
CHAPTER 1

THE SCHRÖDINGER EQUATION

Perhaps no subject has been the focus of as much mystery as “classical” quan-
tum mechanics (QM) even though the standard Hilbert space framework provides
an eminently satisfactory vehicle for determining accurate conclusions in many
situations. This and other classical viewpoints provide also seven decimal place
accuracy in quantum electrodynamics (QED) for example. So why all the fuss?
The erection of the Hilbert space edifice and the subsequent development of op-
erator algebras (extending now into noncommutative (NC) geometry) has an air
of magic. It works but exactly why it works and what it really represents remain
shrouded in ambiguity. Also geometrical connections of QM and classical mechan-
ics (CM) are still a source of new work and a modern paradigm focuses on the
emergence of CM from QM (or below). Below could mean here a microstructure
of space time, or quantum foam, or whatever. Hence we focus on other approaches
to QM and will recall any needed Hilbert space ideas as they arise.

1. DIFFUSION AND STOCHASTIC PROCESSES

First consider the SE in the form −(�2/2m)ψ′′ + V ψ = i�ψt so that for
ψ = Rexp(iS/�) one obtains

(1.1) St +
S2

X

2m
+ V − �2R′′

2mR
= 0; ∂t(R2) +

1
m

(R2S′)′ = 0

1

mathematical and physical, and we sometimes avoid detailed technical discussion
of mathematical fine points (cf. [241, 242, 243, 271, 315,

647, 672, 674, 698, 715, 719, 783, 810,

concerned with origins of the Schrödinger equation (SE). For background information

“structure”, both

726,

345, 531, 591, 592,
607, 615, 672, 674, 810, 918] for various delicate matters).

There are some beautiful stochastic theories for diffusion and QM mainly

For example, rather
than looking at such topics as Markov processes with jumps

with diffusion processes and kinetic theory.

we prefer to seek
“meaning” for the Schrödinger equation via microstructure and

[33, 98, 131, 191, 192, 241, 242, 258, 471, 555,
860, 1025, 1026,

1027]. The present development focuses on certain aspects of the
diffusion processes,

quantum potentials, and fractalmethods. The aim is to envision

SE involving the
wave function form ψ = Rexp(iS/�), hydro dynamical versions,

615, 628,
589,

591,

fractals in
connection

we mention for example
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where S′ ∼ ∂S/∂X. Writing P = R2 (probability density ∼ |ψ|2) and Q =
−(�2/2m)(R′′/R) (quantum potential) this becomes

(1.2) St +
(S′)2

2m
+ Q + V = 0; Pt +

1
m

(PS′)′ = 0

and this has some hydrodynamical interpretations in the spirit of Madelung. In-
deed going to [294] for example we take p = S′ with p = mq̇ for q̇ a velocity (or
“collective” velocity - unspecified). Then (1.2) can be written as (ρ = mP is an
unspecified mass density)

(1.3) St +
p2

2m
+ Q + V = 0; Pt +

1
m

(Pp)′ = 0; p = S′; P = R2;

Q = − �2

2m

R′′

R
= − �2

2m

∂2√ρ
√

ρ

Note here

(1.4)
∂2√ρ
√

ρ
=

1
4

[
2ρ′′

ρ
−
(

ρ′

ρ

)2
]

Now from S′ = p = mq̇ = mv one has

(1.5) Pt + (P q̇)′ = 0 ≡ ρt + (ρq̇)′ = 0; St +
p2

2m
+ V − �2

2m

∂2√ρ
√

ρ
= 0

Differentiating the second equation in X yields (∂ ∼ ∂/∂X, v = q̇)

(1.6) mvt + mvv′ + ∂V − �2

2m
∂

(
∂
√

ρ
√

ρ

)
= 0

Consequently, multiplying by p = mv and ρ respectively in (1.5) and (1.6), we
obtain

(1.7) mρvt + mρvv′ + ρ∂V − �2

2m
ρ∂

(
∂2√ρ
√

ρ

)
= 0; mvρt + mv(ρ′v + ρv′) = 0

Then adding in (1.7) we get

(1.8) ∂t(ρv) + ∂(ρv2) +
ρ

m
∂V − �2

2m2
ρ∂

(
∂2√ρ
√

ρ

)
= 0

This is similar to an equation in [294] (called an “Euler” equation) and it definitely
has a hydrodynamic flavor (cf. also [434] and see Section 6.2 for more details and
some expansion).

Now go to [743] and write (1.6) in the form (mv = p = S′)

(1.9)
∂v

∂t
+ (v · ∇)v = − 1

m
∇(V + Q); vt + vv′ = −(1/m)∂(V + Q)

The higher dimensional form is not considered here but matters are similar there.
This equation (and (1.8)) is incomplete as a hydrodynamical equation as a conse-
quence of a missing term −ρ−1∇p where p is the pressure (cf. [607]). Hence one
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“completes” the equation in the form

(1.10) m

(
∂v

∂t
+ (v · ∇)v

)
= −∇(V + Q)−∇F ; mvt + mvv′ = −∂(V + Q)−F ′

where ∇F = (1/R2)∇p (or F ′ = (1/R2)p′). By the derivations above this would
then correspond to an extended SE of the form

(1.11) i�
∂ψ

∂t
= − �2

2m
∆ψ + V ψ + Fψ

provided one can determine F in terms of the wave function ψ. One notes that it
a necessary condition here involves curlgrad(F ) = 0 or curl(R−2∇p) = 0 which
enables one to take e.g. p = −bR2 = −b|ψ|2. For one dimension one writes F ′ =
−b(1/R2)∂|ψ|2 = −(2bR′/R)⇒ F = −2blog(R) = −blog(|ψ|2). Consequently one
has a corresponding SE

(1.12) i�
∂ψ

∂t
= − �2

2m
ψ′′ + V ψ − b(log|ψ|2)ψ

This equation has a number of nice features discussed in [743]

For example ψ = βG(x−vt)exp(ikx−iωt) is a solution of (2.28) withV=0and for
v= �k/m one gets ψ = cexp[−(B/4)(x−vt+d)2] exp(ikx−iωt) where B = 4mb/�2.
Normalization

∫∞
−∞ |ψ|

2 = 1 is possible with |ψ|2 = δm(ξ) =
√

mα/πexp(−αmξ2)
where α = 2b/�2, d = 0, and ξ = x − vt F or m → ∞ we see that δm becomes
a Dirac delta and this means that motionof a
localized. This is impossible for ordinary QM since exp(ikx − iωt) cannot be
localized as m→∞. Such behavior helps to explain the so-called collapse of the
wave function and since superposition does not hold Schrödinger’s cat is either
dead or alive. Further v = k�/m is equivalent to the deBroglie relation λ = h/p
since λ = (2π/k) = 2π(�/mv) = 2π(h/2π)(1/p).

REMARK 1.1.1. We go now to [530] and the linear SE in the form
i(∂ψ/∂t) = −(1/2m)∆ψ+U(�r)ψ; such a situation leads to the Ehrenfest equations
which have the form

(1.13) < �v >= (d/dt) < �r >; < �r >=
∫

d3x|ψ(�r, t)|2�r; m(d/dt) < �v >=

= �F (t)�F (t) = −
∫

d3x|ψ(�r, t)|2�∇U(�r)

Thus the quantum expectation values of position and velocity of a suitable quan-
tum system obey the classical equations of motion and the amplitude squared is
a natural probability weight. The result tells us that besides the statistical fluc-
tuations quantum systems posess an extra source of indeterminacy, regulated in
a very definite manner by the complex wave function. The Ehrenfest theorem
can be extended to many point particle systems and in [530] one singles out the
kind of nonlinearities that violate the Ehrenfest theorem. A theorem is proved
that connects Galilean invariance, and the existence of a Lagrangian whose Euler-
Lagrange equation is the SE, to the fulfillment of the Ehrenfest theorem.

292,

particle with big mass is strongly

311, 312, 413, 691, 692, 693, 1028, 1029, 1030, 1031, 1032, 1033, 1034]).
(cf. also [223, 280,
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REMARK 1.1.2. There are many problems with the quantum mechanical
theory of derived nonlinear SE (NLSE) but many examples of realistic NLSE arise
in the study of superconductivity, Bose-Einstein condensates, stochastic models
of quantum fluids, etc. and the subject demands further study. We make no at-
tempt to survey this here but will give an interesting example later from [223]
related to fractal structures where a number of the difficulties are resolved. For
further information on NLSE, in addition to the references above, we refer to
[100, 281, 392, 413, 530, 534, 535, 536, 788, 789, 790, 956, 957] for some
typical situations (the list is not at all complete and we apologize for omissions).
Let us mention a few cases.

• The program of [530] introduces a Schrödinger Lagrangian for a free
particle including self-interactions of any nonlinear nature but no ex-
plicit dependence on the space of time coordinates. The corresponding
action is then invariant under spatial coordinate transformations and by
Noether’s theorem there arises a conserved current and the physical law
of conservation of linear momentum. The Lagrangian is also required
to be a real scalar depending on the phase of the wave function only
through its derivatives. Phase transformations will then induce the law
of conservation of probability identified as the modulus squared of the
wave function. Galilean invariance of the Lagrangian then determines
a connection between the probability current and the linear momentum
which insures the validity of the Ehrenfest theorem.

• We turn next to [535] for a statistical origin for QM (cf. also [191, 281,
534, 536, 698, 723, 809, 849]). The idea is to build a program in
which the microscopic motion, underlying QM, is described by a rigorous
dynamics different from Brownian motion (thus avoiding unnecessary
assumptions about the Brownian nature of the underlying dynamics).
The Madelung approach gives rise to fluid dynamical type equations with
a quantum potential, the latter being capable of interpretation in terms
of a stress tensor of a quantum fluid. Thus one shows in [535] that the
quantum state corresponds to a subquantum statistical ensemble whose
time evolution is governed by classical kinetics in the phase space. The
equations take the form

(1.14) ρt + ∂x(ρu) = 0; ∂t(µρui) + ∂j(ρφij) + ρ∂xi
V = 0;

∂t(ρE) + ∂x(ρS)− ρ∂tV = 0

(1.15)
∂S

∂t
+

1
2µ

(
∂S

∂x

)2

+W + V = 0

for two scalar fields ρ, S determining a quantum fluid. These can be
rewritten as

(1.16)
∂ξ

∂t
+

1
µ

∂2S

∂x2
+

1
µ

∂ξ

∂x

∂S

∂x
= 0;

∂S

∂t
− η2

4µ

∂2ξ

∂x2
− η2

8µ

(
∂ξ

∂x

)2

+
1
2µ

(
∂S

∂x

)2

+ V = 0
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where ξ = log(ρ) and for Ω = (ξ/2)+ (i/η)S = logΨ with m = Nµ, V =
NV , and � = Nη one arrives at a SE

(1.17) i�
∂Ψ
∂t

= − �2

2m

∂2Ψ
∂x2

+ VΨ

Further one can write Ψ = ρ1/2exp(iS/�) with S = NS and here N =∫
|Ψ|2dnx. The analysis is very interesting.

We will return to this later.

REMARK 1.1.3. Now in [324] one is obliged to use the form ψ = Rexp(iS/�)
to make sense out of the constructions (this is no problem with suitable provisos,
e.g. that S is not constant - cf. [110, 191, 197, 198, 346, 347]). Thus note
ψ′/ψ = (R′/R) + i(S′/�) with �(ψ′/ψ) = (1/m)S′ ∼ p/m (see also (1.22) below).
Note also J = (�/m)�ψ∗ψ′ and ρ = R2 = |ψ|2 represent a current and a density
respectively. Then using p = mv = mq̇ one can write

(1.18) ′ J = (�/m)�|ψ|2(ψ∗ψ′/|ψ|2) = (�/m)�(ρ )

Then look at the SE in the form i�ψt = −(�2/2m)ψ′′ + V ψ with ψt = (Rt +
iStR/�)exp(iS/�) and

(1.19) ψxx = [(R′ + (iS′R/�)exp(iS/�)]′ =

[R′′ + (2iS′R′/�) + (iS′′R/�) + (iS′/�)2R]exp(iS/�)
which means

(1.20) − �2

2m

[
R′′ −

(
S′

�

)2

+
2iS′r′

�
+

iS′′R
�

]
+ V R = i�

[
Rt +

iStR

�

]
⇒

⇒ ∂tR
2 +

1
m

(R2S′)′ = 0; St +
(S′)2

2mR
− �2R′′

2mR
+ V = 0

This can also be written as (cf. (1.3))

(1.21) ∂tρ +
1
m

∂(pρ) = 0; St +
p2

2m
+ Q + V = 0

where Q = −�2R′′/2mR. Now we sketch the philosophy of [324, 325] in part.
Most of such aspects are omitted here and we try to isolate the essential math-
ematical features (see Section 1.2 for more). First one emphasizes configurations
based on coordinates whose motion is choreographed by the SE according to the
rule (1-D only here)

(1.22) q̇ = v =
�

m
�ψ∗ψ′

|ψ|2

where i�ψt = −(�2/2m)ψ′′ + V ψ. The argument for (1.22) is based on obtaining
the simplest Galilean and time reversal invariant form for velocity, transforming
correctly under velocity boosts. This leads directly to (1.22) (cf. (1.18))) so that
Bohmian mechanics (BM) is governed by (1.22) and the SE. It’s a fairly convincing
argument and no recourse to Floydian time seems possible (cf. [191, 347, 373,
374]). Note however that if S = c then q̇ = v = (�/m)�(R′/R) = 0 while
p = S′ = 0 so perhaps this formulation avoids the S = 0 problems indicated in

p = (�/m)�(ψ /ψ); p
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[191, 347, 373, 374]. One notes also that BM depends only on the Riemannian
structure g = (gij) = (miδij) in the form

(1.23) q̇ = ��(gradψ/ψ); i�ψt = −(�2/2)∆ψ + V ψ

What makes the constant �/m in (1.22) important here is that with this value the
probability density |ψ|2 on configuration space is equivariant. This means that via
the evolution of probability densities ρt + div(vρ) = 0 (as in (1.21) with v ∼ p/m)
the density ρ = |ψ|2 is stationary relative to ψ, i.e. ρ(t) retains the form |ψ(q, t)|2.
One calls ρ = |ψ|2 the quantum equilibrium density (QED) and says that a system
is in quantum equilibrium when its coordinates are randomly distributed accord-
ing to the QED. The quantum equilibrium hypothesis (QHP) is the assertion that
when a system has wave function ψ the distribution ρ of its coordinates satisfies
ρ = |ψ|2.

REMARK 1.1.4. We extract here from [446, 447, 448] (cf. also the refer-
ences there for background and [381, 382, 523] for some information geometry).
There are a number of interesting results connecting uncertainty, Fisher informa-
tion, and QM and we make no attempt to survey the matter. Thus first recall that
the classical Fisher information associated with translations of a 1-D observable
X with probability density P (x) is

(1.24) FX =
∫

dx P (x)([log(P (x)]′)2 > 0

Recall now the Cramer-Rao inequality V ar(X) ≥ F−1
X where V ar(X) ∼ variance

of X. A Fisher length for X is defined via δX = F
−1/2
X and this quantifies the length

scale over which p(x) (or better log(p(x))) varies appreciably. Then the root mean
square deviation ∆X satisfies ∆X ≥ δX. Let now P be the momentum observable
conjugate to X, and Pcl a classical momentum observable corresponding to the
state ψ given via pcl(x) = (�/2i)[(ψ′/ψ)− (ψ̄′/ψ̄)] (cf. (1.22)). One has then the
identity < p >ψ=< pcl >ψ via integration by parts. Now define the nonclassical
momentum by pnc = p−pcl and one shows that ∆X∆p ≥ δX∆p ≥ δX∆pnc = �/2.
Then go to [447] now where two proofs are given for the derivation of the SE
from the exact uncertainty principle (δX∆pnc = �/2). Thus consider a classical
ensemble of n-dimensional particles of mass m moving under a potential V. The
motion can be described via the HJ and continuity equations

(1.25)
∂s

∂t
+

1
2m
|∇s|2 + V = 0;

∂P

∂t
+∇ ·

[
P
∇s

m

]
= 0

for the momentum potential s and the position probability density P (note that
we have interchanged p and P from [447] - note also there is no quantum potential
and this will be supplied by the information term). These equations follow from
the variational principle δL = 0 with Lagrangian

(1.26) L =
∫

dt dnx P

[
∂s

∂t
+

1
2m
|∇s|2 + V

]
It is now assumed that the classical Lagrangian must be modified due to the
existence of random momentum fluctuations. The nature of such fluctuations is
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immaterial for (cf. [447] for discussion) and one can assume that the momentum
associated with position x is given by p = ∇s + N where the fluctuation term N
vanishes on average at each point x. Thus s changes to being an average momentum
potential. It follows that the average kinetic energy < |∇s|2 > /2m appearing in
(1.26) should be replaced by < |∇s + N |2 > /2m giving rise to

(1.27) L′ = L + (2m)−1

∫
dt < N ·N >= L + (2m)−1

∫
dt(∆N)2

where ∆N =< N ·N >1/2 is a measure of the strength of the fluctuations. The ad-
ditional term is specified uniquely, up to a multiplicative constant, by the following
three assumptions

(1) Action principle: L′ is a scalar Lagrangian with respect to the fields P
and s where the principle δL′ = 0 yields causal equations of motion.
Thus (∆N)2 =

∫
dnx pf(P,∇P, ∂P/∂t, s,∇s, ∂s/∂t, x, t) for some scalar

function f .
(2) Additivity: If the system comprises two independent noninteracting sub-

systems with P = P1P2 then the Lagrangian decomposes into additive
subsystem contributions; thus f = f1 + f2 for P = P1P2.

(3) Exact uncertainty: The strength of the momentum fluctuation at any
given time is determined by and scales inversely with the uncertainty in
position at that time. Thus ∆N → k∆N for x → x/k. Moreover since
position uncertainty is entirely characterized by the probability density
P at any given time the function f cannot depend on s, nor explicitly on
t, nor on ∂P/∂t.

The following theorem is then asserted (see [447] for the proofs).

THEOREM 1.1. The above 3 assumptions imply the relation (∆N)2 =
c
∫

dnx P |∇log(P )|2 where c is a positive universal constant.

COROLLARY 1.1. It follows from (1.27) that the equations of motion for
p and s corresponding to the principle δL′ = 0 are

(1.28) i�
∂ψ

∂t
= − �2

2m
∇2ψ + V ψ

where � = 2
√

c and ψ =
√

Pexp(is/�).

REMARK 1.1.5. We sketch here for simplicity and clarity another deriva-
tion of the SE along similar ideas following [805]. Let P (yi) be a probability
density and P (yi + ∆yi) be the density resulting from a small change in the yi.
Calculate the cross entropy via

(1.29) J(P (yi + ∆yi) : P (yi)) =
∫

P (yi + ∆yi)log
P (yi + ∆yi)

P (yi)
dny 




[
1
2

∫
1

P (yi)
∂P (yi)

∂yi

∂P (yi)
∂yk)

dny

]
∆yi∆yk = Ijk∆yi∆yk
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The Ijk are the elements of the Fisher information matrix. The most general
expression has the form

(1.30) Ijk(θi) =
1
2

∫
1

P (xi|θi)
∂P (xi|θi)

∂θj

∂P (xi|θi)
∂θk

dnx

where P (xi|θi) is a probability distribution depending on parameters θi in addition
to the xi. For P (xi|θi) = P (xi + θi) one recovers (1.29) (straightforward - cf.
[805]). If P is defined over an n-dimensional manifold with positive inverse metric
gik one obtains a natural definition of the information associated with P via

(1.31) I = gikIik =
gik

2

∫
1
P

∂P

∂yi

∂P

∂yk
dny

Now in the HJ formulation of classical mechanics the equation of motion takes the
form

(1.32)
∂S

∂t
+

1
2
gµν ∂S

∂xµ

∂S

∂xν
+ V = 0

where gµν = diag(1/m, · · · , 1/m). The velocity field uµ is given by uµ = gµν(∂S/∂xν).
When the exact coordinates are unknown one can describe the system by means
of a probability density P (t, xµ) with

∫
Pdnx = 1 and

(1.33) (∂P/∂t) + (∂/∂xµ)(Pgµν(∂S/∂xν)) = 0

These equations completely describe the motion and can be derived from the
Lagrangian

(1.34) LCL =
∫

P

{
∂S

∂t
+

1
2
gµν ∂S

∂xµ

∂S

∂xν
+ V

}
dtdnx

using fixed endpoint variation in S and P. Quantization is obtained by adding a
term proportional to the information I defined in (1.31). This leads to
(1.35)

LQM = LCL + λI =
∫

P

{
∂S

∂t
+

1
2
gµν

[
∂S

∂xµ

∂S

∂xν
+

λ

P 2

∂P

∂xµ

∂P

∂xν

]
+ V

}
dtdnx

Fixed endpoint variation in S leads again to (1.33) while variation in P leads to

(1.36)
∂S

∂t
+

1
2
gµν

[
∂S

∂xµ

∂S

∂xν
+ λ

(
1

P 2

∂P

∂xµ

∂P

∂xν
− 2

P

∂2P

∂xµ∂xν

)]
+ V = 0

These equations are equivalent to the SE if ψ =
√

Pexp(iS/�) with λ = (2�)2.

REMARK 1.1.6. In Remarks 1.1.6 - 1.1.8 one uses Q = ±(1/m)
times the standard Q = −(�2/2m)(∆

√
ρ/
√

ρ. The SE gives to a probability
distribution ρ = |ψ|2 (with suitable normalization) and to this one can associate
an information entropy S(t) (actually configuration information entropy) S =
−
∫

ρlog(ρ)d3x which is typically not a conserved quantity (S is an unfortunate
notation here but we retain it momentarily since no confusion should arise). The
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rate of change in time of S can be readily found by using the continuity equation
t

(1.37)
∂S

∂t
= −

∫
ρt(1 + log(ρ))dx =

∫
(1 + log(ρ))∂(vρ)

Note that a formal substitution of v = −u in the contintuity equation implies the
standard free Browian motion outcome dS/dt = D ·

∫
[(∇ρ)2/ρ)d3x = D ·TrF ≥ 0

- use here u = D∇log(ρ) with D = �/2m) and (1.37) with
∫

(1 + log(ρ))∂(vρ) =
−
∫

vρ∂log(ρ) = −
∫

vρ′ ∼
∫

((ρ′)2/ρ) modulo constants involving D etc. Recall
here F ∼ −(2/D2)

∫
ρQdx =

∫
dx[(∇ρ)2/ρ] is a functional form of Fisher infor-

mation. A high rate of information entropy production corresponds to a rapid
spreading (flattening down) of the probablity density. This delocalization feature
is concomitant with the decay in time property quantifying the time rate at which
the far from equilibrium system approaches its stationary state of equilibrium
(d/dt)TrF ≤ 0.

REMARK 1.1.7. Now going back to the quantum context one admits gen-
eral forms of the current velocity v. For example consider a gradient field v = b−u
where the so-called forward drift b(x, t) of the stochastic process depends on a
particular diffusion model. Then one can rewrite the continuity equation as a

t Boundary restrictions
requiring ρ, vρ, and bρ to vanish at spatial infinities or at boundaries yield the
general entropy balance equation

(1.38)
dS

dt
=
∫ [

ρ(∇ · b) + D · (∇ρ)2

ρ

]
d3x ≡ −D

dS

dt
=
∫

ρ(v · u)d3x =< v · u >

The first term in the first equation is not positive definite and can be interpreted
as an entropy flux while the second term refers to the entropy production proper.
The flux term represents the mean value of the drift field divergence ∇·b which by
itself is a local measure of the flux incoming to or outgoing from an infinitesimal
surrounding of x at time t. If locally (∇· b)(x, t) > 0 on an infinitesimal time scale
we would encounter a local entropy increase in the system (increasing disorder)
while in case (∇ · b)(x, t) < 0 one thinks of local entropy loss or restoration or
order. Only in the situation < ∇ · b >= 0 is there no entropy production. Quan-
tum dynamics permits more complicated behavior. One looks first for a general
criterion under which the information entropy S is a conserved quantity. Consider
(1.8) and invoke the diffusion current to write (recall u = D(∇ρ)/ρ)

(1.39) D
dS

dt
= −

∫
[ρ−1/2(ρv)] · [ρ−1/2(D∇ρ)]d3x

Then by means of the Schwarz inequality one has D|dS/dt| ≤< v2 >1/2< u2 >1/2

so a necessary (but insufficient) condition for dS/dt �= 0 is that both < v2 >
and < u2 > are nonvanishing. On the other hand a sufficient condition for
dS/dt = 0 is that either one of these terms vanishes. Indeed in view of <
u2 >= D2

∫
[(∇ρ)2/ρ]d3x the vanishing information entropy production implies

dS/dt = 0; the vanishing diffusion current does the same job.

∂ ρ = −∇ · (vρ) where v is a current velocity field. Note here (cf. also [752])

standard Fokker-Planck equation ∂ ρ = D∆ρ − ∇ · (bρ).
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REMARK 1.1.8. We develop a little more perspective now (following [395]
- first paper). Recall Q written out as

(1.40) Q = 2D2 ∆ρ1/2

ρ1/2
= D2

[
∆ρ

ρ
− 1

2ρ2
(∇ρ)2

]
=

1
2
u2 + D∇ · u

where u = D∇log(ρ) is called an osmotic velocity field. The standard Brownian
motion involves v = −u, known as the diffusion current velocity and (up to a
dimensional factor) is identified with the thermodynamic force of diffusion which
drives the irreversible process of matter exchange at the macroscopic level. On the
other hand, even while the thermodynamic force is a concept of purely statistical
origin associated with a collection of particles, in contrast to microscopic forces
which have a direct impact on individual particles themselves, it is well known
that this force manifests itself as a Newtonian type entry in local conservation
laws describing the momentum balance; in fact it pertains to the average (local
average) momentum taken over by the particle cloud, a statistical ensemble prop-
erty quantified in terms of the probability distribution at hand. It is precisely the
(negative) gradient of the above potential Q in (1.40) which plays the Newtonian
force role in the momentum balance equations. The second analytical expression
of interest here involves

(1.41) −
∫

Qρdx = (1/2)
∫

u2ρdx = (1/2)D2 · FX ; FX =
∫

(∇ρ)2

ρ
dx

where FX is the Fisher information, encoded in the probability density ρ which
quantifies its gradient content (sharpness plus localization/disorder) Note that

(1.42) −
∫

Qρ = −
∫

[(1/2)u2ρ + Dρu′] = −
∫

(1/2)u2ρ +
∫

Duρ′ =

= −(1/2)
∫

D2(ρ′/ρ)2ρ + D2

∫
ρ′(ρ′/ρ) = (D2/2)

∫
(ρ′)2/ρ = (1/2)

∫
u2ρ

On the other hand the local entropy production inside the system sustaining an
irreversible process of diffusion is given via

(1.43)
dS

dt
= D ·

∫
(∇ρ)2

ρ
dx = D · FX ≥ 0

This stands for an entropy production rate when the Fick law induced diffusion
current (standard Brownian motion case) j = −D∇ρ, obeying ∂tρ+∇j = 0, enters
the scene. Here S = −

∫
ρlog(ρ)dx plays the role of (time dependent) information

entropy in the nonequilibrium statistical mechanics framework for the thermody-
namics of irreversible processes. It is clear that a high rate of entropy increase
coresponds to a rapid spreading (flattening) of the probability density. This ex-
plicitly depends on the sharpness of density gradients. The potential Q(x,t), the
Fisher information FX , the nonequilibrium measure of entropy production dS/dt,
and the information entropy S(t) are thus mutually entangled quantities, each
being exclusively determined in terms of ρ and its derivatives.

−
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In the standard statistical mechanics setting the Euler equation gives a pro-
totypical momentum balance equation in the (local) mean

(1.44) (∂t + v · ∇)v =
F

m
− ∇P

ρ

where F = −∇F represents normal Newtonian force and P is a pressure term. Q
appears in the hydrodynamical formalism of QM via

(1.45) (∂t + v · ∇)v =
1
m

F −∇Q =
1
m

F +
�2

2m2
∇∆ρ1/2

ρ1/2

Another spectacular example pertains to the standard free Brownian motion in
the strong friction regime (Smoluchowski diffusion), namely

(1.46) (∂t + v · ∇)v = −2D2∇∆ρ1/2

ρ1/2
= −∇Q

where v = −D(∇ρ/ρ) (formally D = �/2m).

REMARK 1.1.9. The papers in [291, 292] contain very interesting deriva-
tions of Schrödinger equations via diffusion ideas à la Nelson, Markov wave equa-
tions, and suitable “applied” forces (e.g. radiative reactive forces).

We go now to Nagasawa [670, 671, 672, 673, 674] to see how diffusion and
the SE are really connected (cf. also [15, 141, 223, 421, 676, 681, 698, 726,
732, 733, 734, 735, 736] for related material, some of which is discussed later
in detail); for now we simply sketch some formulas for a simple Euclidean met-
ric where ∆ =

∑
(∂/∂xi)2. Then ψ(t, x) = exp[R(t, x) + iS(t, x)] satisfies a SE

i∂tψ +(1/2)∆ψ + ia(t, x) ·∇ψ−V (t, x)ψ = 0 (� and m omitted with a(t, x) a drift
coefficient) if and only if

(1.47) V = −∂S

∂t
+

1
2
∆R +

1
2
(∇R)2 − 1

2
(∇S)2 − a · ∇S;

0 =
∂R

∂t
+

1
2
∆S + (∇S) · (∇R) + a · ∇R

in the region D = {(s, x) : ψ(s, x) �= 0} (a harmless gauge factor in the divergence
is also being omitted). Solutions are often referred to as weak or distributional
but we do not belabor this point. From [671, 672, 673] there results

THEOREM 1.2. Let ψ(t, x) = exp[R(t, x) + iS(t, x)] be a solution of the
SE above; then φ(t, x) = exp[R(t, x) + S(t, x)] and φ̂ = exp[R(t, x) − S(t, x)] are
solutions of

(1.48)
∂φ

∂t
+

1
2
∆φ + a(t, x) · ∇φ + c(t, x, φ)φ = 0;

−∂φ̂

∂t
+

1
2
∆φ̂− a(t, x) · ∇φ̂ + c(t, x, φ)φ̂ = 0

where the creation and annihilation term c(t, x, φ) is given via

(1.49) c(t, x, φ) = −V (t, x)− 2
∂S

∂t
(t, x)− (∇S)2(t, x)− 2a · ∇S(t, x)
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Conversely given (φ, φ̂) as in Theorem 1.2 satisfying (1.48) it follows that ψ satisfies
the SE with V as in (1.49) (note R = (1/2)log(φ̂φ) and S = (1/2)log(φ/φ̂) with
exp(R) = (φ̂φ)1/2).

We note that the equations (1.48) are not imaginary time SE and from all
this one can conclude that nonrelativistic QM is diffusion theory in terms of
Schrödinger processes (described by (φ, φ̂) - more details later). Further it is
shown that certain key postulates in Nelson’s stochastic mechanics or Zambrini’s
Euclidean QM (cf. [1011]) can both be avoided in connecting the SE to diffusion
processes (since they are automatically valid). Look now at Theorem 1.2 for one
dimension and write T = �t with X = (�/

√
m)x and A = a�/

√
m; then the SE

becomes

(1.50) i�ψT = −(�2/2m)ψXX − iAψX + V ψ;

i�RT + (�2/m2)RXSX + (�2/2m2)SXX + ARX = 0;

V = −i�ST + (�2/2m)RXX + (�2/2m2)R2
X − (�2/2m2)S2

X −ASX

Hence

PROPOSITION 1.1. The SE of Theorem 1.2, written in the variables X =
(�/
√

m)x, T = �t, with A = (
√

m/�)a and V = V (X,T ) ∼ V (x, t) is equivalent
to (2.2).

Making a change of variables in (1.48) now, as in Proposition 1.1, yields

COROLLARY 1.2. Equation (1.48), written in the variables of Proposition
1.2, becomes

(1.51) �φT +
�2

2m
φXX + AφX + c̃φ = 0; −�φ̂T +

�2

2m
φ̂XX −Aφ̂X + c̃φ̂ = 0;

c̃ = −Ṽ (X,T )− 2�ST −
�2

m
S2

X − 2ASX

Thus the diffusion processes pick up factors of � and �/
√

m.

REMARK 1.1.10. We extract here from the Appendix to [672] for some
remarks on competing points of view regarding diffusion and the the SE. First
some work of Fenyes [360] is cited where a Lagrangian is taken as

(1.52) L(t) =
∫ [

∂S

∂t
+

1
2
(∇S)2 + V +

1
2

(
1
2
∇µ

µ

)2
]

µdx

where µt(x) = exp(2R(t, x)) denotes the distribution density of a diffusion process
and V is a potential function. The term Π(µ) = (1/2)[(1/2)(∇µ/µ)]2 is called a
diffusion pressure and since (1/2)(∇µ/µ) ∼ ∇R the Lagrangian can be written as

(1.53) L =
∫ [

∂S

∂t
+

1
2
(∇S)2 +

1
2
(∇R)2 + V

]
µdx
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Applying the variational principle δ
∫ b

a
L(t)dt = 0 one arrives at

(1.54)
∂S

∂t
+

1
2

[(∇(R + S)]2− (∇(R+S)) ·
(

1
2
∇µ

µ

)
+
(

1
2
∇µ

µ

)2

− 1
4

∆µ

µ
+V = 0

which is called a motion equation of probability densities. From this he shows
that the function ψ = exp(R + iS) satisfies the SE i∂t + (1/2)∆ψ − V (t, x)ψ = 0.
Indeed putting Π(µ) and the formula (1/2)(∆µ/µ)+(1/2)∆R+(∇R)2 into (1.53)
one obtains

(1.55)
∂S

∂t
+

1
2
(∇S)2 − 1

2
(∇R)2 − 1

2
∆R + V = 0

which goes along with the duality relation Rt + (1/2)∆S +∇S · ∇R + b · ∇R = 0
where u = (1/2)(a + â) = ∇R and v = (1/2)(a − â) = ∇S as derived in the
Nagasawa theory. Hence ψ = exp(R + iS) satisfies the SE by previous calcula-
tions. One can see however that the equation (1.53) is not needed since the SE
and diffusion equations are equivalent and in fact the equations of motion are the
diffusion equations. Moreover it is shown in [672] that (1.53) is an automatic
consequence in diffusion theory with V = −c− 2St − (∇S)2 and therefore it need
not be postulated or derived by other means. This is a simple calculation from
the theory developed above.

REMARK 1.1.11. Nelson’s important work in stochastic mechanics [698]
produced the SE from diffusion theory but involved a stochastic Newtonian equa-
tion which is shown in [672] to be automatically true. Thus Nelson worked in a
general context which for our purposes here can be considered in the context of
Brownian motions

(1.56) B(t) = ∂t + (1/2)∆ + b · ∇+ a · ∇; B̂(t) = −∂t + (1/2)∆− b · ∇+ â · ∇

and used a mean acceleration α(t, x) = −(1/2)[B(t)B̂(t)x+B̂(t)B(t)x]. Assuming
the duality relations after (1.55) he obtains a formula

(1.57) α(t, x) = −1
2
[B(t)(−b+â)+B̂(b+a)] = bt+(1/2)∇(b)2−(b+v)×curl(b)−

−[−vt + (1/2)∆u + (1/2)(â · ∇)a + (1/2)(a · ∇)â− (b · ∇)v− (v · ∇)b− v× curl(b)]

Then it is shown that the SE can be deduced from the stochastic Newton’s equation

(1.58) α(t, x) = −∇V +
∂b

∂t
+

1
2
∇(b2)− (b + v)× curl(b)

Nagasawa shows that this serves only to reproduce a known formula for V yielding
the SE; he also shows that (1.57) also is an automatic consequence of the duality
formulation of diffusion equations above. This equation (1.57) is often called sto-
chastic quantization since it leads to the SE and it is in fact correct with the V
specified there. However the SE is more properly considered as following directly
from the diffusion equations in duality and is not correctly an equation of motion.
There is another discussion of Euclidean QM developed by Zambrini [1011]. This
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involves α̃(t, x) = (1/2)[B(t)B(t)x + B̂(t)B̂(t)x] (with (σσT )ij = δij). It is postu-
lated that this equals −∇c + bt + (1/2)∇(b)2− b + v)× curl(b) which in fact leads
to the same equation for V as above with V = −c−2St− (∇S)2−2b ·∇S so there
is nothing new. Indeed it is shown in [672] that the postulated equivalence holds
automatically as a simple consequence of time reversal of diffusion processes.

2. SCALE RELATIVITY

Scale relativity (SR) is due to L. Nottale (cf. [715, 716, 717, 718, 719, 720,
721]) and somehow has not been accorded any real recognition by the “estab-
lishment”. We only touch here on derivations of the SE and will develop further
aspects later; the arguments are evidently heuristic but have a compelling inter-
est. More general relativistic and cosmological features are discussed in Chapter
2 where further discussion is given. The ideas involve spacetime having a fractal
microstructure containing in particular continuous (self-similar) nondifferentiable
paths which serve as geodesic quantum paths of Hausdorff dimension D = 2. This
is in fact a good notion of quantum path (following Feynman for example - cf.
[1]) and we will see how it leads to a lovely (heuristic) derivation of the SE which
automatically creates a complex wave function.

REMARK 1.2.1. One considers quantum paths à la Feynman so that
(E1) limt→t′ [X(t) − X(t′)]2/(t − t′) exists. This implies X(t) ∈ H1/2 where
Hα means cεα ≤ |X(t) − X(t′)| ≤ Cεα and from [345] for example this means
dimHX[a, b] = 1/2. Now one “knows” (see e.g. [1]) that quantum and Brown-
ian motion paths (in the plane) have H-dimension 2 and some clarification is
needed here. We refer to [625] where there is a paper on Wiener Brownian motion
(WBM), random walks, etc. discussing Hausdorff and other dimensions of various
sets. Thus given 0 < λ < 1/2 with probability 1 a Browian sample function X
satisfies |X(t + h) − X(t)| ≤ b|h|λ for |h| ≤ h0 where b = b(λ). This leads to
the result that with probability 1 the graph of a Brownian sample function has
Hausdorff and box dimension 3/2. On the other hand a Browian trail (or path) in
2 dimensions has Hausdorff and box dimension 2 (note a quantum path can have
self intersections, etc.).

There are now several excellent approaches. The method of Nottale [700,
715, 718] is preeminent (cf. also [732, 733, 734, 735]) and there is also a nice
derivation of a nonlinear SE via fractal considerations in [223] (indicated below).
The most elaborate and rigorous approach is due to Cresson [272], with elabo-
ration and updating in [3, 273, 274]. There are various derivations of the SE
and we follow [715] here (cf. also [718, 828]). The philosophy of scale relativity
will be discussed later and we just write down equations here pertaining to the
SE. First a bivelocity structure is defined (recall that one is dealing with fractal
paths). One defines first

(2.1)
d+

dt
y(t) = lim∆t→0+

〈
y(t + ∆t)− y(t)

∆t

〉
;

d−
dt

y(t) = lim∆t→0+

〈
y(t)− y(t−∆t)

∆t

〉
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Applied to the position vector x this yields forward and backward mean velocities,
namely (d+/dt)x(t) = b+ and (d−/dt)x(t) = b−. Here these velocities are defined
as the average at a point q and time t of the respective velocities of the outgoing
and incoming fractal trajectories; in stochastic QM this corresponds to an average
on the quantum state. The position vector x(t) is thus “assimilated” to a stochastic
process which satisfies respectively after (dt > 0) and before (dt < 0) the instant t
a relation dx(t) = b+[x(t)]dt+ dξ+(t) = b−[x(t)]dt+ dξ−(t) where ξ(t) is a Wiener
process (cf. [698]). It is in the description of ξ that the D = 2 fractal character
of trajectories is inserted; indeed that ξ is a Wiener process means that the dξ’s
are assumed to be Gaussian with mean 0, mutually independent, and such that

(2.2) < dξ+i(t)dξ+j(t) >= 2Dδijdt; < dξ−i(t)dξ−j(t) >= −2Dδijdt

where < > denotes averaging (D is now the diffusion coefficient). Nelson’s pos-
tulate (cf. [698]) is that D = �/2m and this has considerable justification (cf.
[715]). Note also that (2.2) is indeed a consequence of fractal (Hausdorff) dimen-
sion 2 of trajectories follows from < dξ2 > /dt2 = dt−1, i.e. precisely Feynman’s
result < v2 >1/2∼ δt−1/2 (the discussion here in [715] is unclear however - cf.
[29]). Note also that Brownian motion (used in Nelson’s postulate) is known to
be of fractal (Hausdorff) dimension 2. Note also that any value of D may lead
to QM and for D → 0 the theory becomes equivalent to the Bohm theory. Now
expand any function f(x, t) in a Taylor series up to order 2, take averages, and
use properties of the Wiener process ξ to get

(2.3)
d+f

dt
= (∂t + b+ · ∇+D∆)f ;

d−f

dt
= (∂t + b− · ∇ − D∆)f

Let ρ(x, t) be the probability density of x(t); it is known that for any Markov
(hence Wiener) process one has ∂tρ + div(ρb+) = D∆ρ (forward equation) and
∂tρ + div(ρb−) = −D∆ρ (backward equation). These are called Fokker-Planck
equations and one defines two new average velocities V = (1/2)[b+ + b−] and U =
(1/2)[b+−b−]. Consequently adding and subtracting one obtains ρt +div(ρV ) = 0
(continuity equation) and div(ρU) − D∆ρ = 0 which is equivalent to div[ρ(U −
D∇log(ρ))] = 0. One can show, using (2.3) that the term in square brackets
in the last equation is zero leading to U = D∇log(ρ). Now place oneself in the
(U, V ) plane and write V = V − iU . Then write (dV/dt) = (1/2)(d+ + d−)/dt
and (dU/dt) = (1/2)(d+ − d−)/dt. Combining the equations in (2.3) one defines
(dV/dt) = ∂t + V · ∇ and (dU/dt) = D∆ + U · ∇; then define a complex operator
(d′/dt) = (dV/dt)− i(dU/dt) which becomes

(2.4)
d′

dt
=
(

∂

∂t
− iD∆

)
+ V · ∇

One now postulates that the passage from classical mechanics to a new nondif-
ferentiable process considered here can be implemented by the unique prescription
of replacing the standard d/dt by d′/dt. Thus consider S =

〈∫ t2
t1
L(x,V, t)dt

〉
yielding by least action (d′/dt)(∂L/∂Vi) = ∂L/∂xi. Define then Pi = ∂L/∂Vi

leading to P = ∇S (recall the classical action principle with dS = pdq − Hdt).
Now for Newtonian mechanics write L(x, v, t) = (1/2)mv2 − U which becomes
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L(x,V, t) = (1/2)mV2 − U leading to −∇U = m(d′/dt)V. One separates real and
imaginary parts of the complex acceleration γ = (d′V/dt to get

(2.5) d′V = (dV − idU )(V − iU) = (dVV − dUU)− i(dUV + dVU)

The force F = −∇U is real so the imaginary part of the complex acceleration
vanishes; hence

(2.6)
dU
dt

V +
dV
dt

U =
∂U

∂t
+ U · ∇V + V · ∇U +D∆V = 0

from which ∂U/∂t may be obtained. This is a weak point in the derivation since
one has to assume e.g. that U(x, t) has certain smoothness properties (see below
for refinements). Differentiating the expression U = D∇log(ρ) and using the
continuity equation yields another expression (∂U/∂t) = −D∇(divV )−∇(V ·U).
Comparison of these relations yields ∇(divV ) = ∆V −U ∧ curlV where the curlU
term vanishes since U is a gradient. However in the Newtonian case P = mV
so P∇S implies that V is a gradient and hence a generalization of the classical
action S can be defined. Recall V = 2D∇S and ∇(divV ) = ∆V with curlV = 0;
combining this with the expression for U one obtains S = log(ρ1/2) + iS. One
notes that this is compatible with [698] for example. Finally set ψ =

√
ρexp(iS) =

exp(iS) with V = −2iD∇(logψ) and note

(2.7) U = D∇log(ρ); V = 2D∇S;

V = −2iD∇logψ = −iD∇log(ρ) + 2D∇S = V − iU

Thus for P = mV the relation P ∼ −i�∇ or Pψ = −i�∇ψ has a natural
interpretation. Putting ψ in the equation −∇U = m(d′/dt)V, which general-
izes Newton’s law to fractal space the equation of motion takes the form ∇U =
2iDm(d′/dt)(∇log(ψ)). Then noting that d′ and ∇ do not commute one replaces
d′/dt by (2.4) to obtain

(2.8) ∇U = 2iDm [∂t∇log(ψ)− iD∆(∇log(ψ))− 2iD(∇log(ψ) · ∇)(∇log(ψ)]

This expression can be simplified via

(2.9) ∇∆ = ∆∇; (∇f · ∇)(∇f) = (1/2)∇(∇f)2;
∆f

f
= ∆log(f) + (∇log(f))2

which implies

(2.10)
1
2
∆(∇log(ψ)) + (∇log(ψ) · ∇)(∇log(ψ)) =

1
2
∇∆ψ

ψ

Integrating this equation yields D2∆ψ + iD∂tψ− (U/2m)ψ = 0 up to an arbitrary
phase factor α(t) which can be set equal to 0 by a suitable choice of phase S.
Replacing D by �/2m one arrives at the SE i�ψt = −(�2/2m)∆ψ + Uψ and this
suggests an interpretation of QM as mechanics in a nondifferentiable (fractal)
space.

In fact (using one space dimension for convenience) we see that if U = 0
then the free motion m(d′/dt)V = 0 yields the SE i�ψt = −(�2/2m)ψxx as a
geodesic equation in “fractal” space. Further from U = (�/m)(∂

√
ρ/
√

ρ) and
Q = −(�2/2m)(∆

√
ρ/
√

ρ) one arrives at a lovely relation, namely
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PROPOSITION 2.1. The quantum potential Q can be written in the form
Q = −(m/2)U2 − (�/2)∂U (cf. (1.40) multiplied by −m). Hence the quantum
potential arises directly from the fractal nonsmooth nature of the quantum paths.
Since Q can be thought of as a quantization of a classical motion we see that the
quantization corresponds exactly to the existence of nonsmooth paths. Conse-
quently smooth paths imply no quantum mechanics.

REMARK 1.2.2. In [15] (to be discussed later) one writes again ψ =
Rexp(iS/�) with field equations in the hydrodynamical picture (1-D for conve-
nience)

(2.11) dt(m0ρv) = ∂t(m0ρv) +∇(m0ρv) = −ρ∇(u + Q); ∂tρ +∇ · (ρv) = 0

where Q = −(�2/2m0)(∆
√

ρ/
√

ρ). The Nottale approach is used as above with
dv ∼ dV and du ∼ dU . One assumes that the velocity field from the hydrody-
namical model agrees with the real part v of the complex velocity V = v − iu so
v = (1/m0)∇s ∼ 2D∂s and u = −(1/m0)∇σ ∼ D∂log(ρ) where D = �/2m0. In
this context the quantum potential Q = −(�2/2m0)∆D

√
ρ/
√

ρ becomes

(2.12) Q = −m0D∇ · u− (1/2)m0u
2 ∼ −(�/2)∂u− (1/2)m0u

2

Consequently Q arises from the fractal derivative and the nondifferentiability of
spacetime again, as in Proposition 2.1. Further one can relate u (and hence Q) to
an internal stress tensor whereas the v equations correspond to systems of Navier-
Stokes type.

REMARK 1.2.3. Some of the relevant equations for dimension one are
collected together later. We note that it is the presence of ± derivatives that makes
possible the introduction of a complex plane to describe velocities and hence QM;
one can think of this as the motivation for a complex valued wave function and
the nature of the SE.

We go now to [223] and will sketch some of the material. Here one extends
ideas of Nottale and Ord in order to derive a nonlinear Schrödinger equation
(NLSE). Using the hydrodynamic model in [743] one added a hydrostatic pressure
term to the Euler-Lagrange equations and another possibility is to add instead a
kinematic pressure term. The hydrostatic pressure is based on an Euler equation
−∇p = ρg where ρ is density and g the gravitational acceleration (note this gives

p = ρgx in 1-D). In [743] one took ρ = ψ∗ψ, b a mass-energy parameter, and
p = ρ; then the hydrostatic potential is (for ρ0 = 1)

(2.13) b

∫
g(x) · dr = −b

∫ ∇p

ρ
· dr = −blog(ρ/ρ0) = −blog(ψ∗ψ)

Here −blog(ψ∗ψ) has energy units and explains the nonlinear term of [111] which
involved

(2.14) i�
∂ψ

∂t
= − �2

2m
∇2ψ + Uψ − b[log(ψ∗ψ)]ψ

A derivation of this equation from the Nelson stochastic QM was given by Lemos

−

(cf. [588]). There are moreover some problems since this equation does not obey the
homogeneity condition saying that the state λ|ψ > is equivalent to |ψ >; moreover

−
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(2.14) is not invariant under ψ → λψ. Further, plane wave solutions to (2.14) do
not seem to have a physical interpretion due to extraneous dispersion relations.
Finally one would like to have a SE in terms of ψ alone. Note that another NLSE
could be obtained by adding kinetic pressure terms (1/2)ρv2 and taking ρ = aψ∗ψ
where v = p/m. Now using the relations from HJ theory (ψ/ψ∗) = exp[2iS(x)/�]
and p = ∇S(x) = mv one can write v = −i(�/2m)∇log(ψ/ψ∗) so that the energy
density becomes

(2.15) (1/2)ρ|v|2 = (a�2/8m2)ψψ∗∇log(ψ/ψ∗) · ∇log(ψ∗/ψ)

This leads to a corresponding nonlinear potential associated with the kinematical
pressure via (a�2/8m2)∇log(ψ/ψ∗) · ∇log(ψ∗/ψ). Hence a candidate NLSE is

(2.16) i�∂t = − �2

2m
∇2ψ + Uψ − b[log(ψ∗ψ)]ψ +

a�2

8m2

(
∇log

ψ

ψ∗ · ∇log
ψ∗

ψ

)
Here the Hamiltonian is Hermitian and a �= b are both mass-energy parameters
to be determined experimentally. The new term can also be written in the form
∇log(ψ/ψ∗) · ∇log(ψ∗/ψ) = −[∇log(ψ/ψ∗)]2. The goal now is to derive a NLSE
directly from fractal space time dynamics for a particle undergoing Brownian mo-
tion. This does not require a quantum potential, a hydrodynamic model, or any
pressure terms as above.

REMARK 1.2.4. One should make some comments about the kinematic
pressure terms (1/2)ρv2 ∼ (�2/2m)(a/m)|∇log(ψ)|2 versus hydrostatic pressure
terms of the form

∫
(∇p/ρ) ∼ −blog(ψ∗ψ). The hydrostatic term breaks homo-

geneity whereas the kinematic pressure term preserves homogeneity (scaling with
a λ factor). The hydrostatic pressure term is also not compatible with the motion
kinematics of a particle executing a fractal Brownian motion. The fractal formu-
lation will enable one to relate the parameters a, b to �.

Following Nottale, nondifferentiability implies a loss of causality and one is
thinking of Feynmann paths with < v2 >∝ (dx/dt)2 ∝ dt2[(1/D)−1) with D = 2.
Now a fractal function f(x, ε) could have a derivative ∂f/∂ε and renormalization
group arguments lead to (∂f(x, ε)/∂logε) = a(x) + bf(x, ε) (cf. [715]). This can
be integrated to give f(x, ε) = f0(x)[1 − ζ(x)(λ/ε)−b]. Here λ−bζ(x) is an inte-
gration constant and f0(x) = −a(x)/b. This says that any fractal function can be
approximated by the sum of two terms, one independent of the resolution and the
other resolution dependent; ζ(x) is expected to be a flucuating function with zero
mean. Provided a �= 0 and b < 0 one has two interesting cases (i) ε << λ with
f(x, ε) ∼ f0(x)(λ/ε)−b and (ii) ε >> λ with f independent of scale. Here λ is the
deBroglie wavelength. Now one writes

(2.17) r(t + dt, dt)− r(t, dt) = b+(r, t)dt + ξ+(t, dt)
(

dt

τ0

)β

;

r(t, dt)− r(t− dt, dt)− b−(r, t)dt + ξ−(t, dt)
(

dt

τ0

)β

where β = 1/D and b± are average forward and backward velocities. This leads
to v±(r, t, dt) = b±(r, t) + ξ±(t, dt)(dt/τ0)β−1. In the quantum case D = 2 one
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has β = 1/2 so dtβ−1 is a divergent quantity (i.e. nondifferentiability ensues).
Following [588, 715, 698] one defines

(2.18)
d±r(t)

dt
= lim∆t→±0

〈
r(t + ∆t)− r(t)

∆t

〉
from which d±r(t)/dt = b±. Now following Nottale one writes

(2.19)
δ

dt
=

1
2

(
d+

dt
+

d−
dt

)
− i

2

(
d+

dt
− d−

dt

)
which leads to (δ/dt) = (∂/∂t)+v ·∇− iD∇2. Here in principle D is a real valued
diffusion constant to be related to �. and < dξ±idξ±j >= ±2Dδijdt. Now for the
complex time dependent wave function we take ψ = exp[iS/2mD] with p = ∇S so
that v = −2iD∇log(ψ). The SE is obtained from the Newton equation (F = ma)
via −∇U = m(δ/dt)v = −2imD(δ/dt)∇log(ψ) which yields

(2.20) −∇U = −2im[D∂t∇log(ψ)]− 2D∇
(
D∇

2ψ

ψ

)
(see [715] for identities involving∇). Integrating yieldsD2∇2ψ+iD∂tψ−(U/2m)ψ =
0 up to an arbitrary phase factor which may be set equal to zero. Now replacing
D by �/2m one gets the SE i�∂tψ + (�2/2m)∇2ψ = Uψ. Here the Hamiltonian
is Hermitian, the equation is linear, and the equation is homogeneous of degree 1
under the substitution ψ → λψ.

Next one generalizes this by relaxing the assumption that the diffusion co-
efficient is real. Some comments on complex energies are needed - in particular
constraints are often needed (cf. [788]). However complex energies are not alien
in ordinary QM (cf. [223] for references). Now the imaginary part of the linear
SE yields the continuity equation ∂tρ +∇ · (ρv) = 0 and with a complex potential
the imaginary part of the potential will act as a source term in the continuity
equation. Instead of < dζ±dζ± >= ±2Ddt with D and 2mD = � real one sets

(2.21) < dζ±dζ± >= ±(D +D∗)dt; 2mD = � = α + iβ

The complex time derivative operator becomes (δ/dt) = ∂t+v·∇−(i/2)(D+D∗)∇2.
Writing again ψ = exp[iS/2mD] = exp(iS/�) one obtains v = −2iD∇log(ψ).
The NLSE is then obtained (via the Newton law) via the relation−∇U = m(δ/dt)v =
−2imD(δ/dt)∇log(ψ). Combining equations yields then

(2.22) ∇U = 2im[D∂t∇log(ψ)− 2iD2(∇log(ψ) · ∇)(∇log(ψ)−

− i

2
(D +D∗)D∇2(∇log(ψ)]

Now using the identities (i)∇∇2 = ∇2∇, (ii) 2(∇log(ψ)·∇)(∇log(ψ) = ∇(∇log(ψ))2

and (iii) ∇2log(ψ) = ∇2ψ/ψ − (∇log(ψ))2 leads to a NLSE with nonlinear (kine-
matic pressure) potential, namely

(2.23) i�∂tψ = − �2

2m

α

�
∇2ψ + Uψ − i

�2

2m

β

�
(∇log(ψ))2ψ

Note the crucial minus sign in front of the kinematic pressure term and also that
� = α + iβ = 2mD is complex. When β = 0 one recovers the linear SE. The
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nonlinear potential is complex and one defines W = −(�2/2m)(β/�)(∇log(ψ))2

with U the ordinary potential; then the NLSE is

(2.24) i�∂tψ = [−(�2/2m)(α/�)∇2 + U + iW ]ψ

This is the fundamental result of [223]; it has the form of an ordinary SE with
complex potential U +iW and complex �. The Hamiltonian is no longer Hermitian
and the potential itself depends on ψ. Nevertheless one can have meaningful phys-
ical solutions with real valued energies and momenta; the homogeneity breaking
hydrostatic pressure term −b(log(ψ∗ψ)ψ is not present (it would be meaningless)
and the NLSE is invariant under ψ → λψ.

REMARK 1.2.5. One could ask why not simply propose as a valid NLSE
an equation

i�∂tψ = − �2

2m
∇2ψ +

�2

2m

a

m
|∇log(ψ)|2ψ

Here one has a real Hamiltonian satisfying the homogeneity condition and the
equation admits soliton solutions of the form ψ = CA(x − vt)exp[i(kx − ωt)]
where A(x − vt) is to be determined by solving the NLSE. The problem here is
that the equation suffers from an extraneous dispersion relation. Thus putting
in the plane wave solution ψ ∼ exp[−i(Et − px)] one gets an extraneous energy
momentum (EM) relation (after setting U = 0), namely E = (p2/2m)[1 + (a/m)]
instead of the usual E = p2/2m and hence EQM �= EFT where FT means field
theory.

REMARK 1.2.6. It has been known since e.g. [788] that the expression
for the energy functional in nonlinear QM does not coincide with the QM energy
functional, nor is it unique. To see this write down the NLSE of [111] in the form
i�∂tψ = ∂H(ψ, ψ∗)/∂ψ∗ where the real Hamiltonian density is

H(ψ, ψ∗) = − �2

2m
ψ∗∇2ψ + Uψ∗ψ − bψ∗log(ψ∗ψ)ψ + bψ∗ψ

Then using EFT =
∫

Hd3r we see it is different from < Ĥ >QM and in fact
EFT − EQM =

∫
bψ∗ψd3r = b. This problem does not occur in the fractal based

NLSE since it is written entirely in terms of ψ.

REMARK 1.2.7. In the fractal based NLSE there is no discrepancy between
the QM energy functional and the FT energy functional. Both are given by

NNLSE
fractal = − �2

2m

α

�
ψ∗∇2ψ + Uψ∗ψ − i

�2

2m

β

�
ψ∗(∇log(ψ)2ψ

The NLSE is unambiguously given by in Remark 1.2.5 and H(ψ, ψ∗) is homoge-
neous of degree 1 in λ. Such equations admit plane wave solutions with dispersion
relation E = p2/2m; indeed, inserting the plane wave solution into the fractal
based NLSE one gets (after setting U = 0)

(2.25) E =
�2

2m

α

�

p2

2m
+ i

β

�

p2

2m
=

p2

2m

α + iβ

�
=

p2

2m
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since � = α + iβ. The remarkable feature of the fractal approach versus all
other NLSE considered sofar is that the QM energy functional is precisely the FT
one. The complex diffusion constant represents a truly new physical phenomenon
insofar as a small imaginary correction to the Planck constant is the hallmark of
nonlinearity in QM (see [223] for more on this).

REMARK 1.2.8. Some refinements of the Nottale derivation are given in
[272] and we consider x → f(x(t), t) ∈ Cn with X(t) ∈ H1/n (i.e. cε1/n ≤
|X(t′)−X(t)| ≤ Cε1/n). Define (f real valued)

(2.26) ∇ε
±f(t) =

f(t± ε)− f(t)
±ε

;
�εf

�t
(f) =

1
2
(∇ε

+ +∇ε
−)f − i

2
(∇ε

+ −∇ε
−f);

aε,j(t) =
1
2
[(∆ε

+x)j − (−1)j(∆ε
−x)j ]− i

2
[(∆ε

+x)j + (−1)j(∆ε
−x)j ]

Here one assumes h > 0 and ε(f, h) ≥ ε > 0 where ε(f, h) is the minimal resolution
defined via infε{aε(f) < h} for aεf(t) = |[f(t+ε)+f(t−ε)−2f(t)]/ε|. If ε(f, h) is
not 0 then f is not differentiable (but not conversely). Now assume some minimal
control over the lack of differentiability (cf. [272]) and then for f now complex
valued with �εf/�t = (�εf�/�t) + i(�εf�/�t) (note the mixing of i terms is not
trivial) one has

(2.27)
�εf

�t
=

∂f

∂t
+

�εx

�t

∂f

∂x
+

n∑
2

1
j!

aε,j(t)
∂jf

∂xj
εj−1 + o(ε1/n)

We sketch now the derivation of a SE in the spirit of Nottale but with more
mathematical polish. Going to [272] one defines (for a nondifferentiable function
f)

(2.28) fε(t) =
1
2ε

∫ t+ε

t−ε

f(s)ds;

f+
ε (t) =

1
2ε

∫ t+ε

t

f(s)ds; f−
ε (t) =

1
2ε

∫ t

t−ε

f(s)ds

One considers quantum paths à la Feynman so that limt→t′ [X(t)−X(t′)]2/(t− t′)
exists. This implies X(t) ∈ H1/2 where Hα means cεα ≤ |X(t)−X(t′)| ≤ Cεα and
from Remark 1.2.1 for example this means dimHX[a, b] = 1/2. Next, thinking of
classical Lagrangians L(x, v, t) = (1/2)mv2 + U(x, t), one defines an operator Q
via ((x, t, v) ∼ classical variables)

(2.29) Q(t) = t; Q(x(t)) = X(t); Q(v(t)) = V(t); Q

(
df

dt

)
= Q

(
d

dt

)
·Q(f)

where Q(d/dt) = d/dt if Q(f)(t) is differentiable and Q(d/dt) = �ε/�t where
ε(x, h) > ε > 0 if Q(f)(t) is nondifferentiable. Note V(t) = Q(d/dt)[X(t)]
so regularity of X determines the form of Q here and for Q(x) = X ∈ H1/2

one has V = �εX/�t. The scalar Euler-Lagrange (EL) equation associated to
L(X(t),V(t), t) = Q(L(x(t), v(t), t) is

(2.30)
�ε

�t

(
∂L
∂V (X(t),V(t), t)

)
=

∂L
∂X

(X(t),V(t), t)
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Now given a classical v ∼ (1/m)(∂S/∂x) one gets V = (1/m)(∂S/∂X) and L =
(∂S/∂t) with ψ(X, t) = exp[iS(X, t)/2mγ]. For L ∼ (1/2)mV2 + U then the
quantum (EL) equation is m(�εV/�t) = (∂U/∂X) leading to
(2.31)

2iγm

[
−ψ2

X

ψ

(
iγ +

aε(t)
2

)
+ ∂tψ +

aε(t)
2

∂2ψ

∂X2

]
= (U(X) + α(X))ψ + o(ε1/2)

where

(2.32) aε(t) =
1
2
{[(∇ε

+X(t))2 − (∇ε
−X(t))2]− i[(∇ε

+X(t))2 + (∇ε
−X(t))2]}

Then (2.32) is called the generalized SE and the nonlinear character of such equa-
tions is discussed in [192, 223] for example. In [272] one then arrives at a con-
ventional looking SE under the assumption aε = −2iγ, leading to

(2.33) γ2 ∂2ψ

∂X2
+ iγ

∂ψ

∂t
= [U(X, t) + α(X)]

ψ

2m
+ o(ε1/2)

One can then always take α(X) = 0 and choosing γ = �/2m one arrives at
i�ψt + (�2/2m)(∂2ψ/∂t2) = Uψ. However the requirement aε(t) = −2iγ seems
quite restrictive.

• Note here that the argument using a± is rigorous via [272]. aε = −i�/m
is permissible and in fact can have solutions of ∇ε

σX(t) = constant via
Xc(t) = ±

√
�/2m)(t− c− (ε/2))+Pε(t) where Pε ∈ H1/2 is an arbitrary

periodic function.
Referring back to Example 1.2.3 we have b±(t)(t) ∼ �±x(t) and V = (/2)(�+x +
�−x)(t) with U = (1/2)(�+x−�−x)(t). The relation between U and the quantum
potential Q will formally still hold (cf. also [273] on nondifferentiable variational
principles) and one can rewrite this as

√
ρU = (�/m)∂

√
ρ;
√

ρQ = −(�2/2m)∂2√ρ
along with ∂(

√
ρU) = −(2/�)

√
ρQ. If U is not differentiable one could also look at

√
ρU = −(2/�)

∫X

0

√
ρQdX ′ + f(t) with f(t) possibly determinable via the term

(
√

ρU)(0, t).

3. REMARKS ON FRACTAL SPACETIME

There have been a number of articles and books involving fractal methods in
spacetime or fractal spacetime itself with impetus coming from quantum physics
and relativity. We refer here especially to [1, 186, 187, 225, 422, 675, 676,
677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690]
for background to this paper. Many related papers are omitted here and we
refer in particular to the journal Chaos, Solitons, and Fractals CSF) for further
information. For information on fractals and stochastic processes we refer for
example to [33, 83, 241, 242, 243, 345, 423, 555, 562, 592, 643, 625, 697,
725, 748, 763, 810, 918, 942, 985]. We discuss here a few background ideas
and constructions in order to indicate the ingredients for El Naschie’s Cantorian
spacetime E∞, whose exact nature is elusive. Suitable references are given but
there are many more papers in the journal CSF by El Naschie (and others) based
on these fundamental ideas and these are either important in a revolutionary
sense or a fascinating refined form of science fiction. In what appears at times
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to be pure numerology one manages to (rather hastily) produce amazingly close
numerical approximations to virtually all the fundamental constants of physics
(including string theory). The key concepts revolve around the famous golden
ratio (

√
5 − 1)/2 and a strange Cantorian space E∞ which we try to describe

below. It is very tempting to want all of these (heuristic) results to be true and
the approach seems close enough and universal enough to compel one to think
something very important must be involved. Moreover such scope and accuracy
cannot be ignored so we try to examine some of the constructions in a didactic
manner in order to possibly generate some understanding.

3.1. COMMENTS ON CANTOR SETS.

EXAMPLE 3.1. In the paper [643] one discusses random recursive con-
structions leading to Cantor sets, etc. Associated with each such construction is
a universal number α such that almost surely the random object has Hausdorff
dimension α (we assume that ideas of Hausdorff and Minkowski-Bouligand (MB)
or upper box dimension are known - cf. [83, 186, 345, 592]). One construction
of a Cantor set goes as follows. Choose x from [0, 1] according to the uniform
distribution and then choose y from [x, 1] according to the uniform distribution on
[x, 1]. Set J0 = [0, x] and J1 = [y, 1] and recall the standard 1/3 construction for
Cantor sets. Continue this procedure by rescaling to each of the intervals already
obtained. With probability one one then obtains a Cantor set S0

c with Hausdorff
dimension α = φ = (

√
5− 1)/2 ∼ .618. Note that this is just a particular random

Cantor set; there are others with different Hausdorff dimensions (there seems to
be some - possibly harmless - confusion on this point in the El Naschie papers).
However the golden ratio φ is a very interesting number whose importance rivals
that of π or e. In particular (cf. [1]) φ is the hardest number to approximate by
rational numbers and could be called the most irrational number. This is because
its continued fraction represention involves all 1′s.

EXAMPLE 3.2. From [676] the Hausdorff (H) dimension of a traditional
triadic Cantor set is d

(0)
c = log(2)/log(3). To determine the equivalent to a

triadic Cantor set in 2 dimensions one looks for a set which is triadic Can-
torian in all directions. The analogue of an area A = 1 × 1 is a quasi-area
Ac = d

(0)
c × d

(0)
c and to normalize Ac one uses ρ2 = (A/Ac)2 = 1/(d(0)

c )2 (for
n-dimensions ρn = 1/(d(0)

c )n−1). Then the nth Cantor like H dimension d
(n)
c

will have the form d
(n)
c = ρnd

(0)
c = 1/(d(0)

c )n−1. Note also that the H dimen-
sion of a Sierpinski gasket is d

(n+1)
c /d

(n)
c = 1/d

(0)
c = log(3)/log(2) and in any

event the straight-forward interpretation of d
(2)
c = log(3)/log(2) is a scaling of

d
(0)
c = log(2)/log(3) proportional to the ratio of areas (A/Ac)2. One notes that

d
(4)
c = 1/(d(0)

c )3 = (log(3)/log(2))3 
 3.997 ∼ 4 so the 4-dimensional Cantor set is
essentially “space filling”.

Another derivation goes as follows. Define probability quotients via Ω =
dim(subset)/dim(set). For a triadic Cantor set in 1-D Ω(1) = d

(0)
c /d

(1)
c = d

(0)
c (d(1)

c =
1). To lift the Cantor set to n-dimensions look at the multiplicative probability
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law Ω(n) = (Ω(1))n = (d(0)
c )n. However since Ω(1) = d

(0)
c /d

(n)
c we get

(3.1) d(0)
c /d(n)

c = (d(0)
c )n ⇒ d(n)

c = 1/(d(0)
c )n−1

Since Ω(n−1) is the probability of finding a Cantor point (Cantorian) one can think
of the H dimension d

(n)
c = 1/Ω(n−1) as a measure of ignorance. One notes here

also that for d
(0)
c = φ (the Cantor set S

(0)
c of Example 3.1) one has d

(4)
c = 1/φ3 =

4 + φ3 
 4.236 which is surely space filling.

Based on these ideas one proves in [676, 680, 682] a number of theorems and
we sketch some of this here. One picks a “backbone” Cantor set with H dimension
d
(0)
c (the choice of φ = d

(0)
c will turn out to be optimal for many arguments). Then

one imagines a Cantorian spacetime E∞ built up of an infinite number of spaces
of dimension d

(n)
c (−∞ ≤ n < ∞). The exact form of embedding etc. here is not

specified so one imagines e.g. E∞ = ∪E(n) (with unions and intersections) in some
amorphous sense. There are some connections of this to vonNeumann’s continuous
geometries indicated in [684]. In this connection we remark that only E(−∞) is
the completely empty set (E(−1) is not empty). First we note that φ2 + φ− 1 = 0
leading to

(3.2)
1 + φ = 1/φ, φ3 = (2 + φ)/φ, (1 + φ)/(1− φ) = 1/φ(1− φ) = 4 + φ3 = 1/φ3

(a very interesting number indeed). Then one asserts that

THEOREM 3.1. Let (Ω(1))n be a geometrical measure in n-dimensional
space of a multiplicative point set process and Ω(1) be the Hausdorff dimension
of the backbone (generating) set d

(0)
c . Then < d >= 1/d

(0)
c (1 − d

(0)
c ) (called

curiously an average Hausdorff dimension) will be exactly equal to the average
space dimension ˜ < n >= (1 + d

(0)
c )(1 − d

(0)
c ) and equivalent to a 4-dimensional

Cantor set with H-dimension d
(4)
c = 1/(d(0)

c )3 if and only if d
(0)
c = φ.

To see this take Ω(n) = (Ω(1))n again and consider the total probability of the
additive set described by the Ω(n), namely Z0 =

∑∞
0 (Ω(1))n = 1/(1 − Ω(1)). It

is conceptually easier here to regard this as a sum of weighted dimensions (since
d
(n)
c = 1/(d(0)

c )n−1) and consider wn = n(d(0)
c )n. Then the expectation of n

becomes (note d
(n)
c ∼ 1/(d(0)

c )n−1 ∼ 1/Ω(n−1) so n(d(0)
c )n−1 ∼ n/d

(n)
c )

(3.3) E(n) =
∑∞

1 n2(d(0)
c )n−1∑∞

1 n(d(0)
c )n−1

=˜< n >=
1 + d

(0)
c

1− d
(0)
c

Another average here is defined via (blackbody gamma distribution)

(3.4) < n >=

∫∞
0

n2(Ω(1))ndn∫∞
0

n(Ω(1))ndn
=

−2
log(Ω(1))
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which corresponds to ˜ < n > after expanding the logarithm and omitting higher
order terms. However ˜ < n > seems to be the more valid calculation here. Simi-
larly one defines (somewhat ambiguously) an expected value for d

(n)
c via

(3.5) < d >=
∑∞

1 n(d(0)
c )n−1∑∞

1 (d(0)
c )n

=
1

d
(0)
c (1− d

(0)
c )

This is contrived of course (and cannot represent E(d(n)
c ) since one is computing

reciprocals
∑

(n/d
(n)
c ) but we could think of computing an expected ignorance and

identifying this with the reciprocal of dimension. Thus the label < d > does not
seem to represent an expected dimension but if we accept it as a symbol then for
d
(0)
c = φ one has

(3.6) ˜< n >=
1 + φ

1− φ
=< d >=

1
φ(1− φ)

= d(4)
c = 4 + φ3 =

1
φ3
∼ 4.236

REMARK 1.3.1. We note that the normalized probability N = Ω(1)/Z0 =
Ω(1)(1−Ω(1)) = 1/ < d > for any d

(0)
c . Further if < d >= 4 = 1/d

(0)
c (1− d

(0)
c ) one

has d
(0)
c = 1/2 while˜< n >= 3 < 4 =< d >. One sees also that d

(0)
c = 1/2 is the

minimum (where d < d > /d(d(0)
c ) = 0).

REMARK 1.3.2. The results of Theorem 3.1 should really be phrased in
terms of E∞ (cf. [685]). thus (H ∼ Hausdorff dimension and T ∼ topological
dimension)

(3.7) dimHE
(n) = d(n)

c =
1

(d(0)
c )n−1

;

< d >=
1

d
(0)
c (1− d

(0)
c )

; ˜< dimT E
∞ >=

1 + d
(0)
c

1− d
(0)
c

=˜< n >

In any event E∞ is formally infinite dimensional but effectively it is 4± dimen-
sional with an infinite number of internal dimensions. We emphasize that E∞

appears to be constructed from a fixed backbone Cantor set with H dimension
1/2 ≤ d

(0)
c < 1; thus each such d

(0)
c generates an E∞ space. Note that in [685] E∞

is looked upon as a transfinite discretum underpinning the continuum (whatever
that means).

REMARK 1.3.3. An interesting argument from [684] goes as follows.
Thinking of d

(0)
c as a geometrical probability one could say that the spatial (3-

dimensional) probability of finding a Cantorian “point” in E∞ must be given by
the intersection probability P = (d(0)

c )3 where 3 ∼ 3 topological spatial dimen-
sion. P could then be regarded as a Hurst exponent (cf. [1, 715, 985]) and the
Hausdorff dimension of the fractal path of a Cantorian would be dpath = 1/H =
1/P = 1/(d(0)

c )3. Given d
(0)
c = φ this means dpath = 4 + φ3 ∼ 4+ so a Cantorian

in 3-D would sweep out a 4-D world sheet; i.e. the time dimension is created by
the Cantorian space E∞ (! - ?). Conjecturing further (wildly) one could say that
perhaps space (and gravity) is created by the fractality of time. This is a typical
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form of conjecture to be found in the El Naschie papers - extremely thought pro-
voking but ultimately heuristic. Regarding the Hurst exponent one recalls that
for Feynmann trajectories in 1 + 1 dimensions dpath = 1/H = 1/d

(0)
c = d

(2)
c . Thus

we are concerned with relating the two determinations of dpath (among other mat-
ters). Note that path dimension is often thought of as a fractal dimension (M-B
or box dimension), which is not necessarily the same as the Hausdorff dimension.
However in [29] one shows that quantum mechanical free motion produces fractal
paths of Hausdorff dimension 2 (cf. also [583]).

REMARK 1.3.4. Following [226] let S
(0)
c correspond to the set with di-

mension d
(0)
c = φ. Then the complementary dimension is d̃

(0)
c = 1 − φ = φ2.

The path dimension is given as in Remark 1.3.3 by dpath = d
(2)
c = 1/φ = 1 + φ

and d̃path = d̃
(2)
c = 1/(1 − φ) = 1/φ2 = (1 + φ)2. Following El Naschie for an

equivalence between unions and intersections in a given space one requires (in the
present situation) that

(3.8)

dcrit = d
(2)
c + d̃

(2)
c = 1

φ + 1
φ2 = φ(1+φ)

φ3 = 1
φ3 = 1

φ ·
1

φ2 = d
(2)
c · d̃(2)

c = 4 + φ3

where dcrit = 4 + φ3 = d
(4)
c ∼ 4.236. Thus the critical dimension coincides with

the Hausdorff dimension of S
(4)
c which is embedded densely into a smooth space

of topological dimension 4. On the other hand the backbone set of dimension
d
(0)
c = φ is embedded densely into a set of topological dimension zero (a point).

Thus one thinks in general of d
(n)
c as the H dimension of a Cantor set of dimension

φ embedded into a smooth space of integer topological dimension n.

REMARK 1.3.5. In [226] it is also shown that realization of the spaces E(n)

comprising E∞ can be expressed via the fractal sprays of Lapidus-van Frankenhuy-
sen (cf. [592]). Thus we refer to [592] for graphics and details and simply sketch
some ideas here (with apologies to M. Lapidus). A fractal string is a bounded
open subset of R which is a disjoint union of an infinite number of open inter-
vals L = �1, �2, · · · . The geometric zeta function of L is ζL(s) =

∑∞
1 �−s

j . One
assumes a suitable meromorphic extension of ζL and the complex dimensions of
L are defined as the poles of this meromorphic extension. The spectrum of L

is the sequence of frequencies f = k · �−1
j (k = 1, 2, · · · ) and the spectral zeta

function of L is defined as ζν(s) =
∑

f f−s where in fact ζν(s) = ζL(s)ζ(s) (with
ζ(s) the classical Riemann zeta function). Fractal sprays are higher dimensional
generalizations of fractal strings. As an example consider the spray Ω obtained
by scaling an open square B of size 1 by the lengths of the standard triadic Can-
tor string CS. Thus Ω consists of one open square of size 1/3, 2 open squares of
size 1/9, 4 open squares of size 1/27, etc. (see [592] for pictures and explana-
tions). Then the spectral zeta function for the Dirichlet Laplacian on the square
is ζB(s) =

∑∞
n1,n2=1(n

2
1 + n2

2)
s/2 and the spectral zeta function of the spray is

ζν(s) = ζCS(s) · ζB(s). Now E∞ is composed of an infinite hierarchy of sets E(j)

with dimension (1+φ)j−1 = 1/φj−1 (j = 0,±1,±2, · · · ) and these sets correspond
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to a special case of boundaries ∂Ω for fractal sprays Ω whose scaling ratios are
suitable binary powers of 2−φj−1

. Indeed for n = 2 the spectral zeta function of
the fractal golden spray indicated above is ζν(s) = (1/(1 − 2 · 2sφ)ζB(s). The
poles of ζB(s) do not coincide with the zeros of the denominator 1 − 2 · 2−sφ so
the (complex) dimensions of the spray correspond to those of the boundary ∂Ω
of Ω. One finds that the real part �s of the complex dimensions coincides with
dimE(2) = 1+φ = 1/φ2 and one identifies then ∂Ω with E(2). The procedure gen-
eralizes to higher dimensions (with some stipulations) and for dimension n there
results �s = 1/φn−1 = dimE(n). This produces a physical model of the Cantorian
fractal space from the boundaries of fractal sprays (see [226] for further details and
[592] for precision). Other (putative) geometric realizations of E∞ are indicated
in [688] in terms of wild topologies, etc.

3.2. COMMENTS ON HYDRODYNAMICS. We sketch first some ma-

Thus let ψ be the wave function of a test particle of mass m0 in a force field
U(r, t) determined via i�∂tψ = Uψ − (�2/2m)∇2ψ where ∇2 = ∆. One writes
ψ(r, t) = R(r, t)exp(iS(r, t)) with v = (�/2m)∇S and ρ = R · R (one assumes
ρ �= 0 for physical meaning). Thus the field equations of QM in the hydrodynamic
picture are

(3.9) dt(m0ρv) = ∂t(m0ρv) +∇(m0ρv) = −ρ∇(U + Q); ∂tρ +∇ · (ρv) = 0

where Q = −(�2/2m0)(∆
√

ρ/
√

ρ) is the quantum potential (or interior potential).
Now because of the nondifferentiability of spacetime an infinity of geodesics will
exist between any couple of points A and B. The ensemble will define the proba-
bility amplitude (this is a nice assumption but geodesics should be defined here).
At each intermediate point C one can consider the family of incoming (backward)
and outgoing (forward) geodesics and define average velocities b+(C) and b−(C)
on these families. These will be different in general and following Nottale this
doubling of the velocity vector is at the origin of the complex nature of QM. Even
though Nottale reformulates Nelson’s stochastic QM the former’s interpretation is
profoundly different. While Nelson (cf. [698]) assumes an underlying Brownian
motion of unknown origin which acts on particles in Minkowskian spacetime, and
then introduces nondifferentiability as a byproduct of this hypothesis, Nottale as-
sumes as a fundamental and universal principle that spacetime itself is no longer
Minkowskian nor differentiable. An interesting comment here from [15] is that
with Nelson’s Browian motion hypothesis, nondifferentiability is but an approx-
imation which expected to break down at the scale of the underlying collisions,
where a new physics should be introduced, while Nottale’s hypothesis of nondiffer-
entiability is essential and should hold down to the smallest possible length scales.
Following Nelson one defines now the mean forward and backward derivatives

(3.10)
d±
dt

y(t) = lim∆t→0±

〈
y(t + ∆t)− y(t)

∆t

〉
This gives forward and backward mean velocities (d+/dt)x(t) = b+ and (d−/dt)x(t) =
b− for a position vector x. Now in Nelson’s stochastic mechanics one writes two
systems of equations for the forward and backward processes and combines them in

terial from [15] (see also [294, 715, 718, 720] and Sections 1-2 for background).
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the end in a complex equation, Nottale works from the beginning with a complex
derivative operator

(3.11)
δ

dt
=

(d+ + d−)− i(d+ − d−)
2dt

leading to V = (δ/dt)x(t) = v − iu = (1/2)(b+ + b−) − (i/2)(b+ − b−). One
defines also (dv/dt) = (1/2)(d+ +d−)/dt and (du/dt) = (1/2)(d+−d−)/dt so that
dvx/dt = v and dux/dt = u. Here v generalizes the classical velocity while u is a
new quantity arising from nondifferentiability. This leads to a stochastic process
satisfying (respectively for the forward (dt > 0) and backward (dt < 0) processes)
dx(t) = b+[x(t)] + dξ+(t) = b−[x(t)] + dξ−(t). The dξ(t) terms can be seen as
fractal functions and they amount to a Wiener process when the fractal dimension
D = 2. Then the dξ(t) are Gaussian with mean zero, mutually independent, and
satisfy < dξ±idξ±j >= ±2Dδijdt where D is a diffusion coefficient determined
as D = �/2m0 when τ0 = �/(m0c

2) (deBroglie time scale in the rest frame (cf.
[15]). This allows one to give a general expression for the complex time derivative,
namely

(3.12) df =
∂f

∂t
+∇f · dx +

1
2

∂2f

∂xi∂xj
dxidxj

Next compute the forward and backward derivatives of f ; then one will arrive at
< dxidxj >→< dξ±idξ±j > so the last term in (3.12) amounts to a Laplacian
and one obtains (d±f/dt) = [∂t + b± · ∇ ± D∆]f which is an important result.
Thus assume the fractal dimension is not 2 in which case there is no longer a
cancellation of the scale dependent terms in (3.12) and instead of D∆f one would
obtain an explicitly scale dependent behavior proportional to δt(2/D)−1∆f . In
other words the value D = 2 for the fractal dimension implies that the scale
symmetry becomes hidden in the operator formalism. One obtains the complex
time derivative operator in the form (δ/dt) = ∂t + V · ∇ − iD∆ (V as above).
Nottale’s prescription is then to replace d/dt by δ/dt. In this spirit one can write
now ψ = exp(i(S/2m0D)) so that V = −2iD∇(log(ψ)) and then the generalized
Newton equation −∇U = m0(δ/dt)V reduces to the SE (L = (1/2)mv2 − U).

Now assume the velocity field from the hydrodynamic model agrees with the
real part v of the complex velocity V and equate the wave functions from the two
models ψ = exp(iS/2m0D) and ψ = Rexp(iS) with m = m0; one obtains for
S = s + iσ the formulas s = 2m0DS, D = (�/2m0), and σ = −m0Dlog(ρ). Using
the definition V = (1/m0)∇S = (1/m0)∇s + (i/m0)∇σ = v − iu (which results
from the above equations) we get

(3.13) v = (1/m0)∇s = 2D∇S; u = −(1/m0)∇σ = D∇log(ρ)

Note that the imaginary part of the complex velocity coincides with Nottale. Di-
viding the time dependent SE i�ψt = Uψ − (�2/2m0)∆ψ by 2m0 and taking
the gradient gives ∇U/m0 = 2D∇[i∂tlog(ψ) + D(∆ψ/ψ)] where �/2m0 has been
replaced by D. Then consider the identities

(3.14) ∆∇ = ∇∆; (∇f · ∇)(∇f) = (1/2)∇(∇f)2;
∆f

f
= ∆log(f) + (∇log(f))2
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Then the second term in the right of the equation for∇U/m0 becomes∇(∆ψ/ψ) =
∆(∇log(ψ)) + 2(∇log(ψ) · ∇)(∇log(ψ)) so we obtain

(3.15) ∇U = 2iDm0[∂t∇log(ψ)− iD∆(∇log(ψ)− 2iD(∇log(ψ) · ∇)(∇log(ψ))]

One can show that this is nothing but the generalized Newton equation −∇U =
m0(δ/dt)V . Now replacing the complex velocity V = −2iD∇log(ψ) and taking
into account the form of V, we get

(3.16) −∇U = m0{∂t(v − iD∇log(ρ) + [i(v − iD∇log(ρ) · ∇](v − iD∇log(ρ))−

−iD∆(v − iD∇log(ρ))}
Equation (3.16) is a complex differential equation and reduces to

(3.17) m0[∂tv + (v · ∇)v] = −∇
(

U − 2m0D2 ∆
√

ρ
√

ρ

)
; ∇

{
1
ρ

[∂tρ +∇ · (ρv)]
}

The last equation in (3.17) reduces to the continuity equation up to a phase factor
α(t) which can be set equal to zero (note again that ρ �= 0 is posited). Thus
(3.17) is nothing but the fundamental equations (3.9) of the hydrodynamic model.
Further combining the imaginary part of the complex velocity with the quantum
potential, and using (3.14), one gets Q = −m0D∇·u− (1/2)m0u

2 (as indicated in
Remark 1.2.2). Since u arises from nondifferentiability according to our nondiffer-
entiable space model of QM it follows that the quantum potential comes from the
nondifferentiability of the quantum spacetime (note that the x derivatives should
be clarified and E∞ has not been utilized).

Putting U = 0 in the first equation of (3.17), multiplying by ρ, and taking the
second equation into account yields

(3.18) ∂t(m0ρνk) +
∂

∂xi
(m0ρνiνk) = −ρ

∂

xk

[
2m0D2 1

√
ρ

∂

∂xi

∂

∂xi
(
√

ρ)
]

(here νk ∼ vk seems indicated). Now set Πik = m0ρνiνk − σik along with σik =
m0ρD2(∂/∂xi)(∂/∂xk)(log(ρ)). Then (3.18) takes the simple form

(3.19) ∂t(m0ρνk) = −∂Πik/∂xi

The analogy with classical fluid mechanics works well if one introduces the kine-
matic µ = D/2 and dynamic η = (1/2)m0Dρ viscosities. Then Πik defines the mo-
mentum flux density tensor and σik the internal stress tensor σik = η[(∂ui/∂xk)+
(∂uk/∂xi)]. One can see that the internal stress tensor is build up using the
quantum potential while the equations (3.18) or (3.19) are nothing but systems of
Navier-Stokes type for the motion where the quantum potential plays the role of
an internal stress tensor. In other words the nondifferentiability of the quantum
spacetime manifests itself like an internal stress tensor. For clarity in understand-
ing (3.19) we put this in one dimensional form so (3.18) becomes

(3.20) ∂t(m0ρv) + ∂x(m0ρv2) = −ρ∂

(
2m0D2 1

√
ρ
∂2√ρ

)
= ρ∂Q
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and Π = m0ρv2−σ with σ = m0ρD2∂2log(ρ) which agrees with standard formulas.
Now note ∂

√
ρ = (1/2)ρ−1/2ρ′ and ∂2√ρ = (1/2)[−(1/2)ρ−3/2(ρ′)2+ρ−1/2ρ′′] with

∂2log(ρ) = ∂(ρ′/ρ) = (ρ′′/ρ)− (ρ′/ρ)2 while
(3.21)

−ρ∂

[
2m0D2 1

√
ρ

(
∂2√ρ

)]
= −2m0D2ρ∂

[
1

2
√

ρ

(
−1

2
ρ−3/2(ρ′)2 + ρ−1/2ρ′′

)]
=

= −2m0D2ρ∂

[
ρ′′

2ρ
− 1

4

(
(ρ′

ρ

)2
]

= −m0D2ρ∂

[
ρ′′

ρ
− 1

2

(
ρ′

ρ

)2
]

One wants to show then that (3.19) holds or equivalently −∂σ = (3.21). However
(3.22)

−∂σ = −∂[m0ρD2∂2log(ρ)] = −m0D2

[
ρ′
(

ρ′′

ρ
−
(

ρ′

ρ

)2
)

+ ρ∂

(
ρ′′

ρ
− (ρ′)2

ρ

)]
so we want (3.22) = (3.21) which is easily verified.

4. REMARKS ON FRACTAL CALCULUS

We sketch first (in summary form) from [748] where a calculus based on fractal
subsets of the real line is formulated. A local calculus based on renormalizing
fractional derivatives à la [562] is subsumed and embellished. Consider first the
concept of content or α-mass for a (generally fractal) subset F ⊂ [a, b] (in what
follows 0 < α ≤ 1). Then define the flag function for a set F and a closed interval
I as θ(F, I) = 1 (F ∩ I �= ∅ and otherwise θ = 0. Then a subdivision P[a,b] ∼ P of
[a, b] (a < b) is a finite set of points {a = x0, x1, · · · , xn = b} with xi < xi+1. If Q
is any subdivision with P ⊂ Q it is called a refinement and if a = b the set {a} is
the only subdivision. Define then

(4.1) σα[F, p] =
n−1∑

0

(xi+1 − xi)α

Γ(α + 1)
θ(F, [xi, xi+1])

For a = b one defines σα[F, P ] = 0. Next given δ > 0 and a ≤ b the coarse grained
mass γα

δ (F, a, b) of F ∩ [a, b] is given via

(4.2) γα
δ (F, a, b) = inf|P |≤δσ

α[F, P ] (|P | = max0≤i≤n−1(xi+1 − xi))

where the infimum is over P such that |P | ≤ δ. Various more or less straightforward
properties are:

• For a ≤ b and δ1 < δ2 one has γα
δ1

(F, a, b) ≥ γα
δ2

(F, a, b).
• For δ > 0 and a < b < c one has γα

δ (F, a, b) ≤ γα
δ (F, a, c) and γα

δ (F, b, c) ≤
γα

δ (F, a, c).
• γα

δ is continuous in b and a.
Now define the mass function γα(F, a, b) via γα(F, a, b) = limδ→0γ

α
δ (F, a, b). The

following results are proved
(1) If F ∩ (a, b) = ∅ then γα(F, a, b) = 0.
(2) Let a < b < c and γα(F, a, c) < ∞. Then γα(F, a, c) = γα(F, a, b) +

γα(F, b, c). Hence γα(F, a, b) is increasing in b and decreasing in a.
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(3) Let a < b and γα(F, a, b) �= 0 be finite. If 0 < y < γα(F, a, b) then there
exists c, a < c < b such that γα(F, a, c) = y. Further if γα(F, a, b) is
finite then γα(F, a, x) is continuous for x ∈ (a, b).

(4) For F ⊂ R and λ ∈ R let F + λ = {x + λ; x ∈ F}. Then γα(F + λ, a +
λ, b + λ) = γα(F, a, b) and γα(λF, λa, λb) = λαγα(F, a, b).

Now for a0 an arbitrary fixed real number one defines the integral staircase function
of order α for F is

(4.3) Sα
F (x) =

{
γα(F, a0, x) x ≥ a0

−γα(F, x, a0) otherwise

The following properties of SF are restatements of properties for γα. thus
• Sα

F (x) is increasing in x.
• If F ∩ (x, y) = 0 then Sα

F is constant in [x, y].
• Sα

F (y)− Sα
F (x) = γα(F, x, y).

• Sα
F is continuous on (a, b).

Now one considers the sets F for which the mass function γα(F, a, b) gives the
most useful information. Indeed one can use the mass function to define a fractal
dimension. If 0 < α < β ≤ 1 one writes
(4.4)

σβ [F, P ] ≤ |P |β−ασα[F, P ]
Γ(α + 1)
Γ(β + 1)

; γβ
δ (F, a, b) ≤ δβ−αγα

δ (F, a, b)
Γ(α + 1)
Γ(β + 1)

Thus in the limit δ → 0 one gets γβ(F, a, b) = 0 provided γα(F, a, b) < ∞ and
α < β. It follows that γα(F, a, b) is infinite up to a certain value α0 and then jumps
down to zero for α > α0 (if α0 < 1). This number is called the γ-dimension of
F; γα0(F, a, b) may itself be zero, finite, or infinite. To make the definition precise
one says that the γ-dimension of F ∩ [a, b], denoted by dimγ(F ∩ [a, b]), is

(4.5) dimγ(F ∩ [a, b]) =
{

inf{α; γα(F, a, b) = 0}
sup{α; γα(F, a, b) = ∞}

One shows that dimH(F ∩ [a, b]) ≤ dimγ(F ∩ [a, b]) where dimH denotes Hausdorff
dimension. Further dimγ(F ∩ [a, b]) ≤ dimB(F ∩ [a, b]) where dimB is the box di-
mension. Some further analysis shows that for F ⊂ R compact dimγF = dimHF .

Next one notes that the correspondence F → Sα
F is many to one (examples

from Cantor sets) and one calls the sets giving rise to the same staircase function
“staircasewise congruent”. The equivalence class of congruent sets containing F is
denoted by EF ; thus if G ∈ EF it follows that Sα

G = Sα
F and Eα

G = Eα
F . One says

that a point x is a point of change of f if f is not constant over any open interval
(c, d) containing x. The set of all points of change of f is denoted by Sch(f). In
particular if G ∈ Eα

F then Sα
G(x) = Sα

F (x) so Sch(Sα
G) = Sch(Sα

F ). Thus if F ⊂ R
is such that Sα

F (x) is finite for all x (α = dimγF ) then H = Sch(Sα
F ) ∈ Eα

F . This
takes some proving which we omit (cf. [748]). As a consequence let F ⊂ R be
such that Sα

F (x) is finite for all x ∈ R (α = dimγF ). Then the set H = Sch(Sα
F ) is

perfect (i.e. H is closed and every point is a limit point). Hence given Sα
F (x) finite

for all x (α = dimγF ) one calls Sch(Sα
F ) the α-perfect representative of Eα

F and one
proves that it is the minimal closed set in Eα

F . Indeed an α-perfect set in Eα
F is the
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intersection of all closed sets G in Eα
F . One can also say that if F ⊂ R is α-perfect

and x ∈ F then for y < x < z either Sα
F (y) < Sα

F (x) or Sα
F (x) < Sα

F (z) (or both).
Thus for an α-perfect set it is assured that the values of Sα

F (y) must be different
from Sα

F (x) at all points y on at least one side of x. As an example one shows that
the middle third Cantor set C = E1/3 is α-perfect for α = log(2)/log(3) = dH(C)
so C = Sch(Sα

C).

Now look at F with the induced topology from R and consider the idea of
F-continuity.

DEFINITION 4.1. Let F ⊂ R and f : R → R with x ∈ F . A number �
is said to be the limit of f through the points of F, or simply F-limit, as y → x if
given ε > 0 there exists δ > 0 such that y ∈ F and |y − x| < δ ⇒ |f(y) − �| < ε.
In such a case one writes � = F − limity→xf(y). A function f is F-continuous at
x ∈ F if f(x) = F − limity→xf(y) and uniformly F-continuuous on E ⊂ F if for
ε > 0 there exists δ > 0 such that x ∈ F, y ∈ E and |y−x| < δ ⇒ |f(y)−f(x)| < ε.
One sees that if f is F-continuous on a compact set E ⊂ F then it is uniformly
F-continuous on E.

DEFINITION 4.2. The class of functions f : R → R which are bounded
on F is denoted by B(F ). Define for f ∈ B(F ) and I a closed interval

(4.6) M [f, F, I] =
{

supx∈F∩If(x) F ∩ I �= ∅
0 otherwise

m[f, F, I] =
{

infx∈F∩If(x) F ∩ I �= ∅
0 otherwise

DEFINITION 4.3. Let Sα
F (x) be finite for x ∈ [a, b] and P be a subdivi-

sion with points x0, · · · , xn. The upper Fα and lower Fα sums over P are given
respectively by

(4.7) Uα[f, F, P ] =
n−1∑

0

M [f, F, [xi, xi+1]](Sα
F (xi+1)− Sα

F (xi));

Lα[f, F, P ] =
n−1∑

0

m[f, F, [xi, xi+1]](Sα
F (xi+1)− Sα

F (xi))

This is sort of like Riemann-Stieltjes integration and in fact one shows that if Q
is a refinement of P then Uα[f, F,Q] ≤ Uα[f, F, P ] and Lα[f, F,Q] ≥ Lα[f, F, P ].
Further Uα[f, F, P ] ≥ Lα[f, F,Q] for any subdivisions of [a, b] and this leads to
the idea of F-integrability. Thus assume Sα

F is finite on [a, b] and for f ∈ B(F )
one defines lower and upper Fα-integrals via

(4.8)
∫ b

a

f(x)dα
F x = supP Lα[f, F, P ];

∫ b

a

f(x)dα
F x = infP Uα[f, F, P ]

One then says that f is Fα-integrable if (D15)
∫ b

a
f(x)dα

F x =
∫ b

a
f(x)dα

F x =∫ b

a
f(x)dα

F x.
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One shows then
(1) f ∈ B(F ) is Fα-integrable on [a, b] if and only if for any ε > 0 there is a

subdivision P of [a, b] such that Uα[f, F, P ] < Lα[f, F, P ] + ε.
(2) Let F ∩[a, b] be compact with Sα

F finite on [a, b]. Let f ∈ B(F ) and a < b;
then if f is F-continuous on F ∩ [a, b] it follows that f is Fα-integrable
on [a, b].

(3) Let a < b and f be Fα-integrable on [a, b] with c ∈ (a, b). Then f is Fα-
integrable on [a, c] and [c, b] with

∫ b

a
f(x)dα

F x =
∫ c

a
f(x)dα

F x+
∫ b

c
f(x)dα

F x.
(4) If f is Fα-integrable then

∫ b

a
λf(x)dα

F x = λ
∫ b

a
f(x)dα

F x and, for g also
Fα-integrable,

∫ b

a
(f(x) + g(x))dα

F x =
∫ b

a
f(x)dα

F x +
∫ b

a
g(x)dα

F x.
(5) If f, g are Fα-integrable and f(x) ≥ g(x) for x ∈ F∩[a, b] then

∫ b

a
f(x)dα

F x ≥∫ b

a
g(x)dα

F x.

One specifies also
∫ a

b
f(x)dα

F x = −
∫ b

a
f(x)dα

F x and it is easily shown that if χF (x)
is the characteristic function of F then

∫ b

a
χF (x)dα

F x = Sα
F (b) − Sα

F (a). Now for
differentiation one writes

(4.9) Dα
F f(x) =

{
F − limy→x

f(y)−f(x)
Sα

F (y)−Sα
F (x) x ∈ F

0 otherwise

if the limit exists. One shows then
(1) If Dα

F f(x) exists for all x ∈ (a, b) then f(x) is F-continuous in (a, b).
(2) With obvious hypotheses Dα

F (λf(x)) = λDα
F f(x) and Dα

F (f + g)(x) =
Dα

F f(x) +Dα
F g(x). Further if f is constant then Dα

F f = 0.
(3) Dα

F (Sα
F (x)) = χF (x).

(4) (Rolle’s theorem) Let f : R → R be continuous with Sch(f) ⊂ F
where F is α-perfect and assume Dα

F f(x) is defined for all x ∈ [a, b] with
f(a) = f(b) = 0. Then there is a point c ∈ F∩[a, b] such that Dα

F f(c) ≥ 0
and a point d ∈ F ∩ [a, b] where Dα

F f(d) ≤ 0.

EXAMPLE 4.1. This is the best that can be done with Rolle’s theorem since
for C the Cantor set E1/3 take f(x) = Sα

C(x) for 0 ≤ x ≤ 1/2 and f(x) = 1−Sα
C(x)

for 1/2 < x ≤ 1. This function is continuous with f(0) = f(1) = 0 and the set
of change (Sch(f)) is C. The Cα-derivative is given by Dα

Cf(x) = χC(x) for
0 ≤ x ≤ 1/2 and by −χC(x) for 1/2 < x ≤ 1. Thus x ∈ C which implies
Dα

Cf(x) = ±1 �= 0.

As a corollary one has the following result: Let f be continuous with Sch(f) ⊂ F
where F is α-perfect; assume Dα

F f(s) exists at all points of [a, b] and that Sα
F (b) �=

Sα
F (a). Then there are points c, d ∈ F such that

(4.10) Dα
F f(c) ≥ f(b)− f(a)

Sα
F (b)− Sα

F (b)
; Dα

F f(d) ≤ f(b)− f(a)
Sα

F (b)− Sα
F (a)

Similarly if f is continuous with Sch(f) ⊂ F and Dα
F f(x) = 0 ∀x ∈ [a, b] then

f(x) is constant on [a, b]. There are also other fundamental theorems as follows
(1) (Leibniz rule) If u, v : R → R are Fα-differentiable then Dα

F (uv)(x) =
(Dα

F u(x))v(x) + u(x)Dα
F v(x).
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(2) Let F ⊂ R be α-perfect. If f ∈ B(F ) is F-continuous on F ∩ [a, b] with
g(x) =

∫ x

a
f(y)dα

F y for all x ∈ [a, b] then Dα
F g(x) = f(x)χF (x).

(3) Let f : R → R be continuous and Fα-differentiable with Sch(f) con-
tained in an α-perfect set F; let also h : R → R be F-continuous such
that h(x)χF (x) = Dα

F f(x). Then
∫ b

a
h(x)dα

F x = f(b)− f(a).
(4) (Integration by parts) Assume: (i) u is continuous on [a, b] and Sch(u) ⊂

F . (ii) Dα
F u(x) exists and is F-continuous on [a, b]. (iii) v is F-continuous

on [a, b]. Then

(4.11)
∫ b

a

uvdα
F x =

[
u(x)

∫ x

a

v(x′)dα
F x′]

∣∣∣∣b
a

−
∫ b

a

Dα
F u(x)

∫ x

a

v(x′)dα
F x′dα

F x

Some examples are given relative to applications and we mention e.g.

EXAMPLE 4.2. Following [562] one has a local fractal diffusion equation

(4.12) Dα
F,t(W (x, t)) =

χF (t)
2

∂2

∂x2
W (x, t)

with solution

(4.13) W (x, t) =
1

(2πSα
F (t))1/2

exp

(
−x2

2Sα
F (t)

)
The appendix to [748] also gives some formulas for repeated integration and

differentiation. For example it is shown that

(4.14) (Dα
F )2(Sα

F (x))2 = 2χF (x);
∫ x′

a

(Sα
F (x))ndα

F x =
1

n + 1
(Sα

F (x′))n+1

We refer to [562, 748] for other interesting material.

5. A BOHMIAN APPROACH TO QUANTUM FRACTALS

The powerful exact uncertainty method of Hall and Reginatto for passing
from classical to quantum mechanics has been further embellished and deepened
in recent years (see e.g. 444, 445, 446, 447, 448,
449,
In [445] one finds an apparent incompleteness in the traditional trajectory based
Bohmian mechanics when dealing with a quantum particle in a box. It turns out
that there is no suitable HJ equation for describing the motion which in fact has
a fractal character. After reviewing the material on scale relativity in Section
1.2 for example it is not surprising to encounter such situations and in [844] the
Bohmian point of view is reinstated for fractal trajectories. One should also remark
in passing that there is much material available on weak or distribution solutions
of HJ type equations and some of this should come into play here (cf. [211]). The
main issue here however is that in order to treat wave functions displaying fractal
features (quantum fractals) one needs to enlarge the picture via limiting processes.
One derives the quantum trajectories by means of limiting procedures that involve
the expansion of the wave function in a series of eigenvectors of the Hamiltonian.

450, 749, 805, 806, 807, 844, 845] and Sections 1.1, 3. 1, and 4.7.
[186, 187, 189, 203, 396,
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Consider first the quantum analogue of the Weierstrass function

(5.1) W (x) =
∞∑
0

brSin(arx); a > 1 > b > 0; ab ≥ 1

Then in the problem of a particle in a 1-dimensional box of length L (with 0 <
x < L) one can construct wave functions of the form

(5.2) Φt(x;R) = A

R∑
r=0

nr(s−2)Sin(pn,rx/�)e−iEn,rt/�

with 2 > s > 0 and n ≥ 2. Here pn,r = nrπ�/L is the quantized momentum (with
integer quantum number given by n′ = nr). En,r = p2

n,r/2m is the eigenenergy
and a is a normalization constant. This wave function, which is a solution of
the time dependent SE, is continuous and differentiable everywhere. However the
wave function resulting in the limit, namely Φt(x) = limR→∞Φt(x;R) is a fractal
object in both space and time (cf. [626]). This method for generating quantum
fractals basically involves (given s) choosing a quantum number, say n, and then
considering the series that contains its powers n′ = nr. There is also another
related method (cf. [142]) of generating quantum fractals based on the presence
of discontinuities in the wave function. The emergence of fractal features arises
from the perturbations that such discontinuities cause in the wave function during
propagation. This generating process can be easily understood by considering a
wave function initially uniform along a certain interval � = x2− x1 ≤ L inside the
box

(5.3) Ψ0(x) =
{ 1√

�
x1 < x < x2

0 otherwise

The Fourier decomposition of this wave function is

(5.4) Ψ0(x) =
2

π
√

�

∞∑
1

1
n

[Cos(pnx1/�)− Cos(pnx2/�)]Sin(pnx/�)

whose time evolved form is

(5.5) Ψt(x) =
2

π
√

�

∞∑
1

1
n

[Cos(pnx1/�)− Cos(pnx2/�)]Sin(pnx/�)e−iEnt/�

It is equivalent to consider r = R = 1 in (5.2) and sum over n from 1 to N; the
quantum fractal is then obtained in the limit N → ∞. This equivalence is based
on the fact that the Fourier decomposition of Ψ0 gives precisely its expansion in
terms of the eigenvectors of the Hamiltonian in the problem of a particle in a box
(this is not a general situation).

EXAMPLE 5.1. The fractality of wave functions like Φt(x) or Ψt(x) can
be analytically estimated (cf. [142]) by taking advantage of a result for Fourier
series. Thus given an arbitrary function f(x) =

∑N
1 anexp(−inx) its real and

imaginary pars are fractals (and also |f(x)|2) with dimension Df = (5−β)/2 if its
power spectrum has the asymptotic form |an|2 ∼ n−β for N →∞ with 1 < β ≤ 3.
Alternatively the fractality of f(x) can also be calculated by measuring the length
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L of its real and imaginary parts (or |f(x)|2) as a function of the number of terms
N considered in the generating sries. Asymptotically the relation bewteen L and
N can be expressed as L(N) ∝ NDf−1 which diverges if f(x) is a fractal object.
One notes that to increase the number of terms contributing to f(x) is analogous
to measuring its length with more precision.

It is known that for quantum fractals the corresponding expected value of the
energy < Ĥ > becomes infinite. This is related to the fact that the familiar form
of the SE

(5.6) i�∂tΨt(x) = ĤΨt(x)

does not hold in general (cf. [445, 1003]). In this case neither the left side of
(5.6) nor the right side belong to the Hilbert space; however the identity

(5.7) [Ĥ − i�∂t]Ψt(x) = 0

still remains valid. In this situation one says that Ψt(x) is a weak solution of the
SE (note weak solutions have many meanings and have been extensively studied
in PDE - cf. [211]).

The formal basis of Bohmian mechanics (BM) is usually established via

(5.8) Ψt(x) = ρ
1/2
t (x)eiSt(x)/�;

∂ρt

∂t
+∇ ·

(
ρt
∇St

m

)
= 0;

∂St

∂t
+

(∇St)2

2m
+ V + Qt = 0; Qt = − �2

2m

∇2ρ
1/2
t

ρ
1/2
t

One postulates also the trajectory velocity as

(5.9) ẋ =
∇St

m
=

�

m
�[Ψ−1

t ∇Ψt]

Now Qt in (5.8) is well defined provided that the quantum state is also well defined
(i.e. continuous and differentiable). However this is not the case for quantum
fractals and the theory seems incomplete; the solution is to take into account the
decomposition of the quantum fractal in terms of differentiable eigenvectors and
redefining Qt in (5.8). Thus any wave function Ψt is expressible as

(5.10) Ψt(x : N) =
N∑
1

cnξn(x)e−iEnt/�

in the limit N → ∞ (cf. Φt above and (5.5)) where the ξn(x) are eigenvectors
with eigenvalues En of the corresponding Hamiltonian. One can then define the
quantum trajectories evolving under the guidance of this wave as

(5.11) xt = limN→∞xN (t); ẋN =
�

m
�
[
Ψ−1

t (x;N)
∂Ψt(x;N)

∂x

]
Note the calculation of trajectories is not based on St, which has no trivial de-
composition in a series of nice functions, but this kind of velocity formulation is
common in e.g. [324, 325, 326, 327, 328, 329, 415, 416, 418, 419, 420] where
one modern version of BM is being developed.
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EXAMPLE 5.2. A numerical example is given in [844] and we only mention
a few features here. Thus one considers a highly delocalized particle in a box with
wave function (5.4) and x1 = 0 with x2 = L. Then (5.5) becomes

(5.12) Ψt(x) =
4

π
√

L
e−iE1t/�

∑
n odd

1
n

Sin(pnx/�)eiωn,1t

where λn,1 = (En−E1)/� (in the numerical calculations one uses L = m = � = 1).
Here the probability density ρt is periodic in time but the wave function is not
periodic (this does not affect (5.11)). Various features are observed (e.g. Cantor
set structures, Gibbs phenomena, etc.) and graphs are displayed - we omit any
further discussion here.

In summary, although the SE is not satisfied by quantum fractals as a whole, it
is when one considers its decomposition in terms of the eigenvectors of the Hamil-
tonian. The contributing eigenvectors are continuous and differentiable and any
wave function (regular or not) admits a decomposition in terms of eigenvectors.
Correspondingly the Bohmian equation of motion must be reformulated in terms
of such decompositions via (5.11) and this can be regarded also as a generalization
of (5.8). We mention in passing that from time to time there are papers claiming
contradictions between BM and QM and we refer here to [436, 629, 712] for some
refutations.

REMARK 5.3. Let us mention here a suggestion of ’t Hooft [475] about
establishing the physical link between classical and quantum mechanics by em-
ploying the underlying equations of classical mechanics and including into them a
specially chosen dissipative function. The wave like QM turns out to follow from
the particle like classical mechanics due to embedding in the latter a dissipation
“device” responsible for loss of information. Thus the initial precise information
about the classical trajectory is lost in QM due to the “dissipative spread” of the
trajectory and its transformation into a fuzzy object such as the fractal Hausdorff
path of dimension 2 in a simple case of a spinless particle. Some rough calculations
in this direction appear in [426]. and we refer also to [122, 427, 749].


