
CHAPTER 2

DEBROGLIE-BOHM IN VARIOUS CONTEXTS

The quantum potential arises in various forms, some of which were discussed
in Sections 1.1 and 1.2. We return to this now in a somewhat more systematic
manner. The original theory goes back to deBroglie and D. Bohm (see e.g. [94,
95, 128, 129, 154, 471, 472, 532]) and in its modern version the dominant
themes seem to be contained in [88, 102, 288, 295, 324, 325, 326, 327, 328,
329, 387, 402, 414, 415, 927, 948] with variations as in [110, 186, 187,
188, 189, 191, 194, 195, 196, 197, 198, 346, 347, 373, 374, 375] based
on work of Bertoldi, Faraggi, and Matone (cf. also [68, 138, 148, 165, 236,
305, 520, 574, 575, 576, 873, 881]) and cosmology following [123, 188, 189,
219, 498, 499, 500, 501, 571, 709, 710, 711, 840, 841, 871, 872, 873,
875, 876, 895, 989, 990]. In any event the quantum potential does enter into
any trajectory theory of deBroglie-Bohm (dBB) type. The history is discussed
for example in [471] (cf. also [68, 126, 127, 129, 154]) and we have seen
how this quantum potential idea can be formulated in various ways in terms of
statistical mechanics, hydrodynamics, information and entropy, etc. when dealing
with different versions and origins of the SE. Given the existence of particles we
finds the pilot wave of thinking very attractive, with the wave function serving to
choreograph the particle motion (or perhaps to “create” particles and/or spacetime
paths). However the existence of particles itself is not such an assured matter and
in field theory approaches for example one will deal with particle currents (cf. [701]
and see also e.g. [94, 95, 326, 402, 948]). The whole idea of quantum particle
path seems in any case to be either fractal (cf. [1, 3, 14, 15, 186, 223, 232, 273,
676, 715, 717, 720, 733, 734, 735, 736], stochastic (see e.g. [68, 148, 186,
381, 382, 446, 447, 448, 449, 534, 536, 671, 674, 698, 805, 806], or field
theoretic (cf. [94, 95, 326, 402, 701, 702, 703, 704, 705, 706, 707, 948]. The
fractal approach sometimes imagines an underlying micro-spacetime where paths
are perhaps fractals with jumps, etc. and one possible advantage of a field theoretic
approach would be to let the fields sense the ripples, which as e.g. operator valued
Schwartz type distributions, they could well accomplish. In fact what comes into
question here is the structure of the vacuum and/or of spacetime itself. One
can envision microstructures as in [186, 422, 676, 690] for example, textures
(topological defects) as in [71, 74, 75, 170, 978], Planck scale structure and
QFT, along with space-time uncertainty relations as in [71, 316, 317, 604, 1008],
vacuum structures and conformal invariance as in [668, 669, 835, 831, 837,
838], pilot wave cosmology as in [834, 881], ether theories as in [851, 919], etc.
Generally there seems to be a sense in which particles cannot be measured as such
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40 2. DEBROGLIE-BOHM IN VARIOUS CONTEXTS

and hence the idea of particle currents (perhaps corresponding to fuzzy particles or
ergodic clumps) should prevail perhaps along with the idea of probability packets.
A number of arguments work with a (representative) trajectory as if it were a
single particle but there is no reason to take this too seriously; it could be thought
of perhaps as a “typical” particle in a cloud but conclusions should perhaps always
be constructed from an ensemble point of view. We will try to develop some of this
below. The sticky point as we see it now goes as follows. Even though one can
write stochastic equations for (typical) particle motion as in the Nelson theory
for example one runs into the problem of ever actually being able to localize a
particle. Indeed as indicated in [316, 317] (working in a relativistic context but
this should hold in general) one expects space time uncertainty relations even at a
semiclassical level since any localization experiment will generate a gravitational
field and deform spacetime. Thus there are relations [qµ, qν ] = iλ2

P Qµν where λP

is the Planck length and the picture of spacetime as a local Minkowski manifold
should break down at distances of order λP . One wants the localization experiment
to avoid creating a black hole (putting the object out of “reach”) for example
and this suggests ∆x0(

∑3
1 ∆xi) � λ2

P with ∆x1∆x2 + ∆x2∆x3 + ∆x3∆x1 � λ2
P

(cf. [316, 317]). On the other hand in [701] it is shown that in a relativistic
bosonic field theory for example one can speak of currents and n-particle wave
functions can have particles attributed to them with well defined trajectories,
even though the probability of their experimental detection is zero. Thus one
enters an arena of perfectly respectible but undetectible particle trajectories. The
discussion in [256, 326, 920, 953, 961] is also relevant here; some recourse to
the idea of beables, reality, and observables as beables, etc. is also involved (cf.
[94, 95, 256, 961]). We will have something to say about all these matters.

The dominant approach as in [324, 325, 326, 327, 402, 948] will be discussed
as needed (a thorough discussion would take a book in itself) and we only note
here that one is obliged to use the form ψ = Rexp(iS/�) to make sense out of the
constructions (this is no problem with suitable provisos, e.g. that S is not constant
- cf. [110, 191, 346, 347, 373, 374] and comments later). This leads to

(�) St +
(S′)2

2m
−
(

�2

2m

)(
R′′

R

)
+ V = 0; ∂tR

2 + ∂

(
R2S′

m

)
= 0

(cf. (1.1.1)) where Q = −�2R′′/2mR arising from a SE i�∂tψ = −(�2/2m)ψxx +
V ψ (we use 1-D for simplicity here). In [324] one emphasizes configurations based
on coordinates whose motion is choreographed by the SE according to the rule

(��) q̇ = v =
�

m
�ψ∗ψ′

|ψ|2 =
�

m
�
(

ψ′

ψ

)
The argument for (��) is based on obtaining the simplest Galilean and time
reversal invariant form for velocity, transforming correctly under velocity boosts.
This leads directly to (��) so that Bohmian mechanics (BM) is governed by
(��) and the SE. It’s a fairly convincing argument and no recourse to Floydian
need be involved (cf. [110, 191, 347, 373, 374]). Note however that if S = c
then q̇ = v = (�/m)�(R′/R) = 0 while p = S′ = 0 so this formulation seems
to avoid the S = constant problems indicated in [110, 191, 347, 373, 374].
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What makes the constant �/m in (��) important here is that with this value the
probability density |ψ|2 on configuration space is equivariant. This means that via
the evolution of probability densities ρt + div(vρ) = 0 (as in (1.1.5)) the density
ρ = |ψ|2 is stationary relative to ψ, i.e. ρ(t) retains the form |ψ(q, t)|2. One calls
ρ = |ψ|2 the quantum equilibrium density (QEDY) and says that a system is in
quantum equilibrium when its coordinates are randomly distributed according to
the QEDY. The quantum equilibrium hypothesis (QEHP) is the assertion that
when a system has wave function ψ the distribution ρ of its coordinates satisfies
ρ = |ψ|2.

1. THE KLEIN-GORDON AND DIRAC EQUATIONS

Before embarking on further discussion of QM it is necessary to describe some
aspects of quantum field theory (QFT) and in particular to give some foundation
for the Klein-Gordon (KG) and Dirac equations. For QFT we rely on [120, 457,
528, 764, 827, 1015] and concentrate on aspects of general quantum theory that
are expressed through such equations. We alternate between signature (−,+,+,+)
and (+,−,−,−) in Minkowski space, depending on the source. It is hard to avoid
using units � = c = 1 when sketching theoretical matters (which is personally
repugnant) but we will set � = c = 1 and shift to the general notation whenever
any real meaning is desired. Thus |length| ∼ |time| ∼ |energy|−1 ∼ |mass|−1

and m = the inverse Compton wavelength (mc/� = �−1
C ). The approaches in

[457, 764] seem best adapted to our needs and in particular [457] gives a nice
discussion motivating second quantization of a nonrelativistic SE (cf. [701] for
first quantization). The resulting second quantization would be Galiean invariant
but not Lorentz invariant so we go directly to the KG equation as follows. Note
that there are often notational differences in various treatments of QFT and we
use that of [457] in general. Start now from E2 = p2+m2 (which is the relativistic
form of E = p2/2m) to arrive, via E → i∂t and pj → −i∂j = −i∂/∂xj , at the KG
equation

(1.1) (∂2
t −∇2)φ + m2φ = 0

where φ = φ(x, t) is a scalar wave function. This can also be derived from an
action

(1.2) S(φ) =
∫

d4xL(φ, ∂µφ) =
1
2

∫
d4x(∂µ∂µφ−m2φ)

(x0 = t, x = (x, t)), provided φ transforms as a Lorentz scalar (required also in
(1.1)). The first problems arise from negative energy solutions (e.g. exp[i(k·x+ωt)]
is a solution of (1.1) with E = −ω = −(k2 + m2)1/2). Secondly the energy
spectrum is not bounded below (i.e. one could extract an arbitrary amount of
energy from a single particle system). Further, using a positve square root of
E2 = p2 + m2 would involve a square root of a differential operator and nonlocal
terms. Next observe that conserved currents jµ (with ∂µjµ = 0) arise à la E.
Noether in the form

(1.3) j0 = ρ =
i

2m
(φ∗φt − φ∗

t φ); ji =
1

2im
(φ∗∂iφ− (∂iφ

∗)φ)
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(where normal ordering is implicit here in order to avoid dealing with a vacuum
energy term - to be discussed later). We note that for the plane wave solution above
ρ = −ω/m = −(1/m)(k2 +m2)1/2 and this is not a good probability density. The
difficulties are resolved by giving up the idea of a one particle theory; it is not
compatible with Lorentz invariance and the solution is to quantize the field φ.

Thus take S(φ) as in (1.2) with π = ∂L/∂(∂µφ) = ∂tφ = φ̇ and construct a
Hamiltonian

(1.4) H =
1
2

∫
d3x[π2(x) + |∇φ(x)|2 + m2φ2(x)]

In analogy with QM where [x, p] = i one stipulates

(1.5) [φ(x, t), π(y, t)] = iδ(x− y); [φ(x, t), φ(y, t)] = [π(x, t), π(y, t)] = 0

The operator equation φ̇ = i[H,φ] then yields π = φ̇ and π̇ = i[H,π] reproduces the
KG equation. This is now a quantum field theory and for a particle interpretation
one expands φ(x, t) in terms of classical solutions of the KG equation via

(1.6) φ(x, t) =
∑

a(k)φ+
k (x) + b(k)φ−

k (x) =

=
∫

d3k
(2π)3

1
2ωk

(a(k)e−i[ωkt−k·x] + b(k)ei[ωkt−k·x])

where ωk = (k2 + m2)1/2 and φ±
k denotes a classical positive (resp. negative)

energy plane wave solution of (1.1) (k ·x = k0x0−k ·x = ωkt−k ·x). With φ(x, t)
an operator one has operators a(k) and b(k); further since φ(x, t) is classically a
real field we must have a Hermitian operator here and hence b(k) = a†(k). The
normalization factor 1/2ωk is chosen for Lorentz invariance (cf. [457] for details).
It follows immediately from π = ∂tφ that

(1.7) π(x, t) =
∫

k3k

(2π)3
1

2ωk
(−iωka(k)e−ik·x + iωka†(k)eik·x)

Some calculation (via Fourier formulas) leads then to

(1.8) a(k) =
∫

d3xeik·x[ωkφ(x, t) + iπ(x, t)]

and the algebra of a, a† is then determined by [a(k), a†(k′)] = (2π)32ωkδ3(k−k′).
The Hamiltonian (1.4) yields

(1.9) H =
1
2

∫
d3k

(2π)3
1

2ωk
ωk[a†(k)a(k)− a(k)a†(k)]

There is a bit of hocus-pocus here since the calculation gives a†a + (1/2)[a, a†] (=
(1/2)(a†a + aa†) formally) but [a, a†] ∼ δ(0) corresponds to the sum oveer all
modes of zero point energies ωk/2. This infinite energy cannot be detected exper-
imaentally since experiments only measure differences from the ground state of H.
In any event the zero point field (ZPF) will be discussed in some detail later.

Now the ground state is defined via a(k)|0 >= 0 with < 0|0 >= 1 (a†(k)|0 >
is a one particle state with energy ωk and momentum k while (a†(k))2|0 > con-
tains two such particles, etc.). One notes however that the state a†(k)|0 > is not
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normalizable since < 0|a(k)a†(k)|0 >= δ(0) is not normalizable. This is not sur-
prising since a†(k) creates a particle of definite energy and momentum and by the
uncertainty principle its location is unknown. Thus its wave function is a plane
wave and such states are not normalizable. In fact a†(k) is an operator valued
distribution and one can do calculations by “smearing” and considering states∫

d3kf(k)a†|0 > for functions f such that
∫

d3k|f(k)|2 < ∞ for example. One
sees also that the bare vacuum |0 > is an eigenstate of the Hamiltonian but its en-
ergy is divergent via < 0|H|0 >= (1/2)

∫
d3kωkδ3(0) (where (2π)3δ3(0) ∼

∫
d3x).

To deal with such infinities one subtracts them away, i.e. H → H− < 0|H|0 >
and this corresponds to normal ordering the Hamiltonian via : aa† :=: a†a := a†a
leading to

(1.10) : H :=
∫

d3k

(2π)3
1

2ωk
ωka†(k)a(k)

with vanishing vacuum expectation.

REMARK 2.1.1. Regarding Lorentz invariance one recalls that the Lorentz
group O(3, 1) is the set of 4× 4 matrices leaving the form s2 = (x0)2 −

∑
(xi)2 =

xµgµνxν invariant. One writes (x′)µ = Λµ
νxν and notes that gµ = Λρ

µgρσΛσ
ν ∼ g =

ΛT gΛ. Since s2 can be plus or minus there is a splitting into regions (x− y)2 > 0
(time-like), (x − y)2 < 0 (space-like), and (x − y)2 = 0 (light-like). A standard
parametrization for Lorentz boosts involves (x0 = ct)

(1.11) x′ =
x + vt√

1− (v/c)2
; y′ = y; z′ = z; t′ =

t + (vx/c2)√
1− (v/c)2

One writes e.g. γ = 1/
√

1− (v/c)2 = cosh(φ) with sinh(φ) = βγ = vγ/c.

REMARK 2.1.2. The total 4-momentum operator is

(1.12) Pµ =
∫

d3k

(2π)3
1

2ωk
kµa†(k)a(k)

and the total angular momentum operator is

(1.13) Mµν =
∫

d3x(xµpν − xνpµ)

The Lorentz algebra (for infinitesimal Lorentz transformations) is

(1.14) [Mµν ,Mλσ] = i(ηµλMνσ − ηνλMµσ − ηµσMνλ + ηνσMµλ)

where ηµν = diag(1,−1,−1,−1).

REMARK 2.1.3. The commutator rules (1.5) are not manifestly Lorentz
covariant. However one can verify that the same quantum theory is obtained
regardless of what Lorentz frame is chosen; to do this one shows that the QM
operator forms of the Lorentz generators satisfy the Lorentz algebra after quanti-
zation (this is given as an exercise in [457]).

EXAMPLE 1.1. Quantum fields are also discussed briefly in [471] and we
extract here from this source. The approach follows [128] and one takes L =
(1/2)∂µψ∂µψ = (1/2)[ψ̇2 − (∇ψ)2] as Lagrangian where ψ̇ = ∂tψ and variational
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technique yields the wave equation �ψ = 0 (� = c = 1). Define conjugate mo-
mentum as π = ∂L/∂ψ̇, the Hamiltonian via H = πψ̇ − L = (1/2)[π2 + (∇ψ))2],
and the field Hamiltonian by H =

∫
Hd3x. Replacing π by δS/δψ where S[ψ] is a

functional the classical HJ equation of the field ∂tS + H = 0 becomes

(1.15)
∂S

∂t
+

1
2

∫
d3x

[(
δS

δψ

)2

+ (∇S)2
]

= 0

The term (1/2)
∫

d3x(∇ψ)2 plays the role of an external potential. To quantize
the system one treats ψ(x) and π(x) as Schrödinger operators with [ψ(x), ψ(x′)] =
[π(x), π(x′)] = 0 and [ψ(x), π(x′)] = iδ(x−x′). Then one works in a representation
|ψ(x) > in which the Hermitian operator ψ(x) is diagonal. The Hamiltonian
becomes an operator Ĥ acting on a wavefunction Ψ[ψ(x), t) =< ψ(x)|Ψ(t) >
which is a functional of the real field ψ and a function of t. This is not a point
function of x since Ψ depends on the variable ψ for all x. Now the SE for the field
is i∂tΨ = ĤΨ or explicitly

(1.16) i
∂Ψ
∂t

=
∫

d3x
1
2

[
− δ2

δψ2
+ (∇ψ)2

]
Ψ

Thus ψ is playing the role of the space variable x in the particle SE and the
continuous index x here is analogous to a discrete index n in the many particle
theory. To arrive at a causal interpretation now one writes Ψ = Rexp(iS) for
R,S[ψ, t] real functionals and decomposes (1.16) as

(1.17)
∂S

∂t
+

1
2

∫
d3x

[(
δS

δψ

)2

+ (∇ψ)2
]
+Q = 0;

∂R2

∂t
+
∫

d3x
δ

δψ

(
R2 δS

δψ

)
= 0

where the quantum potential is now Q[ψ, t] = −(1/2R)
∫

d3x(δ2R/δψ2). (1.17)
now gives a conservation law wherein, at time t, R2Dψ is the probability for the
field to lie in an element of volume Dψ around ψ, where Dψ means roughly

∏
x dψ

and there is a normalization
∫
|Ψ|2Dψ = 1. Now introduce the assumption that at

each instant t the field ψ has a well defined value for all x as in classical field theory,
whatever the state Ψ. Then the time evolution is obtained from the solution of
the “guidance” formula

(1.18)
∂ψ(x, t)

∂t
=

δS[ψ(x), t]
δψ(x)

∣∣∣∣
ψ(x)=ψ(x,t)

(analogous to mẍ = ∇S) once one has specified the initial function ψ0(x) in the
HJ formalism. To find the equation of motion for the field coordinates apply δ/δψ

to the HJ equation (1.17) to get formally (ψ̇ ∼ δS/δψ)

(1.19)
d

dt
ψ̇ = − δ

δψ

[
Q +

1
2

∫
d3x(∇ψ)2

]
;

d

dt
=

∂

∂t
+
∫

d3x
∂ψ

∂t

δ

δψ

This is analogous to mẍ = −∇(V +Q) and, noting that dψ̇/dt = ∂ψ̇/dt and taking
the classical external force term to the right one arrives, via standard variational
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methods, at

(1.20) �ψ(x), t) = − δQ[ψ(x, t]
δψ(x)

∣∣∣∣
ψ(x)=ψ(x,t)

(note (δ/δψ)
∫

d3x(∇ψ)2 ∼ −2∆ψ and (δ/δψ0∂tψ = ∂t(δ/δψ)ψ = 0). The quan-
tum force term on the right side is responsible for all the characteristic effects of
QFT. In particular comparing to a classical massive KG equation �ψ + m2ψ = 0
with suitable initial conditions one can argue that the quantum force generates
mass in the sense that the massless quantum field acts as if it were a classical field
with mass given via the quantum potential (cf. Remark 2.2.1 below).

1.1. ELECTROMAGNETISM AND THE DIRAC EQUATION. It
will be useful to have a differential form discription of EM fields and we supply this
via [723]. Thus one thinks of tensors T = T σ

µν∂σ ⊗ dxµ ⊗ dxν with contractions
of the form T (dxσ, ∂σ) ∼ Tνdxν . For η = ηµνdxµ⊗ dxν one has η−1 = ηµν∂µ⊗ ∂ν

and ηη−1 = 1 ∼ diag(δµ
µ). Note also e.g.

(1.21) ηµνdxµ ⊗ dxν(u,w) = ηµνdxµ(u)dxν(w) =

= ηµνdxµ(uα∂α)dxν(wτ∂τ ) = ηµνuµwν

(1.22) η(u) = ηµνdxµ ⊗ dxν(u) = ηµνdxµ(u)dxν =

= ηµνdxµ(uα∂α)dxν = ηµνuµdxν = uνdxν

for a metric η. Recall α ∧ β = α⊗ β − β ⊗ α and

(1.23) α ∧ β = αµdxµ ∧ βνdxν = (1/2)(αµβν − ανβµ)dxµ ∧ dxν

The EM field tensor is F = (1/2)Fµνdxµ ∧ dxν where

(1.24) Fµν =

⎛⎜⎜⎝
0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞⎟⎟⎠ ;

F = Exdx0 ∧ dx1 + Eydx0 ∧ dx2 + Ezdx0 ∧ dx3 −Bzdx1 ∧ dx2+

+Bydx1 ∧ dx3 −Bxdx2 ∧ dx3

The equations of motion of an electric charge is then dp/dτ = (e/m)F(p) where
p = pµ∂µ. There is only one 4-form, namely ε = dx0 ∧ dx1 ∧ dx2 ∧ dx3 =
(1/4!)εµνστdxµ∧dxν ∧dxσ ∧dxτ where εµνστ is totally antisymmetric. Recall also
for α = αµν···dxµ ∧ dxν · · · one has dα = dαµν··· ∧ dxµ ∧ dxν · · · = ∂ααµν···dxσ ∧
dxµ ∧ dxν · · · and ddα = 0. Define also the Hodge star operator on F and j via
∗F = (1/4)εµνστF στdxµ ∧ dxν and ∗j = (1/3!)εµνστ jτdxµ ∧ dxν ∧ dxσ; these are
called dual tensors. Now the Maxwell equations are

(1.25) ∂µFµν =
4π

c
jν ; ∂αFµν + ∂µF να + ∂νFαµ = 0

and this can now be written in the form

(1.26) dF = 0; d∗F =
4π

c
∗ j
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and 0 = d∗j = 0 is automatic. In terms of A = Aµdxµ where F = dA the relation
dF = 0 is an identity ddA = 0.

A few remarks about the tensor nature of jµ and Fµν are in order and we
write n = n(x) and v = v(x) for number density and velocity with charge density
ρ(x) = qn(x) and current density j = qn(x)v(x). The conservation of particle
number leads to ∇ · j + ρt = 0 and one writes

(1.27) jν = (cρ, jx, jy, jz) = (cρn, qnvx, qnvy, qnvz) ≡ jν = n0qu
ν ≡ jν = ρ0u

ν

where n0 = n
√

1− (v2/c2) and ρ0 = qn0 (ρ0 here is charge density). Since jν con-
sists of uν multiplied by a scalar it must have the transformation law of a 4-vector
j
′β = aβ

νjν under Lorentz transformations (aβ
ν ∼ Λβ

ν ). Then the conservation law
can be written as ∂νjν = 0 with obvious Lorentz invariance. After some argument
one shows also that Fµν = a ν

β a µ
α F

′αβ under Lorentz transformations so Fµν is
indeed a tensor. The equation of motion for a charged particle can be written now
as

(1.28) (dp/dt) = qE + (q/c)v ×B; p = mv/
√

1− (v2/c2)

This is equivalent to dpµ/dt = (q/m)pνFµν with obvious Lorentz invariance. The
energy momentum tensor of the EM field is

(1.29) Tµν = −(1/4π)[FµαF ν
α − (1/4)ηµνFαβFαβ ]

(cf. [723] for details) and in particular T 00 = (1/8π)(E2 +B2) while the Poynting
vector is T 0k = (1/4π)(E×B)k.

One can equally well work in a curved space where e.g. covariant derivatives
are defined via ∇nT = limdλ→0[(T (λ+dλ)−T (λ)−δT ]/dλ where δT is the change
in T produced by parallel transport. One has then the usual rules ∇u(T ⊗ R) =
∇uT ⊗R+T ⊗∇uR and for v = vν∂ν one finds ∇µv = ∂µvν∂ν + vν∇µ∂ν . Now if
v was constructed by parallel transport its covariant derivative is zero so, acting
with the dual vector dxα gives

(1.30)
∂xν

∂xµ
dxα(∂ν) + vνdxα(∇µ∂ν) = 0 ≡ ∂µvα + vνdxα(∇µ∂ν) = 0

Comparing this with the standard ∂µvα + Γα
µνvν = 0 gives dxα(∇µ∂ν) = Γα

µν .
One can show also for vectors u, v, w (boldface omitted) and a 1-form α

(1.31) (∇u∇v −∇v∇u − uv + vu)α(w) = R(α, u, v, w);

R = F σ
βµν∂σ ⊗ dxβ ⊗ dxµ ⊗ dxν

so R represents the Riemann tensor.

For the nonrelativistic theory we recall from [649] that one can define a trans-
verse and longitudinal component of a field F via

(1.32) F ||(r) = − 1
4π

∫
d3r′

∇′ · F (r′)
|r − r′| ; F⊥(r) =

1
4π
∇×∇×

∫
d3r′

F (r′)
|r − r′|

For a point particle of mass m and charge e in a field with potentials A and φ
one has nonrelativistic equations mẍ = eE + (e/c)v × B (boldface is suppressed
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here) where one recalls B = ∇ × A, v = ẋ, and E = −∇φ − (1/c)At with H =
(1/2m)(p− (e/c)A)2 + eφ leading to

(1.33) ẋ =
1

2m

(
p− e

c
A
)

; ṗ =
e

c
[v ×B + (v · ∇)A]− e∇φ

Recall here also

(1.34) B = ∇×A; ∇ · E = 0; ∇ ·B = 0; ∇× E = −(1/c)Bt;

∇×B = (1/c)Et; E = −(1/c)At −∇φ

(the Coulomb gauge∇·A = 0 is used here). One has now E = E⊥+E|| ∼ ET +EL

with ∇ · E⊥ = 0 and ∇ × E|| = 0 and in Coulomb gauge E⊥ = −(1/c)At and
E|| = −∇φ. Further

(1.35) H ∼ 1
2m

(
p− e

c
A
)2

+ eφ +
1
8π

∫
d3r((E⊥)2 + B2)

(covering time evolution of both particle and fields).

For the relativistic theory one goes to the Dirac equation

(1.36) i(∂t + α · ∇)ψ = βmψ

which, to satisfy E2 = p2 +m2 with E ∼ i∂t and p ∼ −i∇, implies −∂2
t ψ = (−iα ·

∇+βm)2ψ and ψ will satisfy the KG equation if β2 = 1, αiβ+βαi ≡ {αi, β} = 0,
and {αi, αj} = 2δij (note c = � = 1 here with α · ∇ ∼

∑
αµ∂µ and cf. [647, 650]

for notations and background). This leads to matrices

(1.37) σ1 =
(

0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
;

σ3 =
(

1 0
0 −1

)
; αi =

(
0 σi

σi 0

)
; β =

(
1 0
0 −1

)
where αi and β are 4 × 4 matrices. Then for convenience take γ0 = β and γi =
βαi which satisfy {γµ, γν} = 2gµν (Lorentz metric) with (γi)† = −γi, (γi)2 =
−1, (γ0)† = γ0, and (γ0)2 = 1. The Dirac equation for a free particle can now be
written

(1.38)
(

iγµ ∂

∂xµ
−m

)
ψ = 0 ≡ (i∂/−m)ψ = 0

where A/ = gµνγµAν = γµAµ and ∂/ = γµ∂µ. Taking Hermitian conjugates in
(1.36), noting that α and β are Hermitian, one gets ψ̄(i

←−
∂/ +m) = 0 where ψ̄ = ψ†β.

To define a conserved current one has an equation ψ̄γµ∂µψ+γµψ̄µψ = ∂µ(ψ̄γµψ) =
0 leading to the conserved current jµ = ψ̄γµψ = (ψ†ψ, ψ†αψ) (this means ρ = ψ†ψ
and j = ψ†αψ with ∂tρ+∇· j = 0). The Dirac equation has the Hamiltonian form

(1.39) i∂tψ = −iα · ∇ψ + βmψ = (α · p + βm)ψ ≡ Hψ

(α · p ∼
∑

αµpµ). To obtain a Dirac equation for an electron coupled to a pre-
scribed external EM field with vector and scalar potentials A and φ one substitutes
pµ → pµ − eAµ, i.e. p→ p− eA and p0 = i∂t → i∂t − eΦ, to obtain

(1.40) i∂tψ = [α · (p− eA) + eΦ + βm]ψ
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This identifies the Hamiltonian as H = α · (p−eA)+eΦ+βm = α ·p+βm+Hint

where Hint = −eα · A + eΦ, suggesting α as the operator corresponding to the
velocity v/c; this is strengthened by the Heisenberg equations of motion

(1.41) ṙ =
(

1
i�

)
[r,H] = α; π̇ =

(
1
i�

)
[π,H] = e(E + α×B)

Another bit of notation now from [650] is useful. Thus (again with c = � = 1)
one can define e.g.

(1.42) σz = −iαxαy; σx = −iαyαz; σy = −iαzαx; ρ3 = β;

ρ1 = σzαz = −iαxαyαz; ρ2 = iρ1ρ3 = βαxαyαz

so that β = ρ3 and αk = ρ1σ
k. Recall also that the angular momentum �� of a parti-

cle is �� = r×p (∼ (−i)r×∇) with components �k satisfying [�x, �y] = i�z, [�y, �z] =
i�x, and [�z, �x] = i�y. Any vector operator L satisfying such relations is called an
angular momentum. Next one defines σµν = (1/2)i[γµ, γν ] = iγµγν (µ �= ν) and
Sαβ = (1/2)σαβ . Then the 6 components Sαβ satisfy

(1.43) S10 = (i/2)αx; S20 = (i/2)αy; S30 = (i/1)αz;

S23 = (1/2)σx; , S31 = (1/2)σy; S12 = (1/2)σz

The Sαβ arise in representing infinitesimal rotations for the orthochronous Lorentz
group via matrices I + iεSαβ . Further one can represent total angular momentum
J in the form J = L + S where L = r × p and S = (1/2)σ (L is orbital angular
momentum and S represents spin). We recall that the gamma matrices are given
via γ = βα. Finally [(i∂t − eφ)− α · (−i∇− eA)− βm]ψ = 0 (cf. (1.40)) and one
gets

(1.44) [iγµDµ −m)ψ = [γµ(i∂µ − eAµ)−m]ψ = 0

Dµ = ∂µ + ieAµ ≡ (∂0 + ieφ,∇− ieA)
Working on the left with (−iγλDλ − m) gives then [γλγµDλDµ + m2]ψ = 0
where γλγµ = gλµ + (1/2)[γλ, γµ]. By renaming the dummy indices one obtains
[γλ, γµ]DλDµ = −[γλ, γµ]DµDλ = (1/2)[γλ, γµ][Dλ, Dµ] leading to

(1.45) [Dλ, Dµ] = ie[∂λ, Aµ] + ie[Aλ, ∂µ] = ie(∂λAµ − ∂µAλ) = ieFλµ

This yields then γλγµDλDµ = DµDλ + eSλµFλµ where Sλµ represents the spin of
the particle. Therefore one can write [DµDµ + eSλµFλµ + m2]ψ = 0. Comparing
with the standard form of the KG equation we see that this differs by the term
eSλµFλµ which is the spin coupling of the particle to the EM field and has no
classical analogue.

2. BERTOLDI-FARAGGI-MATONE THEORY

The equivalence principle (EP) of Faraggi-Matone (cf. [110, 191, 193, 198,
347, 641]) is based on the idea that all physical systems can be connected by
a coordinate transformation to the free situation with vanishing energy (i.e. all
potentials are equivalent under coordinate transformations). This automatically
leads to the quantum stationary Hamilton-Jacobi equation (QSHJE) which is a
third order nonlinear differential equation providing a trajectory representation of
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quantum mechanics (QM). The theory transcends in several respects the Bohm
theory and in particular utilizes a Floydian time (cf. [373, 374]) leading to
q̇ = p/mQ �= p/m where mQ = m(1 − ∂EQ) is the “quantum mass” and Q
the “quantum potential” (cf. also Section 7.4). Thus the EP is reminscient of
the Einstein equivalence of relativity theory. This latter served as a midwife to
the birth of relativity but was somewhat inaccurate in its original form. It is
better put as saying that all laws of physics should be invariant under general
coordinate transformations (cf. [723]). This demands that not only the form
but also the content of the equations be unchanged. More precisely the equa-
tions should be covariant and all absolute constants in the equations are to be left
unchanged (e.g. c, �, e, m and ηµν = Minkowski tensor). Now for the EP, the
classical picture with Scl(q, Q0, t) the Hamilton principal function (p = ∂Scl/∂q)
and P 0, Q0 playing the role of initial conditions involves the classical HJ equation
(CHJE) H(q, p = (∂Scl/∂q), t)+(∂Scl/∂t) = 0. For time independent V one writes
Scl = Scl

0 (q, Q0)−Et and arrives at the classical stationary HJ equation (CSHJE)
(1/2m)(∂Scl

0 /∂q)2 +W = 0 where W = V (q)−E. In the Bohm theory one looked
at Schrödinger equations i�ψt = −(�2/2m)ψ′′ + V ψ with ψ = ψ(q)exp(−iEt/�)
and ψ(q) = R(qexp(iŴ /�) leading to

(2.1)
(

1
2m

)
(Ŵ ′)2 + V − E − �2R′′

2mR
= 0; (R2Ŵ ′)′ = 0

where Q̂ = −�2R′′/2mR was called the quantum potential; this can be written
in the Schwartzian form Q̂ = (�2/4m){Ŵ ; q} (via R2Ŵ ′ = c). Here {f ; q} =
(f ′′′/f ′)−(3/2)(f ′′/f ′)2. Writing W = V (q)−E as in above we have the quantum
stationary HJ equation (QSHJE)

(2.2) (1/2m)(∂Ŵ ′/∂q)2 + W(q) + Q̂(q) = 0 ≡W = −(�2/4m){exp(2iS0/�); q}

This was worked out in the Bohm school (without the Schwarzian connections) but
ψ = Rexp(iŴ /�) is not appropriate for all situations and care must be taken (Ŵ =
constant must be excluded for example - cf. [347, 373, 374]). The technique of
Faraggi-Matone (FM) is completely general and with only the EP as guide one
exploits the relations between Schwarzians, Legendre duality, and the geometry of
a second order differential operator D2

x + V (x) (Möbius transformations play an
important role here) to arrive at the QSHJE in the form

(2.3)
1

2m

(
∂Sv

0 (qv)
∂qv

)2

+ W(qv) + Q
v(qv) = 0

where v : q → qv represents an arbitrary locally invertible coordinate transforma-
tion. Note in this direction for example that the Schwarzian derivative of the the
ratio of two linearly independent elements in ker(D2

x + V (x)) is twice V (x). In
particular given an arbitrary system with coordinate q and reduced action S0(q)
the system with coordinate q0 corresponding to V −E = 0 involves W(q) = (q0; q)
where (q0, q) is a cocycle term which has the form (qa; qb) = −(�2/4m){qa; qb}. In
fact it can be said that the essence of the EP is the cocycle condition

(2.4) (qa; qc) = (∂qcqb)2[(qa; qb)− (qc; qb)]
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In addition FM developed a theory of (x, ψ) duality (cf. [346])) which related
the space coordinate and the wave function via a prepotential (free energy) in
the form F = (1/2)ψψ̄ + iX/ε for example. A number of interesting philosophical
points arise (e.g. the emergence of space from the wave function) and we connected
this to various features of dispersionless KdV in [191, 198] in a sort of extended
WKB spirit (cf. also Section 7.3). One should note here that although a form
ψ = Rexp(iŴ /�) is not generally appropriate it is correct when one is dealing
with two independent solutions of the Schrödinger equation ψ and ψ̄ which are not
proportional. In this context we utilized some interplay between various geometric
properties of KdV which involve the Lax operator L2 = D2

x + V (x) and of course
this is all related to Schwartzians, Virasoro algebras, and vector fields on S1 (see
e.g. [191, 192, 198, 200, 201]). Thus the simple presence of the Schrödinger
equation (SE) in QM automatically incorporates a host of geometrical properties of
Dx = d/dx and the circle S1. In fact since the FM theory exhibits the fundamental
nature of the SE via its geometrical properties connected to the QSHJE one could
speculate about trivializing QM (for 1-D) to a study of S1 and ∂x.

We import here some comments based on [110] concerning the Klein-Gordon
(KG) equation and the equivalence principle (EP) (details are in [110] and cf.
also [164, 165, 166, 298, 472, 474, 473, 478, 479, 480, 666, 667] for the
KG equation which is treated in some detail later at several places in this book).
One starts with the relativistic classical Hamilton-Jacobi equation (RCHJE) with
a potential V (q, t) given as

(2.5)
1

2m

D∑
1

(∂kScl(q, t))2 + Wrel(q, t) = 0;

Wrel(q, t) =
1

2mc2
[m2c4 − (V (q, t) + ∂tS

cl(q, t))2]

In the time-independent case one has Scl(q, t) = Scl
0 (q)− Et and (2.3) becomes

(2.6)
1

2m

D∑
1

(∂kScl
0 )2 + Wrel = 0; Wrel(q) =

1
2mc2

[m2c4 − (V (q)− E)2]

In the latter case one can go through the same steps as in the nonrelativistic case
and the relativistic quantum HJ equation (RQHJE) becomes

(2.7) (1/2m)(∇S0)2 + Wrel − (�2/2m)(∆R/R) = 0; ∇ · (R2∇S0) = 0

these equations imply the stationary KG equation

(2.8) −�2c2∆ψ + (m2c4 − V 2 + 2EV − E2)ψ = 0

where ψ = Rexp(iS0/�). Now in the time dependent case the (D+1)-dimensional
RCHJE is (ηµν = diag(−1, 1, · · · , 1)

(2.9) (1/2m)ηµν∂µScl∂νScl + W
′
rel = 0;

W
′
rel = (1/2mc2)[m2c4 − V 2(q)− 2cV (q)∂0S

cl(q)]
with q = (ct, q1, · · · , qD). Thus (2.9) has the same structure as (2.6) with Euclidean
metric replaced by the Minkowskian one. We know how to implement the EP by
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adding Q via (1/2m)(∂S)2 + Wrel + Q = 0 (cf. [347] and remarks above). Note
now that W′

rel depends on Scl requires an identification

(2.10) Wrel = (1/2mc2)[m2c4 − V 2(q)− 2cV (q)∂0S(q)]

(S replacing Scl) and implementation of the EP requires that for an arbitrary Wa

state (q ∼ qa) one must have

(2.11) W
b
rel(q

b) = (pb|pa)Wa
rel(q

a) + (qq; qb); Qb(qb) = (pb|pa)Q(qa)− (qa; qb)

where

(2.12) (pb|p) = [ηµνpb
µpb

ν/ηµνpµpν ] = pT JηJT p/pT ηp; Jµ
ν = ∂qµ/∂qbν

(J is a Jacobian and these formulas are the natural multidimensional generaliza-
tion - see [110] for details). Furthermore there is a cocycle condition (qa; qc) =
(pc|pb)[(qa; qb)− (qc; qb)].

Next one shows that Wrel = (�2/2m)[�(Rexp(iS/�))/Rexp(iS/�)] and hence
the corresponding quantum potential is Qrel = −(�2/2m)[�R/R]. Then the
RQHJE becomes (1/2m)(∂S)2 + Wrel + Q = 0 with ∂ · (R2∂S) = 0 (here �R =
∂µ∂µR) and this reduces to the standard SE in the classical limit c → ∞ (note
∂ ∼ (∂0, ∂1, · · · , ∂D) with q0 = ct, etc. - cf. (2.9)). To see how the EP is simply
implemented one considers the so called minimal coupling prescription for an in-
teraction with an electromagnetic four vector Aµ. Thus set P cl

µ = pcl
µ + eAµ where

pcl
µ is a particle momentum and P cl

µ = ∂µScl is the generalized momentum. Then
the RCHJE reads as (1/2m)(∂Scl − eA)2 + (1/2)mc2 = 0 where A0 = −V/ec.
Then W = (1/2)mc2 and the critical case W = 0 corresponds to the limit situa-
tion where m = 0. One adds the standard Q correction for implementation of the
EP to get (1/2m)(∂S − eA)2 + (1/2)mc2 + Q = 0 and there are transformation
properties (here (∂S − eA)2 ∼

∑
(∂µS − eAµ)2)

(2.13) W(qb) = (pb|pa)Wa(qa) + (qa; qb); Qb(qb) = (pq|pa)Qa(qa)− (qa; qb)

(pb|p) =
(pb − eAb)2

(p− eA)2
=

(p− eA)T JηJT (p− eA)
(p− eA)T η(p− eA)

Here J is a Jacobian Jµ
ν = ∂qµ/∂qbν

and this all implies the cocycle condition
again. One finds now that (recall ∂ · (R2(∂S − eA)) = 0 - continuity equation)

(2.14) (∂S − eA)2 = �2

(
�R

R
− D2(ReiS/�)

ReiS/�

)
; Dµ = ∂µ −

i

�
eAµ

and it follows that

(2.15) W =
�2

2m

D2(ReiS/�)
ReiS/� ; Q = − �2

2m

�R

R
; D2 = �− 2ieA∂

�
− e2A2

�2
− ie∂A

�

(2.16) (∂S − eA)2 + m2c2 − �2 �R

R
= 0; ∂ · (R2(∂S − eA)) = 0

Note also that (2.9) agrees with (1/2m)(∂Scl − eA)2 + (1/2)mc2 = 0 after setting
Wrel = mc2/2 and replacing ∂µScl by ∂µScl − eAµ. One can check that (2.16)
implies the KG equation (i�∂ + eA)2ψ + m2c2ψ = 0 with ψ = Rexp(iS/�).
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REMARK 2.2.1. We extract now a remark about mass generation and the
EP from [110]. Thus a special property of the EP is that it cannot be implemented
in classical mechanics (CM) because of the fixed point corresponding to W =
0. One is forced to introduce a uniquely determined piece to the classical HJ
equation (namely a quantum potential Q). In the case of the RCHJE the fixed point
W(q0) = 0 corresponds to m = 0 and the EP then implies that all the other masses
can be generated by a coordinate transformation. Consequently one concludes that
masses correspond to the inhomogeneous term in the transformation properties of
the W0 state, i.e. (1/2)mc2 = (q0; q). Furthermore by (2.13) masses are expressed
in terms of the quantum potential (1/2)mc2 = (p|p0)Q0(q0)−Q(q). In particular
in [347] the role of the quantum potential was seen as a sort of intrinsic self energy
which is reminiscent of the relativistic self energy and this provides a more explicit
evidence of such an interpretation.

REMARK 2.2.2. In a previous paper [194] (working with stationary states
and ψ satisfying the Schrödinger equation (SE) −(�2/2m)ψ′′ + V ψ = Eψ) we
suggested that the notion of uncertainty in quantum mechanics (QM) could be
phrased as incomplete information. The background theory here is taken to be
the trajectory theory of Bertoldi-Faraggi-Matone (and Floyd) as above and the
idea in [194] goes as follows. First recall that microstates satisfy a third order
quantum stationary Hamilton-Jacobi equation (QSHJE)

(2.17)
1

2m
(S′

0)
2 + W(q) + Q(q) = 0; Q(q) =

�2

4m
{S0; q};

W(q) = − �2

4m
{exp(2iS0/�); q} ∼ V (q)− E

where {f ; q} = (f ′′′/f ′) − (3/2)(f ′′/f ′)2 is the Schwarzian and S0 is the Hamil-
ton principle function. Also one recalls that the EP of Faraggi-Matone can only
be implemented when S0 �= const; thus consider ψ = Rexp(iS0/�) with Q =
−�2R′′/2mR and (R2S′

0)
′ = 0 where S′

0 = p and mQq̇ = p with mQ = m(1 −
∂EQ) and t ∼ ∂ES0 (Q in (2.17) is the definitive form - cf. [349]). Thus mi-
crostates require three initial or boundary conditions in general to determine
S0 whereas the SE involves only two such conditions (cf. also Section 7.4 and
[138, 140, 139, 305, 306, 307, 308, 309, 347, 348, 349, 373, 374, 375, 520]).
Hence in dealing with the SE in the standard QM Hilbert space formulation one
is not using complete information about the “particles” described by microstate
trajectories. The price of underdetermination is then uncertainty in q, p, t for
example. In the present note we will make this more precise and add further
discussion. Following [197] we now make this more precise and add further dis-
cussion. For the stationary SE −(�2/2m)ψ′′ + V ψ = Eψ it is shown in [347] that
one has a general formula

(2.18) e2iS0(δ)/� = eiα w + i�̄

w − i�

(δ ∼ (α, �)) with three integration constants, α, �1, �2 where � = �1 + i�2 and
w ∼ ψD/ψ ∈ R. Note ψ and ψD are linearly independent solutions of the SE and
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one can arrange that ψD/ψ ∈ R in describing any situation. Here p is determined
by the two constants in � and has a form

(2.19) p =
±�Ω�1

|ψD − i�ψ|2

(where w ∼ ψD/ψ above and Ω = ψ′ψD − ψ(ψD)′). Now let p be determined
exactly with p = p(q, E) via the Schrödinger equation and S′

0. Then q̇ = (∂Ep)−1

is also exact so ∆q = (∂Ep)−1(τ)∆t for some τ with 0 ≤ τ ≤ t is exact (up to
knowledge of τ). Thus given the wave function ψ satisfying the stationary SE
with two boundary conditions at q = 0 say to fix uniqueness, one can create a
probability density |ψ|2(q, E) and the function S′

0. This determines p uniquely
and hence q̇. The additional constant needed for S0 appears in (2.18) and we can
write S0 = S0(α, q, E) since from (2.18) one has

(2.20) S0 − (�/2)α = −(i�/2)log(β)

and β = (w + i�̄)/(w − i�) with w = ψD/ψ is to be considered as known via a
determination of suitable ψ, ψD. Hence ∂αS0 = −�/2 and consequently ∆S0 ∼
∂αS0δα = −(�/2)∆α measures the indeterminacy or uncertainty in S0.

Let us expand upon this as follows. Note first that the determination of
constants necessary to fix S0 from the QSHJE is not usually the same as that
involved in fixing �, �̄ in (2.18). In paricular differentiating in q one gets

(2.21) S′
0 = − i�β′

β
; β′ = − 2i��w′

(w − i�)2

Since w′ = −Ω/ψ2 where Ω = ψ′ψD − ψ(ψD)′ we get β′ = −2i�1Ω/(ψD − i�ψ)2

and consequently

(2.22) S′
0 = − ��1Ω

|ψD − i�ψ|2

which agrees with p in (2.19) (±� simply indicates direction). We see that e.g.
S0(x0) = i��1Ω/|ψD(x0) − i�ψ(x0)|2 = f(�1, �2, x0) and S′′

0 = g(�1, �2, x0) de-
termine the relation between (p(x0), p′(x0)) and (�1, �2) but they are generally
different numbers. In any case, taking α to be the arbitrary unknown constant
in the determination of S0, we have S0 = S0(q, E, α) with q = q(S0, E, α) and
t = t(S0, E, α) = ∂ES0 (emergence of time from the wave function). One can then
write e.g.

(2.23) ∆q = (∂q/∂S0)(Ŝ0, E, α)∆S0 = (1/p)(q̂, E)∆S0 = −(1/p)(q̂, E)(�/2)∆α

(for intermediate values (Ŝ0, q̂)) leading to

THEOREM 2.1. With p determined uniquely by two “initial” conditions so
that ∆p is determined and q given via (2.18) we have from (2.23) the inequality
∆p∆q = O(�) which resembles the Heisenberg uncertainty relation.

COROLLARY 2.1. Similarly ∆t = (∂t/∂S0)(Ŝ0, E, α)∆S0 for some inter-
mediate value Ŝ0 and hence as before ∆E∆t = O(�) (∆E being precise).
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Note that there is no physical argument here; one is simply looking at the
number of conditions necessary to fix solutions of a differential equation. In fact
(based on some corresondence with E. Floyd) it seems somewhat difficult to pro-
duce a viable physical argument. We refer also to Remark 3.1.2 for additional
discussion.

REMARK 2.2.3. In order to get at the time dependent SE from the BFM
(Bertoldi-Faraggi-Matone) theory we proceed as follows. From the previous dis-
cussion on the KG equation one sees that (dropping the EM terms) in the time
independent case one has Scl(q, t) = Scl

0 (q)− Et

(2.24)

(1/2m)
∑D

1 (∂kScl
0 )2 + Wrel = 0; Wrel(q) = (1/2mc2)[m2c4 − (V (q)− E)2]

leading to a stationary RQHJE

(2.25) (1/2m)(∇S0)2 + Wrel − (�2/2m)(∆R/R) = 0; ∇ · (R2∇S0) = 0

This implies also the stationary KG equation

(2.26) −�2c2∆ψ + (m2c4 − V 2 + 2V E − E2)ψ = 0

Now in the time dependent case one can write (1/2m)ηµν∂µScl∂νScl + W′
rel = 0

where η ∼ diag(−1, 1, · · · , 1) and

(2.27) W
′
rel(q) = (1/2mc2)[m2c4 − V 2(q)− 2cV (q)∂0S

cl(q)]

with q ≡ (ct, q1, · · · , qD). Thus we have the same structure as (2.24) with Euclid-
ean metric replaced by a Minkowskian one. To implement the EP we have to
modify the classical equation by adding a function to be determined, namely
(1/2m)(∂S)2+Wrel+Q = 0 ((∂S)2 ∼

∑
(∂µS)2 etc.). Observe that since W′

rel de-
pends on Scl we have to make the identification Wrel = (1/2mc2)[m2c4−V 2(q)−
2cV (q)∂0S(q)] which differs from W′

rel since S now appears instead of Scl. Imple-
mentation of the EP requires that for an arbitrary Wa state

(2.28) W
b
rel(q

b) = (pb|pa)Wa
rel(q

a) + (qq; qb); Qb(qb) = (pb|pa)Qa(qa)− (qa; qb)

where now (pb|p) = ηµνpb
µpb

ν/ηµνpµpν = pT JηJT p/pT ηp and Jµ
ν = ∂qµ/∂(qb)ν .

This leads to the cocycle condition (qa; qc) = (pc|pb)[(qq; qb) − (qc; qb)] as before.
Now consider the identity

(2.29) α2(∂S)2 = �(Rexp(αS))/Rexp(αS)− (�R/R)− (α∂ · (R2∂S)/R2)

and if R satisfies the continuity equation ∂ · (R2∂S) = 0 one sets α = i/� to obtain

(2.30)
1

2m
(∂S)2 = − �2

2m

�(ReiS/�)
ReiS/� +

�2

2m

�R

R

Then it is shown that Wrel = (�2/2m)(�(Rexp(iS/�))/Rexp(iS/�) so Qrel =
−(�2/2m)(�R/R). Thus the RQHJE has the form (cf. (2.14) - (2.16))

(2.31)
1

2m
(∂S)2 + Wrel −

�2

2m

�R

R
= 0; ∂ · (R2∂S) = 0
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Now for the time dependent SE one takes the nonrelativistic limit of the
RQHJE. For the classical limit one makes the usual substitution S = S′ −mc2t
so as c →∞ Wrel → (1/2)mc2 + V and −(1/2m)(∂0S)2 → ∂tS

′ − (1/2)mc2 with
∂(R2∂S) = 0→ m∂t(R′)2 +∇ · ((R′)2∇S′) = 0. Therefore (removing the primes)
(2.31) becomes (1/2m)(∇S)2 + V + ∂tS − (�2/2m)(∆R/R) = 0 with the time
dependent nonrelativistic continuity equation being m∂tR

2 + ∇ · (R2∇S) = 0.
This leads then (for ψ ∼ Rexp(iS/�)) to the SE

(2.32) i�∂tψ =
(
− �2

2m
∆ + V

)
ψ

One sees from all this that the BFM theory is profoundly governed by the equiva-
lence principle and produces a usable framework for computation. It is surprising
that it has not attracted more adherents.

3. FIELD THEORY MODELS

In trying to imagine particle trajectories of a fractal nature or in a fractal
medium we are tempted to abandon (or rather relax) the particle idea and switch
to quantum fields (QF). Let the fields sense the bumps and fractality; if one can
think of fields as operator valued distributions for example then fractal supports for
example are quite reasonable. There are other reasons of course since the notion of
particle in quantum field theory (QFT) has a rather fuzzy nature anyway. Then
of course there are problems with QFT itself (cf. [973]) as well as arguments
that there is no first quantization (except perhaps in the Bohm theory - cf. [701,
1016]). We review here some aspects of particles arising from QF and QFT
methods, especially in a Bohmian spirit (cf. [77, 110, 256, 324, 325, 326, 454,
472, 478, 479, 480, 494, 532, 634, 701, 702, 703, 704, 705, 706, 707,
708, 709, 710, 711, 984]). We refer to [454, 973] for interesting philosophical
discussion about particles and localized objects in a QFT and will extract here
from [77, 256, 326, 703, 704]; for QFT we refer to [457, 912, 935, 1015].
Many details are omitted and standard QFT techniques are assumed to be known
and we will concentrate here on derivations of KG type equations and the nature
of the quantum potential (the Dirac equation will be treated later).

3.1. EMERGENCE OF PARTICLES. The papers [704] are impressive
in producing a local operator describing the particle density current for scalar and
spinor fields in an arbitrary gravitational and electromagnetic background. This
enables one to describe particles in a local, general covariant, and gauge invariant
manner. The current depends on the choice of a 2-point Wightman function and
a most natural choice based on the Green’s function à la Schwinger- deWitt leads
to local conservation of the current provided that interaction with quantum fields
is absent. Interactions lead to local nonconservation of current which describes
local particle production consistent with the usual global description based on the
interaction picture. The material is quite technical but we feel it is important
and will sketch some of the main points; the discussion should provide a good
exercise in field theoretic technique. The notation is indicated as we proceed and
we make no attempt to be consistent with other notation. Thus let gµν be a
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classical background metric, g the determinant, and R the curvature. The action
of a Hermitian scalar field φ can be written as

(3.1) S =
1
2

∫
d4x|g|1/2[gµν(∂µφ)(∂νφ)−m2φ2 − ξRφ2]

where ξ is a coupling constant. Writing this as S =
∫

d4x|g|1/2L the canonical
mommentum vector is πµ = [∂L/∂(∂µφ)] = ∂µφ (standard gµν). The correspond-
ing equation of motion is (∇µ∂µ + m2 + ξR)φ = 0 where ∇µ is the covariant
derivative. Let Σ be a spacelike Cauchy hypersurface with unit normal vector nµ;
the canonical momentum scalar is defined as π = nµπµ and the volume element on
Σ is dΣµ = d3x|g(3)|1/2nµ with scalar product (φ1, φ2) = i

∫
Σ

dΣµφ∗
1

←→
∂µφ2 where

a
←→
∂µb = a∂µg−(∂µa)b. If φi are solutions of the equation of motion then the scalar

product does not depend on Σ. One chooses coordinates (t, x) such that t = c on
Σ so that nµ = gµ

0 /
√

g00 and the canonical commutation relations become

(3.2) [φ(x), φ(x′)]Σ = [π(x), π(x′)]Σ = 0; [φ(x), π(x′)]Σ = |g(3)|−1/2iδ3(x− x′)

(here x, x′ lie on Σ). This can be written in a manifestly covariant form via

(3.3)
∫

Σ

dΣ
′µ[φ(x), ∂′

µφ(x′)]χ(x′) =
∫

Σ

dΣ
′µ[φ(x′), ∂µφ(x)]χ(x′) = iχ(x)

for an arbitrary test function χ. For practical reasons one writes ñµ = |g(3)|1/2nµ

where the tilde indicates that it is not a vector. Then ∇µñν = 0 and in fact
ñµ = (|g(3)|1/2/

√
g00, 0, 0, 0). It follows that dΣµ = d3xñµ while (2.11) can be

written as ñ0(x′)[φ(x), ∂′
0φ(x′)]Σ = iδ3(x− x′). Consequently

(3.4) [φ(x), π̃(x′)]Σ = iδ3(x− x′); π̃ = |g(3)|1/2π

Now choose a particular complete orthonormal set of solutions {fk(x)} of the
equation of motion satisfying therefore

(3.5) (fk, fk′) = −(f∗
k , f∗

k′) = δkk′ ; (f∗
k , fk′) = (fk, f∗

k′) = 0

One can then write φ(x) =
∑

k akfk(x) + a†
kf∗

k (x) from which we deduce that
ak = (fk, φ) and a†

k = −(f∗
k , φ) while [ak, a†

k′ ] = δkk′ and [ak, ak′ ] = [a†
k, a†

k′ ] =
0. The lowering and raising operators ak and a†

k induce the representation of
the field algebra in the usual manner and ak|0 >= 0. The number operator is
N =

∑
a†

kak and one defines a two point function W (x, x′) =
∑

fk(x)f∗
k (x′)

(different definitions appear later). Using the equation of motion one finds that
W is a Wightman function W (x, x′) =< 0|φ(x)φ(x′)|0 > and one has W ∗(x, x′) =
W (x′, x). Further, via the equation of motion, for fk, f∗

k one has

(3.6) (∇µ∂µ + m2 + ξR(x))W (x, x′) = 0 = (∇′µ∂′
µ + m2 + ξR(x′))W (x, x′)

From the form of W and the commutation relations there results also

(3.7) W (x, x′)|Σ = W (x′, x)|Σ; ∂0∂
′
0W (x, x′)|Σ = ∂0∂

′
0W (x′, x)|Σ;

ñ0∂′
0[W (x, x′)−W (x′, x)]Σ = iδ3(x− x′)
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The number operator given by N =
∑

a†
kak is a global quantity. However a new

way of looking into the concept of particles emerges when ak = (fk, φ), etc. is put
into N; using the scalar product along with the expression for W leads to

(3.8) N =
∫

Σ

dΣµ

∫
Σ

dΣ
′νW (x, s′)

←→
∂µ

←→
∂′

νφ(x)φ(x′)

By interchanging the names of the coordinates x, x′ and the names of the indices
µ ν this can be written as a sum of two equal terms

(3.9) N =
1
2

∫
Σ

dΣµ

∫
Σ

dΣ
′νW (x, x′)

←→
∂µ

←→
∂′

νφ(x)φ(x′)+

1
2

∫
Σ

dΣµ

∫
Σ

dΣ
′νW (x′, x)

←→
∂µ

←→
∂′

νφ(x′)φ(x)

Using also W ∗(x, x′) = W (x′, x) one sees that (3.9) can be written as N =∫
Σ

dΣµjµ(x) where

(3.10) jµ(x) = (1/2)
∫

Σ

dΣ
′ν{W (x, x′)

←→
∂µ

←→
∂′

νφ(x)φ(x′) + h.c.}

(where h.c. denotes hermitian conjugate). Evidently the vector jµ(x) should be
interpreted as the local current of particle density. This representation has three
advantages over N =

∑
a†

kak: (i) It avoids the use of ak, a†
k related to a particular

choice of modes fk(x). (ii) It is manifestly covariant. (iii) The local current jµ(x)
allows one to view the concept of particles in a local manner. If now one puts all
this together with the antisymmetry of

←→
∂µ we find

(3.11) jµ = i
∑
k,k′

f∗
k

←→
∂µfk′a†

kak′

From this we see that jµ is automatically normally ordered and has the property
jµ|0 >= 0 (not surprising since N =

∑
a†

kak is normally ordered). Further one
finds ∇µjµ = 0 (covariant conservation law) so the background gravitational field
does not produce particles provided that a unique vacuum defined by ak|0 >= 0 ex-
ists. This also implies global conservation since it provides that N =

∫
Σ

dΣµjµ(x)
does not depend on time. The extra terms in ∇µjµ = 0 originating from the fact
that ∇µ �= ∂µ are compensated by the extra terms in N =

∫
Σ

dΣµjµ that originate
from the fact that dΣµ is not written in “flat” coordinates. The choice of vacuum
is related to the choice of W (x, x′). Note that although jµ(x) is a local operator
some nonlocal features of the particle concept still remain because (3.10) involves
an integration over Σ on which x lies. Since φ(x′) satisfies the equation of motion
and W (x, x′) satisfies (3.6) this integral does not depend on Σ. However it does
depend on the choice of W (x, x′). Note also the separation between x and x′ in
(3.10) is spacelike which softens the nonlocal features because W (x, x′) decreases
rapidly with spacelike separation - in fact it is negligible when the space like sep-
aration is much larger than the Compton wavelength.

We pick this up now in [702]. Thus consider a scalar Hermitian field φ(x) in a
curved background satisfying the equation of motion and choose a particular com-
plete orthonormal set {fk(x)} having relations and scalar product as before. The
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field φ can be expanded as φ(x) = φ+(x) + φ−(x) where φ+(x) =
∑

akfk(x) and
φ−(x) =

∑
a†

kf∗
k (x). Introducing the two point function W+(x, x′) =

∑
fk(x)f∗

k (x′)
with W−(x, x′) =

∑
f∗

k (x)fk(x′) one finds the remarkable result that
(3.12)

φ+(x) = i

∫
Σ

dΣ
′νW+(x, x′)

←→
∂ ′

νφ(x′); φ−(x) = −i

∫
Σ

dΣ
′νW−(x, x′)

←→
∂ ′

νφ(x′)

We see that the extraction of φ±(x) from φ(x) is a nonlocal procedure. Note
however that the integrals in (3.12) do not depend on the choice of the timelike
Cauchy hypersurface Σ because W±(x, x′) satisfies the equation of motion with
respect to x′ just as φ(x′) does. However these integrals do depend on the choice
of W±(x, x′), i.e. on the choice of the set {fk(x)}. Now define normal ordering
in the usual way, putting φ− on the left, explicitly : φ+φ− := φ−φ+ while the
ordering of the combinations φ−φ+, φ+φ+, and φ−φ− leaves these combinations
unchanged. Generalize this now by introducing 4 different orderings N(±) and
A(±) defined via

(3.13) N+φ+φ− = φ−φ+; N−φ+φ− = −φ−φ+;

A+φ−φ+ = φ+φ−; A−φ−φ+ = −φ+φ−

Thus N+ is normal ordering, N− will be useful, and the antinormal orderings A±
can be used via symmetric orderings S+ = (1/2)[N+ + A+] and S− = (1/2)[N− +
A−]. When S+ acts on a bilinear combination of fields it acts as the default
ordering, i.e. S+φφ = φφ.

Now the particle current for scalar Hermitian fields can be written as (cf.
(3.10))
(3.14)

jµ(x) =
1
2

∫
Σ

dΣ
′ν
[
W+(x, x′)

←→
∂µ
←→
∂ ′

νφ(x)φ(x; ) + W−(x, x′)
←→
∂µ
←→
∂ ′

νφ(x′)φ(x)
]

(3.14) can be written in a local form as jµ(x) = (i/2)[φ(x)
←→
∂µφ+(x)+φ−(x)

←→
∂µφ(x)]

(via (3.12)). Using the identities φ+←→∂µφ+ = φ−←→∂µφ− this can be written in
the elegant form jµ = iφ−←→∂µφ+. Similarly using (3.13) this can be written in
another elegant form without explicit use of φ±, namely jµ = (i/2)N−φ

←→
∂µφ.

Note that the expression on the right here without the ordering N− vanishes
identically - this peculiar feature may explain why the particle current was not
previously discovered. The normal ordering N− provides that jµ|0 >= 0 which is
related to the fact that the total number of particles is N =

∫
Σ

dΣµjµ =
∑

a†
kak.

Alternatively one can choose the symmetric ordering S− and define the particle
current as jµ = (i/2)S−φ

←→
∂µφ. This leads to the total number of particles N =

(1/2)
∑

(a†
kak + aka†

k) =
∑

[a†
kak + (1/2)].

When the gravitational background is time dependent one can introduce a new
set of solutions uk(x) for each time t, such that the uk(x) are positive frequency
modes at that time. This leads to functions with an extra time dependence uk(x, t)
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that do not satisfy the equation of motion (cf. [704]). Define φ± as in (3.12) but
with the two point functions

(3.15) W+(x, x′) =
∑

uk(x, t)u∗
k(x′, t′); W−(x, x′) =

∑
u∗

k(x, t)uk(x′, t′)

As shown in [704] such a choice leads to a local description of particle creation
consistent with the conventional global description based on the Bogoliubov trans-
formation. Putting φ(x) =

∑
akfk(x) + a†

kf∗
k (x) in (3.12) with (3.15) yields

φ+(x) =
∑

Ak(t)uk(x, t) and φ−(x) =
∑

A†
k(t)u∗

k(x) where

(3.16) Ak(t) =
∑

α∗
kj(t)aj − β∗

kj(t)a
†
k; αjk = (fj , uk); βjk(t) = −(f∗

j , uk)

Putting these φ± in jµ = iφ−←−∂ φ+ one finds

(3.17) jµ(x) = i
∑
k,k′

A†
k(t)u∗

k(x, t)
←→
∂µAk′(t)uk′(x, t)

Note that because of the extra time dependence the fields φ± do not satisy the
equation of motion (∇µ∂µ + m2 + ξR)φ = 0 and hence the current (3.17) is not
conserved, i.e. ∇µjµ is a nonvanishing local scalar function describing the creation
of particles in a local and invariant manner as in [704]. In [702] there follows a
discussion about where and when particles are created with conclusion that this
happens at the spacetime points where the metric is time dependent. Hawking
radiation is then cited as an example. Generally the choice of the 2-point function
(3.15) depends on the choice of time coordinate. Therefore in general a natural
choice of the 2-point function (3.15) does not exist. In [704] an alternative choice
is introduced via W±(x, x′) = G±(x, x′) where G±(x, x′) is determined by the
Schwinger- deWitt function. As argued in [704] this choice seems to be the most
natural since the G± satisfy the equation of motion and hence the particle current
in which φ± are calculated by putting : φ+φ− := φ−φ+ in (3.12) is conserved;
this suggests that classical gravitational backgrounds do not create particles (see
below).

A complex scalar field φ(x) and its Hermitian conjugate φ† in an arbitrary
gravitational background can be expanded as

(3.18) φ = φP+ + φA−; φ† = φP− + φA+; φP+ =
∑

akfk(x);

φP− =
∑

a†
kf∗

k ; φA+ =
∑

bkfk(x); φA− =
∑

b†kf∗
k (x)

In a similar manner to the preceeding one finds also

(3.19)

φP+ = i
∫

dΣ
′νW+(x, x′)

←→
∂ ′

νφ(x′); φA+ = i
∫
Σ

dΣ
′νW+(x, x′)

←→
∂ ′

νφ†(x′);

φP− = −i

∫
Σ

dΣ
′νW−(x, x′)

←→
∂ ′

νφ†(x′); φA− = −i

∫
Σ

dΣ
′νW−(x, x′)

←→
∂ ′

νφ(x′)
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The particle current jP
µ (x) and the antiparticle current jA

µ (x) are then (cf. [704])
(3.20)

jP
µ (x) =

1
2

∫
Σ

dΣ
′ν
[
W+(x, x′)

←→
∂µ
←→
∂ ′

νφ†(x)φ(x′) + W−(x, x′)
←→
∂µ
←→
∂ ′

νφ†(x′)φ(x)
]
;

jA
µ (x) =

1
2

∫
Σ

dΣ
′ν
[
W+(x, x′)

←→
∂µ
←→
∂ ′

νφ(x)φ†(x′) + W−(x, x′)
←→
∂µ
←→
∂ ′

νφ(x′)φ†(x)
]

Consequently they can be written in a purely local form as

(3.21) jP
µ = iφP−←→∂µφP+ + jmix

µ ; jA
µ = iφA−←→∂µφA+ − jmix

µ ;

jmix
u =

i

2

[
φP−←→∂µφA− − φP+←→∂µφA+

]
The current of charge j−µ has the form j−µ = jP

µ − jA
µ which can be written as (cf.

[704]) j−µ =: iφ†←→∂µφ := i
2

[
φ†←→∂µφ− φ

←→
∂µφ†

]
. Using (3.13) this can also be written

as

(3.22) j−µ = N+iφ†←→∂µφ = (i/2)N+[φ†←→∂µφ− φ
←→
∂µφ†]

The current of total number of particles is now defined as j+
µ = jP

µ + jA
µ and it is

shown in [704] that j+
µ can be written as jµ = j1

µ + j2
µ where φ = (1/

√
2)(φ1 + iφ2)

(ji
µ are two currents of the form (3.14). Therefore using jµ = (i/2)N−φ

←→
∂µφ one

can write jµ as j+
µ = (i/2)N−[φ1

←→
∂µφ1 + φ2

←→
∂µφ2]. Finally one shows that this can

be written in a form analogous to (3.22) as j+
µ = (i/2)N−[φ†←→∂µφ + φ

←→
∂µφ†]. This

can be summarized by defining currents q±µ = (1/2)[φ†←→∂µφ ± φ
←→
∂µφ†] leading to

j±µ = Nµq±µ . The current q+
µ vanishes but N−q+

µ does not vanish. These results
can be easily generalized to the case where the field interacts with a backgound
EM field (as in [704]). The equations are essentially the same but the derivatives
∂µ are replaced by the corresponding gauge covariant derivatives and the particle
2-point functions WP± are not equal to the antiparticle 2-point functions WA±.
As in the gravitational case in the case of interaction with an EM background three
different choices for the 2-point functions exist and we refer to [704] for details.

REMARK 2.3.1 In a classical field theory the energy-momentum tensor
(EMT) of a real scalar field is

(3.23) Tµν = (∂µφ)(∂νφ)− (1/2)gµν [gαβ(∂αφ)(∂βφ)−m2φ2]

Contrary to the conventional idea of particles in QFT the EMT is a local quantity.
Therefore the relation between the definition of particles and that of EMT is not
clear in the conventional approach to QFT in curved spacetime. Here one can
exploit the local and covariant description of particles to find a clear relation
between particles and EMT. One has to choose some ordering of the operators in
(3.23) just as a choice of ordering is needed in order to define the particle current.
Although the choice is not obvious it seems natural that the choice for one quantity
should determine the choice for the other. Thus if the quantum EMT is defined
via : Tµν := N+Tµν then the particle current should be defined as N−iφ

←→
∂µφ.

The nonlocalities related to the extraction of φ+ and φ− from φ needed for the
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definitions of the normal orderings N+ and N− appear both in the EMT and in the
particle current. Similarly if W± is chosen as in W+(x, x′) =

∑
fk(x)f∗

k (x′) for
one quantity then it should be chosen in the same way for the other. The choices
as above lead to a consistent picture in which both the energy and the number of
particles vanish in the vacuum |0 > defined by ak|0 >= 0. Alternatively if W± is
chosen as in (3.15) for the definition of particles it should be chosen in the same way
for the definition of the EMT. Assume for simplicity that spacetime is flat at some
late time t. Then the normally ordered operator of the total number of particles
at t is N(t) =

∑
q A†

q(t)Aq(t) (cf. (3.16)) while the normally ordered operator of
energy is H(t) =

∑
q ωqA

†(t)Aq(t) (note here q ∼ q). Owing to the extra time
dependence it is clear that both the particle current and the EMT are not conserved
in this case. Thus it is clear that the produced energy exactly corresponds to
the produced particles. A similar analysis can be caried out for the particle-
antiparticle pair creation caused by a classical EM background. Since the energy
should be conserved this suggests that W± should not be chosen as in (3.15),
i.e. that classical backgrounds do not cause particle creation (see [702] for more
discussion). The main point in all this is that particle currents as developed above
can be written in a purely local form. The nonlocalities are hidden in the extraction
of φ± from φ. The formalism also reveals a relation between EM and particles
suggesting that it might not be consistent to use semiclassical methods to describe
particle creation; it also suggests that the vacuum energy might contribute to dark
matter that does not form structures, instead of contributing to the cosmological
constant.

3.2. BOSONIC BOHMIAN THEORY. We follow here [703] concern-
ing Bohmian particle trajectories in relativistic bosonic and fermionic QFT. First
we recall that there is no objection to a Bohmian type theory for QFT and no
contradiction to Bell’s theorems etc. (see e.g. [77, 126, 256, 326]). Without
discussing all the objections to such a theory we simply construct one following
Nikolic (cf. also [180, 453, 588] for related information). Thus consider first
particle trajectories in relativistic QM and posit a real scalar field φ(x) satisfy-
ing the Klein-Gordon equation in a Minkowski metric ηµν = diag(1,−1,−1,−1)
written as (∂2

0 − ∇2 + m2)φ = 0. Let ψ = φ+ with ψ∗ = φ− correspond
to positive and negative frequency parts of φ = φ+ + φ−. The particle cur-
rent is jµ = iψ∗←→∂µψ and N =

∫
d3xj0 is the positive definite number of parti-

cles (not the charge). This is most easily seen from the plane wave expansion
φ+(x) =

∫
d3ka(κ)exp(−ikx)/

√
(2π)32k0 since then N =

∫
d3ka†(κ)a(κ) (see

above and [702, 704] where it is shown that the particle current and the decom-
position φ = φ+ + φ− make sense even when a background gravitational field or
some other potential is present). One can write also j0 = i(φ−π+ − φ+π−) where
π = π+ + π− is the canonical momentum (cf. [471]). Alternatively φ may be
interpreted not as a field containg an arbitrary number of particles but rather as a
one particle wave function. Here we note that contrary to a field a wave function
is not an observable and so doing we normalize φ here so that N = 1. The current
jµ is conserved via ∂µjµ = 0 which implies that N =

∫
d3xj0 is also conserved,

i.e. dN/dt = 0. In the causal interpretation one postulates that the particle has
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the trajectory determined by dxµ/dτ = jµ/2mψ∗ψ. The affine parameter τ can
be eliminated by writing the trajectory equation as dx/dt = j(t,x)/j0(t,x) where
t = x0, x = (x1, x2, x3) and j = (j1, j2, j3). By writing ψ = Rexp(iS) where R, S)
are real one arrives at a Hamilton-Jacobi (HJ) form dxµ/dτ = −(1/m)∂muS and
the KG equation is equivalent to

(3.24) ∂µ(R2∂µS) = 0;
(∂µS)(∂µS)

2m
− m

2
+ Q = 0

Here Q = −(1/2m)(∂µ∂µR/R is the quantum potential. One has put here c =
� = 1 and reinserted we would have

(3.25)
(∂µS)(∂µS)

2m
− c2m

2
− �2

2m

∂µ∂µR

R
= 0

From the HJ form and (3.24) plus the identity d/dτ = (dxµ/dt)∂µ one arrives
at the equations of motion m(d2xµ/dτ2) = ∂µQ. A typical trajectory arising
from dx/dt = j/j0 could be imagined as an S shaped curve in the t − x plane
(with t horizontal) and cut with a vertical line through the middle of the S. The
velocity may be superluminal and may move backwards in time (at points where
j0 < 0). There is no paradox with backwards in time motion since it is physically
indistinguishable from a motion forwards with negative energy. One introduces a
physical number of particles via Nphys =

∫
d3x|j0|. Contrary to N =

∫
d3xj0 the

physical number of particles is not conserved. A pair of particles one with positive
and the other with negative energy may be created or annihilated; this resembles
the behavior of virtual particles in convential QFT.

Now go to relativistic QFT where in the Heisenberg picture the Hermitian
field operator φ̂(x) satisfies

(3.26) (∂2
0 −∇2 + m2)φ̂ = J(φ̂)

where J is a nonlinear function describing the interaction. In the Schrödinger
picture the time evolution is determined via the Schrödinger equation (SE) in the
form H[φ,−iδ/δφ]Ψ[φ, t] = i∂tΨ[φ, t] where Ψ is a functional with respect to φ(x)
and a function of t. A normalized solution of this can be expanded as Ψ[φ, t] =∑∞

−∞ Ψ̃n[φ, t] where the Ψ̃n are unnormalized n-particle wave functionals. Since
any (reasonable) φ(x) can be Fourier expanded one can write

(3.27) Ψ̃n[φ, t] =
∫

d3k1 · · · d3kncn(k(n), t)Ψn,k(n) [φ]

where k(n) = {k1, · · · ,kn}. These functionals in (3.27) constitute a complete
orthonormal basis which generalizes the basis of Hermite functions and they satisfy

(3.28)
∫
DφΨ∗

0[φ]φ(x1) · · ·φ(xn′)Ψn,k(n) [φ] = 0 (n �= n)

For free fields (i.e. when J = 0 in (3.26) one has

(3.29) cn(k(n), t) = cn(k(n))e−iωn(k(n))t; ωn = E0 +
n∑
1

√
k2

j + m2
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where E0 is the vacuum energy. In this case the quantities |cn(k(n), t)|2 do not
depend on time so the number of particles (corresponding to the quantized version
of N =

∫
d3xj0) is conserved. In a more general situation with interactions the

SE leads to a more complicated time depenedence of the coefficients cn and the
number of particles is not conserved. Now the n-particle wave function is

(3.30) ψn(x(n), t) =< 0|φ̂(t,x1) · · · φ̂(t,xn)|Ψ >

(the multiplication of the right side by (n!)−1/2 would lead to a normalized wave
function only if Ψ = Ψ̃n). The generalization of (3.30) to the interacting case is
not trivial because with an unstable vacuum it is not clear what is the analogue
of < 0|. Here the Schrödinger picture is more convenient where (3.30) becomes

(3.31) ψn(x(n), t) =
∫
DφΨ∗

0[φ]exp(−iφ0(t))φ(x1) · · ·φ(xn)Ψ[φ, t]

where φ0(t) = −E0t. For the interacting case one uses a different phase φ0(t)
defined via an expansion, namely

(3.32) Û(t)Ψ0[φ] = r0(t)exp(iφ0(t))Ψ0[φ] +
∞∑
1

· · ·

where r0(t) ≥ 0 and Û(t) = U(φ,−iδ/δφ, t] is the unitary time evolution operator.
One sees that even in the interacting case only the Ψ̃n part of Ψ contributes
to (3.31) so Ψ̃n can be called the n-particle wave functional. The wave function
(3.30) can also be generalized to a nonequaltime wave function ψn(x(n)) = S{xj} <

0|φ̂(x1) · · · φ̂(xn)|Ψ > (here S{xj} denotes symmetrization over all xj which is
needed because the field operators do not commute for nonequal times. For the
interacting case the nonequaltime wave function is defined as a generalization of
(3.30) with the replacements

(3.33) φ(xj) → Û†(tj)φ(xj)Û(tj); Ψ[φ, t] → Û†(t)Ψ[φ, t] = Ψ[φ];

e−iφ0(t) → e−iφ0(t1)Û(t1)

followed by symmetrization.

In the deBroglie-Bohm (dBB) interpretation the field φ(x) has a causal evo-
lution determined by

(3.34) (∂2
0 −∇2 + m2)φ(x) = J(φ(x))−

(
δQ[φ, t]
δφ(x)

)
φ(x)=φ(x)

;

Q = − 1
2|Ψ|

∫
d3x

δ2|Ψ|
δφ2(x)

where Q is the quantum potential again. However the n particles attributed to
the wave function ψn also have causal trajectories determined by a generalization
of dx/dt = j/j0 as

(3.35)
dxn,j

dt
=

(
ψ∗

n(x(n))
←→∇jψn(x(n))

ψ∗
n(x(n))

←→
∂tj

ψn(x(n))

)
t1=···=tn=t
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These n-particles have well defined trajectories even when the probability (in the
conventional interpretation of QFT) of the experimental detection is equal to zero.
In the dBB interpretation of QFT we can introduce a new causally evolving “ef-
fectivity” parameter en[φ, t] defined as

(3.36) en[φ, t] = |Ψ̃n[φ, t]|2/
∞∑
n′
|Ψ̃n′ [φ, t]|2

The evolution of this parameter is determined by the evolution of φ given via (3.34)
and by the solution Ψ =

∑
Ψ̃ of the SE. This parameter might be interpreted as

a probability that there are n particles in the system at time t if the field is equal
(but not measured!) to be φ(x) at that time. However in the dBB theory one
does not want a stochastic interpretation. Hence assume that en is an actual
property of the particles guided by the wave function ψn and call it the
effectivity of these n particles. This is a nonlocal hidden variable attributed
to the particles and it is introduced to provide a deterministic description of the
creation and destruction of particles. One postulates that the effective mass of a
particles guided by ψn is meff = enm and similarly for the energy, momentum,
charge, etc. This is achieved by postulating that the mass density is ρmass(x, t) =
m
∑∞

1 en

∑n
1 δ3(x − xn,j(t)) and similarly for other quantities. Thus if en = 0

such particles are ineffective, i.e. their effect is the same as if they didn’t exist
while if en = 1 they exist in the usual sense. However the trajectories are defined
even for the particles for which en = 0 and QFT is a theory of an infinite number
of particles although some of them may be ineffective (conventionally one would
say they are virtual). We will say more about this later.

3.3. FERMIONIC THEORY. This extraction from [701] (cf. also [325])
becomes even more technical but a sketch should be rewarding; there is more
detail and discussion in [701]. The Dirac equation in Minkowski space ηµν =
diag(1,−1,−1,−1) is iγµ∂µ −m)ψ(x) = 0 where x = (xi) = (t,x) with x ∈ R3

(cf. Section 2.1.1). A general solution can be written as ψ(x) = ψP (x) + ψA(x)
where the particle and antiparticle parts can be expanded as ψP =

∑
bkuk(x) and

ψA =
∑

d∗kvk(x). Here uk (resp. vk) are positive (resp. negative) frequency 4-
spinors that, together, form a complete orthonormal set of solutions to the Dirac
equation. The label k means (k, s) where s = ±1/2 is the spin label. Writing
ΩP (x, x′) =

∑
uk(x)u†

k(x′) and ΩA(x, x′) =
∑

vk(x)v†
k(x′) one can write

(3.37) ψP =
∫

d3x′ΩP (x, x′)ψ(x′); ψA(x) =
∫

d3x′ΩA(x, x′)ψ(x′)

where t = t′. The particle and antiparticle currents are jP
µ = ψ̄P γµψP and jA

µ =
ψ̄AγµψA where ψ̄ = ψ†γ0. Since ψP and ψA satisfy the Dirac equation the currents
jP
µ , jA

µ are separately conserved, i.e. ∂µjP
µ = ∂µjA

µ = 0. One postulates then
trajectories of the form

(3.38)
dxP

dt
=

jP (t,xP )
jP
0 (t,x)

;
dxA

dt
=

jA(t,xA)
jA
0 (t,xA)
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where j = (j1, j2, j3) for a causal interpretation of the Dirac equation. Now in
QFT the coefficients bk and d∗k become anticommuting operators with b̂†k and
d̂†k creating particles and antiparticles while b̂k and d̂k annihilate them. In the
Schrödinger picture the field opperators ψ̂(x) and ψ̂†(x) satisfy the commutation
relations {ψ̂a(x), ψ̂†

a′(x′)} = δaa′δ3(x − x′) while other commutators vanish (a is
the spinor index). These relations can be represented via

(3.39) ψ̂a(x) =
1√
2

[
ηa(x) +

δ

δη∗
a(x)

]
; ψ̂†

a(x) =
1√
2

[
η∗

a(x) +
δ

δηz(x)

]
where ηa, η∗

a are anticommuting Grassmann numbers satisfying {ηa(x), ηa′(x′)} =
{η∗

a(x), η∗
a′(x′)} = {ηa(x), η∗

a′(x′)} = 0. Next introduce a complete orthonormal
set of spinors uk(x) and vk(x) which are equal to the spinors uk(x) and vk(x) at
t = 0. An arbitrary quantum state may then be obtained by acting with creation
operators

(3.40) b†k =
∫

d3xψ̂†(x)uk(x); d̂†k =
∫

d3xv†k(x)ψ̂(x)

on the vacuum |0 >= |Ψ0 > represented by

(3.41) Ψ0[η, η†] = Nexp{
∫

d3x

∫
d3x′η†(x)Ω(x,x′)η(x′)}

Here Ω(x,x′) = (ΩA − ΩP )(x,x′), N is a constant such that < Ψ0|Ψ0 >= 1 and
the scalar product is < Ψ|Ψ >=

∫
D2ηΨ∗[η, η†Ψ′[η, η†]; also D2 = DηDη† and

Ψ∗ is dual (not simply the complex conjugate) to Ψ. The vacuum is chosen such
that b̂kΨ0 = d̂kΨ0 = 0. A functional Ψ[η, η†] can be expanded as Ψ[η, η†] =∑

cKΨK [η, η†] where the set {ψK} is a complete orthonormal set of Grassmann
valued functionals. This is chosen so that each ΨK is proportional to a functional
of the form b̂†k1

· · · b̂†knP
d̂†k′

1
· · · d̂†k′

nA

Ψ0 which means that each ΨK has a definite

number nP of particles and nA of antiparticles. Therefore one can write Ψ[η, η†] =∑∞
nP ,nA=0 Ψ̃nP ,nA

[η, η†] where the tilde denotes that these functionals, in contrast
to Ψ and ΨK , do not have unit norm. Time dependent states Ψ[η, η†, t] can be
expanded as

(3.42) Ψ[η, η†, t] =
∑
K

cK(t)ΨK [η, η†] =
∞∑

np,nA=0

Ψ̃nP ,nA
[η, η†, t]

The time dependence of the c-number coefficients cK(t) is governed by the func-
tional SE

(3.43) H[ψ̂, ψ̂†]Ψ[η, η†, t] = i∂tΨ[η, η†, t]

Since the Hamiltonian H is a Hermitian operator the norms < Ψ(t)|Ψ(t) >=∑
|cK(t)|2 do not depend on time. In particular if H is the free Hamiltonian

(i.e. the Hamiltonian that generates the second quantized free Dirac equation)
then the quantities |cK(t)| do not depend on time, which means that the average
number of particles and antiparticles does not change with time when there are
no interactions.
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Next introduce the wave function of nP particles and nA antiparticles via

(3.44) ψnP ,nA
≡ ψb1···bnP

d1···dnA
(x1, · · · ,xnP

,y1 · · · ,ynA
, t)

It has nP + nA spinor indices and for free fields the (unnormalized) wave function
can be calculated using the Heisenberg picture as

(3.45) ψnP ,nA
=< 0|ψ̂P

b1(t,x1) · · · ψ̂A†
dnA

(t,ynA
)|Ψ >

where ψ̂P and ψ̂A are extracted from ψ̂ using (3.37). In the general interacting
case the wave function can be calculated using the Schrödinger picture as

(3.46) ψnP ,nA
=
∫
D2ηΨ∗

0[η, η†]e−iφ0(t)ψ̂P
b1(x1) · · · ψ̂A†

dnA
(ynA

)Ψ[η, η†, t]

Here the phase φ0(t) is defined by an expansion as in (3.42), namely

(3.47) Û(t)Ψ0[η, η†] = r0(t)exp(iφ0(t))Ψ0[η, η†] +
∑

(nP ,nA)�=(0,0)

· · ·

where r0(t) ≥ 0 and Û(t) = U [ψ̂, ψ̂†, t] is the unitary time evolution operator that
satisfies the SE (3.43). The current attributed to the ith corpuscle (particle or
antiparticle) in the wave function ψnP ,nA

is jµ(i) = ψ̄nP ,nA
γµ(i)ψnP ,nA

where one
writes

(3.48) ψ̄Γiψ = ψ̄a1···ai···an
(Γ)aia′

i
ψa1···a′

i···an
;

ψ̄a1···an
= ψ∗

a′
1···a′

n
(γ0)a′

1a1 · · · (γ0)a′
nan

Hence the trajectory of the ith corpuscle guided by the wave function ψnP ,nA
is

given by the generalization of (3.38), namely dxi/dt = ji/j0(i).

We now need a causal interpretation of the processes of creation and destruc-
tion of particles and antiparticles. For bosonic fields this was achieved by intro-
ducing the effectivity parameter in Section 1.3.2 but this cannot be done for the
Grassmann fields η, η† because Ψ∗[η, η†, t]Ψ[η, η†, t] is Grassmann valued and can-
not be interpreted as a probability density. Hence another formulation of fermionic
states is developed here, more similar to the bosonic states. First the notion of the
scalar product can be generalized in such a way that it may be Grassmann valued
which allows one to write Ψ[η, η†, t] =< η, η†|Ψ(t) > and 1 =

∫
D2η|η, η† >< η, η†|

(cf. [457]). We can also introduce

(3.49) < φ, φ†|η, η† >=
∑
K

< φ, φ†|ΨK >< ΨK |η, η† >=
∑
K

ΨK [φ, φ†]Ψ∗
K [η, η†]

so one sees that the sets {ΨK [η, η†]} and {ΨK [φ, φ†]} are two representations of the
same orthonormal basis {|ΨK >} for the same Hilbert space of fermionic states.
In other words the state |Ψ(t) > can be represented as Ψ[φ, φ†, t] =< φ, φ†|Ψ(t) >
which can be expanded as

(3.50) Ψ[φ, φ†, t] =
∑
K

cK(t)ΨK [φ, φ†] =
∞∑

nP ,nA=0

ψ̃nP ,nA
[φ, φ†, t]
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Putting the unit operator 1 =
∫
D2φ|φ, φ† >< φ, φ†| in the expression for <

Ψ(t),Ψ(t) > we see that the time independent norm can be written as

(3.51) < Ψ(t)|Ψ(t) >=
∫
D2φΨ∗[φ, φ†, t)]Ψ[φ, φ†, t]

Therefore the quantity ρ[φ, φ†, t] = Ψ∗[φ, φ†, t]Ψ[φ, φ†, t] can be interpreted as a
positive definite probability density for spinors φ, φ† to have space dependence
φ(x) and φ†(x) respectively at time t. The SE (3.43) can also be written in the
φ-representation as ĤφΨ[φ, φ†, t] = i∂tΨ[φ, φ†, t] where the Hamiltonian Ĥφ is
defined by its action on wave functionals Ψ[φ, φ†, t] determined via
(3.52)

Ĥφ[φ, φ†, t] =
∫
D2η

∫
D2φ′ < φ, φ†|η, η† > Ĥ < η, η†|φ′, φ

′† > Ψ[φ′, φ
′†, t]

where Ĥ = H[ψ̂, ψ̂†] is the Hamiltonian of (3.43).

One can now obtain a causal interpretation of a quantum system described
by a c-number valued wave function satisfying a SE. The material is written for
an n-dimensional vector �φ but in a form that generalizes to infinite dimensions.
The wave function ψ(�φ, t) satisfies the SE Ĥψ = i∂tψ where Ĥ is an arbitrary
Hermitian Hamiltonian written in the �φ representation. The quantity ρ = ψ∗ψ is
the probability density for the variables �φ and the average velocity is

(3.53) d < �φ > (t)/dt =
∫

dnφρ(�φ, t)�u(�φ, t); �u = iψ∗[Ĥ, �φ]ψ/ψ∗ψ

Introduce a source J via J = (∂ρ/∂t)+�∇(ρ�u) (note e.g. for the example of (3.52) J
does not vanish even though it frequently will vanish). One wants to find a quantity
�v(�φ, t) that has the property (3.53) in the form d < �φ > (t)/dt =

∫
dnφρ(�φ, t)�v(�φ, t)

but at the same time satisfies the equivariance property ∂tρ+�∇(ρ�v) = 0. These two
properties allow one to postulate a consistent causal interpretation of QM in which
�φ has definite values at each time t determined via d�φ/dt = �v(�φ, t). In particular
the equivariance provides that the statistical distribution of the variables �φ is given
by ρ for any time t provided that it is given by ρ for some initial time t0. When
J = 0 then �v = �u which corresponds to the dBB interpretation. The aim now is to
generalize this to the general case of �v in the form �v = �u+ρ−1�E where �E(�φ, t) is the
quantity to be determined. From ∂tρ+ �∇(ρ�v) = 0 we see that �E must be a solution
of the equation �∇�E = −J . Now let �E be some particular solution of this equation;
then �E(�φ, t) = �e(t) + �E(�φ, t) is also a solution for an arbitrary �φ independent
function �e(t). Comparing with (3.53) one sees that

∫
dnφ�E = 0 is required. This

fixes the function �e to be �e(t) = −V −1
∫

dnφ�E(�φ, t) where V =
∫

dnφ. Thus it
remains to choose �E and in [703] one takes �E such that �E = 0 when J = 0
so that �E = 0 when J = 0 as well; thus �v = �u when J = 0. There is still
some arbitrariness in �E so take �E = �∇Φ where �∇2Φ = −J , which is solved via
Φ(�φ, t)

∫
dnφ′G(�φ, �φ′)J(�φ′, t), so that �∇2G(�φ, �φ′) = −δn(�φ− �φ′). The solution can

be expressed as a Fourier transform G(�φ, �φ′) =
∫

(dnk/(2π)n)exp[i�k(�φ − �φ′)]/�k2.
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To eleminate the factor 1/(2π)n one uses a new integration variable �χ = �k/2π and
we obtain

(3.54) Φ(�φ, t) =
∫

dnχ

∫
dnφ′[exp(2iπ�χ(�φ− �φ′)]J(�φ′, t)/(2π)2�χ2]

Now for a causal interpretation of fermionic QFT one writes first for simplicity
A[x] for functionals of the form A[φ, φ†, t,x] and introduces

(3.55) ua[x] = i
Ψ∗[Ĥφ, φa(x)]Ψ

Ψ∗Ψ
; u∗

a[x] = i
Ψ∗[Ĥφ, φ∗

a(x)]Ψ
Ψ∗Ψ

where Ψ = Ψ[φ, φ†, t]. Next introduce the source

(3.56) J =
∂ρ

∂t
+
∑

a

∫
d3x

[
δ(ρua[x])
δφz(x)

+
δ(ρu∗

a[x])
δφ∗

a(x)

]
where ρ = Ψ∗Ψ. Introduce now the notation α · β =

∑
a

∫
d3x[αa(x)βa(x) +

α∗
a(x)β∗

a(x)] and (3.51) generalizes to

(3.57) Φ[φ, φ†, t] =
∫
D2χ

∫
D2φ′ e

2πiχ·(φ−φ′)

(2π)2χ · χ J [φ′, φ
′†, t]

Then write for V =
∫
D2φ

(3.58) Ea[x] =
δΦ

δφa(x)
; E∗

a [x] =
δΦ

δφ∗
a(x)

;

ea(t,x) = −V −1

∫
D2φEa[φ, φ†, t,x]; e∗a(t,x) = −V −1

∫
D2φE∗

a[φ, φ†, t,x]

The corresponding velocities are then

(3.59)
va[x] = ua[x] + ρ−1(ea(t,x) + Ea[x]); v∗

a[x] = u∗
a[x] + ρ−1(e∗a(t,x) + E∗

a [x])

Next introduce hidden variables φ(t,x) and φ†(t,x) with causal evolution given
then by

(3.60)
∂φa(t,x)

∂t
= va[φ, φ†, t,x];

∂φ∗
a(t,x)
∂t

= v∗
a[φ, φ†, t,x]

where it is understood that the right sides are calculated at φ(x) = φ(t,x) etc. In
analogy with the bosonic fields treated earlier one introduces effectivity parameters
guided by the wave function ψnP ,nA

given by

(3.61) enP ,nA
[φ, φ†, t] =

|Ψ̃nP ,nA
[φ, φ†, t]|2∑

n′
P ,n′

A
|Ψ̃n′

P ,n′
A
[φ, φ†, t]|2

REMARK 2.3.2. Concerning the nature of the effectivity parameter we
extract from [701] as follows. In the bosonic theory the analogue of (3.61) is

(3.62) en[{φ}, t] =
|Ψ̃n[{φ}], t|2∑
n′ |Ψ̃n′ [{φ}], t|2

{φ} = {φ1, · · · , φNs
} where Ns is the number of different particle species. Now

the measured effectivity can be any number between 0 and 1 and this is no con-
tradiction since if different Ψ̃n in the expansion do not overlap in the φ space
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then they represent a set of nonoverlapping “channels” for the causally evolving
field φ. The field necessarily enters one and only one of the channels and one sees
that en = 1 for the nonempty channel with en′ = 0 for all empty channels. The
effect is the same as if the wave functional Ψ “collapsed” into one of the states
ψ̃n with a definite number of particles. In a more general situation different Ψ̃n of
the measured particles may overlap. However the general theory of ideal quantum
measurements (cf. [126]) provides that the total wave functional can be written
again as a sum of nonoverlappiing wave functionals in the {φ} space, where one
of the fields represents the measured field, while the others represent fields of the
measuring apparatus. Thus only one of the Ψ̃ in (3.62) becomes nonempty with
the corresponding en = 1 while all the other en′ = 0. The essential point is that
from the point of view of an observer who does not know the actual field configura-
tion the probability for such an effective collapse of the wave functional is exactly
equal to the usual quantum mechanical probability for such a collapse. Hence the
theory has the same statistical properties as the usual theory. In the case when
all the effectivities are less than 1 (i.e. the wave functional has not collapsed) the
theory does not agree nor disagree with standard theory; effectivity is a hidden
variable. This agrees with the Bohmian particle positions which agree with the
standard quantum theory only when the wave function effectively collapses into a
state with a definite particle position. Similar comments apply to the fermionic
picture. In an ideal experiment in which the number of particles is measured, dif-
ferent ΨnP ,nA

do not overlap in the (φ, φ†) space and the fields φ, φ† necessarily
enter into a unique “channel” Ψ̃nP ,nA

, etc.

REMARK 2.3.3. In [711] one addresses the question of statistical trans-
parency. Thus the probabilitistic interpretation of the nonrelativistic SE does not
work for the relativistic KG equation (∂µ∂µ + m2)ψ = 0 (where x = (x, t) and
� = c = 1) since |ψ|2 does not correspond to a probability density. There is a
conserved current jµ = iψ∗←→∂µψ (where a

←→
∂µb = a∂µb− b∂µa) but the time com-

ponent j0 is not positive definite. In [701, 703] the equations that determine the
Bohmain trajectories of relativistic quantum particles described by many particle
wave functions were written in a form requiring a preferred time coordinate. How-
ever a preferred Lorentz frame is not necessare (cf. [105]) and this is developed
in [711] following [105, 703]. First note that as in [105, 703] it appears that
particles may be superluminal and the principle of Lorentz covariance does not
forbid superluminal velocities and conversly superluminal velocities do not lead
to causal paradoxes (cf. [105, 711]). As noted in [105] the Lorentz-covariant
Bohmian interprtation of the many particle KG equation is not statistically trans-
parent. This means that the statistical distribution of particle positions cannot be
calculated in a simple way from the wave function alone without the knowledge
of particle trajetories. One knows that classcal QM is statistically transparent of
course and this perhaps helps to explain why Bohmian mechanics has not attracted
more attention. However statistical transparency (ST) may not be a fundamental
property of nature as the following facts suggest:

• Classical mechanics, relativistic or nonrelativistic, is not ST.
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• Relativistic QM based on the KG equation (or some of its generalizations)
is not ST.

• The relativistic Dirac equation is ST but its many particle relativistic
generalization is not (unless a preferred time coordinate is determined in
an as yet unknown dynamical manner).

• Nonrelativistic QM is ST but not completely so since it distinguishes the
time variable (e.g. ρ(x1, x2, t) is not a probability density).

• The background independent quantum gravity based on the Wheeler-
DeWitt (WDW) equation lacks the notion of time and is not ST.

The upshot is that since statistical probabilities can be calculated via Bohmian
trajectories that theory is more powerful than other interpretations of general QM
(see [711] for discussion on this). Now let φ̂(x) be a scalar field operator satisfying
the KG equation (an Hermitian uncharged field for simplicity so that negative
values of the time component of the current cannot be interpreted as negatively
charged particles). The corresponding n-particle wave function is (cf. [703])

(3.63) ψ(x1, · · · , xn) = (n!)−1/2S{xa} < 0|φ̂(x1) · · · φ̂(xn)|n >

Here S{xa} (a = 1, · · · , n) denotes the symmetrization over all xa which is needed
because the field operators do not commute for nonequal times. The wave function
ψ satisfies n KG equations

(3.64) (∂µ
a ∂aµ + m2)ψ(x1, · · · , xn) = 0

Although the operator φ̂ is Hermitian the nondiagonal matrix element ψ defined
by (3.63) is complex and one can introduce n real 4-currrents jµ

a = iψ∗←→∂µ
aψ each

of which is separately conserved via ∂µ
a jaµ = 0. Equation (3.64) also implies

(3.65)

(∑
a

∂µ
a ∂aµ + nm2

)
ψ(x1, · · · , xn) = 0

and the separate conservation equations imply that
∑

a ∂µ
a jaµ = 0. Now write

ψ = Rexp(iS) with R and S real. Then (3.65) is equivalent to a set of two
equations
(3.66)∑

a

∂µ
a (2∂aµS) = 0; −

∑
a(∂µ

a S)(∂aµS)
2m

+
nm

2
+ Q = 0; Q =

1
2m

∑
a ∂µ

a ∂aµR

2mR

where Q is the quantum potential. The first equation is equivalent to a current
conservation equation while the second is the quantum analogue of the relativistic
HJ equation for n particles. The Bohmian interpretation consistists in postulat-
ing the existence of particle trajectories xµ

a(s) satisfying dxµ
a/ds = −(1/m)∂µ

a s
where s is an affine parameter along the n curves in the 4-dimensional Minkowski
space. This equation has a form identical to the corresponding classical rela-
tivistic equation and can also be written as dxµ

a/ds = jµ
a /2mψ∗ψ. Hence using

d/ds =
∑

a(dxµ
z /ds)∂aµ one finds the equations of motion

(3.67) m
d2xµ

a

ds2
= ∂µ

a Q
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Note that the equations above for the particle trajectories are nonlocal but still
Lorentz covariant. The Lorentz covariance is a consequence of the fact that the
trajectories in spacetime do not depend on the choice of affine parameter s (cf.
[105]). Instead, by choosing n “initial” spacetime positions xa, the n trajectories
are uniquely determined by the vector fields jµ

a or −∂µ
a S (i.e. the trajectories are

integral curves of these vector fields). The nonlocality is encoded in the fact that
the right hand side of (3.67) depends not only on xa but also on all the other
xa′ . This is a consequence of the fact that Q(x1, · · · , xn) in (3.66) is not of the
form

∑
a Qa(x1, · · · , xn), which in turn is related to the fact that S(x1, · · · , xn)

is not of the form
∑

a S(xa). Note also that the fact that we parametrize all
trajectories with the same parameter s is not directly related to the nonlocality,
because such a parametrization can be used even in local classical physics. When
the interactions are local then one can even use another parameter sa for each
curve but when the interactions are not local one must use a single parameter s;
new separate parameters could only be used after the equations are solved. In the
nonrelativistic limit all wave function frequencies are (approximately) equal to m so
from jµ

a ψ∗←→∂µ
aψ all time components are equal and given by j0

a = 2mψ∗ψ = ρ̃ which
does not depend on a. Writing then ρ(x1, · · · ,xn) = ρ̃(x1, · · · , xn)|t1=···=tn=t

one obtains ∂tρ +
∑

a ∂i
ajai = 0 and this implies that ρ can be interpreted as a

probability density. In the full relativistic there is generally no analogue of such a
function ρ. We refer to [711] for more discussion.

4. DeDONDER, WEYL, AND BOHM

We go here to a fascinating paper [708] which gives a manifestly covariant
canonical method of field quantization based on the classical DeDonder-Weyl (DW)
formulation of field theory (cf. also Appendix A for some background on DW
theory following [586]). The Bohmian formulation is not postulated for intepre-
tational purposes here but derived from purely technical requirements, namely
covariance and consistency with standard QM. It arises automatically as a part of
the formalism without which the theory cannot be formulated consistently. This
together with the results of [701, 711] suggest that it is Bohmian mechanics that
might be the missing bridge between QM and relativity; further (as will be seen
later) it should play an important role in cosmology. The classical covariant canon-
ical DeDonder-Weyl formalism is given first following [586] and for simplicity one
real scalar field in Minkowski spacetime is used. Thus let φ(x) be a real scalar
field described by

(4.1) A =
∫

d4xL; L =
1
2
(∂µφ)(∂µφ)− V (φ)

As usual one has

(4.2) πµ =
∂L

∂(∂µφ)
= ∂µφ; ∂µφ =

∂H

∂πµ
; ∂µπµ = −∂H

∂φ

where the scalar DeDonder-Weyl (DDW) Hamilonian (not related to the energy
density) is given by the Legendre transform H(πµ, φ) = πµ∂µφ−L = (1/2)πµπµ +
V . The equations (4.2) are equivalent to the standard Euler-Lagrange (EL) equa-
tions and by introducing the local vector Sµ(φ(x), x) the dynamics can also be

4. WEYL, AND BOHMD DONDER,e
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described by the covariant DDW HJ equation and equations of motion

(4.3) H

(
∂Sα

∂φ
, φ

)
+ ∂µSµ = 0; ∂µφ = πµ =

∂Sµ

∂φ

Note here ∂µ is the partial derivative acting only on the second argument of
Sµ(φ(x), x); the corresonding total derivative is dµ = ∂µ + (∂µφ)(∂/∂φ). Note
that the first equation in (4.3) is a single equation for four quantities Sµ so there
is a lot of freedom in finding solutions. Nevertheless the theory is equivalent to
other formulations of classical field theory. Now following [533] one considers the
relation between the covariant HJ equation and the conventional HJ equation; the
latter can be derived from the former as follows. Using (4.2), (4.3) takes the form
(1/2)∂φSµ∂φSµ +V +∂µSµ = 0. Then using the equation of motion in (4.3) write
the first term as

(4.4)
1
2

∂Sµ

∂φ

∂Sµ

∂φ
=

1
2

∂S0

∂φ

∂S0

∂φ
+

1
2
(∂iφ)(∂iφ)

Similarly using (4.3) the last term is ∂µSµ = ∂0S
0 +diS

i− (∂iφ)(∂iφ). Now intro-
duce the quantity S =

∫
d3xS0 so [∂S0(φ(x), x)/∂φ(x)] = [δS([φ(x, t)], t)/δφ(x, t)]

where δ/δφ(x, t) ≡ [δ/δφ(x)]φ(x)=φ(x,t) is the space functional derivative. Putting
this together gives then

(4.5)
∫

d3x

[
1
2

(
δS

δφ(x, t)

)2

+
1
2
(∇φ)2 + V (φ)

]
+ ∂tS = 0

which is the standard noncovariant HJ equation. The time evolution of φ(x, t) is
given by ∂tφ(x, t) = δS/δφ(x, t) which arises from the time component of (4.3).
Note that in deriving (4.5) it was necessary to use the space part of the equations
of motion (4.3) (this does not play an important role in classical physics but is
important here). Now for the Bohmian formulation look at the SE ĤΨ = i�∂tΨ
where we write

(4.6) Ĥ =
∫

d3x

[
−�2

2

(
δ

δφ(x)

)2

+
1
2
(∇φ)2 + V (φ)

]
;

Ψ([φ(x)], t) = R([φ(x)], t)eiS(([φ(x)],t)/�

Then the complex SE equation is equivalent to two real equations

(4.7)
∫

d3x

[
1
2

(
δS

δφ(x)

)2

+
1
2
(∇φ)2 + V (φ) + Q

]
+ ∂tS = 0;

∫
d3x

[
δR

δφ(x)
δS

δφ(x)
+ J

]
+ ∂tR = 0; Q = − �2

2R

δ2R

δφ2(x)
; J =

R

2
δ2S

δφ2(x)
The second equation is also equivalent to

(4.8) ∂tR
2 +

∫
d3x

δ

δφ(x)

(
R

2 δS

δφ(x)

)
= 0

and this exhibits the unitarity of the theory because it provides that the norm∫
[dφ(x)]2Ψ∗Ψ =

∫
[dφ(x)]R2 does not depend on time. The quantity R2([φ(x)], t)

represents the probability density for fields to have the configuration φ(x) at time t.
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One can take (4.7) as the starting point for quantization of fields (note exp(iS/�)
should be single valued). Equations (4.7) and (4.8) suggest a Bohmian interpre-
tation with deterministic time evolution given via ∂tφ. Remarkably the statisti-
cal predictions of this deterministic interpretation are equivalent to those of the
conventional interpretation. All quantum uncertainties are a consequence of the
ignorance of the actual initial field configuration φ(x, t0). The main reason for the
consistency of this interpretation is the fact that (4.8) with ∂tφ as above represents

of field configurations φ(x) is given by the quantum distribution ρ = R2 at any
time t, provided that ρ is given by R2 at some initial time. The initial distribu-
tion is arbitrary in principle but a quantum H theorem explains why the quantum
distribution is the most probable (cf. [954]). Comparing (4.7) with (4.5) we see
that the quantum field satisfies an equation similar to the classical one, with the
addition of a term resulting from the nonlocal quantum potential Q. The quantum
equation of motion then turns out to be

(4.9) ∂µ∂µφ +
∂V (φ)

∂φ
+

δQ

δφ(x; t)
= 0

where Q =
∫

d3xQ. A priori perhaps the main unattractive feature of the Bohmian
formulation appears to be the lack of covariance, i.e. a preferred Lorentz frame is
needed and this can be remedied with the DDW presentation to follow.

Thus one wants a quantum substitute for the classical covariant DDW HJ
equation (1/2)∂φSµ∂φSµ + V + ∂µSµ = 0. Define then the derivative

(4.10)
dA([φ], x)

dφ(x)
=
∫

d4x′ δA([φ], x′)
δφ(x)

where δ/δφ(x) is the spacetime functional derivative (not the space functional
derivative used before in (4.5)). In particular if A([φ], x) is a local functional, i.e.
if A([φ], x) = A(φ(x), x) then

(4.11)
dA(φ(x), x)

dφ(x)
=
∫

d4x′ δA(φ(x′), x′)
δφ(x)

=
∂A(φ(x), x)

∂φ(x)

Thus d/dφ is a generalization of ∂/∂φ such that its action on nonlocal functionals
is also well defined. An example of interest is a functional nonlocal in space but
local in time so that

(4.12)
δA([φ], x′)

δφ(x)
=

δA([φ], x′)
δφ(x), x0)

δ((x′)0 − x0) ⇒

⇒ dA([φ], x)
dφ(x)

=
δ

δφ(x, x0)

∫
d3x′A([φ],x′, x0)

Now the first equation in (4.3) and the equations of motion become

(4.13)
1
2

dSµ

dφ

dSµ

dφ
+ V + ∂µSµ = 0; ∂µφ =

dSµ

dφ

which is appropriate for the quantum modification. Next one proposes a method of
quantization that combines the classical covariant canonical DDW formalism with
the standard specetime asymmetric canonical quantization of fields. The starting

the continuity equation which provides that the statistical distribution ρ([φ(x)], t)

D DONDER,e
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point is the relation between the noncovariant classical HJ equation (4.5) and its
quantum analogue (4.7). Suppressing the time dependence of the field in (4.5) we
see that they differ only in the existence of the Q term in the quantum case. This
suggests the following quantum analogue of the classical covariant equation (4.13)

(4.14)
1
2

dSµ

dφ

dSµ

dφ
+ V + Q + ∂µSµ = 0

Here Sµ = Sµ([φ], x) is a functional of φ(x) so Sµ at x may depend on the field
φ(x′) at all points x′. One can also allow for time nonlocalities (cf. [711]). Thus
(4.15) is manifestly covariant provided that Q given by (4.7) can be written in a
covariant form. The quantum equation (4.14) must be consistent with the conven-
tional quantum equation (4.7); indeed by using a similar procedure to that used
in showing that (4.3) implies (4.5) one can show that (4.14) implies (4.7) provided
that some additional conditions are fulfilled. First S0 must be local in time so that
(4.12) can be used. Second Si must be completely local so that dSi/dφ = ∂Si/∂φ,
which implies

(4.15) diS
i = ∂iS

i + (∂iφ)
dSi

dφ

However just as in the classical case in this procedure it is necessary to use the
space part of the equations of motion (4.3). Therefore these classical equations of
motion must be valid even in the quantum case. Since we want a covariant theory
in which space and time play equal roles the validity of the space part of the (4.3)
implies that its time part should also be valid. Consequently in the covariant
quantum theory based on the DDW formalism one must require the validity of
the second equation in (4.13). This requirement is nothing but a covariant version
of the Bohmian equation of motion written for an arbitrarily nonlocal Sµ (this
clarifies and generalizes results in [533]). The next step is to find a covariant
substitute for the second equation in (4.7). One introduces a vector Rµ([φ], x)
which will generate a preferred foliation of spacetime such that the vector Rµ is
normal to the leaves of the foliation. Then define

(4.16) R([φ],Σ) =
∫

Σ

dΣµRµ; S([φ], x) =
∫

Σ

dΣµSµ

where Σ is a leaf (a 3-dimensional hypersurface) generated by Rµ. Hence the
covariant version of Ψ = Rexp(iS) is Ψ([φ],Σ) = R([φ],Σ)exp(iS([φ],Σ)/�). For
Rµ one postulates the equation

(4.17)
dRµ

dφ

dSµ

dφ
+ J + ∂µRµ = 0

In this way a preferred foliation emerges dynamically as a foliation generated by
the solution Rµ of the equations (4.17) and (4.14). Note that Rµ does not play any
role in classical physics so the existence of a preferred foliation is a purely quantum
effect. Now the relation between (4.17) and (4.7) is obtained by assuming that
nature has chosen a solution of the form Rµ = (R0, 0, 0, 0) where R0 is local in
time. Then integrating (4.17) over d3x and assuming again that S0 is local in time
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one obtains (4.7). Thus (4.17) is a covariant substitute for the second equation in
(4.7). It remains to write covariant versions for Q and J and these are

(4.18) Q = − �2

2R

δ2R

δΣφ2(x)
; J =

R

2
δ2S

δΣφ2(x)

where δ/δΣφ(x) is a version of the space functional derivative in which Σ is gen-
erated by Rµ. Thus (4.17) and (4.14) with (4.18) represent a covariant substitute
for the functional SE equivalent to (4.8). The covariant Bohmain equations (4.13)
imply a covariant version of (4.9), namely

(4.19) ∂µ∂µφ +
∂V

∂φ
+

dQ

dφ
= 0

Since the last term can also be written as δ(
∫

d4xQ)/δφ(x) the equation of motion
(4.19) can be obtained by varying the quantum action

(4.20) AQ =
∫

d4xLQ =
∫

d4x(L−Q)

Thus in summary the covariant canonical quantization of fields is given by equa-
tions (4.13), (4.14), (4.17), and (4.18). The conventional functional SE corresponds
to a special class of solutions for which Ri = 0, Si are local, while R0 and S0 are
local in time. In [708] a multifield generalization is also spelled out, a toy model
is considered, and applications to quantum gravity are treated. The main result
is that a manifestly covariant method of field quantization based on the DDW
formalism is developed which treats space and time on an equal footing. Un-
like the conventional canonical quantization it is not formulated in terms of a
single complex SE but in terms of two coupled real equations. The need for a
Bohmian formulation emerges from the requirement that the covariant method
should be consistent with the conventional noncovariant method. This suggests
that Bohmian mechanics (BM) might be a part of the formalism without which
the covariant quantum theory cannot be formulated consistently.

5. QFT AND STOCHASTIC JUMPS

The most extensive treatment of Bohmian theory is due to a group based in
Germany, Italy, and the USA consisting of V. Allori, A. Barut, K. Berndl, M.
Daumer, D. Dürr, H. Georgi, S. Goldstein, J. Lebowitz, S. Teufel, R. Tumulka,
and N. Zanghi (cf. [1, 26, 88, 102, 103, 104, 105, 288, 324, 325, 326, 327,
328, 329, 330, 414, 415, 437, 417, 418, 415, 416, 417, 418, 419, 927, 928,
948]). There is also of course the pioneering work of deBroglie and Bohm (see
e.g. [154, 126, 127, 128, 129, 154]) as well as important work of many other
people (cf. [68, 94, 95, 110, 138, 148, 164, 165, 166, 186, 187, 188, 189,
191, 197, 198, 236, 277, 295, 298, 305, 306, 346, 347, 373, 374, 375, 438,
472, 471, 474, 478, 479, 480, 873, 905, 953, 961]). We make no attempt
to survey the philosophy of Bohmian mechanics (BM), or better deBroglie-Bohm
theory (dBB theory), here. This involves many issues, some of them delicate,
which are discussed at length in the references cited. The book [111] by Holland
provides a good beginning and in view of recent work perhaps another book on
this subject alone would be welcome. There is a lot of associated “philosophy”,
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involving hidden variables, nonlocality, EPR ideas, wave function collapse, pilot
waves, implicate order, measurement problems, decoherence, etc., much of which
has been resolved or might well be forgotten. Many matters are indeed clarified
already in the literature above (cf. in particular [94, 95, 330, 415, 471]) and we
will not belabor philosophical matters. It may well be that a completely unified
mathematical theory is beyond reach at the moment but thre are already quite
accurate and workable models available and the philosophy of dBB theory as
developed by the American-German-Italian school mentioned is quite sophisticated
and convincing.

Basically, following [415], for the nonrelativistic theory, GM for N particles is
determined by the two equations

(5.1) i�ψt = Hψ;
dqk

dt
=

�

2mk
�
[
ψ∗∂kψ

ψ∗ψ

]
The latter equation is called the guidance or pilot equation which choreographs
the motion of the particles. If ψ is spinor valued the products in the numerator
and denominator are scalar products and if external magnetic fields are present
the gradient ∇ ∼ (∂k) should be understood as the covariant derivative involving
the vector potential (thus accomodating some versions of field theory - more on
this later). Since the denominator vanishes at nodes of ψ existence and uniqueness
of solutions for Bohmian dynamics is nontrivial but this is proved in [104, 106].
This formula extends to spin and the right side corresponds to J/ρ which is the
ratio of the quantum probability current to the quantum probability density. Fur-
ther from the quantum continuity condition ∂tρ + div(J) = 0 (derivable from the
SE) it follows that if the configuration of particles is random at the initial time t0
with probability distribution ψ∗ψ then this remains true for all times (assuming
no interaction with the environment). Upon setting ψ = Rexp(iS/�) one identi-
fies pk = mkvk with ∂kS (which is equivalent to the guiding equation for particles
without spin) and this corresponds to particles being acted upon by the force ∂kQ
generated by the quantum potential (in addition to any “classical” forces).

REMARK 2.5.1. Recall from Section 2.3.2 that in the BFM theory of
Bohmian type q̇ = p/mQ �= p/m where mQ = m(1−∂EQ) in stationary situations
with energy E. Here one is using a Floydian time and there has been a great deal
of discussion, involving e.g. tunneling times (see e.g. [138, 139, 140, 191, 194,
197, 198, 305, 306, 307, 296, 309, 347, 373, 374, 375, 376, 520]). We do
not attempt to resolve any issues here and refer to the references for up to date
information.

In any event we proceed with BM or dBB theory in full confidence not only
that it works but that it is probably the best way to look at QM. We regard
the quantum potential Q as being a quantization vehicle which expresses the in-
fluence of quantum fluctuations (cf. Chapters 1,4,5); it also arises in describing
Weyl curvature (cf. Chapters 4,5) and thus we regard it as perhaps the funda-
mental object of QM. Returning now to [415] one notes that the predictions of
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BM for measurements must agree with those of standard QM provided configura-
tions are random with distributions given by the quantum equilibrium distribution
|ψ|2. Then a probability distribution ρψ depending on ψ is called equivariant if
(ρψ)t = ρψt where the right side comes from the SE and the left from the guiding
equation (since ρt + div(J) = 0 with v = J/ρ arises in (5.1)). This has been
studied in detail and we summarize some results below. Further BM can han-
dle spin via (5.1) (as mentioned above) and nonlocality is no problem; however
Lorentz invariance, even for standard QM, is tricky and one views it as an emer-
gent symmetry. Further QFT with particle creation and annihilation is a current
topic of research (cf. Sections 2.3 and 2.4) and some additional remarks in this
direction will follow. The papers [324, 325] are mainly about quantum equi-
librium, absolute uncertainty, and the nature of operators. There are two long
papers here (75 and 77 pages) and an earlier paper of 35 pages so we make no
attempt to cover this here. We mention briefly some results of the two more re-
cent papers however. Thus from the abstract to the second paper of [324] the
quantum formalism is treated as a measurement formalism, i.e. a phenomenolog-
ical formalism describing certain macroscopic regularities. One argues that it can
be regarded and best be understood as arising from Bohmian mechanics, which
is what emerges from the SE for a system of particles when one merely insists
that “particles’ means particles. BM is a fully deterministic theory of particles in
motion, a motion choreographed by the wave function. One finds that a Bohmian
universe, although deterministic, evolves in such a manner that an appearance of
randomness emerges, precisely as described by the quantum formalism and given
by ρ = |ψ|2. A crucial ingredient in the analysis of the origin of this randomness
is the notion of the effective wave function of a subsystem. When the quantum
formalism is regarded as arising in this way the paradoxes and perplexities so often
associated with (nonrelativistic) quantum theory evaporate. A fundamental fact
here is that given a SE i�ψt = −(�2/2)

∑
(∆kψ/mk)+V ψ one can derive a velocity

formula vψ
k = (�/mk)�(∇kψ/ψ) by general arguments based on symmetry consid-

erations and this yields (5.1) without any recourse to a formula ψ = Rexp(iS/�).
Further the continuity equation ρt + div(ρvψ) = 0 holds and this implies the
equivariance ρ(q, t) = |ψ(q, t)|2 provided this is true at (t0, q0). The distribution
ρ = |ψ|2 is called the quantum equilibrium distribution (QELD) and a system is
in quantum equilibrium when the QELD is appropriate for its description. The
quantum equilibrium hypothesis (QEH) is that if a system has wave function ψ
then ρ = |ψ|2. It is necessary to discuss wave functions of systems and subsystems
at some length and it is argued that in a universe governed by BM it is impossible
to know more about the configuration of any subsystem than what is expressed
via ρ = |ψ|2 (despite the fact that for BM the actual configuration is an objective
property, beyond the wave function). Moreover, this uncertainty, of an absolute
and precise character, emerges with complete ease, the structure of BM being such
that it allows for the formulation and clean demonstration of statistical statements
of a purely objective character which nontheless imply the claims concerning the
irreducible limitations on possible knowledge, whatever this knowledge may pre-
cisely mean and however one might attempt to obtain this knowledge, provided it
is consistent with BM. This limitation on what can be known is called absolute
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uncertainty. One proceeds by analysis of systems and subsystems and we refer to
[324] for details. In [325] one shows how the entire quantum formalism, operators
as observables, etc. naturally emerges in BM from the analysis of measurments.
It is however quite technical, with considerable important and delicate reasoning,
and we cannot possibly deal with it in a reasonable number of pages.

We go to [326] now where a comprehensive theory is developed for Bohmian
mechanics and QFT (cf. also [330]). Bohm and subsequently Bell had proposed
such models and the latter is model is modified and expanded in [326, 330] in
the context of what are called Bell models. One will treat the configuration space
variables in terms of Markov processes with jumps (which is reminiscent of the
diffusion picture in [673, 674] (cf. also [186]). Roughly one thinks of world lines
involving particle creation and annihilation, hence jumps, and writes Q = ∪∞

0 Qn

where, taking identical particles, the sector Qn is best defined as R3n/Sn where
S ∼ permutations. For several particle species one forms several copies of Q, one
for each species, and obtains a union of sectors Q(n) where now n ∼ (n1, . . . , nk) for
the k species of particles. Note that a path Q(t) will typically have discontinuities,
even if there is nothing discontinuous in the world line pattern, because it jumps
to a different sector at every creation or annihilation event. One can think of the
bosonic Fock space as a space of L2 functions on ∪nR3n/Sn with the fermionic
Fock space being L2 functions on ∪nR3n, antisymmetric under permutation. A
Bell type QFT specifies such world line patterns or histories in configuration space
by specifying three sorts of “laws of motion”: when to jump, where to jump, and
how to move between jumps. One consequence of these laws (to be enumerated)
is the property of preservation of |Ψ0|2 at time t0 to be equal to |Ψt|2 at time
t; this is called equivariance (see above and cf. [325, 327] for more detail on
equivariance for Bohmian mechanics - the same sort of reasoning will apply here).
One will use the quantum state vector Ψ to determine the laws of motion and
here a state described by the pair (Ψt, Qt) where Ψ evolves according to the SE
i�∂tΨt = HΨ. Typically H = H0 + HI and it is important to note that although
there is an aactual particle number N(t) = #Q(t) or Q(t) ∈ QN(t), Ψ need not be
a number eigenstate (i.e. concentrated in one sector). This is similar to the usual
double-slit experiment in which the particle passes through only one slit although
the wavefunction passes through both. As with this experiment, the part of the
wave function that passes through another sector of Q (or another slit) may well
influence the behavior of Q(t) at a later time. The laws of motion of Qt depend
on Ψt (and on H) and the continuous part of the motion is governed by

(5.2)
dQt

dt
= vΨt(Qt) = �Ψ∗

t (Qt)( ˙̂qΨt)(Qt)
Ψ∗

t (Qt)Ψt(Qt)
; ˙̂q =

d

dτ
eiH0τ/�

∣∣∣∣
τ=0

=
i

�
[H0, q̂]

Here ˙̂q is the time derivative of the Q valued Heisenberg position operator q̂ evolved
with H0 alone. One should understand this as saying that for any smooth function
f : Q→ R

(5.3)
df(Qt)

dt
= �Ψ∗

t (Qt)(i/�)[H0, f̂ ]Ψt)(Qt)
Ψ∗

t (Qt)Ψt(Qt)
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This expression is of the form vΨ ·∇f(Qt) (as it must be for defining a dynamics for
Qt) if the free Hamiltonian is a differential operator of up to second order (more on
this later). Note that the KG equation is not covered by (5.2) or (5.3). The
numerator and denominators above involve, when appropriate, scalar products in
spin space. One may view v as a vector field on Q and thus as consisting of one
vector field vn on every manifold Qn; it is then vN(t) that governs the motion
of Q(t) in (5.2). If H0 were the Schrödinger operator −

∑n
1 (�2/2m)∆i + V (5.2)

yields the Bohm velocities vΨ
i = (�/mi)�[Ψ∗∇iΨ/Ψ∗Ψ]. When H0 is the “second

quantization” of a 1-particle Schrödinger operator (5.2) involves equal masses in
every sector Qn. Similarly in case H0 is the second quantization of the Dirac
opertor −ic��α · ∇+ βmc2 (5.2) says that a configuration Q(t) (with N particles)
moves according to (the N-particle version of) the known variant of Bohm’s velocity
formula for Dirac wavefunctions vΨ = (Ψ∗αΨ/Ψ∗Ψ)c (cf. [127]). The jumps now
are stochastic in nature, i.e. they occur at random times and lead to random
destinations. In Bell type QFT God does play dice. There are no hidden variables
which would fully determine the time and destination of a jump (cf. here Section
2.3 and the effectivity parameters). The probability of jumping, with the next dt
seconds to the volume dq in Q is σΨ(dq|Qt)dt with

(5.4) σΨ(dq|q′) =
2
�

[�Ψ∗(q) < q|HI |q′ > Ψ(q′)]+

Ψ∗(q′)Ψ(q′)
dq

where x+ = max(x, 0). Thus the jump rate σΨ depends on the present configu-
ration Qt, on the state vector Ψt which has a guiding role similar to that in the
Bohm theory, and of course on the overall setup of the QFT as encoded in the
interaction Hamiltonian HI (cf. [326] for a simple example). There is a striking
similarity between (5.4) and (5.2) in that they are both cases of “minimal” Markov
processes associated with a given Hamiltonian (more on this below). When H0 is
replaced by HI in the right side of (5.3) one obtains an operator on functions f(q)
that is naturally associated with the process defined by the jump rates (5.4).

The field operators (operator valued fields on spacetime) provide a connection,
the only connection in fact, between spacetime and the abstract Hilbert space con-
taining the quantum states |Ψ >, which are usually regarded not as functions but
as abstract vectors. What is crucial now is that (i) The field operators naturally
correspond to the spatial structure provided by a projection valued (PV) measure
on configuration space Q, and (ii) The process defined here can be efficiently ex-
pressed in terms of a PV measure. Thus consider a PV measure P on Q acting on
H where for B ⊂ Q, P (B) means the projection to the space of states localized
in B. Then one can rewrite the formulas above in terms of P and |Ψ > and we get

(5.5)
df(Qt)

dt
= �

< Ψ|P (dq) i
� [H0, f̂ ]|Ψ >

< Ψ|P (dq)|Ψ >

∣∣∣∣∣
q=Qt

; f̂ =
∫

q∈Q

f(q)P (dq)

(for smooth functions f : Q→ R) and

(5.6) σΨ(dq|q′) =
2
�

� < Ψ|P (dq)HIP (dq′)|Ψ >]+

< Ψ|P (dq′)|Ψ >
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Note that < Ψ|P (dq)|Ψ > is the probability distribution analogous to the standard
|Ψ(q)|2dq. The next question is how to obtain the PV measure P from the field
operators. Such a measure is equivalent to a system of number operators (more
on this below); thus an additive operator valued set function N(R), R ∈ R3 such
that the N(R) commute pairwise and have spectra in the nonnegative integers.
By virtue of the canonical commutation and anticommutation relations for the
field operators φ(x) the easiest way to obtain such a system of number operators
is via N(R) =

∫
R

φ∗(x)φ(x)d3x. Thus what one needs from a QFT in order to
construct trajectories are: (i) a Hilbert space H (ii) a Hamiltonian H = H0 + HI

(iii) a configuration space Q (or measurable space), and (iv) a PV measure on Q

acting on H. This will be done below following [326].

We go now to the last paper in [326] which is titled quantum Hamiltonians and
stochastic jumps. The idea is that for the Hamiltonian of a QFT there is associated
a |Ψ|2 distributed Markov process, typically a jump process, on the configuration
space of a variable number of particles. A theory is developed generalizing work
of J. Bell and the authors of [326]. The central formula of the paper is

(5.7) σ(dq|q′) =
[(2/�)� < Ψ|P (dq)HP (dq′)|Ψ >]+

< Ψ|P (dq′)|Ψ >

It plays a role similar to that of Bohm’s equation of motion

(5.8)
dQ

dt
= v(Q); v = ��Ψ∗∇Ψ

Ψ∗Ψ
Together these two equations make possible a formulation of QFT that makes
no reference to observers or measurements, while implying that observers, when
making measurements, will arrive at precisely the results that QFT is known
to predict. This formulation takes up ideas from the seminal papers of J. Bell
[94, 95] and such theories will be referred to as Bell-type QFT’s. The aim is to
present methods for constructing a canonical Bell type model for more of less any
regularized QFT. One assumes a well defined Hamiltonian as given (with cutoffs
included if needed). The primary variables of such theories are particle positions
and Bell suggested a dynamical law governing the motion of the particles in which
the Hamiltonian H and the state vector Ψ determine the jump rates σ. These
rates are in a sense the smallest choice possible (explained below) and are called
minimal jump rates; they preserve the |Ψ|2 distribution. Bell type QFT’s can also
be regarded as extensions of Bohmian mechanics which cover particle creation
and annihilation; the quantum equilibrium distribution more or less dictates that
creation of a particle occurs in a stochastic manner as in the Bell model. We recall
that for Bohmian mechanics in addition to (5.8) one has an evolution equation
i�∂tΨ = HΨ for the wave function with H = −(�2/2∆ + V for spinless particles
(∆ = div∇). For particles with spin Ψ takes values in the appropriate spin space
Ck, V may be matrix valued, and inner products in (1.66) are understood as
involving inner products in spin spaces. The success of the Bohmian method is
based on the preservation of |Ψ|2, called equivariance and this follows immediately
from comparing the continuity equation for a probability distribution ρ associated
with (5.8), namely ∂tρ = −div(ρv), with the equation for |Ψ|2 following from the
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SE, namely

(5.9) ∂t|Ψ|2(q, t) = (2/�)�[Ψ∗(q, t)(HΨ)(q, t)]

In fact it follows from the continuity equation that

(5.10) (2/�)�[Ψ∗(q, t)(HΨ)(q, t)] = −div[��Ψ∗(q, t)∇Ψ(q, t)]

so recalling (5.8), one has ∂t|Ψ|2 = −div(|Ψ|2v), and hence if ρ+|Ψt|2 as some time
t there results ρ = |ψt|2 for all times. One is led naturaly to the consideration of
Markov processes as candidates for the equivariant motion of the configuration Q
for more general Hamiltonians (see e.g. [506, 674, 810, 815] for Markov processes
- [674] is especially good for Markov processes with jumps and dynamics but we
follow [506, 815] for background since the ideas are more or less clearly stated
without a deathly deluge of definitions and notation - of course for a good theory
much of the verbiage is actually important).

DEFINITION 5.1. Let (E be a Borel σ-algebra of subsets of E. For Ω
generally a path space (e.g. Ω ∼ C(R+, E) with Xt(ω) = X(t, ω) = ω(t) and
Ft = σ(Xs(ω), s ≤ t) a filtration by Borel sub σ-algebras) a Markov process
(C11) X = (Ω, {Ft}, {Xt}, {Pt}, {P x, x}E}) with t ≥ 0 and state space (E,E), is
an E valued stochastic process adapted to {Ft} such that for 0 ≤ s ≤ t, f ∈ bE
(bE means bounded E measurable functions), and x ∈ E, Ex[f(Xs+t)|Ft] =
(Ptf)(Xs), P xae (ae means almost everywhere). Here {Pt} is a transition function
on (E,E), i.e. a family of kernels Pt : E × E→ [0, 1] such that

(1) For t ≥ 0 and x ∈ E, Pt(x, ·) is a measure on E with Pt(x,E) ≤ 1
(2) For t ≥ 0 and Γ ∈ E Pt(·,Γ) is E measurable
(3) For x, t ≥ 0, x ∈ E, and Γ ∈ E one has Pt+s(x,Γ) =

∫
E

Ps(x, dy)Pt(y, Γ)

The equation in #3 is called the Chapman-Kolmogorov (CK) equation and, think-
ing of the transition functions as inducing a family {Pt} of positive bounded op-
erators or norm less than or equal to 1 on bE one has Ptf(x) = (Ptf)(x) =∫

E
Pt(x, dy)f(y) in which case the CK equation has the semigroup property PsPt =

Ps+t for s, t ≥ 0.

Under mild regularity conditions if a transition semigroup {Pt} is given there
will exist on some probability space a Markov process X with suitable paths such
that the strong Markov property holds, i.e. Ex[f(XS+t)]|Fx] = (Ptf)(XS) P x ae
whenever S is a finite stopping time (here S : Ω → [0,∞] is a E stopping time if
{S ≤ t} = {ω; S(ω) ≤ t} ∈ Et for every t < ∞).

EXAMPLE 5.1. A Markov process with countable state space is called a
Markov chain. One writes pij(t) = Pt(i, {j}) with P (t) = {pij(t); i, j ∈ E}.
Assume Pt(i, E) = 1 and pij(t) → δij as t ↓ 0. This will imply that in fact
p′ij(0) = qij exists and the matrix Q = (qij) is called an infinitesimal generator
of {Pt} with qij ≥ 0 (i �= j) and

∑
j qik = 0 (i ∈ E). This illustrates some

important structure for Markov processes. Thus when P ′(0) = Q exists one can
write P ′(t) = limε→0ε

−1[P (t + ε)− P (t)] = limε→0P (t)[P (ε)− I] = P (t)Q. Then
solving this equation one has P (t) = exp(tQ as a semigroup generated by Q. The



82 2. DEBROGLIE-BOHM IN VARIOUS CONTEXTS

resolvent is defined via Rλ =
∫∞
0

exp(−λt)Ptdt and one can regard it as

(5.11) (λRλ)ij =
∫ ∞

0

λexp(−λt)pij(t)dt = P(XT = j|X0 = i)

where T is a random variable independent of X with the exponential distribution
of rate λ. It follows then that Rλ = (λ−Q)−1 and Rλ−Rµ = (µ− λ)RλRµ. The
whole subject is full of pathological situations however and we make no attempt
to describe this.

REMARK 2.5.2. [674] is oriented toward diffusion processes and departs
from the concept that the kinematics of quantum particles is stochastic calculus (in
particular Markov processes) while the kinematics of classical particles is classical
differential calculus. The relation between these two calculi must be established.
Thus classically x(t) = x(a)+

∫ t

a
v(s, x(s))ds while for a particle with say Brownian

noise Bt and a drift field a(t, x(t)) one has

(5.12) Xt = Xa +
∫ t

a

a(s, Xs)ds +
∫ t

a

σ(s, Xs)dBs

We recall dB2
t ∼ dt so Xt has no velocity and the drift field a(t, x) is not an average

speed. However P [X] =
∫
Ω

XdP is the expectation (since P [σ(t,Xt)dBt] = 0).
Now the notation for Markov processes involves nonnegative transition functions
P (s, x; t, B) with a ≤ s ≤ t ≤ b, x ∈ Rd, and B ∈ B(Rd) which are measures in
B, measurable in x, and satisfy the CK equation

(5.13) P (s, x; t, B) =
∫
Rd

P (s, x; r, dy)P (r, y; t, B); P (s, x; t,Rd) = 1

If there is a measurable function p such that P (s, x; t, B) =
∫

B
p(s, x; t, y)dy (t −

s > 0) then p is a transition density. One defines a probability measure P on a
path space Ω = (Rd)[a,b] via finite dimensional distributions
(5.14)

P [f(Xa, Xt1 , · · · , Xtn
, Xb)] =

∫
µa(dx0)P (a, x0; t1, dx1)P (t1, x1; t2, dx2) · · · ×

× · · ·P (tn−1, xn−1; b, dxn)f(x0, · · · , xn)
Moreover one defines a family {Xt; t ∈ [a, b]} on Ω via Xt(ω) = ω(t), ω ∈ Ω. Note
one assumes the right continuity of Xt(ω) ae. This representation can be written
as P = [µaP >> and is called the Kolmogorov representation of P. Let now {Ft

s}
be a filtration as before, i.e. a family of σ-fields generated by {Xr(ω); s ≤ r ≤ t}.
Then we have a Markov process {Xt, t ∈ [a, b],Ft

s, P}. Replacing µa by δx and
a by s with s < t1 < · · · < tn−1 < tn ≤ b one defines probability measures
P(s,x), (s, x) ∈ [a, b]×Rd from (1.67) via

(5.15) P(s,x)[f(Xt1 , · · · , Xtn−1 , Xtn
)] =

=
∫

P (s, x; t1, dx1) · · ·P (tn−1, xn−1; tn, dxn)f(x1, · · · , xn)

As a special case one has P(s,x)[f(t,Xt)] =
∫

P (s, x; t, dy)f(t, y) and one can also
prove that P [GF ] = P [GP(s,Xs)[F ]] for any bounded Fs

a measurable G and any
bounded Fb

s measurable F. This is the time inhomogeneous Markov property which
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can be written in terms of conditional expectations as P [F |Fs
a] = P(s,Xs)[F ], P ae.

There is a great deal of material in [674] about Markov processes with jumps but
we prefer to stay here with [326] for notational convenience.

Going back to [326] we consider a Markov process Qt on configuration space
with transition probabilities characterized by the backward generator Lt, a time
dependent linear operator acting on functions f via Ltf(q) = (d/ds)E(f(Qt+s|Qt =
q) where d/ds means the right derivative at s = 0 and E(·|·) is conditional expec-
tation. Equivalently the transition probabilities are characterized by the forward
generator Lt (or simply generator) which is also a linear operator but acts on
(signed) measures on the configuration space. Its defining property is that for
every process Qt with the given transition properties ∂tρt = Ltρt. Thus L is dual
to Lt in the sense

(5.16)
∫

f(q)Ltρ(dq) =
∫

Ltf(q)ρ(dq)

Given equivariance for |Ψ|2, one says that the corresponding transition probabil-
ities are equivariant and this is equivalent to Lt|Ψ|2 = ∂y|Ψ|2 for all t; when this
holds one says that Lt is an equivariant generator (with respect to Ψt and H).
One says that a Markov process is Q equivariant if and only if for every t the
distribution ρt of Qt equals |Ψt|2. For this equivariant transition probabilities are
necessary but not sufficient; however for equivariant transition probabilities there
is a unique equivariant Markov process. The crucial idea here for construction of
an equivariant Markov process is to note that (5.9) is completely general and to
find a generator Lt such that the right side of (5.9) can be read as the action of L
on ρ = |Ψ|2 means (2/�)�Ψ∗HΨ = L|Ψ|2. This will be implemented later. For H
of the form −(�2/2)∆ + V one has (5.10) and hence

(5.17)
2
�
�Ψ∗HΨ = −div(��Ψ∗∇Ψ) = −div

(
|Ψ|2��Ψ∗∇Ψ

|Ψ|2

)
Since the generator of the (deterministic) Markov process corresponding to the dy-
namical system dQ/dt = v(Q) is given by a velocity vector field is Lρ = −div(ρv)
we may recognize the last term of (1.67) as L|Ψ|2 with L the generator of the
deterministic process defined by (5.8). Thus Bohmian mechanics arises as the
natural equivariant process on configuration space associated with H and Ψ. One
notes that Bohmian mechanics is not the only solution of (2/�)�Ψ∗HΨ − L|Ψ|2;
there are alternatives such as Nelson’s stochastic mechanics (and hence Nagasawa’s
theory of [672, 674]) and other velocity formulas (cf. [295]).

For equivariant jump processes one says that a (pure) jump process is a Markov
process on Q for which the only motion that occurs is via jumps. Given that Qt = q
the probability for a jump to q′ (i.e. into the infinitesimal volume dq′ around q′) by
time t+dt is σt(d′q|q)dt where σ is called the jump rate. Here σ is a finite measure
in the first variable; σ(B|q) is the rate (i.e. the probability per unit time) of jump-
ing to somewhere in the set B ⊂ Q given that the present location is q. The overall
jump rate is σ(Q|q) (sometimes one writes ρ(dq) = ρ(q)dq). A jump first occurs
when a random waiting time T has elapsed, after the time t0 at which the process
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was started or at which the most recent previous jump has occured. For purposes
of simulating or constructing the process, the destination q′ can be chosen at the
time of jumping, t0 + T , with probability distribution σt0+T (Q|q)−1σt0+T (·|q). In
case the overall jump rate is time independent T is exponentially distributed with
mean of σ(Q|q)−1. When the rates are time dependent (as they will typically in
what follows) the waiting time remains such that

∫ t0+T

t0
σt(Q|q)dt is exponentially

distributed with mean 1, i.e. T becomes exponential after a suitable (time depen-
dent) rescaling of time. The generator of a pure jump process can be expressed in
terms of the rates

(5.18) Lρ(dq) =
∫

q′∈Q

(σ(dq|q′)ρ(dq′)− σ(dq′)|q)ρ(dq))

which is a balance or master equation expressing ∂tρ as the gain due to jumps
to dq minus the loss due to jumps away from dq. One says the jump rates are
equivariant if Lσ is an equivariant generator.

Given a Hamiltonian H = H0 + HI one obtains

(5.19) (2/�)�Ψ∗H0Ψ + (2/�)�Ψ∗HIΨ− L|Ψ|2

This opens the possibility of finding a generator L = L0+LI given (2/�)�Ψ∗H0Ψ =
L0|Ψ|2 and (2/�)�Ψ∗HIΨ = LI |Ψ|2; this will be called process additivity and
correspondingly L = L0 + LI . If one has two deterministic processes of the form
Lρ = −div(ρv) then adding generators corresponds to v = v+v2. For a pure jump
process adding generators corresponds to adding rates σi which is equivalent to
saying there are two kinds of jumps. Now add generators for a deterministic and
a jump process via

(5.20) Lρ(q) = −div(ρv)(q) +
∫

q′∈Q

(σ(q|q′)ρ(q′)− σ(q′|q)ρ(q)) dq′

This process moves with velocity v(q) until it jumps to q′ where it continues
moving with velocity v(q′). One can understand (5.20) in terms of gain or loss of
probability density due to motion and jumps; the process is piecewise deterministic
with random intervals between jumps and random destinations. Note that for a
Wiener process the generator is the Laplacian and adding to it the generator of a
deterministic process means introducing a drift.

Now consider HI and note that in QFT’s with cutoffs it is usually the case
that HI is an integral operator. Hence one writes here H ∼ HI and thinks of it
as an integral operator with Q ∼ Rn. What characterizes jump processes is that
some amount of probability that vanishes at q ∈ Q can reappear in an entirely
different region say at q′ ∈ Q. This suggests that the Hamiltonians for which the
expression (5.9) for ∂t|Ψ|2 is naturally an integral over q′ correspond to pure jump
processes. Thus when is the left side of (2/�)�|psi∗HΨ = L|Ψ|2 an integral over
q′ or (HΨ)(q) =

∫
dq′ < q|H|q′ > Ψ(q′). In this case one should choose the jump

rates so that when ρ = |Ψ|2 one has

(5.21) σ(q|q′)ρ(q′)− σ(q′|q)ρ(q) = (2/�)�Ψ∗(q) < q|H|q′ > Ψ(q′)
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This suggests, since jump rates are nonnegative and the right side of (5.21) is
antisymmetric) that σ(q|q′)ρ(q′) = [(2/�)�Ψ∗(q) < q|H|q′ > Ψ(q′)]+ or

(5.22) σ(q|q′) =
(2/�)�Ψ∗(q) < q|H|q′ > Ψ(q′)]+

Ψ∗(q′)Ψ(q′)

These rates are an instance of what can be called minimal jump rates associated
with H (and Ψ). They are actually the minimal possible values given (5.21) and
this is discussed further in [326]. Minimality entails that at any time t one of the
transitions q1 → q2 or q2 → q1 is forbidden and this will be called a minimal jump
process. One summarizes motions via

H motion
integral operator jumps

differential operator deterministic continuous motion
multiplication operator no motion (L = 0)

The reasoning above applies to the more general setting of arbitrary configuration
spaces Q and generalized observables - POVM’s - defining what the “position”
representation is to be. One takes the following ingredients from QFT

(1) A Hilbert space H with scalar product < Ψ|Φ >.
(2) A unitary one parameter group Ut in H with Hamiltonian H, i.e. Ut =

exp[−(i/�)tH], so that in the Schrödinger picture the state Ψ evolves via
i�∂tΨ = HΨ. Ut could be part of a representation of the Poincaré group.

(3) A positive operator valued measure (POVM) P (dq) on Q acting on H so
that the probability that the system in the state Ψ is localized in dq at
time t is Pt(dq) =< Ψt|P (dq)|Ψt >.

Mathematically a POVM on Q is a countably additive set function (measure)
defined on measurable subsets of Q with values in the positive (bounded self
adjoint) operators on a Hilbert space H such that P (Q) = Id. Physically for
purposes here P (·) represents the (generalized) position observable, with values
in Q. The notion of POVM generalizes the more familiar situation of observables
given by a set of commuting self adjoint operators, corresponding by means of
the spectral theorm to a projection valued measure (PVM) - the case where the
positive operators are projection operators (see [326] for discussion). The goal
now is to specify equivariant jump rates σ = σΨ,H,P so that LσP = dP/dt. To
this end one could take the following steps.

(1) Note that (dPt(dq)/dt) = (2/�)� < Ψt|P (dq)H|Ψt >.
(2) Insert the resolution of the identity I =

∫
q′∈Q

P (dq′) and obtain

(5.23) (dPt(dq)/dt) =
∫

q′∈Q

Jt(dq, dq′);

Jt(dq, dq′) = (2/�)� < Ψt|P (dq)HP (dq′)|Ψt >

(3) Observe that Jis antisymmetric so since x = x+ − (−x)+ one has

(5.24) J(dq, dq′) = [(2/�)� < Ψ|P (dq)HP (dq′)|Ψ]+−

−[(2/�)� < Ψ|P (dq′)HP (dq)|Ψ >]+
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(4) Multiply and divide both terms by P(·) obtaining

(5.25)
∫

q′∈Q

J(dq, dq′) =
∫

q′∈Q

(
(2/�)� < Ψ|P (ddq)HP (dq′)|Ψ >]+

< Ψ|P (dq′)|Ψ >
P(dq′)−

− [(2/�)� < Ψ|P (dq′)HP (dq)|Ψ >]+

< Ψ|P (dq)|Ψ >
P(dq)

)
(5) By comparison with (5.18) recognize the right side of the above equation

as LσP with Lσ the generator of a Markov jump process with jump rates
(5.7) (minimal jump rates).

Note the right side of (5.7) should be understood as a density (Radon-Nikodym
derivative).

When H0 is made of differential operators of up to second order one can
characterize the process associated with H0 in a particularly succinct manner as
follows. Define for any H,P,Ψ an operator L acting on functions f : Q → R
which may or may not be the backward generator of a process via

(5.26) Lf(q) = �< Ψ|P (dq)L̂f̂ |Ψ >

< Ψ|P (dq)Ψ >
= �< Ψ|P (dq)(i/�)[H, f̂ ]|Ψ >

< Ψ|P (dq)|Ψ >

where [ , ] means the commutator and f̂ =
∫

q∈Q
f(q)P (dq) with L̂ the generator

of the (Heisenberg) evolution f̂ ,

(5.27) L̂f̂ = (d/dτ)exp(iHτ/�)f̂ exp(−iHτ/�)|τ=0 = (i/�)[H, f̂ ]

Note if P is a PVM then f̂ = f(q̂). (5.26) could be guessed in the following manner:
Since Lf is in a certain sense the time derivative of f it might be expected to be
related to L̂f̂ which is in a certain sense (cf. (5.27)) the time derivative of f̂ . As a
way of turning the operator L̂f̂ into a function Lf(q) the middle term in (5.26) is
an obvious possibility. Note also that this way of arriving at (5.26) does not make
use of equivariance. The formula for the forward generator equivalent to (5.26)
reads

(5.28) Lρ(dq) = � < Ψ| ̂(dρ/dP)(i/�)[H,P (dq)]|Ψ >

Whenever L is indeed a backward generator we call it the minimal free (backward)
generator associated with Ψ,H, P . Then the corresponding process is equivariant
and this is the case if (and there is reason to expect, only if) P is a PVM and H
is a differential operator of up to second order in the position representation, in
which P is diagonal. In that case the process is deterministic and the backward
generator has the form L = v · ∇ where v is the velocity field; thus (5.26) directly
specifies the velocity in the form of a first order differential operator v ·∇. In case
H is the N-particle Schrödinger operator with or without spin (5.26) yields the
Bohmian velocity (5.8) and if H is the Dirac operator the Bohm-Dirac velocity
emerges. Thus in some cases (5.26) leads to just the right backward generator.
In [326] there are many examples and mathematical sections designed to prove
various assertions but we omit this here..
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6. BOHMIAN MECHANICS IN QFT

We extract here from a fascinating paper [713] by H. Nikolić. Quantum field
theory (QFT) can be formulated in the Schrödinger picture by using a functional
time dependent SE but this requires a choice of time coordinate and the corre-
sponding choice of a preferred foliation of spacetime producing a relativistically
noncovariant theory. The problem of noncovariance can be solved by replacing
the usual time dependent SE with the many fingered time (MFT) Tomonaga-
Schwinger equation, which does not require a preferred foliation and the quantum
state is a functional of an arbitrary timelike hypersurface. In a manifestly co-
variant formulation introduced in [316] the hypersurface does not even have to
be timelike. The paper [713] develops a Bohmian interpretation for the MFT
theory for QFT and refers to [77, 108, 255, 473, 478, 587, 711, 708, 769,
772, 774, 819, 820, 876, 910] for background and related information. Thus
let x = {xµ} = (x0,x) be spacetime coordinates. A timelike Cauchy hypersurface
Σ can be defined via x0 = T (x) with x denoting coordinates on Σ. Let φ(x) be a
dynamical field on Σ (a real scalar field for convenience) and write T, φ without
an argument for the functions themselves with φ = φ|Σ etc. Let Ĥ(x) be the
Hamiltonian density operator and then the dynamics of a field φ is described by
the MFT Tomonaga-Schwinger equation

(6.1) ĤΨ[φ, T ] = i
δΨ[φ, T ]
δT (x)

Note δT (x) denotes an infinitesimal change of the hypersurface Σ. The quantity
ρ[φ, T ] = |Ψ[φ, T ]|2 represents the probability density for the field to have a value
φ on Σ or equivalently the probability density for the field to have a value φ at
time T . One can say that φ has a definite value ϕ at some time T0 if

(6.2) Ψ[φ, T0] = δ(φ− ϕ) =
∏
x∈Σ

δ(φ(x)− ϕ(x))

[713] then provides an important discussion of measurement and contextuality in
QM which we largly omit here in order to go directly to the Bohmian formulation.

For simplicity take a free scalar field with

(6.3) Ĥ(x) = −1
2

δ2

δφ2(x)
+

1
2
[(∇φ(x))2 + m2φ2(x)]

Writing Ψ = Rexp(iS) with R and S real functionals the complex equation (6.1)
is equivalent to two real equations with

(6.4)
1
2

(
δS

δφ(x)

)2

+
1
2
[(∇φ(x))2 + m2φ2(x)] + Q(x, φ, T ] +

δS

δT (x)
= 0;

δρ

δT (x)
+

δ

δφ(x)

(
ρ

δS

δT (x)

)
= 0; Q(x, φ, T ] = − 1

2R

δ2R

δφ2(x)

The conservation equation shows that it is consistent to interpret ρ[φ, T ] as the
probability density for the field to have the value φ at the hypersurface determined
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by the time T. Now let σx be a small region around x and define the derivative

(6.5)
∂

∂T (x)
= lim

σx→0

∫
σx

d3x
δ

δT (x)

where σx → 0 means that the 3-volume goes to zero (note ∂T (y)/∂T (x) = δxy).
It is convenient to integrate (6.4) inside a small σx leading to

(6.6)
∂ρ

∂T (x)
+

∂

∂φ(x)

(
ρ

δS

δφ(x)

)
= 0

where ∂/∂φ(x) is defined as in (6.5). The Bohmian interpretation consists now
in introducing a deterministic time dependent hidden variable such that the time
evolution of this variable is consistent with the probabilistic interpretation of ρ.
From (6.6) one sees that this is naturally achieved by introducing a MFT field
Φ(x, T ] that satisfies the MFT Bohmian equations of motion

(6.7)
∂Φ(x, T ]
∂T (x)

=
δS

δφ(x)

∣∣∣∣
φ=Φ

From (6.7) and the quantum MFT HJ equation (6.4) results

(6.8)

[(
∂

∂T (x)

)2

−∇2
x + m2

]
Φ(x, T ] = − ∂Q(x, φ, T ]

∂ψ(x)

∣∣∣∣
φ=Φ

This can be viewed as a MFT KG equation modified with a nonlocal quantum
term on the right side. The general solution of (6.7) has the form

(6.9) Φgen(x), T ] = F (x, c(x, T ];T ]

where F is a function(al) that depends on the right side of (6.7) and c(x, T ] is an
arbitrary function(al) with the property

(6.10)
δc(x, T ]
δT (x)

= 0

This quantity can be viewed as an arbitrary MFT integration constant - it is
constant in the sense that it does not depend on T (x), but it may depend on T at
other points x′ �= x. To provide the correct classical limit (indicated below) one
restricts c(x, T ] to satisfy

(6.11) c(x, T ] = c(x)

where c(x) is an arbitrary function. Here it is essential to realize that Φ(x, T ] is
a function of x but a functional of T; the field Φ depends not only on (x, T (x)) ≡
(x, x0) ≡ x but also on the choice of the whole hypersurface Σ that contains the
point x. Consequently the MFT Bohmian interpretation does not in general assign
a value of the field at the point x unless the whole hypersurface containing x is
specified. On the other hand if e.g. δS/δφ(x) on the right side in (6.7) is a local
functional, i.e. of the form V (x, φ(x

¯
), T (x), then the solution of (6.7) is a local

functional of the form

(6.12) Φ(x, T (x) = Φ(x, x0) = Φ(x)

This occurs for example when the wave functional is a local product Ψ[φ, T ] =∏
x ψx(φ(x, T (x). Interactions with the measuring apparatus can also produce
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locality. As for the classical limit one can formulate the classical HJ equation as
a MFT theory (cf. [819, 820]) without of course the Q term. Hence by imposing
a restriction similar to (6.11) the solution S[φ, T ] can be chosen so that δS/δφ(x)
is a local functional; the restriction (6.11) again implies that the classical solution
Φ is also a local functional.

The MFT formalism was introduced by Tomonaga and Schwinger to provide
the manifest covariance of QFT in the interaction picture. The picture here is
so far not manifestly covariant since time is not treated on an equal footing with
space. However the MFT formalism can be here also in a manifestly covariant
manner via [316, 819, 820]. One starts by introducing a set of 3 real parameters
{s1, s2, s3} ≡ s to serve as coordinates on a 3-dimensional manifold (a priori s
is not related to x). The 3-dimensional manifold Σ can be embedded in the
4-dimensional spacetime by introducing 4 functions Xµ(s) and a 3-dimensional
hypersurface is given via xµ = Xµ(s). The 3 parameters si can be eliminated
leading to an equation of the form f(x0, x1, x2, x3) = 0 and assuming that the
background spacetime metric gµν(x) is given the induced metric qij(s) on this
hypersurface is

(6.13) qij(s) = gµν(X(s))
∂Xµ(s)

∂si

∂Xν(s)
∂sj

Similarly a normal to the surface is

(6.14) ñ(s) = εµαβγ
∂Xα

∂s1

∂Xβ

∂s2

∂Xγ

∂s3

and the unit normal transforming as a spacetime vector is

(6.15) nµ(s) =
gµν ñν√
|gαβñαñβ |

Now some of the original equations above can be written in a covariant form by
making the replacements

(6.16) x→ s;
δ

δT (x)
→ nµ(s)

δ

δXµ(s)

The Tomonaga-Schwinger equation (6.1) becomes

(6.17) Ĥ(s)Ψ[φ,X] = inµ(s)
δΨ[φ,X]
δXµ(s)

For free fields the Hamiltonian density operator in curved spacetime is

(6.18) Ĥ =
−1

2|q|1/2

δ2

δφ2(s)
+
|q|1/2

2
[−qij(∂iφ)(∂jφ) + m2φ2]

The Bohmian equations of motion (6.7) becomes

(6.19)
∂Φ(s, T ]
∂τ(s)

=
1

|q(s)|1/2

δS

δφ(s)

∣∣∣∣
φ=Φ

;
∂

∂τ(s)
≡ limσx→0

∫
σx

d3snµ(s)
δ

δXµ(s)
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Similarly (6.8) becomes

(6.20)

[(
∂

∂τ(s)

)2

+∇i∇i + m2

]
Φ(s, X] = − 1

|q(s)|1/2

∂Q(s, φ,X]
∂φs)

∣∣∣∣
φ=Φ

where ∇i is the covariant derivative with respect to si and

(6.21) Q(s, φ,X] = − 1
|q(s)|1/2

1
2R

δ2R

δφ2(s)
corresponding to a quantum potential. The same hypersurface Σ can be para-
metrized by different sets of 4 functions Xµ(s) of course but quantities such as
Ψ[φ,X] and Φ(s, X] depend on Σ, not on the parametrization. The freedom in
choosing functions Xµ(s) is sort of a gauge freedom related to the covariance. Now
to find a solution of the covariant equations above it is convenient to fix a gauge
and for a timelike surface the simplest choice is Xi(s) = si. This implies δX(s) = 0
which leads to equations similar to those obtained previously. For example (6.19)
becomes

(6.22) (g00(x))1/2 ∂Φ(x, X0]
∂X0(x)

=
1

|q(x)|1/2

δS

δφ(x)

∣∣∣∣
φ=Φ

which is the curved spacetime version of (6.7).


