
CHAPTER 6

INFORMATION AND ENTROPY

Information and entropy have been discussed in Sections 1.3.2, 3.3.1, 4.7, etc.
and we continue with a further elaboration (see in particular [10, 23, 72, 146,
173, 174, 175, 240, 343, 388, 396, 400, 431, 446, 452, 481, 512, 634, 637,
639, 694, 740, 749, 755, 765, 766, 856, 914, 916, 915, 906, 976]). As
before we will again encounter relations to the quantum potential which serves as
a persistent theme of development. There is an enormous literature on entropy
and we try to select aspects which fit in with ideas of quantum diffusion and
information theory.

1. THE DYNAMICS OF UNCERTAINTY

We begin with some topics from [396] to which we refer for certain tutorial
aspects. Given events Aj (1 ≤ j ≤ N) with probabilities µj of occurance in some
game of chance with N possible outcomes one calls log(µj) an uncertainty function
for Aj . We write the natural logarithm as log and recall that e.g. log2(b) =
log(b)/ln(2) (the information theoretic base is taken as 2 in some contexts). The
quantity (Shannon entropy)

(1.1) S(µ) = −
N∑
1

µj log2(µj)

stands for the measure of the mean uncertainty of the possible outcomes of the
game and at the same time quantifies the mean information which is accessible
from an experiment (i.e. actually playing the game). Thus if one identifies the
Ai as labels for discrete states of a system (1.1) can be interpreted as a mea-
sure of uncertainty of the state before this state is chosen and the Shannon en-
tropy is a measure of the degree of ignorance concerning which possibility (event
Aj) may hold true in the set of all A

′s
i with a given a priori probability distri-

bution (µi). Note also that 0 ≤ S(µ) ≤ log2(N) (since certainty means one
entry with probability 1 and maximum uncertainty occurs when all events are
equally probable with µj = 1/N). There is some discussion of the Boltzman law
S = kBlog(W ) = −kBlog(P ) (P = 1/W ) and its relation to Shannon entropy,
coarse graining, and differential entropy defined as

(1.2) S(ρ) = −
∫

ρ(x)log(ρ(x))dx

(cf. Sections 1.1.6 and 1.1.8). One recalls also the vonNeumann entropy

(1.3) S(ρ̂) = −kBTr(ρ̂log(ρ̂))
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240 6. INFORMATION AND ENTROPY

where ρ̂ is the density operator for a quantum state (ρ̂log(ρ) is defined via func-
tional calculus for selfadjoint operators (cf. [916]). For diagonal density operators
with eigenvalues pi this will coincide with the Shannon entropy

∑
pilog(pi). We go

now directly to an extension of the discussion in Sections 1.1.6-1.1.8. It is known
from [862] that among all one dimensional distributions ρ(x) with a finite mean,
subject to the condition that the standard deviation is fixed at σ, it is the Gauss-
ian with half width σ which sets a maximum of the differential entropy. Thus for
the Gaussian with ρ(x) = (1/σ

√
2π)exp[−(x− x0)2/2σ2] one has

(1.4) S(ρ) ≤ 1
2
log(2πeσ2) ⇒ 1√

2πe
exp[S(ρ)] ≤ σ

A result of this is that the major role of the differential entropy is to be a mea-
sure of localization in the configuration space (note that even for relatively large
mean deviations σ < 1/

√
2πe 
 .26 the differential entropy S(ρ) is negative. Con-

sider now a one parameter family of probability densities ρα(x) on R whose first
(mean) and second moments (variance) are finite. Write

∫
xρα(x)dx = f(α) with∫

x2ραdx < ∞. Under suitable hypotheses (implying that ∂ρα/∂α is bounded by
a function G(x) which together with xG(x) is integrable on R) one obtains

(1.5)
∫

(x− α)2ρα(x)dx ·
∫ (

∂log(ρα)
∂α

)2

ραdx ≥
(

df(α)
dα

)2

which results from

(1.6)
df

dα
=
∫

[(x− α)ρ1/2
α ]

[
∂(log(ρα))

∂α
ρ1/2

α

]
dx

and the Schwartz inequality. Assume now that the mean value of ρα actually is
α and fix at σ2 the value of the variance < (x− α)2 >=< x2 > −α2. Then (1.5)
takes the familiar form

(1.7) Fα =
∫

1
ρα

(
∂ρα

∂α

)2

dx ≥ 1
σ2

where the left side is the Fisher information for ρα. This says that the Fisher
information is a more sensitive indicator of the wave packet localization than the
entropy power in (1.4). Consider now ρα = ρ(x − α) so Fα = F is no longer
dependent on α and one can transform this to the QM form (up to a factor of D2

where D = �/2m which we acknowledge here via the symbol ∼)

(1.8)
1
2
F =

∫
1
ρ

(
∂ρ

∂x

)2

dx ∼
∫

ρ · u2

2
dx ∼ − < Q̃ >

where u = ∇log(ρ) is the osmotic velocity field and the average < Q̃ >=
∫

ρ ·
Q̃dx involves the quantum potential Q̃ = 2(∆

√
ρ/
√

ρ) (cf. equations (6.1.13)
- (6.1.16) where Q = −(�2/2m)(∆

√
ρ/
√

ρ), Q̃ = −(1/m)Q, D = �/2m, and
u = D∇log(ρ)). Consequently − < Q̃ >≥ (1/2σ2) for all relevant probability
densities with any finite mean (with variance fixed at σ2). We continue in this
section with the notation Q̃ = 2(∆

√
ρ/
√

ρ) and note that D2Q̃ is in fact the correct
Q̃ = −(1/m)Q (which occasionally arises here as well, in a diffusion context).

1
2
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Next one defines the Kullback entropy K(θ, θ′) for a one parameter family
of probability densities ρθ so that the distance between any two densities can be
directly evaluated. Let pθ′ be the reference density and one writes

(1.9) K(θ, θ′) = K(ρθ|ρθ′) =
∫

ρθ(x)log
ρθ(x)
ρθ′(x)

dx

(note this is positive and sometimes one refers to Hc = −K as a conditional
entropy). If one takes θ′ = θ + ∆θ with ∆θ << 1 then under a number of
standard assumptions

(1.10) K(θ, θ + ∆θ) 
 1
2
Fθ · (∆θ)2

where Fθ denotes the Fisher information measure as in (1.7). More generally for
a two parameter family θ ∼ (θ1, θ2) of densities one has

(1.11) K(θ, + ∆θ) 
 1
2

∑
Fij∆θi∆θj ; Fij =

∫
ρθ

∂log(ρθ)
∂θi

∂log(ρθ)
∂θj

dx

For Gaussian densities at fixed σ with θ = α one has then K(α, α + ∆α) 

(∆α)2/2σ2. Various related formulas are derived and in particular one relates the
Shannon entropy for a coarse grained density ρB to the differential entropy of the
density ρ leading to a formula S(ρB) − S(ρ′B) 
 S(ρ) − S(ρ′). One considers
also spatial Markov diffusion processes in R with a diffusion coefficient D which
drive space-time inhomogeneous probability density densities ρ(x, t). For example
a free Brownian motion characterized by v = −u = −D∇log(ρ(x, t)) and diffusion
current j = v · ρ obeys the continuity equation ∂tρ = −∇j which is equivalent
to the heat equation. As in Sections 1.1.6-1.1.8 and 6.1 we have the important
relations

(1.12) Q̃ = 2D2 ∆ρ1/2

ρ1/2
=

1
2
u2 + D∇ · u; ∂tv + (v · ∇)v = −∇Q̃

A straightforward generalization refers to a diffusive dynamics of a mass m in a
conservative force field F = −∇V . The associated Smoluchowski diffusion with a
forward drift b(x) = F/mβ is analyzed in terms of a Fokker-Planck (FP) equation
∂tρ = D∆ρ − ∇(b · ρ) with initial data ρ0(x) = ρ(x, 0). For standard Brownian
motion in an external force field one has D = kBT/mβ where β ∼ friction, T is
temperature and kB is the Boltzman constant. With suitable hypotheses one has
the following compatibility equations in the form of hydrodynamical conservation
laws

(1.13) ∂tρ +∇(vρ) = 0; (∂t + v · ∇)v = ∇(Ω− Q̃)

where Ω(x) is the volume potential for the process, namely

(1.14) Ω =
1
2

(
F

mβ

)2

+ D∇ ·
(

F

mβ

)
Herev = b − u = (F/mβ) − D(∇ρ/ρ) defines the current velocity of Brownian
partices in an external force field. With a solution ρ of the FP equation one asso-
ciates a differential entropy S(t) = −

∫
ρlog(ρ)dx which is typically not conserved.

θ



242 6. INFORMATION AND ENTROPY

With boundary conditions on ρ, vρ, and bρ involving vanishing at boundaries or
at infinity one obtains

(1.15)
dS

dt
=
∫ [

ρ(∇ · b) + D
(∇ρ)2

ρ

]
dx

One emphasizes that it is not obvious whether the differential entropy grows,
decreases, or whatever. One can rewrite (1.15) in the forms

(1.16) DṠ = D < ∇ · b > + < u2 >= D < ∇ · v >;

DṠ =< v2 > − < b · v >= − < v · u >

where < > denotes the mean value relative to ρ. For b = F/mβ and j = vρ this
leads to a characteristic “power release” expression

(1.17)
dQ̃

dt
=

1
D

∫
1

mβ
F · jcx =

1
D

< b · v >

Again Q̇ can be positive (power removal) or negative (power absorption). In
thermodynamic terms one deals here with the time rate at which the mechanical
work per unit of mass is dissipated (removed from the reservoir) in the form of
heat in the course of the Smoluchowski diffusion process - i.e. kBT ˙̃Q =

∫
F · jdx

where T is the temperature of the bath. For b = 0 (no external forces) one has
DṠ = D2

∫
[(∇ρ)2/ρ]dx = D2F = −D2 < Q̃ > and one can also write

(1.18)
dS

dt
=
(

dS

dt

)
in

− dQ̃

dt

from (1.15) and (1.16) (here (Ṡ)in = (1/D) < v2 >.

One goes now to mean energy and the dynamics of Fisher information and
considers −ρ and s where v = ∇s as canonically conjugate fields; then one can
use variational calculus to derive the continuity and FP equations together with
the HJ type equations whose gradient gives the hydrodynamical conservation law

(1.19) ∂ts + (1/2)(∇s)2 − (Ω− Q̃) = 0

Here the mean Lagrangian is

(1.20) L = −
∫

ρ

[
∂ts +

1
2
(∇s)2 −

(
u2

2
+ Ω

)]
dx

The related Hamiltonian (mean energy of the diffusion process per unit of mass)
is

(1.21) H =
∫

ρ

[
1
2
(∇s)2 −

(
u2

2
+ Ω

)]
dx =

1
2
(< v2 > − < u2 >)− < Ω >

(note here v = ∇s satisfies v = b−u with u = D∇log(ρ) and we refer to Section 1.1
for clarification). One defines a thermodynamic force Fth = v/D associated with
the Smoluchowski diffusion with a corresponding potential −∇Ψ = kBTFth =
F − kBT∇log(ρ) so in the absence of external forces Fth = −∇log(ρ) = −(1/D)u.
The mean value of the thermodynamic force associates with the diffusion process
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an analogue of the Helmholz free energy < Ψ >=< V > −TSG where the di-
mensional version SG = kBS of information entropy has been introduced (it is a
configuration space analogue of the Gibbs entropy). Here the term < V > plays
the role of (mean) internal energy and assuming ρv vanishes at boundaries (or
infinity) one obtains the time rate of change of Helmholz free energy at a constant
temperature, namely
(1.22)

d

dt
< Ψ >= −kBT ˙̃Q− T ṠG ⇒

d

dt
< Ψ >= −(kBT )

(
dS

dt

)
in

= −(mβ) < v2 >

Now one can evaluate an expectation value of (1.19) which implies an identity
H = − < ∂ts >. Then using Ψ = V + kBT log(ρ) (with time independent V) one
arrives at Ψ̇ = (kBT/ρ)∇(vρ) and since vρ = 0 at integration boundaries we get
< Ψ̇ >= 0. Since v = −(1/mβ)∇Ψ define then s(x, t) = (1/mβ)Ψ(x, t) so that
< ∂ts >= 0 and hence H = 0 identically. This gives an interplay between the
mean energy and the information entropy production rate in the form

(1.23)
D

2

(
dS

dt

)
in

=
1
2

< v2 >=
∫

ρ

(
u2

2
+ Ω

)
dx ≥ 0

Next recalling (1.7)-(1.8) and setting F = D2Fα one obtains

(1.24) F =< v2 > −2 < Ω >≥ 0

where (1/2)F = − < Q̃ > holds for probability densities with finite mean and
variance. One also derives the following formulas (under suitable hypotheses)

(1.25) ∂t(ρv2) = −∇ · [(ρv3)]− 2ρv · ∇(Q̃− Ω);

d

dt
< Ω >=< v · ∇Ω >;

d

dt
F =

d

dt
[< v2 > −2 < Ω >] = −2 < v · ∇Q̃ >

Then since ∇Q̃ = ∇P/ρ where P = D2ρ∆log(ρ) (this is the real Q̃) the previous
equation takes the form Ḟ = −

∫
ρv∇Q̃dx = −

∫
v∇Pdx which is an analogue of

the familiar expression for the power release (dE/dt) = F · v with F = −∇V in
classical mechanics.

Next in [396] there is a discussion of differential entropy dynamics in quantum
theory. Assume one has an arbitrary continuous function V(x, t) with dimensions
of energy and consider the SE in the form i∂tψ = −D∆ψ + (V/2mD)ψ. Using
ψ = ρ1/2exp(is) with v = ∇s one arrives at the standard equations ∂tρ = −∇(vρ)
and ∂ts + (1/2)(∇s)2 + (Ω − Q̃) = 0 where Ω = V/m and Q̃ has the same form
as in (1.12) (note a sign change of the Ω − Q̃ term in comparison with (1.19)).
These two equations generate a Markovian diffusion type process the probability
density of which is propagated by a FP dynamics as before with drift b = v − u
(instead of v = b−u) where u = D∇log(ρ) is an osmotic velocity field. Repeating
the variational calculations one looks at (cf. (1.21))

(1.26) H =
∫

ρ

[
1
2
(∇s)2 +

(
u2

2
+ Ω

)]
dx
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Then

(1.27) H = (1/2)[< v2 > + < u2 >]+ < Ω >= − < ∂ts >

For time independent V one has H = − < ∂ts >= E = const. and the FP
equation propagates a probability density |ψ|2 = ρ whose differential entropy S

may nontrivially evolve in time. Maintaining the previous derivations involving
(Ṡ)in one arrives at

(1.28) (Ṡ)in =
2
D

[
E −

(
1
2
F+ < Ω >

)]
≥ 0

One recalls (1/2)F = − < Q̃ > > 0 so E− < Ω >≥ (1/2)F > 0. Hence the
localization measure F has a definite upper bound and the pertinent wave packet
cannot be localized too sharply. Note also that F = 2(E− < Ω >)− < v2 > in
general evolves in time (here E is a constant and Ω̇ = 0). Using the hydrodynamical
conservation laws one sees that the dynamics of Fisher information follows the rules

(1.29)
dF

dt
= 2 < v∇Q̃ >;

1
2
Ḟ = − d

dt

[
1
2

< v2 > + < ω >

]
However Ḟ =

∫
v∇Pdx where P = D2ρ∆log(ρ) and one interprets Ḟ as the mea-

sure of power transfer - keeping intact an overall mean energy H = E . We refer
to [396] for much more discussion and examples. We have concentrated on topics
where the quantum potential appears in some form.

1.1. INFORMATION DYNAMICS. We go here to [173, 174, 175] and
consider the idea of introducing some kind of dynamics in a reasoning process
(Fisher information can apparently be linked to semantics - cf. [907, 970]). In
[173, 174] one looks at the Fisher metric defined by

(1.30) gµν =
∫

X

d4xpθ(x)
(

1
pθ(x)

∂pθ(x)
∂θµ

)(
1

pθ(x)

)(
∂pθ(x)
∂θν

)
and constructs a Riemannian geometry via

(1.31) Γσ
λν =

1
2
gνσ

(
∂gµν

∂θλ
+

∂gλν

∂θµ
− ∂gµλ

∂θν

)
;

Rλ
µνκ =

∂Γλ
µν

∂θκ
−

∂Γλ
µκ

∂θν
+ Γη

µνΓλ
κη − Γη

µκΓλ
νη

Then the Ricci tensor is Rµκ = Rλ
µλκ and the curvature scalar is R = gµκRµκ.

The dynamics associated with this metric can then be described via functionals

(1.32) J [gµν ] = − 1
16π

∫ √
g(θ)R(θ)d4θ

leading upon variation in gµν to equations

(1.33) Rµν(θ)− 1
2
gµν(θ)R(θ) = 0

Contracting with gµν gives then the Einstein equations Rµν(θ) = 0 (since R = 0).
J is also invariant under θ → θ + ε(θ) and variation here plus contraction leads
to a contracted Bianchi identity. Constraints can be built in by adding terms
(1/2)

∫ √
gTµνgµνd4θ to J [gµν ]. If one is fixed on a given probability distribution
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p(x) with variable θµ attached to give pθ(x) then this could conceivably describe
some gravitational metric based on quantum fluctuations for example. As exam-
ples a Euclidean metric is produced in 3-space via Gaussian p(x) and complex
Gaussians will give a Lorentz metric in 4-space. However it seems to be very re-
strictive to have a fixed p(x) as the basis; it would be nice if one could vary the
probability distribution in some more general manner and study the corresponding
Fisher metrics (and this seems eminently doable with a Fisher metric over a space
of probability distributions).

1.2. INFORMATION MEASURES FOR QM. We follow here [749]
and derive the SE within an information theoretic framework somewhat different
from the exact uncertainty principle of Hall and Reginatto (cf. Sections 1.1, 3.1,
and 4.7). Begin with a SE for N particles in d + 1 dimensions of the form i�ψt =
[−(�2/2m)gij∂i∂j + V ]ψ with gij = δij/m[i] where i, j = 1, · · · , dN and [i] is the
smallest integer ≥ i/d. Use the Madelung transformation ψ =

√
ρexp(iS/�) (cf.

[614]) to get
(1.34)

∂tS +
gij

2
∂iS∂jS + V − �2

8
gij

(
2∂i∂jρ

ρ
− ∂iρ∂jρ

ρ2

)
= 0; ∂tρ + gij∂i(ρ∂jS) = 0

These equations can be obtained from a variational principle, minimizing the ac-
tion

(1.35) Φ =
∫

ρ
[
∂tS +

gij

2
∂iS∂jS + V

]
dxNddt +

�2

8
IF ;

IF =
∫

dxNddtgijρ(∂ilog(ρ))(∂j log(ρ))

Here IF resembles the Fisher information of [369] whose inverse sets a lower bound
on the variance of the probabiliy distribution ρ via the Cramer-Rao inequaliity (see
Section 1.1). (1.35) was used to derive the SE through a procedure analogous to
the principle of maximum entropy in [807, 806] (cf. also Section 1.1). However
the method of [806] does not explain a priori the form of information measure that
should be used; i.e. why must the Fisher information be minimized rather than
something else. The aim of [749] is to construct permissible information measures
I. Thus the relevant action is

(1.36) A =
∫

ρ
[
∂tS +

gij

2
∂iS∂jkS + V

]
dxNddt + λI

with λ a Lagrange multiplier. Varying this action will lead in general to a nonlinear
SE

(1.37) i�∂tψ =
[
−�2

2
gij∂i∂j + V

]
ψ + F (ψ, ψ†)ψ

In order to have deformations of the linear theory that permit maximal preserva-
tion of the usual interpretation of the wave function one considers the following
conditions:

(1) I should be real valued and positive definite for all ρ = ψ†ψ and should
be independent of V.
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(2) I should be of the form I =
∫

dxNddtρH(ρ) where H is a function of
ρ(x, t) and its spatial derivatives. This will insure the weak superposition
principle in the equations of motion.

(3) H should be invariant under scaling, i.e. H(λρ) = H(ρ) which allows
solutions of (1.37) to be renormalized, etc.

(4) H should be separable for the case of two independent subsystems for
which the wave function factorizes, i.e. H(ρ1ρ2) = H(ρ1) + H(ρ2).

(5) H should be Galilean invariant.
(6) The action should not contain derivatives beyond second order (Absence

of higher order derivatives or AHD condition). This will insure that the
multiplier λ, and hence Planck’s constant, will be the only new parame-
ter that is required in making the transition from classical to quantum
mechanics.

The conditions 2-6 are already satisfied by the classical part of the action so it is
quite minimalist to require them also of I. The homogeneity requirement 3 cannot
be satisfied if H depends only on ρ; it must contain derivatives and the AHD and
rotational invariance conditions imply then that H = gij(U1∂iU2∂jU3 +V1∂i∂jV2)
where the Ui, Vi are functions of ρ. One can write then

(1.38) H = gij

(
∂iρ∂jρ

ρ2
[U1U

′
2U

′
3ρ

2 + V1V
′′
2 ρ2] +

∂i∂jρ

ρ
[V1V

′
2ρ]

)
where the prime denotes a derivative with respect to ρ. Scaling conditions plus
positivity and universality then lead to

(1.39) I =
∫

dtdxNdρgij
∂iρ∂jρ

ρ2

Consequently the unique solution of the conditions 1-6 is the Fisher information
measure and one arrives at the linear SE since the Lagrange multiplier must then
have the dimension of action2 thereby introducing the Planck constant. Note
condition 4 was not used but it will be useful below. Further one notes that the
AHD condition ensures that within the information theoretic approach the SE
is the unique single parameter extension of the classical HJ equations. One also
argues that a different choice of metric in the information term would in fact lead
back to the original gij after a nonlinear gauge transformation; this suggests that a
nonlinear SE is not automatically pathological. Further argument also shows that
I should not depend on S. The main difference between this and the Hall-Reginatto
method is to replace the exact uncertainly principle by condition 3.

1.3. PHASE TRANSITIONS. Referring here to [512] the introduction
of a metric onto the space of parameters in models in statistical mechanics gives
an alternative perspective on their phase structure. In fact the scalar curvature
R plays a central role where for a flat geometry R = 0 (noninteracting system)
while R diverges at the critical point of an interacting one. Thus models are
characterized by certain sets of parameters and given a probability distribution
p(x|θ) and a sample xi the object is to estimate the parameter θ. This can be
done by maximizing the so-called likelihood function L(θ) =

∏n
1 p(xi|θ) or its
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logarithm. Thus one writes
(1.40)

log(L(θ)) =
n∑
1

log(p(xi|θ)); U(θ) =
d log(L(θ))

dθ
; V ar[U(θ)] = −

[
−d2log(L(θ))

dθ2

]
The last term V ar[U(θ))] is called the expected or Fisher information and we note
that it is the same as (1.30) (see below) and in multidimensional form is expressed
via

(1.41) Gij(θ) = −E

[
∂2log(p(x|θ))

∂θi∂θj

]
= −

∫
p(x|θ)∂2log(p(x|θ))

∂θi∂θj
dx

In generic statistical-physics models one often has two parameters β (inverse tem-
perature) and h (external field); in this case the Fisher-Rao metric is given by
Gij = ∂i∂jf where f is the reduced free energy per site and this leads to a scalar
curvature

(1.42) R = − 1
2G2

∣∣∣∣∣∣
∂2

βf ∂β∂hf ∂2
hf

∂3
βf ∂2

β∂hf ∂β∂2
hf

∂2
β∂hf ∂β∂2

hf ∂3
hf

∣∣∣∣∣∣
where G = det(Gij). In some sense R measures the complexity of the system since
for R = 0 the system is not interacting and (in all known systems) the curvature
diverges at, and only at, a phase transition point. As an example under standard
scaling assumptions one can anticipate the behavior of R near a second order
critical point. Set t = 1− (β/βc) and consider

(1.43) f(β, h) = λ−1f(tλat , hλah) = t1/atψ(ht−ah/at); at =
1
νd

; ah =
βδ

νd

at, ah are the scaling dimensions for the energy and spin operators and d is the
space dimension. For the scalar curvature there results

(1.44) R = − 1
2G2

∣∣∣∣∣∣
t(1/at)−2 0 t(1/at)−2(ah/at)

t(1/at)−3 0 t(1/at)−2(ah/at)−1

0 t(1/at)−2(ah/at)−1 t(1/at)−3(ah/at)

∣∣∣∣∣∣ ;
G ∼ t(2/at)+2(ah/at)−2 ⇒ R ∼ ξd ∼ |β − βc|α−2

where hyperscaling (νd = 2 − α) is assumed and ξ is the correlation length. We
refer to [512] for more details, examples, and references.

1.4. FISHER INFORMATION AND HAMILTON’S EQUATIONS.
Going to [755] one shows that the mathematical form of the Fisher information
I for a Gibb’s canonical probability distribution incorporates important features
of the intrinsic structure of classical mechanics and has a universal form in terms
of forces and accelerations (i.e. one that is valid for all Hamiltonians of the form
T + V ). First one has shown that the Fisher information measure provides a
powerful variational principle, that of extreme information, which yields most of
the canonical Lagrangians of theoretical physics. In addition I provides an inter-
esting characterization of the “arrow of time”, alternative to the one associated
with the Boltzman entropy (cf. [776, 777]). Following [381, 384] one consid-
ers a (θ, z) “scenario” in which we deal with a system specified by a physical
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parameter θ while z is a stochastic variable (z ∈ RM ) and fθ(z) is a probabil-
ity density for z. One makes a measurement of z and has to infer θ, calling
the resulting estimate θ̃ = θ̃(z). Estimation theory states that the best possi-
ble estimator θ̃(z), after a large number of samples, suffers a mean-square error
e2 from θ that obeys a relationship involving Fisher’s I, namely Ie2 = 1, where
I(θ) =

∫
dzfθ(z)[∂log(fθ(z))/∂θ]2 (only unbiased estimators with < θ̃ >= θ are

in competition). The result here is that Ie2 ≥ 1 (Cramer-Rao bound). A case
of great importance here concerns shift invariant distribution functions where the
form does not change under θ displacements and one can write

(1.45) I =
∫

dzf(z)
(

∂log(f(z))
∂z

)2

If one is dealing with phase space where z is a M=2N dimensional vector with co-
ordinates r and p then I(z) = I(r)+I(p) (cf. [755]). Now assume that one wishes
to describe a classical system of N identical particles of mass m with Hamiltonian

(1.46) H = T + V =
N∑
1

p2
i

2m
+

N∑
1

V (ri)

This is a simple situation but the analysis is not limited to such systems. Assume
also that the system is in equilibrium at temperature T so that in the canonical
ensemble the probability density is

(1.47) ρ(r, p) =
e−βH(r,p)

Z
; Z =

∫
d3Nrd3Np

N !h3N
e−βH(r,p)

(here for h an elementary cell in phase space one writes dτ = d3Nrd3Np/(N !h3N ,
β = 1/kT with k the Boltzman constant, and Z is the partition function). Then
from Hamilton’s equations ∂pH = ṙ and ∂rH = −ṗ there results

(1.48) −kT
∂log(ρ(r, p))

∂p
= ṙ; −kT

∂log(ρ(r, p))
∂r

= −ṗ

One can now write the Fisher information measure in the form
(1.49)

Iτ =
∫

d3Nrd3Np

N !h3N
ρ(r, p)A(r, p); A = a

(
∂log(ρ(r, p))

∂p

)2

+ b

(
∂log(ρ(r, p))

∂r

)2

One needs two coefficients for dimensional balance (cf. [755]). One notes that

(1.50)
∂log(ρ(r, p))

∂p
= −β

∂H

∂p
;

∂log(ρ(r, p))
∂r

= −β
∂H

∂r

leading to the Fisher information in the form

(1.51) (kT )2Iτ = a

〈(
∂H

∂p

)2
〉

+ b

〈(
∂H

∂r

)2
〉
⇒ Iτ = β2[a < ṙ2 > +b < ṗ2 >]

This gives the universal Fisher form for any Hamiltonian of the form (1.46) and
we refer to [607] for connections to kinetic theory. Many other interesting results
on Fisher can be found in [381, 382, 755].
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1.5. UNCERTAINTY AND FLUCTUATIONS. We go first to [38] and
recall the idea of a phase space distribution in the form (♣) µ(p, q) =< z|ρ|z >
where ρ is the density matrix and |z > denotes coherent states (cf. [191, 757]
for coherent states). The chosen measure of uncertainty here is the Shannon
information

(1.52) I = −
∫

dpdq

2π�
µ(p, q)log(µ(p, q))

The uncertainty principle manifests itself via the inequality (♠) I ≥ 1 with equality
if and only if ρ is a coherent state (cf. [609, 987]). In [38] one wants to generalize
this to include the effects of thermal fluctuations in nonequilibrium systems and
we sketch some of the ideas at least for equilibrium systems. There are in general
three contributions to the uncertainty:

(1) The quantum mechanical uncertainty (quantum fluctuations) which is
not dependent on the dynamics.

(2) The uncertainty due to spreading or reassembly of the wave packet. This
is a dynamical effect and it may increase or decrease the uncertainty.

(3) The uncertainty due to the coupling to a thermal environment (diffusion
and dissipation).

The time evolution It of I is studied for nonequilibrium systems and it is shown
to generally settle down to monotone increase. Imin

t is a measure of the amount
of quantum and thermal noise the system must suffer after a nonunitary evolution
for time t (we do not deal with this here but refer to [38] for the nonequilibrium
situation where the system decomposes into a distinguished system S plus the
rest, referred to as the environment; the resulting time evolution of ρ is then
nonunitary). In any event the lower bound Imin

t includes the effects of 1 and 3
but avoids 2.

One recalls the Shannon information (discussed earlier)

(1.53) I(S) = −
N∑
1

pilog(pi); 0 ≤ I(S) ≤ log(N)

This is often referred to as entropy but here the word entropy is reserved for
the vonNeumann entropy. In a similar manner, for continuous distributions (X a
random variable with probability density p(x) and

∫
p(x)dx = 1), the information

of X is defined as

(1.54) I(X) = −
∫

dxp(x)log(p(x))

One emphasize that p(x) here is a density (so it may be greater that 1 and I(X)
may be negative). However it retains its utility as a measure of uncertainty and
e.g. for a Gaussian

(1.55) p(x) =
1

[2π(∆x)2]1/2
exp

(
− (x− x0)2

2(∆x)2

)
; I(X) = log

(
2πe(∆x)2

)1/2

Thus I(X) is unbounded from below and goes to −∞ as ∆x→ 0 and p(x) goes to
a delta function. I(X) is also unbounded from above but if the variance is fixed
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then I(X) is maximized by the Gaussian distribution (1.55). Hence one has

(1.56) I(X) ≤ log
(
2πe(∆x)2

)1/2

The generalization to more than one variable is straightforward, e.g.

(1.57) I(X,Y ) = −
∫

dxdyp(x, y)log(p(x, y)) ⇒ I(X,Y ) ≤ I(X) + I(Y )

where e.g. I(X) =
∫

dyp(x, y). It is useful to introduce QM phase space distribu-
tions of the form
(1.58)

µ(p, q) =< z|ρ|z >; < x|z >=< x|p, q >=
(

1
2πσ2

q

)1/4

exp

(
− (x− q)2

4σ2
q

+ ipx

)
Here < x|z > is a coherent state with σqσp = (1/2)� and there is a normalization∫

(dpdq/2π�)µ(p, q) = 1. One can also show that

(1.59) µ(p, q) = 2
∫

dp′dq′exp

(
− (p− p′)2

2σ2
p

− (q − q′)2

2σ2
q

)
Wρ(p′, q′);

Wρ(p, q) =
1

2π�

∫
dξe−(i/�)pξρ(q + (1/2)ξ, q − (1/2)ξ)

(Wigner function - cf. [191, 192]). One is interested in the extent to which
µ(p, q) is peaked about some region in phase space and the Shannon information
is a natural measure of the extent to which a probability distribution is peaked.
Thus one takes as a measure of uncertainty the information

(1.60) I(P,Q) = −
∫

dpdq

2π�
µ(p, q)log(µ(p, q))

One expects there to be a lower bound for I and it should be achieved on a coherent
state and this was in fact proved (cf. [609, 987]) in the form I(P,Q) ≥ 1 with
equality if and only if ρ is the density matrix of a coherent state |z′ >< z′|. Further

(1.61) log
( e

�
∆µq∆µp

)
≥ I(Q) + I(P ) ≥ I(P,Q)

The variances here have the form

(1.62) (∆µq)2 = (∆ρq)2 + σ2
q ; (∆µp)2 = (∆ρp)2 + σ2

p

where ∆ρ denotes the QM variance and hence

(1.63)
(
(∆ρq)2 + σ2

q

) (
(∆ρp)2 + σ2

p

)
≥ �2

Minimizing (1.63) over σq (and recalling that σqσp = (1/2)�) one obtains the
standard uncertainty relation ∆x∆p ≥ (�/2). Now suppose one has a genuinely
mixed state so that

(1.64) ρ =
∑

n

pn|n >< n|; pn < 1; µ(p, q) =
∑

pn| < z|n > |2
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The information of (1.64) will always satisfy I(P,Q) ≥ 1 but this is a very low
lower bound; indeed from the inequality

(1.65) −
(∫

dxf(x)g(x)
)

log

(∫
dyf(y)g(y)

)
≥ −

∫
dxg(x)g(x)log(x)

we have
(1.66)

I ≥ −
∫

dpdq

2π�

∑
n

| < z|n > |2pnlog(pn) = −
∑

pnlog(pn) = −Tr(ρlog(ρ)) ≡ S[ρ]

Thus I is bounded from below by the vonNeumann entropy S[ρ] and this is a virtue
of the chosen measure of uncertainty. One sees that I is a useful measure of both
quantum and thermal fluctuations. It has a lower bound expressing the effect of
quantum fluctuations which is connected to entropy and this in turn is a measure
of thermal fluctuations.

Consider now the situation of thermal equilibrium. Let the density matrix be
thermal, ρ = Z−1exp(−βH) where Z = Tr(e−βH) is the partition function and
β = 1/kT . Then

(1.67) < z|ρ|z >=
1
Z

∑
e−βEn | < z|n > |2

where |n > are energy eigenstates with eigenvalue En. For simplicity look at a
harmonic oscillator for which

(1.68) H =
1
2

(
p2

M
+ Mω2q2

)
; | < z|n > |2 =

|z|2n

n!
e−|z|2 ; En = �ω(n + (1/2))

Here z = (1/2)[(q/σq) + i(p/σp)] where σqσq = (1/2)� and σq = (�/2Mω)1/2 (cf.
[191, 559, 757] for coherent states). There results

(1.69) µ(q, p) =< z|ρ|z >=
(
1− e−β�ω

)
exp

(
−(1− e−β�ω)|z|2

)
The information (1.60) is then (•) I = 1 − log(1 − e−β�ω) which is exactly what
one expects; as T → 0 one has β → ∞ and the uncertainty reduces to the Lieb-
Wehrl result I(P,Q) ≥ 1 expressing purely quantum fluctuations. For nonzero
temperature however the uncertainty is larger tending to the value −log(β�ω) as
T → ∞ which expresses purely thermal fluctuations. It is interesting to compare
(•) with the entropy S = −Tr(ρlog(ρ)). Here the partition function is Z =
[2Sinh((1/2)β�ω)]−1 and the entropy is then S = −β(∂β(log(Z)) + log(Z) or

(1.70) S = −log[2Sinh((1/2)β�ω)] + (1/2)β�ωCoth[(1/2)β�ω]

For large T one has then S 
 −log(β�ω) coinciding with I but S → 0 as T → 0
while I goes to a nontrivial lower bound. Hence one sees that I is a useful measure
of uncertainty in both the quantum and thermal regimes. We refer also to [4]
where an information theoretic uncertainty relation including the effects of thermal
fluctuations at thermal equilibrium has been derived using thermofield dynamics
(cf. [950]); their information theoretic measure is however different than that in
[38]. On goes next to non-equilibrium systems and proves for linear systems that,
for each t, I has a lower bound Imin

t over all possible initial states. It coincides
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with the Lieb-Wehrl bound in the absence of an environment and is related to the
vonNeumann entropy in the long time limit. We refer to [38] for details.

2. A TOUCH OF CHAOS

For quantum chaos we refer to [33, 96, 97, 185, 218, 282, 359, 435, 484,
491, 517, 518, 584, 659, 747, 787, 936] and begin here with [747]. Chaos
is quantitatively measured by the Lyapunov spectrum of characteristic exponents
which represent the principal rates of orbit divergence in phase space, or alter-
natively by the Kolmogorov-Sinai (KS) invariant, which quantifies the rate of
information production by the dynamical system. Chaos is conspicuously absent
in finite quantum systems but the chaotic nature of a given classical Hamiltonian
produces certain characteristic features in the dynamical behavior of its quantized
version; these features are referred to as quantum chaos (cf. [218, 435]). They in-
clude short term instabilities and diffusive behavior versus dynamical localization
and other effects. One is concerned here with an approach to the information dy-
namics of the quantum-classical transition based on the HJ formalism with the KS
invariant playing a central role. The extension to the quantum domain is accom-
plished via the orbits introduced by Madelung and Bohm (cf. [129, 614]); these
are natural extensions of the classical phase space flow to QM and provide the
required bridge across the transition. One striking result is that the quantum KS
invariant for a given Madelung-Bohm (MB) orbit is equal to the mean decay rate
of the probability density along the orbit. Further one shows that the quantum
KS invariant averaged over the ensemble of MB orbits equals the mean growth
rate of configuration space information and a general and rigorous argument is
given for the conjecture that the standard quantum-classical correspondence (or
the classical limit) breaks down for classically chaotic Hamiltonians.

We give only a sketch of results here. Thus consider a classical system of N
degrees of freedom described by canonical variables (qi, pi) with 1 ≤ i ≤ N and
denote the Hamiltonian as H(q,p, t) with Hamilton principal function S(q, t,p0)
where p0 being the initial momenta. In matrix form Hamilton’s equations are
ξ̇ = J∇ξH(ξ, t) where ξ stands for the 2N dimensional phase space vector (q,p).
Here J is a real antisymmetric matrix of order 2N with a 2 ⊗ N block form
(0N , IN ,−IN , 0N ) which is a listing of blocks in the order (11, 12, 21, 22). The
tangent dynamics of the system is described by the 2N × 2N nonsingular matrix
Tµν(t, ξ0) = ∂ξµ(t, ξ0)/∂ξ0ν (the sensitivity matrix) where ξ(t, ξ0) is the trajectory
starting from ξ0 at time t0. One can in fact write (S̃ ≡ ST - matrix transpose)

(2.1) T = (S−1
p0q,−Sp0qSp0p0 , SqqS−1

p0q, S̃p0q − SqqS−1
p0qSp0p0)

where (Sp0q)ij = ∂2S/∂qj
∂p0i. It is shown that one can write T in an upper trian-

gular block form Γ = Ω(Θ)T where Ω(Θ) = (cos(Θ),−Sin(Θ), Sin(Θ), Cos(Θ))
and −σ = Tan(Θ) = −Sqq. Here Θ is a real symmetric matrix of order N while
Ω is orthogonal and symplectic (symplectic phase matrix). The upper triangular
form (Γ11,Γ12, 0N ,Γ22) of Γ satisfies Γ−1

11 = Γ̃22 and the upper half of the Lyapunov
spectrum is obtained from the singular values of Γ11 (see [747]). In particular the
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Kolmogorov-Sinai (KS) entropy is given via

(2.2) k = limt→∞log[det(Γ11)]/t

For illustration consider the standard form H = p2/2+V (q, t) with N-dimensional
vectors q, p. Then

(2.3) k =< Tr(σ) >p.v.; < f >= limt→∞
1
t

∫ t

0

f(t′)dt′

where p.v. stipulates a principal value evaluation (σ will have simple pole behavior
near singularities and the principal value contribution vanishes). Since Tr(σ) =
∇2

qS along the orbit (2.3) simply states that the KS invariant equals the time
average of the Laplacian of the action along the orbit. Now the MB formalism
associates a phase space flow with a quantum system via

(2.4) ψ = exp[iS(x, t)/� + R(x, t)]; q̇(t,q0,p0) = p = ∇S[q, t]

It can be verified that the expectation value of any observable in the state ψ is
given by its average over the ensemble of orbits thus defined (e.g. Ehrenfest’s
equations arise in this manner). The correspondence thus allows us to define the
quantum KS invariant for a given orbit as

(2.5) k =< ∇2S >p.v.

(the averaging process is with respect to the time along the MB orbit to which S
is restricted). Now intuitively one would expect that orbits neighboring a hypo-
thetical chaotic orbit in the ensemble diverge from it on the average thus causing
the orbit density along the chaotic orbit to decrease with a mean rate related to
k. This is fully realized here as one sees by considering the equation of motion for
R(x, t) as inherited from the SE, namely ∂tR+∇R ·∇S = −(1/2)∇2S. The char-
acteristic curves for this equation are the MB orbits so that it takes the following
form along these orbits;

(2.6)
dR

dt
= −1

2
∇2S ⇒ k = −2

〈
dR

dt

〉
= −

〈
d log(|ψ|2)

dt

〉
p.v.

This says that the quantum KS invariant for a given orbit is the mean decay rate
of the probability density along the orbit. Comparing this to a classical system
where k �= 0 while k = 0 for the quantum version one sees that the classical limit
cannot hold for chaotic Hamiltonians and since chaotic classical Hamiltonians are
certainly more common than regular ones the idea of classical limit is not a reliable
test for quantum systems. Finally let k̄ be the MB ensemble average, which is the
same as the QM expectation value, leading to

(2.7) k̄ = limt→∞
1
t

∫
dq|ψ|2log(|ψ|2)

which is an information entropy measure. The discussion here is very incomplete
but should motivate further investigation and we refer to [747] for more detail (cf.
also [976, 977] involving chaos, fractals, and entropy.
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2.1. CHAOS AND THE QUANTUM POTENTIAL. The paper [745]
offers an interesting perspective on the quantum potential. Thus consider a system
of n particles with the SE

(2.8) i�∂tψ =

[
n∑
1

(
−�2

2mi

)
∇2

i + V

]
ψ; ∇i =

(
∂

∂xi
,

∂

∂yi
,

∂

∂zi

)
(here xi = (xi, yi, zi)). Set ψ = Rexp[i(S/�)] and there results as usual

(2.9) ∂tS +
n∑
1

(∇iS)2(2mi)−1 + Q + V = 0; ∂tR
2 +

n∑
1

∇i ·
(

R2∇iS

mi

)
= 0

where Q = −
∑n

1 (�2/2miR)∇2
i R. Now just as the causal form of the HJ equation

contains the additional term Q so the causal form of Newton’s second law contains
Q as follows

(2.10) Ṗi = −∇iV −∇iQ; P =
n∑
1

Pi; Ṗ =
dP

dt
= −

n∑
1

∇iV −
n∑
1

∇iQ

The author cites a number of curious and conflicting statements in the litera-
ture concerning the effect of the quantum potential on Bohmian trajectories, for
clarification of which he observes that for an isolated system one has

(2.11) −
∑

∇iV = 0; Ṗ = 0; −
∑

∇iQ = −
∑

Fi = 0

Thus the sum of all the quantum forces is zero so Fi =
∑n

j �=i(−Fj). Thus the net
quantum force on a given particle is the result of all the other particles exerting
force on this particle via the intermediary of the quantum potential. This then is
his explanation for the guidance role of the wave function.

Next it is noted that removing Q from the HJ equation is equivalent to adding
the term

(2.12)
(

�2

2m

)
exp(iS/�)∇2R =

(
�2

2m

)
|ψ|−1ψ∇2|ψ| = −Qψ

to the SE so that the effective Hamiltonian becomes

(2.13) Heff = −
(

�2

2m

)
∇2 + V +

(
�2

2m

)
|ψ|−1∇2|ψ|

Since Heff = Heff (ψ) depends on ψ the superposition principle no longer applies.
When φ �= ψ we have

(2.14)
∫

(φ∗Heffψ−ψHeffφ∗)dτ =
(

�2

2m

)∫
φ∗ψ[|ψ|−1∇2|ψ|−|φ|−1∇2|φ|] �= 0

so Heff is not Hermitian. Hence the time development operator exp[(i/�)Heff t]
is not unitary and the time dependent SE is a nonunitary flow. Then since
i�∂t(ψ∗ψ) = ψ∗Heffψ − ψHeffψ∗ one has

(2.15) ∂t

∫
|ψ − φ|2dτ =

(
�2

2m

)∫
i[ψ∗φ− φ∗ψ][|ψ|−1∇2|ψ| − |φ|−1|φ|]dτ �= 0
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Consider then the case where two initial conditions for the time dependent SE
differ only infinitesimally. As time progresses the two corresponding wave func-
tions can become quite different, indicating the possibity of deterministic chaos,
and this is a consequence of Heff being a functional of the state upon which it is
acting. If the term (�2/2m)|ψ|−1∇2|ψ| is removed from (2.13) one is left with a
Hermitian Hamiltonian and the normalization of (ψ − φ) is time independent, so
there can be no deterministic chaos. Thus in particular Q acts as a constraining
force preventing deterministic chaos (cf. also [623]).

There are many different aspects of quantum chaos and
the perspective of [?] just mentioned does not deal with everything covered in
the references already cited (cf. also [633, 983, 1000, 1001] for additional ref-
erencers). We are not expert enough to attempt any kind of in depth coverage
but extract here briefly from a few papers. First from [1000] one notes that the
dBB theory of quantum motion provides motion in deterministic orbits under the
influence of the quantum potential. This quantum potential can be very intricate
because it generates wave interferences and further numerical work has shown the
presence of chaos and complex behavior of quantum trajectories in various systems
(cf. [746]). In [1000] one indicates that movement of the zeros of the wave func-
tion (called vortices) implies chaos in the dynamics of quantum trajectories. These
vortices result from wave function interferences and have no classical explanation.
In systems without magnetic fields the bulk vorticity ∇ × v in the probability
fluid is determined by points where the phase S is singular (which can occur when
the wave function vanishes). Due to singlevaluedness of the wave function the
circulation Γ =

∫
C

ṙdr = (2πn/m) around a closed contour C encircling a vortex
is quantized with n an integer and the velocity must diverge as one approaches a
vortex. This leads to a universal mechanism producing chaotic behavior of quan-
tum trajectories (cf. also [746, 1001]).

Next in [983] one speaks of the edge of quantum chaos (the border between
chaotic and non-chaotic regions) where the Lyapunov exponent goes to zero; it is
then replaced by a generalized Lyapunov coefficient describing power-law rather
than exponential divergence of classical trajectories. In [983] one characterizes
quantum chaos by comparing the evolution of an initially chosen state under the
chaotic dynamics with the same state evolved under a perturbed dynamics (cf.
[761]). When the initial state is in a regular region of a mixed system (one with
regular and chaotic regions) the overlap remains close to one; however when the
initial state is in a chaotic zone the overlap decay is exponential. It is shown that
at the edge of quantum chaos there is a region of polynomial overlap decay. Here
the overlap is defined as O(t) = | < ψu(t)|ψp(t) > | where ψuis the state evolved
under the unperturbed system operator and ψp is the state evolved under the per-
turbed operator.

In various papers (e.g. [185, 484, 485, 517, 518, 584]) one characterizes

REMARK 6.2.1.



256 6. INFORMATION AND ENTROPY

quantum chaos via the quantum action. This is defined via

(2.16) S̃[x] =
∫

dt
m̃

2
ẋ2 − Ṽ (x)

for a given classical action

(2.17) S[x] =
∫

dt
m

2
ẋ2 − V (x)

so that the QM transition amplitude is

(2.18) G(xf , tf ;xi, ti) = Z̃exp

[
i

�
Σ̃
∣∣∣+ xi, ti

xf ,tf

]
;

Σ̃
∣∣∣xf ,tf

xi,ti

= S̃[x̃cl]
∣∣∣xf ,tf

xi,ti

=
∫ tf

ti

dt
m̃

2
˙̃x2
cl − Ṽ )x̃cl)

∣∣∣+ xi
xf

where x̃cl is the classical path corresponding to the action S̃. One requires here 2-
point boundary conditions x̃cl(t = ti) = xi and x̃cl(t = tf ) = xf and Z̃ stands for
a dimensionful normalisation factor. The parameters of the quantum action (i.e.
mass and potential) are independent of the boundary points but depend on the
transition time T = tf − ti. A general existence proof is lacking but such quantum
actions exist in many interesting cases. Then quantum chaos is defined as follows.
Given a classical system with action S the corresponding quantum system displays
quantum chaos if the corresponding quantum action S̃ in the asymptotic regime
T →∞ generates a chaotic phase space.

3. GENERALIZED THERMOSTATISTICS

We refer to [38, 262, 382, 384, 694, 696, 755, 778, 779] for discussion
of various entropies based on deformed exponential functions (generalizations of
the Boltzman-Gibbs formalism for equilibrium statistical physics), the entropies
of Beck-Cohen, Kaniadakis, Renyi, Tsallis, etc., maximum entropy ideas, escort
density operators, and a host of other matters in generalized theormstatistics. We
sketch here first a few ideas following the third paper in [694]. Thus a model of
thermostatistics is described by a density of states ρ(E) and a probability distri-
bution p(E) and for a system in thermal equilibrium at temperature T one has

(3.1) p(E) =
1

Z(T )
e−E/T ; Z(T ) =

∫
dEρ(E)e−E/T

(Boltzman’s constant is set equal to one here). Thermal averages are defined
via < f >=

∫
dEρ(E)p(E)f(E) (this is a simplified treatment with T not made

explicit - i.e. p(E) ∼ p(E, T )). A microscopic model of thermostatistics is specified
via an energy functional H(γ) over phase space Γ which is the set of all possible
microstates. Using ρ(E)dE = dγ one can write

(3.2) < f >=
∫

Γ

dγp(γ)f(γ); p(γ) =
e−H(γ)/T )

Z(T )
; Z(T ) =

∫
Γ

dγe−H(γ)/T )

In the quantum case the integration is replaced by a trace to obtain

(3.3) < f >=
1

Z(T )
Tr exp(−H/T )f ; Z(T ) = Tr exp(−H/T )
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In relevant examples of thermostatistics the density of states ρ(E) increases as
a power law ρ(E) ∼ EαN with N the number of particles and α > 0. There is
an energy - entropy balance where the increase of density of states ρ(E) compen-
sates for the exponential decrease of probability density p(E) with a maximum of
ρ(E)p(E) reached at some macroscopic energy far above the ground state energy.
One can write ρ(E)p(E) = (1/Z)exp(log(ρ(E))− E/T ) with the argument of the
exponential maximal when E satisfies

(3.4)
1

ρ(E)
ρ′(E) =

1
T

where ρ′(E) is the derivative dρ/dE. If ρ(E) ∼ EαN then E ∼ αNT follows which
is the equipartition theorem. The form of the theory here indicaters that the actual
form of the probability distribution is not very essential; alternative expressions for
p(E) are acceptable provided they satisfy the equipartition theorem and reproduce
thermodynamics. One begins here by generalizing the equipartition result (3.4)
and postulates the existence of an increasing positive function φ(x) defined for
x ≥ 0 such that (•) (1/T ) = −[p′(E)/φ(p(E))] holds for all E and T. Then the
equation for the maximum of ρ(E)p(E) becomes

(3.5) 0 =
d

dE
[ρ(E)p(E)] = ρ′(E)p(E)− 1

T
ρ(E)φ(p(E)) ≡ ρ′(E)

ρ(E)
=

1
T

φ(p(E))
p(E)

The Boltzman-Gibbs case is recovered when φ(x) = x. Now (•) fixes the form of
the probability distribution p(E); to see this introduce a function logφ(x) via

(3.6) logφ(x) =
∫ x

1

1
φ(y)

dy

The inverse is expφ(x) and from the identity 1 = exp′φ(logφ(x))log′φ(x) there results
(�) φ(x) = exp′φ(logφ(x)). Hence (•) can be written as

(3.7) p′(E) = − 1
T

exp′φ[logφ(p(E))] ⇒ p(E) = expφ(Gφ(T )− (E/T ))

The function Gφ(T ) is the integration constant and it must be chosen so that
1 =

∫
dEρ(E)p(E) is satisfied. The formula (3.7) resembles the Boltzman-Gibbs

distribution but the normalization constant appears inside the function expφ(x);
for φ(x) = x one has then Gφ(T ) = −log(Z(T )).

In general it is difficult to determine Gφ(T ) but an expression for its temper-
ature derivative can be obtained via escort probabilities (cf. [146, 943]). The
general definition is

(3.8) P (E) =
1

Z(T )
φ(p(E)); Z(T ) =

∫
dEρ(E)φ(p(E))

Then expectation values for P (E) are denoted by

(3.9) < f >∗=
∫

dEρ(E)P (E)f(E)
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Note P (E) = p(E) in the Boltzman-Gibbs case φ(x) = x. Now calculate using
(�) and (3.8) to get

(3.10)
d

dT
p(E) = exp′φ(Gφ(T )− (E/T ))

(
d

dT
Gφ(T ) +

E

T 2

)
=

= Z(T )P (E)
(

d

dT
Gφ(T ) +

E

T 2

)
from which follows (recall

∫
dEρ(E)p(E) = 1)

(3.11) 0 =
∫

dEρ(E)
d

dT
p(E) = Z(T )

d

dT
Gφ(T ) +

1
T 2

Z(T ) < E >∗⇒

⇒ d

dT
Gφ(T ) = − 1

T 2
< E >∗

Note also that combining (3.10) and (3.11) one obtains

(3.12)
d

dT
p(E) =

1
T 2

Z(T )P (E)(E− < E >∗)

One wants now to show that generalized thermodynamics is compatible with
thermodynamics begins by establishing thermal stability. Internal energy U(T ) is
defined via U(T ) =< E > with p(E) given by (3.7), so using (3.12) one obtains
(3.13)

d

dT
U(T ) =

∫
dEρ(E)E

d

dT
p(E) =

∫
dEρ(E)

E

T 2
Z(T )P (E)(E− < E >∗) =

=
1

T 2
Z(T )(< E2 >∗ − < E >2

∗) ≥ 0

Hence average energy is an increasing function of T but thermal stability requires
more so define φ entropy (relative to ρ(E)dE via

(3.14) Sφ(p) =
∫

dEρ(E)[(1− p(E))Fφ(0)− Fφ(p(E))]; Fφ(x) =
∫ x

1

dylogφ(y)

One postulates that thermodynamic entropy S(T ) equals the value of the above
entropy Sφ(p) with p given by (3.7). Then

(3.15)
d

dT
S(T ) =

∫
dEρ(E)(−logφ(p(E))− Fφ(0))

d

dT
p(E) =

=
∫

dEρ(E)
(
−Gφ(T ) +

E

T
− Fφ(0)

)
d

dT
p(E) =

1
T

d

dT
U(T )

(recall that p(E) is normalized to 1). This shows that temperature T satisfies the
thermodynamic relation (1/T ) = dS/dU and since E is an increasing function of
T one concludes that S is a concave function of U; this is called thermal stability.
One can also introduce the Helmholz free energy F (T ) via the well known F (T ) =
U(T )− TS(T ) so from (3.15) it follows that

(3.16)
d

dβ
βF (T ) = U(T ) (β = 1/T )

Going back to (3.11) which is similar to (3.16) with F (T ) replaced by TGφ(T )
and with U(T ) =< E > replaced by < E >∗ the comparison shows that TGφ(T )
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is the free energy associated with the escort probability distribution P (E) up to a
constant independent of T.

The most obvious generalization now involves φ(x) = xq with q > 0 and this
essentially produces the Tsallis entropy where one has

(3.17) logq(x) =
∫ x

1

dyy−q =
1

1− q
(x1−q − 1); expq(x) = [1 + (1− q)x]1/(1−q)

+

(cf. [?]). The probability distribution (3.17) becomes
(3.18)

p(E) = [1 + (1− q)(Gq(T )− (E/T ))]1/(1−q)
+ =

1
zq(T )

[1− (1− q)β∗
q (T )E]1/(1−q)

+

zq(T ) = (1 + (1− q)Gq(T ))1/(1−q); β∗
q (T ) = zq(T )1−q/T

A nice feature of the Tsallis theory is that the correspondence between p(E) and
the escort P (E) leads to a dual structure q ↔ 1/q; indeed

(3.19) P (E) =
1

Zq(T )
p(E)q ⇒ p(E) =

1
Z1/q(T )

P (E)1/q

Moreover there is also a q − 2 ↔ q duality; given logφ(x) a new deformed logψ(x)
is obtained via

(3.20) logψ(x) = (x−1)Fφ(0)−xFφ(1/x);
1

ψ(x)
= Fφ(0)−Fφ(1/x)+

1
x

logφ(1/x)

and for φ = xq one has ψ = (2− q)x2−q. One notes also that the definition (3.14)
of entropy Sφ(p) can be written as

(3.21) Sφ(p) =
∫

dEρ(E)p(E)logψ(1/p(E))

and with ψ(x) = xq

(3.22) Sq(p) =
∫

dEρ(E)
1

1− q
(p(E)q − p(E))

3.1. NONEXTENSIVE STATISTICAL THERMODYNAMICS. We
go here to [944] for an lovely introduction and extract liberally. The Boltzman-
Gibbs entropy is given via

(3.23) SBG = −k

W∑
1

pilog(pi);
W∑
1

pi = 1

Here pi is the probability for the system to be in the ith microstate and k is the
Boltzman constant kB (taken now to be 1). If every microstate has the same
probability pi = 1/W then SBG = klog(W ). The entropy (3.23) can be shown
to be nonnegative, concave, extensive, and stable (or experimentally robust). By
extensive one means that if A and B are two independent systems (i.e. pA+B

ij =
pA

i pB
j ) then

(3.24) SBG(A + B) = SBG(A) + SBG(B)

we get the Tsallis entropy(cf. also [1025, 1027])
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One can still not derive this form of entropy (3.23) from first principles. There is
also good reason to conclude that physical entropies different from (3.23) would
be more appropriate for anomalous systems. In this spirit the Tsallis entropy
was proposed in [945] and the property thereby generalized is extensivity. One
discusses motivations etc. in [841] and in particular observes that the function

(3.25) y =
x1−q − 1

1− q
= logq(x)

satisfies

(3.26) logq(xAxB) = logq(xA) + logq(XB) + (1− q)(logq(XA))(logq(XB))

Now rewrite (3.23) in the form (k = 1)

(3.27) SBG = −
W∑
1

pilog(pi) =
W∑
1

pilog(1/pi) =
〈

log
1
pi

〉
The quantity log(1/pi) is called surprise or unexpectedness and one thinks of a
q-surprise logq(1/pi) in defining

(3.28) Sq =
〈

logq
1
pi

〉
=

W∑
1

pilogq(1/pi) =
1−

∑W
1 pq

i

q − 1

In the limit q → 1 one gets S1 = SBG and assuming equiprobability pi = 1/W
one gets

(3.29) Sq =
W 1−q − 1

1− q
= logq(W )

Consequently Sq is a genuine generalization of the BG entropy and the pseudo-
additivity of the q-logarithm implies (restoring momentarily k)

(3.30)
Sq(A + B)

k
=

Sq(A)
k

+
Sq(B)

k
+ (1− q)

Sq(A)
k

Sq(B)
k

if A and B are two independent systems (i.e. pA+B
ij = pA

i pB
j ). Thus q = 1, q < 1,

and q > 1 respectively correspond to the extensive, superextensive, and subex-
tensive cases and the q-generalization of statistical mechanics is referred to as
nonextensive statistical mechanics. (3.30) is true for independent A and B but
if A and B are correlated in some way one can ask if extensivity would hold for
some q. For example a system whose elements are correlated at at scales might
correspond to W (N) ∼ Nρ ρ > 0 with entropy

(3.31) Sq(N) = logqW (N) ∼ Nρ(1−q) − 1
1− q

and extensivity is obtained if and only if q = 1 − (1/ρ) < 1 or Sq(N) ∝ N .
Shannon and Khinchin gave early similar sets of axioms for the form of the entropy
functional, both leading to (3.23). These were generalized in [5, 781, 780, 843]
leading to the entropy

(3.32) S(p1, · · · , pW ) = k
1−

∑W
1 pq

i

q − 1
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and it was shown that Sq is the only possible entropy extending the Boltzman-
Gibbs entropy maintaining all the basic properties except extensivity for q �= 1.

Some other properties are also discussed, e.g. bias, concavity, and stability.
First note

(3.33) SBG = −
[

d

dx

W∑
1

px
i

]
x=1

(x here is referred to as a bias). Similarly

(3.34) Sq = −
[
Dq

W∑
1

px
i

]
x=1

; Dqh(x) =
h(qx)− h(x)

qx− 1

(Jackson derivative) and this may open the door to quantum groups (see e.g.
[192]). As for concavity consider for p′′i = µpi + (1 − µ)p′i (0 < µ < 1) concavity
defined via

(3.35) S({p′′i }) ≥ µS({pi}) + (1− µ)S({p′i})
It can be shown that Sq is concave for every {pi} and q > 0. This implies the-
ormdynamic stability in the framework of statistical mechanics (i.e. stability of
the system with regard to energetic perturbations). This means that the entropy
functional is defined such that the stationary state (thermodynamic equilibrium)
makes it extreme.

There are also other generalizations of the BG entropy and we mention the
Renyi entropy

(3.36) SR
q =

log
∑W

1 pq
i

1− q
=

log[1 + (1− q)Sq]
1− q

and an entropy due to Landsberg, Vedral, Rajagopal, Abe defined via

(3.37) SN
q = SLV RA

q =
1− 1∑W

1 pq
i

1− q
=

Sq

1 + (1− q)Sq

These are however not concave nor experimentally robust and seem unsuited for
thermodynamical purposes; on the other hand Renyi entropy seems useful for
geometrically characterizing multifractals.

Various connections of Sq to thermodynamics are indicated in [944] and we
mention here first the Legendre structure. Thus for all values of q

(3.38)
1
T

=
∂Sq

∂Uq
; T =

1
kβ

; Uq = − ∂

∂β
logqZq;

logqZq =
Z1−q

q − 1
1− q

=
Z̄1−q − 1

1− q
− βUq; Fq = Uq − TSq = − 1

β
logqZq

Here Uq ∼ internal energy and Fq ∼ free energy and the specific heat is

(3.39) Cq = T
∂Sq

∂T
=

∂Uq

∂T
= −T

∂2Fq

∂T 2
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Finally a list of other properties follows supporting the thesis that Sq is a correct
road for generalizing the BG theory (see [944] for details and references); we
mention a few here via

(1) Boltzmann H-theorem (macroscopic time irreversibility) q(dSq/dt) ≥
0 (∀q)

(2) Ehrenfest theorem: For an observable Ô and a Hamiltonian Ĥ one has
d < Ô >q /dt = (i/�) < [Ĥ, Ô >q (∀q)

(3) Pesin theorem (connection between sensitivity to initial conditions and
the entropy production per unit time). Define the q-generalized Kolmogorov-
Sinai entropy as

(3.40) Kq = limt→∞limW→∞limN→∞
< Sq > (t)

t

where N is the number of initial conditions, W is the number of windows
in the partition (fine graining), and t is discrete time (cf. also [593]).
The q-generalized Lyapunov coefficient λq can be defined via sensitivity
to initial conditions

(3.41) ξ = lim∆x(0)→0
∆x(t)
∆x(0)

= eλqt
q

(focusing on a 1-D system, basically x(t+1) = g(x(t)) with g nonlinear).
It was proved in [73] that for unimodal maps Kq = λq if λq > 0 and
Kq = 0 otherwise. More explicitly K1 = λ1 if λ1 ≥ 0 (and K1 = 0
if λ1 < 0). But if λ1 = 0 then there is a special value of q such that
Kq = λq if λq ≥ 0 (and Kq = 0 if λq < 0).

We refer also to [30, 31, 785, 636] for other results and approaches to thermo-
dynamics, temperature, fluctuations, etc. in generalized thermostatistics and to
[595] for relativistic nonextensive thermodynamics.

4. FISHER PHYSICS

The book [381] purports (with notable success) to unify several subdisciplines
of physics via Fisher information and this theme appears also in many papers, e.g.
[217, 262, 239, 382, 383, 384, 385, 660, 755, 776, 777, 778, 779, 780, 781,
949]. We sketch some of this here and note in passing an interesting classical-
quantum trajectory in [386] which differs from a Bohmian trajectory (cf. also
[93, 269, 376, 579, 629, 812, 999]). First let us sketch some summary items
from [381] and then provide some details. Thus in Chapter 12 of [381] Frieden
lists (among other things) the following items:

(1) Writing p = q2 in the standard formulas one can express the Fisher
information as I = 4

∫
dx(dq/dx)2 with q a real probability amplitude for

fluctuations in measurement. Under suitable conditions (see below) the
information I obeys an I-theorem dI/dt ≤ 0. In the same spirit by which
a positive increment in therodynamic time corresponds to an increase in
Boltzman entropy there is a positive increment in Fisher time defined by
a decrease in information I (the two times do not always agree). Let θ be
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the measured phenomenon and define the Fisher temperature Tθ via

(4.1)
1
Tθ

= −kθ
∂I

∂θ
(kθ = const.)

When θ is taken to be the sysem energy E then the Fisher temperature
has analogous properties to the ordinary Boltzman temperature, in par-
ticular there is a perfect gas law p̄V = kETEI where p̄ is the pressure.
The I theorem can be extended to a multiparameter, multicomponent
scenario with

(4.2) I = 4
∫

dx
∑

n

∇qn · ∇qn

(2) Any measurement of physical parameters initiates a transformation of
Fisher information J → I connecting the phenomenon with the “intrin-
sic data”. The phenomenological or “bound” information is denoted by
J and the acquired information is I; J is ultimately identified by an in-
variance principle that characterizes the measured phenomenon. In any
exchange of information one must δJ = δI (conservation law) and for
K = I − J one arrives at a variational principle (extreme physical infor-
mation or EPI) K = I − J = extremum. Since J ≥ I always the EPI
zero principle involves I − κJ = 0 (0 ≤ κ ≤ 1). These equations follow
(independently of the axiomatic approach taken and of the I-theorem) if
there is e.g. a unitary transformation connecting the measurement space
with a physically meaningful conjugate space. In this manner one arrives
at the Lagrangian approach to physics, often using the Fourier transform
to connect I and J. This seems a little mystical at first but many convinc-
ing examples are given involving the SE, wave equations, KG equation,
Dirac equation, Maxwell equations, Einstein equations, WDW equation,
etc.

There is much more summary material in [381] which we omit here. A certain
amount of metaphysical thinking seems necessary and Frieden remarks that John
Wheeler (cf. [988]) anticipated a lot of this in his remarks that “All things physical
are information-theoretic in origin and this is a participatory universe....Observer
participancy gives rise to information and information gives rise to physics.” Going
now to [381] recall I =

∫
dx[(p′)2/p] = 4

∫
dx(q′)2 for p = q2 and one derives the

inequality e2I ≥ 1 as follows. Look at estimators θ̂ satisfying

(4.3) < θ̂(y)− θ >=
∫

dy[θ̂(y)− θ]p(y|θ) = 0

where p(y|θ) describes fluctuations in data values y. Hence

(4.4)
∫

dy(θ̂ − θ)
∂p

∂θ
−
∫

dyp = 0
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Use now ∂θp = p(∂log(p)/∂θ) and normalization to get
∫

dy(θ̂−θ)(∂log(p)/∂θ)p =
1 which becomes
(4.5)∫

dy

[
∂log(p)

∂θ

√
p

]
[(θ̂ − θ)

√
p] = 1⇒

[∫
dy

(
∂log(p)

∂θ

)2

p

] [∫
dy(θ̂ − θ)2p

]
≥ 1

For e2 =
∫

dy(θ̂− θ)2p this gives immediately e2I ≥ 1. One notes that if p(y|θ) =
p(y−θ) then I is simply I =

∫
dx(∂log(p(x))/∂x)2p(x) where x ∼ y−θ. We recall

also the Shannon entropy as H = −
∫

dxp(x)log(p(x)) and the Kullback-Leibler
entropy is defined as

(4.6) G = −
∫

dxp(x)log
p(x)
r(x)

where r(x) is a reference probability distribution function (PDF). Consider now a
discrete form of Fisher information
(4.7)

I = (∆x)−1
∑

n

[p(xn+1)− p(xn)]2

p(xn)
= (∆x)−1

∑
n

p(xn)
[
p(xn + ∆x)

p(xn)
− 1

]2

Here p(xn+∆x)/p(xn)is close to 1 for ∆x small and one writes [p(xn+∆x)/p(xn)]−
1 = ν. Then log(1 + ν) ∼ ν − (ν2/2) or ν2 = 2[ν − log(1 + ν)]. Hence I becomes

(4.8) I = −2(∆x)−1
∑

n

p(xn)log
p(xn + ∆x)

p(xn)
+

2(∆x)−1
∑

n

p(xn + ∆x)− 2(∆x)−1
∑

n

p(xn)

But each of the last two terms is (∆x)−1 by normalization so they cancel leaving

(4.9) I = − 2
∆x

∑
p(xn)log

p(xn + ∆x)
p(xn)

→ − 2
∆x

G[p(x), p(x + ∆x)]

One notes (cf. [381]) that I results as a cross information between p(x) and
p(x+∆x) for many different types of information measure, e.g. Renyi and Wooters
information and in this sense serves as a kind of “mother” information. Next the
I-theorem says that dI/dt ≤ 0 and this can be seen as follows. Start with (4.9) in
the form

(4.10) I(t) = −2lim∆x→0(∆x)−2

∫
dx plog

p∆x

p
; p∆x

= p(x + ∆x|t); p = p(x|t)

Under certain conditions (cf. [381]) p obeys a FK equation

(4.11)
∂p

∂t
= − d

dx
[D1(x, t)p] +

d2

dx2
[D2(x, t)p]

where D1 is a drift function and D2 a diffusion function. Then it is shown (cf.
[776, 811]) that two PDF such as p and p∆x

that obey the FP equation have a
cross entropy satisfying an H-theorem

(4.12) G(t) = −
∫

dx plog
p

p∆x

;
dG(t)

dt
≥ 0



4. FISHER PHYSICS 265

Hence I obeys an I theorem dI/dt ≤ 0. We refer to [381] for more on temperature,
pressure, and gas laws.

For multivariable situations one writes I = 4
∫

dx
∑
∇qn · ∇qn with pn = q2

n.
An interesting notation here is

(4.13) ψn =
1√
N

(q2n−1 + iq2n) (n = 1, · · · , N/2);
N/2∑
1

ψ∗
nψn =

1
N

∑
q2
n = p(x)

In such situations one finds for In = 4
∫

dx∇qn · ∇qn and I =
∑

In (cf. [381])

(4.14) In = − 2
(∆x)2

Gn[pn(x|t), pn(x + ∆x|t)]; ∂In

∂t
≤ 0; I(t) → min.

Now one looks at minimization problems for I where δI[q(x|t)] = 0 and for any-
thing meaningful to happen the physics has to be introduced via constraints and
covariance (we refer to [381] for a more thorough discussion of these matters).
Thus one is considering K = I − J and the physics is introduced via J. One can
write e.g. I =

∫
dx

∑
in(x) and J =

∫
dx

∑
jn(x) where in = 4∇qn · ∇qn. In

general now the functional form of J follows from a statement about invariance for
the system. Examples of invariance are (i) unitary transformations such as that
between the space and momentum space in QM (ii) gauge invariance as in EM
or gravitational theory (iii) a continuity equation for the flow, usually involving
sources. The answer q for EPI is completely dependent on the particular J(q)
for that problem and that in turn depends completely on the invariance principle
that is used. If the invariance principle is not sufficiently strong in defining the
system then one can expect the EPI output q to be only approximately correct.
One has I ≤ J generally but I = J for an optimally strong invariance principle.
Note κ = I/J measures the efficiency of the EPI in transferring Fisher information
from the phenomenon (specfied by J) to the output (specified by I). Thus κ < 1
indicates that the answer q is only approximate. When the invariance principle is
the statement of a unitary transformation between the measurement space and a
conjugate coordinate space then the solution to the requirement I − κJ = 0 will
simply be the reexpression of I in the conjugate space; when this holds then one
can show that in fact I = J (i.e. κ = 1). In this situation the out put q will be
“correct”, i.e. not explicitly incorrect due to ignored quantum effects for example.
There are in fact nonquantum and nonunitary theories for which κ = 1 (or in fact
any real number) and the nature of κ is not yet fully understood.

Let us call attention also to the information demon of Frieden and Soffer (cf.
[381, 384]). For real Fisher coordinates x the EPI process amounts to carrying
through a zero sum game betweem an observer (who wants to acquire maximal
information) and an information demon (who wants to minimize the information
transfer) with a limited resource of intrinsic information. The demon represents
nature (and always wins or breaks even of course) and K = I − J ≤ 0. Further
since ∆I = K one has ∆I ≤ 0 while ∆t ≥ 0; hence the I-theorem follows.

We run through the EPI procedure here for the KG equation which illustrates
many points. Define x1 = ix, x2 = iy, x3 = iz, x4 = ct with r = (x, y, z) and
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x = (x1, x2, x3, x4) and use the ψn notation of (4.13). From I = 4
∫

dx
∑
∇qn ·∇qn

we get

(4.15) I = 4Nc

N/2∑
1

∫ ∫
drdt

[
−(∇ψn)∗ · ∇ψn +

(
1
c2

)2

(∂tψn)∗(∂tψn)

]
The invariance principle here involves a unitary Fourier transformation from x to
µ in the form
(4.16)

(ir, ct) → (iµ/�, E/c�); ψn(r, t) =
1

(2π�)2

∫ ∫
dµdEφn(µ, E)e−i(µ·r−Et)/�

One recalls

(4.17)
∫ ∫

drdtψ∗
mψn =

∫ ∫
dµdEφ∗

mφn

Differentiating in (4.16) one has (∇ψn, ∂tψn) → (−iµφn/�, iEφn/�) and via∇ψn ∼
−iµφn/� one gets

(4.18)
∫ ∫

drdt(∇ψn)∗ · ∇ψn =
1
�2

∫ ∫
dµdE|φn(µ, E)|2µ2;∫ ∫

drdt(∂tψn)∗∂tψn =
1
�2

∫ ∫
dµdE|φn(µ, E)|2E2

Putting this in (4.15) gives

(4.19) I =
(

4Nc

�2

)N/2∑
1

∫ ∫
dµdE|φn(µ, E)|2

(
−µ2 +

E2

c2

)
= J

This is the invariance principle for the given scenario. The same value of I can
be expressed in the new space (µ, E) where it is called J and J is then the bound
(physical) information. Now one has from (4.17)

(4.20) c

∫ ∫
drdt|ψn|2 = c

∫ ∫
dµdE|φn|2 (n = 1, · · · , N/2

Summing over n and using p =
∑N/2

1 ψ∗
nψ = (1/N)

∑
q2
n with normalization gives

(4.21) 1 =
∫

dµdeP (µ, E); P (µ, E) = c

N/2∑
1

|φn(µ, E)|2

so P is a PDF in the (µ, E) space. One obtains then
(4.22)

I = J =
4N

�2

∫ ∫
dµdEP (µ, E)

(
−µ2 +

E2

c2

)
; J =

(
4N

�2

)〈
−µ2 +

E2

c2

〉
One must have J a universal constant here so −µ2 + (E2/c2) = const. = A2(m, c)
where A is some function of the rest mass m and c (which are the only other
parameters (� must also be a constant). By dimensional analysis A = mc so E2 =
c2µ2 + m2c4 which links mass, momentum, and energy. This defines coordinates
µ and E as momentum and energy values. One has then I = 4N(mc/�)2 = J
and the intrinsic information I in the 4-position of a particle is proportional to the
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square of its intrinsic energy mc2. Since J is a universal constant (see comments
below), c is fixed, and given that � has been fixed, one concludes that the rest
mass m is a universal constant. Since I measures the capacity of the observed
phenomenon to provide information about (in this case) 4-length it follows that I
should translate into a figure for the ultimate fluctuation (resolution) length that is
intrinsic to QM. Here the information is I = (4N/L2) with L = �/mc the reduced
Compton wavelength. If all N estimates have the same accuracy some argument
then leads to emin = L and emin corresponds to a minimal resolution length (i.e.
ability to know). Finally putting things together one gets

(4.23) J =
4Nm2c3

�2

∫ ∫
dµdE

N/2∑
1

φ∗
nφn =

4Nm2c3

�2

∫ ∫
drdt

N/2∑
1

ψ∗
nψ

(4.24) K = I − J =

= 4Nc

N/2∑
1

∫ ∫
drdt

[
−(∇ψn)∗ · ∇ψn +

(
1
c2

)
∂tψ

∗
n∂tψn −

m2c2

�2
ψ∗

nψn

]
There is much more material in [381] to enhance and refine the above ideas.

There are certain subtle features as well. In 4-dimensions the Fourier transform
is unitary and covariance is achieved in all variables (treating t separately as in
qn(x|t) is not a covariant formalism). EPI treats all phenomena as being statistical
in origin and every Euler-Lagrange (EL) equation determines a kind of QM for
the particular phenomenon (think here of the qn as fields). This includes classical
electromagnetism for example where the vector potential A is considered as a kind
of probability “amplitude” for photons. In 4-D the Lorentz transformation satisfies
the requirement that Fisher information I is invariant under a change of reference
frame and this property is transmitted to J and K. Thus invariance of accuracy
(or of error estimation) under a change of reference frame leads to the Lorentz
transformation and to the requirement of covariance. Historically the classical
Lagrangian has often been a contrivance for getting the correct answers and a
main idea in [381] is to present a systematic approach to deriving Lagrangians.
The Lagrangian represents the physical information k(x) =

∑
kn(x), kn(x) =

in(x)− jn(x), and
∫

k(x) is the total physical information K for the system. The
solution to the variational problem for the Lagrangian can represent then (for real
coordinates) the payoff in a mathematical information game (e.g. the KG equation
is a payoff expression). We exhibit now a derivation of the SE from [381] to show
robustness of the EPI scheme. The position of a particle of mass m is measured as
a value y = x + θ where x is a random excursion whose probability amplitude law
q(x) is sought. Since the time t is being ignored here one is in effect looking for a
stationary solution to the problem. Note the issue of covariance does not arise here
and the time dependent SE is not treated since in particular it is not covariant; it
can however be obtained from the KG equation as a nonrelativistic limit. Assume
that the particle is moving in a conservative field of scalar potential V (x) with
total energy W conserved. One defines complex wave functions as before and can
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write

(4.25) I = 4N
N/2∑
1

∫
dx

∣∣∣∣dψn(x)
dx

∣∣∣∣2
A Fourier transform space is defined via ψn(x) = (1/

√
2π�

∫
dµφn(µ)exp(−iµx/�)

where µ ∼ momentum. The unitary nature of this transformation guarantees the
validity of the EPI variational procedure. One uses the Parseval theorem to get

(4.26) I =
4N

�2

∫
dµµ2

∑
n

|φn(µ)|2 = J

This corresponds to (4.19) and is the invariance principle for the given measure-
ment problem. The x-coordinate expressions analogous to (4.20) and (4.21) show
that the sum in (4.26) is actually an expectation J = (4N/�2) < µ2 >. Now use
the specifically nonrelativistic approximation that the kinetic energy Ekin of the
particle is µ2/2m and then

(4.27) J =
8Nm

µ2
< Ekin >=

8Nm

�2
< [W − V (x)] >=

=
8Nm

�2

∫
dx[W − V (x)]

∑
|ψn(x)|2

where the last expression is the PDF p(x). This J is the bound information
functional J [q] = J(ψ) and κ = 1 here. This leads to a variational problem

(4.28) K = N

N/2∑
1

∫
dx

[
4
∣∣∣∣dψn(x)

dx

∣∣∣∣2 − 8m

�2
[W − V (x)]|ψn(x)|2

]
= extremum

The Euler-Lagrange equations are then (ψ∗
nx = ∂ψ∗

n/∂x)

(4.29)
d

dx

(
∂L

∂ψ∗
nx

)
=

∂L

∂ψ∗
n

; ψ′′
n(x) +

2m

�2
[W − V (x)]ψn(x) = 0

which is the stationary SE. Since the form of equation (4.29) is the same for each
index value n the scenario admits N = 2 degrees of freedom qn(x) or one com-
plex degree of freedom ψ(x); hence the SE defines a single complex wave function.
Since this derivation works with a real coordinate x the information transfer game
is being played here and the payoff is the Schrödinger wave function.

There are generalizations of EPI to nonextensive infor-
mation measures in [217, 262, 239] (cf. also [755, 756, 776, 778]).

4.1. LEGENDRE THERMODYNAMICS. We go to the last paper in
[382] which provides a discussion of Fisher thermodynamics and the Legendre
transformation. It is shown that the Legendre transform structure of classical
thermodynamics can be replicated without change if one replaces the entropy S
by the Fisher information I. This produces a thermodynamics capable of treat-
ing equilibrium and nonequilibrium situations in a traditional manner. We recall
the Shannon information measure S = −

∑
P (i)log[P (i)]; it is known that if one

chooses the Boltzmann constant as the informational unit and identifies Shannon’s

REMARK 6.4.1.
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entropy with the thermodynamic entropy then the whole of statistical mechan-
ics can be elegantly reformulated without any reference to the idea of ensemble.
The success of thermodynamics and statistical physics depends crucially on the
Legendre structure and one shows now that such relationships all hold if one re-
places S by the Fisher information measure. We recall that for

∫
g(x, θ)dx = 1 one

writes I =
∫

dxg(x, θ)[∂θg/g]2 and for shift invariant g one has I =
∫

dx[(g′)2/g].
There are two approaches to using Fisher information, EPI and minimum Fisher
information (MFI), and both lead to the same results here. We write (shifting to
a probability function f)

(4.30)
∫

dxf(x, θ) = 1; I[f ] =
∫

dxFFisher(f); FFisher(f) = f(x)[f ′/f ]2

Assume that for M functions Ai(x) the mean values < Ai > are known where

(4.31) < Ai >=
∫

dxAi(x)f(x)

This represents information at some appropriate (fixed) time t. The analysis will
use MFI (or EPI) to find the probability distribution fI = fMFI that extremizes
I subject to prior conditions < Ai > and the result will be given via solutions of
a stationary Schrödinger like equation. The Fisher based extremization problem
has the form (F (f) = FFisher(f))

(4.32) δf

[
I(f)− α < 1 > −

M∑
1

λi < Ai >

]
= 0 ≡

δf

[∫
dx

(
F (f)− αf −

M∑
1

λiAif

)]
= 0

Variation leads to ((α, λ1, · · · , λM ) are Lagrange multipliers)

(4.33)
∫

dxδf

[
(f)−2

(
∂f

∂x

)2

+
∂

∂x

(
2
f

∂f

∂x

)
+ α +

M∑
1

λiAi

]
= 0

and on account of the arbitrariness of δf this yields

(4.34) (f)−2(f ′)2 +
∂

∂x
(2/f)f ′) + α +

M∑
1

λiAi = 0

The normalization condition on f makes α a function of the λi and we assume
fI(x, λ) to be a solution of (4.34) where λ ∼ (λi). The extreme Fisher information
is then

(4.35) I =
∫

dxf−1
I (∂xfI)2

Now to find a general solution of (4.34) define G(x) = α +
∑M

1 λiAi(x) and write
(4.34) in the form

(4.36)
[
∂log(fI)

∂x

]2

+ 2
∂2log(fI)

∂x2
+ G(x) = 0
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Make the identification fI = (ψ)2 now the introduce a new variable v(x) =
∂log(ψ(x))/∂x. Then (4.36) becomes

(4.37) v′(x) = −
[
G(x)

4
+ v2(x)

]
which is a Riccati equation. This leads to

(4.38) u(x) = exp

[∫ x

dx[v(x)]
]

= exp

[∫ x

dx
dlog(ψ)

dx

]
= ψ;

−1
2
ψ′′(x)− 1

8

M∑
1

λiAi(x)ψ(x) =
α

8
ψ(x)

where the Lagrange multiplier α/8 plays the role of an energy eigenvalue and the
sum of the λiAi(x) is an effective potential function U(x) = (1/8)

∑M
1 λiAi(x).

We note (in keeping with the Lagrangian spirit of EPI) that the Fisher informa-
tion measure corresponds to the expectation value of the kinetic energy of the
SE. Note also that (4.38) has multiple solutions and it is reasonable to suppose
that the solution leading to the lowest I is the equilibrium one. Now standard
thermodynamics uses derivatives of the entropy S with respect to λi and < Ai >
and we start from (4.35) and write after an integration by parts

(4.39)
∂I

∂λi
=
∫

dx
∂fI

∂λi

[
−f−2

I (f ′
I)

2 − ∂

∂x

(
2
fI

f ′
I

)]
Comparing this to (4.34) one arrives at

(4.40)
∂I

∂λi
=
∫

dx
∂fI

∂λi

[
α +

M∑
1

λjAj

]
which on account of normalization yields

(4.41)
∂I

∂λi
=

M∑
1

λj
∂

∂λi

∫
dxfIAj(x) ≡ ∂I

∂λi
=

N∑
1

λj
∂

∂λi
< Aj >

This is a generalized Fisher-Euler theorem whose thermodynamic counterpart is
the derivative of the entropy with respect to the mean values. One computes easily

(4.42)
∑

i

∂I

∂λi

∂λi

∂ < Aj >
=
∑

i

∑
k

λk
∂ < Ak >

∂λi

∂λi

∂ < Aj >
⇒ ∂I

∂ < Aj >
= λj

as expected. The Lagrange multipliers and mean values are seen to be conjugate
variables and one can also say that fI = fI(λ1, · · · , λM ).

Now as the density fI formally depends on M + 1 Lagrange multipliers,
normalization

∫
dxfI(x) = 1 makes α a function of the λi and we write α =

α(λ1, · · · , λM ). One can assume that the input information refers to the λi and
not to the < Ai >. Introduce then a generalized thermodynamic potential (Le-
gendre transform of I) as

(4.43) λJ(λ1, · · · , λM ) = I(< A1 >, · · · , < AM >)−
M∑
1

λi < Ai >



4. FISHER PHYSICS 271

Then

(4.44)
∂λJ

∂λi
=

M∑
1

∂I

∂ < Aj >

∂ < Aj >

∂λi
−

M∑
1

λj
∂ < Aj >

∂λi
− < Ai) = − < Ai >

where (4.42) has been used. Thus the Legendre structure can be summed up in

(4.45) λJ = I −
M∑
1

λi < Ai >;
∂λJ

∂λi
= − < Ai >;

∂I

∂ < Ai >
= λi;

∂λi

∂ < Aj >
=

∂λj

∂ < Ai >
=

∂2I

∂ < Ai > ∂ < Aj >
;

∂ < Aj >

∂λi
=

∂ < Ai >

∂λj
= − ∂2λJ

∂λi∂λj

As a consequence one can recast (4.41) in the form

(4.46)
∂I

∂λi
=

M∑
1

λj
∂

∂λj
< Ai >

Thus the Legendre transform structure of thermodynamics is entirely translated
into the Fisher context.

4.2. FIRST AND SECOND LAWS. We go here to [779] where one shows
the coimplication of the first and second laws of thermodynamics. Thus macro-
scopically in classical phenomenological thermodynamics the first and second laws
can be regarded as independent statements. In statistical mechanics an underly-
ing microscopic substratum is added that is able to explain thermodynamics itself.
Of this substratum a microscopic probability distribution (PD) that controls the
population of microstates is a basic ingredient. Changes that affect exclusively mi-
crostate population give rise to heat and how these changes are related to energy
changes provides the essential content of the first law (cf. [809]). In [779] one
shows that the PD establishes a link between the first and second laws according
to the following scheme.

• Given: An entropic form (or an information measure) S, a mean energy
U and a temperature T, and for any system described by a microscopic
PD pi a heat transfer process via pi → pi + dpi then

• If the PD pi maximizes S this entails dU = TdS and alternatively
• If dU = TdS then this predetermines a unique PD that maximizes S.

For the second law one wants to maximize entropy S with M appropriate con-
straints Ak which take values Ak(i) at the microstate i; the constrains have the
form

(4.47) < Ak >=
∑

i

piAk(i) (k = 1, · · ·M)

The Boltzman constant is kB and assume that k = 1 in (4.47) corresponds to the
energy E with A1(i) = εi so that the above expression specializes to

(4.48) U =< A1 >=
∑

piεi
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One should now maximize the “Lagrangian” Φ given by

(4.49) Φ =
S

kB
− α

∑
i

pi − β
∑

i

piεi −
M∑
2

λk

∑
i

piAk(pi)

in order to obtain the actual distribution pi from the equation δpi
Φ = 0. Since here

one is interested just in the “heat” part the last term on the right of (4.49) will
not be considered. It is argued that if pi changes to pi + dpi because of δpi

Φ = 0
one will have

(4.50) 0 =
dS

kB
− βdU

(note
∑

i δpi = 0 via normalization). Since β = 1/kBT we get dU = TdS so
MaxEnt implies the first law.

The central goal here is to go the other way so assume one has a rather general
information measure of the form

(4.51) S = k
∑

i

pif(pi)

where k ∼ kB . The sum runs over a set of quantum numbers denoted by i (char-
acterizing levels of energy εi) that specify an appropriate basis in Hilbert space,
P = {pi} is an (as yet unknown) probability distribution with

∑
pi = constant,

and f is an arbitrary smooth function of the pi. Assume further that mean values
of quantities A that take the value Ai with probability pi are evaluated via

(4.52) < A >=
∑

i

Aig(pi)

In particular the mean energy U is given by U =
∑

i εig(pi). Assume now that
the set P changes in the fashion

(4.53) pi → pi + dpi;
∑

dpi = 0

(the last via
∑

pi = constant. This in turn generates corresponding changes dS
and dU and one is thinking here of level population changes, i.e. heat. To insure
the first law one assumes (•) dU − TdS = 0 and as a consequence of (•) a little
algebra gives (up to first order in the dpi the condition

(4.54) εig
′(pi)− kT [f(pi) + pif

′(pi)] = 0

This equation is now examined for several situations. First look at Shannon en-
tropy with

(4.55) f(pi) = −log(pi); g(pi) = pi

In this situation (4.54) becomes

(4.56) −εi = kT [log(pi) + 1] ⇒ pi =
1
e
exp(−εi/kT )

After normalization this is the canonical Boltzmann distribution and this is the
only distribution that guarantees obedience to the first law for Shannon’s informa-
tion measure. A posteriori this distribution maximizes entropy as well with U as
a constraint which establishes a link with the second law. Several other measures
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are considered, in particular the Tsallis measure, and we refer to [779] for details.
In summary if one assumes entropy is maximum one immediately derives the first
law and if you assume the first law and an information measure this predetermines
a probability distribution that maximizes entropy.

There is currently a great interest in acoustic wave phe-
nomena, sound and vortices, acoustic spacetime, acoustic black holes, etc. A prime
source of material involves superfluid physics à la Volovik [968, 969] and Bose-
Einstein condensates (see e.g. [39, 40, 86, 81, 101, 115, 369, 370, 912, 913,
963]). We had originally written out material from [912, 913] in preparation for
sketching some material from [968]. However we realized that there is simply too
much to include in this book; at least 2-3 more chapters would be needed to even
get off the ground.

REMARK 6.4.2.


