the form ∂Tµν/∂xµ =
−(ρ/m)∂νV ; this is somewhat misleading since it is based on a nonrelativistic
approach but it leads now to the relativistic theory. First start with the KG
equation

(2.7)
[
−�2ηµν ∂2

∂xµ∂xν
+ m2

0c
2

]
ψ = 0

For ψ = Rexp(iS/�) one gets now

(2.8) ηµν ∂S

∂xµ

∂S

∂xν
+ m2

0c
2 − �2 �R

R
= 0; ηµν ∂

∂xµ

(
P

∂S

∂xν

)
= 0

Define now the 4-velocity, rest mass energy, energy momentum, and stress tensor
via

(2.9) uµ =
1

m0

∂S

∂xµ
; ρ = m0P ; pµ = ρuµ;

τµν =
(

�

2m0

)2
∂2(log(ρ))
∂xµ∂xν

; Tµν = ρ[uµuν + τµν ]

to arrive at relativistic equations for the medium described by ρ and uµ in the
form (♣) ∂µTµν = 0 and ∂µpµ = 0 (the second equation is an incompressibility
equation and this does not contradict the nonrelativistic compressibility of the
medium since in relativity incompressibility in fluid media is equivalant to an in-
finite speed of light corresponding to rigidity in solid media).

One then erects an elegant mathematical framework involving spacetime foli-
ations related to the complex character of ψ (see also the second paper in [294] on
foliated cobordism, etc.). This is lovely but rather too abstract for the style of this



2. HYDRODYNAMICS AND GEOMETRY 295

book so we will not try to reproduce it here; we can however skip to some calcula-
tions involving the geometric origin of the quantum potential. Thus consider the
consequences of choosing a scale of unit norm via the function

√
ρ. One takes a

conformally related metric ḡ = Ω2g on a manifold M (where Ω2 > 0) and, writing
Ω = exp(σ), one obtains the following formulas for the Levi-Civita connection,
Ricci curvature, and scalar curvature

(2.10) Γ̄i
jk = Γi

jk = δi
j∂kσ + δi

k∂jσ − gjkgi�∂�σ;

R̄ij = Rij − (n− 2)σij − [∆σ + (n− 2)(∂kσ∂kσ)]gij

R̄ = e−2σ[R− 2(n− 1)∆σ − (n− 1)(n− 2)(∂iσ∂iσ)]

where σij = ∂i∂jσ − ∂jσ∂iσ. Now if the constant m is replaced by the function ρ
then one must contend with the derivatives ∂iρ and for ρ = exp(2σ) the Minkowski
metric will be deformed from g = η, Γi

jk = 0, Rij = R = 0 to

(2.11) Γ̄i
jk = δi

j∂kσ + δi
k∂jσ − ηjkηi�∂�σ; R̄ij = −2σij − [�σ + 2(∂kσ∂kσ)]ηij

R̄ = −6e−2σ[�σ + (∂iσ∂iσ]

Putting Ω back into the equation for scalar curvature one obtains

(2.12) R̄ = − 6
Ω2

(
�Ω
Ω

)
;

�
√

ρ
√

ρ
=

�Ω
Ω

= −1
6
R̄Ω2 = −1

6
ρR̄

This identifies the quantum potential as a mass density times a scalar curvature
and resembles some results obtained earlier from [840, 841] for example (cf. Sec-
tion 3.3 and 3.3.2). One has also

(2.13) ∂iR̄ij = ∂i

(
1
2
gijR̄

)
=

1
2
∂jR̄ ⇒ ∂iR̄ij = −3∂iτij

so the Takabayashi stress tensor differs from the Ricci curvature only by a term
of vanishing divergence. Hence there is no loss of generality in using the Ricci
curvature of g = ρη as the stress tensor since both define the same force field;
this means in particular that one is dealing with principal curvatures instead of
principal stresses. To extend all this to a more general Lorentz manifold one
notes that under a conformal change of spacetime metric to the energy metric the
Einstein tensor becomes

(2.14) Ḡµν = R̄µν −
1
2
ḡµνR̄ = Gµν − 2σµν + [2�σ + ∂λσ∂λσ]gµν

Thus it seems to assume that this implies a quantum correction to the Einstein
equation

(2.15) Gµν +
(

�σ +
1
2
∂λσ∂λσ

)
gµν = 8πGTµν + 2σµν
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2.1. PARTICLE AND WAVE PICTURES. An interesting discussion of
hydrodynamic features of QM, electrodynamics, and Bohmian mechanics appears
in [474] and we will sketch more or less thoroughly a few ideas here. Thus a hydro-
dynamic model of QM provides an interpretation of two pictures, wave mechanical
(Eulerian) and particle (Lagrangian), and the two versions of QM have associated
Hamiltonian formulations that are connected by a canonical transformation. This
gives a new and precise meaning to the notion of wave-particle duality. However
it is necessary to distinguish the dBB corpuscle from a fluid particle. Consider
a fluid as a continuum of particles with history encoded in the position variables
q(a, t) where each particle is distinguished by a continuous vector label a. The
motion is continuous in that the mapping from a-space to q-space is single valued
and differentiable with inverse a(q, t). Let ρ0(a) be the initial quantum probability
density with

∫
ρ0(a)d3a = 1. Introduce a mass parameter m so that the mass of

an elementary volume d3a attached to the point a is given by mρ0(a)d3a. Note∫
mρ0(a)d3a = m so this is a total mass of the system. The conservation of mass

of a fluid element in the course of its motion is

(2.16) mρ(q(a, t))d3q(a, t) = mρ0(a)d3a; ρ(a, t) = J−1(a, t)ρ0(a);

J =
1
3!

εijkε�mn
∂qi

∂a�

∂qj

∂am

∂qk

∂an

J is the Jacobian of the transformation between the two sets of coordinates and
εijk is the completely antisymmetric tensor with ε123 = 1. Let V be the potential
of an external classical body force and U the internal potential energy of the fluid
due to interparticle interactions. Here assume U depends on ρ(q) and its first
derivatives and hence via (2.16) on the second order derivatives of q with respect
to a. The Lagrangian is then (with integrand � = [· · · ])

(2.17) L[q, qt, t] =
∫ [

1
2
mρ0(a)

(
∂q(a, t)

∂t

)2

− ρ0(a)U(ρ)− ρ0(a)V (q(a))

]
d3a

(one substitutes for ρ from (2.16)). It is the action of the conservative force
derived from U on the trajectories that represents the quantum effects here. They
are characterized by the following choice for U, motivated by the known Eulerian
expression for internal energy,

(2.18) U =
�2

8m

1
ρ2

∂ρ

∂qi

∂ρ

∂qi
=

�2

8m

1
ρ2
0

JijJik
∂

∂aj

(ρ0

J

) ∂

∂ak

(ρ0

J

)
;

∂

∂qi
= J−1Jij

∂

∂aj
; Ji� =

∂J

∂(∂qi/∂a�)
=

1
2
εijkε�mn

∂qj

∂am

∂qk

∂an
;

∂qk

∂aj
Jki = Jδij

Thus Ji� is the cofactor of ∂qi/∂a�. The interaction in the quantum case is not
conceptually different from classical fluid dynamics but differs in that the order of
derivative coupling of the particles is higher than in a classical equation of state.
The Euler-Lagrange equations for the coordinates are

(2.19)
∂

∂t

∂L

∂(∂qi(a, t)/∂t)
− δL

δqi(a)
= 0;
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δL

δqi
=

∂�

∂qi
− ∂

∂aj

∂�

∂(∂qi/∂aj)
+

∂2

∂aj∂ak

∂�

∂(∂2qi/∂aj∂ak)
which yield

(2.20) mρ0(a)
∂2qi(a)

∂t2
= −ρ0(a)

∂V

∂qi
− ∂Wij

∂aj
;

Wij = −ρ0(a)
∂U

∂(∂qi/∂aj)
+

∂

∂ak

(
ρ0(a)

∂U

∂(∂2qi/∂aj∂ak)

)
This has the form of Newton’s second law and instead of giving an explicit form
for Wij one uses a more useful tensor σij defined via Wik = Jjkσij where σij is
the analogue of the classical pressure tensor pδij . Using (2.18) one can invert to
obtain
(2.21)

σij = J−1Wik
∂qj

∂ak
=

�2

4mJ3
Jik

[
ρ−1
0 Jj�

∂ρ0

∂ak

∂ρ0

∂a�
+ (J−1Jj�Jmn − JjmJ�n)×

×∂ρ0

∂a�

∂2qm

∂ak∂an
− Jj�

∂2ρ0

∂ak∂a�
+ ρ0(J−1JmnJjr�s + J−1Jj�Jmrns − 2J−2Jj�JmnJrs)×

× ∂2qr

∂ak∂as

∂2qm

∂a�∂an
+ ρ0J

−1Jj�Jmn
∂3qm

∂ak∂a�∂an

]
;

Jjm�n =
∂Jj�

∂(∂qm/∂an)
= εjmkε�nr

∂qk

∂ar

One checks that σij is symmetric and the equation of motion of the ath particle
moving in the field of the other particles and the external force is then

(2.22) mρ0(a)
∂2qi(a)

∂t2
= −ρ0(a)

∂V

∂qi
− Jkj

∂σik

∂aj
;

∂Jij

∂aj
= 0

(the latter equation is an identity used in the calculation). The result in (2.22) is
the principal equation for the quantum Lagrangian method; its solutions, subject
to specification of ∂qi0/∂t, lead to solutions of the SE. Multiplying by ∂qi/∂ak one
obtains the Lagrangian form

(2.23) mρ0(a)
∂2qi(a)

∂t2
∂qi

∂ak
= −ρ0(a)

∂V

∂ak
− ∂qi

∂ak
Jkj

∂σik

∂aj
;

pi(a) =
∂L

∂(∂qi(a)/∂t)
= mρ0(a)

∂qi(a)
∂t

A Hamiltonian form can also be obtained via the canonical field momenta pi(a) =
∂L/∂(∂qi(a)/∂t) = mρ0(a)(∂qi(a)/∂t) with
(2.24)

H =
∫

pi(a)
∂qi(a)

∂t
d3a− L =

∫ [
p(a)3

2mρ0(a)
+ ρ0(a)U(J−1ρ0) + ρ0(a)V (q(a))

]
d3a

Hamilton’s equations via Poisson brackets {qi(a), qj(a′)} = {pi(a), pj(a′)} = 0 and
{qi(a), pj(a′)} = δij(a − a′) are ∂tqi(a) = δH/δpi(a) and ∂tpi(a) = −δH/δqi(a)
which when combined reproduce (2.22). Now to obtain a flow that is representative
of QM one restricts the initial conditions for (2.22) to something corresponding to
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quasi-potential flow which means (�) ∂qi0/∂t = (1/m)(∂S0(a)/∂ai). However the
flow is not irrotational everywhere because the potential S0(a) obeys the quanti-
zation condition

(2.25)
∮

C

∂qi0(a)
∂t

dai =
∮

C

1
m

∂S0(a)
∂ai

dai =
n�

m
(n ∈ Z)

where C is a closed curve composed of material paricles. If it exists vorticity occurs
in nodal regions (where the density vanishes) and it is assumed that C passes
through a region of good fluid where ρ0 �= 0. To show that these assumptions
imply motion characteristic of QM one demonstrates that they are preserved by
the dynamical system. One first puts (2.23) into a more convenient form. Thus,
using (2.16), the stress tensor (2.21) takes a simpler form

(2.26) σij =
�2

4m

(
1
ρ

∂ρ

∂qi

∂ρ

∂qj
− ∂2ρ

∂qi∂qj

)
Using

(2.27)
1
ρ

∂σij

∂qj
=

∂VQ

∂qi
; VQ =

�2

4mρ

(
1
2ρ

∂ρ

∂qi

∂ρ

∂qi
− ∂2ρ

∂qi∂qi

)
(note VQ is the dBB quantum potential) one sees that (2.23) can also be simplified
as

(2.28) m
∂2qi

∂t2
∂qi

∂ak
=

∂

∂ak
(V + VQ)

Now integrate this equation between limits (0, t) to get

(2.29) m
∂qi

∂t

∂qi

∂ak
= m

∂qi0

∂t
+

∂χ(a, t)
∂ak

; χ =
∫ t

0

(
1
2
m

(
∂q

∂t

)2

− V − VQ

)
dt

Then using (�) one has

(2.30)
∂qi

∂t

∂qi

∂ak
=

1
m

∂S

∂ak
; S(a, t) = S0(a) + χ(a, t)

with initial conditions q = a, χ0 = 0. To obtain the q-components multiply by
J−1Jik and use (2.18) to get (♠) ∂qi/∂t = (1/m)(∂S/∂qi) where S = S(a(q, t), t).
Thus the velocity is a gradient for all time and (♠) is a form of the law of motion.
Correspondingly one can write (2.28) as

(2.31) m
∂2qi

∂t2
= − ∂

∂qi
(V + VQ)

This puts the fluid dynamical law of motion (2.22) in a form of Newton’s law
for a particle of mass m. Note that the motion is quasi potential since the value
(2.25) is preserved, i.e. (•) ∂t

∮
C(t)

(∂qi/∂t)dqi = 0 where C(t) is the evolute of the
material particles conposing C (cf. [113]). To obtain the equation governing S
use the chain rule Ft|a = ∂tF |q +(∂tqi)(∂F/∂qi) and since χ = S−S0 from (2.30)
one has

(2.32)
∂χ

∂t

∣∣∣∣
a

=
∂S

∂t

∣∣∣∣
q

+
∂qi

∂t

∂S

∂qi
−
(

∂S0

∂t

∣∣∣∣
q

+
∂qi

∂t

∂S0

∂qi

)
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The two terms in the bracket sum to ∂S0(a)/∂t = 0 and using (♠) one obtains
(∂χ/∂t)|a = (∂S/∂t)|q + m(∂q/∂t)2. Hence from (2.29) and (♠) one has

(2.33)
∂χ

∂t

∣∣∣∣
a

=
1
2
m

(
∂q

∂t

)2

− V − VQ ⇒
∂S

∂t
+

1
2m

(
∂S

∂q

)2

+ V + VQ = 0

This is the quantum HJ equation and one has shown that the equations (2.16),
(2.22), and (�) are equivalent to the 5 equations (2.16), (2.30), and (2.33); they
determine the functions (qi, ρ, S). Note that although the particle velocity is
orthogonal to a moving surface S = c the surface does not keep step with the
particles that initially compose it and hence is not a material surface. There is
also some interesting discussion about vortex lines for which we refer to [474].

The fundamental link between the particle (Lagrangian) and wave mechanical
(Eulerian) pictures is defined by the following expression for the Eulerian density

(2.34) ρ(x, t) =
∫

δ(x− q(a, t))ρ0(a)d3a

The corresponding formula for the Eulerian velocity is contained in the expression
for the current

(2.35) ρ(x, t)vi(x, t) =
∫

∂qi(a, t)
∂t

δ(x− q(a, t))ρ0(a)d3a

These relations play an analogous role in the approach to the Huygen’s formula

(2.36) ψ(x, t) =
∫

G(x, t; a, 0)ψ0(a)d3a

in the Feynman theory; thus one refers to δ(x−q9a, t)) as a propagator. Unlike the
many to one mapping embodied in (2.36) the quantum evolution here is described
by a local point to point development. Using the result

(2.37) δ(x− q(a, t)) = J−1
∣∣
a(x,t)

δ(a− a0(x, t)); x− q(a0, t) = 0

and evaluating the integrals (2.34) and (2.22) are equivalent to

(2.38) ρ(x, t) = J−1
∣∣
a(x,t)

ρ0(a(x, t)); ρ(x(a, t), t) = J−1(a, t)ρ0(a)

vi(x, t) =
∂qi(a, t)

∂t

∣∣∣∣
a(x,t)

; vi(x, t)|a(x,t) =
∂qi(a, t)

∂t

These restate the conservation equation (2.16) and give the relations between the
velocities in the two pictures; J−1 could be called a local propagator. Now from
(2.38) one can relate the accelerations in the two pictures via

(2.39)
∂vi

∂t
+ vj

∂vi

∂xj
=

∂2qi(a, t)
∂t2

∣∣∣∣
a(x,t)

;
(

∂vi

∂t
+ vj

∂vi

∂xj

)∣∣∣∣
a(x,t)

=
∂2qi(a, t)

∂t2

One can now translate the Lagrangian flow equations into Lagrangian language.
Differentiating (2.34) in t and using (2.35) one finds the continuity equation

(2.40)
∂ρ

∂t
+

∂

∂xi
(ρvi) = 0
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Next differentiating (2.35) and using (2.31) and (2.40) one obtains the quantum
analogue of Euler’s equation

(2.41)
∂vi

∂t
+ vj

∂vi

∂xj
= − 1

m

∂

∂xi
(V + VQ)

Finally the quasi potential condition (♠) becomes (�) vi = (1/m)(∂S(x, t)/∂xi).
(2.38) gives the general solutions of the continuity equation (2.40) and Euler’s
equation (2.41) in terms of the paths and initial density. To establish the connec-
tion between the Eulerian equations and the SE note that (2.41) and (�) can be
written

(2.42)
∂

∂xi

(
∂S

∂t
+

1
2m

∂S

∂xi

∂S

∂xi
+ V + VQ

)
= 0

The quantity in brackets is thus a function of time and since this does not affect
the velocity field one may absorb it in S (i.e. set it equal to zero) leading to

(2.43)
∂S

∂t
+

1
2m

∂S

∂xi

∂S

∂xi
+ V + VQ = 0

Combining all this the function ψ =
√

ρexp(iS/�) satisfies the SE

(2.44) i�
∂ψ

∂t
= − �2

2m

∂2ψ

∂xi∂xi
+ V ψ

This has all been deduced from (2.22) subject to the quasi potential requirement.
The quantization condition (•) becomes (••)

∫
C0

(∂S(x, t)/∂xi)dxi = n� (n ∈ Z
where C0 is a closed curve fixed in space that does not pass through nodes. Given
the initial wave function ψ0(a) one can now compute ψ for all (x, t) as follows. first
solve (2.22) subject to initial conditions q0(a) = a, ∂qi0(a)/∂t = m−1∂S0(a)/∂a
to get the set of trajectories for all (x, t). Then substitute q(a, t) and qt in (2.36)
to find ρ and ∂S/∂x which gives S up to an additive function of time f(t). To fix
this function up t a constant use (2.43) and one gets finally

(2.45) ψ(x, t) =
√

(J−1ρ0|a(x,t)exp

[
i

�

(∫
m(∂qi(a, t)/∂t)|a(x,t)dxi + f(t)

)]
The Eulerian equations (2.40) and (2.41) form a closed system of four coupled
PDE to determine the four independent fields (ρ(x), vi(x)) and do not refer to the
material paths. One notes that the Lagrangian theory from which the Eulerian
system was derived comprises seven independent fields (ρ, q(a), p(a)). In the case
of quasi potential flow there are respectively 2 or 5 independent fields. This may
be regarded as an incompleteness in the Eulerian description or a redundancy in
the Lagrangian description; it could also be viewed in terms of refinement. One
notes also that the law of motion (2.29) for the fluid elements coincides with that
of the dBB interpretation of QM and one must be careful to discriminate between
the two points of view.
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2.2. ELECTROMAGNETISM AND THE SE. We go next to the sec-
ond paper in [474] which connects the electromagnetic (EM) fields to hydrody-
namics and relates this to the quantum potential. Thus the source free Maxwell
equations in free space are

(2.46) εijk∂jEk = −∂Bi

∂t
; εijk∂jBk =

1
c2

∂Ei

∂t
; ∂iEi = ∂iBi = 0

One regards the last two equations as constraints rather than dynamical equations.
First one goes to a representation of these equations in Schrödinger form and begins
with the Riemann-Silberstein 3-vector Fi =

√
ε0/2(Ei + icBi) and 3 × 3 angular

momentum matrices si so that

(2.47) (si)jk = −i�εijk; [si, sj ] = i�εijksk

so that (2.46) is equivalent to

(2.48) i�
∂Fi

∂t
= −ic(sj)ik∂jFk; ∂iFi = 0

To formulate groundwork for continuous representation of the spin freedoms one
transforms to a representation of the si where the z-component is diagonal via the
unitary matrix

(2.49) Uai =
1√
2

⎛⎝ −1 i 0
0 0

√
2

1 i 0

⎞⎠
and Maxwell’s equations become

(2.50) i�
∂Ga

∂t
= −ic(Jj)ab∂jGb; Ga = UaiFi; Ji = UsiU

−1; (a, b = 1, 0,−1)

Here one has

(2.51)

⎛⎝ G1

G0

G−1

⎞⎠ =
1√
2

⎛⎝ −F1 + iF2√
2F3

F1 + iF2

⎞⎠ ; J1 =
�√
2

⎛⎝ 0 1 0
1 0 1
0 1 0

⎞⎠ ;

J2 =
�√
2

⎛⎝ 0 −i 0
i 0 −i
0 i 0

⎞⎠ ; J3 = �

⎛⎝ 1 0 0
0 0 0
0 0 −1

⎞⎠
Next one passes to an angular coordinate representation using the Euler angles
(αr) = (α, β, γ) and conventions of [471] so that

(2.52) M̂1 = i�(Cos(β)∂α − Sin(β)Ctn(α)∂β + Sin(β)Csc(α)∂γ);

M̂2 = i�(−Sin(β)∂α − Cos(β)Ctn(α)∂β + Cos(β)Csc(α)∂γ); M̂3 = i�∂β

The SE (2.50) becomes then

(2.53) i�
∂ψ(x, α)

∂t
= −icM̂i∂iψ(x, α) ≡ i�

∂ψ

∂t
= −c�λ̂i∂iψ

(
λ̂i =

M̂i

−i�

)
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where ψ is a function on the 6-dimensional manifold M = R3 ⊗ SO(3) whose
points are labeled by (x, α). The wave function may be expanded in terms of an
orthornormal set of spin 1 basis functions ua(α) (cf. [471]) in the form

(2.54) ψ(x, α, t) = Ga(x, t)ua(α) (a = 1, 0,−1); u1(α) =
√

3
4π

Sin(α)e−iβ ;

u0(α) =
ii
√

3
2
√

2π
Cos(α); u−1(α) =

√
3

4π
Sin(α)eiβ ;

where
∫

u∗
a(α)ub(α)dΩ = δab with dΩ = Sin(α)dαdβdγ and α ∈ [0, π], β ∈

[0, 2π], γ ∈ [0, 2π]. One can show that
∫

u∗
aM̂iub(α)dΩ = (Ji)ab and multiply-

ing (2.53) (with use of (2.54)) one recovers the Maxwell equations in the form
(2.50). In this formulation the field equations (2.53) come out as second order
PDE and summation over i or a is replaced by integration in αr. For example the
energy density and Poynting vector have the alternate expressions

(2.55)
ε0
2

(E2 + c2B2) = F ∗
i Fi = G∗

aGa =
∫
|ψ(x, α)|2dΩ;

ε0c
2(E×B)i =

c

�
F ∗

j (si)jkFk =
c

�
G∗

a(Ji)abGb =
c

�

∫
ψ∗(x, α)M̂iψ(x, α)dΩ

For the hydrodynamic model one writes ψ =
√

ρexp(iS/�) and splitting (2.53)
into real and imaginary parts we get

(2.56)
∂S

∂t
+

c

�
λ̂iS∂iS+Q = 0;

∂ρ

∂t
+

c

�
∂i(ρλ̂iS)+

c

�
λ̂(ρ∂iS) = 0; Q = −c�

λ̂i∂i
√

ρ
√

ρ

These equations are equivalent to the Maxwell equations provided ρ and S obey
certain conditions; in particular single valuedness of the wave function requires

(2.57)
∮

C0

∂iSdxi + ∂rSdαr = n� (n ∈ Z)

where C0 is a closed curve in M. In the hydrodynamic model n is interpreted as the
net strength of the vortices contained in C0 (these occur in nodal regions (ψ = 0)
where S is singular). Comparing (2.56) with the Eulerian continuity equation
corresponding to a fluid of density ρ with translational and rotational freedom one
expects

(2.58)
∂ρ

∂t
+ ∂i(ρvi) + λ̂i(ρωi) = 0; vi ∼ (c/�)λ̂S; ωi ∼ (c/�)∂iS

Thus one obtains a kind of potential flow (strictly quasi-potential in view of (2.57))
with potential (c/�)S. The quantity Q in (2.56) is of course the analogue for
the Maxwell equations of the quantum potential and will have the classical form
−∇2√ρ/

√
ρ when the appropriate metric on M is identified. From the Bernoulli-

like (or HJ-like) equation in (2.56) we obtain the analogue of Euler’s force law for
the EM field. Thus applying first ∂i and using (2.58) one gets

(2.59)
(

∂

∂t
+ vj∂j + ωj λ̂j

)
ωi = − c

�
∂iQ
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Acting on this with λ̂i and using [λ̂i, λ̂j ] = −εijkλ̂k yields

(2.60)
(

∂

∂t
+ vj∂j + ωiλ̂j

)
vi = εijkωjvk −

c

�
λ̂iQ

which contains a Coriolis type force in addition to the quantum contribution. The
paths x = x(x0, α0, t) and α = α(x0, α0, t) of the fluid particles in M are obtained
by solving the differential equations

(2.61) vi(x, α, t) =
∂xi

∂t
; vr(x, α, t) =

∂αr

∂t

These paths are an analogue in the full wave theory of a ray.

Now one generalizes this to coordinates xµ in an N-dimensional Riemannian
manifold M with (static) metric gµν(x). The history of the fluid is encoded in the
positions ξ(ξ0, t) of distinct fluid elements and one assumes a single valued and dif-
ferentiable map between coordinates (cf. Section 7.2.1). Let P0(ξ0) be the initial
density of some continuously distributed quantity in M (mass in ordinary hydro-
dynamics, energy here) and set g = det(gµν). Then the quantity in an elementary
volume dNξ0 attached to the point ξ0 is P0(ξ0)

√
−g(ξ0)dNξ0 and conservation of

this quantity is expressed via

(2.62) P (ξ(ξ0, t))
√
−g(ξ(ξ0, t))dNξ(ξ0, t) = P0(ξ0)

√
−g(ξ0d

Nξ0 ≡

≡ P (ξ0, t) = D−1(ξ0, t)P0(ξ0); D(ξ0, t) =
√

g(ξ)/g(ξ0)J(ξ0, t)

where J is the Jacobian

(2.63) J =
1

N !
εµ1···µn

εν1···νn
∂ξµ1

∂ξν1
0

· · · ∂ξµN

∂ξνN
0

One assumes the Lagrangian for the set of fluid particles has a kinetic term and
an internal potential representing a certain kind of particle interaciton

(2.64) L =
∫

P0(ξ0)
(

1
2
gµν(ξ)

∂ξµ

∂t

∂ξν

∂t
− gµν c2�2

8
1

P 2

∂P

∂ξµ

∂P

∂ξν

)√
−g(ξ0)dNξ0

Here � is a constant with the dimension of length (introduced for dimensional
reasons) and ξ = ξ(ξ0, t); one substitutes now for P from (2.62) and writes

(2.65)
∂

∂ξµ
= J−1Jν

µ

∂

∂ξν
0

; Jν
µ =

∂J

∂(∂ξµ/∂ξν
0 )

;
∂ξµ

∂ξν
0

Jσ
µ = Jδσ

ν

One assumes suitable behavior at infinity so that surface terms in the variational
calculations vanish and the Euler-Lagrange equations are then
(2.66)

∂2ξµ

∂t2
+
{

µ
ν σ

}
∂ξν

∂t

∂ξσ

∂t
= −c�

�
gµν ∂Q

∂ξν
; Q =

−�c�

2
√
−gP

∂

∂ξµ

(
√
−ggµν ∂

√
P

∂ξν

)
{

µ
ν σ

}
=

1
2
gµρ

(
∂gσρ

∂xiν
+

∂gνρ

∂ξσ
− ∂gνσ

∂ξρ

)
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Now one restricts to quasi-potential flows with conditions

(2.67) gµν(ξ0)
∂ξµ

0

∂t
=

c�

�

∂S0(ξ0)
∂ξν

0

;
∮

C

∂S0(ξ0)
∂ξµ

0

dξµ
0 = h� (n ∈ Z)

One follows the same procedures as in Section 7.2.1 so multiplying (2.66) by
gσµ(∂ξσ/∂ξρ

0) and integrating gives
(2.68)

gσµ(ξ(ξ0, t))
∂ξσ

∂ξρ
0

∂ξµ

∂t
= gρµ(ξ0)

∂ξµ
0

∂t
+

∂

∂ξρ
0

∫ t

0

(
1
2
gµν(ξ(ξ0, t))

∂ξµ

∂t

∂ξν

∂t
− c�

�
Q

)
dt

Then substituting (2.67) one has

(2.69) gσµ
∂ξσ

∂ξρ
0

∂ξµ

∂t
=

c�

�

∂S

∂ξρ
0

; S = S0 +
∫ t

0

(
�

2c�
gµν

∂ξµ

∂t

∂ξν

∂t
−Q

)
dt

The left side gives the velocity at time t relative to ξ0 and this is a gradient. To
obtain the ξ components multiply by J−1Jρ

ν and use (2.65) to get gµν(∂ξν/∂t) =
(c�/�)(∂S/∂ξµ) where S = S(ξ0(ξ, t), t). Thus for all time the covariant velocity
of each particle is the gradient of a potential with respect to the current position.
Finally to see that the motion is quasi-potential since (2.66) holds and the value
in (2.67) of the circulation is preserved following the flow, i.e.

(2.70)
∂

∂t

∮
C

(t)gµν
∂ξν

∂t
dξµ = 0

Finally for the SE one defines a fundamental link between the particle (La-
grangian) and wave-mechanical (Eulerian) pictures via

(2.71) P (x, t)
√
−g(x) =

∫
δ(x− ξ(ξ0, g))P0(ξ0)

√
−g(ξ0)dNξ0

The corresponding formla for the Eulerian velocity is contained in the current
expression

(2.72) P (x, t)
√
−g(x)vµ(x, t) =

∫
∂ξµ

∂t
δ(x− ξ(ξ0, t))P0(ξ0)

√
−g(ξ0)dNξ0

These are equivalent to the following local expressions (ξ0 ∼ ξ0(x, t))
(2.73)

P (x, t)
√
−g(x) = J−1

∣∣
ξ0

P0(ξ0(x, t))
√
−g(ξ0(x, t)); vµ(x, t) =

∂ξµ(ξ0, t)
∂t

∣∣∣∣
ξ0

We can now translate the Lagrangian flow equations into Eulerian language. First
differentiate (2.71) in t and use (2.72) to get

(2.74)
∂P

∂t
+

1√−g

∂

∂xµ
(P
√
−gvµ) = 0

Then, differentiating (2.72) and using (2.66) and (2.74) one obtains the analogue
of the classical Euler equation

(2.75)
∂vµ

∂t
+ vν ∂vµ

∂xν
+
{

µ
ν σ

}
vνvσ = −c�

�
gµν ∂Q

∂xν
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where Q is given by (2.66) with ξ replaced by x. Finally the quasi-potential
condition becomes

(2.76) vµ =
c�

�
gµν ∂S(x, t)

∂xν

Formula (2.73) give the general solution of the coupled continuity and Euler equa-
tions (2.74) and (2.75) in terms of the paths and initial density. To establish the
connection between the Eulerian equations and the SE note that (2.75) and (2.76)
can be written

(2.77)
∂

∂xµ

(
∂S

∂t
+

c�

2�
gνσ ∂S

∂xν

∂S

∂xσ
+ Q

)
= 0

Again the quantity in brackets is a function of time which is incorporated into S
if necessary and one arrives at

(2.78)
∂S

∂t
+

c�

2�
gνσ ∂S

∂xν

∂S

∂xσ
+ Q = 0

Combining (2.78) with (2.74) and using (2.76) one finds for ψ =
√

Pexp(i/�) the
equation

(2.79) i�
∂ψ

∂t
= − −�c�

2
√−g

∂

∂xµ

(√
−ggµν ∂ψ

∂xν

)
(for a system of mass �/c�). The quantization condition (2.70) becomes

(2.80)
∮

C0

∂S(x, t)
∂xµ

dxµ = n� (n ∈ Z)

Now an alternate representation of the internal angular motion can be given
in terms of the velocity fields vr(x, α, t) conjugate to the Euler angles. One has

(2.81) ωi = (A−1)irvr; vr = Ariωi;

(A−1)ir =

⎛⎝ −Cos(β) 0 −Sin(α)Sin(β)
Sin(β) 0 −Sin(α)Cos(β)

0 −1 −Cos(α)

⎞⎠ ;

The relations (2.52) may be written as λ̂i = Air∂r and hence ωj λ̂j = vr∂r. In
terms of the conjugate velocities Euler’s equations (2.59) and (2.60) become

(2.82)
(

∂

∂t
+ vj∂j + vr∂r

)
vs + Asi∂r(A−1)iqvqvr = − c

�
Asi∂iQ;(

∂

∂t
+ vj∂j + vr∂r

)
vi + εijk(A−1)krvjvr = − c

�
λ̂iQ

Now one specializes the general treatment to the manifold M = R3 × SO(3) with
coordinates xµ = (xi, αr) and metric

(2.83) gµν =
(

0 �−1Air

�−1Ari 0

)
; gµν =

(
0 �(A−1)ir

�(A−1)ri 0

)
and density P = ρ/�3. From ∂r(

√−ggir) = 0 and �gir∂r = λ̂i one gets via
[λ̂i, λ̂j ] = −εijkλ̂k the relation gir(∂sgrj − ∂rgsj) = �−1εijkgsk. Then the relation
(2.76) becomes (2.58), (2.74) becomes (2.56), (2.75) becomes (2.82), (2.66) (with ξ
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replaced by x) becomes (2.56), (2.78) becomes (2.56), (2.79) becomes (2.53), and
(2.80) becomes (2.57). Writing ξµ = (qi, θr) for the Lagrangian coordinates (2.64)
becomes

(2.84) L =
∫

�ρ0(q0, θ0)
(

(A−1)ir
∂qi

∂t

∂θr

∂t
−Air

c2

4ρ2

∂ρ

∂qi

∂ρ

∂θr

)
Sin(θ0)d3θ0d

3q0

Newton’s law (2.66) reduces to the coupled relations

(2.85)
∂2qi

∂t2
+ εijk(A−1)ir

∂qj

∂t

∂θr

∂t
= − c

�
Air

∂Q

∂θr
;

∂2θs

∂g2
+ Asi

∂

∂θr
(A−1)iq

∂θq

∂t

∂θr

∂t
= − c

�
Asi

∂Q

∂qi

where Air is given via (2.81) with αr replaced by θr(q0, θ0, t) and one substitutes
ρ(q0, θ0, t) = D−1(q0, θ0, t)ρ0(q0, θ0) along with

(2.86) Q = −c�Air
1
√

ρ

∂2√ρ

∂θr∂qi
;

∂

∂qi
= J−1

(
Jij

∂

∂q0j
+ Jis

∂

∂θ0s

)
;

∂

∂θr
= J−1

(
Jrj

∂

∂q0j
+ Jrs

∂

∂θ0s

)
Given the initial wavefunction ψ0(x, α) = G0a(x)ua(α) =

√
ρ0exp(iS0/�) one

can solve (2.85) subject to initial conditions ∂q0i/∂t = (c/�)Air(∂S0/∂θ0r) and
∂θ0r/∂t = (c/�)Ari(θ0)(∂S0/∂q0i) to get the set of trajectories for all (q0, θ0, t).
Then invert these functions and substitute q0(x, α, t) and θ0(x, α, t) in the right
side of (2.85) to find ρ(x, α, t) and in the right sides of the equations

(2.87) ∂rS =
�

c
(A−1)ir

∂qi

∂t
; ∂iS =

�

c
(A−1)ri

∂θr

∂t

to get S up to an additive function of time �f(t), which is adjusted as before (cf.
(2.56)). There results
(2.88)

ψ =
√

D−1ρ0)|q0,θ0e
[(i/c)

∫
(A−1)ir(∂qi/∂t)|q0,θ0dαr+(A−1)ri(∂θr/∂t)|q0,θ0dxi+if(t)]

Finally the components of the time dependent EM field may be read off from
(2.50) where

(2.89) Ga =
∫

ψ(x, α)u∗
a(α)dΩ

EXAMPLE 2.1. One computes the time dependence of the EM field whose
initial form is E0i = (ECos(kz), 0, 0) with B0i = (0, (1/c)ECos(kz), 0). The initial
wavefunction is ψ0 = G01u1 or

(2.90) ψ0(q0, θ0) = −
√

3
2
√

2π
ECos(kq03)Sin(θ01)e−iθ02

One looks for solutions to (2.85) that generate a time dependent wavefunction
whose spatial dependence is on z alone. The Hamiltonian in the SE (2.53) then re-
duces to −icM̂3∂3ψ(x, α) alone which preserves the spin dependence of ψ0. Hence,
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since ρ is independent of θ3, the quantum potential Q in (2.86) vanishes. Some
calculation leads to

(2.91) ψ(x, α, t) = −
√

3
2
√

2π
ECos(k(z − ct))Sin(α)e−iβ ;

Ei = (Ecos(k(ct− z)), 0, 0); Bi = (0, (1/c)ECos(k(ct− z)), 0)
Note that one obtains oscillatory behavior of the Eulerian variables from a model
in which the individual fluid elements do not oscillate! This circumvents one of
the classical problems where it was considered necessary for the elements of a
continuum to vibrate in order to support a wave motion. Another interesting
feature is that the speed of each element |v| = |cCosc(θ01)| obeys c ≤ |v| <
∞. One might regard the occurence of superluminal speeds as evidence that the
Lagrangian model is only a mathematical tool. Indeed performing a weighed sum
of the velocity over the angles to get the Poynting vector ε0c

2(E×B)i =
∫

ρvidΩ
the collective x and y motions cancel to give the conventional geometrical optics
rays propagating at speed c in the z-direction.

3. SOME SPECULATIONS ON THE AETHER

We give first some themes and subsequently some details and speculations.
(1) In a hauntingly appealing paper [494] P. Isaev makes conjectures, with

supporting arguments, which arrive at a definition of the aether as a Bose-
Einstein condensate of neutrino-antineutrino pairs of Cooper type (Bose-
Einstein condensates of various types have been considered by others in
this context - cf. [262, 263, 338, 398, 482, 510, 606, 893, 960] and
Remark 5.3.1). The equation for the ψ-aether is then a solution of the
massless Klein-Gordon (KG) equation (photon equation)(

�2∆− �2

c2
∂2

t

)
ψ = 0

(cf. also [911]). This ψ field heuristically acts as a carrier of waves
(playground for waves) and one might say that special relativity (SR)
is a way of including the influence of the aether on physical processes
and consequently SR does not see the aether (cf. here also the idea of a
Dirac aether in [215, 216, 302, 537, 727] and Einstein-aether theories
as in [338, 510] - some of this is developed below). In the electromag-
netic (EM) theory one looks at �ψ = (φ, �A) with �ψi = 0 as the defining
equation for a real ψ-aether, in terms of the potentials φ and �A which
therefore define the ψ-aether. EM waves are then considered as oscilla-
tions of the ψ aether and wave processes in the aether accompanying a
moving particle determine wave properties of the particle. The ensemble
point of view can be considered artificial, in accord wth a conclusion we
made in [194, 197, 203], based on Theme 3 below, that uncertainty
and the ensemble “cloud” are based on the lack of deterimation of par-
ticle trajectories when using the SE instead of a third order equation.
Thus it is the SE context which automatically (and gratuitously) intro-
duces probability; nevertheless, given the limitations of measurement, it
produces an amazingly accurate theory.

(3.1)
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(2) Next there is the classical deBroglie-Bohm (dBB) theory (cf. [191, 186,
187, 188, 189, 205, 203, 471] - and references in these papers) where,
working from a Schrödinger equation (SE)

− �2

2m
∆ψ + V ψ = i�ψt; ψ = ReiS/�

one arrives at a quantum potential Q = −(�2/2m)(∆
√

ρ/
√

ρ) (R =
√

ρ)
associated to a quantum Hamilton-Jacobi equation (QHJE)

St +
(∇S)2

2m
+ V + Q = 0

The ensuing particle theory exhibits trajectory motion choreographed by
ψ via Q = −(�2/2m)(∆|ψ|/|ψ|) or directly via the guidance equation

�̇x = �v = ��ψ∗∇ψ

ψ∗ψ

(cf. [186, 187, 188, 203] for extensive references). Relativistic and
geometrical aspects are also provided below.

(3) In [346] Faraggi and Matone develop a theory of x−ψ duality, related to
Seiberg-Witten theory in the string arena, which was expanded in vari-
ous ways in [2, 41, 110, 198, 194, 191, 249, 640, 751, 958]. Here one
works from a stationary SE [−(�2/2m)∆+V (x)]ψ = Eψ, and, assuming
for convenience one space dimension, the space variable x is determined
by the wave function ψ from a prepotential F via Legendre transforma-
tions. The theory suggests that x plays the role of a macroscopic variable
for a statistical system with a scaling term �. Thus define a prepotential
FE(ψ) = F(ψ) such that the dual variable ψD = ∂F/∂ψ is a (linearly in-
dependent) solution of the same SE. Take V and E real so that ψ̄ = ψD

qualifies and write ∂xF = ψD∂xψ = (1/2)[∂x(ψψD)+W )] where W is the
Wronskian. This leads to (ψD = ψ̄) the relation F = (1/2)ψψ̄ + (W/2)x
(setting the integration constant to zero). Consequently, scaling W to
−2i

√
2m/� one obtains

i
√

2m

�
x =

1
2
ψ

∂F

∂ψ
− F ≡ i

√
2m

�
x = ψ2 ∂F

∂ψ2
− F

which exhibits x as a Legendre transform of F with respect to ψ2. Duality
of the Legendre transform then gives also

F = φ∂φ

(
i
√

2m x

�

)
−
(

i
√

2m x

�

)
; φ = ∂ψ2F =

ψ̄

2ψ

so that F and (i
√

2m x/�) form a Legendre pair. In particular one has ρ =
|ψ|2 = 2i

√
2m

� x+2F which also relates x and the probability density (but
indirectly since the x term really only cancels the imaginary part of 2F).
In any event one sees that the wave function ψ specifically determines the
exact location of the “particle” whose quantum evolution is described by

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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ψ. We mention here also that the (stationary) SE can be replaced by a
third order equation

4F′′′ + (V (x)− E)(F′ − ψF
′′)3 = 0; F

′ ∼ ∂F

∂ψ

and a dual stationary SE has the form

�2

2m

∂2x

∂ψ2
= ψ[E − V ]

(
∂x

∂ψ

)3

A noncommutative version of this is developed in the second paper of
[958].

(4) We also note for comparison and analogy some relations between Le-
gendre duals in mechanics, thermodynamics, and (x, ψ) duality. Thus
(cf. [202, 596]) one has in mechanics pẋ−L = H via L = (/2)mẋ2 − V
and H = (p2/2m) + V with p = ∂L/∂ẋ and ẋ = ∂H/∂p. In thermody-
namics one has a Helmholtz free energy F with F = U−TS for energy U,
entropy S, and temperature T. Set F = −F to obtain F = T (∂F/∂T )−U
and U = S∂SU − F (where ∂TF = S and ∂SU = T ). Now put this in a
table where we write the (x, ψ) duality in the form χ = ψ2(∂F/∂ψ2)− F

with F = φ(∂χ/∂φ) − χ (for χ = (i
√

2m/�)x and φ = (∂F/∂ψ2)). This
leads to a table

Mechanics Thermodynamics (x, ψ) duality
ẋ, p, L, H T, S, F , U ψ2, φ, F, χ

pẋ−H = L TS − U = F ψ2φ− F = χ

L = ẋ∂H
∂p −H F = S ∂U

∂S − U F = φ∂χ
∂φ − χ

H = p∂L
∂ẋ − L U = T ∂F

∂T −F χ = ψ2 ∂F
∂ψ2 − F

One says that e.g. (F, χ) or (F , U) or (L,H) form a Legendre dual pair and in the
first situation one refers to (x, ψ) duality. One sees in particular that F = ψ2

−χ where ψ2φ ∼ ẋp in mechanics. Note that φ = ∂F/∂ψ2 = (1/2ψ)(∂F/∂ψ) =
ψ̄/2ψ with ψ2φ = (1/2)ψψ̄ = (1/2)|ψ|2. In any event χ = −i(

√
2m/�)x and we

will see below how the physics can be expressed via ψ, ∂/∂ψ, dψ etc. without
mentioning x. This allows one to think of the coordinate x as an emergent entity
and we like to think of x− ψ duality in this spirit.

3.1. DISCUSSION OF A PUTATIVE PSI AETHER. We mention
[650, 753, 935] for some material on the aether and the vacuum and refer to
the bibliography for other references. We sketch first some material from [2, 41,
110, 249, 751, 958] which extends theme 3 to the Klein-Gordon (KG) equation.
Following [958] take a spacetime manifold M with a metric field g and a scalar
field φ satisfying the KG equation. Locally one has cartesian coordinates xα (α =
0, 1. · · · , n− 1) in which the metric is diagonal with gαβ(x) = ηαβ(x) and the KG

equation has the form (�x+m2)φ(x) = 0 (�x
?∼ (�2/c2)[(∂2

t /c2)−∇2] - cf. (2.26)).
Defining prepotentials such that φ̃(α) = ∂F(α)[φ(α)]/∂φ(α) where φ(α) and φ̃(α) are
two linearly independent solutions of the KG equation depending on a variable xα

(where the xβ for β �= α enter φα and φ̃α as parameters) one has as above (with

(3.7)

(3.8)

(3.9)

φ
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a different scaling factor)
√

2m

�
xα =

1
2
φ(α) ∂F(α)[φα)]

∂φ(α)

This is suggested in [346] and used in [958]; the factor
√

2m/� is simply a scaling
factor and it may be more appropriate to scale x0 ∼ ct differently or in fact to scale
all variables as indicated below with factors βi(xj , t). Locally now F(α) satisfies
the third order equation

4F(α)
′′′

+ [V (α)(xα) + m2](φ(α)
F

(α)
′′
− F

(α)′))3 = 0

where ′ ∼ ∂/∂φ(α) and the “effective” potential V has the form

V (α)(xα) =

⎡⎣ 1
φ(x)

n−1∑
β=0, β �=α

∂β∂βφ(x)

⎤⎦∣∣∣∣∣∣
xβ �=α fixed

REMARK 7.3.1. Strictly speaking V α does not have the form �R/R of a
quantum potential; however since it is created by the wave function φ we could
well think of it as a form of quantum potential. We will refer to it as the effective
potential as in [346] and note from Section 3.2 that with ηµν = (−1, 1, 1, 1) and
� = −(1/c2)∂2

t + ∆, one has for φ = Rexp(iS/�)

1
2m

(∂S)2 =
�2

2m

�φ

φ
+

�2

2m

�R

R
;

∂(R2∂S) = 0; Qrel = − �2

2m

�R

R
The discussion below indicates that much further development of these themes
should be possible.

As indicated in [346], once xα is replaced with its functional dependence on
Fα α(φα);
further the functional structure of Fα does not depend on the parameters xβ for
β �= α (which enter φα

∂

∂xα
=

(8m)1/2

�

1
E(α)

∂

∂φ(α)
; dxα =

�

(8m)1/2
E(α)dφ(α)

where E(α) = φ(α)F(α)
′′
−F(α)′

on the spaces TP (U) and T ∗
P (U) (P ∈ U - local tangent and cotangent spaces).

Now using the linearity of the
metric tensor field (cf. [322]) one sees that the components of the metric in the
{(φ(α),F(α)} are

Gαβ(φ) =
�2

8m
E(α)E(β)ηαβ(x)

Now let zµ (µ = 0, 1, · · · , n − 1) be a general coordinate system in U and write
the coordinate transformation matrices via

Aα
µ =

∂xα

∂zµ
; (A−1)µ

α =
∂zµ

∂xα

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(α) α
∂α−V α φ

α)∂− F ; ( = 0

Note there is no summation over α in (3.14).

given in (3.10), (3.11) becomes an ordinary differential equation for F

as parameters). Now as a consequence of (3.10) one has

. Here (3.14) represents an induced parametrization
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The metric then takes the form

gµν(z) =
8m

�2

1
E(α)E(β)

Aα
µAβ

νGαβ(φ)

The components of the metric connection can be computed via

Γρ
µν =

1
2
gρσ(z)

∑
P

εPP [∂gσν(z)/∂zµ]

where P is a cyclic permutation of the ordered set of indices {σνµ} and εP is the
(α) depends

on all the zµ. (α),F(α)}
parametrization via

Γρ
µν =

(
2m

�

)1/2
E(ρ)E(σ)

E(γ)
(A−1)ρ

τ (A−1)σ
χGτχ×

×
∑
P

εPP
[
Aγ

µ

∂

∂φ(γ)

(
1

E(α)E(β)
Aα

σAβ
νGαβ

)]
In [958] one computes, in the (φ(α),F(α)) parametrization, the components of the
curvature tensor, the Ricci tensor, and the scalar curvature and gives an expression
for the Einstein equations (we omit the details here). These matters are taken up
again in [41] for a general curved spacetime and some sufficient constraints are
isolated which make the theory work. Also in both papers a quantized version of
the KG equation is also treated and the relevant x − ψ duality is spelled out in
operator form. We omit this also in remarking that the main feature here for our
purposes is the fact that one can describe spacetime geometry (at least locally) in
terms of (field) solutions of a KG equation and prepotentials (which are themselves
functions of the fields). In other words the coordinates are programmed by fields
and if the motion of some particle of mass m is involved then its coordinates
are choreographed by the fields with a quantum potential entering the picture

coordinates and to connect this with the aether idea one should examine the above
formulas for m→ 0.

Thus (cf. [191, 198, 206, 346]) one writes (in 1-D)

∂ψF = ψD ∼ ψ̄; ∂xF = ∂ψF∂xψ = ψDψx =
1
2
[∂x(ψDψ) + W ]; W = ψDψx − ψD

x ψ

and W = constant (this is the scaling factor). For example with x ∼ ct we write

F =
1
2
ψEψ + Wct =

1
2
ψDψ + γct

to find (χ0 ∼ γct)

γct =
1
2
φ0 ∂F0

∂φ0
− F

0; E0 = φ0 ∂2F0

∂(φ0)2
− ∂F0

∂φ0

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

signature of P. Via the coordinate transformation (3.16) the function φ
The metric connection (3.18) can be expressed in the {φ

via (3.12). In [2] a similar duality is worked out for the Dirac field and cartesian

Let us do some rescaling now and recall the origin of equations such as (3.10).
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dt =
E0dφ0

2γc
; ∂t =

2γc

E0

∂

∂φ0

For the other variables x1, x2, x3 we write γc = β and

dxi =
Eidφi

2β
;

∂

∂xi
=

2β

Ei

∂

∂φi

√
2m/� by γc when ct ∼

t = x0 and by βi for the xi (1 ≤ i ≤ 3) to obtain for example (here βi = βi(xj , t)
and β0 = γc)

Gασ(φ) =
4EαEσ

βαβσ
ηασ

in place of (2.15). Consequently we obtain an heuristic result

THEOREM 3.1. One can then continue this process to find analogues of
2
t /c2)−∇2

x+(c2m2/�2)]φ =
0 so letting m → 0 we obtain the photon (or aether) equation (2.10) of Isaev (as-
suming the scaling factors βi can be taken independently of m). Now however we

Let us sketch next some arguments from [494] where we omit the historical and
philosophical introduction describing some opinions and ideas of famous people,
e.g. Dirac, Einstein, Faraday, Lorentz, Maxwell, Planck, Poincaré, Schwinger, et
al. One begins with a KG equation(

�2∇2 − �2

c2

∂2

∂t2
−m2c2

)
ψ(s, t) = 0 ≡ (�2�−m2c2)ψ = 0

One asserts that any relativistic equation for a free particle with mass m whould
be understood not as an equation in vacuum but as an equation for a particle
with mass m in the aether; thence setting the mass equal to zero one arrives at

This is called the ψ-aether in contrast
to the (impossible!) Lorentz-Maxwell aether. Now consider the case of an EM
field with H = curl(A) and E = −(1/c)∂tA−∇φ and use the Lorentz condition
divA + (1/c)∂tφ = 0. Then the potentials A and φ satisfy

�A = ∇2A− 1
c2

∂2A
∂t2

= 0; �φ = ∇2φ− 1
c2

∂2φ

∂t
= 0

Using the Lorentz gauge one can take φ = 0 so the charge independent part of the
potentials is determined via

�A = 0; divA = 0; φ = 0; E = −1
c

∂A
∂t

; H = curlA

the general solution is given by a superposition of transverse waves. For a more
�

i

0; these are called the equations for the real ψ-aether.

The classical unphysicality of φ, A now is removed in attaching them to the

(3.23)

(3.24)

(3.25)

(3.16) - (3.19) and we think now of the KG equation as [(∂

have in addition a geometry for this putative aether via (3.22) - (3.25) and their

(3.26)

(3.1) for the equation of the aether itself.

(3.27)

(3.28)

This system (3.28) is completely equivalent to the Maxwell-Lorentz equations and

symmetric representation one can write ψ = (φ,A) and (3.27) becomes �ψ (x, t) =

continuations (see [1021]).

Again (3.11) holds along with (3.12). Now simply replace
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physically observable reality of the ψ-aether. Indeed the KG equation can be
written as a product of two commuting matrix operators

Iαβ(�−m2) =
∑

δ

(
iγn ∂

∂xn
+ m

)
αδ

(
iγk ∂

∂xk
−m

)
δβ

and in order that the field function satisfy the KG equation one could require that
it satisfy also one of the first order equations(

iγn ∂

∂xn
+ m

)
ψ = 0 or

(
iγn ∂

∂xn
−m

)
ψ = 0

field (there may be some question about m = 0 here). Recall that particle solutions
of the KG equation corresponding to single valued representations of the Lorentz
group have integer spins while particles with half-integer spin are described by
a spinor representation. One also knows that the neutrino has spin �/2. In any

but are connected to physical reality in the form of the ψ-aether by neutrino-anti-
neutrino pairs (cf. [494] for further arguments along these lines).

For an interesting connection of the ψ-aether with QM consider a hydrogen
atom with spherically symetric and time independent potential V (r) = V (r) where
r = |r|. The solution to the SE −i�∂tψ = −(�2/2m)∇2ψ + V (r)ψ is obtained by
separation of variables ψ = u(r)f(t) with u(r) = R(r)Y (θ, φ). This is a problem
of two body interaction (a proton and an electron) and for stationary states with
energy E one looks at ψ(x, t) = Cexp(−iEt/�) satisfying

1
sin(θ)

∂

∂θ

(
sin(θ)

∂Y

∂θ
+

1
sin2(θ)

∂2Y

∂φ2

)
+ λY = 0;

1
r2

d

dr

(
r2 dR

dr

)
+
{

2µ

�2
[E − V (r)]− λ

r2

}
R = 0

Here µ is the reduced mass of the system (proton + electron), E is the energy level
2

is solved by further separation of variables Y = Θ(θ)Φ(φ) leading to

∂2Φ
∂φ2

+ νΦ = 0;
1

sin(θ)
d

dθ

(
sin(θ)

∂Θ
∂θ

)
+
(
λ− ν

sin2θ

)
Θ = 0

The solution for Φ is Φm(φ) = (1/2π)exp(imφ) with ν = m2 and physically

with |m| ≤ �. For R one has

1
r2

d

dr

(
r2 dR

dr

)
+

2µ

�2

e2

r
R(r) +

2µ

�2
ER(r)− �(� + 1)

r2
R = 0

Now here V (r) = (2µ/�2)(e2/r) = [�(� + 1)/r2] and the term involving e2/r is
responsible for the Coulomb interaction of a proton with an electron; however the
second term �(�+1)/r2 does not depend on any physical interaction (even though
in [847] it is said to be connected with angular momentum). Now putting the
Coulomb interaction to zero the �(�+ 1)/r2 term does not disappear and it makes

(3.29)

(3.30)

Putting m = 0 in (3.30) one has possible equations for the neutrino-anti-neutrino

event (cf. (3.27)-(3.28)) the potentials φ and A are not merely auxilliary functions

(3.31)

admissible solutions for Θ (associated Legendre polynomials) require λ = �(� + 1)

(3.32)

(3.33)

for the bound state p + e (E < 0), and V (r) = e /r is the potential energy. (3.31)
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no sense to attribute it to angular momentum. It is now claimed that in fact this
term arises because of the ψ-aether and an argument based on standing waves in
a spherical resonator is given. Thus following [155] one considers an associated
Borgnis function U(r, θ, φ), having definite connections to E and H, and when it
satisfies

∂2U

∂r2
+

1
r2sin(θ)

[
∂

sin(θ)
∂U

∂θ
+

∂

∂φ

1
sin(θ)

∂U

∂φ

]
+ k2U = 0

the Maxwell equations are also valid. Further U is connected by definite relations
with A and φ, i.e. with the ψ-aether (presumably all this is spelled out in [155]).

1 2

there results

(A)
1

sin(θ)
∂

∂θ
sin(θ)

∂F2

∂θ
+

1
sin2θ

∂2F2

∂φ2
+ γF2 = 0

(B) r2 ∂2F1

∂r2
+ k2r2F1 − γF1 = 0

One considers here EM waves harmonic in time and characterized either by the
frequency ν = kc/2π or by the wave vector k = 2πν/c with [k] = 1/cm. Now

Setting F1(r) = rf(r) one
obtains then

d2f

dr2
+

2
r

df

dr
+
[
k2 − n(n + 1)

r2

]
f(r) = 0

d2R

dr2
+

2
r

dR

dr
+
(

2µE

�2
+

2µe2

�2r
− �(� + 1)

r2

)
R = 0

2 2 2

d2R

dr2
+

2
r

dR

dr
+
(

k2 − �(� + 1)
r2

)
R = 0

where 2µ2p2/2µ�2 = k2�2/�2 = k2

are identical and are solved under the same boundary conditions (i.e. f(r) should
be finite as r → 0 and when r → ∞ one wants f(r) → 0 on the boundary of
a sphere).
the sphere at values n = 0, 1, · · · with m ≤ n. Since EM waves are nothing
but oscillations of the ψ-aether the term n(n + 1)/r2

standing waves of the ψ-aether in a sphere resonator. Thus (mathematically at
least) one can say that the problem of finding the energy levels in a hydrogen
atom via the SE is equivalent to the problem of finding natural EM oscillations
in a spherical resonator. One recalls that one of the basic postulates of QM
(quantization of orbits in a hydrogen atom à la Bohr with mvr = n�/2π) is
equivalent to determination of conditions for existence of standing waves of the
ψ-aether in a spherical resonator. This suggests that QM may be equivalent to
“mechanics” of the ψ-aether. One remarks that until now only a small part of
the alleged ψ-aether properties have been observed, namely in superfluidity and

(3.34)

(3.35)

(A) in (3.35) is the same as (3.31) with spherical function solutions and regular

∂θ

solutions of (B) in (3.35) exist when γ = n(n + 1).

(3.36)

(3.37)

(3.38)

with k the wave vector). Now (3.36) and (3.38)

The corresponding solutions to (3.36) represent standing waves inside

in (3.36) is responsible for

To solve (3.34) one writes U = F (r)F (θ, φ) (following the notation of [155]) and

Setting 2µe /� r = 0 and replacing E by E = p /2µ in (3.37) one obtains

A little calculation puts (3.33) into the form



4. REMARKS ON TRAJECTORIES 315

superconductivity (see e.g. [968]). It is suggested that one might well rethink a lot
of physics in terms of the aether, rather than, for example, the standard model.
In any event there is much further discussion in [494], related to real physical
situations, and well worth reading.

4. REMARKS ON TRAJECTORIES

There have been a number of papers written involving microstates and Bohmian
mechanics (cf. [138, 140, 139, 191, 194, 197, 203, 305, 306, 307, 308, 309,
347, 373, 374, 375, 376, 348, 349, 520]) and we sketch here some features of
the Bouda-Djama method following [309]. There are some disagreements regard-
ing quantum trajectories, discussed in [138, 375], which we will not deal with
here. Generally we have followed [347] in our previous discussion and microstates
were not explicitly considered (beyond mentioning the third order equation and
the comments in Remark 2.2.2). Thus, referring to [309] for philosophy, one be-
gins with the SE −(�2/2m)∆ψ + V ψ = i�ψt where ψ = Rexp(iS/�) in 3-D and
arrives at the standard

(4.1)
1

2m
(∇S)2 − �2

2m

∆R

R
+ V = −St; ∇ ·

(
R2∇S

m

)
+ V = −∂(R2)

witeh Q = −(�2/2m)(∆R/R). Then one sets

(4.2) j =
�

2mi
(ψ∗∇ψ − ψ∇ψ∗) = R2∇S

m
⇒ ∇ · j + ∂tR

2 = 0

and ρ = |ψ|2 = R2 as usual. The velocity v is taken as v = j/ρ = ∇S/m here
in the spirit of Bohm (and Dürr, Goldstein, Zanghi, et al). Working in 1-D with
S = S0(x,E) − Et one recovers the stationary HJ equation of Section 2.2 for
example and there is some discussion about the situation S0 = constant referring
to Floyd and Farragi-Matone. Explicit calculations for microstates are considered
and comparisons are indicated. The EP of Faraggi-Matone is then discussed as in
Section 2.2 and the quantum mass field mQ = m(1 − ∂EQ) is introduced. This
leads to the third order differential equation for ẋ (where P = ∂xS0 = mQẋ)

(4.3)
m2

Q

2m
+ V (x)− E +

|hbar2

4m

(
m′′

Q

mQ
− 3

2
(m′

Q)2

m2
Q

−
m′

Q

mQ

ẍ

ẋ2
+

...
x

ẋ3
− 5

2
ẍ2

ẋ4

)
= 0

It is observed correctly that (4.3) is a difficult equation to manipulate, requiring
a priori a solution of the QSHJE.

Now one proposes a Lagrangian which depends on x, ẋ and the set of hidden
variables Γ which is connected to constants of integration from an equation like
(4.3). This approach was developed in order to avoid dealing with the Jacobi
type formula t − t0 = ∂S0/∂E which the authors felt should be restricted to HJ
equations of first order. Then one looks for a quantum Lagrangian Lq such that
(d/dt)(∂Lq/∂ẋ)− ∂xLq = 0 and writes

(4.4) Lq(x, ẋ,Γ) =
m

2
ẋ2f(x,Γ)− V (x);

∂Lq

∂ẋ
= mẋf(x,Γ);

∂Lq

∂x
=

m

2
ẋ2fx − Vx
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This leads to

(4.5) mf(x,Γ)ẍ +
mẋ2

2
fx + Vx = 0

Then set Hq = (∂xLq)ẋ− Lq and P = ∂Lq/∂ẋ = mẋf so

(4.6) Hq =
mẋ2

2
f(x,Γ) + V (x) =

P 2

2mf
+ V (x)

Working with the stationary situation S = S0(x,Γ) − Et some calculation gives
then

(4.7)
1

2mf
S2

x + V = −St ⇒
1

2mf
(∂xS0)2 + V (x)− E = 0

Now referring to the general equation (2.18) in Chapter 2 (extracted from [347])
one writes here w = θ̃/φ̃ ∼ ψD/ψ ∈ R with (α ∼ ω) so that (cf. [?, ?])

(4.8) e2iS0/� = eiω (θ̃/φ̃) + i�̄

(g̃t/φ̃)− i�
� S0 = �Tan−1 θ + µφ

νθ + φ

(cf. [139] for details). For the QSHJE the basic equation is (2.2.17) which we
repeat as

(4.9)
1

2m (S′
0)

2 + W + Q = 0; W = − �2

4m

{
e2iS0/�, x

}
∼ V − E; Q = �2

4m{S0, x}

There is a “quantum” transformation x → x̂ described in [347, 348] with the
QSHJE arising then from a conformal modification of the CSHJE. Thus note
(•) {x, S0} = −(S′

0)
−2{S0, x} and define U(S0) = {x, S0}/2 = −(1/2)(S′

0)
−2{S0, x}.

This gives a conformal rescaling 1
2m (S′

0)
2[1− �2U] + V − E = 0 since

(4.10)
1

2m
(S′

0)
2[1− �2

U] =
1

2m
(S′

0)
2[1− �2

2
{x, S0}] =

1
2m

(S′
0)

2[1 +
�2

2
(S′

0)
−2{S0, x}] =

=
1

2m
(S′

0)
2 +

�2

4m
{S0, x} =

1
2m

(S′
0)

2 + Q ⇒ Q = − �2

2m
(S′

0)
2
U

which agrees with Q = (�2/4m){S0, x} using (•). Then from (4.10)

(4.11)
(

∂x

∂x̂

)2

= 1 = �2
U(S0) = 1 + 2m(S′

0)
2Q ⇒ x̂ =

∫ x dx√
1 + 2m(∂S0)−2Q

Similarly using the QSHJE (2.2.17) we have

(4.12)
(

∂x

∂x̂

)2

= (S′
0)

−2[(S′
0)

2 + 2mQ] = [(S′
0)

2 − 2mW](S′
0)

−2 ⇒

⇒ x̂ =
∫ x S′

0dx√
2m(E − V )
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This all follows from [347, 348] and is used in [309]. Now from (4.7), (4.9), (4.10),
and the QSHJE one can write (correcting a sign in [309])

(4.13) f(x,Γ) =
[
1 +

�2

2
(S′

0)
−2{S0, x}

]−1

⇒ f =
(S′

0)
2

2m(E − V )

and via (4.8) Γ = Γ(E,µ, ν) with f = f(x, E, µ, ν). Putting this in (4.7) gives
then

(4.14) E =
mẋ2

2
(S′

0)
2

2m(E − V )
+ V ⇒ ẋS′

0 = 2(E − V )

Note that this equation also follows from (4.5), namely mẋf = ∂Lq/∂ẋ, and
integration (cf. [309]). Now for the appropriate third order trajectory equation
in this framework, one finds from (4.14) and the QSHJE

(4.15) (E − V )4 − mẋ2

2
(E − V )3 +

�2

8

[
3
2

(
ẍ

ẋ

)2

−
...
x

ẋ

]
(E − V )2−

−�2

8

[
ẋ2 d2V

dx2
+ ẍ

dV

dx

]
(E − V )− 3�2

16

[
ẋ

dV

dx

]2

= 0

(cf. [138, 309]). This is somewhat simpler to solve that (4.3) since it is indepen-
dent of the SE and the QSHJE. We refer now to [138, 140, 139, 305, 306, 307,
308, 309] for more in this direction.


