
CHAPTER 3

GRAVITY AND THE QUANTUM POTENTIAL

Just as we plunged into QM in Chapters 1 and 2 we plunge again into general
relativity (GR), Weyl geometry, Dirac-Weyl (DW) theory, and deBroglie-Bohm-
Weyl (dBBW) theory. There are many good books available for background in
general relativity, especially [69] (marvelous for conceptual purposes and for a
modern perspective) and [12] (a classic masterpiece with all the indices in their
place). In addition we mention some excellent books and papers which will arise
in references later, namely [52, 121, 351, 458, 498, 551, 657, 715, 723, 819,
910, 972]. To develop all the background differential geometry requires a book
in itself and the presentation adopted here will in fact include all this implicitly
since the topics range over a fairly wide field (see also Chapter 5 where cosmology
plays a more central role).

1. INTRODUCTION

A complete description of necessary geometric ideas appears in [657] for
example and we only make some definitions and express some relations here,
usng the venerable tensor notation of indices, etc., since even today much of the
physics literature appears in this form. For differential geometry one can refer to
[134, 276, 998]. First we give some background on Weyl geometry and Brans-
Dicke theory following [12]; for differential geometry we use the tensor notation
of [12] and refer to e.g. [121, 358, 458, 498, 723, 731, 972, 998] for other
notation (see also [990] for an interesting variation). One thinks of a differential
manifold M = {Ui, φi} with φ : Ui → R4 and metric g ∼ gijdxidxj satisfy-
ing g(∂k, ∂�) = gk� =< ∂k, ∂� >= g�k. This is for the bare essentials; one can
also imagine tangent vectors Xi ∼ ∂i and dual cotangent vectors θi ∼ dxi, etc.
Given a coordinate change x̃i = x̃i(xj) a vector ξi transforming via ξ̃i =

∑
∂ix̃

jξj

is called contravariant (e.g. dx̃i =
∑

∂j x̃
idxj). On the other hand ∂φ/∂x̃i =∑

(∂φ/∂xj)(∂xj/∂x̃i leads to the idea of covariant vectors Aj ∼ ∂φ/∂xj trans-
forming via Ãi =

∑
(∂xj/∂x̃i)Aj (i.e. ∂/∂x̃i ∼ (∂xj/∂x̃j)∂/∂xj). Now define

connection coefficients or Christoffel symbols via (strictly one writes T γ
α = gαβT γβ

and T γ
α = gαβT βγ which are generally different - we use that notation here but

it is sometimes not used later when it is unnecessary due to symmetries, etc.)

(1.1) Γr
ki = −

{
r

k i

}
= −1

2

∑
(∂igk� + ∂kg�i − ∂�gik)g�r = Γr

ik
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(note this differs by a minus sign from some other authors). Note also that (1.1)
follows from equations

(1.2) ∂�gik + grkΓr
i� + girΓr

�k = 0

and cyclic permutation; the basic definition of Γi
mj is found in the transplantation

law dξi = Γi
mjdxmξj . Next for tensors Tα

βγ define derivatives Tα
βγ|k = ∂kTα

βγ and

(1.3) Tα
βγ||� = ∂�T

α
βγ − Γα

�sT
s
βγ + Γs

�βTα
sγ + Γs

�γTα
βs

In particular covariant derivatives for contravariant and covariant vectors respec-
tively are defined via

(1.4) ξi
||k = ∂kξi − Γi

k�ξ
� = ∇kξi; ηm||� = ∂�ηm + Γr

m�ηr = ∇�ηm

respectively. Now to describe Weyl geometry one notes first that for Riemannian
geometry transplantation holds along with

(1.5) �2 = ‖ξ‖2 = gαβξαξβ ; ξαηα = gαβξαηβ

For Weyl geometry however one does not demand conservation of lengths and
scalar products under affine transplantation as above. Thus assume d� = (φβdxβ)�
where the covariant vector φβ plays a role analogous to Γα

βγ and one obtains

(1.6) d�2 = 2�2(φβdxβ) = d(gαβξαξβ) =

= gαβ|γξαξβdxγ + gαβΓα
ργξρξβdxγ + gαβΓβ

ργξαξρdxγ

Rearranging etc. and using (1.5) again gives

(1.7) (gαβ|γ − 2gαβφγ) + gσβΓσ
αγ + gσαΓσ

βγ = 0;

Γα
βγ = −

{
α

β γ

}
+ gσα[gσβφγ + gσγφβ − gβγφσ]

Thus we can prescribe the metric gαβ and the covariant vector field φγ and de-
termine by (1.7) the field of connection coefficients Γα

βγ which admits the affine
transplantation law as above. If one takes φγ = 0 the Weyl geometry reduces to
Riemannian geometry. This leads one to consider new metric tensors via a metric
change ĝαβ = f(xλ)gαβ and it turns out that (1/2)∂log(f)/∂xλ plays the role of
φλ. Here the metric change is called a gauge transformation and the ordinary con-

nections
{

α
β γ

}
constructed from gαβ are equal to the more general connections

Γ̂α
βγ constructed according to (1.7) from ĝαβ and φ̂λ = (1/2)∂log(f)/∂xλ. The

generalized differential geometry is conformal in that the ratio

(1.8)
ξαηα

‖ξ‖‖η‖ =
gαβξαηβ

[(gαβξαξβ)(gαβηαηβ)]1/2

does not change under the gauge transformation ĝαβ → f(xλ)gαβ . Again if one
has a Weyl geometry characterized by gαβ and φα with connections determined
by (1.7) one may replace the geometric quantities by use of a scalar field f with

(1.9) ĝαβ = f(xλ)gαβ , φ̂α = φα + (1/2)(log(f)|α; Γ̂α
βγ = Γα

βγ

without changing the intrinsic geometric properties of vector fields; the only change
is that of local lengths of a vector via �̂2 = f(xλ)�2. Note that one can reduce
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φ̂α to the zero vector field if and only if φα is a gradient field, namely Fαβ =
φα|β − φβ|α = 0 (i.e. φα = (1/2)∂alog(f) ≡ ∂βφα = ∂αφβ). In this case one has
length preservation after transplantation around an arbitrary closed curve and the
vanishing of Fαβ guarantees a choice of metric in which the Weyl geometry becomes
Riemannian; thus Fαβ is an intrinsic geometric quantity for Weyl geometry; note
Fαβ = −Fβα and

(1.10) {Fαβ|γ} = 0; {Fµν|λ} = Fµν|λ + Fλµ|ν + Fνλ|µ

Similarly the concept of covariant differentiation depends only on the idea of vector
transplantation. Indeed one can define covariant derivatives via

(1.11) ξα
||β = ξα

|β − Γα
βγξγ

In Riemannian geometry the curvature tensor is

(1.12) ξα
||β|γ − ξα

||γ|β = Rα
ηβγξη; Rα

βγδ = −Γα
βγ|δ + Γα

βδ|γ + Γα
τδΓ

τ
βγ − Γα

τγΓτ
βδ

Using (1.8) one then can express this in terms of gαβ and φα but this is complicated.
Equations for Rβδ = Rα

βαδ and R = gβδRβδ are however given in [12]. One notes
that in Weyl geometry if a vector ξα is given, independent of the metric, then
ξα = gαβξβ will depend on the metric and under a gauge transformation one has
ξ̂α = f(xλ)ξα. Hence the covariant form of a gauge invariant contravariant vector
becomes gauge dependent and one says that a tensor is of weight n if, under a
gauge transformation, T̂α···

β··· = f(xλ)nTα···
β··· . Note φα plays a singular role in (1.9)

and has no weight. Similarly
√
−ĝ = f2√−g (weight 2) and Fαβ = gαµgβνFµν has

weight −2 while Fαβ = Fαβ√−g has weight 0 and is gauge invariant. Similarly
FαβFαβ√−g is gauge invariant. Now for Weyl’s theory of electromagnetism one
wants to interpret φα as an EM potential and one has automatically the Maxwell
equations

(1.13) {Fαβ|γ} = 0; F
αβ
|β = s

α

(the latter equation being gauge invariant source equations). These equations are
gauge invariant as a natural consequence of the geometric interpretation of the
EM field. For the interaction between the EM and gravitational fields one sets up
some field equations as indicated in [12] and the interaction between the metric
quantities and the EM fields is exhibited there (there is much more on EM theory
later and see also Section 2.1.1).

REMARK 3.1.1. As indicated earlier in [12] Ri
jk is defined with a minus

sign compared with e.g. [723, 998] for example. There is also a difference in
definition of the Ricci tensor which is taken to be Gβδ = Rβδ − (1/2)gβδR in [12]
with R = Rδ

δ so that Gµγ = gµβgγδG
βδ = Rµγ − (1/2)gµγR with Gγ

η = Rη
η−2R ⇒

Gη
η = −R (recall n = 4). In [723] the Ricci tensor is simply Rβµ = Rα

βµα where
Rα

βµν is the Riemann curvature tensor and R = Rη
η again. This is similar to [998]

where the Ricci tensor is defined as ρj� = Ri
ji�. To clarify all this we note that

(1.14) Rηγ = Rα
ηαγ = gαβRβηαγ = −gαβRβηγα = −Rα

ηγα

which reveals the minus sign difference.
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2. SKETCH OF DEBROGLIE-BOHM-WEYL THEORY

From Chapters 1 and 2 we know something about Bohmian mechanics and
the quantum potential and we go now to the papers [869, 870, 871, 872, 873,
874, 875, 876] by A. and F. Shojai to begin the present discussion (cf. also
[8, 117, 118, 284, 668, 669, 831, 832, 834, 835, 836, 837, 838, 864,
865, 866, 867, 868, 881] for related work from the Tehran school and [189,
219, 611, 731, 840, 841, 872] for linking of dBB theory with Weyl geome-
try). In nonrelativistic deBroglie-Bohm theory the quantum potential is Q =
−(�2/2m)(∇2|Ψ|/|Ψ|). The particles trajectory can be derived from Newton’s law
of motion in which the quantum force −∇Q is present in addition to the classical
force −∇V . The enigmatic quantum behavior is attributed here to the quantum
force or quantum potential (with Ψ determining a “pilot wave” which guides the
particle motion). Setting Ψ =

√
ρexp[iS/�] one has

(2.1)
∂S

∂t
+
|∇S|2
2m

+ V + Q = 0;
∂ρ

∂t
+∇ ·

(
ρ
∇S

m

)
= 0

The first equation in (2.1) is a Hamilton-Jacobi (HJ) equation which is identical
to Newton’s law and represents an energy condition E = (|p|2/2m) + V + Q
(recall from HJ theory −(∂S/∂t) = E(= H) and ∇S = p. The second equation
represents a continuity equation for a hypothetical ensemble related to the particle
in question. For the relativistic extension one could simply try to generalize the
relativistic energy equation ηµνPµP ν = m2c2 to the form

(2.2) ηµνPµP ν = m2c2(1 +Q) =M2c2; Q = (�2/m2c2)(�|Ψ|/|Ψ|)

(2.3) M2 = m2

(
1 + α

�|Ψ|
|Ψ|

)
; α =

�2

m2c2

This could be derived e.g. by setting Ψ =
√

ρexp(iS/�) in the Klein-Gordon (KG)
equation and separating the real and imaginary parts, leading to the relativistic HJ
equation ηµν∂µS∂νS = M2c2 (as in (2.1) - note Pµ = −∂µS) and the continuity
equation is ∂µ(ρ∂µS) = 0. The problem of M2 not being positive definite here
(i.e. tachyons) is serious however and in fact (2.2) is not the correct equation (see
e.g. [871, 873, 876]). One must use the covariant derivatives ∇µ in place of ∂µ

and for spin zero in a curved background there results (Q as above)

(2.4) ∇µ(ρ∇µS) = 0; gµν∇µS∇νS = M
2c2; M

2 = m2eQ

To see this one must require that a correct relativistic equation of motion should
not only be Poincaré invariant but also it should have the correct nonrelativistic
limit. Thus for a relativistic particle of mass M (which is a Lorentz invariant
quantity) A =

∫
dλ(1/2)M(r)(drµ/dλ)(drν/dλ) is the action functional where λ

is any scalar parameter parametrizing the path rµ(λ) (it could e.g. be the proper
time τ). Varying the path via rµ → r′µ = rµ + εµ one gets (cf. [871])

(2.5) A→ A
′ = A + δA = A +

∫
dλ

[
M

drµ

dλ

dεµ

dλ
+

1
2

drµ drµ

dλ
εν∂ν

M

]
dλ
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By least action the correct path satisfies δA = 0 with fixed boundaries so the
equation of motion is

(2.6) (d/dλ)(Muµ) = (1/2)uνuν∂µM;

M(duµ/dλ) = ((1/2)ηµνuαuα − uµuν)∂ν
M

where uµ = drµ/dλ. Now look at the symmetries of the action functional via
λ → λ+δ. The conserved current is then the Hamiltonian H = −L+uµ(∂L/∂uµ) =
(1/2)Muµuµ = E. This can be seen by setting δA = 0 where

(2.7) 0 = δA = A
′ − A =

∫
dλ

[
1
2
uµuµuν∂νM + Muµ

duµ

dλ

]
δ

which means that the integrand is zero, i.e. (d/dλ)[(1/2)Muµuµ] = 0. Since the
proper time is defined as c2dτ2 = drµdrµ this leads to (dτ/dλ) =

√
(2E/Mc2)

and the equation of motion becomes

(2.8) M(dvµ/dτ) = (1/2)(c2ηµν − vµvν)∂ν
M

where vµ = drµ/dτ . The nonrelativistic limit can be derived by letting the particles
velocity be ignorable with respect to light velocity. In this limit the proper time is
identical to the time coordinate τ = t and the result is that the µ = 0 component
is satisfied identically via (r ∼ �r)

(2.9) M
d2r

dt2
= −1

2
c2∇M ⇒ m

(
d2r

dt2

)
= −∇

[
mc2

2
log

(
M

µ

)]
where µ is an arbitrary mass scale. In order to have the correct limit the term
in parenthesis on the right side should be equal to the quantum potential so
(mc2/2)log(M/µ) = (�2/2m)(∇2|ψ|/|ψ|) and hence

(2.10) M = µexp[−(�2/m2c2)(∇2|Ψ|/|Ψ|)]
One infers that the relativistic quantum mass field is M = µexp[(�2/2m)(�|Ψ|/|Ψ|)]
(manifestly invariant) and setting µ = m we get (cf. also (2.12) below)

(2.11) M = mexp[(�2/m2c2)(�|Ψ|/|Ψ|)]
If one starts with the standard relativistic theory and goes to the nonrelativistic
limit one does not get the correct nonrelativistic equations; this is a result of an
improper decomposition of the wave function into its phase and norm in the KG
equation (cf. also [110] for related procedures). One notes here also that (2.11)
leads to a positive definite mass squared. Also from [871] this can be extended
to a many particle version and to a curved spacetime. However, for a particle in
a curved background we will take (cf. [873] which we follow for the rest of this
section)

(2.12) ∇µ(ρ∇µS) = 0; gµν∇µS∇νS = M
2c2; M

2 = m2eQ; Q =
�2

m2c2

�g|Ψ|
|Ψ|

((2.11) suggests that M2 = m2exp(2Q) but (2.12) is used for compatibility with
the KG approach, etc., where exp(Q) ∼ 1 + Q - cf. remarks after (2.28) below
- in any case the qualitative features are close here for either formula). Since,
following deBroglie, the quantum HJ equation (QHJE) in (2.12) can be written in
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the form (m2/M2)gµν∇µS∇νS = m2c2, the quantum effects are identical to
a change of spacetime metric

(2.13) gµν → g̃µν = (M2/m2)gµν

which is a conformal transformation. The QHJE becomes then g̃µν∇̃µS∇̃νS =
m2c2 where ∇̃µ represents covariant differentiation with respect to the metric g̃µν

and the continuity equation is then g̃µν∇̃µ(ρ∇̃νS) = 0. The important conclusion
here is that the presence of the quantum potential is equivalent to a curved space-
time with its metric given by (2.13). This is a geometrization of the quantum
aspects of matter and it seems that there is a dual aspect to the role of geometry
in physics. The spacetime geometry sometimes looks like “gravity” and sometimes
reveals quantum behavior. The curvature due to the quantum potential may have
a large influence on the classical contribution to the curvature of spacetime. The
particle trajectory can now be derived from the guidance relation via differentia-
tion of (2.12) leading to the Newton equations of motion

(2.14) M
d2xµ

dτ2
+ MΓµ

νκuνuκ = (c2gµν − uµuν)∇νM

Using the conformal transformation above (2.14) reduces to the standard geodesic
equation.

Now a general “canonical” relativistic system consisting of gravity and classical
matter (no quantum effects) is determined by the action

(2.15) A =
1
2κ

∫
d4x
√
−gR+

∫
d4x
√
−g

�2

2m

(
ρ

�2
DµSDµS − m2

�2
ρ

)
where κ = 8πG and c = 1 for convenience. It was seen above that via deBroglie
the introduction of a quantum potential is equivalent to introducing a conformal
factor Ω2 = M2/m2 in the metric. Hence in order to introduce quantum effects
of matter into the action (2.15) one uses this conformal transformation to get
(1 + Q ∼ exp(Q))

(2.16) A =
1
2κ

∫
d4x
√
−ḡ(R̄Ω2 − 6∇̄µΩ∇̄µΩ)+

+
∫

d4x
√
−ḡ

( ρ

m
Ω2∇̄µS∇̄µS −mρΩ4

)
+
∫

d4x
√
−ḡλ

[
Ω2 −

(
1 +

�2

m2

�̄
√

ρ
√

ρ

)]
where a bar over any quantity means that it corresponds to the nonquantum
regime. Here only the first two terms of the expansion of M2 = m2exp(Q) in
(2.12) have been used, namely M2 ∼ m2(1 + Q). No physical change is involved
in considering all the terms. λ is a Lagrange multiplier introduced to identify
the conformal factor with its Bohmian value. One uses here ḡµν to raise of lower
indices and to evaluate the covariant derivatives; the physical metric (containing
the quantum effects of matter) is gµν = Ω2ḡµν . By variation of the action with
respect to ḡµν , Ω, ρ, S, and λ one arrives at the following quantum equations of
motion:
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(1) The equation of motion for Ω

(2.17) R̄Ω + 6�̄Ω +
2κ

m
ρΩ(∇̄µS∇̄µS − 2m2Ω2) + 2κλΩ = 0

(2) The continuity equation for particles ∇̄µ(ρΩ2∇̄µS) = 0
(3) The equations of motion for particles (here a′ ≡ ā)

(2.18) (∇̄µS∇̄µS −m2Ω2)Ω2√ρ +
�2

2m

[
�′

(
λ
√

ρ

)
− λ

�′√ρ

ρ

]
= 0

(4) The modified Einstein equations for ḡµν

(2.19)
Ω2

[
R̄µν − 1

2 ḡµνR̄
]
− [ḡµν�′ − ∇̄µ∇̄ν ]Ω2 − 6∇̄µΩ∇̄νΩ + 3ḡµν∇̄αΩ∇̄αΩ+

+
2κ

m
ρΩ2∇̄µS∇̄νS − κ

m
ρΩ2ḡµν∇̄αS∇̄αS + κmρΩ4ḡµν+

+
κ�2

m2

[
∇̄µ
√

ρ∇̄ν

(
λ
√

ρ

)
+ ∇̄ν

√
ρ∇̄µ

(
λ
√

ρ

)]
− κ�2

m2
ḡµν∇̄α

[
λ
∇̄α√ρ
√

ρ

]
= 0

(5) The constraint equation Ω2 = 1 + (�2/m2)[(�̄
√

ρ)/
√

ρ]
Thus the back reaction effects of the quantum factor on the background metric are
contained in these highly coupled equations (cf. also [27]). A simpler form of (2.17)
can be obtained by taking the trace of (2.19) and using (2.17) which produces
λ = (�2/m2)∇̄µ[λ(∇̄µ√ρ)/

√
ρ]. A solution of this via perturbation methods using

the small parameter α = �2/m2 yields the trivial solution λ = 0 so the above
equations reduce to

(2.20) ∇̄µ(ρΩ2∇̄µS) = 0; ∇̄µS∇̄µS = m2Ω2; Gµν = −κT
(m)
µν − κT

(Ω)
µν

where T
(m)
µν is the matter energy-momentum (EM) tensor and

(2.21) κT
(Ω)
µν =

[gµν�−∇µ∇ν ]Ω2

Ω2
+ 6

∇µΩ∇νΩ
ω2

− 2gµν
∇αΩ∇αΩ

Ω2

with Ω2 = 1+α(�̄
√

ρ/
√

ρ). Note that the second relation in (2.20) is the Bohmian
equation of motion and written in terms of gµν it becomes ∇µS∇µS = m2c2.

In the preceeding one has tacitly assumed that there is an ensemble of quan-
tum particles so what about a single particle? One translates now the quantum
potential into purely geometrical terms without reference to matter parameters so
that the original form of the quantum potential can only be deduced after using
the field equations. Thus the theory will work for a single particle or an ensemble
and in this connection we make

REMARK 3.2.1. One notes that the use of ψψ∗ automatically suggests or
involves an ensemble if it is to be interpreted as a probability density. Thus the
idea that a particle has only a probability of being at or near x seems to mean that
some paths take it there but others don’t and this is consistent with Feynman’s
use of path integrals for example. This seems also to say that there is no such
thing as a particle, only a collection of versions or cloud connected to the particle
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idea. Bohmian theory on the other hand for a fixed energy gives a one parameter
family of trajectories associated to ψ (see here Section 2.2 and [197] for details).
This is because the trajectory arises from a third order differential while fixing
the solution ψ of the second order stationary Schrödinger equation involves only
two “boundary” conditions. As was shown in [197] this automatically generates
a Heisenberg inequality ∆x∆p ≥ c�; i.e. the uncertainty is built in when using
the wave function ψ and amazingly can be expressed by the operator theoretical
framework of quantum mechanics. Thus a one parameter family of paths can be
associated with the use of ψψ∗ and this generates the cloud or ensemble auto-
matically associated with the use of ψ. In fact, based on Remark 2.2.2, one might
conjecture that upon using a wave function discription of quantum particle motion,
one opens the door to a cloud of particles, all of whose motions are incompletely
governed by the SE, since one determining condition for particle motion is ignored.
Thus automatically the quantum potential will give rise to a force acting on any
such particular trajectory and the “ensemble” idea naturally applies to a cloud of
identical particles (cf. also Theorem 1.2.1 and Corollary 1.2.1).

Now first ignore gravity and look at the geometrical properties of the confor-
mal factor given via

(2.22) gµν = e4Σηµν ; e4Σ =
M2

m2
= exp

(
α

�η
√

ρ
√

ρ

)
= exp

(
α

�η

√
|T|√
|T|

)
where T is the trace of the EM tensor and is substituted for ρ (true for dust). The
Einstein tensor for this metric is

(2.23) Gµν = 4gµν�ηexp(−Σ) + 2exp(−2Σ)∂µ∂νexp(2Σ)

Hence as an Ansatz one can suppose that in the presence of gravitational effects
the field equation would have a form

(2.24) Rµν −
1
2
Rgµν = κTµν + 4gµνeΣ�e−Σ + 2e−2Σ∇µ∇νe2Σ

This is written in a manner such that in the limit Tµν → 0 one will obtain (2.22).
Taking the trace of the last equation one gets −R = κT− 12�Σ + 24(∇Σ)2 which
has the iterative solution κT = −R+ 12α�[(�

√
R)/

√
R] leading to

(2.25) Σ = α[(�
√
|T|/

√
|T|)] 
 α[(�

√
|R|)/

√
|R|)]

to first order in α.

One goes now to the field equations for a toy model. First from the above
one sees that T can be replaced by R in the expression for the quantum potential
or for the conformal factor of the metric. This is important since the explicit
reference to ensemble density is removed and the theory works for a single particle
or an ensemble. So from (2.24) for a toy quantum gravity theory one assumes the
following field equations

(2.26) Gµν − κTµν − Zµναβexp
(α

2
Φ
)
∇α∇βexp

(
−α

2
Φ
)

= 0
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where Zµναβ = 2[gµνgαβ − gµαgνβ ] and Φ = (�
√
|R|/

√
|R|). The number 2 and

the minus sign of the second term are chosen so that the energy equation derived
later will be correct. Note that the trace of (2.26) is

(2.27) R+ κT + 6exp(αΦ/2)�exp(−αΦ/2) = 0

and this represents the connection of the Ricci scalar curvature of space time
and the trace of the matter EM tensor. If a perturbative solution is admit-
ted one can expand in powers of α to find R(0) = −κT and R(1) = −κT −
6exp(αΦ0/2)�exp(−αΦ0/2) where Φ(0) = �

√
|T|/

√
|T|. The energy relation can

be obtained by taking the four divergence of the field equations and since the
divergence of the Einstein tensor is zero one obtains

(2.28) κ∇ν
Tµν = αRµν∇νΦ− α2

4
∇µ(∇Φ)2 +

α2

2
∇µΦ�Φ

For a dust with Tµν = ρuµuν and uµ the velocity field, the conservation of mass
law is ∇ν(ρMuν) = 0 so one gets to first order in α ∇µM/M = −(α/2)∇µΦ
or M2 = m2exp(−αΦ) where m is an integration constant. This is the correct
relation of mass and quantum potential.

In [873] there is then some discussion about making the conformal factor
dynamical via a general scalar tensor action (cf. also [867]) and subsequently one
makes both the conformal factor and the quantum potential into dynamical fields
and creates a scalar tensor theory with two scalar fields. Thus start with a general
action

(2.29) A =
∫

d4x
√
−g

[
φR− ω

∇µφ∇µφ

φ
− ∇µQ∇µQ

φ
+ 2Λφ + Lm

]
The cosmological constant generally has an interaction term with the scalar field
and here one uses an ad hoc matter Lagrangian

(2.30) Lm =
ρ

m
φa∇µS∇µS −mρφb − Λ(1 + Q)c + αρ(e�Q − 1)

(only the first two terms 1 + Q from exp(Q) are used for simplicity in the third
term). Here a, b, c are constants to be fixed later and the last term is chosen
(heuristically) in such a manner as to have an interaction between the quantum
potential field and the ensemble density (via the equations of motion); further the
interaction is chosen so that it vanishes in the classical limit but this is ad hoc.
Variation of the above action yields

(1) The scalar fields equation of motion

(2.31) R+
2ω

φ
�φ− ω

φ2
∇µφ∇µφ + 2Λ+

+
1
φ2
∇µQ∇µQ +

a

m
ρφa−1∇µS∇µS −mbρφb−1 = 0

(2) The quantum potential equations of motion

(2.32) (�Q/φ)− (∇µQ∇µφ/φ2)− Λc(1 + Q)c−1 + α�ρexp(�Q) = 0
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(3) The generalized Einstein equations

(2.33) G
µν − Λgµν = − 1

φ
T

µν − 1
φ

[∇µ∇ν − gµν�]φ +
ω

φ2
∇µφ∇νφ−

− ω

2φ2
gµν∇αφ∇αφ +

1
φ2
∇µQ∇νQ− 1

2φ2
gµν∇αQ∇αQ

(4) The continuity equation ∇µ(ρφa∇µS) = 0
(5) The quantum Hamilton Jacobi equation

(2.34) ∇µS∇µS = m2φb−a − αmφ−a(e�Q − 1)

In (2.31) the scalar curvature and the term ∇µS∇µS can be eliminated using
(2.33) and (2.34); further on using the matter Lagrangian and the definition of the
EM tensor one has

(2.35) (2ω − 3)�φ = (a + 1)ρα(e�Q − 1)− 2Λ(1 + Q)c + 2Λφ− 2
φ
∇µQ∇µQ

(where b = a + 1). Solving (2.32) and (2.35) with a perturbation expansion in α
one finds

(2.36) Q = Q0 + αQ1 + · · · ; φ = 1 + αQ1 + · · · ;
√

ρ =
√

ρ0 + α
√

ρ1 + · · ·
where the conformal factor is chosen to be unity at zeroth order so that as α → 0
(2.34) goes to the classical HJ equation. Further since by (2.34) the quantum
mass is m2φ + · · · the first order term in φ is chosen to be Q1 (cf. (2.12)).
Also we will see that Q1 ∼ �

√
ρ/
√

ρ plus corrections which is in accord with
Q as a quantum potential field. In any case after some computation one ob-
tains a = 2ωk, b = a + 1, and � = (1/4)(2ωk + 1) = (1/4)(a + 1) = b/4 with
Q0 = [1/c(2c − 3)]{[−(2ωk + 1)/2Λ]k

√
ρ0 − (2c2 − c + 1)} while ρ0 can be deter-

mined (cf. [873] for details). Thus heuristically the quantum potential can be
regarded as a dynamical field and perturbatively one gets the correct dependence
of quantum potential upon density, modulo some corrective terms.

One goes next to a number of examples and we only consider here the confor-
mally flat solution (cf. also [869]). Thus take gµν = exp(2Σ)ηµν where Σ << 1.
One obtains from (2.24)

(2.37) Rµν = ηµν�Σ + 2∂µ∂νΣ ⇒ Gµν = 2∂µ∂νΣ− 2ηµν�Σ

One can solve this iteratively to get

(2.38) R(0) = −κT ⇒ Σ(0) = −κ

6
�−1

T;

R(1) = −κT + 3α�
�
√
|T|√
|T|

⇒ Σ(1) = −κ

6
�−1

T +
α

2
�
√
|T|√
|T|

Consequently

(2.39) Σ = −κ

6
�−1

T +
α

2
�
√
|T|√
|T|

+ · · ·

The first term is pure gravity, the second pure quantum, and the remaining terms
involve gravity-quantum interactions. Other impressive examples are given (cf.
also [869]).
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One goes now to a generalized equivalence principle. The gravitational effects
determine the causal structure of spacetime as long as quantum effects give its
conformal structure. This does not mean that quantum effects have nothing to
do with the causal structure; they can act on the causal structure through back
reaction terms appearing in the metric field equations. The conformal factor of the
metric is a function of the quantum potential and the mass of a relativistic particle
is a field produced by quantum corrections to the classical mass. One has shown
that the presence of the quantum potential is equivalent to a conformal mapping of
the metric. Thus in different conformally related frames one feels different quan-
tum masses and different curvatures. In particular there are two frames with one
containing the quantum mass field and the classical metric while the other contains
the classical mass and the quantum metric. In general frames both the spacetime
metric and the mass field have quantum properties so one can state that different
conformal frames are identical pictures of the gravitational and quantum phenom-
ena. We feel different quantum forces in different conformal frames. The question
then arises of whether the geometrization of quantum effects implies conformal
invariance just as gravitational effects imply general coordinate invariance. One
sees here that Weyl geometry provides additional degrees of freedom which can be
identified with quantum effects and seems to create a unified geometric framework
for understanding both gravitational and quantum forces. Some features here are:
(i) Quantum effects appear independent of any preferred length scale. (ii) The
quantum mass of a particle is a field. (iii) The gravitational constant is also a field
depending on the matter distribution via the quantum potential (cf. [867, 874]).
(iv) A local variation of matter field distribution changes the quantum potential
acting on the geometry and alters it globally; the nonlocal character is forced by
the quantum potential (cf. [868]).

2.1. DIRAC-WEYL ACTION. Next (still following [873]) one goes to
Weyl geometry based on the Weyl-Dirac action

(2.40) A =
∫

d4x
√
−g(FµνFµν − β2 WR+ (σ + 6)β;µβ;µ + Lmatter)

Here Fµν is the curl of the Weyl 4-vector φµ, σ is an arbitrary constant and β is a
scalar field of weight −1. The symbol “;” represents a covariant derivative under
general coordinate and conformal transformations (Weyl covariant derivative) de-
fined as X;µ = W∇µX −NφµX where N is the Weyl weight of X. The equations
of motion are then

(2.41) G
µν = −8π

β2
(Tµν + Mµν) +

2
β

(gµνW∇αW∇αβ −W∇µW∇νβ)+

+
1
β2

(4∇µβ∇νβ − gµν∇αβ∇αβ) +
σ

β2
(β;µβ;ν − 1

2
gµνβ;αβ;α);

W∇µFµν =
1
2
σ(β2φµ + β∇µβ) + 4πJµ;

R = −(σ + 6)
W �β

β
+ σφαφα − σW∇αφα +

ψ

2β
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where

(2.42) Mµν = (1/4π)[(1/4)gµνFαβFαβ − Fµ
α F να]

and

(2.43) 8πT
µν =

1√−g

δ
√−gLmatter

δgµν
; 16πJµ =

δLmatter

δφµ
; ψ =

δLmatter

δβ

For the equations of motion of matter and the trace of the EM tensor one uses
invariance of the action under coordinate and gauge transformations, leading to

(2.44) W∇νT
µν − T

∇µβ

β
= Jαφαµ −

(
φµ +

∇µβ

β

)
W∇αJα;

16πT− 16πW∇µJµ − βψ = 0

The first relation is a geometrical identity (Bianchi identity) and the second shows
the mutual dependence of the field equations. Note that in the Weyl-Dirac theory
the Weyl vector does not couple to spinors so φµ cannot be interpreted as the
EM potential; the Weyl vector is used as part of the spacetime geometry and
the auxillary field (gauge field) β represents the quantum mass field. The gravity
fields gµν and φµ and the quantum mass field determine the spacetime geometry.
Now one constructs a Bohmian quantum gravity which is conformally invariant
in the framework of Weyl geometry. If the model has mass this must be a field
(since mass has non-zero Weyl weight). The Weyl-Dirac action is a general Weyl
invariant action as above and for simplicity now assume the matter Lagrangian
does not depend on the Weyl vector so that Jµ = 0. The equations of motion are
then

(2.45) G
µν = −8π

β2
(Tµν + Mµν) +

2
β

(gµνW∇αW∇αβ −W∇µW∇νβ)+

+
1
β2

(4∇µβ∇νβ − gµν∇αβ∇αβ) +
σ

β2

(
β;µβ;ν − 1

2
gµνβ;αβ;α

)
;

W∇νFµν =
1
2
σ(β2φµ + β∇µβ); R = −(σ + 6)

W �β

β
+ σφαφα − σW∇αφα +

ψ

2β

The symmetry conditions are

(2.46) W∇νT
µν − T(∇µβ/β) = 0; 16πT− βψ = 0

(recall T = Tµν
µν). One notes that from (2.45) results W∇µ(β2φµ + β∇µβ) = 0 so

φµ is not independent of β. To see how this is related to the Bohmian quantum
theory one introduces a quantum mass field and shows it is proportional to the
Dirac field. Thus using (2.45) and (2.46) one has

(2.47) �β +
1
6
βR =

4π

3
T

β
+ σβφαφα + 2(σ − 6)φγ∇γβ +

σ

β
∇µβ∇µβ

This can be solved iteratively via

(2.48) β2 = (8πT/R)− {1/[(R/6)− σφαφα]}β�β + · · ·
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Now assuming Tµν = ρuµuν (dust with T = ρ) we multiply (2.46) by uµ and sum
to get

(2.49) W∇ν(ρuν)− ρ(uµ∇µβ/β) = 0

Then put (2.46) into (2.49) which yields

(2.50) uνW∇νuµ = (1/β)(gµν − uµuν)∇νβ

To see this write (assuming gµν∇νβ = ∇µβ)

(2.51) W∇ν(ρuµuν) = uµW∇νρuµ + ρuνW∇νuµ ⇒

⇒ uµ

(
uµ∇µβ

β

)
+ uνW∇νuµ − ∇

µβ

β
= 0 ⇒ uνW∇νuµ = (1− uµuµ)

∇µβ

β
=

(gµν − uµuµgµν)
∇νβ

β
= (gµν − uµuν)

∇νβ

β

which is (2.49). Then from (2.48)

(2.52) β2(1) =
8πT

R ; β2(2) =
8πT

R

(
1− 1

(R/6)− σφαφα

�
√

T√
T

)
; · · ·

Comparing with (2.14) and (2.3) shows that we have the correct equations for the
Bohmian theory provided one identifies

(2.53) β ∼M;
8πT

R ∼ m2;
1

σφαφα − (R/6)
∼ α =

�2

m2c2

Thus β is the Bohmian quantum mass field and the coupling constant α (which
depends on �) is also a field, related to geometrical properties of spacetime. One
notes that the quantum effects and the length scale of the spacetime are related.
To see this suppose one is in a gauge in which the Dirac field is constant; apply
a gauge transformation to change this to a general spacetime dependent function,
i.e.

(2.54) β = β0 → β(x) = β0exp(−Ξ(x)); φµ → φµ + ∂µΞ

Thus the gauge in which the quantum mass is constant (and the quantum force is
zero) and the gauge in which the quantum mass is spacetime dependent are related
to one another via a scale change. In particular φµ in the two gauges differ by
−∇µ(β/β0) and since φµ is a part of Weyl geometry and the Dirac field represents
the quantum mass one concludes that the quantum effects are geometrized (cf.
also (2.45) which shows that φµ is not independent of β so the Weyl vector is
determined by the quantum mass and thus the geometrical aspects of the manifold
are related to quantum effects).
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2.2. REMARKS ON CONFORMAL GRAVITY. We go here to a se-
ries of papers by Arias, Bonal, Cardenas, Gonzalez, Leyva, Martin, and Quiros
(cf. [46, 47, 48, 133, 181, 182, 796, 797, 798, 799]) and sketch at some length
some results concerning Brans-Dicke theory, conformal gravity, and deBroglie-
Bohm-Weyl (dBBW) theory (many other topics are also covered in these papers
which we omit here - cf. also [24, 37, 801, 974, 975]). The presentation in
[188] of this material is difficult to read and we try here for a smoother develop-
ment. In [188] we started with [797, 799] and then gave a later reformulation
from [798]; we expand upon this now (still in a more or less chronological order
[799, 797, 798, 796]) and try to make matters clearer. Questions about the phys-
ical significance of Riemannian geometry in relativity have been raised in the past
(cf. [150, 301]) due to the arbitrariness in the metric tensor resulting from the
indefiniteness in the choice of units of measure. In fact Brans-Dicke (BD) theory
with a changing dimensionless gravitational coupling constant Gm2 ∼ φ−1 (with
m the intertial mass of some elementary particle and φ the BD field - � = c = 1
here) can be formulated in two different ways since either m or G could vary with
position in spacetime. The choice G ∼ φ−1 with m = const. leads to the Jordan
frame (JF) formalism based on the Lagrangian

(2.55) LBD[g, φ] =
√−g

16π

(
φR− ω

φ
gnm∇nφ∇mφ

)
+ LM [g]

where R is the curvature scalar, ω is the BD coupling constant, and LM [g] is the
Lagrangian density for ordinary matter minimally coupled to the scalar field. On
the other hand the choice m ∼ φ−1/2 with G constant leads to the Einstein frame
(EF) BD theory based on the Lagrangian

(2.56) L̂BD =
√−g

16π

(
R̂−

(
ω +

3
2

)
ĝnm∇̂nφ̂∇̂mφ̂

)
+ L̂M [ĝ, φ̂]

where now in the EF metric ĝ the ordinary matter is nonminimally coupled to the
scalar field φ̂ ≡ log(φ) through the Lagrangian density L̂M [ĝ, φ̂]. Both JF and EF
formulations of BD gravity are equivalent representations of the same physical sit-
uation since they both belong to the same conformal class (cf. [150]); in particular
LBD

EF ≡ LBD
JF via a rescaling of spacetime metric g → ĝ = φg or ĝab = φgab where

φ is smooth and nonvanishing. This rescaling can be interpreted as a particular
transformation of the physical units and any dimensionless number (e.g. Gm2) is
invariant; experimental observations are unchanged since spacetime coincidences
are not affected. Hence both based formulations (one based on varying G and
the other on varying m are indistinguishable) and one has physically equivalent
representations of a same physical situation. The same line of reasoning can be
applied if minimal and nonminimal coupling to matter are interchanged via

(2.57) (A) LGR[g, φ] =
√−g

16π

(
φR− ω

φ
gnm∇nφ∇mφ

)
+ LM [g, φ];

(B) L̂GR =
√−g

16π

(
R̂−

(
ω +

3
2

)
ĝnm∇̂nφ̂∇̂mφ̂

)
+ L̂M [ĝ]
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Both Lagrangians represent equivalent pictures of GR and (B) is simply GR with
a scalar field as an additional source of gravity (EFGR) and its conformally equiv-
alent Lagrangian (A) refers to Jordan frame GR (JFGR). The field equations
derivable from Lagrangian (B) are

(2.58) Ĝab = 8πT̂ab +
(

ω +
3
2

)(
∇̂aφ̂∇̂bφ̂−

1
2
ĝabĝ

nm∇̂nφ̂∇̂mφ̂

)
;

�φ̂ = 0; ∇̂nT̂na = 0; � = ĝnm∇̂n∇̂m

where Ĝab = R̂ab − (1/2)ĝabR̂ and T̂ab = (2/
√

ĝ)(∂/∂ĝab)(
√
−ĝL̂M ). Some disad-

vantages for JFGR historically involve first that the BD scalar field is nonminimally
coupled both to scalar curvature and to ordinary matter so the gravitational con-
stant G varies as G ∼ φ−1. At the same time the material test particles don’t
follow the geodesics of the geometry since they are acted on by both the metric field
and the scalar field. In particular masses vary from point to point in spacetime
so as to preserve a constant Gm2 (so m ∼ φ1/2). The most serious (but illusory)
objection is linked with the formulation of the theory in unphysical variables so
that the kinetic energy of the scalar field is not positive deffinite (cf. [351]). How-
ever one shows in [799] that the indefiniteness in the sign of the energy density in
the Jordan frame is only apparent; in fact once the scalar field energy density is
positive definite in the Einstein frame it is also in the Jordan frame.

Usually the JF formulation of BD gravity is linked with Riemannian geometry
(cf. [150]). This is directly related to the fact that in the JFBD formalism ordi-
nary matter is minimally coupled to the scalar BD field through LM [g] in (2.55).
This means that point particles follow the geodesics of the Riemannian geometry.
This geometry is based on the parallel transport law and length preservation law

(2.59) dξa = −γa
nmξmdxn; dg(ξ, ξ) = 0

where g(ξ, ξ) = gnmξnξm and γa
nm are the affine connections of the manifold.

These postulates mean that γa
bc = Γa

bc = (1/2)gan(gnb,c + gnc,b− gbc,n) (Christoffel
symbols). After the rescaling ĝab = φgab the above parallel transport and length
rules become (recall φ̂ ∼ log(φ))

(2.60) dξa = −γ̂a
nmξmdxn; dĝ(ξ, ξ) = dxn∇̂nφ̂ĝ(ξ, ξ);

γ̂a
bc = Γ̂a

bc −
1
2
(∇̂bφ̂δa

c + ∇̂cφ̂δa
b − ∇̂aφ̂ĝbc)

Thus the affine connections of the manifold don’t coincide with the Christoffel sym-
bols of the metric and one has a Weyl type manifold. Thus JF and EF Lagrangians
of both BD and GR theories are connected by conformal rescaling of the metric
together with scalar field redefinition. This means JF and EF formulations on the
one hand and Riemannian and Weyl type geometries on the other form conformal
equivalence classes (uniquely defined only after the coupling of matter fields to the
metric). In BD theory for example matter minimally couples to the JF so the test
particles follow the geodesics of the Riemannian geometry (i.e. JFBD is linked
to Riemannian geometry) while EFBD theory (conformal to JFBD) is linked to
a Weyl type geometry. Similarly EFGR is linked with Riemannian geometry and
JFGR (conformal to EFGR) is linked to a Weyl type geometry. When the matter
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part of the Lagrangian is absent both BD and GR theories can be interprted on
the grounds of either Riemann or Weyl type geometry and one can conclude that
BD and GR theory with an extra scalar field coincide.

The field equations of JFGR can be derived, either directly from (2.57) (equa-
tion (A)) or by conformally mapping (2.58) back to the JF metric according to
ĝ = φg, to obtain

(2.61) �φ = 0; ∇nTna =
1
2
φ−1∇aφT ;

Gab =
8π

φ
Tab +

ω

φ2
(∇aφ∇bφ−

1
2
gabg

nm∇− nφ∇mφ) +
1
φ

(∇a∇bφ− gab�φ)

where Tab = (2/
√−g)(∂/∂gab)(

√−gLM ) is the stress energy tensor for ordinary
matter in the Jordan frame. The energy is not conserved because the scalar field
φ exchanges energy with the metric and with the matter fields. The equation of
motion of an uncharged spinless mass point that is acted both by the JF metric
field g and the scalar field φ is

(2.62)
d2xa

ds2
= −Γa

nm

dxm

ds

dxn

ds
− 1

2
φ−1∇nφ

(
dxn

ds

dxa

ds
− gan

)
This does not coincide with the geodesic equation of the JF metric and this,
together with the more complex structure of (2.61) in comparison to (2.58), in-
troduces additional complications in the dynamics of matter fields. The fact that
the Jordan frame does not lead to a well defined energy momentum tensor for the
scalar field is perhaps the most serious objection to this representation (cf. [351]).
Thus the kinetic energy of the JF scalar field is negative definite or indefinite un-
like the Einstein frame where for ω > −(3/2) it is positive definite; this implies
no stable ground state and hence unphysical variables (cf. [351]). However al-
though the right side of (2.61) does not have a definite sign the scalar field stress
energy tensor can be given the canonical form (cf. [842] for example). In [799]
one obtains the same result as in [842] by rewriting equation (2.61) in terms of
affine magnitudes in the Weyl type manifold. Thus the affine connections of the
JF (Weyl type) manifold γa

bc are related with the Christoffel symbols of the JF
metric through γa

bc = Γa
bc +(1/2)φ−1(∇bφδa

c +∇cφδa
b −∇aφgbc) and one can define

the affine Einstein tensor γGab via the γa
bc instead of the Christoffel symbols of Γa

bc

so that (2.61) becomes

(2.63) γGab =
8π

φ
Tab +

[ω + (3/2)]
φ2

(∇aφ∇bφ− (1/2)gabg
nm∇− nφ∇mφ)

Now (φ/8π) times the second term in the right side has the canonical form for the
stress energy tensor (true stress energy tensor) while (φ/8π) times the sum of the
second and third terms in the right side will be called the effective stress energy
tensor for the BD scalar field φ (cf. (2.58)). Thus once the scalar field energy
density is positive definite in the Einstein frame it is also in the Jordan frame.
This removes the main physical objection to the Jordan frame formulation of GR.

Another remarkable feature of JFGR is the invariance under the following
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conformal transformations

(2.64) (A) g̃ab = φ2gab; φ̃ = φ−1 (B) g̃ab = fgab; φ̃ = f−1φ

where f is smooth. Also JFBD based on (A) in (2.57) is invariant under the more
general rescaling (cf. [350, 796])

(2.65) g̃ab = φ2αgab; φ̃ = φ1−2α; ω̃ =
ω − 6α(α− 1)

(1− 2α)2

for α �= 1/2. The conformal invariance of a given theory of gravitation under a
transformation of physical units is very desirable and in particular (A) in (2.57)
is thus a better candidate for BD theory than classical theories given by (2.55),
(2.56), or (B) in (2.57) which are not invariant.

We go now to [798] where a number of argments from [797, 799] are re-
peated and amplified for greater clarity. It has been demonstrated already that
GR with an extra scalar field and its conformal formulation (JFGR) are differ-
ent but physically equivalent representations of the same theory. The claim is
based on the argument that spacetime coincidences (coordinates) are not affected
by a conformal rescaling of the spacetime metric (�) ĝab = Ω2gab where Ω2 is
a smooth nonvanishing function on the manifold. Thus the experimental obser-
vations (measuements) being nothing but verifications of these coincidences are
unchanged too by (�). This means that canonical GR and its conformal image
are experimentally indistinguishable. Now a possible objection to this claim could
be based on the following argument (which will be refuted). ARGUMENT: In
canonical GR the matter fields couple minimally to the metric ĝ that determines
metrical relations on a Riemannian spacetime. Hence matter particles follow the
geodesics of the metric ĝ (in Riemannian geometry) and their masses are constant
over the spacetime manifold, i.e. it is the metric which matter “feels” or perhaps
the “physical metric”. Under the conformal rescaling the matter fields become
non-minimally coupled to the conformal metric g and hence matter particles do
not follow the geodesics of this last metric. Furthermore, it is not the metric that
determines metrical relations on the Riemannian manifold. This line of reasoning
leads to the following conclusion. Although canonical GR and its conformal im-
age may be physically equivalent theories, nevertheless, the physical metric is that
which determines metrical relations on a Riemannian spacetime and the conformal
metric g is not the physical metric. REFUTATION - to be developed: Un-
der the conformal rescaling (�) not only the Lagrangian of the theory is mapped
into its conformal Lagrangian but the spacetime geometry itself is mapped too
into a conformal geometry. In this last geometry metrical relations involve both
the conformal metric g and the conformal factor Ω2 generating (�). Hence in
the conformal Lagrangian the matter fields should “feel” both the metric and the
scalar function Ω, i.e. the matter particles would not follow the geodesics of the
conformal metric alone. The result is that under (�) the “physical” metric of the
untransformed geometry is effectively mapped into the “physical” metric of the
conformal geometry. This “missing detail” has apparently been a source of long
standing confusion and, although details have been sketched already, more will be
provided.
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Another question regarding metric theories of spacetime is also clarified, namely
the physical content of a given theory of spacetime should be contained in the in-
variants of the group of position dependent transformations of units and coordinate
transformations (cf. [150]). All known metric theories of spacetime, including GR,
BD, and scalar-tensor theories in general fufill the requirement of invariance under
the group of coordinate transformations. It is also evident that any consistent for-
mulation of a given effective theory of spacetime must be invariant also under the
group of transformations of units of length, time, and mass. This aspect is treated
below and one shows that the only consistent formulation of gravity (among those
studied here) is the conformal representation of GR.

Now with some repetition one considers various Lagrangians again. First is
that for GR with an extra scalar field, namely (α ≥ 0 is a free parameter)

(2.66) L̂GR =
√
−ĝ(R̂− α(∇̂φ̂)2 + 16π

√
−ĝLM

(note (∇̂φ̂)2 = ĝmnφ̂,mφ̂,n). When φ̂ is constant or α = 0 one recovers the usual
Einstein theory. Under the conformal rescaling (�) with Ω2 = exp(φ̂) the La-
grangian in (2.66) is mapped into its conformal Lagrangian (cf. (2.55))

(2.67) LGR =
√
−geφ̂(R− (α− (3/2))(∇φ̂)2 + 16π

√
−ge2φ̂LM ≡

≡
√
−g

(
φR−

(
α− 3

2

)
(∇φ)2

φ

)
+ 16π

√
−gLM

(the latter expression having a more usual BD form). Due to the minimal cou-
pling of the scalar field φ̂ to the curvature in canonical GR ((2.66)) the effective
gravitational constant Ĝ (set equal to 1 in (2.66)) is a real constant. The minimal
coupling of the matter fields to the metric in (2.66) entails that matter particles
follow the geodesics of the metric ĝ. Hence the inertial mass m̂ is constant too
over spacetime. This implies that the dimensionless gravitational coupling con-
stant Ĝm̂2 (c = � = 1) is constant in spacetime - unlike BD theory where this
evolves as φ−1. This is a conformal invariant feature of GR since dimensionless con-
stants do not change under (�); in other words in conformal GR Gm2 is constant
as well. However in this case ((2.67)) the effective gravitational constant varies
like G ∼ φ−1 and hence the particle masses vary like m = exp(φ̂/2)m̂ = φ1/2m̂.
According to [301] the conformal transformation (�) (with Ω2 = φ) can be in-
terpreted as a transformation of the units of length time and reciprocal mass; in
particular there results ds = φ−1/2dŝ while m−1 = φ−1/2m̂−1. A careful look at
(2.66) - (2.67) shows that Einstein’s laws of gravity derivable from (2.66) change
under the units transformation (�) and this seems to be a serious drawback of
canonical GR (and BD theory and scalar-tensor theories in general) since in any
consistent theory of spacetime the laws of physics must be invariant under a change
of the units of length, time, and mass. This will be clarified below where it is shown
that (�) with Ω2 = φ = exp(φ̂) cannot be taken properly as a units transforma-
tion. It is just a transformation allowing jumping from one formulation to its
conformal equivalent.
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In [797, 799] one claimed that canonical GR ((2.66)) and its conformal La-
grangian (2.67) are physically equivalent theories since they are indistinguishable
from the observational point of view. However it is common to believe that only
one of the conformally related metrics is the “physical” metric, i.e. that which
detrmines metrical relations on the spacetime manifold. The reasoning leading to
this conclusion is based on the following analysis. Take for instance GR with an
extra scalar field. Due to the minimal coupling of the matter fields to the metric
in (2.66) the matter particles follow the geodesics of the metric ĝ, namely

(2.68)
d2xa

dŝ2
+ Γ̂a

mn

dxm

dŝ

dxn

dŝ
= 0

where Γ̂a
bc = (1/2)ĝan(ĝbn,c + ĝcn,b − ĝbc,n) are the Christoffel symbols of the

metric ĝ. These coincide with the geodesics of the Riemannian geometry where
metrical relations are given by ĝ via ĝ(X̂, Ŷ ) = ĝmnX̂mŶ n and the line element
dŝ2 = ĝmndxmdxn, etc. It is the reason why canonical GR based on (2.66) is
naturally linked with Riemannian geometry (it is the same for JFBD since the
matter fields couple minimally to the spacetime metric). The units of this geom-
etry ar constant over the manifold. On the other hand since the matter fields are
non-minimally coupled to the metric in the conformal GR the matter particles
would not follow the geodesics of the conformal metric g but rather curves which
are solutions of the equation conformal to (2.68), namely (2.62) where now Γa

bc are
the Christoffel symbols of the metric g conformal to ĝ. Hence if one assumes that
the spacetime geometry is fixed to be Riemannian and that it is unchanged under
the conformal rescaling (�) with Ω2 = φ one efffectively arrives at the conclusion
that ĝ is the “physical” metric. However this assumption is wrong and is the
source of much long standing confusion (to be further clarified below).

REMARK 3.2.2. One notes that conformal Riemannian geometry (corre-
sponding to Weyl geometry here) develops as follows. Let λ(t) be a curve with
local coordinates xa(t) and let X with local coordinates Xa = dxa/dt be a tangent
vector to λ(t). The covariant derivative of a given vector field Ŷ along λ is given
by

(2.69)
D̂Ŷ a

∂t
=

∂Ŷ a

∂t
+ γ̂a

mnŶ m dxn

dt

where γ̂a
b is a symmetric connection. Given a metric ĝ on a manifold M̂ the

Riemannian geometry is fixed by the condition that there is a unique torsion free
(symmetric) connction on M̂ such that the covariant derivative of ĝ is zero; then
parallel transport of vectors Ŷ (D̂Ŷ a/∂t) = 0 and this preserves scalar products,
i.e. dĝ(Ŷ , Ŷ ) = 0. The laws of parallel transport and length preservation entail
that the symmetric connection γ̂a

bc coincides with the Christoffel symbols of the
metric ĝ, so γ̂a

bc = Γ̂a
bc. Suppose now that Ŷ transform under (�) (with Ω2 = φ)

as Ŷ = h(φ)Y a; then dg(Y, Y ) = −d[log(φh2)]g(Y, Y ) which resembles the law
of length transport in Weyl geometry. Hence given a Riemannian geometry on
M̂ , under (�) with Ω2 = φ one arrives at a Weyl geometry on M. The parallel
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transport law conformal to (2.69) is

(2.70)
DY a

∂t
+

∂

∂t
(log(h)Y a;

DY a

∂t
=

∂Y a

∂t
+ γa

mnY m dxn

dt

Here γa
bc is the symmetric connection on the Weyl manifold M related to the

Christoffel symbols of the conformal metric g via

(2.71) γa
bc = Γa

bc +
1
2
φ−1(φ,bδ

a
c + φ,cδ

a
b − gbcg

anφ,n)

There will be particle motions as in (2.62) and in particular Weyl geometry includes
units of measure with point dependent length.

REMARK 3.2.3. We go now to transformations of units following [796,
798]. Consider two Lagrangians

(2.72) L1 =
√
−g(R− α(∇φ)2); L2 =

√
−g

(
φR−

(
α− 3

2

)
(∇φ)2

φ

)
with respect to transformations (�) (note L2 can be obtained from L1 by rescaling
g → φg and φ → log(φ)). Consider first conformal transformations g̃ab = φσgab

(σ arbitrary) leading to

(2.73) L̃1 =
√
−g̃(φσR̃ + [(3σ(3/2)σ2]φ−2−σ − αφσ)(∇̃φ)2)

Hence the laws of gravity it describes change under this transformation; in partic-
ular in the conformal (tilde) frame the effective gravitational constant depends on
φ due to the nonminimal coupling between the scalar field and the curvature. On
the other hand L2 is mapped to

(2.74) L̃2 =
√
−g̃

(
φ1−σR̃− (α− (3/2)− 3σ + (3/2)σ2)

(1− σ)2
φσ−1(∇̃φ1−σ

)
Consequently if we introduce a new scalar field variable φ̃ = φ1−σ and redefine the
free parameter of the theory via α̃ = [α + 3σ(σ − 2)]/(1− σ)2 the Lagrangian L̃2

takes the form

(2.75) L̃2 =
√
−g̃

(
φ̃R̃−

(
α̃− 3

2

)
(∇̃φ̃)2

φ̃

)
Hence the Lagrangian L2 is invariant in form under the conformal transformation
and field transformation indicated. The composition of two such transformations
with parameters σ1 and σ2 yields a transformation of the same form with pa-
rameter σ3 = σ1 + σ2 − σ1σ2. The identity transformation involves σ = 0 and
the inverse for σ is a transformation with parameter σ̄ = −[σ/(1 − σ)]. Hence
excluding the value σ = 1 we have a one parameter Abelian group of transforma-
tions (σ3(σ1, σ2) = σ3(σ2, σ1)). This all leads to the conclusion that, since any
consistent theory of spacetime must be invariant under the one parameter group
of transformations of units (length, time, mass), spacetime theores based on the
Lagrangian for pure GR of the form L1 ar not consistent theories while those based
on Lagrangians of the form L2 may in principle be consistent formulations of a
spacetime theory. In particular canonical GR and the Einstein frame formulation
of BD theory are not consistent formulations.
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Consider now, separately, matter Lagrangians

(2.76) (A)
√
−gφ2LM ; (B)

√
−gLM

((B) involves minimal coupling of matter to the metric and (A) is non-minimal.
Under g̃ab = φσgab we have (A) →

√
−g̃φ2−2σLM and hence via scalar field

redefinition (A) is invariant in form under the group of units transformations.
However (B) with minimal coupling is not invariant and hence JFBD based on
LBD = L2 + 16π

√−gLM coupling (L2 as in (2.72)) is not a consistent theory of
spacetime. The only surviving candidate is conformal GR based on (2.67), namely
L2 + 16π

√−gφ2LM , and this theory provides a consistent formulation of the laws
of gravity. Thus the conformal version of GR involving Weyl type geometry is
the object to study and this is picked up again in [133, 796] along with some
connections to Bohmian theory. Various other topics involving cosmology and sin-
gularities are also studied in [796, 797, 798, 799] but we omit this here.

REMARK 3.2.4. We make a few comments now following [133, 796] about
Weyl geometry and the quantum potential. First we have seen that Einstein’s GR
is incomplete and a Weylian form seems preferable. Secondly there seems to be
evidence that a Weylian form can solve (or smooth) various problems involving
singularities (cf. [796, 797, 798, 799] for some information in this direction). One
recalls also the arguments emanating from string theory that a dilaton should cou-
pled to gravity in the low energy limit (cf. [429]). It is to be noted that Weyl
spacetimes conformally linked to Riemannian structure (such as conformal GR)
are called Weyl integrable spacetimes (WISP). The terminology arises from the
condition gab;c = 0 for a Riemannian space (where the symbol “;” denotes covari-
ant differentiation. Then if ĝ = Ω2g with Ω2 = φ = exp(ψ) (note we are switching
the roles of g and ĝ used earlier) there results ĝab;c = ψ,cĝab (affine covariant
derivative involving Γ̂a

bc) which are the Weyl affine connection coefficients of the
conformal manifold. Comparing to the requirement ĝab;c = wcĝab for Weyl geome-
tries (wc is the Weyl gauge vector) we see that Weyl structures conformally linked
to Riemannian geometry have the property that wc = ψ,c (ψ here corresponds to
the dilaton) and this is the origin of the term integrable since via d� = �dxnψ,n

one arrives at
∮

d� = 0 for WISP (which eliminates the second clock effect often
used to critisize Weyl spacetime). Note that the equations of motion of a free par-
ticle (or geodesic curves) in the WIST are given by (2.62) (with φ = log(ψ)) and
setting e.g. exp(ψ) = 1 + Q where Q is the quantum potential one can regard the
last term in (2.62) as the quantum force (see here Section 3.2 for a more refined
approach). In any event the moral here is that Weyl geometry implicitly contains
the quantum effects of matter - it is already a quantum geometry! In particular a
free falling test particle would not “feel” any special quantum force since the effect
is built into the free fall.

3. THE SCHRÖDINGER EQUATION IN WEYL SPACE

We go now to Santamato [840] and derive the SE from classical mechanics in
Weyl space (i.e. from Weyl geometry - cf. also [63, 188, 189, 219, 224, 490,
841, 989]). The idea is to relate the quantum force (arising from the quantum



112 3. GRAVITY AND THE QUANTUM POTENTIAL

potential) to geometrical properties of spacetime; the Klein-Gordon (KG) equation
is also treated in this spirit in [219, 841] and we discuss this later. One wants to
show how geometry acts as a guidance field for matter (as in general relativity).
Initial positions are assumed random (as in the Madelung approach) and thus
the theory is statistical and is really describing the motion of an ensemble. Thus
assume that the particle motion is given by some random process qi(t, ω) in a
manifold M (where ω is the sample space tag) whose probability density ρ(q, t)
exists and is properly normalizable. Assume that the process qi(t, ω) is the solution
of differential equations

(3.1) q̇i(t, ω) = (dqi/dt)(t, ω) = vi(q(t, ω), t)

with random initial conditions qi(t0, ω) = qi
0(ω). Once the joint distribution of

the random variables qi
0(ω) is given the process qi(t, ω) is uniquely determined by

(3.1). One knows that in this situation ∂tρ + ∂i(ρvi) = 0 (continuity equation)
with initial Cauchy data ρ(q, t) = ρ0(q). The natural origin of vi arises via a least
action principle based on a Lagrangian L(q, q̇, t) with

(3.2) L∗(q, q̇, t) = L(q, q̇, t)− Φ(q, q̇, t); Φ =
dS

dt
= ∂tS + q̇i∂iS

Then vi(q, t) arises by minimizing

(3.3) I(t0, t1) = E[
∫ t1

t0

L∗(q(t, ω), q̇(t, ω), t)dt]

where t0, t1 are arbitrary and E denotes the expectation (cf. [186, 187, 672,
674, 698] for stochastic ideas). The minimum is to be achieved over the class
of all random motions qi(t, ω) obeying (3.2) with arbitrarily varied velocity field
vi(q, t) but having common initial values. One proves first

(3.4) ∂tS + H(q,∇S, t) = 0; vi(q, t) =
∂H

∂pi
(q,∇S(q, t), t)

Thus the value of I in (3.3) along the random curve qi(t, q0(ω)) is

(3.5) I(t1, t0, ω) =
∫ t1

t0

L∗(q(, q0(ω)), q̇(t, q0(ω)), t)dt

Let µ(q0) denote the joint probability density of the random variables qi
0(ω) and

then the expectation value of the random integral is

(3.6) I(t1, t0) = E[I(t1, t0, ω)] =
∫
Rn

∫ t1

t0

µ(q0)L∗(q(t, q0), q̇(t, q0), t)dnq0dt

Standard variational methods give then

(3.7) δI =
∫
Rn

dnq0µ(0)
[
∂L∗

∂q̇i
(q(t1, q0), ∂tq(t1, q0), t)δqi(t1, q0)−

−
∫ t1

t0

dt

(
∂

∂t

∂L∗

∂q̇i
(q(t, q0), ∂tq)t, q0), t)−

∂L∗

∂qi
(q(t, q0), ∂tq(t, q0), t)

)
δqi(t, q0)

]



3. THE SCHRÖDINGER EQUATION IN WEYL SPACE 113

where one uses the fact that µ(q0) is independent of time and δqi(t0, q0) = 0 (recall
common initial data is assumed). Therefore

(3.8) (A) (∂L∗/∂q̇i)(q(t, q0), ∂tq(t, q0), t) = 0;

(B)
∂

∂t

∂L∗

∂q̇i
(q(t, q0), ∂tq(t, q0, t)−

∂L∗

∂qi
(q(t, q0), ∂tq(t, q0), t) = 0

are the necessary conditions for obtaining a minimum of I. Conditions (B) are the
usual Euler-Lagrange (EL) equations whereas (A) is a consequence of the fact that
in the most general case one must retain varied motions with δqi(t1, q0) different
from zero at the final time t1. Note that since L∗ differs from L by a total time
derivative one can safely replace L∗ by L in (B) and putting (3.2) into (A) one
obtains the classical equations

(3.9) pi = (∂L/∂q̇i)(q(t, q0), q̇(t, q0), t) = ∂iS(q(t, q0), t)

It is known now that if det[(∂2L/∂q̇i∂q̇j ] �= 0 then the second equation in (3.4) is a
consequence of the gradient condition (3.9) and of the definition of the Hamiltonian
function H(q, p, t) = piq̇

i − L. Moreover (B) in (3.8) and (3.9) entrain the HJ
equation in (3.4). In order to show that the average action integral (3.6) actually
gives a minimum one needs δ2I > 0 but this is not necessary for Lagrangians
whose Hamiltonian H has the form

(3.10) HC(q, p, t) =
1

2m
gik(pi −Ai)(pk −Ak) + V

with arbitrary fields Ai and V (particle of mass m in an EM field A) which is the
form for nonrelativistic applications; given positive definite gik such Hamiltonians
involve sufficiency conditions det[∂2L/∂q̇i∂q̇k] = mg > 0. Finally (B) in (3.8)
with L∗ replaced by L) shows that along particle trajectories the EL equations
are satisfied, i.e. the particle undergoes a classical motion with probability one.
Notice here that in (3.4) no explicit mention of generalized momenta is made;
one is dealing with a random motion entirely based on position. Moreover the
minimum principle (3.3) defines a 1-1 correspondence between solutions S(q, t)
in (3.4) and minimizing random motions qi(t, ω). Provided vi is given via (3.4)
the particle undergoes a classical motion with probability one. Thus once the
Lagrangian L or equivalently the Hamiltonian H is given, ∂tρ + ∂i(ρvi) = 0 and
(3.4) uniquely determine the stochastic process qi(t, ω). Now suppose that some
geometric structure is given on M so that the notion of scalar curvature R(q, t) of
M is meaningful. Then we assume (ad hoc) that the actual Lagrangian is

(3.11) L(q, q̇, t) = LC(q, q̇, t) + γ(�2/m)R(q, t)

where γ = (1/6)(n − 2)/(n − 1) with n = dim(M). Since both LC and R are
independent of � we have L→ LC as � → 0.

Now for a differential manifold with ds2 = gik(q)dqidqk it is standard that in
a transplantation qi → qi + δqi one has δAi = Γi

k�A
�dqk with Γi

k� general affine
connection coefficients on M (Riemannian structure is not assumed). In [840]
it is assumed that for � = (gikAiAk)1/2 one has δ� = �φkdqk where the φk are
covariant components of an arbitrary vector (Weyl geometry). Then the actual
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affine connections Γi
k� can be found by comparing this with δ�2 = δ(gikAiAk) and

using δAi = Γi
k�A

�dqk. A little linear algebra gives then

(3.12) Γi
k� = −

{
i

k �

}
+ gim(gmkφ� + gm�φk − gk�φm)

Thus we may prescribe the metric tensor gik and φi and determine via (3.12) the
connection coefficients. Note that Γi

k� = Γi
�k and for φi = 0 one has Riemannian

geometry. Covariant derivatives are defined via

(3.13) Ak
,ı = ∂iA

k − Γk�A�; Ak,i = ∂iAk + Γ�
kiA�

for covariant and contravariant vectors respectively (where S,i = ∂iS). Note Ricci’s
lemma no longer holds (i.e. gik,� �= 0) so covariant differentiation and operations
of raising or lowering indices do not commute. The curvature tensor Ri

k�m in Weyl
geometry is introduced via Ai

,k,�−Ai
,�,k = F i

mk�A
m from which arises the standard

formula of Riemannian geometry

(3.14) Ri
mk� = −∂�Γi

mk + ∂kΓi
m� + Γi

n�Γ
n
mk − Γi

nkΓn
m�

where (3.12) is used in place of the Christoffel symbols. The tensor Ri
mk� obeys

the same symmetry relations as the curvature tensor of Riemann geometry as well
as the Bianchi identity. The Ricci symmetric tensor Rik and the scalar curvature
R are defined by the same formulas also, viz. Rik = R�

i�k and R = gikRik. For
completeness one derives here

(3.15) R = Ṙ + (n− 1)[(n− 2)φiφ
i − 2(1/

√
g)∂i(

√
gφi)]

where Ṙ is the Riemannian curvature built by the Christoffel symbols. Thus from
(3.12) one obtains

(3.16) gk�Γi
k� = −gk�

{
i

k �

}
− (n− 2)φi; Γi

k� = −
{

i
k �

}
+ nφk

Since the form of a scalar is independent of the coordinate system used one may
compute R in a geodesic system where the Christoffel symbols and all ∂�gik vanish;
then (3.12) reduces to Γi

k� = φkκi
� + φ�δ

i
k − gk�φ

i and hence

(3.17) R = −gkm∂mΓi
k� + ∂i(gk�Γi

k�) + g�mΓi
n�Γ

n
mi − gm�Γi

n�Γ
n
m�

Further one has g�mΓi
n�Γ

n
mi = −(n − 2)(φkφk) at the point in consideration.

Putting all this in (3.17) one arrives at

(3.18) R = Ṙ + (n− 1)(n− 2)(φkφk)− 2(n− 1)∂kφk

which becomes (3.15) in covariant form. Now the geometry is to be derived from
physical principles so the φi cannot be arbitrary but must be obtained by the same
averaged least action principle (3.3) giving the motion of the particle. The mini-
mum in (3.3) is to be evaluated now with respect to the class of all Weyl geometries
having arbitrarily varied gauge vectors but fixed metric tensor. Note that once
(3.11) is inserted in (3.2) the only term in (3.3) containing the gauge vector is the
curvature term. Then observing that γ > 0 when n ≥ 3 the minimum principle
(3.3) may be reduced to the simpler form E[R(q(t, ω), t)] = min where only the
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gauge vectors φi are varied. Using (3.15) this is easily done. First a little argu-
ment shows that ρ̂(q, t) = ρ(q, t)/

√
g transforms as a scalar in a coordinate change

and this will be called the scalar probability density of the random motion of the
particle (statistical determination of geometry). Starting from ∂tρ + ∂i(ρvi) = 0 a
manifestly covariant equation for ρ̂ is found to be ∂tρ̂+(1/

√
g)∂i(

√
gviρ̂) = 0. Now

return to the minimum problem E[R(q(t, ω), t)] = min; from (3.15) and ρ̂ = ρ/
√

g
one obtains

(3.19) E[R(q(t, ω), t)] = E[Ṙ(q(t, ω), t)]+

+(n− 1)
∫

M

[(n− 2)φiφ
i − 2(1/

√
g)∂i(

√
gφi)]ρ̂(q, t)

√
gdnq

Assuming fields go to 0 rapidly enough on ∂M and integrating by parts one gets
then

(3.20) E[R] = E[Ṙ]− n− 1
n− 2

E[gik∂i(log(ρ̂)∂k(log(ρ̂)]+

+
n− 1
n− 2

E{gik[(n− 2)φi + ∂i(log(ρ̂)][(n− 2)φk + ∂k(log(ρ̂)]}

Since the first two terms on the right are independent of the gauge vector and gik

is positive definite E[R] will be a minimum when

(3.21) φi(q, t) = −[1/(n− 2)]∂i[log(ρ̂)(q, t)]

This shows that the geometric properties of space are indeed affected by the pres-
ence of the particle and in turn the alteration of geometry acts on the particle
through the quantum force fi = γ(�2/m)∂iR which according to (3.15) depends
on the gauge vector and its derivatives. It is this peculiar feedback between the
geometry of space and the motion of the particle which produces quantum effects.

In this spirit one goes now to a geometrical derivation of the SE. Thus inserting
(3.21) into (3.16) one gets

(3.22) R = Ṙ + (1/2γ
√

ρ̂)[1/
√

g)∂i(
√

ggik∂k

√
ρ̂)]

where the value (n−2)/6(n−1) for γ is used. On the other hand the HJ equation

(3.23) ∂tS + HC(q,∇S, t)− γ(�2/m)R = 0

where (3.11) has been used. When (3.22) is introduced into (3.23) the HJ equation
and the continuity equation ∂tρ̂ + (1/

√
g)(
√

gviρ̂) = 0, with velocity field given
by (3.4), form a set of two nonlinear PDE which are coupled by the curvature
of space. Therefore self consistent random motions of the particle (i.e. random
motions compatible with (3.17)) are obtained by solving (3.23) and the continuity
equation simultaneously. For every pair of solutions S(q, t, ρ̂(q, t)) one gets a pos-
sible random motion for the particle whose invariant probability density is ρ̂. The
present approach is so different from traditional QM that a proof of equivalence

(3.4) can be written as
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is needed and this is only done for Hamiltonians of the form (3.10) (which is not
very restrictive). The HJ equation corresponding to (3.10) is

(3.24) ∂tS +
1

2m
gik(∂iS −Ai)(∂kS −Ak) + V − γ

�2

m
R = 0

with R given by (3.22). Moreover using (3.4) as well as (3.10) the continuity
equation becomes

(3.25) ∂tρ̂ + (1/m
√

g)∂i[ρ̂
√

ggik(∂kS −Ak)] = 0

Owing to (3.22),(3.24) and (3.25) form a set of two nonlinear PDE which must
be solved for the unknown functions S and ρ̂. Now a straightforward calculations
shows that, setting

(3.26) ψ(q, t) =
√

ρ̂(q, t)exp](i/�)S(q, t)],

the quantity ψ obeys a linear PDE (corrected from [840])

(3.27) i�∂tψ =
1

2m

{[
i�∂i

√
g

√
g

+ Ai

]
gik(i�∂k + Ak)

}
ψ +

[
V − γ

�2

m
Ṙ

]
ψ

where only the Riemannian curvature Ṙ is present (any explicit reference to the
gauge vector φi having disappeared). (3.27) is of course the SE in curvilinear
coordinates whose invariance under point transformations is well known. Moreover
(3.26) shows that |ψ|2 = ρ̂(q, t) is the invariant probability density of finding the
particle in the volume element dnq at time t. Then following Nelson’s arguments
that the SE together with the density formula contains QM the present theory is
physically equivalent to traditional nonrelativistic QM. One sees also from (3.26)
and (3.27) that the time independent SE is obtained via S = S0(q) − Et with
constant E and ρ̂(q). In this case the scalar curvature of space becomes time
independent; since starting data at t0 is meaningless one replaces the continuity
equation with a condition

∫
M

ρ̂(q)
√

gdnq = 1.

REMARK 3.3.1. We recall (cf. [188]) that in the nonrelativistic context
the quantum potential has the form Q = −(�2/2m)(∂2√ρ/

√
ρ) (ρ ∼ ρ̂ here) and

in more dimensions this corresponds to Q = −(�2/2m)(∆
√

ρ/
√

ρ). Here we have
a SE involving ψ =

√
ρexp[(i/�)S] with corresponding HJ equation (3.24) which

corresponds to the flat space 1-D St + (s′)2/2m + V + Q = 0 with continuity
equation ∂tρ + ∂(ρS′/m) = 0 (take Ak = 0 here). The continuity equation in
(3.25) corresponds to ∂tρ + (1/m

√
g)∂i[ρ

√
ggik(∂kS)] = 0. For Ak = 0 (3.24)

becomes

(3.28) ∂tS + (1/2m)gik∂iS∂kS + V − γ(�2/m)R = 0

This leads to an identification Q ∼ −γ(�2/m)R where R is the Ricci scalar in the
Weyl geometry (related to the Riemannian curvature built on standard Christoffel
symbols via (3.15)). Here γ = (1/6)[(n − 2)/(n − 2)] as above which for n = 3
becomes γ = 1/12; further the Weyl field φi = −∂ilog(ρ). Consequently (see
below).
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PROPOSITION 3.1. For the SE (3.27) in Weyl space the quantum potential
is Q = −(�2/12m)R where R is the Weyl-Ricci scalar curvature. For Riemannian
flat space Ṙ = 0 this becomes via (3.22)

(3.29) R =
1

2γ
√

ρ
∂ig

ik∂k
√

ρ ∼ 1
2γ

∆
√

ρ
√

ρ
⇒ Q = − �2

2m

∆
√

ρ
√

ρ

as it should and the SE (3.27) reduces to the standard SE in the form i�∂tψ =
−(�2/2m)∆ψ + V ψ (Ak = 0).

3.1. FISHER INFORMATION REVISITED. Via Remarks 1.1.4, 1.1.5,
and 1.1.6 from Chapter 1 (based on [395, 446, 447, 448, 449, 805, 806]) we
recall the derivation of the SE in Theorem 1.1.1. Thus with some repetition recall
first that the classical Fisher information associated with translations of a 1-D
observable X with probability density P (x) is

(3.30) FX =
∫

dx P (x)([log(P (x)]′)2 > 0

One has a well known Cramer-Rao inequality V ar(X) ≥ F−1
X where V ar(X) ∼

variance of X. A Fisher length for X is defined via δX = F
−1/2
X and this quantifies

the length scale over which p(x) (or better log(p(x))) varies appreciably. Then the
root mean square deviation ∆X satisfies ∆X ≥ δX. Let now P be the momentum
observable conjugate to X, and Pcl a classical momentum observable corresponding
to the state ψ given via pcl(x) = (�/2i)[(ψ′/ψ)−(ψ̄′/ψ̄)]. One has then the identity
< p >ψ=< pcl >ψ following via integration by parts. Now define the nonclassical
momentum by pnc = p− pcl and one shows then

(3.31) ∆X∆p ≥ δX∆p ≥ δX∆pnc = �/2

Then consider a classical ensemble of n-dimensional particles of mass m moving
under a potential V. The motion can be described via the HJ and continuity
equations

(3.32)
∂s

∂t
+

1
2m
|∇s|2 + V = 0;

∂P

∂t
+∇ ·

[
P
∇s

m

]
= 0

for the momentum potential s and the position probability density P (note that
there is no quantum potential and this will be supplied by the information term).
These equations follow from the variational principle δL = 0 with Lagrangian
L =

∫
dt dnx P

[
(∂s/∂t) + (1/2m)|∇s|2 + V

]
. It is now assumed that the classical

Lagrangian must be modified due to the existence of random momentum fluctua-
tions. The nature of such fluctuations is immaterial and one can assume that the
momentum associated with position x is given by p = ∇s+N where the fluctuation
term N vanishes on average at each point x. Thus s changes to being an average
momentum potential. It follows that the average kinetic energy < |∇s|2 > /2m
appearing in the Lagrangian above should be replaced by < |∇s + N |2 > /2m
giving rise to

(3.33) L′ = L + (2m)−1

∫
dt < N ·N >= L + (2m)−1

∫
dt(∆N)2



118 3. GRAVITY AND THE QUANTUM POTENTIAL

where ∆N =< N ·N >1/2 is a measure of the strength of the quantum fluctuations.
The additional term is specified uniquely, up to a multiplicative constant, by the
three assumptions given in Remark 1.1.4 This leads to the result that

(3.34) (∆N)2 = c

∫
dnx P |∇log(P )|2

where c is a positive universal constant (cf. [446]). Further for � = 2
√

c and
ψ =

√
Pexp(is/�) the equations of motion for p and s arising from δL′ = 0 are

i�∂ψ
∂t = − �2

2m∇2ψ + V ψ.

A second derivation is given in Remark 1.1.5. Thus let P (yi) be a probability
density and P (yi + ∆yi) be the density resulting from a small change in the yi.
Calculate the cross entropy via

(3.35) J(P (yi + ∆yi) : P (yi)) =
∫

P (yi + ∆yi)log
P (yi + ∆yi)

P (yi)
dny 




[
1
2

∫
1

P (yi)
∂P (yi)

∂yi

∂P (yi)
∂yk)

dny

]
∆yi∆yk = Ijk∆yi∆yk

The Ijk are the elements of the Fisher information matrix. The most general
expression has the form

(3.36) Ijk(θi) =
1
2

∫
1

P (xi|θi)
∂P (xi|θi)

∂θj

∂P (xi|θi)
∂θk

dnx

where P (xi|θi) is a probability distribution depending on parameters θi in addition
to the xi. For P (xi|θi) = P (xi + θi) one recovers (3.35). If P is defined over
an n-dimensional manifold with positive inverse metric gik one obtains a natural
definition of the information associated with P via

(3.37) I = gikIik =
gik

2

∫
1
P

∂P

∂yi

∂P

∂yk
dny

Now in the HJ formulation of classical mechanics the equation of motion takes the
form

(3.38)
∂S

∂t
+

1
2
gµν ∂S

∂xµ

∂S

∂xν
+ V = 0

where gµν = diag(1/m, · · · , 1/m). The velocity field uµ is then uµ = gµν(∂S/∂xν).
When the exact coordinates are unknown one can describe the system by means
of a probability density P (t, xµ) with

∫
Pdnx = 1 and

(3.39) (∂P/∂t) + (∂/∂xµ)(Pgµν(∂S/∂xν) = 0

These equations completely describe the motion and can be derived from the
Lagrangian

(3.40) LCL =
∫

P {(∂S/∂t) + (1/2)gµν(∂S/∂xµ)(∂S/∂xν) + V } dtdnx
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using fixed endpoint variation in S and P. Quantization is obtained by adding a
term proportional to the information I defined in (3.37). This leads to
(3.41)

LQM = LCL + λI =
∫

P

{
∂S

∂t
+

1
2
gµν

[
∂S

∂xµ

∂S

∂xν
+

λ

P 2

∂P

∂xµ

∂P

∂xν

]
+ V

}
dtdnx

Fixed endpoint variation in S leads again to (3.39) while variation in P leads to

(3.42)
∂S

∂t
+

1
2
gµν

[
∂S

∂xµ

∂S

∂xν
+ λ

(
1

P 2

∂P

∂xµ

∂P

∂xν
− 2

P

∂2P

∂xµ∂xν

)]
+ V = 0

These equations are equivalent to the SE if ψ =
√

Pexp(iS/�) with λ = (2�)2

(recall also Remark 1.1.6 for connections to entropy). Now following ideas in
[219, 223, 715] we note in (3.41) for φµ ∼ Aµ = ∂µlog(P ) (which arises in (3.21))
and pµ = ∂uS, a complex velocity can be envisioned leading to (cf. also [224])

(3.43) |pµ + i
√

λAµ|2 = p2
µ + λA2

µ ∼ gµν

(
∂S

∂xµ

∂S

∂xν
+

λ

P 2

∂P

∂xµ

∂P

∂xν

)
Further I in (3.37) is exactly known from φµ so one has a direct connection between
Fisher information and the Weyl field φµ, along with motivation for a complex
velocity (cf. Sections 1.2 and 1.3).

REMARK 3.3.2. Comparing now with [189] and quantum geometry in the
form ds2 =

∑
(dp2

j/pj) on a space of probability distributions (to be discussed
in Chapter 5) we can define (3.37) as a Fisher information metric in the present
context. This should be positive definite in view of its relation to (∆N)2 in (3.34)
for example. Now for ψ = Rexp(iS/�) one has (ρ ∼ ρ̂ here)

(3.44) − �2

2m

R′′

R
≡ − �2

2m

∂2√ρ
√

ρ
= − �2

8m

[
2ρ′′

ρ
−
(

ρ′

ρ

)2
]

in 1-D while in more dimensions we have a form (ρ ∼ P )

(3.45) Q ∼ −2�2gµν

[
1

P 2

∂P

∂xµ

∂P

∂xν
− 2

P

∂2P

∂xµ∂xν

]
as in (3.44) (arising from the Fisher metric I of (3.37) upon variation in P in the
Lagrangian). It can also be related to an osmotic velocity field u = D∇log(ρ)
via Q = (1/2)u2 + D∇ · u connected to Brownian motion where D is a diffusion
coefficient (cf. [223, 395, 715]). For φµ = −∂µlog(P ) we have then u = −Dφ
with Q = D2((1/2)(| |2−∇·φ), expressing Q directly in terms of the Weyl vector.
This enforces the idea that QM is built into Weyl geometry!

3.2. THE KG EQUATION. The formulation above from [840] was mod-
ified in [841] to a derivation of the Klein-Gordon (KG) equation via an average
action principle. The spacetime geometry was then obtained from the average ac-
tion principle to obtain Weyl connections with a gauge field φµ (thus the geometry
has a statistical origin). The Riemann scalar curvature Ṙ is then related to the
Weyl scalar curvature R via an equation

(3.46) R = Ṙ− 3[(1/2)gµνφµφν + (1/
√
−g)∂µ(

√
−ggµνφν)]

φ
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Explicit reference to the underlying Weyl structure disappears in the resulting SE
(as in (3.27)). The HJ equation in [841] has this form (for Aµ = 0 and V = 0)
gµν∂µS∂νS = m2 − (R/6) so in some sense (recall here � = c = 1) m2 − (R/6) ∼
M2 where M2 = m2exp(Q) and Q = (�2/m2c2)(�

√
ρ/
√

ρ) ∼ (�
√

ρ/m2√ρ) via
Section 3.2 (for signature (−,+,+,+) - recall here gµν∇µS∇νS = M2c2). Thus
for exp(Q) ∼ 1 + Q one has m2 − (R/6) ∼ m2(1 + Q) ⇒ (R/6) ∼ −Qm2 ∼
−(�

√
ρ/
√

ρ). This agrees also with [219] where the whole matter is analyzed
incisively (cf. also Remark 3.3.5). We recall also here from [798] (cf. Section
3.2.2) that in the conformal geometry the particles do not follow geodesics of the
conformal metric alone. We will sketch an elaboration of this now from [841]
(paper one). Thus summarizing [840] and the second paper in [841] one shows
that traditional QM is equivalent (in some sense) to classical statistical mechanics
in Weyl spaces. The following two points of view are taken to be equivalent

(1) (A) The spacetime is a Riemannian manifold and the statistical behavior
of a spinless particle is described by the KG equation while probabilities
combine according to Feynman quantum rules.

(2) (B) The spacetime is a generic affinely connected manifold whose actual
geometric structure is determined by the matter content. The statis-
tical behavior of a spinless particle is described by classical statistical
mechanics and probabilities combine according to Laplace rules.

(3) In nonrelativistic applications the words spacetime, Riemannian, and KG
are to be replacedby space, Euclidean, and SE.

We are skipping over the second paper in [841] here and going to the first pa-
per which treates matters in a gauge invariant manner. The moral seems to be
(loosly) that quantum mechanics in Riemannian spacetime is the same as clas-
sical statistical mechanics in a Weyl space. In particular one wants to establish
that traditional QM, based on wave equations and ad hoc probability calculus
(as in (1) above) is merely a convenient mathematical construction to overcome
the complications arising from a nontrivial spacetime geometric structure. Here
one works from first principles and includes gauge invariance (i.e. invariance with
respect to an arbitrary choice of the spacetime calibration). The spacetime is
supposed to be a generic 4-dimensional differential manifold with torsion free con-
nections Γλ

µν = Γλ
νµ and a metric tensor gµν with signature (+,−,−,−) (one takes

� = c = 1 - which I deem unfortunate since the role and effect of such quantities
is not revealed). Here the (restrictive) hypothesis of assuming a Weyl geometry
from the beginning is released, both the particle motion and the spacetime geo-
metric structure are derived from a single average action principle. A result of
this approach is that the spacetime connections are forced to be integrable Weyl
connections by the extremization principle.

The particle is supposed to undergo a motion in spacetime with determin-
istic trajectories and random initial conditions taken on an arbitrary spacelike
3-dimensional hypersurface; thus the theory describes a relativistic Gibbs ensem-
ble of particles (cf. Remark 3.3.3). Both the particle motion and the spacetime
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connections can be obtained from the average stationary action principle

(3.47) δ

[
E

(∫ τ2

τ1

L(x(τ, ẋ(τ))dτ

)]
= 0

This action integral must be parameter invariant, coordinate invariant, and gauge
invariant. All of these requirements are met if L is positively homogeneous of the
first degree in ẋµ = dxµ/dτ and transforms as a scalar of Weyl type w(L) = 0.
The underlying probability measure must also be gauge invariant. A suitable
Lagrangian is then

(3.48) L(x, dx) = (m2 − (R/6))1/2ds + Aµdxµ

where ds = (gµν ẋµẋν)1/2dτ is the arc length and R is the space time scalar cur-
vature; m is a parameterlike scalar field of Weyl type (or weight) w(m) = −(1/2).
The factor 6 is essentially arbitrary and has been chosen for future convenience.
The vector field Aµ can be interpreted as a 4-potential due to an externally applied
EM field and the curvature dependent factor in front of ds is an effective particle
mass. This seems a bit ad hoc but some feeling for the nature of the Lagrangian
can be obtained from Section 3.2 (cf. also [63]). The Lagrangian will be gauge
invariant provided the Aµ have Weyl type w(Aµ) = 0. Now one can split Aµ into
its gradient and divergence free parts Aµ = Āµ−∂µS, with both S and Āµ having
Weyl type zero, and with Āµ interpreted as and EM 4-potential in the Lorentz
gauge. Due to the nature of the action principle regarding fixed endpoints in vari-
ation one notes that the average action principle is not invariant under EM gauge
transformations Aµ → Aµ + ∂µS; but one knows that QM is also not invariant
under EM gauge transformations (cf. [17]) so there is no incompatability with
QM here.

Now the set of all spacetime trajectories accessible to the particle (the particle
path space) may be obtained from (3.47) by performing the variation with respect
to the particle trajectory with fixed metric tensor, connections, and an underlying
probability measure. Thus (cf. Remark 3.3.3) the solution is given by the so-called
Carathéodory complete figure (cf. [826]) associated with the Lagrangian

(3.49) L̄(x, dx) = (m2 − (R/6))1/2ds + Āµdxµ

(note this leads to the same equations as (3.48) since the Lagrangians differ by a
total differential dS). The resulting complete figure is a geometric entity formed
by a one parameter family of hypersurfaces S(x) = const. where S satisfies the HJ
equation

(3.50) gµν(∂µS − Āµ)(∂νS − Āν) = m2 − R

6
and by a congruence of curves intersecting this family given by

(3.51)
dxµ

ds
=

gµν(∂νS − Āν)
[gρσ(∂ρS − Āρ)(∂σS − Āσ)]1/2

The congruence yields the actual particle path space and the underlying proba-
bility measure on the path space may be defined on an arbitrary 3-dimensional
hypersurface intersecting all of the members of the congruence without tangencies
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(cf. [443]). The measure will be completely identified by its probability current
density jµ (see [841] and Remark 3.3.3). Moreover, since the measure is inde-
pendent of the arbitrary choice of the hypersurface, jµ must be conserved, i.e.
∂µjµ = 0 (see Remark 3.3.3). Since the trajectories are deterministically defined
by (3.51), jµ must be parallel to the particle 4-velocity (3.51), and hence

(3.52) jµ = ρ
√
−ggµν(∂νS − Āν)

with some ρ > 0. Now gauge invariance of the underlying measure as well as of
the complete figure requires that jµ transforms as a vector density of Weyl type
w(jµ) = 0 and S as a scalar of Weyl type w(S) = 0. From (3.52) one sees then
that ρ transforms as a scalar of Weyl type w(ρ) = −1 and ρ is called the scalar
probability density of the particle random motion.

The actual spacetime affine connections are obtained from (3.47) by perform-
ing the variation with respect to the fields Γλ

µν for a fixed metric tensor, particle
trajectory, and probability measure. It is expedient to tranform the average action
principle to the form of a 4-volume integral

(3.53) δ

[∫
Ω

d4x[(m2 − (R/6))(gµνjµjν ]1/2 + Aµjµ

]
= 0

where Ω is the spacetime region occupied by the congruence (3.51) and jµ is given
by (3.52) (cf. [841] and Remark 3.3.3 for proofs). Since the connection fields Γλ

µν

are contained only in the curvature term R the variational problem (3.53) can be
further reduced to

(3.54) δ

[∫
Ω

ρR
√
−gd4x

]
= 0

(here the HJ equation (3.50) has been used). This states that the average space-
time curvature must be stationary under a variation of the fields Γλ

µν (principle of
stationary average curvature). The extremal connections Γλ

µν arising from (3.54)
are derived in [841] using standard field theory techniques and the result is

(3.55) Γλ
µν =

{
λ

µ ν

}
+

1
2
(φµδλ

ν + φνδλ
µ − gµνgλρφρ); φµ = ∂µlog(ρ)

This shows that the resulting connections are integrable Weyl connections with a
gauge field φµ (cf. [840], Section 3, and Section 3.1). The HJ equation (3.50) and
the continuity equation ∂µjµ = 0 can be consolidated in a single complex equation
for S, namely

(3.56) eiSgµν(iDµ − Āµ)(iDν − Āν)e−iS − (m2 − (R/6)) = 0; Dµρ = 0

Here Dµ is (doubly covariant - i.e. gauge and coordinate invariant) Weyl derivative
given by (cf. [63])

(3.57) DµTα
β = ∂µTα

β + Γα
µεT

ε
β − Γε

µβTα
ε + w(T )φµTα

β

It is to be noted that the probability density (but not the rest mass) remains
constant relative to Dµ. When written out (3.56) for a set of two coupled partial
differential equations for ρ and S. To any solution corresponds a particular random
motion of the particle.
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Next one notes that (3.56) can be cast in the familiar KG form, i.e.

(3.58) [(i/
√
−g)∂µ

√
−g − Āµ]gµν(i∂ν − Āν)ψ − (m2 − (Ṙ/6))ψ = 0

where ψ =
√

ρexp(−iS) and Ṙ is the Riemannian scalar curvature built out of gµν

only. We have the (by now) familiar formula

(3.59) R = Ṙ− 3[(1/2)gµνφµφν + (1/
√
−g)∂µ(

√
−ggµνφν)]

According to point of view (A) above in the KG equation (3.58) any explicit
reference to the underlying spacetime Weyl structure has disappeared; thus the
Weyl structure is hidden in the KG theory. However we note that no physical
meaning is attributed to ψ or to the KG equation. Rather the dynamical and
statistical behavior of the particle, regarded as a classical particle, is determined
by (3.56), which, although completely equivalent to the KG equation, is expressed
in terms of quantities having a more direct physical interpretation.

REMARK 3.3.3. We extract here from the Appendices to paper 1 of [841].
In Appendix A one shows that the Carathéodory complete figure formed by the
congruence (3.51) solves the variational problem (3.47). One needs the notion of
the Gibbs ensemble in relativistic mechanics (cf. [443]). Roughly a relativistic
Gibbs ensemble of particles may be assimilated to an incoherent globule of matter
moving in spacetime. More precisely a relativistic Gibbs ensemble is given by
(i) A congruence of timelike curves in spacetime (the path space of the particles)
and (ii) A probability measure defined on this congruence (note a congruence of
spacelike curves could also be envisioned but causality is affected - a physical
intepretation is unclear although it could be related to a statistical formulation of
virtual phenomena). The construction here goes as follows. Let K be a 3-parameter
congruence of time like curves in spacetime be given via (�) xµ = xµ(τ, uk) where
k = 1, 2, 3 and τ is an arbitrary parameter along each curve of the congruence.
For simplicity assume that the congruence covers a region Ω of spacetime simply
(i.e. one and only one curve of K passes through each point of Ω). Then one
can regard (�) as a change of coordinates from xµ to yµ where y0 = t, yk = uk

(assume the Jacobian is nonzero in Ω). Consider then the action integral L =∫ τ2

τ1
L(x(τ, uk), ẋ(τ, uk)dτ with L homogeneous of the first degree in the derivatives

ẋµ = ∂xµ/∂τ . Given a 1-1 correspondence between the uk and members of the
congruence K one may introduce a formula for the probability that the particle
follows a sample path having parameters uk in some 3-dimensional region B as
prob(B) =

∫
B⊂R

µ(uk)du1du2du3 where µ(uk) is some probability density defined
on R3. Hence the average action integral in (3.47) may be written as

(3.60) I = E

[∫ τ2

τ1

Ldτ

]
=
∫
R3

∫ τ2

τ1

µ(uk)L(xµ(τ, uk), ẋµ(τ, uk)dτ
∏

dui

The last term is a 4-dimensional volume integral over the zone between the hyper-
planes y0 = τ1 and y0 = τ2 in the y coordinate. In the x coordinates these hyper-
planes are mapped on two 3-dimensional hypersurfaces τ(xµ) = τ1 and τ(xµ) = τ2

where τ(xµ) is obtained by solving (�) with respect to τ ; since they are merely a
result of the parametrization of K they can be regarded as essentially arbitrary.
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The integrand in (3.60) depends on the 4 unknown functions xµ(yν) and on their
first derivatives ∂xµ/∂y0, and on the coordinates yν themselves. Therefore the
variational problem δI = 0 is reduced to a standard variational problem whose
solution will yield the functions xµ(τ, uk), i.e. the actual congruence that renders
the average action stationary.

Now the Lagrangian density in (3.60) is Λ = µ(uk)L(xµ(τ, uk), xµ
,τ (τ, uk) in

which xµ
,τ = ẋµ with τ and uk are the independent variables. By standard methods

the EL expressions are (xµ
,k = ∂xµ/∂uk)

(3.61) E(Λ) =
∂

∂uk

[
∂Λ
∂xµ

,k

]
+

∂

∂τ

[
∂Λ
∂xµ

,τ

]
− ∂Λ

∂xµ

In this case howver ∂Λ/∂xµ
,k = 0 and hence the fixed equations E(Λ) = 0 reduce

to (note µ does not depend explicitly on τ)

(3.62)
∂

∂τ

[
µ

∂L

∂xµ
,τ

]
− µ

∂L

∂xµ
= 0⇒ ∂

∂τ

[
∂L

∂ẋµ

]
− ∂L

∂xµ
= 0

and this coincides with the EL equations associated with the action integral above.
This means that the actual congruence must be a congruence of extremals or
equivalently that the particle obeys equations of motion (3.62) with probability
one. Even if the congruence is extremal however we are left with nonvanishing
surface terms in the variation of I, namely
(3.63)

δI =
∫
R3

µ(uk)
∏

dui

[
∂L

∂ẋµ
(τ2, u

k)δxµ(τ2, u
k)− ∂L

∂ẋµ
(τ1, u

k)δxµ(τ1, u
k)
]

= 0

In (3.63) the quantities δxµ at τ = τ2 and τ = τ1 are displacements between points
P and P + δP where the curves xµ and xµ + δxµ intersect the hypesurfaces τ = τ2

and τ = τ1 so δxµ(τ1, u
k) and δxµ(τ1, u

k) are tangential to the hypersurfaces.
Since the hypersurfaces τ(xµ) = const. are essentially arbitrary so must be the
displacements δxµ and δI = 0 implies then (•) ∂L/∂ẋµ(τ, uk) = 0. Finally relating
L with the Lagrangian (3.48) and comparing with L̄ as defined in (3.49) one has
∂L/∂ẋµ = ∂L̄/∂ẋµ − ∂µS so (•) yields ∂L̄/∂ẋµ = ∂µS. Moreover L and L̄,
differing only by a total differential dS, lead to the same EL equations and hence
one can replace L by L̄ in (3.62). In conclusion the congruence that renders the
average action stationary must be (i) A congruence of curves that are extremal
with respect to Lagrangian L̄ and (ii) A congruence satisfying the integrability
conditions ∂L̄/∂Ẋµ = ∂µS. However by standard HJ theory such a congruence is
given by (3.51) provided S(xµ) obeys the HJ equation associated with L̄, namely
(3.50).

In appendix B the current density jµ is introduced and the equivalence between
the average action (3.47) and the 4-volume integral (3.53) is proved. This provides
a useful connection between ensemble averages and 4-volume integrals appearing
in field theories. Here (3.60) is expressed in terms of the y coordinates (τ, uk) and
it can also be expressed in terms of the x coordinates. For this one introduces the
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current density jµ associated with the relativistic Gibbs ensemble. The surface
element normal to the hypersurface τ(uk) = const. is given by dσµ = πµdu1du2du3

where πµ are Jacobians

(3.64) π0 =
∂(x1, x2, x3)
∂(u1, u2, u3)

; π1 =
∂(x0, x2, x3)
∂(u1, u2, u3)

, · · ·

Then define the current density via µ = jµπµ so that prob(B) becomes

(3.65) prob(B) =
∫

B⊂R3
µdu1du2du3 =

∫
B⊂R3

jµdσµ

The direction of jµ is still not defined so one is free to choose the current direction
parallel to the congruence K, i.e. jµ = λẋµ. The independence of the underlying
measure on the chosen hypersurface τ = const. is exprssed analytically by the fact
that µ = µ(u1, u2, u3) does not depend on τ explicitly. Consequently ∂µjµ = 0
since by the Gauss theorem

(3.66)
∫

τ(xµ)=τ2

jµdσµ −
∫

τ(xµ)=τ1

jµdσµ =
∫

Ω

∂µjµd4x = 0

where Ω is the strip between the essentially arbitrary hypersurfaces τ = τ1 and
τ = τ2. The same result could be obtained by differentiating µ = jµπµ and using
properties of Jacobians. Passing to x coordinates (3.60) becomes

(3.67) I =
∫

Ω

µLJ−1d4x; J =
∂(x0, x1, x2, x3)
∂(τ, u1, u2, u3)

Note that by definition J = (∂xµ/∂τ)πµ so

(3.68) I =
∫

Ω

µ[L(xµ, ẋµ)/(ẋµπµ)]d4x

Since L is homogeneous of the first degree in the ẋµ the term in square brackets in
(3.68) is homogeneous of degree zero in the ẋµ. Hence we can replace ẋµ with the
current jµ = λẋµ without affecting the integral to obtain I =

∫
Ω

L(xµjµ)d4x where
µ = jµπµ has been used. Thus the average action I may be converted to a four
volume integral of L(xµ, jµ). When this formal substitution is made in (3.48),
(3.53) is obtained. This substitution does not alter the functional dependence
of the average action integral I on the connection fields Γλ

µν so the variational
problems (3.47) and (3.53) are equivalent as long as the variation is performed
with respect to these fields.

In Appendix C one derives (3.55); since similar calculations have already been
used earlier (and will recur again) we omit this here.

REMARK 3.3.4. The formula (3.59) goes back to Weyl [986] and the
connection of matter to geometry arises from (3.55). The time variable is treated
in a special manner here related to a Gibbs ensemble and ρ > 0 is built into
the theory. Thus problems of statistical transparancy as in Remark 2.3.3 will
apparently not arise.

REMARK 3.3.5. As mentioned at the beginning of Section 3.2, in [219]
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the Santamato theory is analyzed in depth from several points of view and a
number of directions for further study are indicated (in [224] the importance of
a complex velocity is emphasized - see also Section 7.1.2). There is also a related
development for the Dirac equation using an approach related to [397, 463, 464],
where both relativistic and nonrelativistic spin 1/2 particles can be classically
treated using anticommuting Grassmanian variables. However we prefer to treat
the Dirac equation in a different manner later (cf. also [89] and Section 2.1.1).

4. SCALE RELATIVITY AND KG

In [186] and Section 1.2 we sketched a few developments in the theory of
scale relativity. This is by no means the whole story and we want to give a taste
of some further main ideas while deriving the KG equation in this context (cf.
[11, 232, 272, 273, 274, 715, 716, 717, 718, 719, 720, 721]). A main idea
here is that the Schrödinger, Klein-Gordon, and Dirac equations are all geodesic
equations in the fractal framework. They have the form D2/ds2 = 0 where D/ds
represents the appropriate covariant derivative. The complex nature of the SE and
KG equation arises from a discrete time symmetry breaking based on nondifferen-
tiability. For the Dirac equation further discrete symmetry breakings are needed
on the spacetime variables in a biquaternionic context (cf. here [232]). First we go
back to [715, 716, 720] and sketch some of the fundamentals of scale relativity.
This is a very rich and beautiful theory extending in both spirit and generality
the relativity theory of Einstein (cf. also [225] for variations involving Clifford
theory). The basic idea here is that (following Einstein) the laws of nature apply
whatever the state of the system and hence the relevant variables can only be
defined relative to other states. Standard scale laws of power-law type correspond
to Galilean scale laws and from them one actually recovers quantum mechanics
(QM) in a nondifferentiable space. The quantum behavior is a manifestation of
the fractal geometry of spacetime. In particular (as indicated in Section 1.2) the
quantum potential is a manifestation of fractality in the same way as the Newton
potential is a manifestation of spacetime curvature. In this spirit one can also
conjecture (cf. [720]) that this quantum potential may explain various dynamical
effects presently attributed to dark matter (cf. also [16] and Chapter 4). Now for
basics one deals with a continuous but nondifferentiable physics. It is known for
example that the length of a continuous nondifferentiable curve is dependent on
the resolution ε. One approach now involves smoothing a nondifferentiable func-
tion f via f(x, ε) =

∫∞
−∞ φ(x, y, ε)f(y)dy where φ is smooth and say “centered”

at x (we refer also to Remark 1.2.8 and [11, 272, 273, 274] for a more refined
treatment of such matters). There will now arise differential equations involving
∂f/∂log(ε) and ∂2f/∂x∂log(ε) for example and the log(ε) term arises as follows.
Consider an infinitesimal dilatation ε → ε′ = ε(1 + dρ) with a curve length

(4.1) �(ε) → �(ε′) = �(ε + εdρ) = �(ε) + ε�εdρ = (1 + D̃dρ)�(ε)

Then D̃ = ε∂ε = ∂/∂log(ε) is a dilatation operator and in the spirit of renormaliza-
tion (multiscale approach) one can assume ∂�(x, ε)/∂log(ε) = β(�) (where �(x, ε)
refers to the curve defined by f(x, ε)). Now for Galilean scale relativity consider
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∂�(x, ε)/∂log(ε) = a + b� which has a solution

(4.2) �(x, ε) = �0(x)

[
1 + ζ(x)

(
λ

ε

)−b
]

where λ−bζ(x) is an integration constant and �0 = −a/b. One can choose ζ(x) so
that < ζ2(x) >= 1 and for a �= 0 there are two regimes (for b < 0)

(1) ε << λ ⇒ ζ(x)(λ/ε)−b >> 1 and � is given by a scale invariant fractal
like power with dimension D = 1− b, namely �(x, ε) = �0(λ/ε)−b.

(2) ε >> λ⇒ ζ(x)(λ/ε)−b << 1 and � is independent of scale.

Here ε = λ constitutes a transition point between fractal and nonfractal behavior.
Only the special case a = 0 yields unbroken scale invariance of � = �0(λ/ε)δ (δ =
−b) and one has then D̃� = b� so the scale dimension is an eigenvalue of D̃. Finally
the case b > 0 corresponds to the cosmological domain.

Now one looks for scale covariant laws and checks this for power laws φ =
φ0(λ/ε)δ. Thus a scale transformation for δ(ε′) = δ(ε) will have the form

(4.3) log
φ(ε′)
φ0

= log
φ(ε)
φ0

+ V δ(ε); V = log
ε

ε′

In the same way that only velocity differences have a physical meaning in Galilean
relativity here only V differences or scale differences have a physical meaning.
Thus V is a “state of scale” just as velocity is a state of motion. In this spirit
laws of linear transformation of fields in a scale transformation ε → ε′ amount to
finding A,B,C,D(V ) such that

(4.4) log
φ(ε′)
φ0

= A(V )log
φ(ε)
φ0

+ B(V )δ(ε); δ(ε′) = C(V )log
φ(ε)
φ0

+ D(V )δ(ε)

Here A = 1, B = V, C = 0, D = 1 corresponds to the Galileo group. Note also
ε → ε′ → ε′′ ⇒ V ′′ = V + V ′. Now for the analogue of Lorentz transforma-
tions there is a need to preserve the Galilean dilatation law for scales larger than
the quantum classical transition. Note V = log(ε/ε′) ∼ ε/ε′ = exp(−V ) and set
ρ = ε′/ε with ρ′ = ε′′/ε′ and ρ′′ = ε′′/ε; then logρ′′ = log ρ + log ρ′ and one is
thinking here of ρ : ε → ε′, ρ′ : ε′ → ε′′ and ρ′′ : ε → ε′′ with compositions
(the notation is meant to somehow correspond to (4.1)). Now recall the Einstein-
Lorentz law w = (u+v)/[1+(uv/c2)] but one now has several regimes to consider.
Following [716, 720] small scale symmetry is broken by mass via the emergence
of λc = �/mc (Compton length) and λdB = �/mν (deBroglie length), while for
extended objects λth = �/m < ν2 >1/2 (thermal deBroglie length) affects transi-
tions. The transition scale in (4.2) is the Einstein-deBroglioe scale (in rest frame
λ ∼ τ = �/mc2) and in the cosmological realm the scale symmetry is broken by
the emergence of static structure of typical size λg = (1/3)(GM/ < ν2 >). The
scale space consists of three domains (quantum, classical - scale independent, and
cosmological). Another small scale transition factor appears in the Planck length
scale λP = (�G/c3)1/2 and at large scales the cosmological constant Λ comes into
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play. With this background the composition of dilatations is taken to be

(4.5) log
ε′

λ
=

logρ + log ε
λ

1 + logρlog ε
λ

log2(L/λ)

=
logρ + log ε

λ

1 + logρlog(ε/λ)
C2

where L ∼ λP near small scales and L ∼ Λ near large scales (note ε = L⇒ ε′ = L
in (A.4)). Comparing with w = (u + v)/(1 + (uv/c2)) one thinks of log(L/λ) =
C ∼ c (note here log2(a/b) = log2(b/a) in comparing formulas in [716, 720]).
Lengths now change via

(4.6) log
�′

�0
=

log(�/�0) + δlogρ√
1− log2 ρ

C2

and the scale variable δ (or djinn) is no longer constant but changes via

(4.7) δ(ε′) =
δ(ε) + logρlog(�/�0)

C2√
1− log2ρ

C2

where λ ∼ fractal-nonfractal transition scale.

We have derived the SE in Section 1.2 (cf. also [186]) and go now to the KG
equation via scale relativity. The derivation in the first paper of [232] seems the
most concise and we follow that at first (cf. also [716]). All of the elements of
the approach for the SE remain valid in the motion relativistic case with the time
replaced by the proper time s, as the curvilinear parameter along the geodesics.
Consider a small increment dXµ of a nondifferentiable four coordinate along one
of the geodesics of the fractal spacetime. One can decompose this in terms of
a large scale part LS < dXµ >= dxµ = vµds and a fluctuation dξµ such that
LS < dξµ >= 0. One is led to write the displacement along a geodesic of fractal
dimension D = 2 via

(4.8) dXµ
± = d±xµ + dξµ

± = vµ
±ds + uµ

±
√

2Dds1/2

Here uµ
± is a dimensionless fluctuation andd the length scale 2D is introduced for

dimensional purposes. The large scale forward and backward derivatives d/ds+

and d/ds− are defined via

(4.9)
d

ds±
f(s) = lims→0±LS

〈
f(s + δs)− f(s)

δs

〉
Applied to xµ one obtains the forward and backward large scale four velocities of
the form

(4.10) (d/dx+)xµ(s) = vµ
+; (d/ds−)xµ = vµ

−

Combining yields

(4.11)
d′

ds
=

1
2

(
d

ds+
+

d

ds−

)
− i

2

(
d

ds+
− d

ds−

)
;

Vµ =
d′

ds
xµ = V µ − iUµ =

vµ
+ + vµ

−
2

− i
vµ
+ − vµ

−
2
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For the fluctuations one has

(4.12) LS < dξµ
±dξν

± >= ∓2Dηµνds

One chooses here (+,−,−,−) for the Minkowski signature for ηµν and there is a
mild problem because the diffusion (Wiener) process makes sense only for posi-
tive definite metrics. Various solutions were given in [314, 859, 1013] and they
are all basically equivalent, amounting to the transformatin a Laplacian into a
D’Alembertian. Thus the two forward and backward differentials of f(x, s) should
be written as

(4.13) (df/ds±) = (∂s + vµ
±∂µ ∓D∂µ∂µ)f

One considers now only stationary functions f, not depending explicitly on the
proper time s, so that the complex covariant derivative operator reduces to

(4.14) (d′/ds) = (Vµ + iD∂µ)∂µ

Now assume that the large scale part of any mechanical system can be char-
acterized by a complex action S leading one to write

(4.15) δS = −mcδ

∫ b

a

ds = 0; ds = LS <
√

dXνdXν >

This leads to δS = −mc
∫ b

a
Vνd(δxν) with δxν = LS < dXν >. Integrating by

parts yields

(4.16) δS = −[mcδxν ]ba + mc

∫ b

a

δxν(dVµ/ds)ds

To get the equations of motion one has to determine δS = 0 between the same
two points, i.e. at the limits (δxν)a = (δxν)b = 0. From (4.16) one obtains then
a differential geodesic equation dV/ds = 0. One can also write the elementary
variation of the action as a functional of the coordinates. So consider the point a
as fixed so (δxν)a = 0 and consider b as variable. The only admissable solutions
are those satisfying the equations of motion so the integral in (4.16) vanishes and
writing (δxν)b as δxν gives δS = −mcVνδxν (the minus sign comes from the choice
of signature). The complex momentum is now

(4.17) Pν = mcVν = −∂νS

and the complex action completely characterizes the dynamical state of the parti-
cle. Hence introduce a wave function ψ = exp(iS/S0) and via (4.17) one gets

(4.18) Vν = (iS0/mc)∂ν log(ψ)

Now for the scale relativistic prescription replace the derivative in d/ds by its
covariant expression d′/ds. Using (4.18) one transforms dV/ds = 0 into

(4.19) − S2
0

m2c2
∂µlog(ψ)∂µ∂ν log(ψ)− S0D

mc
∂µ∂µ∂ν log(ψ) = 0
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The choice S0 = � = 2mcD allows a simplification of (4.19) when one uses the
identity

(4.20)
1
2

(
∂µ∂µψ

ψ

)
=
(

∂µlog(ψ) +
1
2
∂µ

)
∂µ∂ν log(ψ)

Dividing byD2 one obtains the equation of motion for the free particle ∂ν [∂µ∂µψ/ψ] =
0. Therefore the KG equation (no electromagnetic field) is

(4.21) ∂µ∂µψ + (m2c2/�2)ψ = 0

and this becomes an integral of motion of the free particle provided the integration
constant is chosen in terms of a squared mass term m2c2/�2. Thus the quantum
behavior described by this equation and the probabilistic interpretation given to
ψ is reduced here to the description of a free fall in a fractal spacetime, in analogy
with Einstein’s general relativity. Moreover these equations are covariant since the
relativistic quantum equation written in terms of d′/ds has the same form as the
equation of a relativistic macroscopic and free particle using d/ds. One notes that
the metric form of relativity, namely V µVµ = 1 is not conserved in QM and it is
shown in [775] that the free particle KG equation expressed in terms of V leads
to a new equality

(4.22) VµVµ + 2iD∂µVµ = 1

In the scale relativistic framework this expression defines the metric that is induced
by the internal scale structures of the fractal spacetime. In the absence of an
electromagnetic field Vµ and S are related by (4.17) which can be writen as Vµ =
−(1/mc)∂µS so (4.22) becomes

(4.23) ∂µ
S∂µS− 2imcD∂µ∂µS = m2c2

which is the new form taken by the Hamilton-Jacobi equation.

REMARK 3.4.1. We go back to [716, 775] now and repeat some of their
steps in a perhaps more primitive but revealing form. Thus one omits the LS
notation and uses λ ∼ 2D; equations (4.8) - (4.14) and (4.11) are the same and
one writes now d/ds for d′/ds. Then d/ds = Vµ∂µ + (iλ/2)∂µ∂µ plays the role
of a scale covariant derivative and one simply takes the equation of motion of
a free relativistic quantum particle to be given as (d/ds)Vν = 0, which can be
interpreted as the equations of free motion in a fractal spacetime or as geodesic
equations. In fact now (d/ds)Vν = 0 leads directly to the KG equation upon
writing ψ = exp(iS/mcλ) and Pµ = −∂µS = mcVµ so that iS = mcλlog(ψ) and
Vµ = iλ∂µlog(ψ). Then

(4.24)
(
Vµ∂µ +

iλ

2
∂µ∂µ

)
∂ν log(ψ) = 0 = iλ

(
∂µψ

ψ
∂µ +

1
2
∂µ∂µ

)
∂ν log(ψ)

Now some identities are given in [775] for aid in calculation here, namely

(4.25)
∂µψ

ψ
∂µ

∂νψ

ψ
=

∂µψ

ψ
∂ν

(
∂µψ

ψ

)
=

=
1
2
∂ν

(
∂µψ

ψ

∂µψ

ψ

)
; ∂µ

(
∂µψ

ψ

)
+

∂µψ

ψ

∂µψ

ψ
=

∂µ∂µψ

ψ
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The first term in the last equation of (4.24) is then (1/2)[(∂µψ/ψ)(∂µψ/ψ)] and
the second is

(4.26) (1/2)∂µ∂µ∂ν log(ψ) = (1/2)∂µ∂ν∂µlog(ψ) =

= (1/2)∂ν∂µ∂µlog(ψ) = (1/2)∂ν

(
∂µ∂µψ

ψ
− ∂µψ∂µψ

ψ2

)
Combining we get (1/2)∂ν(∂µ∂µψ/ψ) = 0 which integrates then to a KG equation

(4.27) −(�2/m2c2)∂µ∂µψ = ψ

for suitable choice of integration constant (note �/mc is the Compton wave length).

Now in this context or above we refer back to Section 2.2 for example and write
Q = −(1/2m)(�R/R) (cf. Section 2.2 before Remark 2.2.1 and take � = c = 1 for
convenience here). Then recall ψ = exp(iS/mλ) and Pµ = mVµ = −∂µS with
iS = mλlog(ψ). Also Vµ = −(1/m)∂µS = iλ∂µlog(ψ) with ψ = Rexp(iS/mλ) so
log(ψ) = iS/mλ = log(R) + iS/mλ, leading to

(4.28) Vµ = iλ[∂µlog(R) + (i/mλ)∂µS] = − 1
m

∂µS + iλ∂µlog(R) = Vµ + iUµ

Then � = ∂µ∂µ and Uµ = λ∂µlog(R) leads to

(4.29) ∂µUµ = λ∂µ∂µlog(R) = λ�log(R)

Further ∂µ∂ν log(R) = (∂µ∂νR/R)− (RνRµ/R2) so

(4.30) �log(R) = ∂µ∂µlog(R) = (�R/R)− (
∑

R2
µ/R2) =

= (�R/R)−
∑

(∂µR/R)2 = (�R/R)− |U |2

for |U |2 =
∑

U2
µ. Hence via λ = 1/2m for example one has

(4.31) Q = −(1/2m)(�R/R) = − 1
2m

[
|U |2 +

1
λ

�log(R)
]

=

= − 1
2m

[
|U |2 +

1
λ

∂µUµ

]
= − 1

2m
|U |2 − 1

2
div(�U)

(cf. Section 2.2).

REMARK 3.4.2. The words fractal spacetime as used in the scale relativity
methods of Nottalle et al for producing geodesic equations (SE or KG equation) are
somewhat misleading in that essentially one is only looking at continuous nondif-
ferentiable paths for example. Scaling as such is of course considered extensively
at other times. It would be nice to create a fractal derivative based on scaling
properties and H-dimension alone for example which would permit the powerful
techniques of calculus to be used in a fractal context. There has been of course
some work in this direction already in e.g. [187, 257, 411, 437, 466, 471, 562,
721, 748, 816].
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5. QUANTUM MEASUREMENT AND GEOMETRY

We consider here a paper [989], which is based in part on a famous paper of
London [611] (reprinted in [731]). In [611] it was shown that the ratio of the Weyl
scale factor to the Schrödinger wave function is constant if the proportionality con-
stant between the Weyl potential and the EM potential is taken to be imaginary;
this observation gave birth to modern gauge theories and the original Weyl theory
was absorbed into QM with the original scale freedom becoming invariance under
unitary gauge transformations (cf. also Section 3.5.1). Both the Weyl theory and
the Schrödinger theory describe the evolution of a field in time and given the fac-
tor of i and the Kaluza-Klein framework used by London, those evolutions are the
same. In the Weyl picture the field characterizes the length scales of fundamental
matter, while in the Schrödinger picture it is the wave function corresponding to a
fundamental particle. This analogy is pursued further in [989] with a main theme
being the equivalence between Weyl measurement and quantum measurement; a
complete theory of measurement in a Weyl geometry is said to contain the crucial
elements of quantization and analogies of the following sort are indicated.

(5.1)

Weyl − quantum correspondence Quantum mechanics
Zero−Weyl − weight number Real eigenvalue

Diffusion equation SE
Weiner path integral Feynman path integral

Weightful length field ψw Complex state function ψ
Weyl conjugate ψ−w ψ∗

Probability ψwψ−w Probability |ψ|2
ψw → ewφψw (conformal) ψ → eiφψ (unitary)

We will try to make sense out of this following [989] (cf. also [63, 64]). Begin with
a real 4-dimensional manifold (M, [g]) where [g] is a conformal equivalence class
of Lorentz metrics. In addition to local coordinate transformations one has Weyl
(conformal) transformations given via T (x)′ = exp[w(T )Λ(x)]T (x) where T is a
tensor field and w(T ) is the Weyl weight (a real number). One takes a coordinate
basis Eα = ∂/∂xα and Eα = dxα in the tangent and cotangent space satisfying
w(Eα) = w(Eα) = 0.

DEFINITION 5.1. One defines a torsion free derivative D via
• Linearity: D(aT1 + bT2) = aDT1 + bDT2 for real a, b
• Leibniz: D(T1T2) = (DT1)T2 + T1(DT2)
• Weyl covariant: D(fT ) = [df + w(f)Wf ]T + fDT where W is a real

1-form (Weyl potential)
• Zero weight: w(DT ) = w(T )

Under a Weyl transformation W → W ′ = W − dΛ and one has

(5.2) DT = DµTα
βEµ ⊗Eα ⊗ Eβ ; DµTα

β =

= ∂µTα
β + T ρ

βΓα
ρµ − Tα

ρΓ
ρ
βµ + w(T )WµTα

β

There is no unique metric on the space; instead the metric is to be taken of
the Weyl type w(g) = 2 so that under a Weyl transformation g′ = exp[2Λ(x)]g.
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The principle fields of the theory are related by the requirement Dg = 0, or in
components

(5.3) Dµgαβ = 0 = ∂µgαβ − gρβΓρ
αµ − gαρΓ

ρ
βµ + 2Wµgαβ

This can be solved to give

(5.4) Γα
βµ =

{
α

β µ

}
+ (δα

βWµ + δα
µWβ − gβµWα)

Vanishing torsion has been assumed in (5.4) so that the bracket expression is the
usual Christoffel connection. The curvature tensor is then

(5.5) Rα
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

ρµΓρ
βν − Γα

ρνΓρ
βµ

Unlike the Riemannian curvature tensor the Weyl curvature has nonvanishing trace
on the first pair of indices so that (1/2)Rα

αµν = Wν,µ−Wµ,ν = Wµν where Wµµ is
the gauge invariant field strength of the Weyl potential. One says that two fields
are Weyl conjugate if they have the same Lorenz transformation properties but
opposite Weyl weights.

Now for a theory of measurement one first looks at zero weight fields. In this
direction note that fields with nonvanishing Weyl weight will experience changes
under parallel transport. For example the mass squared transported along a path
with unit tangent vector uµ = dxµ/dτ satisfies

(5.6) 0 = uµDµ(m2) = uµ∂µ(m2) + w(m2)uµWµm2

Integrating along the path of motion one finds a path dependence of the form
m2 = m2

0exp[w(m2)
∫

Wµuµdτ ] where the line integral has been written in terms
of the path parameter τ . Note this is analogous to m2 = m2

0exp(Q) in the
Shojai theory of Section 3.2 suggesting some relation to a quantum potential
Q ∼ w(m2)

∫
Wµuµdτ . However at this point there is no quantum matter posited

and no density ρ so a Weyl vector Wµ ∼ ∂µlog(ρ) as in Remark 3.3.1 is unten-
able and no comparison to (3.28) can be undertaken. However this does show a
geometrical dependence of mass in general and in the flat space of Remark 3.3.1
it is replaced by a quantum potential. Indeed this (Schouten-Haantjes) confor-
mal mass thus depends on the Weyl vector and if two particles of identical mass
are allowed to propagate freely (by parallel transport) along different paths and
brought together there will be a mass difference

(5.7) ∆m2 = m2
0e

w(m2)
∮

Wµuµdτ ≡ m2
0e

w(m2)
∫

S
WµνdSµν

where dSµν is an element of any 2-surface S bounded by the closed curve defined
by the two particles. Hence unless the surface integral of the Weyl field strength
vanishes there will be a path dependence for masses and of any other field of
nonzero weight. One postulates now (I) that all quantities of vanishing Weyl
weight should be physically meaningful (observables) and (II) that all fields occur
in conjugate pairs satisfying conjugate equations of motion. Assume that M±
evolves by parallel transport along a path as above via

(5.8) 0 = uµDµD± = uµD̄µM± ± w(M)M±Wµuµ
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where D̄ is a derivation using the full connection (5.4) and one sets w(M) =
w(M+) > 0 for convenience. One has also

(5.9) M± = Mexp[∓w(M)
∫

Wµuµdτ ]

where M is weightless with uµD̄µM = 0. Now suppose one wants to measure some
characteristic of M (i.e. of M+ or M−). M can be scaled by an arbitrary gauge
function and one transports M along a path so that its covariant derivative in the
dirction of motion vanishes. Then the change in size is specified by (5.9) but it
is not clear that we can tell what path a particle has taken. In a Riemannian
space there are geodesics determining the paths of classical matter but that is
not true in a Weyl space (in this regard we refer to [188], Section 3.2, and to
[133, 796, 797, 798, 799]).

In order to study the motion of M one begins with the observation that a Weyl
geometry provides a probability PAB(M) of finding a value M at a point B for a
system which is known to have had a value M0 at point A. Finding PAB(M) is
tantamount to finding the fraction of paths which the system may follow leading
to any given value of M. Since there may be no special paths in a Weyl geometry
one has to settle for moments of the distribution. To find the average value of
magnitude of M denoted by < M > one integrates (5.9) over all paths via

(5.10) < M >=
∫
D[x]M0exp[w(M)

∫ B

A

Wµuµdτ ]

where the usual path integral normalization is included implicitly in D[x] (see e.g.
[362, 457, 855]) for path integrals). However this gives no information as to
whether one should expect M to actualy reach B. In [989] there is then a long
discussion (and a detailed Appendix) involving path averages, probability, Wiener
integrals, etc. plus a postulate (III) that the probability a system will undergo
a given infinitesimal displacement xµ is inversely proportional to the change in
length such a displacement produces in the system. Now d� = w(M)Wµdxµ =
w(M)Wµuµdτ and a plausible (rigorous) argument is given then to represent the
probability of the system reaching any spacetime point x from x0 as

(5.11) G(x0;x) =
∫
D[x]exp[w(M)

∫ x

x0

Wµuµdτ ]

(which bears an obvious resemblence to (5.10)). Comparison of (5.10) and (5.11)
involves noting first that (5.11) is gauge dependent but the gauge dependence
comes out of the path integral since it depends only on the end points. Thus

(5.12) G′(x0;x) =
∫
D[x]exp[w(M)

∫ x

x0

(Wµ − ∂µφ)uµdτ ] =

= e−w(M)[φ(x)−φ(x0)]

∫
D[x]exp[w(M)

∫ x

x0

Wµuµdτ ]
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This means that one can eleiminate the gauge factor by multiplying by the Weyl
conjugate expression

(5.13) Ḡ′(x0;x) = ew(M)[φ(x)−φ(x0)]

∫
D[x]exp[−w(M)

∫ x

x0

Wµuµdτ ]

to give a meaningful gauge invariant probability P (x0, x) = Ḡ(x0;x)G(x0;x) which
is the probability of detecting the dilating system at x given its presence at x0. It
may be thought of as the joint probability of finding both M and M̄ at x. Here
one is dealing with a real path integral, unlike QM, and the phase invariance of a
wave function ψ′ = exp(iφ)ψ is replaced by conformal invariance M ′ = exp(φ)M
(this is the same factor of i introduced by London in 1927). Since that time
gauge transformations have appeared as phases and the wave interpretation has
been maintained; now one maintains a real gauge transformation and changes
the interpretation of physical phenomena (see [989] for more discussion in this
direction).

Now one shows the equivalence to QM of the nonrelativistic limit of (5.11)
when the exponent in the path integral is identified with a multiple of the classical
action, i.e.

∫
Wµuµdτ = λS = λ

∫
Ldτ . The integrands here may also be equated

except for the possible addition of the total derivative of a function of τ . But
such a derivative is already known to be both a gauge freedom of Wµ and a
transformation of L that leaves the equations of motion unaltered. So the possible
equivalent versions of L may be understood as gauge changes of the underlying
geometry. This identification fixes the physical interpretation of Wµ up to the
gauge choice and since uµ = ẋµ equating the integrands gives

(5.14) λPµ = λ(∂L/∂uµ) = Wµ

so that Wµ is proportional to the generalized momentum Pµ conjugate to xµ.
Now Weyl had originally identified Wµ with the derivative of an EM potential
∂µU ∼ Aµ and the present approach suggests Wµ = λ(pµ + Aµ) so that all energy
provides a surce of expansion rather than just EM energy. This still allows gauge
transformations of Wµ to be identified with gauge transformations of Aµ. Next one
goes to the nonrelativistic limit of the path integral to find a differential equation
for the amplitudes G(x0;x). It is convenient to explicitly separate the kinetic
term pµuµ from Wµuµ which will enable one to identify the path integral in (5.11)
with a Wiener integral. Thus with full generality one writes Wµ = λ(pµ + W̃µ)
where any gauge transformation is understood to apply to W̃µ. Now consider the
nonrelativistic limit where the integral

∫
pµuµdτ ∼ mc2

∫
dτ so that mc2

∫
dτ ∼∫

[mc2 − (m/2)v2]dt. To this order the path integral becomes (suppressing limits
of integration)

(5.15) G(x0;x) =
∫
D[x]eλw(M)

∫
[(1/2)mv2+W̃ ·v−W̃ 0−mc2)]dt

This is of the form

(5.16) P (x0;x) =
∫
D[x]exp[−(1/2)

∫
((q̇ + w)2 −∇ ·w)dt]
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where P (x0;x) is the propagator for the Fokker-Planck equation ∂tP = (1/2)∇2P+
∇ · (wP ) provided one makes the identifications

(5.17) q̇ =
√
−w(M)λmv; ∇x =

√
−w(M)λm∇q; ψ = Pe−2mc2

;

w =
√
−w(M)λ/mW̃; 2w(M)λ(mc2 + W̃0) = w2 −∇ ·w

(cf. [457, 672, 674, 698, 856]). Carrying out the substitutions and setting
λW̃µ = −U(λφ,A) one obtains ψ(x) =

∫
ψ(x′)G(x, x′)dx′ as a solution to

(5.18)
1

w(M)λ
∂tψ = − 1

2m[w(M)λ]2
[∇+ w(M)λA]2 + (mc2 + Uφ)ψ

with initial condition ψ = ψ(x′) (this should be checked to clarify the roles of U
and φ). If one sets λ = �−1 and the time is allowed to become imaginary the
SE minimally coupled to EM arises. Thus choose λ = �−1 but leave time alone
since it is not needed; then (5.18) can be interpreted as a stochastic form of QM.
Evidently the Weyl weight serves the function of i, changing sign appropriately for
the conjugate field. The emergence of the Fokker-Planck equation indicates diffu-
sion and this is discussed at length in [186, 672, 674, 698, 856]. In addition the
matter is discussed in [989] from various points of view. In particular one takes
(1/�)S =

∫
Wµuµdτ and observes that a classical limit of the Weyl geometry will

exist whenever there is an extremum to the action (as in the Feynman path inte-
gral). Thus a classical limit of (5.11) occurs whenever Ψ = exp[w(M)

∫ x

x0
Wµuµdτ ]

is extremal. However there is a difference here involving Ψ as a length factor.
One shows that δΨ = 0 corresponds to a special case of the Weyl field since∫ B

A
dτ(Wµ,ν−Wν,µ)uµδxν = 0 arises via variation which means Wµνuν = 0. Some

calculation then shows that Wα = ξ∂αχ (up to a gauge transformation) for any
appropriately normalized functions ξ, χ satisfying

(5.19) (Dµχ)uν = (Dµχ)vµ = (Dµξ)uν = (Dµξ)vµ = 0;

(1/2)εµναβWαβ = uµvν − uνvµ

with ε the Levi-Civita tensor (cf. [302, 989]). Now Wα = ξ∂αχ is a rather
remarkable relation; it represents a restricted form of Wα since it is easy to find
a Weyl vector such that Wµνuν ∼ Wµ0 �= 0 for all nonspacelike uν . Since this
formula arises for an arbitrary set of paths uα it is clear that not all Weyl fields
will have a classical limit. Thus as argued at the beginning the generic Weyl
geometry lacks preferred paths and requires a path average. On the other hand
if one chooses a gauge where Wαuα = 0 (which is possible) then weightful bodies
followed the preferred classical trajectories and experience no dilation. There is
considerable discussion along these lines in [989] which is omitted here; there
is also interesting material on relations to general relativity. In particular it is
pointed out that size changes associated with nonvanishing Weyl field strength
are not necessarily classically observable. However the Weyl field itself must be
present and consequently must be detectable. Finding the physical field that it
corresponds to simply requires substituting the appropriate conjugate momentum
for Wµ in the classical equation of motion Wµνuν = 0. Since the only long range
forces are gravity and EM and gravity is still accounted for by the Riemannian
curvature, Wµ must be electromagnetic. The most general classical conjugate
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momentum is therefore that of a point particle with charge q moving in an EM
field. Then in an arbitrary gauge

(5.20) Wµ = (1/�)(pµ + qAµ + ∂µΛ)

where pµ = muµ and uµuµ = −1. Then

(5.21) 0 = Wµνuν = (1/�)(pµ,ν − pν,µ + qAµ,ν − qAνµ)uν

or (using (uµuµ),ν = 0) dpµ/dτ = quνFµν which is the Lorenz force law (note that
Planck’s constant drops out). For the interpretation of Wµ itself one can combine
the curl of (5.20) with

(5.22) Wαβ = DαχDβξ −DβχDαξ = ∂αχ∂βξ − ∂βχ∂αξ

(cf. (5.19) and the surrounding discussion); this leads to

(5.23) ∂αχ∂βξ − ∂βχ∂αξ = (1/�)(pα,β − pβ,α + qAα,β − qAβ,α)

the time component of which gives again the Lorenz law. The spatial components
can be solved for the magnetic field to give

(5.24) B = (�/q)(∇χ×∇ξ)− (m/q)(∇× v)

The two fields χ and ξ on the right side of B are sufficient to guarantee the
existence of any type of physical magnetic field. Conversely one can use (5.24)
to solve for the Weyl field in terms of B and v (which of course depend on �).
One notes that for vanishing Weyl field (5.24) reduces to the London equation
for superconductivity. This means that matter fields which conspire to produce a
Riemannian geometry become superconducting.

5.1. MEASUREMENT ON A BICONFORMAL SPACE. We con-
tinue the theme of Section 3.5 with a more general perspective from [35] based on
biconformal geometry (cf. Appendix E for some background material and see also
[35, 36, 113, 497, 558, 987, 980, 981, 989, 990, 991, 992, 993, 994, 1010]).
We regard this approach via biconformal geometry as very interesting and will try
to present it faithfully. The background material in Appendix E should be read
first; results in [994] for example create a unified geometrical theory of gravity
and electromagnetism based on biconformal geometry. One develops in [35] an in-
terpretation for quantum behavior within the context of biconformal gauge theory
based on the following postulates:

(1) A σC biconformal space provides the physical arena for quantum and
classical physics.

(2) Quantities of vanishing conformal weight comprise the class of physically
meaningful observables.

(3) The probability that a system will follow any given infinitesimal dis-
placement is inversely proportional to the dilatation the displacement
produces in the system.

From these assumptions follow the basic properties of classical and quantum me-
chanics. The symplectic structure of biconformal space is similar to classical phase
space and also gives rise to Hamilton’s equations, Hamilton’s principal function,
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conjugate variables, fundamental Poisson brackets, and Liouville theory when pos-
tulate 3 is replaced by a postulate of extremal motion. We sketch this here (some-
what brutally) and refer to [35] for details, philosophy, and further references;
the details for the biconformal geometry are spelled out in [992, 994]. Thus one
wants a physical arena which contains 4-D spacetime in a straightforward manner
but which is large enough and structured so as to contain both general relativ-
ity (GR) and quantum theory (QT) at the same time. One demands therefore
invariance under global Lorentz transformations, translations, and scalings (see
below) and the Lie group characterizing this is the conformal group O(4, 2) or its
covering group SU(2, 2). In Appendix E the basic facts about Lorentz transforma-
tions Ma

b = −Mba = ηacM
c
b, translations Pa, special conformal transformations

Ka, and dilatations D are exhibited in the context of conformal gauge theory
(a, b = 0, 1, 2, 3). One has two involutive automorphisms of the conformal algebra,
first

(5.25) σ1 : (Ma
b, Pa,Ka, D) → (Ma

b,−Pa,−Ka, D)

which identifies the residual local Lorentz and dilatation symmetry characteristic
of biconformal gauging and this corresponds (resp. for the Poincaré Lie algebra
or the Weyl algebra) to

(5.26) σ1 : (Ma
b, Pa)→ (Ma

b,−Pa) or σ1 : (Ma
b, Pa, D) → (Ma

b,−Pa, D)

There is also a second involution for the conformal group, namely

(5.27) σ2 : (Ma
b, Pa,Ka, D) → (Ma

b,Ka, P a,−D)

Some representations of the conformal algebra, namely su(2, 2), are necessarily
complex and σ2 can be realized as complex conjugation. Specifically one thinks of
a representation in which Pa and Ka are complex conjugates while Ma

b is real and
D is purely imaginary and such representations will be called σC representations.
Biconformal spaces for which the connection 1-forms (and hence curvatures) have
this property are then called σC spaces (see Appendix E for examples). This leads
to postulate 1 above, namely the physical arena for QT and classical physics is a
σC biconformal space. Now biconformal gauging of the conformal group provides
in particular a symplectic structure as follows. Gauging D introduces a single
gauge 1-form ω (the Weyl vector) and the corresponding dilatational curvature
2-form is

(5.28) Ω = dω − 2ωaωa

where ωa, ωa are 1-form gauge fields for the translation and special conformal
transformations respectively, which span an 8-dimensional space as an orthonormal
basis (note ωa = ηabω̄

b for σC representations and products are wedge products).
Now for all torsion free solutions to the biconformal field equations (i.e. ∗d∗dω0

0 =
J, ω0

a = Ta + ·, etc. - cf. Appendix E) the dilatational curvature takes the form
(•) Ω = κωaωa with κ constant, so the structure equation becomes (••) dω = (κ+
2)ωaωa. As a result dω is closed and nondegenerate and hence symplectic (since
ωa, ωa span the space). There is also a biconformal metric arising from the group
invariant Killing metric KΣΠ = cΛ

∆Σc∆
ΛΠ where cΛ

∆Σ (Σ,Π, · · · = 1, 2, · · · , 15) are
the real structure constants from the Lie algebra. This metric has a nondegenerate
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projection to the 8-D subspace spanned by Pa, Ka and provides a natural pseudo-
Riemannian metric on biconformal manifolds. The projection takes the form

(5.29) KAB =
(

ηab

ηab

)
(A,B = 0, 1, · · · , 7)

One defines now conformal weights w of a definite weight field F via (�) Dφ :
F → [exp(wφ)]F where Dφ is dilatation by exp(φ) (cf. [989] and Section 3.5).
One assumes now postulate 2 and concludes that for a field with nontrivial Weyl
weight to have physical meaning it must be possible to construct weightless scalars
by combining it with other fields (easily done with conjugate fields); one notes
that zero weight fields are self conjugate. The symplectic form Θ = ωaωa defines
a symplectic bracket via

(5.30) {f, g} = ΘMN ∂f

∂uM

∂g

∂uN

where uM = (xa, yb). For real solutions f, g to the field equations f and g are
conjugate if they satisfy {f, f} = 1, {f, f} = {g, g} = 0. However for σC rep-
resentations ω is a pure imaginary 1-form since it is defined as the dual to the
dilatation generator D which is pure imaginary. One sees then that

(5.31) ωaωa = ω̄aω̄a = ηabωbηacω
c = −ωaωa

so the dilatational curvature and the symplectic form are imaginary (cf. also
[35, 529]). Consequently, for use of a complex gauge vector with real gauge
transformations, the fundamental brackets should take here the form

(5.32) {f, g} = i; {f, f} = {g, g} = 0; wf = −wg

In an arbitrary biconformal space one sets either

(5.33)
1
�
S =

1
�

∫
Ldλ =

∫
ω =

∫
(Wadxa + W̄adya) or

i

�
S =

i

�

∫
Ldλ =

∫
ω =

∫
(Wadxa + W̄adya)

The second form holds in a σC representation for the conformal group. An ar-
bitrary parameter λ is OK since the integral of the Weyl 1-form is independent
of parametrization. This integral also governs measurable size change since under
parallel transport the Minkowski length of a vector V a changes by

(5.34) � = �0exp

∫
ω; �2 = ηabV

aV b

(cf. Appendix E). This change occurs because ηab = (−1, 1, 1, 1) is not a natural
structure for biconformal space. This is in contrast to the Killing metric KAB

where lengths are of zero conformal weight. In a σC representation the Weyl vector
is imaginary so the measurable part of the change in � is not a real dilatation -
rather, it is a change of phase. Now for classical mechanics one uses a variation of
postulate 3, namely: The motion of a (classical) physical system is given
by extrema of the integral of the Weyl vector. Biconformal spaces are real
symplectic manifolds so the Weyl vector can be chosen so that the symplectic form
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satisfies the Darboux theorem ω = Wadxa = −yzdxa; for σC representations the
Darboux equations still holds but now with

(5.35) ω = Wadxa = −iyadxa

and the classical motion is independent of which form is chosen. Thus the symplec-
tic form for the σC case is Θ = dω = −idyadxa and one has (��) {xa, yb} = iδa

b .
Thus from (��) it follows that yb is the conjugate variable to the position coordi-
nate xb and in mechanical units one may set ya = αpa with

(5.36) iαS =
∫

ω = −iα

∫
(p0dt + pidxi)

(α can be any constant with appropriate dimensions). Now if one requires t as an
invariant parameter (so δt = 0) one can vary the corresponding canonical bracket
to find

(5.37) 0 = δ{t, p0} = {δt, p0}+ {t, δp0} =
∂(δp0)
∂p0

Thus δp0 can depend only on the remaining coordinates so δp0 = −δH(yi, x
j , t)

and the existence of a Hamiltonian is a consequence of choosing time as a nonvaried
parameter of the motion. Applying the postulate δS = 0 variation leads to

(5.38) 0 = iαδS = −iα

∫
(δp0dt + δpidxi − dpiδx

i) =

= −iα

∫ (
−∂H

∂xi
δxidt− ∂H

∂pi
δpidt + δpidxi − dpiδx

i

)
and this gives the standard Hamilton’s equations

(5.39) 0 = −∂H

∂pi
dt + dxi; 0 = −∂H

∂xi
dt− dpi

(note i and α drop out of the equations).

In the presence of nonvanishing dilatational curvature one then considers a
classical experiment to measure size (or phase) change along C1, while a ruler
measured by λ moves along C2 (Ci are classical paths between two fixed points).
Some argument (see [35]) leads to an unchanged ratio of lengths via

(5.40)
�

λ
=

�0
λ0

exp

∫
C−1−C−2

ω =
�0
λ0

exp

∮
ω =

�0
λ0

exp

∫ ∫
S

dω =
�0
λ0

where S is any surface bounded by the closed curve C1−C2 (cf. also Section 3.5).
Thus no dilatations are observable along classical paths. This calculation also
shows that the restriction of ω to classical paths is exact and proves the existence
of Hamilton’s principal function S with

(5.41) αS(x) =
∫ x

Wadxa =
∫ x

Wa
dxa

dt
dt

There is further argument in [35] via gauge freedom to show that classical objects
do not exhibit measurable length change (in the complex case the phase changes
cannot be removed by gauge choice but they are unobservable). Relations between
phase space and biconformal space are discussed and one arrives at QM.



5. QUANTUM MEASUREMENT AND GEOMETRY 141

From the above one knows that there is no measurable size change along
classical pathes in a biconformal geometry but for systems evolving along other
than extremal paths (where the Hamilton equations do not apply for example)
there may be measurable dilatation. To deal with this one needs nonclassical
motion and one goes to the basic postulate 3, namely that the probability a system
will follow any given infinitesimal displacement is inversely proportional to the
dilatation the displacement produces in the system. The properties of biconformal
space determine the evolution of Minkowski lengths along arbitrary curves and
the imaginary Weyl vector produces measurable phase changes in the same way
as the wave function. Combining this with the classically probabilistic motion of
postulate 3, together with the necessary use of a standard of length to comply
with postulate 2, one concludes that the probability of a system at xa

0 arriving at
the point xa

1 is given by

(5.42) P (xi
1) =

∫
D[xC′ ]exp

(∫
C′

ω

)∫
D[xC ]exp

(
−
∫

C

ω

)
=

= P(xi
1)P(−xi

1) = P(xi
1)P̄(xi

1)

where a path average over all paths connecting the two points is involved and P̄(x)
is simulaneously the probability amplitude of the conformally conjugate system
reaching xi

1. Here one considers ratios �/λ as above and includes all possible
ruler paths. These are standard Feynman path integrals which are known to
lead to the Schrödinger equation (not Wiener integrals as in [989]) and it is the
requirement of a length standard that forces the product structure in (5.42). Note
that the phase invariance of a wave function ψ′ = exp(iφ)ψ is created by the σC

conformal invariance M ′ = exp(λw)M . The i in the Weyl vector is the crucial i
noted by London in [611] (cf. [989] and Section 3.5). Note also that the path
integral in (5.42) and the biconformal paths depend generically on the spacetime
and momentum variables so one can immediately generalize to the usual integrals
of QM, namely

(5.43) P(xi
1) =

∫
D[xC ]D[yC ]exp(

∫
Cω)

Note also that the failure of the base space to break into space like and mo-
mentum like submanifolds indicates a fundamental coupling between position and
momentum and suggests a connection to the Heisenberg uncertainty principle.
The arguments in [35] have a somewhat heuristic flavor at times but are certainly
plausible and do refine the techniques of [989] (sketched in Section 3.5) in many
ways. Given the success of biconformal geometry in unifying GR and EM it would
seem only natural and just that QM could be encompassed as well in the same
framework and further developments are eagerly awaited.

REMARK 3.5.1 We note from [993] that when identifying biconformal coor-
dinates (xµ, yν) with phase space coordinates (xµ, pν) one sets naturally yν = βpν .
This β must account for a sign difference in ηµνβpµβpν = −ηµνyµyν (cf. [993]) so
β is pure imaginary. Further to account for the different units of yν (length−1) and
pν (momentum) one chooses yν = (i/�)pν and this relation between the geometric
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variables of conformal gauge theory and the physical momentum variables is the
source of complex quantities in QM.


