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PREFACE

The quantum potential is a recurring theme and Leitmotiv for this book (along
with variations on the Bohmian trajectory representation for quantum mechan-
ics (QM)); it appears in many guises and creates connections between quantum
mechanics (QM), general relativity (GR), information, and Bohmian trajectories
(as well as diffusion, thermodynamics, hydrodynamics, fractal structure, entropy,
etc.). We make no claim to create quantum gravity for which there are several
embryonic theories presently under construction (cf. [53, 429, 783, 819, 829,
896, 929]) and we will not deal with much of this beyond some use of the Ashtekar
variables for general relativity (cf. also [192, 228, 275, 258, 430, 460, 461, 462,
578, 645, 744, 802, 803, 829, 902, 1012] for approaches involving posets, dis-
crete differential manifolds, quantum causal spaces, groupoids, noncommutative
geometry, etc.). The main theme of the book is to relate ideas of quantum fluctua-
tions (expressed via Fisher information for example, or diffusion processes, or frac-
tal structures, or particle creation and annihilation, or whatever) in terms of the so
called quantum potential (which arises most conspicuously in deBroglie-Bohm the-
ories). This quantum potential can be directly connected to the diffusion version
of the Schrödinger equation as in [672, 674, 698] and is also related to the Ricci-
Weyl curvature of Dirac-Weyl theory ([186, 187, 188, 189, 219, 872, 873]). Re-
cent work of A. and F. Shojai also develops a quantum potential and Schrödinger
equation relative to the Wheeler-deWitt equation using Ashtekar variables (cf.
[876]). Further, work of Israelit-Rosen on Weyl-Dirac theory leads to matter pro-
duction by geometry (cf. [498, 499, 500, 501]) which could also be related to the
quantum potential via the Dirac field as a matter field. In following this theme
we have also been led to developments in scale relativity (cf. [715, 716, 718])
where the Schrödinger equation arises from fractal structure and the quantum
potential clearly determines a quantization. Quantum potentials also arise in the
(x, ψ) duality theme of Faraggi and Matone and we give a variation on this
related to the massless KG equation (or putative

The quantum fluctuation theme then leads also to stochastic
electrodynamics (SED) and the energy of the vacuum (zero point field - ZPF)
and thence to further examination of electrodynamics, massless particles, etc. (cf.
[190, 650, 753]). There is throughout the book an involvement with quantum
field theory (QFT) where in particular we extract from work of Nikolić, and there is
considerable material devoted to entropy and information. In a sense the magical
structure of quantum mechanics (QM) à la von Neumann and others is too per-
fect; one cannot see what is “really” going on and this makes the deBroglie-Bohm

ix

et al. (cf. [1021]).
aether equation) following Vancea
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theory attractive, where one has at least the illusion of having particle trajectories,
etc. In fact we develop the theme that the Schrödinger mechanics of Hilbert space
etc. is inherently incomplete (or uncertain); in particular the uncertainty can arise
from its inability to see a third “initial” condition in the microstate trajectories
(see Sections 2.2 and 7.4). We show in Remarks 2.2.2 and 3.2.1 how this produces
exactly the Heisenberg uncertainty principle and how it is consequently natural
to consider ensembles of particles and probability densities for the Schrödinger
picture (cf. also [194, 197, 203, 346, 347, 373, 374]). The Hilbert space un-
certainty is in fact automatic, due to the operator approach in Hilbert space, and
is thus independent of quantum fluctuations, diffusion, fractals, microstates, or
whatever, so the Hilbert space formulation is indifferent to the interpretation of
uncertainty. However, we are interested in microcausality here and, furthermore,
quantum fluctuations generating a quantum potential also have a direct relation to
uncertainty via the exact uncertainty principle of Hall-Reginatto; this is discussed
at some length.

We want to make a few remarks about writing style. With a mathematical
background my writing style has acquired a certain flavor based on equations and
almost devoid of physical motivation or insights. I have tried to temper this when
writing about physics but it is impossible to achieve the degree of physical insight
characteristic of natural born physicists. I am comforted by the words of Dirac who
seemed to be guided and motivated by equations (although he of course possessed
more physical insight than I could possibly claim). In any case the “meaning” of
physics for me lies largely in beautiful equations (Einstein, Maxwell, Schrödinger,
Dirac, Hamilton-Jacobi, etc.) and the revelations about the universe presumably
therein contained. I hope to convey this spirit in writing and perhaps validate
somewhat this approach. Physics is a vast garden of delights and we can only
gape at some of the wonders (as expressed here via equations in directions of per-
sonal esthetic appeal). We refrain from rashly suggesting that nature is simply
a manifestation of underlying mathematical structure (i.e. symmetry, combina-
torics, topology, geometry, etc.) played out on a global stage with energy and
matter as actors. On the other hand we are aware that much of physics, both
experimental and theoretical, apparently has little to do with equations. Many
phenomena are now recognized as emergent (cf. [594, 860]) and one has to deal
with phase transitions, self organized criticality, chaos, etc. I know little about
such matters and hope that the mathematical approach is not mistaken for arro-
gance; it is only a dominant reverence for that beauty which I am able to perceive.
The book of course is not finished; it probably cannot ever be finished since there
is new material appearing every weekday on the electronic bulletin boards. Hence
we have had to declare it finished as of April 10, 2005. It has reached the goal of
roughly 450 pages and includes whatever I conceived of as most important about
the quantum potential and Bohmian mechanics. I have learned a lot in writing this
and there is some original material (along with over 1000 references). Philosophy
has not been treated with much respect since I can only sense meaning in physics
through the equations. The fact that one can envision and manipulate “compos-
ite” and abstract concepts or entities such as EM fields, energy, entropy, force,
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gravity, mass, pressure, spacetime, spin, temperature, wave functions, etc. and
that there should turn out to be equations and relations among these “creatures”
has always staggered my imagination. So does the fact that various combinations
of large and small numbers (such as c, e, G, �, H etc.) can be combined into
dimensionless form. Abstract mathematics has its own garden of concepts and
relations also of course but physics seems so much more real (even though I have
resisted any desire to experiment with these beautiful concepts, mainly because I
seem to have difficulty even in setting an alarm clock for example).

We will present a number of ideas which lack establishment deification, ei-
ther because they are too new or, in heuristic approaches of considerable import,
because of obvious conceptual flaws requiring futher consideration. There is also
some speculative material, clearly labeled as such, which we hope will be produc-
tive. The need for crazy ideas has been immortalized in a famous comment of
N. Bohr so there is no shame attached to exploratory ventures, however uncon-
ventional they may seem at first appearance. The idea of a quantum potential as
a link between classical and quantum phenomena, and the related attachment to
Bohmian type mechanics, seems compelling and is pursued throughout the book;
that it should also have links to quantum fluctuations (and information) and Weyl
curvature makes it irresistible.

There is no attempt to present a final version of anything. For a time in the
1990’s the connection of string theory to soliton mathematics (e.g. in Seiberg-
Witten theory) seemed destined to solve everything but it was only preliminary.
Some of this is summarized nicely in a lovely paper of A. Morozov [662] where
connections to matrix models and special functions (and much more) are indi-
cated and the need for mathematical development in various directions is empha-
sized (cf. [191, 662] and references there along with a few comments in Chap-
ter 8). The arena of noncommutative geometry and quantum groups is person-
ally very appealing (see e.g. [192, 258, 589, 615, 619, 620]) and we refer to
[157, 158, 159, 160, 161, 162, 260, 580, 581, 582, 722] for some fascinating
work on Feynman diagrams, quantum groups, and quantum field theory (some of
this is sketched in Chapter 8). We have not gone into here (and know little about)
several worlds of phenomenological physics regarding e.g. QCD, quarks, gluons,
etc. (whose story is partly described in [997] by F. Wilczek in his Nobel lecture).
We have also been fascinated by the mathematics of superfluids à la G. Volovik
([968, 969]) and the mathematics is often related to other topics in this book;

There are also a few
remarks about cosmology and here again we know little and have only indicated
a few places where Dirac-Weyl

play a role.

As to the book itself we mainly develop the theme of the quantum potential
and with it the Bohmian trajectory representation of QM. The quantum potential
arises most innocently in the Bohmian theory and the Schrödinger equation (SE)
as an expression Q = −(�2/2m)(∆|ψ|/|ψ|) where ψ is the wave function and Q
appears then in the corresponding Hamilton-Jacobi (HJ) equation as a potential

however our understanding of the physics is very limited.

geometry, and hence perhaps the quantum potent-
ial,
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term. It is possible to relate this term to Fisher information, entropy, and quan-
tum fluctuations in a natural manner and further to hydrodynamics, stress tensors,
diffusion, Weyl-Ricci scalar curvatures, fractal velocities, osmotic pressure, etc. It
arises in relativistic form via Q = (�2/m2c2))�|ψ|/|ψ|) and in field theoretic mod-
els as e.g. Q = −(�2/2|Ψ|)(δ2|Ψ|/δ|Ψ|2). In terms of lapse and shift functions one
has a WDW version in the form Q = h2NqGijk�(δ2|Ψ|/δqijδqk�) (q is a surface
metric). There is also a way in which the quantum potential can be considered as
a mass generation term (cf. Remark 2.2.1 and [110]) and this is surely related to
its role in Weyl-Dirac geometry in determining the matter field. In purely Weyl
geometry one can use the quantum matter field (determined by Q) as a metric
multiplier to create the conformal geometry. In Chapter 7 we give a resumé of
various aspects of the quantum potential contained in Chapters 1-7, followed by
further information on the quantum potential. We had hoped to include material
on the mathematics of acoustics and superfluids à la Volovik and thermo-field-
theory à la Blassone, Celeghini, Das, Iorio, Jizba, Rasetti, Vitiello, Umezawa, et
al. (see e.g. [122, 231, 493, 519, 912, 913, 963, 964, 965]). This however is
too much (and no new insights into the quantum potential were visible); in any
case there are already books [286, 950, 968] available. Aside from a few short
sketches we have also felt that there is not enough room here to properly cover the

theory (QFT) at several places in the book, referring to [120,
457, 935, 1015] for example, and we provide in Chapter 8 a survey article
written in 2003-2004 (QFT), tau

vertex operators. Although this does not touch on
the (and delves mainly into taming the combinatorics of QFT
via quantum groups for example), some of this material seems to be relevant to
the program suggested in

physics, with my sons David and Malcolm, and with my wife’s son Jim Bredt;
I have also benefitted from

correspondence with C. Castro, M. Davidson, D. Delphenich, V. Dobrev, E. Floyd,
G. Grössing, G. Kaniadakis, M. Kozlowski, M. Lapidus, M. Matone, H. Nikolić,

L. Bogdanov, F. Calogero, H. Doebner, J. Edelstein, P. Grinevich, Y. Kodama,
B. Konopelchenko, A. Morozov, R. Parthasarathy, O. Pashaev, P. Sabatier, and
M. Stone. A glance at the contents and index will indicate the important role
of H. Weyl in this book and it is perhaps appropriate to mention a “familial”

vatdozent. The book is dedicated to my wife Denise Rzewska-Bredt-Carroll who
has guided me in a passionate love affair through the perils of our golden years.

We have had recourse
to quantum field

nonlinear Schrödinger equation (NLSE). (cf [223, 280, 292, 311, 312, 313, 413,
691, 692, 693, 1028, 1029, 1030, 1031, 1032, 1033, 1034]).

(updated a bit) on quantum field theory func-

quantum potential

I would like to acknowledge interesting conversations about various topics in

andtions, Hopf algebras,

[662] and should be of current interest (cf. [191, 192]

F. Shojai, S. Tiwari, and J.T. Wheeler and from conversations with M. Bergvelt,

for more background). We recently became aware of important work in various

they all know much more than I about real physics.

1019, 1022, 1023, 1024] and cf. also [1020, 1021]).

influence as well, via my thesis advisor A. Weinstein who was Weyl’s only Pri-

directions by Brown, Hiley, deGosson, Padmanabhan, and Smolin (see [741, 1018



CHAPTER 1

THE SCHRÖDINGER EQUATION

Perhaps no subject has been the focus of as much mystery as “classical” quan-
tum mechanics (QM) even though the standard Hilbert space framework provides
an eminently satisfactory vehicle for determining accurate conclusions in many
situations. This and other classical viewpoints provide also seven decimal place
accuracy in quantum electrodynamics (QED) for example. So why all the fuss?
The erection of the Hilbert space edifice and the subsequent development of op-
erator algebras (extending now into noncommutative (NC) geometry) has an air
of magic. It works but exactly why it works and what it really represents remain
shrouded in ambiguity. Also geometrical connections of QM and classical mechan-
ics (CM) are still a source of new work and a modern paradigm focuses on the
emergence of CM from QM (or below). Below could mean here a microstructure
of space time, or quantum foam, or whatever. Hence we focus on other approaches
to QM and will recall any needed Hilbert space ideas as they arise.

1. DIFFUSION AND STOCHASTIC PROCESSES

First consider the SE in the form −(�2/2m)ψ′′ + V ψ = i�ψt so that for
ψ = Rexp(iS/�) one obtains

(1.1) St +
S2

X

2m
+ V − �2R′′

2mR
= 0; ∂t(R2) +

1
m

(R2S′)′ = 0

1

mathematical and physical, and we sometimes avoid detailed technical discussion
of mathematical fine points (cf. [241, 242, 243, 271, 315,

647, 672, 674, 698, 715, 719, 783, 810,

concerned with origins of the Schrödinger equation (SE). For background information

“structure”, both

726,

345, 531, 591, 592,
607, 615, 672, 674, 810, 918] for various delicate matters).

There are some beautiful stochastic theories for diffusion and QM mainly

For example, rather
than looking at such topics as Markov processes with jumps

with diffusion processes and kinetic theory.

we prefer to seek
“meaning” for the Schrödinger equation via microstructure and

[33, 98, 131, 191, 192, 241, 242, 258, 471, 555,
860, 1025, 1026,

1027]. The present development focuses on certain aspects of the
diffusion processes,

quantum potentials, and fractalmethods. The aim is to envision

SE involving the
wave function form ψ = Rexp(iS/�), hydro dynamical versions,

615, 628,
589,

591,

fractals in
connection

we mention for example



2 1. THE SCHRÖDINGER EQUATION

where S′ ∼ ∂S/∂X. Writing P = R2 (probability density ∼ |ψ|2) and Q =
−(�2/2m)(R′′/R) (quantum potential) this becomes

(1.2) St +
(S′)2

2m
+ Q + V = 0; Pt +

1
m

(PS′)′ = 0

and this has some hydrodynamical interpretations in the spirit of Madelung. In-
deed going to [294] for example we take p = S′ with p = mq̇ for q̇ a velocity (or
“collective” velocity - unspecified). Then (1.2) can be written as (ρ = mP is an
unspecified mass density)

(1.3) St +
p2

2m
+ Q + V = 0; Pt +

1
m

(Pp)′ = 0; p = S′; P = R2;

Q = − �2

2m

R′′

R
= − �2

2m

∂2√ρ
√

ρ

Note here

(1.4)
∂2√ρ
√

ρ
=

1
4

[
2ρ′′

ρ
−
(

ρ′

ρ

)2
]

Now from S′ = p = mq̇ = mv one has

(1.5) Pt + (P q̇)′ = 0 ≡ ρt + (ρq̇)′ = 0; St +
p2

2m
+ V − �2

2m

∂2√ρ
√

ρ
= 0

Differentiating the second equation in X yields (∂ ∼ ∂/∂X, v = q̇)

(1.6) mvt + mvv′ + ∂V − �2

2m
∂

(
∂
√

ρ
√

ρ

)
= 0

Consequently, multiplying by p = mv and ρ respectively in (1.5) and (1.6), we
obtain

(1.7) mρvt + mρvv′ + ρ∂V − �2

2m
ρ∂

(
∂2√ρ
√

ρ

)
= 0; mvρt + mv(ρ′v + ρv′) = 0

Then adding in (1.7) we get

(1.8) ∂t(ρv) + ∂(ρv2) +
ρ

m
∂V − �2

2m2
ρ∂

(
∂2√ρ
√

ρ

)
= 0

This is similar to an equation in [294] (called an “Euler” equation) and it definitely
has a hydrodynamic flavor (cf. also [434] and see Section 6.2 for more details and
some expansion).

Now go to [743] and write (1.6) in the form (mv = p = S′)

(1.9)
∂v

∂t
+ (v · ∇)v = − 1

m
∇(V + Q); vt + vv′ = −(1/m)∂(V + Q)

The higher dimensional form is not considered here but matters are similar there.
This equation (and (1.8)) is incomplete as a hydrodynamical equation as a conse-
quence of a missing term −ρ−1∇p where p is the pressure (cf. [607]). Hence one
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“completes” the equation in the form

(1.10) m

(
∂v

∂t
+ (v · ∇)v

)
= −∇(V + Q)−∇F ; mvt + mvv′ = −∂(V + Q)−F ′

where ∇F = (1/R2)∇p (or F ′ = (1/R2)p′). By the derivations above this would
then correspond to an extended SE of the form

(1.11) i�
∂ψ

∂t
= − �2

2m
∆ψ + V ψ + Fψ

provided one can determine F in terms of the wave function ψ. One notes that it
a necessary condition here involves curlgrad(F ) = 0 or curl(R−2∇p) = 0 which
enables one to take e.g. p = −bR2 = −b|ψ|2. For one dimension one writes F ′ =
−b(1/R2)∂|ψ|2 = −(2bR′/R)⇒ F = −2blog(R) = −blog(|ψ|2). Consequently one
has a corresponding SE

(1.12) i�
∂ψ

∂t
= − �2

2m
ψ′′ + V ψ − b(log|ψ|2)ψ

This equation has a number of nice features discussed in [743]

For example ψ = βG(x−vt)exp(ikx−iωt) is a solution of (2.28) withV=0and for
v= �k/m one gets ψ = cexp[−(B/4)(x−vt+d)2] exp(ikx−iωt) where B = 4mb/�2.
Normalization

∫∞
−∞ |ψ|

2 = 1 is possible with |ψ|2 = δm(ξ) =
√

mα/πexp(−αmξ2)
where α = 2b/�2, d = 0, and ξ = x − vt F or m → ∞ we see that δm becomes
a Dirac delta and this means that motionof a
localized. This is impossible for ordinary QM since exp(ikx − iωt) cannot be
localized as m→∞. Such behavior helps to explain the so-called collapse of the
wave function and since superposition does not hold Schrödinger’s cat is either
dead or alive. Further v = k�/m is equivalent to the deBroglie relation λ = h/p
since λ = (2π/k) = 2π(�/mv) = 2π(h/2π)(1/p).

REMARK 1.1.1. We go now to [530] and the linear SE in the form
i(∂ψ/∂t) = −(1/2m)∆ψ+U(�r)ψ; such a situation leads to the Ehrenfest equations
which have the form

(1.13) < �v >= (d/dt) < �r >; < �r >=
∫

d3x|ψ(�r, t)|2�r; m(d/dt) < �v >=

= �F (t)�F (t) = −
∫

d3x|ψ(�r, t)|2�∇U(�r)

Thus the quantum expectation values of position and velocity of a suitable quan-
tum system obey the classical equations of motion and the amplitude squared is
a natural probability weight. The result tells us that besides the statistical fluc-
tuations quantum systems posess an extra source of indeterminacy, regulated in
a very definite manner by the complex wave function. The Ehrenfest theorem
can be extended to many point particle systems and in [530] one singles out the
kind of nonlinearities that violate the Ehrenfest theorem. A theorem is proved
that connects Galilean invariance, and the existence of a Lagrangian whose Euler-
Lagrange equation is the SE, to the fulfillment of the Ehrenfest theorem.

292,

particle with big mass is strongly

311, 312, 413, 691, 692, 693, 1028, 1029, 1030, 1031, 1032, 1033, 1034]).
(cf. also [223, 280,
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REMARK 1.1.2. There are many problems with the quantum mechanical
theory of derived nonlinear SE (NLSE) but many examples of realistic NLSE arise
in the study of superconductivity, Bose-Einstein condensates, stochastic models
of quantum fluids, etc. and the subject demands further study. We make no at-
tempt to survey this here but will give an interesting example later from [223]
related to fractal structures where a number of the difficulties are resolved. For
further information on NLSE, in addition to the references above, we refer to
[100, 281, 392, 413, 530, 534, 535, 536, 788, 789, 790, 956, 957] for some
typical situations (the list is not at all complete and we apologize for omissions).
Let us mention a few cases.

• The program of [530] introduces a Schrödinger Lagrangian for a free
particle including self-interactions of any nonlinear nature but no ex-
plicit dependence on the space of time coordinates. The corresponding
action is then invariant under spatial coordinate transformations and by
Noether’s theorem there arises a conserved current and the physical law
of conservation of linear momentum. The Lagrangian is also required
to be a real scalar depending on the phase of the wave function only
through its derivatives. Phase transformations will then induce the law
of conservation of probability identified as the modulus squared of the
wave function. Galilean invariance of the Lagrangian then determines
a connection between the probability current and the linear momentum
which insures the validity of the Ehrenfest theorem.

• We turn next to [535] for a statistical origin for QM (cf. also [191, 281,
534, 536, 698, 723, 809, 849]). The idea is to build a program in
which the microscopic motion, underlying QM, is described by a rigorous
dynamics different from Brownian motion (thus avoiding unnecessary
assumptions about the Brownian nature of the underlying dynamics).
The Madelung approach gives rise to fluid dynamical type equations with
a quantum potential, the latter being capable of interpretation in terms
of a stress tensor of a quantum fluid. Thus one shows in [535] that the
quantum state corresponds to a subquantum statistical ensemble whose
time evolution is governed by classical kinetics in the phase space. The
equations take the form

(1.14) ρt + ∂x(ρu) = 0; ∂t(µρui) + ∂j(ρφij) + ρ∂xi
V = 0;

∂t(ρE) + ∂x(ρS)− ρ∂tV = 0

(1.15)
∂S

∂t
+

1
2µ

(
∂S

∂x

)2

+W + V = 0

for two scalar fields ρ, S determining a quantum fluid. These can be
rewritten as

(1.16)
∂ξ

∂t
+

1
µ

∂2S

∂x2
+

1
µ

∂ξ

∂x

∂S

∂x
= 0;

∂S

∂t
− η2

4µ

∂2ξ

∂x2
− η2

8µ

(
∂ξ

∂x

)2

+
1
2µ

(
∂S

∂x

)2

+ V = 0
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where ξ = log(ρ) and for Ω = (ξ/2)+ (i/η)S = logΨ with m = Nµ, V =
NV , and � = Nη one arrives at a SE

(1.17) i�
∂Ψ
∂t

= − �2

2m

∂2Ψ
∂x2

+ VΨ

Further one can write Ψ = ρ1/2exp(iS/�) with S = NS and here N =∫
|Ψ|2dnx. The analysis is very interesting.

We will return to this later.

REMARK 1.1.3. Now in [324] one is obliged to use the form ψ = Rexp(iS/�)
to make sense out of the constructions (this is no problem with suitable provisos,
e.g. that S is not constant - cf. [110, 191, 197, 198, 346, 347]). Thus note
ψ′/ψ = (R′/R) + i(S′/�) with �(ψ′/ψ) = (1/m)S′ ∼ p/m (see also (1.22) below).
Note also J = (�/m)�ψ∗ψ′ and ρ = R2 = |ψ|2 represent a current and a density
respectively. Then using p = mv = mq̇ one can write

(1.18) ′ J = (�/m)�|ψ|2(ψ∗ψ′/|ψ|2) = (�/m)�(ρ )

Then look at the SE in the form i�ψt = −(�2/2m)ψ′′ + V ψ with ψt = (Rt +
iStR/�)exp(iS/�) and

(1.19) ψxx = [(R′ + (iS′R/�)exp(iS/�)]′ =

[R′′ + (2iS′R′/�) + (iS′′R/�) + (iS′/�)2R]exp(iS/�)
which means

(1.20) − �2

2m

[
R′′ −

(
S′

�

)2

+
2iS′r′

�
+

iS′′R
�

]
+ V R = i�

[
Rt +

iStR

�

]
⇒

⇒ ∂tR
2 +

1
m

(R2S′)′ = 0; St +
(S′)2

2mR
− �2R′′

2mR
+ V = 0

This can also be written as (cf. (1.3))

(1.21) ∂tρ +
1
m

∂(pρ) = 0; St +
p2

2m
+ Q + V = 0

where Q = −�2R′′/2mR. Now we sketch the philosophy of [324, 325] in part.
Most of such aspects are omitted here and we try to isolate the essential math-
ematical features (see Section 1.2 for more). First one emphasizes configurations
based on coordinates whose motion is choreographed by the SE according to the
rule (1-D only here)

(1.22) q̇ = v =
�

m
�ψ∗ψ′

|ψ|2

where i�ψt = −(�2/2m)ψ′′ + V ψ. The argument for (1.22) is based on obtaining
the simplest Galilean and time reversal invariant form for velocity, transforming
correctly under velocity boosts. This leads directly to (1.22) (cf. (1.18))) so that
Bohmian mechanics (BM) is governed by (1.22) and the SE. It’s a fairly convincing
argument and no recourse to Floydian time seems possible (cf. [191, 347, 373,
374]). Note however that if S = c then q̇ = v = (�/m)�(R′/R) = 0 while
p = S′ = 0 so perhaps this formulation avoids the S = 0 problems indicated in

p = (�/m)�(ψ /ψ); p
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[191, 347, 373, 374]. One notes also that BM depends only on the Riemannian
structure g = (gij) = (miδij) in the form

(1.23) q̇ = ��(gradψ/ψ); i�ψt = −(�2/2)∆ψ + V ψ

What makes the constant �/m in (1.22) important here is that with this value the
probability density |ψ|2 on configuration space is equivariant. This means that via
the evolution of probability densities ρt + div(vρ) = 0 (as in (1.21) with v ∼ p/m)
the density ρ = |ψ|2 is stationary relative to ψ, i.e. ρ(t) retains the form |ψ(q, t)|2.
One calls ρ = |ψ|2 the quantum equilibrium density (QED) and says that a system
is in quantum equilibrium when its coordinates are randomly distributed accord-
ing to the QED. The quantum equilibrium hypothesis (QHP) is the assertion that
when a system has wave function ψ the distribution ρ of its coordinates satisfies
ρ = |ψ|2.

REMARK 1.1.4. We extract here from [446, 447, 448] (cf. also the refer-
ences there for background and [381, 382, 523] for some information geometry).
There are a number of interesting results connecting uncertainty, Fisher informa-
tion, and QM and we make no attempt to survey the matter. Thus first recall that
the classical Fisher information associated with translations of a 1-D observable
X with probability density P (x) is

(1.24) FX =
∫

dx P (x)([log(P (x)]′)2 > 0

Recall now the Cramer-Rao inequality V ar(X) ≥ F−1
X where V ar(X) ∼ variance

of X. A Fisher length for X is defined via δX = F
−1/2
X and this quantifies the length

scale over which p(x) (or better log(p(x))) varies appreciably. Then the root mean
square deviation ∆X satisfies ∆X ≥ δX. Let now P be the momentum observable
conjugate to X, and Pcl a classical momentum observable corresponding to the
state ψ given via pcl(x) = (�/2i)[(ψ′/ψ)− (ψ̄′/ψ̄)] (cf. (1.22)). One has then the
identity < p >ψ=< pcl >ψ via integration by parts. Now define the nonclassical
momentum by pnc = p−pcl and one shows that ∆X∆p ≥ δX∆p ≥ δX∆pnc = �/2.
Then go to [447] now where two proofs are given for the derivation of the SE
from the exact uncertainty principle (δX∆pnc = �/2). Thus consider a classical
ensemble of n-dimensional particles of mass m moving under a potential V. The
motion can be described via the HJ and continuity equations

(1.25)
∂s

∂t
+

1
2m
|∇s|2 + V = 0;

∂P

∂t
+∇ ·

[
P
∇s

m

]
= 0

for the momentum potential s and the position probability density P (note that
we have interchanged p and P from [447] - note also there is no quantum potential
and this will be supplied by the information term). These equations follow from
the variational principle δL = 0 with Lagrangian

(1.26) L =
∫

dt dnx P

[
∂s

∂t
+

1
2m
|∇s|2 + V

]
It is now assumed that the classical Lagrangian must be modified due to the
existence of random momentum fluctuations. The nature of such fluctuations is
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immaterial for (cf. [447] for discussion) and one can assume that the momentum
associated with position x is given by p = ∇s + N where the fluctuation term N
vanishes on average at each point x. Thus s changes to being an average momentum
potential. It follows that the average kinetic energy < |∇s|2 > /2m appearing in
(1.26) should be replaced by < |∇s + N |2 > /2m giving rise to

(1.27) L′ = L + (2m)−1

∫
dt < N ·N >= L + (2m)−1

∫
dt(∆N)2

where ∆N =< N ·N >1/2 is a measure of the strength of the fluctuations. The ad-
ditional term is specified uniquely, up to a multiplicative constant, by the following
three assumptions

(1) Action principle: L′ is a scalar Lagrangian with respect to the fields P
and s where the principle δL′ = 0 yields causal equations of motion.
Thus (∆N)2 =

∫
dnx pf(P,∇P, ∂P/∂t, s,∇s, ∂s/∂t, x, t) for some scalar

function f .
(2) Additivity: If the system comprises two independent noninteracting sub-

systems with P = P1P2 then the Lagrangian decomposes into additive
subsystem contributions; thus f = f1 + f2 for P = P1P2.

(3) Exact uncertainty: The strength of the momentum fluctuation at any
given time is determined by and scales inversely with the uncertainty in
position at that time. Thus ∆N → k∆N for x → x/k. Moreover since
position uncertainty is entirely characterized by the probability density
P at any given time the function f cannot depend on s, nor explicitly on
t, nor on ∂P/∂t.

The following theorem is then asserted (see [447] for the proofs).

THEOREM 1.1. The above 3 assumptions imply the relation (∆N)2 =
c
∫

dnx P |∇log(P )|2 where c is a positive universal constant.

COROLLARY 1.1. It follows from (1.27) that the equations of motion for
p and s corresponding to the principle δL′ = 0 are

(1.28) i�
∂ψ

∂t
= − �2

2m
∇2ψ + V ψ

where � = 2
√

c and ψ =
√

Pexp(is/�).

REMARK 1.1.5. We sketch here for simplicity and clarity another deriva-
tion of the SE along similar ideas following [805]. Let P (yi) be a probability
density and P (yi + ∆yi) be the density resulting from a small change in the yi.
Calculate the cross entropy via

(1.29) J(P (yi + ∆yi) : P (yi)) =
∫

P (yi + ∆yi)log
P (yi + ∆yi)

P (yi)
dny 




[
1
2

∫
1

P (yi)
∂P (yi)

∂yi

∂P (yi)
∂yk)

dny

]
∆yi∆yk = Ijk∆yi∆yk
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The Ijk are the elements of the Fisher information matrix. The most general
expression has the form

(1.30) Ijk(θi) =
1
2

∫
1

P (xi|θi)
∂P (xi|θi)

∂θj

∂P (xi|θi)
∂θk

dnx

where P (xi|θi) is a probability distribution depending on parameters θi in addition
to the xi. For P (xi|θi) = P (xi + θi) one recovers (1.29) (straightforward - cf.
[805]). If P is defined over an n-dimensional manifold with positive inverse metric
gik one obtains a natural definition of the information associated with P via

(1.31) I = gikIik =
gik

2

∫
1
P

∂P

∂yi

∂P

∂yk
dny

Now in the HJ formulation of classical mechanics the equation of motion takes the
form

(1.32)
∂S

∂t
+

1
2
gµν ∂S

∂xµ

∂S

∂xν
+ V = 0

where gµν = diag(1/m, · · · , 1/m). The velocity field uµ is given by uµ = gµν(∂S/∂xν).
When the exact coordinates are unknown one can describe the system by means
of a probability density P (t, xµ) with

∫
Pdnx = 1 and

(1.33) (∂P/∂t) + (∂/∂xµ)(Pgµν(∂S/∂xν)) = 0

These equations completely describe the motion and can be derived from the
Lagrangian

(1.34) LCL =
∫

P

{
∂S

∂t
+

1
2
gµν ∂S

∂xµ

∂S

∂xν
+ V

}
dtdnx

using fixed endpoint variation in S and P. Quantization is obtained by adding a
term proportional to the information I defined in (1.31). This leads to
(1.35)

LQM = LCL + λI =
∫

P

{
∂S

∂t
+

1
2
gµν

[
∂S

∂xµ

∂S

∂xν
+

λ

P 2

∂P

∂xµ

∂P

∂xν

]
+ V

}
dtdnx

Fixed endpoint variation in S leads again to (1.33) while variation in P leads to

(1.36)
∂S

∂t
+

1
2
gµν

[
∂S

∂xµ

∂S

∂xν
+ λ

(
1

P 2

∂P

∂xµ

∂P

∂xν
− 2

P

∂2P

∂xµ∂xν

)]
+ V = 0

These equations are equivalent to the SE if ψ =
√

Pexp(iS/�) with λ = (2�)2.

REMARK 1.1.6. In Remarks 1.1.6 - 1.1.8 one uses Q = ±(1/m)
times the standard Q = −(�2/2m)(∆

√
ρ/
√

ρ. The SE gives to a probability
distribution ρ = |ψ|2 (with suitable normalization) and to this one can associate
an information entropy S(t) (actually configuration information entropy) S =
−
∫

ρlog(ρ)d3x which is typically not a conserved quantity (S is an unfortunate
notation here but we retain it momentarily since no confusion should arise). The
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rate of change in time of S can be readily found by using the continuity equation
t

(1.37)
∂S

∂t
= −

∫
ρt(1 + log(ρ))dx =

∫
(1 + log(ρ))∂(vρ)

Note that a formal substitution of v = −u in the contintuity equation implies the
standard free Browian motion outcome dS/dt = D ·

∫
[(∇ρ)2/ρ)d3x = D ·TrF ≥ 0

- use here u = D∇log(ρ) with D = �/2m) and (1.37) with
∫

(1 + log(ρ))∂(vρ) =
−
∫

vρ∂log(ρ) = −
∫

vρ′ ∼
∫

((ρ′)2/ρ) modulo constants involving D etc. Recall
here F ∼ −(2/D2)

∫
ρQdx =

∫
dx[(∇ρ)2/ρ] is a functional form of Fisher infor-

mation. A high rate of information entropy production corresponds to a rapid
spreading (flattening down) of the probablity density. This delocalization feature
is concomitant with the decay in time property quantifying the time rate at which
the far from equilibrium system approaches its stationary state of equilibrium
(d/dt)TrF ≤ 0.

REMARK 1.1.7. Now going back to the quantum context one admits gen-
eral forms of the current velocity v. For example consider a gradient field v = b−u
where the so-called forward drift b(x, t) of the stochastic process depends on a
particular diffusion model. Then one can rewrite the continuity equation as a

t Boundary restrictions
requiring ρ, vρ, and bρ to vanish at spatial infinities or at boundaries yield the
general entropy balance equation

(1.38)
dS

dt
=
∫ [

ρ(∇ · b) + D · (∇ρ)2

ρ

]
d3x ≡ −D

dS

dt
=
∫

ρ(v · u)d3x =< v · u >

The first term in the first equation is not positive definite and can be interpreted
as an entropy flux while the second term refers to the entropy production proper.
The flux term represents the mean value of the drift field divergence ∇·b which by
itself is a local measure of the flux incoming to or outgoing from an infinitesimal
surrounding of x at time t. If locally (∇· b)(x, t) > 0 on an infinitesimal time scale
we would encounter a local entropy increase in the system (increasing disorder)
while in case (∇ · b)(x, t) < 0 one thinks of local entropy loss or restoration or
order. Only in the situation < ∇ · b >= 0 is there no entropy production. Quan-
tum dynamics permits more complicated behavior. One looks first for a general
criterion under which the information entropy S is a conserved quantity. Consider
(1.8) and invoke the diffusion current to write (recall u = D(∇ρ)/ρ)

(1.39) D
dS

dt
= −

∫
[ρ−1/2(ρv)] · [ρ−1/2(D∇ρ)]d3x

Then by means of the Schwarz inequality one has D|dS/dt| ≤< v2 >1/2< u2 >1/2

so a necessary (but insufficient) condition for dS/dt �= 0 is that both < v2 >
and < u2 > are nonvanishing. On the other hand a sufficient condition for
dS/dt = 0 is that either one of these terms vanishes. Indeed in view of <
u2 >= D2

∫
[(∇ρ)2/ρ]d3x the vanishing information entropy production implies

dS/dt = 0; the vanishing diffusion current does the same job.

∂ ρ = −∇ · (vρ) where v is a current velocity field. Note here (cf. also [752])

standard Fokker-Planck equation ∂ ρ = D∆ρ − ∇ · (bρ).
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REMARK 1.1.8. We develop a little more perspective now (following [395]
- first paper). Recall Q written out as

(1.40) Q = 2D2 ∆ρ1/2

ρ1/2
= D2

[
∆ρ

ρ
− 1

2ρ2
(∇ρ)2

]
=

1
2
u2 + D∇ · u

where u = D∇log(ρ) is called an osmotic velocity field. The standard Brownian
motion involves v = −u, known as the diffusion current velocity and (up to a
dimensional factor) is identified with the thermodynamic force of diffusion which
drives the irreversible process of matter exchange at the macroscopic level. On the
other hand, even while the thermodynamic force is a concept of purely statistical
origin associated with a collection of particles, in contrast to microscopic forces
which have a direct impact on individual particles themselves, it is well known
that this force manifests itself as a Newtonian type entry in local conservation
laws describing the momentum balance; in fact it pertains to the average (local
average) momentum taken over by the particle cloud, a statistical ensemble prop-
erty quantified in terms of the probability distribution at hand. It is precisely the
(negative) gradient of the above potential Q in (1.40) which plays the Newtonian
force role in the momentum balance equations. The second analytical expression
of interest here involves

(1.41) −
∫

Qρdx = (1/2)
∫

u2ρdx = (1/2)D2 · FX ; FX =
∫

(∇ρ)2

ρ
dx

where FX is the Fisher information, encoded in the probability density ρ which
quantifies its gradient content (sharpness plus localization/disorder) Note that

(1.42) −
∫

Qρ = −
∫

[(1/2)u2ρ + Dρu′] = −
∫

(1/2)u2ρ +
∫

Duρ′ =

= −(1/2)
∫

D2(ρ′/ρ)2ρ + D2

∫
ρ′(ρ′/ρ) = (D2/2)

∫
(ρ′)2/ρ = (1/2)

∫
u2ρ

On the other hand the local entropy production inside the system sustaining an
irreversible process of diffusion is given via

(1.43)
dS

dt
= D ·

∫
(∇ρ)2

ρ
dx = D · FX ≥ 0

This stands for an entropy production rate when the Fick law induced diffusion
current (standard Brownian motion case) j = −D∇ρ, obeying ∂tρ+∇j = 0, enters
the scene. Here S = −

∫
ρlog(ρ)dx plays the role of (time dependent) information

entropy in the nonequilibrium statistical mechanics framework for the thermody-
namics of irreversible processes. It is clear that a high rate of entropy increase
coresponds to a rapid spreading (flattening) of the probability density. This ex-
plicitly depends on the sharpness of density gradients. The potential Q(x,t), the
Fisher information FX , the nonequilibrium measure of entropy production dS/dt,
and the information entropy S(t) are thus mutually entangled quantities, each
being exclusively determined in terms of ρ and its derivatives.

−
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In the standard statistical mechanics setting the Euler equation gives a pro-
totypical momentum balance equation in the (local) mean

(1.44) (∂t + v · ∇)v =
F

m
− ∇P

ρ

where F = −∇F represents normal Newtonian force and P is a pressure term. Q
appears in the hydrodynamical formalism of QM via

(1.45) (∂t + v · ∇)v =
1
m

F −∇Q =
1
m

F +
�2

2m2
∇∆ρ1/2

ρ1/2

Another spectacular example pertains to the standard free Brownian motion in
the strong friction regime (Smoluchowski diffusion), namely

(1.46) (∂t + v · ∇)v = −2D2∇∆ρ1/2

ρ1/2
= −∇Q

where v = −D(∇ρ/ρ) (formally D = �/2m).

REMARK 1.1.9. The papers in [291, 292] contain very interesting deriva-
tions of Schrödinger equations via diffusion ideas à la Nelson, Markov wave equa-
tions, and suitable “applied” forces (e.g. radiative reactive forces).

We go now to Nagasawa [670, 671, 672, 673, 674] to see how diffusion and
the SE are really connected (cf. also [15, 141, 223, 421, 676, 681, 698, 726,
732, 733, 734, 735, 736] for related material, some of which is discussed later
in detail); for now we simply sketch some formulas for a simple Euclidean met-
ric where ∆ =

∑
(∂/∂xi)2. Then ψ(t, x) = exp[R(t, x) + iS(t, x)] satisfies a SE

i∂tψ +(1/2)∆ψ + ia(t, x) ·∇ψ−V (t, x)ψ = 0 (� and m omitted with a(t, x) a drift
coefficient) if and only if

(1.47) V = −∂S

∂t
+

1
2
∆R +

1
2
(∇R)2 − 1

2
(∇S)2 − a · ∇S;

0 =
∂R

∂t
+

1
2
∆S + (∇S) · (∇R) + a · ∇R

in the region D = {(s, x) : ψ(s, x) �= 0} (a harmless gauge factor in the divergence
is also being omitted). Solutions are often referred to as weak or distributional
but we do not belabor this point. From [671, 672, 673] there results

THEOREM 1.2. Let ψ(t, x) = exp[R(t, x) + iS(t, x)] be a solution of the
SE above; then φ(t, x) = exp[R(t, x) + S(t, x)] and φ̂ = exp[R(t, x) − S(t, x)] are
solutions of

(1.48)
∂φ

∂t
+

1
2
∆φ + a(t, x) · ∇φ + c(t, x, φ)φ = 0;

−∂φ̂

∂t
+

1
2
∆φ̂− a(t, x) · ∇φ̂ + c(t, x, φ)φ̂ = 0

where the creation and annihilation term c(t, x, φ) is given via

(1.49) c(t, x, φ) = −V (t, x)− 2
∂S

∂t
(t, x)− (∇S)2(t, x)− 2a · ∇S(t, x)
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Conversely given (φ, φ̂) as in Theorem 1.2 satisfying (1.48) it follows that ψ satisfies
the SE with V as in (1.49) (note R = (1/2)log(φ̂φ) and S = (1/2)log(φ/φ̂) with
exp(R) = (φ̂φ)1/2).

We note that the equations (1.48) are not imaginary time SE and from all
this one can conclude that nonrelativistic QM is diffusion theory in terms of
Schrödinger processes (described by (φ, φ̂) - more details later). Further it is
shown that certain key postulates in Nelson’s stochastic mechanics or Zambrini’s
Euclidean QM (cf. [1011]) can both be avoided in connecting the SE to diffusion
processes (since they are automatically valid). Look now at Theorem 1.2 for one
dimension and write T = �t with X = (�/

√
m)x and A = a�/

√
m; then the SE

becomes

(1.50) i�ψT = −(�2/2m)ψXX − iAψX + V ψ;

i�RT + (�2/m2)RXSX + (�2/2m2)SXX + ARX = 0;

V = −i�ST + (�2/2m)RXX + (�2/2m2)R2
X − (�2/2m2)S2

X −ASX

Hence

PROPOSITION 1.1. The SE of Theorem 1.2, written in the variables X =
(�/
√

m)x, T = �t, with A = (
√

m/�)a and V = V (X,T ) ∼ V (x, t) is equivalent
to (2.2).

Making a change of variables in (1.48) now, as in Proposition 1.1, yields

COROLLARY 1.2. Equation (1.48), written in the variables of Proposition
1.2, becomes

(1.51) �φT +
�2

2m
φXX + AφX + c̃φ = 0; −�φ̂T +

�2

2m
φ̂XX −Aφ̂X + c̃φ̂ = 0;

c̃ = −Ṽ (X,T )− 2�ST −
�2

m
S2

X − 2ASX

Thus the diffusion processes pick up factors of � and �/
√

m.

REMARK 1.1.10. We extract here from the Appendix to [672] for some
remarks on competing points of view regarding diffusion and the the SE. First
some work of Fenyes [360] is cited where a Lagrangian is taken as

(1.52) L(t) =
∫ [

∂S

∂t
+

1
2
(∇S)2 + V +

1
2

(
1
2
∇µ

µ

)2
]

µdx

where µt(x) = exp(2R(t, x)) denotes the distribution density of a diffusion process
and V is a potential function. The term Π(µ) = (1/2)[(1/2)(∇µ/µ)]2 is called a
diffusion pressure and since (1/2)(∇µ/µ) ∼ ∇R the Lagrangian can be written as

(1.53) L =
∫ [

∂S

∂t
+

1
2
(∇S)2 +

1
2
(∇R)2 + V

]
µdx
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Applying the variational principle δ
∫ b

a
L(t)dt = 0 one arrives at

(1.54)
∂S

∂t
+

1
2

[(∇(R + S)]2− (∇(R+S)) ·
(

1
2
∇µ

µ

)
+
(

1
2
∇µ

µ

)2

− 1
4

∆µ

µ
+V = 0

which is called a motion equation of probability densities. From this he shows
that the function ψ = exp(R + iS) satisfies the SE i∂t + (1/2)∆ψ − V (t, x)ψ = 0.
Indeed putting Π(µ) and the formula (1/2)(∆µ/µ)+(1/2)∆R+(∇R)2 into (1.53)
one obtains

(1.55)
∂S

∂t
+

1
2
(∇S)2 − 1

2
(∇R)2 − 1

2
∆R + V = 0

which goes along with the duality relation Rt + (1/2)∆S +∇S · ∇R + b · ∇R = 0
where u = (1/2)(a + â) = ∇R and v = (1/2)(a − â) = ∇S as derived in the
Nagasawa theory. Hence ψ = exp(R + iS) satisfies the SE by previous calcula-
tions. One can see however that the equation (1.53) is not needed since the SE
and diffusion equations are equivalent and in fact the equations of motion are the
diffusion equations. Moreover it is shown in [672] that (1.53) is an automatic
consequence in diffusion theory with V = −c− 2St − (∇S)2 and therefore it need
not be postulated or derived by other means. This is a simple calculation from
the theory developed above.

REMARK 1.1.11. Nelson’s important work in stochastic mechanics [698]
produced the SE from diffusion theory but involved a stochastic Newtonian equa-
tion which is shown in [672] to be automatically true. Thus Nelson worked in a
general context which for our purposes here can be considered in the context of
Brownian motions

(1.56) B(t) = ∂t + (1/2)∆ + b · ∇+ a · ∇; B̂(t) = −∂t + (1/2)∆− b · ∇+ â · ∇

and used a mean acceleration α(t, x) = −(1/2)[B(t)B̂(t)x+B̂(t)B(t)x]. Assuming
the duality relations after (1.55) he obtains a formula

(1.57) α(t, x) = −1
2
[B(t)(−b+â)+B̂(b+a)] = bt+(1/2)∇(b)2−(b+v)×curl(b)−

−[−vt + (1/2)∆u + (1/2)(â · ∇)a + (1/2)(a · ∇)â− (b · ∇)v− (v · ∇)b− v× curl(b)]

Then it is shown that the SE can be deduced from the stochastic Newton’s equation

(1.58) α(t, x) = −∇V +
∂b

∂t
+

1
2
∇(b2)− (b + v)× curl(b)

Nagasawa shows that this serves only to reproduce a known formula for V yielding
the SE; he also shows that (1.57) also is an automatic consequence of the duality
formulation of diffusion equations above. This equation (1.57) is often called sto-
chastic quantization since it leads to the SE and it is in fact correct with the V
specified there. However the SE is more properly considered as following directly
from the diffusion equations in duality and is not correctly an equation of motion.
There is another discussion of Euclidean QM developed by Zambrini [1011]. This
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involves α̃(t, x) = (1/2)[B(t)B(t)x + B̂(t)B̂(t)x] (with (σσT )ij = δij). It is postu-
lated that this equals −∇c + bt + (1/2)∇(b)2− b + v)× curl(b) which in fact leads
to the same equation for V as above with V = −c−2St− (∇S)2−2b ·∇S so there
is nothing new. Indeed it is shown in [672] that the postulated equivalence holds
automatically as a simple consequence of time reversal of diffusion processes.

2. SCALE RELATIVITY

Scale relativity (SR) is due to L. Nottale (cf. [715, 716, 717, 718, 719, 720,
721]) and somehow has not been accorded any real recognition by the “estab-
lishment”. We only touch here on derivations of the SE and will develop further
aspects later; the arguments are evidently heuristic but have a compelling inter-
est. More general relativistic and cosmological features are discussed in Chapter
2 where further discussion is given. The ideas involve spacetime having a fractal
microstructure containing in particular continuous (self-similar) nondifferentiable
paths which serve as geodesic quantum paths of Hausdorff dimension D = 2. This
is in fact a good notion of quantum path (following Feynman for example - cf.
[1]) and we will see how it leads to a lovely (heuristic) derivation of the SE which
automatically creates a complex wave function.

REMARK 1.2.1. One considers quantum paths à la Feynman so that
(E1) limt→t′ [X(t) − X(t′)]2/(t − t′) exists. This implies X(t) ∈ H1/2 where
Hα means cεα ≤ |X(t) − X(t′)| ≤ Cεα and from [345] for example this means
dimHX[a, b] = 1/2. Now one “knows” (see e.g. [1]) that quantum and Brown-
ian motion paths (in the plane) have H-dimension 2 and some clarification is
needed here. We refer to [625] where there is a paper on Wiener Brownian motion
(WBM), random walks, etc. discussing Hausdorff and other dimensions of various
sets. Thus given 0 < λ < 1/2 with probability 1 a Browian sample function X
satisfies |X(t + h) − X(t)| ≤ b|h|λ for |h| ≤ h0 where b = b(λ). This leads to
the result that with probability 1 the graph of a Brownian sample function has
Hausdorff and box dimension 3/2. On the other hand a Browian trail (or path) in
2 dimensions has Hausdorff and box dimension 2 (note a quantum path can have
self intersections, etc.).

There are now several excellent approaches. The method of Nottale [700,
715, 718] is preeminent (cf. also [732, 733, 734, 735]) and there is also a nice
derivation of a nonlinear SE via fractal considerations in [223] (indicated below).
The most elaborate and rigorous approach is due to Cresson [272], with elabo-
ration and updating in [3, 273, 274]. There are various derivations of the SE
and we follow [715] here (cf. also [718, 828]). The philosophy of scale relativity
will be discussed later and we just write down equations here pertaining to the
SE. First a bivelocity structure is defined (recall that one is dealing with fractal
paths). One defines first

(2.1)
d+

dt
y(t) = lim∆t→0+

〈
y(t + ∆t)− y(t)

∆t

〉
;

d−
dt

y(t) = lim∆t→0+

〈
y(t)− y(t−∆t)

∆t

〉
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Applied to the position vector x this yields forward and backward mean velocities,
namely (d+/dt)x(t) = b+ and (d−/dt)x(t) = b−. Here these velocities are defined
as the average at a point q and time t of the respective velocities of the outgoing
and incoming fractal trajectories; in stochastic QM this corresponds to an average
on the quantum state. The position vector x(t) is thus “assimilated” to a stochastic
process which satisfies respectively after (dt > 0) and before (dt < 0) the instant t
a relation dx(t) = b+[x(t)]dt+ dξ+(t) = b−[x(t)]dt+ dξ−(t) where ξ(t) is a Wiener
process (cf. [698]). It is in the description of ξ that the D = 2 fractal character
of trajectories is inserted; indeed that ξ is a Wiener process means that the dξ’s
are assumed to be Gaussian with mean 0, mutually independent, and such that

(2.2) < dξ+i(t)dξ+j(t) >= 2Dδijdt; < dξ−i(t)dξ−j(t) >= −2Dδijdt

where < > denotes averaging (D is now the diffusion coefficient). Nelson’s pos-
tulate (cf. [698]) is that D = �/2m and this has considerable justification (cf.
[715]). Note also that (2.2) is indeed a consequence of fractal (Hausdorff) dimen-
sion 2 of trajectories follows from < dξ2 > /dt2 = dt−1, i.e. precisely Feynman’s
result < v2 >1/2∼ δt−1/2 (the discussion here in [715] is unclear however - cf.
[29]). Note also that Brownian motion (used in Nelson’s postulate) is known to
be of fractal (Hausdorff) dimension 2. Note also that any value of D may lead
to QM and for D → 0 the theory becomes equivalent to the Bohm theory. Now
expand any function f(x, t) in a Taylor series up to order 2, take averages, and
use properties of the Wiener process ξ to get

(2.3)
d+f

dt
= (∂t + b+ · ∇+D∆)f ;

d−f

dt
= (∂t + b− · ∇ − D∆)f

Let ρ(x, t) be the probability density of x(t); it is known that for any Markov
(hence Wiener) process one has ∂tρ + div(ρb+) = D∆ρ (forward equation) and
∂tρ + div(ρb−) = −D∆ρ (backward equation). These are called Fokker-Planck
equations and one defines two new average velocities V = (1/2)[b+ + b−] and U =
(1/2)[b+−b−]. Consequently adding and subtracting one obtains ρt +div(ρV ) = 0
(continuity equation) and div(ρU) − D∆ρ = 0 which is equivalent to div[ρ(U −
D∇log(ρ))] = 0. One can show, using (2.3) that the term in square brackets
in the last equation is zero leading to U = D∇log(ρ). Now place oneself in the
(U, V ) plane and write V = V − iU . Then write (dV/dt) = (1/2)(d+ + d−)/dt
and (dU/dt) = (1/2)(d+ − d−)/dt. Combining the equations in (2.3) one defines
(dV/dt) = ∂t + V · ∇ and (dU/dt) = D∆ + U · ∇; then define a complex operator
(d′/dt) = (dV/dt)− i(dU/dt) which becomes

(2.4)
d′

dt
=
(

∂

∂t
− iD∆

)
+ V · ∇

One now postulates that the passage from classical mechanics to a new nondif-
ferentiable process considered here can be implemented by the unique prescription
of replacing the standard d/dt by d′/dt. Thus consider S =

〈∫ t2
t1
L(x,V, t)dt

〉
yielding by least action (d′/dt)(∂L/∂Vi) = ∂L/∂xi. Define then Pi = ∂L/∂Vi

leading to P = ∇S (recall the classical action principle with dS = pdq − Hdt).
Now for Newtonian mechanics write L(x, v, t) = (1/2)mv2 − U which becomes
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L(x,V, t) = (1/2)mV2 − U leading to −∇U = m(d′/dt)V. One separates real and
imaginary parts of the complex acceleration γ = (d′V/dt to get

(2.5) d′V = (dV − idU )(V − iU) = (dVV − dUU)− i(dUV + dVU)

The force F = −∇U is real so the imaginary part of the complex acceleration
vanishes; hence

(2.6)
dU
dt

V +
dV
dt

U =
∂U

∂t
+ U · ∇V + V · ∇U +D∆V = 0

from which ∂U/∂t may be obtained. This is a weak point in the derivation since
one has to assume e.g. that U(x, t) has certain smoothness properties (see below
for refinements). Differentiating the expression U = D∇log(ρ) and using the
continuity equation yields another expression (∂U/∂t) = −D∇(divV )−∇(V ·U).
Comparison of these relations yields ∇(divV ) = ∆V −U ∧ curlV where the curlU
term vanishes since U is a gradient. However in the Newtonian case P = mV
so P∇S implies that V is a gradient and hence a generalization of the classical
action S can be defined. Recall V = 2D∇S and ∇(divV ) = ∆V with curlV = 0;
combining this with the expression for U one obtains S = log(ρ1/2) + iS. One
notes that this is compatible with [698] for example. Finally set ψ =

√
ρexp(iS) =

exp(iS) with V = −2iD∇(logψ) and note

(2.7) U = D∇log(ρ); V = 2D∇S;

V = −2iD∇logψ = −iD∇log(ρ) + 2D∇S = V − iU

Thus for P = mV the relation P ∼ −i�∇ or Pψ = −i�∇ψ has a natural
interpretation. Putting ψ in the equation −∇U = m(d′/dt)V, which general-
izes Newton’s law to fractal space the equation of motion takes the form ∇U =
2iDm(d′/dt)(∇log(ψ)). Then noting that d′ and ∇ do not commute one replaces
d′/dt by (2.4) to obtain

(2.8) ∇U = 2iDm [∂t∇log(ψ)− iD∆(∇log(ψ))− 2iD(∇log(ψ) · ∇)(∇log(ψ)]

This expression can be simplified via

(2.9) ∇∆ = ∆∇; (∇f · ∇)(∇f) = (1/2)∇(∇f)2;
∆f

f
= ∆log(f) + (∇log(f))2

which implies

(2.10)
1
2
∆(∇log(ψ)) + (∇log(ψ) · ∇)(∇log(ψ)) =

1
2
∇∆ψ

ψ

Integrating this equation yields D2∆ψ + iD∂tψ− (U/2m)ψ = 0 up to an arbitrary
phase factor α(t) which can be set equal to 0 by a suitable choice of phase S.
Replacing D by �/2m one arrives at the SE i�ψt = −(�2/2m)∆ψ + Uψ and this
suggests an interpretation of QM as mechanics in a nondifferentiable (fractal)
space.

In fact (using one space dimension for convenience) we see that if U = 0
then the free motion m(d′/dt)V = 0 yields the SE i�ψt = −(�2/2m)ψxx as a
geodesic equation in “fractal” space. Further from U = (�/m)(∂

√
ρ/
√

ρ) and
Q = −(�2/2m)(∆

√
ρ/
√

ρ) one arrives at a lovely relation, namely
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PROPOSITION 2.1. The quantum potential Q can be written in the form
Q = −(m/2)U2 − (�/2)∂U (cf. (1.40) multiplied by −m). Hence the quantum
potential arises directly from the fractal nonsmooth nature of the quantum paths.
Since Q can be thought of as a quantization of a classical motion we see that the
quantization corresponds exactly to the existence of nonsmooth paths. Conse-
quently smooth paths imply no quantum mechanics.

REMARK 1.2.2. In [15] (to be discussed later) one writes again ψ =
Rexp(iS/�) with field equations in the hydrodynamical picture (1-D for conve-
nience)

(2.11) dt(m0ρv) = ∂t(m0ρv) +∇(m0ρv) = −ρ∇(u + Q); ∂tρ +∇ · (ρv) = 0

where Q = −(�2/2m0)(∆
√

ρ/
√

ρ). The Nottale approach is used as above with
dv ∼ dV and du ∼ dU . One assumes that the velocity field from the hydrody-
namical model agrees with the real part v of the complex velocity V = v − iu so
v = (1/m0)∇s ∼ 2D∂s and u = −(1/m0)∇σ ∼ D∂log(ρ) where D = �/2m0. In
this context the quantum potential Q = −(�2/2m0)∆D

√
ρ/
√

ρ becomes

(2.12) Q = −m0D∇ · u− (1/2)m0u
2 ∼ −(�/2)∂u− (1/2)m0u

2

Consequently Q arises from the fractal derivative and the nondifferentiability of
spacetime again, as in Proposition 2.1. Further one can relate u (and hence Q) to
an internal stress tensor whereas the v equations correspond to systems of Navier-
Stokes type.

REMARK 1.2.3. Some of the relevant equations for dimension one are
collected together later. We note that it is the presence of ± derivatives that makes
possible the introduction of a complex plane to describe velocities and hence QM;
one can think of this as the motivation for a complex valued wave function and
the nature of the SE.

We go now to [223] and will sketch some of the material. Here one extends
ideas of Nottale and Ord in order to derive a nonlinear Schrödinger equation
(NLSE). Using the hydrodynamic model in [743] one added a hydrostatic pressure
term to the Euler-Lagrange equations and another possibility is to add instead a
kinematic pressure term. The hydrostatic pressure is based on an Euler equation
−∇p = ρg where ρ is density and g the gravitational acceleration (note this gives

p = ρgx in 1-D). In [743] one took ρ = ψ∗ψ, b a mass-energy parameter, and
p = ρ; then the hydrostatic potential is (for ρ0 = 1)

(2.13) b

∫
g(x) · dr = −b

∫ ∇p

ρ
· dr = −blog(ρ/ρ0) = −blog(ψ∗ψ)

Here −blog(ψ∗ψ) has energy units and explains the nonlinear term of [111] which
involved

(2.14) i�
∂ψ

∂t
= − �2

2m
∇2ψ + Uψ − b[log(ψ∗ψ)]ψ

A derivation of this equation from the Nelson stochastic QM was given by Lemos

−

(cf. [588]). There are moreover some problems since this equation does not obey the
homogeneity condition saying that the state λ|ψ > is equivalent to |ψ >; moreover

−
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(2.14) is not invariant under ψ → λψ. Further, plane wave solutions to (2.14) do
not seem to have a physical interpretion due to extraneous dispersion relations.
Finally one would like to have a SE in terms of ψ alone. Note that another NLSE
could be obtained by adding kinetic pressure terms (1/2)ρv2 and taking ρ = aψ∗ψ
where v = p/m. Now using the relations from HJ theory (ψ/ψ∗) = exp[2iS(x)/�]
and p = ∇S(x) = mv one can write v = −i(�/2m)∇log(ψ/ψ∗) so that the energy
density becomes

(2.15) (1/2)ρ|v|2 = (a�2/8m2)ψψ∗∇log(ψ/ψ∗) · ∇log(ψ∗/ψ)

This leads to a corresponding nonlinear potential associated with the kinematical
pressure via (a�2/8m2)∇log(ψ/ψ∗) · ∇log(ψ∗/ψ). Hence a candidate NLSE is

(2.16) i�∂t = − �2

2m
∇2ψ + Uψ − b[log(ψ∗ψ)]ψ +

a�2

8m2

(
∇log

ψ

ψ∗ · ∇log
ψ∗

ψ

)
Here the Hamiltonian is Hermitian and a �= b are both mass-energy parameters
to be determined experimentally. The new term can also be written in the form
∇log(ψ/ψ∗) · ∇log(ψ∗/ψ) = −[∇log(ψ/ψ∗)]2. The goal now is to derive a NLSE
directly from fractal space time dynamics for a particle undergoing Brownian mo-
tion. This does not require a quantum potential, a hydrodynamic model, or any
pressure terms as above.

REMARK 1.2.4. One should make some comments about the kinematic
pressure terms (1/2)ρv2 ∼ (�2/2m)(a/m)|∇log(ψ)|2 versus hydrostatic pressure
terms of the form

∫
(∇p/ρ) ∼ −blog(ψ∗ψ). The hydrostatic term breaks homo-

geneity whereas the kinematic pressure term preserves homogeneity (scaling with
a λ factor). The hydrostatic pressure term is also not compatible with the motion
kinematics of a particle executing a fractal Brownian motion. The fractal formu-
lation will enable one to relate the parameters a, b to �.

Following Nottale, nondifferentiability implies a loss of causality and one is
thinking of Feynmann paths with < v2 >∝ (dx/dt)2 ∝ dt2[(1/D)−1) with D = 2.
Now a fractal function f(x, ε) could have a derivative ∂f/∂ε and renormalization
group arguments lead to (∂f(x, ε)/∂logε) = a(x) + bf(x, ε) (cf. [715]). This can
be integrated to give f(x, ε) = f0(x)[1 − ζ(x)(λ/ε)−b]. Here λ−bζ(x) is an inte-
gration constant and f0(x) = −a(x)/b. This says that any fractal function can be
approximated by the sum of two terms, one independent of the resolution and the
other resolution dependent; ζ(x) is expected to be a flucuating function with zero
mean. Provided a �= 0 and b < 0 one has two interesting cases (i) ε << λ with
f(x, ε) ∼ f0(x)(λ/ε)−b and (ii) ε >> λ with f independent of scale. Here λ is the
deBroglie wavelength. Now one writes

(2.17) r(t + dt, dt)− r(t, dt) = b+(r, t)dt + ξ+(t, dt)
(

dt

τ0

)β

;

r(t, dt)− r(t− dt, dt)− b−(r, t)dt + ξ−(t, dt)
(

dt

τ0

)β

where β = 1/D and b± are average forward and backward velocities. This leads
to v±(r, t, dt) = b±(r, t) + ξ±(t, dt)(dt/τ0)β−1. In the quantum case D = 2 one
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has β = 1/2 so dtβ−1 is a divergent quantity (i.e. nondifferentiability ensues).
Following [588, 715, 698] one defines

(2.18)
d±r(t)

dt
= lim∆t→±0

〈
r(t + ∆t)− r(t)

∆t

〉
from which d±r(t)/dt = b±. Now following Nottale one writes

(2.19)
δ

dt
=

1
2

(
d+

dt
+

d−
dt

)
− i

2

(
d+

dt
− d−

dt

)
which leads to (δ/dt) = (∂/∂t)+v ·∇− iD∇2. Here in principle D is a real valued
diffusion constant to be related to �. and < dξ±idξ±j >= ±2Dδijdt. Now for the
complex time dependent wave function we take ψ = exp[iS/2mD] with p = ∇S so
that v = −2iD∇log(ψ). The SE is obtained from the Newton equation (F = ma)
via −∇U = m(δ/dt)v = −2imD(δ/dt)∇log(ψ) which yields

(2.20) −∇U = −2im[D∂t∇log(ψ)]− 2D∇
(
D∇

2ψ

ψ

)
(see [715] for identities involving∇). Integrating yieldsD2∇2ψ+iD∂tψ−(U/2m)ψ =
0 up to an arbitrary phase factor which may be set equal to zero. Now replacing
D by �/2m one gets the SE i�∂tψ + (�2/2m)∇2ψ = Uψ. Here the Hamiltonian
is Hermitian, the equation is linear, and the equation is homogeneous of degree 1
under the substitution ψ → λψ.

Next one generalizes this by relaxing the assumption that the diffusion co-
efficient is real. Some comments on complex energies are needed - in particular
constraints are often needed (cf. [788]). However complex energies are not alien
in ordinary QM (cf. [223] for references). Now the imaginary part of the linear
SE yields the continuity equation ∂tρ +∇ · (ρv) = 0 and with a complex potential
the imaginary part of the potential will act as a source term in the continuity
equation. Instead of < dζ±dζ± >= ±2Ddt with D and 2mD = � real one sets

(2.21) < dζ±dζ± >= ±(D +D∗)dt; 2mD = � = α + iβ

The complex time derivative operator becomes (δ/dt) = ∂t+v·∇−(i/2)(D+D∗)∇2.
Writing again ψ = exp[iS/2mD] = exp(iS/�) one obtains v = −2iD∇log(ψ).
The NLSE is then obtained (via the Newton law) via the relation−∇U = m(δ/dt)v =
−2imD(δ/dt)∇log(ψ). Combining equations yields then

(2.22) ∇U = 2im[D∂t∇log(ψ)− 2iD2(∇log(ψ) · ∇)(∇log(ψ)−

− i

2
(D +D∗)D∇2(∇log(ψ)]

Now using the identities (i)∇∇2 = ∇2∇, (ii) 2(∇log(ψ)·∇)(∇log(ψ) = ∇(∇log(ψ))2

and (iii) ∇2log(ψ) = ∇2ψ/ψ − (∇log(ψ))2 leads to a NLSE with nonlinear (kine-
matic pressure) potential, namely

(2.23) i�∂tψ = − �2

2m

α

�
∇2ψ + Uψ − i

�2

2m

β

�
(∇log(ψ))2ψ

Note the crucial minus sign in front of the kinematic pressure term and also that
� = α + iβ = 2mD is complex. When β = 0 one recovers the linear SE. The
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nonlinear potential is complex and one defines W = −(�2/2m)(β/�)(∇log(ψ))2

with U the ordinary potential; then the NLSE is

(2.24) i�∂tψ = [−(�2/2m)(α/�)∇2 + U + iW ]ψ

This is the fundamental result of [223]; it has the form of an ordinary SE with
complex potential U +iW and complex �. The Hamiltonian is no longer Hermitian
and the potential itself depends on ψ. Nevertheless one can have meaningful phys-
ical solutions with real valued energies and momenta; the homogeneity breaking
hydrostatic pressure term −b(log(ψ∗ψ)ψ is not present (it would be meaningless)
and the NLSE is invariant under ψ → λψ.

REMARK 1.2.5. One could ask why not simply propose as a valid NLSE
an equation

i�∂tψ = − �2

2m
∇2ψ +

�2

2m

a

m
|∇log(ψ)|2ψ

Here one has a real Hamiltonian satisfying the homogeneity condition and the
equation admits soliton solutions of the form ψ = CA(x − vt)exp[i(kx − ωt)]
where A(x − vt) is to be determined by solving the NLSE. The problem here is
that the equation suffers from an extraneous dispersion relation. Thus putting
in the plane wave solution ψ ∼ exp[−i(Et − px)] one gets an extraneous energy
momentum (EM) relation (after setting U = 0), namely E = (p2/2m)[1 + (a/m)]
instead of the usual E = p2/2m and hence EQM �= EFT where FT means field
theory.

REMARK 1.2.6. It has been known since e.g. [788] that the expression
for the energy functional in nonlinear QM does not coincide with the QM energy
functional, nor is it unique. To see this write down the NLSE of [111] in the form
i�∂tψ = ∂H(ψ, ψ∗)/∂ψ∗ where the real Hamiltonian density is

H(ψ, ψ∗) = − �2

2m
ψ∗∇2ψ + Uψ∗ψ − bψ∗log(ψ∗ψ)ψ + bψ∗ψ

Then using EFT =
∫

Hd3r we see it is different from < Ĥ >QM and in fact
EFT − EQM =

∫
bψ∗ψd3r = b. This problem does not occur in the fractal based

NLSE since it is written entirely in terms of ψ.

REMARK 1.2.7. In the fractal based NLSE there is no discrepancy between
the QM energy functional and the FT energy functional. Both are given by

NNLSE
fractal = − �2

2m

α

�
ψ∗∇2ψ + Uψ∗ψ − i

�2

2m

β

�
ψ∗(∇log(ψ)2ψ

The NLSE is unambiguously given by in Remark 1.2.5 and H(ψ, ψ∗) is homoge-
neous of degree 1 in λ. Such equations admit plane wave solutions with dispersion
relation E = p2/2m; indeed, inserting the plane wave solution into the fractal
based NLSE one gets (after setting U = 0)

(2.25) E =
�2

2m

α

�

p2

2m
+ i

β

�

p2

2m
=

p2

2m

α + iβ

�
=

p2

2m
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since � = α + iβ. The remarkable feature of the fractal approach versus all
other NLSE considered sofar is that the QM energy functional is precisely the FT
one. The complex diffusion constant represents a truly new physical phenomenon
insofar as a small imaginary correction to the Planck constant is the hallmark of
nonlinearity in QM (see [223] for more on this).

REMARK 1.2.8. Some refinements of the Nottale derivation are given in
[272] and we consider x → f(x(t), t) ∈ Cn with X(t) ∈ H1/n (i.e. cε1/n ≤
|X(t′)−X(t)| ≤ Cε1/n). Define (f real valued)

(2.26) ∇ε
±f(t) =

f(t± ε)− f(t)
±ε

;
�εf

�t
(f) =

1
2
(∇ε

+ +∇ε
−)f − i

2
(∇ε

+ −∇ε
−f);

aε,j(t) =
1
2
[(∆ε

+x)j − (−1)j(∆ε
−x)j ]− i

2
[(∆ε

+x)j + (−1)j(∆ε
−x)j ]

Here one assumes h > 0 and ε(f, h) ≥ ε > 0 where ε(f, h) is the minimal resolution
defined via infε{aε(f) < h} for aεf(t) = |[f(t+ε)+f(t−ε)−2f(t)]/ε|. If ε(f, h) is
not 0 then f is not differentiable (but not conversely). Now assume some minimal
control over the lack of differentiability (cf. [272]) and then for f now complex
valued with �εf/�t = (�εf�/�t) + i(�εf�/�t) (note the mixing of i terms is not
trivial) one has

(2.27)
�εf

�t
=

∂f

∂t
+

�εx

�t

∂f

∂x
+

n∑
2

1
j!

aε,j(t)
∂jf

∂xj
εj−1 + o(ε1/n)

We sketch now the derivation of a SE in the spirit of Nottale but with more
mathematical polish. Going to [272] one defines (for a nondifferentiable function
f)

(2.28) fε(t) =
1
2ε

∫ t+ε

t−ε

f(s)ds;

f+
ε (t) =

1
2ε

∫ t+ε

t

f(s)ds; f−
ε (t) =

1
2ε

∫ t

t−ε

f(s)ds

One considers quantum paths à la Feynman so that limt→t′ [X(t)−X(t′)]2/(t− t′)
exists. This implies X(t) ∈ H1/2 where Hα means cεα ≤ |X(t)−X(t′)| ≤ Cεα and
from Remark 1.2.1 for example this means dimHX[a, b] = 1/2. Next, thinking of
classical Lagrangians L(x, v, t) = (1/2)mv2 + U(x, t), one defines an operator Q
via ((x, t, v) ∼ classical variables)

(2.29) Q(t) = t; Q(x(t)) = X(t); Q(v(t)) = V(t); Q

(
df

dt

)
= Q

(
d

dt

)
·Q(f)

where Q(d/dt) = d/dt if Q(f)(t) is differentiable and Q(d/dt) = �ε/�t where
ε(x, h) > ε > 0 if Q(f)(t) is nondifferentiable. Note V(t) = Q(d/dt)[X(t)]
so regularity of X determines the form of Q here and for Q(x) = X ∈ H1/2

one has V = �εX/�t. The scalar Euler-Lagrange (EL) equation associated to
L(X(t),V(t), t) = Q(L(x(t), v(t), t) is

(2.30)
�ε

�t

(
∂L
∂V (X(t),V(t), t)

)
=

∂L
∂X

(X(t),V(t), t)
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Now given a classical v ∼ (1/m)(∂S/∂x) one gets V = (1/m)(∂S/∂X) and L =
(∂S/∂t) with ψ(X, t) = exp[iS(X, t)/2mγ]. For L ∼ (1/2)mV2 + U then the
quantum (EL) equation is m(�εV/�t) = (∂U/∂X) leading to
(2.31)

2iγm

[
−ψ2

X

ψ

(
iγ +

aε(t)
2

)
+ ∂tψ +

aε(t)
2

∂2ψ

∂X2

]
= (U(X) + α(X))ψ + o(ε1/2)

where

(2.32) aε(t) =
1
2
{[(∇ε

+X(t))2 − (∇ε
−X(t))2]− i[(∇ε

+X(t))2 + (∇ε
−X(t))2]}

Then (2.32) is called the generalized SE and the nonlinear character of such equa-
tions is discussed in [192, 223] for example. In [272] one then arrives at a con-
ventional looking SE under the assumption aε = −2iγ, leading to

(2.33) γ2 ∂2ψ

∂X2
+ iγ

∂ψ

∂t
= [U(X, t) + α(X)]

ψ

2m
+ o(ε1/2)

One can then always take α(X) = 0 and choosing γ = �/2m one arrives at
i�ψt + (�2/2m)(∂2ψ/∂t2) = Uψ. However the requirement aε(t) = −2iγ seems
quite restrictive.

• Note here that the argument using a± is rigorous via [272]. aε = −i�/m
is permissible and in fact can have solutions of ∇ε

σX(t) = constant via
Xc(t) = ±

√
�/2m)(t− c− (ε/2))+Pε(t) where Pε ∈ H1/2 is an arbitrary

periodic function.
Referring back to Example 1.2.3 we have b±(t)(t) ∼ �±x(t) and V = (/2)(�+x +
�−x)(t) with U = (1/2)(�+x−�−x)(t). The relation between U and the quantum
potential Q will formally still hold (cf. also [273] on nondifferentiable variational
principles) and one can rewrite this as

√
ρU = (�/m)∂

√
ρ;
√

ρQ = −(�2/2m)∂2√ρ
along with ∂(

√
ρU) = −(2/�)

√
ρQ. If U is not differentiable one could also look at

√
ρU = −(2/�)

∫X

0

√
ρQdX ′ + f(t) with f(t) possibly determinable via the term

(
√

ρU)(0, t).

3. REMARKS ON FRACTAL SPACETIME

There have been a number of articles and books involving fractal methods in
spacetime or fractal spacetime itself with impetus coming from quantum physics
and relativity. We refer here especially to [1, 186, 187, 225, 422, 675, 676,
677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690]
for background to this paper. Many related papers are omitted here and we
refer in particular to the journal Chaos, Solitons, and Fractals CSF) for further
information. For information on fractals and stochastic processes we refer for
example to [33, 83, 241, 242, 243, 345, 423, 555, 562, 592, 643, 625, 697,
725, 748, 763, 810, 918, 942, 985]. We discuss here a few background ideas
and constructions in order to indicate the ingredients for El Naschie’s Cantorian
spacetime E∞, whose exact nature is elusive. Suitable references are given but
there are many more papers in the journal CSF by El Naschie (and others) based
on these fundamental ideas and these are either important in a revolutionary
sense or a fascinating refined form of science fiction. In what appears at times
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to be pure numerology one manages to (rather hastily) produce amazingly close
numerical approximations to virtually all the fundamental constants of physics
(including string theory). The key concepts revolve around the famous golden
ratio (

√
5 − 1)/2 and a strange Cantorian space E∞ which we try to describe

below. It is very tempting to want all of these (heuristic) results to be true and
the approach seems close enough and universal enough to compel one to think
something very important must be involved. Moreover such scope and accuracy
cannot be ignored so we try to examine some of the constructions in a didactic
manner in order to possibly generate some understanding.

3.1. COMMENTS ON CANTOR SETS.

EXAMPLE 3.1. In the paper [643] one discusses random recursive con-
structions leading to Cantor sets, etc. Associated with each such construction is
a universal number α such that almost surely the random object has Hausdorff
dimension α (we assume that ideas of Hausdorff and Minkowski-Bouligand (MB)
or upper box dimension are known - cf. [83, 186, 345, 592]). One construction
of a Cantor set goes as follows. Choose x from [0, 1] according to the uniform
distribution and then choose y from [x, 1] according to the uniform distribution on
[x, 1]. Set J0 = [0, x] and J1 = [y, 1] and recall the standard 1/3 construction for
Cantor sets. Continue this procedure by rescaling to each of the intervals already
obtained. With probability one one then obtains a Cantor set S0

c with Hausdorff
dimension α = φ = (

√
5− 1)/2 ∼ .618. Note that this is just a particular random

Cantor set; there are others with different Hausdorff dimensions (there seems to
be some - possibly harmless - confusion on this point in the El Naschie papers).
However the golden ratio φ is a very interesting number whose importance rivals
that of π or e. In particular (cf. [1]) φ is the hardest number to approximate by
rational numbers and could be called the most irrational number. This is because
its continued fraction represention involves all 1′s.

EXAMPLE 3.2. From [676] the Hausdorff (H) dimension of a traditional
triadic Cantor set is d

(0)
c = log(2)/log(3). To determine the equivalent to a

triadic Cantor set in 2 dimensions one looks for a set which is triadic Can-
torian in all directions. The analogue of an area A = 1 × 1 is a quasi-area
Ac = d

(0)
c × d

(0)
c and to normalize Ac one uses ρ2 = (A/Ac)2 = 1/(d(0)

c )2 (for
n-dimensions ρn = 1/(d(0)

c )n−1). Then the nth Cantor like H dimension d
(n)
c

will have the form d
(n)
c = ρnd

(0)
c = 1/(d(0)

c )n−1. Note also that the H dimen-
sion of a Sierpinski gasket is d

(n+1)
c /d

(n)
c = 1/d

(0)
c = log(3)/log(2) and in any

event the straight-forward interpretation of d
(2)
c = log(3)/log(2) is a scaling of

d
(0)
c = log(2)/log(3) proportional to the ratio of areas (A/Ac)2. One notes that

d
(4)
c = 1/(d(0)

c )3 = (log(3)/log(2))3 
 3.997 ∼ 4 so the 4-dimensional Cantor set is
essentially “space filling”.

Another derivation goes as follows. Define probability quotients via Ω =
dim(subset)/dim(set). For a triadic Cantor set in 1-D Ω(1) = d

(0)
c /d

(1)
c = d

(0)
c (d(1)

c =
1). To lift the Cantor set to n-dimensions look at the multiplicative probability
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law Ω(n) = (Ω(1))n = (d(0)
c )n. However since Ω(1) = d

(0)
c /d

(n)
c we get

(3.1) d(0)
c /d(n)

c = (d(0)
c )n ⇒ d(n)

c = 1/(d(0)
c )n−1

Since Ω(n−1) is the probability of finding a Cantor point (Cantorian) one can think
of the H dimension d

(n)
c = 1/Ω(n−1) as a measure of ignorance. One notes here

also that for d
(0)
c = φ (the Cantor set S

(0)
c of Example 3.1) one has d

(4)
c = 1/φ3 =

4 + φ3 
 4.236 which is surely space filling.

Based on these ideas one proves in [676, 680, 682] a number of theorems and
we sketch some of this here. One picks a “backbone” Cantor set with H dimension
d
(0)
c (the choice of φ = d

(0)
c will turn out to be optimal for many arguments). Then

one imagines a Cantorian spacetime E∞ built up of an infinite number of spaces
of dimension d

(n)
c (−∞ ≤ n < ∞). The exact form of embedding etc. here is not

specified so one imagines e.g. E∞ = ∪E(n) (with unions and intersections) in some
amorphous sense. There are some connections of this to vonNeumann’s continuous
geometries indicated in [684]. In this connection we remark that only E(−∞) is
the completely empty set (E(−1) is not empty). First we note that φ2 + φ− 1 = 0
leading to

(3.2)
1 + φ = 1/φ, φ3 = (2 + φ)/φ, (1 + φ)/(1− φ) = 1/φ(1− φ) = 4 + φ3 = 1/φ3

(a very interesting number indeed). Then one asserts that

THEOREM 3.1. Let (Ω(1))n be a geometrical measure in n-dimensional
space of a multiplicative point set process and Ω(1) be the Hausdorff dimension
of the backbone (generating) set d

(0)
c . Then < d >= 1/d

(0)
c (1 − d

(0)
c ) (called

curiously an average Hausdorff dimension) will be exactly equal to the average
space dimension ˜ < n >= (1 + d

(0)
c )(1 − d

(0)
c ) and equivalent to a 4-dimensional

Cantor set with H-dimension d
(4)
c = 1/(d(0)

c )3 if and only if d
(0)
c = φ.

To see this take Ω(n) = (Ω(1))n again and consider the total probability of the
additive set described by the Ω(n), namely Z0 =

∑∞
0 (Ω(1))n = 1/(1 − Ω(1)). It

is conceptually easier here to regard this as a sum of weighted dimensions (since
d
(n)
c = 1/(d(0)

c )n−1) and consider wn = n(d(0)
c )n. Then the expectation of n

becomes (note d
(n)
c ∼ 1/(d(0)

c )n−1 ∼ 1/Ω(n−1) so n(d(0)
c )n−1 ∼ n/d

(n)
c )

(3.3) E(n) =
∑∞

1 n2(d(0)
c )n−1∑∞

1 n(d(0)
c )n−1

=˜< n >=
1 + d

(0)
c

1− d
(0)
c

Another average here is defined via (blackbody gamma distribution)

(3.4) < n >=

∫∞
0

n2(Ω(1))ndn∫∞
0

n(Ω(1))ndn
=

−2
log(Ω(1))
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which corresponds to ˜ < n > after expanding the logarithm and omitting higher
order terms. However ˜ < n > seems to be the more valid calculation here. Simi-
larly one defines (somewhat ambiguously) an expected value for d

(n)
c via

(3.5) < d >=
∑∞

1 n(d(0)
c )n−1∑∞

1 (d(0)
c )n

=
1

d
(0)
c (1− d

(0)
c )

This is contrived of course (and cannot represent E(d(n)
c ) since one is computing

reciprocals
∑

(n/d
(n)
c ) but we could think of computing an expected ignorance and

identifying this with the reciprocal of dimension. Thus the label < d > does not
seem to represent an expected dimension but if we accept it as a symbol then for
d
(0)
c = φ one has

(3.6) ˜< n >=
1 + φ

1− φ
=< d >=

1
φ(1− φ)

= d(4)
c = 4 + φ3 =

1
φ3
∼ 4.236

REMARK 1.3.1. We note that the normalized probability N = Ω(1)/Z0 =
Ω(1)(1−Ω(1)) = 1/ < d > for any d

(0)
c . Further if < d >= 4 = 1/d

(0)
c (1− d

(0)
c ) one

has d
(0)
c = 1/2 while˜< n >= 3 < 4 =< d >. One sees also that d

(0)
c = 1/2 is the

minimum (where d < d > /d(d(0)
c ) = 0).

REMARK 1.3.2. The results of Theorem 3.1 should really be phrased in
terms of E∞ (cf. [685]). thus (H ∼ Hausdorff dimension and T ∼ topological
dimension)

(3.7) dimHE
(n) = d(n)

c =
1

(d(0)
c )n−1

;

< d >=
1

d
(0)
c (1− d

(0)
c )

; ˜< dimT E
∞ >=

1 + d
(0)
c

1− d
(0)
c

=˜< n >

In any event E∞ is formally infinite dimensional but effectively it is 4± dimen-
sional with an infinite number of internal dimensions. We emphasize that E∞

appears to be constructed from a fixed backbone Cantor set with H dimension
1/2 ≤ d

(0)
c < 1; thus each such d

(0)
c generates an E∞ space. Note that in [685] E∞

is looked upon as a transfinite discretum underpinning the continuum (whatever
that means).

REMARK 1.3.3. An interesting argument from [684] goes as follows.
Thinking of d

(0)
c as a geometrical probability one could say that the spatial (3-

dimensional) probability of finding a Cantorian “point” in E∞ must be given by
the intersection probability P = (d(0)

c )3 where 3 ∼ 3 topological spatial dimen-
sion. P could then be regarded as a Hurst exponent (cf. [1, 715, 985]) and the
Hausdorff dimension of the fractal path of a Cantorian would be dpath = 1/H =
1/P = 1/(d(0)

c )3. Given d
(0)
c = φ this means dpath = 4 + φ3 ∼ 4+ so a Cantorian

in 3-D would sweep out a 4-D world sheet; i.e. the time dimension is created by
the Cantorian space E∞ (! - ?). Conjecturing further (wildly) one could say that
perhaps space (and gravity) is created by the fractality of time. This is a typical
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form of conjecture to be found in the El Naschie papers - extremely thought pro-
voking but ultimately heuristic. Regarding the Hurst exponent one recalls that
for Feynmann trajectories in 1 + 1 dimensions dpath = 1/H = 1/d

(0)
c = d

(2)
c . Thus

we are concerned with relating the two determinations of dpath (among other mat-
ters). Note that path dimension is often thought of as a fractal dimension (M-B
or box dimension), which is not necessarily the same as the Hausdorff dimension.
However in [29] one shows that quantum mechanical free motion produces fractal
paths of Hausdorff dimension 2 (cf. also [583]).

REMARK 1.3.4. Following [226] let S
(0)
c correspond to the set with di-

mension d
(0)
c = φ. Then the complementary dimension is d̃

(0)
c = 1 − φ = φ2.

The path dimension is given as in Remark 1.3.3 by dpath = d
(2)
c = 1/φ = 1 + φ

and d̃path = d̃
(2)
c = 1/(1 − φ) = 1/φ2 = (1 + φ)2. Following El Naschie for an

equivalence between unions and intersections in a given space one requires (in the
present situation) that

(3.8)

dcrit = d
(2)
c + d̃

(2)
c = 1

φ + 1
φ2 = φ(1+φ)

φ3 = 1
φ3 = 1

φ ·
1

φ2 = d
(2)
c · d̃(2)

c = 4 + φ3

where dcrit = 4 + φ3 = d
(4)
c ∼ 4.236. Thus the critical dimension coincides with

the Hausdorff dimension of S
(4)
c which is embedded densely into a smooth space

of topological dimension 4. On the other hand the backbone set of dimension
d
(0)
c = φ is embedded densely into a set of topological dimension zero (a point).

Thus one thinks in general of d
(n)
c as the H dimension of a Cantor set of dimension

φ embedded into a smooth space of integer topological dimension n.

REMARK 1.3.5. In [226] it is also shown that realization of the spaces E(n)

comprising E∞ can be expressed via the fractal sprays of Lapidus-van Frankenhuy-
sen (cf. [592]). Thus we refer to [592] for graphics and details and simply sketch
some ideas here (with apologies to M. Lapidus). A fractal string is a bounded
open subset of R which is a disjoint union of an infinite number of open inter-
vals L = �1, �2, · · · . The geometric zeta function of L is ζL(s) =

∑∞
1 �−s

j . One
assumes a suitable meromorphic extension of ζL and the complex dimensions of
L are defined as the poles of this meromorphic extension. The spectrum of L

is the sequence of frequencies f = k · �−1
j (k = 1, 2, · · · ) and the spectral zeta

function of L is defined as ζν(s) =
∑

f f−s where in fact ζν(s) = ζL(s)ζ(s) (with
ζ(s) the classical Riemann zeta function). Fractal sprays are higher dimensional
generalizations of fractal strings. As an example consider the spray Ω obtained
by scaling an open square B of size 1 by the lengths of the standard triadic Can-
tor string CS. Thus Ω consists of one open square of size 1/3, 2 open squares of
size 1/9, 4 open squares of size 1/27, etc. (see [592] for pictures and explana-
tions). Then the spectral zeta function for the Dirichlet Laplacian on the square
is ζB(s) =

∑∞
n1,n2=1(n

2
1 + n2

2)
s/2 and the spectral zeta function of the spray is

ζν(s) = ζCS(s) · ζB(s). Now E∞ is composed of an infinite hierarchy of sets E(j)

with dimension (1+φ)j−1 = 1/φj−1 (j = 0,±1,±2, · · · ) and these sets correspond
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to a special case of boundaries ∂Ω for fractal sprays Ω whose scaling ratios are
suitable binary powers of 2−φj−1

. Indeed for n = 2 the spectral zeta function of
the fractal golden spray indicated above is ζν(s) = (1/(1 − 2 · 2sφ)ζB(s). The
poles of ζB(s) do not coincide with the zeros of the denominator 1 − 2 · 2−sφ so
the (complex) dimensions of the spray correspond to those of the boundary ∂Ω
of Ω. One finds that the real part �s of the complex dimensions coincides with
dimE(2) = 1+φ = 1/φ2 and one identifies then ∂Ω with E(2). The procedure gen-
eralizes to higher dimensions (with some stipulations) and for dimension n there
results �s = 1/φn−1 = dimE(n). This produces a physical model of the Cantorian
fractal space from the boundaries of fractal sprays (see [226] for further details and
[592] for precision). Other (putative) geometric realizations of E∞ are indicated
in [688] in terms of wild topologies, etc.

3.2. COMMENTS ON HYDRODYNAMICS. We sketch first some ma-

Thus let ψ be the wave function of a test particle of mass m0 in a force field
U(r, t) determined via i�∂tψ = Uψ − (�2/2m)∇2ψ where ∇2 = ∆. One writes
ψ(r, t) = R(r, t)exp(iS(r, t)) with v = (�/2m)∇S and ρ = R · R (one assumes
ρ �= 0 for physical meaning). Thus the field equations of QM in the hydrodynamic
picture are

(3.9) dt(m0ρv) = ∂t(m0ρv) +∇(m0ρv) = −ρ∇(U + Q); ∂tρ +∇ · (ρv) = 0

where Q = −(�2/2m0)(∆
√

ρ/
√

ρ) is the quantum potential (or interior potential).
Now because of the nondifferentiability of spacetime an infinity of geodesics will
exist between any couple of points A and B. The ensemble will define the proba-
bility amplitude (this is a nice assumption but geodesics should be defined here).
At each intermediate point C one can consider the family of incoming (backward)
and outgoing (forward) geodesics and define average velocities b+(C) and b−(C)
on these families. These will be different in general and following Nottale this
doubling of the velocity vector is at the origin of the complex nature of QM. Even
though Nottale reformulates Nelson’s stochastic QM the former’s interpretation is
profoundly different. While Nelson (cf. [698]) assumes an underlying Brownian
motion of unknown origin which acts on particles in Minkowskian spacetime, and
then introduces nondifferentiability as a byproduct of this hypothesis, Nottale as-
sumes as a fundamental and universal principle that spacetime itself is no longer
Minkowskian nor differentiable. An interesting comment here from [15] is that
with Nelson’s Browian motion hypothesis, nondifferentiability is but an approx-
imation which expected to break down at the scale of the underlying collisions,
where a new physics should be introduced, while Nottale’s hypothesis of nondiffer-
entiability is essential and should hold down to the smallest possible length scales.
Following Nelson one defines now the mean forward and backward derivatives

(3.10)
d±
dt

y(t) = lim∆t→0±

〈
y(t + ∆t)− y(t)

∆t

〉
This gives forward and backward mean velocities (d+/dt)x(t) = b+ and (d−/dt)x(t) =
b− for a position vector x. Now in Nelson’s stochastic mechanics one writes two
systems of equations for the forward and backward processes and combines them in

terial from [15] (see also [294, 715, 718, 720] and Sections 1-2 for background).
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the end in a complex equation, Nottale works from the beginning with a complex
derivative operator

(3.11)
δ

dt
=

(d+ + d−)− i(d+ − d−)
2dt

leading to V = (δ/dt)x(t) = v − iu = (1/2)(b+ + b−) − (i/2)(b+ − b−). One
defines also (dv/dt) = (1/2)(d+ +d−)/dt and (du/dt) = (1/2)(d+−d−)/dt so that
dvx/dt = v and dux/dt = u. Here v generalizes the classical velocity while u is a
new quantity arising from nondifferentiability. This leads to a stochastic process
satisfying (respectively for the forward (dt > 0) and backward (dt < 0) processes)
dx(t) = b+[x(t)] + dξ+(t) = b−[x(t)] + dξ−(t). The dξ(t) terms can be seen as
fractal functions and they amount to a Wiener process when the fractal dimension
D = 2. Then the dξ(t) are Gaussian with mean zero, mutually independent, and
satisfy < dξ±idξ±j >= ±2Dδijdt where D is a diffusion coefficient determined
as D = �/2m0 when τ0 = �/(m0c

2) (deBroglie time scale in the rest frame (cf.
[15]). This allows one to give a general expression for the complex time derivative,
namely

(3.12) df =
∂f

∂t
+∇f · dx +

1
2

∂2f

∂xi∂xj
dxidxj

Next compute the forward and backward derivatives of f ; then one will arrive at
< dxidxj >→< dξ±idξ±j > so the last term in (3.12) amounts to a Laplacian
and one obtains (d±f/dt) = [∂t + b± · ∇ ± D∆]f which is an important result.
Thus assume the fractal dimension is not 2 in which case there is no longer a
cancellation of the scale dependent terms in (3.12) and instead of D∆f one would
obtain an explicitly scale dependent behavior proportional to δt(2/D)−1∆f . In
other words the value D = 2 for the fractal dimension implies that the scale
symmetry becomes hidden in the operator formalism. One obtains the complex
time derivative operator in the form (δ/dt) = ∂t + V · ∇ − iD∆ (V as above).
Nottale’s prescription is then to replace d/dt by δ/dt. In this spirit one can write
now ψ = exp(i(S/2m0D)) so that V = −2iD∇(log(ψ)) and then the generalized
Newton equation −∇U = m0(δ/dt)V reduces to the SE (L = (1/2)mv2 − U).

Now assume the velocity field from the hydrodynamic model agrees with the
real part v of the complex velocity V and equate the wave functions from the two
models ψ = exp(iS/2m0D) and ψ = Rexp(iS) with m = m0; one obtains for
S = s + iσ the formulas s = 2m0DS, D = (�/2m0), and σ = −m0Dlog(ρ). Using
the definition V = (1/m0)∇S = (1/m0)∇s + (i/m0)∇σ = v − iu (which results
from the above equations) we get

(3.13) v = (1/m0)∇s = 2D∇S; u = −(1/m0)∇σ = D∇log(ρ)

Note that the imaginary part of the complex velocity coincides with Nottale. Di-
viding the time dependent SE i�ψt = Uψ − (�2/2m0)∆ψ by 2m0 and taking
the gradient gives ∇U/m0 = 2D∇[i∂tlog(ψ) + D(∆ψ/ψ)] where �/2m0 has been
replaced by D. Then consider the identities

(3.14) ∆∇ = ∇∆; (∇f · ∇)(∇f) = (1/2)∇(∇f)2;
∆f

f
= ∆log(f) + (∇log(f))2
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Then the second term in the right of the equation for∇U/m0 becomes∇(∆ψ/ψ) =
∆(∇log(ψ)) + 2(∇log(ψ) · ∇)(∇log(ψ)) so we obtain

(3.15) ∇U = 2iDm0[∂t∇log(ψ)− iD∆(∇log(ψ)− 2iD(∇log(ψ) · ∇)(∇log(ψ))]

One can show that this is nothing but the generalized Newton equation −∇U =
m0(δ/dt)V . Now replacing the complex velocity V = −2iD∇log(ψ) and taking
into account the form of V, we get

(3.16) −∇U = m0{∂t(v − iD∇log(ρ) + [i(v − iD∇log(ρ) · ∇](v − iD∇log(ρ))−

−iD∆(v − iD∇log(ρ))}
Equation (3.16) is a complex differential equation and reduces to

(3.17) m0[∂tv + (v · ∇)v] = −∇
(

U − 2m0D2 ∆
√

ρ
√

ρ

)
; ∇

{
1
ρ

[∂tρ +∇ · (ρv)]
}

The last equation in (3.17) reduces to the continuity equation up to a phase factor
α(t) which can be set equal to zero (note again that ρ �= 0 is posited). Thus
(3.17) is nothing but the fundamental equations (3.9) of the hydrodynamic model.
Further combining the imaginary part of the complex velocity with the quantum
potential, and using (3.14), one gets Q = −m0D∇·u− (1/2)m0u

2 (as indicated in
Remark 1.2.2). Since u arises from nondifferentiability according to our nondiffer-
entiable space model of QM it follows that the quantum potential comes from the
nondifferentiability of the quantum spacetime (note that the x derivatives should
be clarified and E∞ has not been utilized).

Putting U = 0 in the first equation of (3.17), multiplying by ρ, and taking the
second equation into account yields

(3.18) ∂t(m0ρνk) +
∂

∂xi
(m0ρνiνk) = −ρ

∂

xk

[
2m0D2 1

√
ρ

∂

∂xi

∂

∂xi
(
√

ρ)
]

(here νk ∼ vk seems indicated). Now set Πik = m0ρνiνk − σik along with σik =
m0ρD2(∂/∂xi)(∂/∂xk)(log(ρ)). Then (3.18) takes the simple form

(3.19) ∂t(m0ρνk) = −∂Πik/∂xi

The analogy with classical fluid mechanics works well if one introduces the kine-
matic µ = D/2 and dynamic η = (1/2)m0Dρ viscosities. Then Πik defines the mo-
mentum flux density tensor and σik the internal stress tensor σik = η[(∂ui/∂xk)+
(∂uk/∂xi)]. One can see that the internal stress tensor is build up using the
quantum potential while the equations (3.18) or (3.19) are nothing but systems of
Navier-Stokes type for the motion where the quantum potential plays the role of
an internal stress tensor. In other words the nondifferentiability of the quantum
spacetime manifests itself like an internal stress tensor. For clarity in understand-
ing (3.19) we put this in one dimensional form so (3.18) becomes

(3.20) ∂t(m0ρv) + ∂x(m0ρv2) = −ρ∂

(
2m0D2 1

√
ρ
∂2√ρ

)
= ρ∂Q
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and Π = m0ρv2−σ with σ = m0ρD2∂2log(ρ) which agrees with standard formulas.
Now note ∂

√
ρ = (1/2)ρ−1/2ρ′ and ∂2√ρ = (1/2)[−(1/2)ρ−3/2(ρ′)2+ρ−1/2ρ′′] with

∂2log(ρ) = ∂(ρ′/ρ) = (ρ′′/ρ)− (ρ′/ρ)2 while
(3.21)

−ρ∂

[
2m0D2 1

√
ρ

(
∂2√ρ

)]
= −2m0D2ρ∂

[
1

2
√

ρ

(
−1

2
ρ−3/2(ρ′)2 + ρ−1/2ρ′′

)]
=

= −2m0D2ρ∂

[
ρ′′

2ρ
− 1

4

(
(ρ′

ρ

)2
]

= −m0D2ρ∂

[
ρ′′

ρ
− 1

2

(
ρ′

ρ

)2
]

One wants to show then that (3.19) holds or equivalently −∂σ = (3.21). However
(3.22)

−∂σ = −∂[m0ρD2∂2log(ρ)] = −m0D2

[
ρ′
(

ρ′′

ρ
−
(

ρ′

ρ

)2
)

+ ρ∂

(
ρ′′

ρ
− (ρ′)2

ρ

)]
so we want (3.22) = (3.21) which is easily verified.

4. REMARKS ON FRACTAL CALCULUS

We sketch first (in summary form) from [748] where a calculus based on fractal
subsets of the real line is formulated. A local calculus based on renormalizing
fractional derivatives à la [562] is subsumed and embellished. Consider first the
concept of content or α-mass for a (generally fractal) subset F ⊂ [a, b] (in what
follows 0 < α ≤ 1). Then define the flag function for a set F and a closed interval
I as θ(F, I) = 1 (F ∩ I �= ∅ and otherwise θ = 0. Then a subdivision P[a,b] ∼ P of
[a, b] (a < b) is a finite set of points {a = x0, x1, · · · , xn = b} with xi < xi+1. If Q
is any subdivision with P ⊂ Q it is called a refinement and if a = b the set {a} is
the only subdivision. Define then

(4.1) σα[F, p] =
n−1∑

0

(xi+1 − xi)α

Γ(α + 1)
θ(F, [xi, xi+1])

For a = b one defines σα[F, P ] = 0. Next given δ > 0 and a ≤ b the coarse grained
mass γα

δ (F, a, b) of F ∩ [a, b] is given via

(4.2) γα
δ (F, a, b) = inf|P |≤δσ

α[F, P ] (|P | = max0≤i≤n−1(xi+1 − xi))

where the infimum is over P such that |P | ≤ δ. Various more or less straightforward
properties are:

• For a ≤ b and δ1 < δ2 one has γα
δ1

(F, a, b) ≥ γα
δ2

(F, a, b).
• For δ > 0 and a < b < c one has γα

δ (F, a, b) ≤ γα
δ (F, a, c) and γα

δ (F, b, c) ≤
γα

δ (F, a, c).
• γα

δ is continuous in b and a.
Now define the mass function γα(F, a, b) via γα(F, a, b) = limδ→0γ

α
δ (F, a, b). The

following results are proved
(1) If F ∩ (a, b) = ∅ then γα(F, a, b) = 0.
(2) Let a < b < c and γα(F, a, c) < ∞. Then γα(F, a, c) = γα(F, a, b) +

γα(F, b, c). Hence γα(F, a, b) is increasing in b and decreasing in a.
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(3) Let a < b and γα(F, a, b) �= 0 be finite. If 0 < y < γα(F, a, b) then there
exists c, a < c < b such that γα(F, a, c) = y. Further if γα(F, a, b) is
finite then γα(F, a, x) is continuous for x ∈ (a, b).

(4) For F ⊂ R and λ ∈ R let F + λ = {x + λ; x ∈ F}. Then γα(F + λ, a +
λ, b + λ) = γα(F, a, b) and γα(λF, λa, λb) = λαγα(F, a, b).

Now for a0 an arbitrary fixed real number one defines the integral staircase function
of order α for F is

(4.3) Sα
F (x) =

{
γα(F, a0, x) x ≥ a0

−γα(F, x, a0) otherwise

The following properties of SF are restatements of properties for γα. thus
• Sα

F (x) is increasing in x.
• If F ∩ (x, y) = 0 then Sα

F is constant in [x, y].
• Sα

F (y)− Sα
F (x) = γα(F, x, y).

• Sα
F is continuous on (a, b).

Now one considers the sets F for which the mass function γα(F, a, b) gives the
most useful information. Indeed one can use the mass function to define a fractal
dimension. If 0 < α < β ≤ 1 one writes
(4.4)

σβ [F, P ] ≤ |P |β−ασα[F, P ]
Γ(α + 1)
Γ(β + 1)

; γβ
δ (F, a, b) ≤ δβ−αγα

δ (F, a, b)
Γ(α + 1)
Γ(β + 1)

Thus in the limit δ → 0 one gets γβ(F, a, b) = 0 provided γα(F, a, b) < ∞ and
α < β. It follows that γα(F, a, b) is infinite up to a certain value α0 and then jumps
down to zero for α > α0 (if α0 < 1). This number is called the γ-dimension of
F; γα0(F, a, b) may itself be zero, finite, or infinite. To make the definition precise
one says that the γ-dimension of F ∩ [a, b], denoted by dimγ(F ∩ [a, b]), is

(4.5) dimγ(F ∩ [a, b]) =
{

inf{α; γα(F, a, b) = 0}
sup{α; γα(F, a, b) = ∞}

One shows that dimH(F ∩ [a, b]) ≤ dimγ(F ∩ [a, b]) where dimH denotes Hausdorff
dimension. Further dimγ(F ∩ [a, b]) ≤ dimB(F ∩ [a, b]) where dimB is the box di-
mension. Some further analysis shows that for F ⊂ R compact dimγF = dimHF .

Next one notes that the correspondence F → Sα
F is many to one (examples

from Cantor sets) and one calls the sets giving rise to the same staircase function
“staircasewise congruent”. The equivalence class of congruent sets containing F is
denoted by EF ; thus if G ∈ EF it follows that Sα

G = Sα
F and Eα

G = Eα
F . One says

that a point x is a point of change of f if f is not constant over any open interval
(c, d) containing x. The set of all points of change of f is denoted by Sch(f). In
particular if G ∈ Eα

F then Sα
G(x) = Sα

F (x) so Sch(Sα
G) = Sch(Sα

F ). Thus if F ⊂ R
is such that Sα

F (x) is finite for all x (α = dimγF ) then H = Sch(Sα
F ) ∈ Eα

F . This
takes some proving which we omit (cf. [748]). As a consequence let F ⊂ R be
such that Sα

F (x) is finite for all x ∈ R (α = dimγF ). Then the set H = Sch(Sα
F ) is

perfect (i.e. H is closed and every point is a limit point). Hence given Sα
F (x) finite

for all x (α = dimγF ) one calls Sch(Sα
F ) the α-perfect representative of Eα

F and one
proves that it is the minimal closed set in Eα

F . Indeed an α-perfect set in Eα
F is the
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intersection of all closed sets G in Eα
F . One can also say that if F ⊂ R is α-perfect

and x ∈ F then for y < x < z either Sα
F (y) < Sα

F (x) or Sα
F (x) < Sα

F (z) (or both).
Thus for an α-perfect set it is assured that the values of Sα

F (y) must be different
from Sα

F (x) at all points y on at least one side of x. As an example one shows that
the middle third Cantor set C = E1/3 is α-perfect for α = log(2)/log(3) = dH(C)
so C = Sch(Sα

C).

Now look at F with the induced topology from R and consider the idea of
F-continuity.

DEFINITION 4.1. Let F ⊂ R and f : R → R with x ∈ F . A number �
is said to be the limit of f through the points of F, or simply F-limit, as y → x if
given ε > 0 there exists δ > 0 such that y ∈ F and |y − x| < δ ⇒ |f(y) − �| < ε.
In such a case one writes � = F − limity→xf(y). A function f is F-continuous at
x ∈ F if f(x) = F − limity→xf(y) and uniformly F-continuuous on E ⊂ F if for
ε > 0 there exists δ > 0 such that x ∈ F, y ∈ E and |y−x| < δ ⇒ |f(y)−f(x)| < ε.
One sees that if f is F-continuous on a compact set E ⊂ F then it is uniformly
F-continuous on E.

DEFINITION 4.2. The class of functions f : R → R which are bounded
on F is denoted by B(F ). Define for f ∈ B(F ) and I a closed interval

(4.6) M [f, F, I] =
{

supx∈F∩If(x) F ∩ I �= ∅
0 otherwise

m[f, F, I] =
{

infx∈F∩If(x) F ∩ I �= ∅
0 otherwise

DEFINITION 4.3. Let Sα
F (x) be finite for x ∈ [a, b] and P be a subdivi-

sion with points x0, · · · , xn. The upper Fα and lower Fα sums over P are given
respectively by

(4.7) Uα[f, F, P ] =
n−1∑

0

M [f, F, [xi, xi+1]](Sα
F (xi+1)− Sα

F (xi));

Lα[f, F, P ] =
n−1∑

0

m[f, F, [xi, xi+1]](Sα
F (xi+1)− Sα

F (xi))

This is sort of like Riemann-Stieltjes integration and in fact one shows that if Q
is a refinement of P then Uα[f, F,Q] ≤ Uα[f, F, P ] and Lα[f, F,Q] ≥ Lα[f, F, P ].
Further Uα[f, F, P ] ≥ Lα[f, F,Q] for any subdivisions of [a, b] and this leads to
the idea of F-integrability. Thus assume Sα

F is finite on [a, b] and for f ∈ B(F )
one defines lower and upper Fα-integrals via

(4.8)
∫ b

a

f(x)dα
F x = supP Lα[f, F, P ];

∫ b

a

f(x)dα
F x = infP Uα[f, F, P ]

One then says that f is Fα-integrable if (D15)
∫ b

a
f(x)dα

F x =
∫ b

a
f(x)dα

F x =∫ b

a
f(x)dα

F x.
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One shows then
(1) f ∈ B(F ) is Fα-integrable on [a, b] if and only if for any ε > 0 there is a

subdivision P of [a, b] such that Uα[f, F, P ] < Lα[f, F, P ] + ε.
(2) Let F ∩[a, b] be compact with Sα

F finite on [a, b]. Let f ∈ B(F ) and a < b;
then if f is F-continuous on F ∩ [a, b] it follows that f is Fα-integrable
on [a, b].

(3) Let a < b and f be Fα-integrable on [a, b] with c ∈ (a, b). Then f is Fα-
integrable on [a, c] and [c, b] with

∫ b

a
f(x)dα

F x =
∫ c

a
f(x)dα

F x+
∫ b

c
f(x)dα

F x.
(4) If f is Fα-integrable then

∫ b

a
λf(x)dα

F x = λ
∫ b

a
f(x)dα

F x and, for g also
Fα-integrable,

∫ b

a
(f(x) + g(x))dα

F x =
∫ b

a
f(x)dα

F x +
∫ b

a
g(x)dα

F x.
(5) If f, g are Fα-integrable and f(x) ≥ g(x) for x ∈ F∩[a, b] then

∫ b

a
f(x)dα

F x ≥∫ b

a
g(x)dα

F x.

One specifies also
∫ a

b
f(x)dα

F x = −
∫ b

a
f(x)dα

F x and it is easily shown that if χF (x)
is the characteristic function of F then

∫ b

a
χF (x)dα

F x = Sα
F (b) − Sα

F (a). Now for
differentiation one writes

(4.9) Dα
F f(x) =

{
F − limy→x

f(y)−f(x)
Sα

F (y)−Sα
F (x) x ∈ F

0 otherwise

if the limit exists. One shows then
(1) If Dα

F f(x) exists for all x ∈ (a, b) then f(x) is F-continuous in (a, b).
(2) With obvious hypotheses Dα

F (λf(x)) = λDα
F f(x) and Dα

F (f + g)(x) =
Dα

F f(x) +Dα
F g(x). Further if f is constant then Dα

F f = 0.
(3) Dα

F (Sα
F (x)) = χF (x).

(4) (Rolle’s theorem) Let f : R → R be continuous with Sch(f) ⊂ F
where F is α-perfect and assume Dα

F f(x) is defined for all x ∈ [a, b] with
f(a) = f(b) = 0. Then there is a point c ∈ F∩[a, b] such that Dα

F f(c) ≥ 0
and a point d ∈ F ∩ [a, b] where Dα

F f(d) ≤ 0.

EXAMPLE 4.1. This is the best that can be done with Rolle’s theorem since
for C the Cantor set E1/3 take f(x) = Sα

C(x) for 0 ≤ x ≤ 1/2 and f(x) = 1−Sα
C(x)

for 1/2 < x ≤ 1. This function is continuous with f(0) = f(1) = 0 and the set
of change (Sch(f)) is C. The Cα-derivative is given by Dα

Cf(x) = χC(x) for
0 ≤ x ≤ 1/2 and by −χC(x) for 1/2 < x ≤ 1. Thus x ∈ C which implies
Dα

Cf(x) = ±1 �= 0.

As a corollary one has the following result: Let f be continuous with Sch(f) ⊂ F
where F is α-perfect; assume Dα

F f(s) exists at all points of [a, b] and that Sα
F (b) �=

Sα
F (a). Then there are points c, d ∈ F such that

(4.10) Dα
F f(c) ≥ f(b)− f(a)

Sα
F (b)− Sα

F (b)
; Dα

F f(d) ≤ f(b)− f(a)
Sα

F (b)− Sα
F (a)

Similarly if f is continuous with Sch(f) ⊂ F and Dα
F f(x) = 0 ∀x ∈ [a, b] then

f(x) is constant on [a, b]. There are also other fundamental theorems as follows
(1) (Leibniz rule) If u, v : R → R are Fα-differentiable then Dα

F (uv)(x) =
(Dα

F u(x))v(x) + u(x)Dα
F v(x).
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(2) Let F ⊂ R be α-perfect. If f ∈ B(F ) is F-continuous on F ∩ [a, b] with
g(x) =

∫ x

a
f(y)dα

F y for all x ∈ [a, b] then Dα
F g(x) = f(x)χF (x).

(3) Let f : R → R be continuous and Fα-differentiable with Sch(f) con-
tained in an α-perfect set F; let also h : R → R be F-continuous such
that h(x)χF (x) = Dα

F f(x). Then
∫ b

a
h(x)dα

F x = f(b)− f(a).
(4) (Integration by parts) Assume: (i) u is continuous on [a, b] and Sch(u) ⊂

F . (ii) Dα
F u(x) exists and is F-continuous on [a, b]. (iii) v is F-continuous

on [a, b]. Then

(4.11)
∫ b

a

uvdα
F x =

[
u(x)

∫ x

a

v(x′)dα
F x′]

∣∣∣∣b
a

−
∫ b

a

Dα
F u(x)

∫ x

a

v(x′)dα
F x′dα

F x

Some examples are given relative to applications and we mention e.g.

EXAMPLE 4.2. Following [562] one has a local fractal diffusion equation

(4.12) Dα
F,t(W (x, t)) =

χF (t)
2

∂2

∂x2
W (x, t)

with solution

(4.13) W (x, t) =
1

(2πSα
F (t))1/2

exp

(
−x2

2Sα
F (t)

)
The appendix to [748] also gives some formulas for repeated integration and

differentiation. For example it is shown that

(4.14) (Dα
F )2(Sα

F (x))2 = 2χF (x);
∫ x′

a

(Sα
F (x))ndα

F x =
1

n + 1
(Sα

F (x′))n+1

We refer to [562, 748] for other interesting material.

5. A BOHMIAN APPROACH TO QUANTUM FRACTALS

The powerful exact uncertainty method of Hall and Reginatto for passing
from classical to quantum mechanics has been further embellished and deepened
in recent years (see e.g. 444, 445, 446, 447, 448,
449,
In [445] one finds an apparent incompleteness in the traditional trajectory based
Bohmian mechanics when dealing with a quantum particle in a box. It turns out
that there is no suitable HJ equation for describing the motion which in fact has
a fractal character. After reviewing the material on scale relativity in Section
1.2 for example it is not surprising to encounter such situations and in [844] the
Bohmian point of view is reinstated for fractal trajectories. One should also remark
in passing that there is much material available on weak or distribution solutions
of HJ type equations and some of this should come into play here (cf. [211]). The
main issue here however is that in order to treat wave functions displaying fractal
features (quantum fractals) one needs to enlarge the picture via limiting processes.
One derives the quantum trajectories by means of limiting procedures that involve
the expansion of the wave function in a series of eigenvectors of the Hamiltonian.

450, 749, 805, 806, 807, 844, 845] and Sections 1.1, 3. 1, and 4.7.
[186, 187, 189, 203, 396,
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Consider first the quantum analogue of the Weierstrass function

(5.1) W (x) =
∞∑
0

brSin(arx); a > 1 > b > 0; ab ≥ 1

Then in the problem of a particle in a 1-dimensional box of length L (with 0 <
x < L) one can construct wave functions of the form

(5.2) Φt(x;R) = A

R∑
r=0

nr(s−2)Sin(pn,rx/�)e−iEn,rt/�

with 2 > s > 0 and n ≥ 2. Here pn,r = nrπ�/L is the quantized momentum (with
integer quantum number given by n′ = nr). En,r = p2

n,r/2m is the eigenenergy
and a is a normalization constant. This wave function, which is a solution of
the time dependent SE, is continuous and differentiable everywhere. However the
wave function resulting in the limit, namely Φt(x) = limR→∞Φt(x;R) is a fractal
object in both space and time (cf. [626]). This method for generating quantum
fractals basically involves (given s) choosing a quantum number, say n, and then
considering the series that contains its powers n′ = nr. There is also another
related method (cf. [142]) of generating quantum fractals based on the presence
of discontinuities in the wave function. The emergence of fractal features arises
from the perturbations that such discontinuities cause in the wave function during
propagation. This generating process can be easily understood by considering a
wave function initially uniform along a certain interval � = x2− x1 ≤ L inside the
box

(5.3) Ψ0(x) =
{ 1√

�
x1 < x < x2

0 otherwise

The Fourier decomposition of this wave function is

(5.4) Ψ0(x) =
2

π
√

�

∞∑
1

1
n

[Cos(pnx1/�)− Cos(pnx2/�)]Sin(pnx/�)

whose time evolved form is

(5.5) Ψt(x) =
2

π
√

�

∞∑
1

1
n

[Cos(pnx1/�)− Cos(pnx2/�)]Sin(pnx/�)e−iEnt/�

It is equivalent to consider r = R = 1 in (5.2) and sum over n from 1 to N; the
quantum fractal is then obtained in the limit N → ∞. This equivalence is based
on the fact that the Fourier decomposition of Ψ0 gives precisely its expansion in
terms of the eigenvectors of the Hamiltonian in the problem of a particle in a box
(this is not a general situation).

EXAMPLE 5.1. The fractality of wave functions like Φt(x) or Ψt(x) can
be analytically estimated (cf. [142]) by taking advantage of a result for Fourier
series. Thus given an arbitrary function f(x) =

∑N
1 anexp(−inx) its real and

imaginary pars are fractals (and also |f(x)|2) with dimension Df = (5−β)/2 if its
power spectrum has the asymptotic form |an|2 ∼ n−β for N →∞ with 1 < β ≤ 3.
Alternatively the fractality of f(x) can also be calculated by measuring the length
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L of its real and imaginary parts (or |f(x)|2) as a function of the number of terms
N considered in the generating sries. Asymptotically the relation bewteen L and
N can be expressed as L(N) ∝ NDf−1 which diverges if f(x) is a fractal object.
One notes that to increase the number of terms contributing to f(x) is analogous
to measuring its length with more precision.

It is known that for quantum fractals the corresponding expected value of the
energy < Ĥ > becomes infinite. This is related to the fact that the familiar form
of the SE

(5.6) i�∂tΨt(x) = ĤΨt(x)

does not hold in general (cf. [445, 1003]). In this case neither the left side of
(5.6) nor the right side belong to the Hilbert space; however the identity

(5.7) [Ĥ − i�∂t]Ψt(x) = 0

still remains valid. In this situation one says that Ψt(x) is a weak solution of the
SE (note weak solutions have many meanings and have been extensively studied
in PDE - cf. [211]).

The formal basis of Bohmian mechanics (BM) is usually established via

(5.8) Ψt(x) = ρ
1/2
t (x)eiSt(x)/�;

∂ρt

∂t
+∇ ·

(
ρt
∇St

m

)
= 0;

∂St

∂t
+

(∇St)2

2m
+ V + Qt = 0; Qt = − �2

2m

∇2ρ
1/2
t

ρ
1/2
t

One postulates also the trajectory velocity as

(5.9) ẋ =
∇St

m
=

�

m
�[Ψ−1

t ∇Ψt]

Now Qt in (5.8) is well defined provided that the quantum state is also well defined
(i.e. continuous and differentiable). However this is not the case for quantum
fractals and the theory seems incomplete; the solution is to take into account the
decomposition of the quantum fractal in terms of differentiable eigenvectors and
redefining Qt in (5.8). Thus any wave function Ψt is expressible as

(5.10) Ψt(x : N) =
N∑
1

cnξn(x)e−iEnt/�

in the limit N → ∞ (cf. Φt above and (5.5)) where the ξn(x) are eigenvectors
with eigenvalues En of the corresponding Hamiltonian. One can then define the
quantum trajectories evolving under the guidance of this wave as

(5.11) xt = limN→∞xN (t); ẋN =
�

m
�
[
Ψ−1

t (x;N)
∂Ψt(x;N)

∂x

]
Note the calculation of trajectories is not based on St, which has no trivial de-
composition in a series of nice functions, but this kind of velocity formulation is
common in e.g. [324, 325, 326, 327, 328, 329, 415, 416, 418, 419, 420] where
one modern version of BM is being developed.
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EXAMPLE 5.2. A numerical example is given in [844] and we only mention
a few features here. Thus one considers a highly delocalized particle in a box with
wave function (5.4) and x1 = 0 with x2 = L. Then (5.5) becomes

(5.12) Ψt(x) =
4

π
√

L
e−iE1t/�

∑
n odd

1
n

Sin(pnx/�)eiωn,1t

where λn,1 = (En−E1)/� (in the numerical calculations one uses L = m = � = 1).
Here the probability density ρt is periodic in time but the wave function is not
periodic (this does not affect (5.11)). Various features are observed (e.g. Cantor
set structures, Gibbs phenomena, etc.) and graphs are displayed - we omit any
further discussion here.

In summary, although the SE is not satisfied by quantum fractals as a whole, it
is when one considers its decomposition in terms of the eigenvectors of the Hamil-
tonian. The contributing eigenvectors are continuous and differentiable and any
wave function (regular or not) admits a decomposition in terms of eigenvectors.
Correspondingly the Bohmian equation of motion must be reformulated in terms
of such decompositions via (5.11) and this can be regarded also as a generalization
of (5.8). We mention in passing that from time to time there are papers claiming
contradictions between BM and QM and we refer here to [436, 629, 712] for some
refutations.

REMARK 5.3. Let us mention here a suggestion of ’t Hooft [475] about
establishing the physical link between classical and quantum mechanics by em-
ploying the underlying equations of classical mechanics and including into them a
specially chosen dissipative function. The wave like QM turns out to follow from
the particle like classical mechanics due to embedding in the latter a dissipation
“device” responsible for loss of information. Thus the initial precise information
about the classical trajectory is lost in QM due to the “dissipative spread” of the
trajectory and its transformation into a fuzzy object such as the fractal Hausdorff
path of dimension 2 in a simple case of a spinless particle. Some rough calculations
in this direction appear in [426]. and we refer also to [122, 427, 749].



CHAPTER 2

DEBROGLIE-BOHM IN VARIOUS CONTEXTS

The quantum potential arises in various forms, some of which were discussed
in Sections 1.1 and 1.2. We return to this now in a somewhat more systematic
manner. The original theory goes back to deBroglie and D. Bohm (see e.g. [94,
95, 128, 129, 154, 471, 472, 532]) and in its modern version the dominant
themes seem to be contained in [88, 102, 288, 295, 324, 325, 326, 327, 328,
329, 387, 402, 414, 415, 927, 948] with variations as in [110, 186, 187,
188, 189, 191, 194, 195, 196, 197, 198, 346, 347, 373, 374, 375] based
on work of Bertoldi, Faraggi, and Matone (cf. also [68, 138, 148, 165, 236,
305, 520, 574, 575, 576, 873, 881]) and cosmology following [123, 188, 189,
219, 498, 499, 500, 501, 571, 709, 710, 711, 840, 841, 871, 872, 873,
875, 876, 895, 989, 990]. In any event the quantum potential does enter into
any trajectory theory of deBroglie-Bohm (dBB) type. The history is discussed
for example in [471] (cf. also [68, 126, 127, 129, 154]) and we have seen
how this quantum potential idea can be formulated in various ways in terms of
statistical mechanics, hydrodynamics, information and entropy, etc. when dealing
with different versions and origins of the SE. Given the existence of particles we
finds the pilot wave of thinking very attractive, with the wave function serving to
choreograph the particle motion (or perhaps to “create” particles and/or spacetime
paths). However the existence of particles itself is not such an assured matter and
in field theory approaches for example one will deal with particle currents (cf. [701]
and see also e.g. [94, 95, 326, 402, 948]). The whole idea of quantum particle
path seems in any case to be either fractal (cf. [1, 3, 14, 15, 186, 223, 232, 273,
676, 715, 717, 720, 733, 734, 735, 736], stochastic (see e.g. [68, 148, 186,
381, 382, 446, 447, 448, 449, 534, 536, 671, 674, 698, 805, 806], or field
theoretic (cf. [94, 95, 326, 402, 701, 702, 703, 704, 705, 706, 707, 948]. The
fractal approach sometimes imagines an underlying micro-spacetime where paths
are perhaps fractals with jumps, etc. and one possible advantage of a field theoretic
approach would be to let the fields sense the ripples, which as e.g. operator valued
Schwartz type distributions, they could well accomplish. In fact what comes into
question here is the structure of the vacuum and/or of spacetime itself. One
can envision microstructures as in [186, 422, 676, 690] for example, textures
(topological defects) as in [71, 74, 75, 170, 978], Planck scale structure and
QFT, along with space-time uncertainty relations as in [71, 316, 317, 604, 1008],
vacuum structures and conformal invariance as in [668, 669, 835, 831, 837,
838], pilot wave cosmology as in [834, 881], ether theories as in [851, 919], etc.
Generally there seems to be a sense in which particles cannot be measured as such

39
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and hence the idea of particle currents (perhaps corresponding to fuzzy particles or
ergodic clumps) should prevail perhaps along with the idea of probability packets.
A number of arguments work with a (representative) trajectory as if it were a
single particle but there is no reason to take this too seriously; it could be thought
of perhaps as a “typical” particle in a cloud but conclusions should perhaps always
be constructed from an ensemble point of view. We will try to develop some of this
below. The sticky point as we see it now goes as follows. Even though one can
write stochastic equations for (typical) particle motion as in the Nelson theory
for example one runs into the problem of ever actually being able to localize a
particle. Indeed as indicated in [316, 317] (working in a relativistic context but
this should hold in general) one expects space time uncertainty relations even at a
semiclassical level since any localization experiment will generate a gravitational
field and deform spacetime. Thus there are relations [qµ, qν ] = iλ2

P Qµν where λP

is the Planck length and the picture of spacetime as a local Minkowski manifold
should break down at distances of order λP . One wants the localization experiment
to avoid creating a black hole (putting the object out of “reach”) for example
and this suggests ∆x0(

∑3
1 ∆xi) � λ2

P with ∆x1∆x2 + ∆x2∆x3 + ∆x3∆x1 � λ2
P

(cf. [316, 317]). On the other hand in [701] it is shown that in a relativistic
bosonic field theory for example one can speak of currents and n-particle wave
functions can have particles attributed to them with well defined trajectories,
even though the probability of their experimental detection is zero. Thus one
enters an arena of perfectly respectible but undetectible particle trajectories. The
discussion in [256, 326, 920, 953, 961] is also relevant here; some recourse to
the idea of beables, reality, and observables as beables, etc. is also involved (cf.
[94, 95, 256, 961]). We will have something to say about all these matters.

The dominant approach as in [324, 325, 326, 327, 402, 948] will be discussed
as needed (a thorough discussion would take a book in itself) and we only note
here that one is obliged to use the form ψ = Rexp(iS/�) to make sense out of the
constructions (this is no problem with suitable provisos, e.g. that S is not constant
- cf. [110, 191, 346, 347, 373, 374] and comments later). This leads to

(�) St +
(S′)2

2m
−
(

�2

2m

)(
R′′

R

)
+ V = 0; ∂tR

2 + ∂

(
R2S′

m

)
= 0

(cf. (1.1.1)) where Q = −�2R′′/2mR arising from a SE i�∂tψ = −(�2/2m)ψxx +
V ψ (we use 1-D for simplicity here). In [324] one emphasizes configurations based
on coordinates whose motion is choreographed by the SE according to the rule

(��) q̇ = v =
�

m
�ψ∗ψ′

|ψ|2 =
�

m
�
(

ψ′

ψ

)
The argument for (��) is based on obtaining the simplest Galilean and time
reversal invariant form for velocity, transforming correctly under velocity boosts.
This leads directly to (��) so that Bohmian mechanics (BM) is governed by
(��) and the SE. It’s a fairly convincing argument and no recourse to Floydian
need be involved (cf. [110, 191, 347, 373, 374]). Note however that if S = c
then q̇ = v = (�/m)�(R′/R) = 0 while p = S′ = 0 so this formulation seems
to avoid the S = constant problems indicated in [110, 191, 347, 373, 374].
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What makes the constant �/m in (��) important here is that with this value the
probability density |ψ|2 on configuration space is equivariant. This means that via
the evolution of probability densities ρt + div(vρ) = 0 (as in (1.1.5)) the density
ρ = |ψ|2 is stationary relative to ψ, i.e. ρ(t) retains the form |ψ(q, t)|2. One calls
ρ = |ψ|2 the quantum equilibrium density (QEDY) and says that a system is in
quantum equilibrium when its coordinates are randomly distributed according to
the QEDY. The quantum equilibrium hypothesis (QEHP) is the assertion that
when a system has wave function ψ the distribution ρ of its coordinates satisfies
ρ = |ψ|2.

1. THE KLEIN-GORDON AND DIRAC EQUATIONS

Before embarking on further discussion of QM it is necessary to describe some
aspects of quantum field theory (QFT) and in particular to give some foundation
for the Klein-Gordon (KG) and Dirac equations. For QFT we rely on [120, 457,
528, 764, 827, 1015] and concentrate on aspects of general quantum theory that
are expressed through such equations. We alternate between signature (−,+,+,+)
and (+,−,−,−) in Minkowski space, depending on the source. It is hard to avoid
using units � = c = 1 when sketching theoretical matters (which is personally
repugnant) but we will set � = c = 1 and shift to the general notation whenever
any real meaning is desired. Thus |length| ∼ |time| ∼ |energy|−1 ∼ |mass|−1

and m = the inverse Compton wavelength (mc/� = �−1
C ). The approaches in

[457, 764] seem best adapted to our needs and in particular [457] gives a nice
discussion motivating second quantization of a nonrelativistic SE (cf. [701] for
first quantization). The resulting second quantization would be Galiean invariant
but not Lorentz invariant so we go directly to the KG equation as follows. Note
that there are often notational differences in various treatments of QFT and we
use that of [457] in general. Start now from E2 = p2+m2 (which is the relativistic
form of E = p2/2m) to arrive, via E → i∂t and pj → −i∂j = −i∂/∂xj , at the KG
equation

(1.1) (∂2
t −∇2)φ + m2φ = 0

where φ = φ(x, t) is a scalar wave function. This can also be derived from an
action

(1.2) S(φ) =
∫

d4xL(φ, ∂µφ) =
1
2

∫
d4x(∂µ∂µφ−m2φ)

(x0 = t, x = (x, t)), provided φ transforms as a Lorentz scalar (required also in
(1.1)). The first problems arise from negative energy solutions (e.g. exp[i(k·x+ωt)]
is a solution of (1.1) with E = −ω = −(k2 + m2)1/2). Secondly the energy
spectrum is not bounded below (i.e. one could extract an arbitrary amount of
energy from a single particle system). Further, using a positve square root of
E2 = p2 + m2 would involve a square root of a differential operator and nonlocal
terms. Next observe that conserved currents jµ (with ∂µjµ = 0) arise à la E.
Noether in the form

(1.3) j0 = ρ =
i

2m
(φ∗φt − φ∗

t φ); ji =
1

2im
(φ∗∂iφ− (∂iφ

∗)φ)
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(where normal ordering is implicit here in order to avoid dealing with a vacuum
energy term - to be discussed later). We note that for the plane wave solution above
ρ = −ω/m = −(1/m)(k2 +m2)1/2 and this is not a good probability density. The
difficulties are resolved by giving up the idea of a one particle theory; it is not
compatible with Lorentz invariance and the solution is to quantize the field φ.

Thus take S(φ) as in (1.2) with π = ∂L/∂(∂µφ) = ∂tφ = φ̇ and construct a
Hamiltonian

(1.4) H =
1
2

∫
d3x[π2(x) + |∇φ(x)|2 + m2φ2(x)]

In analogy with QM where [x, p] = i one stipulates

(1.5) [φ(x, t), π(y, t)] = iδ(x− y); [φ(x, t), φ(y, t)] = [π(x, t), π(y, t)] = 0

The operator equation φ̇ = i[H,φ] then yields π = φ̇ and π̇ = i[H,π] reproduces the
KG equation. This is now a quantum field theory and for a particle interpretation
one expands φ(x, t) in terms of classical solutions of the KG equation via

(1.6) φ(x, t) =
∑

a(k)φ+
k (x) + b(k)φ−

k (x) =

=
∫

d3k
(2π)3

1
2ωk

(a(k)e−i[ωkt−k·x] + b(k)ei[ωkt−k·x])

where ωk = (k2 + m2)1/2 and φ±
k denotes a classical positive (resp. negative)

energy plane wave solution of (1.1) (k ·x = k0x0−k ·x = ωkt−k ·x). With φ(x, t)
an operator one has operators a(k) and b(k); further since φ(x, t) is classically a
real field we must have a Hermitian operator here and hence b(k) = a†(k). The
normalization factor 1/2ωk is chosen for Lorentz invariance (cf. [457] for details).
It follows immediately from π = ∂tφ that

(1.7) π(x, t) =
∫

k3k

(2π)3
1

2ωk
(−iωka(k)e−ik·x + iωka†(k)eik·x)

Some calculation (via Fourier formulas) leads then to

(1.8) a(k) =
∫

d3xeik·x[ωkφ(x, t) + iπ(x, t)]

and the algebra of a, a† is then determined by [a(k), a†(k′)] = (2π)32ωkδ3(k−k′).
The Hamiltonian (1.4) yields

(1.9) H =
1
2

∫
d3k

(2π)3
1

2ωk
ωk[a†(k)a(k)− a(k)a†(k)]

There is a bit of hocus-pocus here since the calculation gives a†a + (1/2)[a, a†] (=
(1/2)(a†a + aa†) formally) but [a, a†] ∼ δ(0) corresponds to the sum oveer all
modes of zero point energies ωk/2. This infinite energy cannot be detected exper-
imaentally since experiments only measure differences from the ground state of H.
In any event the zero point field (ZPF) will be discussed in some detail later.

Now the ground state is defined via a(k)|0 >= 0 with < 0|0 >= 1 (a†(k)|0 >
is a one particle state with energy ωk and momentum k while (a†(k))2|0 > con-
tains two such particles, etc.). One notes however that the state a†(k)|0 > is not
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normalizable since < 0|a(k)a†(k)|0 >= δ(0) is not normalizable. This is not sur-
prising since a†(k) creates a particle of definite energy and momentum and by the
uncertainty principle its location is unknown. Thus its wave function is a plane
wave and such states are not normalizable. In fact a†(k) is an operator valued
distribution and one can do calculations by “smearing” and considering states∫

d3kf(k)a†|0 > for functions f such that
∫

d3k|f(k)|2 < ∞ for example. One
sees also that the bare vacuum |0 > is an eigenstate of the Hamiltonian but its en-
ergy is divergent via < 0|H|0 >= (1/2)

∫
d3kωkδ3(0) (where (2π)3δ3(0) ∼

∫
d3x).

To deal with such infinities one subtracts them away, i.e. H → H− < 0|H|0 >
and this corresponds to normal ordering the Hamiltonian via : aa† :=: a†a := a†a
leading to

(1.10) : H :=
∫

d3k

(2π)3
1

2ωk
ωka†(k)a(k)

with vanishing vacuum expectation.

REMARK 2.1.1. Regarding Lorentz invariance one recalls that the Lorentz
group O(3, 1) is the set of 4× 4 matrices leaving the form s2 = (x0)2 −

∑
(xi)2 =

xµgµνxν invariant. One writes (x′)µ = Λµ
νxν and notes that gµ = Λρ

µgρσΛσ
ν ∼ g =

ΛT gΛ. Since s2 can be plus or minus there is a splitting into regions (x− y)2 > 0
(time-like), (x − y)2 < 0 (space-like), and (x − y)2 = 0 (light-like). A standard
parametrization for Lorentz boosts involves (x0 = ct)

(1.11) x′ =
x + vt√

1− (v/c)2
; y′ = y; z′ = z; t′ =

t + (vx/c2)√
1− (v/c)2

One writes e.g. γ = 1/
√

1− (v/c)2 = cosh(φ) with sinh(φ) = βγ = vγ/c.

REMARK 2.1.2. The total 4-momentum operator is

(1.12) Pµ =
∫

d3k

(2π)3
1

2ωk
kµa†(k)a(k)

and the total angular momentum operator is

(1.13) Mµν =
∫

d3x(xµpν − xνpµ)

The Lorentz algebra (for infinitesimal Lorentz transformations) is

(1.14) [Mµν ,Mλσ] = i(ηµλMνσ − ηνλMµσ − ηµσMνλ + ηνσMµλ)

where ηµν = diag(1,−1,−1,−1).

REMARK 2.1.3. The commutator rules (1.5) are not manifestly Lorentz
covariant. However one can verify that the same quantum theory is obtained
regardless of what Lorentz frame is chosen; to do this one shows that the QM
operator forms of the Lorentz generators satisfy the Lorentz algebra after quanti-
zation (this is given as an exercise in [457]).

EXAMPLE 1.1. Quantum fields are also discussed briefly in [471] and we
extract here from this source. The approach follows [128] and one takes L =
(1/2)∂µψ∂µψ = (1/2)[ψ̇2 − (∇ψ)2] as Lagrangian where ψ̇ = ∂tψ and variational
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technique yields the wave equation �ψ = 0 (� = c = 1). Define conjugate mo-
mentum as π = ∂L/∂ψ̇, the Hamiltonian via H = πψ̇ − L = (1/2)[π2 + (∇ψ))2],
and the field Hamiltonian by H =

∫
Hd3x. Replacing π by δS/δψ where S[ψ] is a

functional the classical HJ equation of the field ∂tS + H = 0 becomes

(1.15)
∂S

∂t
+

1
2

∫
d3x

[(
δS

δψ

)2

+ (∇S)2
]

= 0

The term (1/2)
∫

d3x(∇ψ)2 plays the role of an external potential. To quantize
the system one treats ψ(x) and π(x) as Schrödinger operators with [ψ(x), ψ(x′)] =
[π(x), π(x′)] = 0 and [ψ(x), π(x′)] = iδ(x−x′). Then one works in a representation
|ψ(x) > in which the Hermitian operator ψ(x) is diagonal. The Hamiltonian
becomes an operator Ĥ acting on a wavefunction Ψ[ψ(x), t) =< ψ(x)|Ψ(t) >
which is a functional of the real field ψ and a function of t. This is not a point
function of x since Ψ depends on the variable ψ for all x. Now the SE for the field
is i∂tΨ = ĤΨ or explicitly

(1.16) i
∂Ψ
∂t

=
∫

d3x
1
2

[
− δ2

δψ2
+ (∇ψ)2

]
Ψ

Thus ψ is playing the role of the space variable x in the particle SE and the
continuous index x here is analogous to a discrete index n in the many particle
theory. To arrive at a causal interpretation now one writes Ψ = Rexp(iS) for
R,S[ψ, t] real functionals and decomposes (1.16) as

(1.17)
∂S

∂t
+

1
2

∫
d3x

[(
δS

δψ

)2

+ (∇ψ)2
]
+Q = 0;

∂R2

∂t
+
∫

d3x
δ

δψ

(
R2 δS

δψ

)
= 0

where the quantum potential is now Q[ψ, t] = −(1/2R)
∫

d3x(δ2R/δψ2). (1.17)
now gives a conservation law wherein, at time t, R2Dψ is the probability for the
field to lie in an element of volume Dψ around ψ, where Dψ means roughly

∏
x dψ

and there is a normalization
∫
|Ψ|2Dψ = 1. Now introduce the assumption that at

each instant t the field ψ has a well defined value for all x as in classical field theory,
whatever the state Ψ. Then the time evolution is obtained from the solution of
the “guidance” formula

(1.18)
∂ψ(x, t)

∂t
=

δS[ψ(x), t]
δψ(x)

∣∣∣∣
ψ(x)=ψ(x,t)

(analogous to mẍ = ∇S) once one has specified the initial function ψ0(x) in the
HJ formalism. To find the equation of motion for the field coordinates apply δ/δψ

to the HJ equation (1.17) to get formally (ψ̇ ∼ δS/δψ)

(1.19)
d

dt
ψ̇ = − δ

δψ

[
Q +

1
2

∫
d3x(∇ψ)2

]
;

d

dt
=

∂

∂t
+
∫

d3x
∂ψ

∂t

δ

δψ

This is analogous to mẍ = −∇(V +Q) and, noting that dψ̇/dt = ∂ψ̇/dt and taking
the classical external force term to the right one arrives, via standard variational
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methods, at

(1.20) �ψ(x), t) = − δQ[ψ(x, t]
δψ(x)

∣∣∣∣
ψ(x)=ψ(x,t)

(note (δ/δψ)
∫

d3x(∇ψ)2 ∼ −2∆ψ and (δ/δψ0∂tψ = ∂t(δ/δψ)ψ = 0). The quan-
tum force term on the right side is responsible for all the characteristic effects of
QFT. In particular comparing to a classical massive KG equation �ψ + m2ψ = 0
with suitable initial conditions one can argue that the quantum force generates
mass in the sense that the massless quantum field acts as if it were a classical field
with mass given via the quantum potential (cf. Remark 2.2.1 below).

1.1. ELECTROMAGNETISM AND THE DIRAC EQUATION. It
will be useful to have a differential form discription of EM fields and we supply this
via [723]. Thus one thinks of tensors T = T σ

µν∂σ ⊗ dxµ ⊗ dxν with contractions
of the form T (dxσ, ∂σ) ∼ Tνdxν . For η = ηµνdxµ⊗ dxν one has η−1 = ηµν∂µ⊗ ∂ν

and ηη−1 = 1 ∼ diag(δµ
µ). Note also e.g.

(1.21) ηµνdxµ ⊗ dxν(u,w) = ηµνdxµ(u)dxν(w) =

= ηµνdxµ(uα∂α)dxν(wτ∂τ ) = ηµνuµwν

(1.22) η(u) = ηµνdxµ ⊗ dxν(u) = ηµνdxµ(u)dxν =

= ηµνdxµ(uα∂α)dxν = ηµνuµdxν = uνdxν

for a metric η. Recall α ∧ β = α⊗ β − β ⊗ α and

(1.23) α ∧ β = αµdxµ ∧ βνdxν = (1/2)(αµβν − ανβµ)dxµ ∧ dxν

The EM field tensor is F = (1/2)Fµνdxµ ∧ dxν where

(1.24) Fµν =

⎛⎜⎜⎝
0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞⎟⎟⎠ ;

F = Exdx0 ∧ dx1 + Eydx0 ∧ dx2 + Ezdx0 ∧ dx3 −Bzdx1 ∧ dx2+

+Bydx1 ∧ dx3 −Bxdx2 ∧ dx3

The equations of motion of an electric charge is then dp/dτ = (e/m)F(p) where
p = pµ∂µ. There is only one 4-form, namely ε = dx0 ∧ dx1 ∧ dx2 ∧ dx3 =
(1/4!)εµνστdxµ∧dxν ∧dxσ ∧dxτ where εµνστ is totally antisymmetric. Recall also
for α = αµν···dxµ ∧ dxν · · · one has dα = dαµν··· ∧ dxµ ∧ dxν · · · = ∂ααµν···dxσ ∧
dxµ ∧ dxν · · · and ddα = 0. Define also the Hodge star operator on F and j via
∗F = (1/4)εµνστF στdxµ ∧ dxν and ∗j = (1/3!)εµνστ jτdxµ ∧ dxν ∧ dxσ; these are
called dual tensors. Now the Maxwell equations are

(1.25) ∂µFµν =
4π

c
jν ; ∂αFµν + ∂µF να + ∂νFαµ = 0

and this can now be written in the form

(1.26) dF = 0; d∗F =
4π

c
∗ j
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and 0 = d∗j = 0 is automatic. In terms of A = Aµdxµ where F = dA the relation
dF = 0 is an identity ddA = 0.

A few remarks about the tensor nature of jµ and Fµν are in order and we
write n = n(x) and v = v(x) for number density and velocity with charge density
ρ(x) = qn(x) and current density j = qn(x)v(x). The conservation of particle
number leads to ∇ · j + ρt = 0 and one writes

(1.27) jν = (cρ, jx, jy, jz) = (cρn, qnvx, qnvy, qnvz) ≡ jν = n0qu
ν ≡ jν = ρ0u

ν

where n0 = n
√

1− (v2/c2) and ρ0 = qn0 (ρ0 here is charge density). Since jν con-
sists of uν multiplied by a scalar it must have the transformation law of a 4-vector
j
′β = aβ

νjν under Lorentz transformations (aβ
ν ∼ Λβ

ν ). Then the conservation law
can be written as ∂νjν = 0 with obvious Lorentz invariance. After some argument
one shows also that Fµν = a ν

β a µ
α F

′αβ under Lorentz transformations so Fµν is
indeed a tensor. The equation of motion for a charged particle can be written now
as

(1.28) (dp/dt) = qE + (q/c)v ×B; p = mv/
√

1− (v2/c2)

This is equivalent to dpµ/dt = (q/m)pνFµν with obvious Lorentz invariance. The
energy momentum tensor of the EM field is

(1.29) Tµν = −(1/4π)[FµαF ν
α − (1/4)ηµνFαβFαβ ]

(cf. [723] for details) and in particular T 00 = (1/8π)(E2 +B2) while the Poynting
vector is T 0k = (1/4π)(E×B)k.

One can equally well work in a curved space where e.g. covariant derivatives
are defined via ∇nT = limdλ→0[(T (λ+dλ)−T (λ)−δT ]/dλ where δT is the change
in T produced by parallel transport. One has then the usual rules ∇u(T ⊗ R) =
∇uT ⊗R+T ⊗∇uR and for v = vν∂ν one finds ∇µv = ∂µvν∂ν + vν∇µ∂ν . Now if
v was constructed by parallel transport its covariant derivative is zero so, acting
with the dual vector dxα gives

(1.30)
∂xν

∂xµ
dxα(∂ν) + vνdxα(∇µ∂ν) = 0 ≡ ∂µvα + vνdxα(∇µ∂ν) = 0

Comparing this with the standard ∂µvα + Γα
µνvν = 0 gives dxα(∇µ∂ν) = Γα

µν .
One can show also for vectors u, v, w (boldface omitted) and a 1-form α

(1.31) (∇u∇v −∇v∇u − uv + vu)α(w) = R(α, u, v, w);

R = F σ
βµν∂σ ⊗ dxβ ⊗ dxµ ⊗ dxν

so R represents the Riemann tensor.

For the nonrelativistic theory we recall from [649] that one can define a trans-
verse and longitudinal component of a field F via

(1.32) F ||(r) = − 1
4π

∫
d3r′

∇′ · F (r′)
|r − r′| ; F⊥(r) =

1
4π
∇×∇×

∫
d3r′

F (r′)
|r − r′|

For a point particle of mass m and charge e in a field with potentials A and φ
one has nonrelativistic equations mẍ = eE + (e/c)v × B (boldface is suppressed
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here) where one recalls B = ∇ × A, v = ẋ, and E = −∇φ − (1/c)At with H =
(1/2m)(p− (e/c)A)2 + eφ leading to

(1.33) ẋ =
1

2m

(
p− e

c
A
)

; ṗ =
e

c
[v ×B + (v · ∇)A]− e∇φ

Recall here also

(1.34) B = ∇×A; ∇ · E = 0; ∇ ·B = 0; ∇× E = −(1/c)Bt;

∇×B = (1/c)Et; E = −(1/c)At −∇φ

(the Coulomb gauge∇·A = 0 is used here). One has now E = E⊥+E|| ∼ ET +EL

with ∇ · E⊥ = 0 and ∇ × E|| = 0 and in Coulomb gauge E⊥ = −(1/c)At and
E|| = −∇φ. Further

(1.35) H ∼ 1
2m

(
p− e

c
A
)2

+ eφ +
1
8π

∫
d3r((E⊥)2 + B2)

(covering time evolution of both particle and fields).

For the relativistic theory one goes to the Dirac equation

(1.36) i(∂t + α · ∇)ψ = βmψ

which, to satisfy E2 = p2 +m2 with E ∼ i∂t and p ∼ −i∇, implies −∂2
t ψ = (−iα ·

∇+βm)2ψ and ψ will satisfy the KG equation if β2 = 1, αiβ+βαi ≡ {αi, β} = 0,
and {αi, αj} = 2δij (note c = � = 1 here with α · ∇ ∼

∑
αµ∂µ and cf. [647, 650]

for notations and background). This leads to matrices

(1.37) σ1 =
(

0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
;

σ3 =
(

1 0
0 −1

)
; αi =

(
0 σi

σi 0

)
; β =

(
1 0
0 −1

)
where αi and β are 4 × 4 matrices. Then for convenience take γ0 = β and γi =
βαi which satisfy {γµ, γν} = 2gµν (Lorentz metric) with (γi)† = −γi, (γi)2 =
−1, (γ0)† = γ0, and (γ0)2 = 1. The Dirac equation for a free particle can now be
written

(1.38)
(

iγµ ∂

∂xµ
−m

)
ψ = 0 ≡ (i∂/−m)ψ = 0

where A/ = gµνγµAν = γµAµ and ∂/ = γµ∂µ. Taking Hermitian conjugates in
(1.36), noting that α and β are Hermitian, one gets ψ̄(i

←−
∂/ +m) = 0 where ψ̄ = ψ†β.

To define a conserved current one has an equation ψ̄γµ∂µψ+γµψ̄µψ = ∂µ(ψ̄γµψ) =
0 leading to the conserved current jµ = ψ̄γµψ = (ψ†ψ, ψ†αψ) (this means ρ = ψ†ψ
and j = ψ†αψ with ∂tρ+∇· j = 0). The Dirac equation has the Hamiltonian form

(1.39) i∂tψ = −iα · ∇ψ + βmψ = (α · p + βm)ψ ≡ Hψ

(α · p ∼
∑

αµpµ). To obtain a Dirac equation for an electron coupled to a pre-
scribed external EM field with vector and scalar potentials A and φ one substitutes
pµ → pµ − eAµ, i.e. p→ p− eA and p0 = i∂t → i∂t − eΦ, to obtain

(1.40) i∂tψ = [α · (p− eA) + eΦ + βm]ψ
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This identifies the Hamiltonian as H = α · (p−eA)+eΦ+βm = α ·p+βm+Hint

where Hint = −eα · A + eΦ, suggesting α as the operator corresponding to the
velocity v/c; this is strengthened by the Heisenberg equations of motion

(1.41) ṙ =
(

1
i�

)
[r,H] = α; π̇ =

(
1
i�

)
[π,H] = e(E + α×B)

Another bit of notation now from [650] is useful. Thus (again with c = � = 1)
one can define e.g.

(1.42) σz = −iαxαy; σx = −iαyαz; σy = −iαzαx; ρ3 = β;

ρ1 = σzαz = −iαxαyαz; ρ2 = iρ1ρ3 = βαxαyαz

so that β = ρ3 and αk = ρ1σ
k. Recall also that the angular momentum �� of a parti-

cle is �� = r×p (∼ (−i)r×∇) with components �k satisfying [�x, �y] = i�z, [�y, �z] =
i�x, and [�z, �x] = i�y. Any vector operator L satisfying such relations is called an
angular momentum. Next one defines σµν = (1/2)i[γµ, γν ] = iγµγν (µ �= ν) and
Sαβ = (1/2)σαβ . Then the 6 components Sαβ satisfy

(1.43) S10 = (i/2)αx; S20 = (i/2)αy; S30 = (i/1)αz;

S23 = (1/2)σx; , S31 = (1/2)σy; S12 = (1/2)σz

The Sαβ arise in representing infinitesimal rotations for the orthochronous Lorentz
group via matrices I + iεSαβ . Further one can represent total angular momentum
J in the form J = L + S where L = r × p and S = (1/2)σ (L is orbital angular
momentum and S represents spin). We recall that the gamma matrices are given
via γ = βα. Finally [(i∂t − eφ)− α · (−i∇− eA)− βm]ψ = 0 (cf. (1.40)) and one
gets

(1.44) [iγµDµ −m)ψ = [γµ(i∂µ − eAµ)−m]ψ = 0

Dµ = ∂µ + ieAµ ≡ (∂0 + ieφ,∇− ieA)
Working on the left with (−iγλDλ − m) gives then [γλγµDλDµ + m2]ψ = 0
where γλγµ = gλµ + (1/2)[γλ, γµ]. By renaming the dummy indices one obtains
[γλ, γµ]DλDµ = −[γλ, γµ]DµDλ = (1/2)[γλ, γµ][Dλ, Dµ] leading to

(1.45) [Dλ, Dµ] = ie[∂λ, Aµ] + ie[Aλ, ∂µ] = ie(∂λAµ − ∂µAλ) = ieFλµ

This yields then γλγµDλDµ = DµDλ + eSλµFλµ where Sλµ represents the spin of
the particle. Therefore one can write [DµDµ + eSλµFλµ + m2]ψ = 0. Comparing
with the standard form of the KG equation we see that this differs by the term
eSλµFλµ which is the spin coupling of the particle to the EM field and has no
classical analogue.

2. BERTOLDI-FARAGGI-MATONE THEORY

The equivalence principle (EP) of Faraggi-Matone (cf. [110, 191, 193, 198,
347, 641]) is based on the idea that all physical systems can be connected by
a coordinate transformation to the free situation with vanishing energy (i.e. all
potentials are equivalent under coordinate transformations). This automatically
leads to the quantum stationary Hamilton-Jacobi equation (QSHJE) which is a
third order nonlinear differential equation providing a trajectory representation of
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quantum mechanics (QM). The theory transcends in several respects the Bohm
theory and in particular utilizes a Floydian time (cf. [373, 374]) leading to
q̇ = p/mQ �= p/m where mQ = m(1 − ∂EQ) is the “quantum mass” and Q
the “quantum potential” (cf. also Section 7.4). Thus the EP is reminscient of
the Einstein equivalence of relativity theory. This latter served as a midwife to
the birth of relativity but was somewhat inaccurate in its original form. It is
better put as saying that all laws of physics should be invariant under general
coordinate transformations (cf. [723]). This demands that not only the form
but also the content of the equations be unchanged. More precisely the equa-
tions should be covariant and all absolute constants in the equations are to be left
unchanged (e.g. c, �, e, m and ηµν = Minkowski tensor). Now for the EP, the
classical picture with Scl(q, Q0, t) the Hamilton principal function (p = ∂Scl/∂q)
and P 0, Q0 playing the role of initial conditions involves the classical HJ equation
(CHJE) H(q, p = (∂Scl/∂q), t)+(∂Scl/∂t) = 0. For time independent V one writes
Scl = Scl

0 (q, Q0)−Et and arrives at the classical stationary HJ equation (CSHJE)
(1/2m)(∂Scl

0 /∂q)2 +W = 0 where W = V (q)−E. In the Bohm theory one looked
at Schrödinger equations i�ψt = −(�2/2m)ψ′′ + V ψ with ψ = ψ(q)exp(−iEt/�)
and ψ(q) = R(qexp(iŴ /�) leading to

(2.1)
(

1
2m

)
(Ŵ ′)2 + V − E − �2R′′

2mR
= 0; (R2Ŵ ′)′ = 0

where Q̂ = −�2R′′/2mR was called the quantum potential; this can be written
in the Schwartzian form Q̂ = (�2/4m){Ŵ ; q} (via R2Ŵ ′ = c). Here {f ; q} =
(f ′′′/f ′)−(3/2)(f ′′/f ′)2. Writing W = V (q)−E as in above we have the quantum
stationary HJ equation (QSHJE)

(2.2) (1/2m)(∂Ŵ ′/∂q)2 + W(q) + Q̂(q) = 0 ≡W = −(�2/4m){exp(2iS0/�); q}

This was worked out in the Bohm school (without the Schwarzian connections) but
ψ = Rexp(iŴ /�) is not appropriate for all situations and care must be taken (Ŵ =
constant must be excluded for example - cf. [347, 373, 374]). The technique of
Faraggi-Matone (FM) is completely general and with only the EP as guide one
exploits the relations between Schwarzians, Legendre duality, and the geometry of
a second order differential operator D2

x + V (x) (Möbius transformations play an
important role here) to arrive at the QSHJE in the form

(2.3)
1

2m

(
∂Sv

0 (qv)
∂qv

)2

+ W(qv) + Q
v(qv) = 0

where v : q → qv represents an arbitrary locally invertible coordinate transforma-
tion. Note in this direction for example that the Schwarzian derivative of the the
ratio of two linearly independent elements in ker(D2

x + V (x)) is twice V (x). In
particular given an arbitrary system with coordinate q and reduced action S0(q)
the system with coordinate q0 corresponding to V −E = 0 involves W(q) = (q0; q)
where (q0, q) is a cocycle term which has the form (qa; qb) = −(�2/4m){qa; qb}. In
fact it can be said that the essence of the EP is the cocycle condition

(2.4) (qa; qc) = (∂qcqb)2[(qa; qb)− (qc; qb)]
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In addition FM developed a theory of (x, ψ) duality (cf. [346])) which related
the space coordinate and the wave function via a prepotential (free energy) in
the form F = (1/2)ψψ̄ + iX/ε for example. A number of interesting philosophical
points arise (e.g. the emergence of space from the wave function) and we connected
this to various features of dispersionless KdV in [191, 198] in a sort of extended
WKB spirit (cf. also Section 7.3). One should note here that although a form
ψ = Rexp(iŴ /�) is not generally appropriate it is correct when one is dealing
with two independent solutions of the Schrödinger equation ψ and ψ̄ which are not
proportional. In this context we utilized some interplay between various geometric
properties of KdV which involve the Lax operator L2 = D2

x + V (x) and of course
this is all related to Schwartzians, Virasoro algebras, and vector fields on S1 (see
e.g. [191, 192, 198, 200, 201]). Thus the simple presence of the Schrödinger
equation (SE) in QM automatically incorporates a host of geometrical properties of
Dx = d/dx and the circle S1. In fact since the FM theory exhibits the fundamental
nature of the SE via its geometrical properties connected to the QSHJE one could
speculate about trivializing QM (for 1-D) to a study of S1 and ∂x.

We import here some comments based on [110] concerning the Klein-Gordon
(KG) equation and the equivalence principle (EP) (details are in [110] and cf.
also [164, 165, 166, 298, 472, 474, 473, 478, 479, 480, 666, 667] for the
KG equation which is treated in some detail later at several places in this book).
One starts with the relativistic classical Hamilton-Jacobi equation (RCHJE) with
a potential V (q, t) given as

(2.5)
1

2m

D∑
1

(∂kScl(q, t))2 + Wrel(q, t) = 0;

Wrel(q, t) =
1

2mc2
[m2c4 − (V (q, t) + ∂tS

cl(q, t))2]

In the time-independent case one has Scl(q, t) = Scl
0 (q)− Et and (2.3) becomes

(2.6)
1

2m

D∑
1

(∂kScl
0 )2 + Wrel = 0; Wrel(q) =

1
2mc2

[m2c4 − (V (q)− E)2]

In the latter case one can go through the same steps as in the nonrelativistic case
and the relativistic quantum HJ equation (RQHJE) becomes

(2.7) (1/2m)(∇S0)2 + Wrel − (�2/2m)(∆R/R) = 0; ∇ · (R2∇S0) = 0

these equations imply the stationary KG equation

(2.8) −�2c2∆ψ + (m2c4 − V 2 + 2EV − E2)ψ = 0

where ψ = Rexp(iS0/�). Now in the time dependent case the (D+1)-dimensional
RCHJE is (ηµν = diag(−1, 1, · · · , 1)

(2.9) (1/2m)ηµν∂µScl∂νScl + W
′
rel = 0;

W
′
rel = (1/2mc2)[m2c4 − V 2(q)− 2cV (q)∂0S

cl(q)]
with q = (ct, q1, · · · , qD). Thus (2.9) has the same structure as (2.6) with Euclidean
metric replaced by the Minkowskian one. We know how to implement the EP by
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adding Q via (1/2m)(∂S)2 + Wrel + Q = 0 (cf. [347] and remarks above). Note
now that W′

rel depends on Scl requires an identification

(2.10) Wrel = (1/2mc2)[m2c4 − V 2(q)− 2cV (q)∂0S(q)]

(S replacing Scl) and implementation of the EP requires that for an arbitrary Wa

state (q ∼ qa) one must have

(2.11) W
b
rel(q

b) = (pb|pa)Wa
rel(q

a) + (qq; qb); Qb(qb) = (pb|pa)Q(qa)− (qa; qb)

where

(2.12) (pb|p) = [ηµνpb
µpb

ν/ηµνpµpν ] = pT JηJT p/pT ηp; Jµ
ν = ∂qµ/∂qbν

(J is a Jacobian and these formulas are the natural multidimensional generaliza-
tion - see [110] for details). Furthermore there is a cocycle condition (qa; qc) =
(pc|pb)[(qa; qb)− (qc; qb)].

Next one shows that Wrel = (�2/2m)[�(Rexp(iS/�))/Rexp(iS/�)] and hence
the corresponding quantum potential is Qrel = −(�2/2m)[�R/R]. Then the
RQHJE becomes (1/2m)(∂S)2 + Wrel + Q = 0 with ∂ · (R2∂S) = 0 (here �R =
∂µ∂µR) and this reduces to the standard SE in the classical limit c → ∞ (note
∂ ∼ (∂0, ∂1, · · · , ∂D) with q0 = ct, etc. - cf. (2.9)). To see how the EP is simply
implemented one considers the so called minimal coupling prescription for an in-
teraction with an electromagnetic four vector Aµ. Thus set P cl

µ = pcl
µ + eAµ where

pcl
µ is a particle momentum and P cl

µ = ∂µScl is the generalized momentum. Then
the RCHJE reads as (1/2m)(∂Scl − eA)2 + (1/2)mc2 = 0 where A0 = −V/ec.
Then W = (1/2)mc2 and the critical case W = 0 corresponds to the limit situa-
tion where m = 0. One adds the standard Q correction for implementation of the
EP to get (1/2m)(∂S − eA)2 + (1/2)mc2 + Q = 0 and there are transformation
properties (here (∂S − eA)2 ∼

∑
(∂µS − eAµ)2)

(2.13) W(qb) = (pb|pa)Wa(qa) + (qa; qb); Qb(qb) = (pq|pa)Qa(qa)− (qa; qb)

(pb|p) =
(pb − eAb)2

(p− eA)2
=

(p− eA)T JηJT (p− eA)
(p− eA)T η(p− eA)

Here J is a Jacobian Jµ
ν = ∂qµ/∂qbν

and this all implies the cocycle condition
again. One finds now that (recall ∂ · (R2(∂S − eA)) = 0 - continuity equation)

(2.14) (∂S − eA)2 = �2

(
�R

R
− D2(ReiS/�)

ReiS/�

)
; Dµ = ∂µ −

i

�
eAµ

and it follows that

(2.15) W =
�2

2m

D2(ReiS/�)
ReiS/� ; Q = − �2

2m

�R

R
; D2 = �− 2ieA∂

�
− e2A2

�2
− ie∂A

�

(2.16) (∂S − eA)2 + m2c2 − �2 �R

R
= 0; ∂ · (R2(∂S − eA)) = 0

Note also that (2.9) agrees with (1/2m)(∂Scl − eA)2 + (1/2)mc2 = 0 after setting
Wrel = mc2/2 and replacing ∂µScl by ∂µScl − eAµ. One can check that (2.16)
implies the KG equation (i�∂ + eA)2ψ + m2c2ψ = 0 with ψ = Rexp(iS/�).
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REMARK 2.2.1. We extract now a remark about mass generation and the
EP from [110]. Thus a special property of the EP is that it cannot be implemented
in classical mechanics (CM) because of the fixed point corresponding to W =
0. One is forced to introduce a uniquely determined piece to the classical HJ
equation (namely a quantum potential Q). In the case of the RCHJE the fixed point
W(q0) = 0 corresponds to m = 0 and the EP then implies that all the other masses
can be generated by a coordinate transformation. Consequently one concludes that
masses correspond to the inhomogeneous term in the transformation properties of
the W0 state, i.e. (1/2)mc2 = (q0; q). Furthermore by (2.13) masses are expressed
in terms of the quantum potential (1/2)mc2 = (p|p0)Q0(q0)−Q(q). In particular
in [347] the role of the quantum potential was seen as a sort of intrinsic self energy
which is reminiscent of the relativistic self energy and this provides a more explicit
evidence of such an interpretation.

REMARK 2.2.2. In a previous paper [194] (working with stationary states
and ψ satisfying the Schrödinger equation (SE) −(�2/2m)ψ′′ + V ψ = Eψ) we
suggested that the notion of uncertainty in quantum mechanics (QM) could be
phrased as incomplete information. The background theory here is taken to be
the trajectory theory of Bertoldi-Faraggi-Matone (and Floyd) as above and the
idea in [194] goes as follows. First recall that microstates satisfy a third order
quantum stationary Hamilton-Jacobi equation (QSHJE)

(2.17)
1

2m
(S′

0)
2 + W(q) + Q(q) = 0; Q(q) =

�2

4m
{S0; q};

W(q) = − �2

4m
{exp(2iS0/�); q} ∼ V (q)− E

where {f ; q} = (f ′′′/f ′) − (3/2)(f ′′/f ′)2 is the Schwarzian and S0 is the Hamil-
ton principle function. Also one recalls that the EP of Faraggi-Matone can only
be implemented when S0 �= const; thus consider ψ = Rexp(iS0/�) with Q =
−�2R′′/2mR and (R2S′

0)
′ = 0 where S′

0 = p and mQq̇ = p with mQ = m(1 −
∂EQ) and t ∼ ∂ES0 (Q in (2.17) is the definitive form - cf. [349]). Thus mi-
crostates require three initial or boundary conditions in general to determine
S0 whereas the SE involves only two such conditions (cf. also Section 7.4 and
[138, 140, 139, 305, 306, 307, 308, 309, 347, 348, 349, 373, 374, 375, 520]).
Hence in dealing with the SE in the standard QM Hilbert space formulation one
is not using complete information about the “particles” described by microstate
trajectories. The price of underdetermination is then uncertainty in q, p, t for
example. In the present note we will make this more precise and add further
discussion. Following [197] we now make this more precise and add further dis-
cussion. For the stationary SE −(�2/2m)ψ′′ + V ψ = Eψ it is shown in [347] that
one has a general formula

(2.18) e2iS0(δ)/� = eiα w + i�̄

w − i�

(δ ∼ (α, �)) with three integration constants, α, �1, �2 where � = �1 + i�2 and
w ∼ ψD/ψ ∈ R. Note ψ and ψD are linearly independent solutions of the SE and
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one can arrange that ψD/ψ ∈ R in describing any situation. Here p is determined
by the two constants in � and has a form

(2.19) p =
±�Ω�1

|ψD − i�ψ|2

(where w ∼ ψD/ψ above and Ω = ψ′ψD − ψ(ψD)′). Now let p be determined
exactly with p = p(q, E) via the Schrödinger equation and S′

0. Then q̇ = (∂Ep)−1

is also exact so ∆q = (∂Ep)−1(τ)∆t for some τ with 0 ≤ τ ≤ t is exact (up to
knowledge of τ). Thus given the wave function ψ satisfying the stationary SE
with two boundary conditions at q = 0 say to fix uniqueness, one can create a
probability density |ψ|2(q, E) and the function S′

0. This determines p uniquely
and hence q̇. The additional constant needed for S0 appears in (2.18) and we can
write S0 = S0(α, q, E) since from (2.18) one has

(2.20) S0 − (�/2)α = −(i�/2)log(β)

and β = (w + i�̄)/(w − i�) with w = ψD/ψ is to be considered as known via a
determination of suitable ψ, ψD. Hence ∂αS0 = −�/2 and consequently ∆S0 ∼
∂αS0δα = −(�/2)∆α measures the indeterminacy or uncertainty in S0.

Let us expand upon this as follows. Note first that the determination of
constants necessary to fix S0 from the QSHJE is not usually the same as that
involved in fixing �, �̄ in (2.18). In paricular differentiating in q one gets

(2.21) S′
0 = − i�β′

β
; β′ = − 2i��w′

(w − i�)2

Since w′ = −Ω/ψ2 where Ω = ψ′ψD − ψ(ψD)′ we get β′ = −2i�1Ω/(ψD − i�ψ)2

and consequently

(2.22) S′
0 = − ��1Ω

|ψD − i�ψ|2

which agrees with p in (2.19) (±� simply indicates direction). We see that e.g.
S0(x0) = i��1Ω/|ψD(x0) − i�ψ(x0)|2 = f(�1, �2, x0) and S′′

0 = g(�1, �2, x0) de-
termine the relation between (p(x0), p′(x0)) and (�1, �2) but they are generally
different numbers. In any case, taking α to be the arbitrary unknown constant
in the determination of S0, we have S0 = S0(q, E, α) with q = q(S0, E, α) and
t = t(S0, E, α) = ∂ES0 (emergence of time from the wave function). One can then
write e.g.

(2.23) ∆q = (∂q/∂S0)(Ŝ0, E, α)∆S0 = (1/p)(q̂, E)∆S0 = −(1/p)(q̂, E)(�/2)∆α

(for intermediate values (Ŝ0, q̂)) leading to

THEOREM 2.1. With p determined uniquely by two “initial” conditions so
that ∆p is determined and q given via (2.18) we have from (2.23) the inequality
∆p∆q = O(�) which resembles the Heisenberg uncertainty relation.

COROLLARY 2.1. Similarly ∆t = (∂t/∂S0)(Ŝ0, E, α)∆S0 for some inter-
mediate value Ŝ0 and hence as before ∆E∆t = O(�) (∆E being precise).
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Note that there is no physical argument here; one is simply looking at the
number of conditions necessary to fix solutions of a differential equation. In fact
(based on some corresondence with E. Floyd) it seems somewhat difficult to pro-
duce a viable physical argument. We refer also to Remark 3.1.2 for additional
discussion.

REMARK 2.2.3. In order to get at the time dependent SE from the BFM
(Bertoldi-Faraggi-Matone) theory we proceed as follows. From the previous dis-
cussion on the KG equation one sees that (dropping the EM terms) in the time
independent case one has Scl(q, t) = Scl

0 (q)− Et

(2.24)

(1/2m)
∑D

1 (∂kScl
0 )2 + Wrel = 0; Wrel(q) = (1/2mc2)[m2c4 − (V (q)− E)2]

leading to a stationary RQHJE

(2.25) (1/2m)(∇S0)2 + Wrel − (�2/2m)(∆R/R) = 0; ∇ · (R2∇S0) = 0

This implies also the stationary KG equation

(2.26) −�2c2∆ψ + (m2c4 − V 2 + 2V E − E2)ψ = 0

Now in the time dependent case one can write (1/2m)ηµν∂µScl∂νScl + W′
rel = 0

where η ∼ diag(−1, 1, · · · , 1) and

(2.27) W
′
rel(q) = (1/2mc2)[m2c4 − V 2(q)− 2cV (q)∂0S

cl(q)]

with q ≡ (ct, q1, · · · , qD). Thus we have the same structure as (2.24) with Euclid-
ean metric replaced by a Minkowskian one. To implement the EP we have to
modify the classical equation by adding a function to be determined, namely
(1/2m)(∂S)2+Wrel+Q = 0 ((∂S)2 ∼

∑
(∂µS)2 etc.). Observe that since W′

rel de-
pends on Scl we have to make the identification Wrel = (1/2mc2)[m2c4−V 2(q)−
2cV (q)∂0S(q)] which differs from W′

rel since S now appears instead of Scl. Imple-
mentation of the EP requires that for an arbitrary Wa state

(2.28) W
b
rel(q

b) = (pb|pa)Wa
rel(q

a) + (qq; qb); Qb(qb) = (pb|pa)Qa(qa)− (qa; qb)

where now (pb|p) = ηµνpb
µpb

ν/ηµνpµpν = pT JηJT p/pT ηp and Jµ
ν = ∂qµ/∂(qb)ν .

This leads to the cocycle condition (qa; qc) = (pc|pb)[(qq; qb) − (qc; qb)] as before.
Now consider the identity

(2.29) α2(∂S)2 = �(Rexp(αS))/Rexp(αS)− (�R/R)− (α∂ · (R2∂S)/R2)

and if R satisfies the continuity equation ∂ · (R2∂S) = 0 one sets α = i/� to obtain

(2.30)
1

2m
(∂S)2 = − �2

2m

�(ReiS/�)
ReiS/� +

�2

2m

�R

R

Then it is shown that Wrel = (�2/2m)(�(Rexp(iS/�))/Rexp(iS/�) so Qrel =
−(�2/2m)(�R/R). Thus the RQHJE has the form (cf. (2.14) - (2.16))

(2.31)
1

2m
(∂S)2 + Wrel −

�2

2m

�R

R
= 0; ∂ · (R2∂S) = 0
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Now for the time dependent SE one takes the nonrelativistic limit of the
RQHJE. For the classical limit one makes the usual substitution S = S′ −mc2t
so as c →∞ Wrel → (1/2)mc2 + V and −(1/2m)(∂0S)2 → ∂tS

′ − (1/2)mc2 with
∂(R2∂S) = 0→ m∂t(R′)2 +∇ · ((R′)2∇S′) = 0. Therefore (removing the primes)
(2.31) becomes (1/2m)(∇S)2 + V + ∂tS − (�2/2m)(∆R/R) = 0 with the time
dependent nonrelativistic continuity equation being m∂tR

2 + ∇ · (R2∇S) = 0.
This leads then (for ψ ∼ Rexp(iS/�)) to the SE

(2.32) i�∂tψ =
(
− �2

2m
∆ + V

)
ψ

One sees from all this that the BFM theory is profoundly governed by the equiva-
lence principle and produces a usable framework for computation. It is surprising
that it has not attracted more adherents.

3. FIELD THEORY MODELS

In trying to imagine particle trajectories of a fractal nature or in a fractal
medium we are tempted to abandon (or rather relax) the particle idea and switch
to quantum fields (QF). Let the fields sense the bumps and fractality; if one can
think of fields as operator valued distributions for example then fractal supports for
example are quite reasonable. There are other reasons of course since the notion of
particle in quantum field theory (QFT) has a rather fuzzy nature anyway. Then
of course there are problems with QFT itself (cf. [973]) as well as arguments
that there is no first quantization (except perhaps in the Bohm theory - cf. [701,
1016]). We review here some aspects of particles arising from QF and QFT
methods, especially in a Bohmian spirit (cf. [77, 110, 256, 324, 325, 326, 454,
472, 478, 479, 480, 494, 532, 634, 701, 702, 703, 704, 705, 706, 707,
708, 709, 710, 711, 984]). We refer to [454, 973] for interesting philosophical
discussion about particles and localized objects in a QFT and will extract here
from [77, 256, 326, 703, 704]; for QFT we refer to [457, 912, 935, 1015].
Many details are omitted and standard QFT techniques are assumed to be known
and we will concentrate here on derivations of KG type equations and the nature
of the quantum potential (the Dirac equation will be treated later).

3.1. EMERGENCE OF PARTICLES. The papers [704] are impressive
in producing a local operator describing the particle density current for scalar and
spinor fields in an arbitrary gravitational and electromagnetic background. This
enables one to describe particles in a local, general covariant, and gauge invariant
manner. The current depends on the choice of a 2-point Wightman function and
a most natural choice based on the Green’s function à la Schwinger- deWitt leads
to local conservation of the current provided that interaction with quantum fields
is absent. Interactions lead to local nonconservation of current which describes
local particle production consistent with the usual global description based on the
interaction picture. The material is quite technical but we feel it is important
and will sketch some of the main points; the discussion should provide a good
exercise in field theoretic technique. The notation is indicated as we proceed and
we make no attempt to be consistent with other notation. Thus let gµν be a
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classical background metric, g the determinant, and R the curvature. The action
of a Hermitian scalar field φ can be written as

(3.1) S =
1
2

∫
d4x|g|1/2[gµν(∂µφ)(∂νφ)−m2φ2 − ξRφ2]

where ξ is a coupling constant. Writing this as S =
∫

d4x|g|1/2L the canonical
mommentum vector is πµ = [∂L/∂(∂µφ)] = ∂µφ (standard gµν). The correspond-
ing equation of motion is (∇µ∂µ + m2 + ξR)φ = 0 where ∇µ is the covariant
derivative. Let Σ be a spacelike Cauchy hypersurface with unit normal vector nµ;
the canonical momentum scalar is defined as π = nµπµ and the volume element on
Σ is dΣµ = d3x|g(3)|1/2nµ with scalar product (φ1, φ2) = i

∫
Σ

dΣµφ∗
1

←→
∂µφ2 where

a
←→
∂µb = a∂µg−(∂µa)b. If φi are solutions of the equation of motion then the scalar

product does not depend on Σ. One chooses coordinates (t, x) such that t = c on
Σ so that nµ = gµ

0 /
√

g00 and the canonical commutation relations become

(3.2) [φ(x), φ(x′)]Σ = [π(x), π(x′)]Σ = 0; [φ(x), π(x′)]Σ = |g(3)|−1/2iδ3(x− x′)

(here x, x′ lie on Σ). This can be written in a manifestly covariant form via

(3.3)
∫

Σ

dΣ
′µ[φ(x), ∂′

µφ(x′)]χ(x′) =
∫

Σ

dΣ
′µ[φ(x′), ∂µφ(x)]χ(x′) = iχ(x)

for an arbitrary test function χ. For practical reasons one writes ñµ = |g(3)|1/2nµ

where the tilde indicates that it is not a vector. Then ∇µñν = 0 and in fact
ñµ = (|g(3)|1/2/

√
g00, 0, 0, 0). It follows that dΣµ = d3xñµ while (2.11) can be

written as ñ0(x′)[φ(x), ∂′
0φ(x′)]Σ = iδ3(x− x′). Consequently

(3.4) [φ(x), π̃(x′)]Σ = iδ3(x− x′); π̃ = |g(3)|1/2π

Now choose a particular complete orthonormal set of solutions {fk(x)} of the
equation of motion satisfying therefore

(3.5) (fk, fk′) = −(f∗
k , f∗

k′) = δkk′ ; (f∗
k , fk′) = (fk, f∗

k′) = 0

One can then write φ(x) =
∑

k akfk(x) + a†
kf∗

k (x) from which we deduce that
ak = (fk, φ) and a†

k = −(f∗
k , φ) while [ak, a†

k′ ] = δkk′ and [ak, ak′ ] = [a†
k, a†

k′ ] =
0. The lowering and raising operators ak and a†

k induce the representation of
the field algebra in the usual manner and ak|0 >= 0. The number operator is
N =

∑
a†

kak and one defines a two point function W (x, x′) =
∑

fk(x)f∗
k (x′)

(different definitions appear later). Using the equation of motion one finds that
W is a Wightman function W (x, x′) =< 0|φ(x)φ(x′)|0 > and one has W ∗(x, x′) =
W (x′, x). Further, via the equation of motion, for fk, f∗

k one has

(3.6) (∇µ∂µ + m2 + ξR(x))W (x, x′) = 0 = (∇′µ∂′
µ + m2 + ξR(x′))W (x, x′)

From the form of W and the commutation relations there results also

(3.7) W (x, x′)|Σ = W (x′, x)|Σ; ∂0∂
′
0W (x, x′)|Σ = ∂0∂

′
0W (x′, x)|Σ;

ñ0∂′
0[W (x, x′)−W (x′, x)]Σ = iδ3(x− x′)
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The number operator given by N =
∑

a†
kak is a global quantity. However a new

way of looking into the concept of particles emerges when ak = (fk, φ), etc. is put
into N; using the scalar product along with the expression for W leads to

(3.8) N =
∫

Σ

dΣµ

∫
Σ

dΣ
′νW (x, s′)

←→
∂µ

←→
∂′

νφ(x)φ(x′)

By interchanging the names of the coordinates x, x′ and the names of the indices
µ ν this can be written as a sum of two equal terms

(3.9) N =
1
2

∫
Σ

dΣµ

∫
Σ

dΣ
′νW (x, x′)

←→
∂µ

←→
∂′

νφ(x)φ(x′)+

1
2

∫
Σ

dΣµ

∫
Σ

dΣ
′νW (x′, x)

←→
∂µ

←→
∂′

νφ(x′)φ(x)

Using also W ∗(x, x′) = W (x′, x) one sees that (3.9) can be written as N =∫
Σ

dΣµjµ(x) where

(3.10) jµ(x) = (1/2)
∫

Σ

dΣ
′ν{W (x, x′)

←→
∂µ

←→
∂′

νφ(x)φ(x′) + h.c.}

(where h.c. denotes hermitian conjugate). Evidently the vector jµ(x) should be
interpreted as the local current of particle density. This representation has three
advantages over N =

∑
a†

kak: (i) It avoids the use of ak, a†
k related to a particular

choice of modes fk(x). (ii) It is manifestly covariant. (iii) The local current jµ(x)
allows one to view the concept of particles in a local manner. If now one puts all
this together with the antisymmetry of

←→
∂µ we find

(3.11) jµ = i
∑
k,k′

f∗
k

←→
∂µfk′a†

kak′

From this we see that jµ is automatically normally ordered and has the property
jµ|0 >= 0 (not surprising since N =

∑
a†

kak is normally ordered). Further one
finds ∇µjµ = 0 (covariant conservation law) so the background gravitational field
does not produce particles provided that a unique vacuum defined by ak|0 >= 0 ex-
ists. This also implies global conservation since it provides that N =

∫
Σ

dΣµjµ(x)
does not depend on time. The extra terms in ∇µjµ = 0 originating from the fact
that ∇µ �= ∂µ are compensated by the extra terms in N =

∫
Σ

dΣµjµ that originate
from the fact that dΣµ is not written in “flat” coordinates. The choice of vacuum
is related to the choice of W (x, x′). Note that although jµ(x) is a local operator
some nonlocal features of the particle concept still remain because (3.10) involves
an integration over Σ on which x lies. Since φ(x′) satisfies the equation of motion
and W (x, x′) satisfies (3.6) this integral does not depend on Σ. However it does
depend on the choice of W (x, x′). Note also the separation between x and x′ in
(3.10) is spacelike which softens the nonlocal features because W (x, x′) decreases
rapidly with spacelike separation - in fact it is negligible when the space like sep-
aration is much larger than the Compton wavelength.

We pick this up now in [702]. Thus consider a scalar Hermitian field φ(x) in a
curved background satisfying the equation of motion and choose a particular com-
plete orthonormal set {fk(x)} having relations and scalar product as before. The
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field φ can be expanded as φ(x) = φ+(x) + φ−(x) where φ+(x) =
∑

akfk(x) and
φ−(x) =

∑
a†

kf∗
k (x). Introducing the two point function W+(x, x′) =

∑
fk(x)f∗

k (x′)
with W−(x, x′) =

∑
f∗

k (x)fk(x′) one finds the remarkable result that
(3.12)

φ+(x) = i

∫
Σ

dΣ
′νW+(x, x′)

←→
∂ ′

νφ(x′); φ−(x) = −i

∫
Σ

dΣ
′νW−(x, x′)

←→
∂ ′

νφ(x′)

We see that the extraction of φ±(x) from φ(x) is a nonlocal procedure. Note
however that the integrals in (3.12) do not depend on the choice of the timelike
Cauchy hypersurface Σ because W±(x, x′) satisfies the equation of motion with
respect to x′ just as φ(x′) does. However these integrals do depend on the choice
of W±(x, x′), i.e. on the choice of the set {fk(x)}. Now define normal ordering
in the usual way, putting φ− on the left, explicitly : φ+φ− := φ−φ+ while the
ordering of the combinations φ−φ+, φ+φ+, and φ−φ− leaves these combinations
unchanged. Generalize this now by introducing 4 different orderings N(±) and
A(±) defined via

(3.13) N+φ+φ− = φ−φ+; N−φ+φ− = −φ−φ+;

A+φ−φ+ = φ+φ−; A−φ−φ+ = −φ+φ−

Thus N+ is normal ordering, N− will be useful, and the antinormal orderings A±
can be used via symmetric orderings S+ = (1/2)[N+ + A+] and S− = (1/2)[N− +
A−]. When S+ acts on a bilinear combination of fields it acts as the default
ordering, i.e. S+φφ = φφ.

Now the particle current for scalar Hermitian fields can be written as (cf.
(3.10))
(3.14)

jµ(x) =
1
2

∫
Σ

dΣ
′ν
[
W+(x, x′)

←→
∂µ
←→
∂ ′

νφ(x)φ(x; ) + W−(x, x′)
←→
∂µ
←→
∂ ′

νφ(x′)φ(x)
]

(3.14) can be written in a local form as jµ(x) = (i/2)[φ(x)
←→
∂µφ+(x)+φ−(x)

←→
∂µφ(x)]

(via (3.12)). Using the identities φ+←→∂µφ+ = φ−←→∂µφ− this can be written in
the elegant form jµ = iφ−←→∂µφ+. Similarly using (3.13) this can be written in
another elegant form without explicit use of φ±, namely jµ = (i/2)N−φ

←→
∂µφ.

Note that the expression on the right here without the ordering N− vanishes
identically - this peculiar feature may explain why the particle current was not
previously discovered. The normal ordering N− provides that jµ|0 >= 0 which is
related to the fact that the total number of particles is N =

∫
Σ

dΣµjµ =
∑

a†
kak.

Alternatively one can choose the symmetric ordering S− and define the particle
current as jµ = (i/2)S−φ

←→
∂µφ. This leads to the total number of particles N =

(1/2)
∑

(a†
kak + aka†

k) =
∑

[a†
kak + (1/2)].

When the gravitational background is time dependent one can introduce a new
set of solutions uk(x) for each time t, such that the uk(x) are positive frequency
modes at that time. This leads to functions with an extra time dependence uk(x, t)
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that do not satisfy the equation of motion (cf. [704]). Define φ± as in (3.12) but
with the two point functions

(3.15) W+(x, x′) =
∑

uk(x, t)u∗
k(x′, t′); W−(x, x′) =

∑
u∗

k(x, t)uk(x′, t′)

As shown in [704] such a choice leads to a local description of particle creation
consistent with the conventional global description based on the Bogoliubov trans-
formation. Putting φ(x) =

∑
akfk(x) + a†

kf∗
k (x) in (3.12) with (3.15) yields

φ+(x) =
∑

Ak(t)uk(x, t) and φ−(x) =
∑

A†
k(t)u∗

k(x) where

(3.16) Ak(t) =
∑

α∗
kj(t)aj − β∗

kj(t)a
†
k; αjk = (fj , uk); βjk(t) = −(f∗

j , uk)

Putting these φ± in jµ = iφ−←−∂ φ+ one finds

(3.17) jµ(x) = i
∑
k,k′

A†
k(t)u∗

k(x, t)
←→
∂µAk′(t)uk′(x, t)

Note that because of the extra time dependence the fields φ± do not satisy the
equation of motion (∇µ∂µ + m2 + ξR)φ = 0 and hence the current (3.17) is not
conserved, i.e. ∇µjµ is a nonvanishing local scalar function describing the creation
of particles in a local and invariant manner as in [704]. In [702] there follows a
discussion about where and when particles are created with conclusion that this
happens at the spacetime points where the metric is time dependent. Hawking
radiation is then cited as an example. Generally the choice of the 2-point function
(3.15) depends on the choice of time coordinate. Therefore in general a natural
choice of the 2-point function (3.15) does not exist. In [704] an alternative choice
is introduced via W±(x, x′) = G±(x, x′) where G±(x, x′) is determined by the
Schwinger- deWitt function. As argued in [704] this choice seems to be the most
natural since the G± satisfy the equation of motion and hence the particle current
in which φ± are calculated by putting : φ+φ− := φ−φ+ in (3.12) is conserved;
this suggests that classical gravitational backgrounds do not create particles (see
below).

A complex scalar field φ(x) and its Hermitian conjugate φ† in an arbitrary
gravitational background can be expanded as

(3.18) φ = φP+ + φA−; φ† = φP− + φA+; φP+ =
∑

akfk(x);

φP− =
∑

a†
kf∗

k ; φA+ =
∑

bkfk(x); φA− =
∑

b†kf∗
k (x)

In a similar manner to the preceeding one finds also

(3.19)

φP+ = i
∫

dΣ
′νW+(x, x′)

←→
∂ ′

νφ(x′); φA+ = i
∫
Σ

dΣ
′νW+(x, x′)

←→
∂ ′

νφ†(x′);

φP− = −i

∫
Σ

dΣ
′νW−(x, x′)

←→
∂ ′

νφ†(x′); φA− = −i

∫
Σ

dΣ
′νW−(x, x′)

←→
∂ ′

νφ(x′)
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The particle current jP
µ (x) and the antiparticle current jA

µ (x) are then (cf. [704])
(3.20)

jP
µ (x) =

1
2

∫
Σ

dΣ
′ν
[
W+(x, x′)

←→
∂µ
←→
∂ ′

νφ†(x)φ(x′) + W−(x, x′)
←→
∂µ
←→
∂ ′

νφ†(x′)φ(x)
]
;

jA
µ (x) =

1
2

∫
Σ

dΣ
′ν
[
W+(x, x′)

←→
∂µ
←→
∂ ′

νφ(x)φ†(x′) + W−(x, x′)
←→
∂µ
←→
∂ ′

νφ(x′)φ†(x)
]

Consequently they can be written in a purely local form as

(3.21) jP
µ = iφP−←→∂µφP+ + jmix

µ ; jA
µ = iφA−←→∂µφA+ − jmix

µ ;

jmix
u =

i

2

[
φP−←→∂µφA− − φP+←→∂µφA+

]
The current of charge j−µ has the form j−µ = jP

µ − jA
µ which can be written as (cf.

[704]) j−µ =: iφ†←→∂µφ := i
2

[
φ†←→∂µφ− φ

←→
∂µφ†

]
. Using (3.13) this can also be written

as

(3.22) j−µ = N+iφ†←→∂µφ = (i/2)N+[φ†←→∂µφ− φ
←→
∂µφ†]

The current of total number of particles is now defined as j+
µ = jP

µ + jA
µ and it is

shown in [704] that j+
µ can be written as jµ = j1

µ + j2
µ where φ = (1/

√
2)(φ1 + iφ2)

(ji
µ are two currents of the form (3.14). Therefore using jµ = (i/2)N−φ

←→
∂µφ one

can write jµ as j+
µ = (i/2)N−[φ1

←→
∂µφ1 + φ2

←→
∂µφ2]. Finally one shows that this can

be written in a form analogous to (3.22) as j+
µ = (i/2)N−[φ†←→∂µφ + φ

←→
∂µφ†]. This

can be summarized by defining currents q±µ = (1/2)[φ†←→∂µφ ± φ
←→
∂µφ†] leading to

j±µ = Nµq±µ . The current q+
µ vanishes but N−q+

µ does not vanish. These results
can be easily generalized to the case where the field interacts with a backgound
EM field (as in [704]). The equations are essentially the same but the derivatives
∂µ are replaced by the corresponding gauge covariant derivatives and the particle
2-point functions WP± are not equal to the antiparticle 2-point functions WA±.
As in the gravitational case in the case of interaction with an EM background three
different choices for the 2-point functions exist and we refer to [704] for details.

REMARK 2.3.1 In a classical field theory the energy-momentum tensor
(EMT) of a real scalar field is

(3.23) Tµν = (∂µφ)(∂νφ)− (1/2)gµν [gαβ(∂αφ)(∂βφ)−m2φ2]

Contrary to the conventional idea of particles in QFT the EMT is a local quantity.
Therefore the relation between the definition of particles and that of EMT is not
clear in the conventional approach to QFT in curved spacetime. Here one can
exploit the local and covariant description of particles to find a clear relation
between particles and EMT. One has to choose some ordering of the operators in
(3.23) just as a choice of ordering is needed in order to define the particle current.
Although the choice is not obvious it seems natural that the choice for one quantity
should determine the choice for the other. Thus if the quantum EMT is defined
via : Tµν := N+Tµν then the particle current should be defined as N−iφ

←→
∂µφ.

The nonlocalities related to the extraction of φ+ and φ− from φ needed for the
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definitions of the normal orderings N+ and N− appear both in the EMT and in the
particle current. Similarly if W± is chosen as in W+(x, x′) =

∑
fk(x)f∗

k (x′) for
one quantity then it should be chosen in the same way for the other. The choices
as above lead to a consistent picture in which both the energy and the number of
particles vanish in the vacuum |0 > defined by ak|0 >= 0. Alternatively if W± is
chosen as in (3.15) for the definition of particles it should be chosen in the same way
for the definition of the EMT. Assume for simplicity that spacetime is flat at some
late time t. Then the normally ordered operator of the total number of particles
at t is N(t) =

∑
q A†

q(t)Aq(t) (cf. (3.16)) while the normally ordered operator of
energy is H(t) =

∑
q ωqA

†(t)Aq(t) (note here q ∼ q). Owing to the extra time
dependence it is clear that both the particle current and the EMT are not conserved
in this case. Thus it is clear that the produced energy exactly corresponds to
the produced particles. A similar analysis can be caried out for the particle-
antiparticle pair creation caused by a classical EM background. Since the energy
should be conserved this suggests that W± should not be chosen as in (3.15),
i.e. that classical backgrounds do not cause particle creation (see [702] for more
discussion). The main point in all this is that particle currents as developed above
can be written in a purely local form. The nonlocalities are hidden in the extraction
of φ± from φ. The formalism also reveals a relation between EM and particles
suggesting that it might not be consistent to use semiclassical methods to describe
particle creation; it also suggests that the vacuum energy might contribute to dark
matter that does not form structures, instead of contributing to the cosmological
constant.

3.2. BOSONIC BOHMIAN THEORY. We follow here [703] concern-
ing Bohmian particle trajectories in relativistic bosonic and fermionic QFT. First
we recall that there is no objection to a Bohmian type theory for QFT and no
contradiction to Bell’s theorems etc. (see e.g. [77, 126, 256, 326]). Without
discussing all the objections to such a theory we simply construct one following
Nikolic (cf. also [180, 453, 588] for related information). Thus consider first
particle trajectories in relativistic QM and posit a real scalar field φ(x) satisfy-
ing the Klein-Gordon equation in a Minkowski metric ηµν = diag(1,−1,−1,−1)
written as (∂2

0 − ∇2 + m2)φ = 0. Let ψ = φ+ with ψ∗ = φ− correspond
to positive and negative frequency parts of φ = φ+ + φ−. The particle cur-
rent is jµ = iψ∗←→∂µψ and N =

∫
d3xj0 is the positive definite number of parti-

cles (not the charge). This is most easily seen from the plane wave expansion
φ+(x) =

∫
d3ka(κ)exp(−ikx)/

√
(2π)32k0 since then N =

∫
d3ka†(κ)a(κ) (see

above and [702, 704] where it is shown that the particle current and the decom-
position φ = φ+ + φ− make sense even when a background gravitational field or
some other potential is present). One can write also j0 = i(φ−π+ − φ+π−) where
π = π+ + π− is the canonical momentum (cf. [471]). Alternatively φ may be
interpreted not as a field containg an arbitrary number of particles but rather as a
one particle wave function. Here we note that contrary to a field a wave function
is not an observable and so doing we normalize φ here so that N = 1. The current
jµ is conserved via ∂µjµ = 0 which implies that N =

∫
d3xj0 is also conserved,

i.e. dN/dt = 0. In the causal interpretation one postulates that the particle has
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the trajectory determined by dxµ/dτ = jµ/2mψ∗ψ. The affine parameter τ can
be eliminated by writing the trajectory equation as dx/dt = j(t,x)/j0(t,x) where
t = x0, x = (x1, x2, x3) and j = (j1, j2, j3). By writing ψ = Rexp(iS) where R, S)
are real one arrives at a Hamilton-Jacobi (HJ) form dxµ/dτ = −(1/m)∂muS and
the KG equation is equivalent to

(3.24) ∂µ(R2∂µS) = 0;
(∂µS)(∂µS)

2m
− m

2
+ Q = 0

Here Q = −(1/2m)(∂µ∂µR/R is the quantum potential. One has put here c =
� = 1 and reinserted we would have

(3.25)
(∂µS)(∂µS)

2m
− c2m

2
− �2

2m

∂µ∂µR

R
= 0

From the HJ form and (3.24) plus the identity d/dτ = (dxµ/dt)∂µ one arrives
at the equations of motion m(d2xµ/dτ2) = ∂µQ. A typical trajectory arising
from dx/dt = j/j0 could be imagined as an S shaped curve in the t − x plane
(with t horizontal) and cut with a vertical line through the middle of the S. The
velocity may be superluminal and may move backwards in time (at points where
j0 < 0). There is no paradox with backwards in time motion since it is physically
indistinguishable from a motion forwards with negative energy. One introduces a
physical number of particles via Nphys =

∫
d3x|j0|. Contrary to N =

∫
d3xj0 the

physical number of particles is not conserved. A pair of particles one with positive
and the other with negative energy may be created or annihilated; this resembles
the behavior of virtual particles in convential QFT.

Now go to relativistic QFT where in the Heisenberg picture the Hermitian
field operator φ̂(x) satisfies

(3.26) (∂2
0 −∇2 + m2)φ̂ = J(φ̂)

where J is a nonlinear function describing the interaction. In the Schrödinger
picture the time evolution is determined via the Schrödinger equation (SE) in the
form H[φ,−iδ/δφ]Ψ[φ, t] = i∂tΨ[φ, t] where Ψ is a functional with respect to φ(x)
and a function of t. A normalized solution of this can be expanded as Ψ[φ, t] =∑∞

−∞ Ψ̃n[φ, t] where the Ψ̃n are unnormalized n-particle wave functionals. Since
any (reasonable) φ(x) can be Fourier expanded one can write

(3.27) Ψ̃n[φ, t] =
∫

d3k1 · · · d3kncn(k(n), t)Ψn,k(n) [φ]

where k(n) = {k1, · · · ,kn}. These functionals in (3.27) constitute a complete
orthonormal basis which generalizes the basis of Hermite functions and they satisfy

(3.28)
∫
DφΨ∗

0[φ]φ(x1) · · ·φ(xn′)Ψn,k(n) [φ] = 0 (n �= n)

For free fields (i.e. when J = 0 in (3.26) one has

(3.29) cn(k(n), t) = cn(k(n))e−iωn(k(n))t; ωn = E0 +
n∑
1

√
k2

j + m2
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where E0 is the vacuum energy. In this case the quantities |cn(k(n), t)|2 do not
depend on time so the number of particles (corresponding to the quantized version
of N =

∫
d3xj0) is conserved. In a more general situation with interactions the

SE leads to a more complicated time depenedence of the coefficients cn and the
number of particles is not conserved. Now the n-particle wave function is

(3.30) ψn(x(n), t) =< 0|φ̂(t,x1) · · · φ̂(t,xn)|Ψ >

(the multiplication of the right side by (n!)−1/2 would lead to a normalized wave
function only if Ψ = Ψ̃n). The generalization of (3.30) to the interacting case is
not trivial because with an unstable vacuum it is not clear what is the analogue
of < 0|. Here the Schrödinger picture is more convenient where (3.30) becomes

(3.31) ψn(x(n), t) =
∫
DφΨ∗

0[φ]exp(−iφ0(t))φ(x1) · · ·φ(xn)Ψ[φ, t]

where φ0(t) = −E0t. For the interacting case one uses a different phase φ0(t)
defined via an expansion, namely

(3.32) Û(t)Ψ0[φ] = r0(t)exp(iφ0(t))Ψ0[φ] +
∞∑
1

· · ·

where r0(t) ≥ 0 and Û(t) = U(φ,−iδ/δφ, t] is the unitary time evolution operator.
One sees that even in the interacting case only the Ψ̃n part of Ψ contributes
to (3.31) so Ψ̃n can be called the n-particle wave functional. The wave function
(3.30) can also be generalized to a nonequaltime wave function ψn(x(n)) = S{xj} <

0|φ̂(x1) · · · φ̂(xn)|Ψ > (here S{xj} denotes symmetrization over all xj which is
needed because the field operators do not commute for nonequal times. For the
interacting case the nonequaltime wave function is defined as a generalization of
(3.30) with the replacements

(3.33) φ(xj) → Û†(tj)φ(xj)Û(tj); Ψ[φ, t] → Û†(t)Ψ[φ, t] = Ψ[φ];

e−iφ0(t) → e−iφ0(t1)Û(t1)

followed by symmetrization.

In the deBroglie-Bohm (dBB) interpretation the field φ(x) has a causal evo-
lution determined by

(3.34) (∂2
0 −∇2 + m2)φ(x) = J(φ(x))−

(
δQ[φ, t]
δφ(x)

)
φ(x)=φ(x)

;

Q = − 1
2|Ψ|

∫
d3x

δ2|Ψ|
δφ2(x)

where Q is the quantum potential again. However the n particles attributed to
the wave function ψn also have causal trajectories determined by a generalization
of dx/dt = j/j0 as

(3.35)
dxn,j

dt
=

(
ψ∗

n(x(n))
←→∇jψn(x(n))

ψ∗
n(x(n))

←→
∂tj

ψn(x(n))

)
t1=···=tn=t
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These n-particles have well defined trajectories even when the probability (in the
conventional interpretation of QFT) of the experimental detection is equal to zero.
In the dBB interpretation of QFT we can introduce a new causally evolving “ef-
fectivity” parameter en[φ, t] defined as

(3.36) en[φ, t] = |Ψ̃n[φ, t]|2/
∞∑
n′
|Ψ̃n′ [φ, t]|2

The evolution of this parameter is determined by the evolution of φ given via (3.34)
and by the solution Ψ =

∑
Ψ̃ of the SE. This parameter might be interpreted as

a probability that there are n particles in the system at time t if the field is equal
(but not measured!) to be φ(x) at that time. However in the dBB theory one
does not want a stochastic interpretation. Hence assume that en is an actual
property of the particles guided by the wave function ψn and call it the
effectivity of these n particles. This is a nonlocal hidden variable attributed
to the particles and it is introduced to provide a deterministic description of the
creation and destruction of particles. One postulates that the effective mass of a
particles guided by ψn is meff = enm and similarly for the energy, momentum,
charge, etc. This is achieved by postulating that the mass density is ρmass(x, t) =
m
∑∞

1 en

∑n
1 δ3(x − xn,j(t)) and similarly for other quantities. Thus if en = 0

such particles are ineffective, i.e. their effect is the same as if they didn’t exist
while if en = 1 they exist in the usual sense. However the trajectories are defined
even for the particles for which en = 0 and QFT is a theory of an infinite number
of particles although some of them may be ineffective (conventionally one would
say they are virtual). We will say more about this later.

3.3. FERMIONIC THEORY. This extraction from [701] (cf. also [325])
becomes even more technical but a sketch should be rewarding; there is more
detail and discussion in [701]. The Dirac equation in Minkowski space ηµν =
diag(1,−1,−1,−1) is iγµ∂µ −m)ψ(x) = 0 where x = (xi) = (t,x) with x ∈ R3

(cf. Section 2.1.1). A general solution can be written as ψ(x) = ψP (x) + ψA(x)
where the particle and antiparticle parts can be expanded as ψP =

∑
bkuk(x) and

ψA =
∑

d∗kvk(x). Here uk (resp. vk) are positive (resp. negative) frequency 4-
spinors that, together, form a complete orthonormal set of solutions to the Dirac
equation. The label k means (k, s) where s = ±1/2 is the spin label. Writing
ΩP (x, x′) =

∑
uk(x)u†

k(x′) and ΩA(x, x′) =
∑

vk(x)v†
k(x′) one can write

(3.37) ψP =
∫

d3x′ΩP (x, x′)ψ(x′); ψA(x) =
∫

d3x′ΩA(x, x′)ψ(x′)

where t = t′. The particle and antiparticle currents are jP
µ = ψ̄P γµψP and jA

µ =
ψ̄AγµψA where ψ̄ = ψ†γ0. Since ψP and ψA satisfy the Dirac equation the currents
jP
µ , jA

µ are separately conserved, i.e. ∂µjP
µ = ∂µjA

µ = 0. One postulates then
trajectories of the form

(3.38)
dxP

dt
=

jP (t,xP )
jP
0 (t,x)

;
dxA

dt
=

jA(t,xA)
jA
0 (t,xA)
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where j = (j1, j2, j3) for a causal interpretation of the Dirac equation. Now in
QFT the coefficients bk and d∗k become anticommuting operators with b̂†k and
d̂†k creating particles and antiparticles while b̂k and d̂k annihilate them. In the
Schrödinger picture the field opperators ψ̂(x) and ψ̂†(x) satisfy the commutation
relations {ψ̂a(x), ψ̂†

a′(x′)} = δaa′δ3(x − x′) while other commutators vanish (a is
the spinor index). These relations can be represented via

(3.39) ψ̂a(x) =
1√
2

[
ηa(x) +

δ

δη∗
a(x)

]
; ψ̂†

a(x) =
1√
2

[
η∗

a(x) +
δ

δηz(x)

]
where ηa, η∗

a are anticommuting Grassmann numbers satisfying {ηa(x), ηa′(x′)} =
{η∗

a(x), η∗
a′(x′)} = {ηa(x), η∗

a′(x′)} = 0. Next introduce a complete orthonormal
set of spinors uk(x) and vk(x) which are equal to the spinors uk(x) and vk(x) at
t = 0. An arbitrary quantum state may then be obtained by acting with creation
operators

(3.40) b†k =
∫

d3xψ̂†(x)uk(x); d̂†k =
∫

d3xv†k(x)ψ̂(x)

on the vacuum |0 >= |Ψ0 > represented by

(3.41) Ψ0[η, η†] = Nexp{
∫

d3x

∫
d3x′η†(x)Ω(x,x′)η(x′)}

Here Ω(x,x′) = (ΩA − ΩP )(x,x′), N is a constant such that < Ψ0|Ψ0 >= 1 and
the scalar product is < Ψ|Ψ >=

∫
D2ηΨ∗[η, η†Ψ′[η, η†]; also D2 = DηDη† and

Ψ∗ is dual (not simply the complex conjugate) to Ψ. The vacuum is chosen such
that b̂kΨ0 = d̂kΨ0 = 0. A functional Ψ[η, η†] can be expanded as Ψ[η, η†] =∑

cKΨK [η, η†] where the set {ψK} is a complete orthonormal set of Grassmann
valued functionals. This is chosen so that each ΨK is proportional to a functional
of the form b̂†k1

· · · b̂†knP
d̂†k′

1
· · · d̂†k′

nA

Ψ0 which means that each ΨK has a definite

number nP of particles and nA of antiparticles. Therefore one can write Ψ[η, η†] =∑∞
nP ,nA=0 Ψ̃nP ,nA

[η, η†] where the tilde denotes that these functionals, in contrast
to Ψ and ΨK , do not have unit norm. Time dependent states Ψ[η, η†, t] can be
expanded as

(3.42) Ψ[η, η†, t] =
∑
K

cK(t)ΨK [η, η†] =
∞∑

np,nA=0

Ψ̃nP ,nA
[η, η†, t]

The time dependence of the c-number coefficients cK(t) is governed by the func-
tional SE

(3.43) H[ψ̂, ψ̂†]Ψ[η, η†, t] = i∂tΨ[η, η†, t]

Since the Hamiltonian H is a Hermitian operator the norms < Ψ(t)|Ψ(t) >=∑
|cK(t)|2 do not depend on time. In particular if H is the free Hamiltonian

(i.e. the Hamiltonian that generates the second quantized free Dirac equation)
then the quantities |cK(t)| do not depend on time, which means that the average
number of particles and antiparticles does not change with time when there are
no interactions.
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Next introduce the wave function of nP particles and nA antiparticles via

(3.44) ψnP ,nA
≡ ψb1···bnP

d1···dnA
(x1, · · · ,xnP

,y1 · · · ,ynA
, t)

It has nP + nA spinor indices and for free fields the (unnormalized) wave function
can be calculated using the Heisenberg picture as

(3.45) ψnP ,nA
=< 0|ψ̂P

b1(t,x1) · · · ψ̂A†
dnA

(t,ynA
)|Ψ >

where ψ̂P and ψ̂A are extracted from ψ̂ using (3.37). In the general interacting
case the wave function can be calculated using the Schrödinger picture as

(3.46) ψnP ,nA
=
∫
D2ηΨ∗

0[η, η†]e−iφ0(t)ψ̂P
b1(x1) · · · ψ̂A†

dnA
(ynA

)Ψ[η, η†, t]

Here the phase φ0(t) is defined by an expansion as in (3.42), namely

(3.47) Û(t)Ψ0[η, η†] = r0(t)exp(iφ0(t))Ψ0[η, η†] +
∑

(nP ,nA)�=(0,0)

· · ·

where r0(t) ≥ 0 and Û(t) = U [ψ̂, ψ̂†, t] is the unitary time evolution operator that
satisfies the SE (3.43). The current attributed to the ith corpuscle (particle or
antiparticle) in the wave function ψnP ,nA

is jµ(i) = ψ̄nP ,nA
γµ(i)ψnP ,nA

where one
writes

(3.48) ψ̄Γiψ = ψ̄a1···ai···an
(Γ)aia′

i
ψa1···a′

i···an
;

ψ̄a1···an
= ψ∗

a′
1···a′

n
(γ0)a′

1a1 · · · (γ0)a′
nan

Hence the trajectory of the ith corpuscle guided by the wave function ψnP ,nA
is

given by the generalization of (3.38), namely dxi/dt = ji/j0(i).

We now need a causal interpretation of the processes of creation and destruc-
tion of particles and antiparticles. For bosonic fields this was achieved by intro-
ducing the effectivity parameter in Section 1.3.2 but this cannot be done for the
Grassmann fields η, η† because Ψ∗[η, η†, t]Ψ[η, η†, t] is Grassmann valued and can-
not be interpreted as a probability density. Hence another formulation of fermionic
states is developed here, more similar to the bosonic states. First the notion of the
scalar product can be generalized in such a way that it may be Grassmann valued
which allows one to write Ψ[η, η†, t] =< η, η†|Ψ(t) > and 1 =

∫
D2η|η, η† >< η, η†|

(cf. [457]). We can also introduce

(3.49) < φ, φ†|η, η† >=
∑
K

< φ, φ†|ΨK >< ΨK |η, η† >=
∑
K

ΨK [φ, φ†]Ψ∗
K [η, η†]

so one sees that the sets {ΨK [η, η†]} and {ΨK [φ, φ†]} are two representations of the
same orthonormal basis {|ΨK >} for the same Hilbert space of fermionic states.
In other words the state |Ψ(t) > can be represented as Ψ[φ, φ†, t] =< φ, φ†|Ψ(t) >
which can be expanded as

(3.50) Ψ[φ, φ†, t] =
∑
K

cK(t)ΨK [φ, φ†] =
∞∑

nP ,nA=0

ψ̃nP ,nA
[φ, φ†, t]
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Putting the unit operator 1 =
∫
D2φ|φ, φ† >< φ, φ†| in the expression for <

Ψ(t),Ψ(t) > we see that the time independent norm can be written as

(3.51) < Ψ(t)|Ψ(t) >=
∫
D2φΨ∗[φ, φ†, t)]Ψ[φ, φ†, t]

Therefore the quantity ρ[φ, φ†, t] = Ψ∗[φ, φ†, t]Ψ[φ, φ†, t] can be interpreted as a
positive definite probability density for spinors φ, φ† to have space dependence
φ(x) and φ†(x) respectively at time t. The SE (3.43) can also be written in the
φ-representation as ĤφΨ[φ, φ†, t] = i∂tΨ[φ, φ†, t] where the Hamiltonian Ĥφ is
defined by its action on wave functionals Ψ[φ, φ†, t] determined via
(3.52)

Ĥφ[φ, φ†, t] =
∫
D2η

∫
D2φ′ < φ, φ†|η, η† > Ĥ < η, η†|φ′, φ

′† > Ψ[φ′, φ
′†, t]

where Ĥ = H[ψ̂, ψ̂†] is the Hamiltonian of (3.43).

One can now obtain a causal interpretation of a quantum system described
by a c-number valued wave function satisfying a SE. The material is written for
an n-dimensional vector �φ but in a form that generalizes to infinite dimensions.
The wave function ψ(�φ, t) satisfies the SE Ĥψ = i∂tψ where Ĥ is an arbitrary
Hermitian Hamiltonian written in the �φ representation. The quantity ρ = ψ∗ψ is
the probability density for the variables �φ and the average velocity is

(3.53) d < �φ > (t)/dt =
∫

dnφρ(�φ, t)�u(�φ, t); �u = iψ∗[Ĥ, �φ]ψ/ψ∗ψ

Introduce a source J via J = (∂ρ/∂t)+�∇(ρ�u) (note e.g. for the example of (3.52) J
does not vanish even though it frequently will vanish). One wants to find a quantity
�v(�φ, t) that has the property (3.53) in the form d < �φ > (t)/dt =

∫
dnφρ(�φ, t)�v(�φ, t)

but at the same time satisfies the equivariance property ∂tρ+�∇(ρ�v) = 0. These two
properties allow one to postulate a consistent causal interpretation of QM in which
�φ has definite values at each time t determined via d�φ/dt = �v(�φ, t). In particular
the equivariance provides that the statistical distribution of the variables �φ is given
by ρ for any time t provided that it is given by ρ for some initial time t0. When
J = 0 then �v = �u which corresponds to the dBB interpretation. The aim now is to
generalize this to the general case of �v in the form �v = �u+ρ−1�E where �E(�φ, t) is the
quantity to be determined. From ∂tρ+ �∇(ρ�v) = 0 we see that �E must be a solution
of the equation �∇�E = −J . Now let �E be some particular solution of this equation;
then �E(�φ, t) = �e(t) + �E(�φ, t) is also a solution for an arbitrary �φ independent
function �e(t). Comparing with (3.53) one sees that

∫
dnφ�E = 0 is required. This

fixes the function �e to be �e(t) = −V −1
∫

dnφ�E(�φ, t) where V =
∫

dnφ. Thus it
remains to choose �E and in [703] one takes �E such that �E = 0 when J = 0
so that �E = 0 when J = 0 as well; thus �v = �u when J = 0. There is still
some arbitrariness in �E so take �E = �∇Φ where �∇2Φ = −J , which is solved via
Φ(�φ, t)

∫
dnφ′G(�φ, �φ′)J(�φ′, t), so that �∇2G(�φ, �φ′) = −δn(�φ− �φ′). The solution can

be expressed as a Fourier transform G(�φ, �φ′) =
∫

(dnk/(2π)n)exp[i�k(�φ − �φ′)]/�k2.
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To eleminate the factor 1/(2π)n one uses a new integration variable �χ = �k/2π and
we obtain

(3.54) Φ(�φ, t) =
∫

dnχ

∫
dnφ′[exp(2iπ�χ(�φ− �φ′)]J(�φ′, t)/(2π)2�χ2]

Now for a causal interpretation of fermionic QFT one writes first for simplicity
A[x] for functionals of the form A[φ, φ†, t,x] and introduces

(3.55) ua[x] = i
Ψ∗[Ĥφ, φa(x)]Ψ

Ψ∗Ψ
; u∗

a[x] = i
Ψ∗[Ĥφ, φ∗

a(x)]Ψ
Ψ∗Ψ

where Ψ = Ψ[φ, φ†, t]. Next introduce the source

(3.56) J =
∂ρ

∂t
+
∑

a

∫
d3x

[
δ(ρua[x])
δφz(x)

+
δ(ρu∗

a[x])
δφ∗

a(x)

]
where ρ = Ψ∗Ψ. Introduce now the notation α · β =

∑
a

∫
d3x[αa(x)βa(x) +

α∗
a(x)β∗

a(x)] and (3.51) generalizes to

(3.57) Φ[φ, φ†, t] =
∫
D2χ

∫
D2φ′ e

2πiχ·(φ−φ′)

(2π)2χ · χ J [φ′, φ
′†, t]

Then write for V =
∫
D2φ

(3.58) Ea[x] =
δΦ

δφa(x)
; E∗

a [x] =
δΦ

δφ∗
a(x)

;

ea(t,x) = −V −1

∫
D2φEa[φ, φ†, t,x]; e∗a(t,x) = −V −1

∫
D2φE∗

a[φ, φ†, t,x]

The corresponding velocities are then

(3.59)
va[x] = ua[x] + ρ−1(ea(t,x) + Ea[x]); v∗

a[x] = u∗
a[x] + ρ−1(e∗a(t,x) + E∗

a [x])

Next introduce hidden variables φ(t,x) and φ†(t,x) with causal evolution given
then by

(3.60)
∂φa(t,x)

∂t
= va[φ, φ†, t,x];

∂φ∗
a(t,x)
∂t

= v∗
a[φ, φ†, t,x]

where it is understood that the right sides are calculated at φ(x) = φ(t,x) etc. In
analogy with the bosonic fields treated earlier one introduces effectivity parameters
guided by the wave function ψnP ,nA

given by

(3.61) enP ,nA
[φ, φ†, t] =

|Ψ̃nP ,nA
[φ, φ†, t]|2∑

n′
P ,n′

A
|Ψ̃n′

P ,n′
A
[φ, φ†, t]|2

REMARK 2.3.2. Concerning the nature of the effectivity parameter we
extract from [701] as follows. In the bosonic theory the analogue of (3.61) is

(3.62) en[{φ}, t] =
|Ψ̃n[{φ}], t|2∑
n′ |Ψ̃n′ [{φ}], t|2

{φ} = {φ1, · · · , φNs
} where Ns is the number of different particle species. Now

the measured effectivity can be any number between 0 and 1 and this is no con-
tradiction since if different Ψ̃n in the expansion do not overlap in the φ space
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then they represent a set of nonoverlapping “channels” for the causally evolving
field φ. The field necessarily enters one and only one of the channels and one sees
that en = 1 for the nonempty channel with en′ = 0 for all empty channels. The
effect is the same as if the wave functional Ψ “collapsed” into one of the states
ψ̃n with a definite number of particles. In a more general situation different Ψ̃n of
the measured particles may overlap. However the general theory of ideal quantum
measurements (cf. [126]) provides that the total wave functional can be written
again as a sum of nonoverlappiing wave functionals in the {φ} space, where one
of the fields represents the measured field, while the others represent fields of the
measuring apparatus. Thus only one of the Ψ̃ in (3.62) becomes nonempty with
the corresponding en = 1 while all the other en′ = 0. The essential point is that
from the point of view of an observer who does not know the actual field configura-
tion the probability for such an effective collapse of the wave functional is exactly
equal to the usual quantum mechanical probability for such a collapse. Hence the
theory has the same statistical properties as the usual theory. In the case when
all the effectivities are less than 1 (i.e. the wave functional has not collapsed) the
theory does not agree nor disagree with standard theory; effectivity is a hidden
variable. This agrees with the Bohmian particle positions which agree with the
standard quantum theory only when the wave function effectively collapses into a
state with a definite particle position. Similar comments apply to the fermionic
picture. In an ideal experiment in which the number of particles is measured, dif-
ferent ΨnP ,nA

do not overlap in the (φ, φ†) space and the fields φ, φ† necessarily
enter into a unique “channel” Ψ̃nP ,nA

, etc.

REMARK 2.3.3. In [711] one addresses the question of statistical trans-
parency. Thus the probabilitistic interpretation of the nonrelativistic SE does not
work for the relativistic KG equation (∂µ∂µ + m2)ψ = 0 (where x = (x, t) and
� = c = 1) since |ψ|2 does not correspond to a probability density. There is a
conserved current jµ = iψ∗←→∂µψ (where a

←→
∂µb = a∂µb− b∂µa) but the time com-

ponent j0 is not positive definite. In [701, 703] the equations that determine the
Bohmain trajectories of relativistic quantum particles described by many particle
wave functions were written in a form requiring a preferred time coordinate. How-
ever a preferred Lorentz frame is not necessare (cf. [105]) and this is developed
in [711] following [105, 703]. First note that as in [105, 703] it appears that
particles may be superluminal and the principle of Lorentz covariance does not
forbid superluminal velocities and conversly superluminal velocities do not lead
to causal paradoxes (cf. [105, 711]). As noted in [105] the Lorentz-covariant
Bohmian interprtation of the many particle KG equation is not statistically trans-
parent. This means that the statistical distribution of particle positions cannot be
calculated in a simple way from the wave function alone without the knowledge
of particle trajetories. One knows that classcal QM is statistically transparent of
course and this perhaps helps to explain why Bohmian mechanics has not attracted
more attention. However statistical transparency (ST) may not be a fundamental
property of nature as the following facts suggest:

• Classical mechanics, relativistic or nonrelativistic, is not ST.
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• Relativistic QM based on the KG equation (or some of its generalizations)
is not ST.

• The relativistic Dirac equation is ST but its many particle relativistic
generalization is not (unless a preferred time coordinate is determined in
an as yet unknown dynamical manner).

• Nonrelativistic QM is ST but not completely so since it distinguishes the
time variable (e.g. ρ(x1, x2, t) is not a probability density).

• The background independent quantum gravity based on the Wheeler-
DeWitt (WDW) equation lacks the notion of time and is not ST.

The upshot is that since statistical probabilities can be calculated via Bohmian
trajectories that theory is more powerful than other interpretations of general QM
(see [711] for discussion on this). Now let φ̂(x) be a scalar field operator satisfying
the KG equation (an Hermitian uncharged field for simplicity so that negative
values of the time component of the current cannot be interpreted as negatively
charged particles). The corresponding n-particle wave function is (cf. [703])

(3.63) ψ(x1, · · · , xn) = (n!)−1/2S{xa} < 0|φ̂(x1) · · · φ̂(xn)|n >

Here S{xa} (a = 1, · · · , n) denotes the symmetrization over all xa which is needed
because the field operators do not commute for nonequal times. The wave function
ψ satisfies n KG equations

(3.64) (∂µ
a ∂aµ + m2)ψ(x1, · · · , xn) = 0

Although the operator φ̂ is Hermitian the nondiagonal matrix element ψ defined
by (3.63) is complex and one can introduce n real 4-currrents jµ

a = iψ∗←→∂µ
aψ each

of which is separately conserved via ∂µ
a jaµ = 0. Equation (3.64) also implies

(3.65)

(∑
a

∂µ
a ∂aµ + nm2

)
ψ(x1, · · · , xn) = 0

and the separate conservation equations imply that
∑

a ∂µ
a jaµ = 0. Now write

ψ = Rexp(iS) with R and S real. Then (3.65) is equivalent to a set of two
equations
(3.66)∑

a

∂µ
a (2∂aµS) = 0; −

∑
a(∂µ

a S)(∂aµS)
2m

+
nm

2
+ Q = 0; Q =

1
2m

∑
a ∂µ

a ∂aµR

2mR

where Q is the quantum potential. The first equation is equivalent to a current
conservation equation while the second is the quantum analogue of the relativistic
HJ equation for n particles. The Bohmian interpretation consistists in postulat-
ing the existence of particle trajectories xµ

a(s) satisfying dxµ
a/ds = −(1/m)∂µ

a s
where s is an affine parameter along the n curves in the 4-dimensional Minkowski
space. This equation has a form identical to the corresponding classical rela-
tivistic equation and can also be written as dxµ

a/ds = jµ
a /2mψ∗ψ. Hence using

d/ds =
∑

a(dxµ
z /ds)∂aµ one finds the equations of motion

(3.67) m
d2xµ

a

ds2
= ∂µ

a Q
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Note that the equations above for the particle trajectories are nonlocal but still
Lorentz covariant. The Lorentz covariance is a consequence of the fact that the
trajectories in spacetime do not depend on the choice of affine parameter s (cf.
[105]). Instead, by choosing n “initial” spacetime positions xa, the n trajectories
are uniquely determined by the vector fields jµ

a or −∂µ
a S (i.e. the trajectories are

integral curves of these vector fields). The nonlocality is encoded in the fact that
the right hand side of (3.67) depends not only on xa but also on all the other
xa′ . This is a consequence of the fact that Q(x1, · · · , xn) in (3.66) is not of the
form

∑
a Qa(x1, · · · , xn), which in turn is related to the fact that S(x1, · · · , xn)

is not of the form
∑

a S(xa). Note also that the fact that we parametrize all
trajectories with the same parameter s is not directly related to the nonlocality,
because such a parametrization can be used even in local classical physics. When
the interactions are local then one can even use another parameter sa for each
curve but when the interactions are not local one must use a single parameter s;
new separate parameters could only be used after the equations are solved. In the
nonrelativistic limit all wave function frequencies are (approximately) equal to m so
from jµ

a ψ∗←→∂µ
aψ all time components are equal and given by j0

a = 2mψ∗ψ = ρ̃ which
does not depend on a. Writing then ρ(x1, · · · ,xn) = ρ̃(x1, · · · , xn)|t1=···=tn=t

one obtains ∂tρ +
∑

a ∂i
ajai = 0 and this implies that ρ can be interpreted as a

probability density. In the full relativistic there is generally no analogue of such a
function ρ. We refer to [711] for more discussion.

4. DeDONDER, WEYL, AND BOHM

We go here to a fascinating paper [708] which gives a manifestly covariant
canonical method of field quantization based on the classical DeDonder-Weyl (DW)
formulation of field theory (cf. also Appendix A for some background on DW
theory following [586]). The Bohmian formulation is not postulated for intepre-
tational purposes here but derived from purely technical requirements, namely
covariance and consistency with standard QM. It arises automatically as a part of
the formalism without which the theory cannot be formulated consistently. This
together with the results of [701, 711] suggest that it is Bohmian mechanics that
might be the missing bridge between QM and relativity; further (as will be seen
later) it should play an important role in cosmology. The classical covariant canon-
ical DeDonder-Weyl formalism is given first following [586] and for simplicity one
real scalar field in Minkowski spacetime is used. Thus let φ(x) be a real scalar
field described by

(4.1) A =
∫

d4xL; L =
1
2
(∂µφ)(∂µφ)− V (φ)

As usual one has

(4.2) πµ =
∂L

∂(∂µφ)
= ∂µφ; ∂µφ =

∂H

∂πµ
; ∂µπµ = −∂H

∂φ

where the scalar DeDonder-Weyl (DDW) Hamilonian (not related to the energy
density) is given by the Legendre transform H(πµ, φ) = πµ∂µφ−L = (1/2)πµπµ +
V . The equations (4.2) are equivalent to the standard Euler-Lagrange (EL) equa-
tions and by introducing the local vector Sµ(φ(x), x) the dynamics can also be

4. WEYL, AND BOHMD DONDER,e
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described by the covariant DDW HJ equation and equations of motion

(4.3) H

(
∂Sα

∂φ
, φ

)
+ ∂µSµ = 0; ∂µφ = πµ =

∂Sµ

∂φ

Note here ∂µ is the partial derivative acting only on the second argument of
Sµ(φ(x), x); the corresonding total derivative is dµ = ∂µ + (∂µφ)(∂/∂φ). Note
that the first equation in (4.3) is a single equation for four quantities Sµ so there
is a lot of freedom in finding solutions. Nevertheless the theory is equivalent to
other formulations of classical field theory. Now following [533] one considers the
relation between the covariant HJ equation and the conventional HJ equation; the
latter can be derived from the former as follows. Using (4.2), (4.3) takes the form
(1/2)∂φSµ∂φSµ +V +∂µSµ = 0. Then using the equation of motion in (4.3) write
the first term as

(4.4)
1
2

∂Sµ

∂φ

∂Sµ

∂φ
=

1
2

∂S0

∂φ

∂S0

∂φ
+

1
2
(∂iφ)(∂iφ)

Similarly using (4.3) the last term is ∂µSµ = ∂0S
0 +diS

i− (∂iφ)(∂iφ). Now intro-
duce the quantity S =

∫
d3xS0 so [∂S0(φ(x), x)/∂φ(x)] = [δS([φ(x, t)], t)/δφ(x, t)]

where δ/δφ(x, t) ≡ [δ/δφ(x)]φ(x)=φ(x,t) is the space functional derivative. Putting
this together gives then

(4.5)
∫

d3x

[
1
2

(
δS

δφ(x, t)

)2

+
1
2
(∇φ)2 + V (φ)

]
+ ∂tS = 0

which is the standard noncovariant HJ equation. The time evolution of φ(x, t) is
given by ∂tφ(x, t) = δS/δφ(x, t) which arises from the time component of (4.3).
Note that in deriving (4.5) it was necessary to use the space part of the equations
of motion (4.3) (this does not play an important role in classical physics but is
important here). Now for the Bohmian formulation look at the SE ĤΨ = i�∂tΨ
where we write

(4.6) Ĥ =
∫

d3x

[
−�2

2

(
δ

δφ(x)

)2

+
1
2
(∇φ)2 + V (φ)

]
;

Ψ([φ(x)], t) = R([φ(x)], t)eiS(([φ(x)],t)/�

Then the complex SE equation is equivalent to two real equations

(4.7)
∫

d3x

[
1
2

(
δS

δφ(x)

)2

+
1
2
(∇φ)2 + V (φ) + Q

]
+ ∂tS = 0;

∫
d3x

[
δR

δφ(x)
δS

δφ(x)
+ J

]
+ ∂tR = 0; Q = − �2

2R

δ2R

δφ2(x)
; J =

R

2
δ2S

δφ2(x)
The second equation is also equivalent to

(4.8) ∂tR
2 +

∫
d3x

δ

δφ(x)

(
R

2 δS

δφ(x)

)
= 0

and this exhibits the unitarity of the theory because it provides that the norm∫
[dφ(x)]2Ψ∗Ψ =

∫
[dφ(x)]R2 does not depend on time. The quantity R2([φ(x)], t)

represents the probability density for fields to have the configuration φ(x) at time t.
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One can take (4.7) as the starting point for quantization of fields (note exp(iS/�)
should be single valued). Equations (4.7) and (4.8) suggest a Bohmian interpre-
tation with deterministic time evolution given via ∂tφ. Remarkably the statisti-
cal predictions of this deterministic interpretation are equivalent to those of the
conventional interpretation. All quantum uncertainties are a consequence of the
ignorance of the actual initial field configuration φ(x, t0). The main reason for the
consistency of this interpretation is the fact that (4.8) with ∂tφ as above represents

of field configurations φ(x) is given by the quantum distribution ρ = R2 at any
time t, provided that ρ is given by R2 at some initial time. The initial distribu-
tion is arbitrary in principle but a quantum H theorem explains why the quantum
distribution is the most probable (cf. [954]). Comparing (4.7) with (4.5) we see
that the quantum field satisfies an equation similar to the classical one, with the
addition of a term resulting from the nonlocal quantum potential Q. The quantum
equation of motion then turns out to be

(4.9) ∂µ∂µφ +
∂V (φ)

∂φ
+

δQ

δφ(x; t)
= 0

where Q =
∫

d3xQ. A priori perhaps the main unattractive feature of the Bohmian
formulation appears to be the lack of covariance, i.e. a preferred Lorentz frame is
needed and this can be remedied with the DDW presentation to follow.

Thus one wants a quantum substitute for the classical covariant DDW HJ
equation (1/2)∂φSµ∂φSµ + V + ∂µSµ = 0. Define then the derivative

(4.10)
dA([φ], x)

dφ(x)
=
∫

d4x′ δA([φ], x′)
δφ(x)

where δ/δφ(x) is the spacetime functional derivative (not the space functional
derivative used before in (4.5)). In particular if A([φ], x) is a local functional, i.e.
if A([φ], x) = A(φ(x), x) then

(4.11)
dA(φ(x), x)

dφ(x)
=
∫

d4x′ δA(φ(x′), x′)
δφ(x)

=
∂A(φ(x), x)

∂φ(x)

Thus d/dφ is a generalization of ∂/∂φ such that its action on nonlocal functionals
is also well defined. An example of interest is a functional nonlocal in space but
local in time so that

(4.12)
δA([φ], x′)

δφ(x)
=

δA([φ], x′)
δφ(x), x0)

δ((x′)0 − x0) ⇒

⇒ dA([φ], x)
dφ(x)

=
δ

δφ(x, x0)

∫
d3x′A([φ],x′, x0)

Now the first equation in (4.3) and the equations of motion become

(4.13)
1
2

dSµ

dφ

dSµ

dφ
+ V + ∂µSµ = 0; ∂µφ =

dSµ

dφ

which is appropriate for the quantum modification. Next one proposes a method of
quantization that combines the classical covariant canonical DDW formalism with
the standard specetime asymmetric canonical quantization of fields. The starting

the continuity equation which provides that the statistical distribution ρ([φ(x)], t)

D DONDER,e
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point is the relation between the noncovariant classical HJ equation (4.5) and its
quantum analogue (4.7). Suppressing the time dependence of the field in (4.5) we
see that they differ only in the existence of the Q term in the quantum case. This
suggests the following quantum analogue of the classical covariant equation (4.13)

(4.14)
1
2

dSµ

dφ

dSµ

dφ
+ V + Q + ∂µSµ = 0

Here Sµ = Sµ([φ], x) is a functional of φ(x) so Sµ at x may depend on the field
φ(x′) at all points x′. One can also allow for time nonlocalities (cf. [711]). Thus
(4.15) is manifestly covariant provided that Q given by (4.7) can be written in a
covariant form. The quantum equation (4.14) must be consistent with the conven-
tional quantum equation (4.7); indeed by using a similar procedure to that used
in showing that (4.3) implies (4.5) one can show that (4.14) implies (4.7) provided
that some additional conditions are fulfilled. First S0 must be local in time so that
(4.12) can be used. Second Si must be completely local so that dSi/dφ = ∂Si/∂φ,
which implies

(4.15) diS
i = ∂iS

i + (∂iφ)
dSi

dφ

However just as in the classical case in this procedure it is necessary to use the
space part of the equations of motion (4.3). Therefore these classical equations of
motion must be valid even in the quantum case. Since we want a covariant theory
in which space and time play equal roles the validity of the space part of the (4.3)
implies that its time part should also be valid. Consequently in the covariant
quantum theory based on the DDW formalism one must require the validity of
the second equation in (4.13). This requirement is nothing but a covariant version
of the Bohmian equation of motion written for an arbitrarily nonlocal Sµ (this
clarifies and generalizes results in [533]). The next step is to find a covariant
substitute for the second equation in (4.7). One introduces a vector Rµ([φ], x)
which will generate a preferred foliation of spacetime such that the vector Rµ is
normal to the leaves of the foliation. Then define

(4.16) R([φ],Σ) =
∫

Σ

dΣµRµ; S([φ], x) =
∫

Σ

dΣµSµ

where Σ is a leaf (a 3-dimensional hypersurface) generated by Rµ. Hence the
covariant version of Ψ = Rexp(iS) is Ψ([φ],Σ) = R([φ],Σ)exp(iS([φ],Σ)/�). For
Rµ one postulates the equation

(4.17)
dRµ

dφ

dSµ

dφ
+ J + ∂µRµ = 0

In this way a preferred foliation emerges dynamically as a foliation generated by
the solution Rµ of the equations (4.17) and (4.14). Note that Rµ does not play any
role in classical physics so the existence of a preferred foliation is a purely quantum
effect. Now the relation between (4.17) and (4.7) is obtained by assuming that
nature has chosen a solution of the form Rµ = (R0, 0, 0, 0) where R0 is local in
time. Then integrating (4.17) over d3x and assuming again that S0 is local in time
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one obtains (4.7). Thus (4.17) is a covariant substitute for the second equation in
(4.7). It remains to write covariant versions for Q and J and these are

(4.18) Q = − �2

2R

δ2R

δΣφ2(x)
; J =

R

2
δ2S

δΣφ2(x)

where δ/δΣφ(x) is a version of the space functional derivative in which Σ is gen-
erated by Rµ. Thus (4.17) and (4.14) with (4.18) represent a covariant substitute
for the functional SE equivalent to (4.8). The covariant Bohmain equations (4.13)
imply a covariant version of (4.9), namely

(4.19) ∂µ∂µφ +
∂V

∂φ
+

dQ

dφ
= 0

Since the last term can also be written as δ(
∫

d4xQ)/δφ(x) the equation of motion
(4.19) can be obtained by varying the quantum action

(4.20) AQ =
∫

d4xLQ =
∫

d4x(L−Q)

Thus in summary the covariant canonical quantization of fields is given by equa-
tions (4.13), (4.14), (4.17), and (4.18). The conventional functional SE corresponds
to a special class of solutions for which Ri = 0, Si are local, while R0 and S0 are
local in time. In [708] a multifield generalization is also spelled out, a toy model
is considered, and applications to quantum gravity are treated. The main result
is that a manifestly covariant method of field quantization based on the DDW
formalism is developed which treats space and time on an equal footing. Un-
like the conventional canonical quantization it is not formulated in terms of a
single complex SE but in terms of two coupled real equations. The need for a
Bohmian formulation emerges from the requirement that the covariant method
should be consistent with the conventional noncovariant method. This suggests
that Bohmian mechanics (BM) might be a part of the formalism without which
the covariant quantum theory cannot be formulated consistently.

5. QFT AND STOCHASTIC JUMPS

The most extensive treatment of Bohmian theory is due to a group based in
Germany, Italy, and the USA consisting of V. Allori, A. Barut, K. Berndl, M.
Daumer, D. Dürr, H. Georgi, S. Goldstein, J. Lebowitz, S. Teufel, R. Tumulka,
and N. Zanghi (cf. [1, 26, 88, 102, 103, 104, 105, 288, 324, 325, 326, 327,
328, 329, 330, 414, 415, 437, 417, 418, 415, 416, 417, 418, 419, 927, 928,
948]). There is also of course the pioneering work of deBroglie and Bohm (see
e.g. [154, 126, 127, 128, 129, 154]) as well as important work of many other
people (cf. [68, 94, 95, 110, 138, 148, 164, 165, 166, 186, 187, 188, 189,
191, 197, 198, 236, 277, 295, 298, 305, 306, 346, 347, 373, 374, 375, 438,
472, 471, 474, 478, 479, 480, 873, 905, 953, 961]). We make no attempt
to survey the philosophy of Bohmian mechanics (BM), or better deBroglie-Bohm
theory (dBB theory), here. This involves many issues, some of them delicate,
which are discussed at length in the references cited. The book [111] by Holland
provides a good beginning and in view of recent work perhaps another book on
this subject alone would be welcome. There is a lot of associated “philosophy”,
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involving hidden variables, nonlocality, EPR ideas, wave function collapse, pilot
waves, implicate order, measurement problems, decoherence, etc., much of which
has been resolved or might well be forgotten. Many matters are indeed clarified
already in the literature above (cf. in particular [94, 95, 330, 415, 471]) and we
will not belabor philosophical matters. It may well be that a completely unified
mathematical theory is beyond reach at the moment but thre are already quite
accurate and workable models available and the philosophy of dBB theory as
developed by the American-German-Italian school mentioned is quite sophisticated
and convincing.

Basically, following [415], for the nonrelativistic theory, GM for N particles is
determined by the two equations

(5.1) i�ψt = Hψ;
dqk

dt
=

�

2mk
�
[
ψ∗∂kψ

ψ∗ψ

]
The latter equation is called the guidance or pilot equation which choreographs
the motion of the particles. If ψ is spinor valued the products in the numerator
and denominator are scalar products and if external magnetic fields are present
the gradient ∇ ∼ (∂k) should be understood as the covariant derivative involving
the vector potential (thus accomodating some versions of field theory - more on
this later). Since the denominator vanishes at nodes of ψ existence and uniqueness
of solutions for Bohmian dynamics is nontrivial but this is proved in [104, 106].
This formula extends to spin and the right side corresponds to J/ρ which is the
ratio of the quantum probability current to the quantum probability density. Fur-
ther from the quantum continuity condition ∂tρ + div(J) = 0 (derivable from the
SE) it follows that if the configuration of particles is random at the initial time t0
with probability distribution ψ∗ψ then this remains true for all times (assuming
no interaction with the environment). Upon setting ψ = Rexp(iS/�) one identi-
fies pk = mkvk with ∂kS (which is equivalent to the guiding equation for particles
without spin) and this corresponds to particles being acted upon by the force ∂kQ
generated by the quantum potential (in addition to any “classical” forces).

REMARK 2.5.1. Recall from Section 2.3.2 that in the BFM theory of
Bohmian type q̇ = p/mQ �= p/m where mQ = m(1−∂EQ) in stationary situations
with energy E. Here one is using a Floydian time and there has been a great deal
of discussion, involving e.g. tunneling times (see e.g. [138, 139, 140, 191, 194,
197, 198, 305, 306, 307, 296, 309, 347, 373, 374, 375, 376, 520]). We do
not attempt to resolve any issues here and refer to the references for up to date
information.

In any event we proceed with BM or dBB theory in full confidence not only
that it works but that it is probably the best way to look at QM. We regard
the quantum potential Q as being a quantization vehicle which expresses the in-
fluence of quantum fluctuations (cf. Chapters 1,4,5); it also arises in describing
Weyl curvature (cf. Chapters 4,5) and thus we regard it as perhaps the funda-
mental object of QM. Returning now to [415] one notes that the predictions of
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BM for measurements must agree with those of standard QM provided configura-
tions are random with distributions given by the quantum equilibrium distribution
|ψ|2. Then a probability distribution ρψ depending on ψ is called equivariant if
(ρψ)t = ρψt where the right side comes from the SE and the left from the guiding
equation (since ρt + div(J) = 0 with v = J/ρ arises in (5.1)). This has been
studied in detail and we summarize some results below. Further BM can han-
dle spin via (5.1) (as mentioned above) and nonlocality is no problem; however
Lorentz invariance, even for standard QM, is tricky and one views it as an emer-
gent symmetry. Further QFT with particle creation and annihilation is a current
topic of research (cf. Sections 2.3 and 2.4) and some additional remarks in this
direction will follow. The papers [324, 325] are mainly about quantum equi-
librium, absolute uncertainty, and the nature of operators. There are two long
papers here (75 and 77 pages) and an earlier paper of 35 pages so we make no
attempt to cover this here. We mention briefly some results of the two more re-
cent papers however. Thus from the abstract to the second paper of [324] the
quantum formalism is treated as a measurement formalism, i.e. a phenomenolog-
ical formalism describing certain macroscopic regularities. One argues that it can
be regarded and best be understood as arising from Bohmian mechanics, which
is what emerges from the SE for a system of particles when one merely insists
that “particles’ means particles. BM is a fully deterministic theory of particles in
motion, a motion choreographed by the wave function. One finds that a Bohmian
universe, although deterministic, evolves in such a manner that an appearance of
randomness emerges, precisely as described by the quantum formalism and given
by ρ = |ψ|2. A crucial ingredient in the analysis of the origin of this randomness
is the notion of the effective wave function of a subsystem. When the quantum
formalism is regarded as arising in this way the paradoxes and perplexities so often
associated with (nonrelativistic) quantum theory evaporate. A fundamental fact
here is that given a SE i�ψt = −(�2/2)

∑
(∆kψ/mk)+V ψ one can derive a velocity

formula vψ
k = (�/mk)�(∇kψ/ψ) by general arguments based on symmetry consid-

erations and this yields (5.1) without any recourse to a formula ψ = Rexp(iS/�).
Further the continuity equation ρt + div(ρvψ) = 0 holds and this implies the
equivariance ρ(q, t) = |ψ(q, t)|2 provided this is true at (t0, q0). The distribution
ρ = |ψ|2 is called the quantum equilibrium distribution (QELD) and a system is
in quantum equilibrium when the QELD is appropriate for its description. The
quantum equilibrium hypothesis (QEH) is that if a system has wave function ψ
then ρ = |ψ|2. It is necessary to discuss wave functions of systems and subsystems
at some length and it is argued that in a universe governed by BM it is impossible
to know more about the configuration of any subsystem than what is expressed
via ρ = |ψ|2 (despite the fact that for BM the actual configuration is an objective
property, beyond the wave function). Moreover, this uncertainty, of an absolute
and precise character, emerges with complete ease, the structure of BM being such
that it allows for the formulation and clean demonstration of statistical statements
of a purely objective character which nontheless imply the claims concerning the
irreducible limitations on possible knowledge, whatever this knowledge may pre-
cisely mean and however one might attempt to obtain this knowledge, provided it
is consistent with BM. This limitation on what can be known is called absolute
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uncertainty. One proceeds by analysis of systems and subsystems and we refer to
[324] for details. In [325] one shows how the entire quantum formalism, operators
as observables, etc. naturally emerges in BM from the analysis of measurments.
It is however quite technical, with considerable important and delicate reasoning,
and we cannot possibly deal with it in a reasonable number of pages.

We go to [326] now where a comprehensive theory is developed for Bohmian
mechanics and QFT (cf. also [330]). Bohm and subsequently Bell had proposed
such models and the latter is model is modified and expanded in [326, 330] in
the context of what are called Bell models. One will treat the configuration space
variables in terms of Markov processes with jumps (which is reminiscent of the
diffusion picture in [673, 674] (cf. also [186]). Roughly one thinks of world lines
involving particle creation and annihilation, hence jumps, and writes Q = ∪∞

0 Qn

where, taking identical particles, the sector Qn is best defined as R3n/Sn where
S ∼ permutations. For several particle species one forms several copies of Q, one
for each species, and obtains a union of sectors Q(n) where now n ∼ (n1, . . . , nk) for
the k species of particles. Note that a path Q(t) will typically have discontinuities,
even if there is nothing discontinuous in the world line pattern, because it jumps
to a different sector at every creation or annihilation event. One can think of the
bosonic Fock space as a space of L2 functions on ∪nR3n/Sn with the fermionic
Fock space being L2 functions on ∪nR3n, antisymmetric under permutation. A
Bell type QFT specifies such world line patterns or histories in configuration space
by specifying three sorts of “laws of motion”: when to jump, where to jump, and
how to move between jumps. One consequence of these laws (to be enumerated)
is the property of preservation of |Ψ0|2 at time t0 to be equal to |Ψt|2 at time
t; this is called equivariance (see above and cf. [325, 327] for more detail on
equivariance for Bohmian mechanics - the same sort of reasoning will apply here).
One will use the quantum state vector Ψ to determine the laws of motion and
here a state described by the pair (Ψt, Qt) where Ψ evolves according to the SE
i�∂tΨt = HΨ. Typically H = H0 + HI and it is important to note that although
there is an aactual particle number N(t) = #Q(t) or Q(t) ∈ QN(t), Ψ need not be
a number eigenstate (i.e. concentrated in one sector). This is similar to the usual
double-slit experiment in which the particle passes through only one slit although
the wavefunction passes through both. As with this experiment, the part of the
wave function that passes through another sector of Q (or another slit) may well
influence the behavior of Q(t) at a later time. The laws of motion of Qt depend
on Ψt (and on H) and the continuous part of the motion is governed by

(5.2)
dQt

dt
= vΨt(Qt) = �Ψ∗

t (Qt)( ˙̂qΨt)(Qt)
Ψ∗

t (Qt)Ψt(Qt)
; ˙̂q =

d

dτ
eiH0τ/�

∣∣∣∣
τ=0

=
i

�
[H0, q̂]

Here ˙̂q is the time derivative of the Q valued Heisenberg position operator q̂ evolved
with H0 alone. One should understand this as saying that for any smooth function
f : Q→ R

(5.3)
df(Qt)

dt
= �Ψ∗

t (Qt)(i/�)[H0, f̂ ]Ψt)(Qt)
Ψ∗

t (Qt)Ψt(Qt)
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This expression is of the form vΨ ·∇f(Qt) (as it must be for defining a dynamics for
Qt) if the free Hamiltonian is a differential operator of up to second order (more on
this later). Note that the KG equation is not covered by (5.2) or (5.3). The
numerator and denominators above involve, when appropriate, scalar products in
spin space. One may view v as a vector field on Q and thus as consisting of one
vector field vn on every manifold Qn; it is then vN(t) that governs the motion
of Q(t) in (5.2). If H0 were the Schrödinger operator −

∑n
1 (�2/2m)∆i + V (5.2)

yields the Bohm velocities vΨ
i = (�/mi)�[Ψ∗∇iΨ/Ψ∗Ψ]. When H0 is the “second

quantization” of a 1-particle Schrödinger operator (5.2) involves equal masses in
every sector Qn. Similarly in case H0 is the second quantization of the Dirac
opertor −ic��α · ∇+ βmc2 (5.2) says that a configuration Q(t) (with N particles)
moves according to (the N-particle version of) the known variant of Bohm’s velocity
formula for Dirac wavefunctions vΨ = (Ψ∗αΨ/Ψ∗Ψ)c (cf. [127]). The jumps now
are stochastic in nature, i.e. they occur at random times and lead to random
destinations. In Bell type QFT God does play dice. There are no hidden variables
which would fully determine the time and destination of a jump (cf. here Section
2.3 and the effectivity parameters). The probability of jumping, with the next dt
seconds to the volume dq in Q is σΨ(dq|Qt)dt with

(5.4) σΨ(dq|q′) =
2
�

[�Ψ∗(q) < q|HI |q′ > Ψ(q′)]+

Ψ∗(q′)Ψ(q′)
dq

where x+ = max(x, 0). Thus the jump rate σΨ depends on the present configu-
ration Qt, on the state vector Ψt which has a guiding role similar to that in the
Bohm theory, and of course on the overall setup of the QFT as encoded in the
interaction Hamiltonian HI (cf. [326] for a simple example). There is a striking
similarity between (5.4) and (5.2) in that they are both cases of “minimal” Markov
processes associated with a given Hamiltonian (more on this below). When H0 is
replaced by HI in the right side of (5.3) one obtains an operator on functions f(q)
that is naturally associated with the process defined by the jump rates (5.4).

The field operators (operator valued fields on spacetime) provide a connection,
the only connection in fact, between spacetime and the abstract Hilbert space con-
taining the quantum states |Ψ >, which are usually regarded not as functions but
as abstract vectors. What is crucial now is that (i) The field operators naturally
correspond to the spatial structure provided by a projection valued (PV) measure
on configuration space Q, and (ii) The process defined here can be efficiently ex-
pressed in terms of a PV measure. Thus consider a PV measure P on Q acting on
H where for B ⊂ Q, P (B) means the projection to the space of states localized
in B. Then one can rewrite the formulas above in terms of P and |Ψ > and we get

(5.5)
df(Qt)

dt
= �

< Ψ|P (dq) i
� [H0, f̂ ]|Ψ >

< Ψ|P (dq)|Ψ >

∣∣∣∣∣
q=Qt

; f̂ =
∫

q∈Q

f(q)P (dq)

(for smooth functions f : Q→ R) and

(5.6) σΨ(dq|q′) =
2
�

� < Ψ|P (dq)HIP (dq′)|Ψ >]+

< Ψ|P (dq′)|Ψ >
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Note that < Ψ|P (dq)|Ψ > is the probability distribution analogous to the standard
|Ψ(q)|2dq. The next question is how to obtain the PV measure P from the field
operators. Such a measure is equivalent to a system of number operators (more
on this below); thus an additive operator valued set function N(R), R ∈ R3 such
that the N(R) commute pairwise and have spectra in the nonnegative integers.
By virtue of the canonical commutation and anticommutation relations for the
field operators φ(x) the easiest way to obtain such a system of number operators
is via N(R) =

∫
R

φ∗(x)φ(x)d3x. Thus what one needs from a QFT in order to
construct trajectories are: (i) a Hilbert space H (ii) a Hamiltonian H = H0 + HI

(iii) a configuration space Q (or measurable space), and (iv) a PV measure on Q

acting on H. This will be done below following [326].

We go now to the last paper in [326] which is titled quantum Hamiltonians and
stochastic jumps. The idea is that for the Hamiltonian of a QFT there is associated
a |Ψ|2 distributed Markov process, typically a jump process, on the configuration
space of a variable number of particles. A theory is developed generalizing work
of J. Bell and the authors of [326]. The central formula of the paper is

(5.7) σ(dq|q′) =
[(2/�)� < Ψ|P (dq)HP (dq′)|Ψ >]+

< Ψ|P (dq′)|Ψ >

It plays a role similar to that of Bohm’s equation of motion

(5.8)
dQ

dt
= v(Q); v = ��Ψ∗∇Ψ

Ψ∗Ψ
Together these two equations make possible a formulation of QFT that makes
no reference to observers or measurements, while implying that observers, when
making measurements, will arrive at precisely the results that QFT is known
to predict. This formulation takes up ideas from the seminal papers of J. Bell
[94, 95] and such theories will be referred to as Bell-type QFT’s. The aim is to
present methods for constructing a canonical Bell type model for more of less any
regularized QFT. One assumes a well defined Hamiltonian as given (with cutoffs
included if needed). The primary variables of such theories are particle positions
and Bell suggested a dynamical law governing the motion of the particles in which
the Hamiltonian H and the state vector Ψ determine the jump rates σ. These
rates are in a sense the smallest choice possible (explained below) and are called
minimal jump rates; they preserve the |Ψ|2 distribution. Bell type QFT’s can also
be regarded as extensions of Bohmian mechanics which cover particle creation
and annihilation; the quantum equilibrium distribution more or less dictates that
creation of a particle occurs in a stochastic manner as in the Bell model. We recall
that for Bohmian mechanics in addition to (5.8) one has an evolution equation
i�∂tΨ = HΨ for the wave function with H = −(�2/2∆ + V for spinless particles
(∆ = div∇). For particles with spin Ψ takes values in the appropriate spin space
Ck, V may be matrix valued, and inner products in (1.66) are understood as
involving inner products in spin spaces. The success of the Bohmian method is
based on the preservation of |Ψ|2, called equivariance and this follows immediately
from comparing the continuity equation for a probability distribution ρ associated
with (5.8), namely ∂tρ = −div(ρv), with the equation for |Ψ|2 following from the
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SE, namely

(5.9) ∂t|Ψ|2(q, t) = (2/�)�[Ψ∗(q, t)(HΨ)(q, t)]

In fact it follows from the continuity equation that

(5.10) (2/�)�[Ψ∗(q, t)(HΨ)(q, t)] = −div[��Ψ∗(q, t)∇Ψ(q, t)]

so recalling (5.8), one has ∂t|Ψ|2 = −div(|Ψ|2v), and hence if ρ+|Ψt|2 as some time
t there results ρ = |ψt|2 for all times. One is led naturaly to the consideration of
Markov processes as candidates for the equivariant motion of the configuration Q
for more general Hamiltonians (see e.g. [506, 674, 810, 815] for Markov processes
- [674] is especially good for Markov processes with jumps and dynamics but we
follow [506, 815] for background since the ideas are more or less clearly stated
without a deathly deluge of definitions and notation - of course for a good theory
much of the verbiage is actually important).

DEFINITION 5.1. Let (E be a Borel σ-algebra of subsets of E. For Ω
generally a path space (e.g. Ω ∼ C(R+, E) with Xt(ω) = X(t, ω) = ω(t) and
Ft = σ(Xs(ω), s ≤ t) a filtration by Borel sub σ-algebras) a Markov process
(C11) X = (Ω, {Ft}, {Xt}, {Pt}, {P x, x}E}) with t ≥ 0 and state space (E,E), is
an E valued stochastic process adapted to {Ft} such that for 0 ≤ s ≤ t, f ∈ bE
(bE means bounded E measurable functions), and x ∈ E, Ex[f(Xs+t)|Ft] =
(Ptf)(Xs), P xae (ae means almost everywhere). Here {Pt} is a transition function
on (E,E), i.e. a family of kernels Pt : E × E→ [0, 1] such that

(1) For t ≥ 0 and x ∈ E, Pt(x, ·) is a measure on E with Pt(x,E) ≤ 1
(2) For t ≥ 0 and Γ ∈ E Pt(·,Γ) is E measurable
(3) For x, t ≥ 0, x ∈ E, and Γ ∈ E one has Pt+s(x,Γ) =

∫
E

Ps(x, dy)Pt(y, Γ)

The equation in #3 is called the Chapman-Kolmogorov (CK) equation and, think-
ing of the transition functions as inducing a family {Pt} of positive bounded op-
erators or norm less than or equal to 1 on bE one has Ptf(x) = (Ptf)(x) =∫

E
Pt(x, dy)f(y) in which case the CK equation has the semigroup property PsPt =

Ps+t for s, t ≥ 0.

Under mild regularity conditions if a transition semigroup {Pt} is given there
will exist on some probability space a Markov process X with suitable paths such
that the strong Markov property holds, i.e. Ex[f(XS+t)]|Fx] = (Ptf)(XS) P x ae
whenever S is a finite stopping time (here S : Ω → [0,∞] is a E stopping time if
{S ≤ t} = {ω; S(ω) ≤ t} ∈ Et for every t < ∞).

EXAMPLE 5.1. A Markov process with countable state space is called a
Markov chain. One writes pij(t) = Pt(i, {j}) with P (t) = {pij(t); i, j ∈ E}.
Assume Pt(i, E) = 1 and pij(t) → δij as t ↓ 0. This will imply that in fact
p′ij(0) = qij exists and the matrix Q = (qij) is called an infinitesimal generator
of {Pt} with qij ≥ 0 (i �= j) and

∑
j qik = 0 (i ∈ E). This illustrates some

important structure for Markov processes. Thus when P ′(0) = Q exists one can
write P ′(t) = limε→0ε

−1[P (t + ε)− P (t)] = limε→0P (t)[P (ε)− I] = P (t)Q. Then
solving this equation one has P (t) = exp(tQ as a semigroup generated by Q. The
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resolvent is defined via Rλ =
∫∞
0

exp(−λt)Ptdt and one can regard it as

(5.11) (λRλ)ij =
∫ ∞

0

λexp(−λt)pij(t)dt = P(XT = j|X0 = i)

where T is a random variable independent of X with the exponential distribution
of rate λ. It follows then that Rλ = (λ−Q)−1 and Rλ−Rµ = (µ− λ)RλRµ. The
whole subject is full of pathological situations however and we make no attempt
to describe this.

REMARK 2.5.2. [674] is oriented toward diffusion processes and departs
from the concept that the kinematics of quantum particles is stochastic calculus (in
particular Markov processes) while the kinematics of classical particles is classical
differential calculus. The relation between these two calculi must be established.
Thus classically x(t) = x(a)+

∫ t

a
v(s, x(s))ds while for a particle with say Brownian

noise Bt and a drift field a(t, x(t)) one has

(5.12) Xt = Xa +
∫ t

a

a(s, Xs)ds +
∫ t

a

σ(s, Xs)dBs

We recall dB2
t ∼ dt so Xt has no velocity and the drift field a(t, x) is not an average

speed. However P [X] =
∫
Ω

XdP is the expectation (since P [σ(t,Xt)dBt] = 0).
Now the notation for Markov processes involves nonnegative transition functions
P (s, x; t, B) with a ≤ s ≤ t ≤ b, x ∈ Rd, and B ∈ B(Rd) which are measures in
B, measurable in x, and satisfy the CK equation

(5.13) P (s, x; t, B) =
∫
Rd

P (s, x; r, dy)P (r, y; t, B); P (s, x; t,Rd) = 1

If there is a measurable function p such that P (s, x; t, B) =
∫

B
p(s, x; t, y)dy (t −

s > 0) then p is a transition density. One defines a probability measure P on a
path space Ω = (Rd)[a,b] via finite dimensional distributions
(5.14)

P [f(Xa, Xt1 , · · · , Xtn
, Xb)] =

∫
µa(dx0)P (a, x0; t1, dx1)P (t1, x1; t2, dx2) · · · ×

× · · ·P (tn−1, xn−1; b, dxn)f(x0, · · · , xn)
Moreover one defines a family {Xt; t ∈ [a, b]} on Ω via Xt(ω) = ω(t), ω ∈ Ω. Note
one assumes the right continuity of Xt(ω) ae. This representation can be written
as P = [µaP >> and is called the Kolmogorov representation of P. Let now {Ft

s}
be a filtration as before, i.e. a family of σ-fields generated by {Xr(ω); s ≤ r ≤ t}.
Then we have a Markov process {Xt, t ∈ [a, b],Ft

s, P}. Replacing µa by δx and
a by s with s < t1 < · · · < tn−1 < tn ≤ b one defines probability measures
P(s,x), (s, x) ∈ [a, b]×Rd from (1.67) via

(5.15) P(s,x)[f(Xt1 , · · · , Xtn−1 , Xtn
)] =

=
∫

P (s, x; t1, dx1) · · ·P (tn−1, xn−1; tn, dxn)f(x1, · · · , xn)

As a special case one has P(s,x)[f(t,Xt)] =
∫

P (s, x; t, dy)f(t, y) and one can also
prove that P [GF ] = P [GP(s,Xs)[F ]] for any bounded Fs

a measurable G and any
bounded Fb

s measurable F. This is the time inhomogeneous Markov property which
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can be written in terms of conditional expectations as P [F |Fs
a] = P(s,Xs)[F ], P ae.

There is a great deal of material in [674] about Markov processes with jumps but
we prefer to stay here with [326] for notational convenience.

Going back to [326] we consider a Markov process Qt on configuration space
with transition probabilities characterized by the backward generator Lt, a time
dependent linear operator acting on functions f via Ltf(q) = (d/ds)E(f(Qt+s|Qt =
q) where d/ds means the right derivative at s = 0 and E(·|·) is conditional expec-
tation. Equivalently the transition probabilities are characterized by the forward
generator Lt (or simply generator) which is also a linear operator but acts on
(signed) measures on the configuration space. Its defining property is that for
every process Qt with the given transition properties ∂tρt = Ltρt. Thus L is dual
to Lt in the sense

(5.16)
∫

f(q)Ltρ(dq) =
∫

Ltf(q)ρ(dq)

Given equivariance for |Ψ|2, one says that the corresponding transition probabil-
ities are equivariant and this is equivalent to Lt|Ψ|2 = ∂y|Ψ|2 for all t; when this
holds one says that Lt is an equivariant generator (with respect to Ψt and H).
One says that a Markov process is Q equivariant if and only if for every t the
distribution ρt of Qt equals |Ψt|2. For this equivariant transition probabilities are
necessary but not sufficient; however for equivariant transition probabilities there
is a unique equivariant Markov process. The crucial idea here for construction of
an equivariant Markov process is to note that (5.9) is completely general and to
find a generator Lt such that the right side of (5.9) can be read as the action of L
on ρ = |Ψ|2 means (2/�)�Ψ∗HΨ = L|Ψ|2. This will be implemented later. For H
of the form −(�2/2)∆ + V one has (5.10) and hence

(5.17)
2
�
�Ψ∗HΨ = −div(��Ψ∗∇Ψ) = −div

(
|Ψ|2��Ψ∗∇Ψ

|Ψ|2

)
Since the generator of the (deterministic) Markov process corresponding to the dy-
namical system dQ/dt = v(Q) is given by a velocity vector field is Lρ = −div(ρv)
we may recognize the last term of (1.67) as L|Ψ|2 with L the generator of the
deterministic process defined by (5.8). Thus Bohmian mechanics arises as the
natural equivariant process on configuration space associated with H and Ψ. One
notes that Bohmian mechanics is not the only solution of (2/�)�Ψ∗HΨ − L|Ψ|2;
there are alternatives such as Nelson’s stochastic mechanics (and hence Nagasawa’s
theory of [672, 674]) and other velocity formulas (cf. [295]).

For equivariant jump processes one says that a (pure) jump process is a Markov
process on Q for which the only motion that occurs is via jumps. Given that Qt = q
the probability for a jump to q′ (i.e. into the infinitesimal volume dq′ around q′) by
time t+dt is σt(d′q|q)dt where σ is called the jump rate. Here σ is a finite measure
in the first variable; σ(B|q) is the rate (i.e. the probability per unit time) of jump-
ing to somewhere in the set B ⊂ Q given that the present location is q. The overall
jump rate is σ(Q|q) (sometimes one writes ρ(dq) = ρ(q)dq). A jump first occurs
when a random waiting time T has elapsed, after the time t0 at which the process
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was started or at which the most recent previous jump has occured. For purposes
of simulating or constructing the process, the destination q′ can be chosen at the
time of jumping, t0 + T , with probability distribution σt0+T (Q|q)−1σt0+T (·|q). In
case the overall jump rate is time independent T is exponentially distributed with
mean of σ(Q|q)−1. When the rates are time dependent (as they will typically in
what follows) the waiting time remains such that

∫ t0+T

t0
σt(Q|q)dt is exponentially

distributed with mean 1, i.e. T becomes exponential after a suitable (time depen-
dent) rescaling of time. The generator of a pure jump process can be expressed in
terms of the rates

(5.18) Lρ(dq) =
∫

q′∈Q

(σ(dq|q′)ρ(dq′)− σ(dq′)|q)ρ(dq))

which is a balance or master equation expressing ∂tρ as the gain due to jumps
to dq minus the loss due to jumps away from dq. One says the jump rates are
equivariant if Lσ is an equivariant generator.

Given a Hamiltonian H = H0 + HI one obtains

(5.19) (2/�)�Ψ∗H0Ψ + (2/�)�Ψ∗HIΨ− L|Ψ|2

This opens the possibility of finding a generator L = L0+LI given (2/�)�Ψ∗H0Ψ =
L0|Ψ|2 and (2/�)�Ψ∗HIΨ = LI |Ψ|2; this will be called process additivity and
correspondingly L = L0 + LI . If one has two deterministic processes of the form
Lρ = −div(ρv) then adding generators corresponds to v = v+v2. For a pure jump
process adding generators corresponds to adding rates σi which is equivalent to
saying there are two kinds of jumps. Now add generators for a deterministic and
a jump process via

(5.20) Lρ(q) = −div(ρv)(q) +
∫

q′∈Q

(σ(q|q′)ρ(q′)− σ(q′|q)ρ(q)) dq′

This process moves with velocity v(q) until it jumps to q′ where it continues
moving with velocity v(q′). One can understand (5.20) in terms of gain or loss of
probability density due to motion and jumps; the process is piecewise deterministic
with random intervals between jumps and random destinations. Note that for a
Wiener process the generator is the Laplacian and adding to it the generator of a
deterministic process means introducing a drift.

Now consider HI and note that in QFT’s with cutoffs it is usually the case
that HI is an integral operator. Hence one writes here H ∼ HI and thinks of it
as an integral operator with Q ∼ Rn. What characterizes jump processes is that
some amount of probability that vanishes at q ∈ Q can reappear in an entirely
different region say at q′ ∈ Q. This suggests that the Hamiltonians for which the
expression (5.9) for ∂t|Ψ|2 is naturally an integral over q′ correspond to pure jump
processes. Thus when is the left side of (2/�)�|psi∗HΨ = L|Ψ|2 an integral over
q′ or (HΨ)(q) =

∫
dq′ < q|H|q′ > Ψ(q′). In this case one should choose the jump

rates so that when ρ = |Ψ|2 one has

(5.21) σ(q|q′)ρ(q′)− σ(q′|q)ρ(q) = (2/�)�Ψ∗(q) < q|H|q′ > Ψ(q′)
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This suggests, since jump rates are nonnegative and the right side of (5.21) is
antisymmetric) that σ(q|q′)ρ(q′) = [(2/�)�Ψ∗(q) < q|H|q′ > Ψ(q′)]+ or

(5.22) σ(q|q′) =
(2/�)�Ψ∗(q) < q|H|q′ > Ψ(q′)]+

Ψ∗(q′)Ψ(q′)

These rates are an instance of what can be called minimal jump rates associated
with H (and Ψ). They are actually the minimal possible values given (5.21) and
this is discussed further in [326]. Minimality entails that at any time t one of the
transitions q1 → q2 or q2 → q1 is forbidden and this will be called a minimal jump
process. One summarizes motions via

H motion
integral operator jumps

differential operator deterministic continuous motion
multiplication operator no motion (L = 0)

The reasoning above applies to the more general setting of arbitrary configuration
spaces Q and generalized observables - POVM’s - defining what the “position”
representation is to be. One takes the following ingredients from QFT

(1) A Hilbert space H with scalar product < Ψ|Φ >.
(2) A unitary one parameter group Ut in H with Hamiltonian H, i.e. Ut =

exp[−(i/�)tH], so that in the Schrödinger picture the state Ψ evolves via
i�∂tΨ = HΨ. Ut could be part of a representation of the Poincaré group.

(3) A positive operator valued measure (POVM) P (dq) on Q acting on H so
that the probability that the system in the state Ψ is localized in dq at
time t is Pt(dq) =< Ψt|P (dq)|Ψt >.

Mathematically a POVM on Q is a countably additive set function (measure)
defined on measurable subsets of Q with values in the positive (bounded self
adjoint) operators on a Hilbert space H such that P (Q) = Id. Physically for
purposes here P (·) represents the (generalized) position observable, with values
in Q. The notion of POVM generalizes the more familiar situation of observables
given by a set of commuting self adjoint operators, corresponding by means of
the spectral theorm to a projection valued measure (PVM) - the case where the
positive operators are projection operators (see [326] for discussion). The goal
now is to specify equivariant jump rates σ = σΨ,H,P so that LσP = dP/dt. To
this end one could take the following steps.

(1) Note that (dPt(dq)/dt) = (2/�)� < Ψt|P (dq)H|Ψt >.
(2) Insert the resolution of the identity I =

∫
q′∈Q

P (dq′) and obtain

(5.23) (dPt(dq)/dt) =
∫

q′∈Q

Jt(dq, dq′);

Jt(dq, dq′) = (2/�)� < Ψt|P (dq)HP (dq′)|Ψt >

(3) Observe that Jis antisymmetric so since x = x+ − (−x)+ one has

(5.24) J(dq, dq′) = [(2/�)� < Ψ|P (dq)HP (dq′)|Ψ]+−

−[(2/�)� < Ψ|P (dq′)HP (dq)|Ψ >]+
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(4) Multiply and divide both terms by P(·) obtaining

(5.25)
∫

q′∈Q

J(dq, dq′) =
∫

q′∈Q

(
(2/�)� < Ψ|P (ddq)HP (dq′)|Ψ >]+

< Ψ|P (dq′)|Ψ >
P(dq′)−

− [(2/�)� < Ψ|P (dq′)HP (dq)|Ψ >]+

< Ψ|P (dq)|Ψ >
P(dq)

)
(5) By comparison with (5.18) recognize the right side of the above equation

as LσP with Lσ the generator of a Markov jump process with jump rates
(5.7) (minimal jump rates).

Note the right side of (5.7) should be understood as a density (Radon-Nikodym
derivative).

When H0 is made of differential operators of up to second order one can
characterize the process associated with H0 in a particularly succinct manner as
follows. Define for any H,P,Ψ an operator L acting on functions f : Q → R
which may or may not be the backward generator of a process via

(5.26) Lf(q) = �< Ψ|P (dq)L̂f̂ |Ψ >

< Ψ|P (dq)Ψ >
= �< Ψ|P (dq)(i/�)[H, f̂ ]|Ψ >

< Ψ|P (dq)|Ψ >

where [ , ] means the commutator and f̂ =
∫

q∈Q
f(q)P (dq) with L̂ the generator

of the (Heisenberg) evolution f̂ ,

(5.27) L̂f̂ = (d/dτ)exp(iHτ/�)f̂ exp(−iHτ/�)|τ=0 = (i/�)[H, f̂ ]

Note if P is a PVM then f̂ = f(q̂). (5.26) could be guessed in the following manner:
Since Lf is in a certain sense the time derivative of f it might be expected to be
related to L̂f̂ which is in a certain sense (cf. (5.27)) the time derivative of f̂ . As a
way of turning the operator L̂f̂ into a function Lf(q) the middle term in (5.26) is
an obvious possibility. Note also that this way of arriving at (5.26) does not make
use of equivariance. The formula for the forward generator equivalent to (5.26)
reads

(5.28) Lρ(dq) = � < Ψ| ̂(dρ/dP)(i/�)[H,P (dq)]|Ψ >

Whenever L is indeed a backward generator we call it the minimal free (backward)
generator associated with Ψ,H, P . Then the corresponding process is equivariant
and this is the case if (and there is reason to expect, only if) P is a PVM and H
is a differential operator of up to second order in the position representation, in
which P is diagonal. In that case the process is deterministic and the backward
generator has the form L = v · ∇ where v is the velocity field; thus (5.26) directly
specifies the velocity in the form of a first order differential operator v ·∇. In case
H is the N-particle Schrödinger operator with or without spin (5.26) yields the
Bohmian velocity (5.8) and if H is the Dirac operator the Bohm-Dirac velocity
emerges. Thus in some cases (5.26) leads to just the right backward generator.
In [326] there are many examples and mathematical sections designed to prove
various assertions but we omit this here..
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6. BOHMIAN MECHANICS IN QFT

We extract here from a fascinating paper [713] by H. Nikolić. Quantum field
theory (QFT) can be formulated in the Schrödinger picture by using a functional
time dependent SE but this requires a choice of time coordinate and the corre-
sponding choice of a preferred foliation of spacetime producing a relativistically
noncovariant theory. The problem of noncovariance can be solved by replacing
the usual time dependent SE with the many fingered time (MFT) Tomonaga-
Schwinger equation, which does not require a preferred foliation and the quantum
state is a functional of an arbitrary timelike hypersurface. In a manifestly co-
variant formulation introduced in [316] the hypersurface does not even have to
be timelike. The paper [713] develops a Bohmian interpretation for the MFT
theory for QFT and refers to [77, 108, 255, 473, 478, 587, 711, 708, 769,
772, 774, 819, 820, 876, 910] for background and related information. Thus
let x = {xµ} = (x0,x) be spacetime coordinates. A timelike Cauchy hypersurface
Σ can be defined via x0 = T (x) with x denoting coordinates on Σ. Let φ(x) be a
dynamical field on Σ (a real scalar field for convenience) and write T, φ without
an argument for the functions themselves with φ = φ|Σ etc. Let Ĥ(x) be the
Hamiltonian density operator and then the dynamics of a field φ is described by
the MFT Tomonaga-Schwinger equation

(6.1) ĤΨ[φ, T ] = i
δΨ[φ, T ]
δT (x)

Note δT (x) denotes an infinitesimal change of the hypersurface Σ. The quantity
ρ[φ, T ] = |Ψ[φ, T ]|2 represents the probability density for the field to have a value
φ on Σ or equivalently the probability density for the field to have a value φ at
time T . One can say that φ has a definite value ϕ at some time T0 if

(6.2) Ψ[φ, T0] = δ(φ− ϕ) =
∏
x∈Σ

δ(φ(x)− ϕ(x))

[713] then provides an important discussion of measurement and contextuality in
QM which we largly omit here in order to go directly to the Bohmian formulation.

For simplicity take a free scalar field with

(6.3) Ĥ(x) = −1
2

δ2

δφ2(x)
+

1
2
[(∇φ(x))2 + m2φ2(x)]

Writing Ψ = Rexp(iS) with R and S real functionals the complex equation (6.1)
is equivalent to two real equations with

(6.4)
1
2

(
δS

δφ(x)

)2

+
1
2
[(∇φ(x))2 + m2φ2(x)] + Q(x, φ, T ] +

δS

δT (x)
= 0;

δρ

δT (x)
+

δ

δφ(x)

(
ρ

δS

δT (x)

)
= 0; Q(x, φ, T ] = − 1

2R

δ2R

δφ2(x)

The conservation equation shows that it is consistent to interpret ρ[φ, T ] as the
probability density for the field to have the value φ at the hypersurface determined
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by the time T. Now let σx be a small region around x and define the derivative

(6.5)
∂

∂T (x)
= lim

σx→0

∫
σx

d3x
δ

δT (x)

where σx → 0 means that the 3-volume goes to zero (note ∂T (y)/∂T (x) = δxy).
It is convenient to integrate (6.4) inside a small σx leading to

(6.6)
∂ρ

∂T (x)
+

∂

∂φ(x)

(
ρ

δS

δφ(x)

)
= 0

where ∂/∂φ(x) is defined as in (6.5). The Bohmian interpretation consists now
in introducing a deterministic time dependent hidden variable such that the time
evolution of this variable is consistent with the probabilistic interpretation of ρ.
From (6.6) one sees that this is naturally achieved by introducing a MFT field
Φ(x, T ] that satisfies the MFT Bohmian equations of motion

(6.7)
∂Φ(x, T ]
∂T (x)

=
δS

δφ(x)

∣∣∣∣
φ=Φ

From (6.7) and the quantum MFT HJ equation (6.4) results

(6.8)

[(
∂

∂T (x)

)2

−∇2
x + m2

]
Φ(x, T ] = − ∂Q(x, φ, T ]

∂ψ(x)

∣∣∣∣
φ=Φ

This can be viewed as a MFT KG equation modified with a nonlocal quantum
term on the right side. The general solution of (6.7) has the form

(6.9) Φgen(x), T ] = F (x, c(x, T ];T ]

where F is a function(al) that depends on the right side of (6.7) and c(x, T ] is an
arbitrary function(al) with the property

(6.10)
δc(x, T ]
δT (x)

= 0

This quantity can be viewed as an arbitrary MFT integration constant - it is
constant in the sense that it does not depend on T (x), but it may depend on T at
other points x′ �= x. To provide the correct classical limit (indicated below) one
restricts c(x, T ] to satisfy

(6.11) c(x, T ] = c(x)

where c(x) is an arbitrary function. Here it is essential to realize that Φ(x, T ] is
a function of x but a functional of T; the field Φ depends not only on (x, T (x)) ≡
(x, x0) ≡ x but also on the choice of the whole hypersurface Σ that contains the
point x. Consequently the MFT Bohmian interpretation does not in general assign
a value of the field at the point x unless the whole hypersurface containing x is
specified. On the other hand if e.g. δS/δφ(x) on the right side in (6.7) is a local
functional, i.e. of the form V (x, φ(x

¯
), T (x), then the solution of (6.7) is a local

functional of the form

(6.12) Φ(x, T (x) = Φ(x, x0) = Φ(x)

This occurs for example when the wave functional is a local product Ψ[φ, T ] =∏
x ψx(φ(x, T (x). Interactions with the measuring apparatus can also produce
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locality. As for the classical limit one can formulate the classical HJ equation as
a MFT theory (cf. [819, 820]) without of course the Q term. Hence by imposing
a restriction similar to (6.11) the solution S[φ, T ] can be chosen so that δS/δφ(x)
is a local functional; the restriction (6.11) again implies that the classical solution
Φ is also a local functional.

The MFT formalism was introduced by Tomonaga and Schwinger to provide
the manifest covariance of QFT in the interaction picture. The picture here is
so far not manifestly covariant since time is not treated on an equal footing with
space. However the MFT formalism can be here also in a manifestly covariant
manner via [316, 819, 820]. One starts by introducing a set of 3 real parameters
{s1, s2, s3} ≡ s to serve as coordinates on a 3-dimensional manifold (a priori s
is not related to x). The 3-dimensional manifold Σ can be embedded in the
4-dimensional spacetime by introducing 4 functions Xµ(s) and a 3-dimensional
hypersurface is given via xµ = Xµ(s). The 3 parameters si can be eliminated
leading to an equation of the form f(x0, x1, x2, x3) = 0 and assuming that the
background spacetime metric gµν(x) is given the induced metric qij(s) on this
hypersurface is

(6.13) qij(s) = gµν(X(s))
∂Xµ(s)

∂si

∂Xν(s)
∂sj

Similarly a normal to the surface is

(6.14) ñ(s) = εµαβγ
∂Xα

∂s1

∂Xβ

∂s2

∂Xγ

∂s3

and the unit normal transforming as a spacetime vector is

(6.15) nµ(s) =
gµν ñν√
|gαβñαñβ |

Now some of the original equations above can be written in a covariant form by
making the replacements

(6.16) x→ s;
δ

δT (x)
→ nµ(s)

δ

δXµ(s)

The Tomonaga-Schwinger equation (6.1) becomes

(6.17) Ĥ(s)Ψ[φ,X] = inµ(s)
δΨ[φ,X]
δXµ(s)

For free fields the Hamiltonian density operator in curved spacetime is

(6.18) Ĥ =
−1

2|q|1/2

δ2

δφ2(s)
+
|q|1/2

2
[−qij(∂iφ)(∂jφ) + m2φ2]

The Bohmian equations of motion (6.7) becomes

(6.19)
∂Φ(s, T ]
∂τ(s)

=
1

|q(s)|1/2

δS

δφ(s)

∣∣∣∣
φ=Φ

;
∂

∂τ(s)
≡ limσx→0

∫
σx

d3snµ(s)
δ

δXµ(s)
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Similarly (6.8) becomes

(6.20)

[(
∂

∂τ(s)

)2

+∇i∇i + m2

]
Φ(s, X] = − 1

|q(s)|1/2

∂Q(s, φ,X]
∂φs)

∣∣∣∣
φ=Φ

where ∇i is the covariant derivative with respect to si and

(6.21) Q(s, φ,X] = − 1
|q(s)|1/2

1
2R

δ2R

δφ2(s)
corresponding to a quantum potential. The same hypersurface Σ can be para-
metrized by different sets of 4 functions Xµ(s) of course but quantities such as
Ψ[φ,X] and Φ(s, X] depend on Σ, not on the parametrization. The freedom in
choosing functions Xµ(s) is sort of a gauge freedom related to the covariance. Now
to find a solution of the covariant equations above it is convenient to fix a gauge
and for a timelike surface the simplest choice is Xi(s) = si. This implies δX(s) = 0
which leads to equations similar to those obtained previously. For example (6.19)
becomes

(6.22) (g00(x))1/2 ∂Φ(x, X0]
∂X0(x)

=
1

|q(x)|1/2

δS

δφ(x)

∣∣∣∣
φ=Φ

which is the curved spacetime version of (6.7).



CHAPTER 3

GRAVITY AND THE QUANTUM POTENTIAL

Just as we plunged into QM in Chapters 1 and 2 we plunge again into general
relativity (GR), Weyl geometry, Dirac-Weyl (DW) theory, and deBroglie-Bohm-
Weyl (dBBW) theory. There are many good books available for background in
general relativity, especially [69] (marvelous for conceptual purposes and for a
modern perspective) and [12] (a classic masterpiece with all the indices in their
place). In addition we mention some excellent books and papers which will arise
in references later, namely [52, 121, 351, 458, 498, 551, 657, 715, 723, 819,
910, 972]. To develop all the background differential geometry requires a book
in itself and the presentation adopted here will in fact include all this implicitly
since the topics range over a fairly wide field (see also Chapter 5 where cosmology
plays a more central role).

1. INTRODUCTION

A complete description of necessary geometric ideas appears in [657] for
example and we only make some definitions and express some relations here,
usng the venerable tensor notation of indices, etc., since even today much of the
physics literature appears in this form. For differential geometry one can refer to
[134, 276, 998]. First we give some background on Weyl geometry and Brans-
Dicke theory following [12]; for differential geometry we use the tensor notation
of [12] and refer to e.g. [121, 358, 458, 498, 723, 731, 972, 998] for other
notation (see also [990] for an interesting variation). One thinks of a differential
manifold M = {Ui, φi} with φ : Ui → R4 and metric g ∼ gijdxidxj satisfy-
ing g(∂k, ∂�) = gk� =< ∂k, ∂� >= g�k. This is for the bare essentials; one can
also imagine tangent vectors Xi ∼ ∂i and dual cotangent vectors θi ∼ dxi, etc.
Given a coordinate change x̃i = x̃i(xj) a vector ξi transforming via ξ̃i =

∑
∂ix̃

jξj

is called contravariant (e.g. dx̃i =
∑

∂j x̃
idxj). On the other hand ∂φ/∂x̃i =∑

(∂φ/∂xj)(∂xj/∂x̃i leads to the idea of covariant vectors Aj ∼ ∂φ/∂xj trans-
forming via Ãi =

∑
(∂xj/∂x̃i)Aj (i.e. ∂/∂x̃i ∼ (∂xj/∂x̃j)∂/∂xj). Now define

connection coefficients or Christoffel symbols via (strictly one writes T γ
α = gαβT γβ

and T γ
α = gαβT βγ which are generally different - we use that notation here but

it is sometimes not used later when it is unnecessary due to symmetries, etc.)

(1.1) Γr
ki = −

{
r

k i

}
= −1

2

∑
(∂igk� + ∂kg�i − ∂�gik)g�r = Γr

ik
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(note this differs by a minus sign from some other authors). Note also that (1.1)
follows from equations

(1.2) ∂�gik + grkΓr
i� + girΓr

�k = 0

and cyclic permutation; the basic definition of Γi
mj is found in the transplantation

law dξi = Γi
mjdxmξj . Next for tensors Tα

βγ define derivatives Tα
βγ|k = ∂kTα

βγ and

(1.3) Tα
βγ||� = ∂�T

α
βγ − Γα

�sT
s
βγ + Γs

�βTα
sγ + Γs

�γTα
βs

In particular covariant derivatives for contravariant and covariant vectors respec-
tively are defined via

(1.4) ξi
||k = ∂kξi − Γi

k�ξ
� = ∇kξi; ηm||� = ∂�ηm + Γr

m�ηr = ∇�ηm

respectively. Now to describe Weyl geometry one notes first that for Riemannian
geometry transplantation holds along with

(1.5) �2 = ‖ξ‖2 = gαβξαξβ ; ξαηα = gαβξαηβ

For Weyl geometry however one does not demand conservation of lengths and
scalar products under affine transplantation as above. Thus assume d� = (φβdxβ)�
where the covariant vector φβ plays a role analogous to Γα

βγ and one obtains

(1.6) d�2 = 2�2(φβdxβ) = d(gαβξαξβ) =

= gαβ|γξαξβdxγ + gαβΓα
ργξρξβdxγ + gαβΓβ

ργξαξρdxγ

Rearranging etc. and using (1.5) again gives

(1.7) (gαβ|γ − 2gαβφγ) + gσβΓσ
αγ + gσαΓσ

βγ = 0;

Γα
βγ = −

{
α

β γ

}
+ gσα[gσβφγ + gσγφβ − gβγφσ]

Thus we can prescribe the metric gαβ and the covariant vector field φγ and de-
termine by (1.7) the field of connection coefficients Γα

βγ which admits the affine
transplantation law as above. If one takes φγ = 0 the Weyl geometry reduces to
Riemannian geometry. This leads one to consider new metric tensors via a metric
change ĝαβ = f(xλ)gαβ and it turns out that (1/2)∂log(f)/∂xλ plays the role of
φλ. Here the metric change is called a gauge transformation and the ordinary con-

nections
{

α
β γ

}
constructed from gαβ are equal to the more general connections

Γ̂α
βγ constructed according to (1.7) from ĝαβ and φ̂λ = (1/2)∂log(f)/∂xλ. The

generalized differential geometry is conformal in that the ratio

(1.8)
ξαηα

‖ξ‖‖η‖ =
gαβξαηβ

[(gαβξαξβ)(gαβηαηβ)]1/2

does not change under the gauge transformation ĝαβ → f(xλ)gαβ . Again if one
has a Weyl geometry characterized by gαβ and φα with connections determined
by (1.7) one may replace the geometric quantities by use of a scalar field f with

(1.9) ĝαβ = f(xλ)gαβ , φ̂α = φα + (1/2)(log(f)|α; Γ̂α
βγ = Γα

βγ

without changing the intrinsic geometric properties of vector fields; the only change
is that of local lengths of a vector via �̂2 = f(xλ)�2. Note that one can reduce
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φ̂α to the zero vector field if and only if φα is a gradient field, namely Fαβ =
φα|β − φβ|α = 0 (i.e. φα = (1/2)∂alog(f) ≡ ∂βφα = ∂αφβ). In this case one has
length preservation after transplantation around an arbitrary closed curve and the
vanishing of Fαβ guarantees a choice of metric in which the Weyl geometry becomes
Riemannian; thus Fαβ is an intrinsic geometric quantity for Weyl geometry; note
Fαβ = −Fβα and

(1.10) {Fαβ|γ} = 0; {Fµν|λ} = Fµν|λ + Fλµ|ν + Fνλ|µ

Similarly the concept of covariant differentiation depends only on the idea of vector
transplantation. Indeed one can define covariant derivatives via

(1.11) ξα
||β = ξα

|β − Γα
βγξγ

In Riemannian geometry the curvature tensor is

(1.12) ξα
||β|γ − ξα

||γ|β = Rα
ηβγξη; Rα

βγδ = −Γα
βγ|δ + Γα

βδ|γ + Γα
τδΓ

τ
βγ − Γα

τγΓτ
βδ

Using (1.8) one then can express this in terms of gαβ and φα but this is complicated.
Equations for Rβδ = Rα

βαδ and R = gβδRβδ are however given in [12]. One notes
that in Weyl geometry if a vector ξα is given, independent of the metric, then
ξα = gαβξβ will depend on the metric and under a gauge transformation one has
ξ̂α = f(xλ)ξα. Hence the covariant form of a gauge invariant contravariant vector
becomes gauge dependent and one says that a tensor is of weight n if, under a
gauge transformation, T̂α···

β··· = f(xλ)nTα···
β··· . Note φα plays a singular role in (1.9)

and has no weight. Similarly
√
−ĝ = f2√−g (weight 2) and Fαβ = gαµgβνFµν has

weight −2 while Fαβ = Fαβ√−g has weight 0 and is gauge invariant. Similarly
FαβFαβ√−g is gauge invariant. Now for Weyl’s theory of electromagnetism one
wants to interpret φα as an EM potential and one has automatically the Maxwell
equations

(1.13) {Fαβ|γ} = 0; F
αβ
|β = s

α

(the latter equation being gauge invariant source equations). These equations are
gauge invariant as a natural consequence of the geometric interpretation of the
EM field. For the interaction between the EM and gravitational fields one sets up
some field equations as indicated in [12] and the interaction between the metric
quantities and the EM fields is exhibited there (there is much more on EM theory
later and see also Section 2.1.1).

REMARK 3.1.1. As indicated earlier in [12] Ri
jk is defined with a minus

sign compared with e.g. [723, 998] for example. There is also a difference in
definition of the Ricci tensor which is taken to be Gβδ = Rβδ − (1/2)gβδR in [12]
with R = Rδ

δ so that Gµγ = gµβgγδG
βδ = Rµγ − (1/2)gµγR with Gγ

η = Rη
η−2R ⇒

Gη
η = −R (recall n = 4). In [723] the Ricci tensor is simply Rβµ = Rα

βµα where
Rα

βµν is the Riemann curvature tensor and R = Rη
η again. This is similar to [998]

where the Ricci tensor is defined as ρj� = Ri
ji�. To clarify all this we note that

(1.14) Rηγ = Rα
ηαγ = gαβRβηαγ = −gαβRβηγα = −Rα

ηγα

which reveals the minus sign difference.
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2. SKETCH OF DEBROGLIE-BOHM-WEYL THEORY

From Chapters 1 and 2 we know something about Bohmian mechanics and
the quantum potential and we go now to the papers [869, 870, 871, 872, 873,
874, 875, 876] by A. and F. Shojai to begin the present discussion (cf. also
[8, 117, 118, 284, 668, 669, 831, 832, 834, 835, 836, 837, 838, 864,
865, 866, 867, 868, 881] for related work from the Tehran school and [189,
219, 611, 731, 840, 841, 872] for linking of dBB theory with Weyl geome-
try). In nonrelativistic deBroglie-Bohm theory the quantum potential is Q =
−(�2/2m)(∇2|Ψ|/|Ψ|). The particles trajectory can be derived from Newton’s law
of motion in which the quantum force −∇Q is present in addition to the classical
force −∇V . The enigmatic quantum behavior is attributed here to the quantum
force or quantum potential (with Ψ determining a “pilot wave” which guides the
particle motion). Setting Ψ =

√
ρexp[iS/�] one has

(2.1)
∂S

∂t
+
|∇S|2
2m

+ V + Q = 0;
∂ρ

∂t
+∇ ·

(
ρ
∇S

m

)
= 0

The first equation in (2.1) is a Hamilton-Jacobi (HJ) equation which is identical
to Newton’s law and represents an energy condition E = (|p|2/2m) + V + Q
(recall from HJ theory −(∂S/∂t) = E(= H) and ∇S = p. The second equation
represents a continuity equation for a hypothetical ensemble related to the particle
in question. For the relativistic extension one could simply try to generalize the
relativistic energy equation ηµνPµP ν = m2c2 to the form

(2.2) ηµνPµP ν = m2c2(1 +Q) =M2c2; Q = (�2/m2c2)(�|Ψ|/|Ψ|)

(2.3) M2 = m2

(
1 + α

�|Ψ|
|Ψ|

)
; α =

�2

m2c2

This could be derived e.g. by setting Ψ =
√

ρexp(iS/�) in the Klein-Gordon (KG)
equation and separating the real and imaginary parts, leading to the relativistic HJ
equation ηµν∂µS∂νS = M2c2 (as in (2.1) - note Pµ = −∂µS) and the continuity
equation is ∂µ(ρ∂µS) = 0. The problem of M2 not being positive definite here
(i.e. tachyons) is serious however and in fact (2.2) is not the correct equation (see
e.g. [871, 873, 876]). One must use the covariant derivatives ∇µ in place of ∂µ

and for spin zero in a curved background there results (Q as above)

(2.4) ∇µ(ρ∇µS) = 0; gµν∇µS∇νS = M
2c2; M

2 = m2eQ

To see this one must require that a correct relativistic equation of motion should
not only be Poincaré invariant but also it should have the correct nonrelativistic
limit. Thus for a relativistic particle of mass M (which is a Lorentz invariant
quantity) A =

∫
dλ(1/2)M(r)(drµ/dλ)(drν/dλ) is the action functional where λ

is any scalar parameter parametrizing the path rµ(λ) (it could e.g. be the proper
time τ). Varying the path via rµ → r′µ = rµ + εµ one gets (cf. [871])

(2.5) A→ A
′ = A + δA = A +

∫
dλ

[
M

drµ

dλ

dεµ

dλ
+

1
2

drµ drµ

dλ
εν∂ν

M

]
dλ
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By least action the correct path satisfies δA = 0 with fixed boundaries so the
equation of motion is

(2.6) (d/dλ)(Muµ) = (1/2)uνuν∂µM;

M(duµ/dλ) = ((1/2)ηµνuαuα − uµuν)∂ν
M

where uµ = drµ/dλ. Now look at the symmetries of the action functional via
λ → λ+δ. The conserved current is then the Hamiltonian H = −L+uµ(∂L/∂uµ) =
(1/2)Muµuµ = E. This can be seen by setting δA = 0 where

(2.7) 0 = δA = A
′ − A =

∫
dλ

[
1
2
uµuµuν∂νM + Muµ

duµ

dλ

]
δ

which means that the integrand is zero, i.e. (d/dλ)[(1/2)Muµuµ] = 0. Since the
proper time is defined as c2dτ2 = drµdrµ this leads to (dτ/dλ) =

√
(2E/Mc2)

and the equation of motion becomes

(2.8) M(dvµ/dτ) = (1/2)(c2ηµν − vµvν)∂ν
M

where vµ = drµ/dτ . The nonrelativistic limit can be derived by letting the particles
velocity be ignorable with respect to light velocity. In this limit the proper time is
identical to the time coordinate τ = t and the result is that the µ = 0 component
is satisfied identically via (r ∼ �r)

(2.9) M
d2r

dt2
= −1

2
c2∇M ⇒ m

(
d2r

dt2

)
= −∇

[
mc2

2
log

(
M

µ

)]
where µ is an arbitrary mass scale. In order to have the correct limit the term
in parenthesis on the right side should be equal to the quantum potential so
(mc2/2)log(M/µ) = (�2/2m)(∇2|ψ|/|ψ|) and hence

(2.10) M = µexp[−(�2/m2c2)(∇2|Ψ|/|Ψ|)]
One infers that the relativistic quantum mass field is M = µexp[(�2/2m)(�|Ψ|/|Ψ|)]
(manifestly invariant) and setting µ = m we get (cf. also (2.12) below)

(2.11) M = mexp[(�2/m2c2)(�|Ψ|/|Ψ|)]
If one starts with the standard relativistic theory and goes to the nonrelativistic
limit one does not get the correct nonrelativistic equations; this is a result of an
improper decomposition of the wave function into its phase and norm in the KG
equation (cf. also [110] for related procedures). One notes here also that (2.11)
leads to a positive definite mass squared. Also from [871] this can be extended
to a many particle version and to a curved spacetime. However, for a particle in
a curved background we will take (cf. [873] which we follow for the rest of this
section)

(2.12) ∇µ(ρ∇µS) = 0; gµν∇µS∇νS = M
2c2; M

2 = m2eQ; Q =
�2

m2c2

�g|Ψ|
|Ψ|

((2.11) suggests that M2 = m2exp(2Q) but (2.12) is used for compatibility with
the KG approach, etc., where exp(Q) ∼ 1 + Q - cf. remarks after (2.28) below
- in any case the qualitative features are close here for either formula). Since,
following deBroglie, the quantum HJ equation (QHJE) in (2.12) can be written in
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the form (m2/M2)gµν∇µS∇νS = m2c2, the quantum effects are identical to
a change of spacetime metric

(2.13) gµν → g̃µν = (M2/m2)gµν

which is a conformal transformation. The QHJE becomes then g̃µν∇̃µS∇̃νS =
m2c2 where ∇̃µ represents covariant differentiation with respect to the metric g̃µν

and the continuity equation is then g̃µν∇̃µ(ρ∇̃νS) = 0. The important conclusion
here is that the presence of the quantum potential is equivalent to a curved space-
time with its metric given by (2.13). This is a geometrization of the quantum
aspects of matter and it seems that there is a dual aspect to the role of geometry
in physics. The spacetime geometry sometimes looks like “gravity” and sometimes
reveals quantum behavior. The curvature due to the quantum potential may have
a large influence on the classical contribution to the curvature of spacetime. The
particle trajectory can now be derived from the guidance relation via differentia-
tion of (2.12) leading to the Newton equations of motion

(2.14) M
d2xµ

dτ2
+ MΓµ

νκuνuκ = (c2gµν − uµuν)∇νM

Using the conformal transformation above (2.14) reduces to the standard geodesic
equation.

Now a general “canonical” relativistic system consisting of gravity and classical
matter (no quantum effects) is determined by the action

(2.15) A =
1
2κ

∫
d4x
√
−gR+

∫
d4x
√
−g

�2

2m

(
ρ

�2
DµSDµS − m2

�2
ρ

)
where κ = 8πG and c = 1 for convenience. It was seen above that via deBroglie
the introduction of a quantum potential is equivalent to introducing a conformal
factor Ω2 = M2/m2 in the metric. Hence in order to introduce quantum effects
of matter into the action (2.15) one uses this conformal transformation to get
(1 + Q ∼ exp(Q))

(2.16) A =
1
2κ

∫
d4x
√
−ḡ(R̄Ω2 − 6∇̄µΩ∇̄µΩ)+

+
∫

d4x
√
−ḡ

( ρ

m
Ω2∇̄µS∇̄µS −mρΩ4

)
+
∫

d4x
√
−ḡλ

[
Ω2 −

(
1 +

�2

m2

�̄
√

ρ
√

ρ

)]
where a bar over any quantity means that it corresponds to the nonquantum
regime. Here only the first two terms of the expansion of M2 = m2exp(Q) in
(2.12) have been used, namely M2 ∼ m2(1 + Q). No physical change is involved
in considering all the terms. λ is a Lagrange multiplier introduced to identify
the conformal factor with its Bohmian value. One uses here ḡµν to raise of lower
indices and to evaluate the covariant derivatives; the physical metric (containing
the quantum effects of matter) is gµν = Ω2ḡµν . By variation of the action with
respect to ḡµν , Ω, ρ, S, and λ one arrives at the following quantum equations of
motion:



2. SKETCH OF DEBROGLIE-BOHM-WEYL THEORY 97

(1) The equation of motion for Ω

(2.17) R̄Ω + 6�̄Ω +
2κ

m
ρΩ(∇̄µS∇̄µS − 2m2Ω2) + 2κλΩ = 0

(2) The continuity equation for particles ∇̄µ(ρΩ2∇̄µS) = 0
(3) The equations of motion for particles (here a′ ≡ ā)

(2.18) (∇̄µS∇̄µS −m2Ω2)Ω2√ρ +
�2

2m

[
�′

(
λ
√

ρ

)
− λ

�′√ρ

ρ

]
= 0

(4) The modified Einstein equations for ḡµν

(2.19)
Ω2

[
R̄µν − 1

2 ḡµνR̄
]
− [ḡµν�′ − ∇̄µ∇̄ν ]Ω2 − 6∇̄µΩ∇̄νΩ + 3ḡµν∇̄αΩ∇̄αΩ+

+
2κ

m
ρΩ2∇̄µS∇̄νS − κ

m
ρΩ2ḡµν∇̄αS∇̄αS + κmρΩ4ḡµν+

+
κ�2

m2

[
∇̄µ
√

ρ∇̄ν

(
λ
√

ρ

)
+ ∇̄ν

√
ρ∇̄µ

(
λ
√

ρ

)]
− κ�2

m2
ḡµν∇̄α

[
λ
∇̄α√ρ
√

ρ

]
= 0

(5) The constraint equation Ω2 = 1 + (�2/m2)[(�̄
√

ρ)/
√

ρ]
Thus the back reaction effects of the quantum factor on the background metric are
contained in these highly coupled equations (cf. also [27]). A simpler form of (2.17)
can be obtained by taking the trace of (2.19) and using (2.17) which produces
λ = (�2/m2)∇̄µ[λ(∇̄µ√ρ)/

√
ρ]. A solution of this via perturbation methods using

the small parameter α = �2/m2 yields the trivial solution λ = 0 so the above
equations reduce to

(2.20) ∇̄µ(ρΩ2∇̄µS) = 0; ∇̄µS∇̄µS = m2Ω2; Gµν = −κT
(m)
µν − κT

(Ω)
µν

where T
(m)
µν is the matter energy-momentum (EM) tensor and

(2.21) κT
(Ω)
µν =

[gµν�−∇µ∇ν ]Ω2

Ω2
+ 6

∇µΩ∇νΩ
ω2

− 2gµν
∇αΩ∇αΩ

Ω2

with Ω2 = 1+α(�̄
√

ρ/
√

ρ). Note that the second relation in (2.20) is the Bohmian
equation of motion and written in terms of gµν it becomes ∇µS∇µS = m2c2.

In the preceeding one has tacitly assumed that there is an ensemble of quan-
tum particles so what about a single particle? One translates now the quantum
potential into purely geometrical terms without reference to matter parameters so
that the original form of the quantum potential can only be deduced after using
the field equations. Thus the theory will work for a single particle or an ensemble
and in this connection we make

REMARK 3.2.1. One notes that the use of ψψ∗ automatically suggests or
involves an ensemble if it is to be interpreted as a probability density. Thus the
idea that a particle has only a probability of being at or near x seems to mean that
some paths take it there but others don’t and this is consistent with Feynman’s
use of path integrals for example. This seems also to say that there is no such
thing as a particle, only a collection of versions or cloud connected to the particle
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idea. Bohmian theory on the other hand for a fixed energy gives a one parameter
family of trajectories associated to ψ (see here Section 2.2 and [197] for details).
This is because the trajectory arises from a third order differential while fixing
the solution ψ of the second order stationary Schrödinger equation involves only
two “boundary” conditions. As was shown in [197] this automatically generates
a Heisenberg inequality ∆x∆p ≥ c�; i.e. the uncertainty is built in when using
the wave function ψ and amazingly can be expressed by the operator theoretical
framework of quantum mechanics. Thus a one parameter family of paths can be
associated with the use of ψψ∗ and this generates the cloud or ensemble auto-
matically associated with the use of ψ. In fact, based on Remark 2.2.2, one might
conjecture that upon using a wave function discription of quantum particle motion,
one opens the door to a cloud of particles, all of whose motions are incompletely
governed by the SE, since one determining condition for particle motion is ignored.
Thus automatically the quantum potential will give rise to a force acting on any
such particular trajectory and the “ensemble” idea naturally applies to a cloud of
identical particles (cf. also Theorem 1.2.1 and Corollary 1.2.1).

Now first ignore gravity and look at the geometrical properties of the confor-
mal factor given via

(2.22) gµν = e4Σηµν ; e4Σ =
M2

m2
= exp

(
α

�η
√

ρ
√

ρ

)
= exp

(
α

�η

√
|T|√
|T|

)
where T is the trace of the EM tensor and is substituted for ρ (true for dust). The
Einstein tensor for this metric is

(2.23) Gµν = 4gµν�ηexp(−Σ) + 2exp(−2Σ)∂µ∂νexp(2Σ)

Hence as an Ansatz one can suppose that in the presence of gravitational effects
the field equation would have a form

(2.24) Rµν −
1
2
Rgµν = κTµν + 4gµνeΣ�e−Σ + 2e−2Σ∇µ∇νe2Σ

This is written in a manner such that in the limit Tµν → 0 one will obtain (2.22).
Taking the trace of the last equation one gets −R = κT− 12�Σ + 24(∇Σ)2 which
has the iterative solution κT = −R+ 12α�[(�

√
R)/

√
R] leading to

(2.25) Σ = α[(�
√
|T|/

√
|T|)] 
 α[(�

√
|R|)/

√
|R|)]

to first order in α.

One goes now to the field equations for a toy model. First from the above
one sees that T can be replaced by R in the expression for the quantum potential
or for the conformal factor of the metric. This is important since the explicit
reference to ensemble density is removed and the theory works for a single particle
or an ensemble. So from (2.24) for a toy quantum gravity theory one assumes the
following field equations

(2.26) Gµν − κTµν − Zµναβexp
(α

2
Φ
)
∇α∇βexp

(
−α

2
Φ
)

= 0



2. SKETCH OF DEBROGLIE-BOHM-WEYL THEORY 99

where Zµναβ = 2[gµνgαβ − gµαgνβ ] and Φ = (�
√
|R|/

√
|R|). The number 2 and

the minus sign of the second term are chosen so that the energy equation derived
later will be correct. Note that the trace of (2.26) is

(2.27) R+ κT + 6exp(αΦ/2)�exp(−αΦ/2) = 0

and this represents the connection of the Ricci scalar curvature of space time
and the trace of the matter EM tensor. If a perturbative solution is admit-
ted one can expand in powers of α to find R(0) = −κT and R(1) = −κT −
6exp(αΦ0/2)�exp(−αΦ0/2) where Φ(0) = �

√
|T|/

√
|T|. The energy relation can

be obtained by taking the four divergence of the field equations and since the
divergence of the Einstein tensor is zero one obtains

(2.28) κ∇ν
Tµν = αRµν∇νΦ− α2

4
∇µ(∇Φ)2 +

α2

2
∇µΦ�Φ

For a dust with Tµν = ρuµuν and uµ the velocity field, the conservation of mass
law is ∇ν(ρMuν) = 0 so one gets to first order in α ∇µM/M = −(α/2)∇µΦ
or M2 = m2exp(−αΦ) where m is an integration constant. This is the correct
relation of mass and quantum potential.

In [873] there is then some discussion about making the conformal factor
dynamical via a general scalar tensor action (cf. also [867]) and subsequently one
makes both the conformal factor and the quantum potential into dynamical fields
and creates a scalar tensor theory with two scalar fields. Thus start with a general
action

(2.29) A =
∫

d4x
√
−g

[
φR− ω

∇µφ∇µφ

φ
− ∇µQ∇µQ

φ
+ 2Λφ + Lm

]
The cosmological constant generally has an interaction term with the scalar field
and here one uses an ad hoc matter Lagrangian

(2.30) Lm =
ρ

m
φa∇µS∇µS −mρφb − Λ(1 + Q)c + αρ(e�Q − 1)

(only the first two terms 1 + Q from exp(Q) are used for simplicity in the third
term). Here a, b, c are constants to be fixed later and the last term is chosen
(heuristically) in such a manner as to have an interaction between the quantum
potential field and the ensemble density (via the equations of motion); further the
interaction is chosen so that it vanishes in the classical limit but this is ad hoc.
Variation of the above action yields

(1) The scalar fields equation of motion

(2.31) R+
2ω

φ
�φ− ω

φ2
∇µφ∇µφ + 2Λ+

+
1
φ2
∇µQ∇µQ +

a

m
ρφa−1∇µS∇µS −mbρφb−1 = 0

(2) The quantum potential equations of motion

(2.32) (�Q/φ)− (∇µQ∇µφ/φ2)− Λc(1 + Q)c−1 + α�ρexp(�Q) = 0
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(3) The generalized Einstein equations

(2.33) G
µν − Λgµν = − 1

φ
T

µν − 1
φ

[∇µ∇ν − gµν�]φ +
ω

φ2
∇µφ∇νφ−

− ω

2φ2
gµν∇αφ∇αφ +

1
φ2
∇µQ∇νQ− 1

2φ2
gµν∇αQ∇αQ

(4) The continuity equation ∇µ(ρφa∇µS) = 0
(5) The quantum Hamilton Jacobi equation

(2.34) ∇µS∇µS = m2φb−a − αmφ−a(e�Q − 1)

In (2.31) the scalar curvature and the term ∇µS∇µS can be eliminated using
(2.33) and (2.34); further on using the matter Lagrangian and the definition of the
EM tensor one has

(2.35) (2ω − 3)�φ = (a + 1)ρα(e�Q − 1)− 2Λ(1 + Q)c + 2Λφ− 2
φ
∇µQ∇µQ

(where b = a + 1). Solving (2.32) and (2.35) with a perturbation expansion in α
one finds

(2.36) Q = Q0 + αQ1 + · · · ; φ = 1 + αQ1 + · · · ;
√

ρ =
√

ρ0 + α
√

ρ1 + · · ·
where the conformal factor is chosen to be unity at zeroth order so that as α → 0
(2.34) goes to the classical HJ equation. Further since by (2.34) the quantum
mass is m2φ + · · · the first order term in φ is chosen to be Q1 (cf. (2.12)).
Also we will see that Q1 ∼ �

√
ρ/
√

ρ plus corrections which is in accord with
Q as a quantum potential field. In any case after some computation one ob-
tains a = 2ωk, b = a + 1, and � = (1/4)(2ωk + 1) = (1/4)(a + 1) = b/4 with
Q0 = [1/c(2c − 3)]{[−(2ωk + 1)/2Λ]k

√
ρ0 − (2c2 − c + 1)} while ρ0 can be deter-

mined (cf. [873] for details). Thus heuristically the quantum potential can be
regarded as a dynamical field and perturbatively one gets the correct dependence
of quantum potential upon density, modulo some corrective terms.

One goes next to a number of examples and we only consider here the confor-
mally flat solution (cf. also [869]). Thus take gµν = exp(2Σ)ηµν where Σ << 1.
One obtains from (2.24)

(2.37) Rµν = ηµν�Σ + 2∂µ∂νΣ ⇒ Gµν = 2∂µ∂νΣ− 2ηµν�Σ

One can solve this iteratively to get

(2.38) R(0) = −κT ⇒ Σ(0) = −κ

6
�−1

T;

R(1) = −κT + 3α�
�
√
|T|√
|T|

⇒ Σ(1) = −κ

6
�−1

T +
α

2
�
√
|T|√
|T|

Consequently

(2.39) Σ = −κ

6
�−1

T +
α

2
�
√
|T|√
|T|

+ · · ·

The first term is pure gravity, the second pure quantum, and the remaining terms
involve gravity-quantum interactions. Other impressive examples are given (cf.
also [869]).
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One goes now to a generalized equivalence principle. The gravitational effects
determine the causal structure of spacetime as long as quantum effects give its
conformal structure. This does not mean that quantum effects have nothing to
do with the causal structure; they can act on the causal structure through back
reaction terms appearing in the metric field equations. The conformal factor of the
metric is a function of the quantum potential and the mass of a relativistic particle
is a field produced by quantum corrections to the classical mass. One has shown
that the presence of the quantum potential is equivalent to a conformal mapping of
the metric. Thus in different conformally related frames one feels different quan-
tum masses and different curvatures. In particular there are two frames with one
containing the quantum mass field and the classical metric while the other contains
the classical mass and the quantum metric. In general frames both the spacetime
metric and the mass field have quantum properties so one can state that different
conformal frames are identical pictures of the gravitational and quantum phenom-
ena. We feel different quantum forces in different conformal frames. The question
then arises of whether the geometrization of quantum effects implies conformal
invariance just as gravitational effects imply general coordinate invariance. One
sees here that Weyl geometry provides additional degrees of freedom which can be
identified with quantum effects and seems to create a unified geometric framework
for understanding both gravitational and quantum forces. Some features here are:
(i) Quantum effects appear independent of any preferred length scale. (ii) The
quantum mass of a particle is a field. (iii) The gravitational constant is also a field
depending on the matter distribution via the quantum potential (cf. [867, 874]).
(iv) A local variation of matter field distribution changes the quantum potential
acting on the geometry and alters it globally; the nonlocal character is forced by
the quantum potential (cf. [868]).

2.1. DIRAC-WEYL ACTION. Next (still following [873]) one goes to
Weyl geometry based on the Weyl-Dirac action

(2.40) A =
∫

d4x
√
−g(FµνFµν − β2 WR+ (σ + 6)β;µβ;µ + Lmatter)

Here Fµν is the curl of the Weyl 4-vector φµ, σ is an arbitrary constant and β is a
scalar field of weight −1. The symbol “;” represents a covariant derivative under
general coordinate and conformal transformations (Weyl covariant derivative) de-
fined as X;µ = W∇µX −NφµX where N is the Weyl weight of X. The equations
of motion are then

(2.41) G
µν = −8π

β2
(Tµν + Mµν) +

2
β

(gµνW∇αW∇αβ −W∇µW∇νβ)+

+
1
β2

(4∇µβ∇νβ − gµν∇αβ∇αβ) +
σ

β2
(β;µβ;ν − 1

2
gµνβ;αβ;α);

W∇µFµν =
1
2
σ(β2φµ + β∇µβ) + 4πJµ;

R = −(σ + 6)
W �β

β
+ σφαφα − σW∇αφα +

ψ

2β
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where

(2.42) Mµν = (1/4π)[(1/4)gµνFαβFαβ − Fµ
α F να]

and

(2.43) 8πT
µν =

1√−g

δ
√−gLmatter

δgµν
; 16πJµ =

δLmatter

δφµ
; ψ =

δLmatter

δβ

For the equations of motion of matter and the trace of the EM tensor one uses
invariance of the action under coordinate and gauge transformations, leading to

(2.44) W∇νT
µν − T

∇µβ

β
= Jαφαµ −

(
φµ +

∇µβ

β

)
W∇αJα;

16πT− 16πW∇µJµ − βψ = 0

The first relation is a geometrical identity (Bianchi identity) and the second shows
the mutual dependence of the field equations. Note that in the Weyl-Dirac theory
the Weyl vector does not couple to spinors so φµ cannot be interpreted as the
EM potential; the Weyl vector is used as part of the spacetime geometry and
the auxillary field (gauge field) β represents the quantum mass field. The gravity
fields gµν and φµ and the quantum mass field determine the spacetime geometry.
Now one constructs a Bohmian quantum gravity which is conformally invariant
in the framework of Weyl geometry. If the model has mass this must be a field
(since mass has non-zero Weyl weight). The Weyl-Dirac action is a general Weyl
invariant action as above and for simplicity now assume the matter Lagrangian
does not depend on the Weyl vector so that Jµ = 0. The equations of motion are
then

(2.45) G
µν = −8π

β2
(Tµν + Mµν) +

2
β

(gµνW∇αW∇αβ −W∇µW∇νβ)+

+
1
β2

(4∇µβ∇νβ − gµν∇αβ∇αβ) +
σ

β2

(
β;µβ;ν − 1

2
gµνβ;αβ;α

)
;

W∇νFµν =
1
2
σ(β2φµ + β∇µβ); R = −(σ + 6)

W �β

β
+ σφαφα − σW∇αφα +

ψ

2β

The symmetry conditions are

(2.46) W∇νT
µν − T(∇µβ/β) = 0; 16πT− βψ = 0

(recall T = Tµν
µν). One notes that from (2.45) results W∇µ(β2φµ + β∇µβ) = 0 so

φµ is not independent of β. To see how this is related to the Bohmian quantum
theory one introduces a quantum mass field and shows it is proportional to the
Dirac field. Thus using (2.45) and (2.46) one has

(2.47) �β +
1
6
βR =

4π

3
T

β
+ σβφαφα + 2(σ − 6)φγ∇γβ +

σ

β
∇µβ∇µβ

This can be solved iteratively via

(2.48) β2 = (8πT/R)− {1/[(R/6)− σφαφα]}β�β + · · ·
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Now assuming Tµν = ρuµuν (dust with T = ρ) we multiply (2.46) by uµ and sum
to get

(2.49) W∇ν(ρuν)− ρ(uµ∇µβ/β) = 0

Then put (2.46) into (2.49) which yields

(2.50) uνW∇νuµ = (1/β)(gµν − uµuν)∇νβ

To see this write (assuming gµν∇νβ = ∇µβ)

(2.51) W∇ν(ρuµuν) = uµW∇νρuµ + ρuνW∇νuµ ⇒

⇒ uµ

(
uµ∇µβ

β

)
+ uνW∇νuµ − ∇

µβ

β
= 0 ⇒ uνW∇νuµ = (1− uµuµ)

∇µβ

β
=

(gµν − uµuµgµν)
∇νβ

β
= (gµν − uµuν)

∇νβ

β

which is (2.49). Then from (2.48)

(2.52) β2(1) =
8πT

R ; β2(2) =
8πT

R

(
1− 1

(R/6)− σφαφα

�
√

T√
T

)
; · · ·

Comparing with (2.14) and (2.3) shows that we have the correct equations for the
Bohmian theory provided one identifies

(2.53) β ∼M;
8πT

R ∼ m2;
1

σφαφα − (R/6)
∼ α =

�2

m2c2

Thus β is the Bohmian quantum mass field and the coupling constant α (which
depends on �) is also a field, related to geometrical properties of spacetime. One
notes that the quantum effects and the length scale of the spacetime are related.
To see this suppose one is in a gauge in which the Dirac field is constant; apply
a gauge transformation to change this to a general spacetime dependent function,
i.e.

(2.54) β = β0 → β(x) = β0exp(−Ξ(x)); φµ → φµ + ∂µΞ

Thus the gauge in which the quantum mass is constant (and the quantum force is
zero) and the gauge in which the quantum mass is spacetime dependent are related
to one another via a scale change. In particular φµ in the two gauges differ by
−∇µ(β/β0) and since φµ is a part of Weyl geometry and the Dirac field represents
the quantum mass one concludes that the quantum effects are geometrized (cf.
also (2.45) which shows that φµ is not independent of β so the Weyl vector is
determined by the quantum mass and thus the geometrical aspects of the manifold
are related to quantum effects).
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2.2. REMARKS ON CONFORMAL GRAVITY. We go here to a se-
ries of papers by Arias, Bonal, Cardenas, Gonzalez, Leyva, Martin, and Quiros
(cf. [46, 47, 48, 133, 181, 182, 796, 797, 798, 799]) and sketch at some length
some results concerning Brans-Dicke theory, conformal gravity, and deBroglie-
Bohm-Weyl (dBBW) theory (many other topics are also covered in these papers
which we omit here - cf. also [24, 37, 801, 974, 975]). The presentation in
[188] of this material is difficult to read and we try here for a smoother develop-
ment. In [188] we started with [797, 799] and then gave a later reformulation
from [798]; we expand upon this now (still in a more or less chronological order
[799, 797, 798, 796]) and try to make matters clearer. Questions about the phys-
ical significance of Riemannian geometry in relativity have been raised in the past
(cf. [150, 301]) due to the arbitrariness in the metric tensor resulting from the
indefiniteness in the choice of units of measure. In fact Brans-Dicke (BD) theory
with a changing dimensionless gravitational coupling constant Gm2 ∼ φ−1 (with
m the intertial mass of some elementary particle and φ the BD field - � = c = 1
here) can be formulated in two different ways since either m or G could vary with
position in spacetime. The choice G ∼ φ−1 with m = const. leads to the Jordan
frame (JF) formalism based on the Lagrangian

(2.55) LBD[g, φ] =
√−g

16π

(
φR− ω

φ
gnm∇nφ∇mφ

)
+ LM [g]

where R is the curvature scalar, ω is the BD coupling constant, and LM [g] is the
Lagrangian density for ordinary matter minimally coupled to the scalar field. On
the other hand the choice m ∼ φ−1/2 with G constant leads to the Einstein frame
(EF) BD theory based on the Lagrangian

(2.56) L̂BD =
√−g

16π

(
R̂−

(
ω +

3
2

)
ĝnm∇̂nφ̂∇̂mφ̂

)
+ L̂M [ĝ, φ̂]

where now in the EF metric ĝ the ordinary matter is nonminimally coupled to the
scalar field φ̂ ≡ log(φ) through the Lagrangian density L̂M [ĝ, φ̂]. Both JF and EF
formulations of BD gravity are equivalent representations of the same physical sit-
uation since they both belong to the same conformal class (cf. [150]); in particular
LBD

EF ≡ LBD
JF via a rescaling of spacetime metric g → ĝ = φg or ĝab = φgab where

φ is smooth and nonvanishing. This rescaling can be interpreted as a particular
transformation of the physical units and any dimensionless number (e.g. Gm2) is
invariant; experimental observations are unchanged since spacetime coincidences
are not affected. Hence both based formulations (one based on varying G and
the other on varying m are indistinguishable) and one has physically equivalent
representations of a same physical situation. The same line of reasoning can be
applied if minimal and nonminimal coupling to matter are interchanged via

(2.57) (A) LGR[g, φ] =
√−g

16π

(
φR− ω

φ
gnm∇nφ∇mφ

)
+ LM [g, φ];

(B) L̂GR =
√−g

16π

(
R̂−

(
ω +

3
2

)
ĝnm∇̂nφ̂∇̂mφ̂

)
+ L̂M [ĝ]
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Both Lagrangians represent equivalent pictures of GR and (B) is simply GR with
a scalar field as an additional source of gravity (EFGR) and its conformally equiv-
alent Lagrangian (A) refers to Jordan frame GR (JFGR). The field equations
derivable from Lagrangian (B) are

(2.58) Ĝab = 8πT̂ab +
(

ω +
3
2

)(
∇̂aφ̂∇̂bφ̂−

1
2
ĝabĝ

nm∇̂nφ̂∇̂mφ̂

)
;

�φ̂ = 0; ∇̂nT̂na = 0; � = ĝnm∇̂n∇̂m

where Ĝab = R̂ab − (1/2)ĝabR̂ and T̂ab = (2/
√

ĝ)(∂/∂ĝab)(
√
−ĝL̂M ). Some disad-

vantages for JFGR historically involve first that the BD scalar field is nonminimally
coupled both to scalar curvature and to ordinary matter so the gravitational con-
stant G varies as G ∼ φ−1. At the same time the material test particles don’t
follow the geodesics of the geometry since they are acted on by both the metric field
and the scalar field. In particular masses vary from point to point in spacetime
so as to preserve a constant Gm2 (so m ∼ φ1/2). The most serious (but illusory)
objection is linked with the formulation of the theory in unphysical variables so
that the kinetic energy of the scalar field is not positive deffinite (cf. [351]). How-
ever one shows in [799] that the indefiniteness in the sign of the energy density in
the Jordan frame is only apparent; in fact once the scalar field energy density is
positive definite in the Einstein frame it is also in the Jordan frame.

Usually the JF formulation of BD gravity is linked with Riemannian geometry
(cf. [150]). This is directly related to the fact that in the JFBD formalism ordi-
nary matter is minimally coupled to the scalar BD field through LM [g] in (2.55).
This means that point particles follow the geodesics of the Riemannian geometry.
This geometry is based on the parallel transport law and length preservation law

(2.59) dξa = −γa
nmξmdxn; dg(ξ, ξ) = 0

where g(ξ, ξ) = gnmξnξm and γa
nm are the affine connections of the manifold.

These postulates mean that γa
bc = Γa

bc = (1/2)gan(gnb,c + gnc,b− gbc,n) (Christoffel
symbols). After the rescaling ĝab = φgab the above parallel transport and length
rules become (recall φ̂ ∼ log(φ))

(2.60) dξa = −γ̂a
nmξmdxn; dĝ(ξ, ξ) = dxn∇̂nφ̂ĝ(ξ, ξ);

γ̂a
bc = Γ̂a

bc −
1
2
(∇̂bφ̂δa

c + ∇̂cφ̂δa
b − ∇̂aφ̂ĝbc)

Thus the affine connections of the manifold don’t coincide with the Christoffel sym-
bols of the metric and one has a Weyl type manifold. Thus JF and EF Lagrangians
of both BD and GR theories are connected by conformal rescaling of the metric
together with scalar field redefinition. This means JF and EF formulations on the
one hand and Riemannian and Weyl type geometries on the other form conformal
equivalence classes (uniquely defined only after the coupling of matter fields to the
metric). In BD theory for example matter minimally couples to the JF so the test
particles follow the geodesics of the Riemannian geometry (i.e. JFBD is linked
to Riemannian geometry) while EFBD theory (conformal to JFBD) is linked to
a Weyl type geometry. Similarly EFGR is linked with Riemannian geometry and
JFGR (conformal to EFGR) is linked to a Weyl type geometry. When the matter
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part of the Lagrangian is absent both BD and GR theories can be interprted on
the grounds of either Riemann or Weyl type geometry and one can conclude that
BD and GR theory with an extra scalar field coincide.

The field equations of JFGR can be derived, either directly from (2.57) (equa-
tion (A)) or by conformally mapping (2.58) back to the JF metric according to
ĝ = φg, to obtain

(2.61) �φ = 0; ∇nTna =
1
2
φ−1∇aφT ;

Gab =
8π

φ
Tab +

ω

φ2
(∇aφ∇bφ−

1
2
gabg

nm∇− nφ∇mφ) +
1
φ

(∇a∇bφ− gab�φ)

where Tab = (2/
√−g)(∂/∂gab)(

√−gLM ) is the stress energy tensor for ordinary
matter in the Jordan frame. The energy is not conserved because the scalar field
φ exchanges energy with the metric and with the matter fields. The equation of
motion of an uncharged spinless mass point that is acted both by the JF metric
field g and the scalar field φ is

(2.62)
d2xa

ds2
= −Γa

nm

dxm

ds

dxn

ds
− 1

2
φ−1∇nφ

(
dxn

ds

dxa

ds
− gan

)
This does not coincide with the geodesic equation of the JF metric and this,
together with the more complex structure of (2.61) in comparison to (2.58), in-
troduces additional complications in the dynamics of matter fields. The fact that
the Jordan frame does not lead to a well defined energy momentum tensor for the
scalar field is perhaps the most serious objection to this representation (cf. [351]).
Thus the kinetic energy of the JF scalar field is negative definite or indefinite un-
like the Einstein frame where for ω > −(3/2) it is positive definite; this implies
no stable ground state and hence unphysical variables (cf. [351]). However al-
though the right side of (2.61) does not have a definite sign the scalar field stress
energy tensor can be given the canonical form (cf. [842] for example). In [799]
one obtains the same result as in [842] by rewriting equation (2.61) in terms of
affine magnitudes in the Weyl type manifold. Thus the affine connections of the
JF (Weyl type) manifold γa

bc are related with the Christoffel symbols of the JF
metric through γa

bc = Γa
bc +(1/2)φ−1(∇bφδa

c +∇cφδa
b −∇aφgbc) and one can define

the affine Einstein tensor γGab via the γa
bc instead of the Christoffel symbols of Γa

bc

so that (2.61) becomes

(2.63) γGab =
8π

φ
Tab +

[ω + (3/2)]
φ2

(∇aφ∇bφ− (1/2)gabg
nm∇− nφ∇mφ)

Now (φ/8π) times the second term in the right side has the canonical form for the
stress energy tensor (true stress energy tensor) while (φ/8π) times the sum of the
second and third terms in the right side will be called the effective stress energy
tensor for the BD scalar field φ (cf. (2.58)). Thus once the scalar field energy
density is positive definite in the Einstein frame it is also in the Jordan frame.
This removes the main physical objection to the Jordan frame formulation of GR.

Another remarkable feature of JFGR is the invariance under the following
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conformal transformations

(2.64) (A) g̃ab = φ2gab; φ̃ = φ−1 (B) g̃ab = fgab; φ̃ = f−1φ

where f is smooth. Also JFBD based on (A) in (2.57) is invariant under the more
general rescaling (cf. [350, 796])

(2.65) g̃ab = φ2αgab; φ̃ = φ1−2α; ω̃ =
ω − 6α(α− 1)

(1− 2α)2

for α �= 1/2. The conformal invariance of a given theory of gravitation under a
transformation of physical units is very desirable and in particular (A) in (2.57)
is thus a better candidate for BD theory than classical theories given by (2.55),
(2.56), or (B) in (2.57) which are not invariant.

We go now to [798] where a number of argments from [797, 799] are re-
peated and amplified for greater clarity. It has been demonstrated already that
GR with an extra scalar field and its conformal formulation (JFGR) are differ-
ent but physically equivalent representations of the same theory. The claim is
based on the argument that spacetime coincidences (coordinates) are not affected
by a conformal rescaling of the spacetime metric (�) ĝab = Ω2gab where Ω2 is
a smooth nonvanishing function on the manifold. Thus the experimental obser-
vations (measuements) being nothing but verifications of these coincidences are
unchanged too by (�). This means that canonical GR and its conformal image
are experimentally indistinguishable. Now a possible objection to this claim could
be based on the following argument (which will be refuted). ARGUMENT: In
canonical GR the matter fields couple minimally to the metric ĝ that determines
metrical relations on a Riemannian spacetime. Hence matter particles follow the
geodesics of the metric ĝ (in Riemannian geometry) and their masses are constant
over the spacetime manifold, i.e. it is the metric which matter “feels” or perhaps
the “physical metric”. Under the conformal rescaling the matter fields become
non-minimally coupled to the conformal metric g and hence matter particles do
not follow the geodesics of this last metric. Furthermore, it is not the metric that
determines metrical relations on the Riemannian manifold. This line of reasoning
leads to the following conclusion. Although canonical GR and its conformal im-
age may be physically equivalent theories, nevertheless, the physical metric is that
which determines metrical relations on a Riemannian spacetime and the conformal
metric g is not the physical metric. REFUTATION - to be developed: Un-
der the conformal rescaling (�) not only the Lagrangian of the theory is mapped
into its conformal Lagrangian but the spacetime geometry itself is mapped too
into a conformal geometry. In this last geometry metrical relations involve both
the conformal metric g and the conformal factor Ω2 generating (�). Hence in
the conformal Lagrangian the matter fields should “feel” both the metric and the
scalar function Ω, i.e. the matter particles would not follow the geodesics of the
conformal metric alone. The result is that under (�) the “physical” metric of the
untransformed geometry is effectively mapped into the “physical” metric of the
conformal geometry. This “missing detail” has apparently been a source of long
standing confusion and, although details have been sketched already, more will be
provided.
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Another question regarding metric theories of spacetime is also clarified, namely
the physical content of a given theory of spacetime should be contained in the in-
variants of the group of position dependent transformations of units and coordinate
transformations (cf. [150]). All known metric theories of spacetime, including GR,
BD, and scalar-tensor theories in general fufill the requirement of invariance under
the group of coordinate transformations. It is also evident that any consistent for-
mulation of a given effective theory of spacetime must be invariant also under the
group of transformations of units of length, time, and mass. This aspect is treated
below and one shows that the only consistent formulation of gravity (among those
studied here) is the conformal representation of GR.

Now with some repetition one considers various Lagrangians again. First is
that for GR with an extra scalar field, namely (α ≥ 0 is a free parameter)

(2.66) L̂GR =
√
−ĝ(R̂− α(∇̂φ̂)2 + 16π

√
−ĝLM

(note (∇̂φ̂)2 = ĝmnφ̂,mφ̂,n). When φ̂ is constant or α = 0 one recovers the usual
Einstein theory. Under the conformal rescaling (�) with Ω2 = exp(φ̂) the La-
grangian in (2.66) is mapped into its conformal Lagrangian (cf. (2.55))

(2.67) LGR =
√
−geφ̂(R− (α− (3/2))(∇φ̂)2 + 16π

√
−ge2φ̂LM ≡

≡
√
−g

(
φR−

(
α− 3

2

)
(∇φ)2

φ

)
+ 16π

√
−gLM

(the latter expression having a more usual BD form). Due to the minimal cou-
pling of the scalar field φ̂ to the curvature in canonical GR ((2.66)) the effective
gravitational constant Ĝ (set equal to 1 in (2.66)) is a real constant. The minimal
coupling of the matter fields to the metric in (2.66) entails that matter particles
follow the geodesics of the metric ĝ. Hence the inertial mass m̂ is constant too
over spacetime. This implies that the dimensionless gravitational coupling con-
stant Ĝm̂2 (c = � = 1) is constant in spacetime - unlike BD theory where this
evolves as φ−1. This is a conformal invariant feature of GR since dimensionless con-
stants do not change under (�); in other words in conformal GR Gm2 is constant
as well. However in this case ((2.67)) the effective gravitational constant varies
like G ∼ φ−1 and hence the particle masses vary like m = exp(φ̂/2)m̂ = φ1/2m̂.
According to [301] the conformal transformation (�) (with Ω2 = φ) can be in-
terpreted as a transformation of the units of length time and reciprocal mass; in
particular there results ds = φ−1/2dŝ while m−1 = φ−1/2m̂−1. A careful look at
(2.66) - (2.67) shows that Einstein’s laws of gravity derivable from (2.66) change
under the units transformation (�) and this seems to be a serious drawback of
canonical GR (and BD theory and scalar-tensor theories in general) since in any
consistent theory of spacetime the laws of physics must be invariant under a change
of the units of length, time, and mass. This will be clarified below where it is shown
that (�) with Ω2 = φ = exp(φ̂) cannot be taken properly as a units transforma-
tion. It is just a transformation allowing jumping from one formulation to its
conformal equivalent.
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In [797, 799] one claimed that canonical GR ((2.66)) and its conformal La-
grangian (2.67) are physically equivalent theories since they are indistinguishable
from the observational point of view. However it is common to believe that only
one of the conformally related metrics is the “physical” metric, i.e. that which
detrmines metrical relations on the spacetime manifold. The reasoning leading to
this conclusion is based on the following analysis. Take for instance GR with an
extra scalar field. Due to the minimal coupling of the matter fields to the metric
in (2.66) the matter particles follow the geodesics of the metric ĝ, namely

(2.68)
d2xa

dŝ2
+ Γ̂a

mn

dxm

dŝ

dxn

dŝ
= 0

where Γ̂a
bc = (1/2)ĝan(ĝbn,c + ĝcn,b − ĝbc,n) are the Christoffel symbols of the

metric ĝ. These coincide with the geodesics of the Riemannian geometry where
metrical relations are given by ĝ via ĝ(X̂, Ŷ ) = ĝmnX̂mŶ n and the line element
dŝ2 = ĝmndxmdxn, etc. It is the reason why canonical GR based on (2.66) is
naturally linked with Riemannian geometry (it is the same for JFBD since the
matter fields couple minimally to the spacetime metric). The units of this geom-
etry ar constant over the manifold. On the other hand since the matter fields are
non-minimally coupled to the metric in the conformal GR the matter particles
would not follow the geodesics of the conformal metric g but rather curves which
are solutions of the equation conformal to (2.68), namely (2.62) where now Γa

bc are
the Christoffel symbols of the metric g conformal to ĝ. Hence if one assumes that
the spacetime geometry is fixed to be Riemannian and that it is unchanged under
the conformal rescaling (�) with Ω2 = φ one efffectively arrives at the conclusion
that ĝ is the “physical” metric. However this assumption is wrong and is the
source of much long standing confusion (to be further clarified below).

REMARK 3.2.2. One notes that conformal Riemannian geometry (corre-
sponding to Weyl geometry here) develops as follows. Let λ(t) be a curve with
local coordinates xa(t) and let X with local coordinates Xa = dxa/dt be a tangent
vector to λ(t). The covariant derivative of a given vector field Ŷ along λ is given
by

(2.69)
D̂Ŷ a

∂t
=

∂Ŷ a

∂t
+ γ̂a

mnŶ m dxn

dt

where γ̂a
b is a symmetric connection. Given a metric ĝ on a manifold M̂ the

Riemannian geometry is fixed by the condition that there is a unique torsion free
(symmetric) connction on M̂ such that the covariant derivative of ĝ is zero; then
parallel transport of vectors Ŷ (D̂Ŷ a/∂t) = 0 and this preserves scalar products,
i.e. dĝ(Ŷ , Ŷ ) = 0. The laws of parallel transport and length preservation entail
that the symmetric connection γ̂a

bc coincides with the Christoffel symbols of the
metric ĝ, so γ̂a

bc = Γ̂a
bc. Suppose now that Ŷ transform under (�) (with Ω2 = φ)

as Ŷ = h(φ)Y a; then dg(Y, Y ) = −d[log(φh2)]g(Y, Y ) which resembles the law
of length transport in Weyl geometry. Hence given a Riemannian geometry on
M̂ , under (�) with Ω2 = φ one arrives at a Weyl geometry on M. The parallel
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transport law conformal to (2.69) is

(2.70)
DY a

∂t
+

∂

∂t
(log(h)Y a;

DY a

∂t
=

∂Y a

∂t
+ γa

mnY m dxn

dt

Here γa
bc is the symmetric connection on the Weyl manifold M related to the

Christoffel symbols of the conformal metric g via

(2.71) γa
bc = Γa

bc +
1
2
φ−1(φ,bδ

a
c + φ,cδ

a
b − gbcg

anφ,n)

There will be particle motions as in (2.62) and in particular Weyl geometry includes
units of measure with point dependent length.

REMARK 3.2.3. We go now to transformations of units following [796,
798]. Consider two Lagrangians

(2.72) L1 =
√
−g(R− α(∇φ)2); L2 =

√
−g

(
φR−

(
α− 3

2

)
(∇φ)2

φ

)
with respect to transformations (�) (note L2 can be obtained from L1 by rescaling
g → φg and φ → log(φ)). Consider first conformal transformations g̃ab = φσgab

(σ arbitrary) leading to

(2.73) L̃1 =
√
−g̃(φσR̃ + [(3σ(3/2)σ2]φ−2−σ − αφσ)(∇̃φ)2)

Hence the laws of gravity it describes change under this transformation; in partic-
ular in the conformal (tilde) frame the effective gravitational constant depends on
φ due to the nonminimal coupling between the scalar field and the curvature. On
the other hand L2 is mapped to

(2.74) L̃2 =
√
−g̃

(
φ1−σR̃− (α− (3/2)− 3σ + (3/2)σ2)

(1− σ)2
φσ−1(∇̃φ1−σ

)
Consequently if we introduce a new scalar field variable φ̃ = φ1−σ and redefine the
free parameter of the theory via α̃ = [α + 3σ(σ − 2)]/(1− σ)2 the Lagrangian L̃2

takes the form

(2.75) L̃2 =
√
−g̃

(
φ̃R̃−

(
α̃− 3

2

)
(∇̃φ̃)2

φ̃

)
Hence the Lagrangian L2 is invariant in form under the conformal transformation
and field transformation indicated. The composition of two such transformations
with parameters σ1 and σ2 yields a transformation of the same form with pa-
rameter σ3 = σ1 + σ2 − σ1σ2. The identity transformation involves σ = 0 and
the inverse for σ is a transformation with parameter σ̄ = −[σ/(1 − σ)]. Hence
excluding the value σ = 1 we have a one parameter Abelian group of transforma-
tions (σ3(σ1, σ2) = σ3(σ2, σ1)). This all leads to the conclusion that, since any
consistent theory of spacetime must be invariant under the one parameter group
of transformations of units (length, time, mass), spacetime theores based on the
Lagrangian for pure GR of the form L1 ar not consistent theories while those based
on Lagrangians of the form L2 may in principle be consistent formulations of a
spacetime theory. In particular canonical GR and the Einstein frame formulation
of BD theory are not consistent formulations.
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Consider now, separately, matter Lagrangians

(2.76) (A)
√
−gφ2LM ; (B)

√
−gLM

((B) involves minimal coupling of matter to the metric and (A) is non-minimal.
Under g̃ab = φσgab we have (A) →

√
−g̃φ2−2σLM and hence via scalar field

redefinition (A) is invariant in form under the group of units transformations.
However (B) with minimal coupling is not invariant and hence JFBD based on
LBD = L2 + 16π

√−gLM coupling (L2 as in (2.72)) is not a consistent theory of
spacetime. The only surviving candidate is conformal GR based on (2.67), namely
L2 + 16π

√−gφ2LM , and this theory provides a consistent formulation of the laws
of gravity. Thus the conformal version of GR involving Weyl type geometry is
the object to study and this is picked up again in [133, 796] along with some
connections to Bohmian theory. Various other topics involving cosmology and sin-
gularities are also studied in [796, 797, 798, 799] but we omit this here.

REMARK 3.2.4. We make a few comments now following [133, 796] about
Weyl geometry and the quantum potential. First we have seen that Einstein’s GR
is incomplete and a Weylian form seems preferable. Secondly there seems to be
evidence that a Weylian form can solve (or smooth) various problems involving
singularities (cf. [796, 797, 798, 799] for some information in this direction). One
recalls also the arguments emanating from string theory that a dilaton should cou-
pled to gravity in the low energy limit (cf. [429]). It is to be noted that Weyl
spacetimes conformally linked to Riemannian structure (such as conformal GR)
are called Weyl integrable spacetimes (WISP). The terminology arises from the
condition gab;c = 0 for a Riemannian space (where the symbol “;” denotes covari-
ant differentiation. Then if ĝ = Ω2g with Ω2 = φ = exp(ψ) (note we are switching
the roles of g and ĝ used earlier) there results ĝab;c = ψ,cĝab (affine covariant
derivative involving Γ̂a

bc) which are the Weyl affine connection coefficients of the
conformal manifold. Comparing to the requirement ĝab;c = wcĝab for Weyl geome-
tries (wc is the Weyl gauge vector) we see that Weyl structures conformally linked
to Riemannian geometry have the property that wc = ψ,c (ψ here corresponds to
the dilaton) and this is the origin of the term integrable since via d� = �dxnψ,n

one arrives at
∮

d� = 0 for WISP (which eliminates the second clock effect often
used to critisize Weyl spacetime). Note that the equations of motion of a free par-
ticle (or geodesic curves) in the WIST are given by (2.62) (with φ = log(ψ)) and
setting e.g. exp(ψ) = 1 + Q where Q is the quantum potential one can regard the
last term in (2.62) as the quantum force (see here Section 3.2 for a more refined
approach). In any event the moral here is that Weyl geometry implicitly contains
the quantum effects of matter - it is already a quantum geometry! In particular a
free falling test particle would not “feel” any special quantum force since the effect
is built into the free fall.

3. THE SCHRÖDINGER EQUATION IN WEYL SPACE

We go now to Santamato [840] and derive the SE from classical mechanics in
Weyl space (i.e. from Weyl geometry - cf. also [63, 188, 189, 219, 224, 490,
841, 989]). The idea is to relate the quantum force (arising from the quantum
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potential) to geometrical properties of spacetime; the Klein-Gordon (KG) equation
is also treated in this spirit in [219, 841] and we discuss this later. One wants to
show how geometry acts as a guidance field for matter (as in general relativity).
Initial positions are assumed random (as in the Madelung approach) and thus
the theory is statistical and is really describing the motion of an ensemble. Thus
assume that the particle motion is given by some random process qi(t, ω) in a
manifold M (where ω is the sample space tag) whose probability density ρ(q, t)
exists and is properly normalizable. Assume that the process qi(t, ω) is the solution
of differential equations

(3.1) q̇i(t, ω) = (dqi/dt)(t, ω) = vi(q(t, ω), t)

with random initial conditions qi(t0, ω) = qi
0(ω). Once the joint distribution of

the random variables qi
0(ω) is given the process qi(t, ω) is uniquely determined by

(3.1). One knows that in this situation ∂tρ + ∂i(ρvi) = 0 (continuity equation)
with initial Cauchy data ρ(q, t) = ρ0(q). The natural origin of vi arises via a least
action principle based on a Lagrangian L(q, q̇, t) with

(3.2) L∗(q, q̇, t) = L(q, q̇, t)− Φ(q, q̇, t); Φ =
dS

dt
= ∂tS + q̇i∂iS

Then vi(q, t) arises by minimizing

(3.3) I(t0, t1) = E[
∫ t1

t0

L∗(q(t, ω), q̇(t, ω), t)dt]

where t0, t1 are arbitrary and E denotes the expectation (cf. [186, 187, 672,
674, 698] for stochastic ideas). The minimum is to be achieved over the class
of all random motions qi(t, ω) obeying (3.2) with arbitrarily varied velocity field
vi(q, t) but having common initial values. One proves first

(3.4) ∂tS + H(q,∇S, t) = 0; vi(q, t) =
∂H

∂pi
(q,∇S(q, t), t)

Thus the value of I in (3.3) along the random curve qi(t, q0(ω)) is

(3.5) I(t1, t0, ω) =
∫ t1

t0

L∗(q(, q0(ω)), q̇(t, q0(ω)), t)dt

Let µ(q0) denote the joint probability density of the random variables qi
0(ω) and

then the expectation value of the random integral is

(3.6) I(t1, t0) = E[I(t1, t0, ω)] =
∫
Rn

∫ t1

t0

µ(q0)L∗(q(t, q0), q̇(t, q0), t)dnq0dt

Standard variational methods give then

(3.7) δI =
∫
Rn

dnq0µ(0)
[
∂L∗

∂q̇i
(q(t1, q0), ∂tq(t1, q0), t)δqi(t1, q0)−

−
∫ t1

t0

dt

(
∂

∂t

∂L∗

∂q̇i
(q(t, q0), ∂tq)t, q0), t)−

∂L∗

∂qi
(q(t, q0), ∂tq(t, q0), t)

)
δqi(t, q0)

]
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where one uses the fact that µ(q0) is independent of time and δqi(t0, q0) = 0 (recall
common initial data is assumed). Therefore

(3.8) (A) (∂L∗/∂q̇i)(q(t, q0), ∂tq(t, q0), t) = 0;

(B)
∂

∂t

∂L∗

∂q̇i
(q(t, q0), ∂tq(t, q0, t)−

∂L∗

∂qi
(q(t, q0), ∂tq(t, q0), t) = 0

are the necessary conditions for obtaining a minimum of I. Conditions (B) are the
usual Euler-Lagrange (EL) equations whereas (A) is a consequence of the fact that
in the most general case one must retain varied motions with δqi(t1, q0) different
from zero at the final time t1. Note that since L∗ differs from L by a total time
derivative one can safely replace L∗ by L in (B) and putting (3.2) into (A) one
obtains the classical equations

(3.9) pi = (∂L/∂q̇i)(q(t, q0), q̇(t, q0), t) = ∂iS(q(t, q0), t)

It is known now that if det[(∂2L/∂q̇i∂q̇j ] �= 0 then the second equation in (3.4) is a
consequence of the gradient condition (3.9) and of the definition of the Hamiltonian
function H(q, p, t) = piq̇

i − L. Moreover (B) in (3.8) and (3.9) entrain the HJ
equation in (3.4). In order to show that the average action integral (3.6) actually
gives a minimum one needs δ2I > 0 but this is not necessary for Lagrangians
whose Hamiltonian H has the form

(3.10) HC(q, p, t) =
1

2m
gik(pi −Ai)(pk −Ak) + V

with arbitrary fields Ai and V (particle of mass m in an EM field A) which is the
form for nonrelativistic applications; given positive definite gik such Hamiltonians
involve sufficiency conditions det[∂2L/∂q̇i∂q̇k] = mg > 0. Finally (B) in (3.8)
with L∗ replaced by L) shows that along particle trajectories the EL equations
are satisfied, i.e. the particle undergoes a classical motion with probability one.
Notice here that in (3.4) no explicit mention of generalized momenta is made;
one is dealing with a random motion entirely based on position. Moreover the
minimum principle (3.3) defines a 1-1 correspondence between solutions S(q, t)
in (3.4) and minimizing random motions qi(t, ω). Provided vi is given via (3.4)
the particle undergoes a classical motion with probability one. Thus once the
Lagrangian L or equivalently the Hamiltonian H is given, ∂tρ + ∂i(ρvi) = 0 and
(3.4) uniquely determine the stochastic process qi(t, ω). Now suppose that some
geometric structure is given on M so that the notion of scalar curvature R(q, t) of
M is meaningful. Then we assume (ad hoc) that the actual Lagrangian is

(3.11) L(q, q̇, t) = LC(q, q̇, t) + γ(�2/m)R(q, t)

where γ = (1/6)(n − 2)/(n − 1) with n = dim(M). Since both LC and R are
independent of � we have L→ LC as � → 0.

Now for a differential manifold with ds2 = gik(q)dqidqk it is standard that in
a transplantation qi → qi + δqi one has δAi = Γi

k�A
�dqk with Γi

k� general affine
connection coefficients on M (Riemannian structure is not assumed). In [840]
it is assumed that for � = (gikAiAk)1/2 one has δ� = �φkdqk where the φk are
covariant components of an arbitrary vector (Weyl geometry). Then the actual
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affine connections Γi
k� can be found by comparing this with δ�2 = δ(gikAiAk) and

using δAi = Γi
k�A

�dqk. A little linear algebra gives then

(3.12) Γi
k� = −

{
i

k �

}
+ gim(gmkφ� + gm�φk − gk�φm)

Thus we may prescribe the metric tensor gik and φi and determine via (3.12) the
connection coefficients. Note that Γi

k� = Γi
�k and for φi = 0 one has Riemannian

geometry. Covariant derivatives are defined via

(3.13) Ak
,ı = ∂iA

k − Γk�A�; Ak,i = ∂iAk + Γ�
kiA�

for covariant and contravariant vectors respectively (where S,i = ∂iS). Note Ricci’s
lemma no longer holds (i.e. gik,� �= 0) so covariant differentiation and operations
of raising or lowering indices do not commute. The curvature tensor Ri

k�m in Weyl
geometry is introduced via Ai

,k,�−Ai
,�,k = F i

mk�A
m from which arises the standard

formula of Riemannian geometry

(3.14) Ri
mk� = −∂�Γi

mk + ∂kΓi
m� + Γi

n�Γ
n
mk − Γi

nkΓn
m�

where (3.12) is used in place of the Christoffel symbols. The tensor Ri
mk� obeys

the same symmetry relations as the curvature tensor of Riemann geometry as well
as the Bianchi identity. The Ricci symmetric tensor Rik and the scalar curvature
R are defined by the same formulas also, viz. Rik = R�

i�k and R = gikRik. For
completeness one derives here

(3.15) R = Ṙ + (n− 1)[(n− 2)φiφ
i − 2(1/

√
g)∂i(

√
gφi)]

where Ṙ is the Riemannian curvature built by the Christoffel symbols. Thus from
(3.12) one obtains

(3.16) gk�Γi
k� = −gk�

{
i

k �

}
− (n− 2)φi; Γi

k� = −
{

i
k �

}
+ nφk

Since the form of a scalar is independent of the coordinate system used one may
compute R in a geodesic system where the Christoffel symbols and all ∂�gik vanish;
then (3.12) reduces to Γi

k� = φkκi
� + φ�δ

i
k − gk�φ

i and hence

(3.17) R = −gkm∂mΓi
k� + ∂i(gk�Γi

k�) + g�mΓi
n�Γ

n
mi − gm�Γi

n�Γ
n
m�

Further one has g�mΓi
n�Γ

n
mi = −(n − 2)(φkφk) at the point in consideration.

Putting all this in (3.17) one arrives at

(3.18) R = Ṙ + (n− 1)(n− 2)(φkφk)− 2(n− 1)∂kφk

which becomes (3.15) in covariant form. Now the geometry is to be derived from
physical principles so the φi cannot be arbitrary but must be obtained by the same
averaged least action principle (3.3) giving the motion of the particle. The mini-
mum in (3.3) is to be evaluated now with respect to the class of all Weyl geometries
having arbitrarily varied gauge vectors but fixed metric tensor. Note that once
(3.11) is inserted in (3.2) the only term in (3.3) containing the gauge vector is the
curvature term. Then observing that γ > 0 when n ≥ 3 the minimum principle
(3.3) may be reduced to the simpler form E[R(q(t, ω), t)] = min where only the
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gauge vectors φi are varied. Using (3.15) this is easily done. First a little argu-
ment shows that ρ̂(q, t) = ρ(q, t)/

√
g transforms as a scalar in a coordinate change

and this will be called the scalar probability density of the random motion of the
particle (statistical determination of geometry). Starting from ∂tρ + ∂i(ρvi) = 0 a
manifestly covariant equation for ρ̂ is found to be ∂tρ̂+(1/

√
g)∂i(

√
gviρ̂) = 0. Now

return to the minimum problem E[R(q(t, ω), t)] = min; from (3.15) and ρ̂ = ρ/
√

g
one obtains

(3.19) E[R(q(t, ω), t)] = E[Ṙ(q(t, ω), t)]+

+(n− 1)
∫

M

[(n− 2)φiφ
i − 2(1/

√
g)∂i(

√
gφi)]ρ̂(q, t)

√
gdnq

Assuming fields go to 0 rapidly enough on ∂M and integrating by parts one gets
then

(3.20) E[R] = E[Ṙ]− n− 1
n− 2

E[gik∂i(log(ρ̂)∂k(log(ρ̂)]+

+
n− 1
n− 2

E{gik[(n− 2)φi + ∂i(log(ρ̂)][(n− 2)φk + ∂k(log(ρ̂)]}

Since the first two terms on the right are independent of the gauge vector and gik

is positive definite E[R] will be a minimum when

(3.21) φi(q, t) = −[1/(n− 2)]∂i[log(ρ̂)(q, t)]

This shows that the geometric properties of space are indeed affected by the pres-
ence of the particle and in turn the alteration of geometry acts on the particle
through the quantum force fi = γ(�2/m)∂iR which according to (3.15) depends
on the gauge vector and its derivatives. It is this peculiar feedback between the
geometry of space and the motion of the particle which produces quantum effects.

In this spirit one goes now to a geometrical derivation of the SE. Thus inserting
(3.21) into (3.16) one gets

(3.22) R = Ṙ + (1/2γ
√

ρ̂)[1/
√

g)∂i(
√

ggik∂k

√
ρ̂)]

where the value (n−2)/6(n−1) for γ is used. On the other hand the HJ equation

(3.23) ∂tS + HC(q,∇S, t)− γ(�2/m)R = 0

where (3.11) has been used. When (3.22) is introduced into (3.23) the HJ equation
and the continuity equation ∂tρ̂ + (1/

√
g)(
√

gviρ̂) = 0, with velocity field given
by (3.4), form a set of two nonlinear PDE which are coupled by the curvature
of space. Therefore self consistent random motions of the particle (i.e. random
motions compatible with (3.17)) are obtained by solving (3.23) and the continuity
equation simultaneously. For every pair of solutions S(q, t, ρ̂(q, t)) one gets a pos-
sible random motion for the particle whose invariant probability density is ρ̂. The
present approach is so different from traditional QM that a proof of equivalence

(3.4) can be written as
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is needed and this is only done for Hamiltonians of the form (3.10) (which is not
very restrictive). The HJ equation corresponding to (3.10) is

(3.24) ∂tS +
1

2m
gik(∂iS −Ai)(∂kS −Ak) + V − γ

�2

m
R = 0

with R given by (3.22). Moreover using (3.4) as well as (3.10) the continuity
equation becomes

(3.25) ∂tρ̂ + (1/m
√

g)∂i[ρ̂
√

ggik(∂kS −Ak)] = 0

Owing to (3.22),(3.24) and (3.25) form a set of two nonlinear PDE which must
be solved for the unknown functions S and ρ̂. Now a straightforward calculations
shows that, setting

(3.26) ψ(q, t) =
√

ρ̂(q, t)exp](i/�)S(q, t)],

the quantity ψ obeys a linear PDE (corrected from [840])

(3.27) i�∂tψ =
1

2m

{[
i�∂i

√
g

√
g

+ Ai

]
gik(i�∂k + Ak)

}
ψ +

[
V − γ

�2

m
Ṙ

]
ψ

where only the Riemannian curvature Ṙ is present (any explicit reference to the
gauge vector φi having disappeared). (3.27) is of course the SE in curvilinear
coordinates whose invariance under point transformations is well known. Moreover
(3.26) shows that |ψ|2 = ρ̂(q, t) is the invariant probability density of finding the
particle in the volume element dnq at time t. Then following Nelson’s arguments
that the SE together with the density formula contains QM the present theory is
physically equivalent to traditional nonrelativistic QM. One sees also from (3.26)
and (3.27) that the time independent SE is obtained via S = S0(q) − Et with
constant E and ρ̂(q). In this case the scalar curvature of space becomes time
independent; since starting data at t0 is meaningless one replaces the continuity
equation with a condition

∫
M

ρ̂(q)
√

gdnq = 1.

REMARK 3.3.1. We recall (cf. [188]) that in the nonrelativistic context
the quantum potential has the form Q = −(�2/2m)(∂2√ρ/

√
ρ) (ρ ∼ ρ̂ here) and

in more dimensions this corresponds to Q = −(�2/2m)(∆
√

ρ/
√

ρ). Here we have
a SE involving ψ =

√
ρexp[(i/�)S] with corresponding HJ equation (3.24) which

corresponds to the flat space 1-D St + (s′)2/2m + V + Q = 0 with continuity
equation ∂tρ + ∂(ρS′/m) = 0 (take Ak = 0 here). The continuity equation in
(3.25) corresponds to ∂tρ + (1/m

√
g)∂i[ρ

√
ggik(∂kS)] = 0. For Ak = 0 (3.24)

becomes

(3.28) ∂tS + (1/2m)gik∂iS∂kS + V − γ(�2/m)R = 0

This leads to an identification Q ∼ −γ(�2/m)R where R is the Ricci scalar in the
Weyl geometry (related to the Riemannian curvature built on standard Christoffel
symbols via (3.15)). Here γ = (1/6)[(n − 2)/(n − 2)] as above which for n = 3
becomes γ = 1/12; further the Weyl field φi = −∂ilog(ρ). Consequently (see
below).
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PROPOSITION 3.1. For the SE (3.27) in Weyl space the quantum potential
is Q = −(�2/12m)R where R is the Weyl-Ricci scalar curvature. For Riemannian
flat space Ṙ = 0 this becomes via (3.22)

(3.29) R =
1

2γ
√

ρ
∂ig

ik∂k
√

ρ ∼ 1
2γ

∆
√

ρ
√

ρ
⇒ Q = − �2

2m

∆
√

ρ
√

ρ

as it should and the SE (3.27) reduces to the standard SE in the form i�∂tψ =
−(�2/2m)∆ψ + V ψ (Ak = 0).

3.1. FISHER INFORMATION REVISITED. Via Remarks 1.1.4, 1.1.5,
and 1.1.6 from Chapter 1 (based on [395, 446, 447, 448, 449, 805, 806]) we
recall the derivation of the SE in Theorem 1.1.1. Thus with some repetition recall
first that the classical Fisher information associated with translations of a 1-D
observable X with probability density P (x) is

(3.30) FX =
∫

dx P (x)([log(P (x)]′)2 > 0

One has a well known Cramer-Rao inequality V ar(X) ≥ F−1
X where V ar(X) ∼

variance of X. A Fisher length for X is defined via δX = F
−1/2
X and this quantifies

the length scale over which p(x) (or better log(p(x))) varies appreciably. Then the
root mean square deviation ∆X satisfies ∆X ≥ δX. Let now P be the momentum
observable conjugate to X, and Pcl a classical momentum observable corresponding
to the state ψ given via pcl(x) = (�/2i)[(ψ′/ψ)−(ψ̄′/ψ̄)]. One has then the identity
< p >ψ=< pcl >ψ following via integration by parts. Now define the nonclassical
momentum by pnc = p− pcl and one shows then

(3.31) ∆X∆p ≥ δX∆p ≥ δX∆pnc = �/2

Then consider a classical ensemble of n-dimensional particles of mass m moving
under a potential V. The motion can be described via the HJ and continuity
equations

(3.32)
∂s

∂t
+

1
2m
|∇s|2 + V = 0;

∂P

∂t
+∇ ·

[
P
∇s

m

]
= 0

for the momentum potential s and the position probability density P (note that
there is no quantum potential and this will be supplied by the information term).
These equations follow from the variational principle δL = 0 with Lagrangian
L =

∫
dt dnx P

[
(∂s/∂t) + (1/2m)|∇s|2 + V

]
. It is now assumed that the classical

Lagrangian must be modified due to the existence of random momentum fluctua-
tions. The nature of such fluctuations is immaterial and one can assume that the
momentum associated with position x is given by p = ∇s+N where the fluctuation
term N vanishes on average at each point x. Thus s changes to being an average
momentum potential. It follows that the average kinetic energy < |∇s|2 > /2m
appearing in the Lagrangian above should be replaced by < |∇s + N |2 > /2m
giving rise to

(3.33) L′ = L + (2m)−1

∫
dt < N ·N >= L + (2m)−1

∫
dt(∆N)2
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where ∆N =< N ·N >1/2 is a measure of the strength of the quantum fluctuations.
The additional term is specified uniquely, up to a multiplicative constant, by the
three assumptions given in Remark 1.1.4 This leads to the result that

(3.34) (∆N)2 = c

∫
dnx P |∇log(P )|2

where c is a positive universal constant (cf. [446]). Further for � = 2
√

c and
ψ =

√
Pexp(is/�) the equations of motion for p and s arising from δL′ = 0 are

i�∂ψ
∂t = − �2

2m∇2ψ + V ψ.

A second derivation is given in Remark 1.1.5. Thus let P (yi) be a probability
density and P (yi + ∆yi) be the density resulting from a small change in the yi.
Calculate the cross entropy via

(3.35) J(P (yi + ∆yi) : P (yi)) =
∫

P (yi + ∆yi)log
P (yi + ∆yi)

P (yi)
dny 




[
1
2

∫
1

P (yi)
∂P (yi)

∂yi

∂P (yi)
∂yk)

dny

]
∆yi∆yk = Ijk∆yi∆yk

The Ijk are the elements of the Fisher information matrix. The most general
expression has the form

(3.36) Ijk(θi) =
1
2

∫
1

P (xi|θi)
∂P (xi|θi)

∂θj

∂P (xi|θi)
∂θk

dnx

where P (xi|θi) is a probability distribution depending on parameters θi in addition
to the xi. For P (xi|θi) = P (xi + θi) one recovers (3.35). If P is defined over
an n-dimensional manifold with positive inverse metric gik one obtains a natural
definition of the information associated with P via

(3.37) I = gikIik =
gik

2

∫
1
P

∂P

∂yi

∂P

∂yk
dny

Now in the HJ formulation of classical mechanics the equation of motion takes the
form

(3.38)
∂S

∂t
+

1
2
gµν ∂S

∂xµ

∂S

∂xν
+ V = 0

where gµν = diag(1/m, · · · , 1/m). The velocity field uµ is then uµ = gµν(∂S/∂xν).
When the exact coordinates are unknown one can describe the system by means
of a probability density P (t, xµ) with

∫
Pdnx = 1 and

(3.39) (∂P/∂t) + (∂/∂xµ)(Pgµν(∂S/∂xν) = 0

These equations completely describe the motion and can be derived from the
Lagrangian

(3.40) LCL =
∫

P {(∂S/∂t) + (1/2)gµν(∂S/∂xµ)(∂S/∂xν) + V } dtdnx
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using fixed endpoint variation in S and P. Quantization is obtained by adding a
term proportional to the information I defined in (3.37). This leads to
(3.41)

LQM = LCL + λI =
∫

P

{
∂S

∂t
+

1
2
gµν

[
∂S

∂xµ

∂S

∂xν
+

λ

P 2

∂P

∂xµ

∂P

∂xν

]
+ V

}
dtdnx

Fixed endpoint variation in S leads again to (3.39) while variation in P leads to

(3.42)
∂S

∂t
+

1
2
gµν

[
∂S

∂xµ

∂S

∂xν
+ λ

(
1

P 2

∂P

∂xµ

∂P

∂xν
− 2

P

∂2P

∂xµ∂xν

)]
+ V = 0

These equations are equivalent to the SE if ψ =
√

Pexp(iS/�) with λ = (2�)2

(recall also Remark 1.1.6 for connections to entropy). Now following ideas in
[219, 223, 715] we note in (3.41) for φµ ∼ Aµ = ∂µlog(P ) (which arises in (3.21))
and pµ = ∂uS, a complex velocity can be envisioned leading to (cf. also [224])

(3.43) |pµ + i
√

λAµ|2 = p2
µ + λA2

µ ∼ gµν

(
∂S

∂xµ

∂S

∂xν
+

λ

P 2

∂P

∂xµ

∂P

∂xν

)
Further I in (3.37) is exactly known from φµ so one has a direct connection between
Fisher information and the Weyl field φµ, along with motivation for a complex
velocity (cf. Sections 1.2 and 1.3).

REMARK 3.3.2. Comparing now with [189] and quantum geometry in the
form ds2 =

∑
(dp2

j/pj) on a space of probability distributions (to be discussed
in Chapter 5) we can define (3.37) as a Fisher information metric in the present
context. This should be positive definite in view of its relation to (∆N)2 in (3.34)
for example. Now for ψ = Rexp(iS/�) one has (ρ ∼ ρ̂ here)

(3.44) − �2

2m

R′′

R
≡ − �2

2m

∂2√ρ
√

ρ
= − �2

8m

[
2ρ′′

ρ
−
(

ρ′

ρ

)2
]

in 1-D while in more dimensions we have a form (ρ ∼ P )

(3.45) Q ∼ −2�2gµν

[
1

P 2

∂P

∂xµ

∂P

∂xν
− 2

P

∂2P

∂xµ∂xν

]
as in (3.44) (arising from the Fisher metric I of (3.37) upon variation in P in the
Lagrangian). It can also be related to an osmotic velocity field u = D∇log(ρ)
via Q = (1/2)u2 + D∇ · u connected to Brownian motion where D is a diffusion
coefficient (cf. [223, 395, 715]). For φµ = −∂µlog(P ) we have then u = −Dφ
with Q = D2((1/2)(| |2−∇·φ), expressing Q directly in terms of the Weyl vector.
This enforces the idea that QM is built into Weyl geometry!

3.2. THE KG EQUATION. The formulation above from [840] was mod-
ified in [841] to a derivation of the Klein-Gordon (KG) equation via an average
action principle. The spacetime geometry was then obtained from the average ac-
tion principle to obtain Weyl connections with a gauge field φµ (thus the geometry
has a statistical origin). The Riemann scalar curvature Ṙ is then related to the
Weyl scalar curvature R via an equation

(3.46) R = Ṙ− 3[(1/2)gµνφµφν + (1/
√
−g)∂µ(

√
−ggµνφν)]

φ



120 3. GRAVITY AND THE QUANTUM POTENTIAL

Explicit reference to the underlying Weyl structure disappears in the resulting SE
(as in (3.27)). The HJ equation in [841] has this form (for Aµ = 0 and V = 0)
gµν∂µS∂νS = m2 − (R/6) so in some sense (recall here � = c = 1) m2 − (R/6) ∼
M2 where M2 = m2exp(Q) and Q = (�2/m2c2)(�

√
ρ/
√

ρ) ∼ (�
√

ρ/m2√ρ) via
Section 3.2 (for signature (−,+,+,+) - recall here gµν∇µS∇νS = M2c2). Thus
for exp(Q) ∼ 1 + Q one has m2 − (R/6) ∼ m2(1 + Q) ⇒ (R/6) ∼ −Qm2 ∼
−(�

√
ρ/
√

ρ). This agrees also with [219] where the whole matter is analyzed
incisively (cf. also Remark 3.3.5). We recall also here from [798] (cf. Section
3.2.2) that in the conformal geometry the particles do not follow geodesics of the
conformal metric alone. We will sketch an elaboration of this now from [841]
(paper one). Thus summarizing [840] and the second paper in [841] one shows
that traditional QM is equivalent (in some sense) to classical statistical mechanics
in Weyl spaces. The following two points of view are taken to be equivalent

(1) (A) The spacetime is a Riemannian manifold and the statistical behavior
of a spinless particle is described by the KG equation while probabilities
combine according to Feynman quantum rules.

(2) (B) The spacetime is a generic affinely connected manifold whose actual
geometric structure is determined by the matter content. The statis-
tical behavior of a spinless particle is described by classical statistical
mechanics and probabilities combine according to Laplace rules.

(3) In nonrelativistic applications the words spacetime, Riemannian, and KG
are to be replacedby space, Euclidean, and SE.

We are skipping over the second paper in [841] here and going to the first pa-
per which treates matters in a gauge invariant manner. The moral seems to be
(loosly) that quantum mechanics in Riemannian spacetime is the same as clas-
sical statistical mechanics in a Weyl space. In particular one wants to establish
that traditional QM, based on wave equations and ad hoc probability calculus
(as in (1) above) is merely a convenient mathematical construction to overcome
the complications arising from a nontrivial spacetime geometric structure. Here
one works from first principles and includes gauge invariance (i.e. invariance with
respect to an arbitrary choice of the spacetime calibration). The spacetime is
supposed to be a generic 4-dimensional differential manifold with torsion free con-
nections Γλ

µν = Γλ
νµ and a metric tensor gµν with signature (+,−,−,−) (one takes

� = c = 1 - which I deem unfortunate since the role and effect of such quantities
is not revealed). Here the (restrictive) hypothesis of assuming a Weyl geometry
from the beginning is released, both the particle motion and the spacetime geo-
metric structure are derived from a single average action principle. A result of
this approach is that the spacetime connections are forced to be integrable Weyl
connections by the extremization principle.

The particle is supposed to undergo a motion in spacetime with determin-
istic trajectories and random initial conditions taken on an arbitrary spacelike
3-dimensional hypersurface; thus the theory describes a relativistic Gibbs ensem-
ble of particles (cf. Remark 3.3.3). Both the particle motion and the spacetime
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connections can be obtained from the average stationary action principle

(3.47) δ

[
E

(∫ τ2

τ1

L(x(τ, ẋ(τ))dτ

)]
= 0

This action integral must be parameter invariant, coordinate invariant, and gauge
invariant. All of these requirements are met if L is positively homogeneous of the
first degree in ẋµ = dxµ/dτ and transforms as a scalar of Weyl type w(L) = 0.
The underlying probability measure must also be gauge invariant. A suitable
Lagrangian is then

(3.48) L(x, dx) = (m2 − (R/6))1/2ds + Aµdxµ

where ds = (gµν ẋµẋν)1/2dτ is the arc length and R is the space time scalar cur-
vature; m is a parameterlike scalar field of Weyl type (or weight) w(m) = −(1/2).
The factor 6 is essentially arbitrary and has been chosen for future convenience.
The vector field Aµ can be interpreted as a 4-potential due to an externally applied
EM field and the curvature dependent factor in front of ds is an effective particle
mass. This seems a bit ad hoc but some feeling for the nature of the Lagrangian
can be obtained from Section 3.2 (cf. also [63]). The Lagrangian will be gauge
invariant provided the Aµ have Weyl type w(Aµ) = 0. Now one can split Aµ into
its gradient and divergence free parts Aµ = Āµ−∂µS, with both S and Āµ having
Weyl type zero, and with Āµ interpreted as and EM 4-potential in the Lorentz
gauge. Due to the nature of the action principle regarding fixed endpoints in vari-
ation one notes that the average action principle is not invariant under EM gauge
transformations Aµ → Aµ + ∂µS; but one knows that QM is also not invariant
under EM gauge transformations (cf. [17]) so there is no incompatability with
QM here.

Now the set of all spacetime trajectories accessible to the particle (the particle
path space) may be obtained from (3.47) by performing the variation with respect
to the particle trajectory with fixed metric tensor, connections, and an underlying
probability measure. Thus (cf. Remark 3.3.3) the solution is given by the so-called
Carathéodory complete figure (cf. [826]) associated with the Lagrangian

(3.49) L̄(x, dx) = (m2 − (R/6))1/2ds + Āµdxµ

(note this leads to the same equations as (3.48) since the Lagrangians differ by a
total differential dS). The resulting complete figure is a geometric entity formed
by a one parameter family of hypersurfaces S(x) = const. where S satisfies the HJ
equation

(3.50) gµν(∂µS − Āµ)(∂νS − Āν) = m2 − R

6
and by a congruence of curves intersecting this family given by

(3.51)
dxµ

ds
=

gµν(∂νS − Āν)
[gρσ(∂ρS − Āρ)(∂σS − Āσ)]1/2

The congruence yields the actual particle path space and the underlying proba-
bility measure on the path space may be defined on an arbitrary 3-dimensional
hypersurface intersecting all of the members of the congruence without tangencies
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(cf. [443]). The measure will be completely identified by its probability current
density jµ (see [841] and Remark 3.3.3). Moreover, since the measure is inde-
pendent of the arbitrary choice of the hypersurface, jµ must be conserved, i.e.
∂µjµ = 0 (see Remark 3.3.3). Since the trajectories are deterministically defined
by (3.51), jµ must be parallel to the particle 4-velocity (3.51), and hence

(3.52) jµ = ρ
√
−ggµν(∂νS − Āν)

with some ρ > 0. Now gauge invariance of the underlying measure as well as of
the complete figure requires that jµ transforms as a vector density of Weyl type
w(jµ) = 0 and S as a scalar of Weyl type w(S) = 0. From (3.52) one sees then
that ρ transforms as a scalar of Weyl type w(ρ) = −1 and ρ is called the scalar
probability density of the particle random motion.

The actual spacetime affine connections are obtained from (3.47) by perform-
ing the variation with respect to the fields Γλ

µν for a fixed metric tensor, particle
trajectory, and probability measure. It is expedient to tranform the average action
principle to the form of a 4-volume integral

(3.53) δ

[∫
Ω

d4x[(m2 − (R/6))(gµνjµjν ]1/2 + Aµjµ

]
= 0

where Ω is the spacetime region occupied by the congruence (3.51) and jµ is given
by (3.52) (cf. [841] and Remark 3.3.3 for proofs). Since the connection fields Γλ

µν

are contained only in the curvature term R the variational problem (3.53) can be
further reduced to

(3.54) δ

[∫
Ω

ρR
√
−gd4x

]
= 0

(here the HJ equation (3.50) has been used). This states that the average space-
time curvature must be stationary under a variation of the fields Γλ

µν (principle of
stationary average curvature). The extremal connections Γλ

µν arising from (3.54)
are derived in [841] using standard field theory techniques and the result is

(3.55) Γλ
µν =

{
λ

µ ν

}
+

1
2
(φµδλ

ν + φνδλ
µ − gµνgλρφρ); φµ = ∂µlog(ρ)

This shows that the resulting connections are integrable Weyl connections with a
gauge field φµ (cf. [840], Section 3, and Section 3.1). The HJ equation (3.50) and
the continuity equation ∂µjµ = 0 can be consolidated in a single complex equation
for S, namely

(3.56) eiSgµν(iDµ − Āµ)(iDν − Āν)e−iS − (m2 − (R/6)) = 0; Dµρ = 0

Here Dµ is (doubly covariant - i.e. gauge and coordinate invariant) Weyl derivative
given by (cf. [63])

(3.57) DµTα
β = ∂µTα

β + Γα
µεT

ε
β − Γε

µβTα
ε + w(T )φµTα

β

It is to be noted that the probability density (but not the rest mass) remains
constant relative to Dµ. When written out (3.56) for a set of two coupled partial
differential equations for ρ and S. To any solution corresponds a particular random
motion of the particle.
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Next one notes that (3.56) can be cast in the familiar KG form, i.e.

(3.58) [(i/
√
−g)∂µ

√
−g − Āµ]gµν(i∂ν − Āν)ψ − (m2 − (Ṙ/6))ψ = 0

where ψ =
√

ρexp(−iS) and Ṙ is the Riemannian scalar curvature built out of gµν

only. We have the (by now) familiar formula

(3.59) R = Ṙ− 3[(1/2)gµνφµφν + (1/
√
−g)∂µ(

√
−ggµνφν)]

According to point of view (A) above in the KG equation (3.58) any explicit
reference to the underlying spacetime Weyl structure has disappeared; thus the
Weyl structure is hidden in the KG theory. However we note that no physical
meaning is attributed to ψ or to the KG equation. Rather the dynamical and
statistical behavior of the particle, regarded as a classical particle, is determined
by (3.56), which, although completely equivalent to the KG equation, is expressed
in terms of quantities having a more direct physical interpretation.

REMARK 3.3.3. We extract here from the Appendices to paper 1 of [841].
In Appendix A one shows that the Carathéodory complete figure formed by the
congruence (3.51) solves the variational problem (3.47). One needs the notion of
the Gibbs ensemble in relativistic mechanics (cf. [443]). Roughly a relativistic
Gibbs ensemble of particles may be assimilated to an incoherent globule of matter
moving in spacetime. More precisely a relativistic Gibbs ensemble is given by
(i) A congruence of timelike curves in spacetime (the path space of the particles)
and (ii) A probability measure defined on this congruence (note a congruence of
spacelike curves could also be envisioned but causality is affected - a physical
intepretation is unclear although it could be related to a statistical formulation of
virtual phenomena). The construction here goes as follows. Let K be a 3-parameter
congruence of time like curves in spacetime be given via (�) xµ = xµ(τ, uk) where
k = 1, 2, 3 and τ is an arbitrary parameter along each curve of the congruence.
For simplicity assume that the congruence covers a region Ω of spacetime simply
(i.e. one and only one curve of K passes through each point of Ω). Then one
can regard (�) as a change of coordinates from xµ to yµ where y0 = t, yk = uk

(assume the Jacobian is nonzero in Ω). Consider then the action integral L =∫ τ2

τ1
L(x(τ, uk), ẋ(τ, uk)dτ with L homogeneous of the first degree in the derivatives

ẋµ = ∂xµ/∂τ . Given a 1-1 correspondence between the uk and members of the
congruence K one may introduce a formula for the probability that the particle
follows a sample path having parameters uk in some 3-dimensional region B as
prob(B) =

∫
B⊂R

µ(uk)du1du2du3 where µ(uk) is some probability density defined
on R3. Hence the average action integral in (3.47) may be written as

(3.60) I = E

[∫ τ2

τ1

Ldτ

]
=
∫
R3

∫ τ2

τ1

µ(uk)L(xµ(τ, uk), ẋµ(τ, uk)dτ
∏

dui

The last term is a 4-dimensional volume integral over the zone between the hyper-
planes y0 = τ1 and y0 = τ2 in the y coordinate. In the x coordinates these hyper-
planes are mapped on two 3-dimensional hypersurfaces τ(xµ) = τ1 and τ(xµ) = τ2

where τ(xµ) is obtained by solving (�) with respect to τ ; since they are merely a
result of the parametrization of K they can be regarded as essentially arbitrary.
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The integrand in (3.60) depends on the 4 unknown functions xµ(yν) and on their
first derivatives ∂xµ/∂y0, and on the coordinates yν themselves. Therefore the
variational problem δI = 0 is reduced to a standard variational problem whose
solution will yield the functions xµ(τ, uk), i.e. the actual congruence that renders
the average action stationary.

Now the Lagrangian density in (3.60) is Λ = µ(uk)L(xµ(τ, uk), xµ
,τ (τ, uk) in

which xµ
,τ = ẋµ with τ and uk are the independent variables. By standard methods

the EL expressions are (xµ
,k = ∂xµ/∂uk)

(3.61) E(Λ) =
∂

∂uk

[
∂Λ
∂xµ

,k

]
+

∂

∂τ

[
∂Λ
∂xµ

,τ

]
− ∂Λ

∂xµ

In this case howver ∂Λ/∂xµ
,k = 0 and hence the fixed equations E(Λ) = 0 reduce

to (note µ does not depend explicitly on τ)

(3.62)
∂

∂τ

[
µ

∂L

∂xµ
,τ

]
− µ

∂L

∂xµ
= 0⇒ ∂

∂τ

[
∂L

∂ẋµ

]
− ∂L

∂xµ
= 0

and this coincides with the EL equations associated with the action integral above.
This means that the actual congruence must be a congruence of extremals or
equivalently that the particle obeys equations of motion (3.62) with probability
one. Even if the congruence is extremal however we are left with nonvanishing
surface terms in the variation of I, namely
(3.63)

δI =
∫
R3

µ(uk)
∏

dui

[
∂L

∂ẋµ
(τ2, u

k)δxµ(τ2, u
k)− ∂L

∂ẋµ
(τ1, u

k)δxµ(τ1, u
k)
]

= 0

In (3.63) the quantities δxµ at τ = τ2 and τ = τ1 are displacements between points
P and P + δP where the curves xµ and xµ + δxµ intersect the hypesurfaces τ = τ2

and τ = τ1 so δxµ(τ1, u
k) and δxµ(τ1, u

k) are tangential to the hypersurfaces.
Since the hypersurfaces τ(xµ) = const. are essentially arbitrary so must be the
displacements δxµ and δI = 0 implies then (•) ∂L/∂ẋµ(τ, uk) = 0. Finally relating
L with the Lagrangian (3.48) and comparing with L̄ as defined in (3.49) one has
∂L/∂ẋµ = ∂L̄/∂ẋµ − ∂µS so (•) yields ∂L̄/∂ẋµ = ∂µS. Moreover L and L̄,
differing only by a total differential dS, lead to the same EL equations and hence
one can replace L by L̄ in (3.62). In conclusion the congruence that renders the
average action stationary must be (i) A congruence of curves that are extremal
with respect to Lagrangian L̄ and (ii) A congruence satisfying the integrability
conditions ∂L̄/∂Ẋµ = ∂µS. However by standard HJ theory such a congruence is
given by (3.51) provided S(xµ) obeys the HJ equation associated with L̄, namely
(3.50).

In appendix B the current density jµ is introduced and the equivalence between
the average action (3.47) and the 4-volume integral (3.53) is proved. This provides
a useful connection between ensemble averages and 4-volume integrals appearing
in field theories. Here (3.60) is expressed in terms of the y coordinates (τ, uk) and
it can also be expressed in terms of the x coordinates. For this one introduces the
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current density jµ associated with the relativistic Gibbs ensemble. The surface
element normal to the hypersurface τ(uk) = const. is given by dσµ = πµdu1du2du3

where πµ are Jacobians

(3.64) π0 =
∂(x1, x2, x3)
∂(u1, u2, u3)

; π1 =
∂(x0, x2, x3)
∂(u1, u2, u3)

, · · ·

Then define the current density via µ = jµπµ so that prob(B) becomes

(3.65) prob(B) =
∫

B⊂R3
µdu1du2du3 =

∫
B⊂R3

jµdσµ

The direction of jµ is still not defined so one is free to choose the current direction
parallel to the congruence K, i.e. jµ = λẋµ. The independence of the underlying
measure on the chosen hypersurface τ = const. is exprssed analytically by the fact
that µ = µ(u1, u2, u3) does not depend on τ explicitly. Consequently ∂µjµ = 0
since by the Gauss theorem

(3.66)
∫

τ(xµ)=τ2

jµdσµ −
∫

τ(xµ)=τ1

jµdσµ =
∫

Ω

∂µjµd4x = 0

where Ω is the strip between the essentially arbitrary hypersurfaces τ = τ1 and
τ = τ2. The same result could be obtained by differentiating µ = jµπµ and using
properties of Jacobians. Passing to x coordinates (3.60) becomes

(3.67) I =
∫

Ω

µLJ−1d4x; J =
∂(x0, x1, x2, x3)
∂(τ, u1, u2, u3)

Note that by definition J = (∂xµ/∂τ)πµ so

(3.68) I =
∫

Ω

µ[L(xµ, ẋµ)/(ẋµπµ)]d4x

Since L is homogeneous of the first degree in the ẋµ the term in square brackets in
(3.68) is homogeneous of degree zero in the ẋµ. Hence we can replace ẋµ with the
current jµ = λẋµ without affecting the integral to obtain I =

∫
Ω

L(xµjµ)d4x where
µ = jµπµ has been used. Thus the average action I may be converted to a four
volume integral of L(xµ, jµ). When this formal substitution is made in (3.48),
(3.53) is obtained. This substitution does not alter the functional dependence
of the average action integral I on the connection fields Γλ

µν so the variational
problems (3.47) and (3.53) are equivalent as long as the variation is performed
with respect to these fields.

In Appendix C one derives (3.55); since similar calculations have already been
used earlier (and will recur again) we omit this here.

REMARK 3.3.4. The formula (3.59) goes back to Weyl [986] and the
connection of matter to geometry arises from (3.55). The time variable is treated
in a special manner here related to a Gibbs ensemble and ρ > 0 is built into
the theory. Thus problems of statistical transparancy as in Remark 2.3.3 will
apparently not arise.

REMARK 3.3.5. As mentioned at the beginning of Section 3.2, in [219]
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the Santamato theory is analyzed in depth from several points of view and a
number of directions for further study are indicated (in [224] the importance of
a complex velocity is emphasized - see also Section 7.1.2). There is also a related
development for the Dirac equation using an approach related to [397, 463, 464],
where both relativistic and nonrelativistic spin 1/2 particles can be classically
treated using anticommuting Grassmanian variables. However we prefer to treat
the Dirac equation in a different manner later (cf. also [89] and Section 2.1.1).

4. SCALE RELATIVITY AND KG

In [186] and Section 1.2 we sketched a few developments in the theory of
scale relativity. This is by no means the whole story and we want to give a taste
of some further main ideas while deriving the KG equation in this context (cf.
[11, 232, 272, 273, 274, 715, 716, 717, 718, 719, 720, 721]). A main idea
here is that the Schrödinger, Klein-Gordon, and Dirac equations are all geodesic
equations in the fractal framework. They have the form D2/ds2 = 0 where D/ds
represents the appropriate covariant derivative. The complex nature of the SE and
KG equation arises from a discrete time symmetry breaking based on nondifferen-
tiability. For the Dirac equation further discrete symmetry breakings are needed
on the spacetime variables in a biquaternionic context (cf. here [232]). First we go
back to [715, 716, 720] and sketch some of the fundamentals of scale relativity.
This is a very rich and beautiful theory extending in both spirit and generality
the relativity theory of Einstein (cf. also [225] for variations involving Clifford
theory). The basic idea here is that (following Einstein) the laws of nature apply
whatever the state of the system and hence the relevant variables can only be
defined relative to other states. Standard scale laws of power-law type correspond
to Galilean scale laws and from them one actually recovers quantum mechanics
(QM) in a nondifferentiable space. The quantum behavior is a manifestation of
the fractal geometry of spacetime. In particular (as indicated in Section 1.2) the
quantum potential is a manifestation of fractality in the same way as the Newton
potential is a manifestation of spacetime curvature. In this spirit one can also
conjecture (cf. [720]) that this quantum potential may explain various dynamical
effects presently attributed to dark matter (cf. also [16] and Chapter 4). Now for
basics one deals with a continuous but nondifferentiable physics. It is known for
example that the length of a continuous nondifferentiable curve is dependent on
the resolution ε. One approach now involves smoothing a nondifferentiable func-
tion f via f(x, ε) =

∫∞
−∞ φ(x, y, ε)f(y)dy where φ is smooth and say “centered”

at x (we refer also to Remark 1.2.8 and [11, 272, 273, 274] for a more refined
treatment of such matters). There will now arise differential equations involving
∂f/∂log(ε) and ∂2f/∂x∂log(ε) for example and the log(ε) term arises as follows.
Consider an infinitesimal dilatation ε → ε′ = ε(1 + dρ) with a curve length

(4.1) �(ε) → �(ε′) = �(ε + εdρ) = �(ε) + ε�εdρ = (1 + D̃dρ)�(ε)

Then D̃ = ε∂ε = ∂/∂log(ε) is a dilatation operator and in the spirit of renormaliza-
tion (multiscale approach) one can assume ∂�(x, ε)/∂log(ε) = β(�) (where �(x, ε)
refers to the curve defined by f(x, ε)). Now for Galilean scale relativity consider
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∂�(x, ε)/∂log(ε) = a + b� which has a solution

(4.2) �(x, ε) = �0(x)

[
1 + ζ(x)

(
λ

ε

)−b
]

where λ−bζ(x) is an integration constant and �0 = −a/b. One can choose ζ(x) so
that < ζ2(x) >= 1 and for a �= 0 there are two regimes (for b < 0)

(1) ε << λ ⇒ ζ(x)(λ/ε)−b >> 1 and � is given by a scale invariant fractal
like power with dimension D = 1− b, namely �(x, ε) = �0(λ/ε)−b.

(2) ε >> λ⇒ ζ(x)(λ/ε)−b << 1 and � is independent of scale.

Here ε = λ constitutes a transition point between fractal and nonfractal behavior.
Only the special case a = 0 yields unbroken scale invariance of � = �0(λ/ε)δ (δ =
−b) and one has then D̃� = b� so the scale dimension is an eigenvalue of D̃. Finally
the case b > 0 corresponds to the cosmological domain.

Now one looks for scale covariant laws and checks this for power laws φ =
φ0(λ/ε)δ. Thus a scale transformation for δ(ε′) = δ(ε) will have the form

(4.3) log
φ(ε′)
φ0

= log
φ(ε)
φ0

+ V δ(ε); V = log
ε

ε′

In the same way that only velocity differences have a physical meaning in Galilean
relativity here only V differences or scale differences have a physical meaning.
Thus V is a “state of scale” just as velocity is a state of motion. In this spirit
laws of linear transformation of fields in a scale transformation ε → ε′ amount to
finding A,B,C,D(V ) such that

(4.4) log
φ(ε′)
φ0

= A(V )log
φ(ε)
φ0

+ B(V )δ(ε); δ(ε′) = C(V )log
φ(ε)
φ0

+ D(V )δ(ε)

Here A = 1, B = V, C = 0, D = 1 corresponds to the Galileo group. Note also
ε → ε′ → ε′′ ⇒ V ′′ = V + V ′. Now for the analogue of Lorentz transforma-
tions there is a need to preserve the Galilean dilatation law for scales larger than
the quantum classical transition. Note V = log(ε/ε′) ∼ ε/ε′ = exp(−V ) and set
ρ = ε′/ε with ρ′ = ε′′/ε′ and ρ′′ = ε′′/ε; then logρ′′ = log ρ + log ρ′ and one is
thinking here of ρ : ε → ε′, ρ′ : ε′ → ε′′ and ρ′′ : ε → ε′′ with compositions
(the notation is meant to somehow correspond to (4.1)). Now recall the Einstein-
Lorentz law w = (u+v)/[1+(uv/c2)] but one now has several regimes to consider.
Following [716, 720] small scale symmetry is broken by mass via the emergence
of λc = �/mc (Compton length) and λdB = �/mν (deBroglie length), while for
extended objects λth = �/m < ν2 >1/2 (thermal deBroglie length) affects transi-
tions. The transition scale in (4.2) is the Einstein-deBroglioe scale (in rest frame
λ ∼ τ = �/mc2) and in the cosmological realm the scale symmetry is broken by
the emergence of static structure of typical size λg = (1/3)(GM/ < ν2 >). The
scale space consists of three domains (quantum, classical - scale independent, and
cosmological). Another small scale transition factor appears in the Planck length
scale λP = (�G/c3)1/2 and at large scales the cosmological constant Λ comes into
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play. With this background the composition of dilatations is taken to be

(4.5) log
ε′

λ
=

logρ + log ε
λ

1 + logρlog ε
λ

log2(L/λ)

=
logρ + log ε

λ

1 + logρlog(ε/λ)
C2

where L ∼ λP near small scales and L ∼ Λ near large scales (note ε = L⇒ ε′ = L
in (A.4)). Comparing with w = (u + v)/(1 + (uv/c2)) one thinks of log(L/λ) =
C ∼ c (note here log2(a/b) = log2(b/a) in comparing formulas in [716, 720]).
Lengths now change via

(4.6) log
�′

�0
=

log(�/�0) + δlogρ√
1− log2 ρ

C2

and the scale variable δ (or djinn) is no longer constant but changes via

(4.7) δ(ε′) =
δ(ε) + logρlog(�/�0)

C2√
1− log2ρ

C2

where λ ∼ fractal-nonfractal transition scale.

We have derived the SE in Section 1.2 (cf. also [186]) and go now to the KG
equation via scale relativity. The derivation in the first paper of [232] seems the
most concise and we follow that at first (cf. also [716]). All of the elements of
the approach for the SE remain valid in the motion relativistic case with the time
replaced by the proper time s, as the curvilinear parameter along the geodesics.
Consider a small increment dXµ of a nondifferentiable four coordinate along one
of the geodesics of the fractal spacetime. One can decompose this in terms of
a large scale part LS < dXµ >= dxµ = vµds and a fluctuation dξµ such that
LS < dξµ >= 0. One is led to write the displacement along a geodesic of fractal
dimension D = 2 via

(4.8) dXµ
± = d±xµ + dξµ

± = vµ
±ds + uµ

±
√

2Dds1/2

Here uµ
± is a dimensionless fluctuation andd the length scale 2D is introduced for

dimensional purposes. The large scale forward and backward derivatives d/ds+

and d/ds− are defined via

(4.9)
d

ds±
f(s) = lims→0±LS

〈
f(s + δs)− f(s)

δs

〉
Applied to xµ one obtains the forward and backward large scale four velocities of
the form

(4.10) (d/dx+)xµ(s) = vµ
+; (d/ds−)xµ = vµ

−

Combining yields

(4.11)
d′

ds
=

1
2

(
d

ds+
+

d

ds−

)
− i

2

(
d

ds+
− d

ds−

)
;

Vµ =
d′

ds
xµ = V µ − iUµ =

vµ
+ + vµ

−
2

− i
vµ
+ − vµ

−
2
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For the fluctuations one has

(4.12) LS < dξµ
±dξν

± >= ∓2Dηµνds

One chooses here (+,−,−,−) for the Minkowski signature for ηµν and there is a
mild problem because the diffusion (Wiener) process makes sense only for posi-
tive definite metrics. Various solutions were given in [314, 859, 1013] and they
are all basically equivalent, amounting to the transformatin a Laplacian into a
D’Alembertian. Thus the two forward and backward differentials of f(x, s) should
be written as

(4.13) (df/ds±) = (∂s + vµ
±∂µ ∓D∂µ∂µ)f

One considers now only stationary functions f, not depending explicitly on the
proper time s, so that the complex covariant derivative operator reduces to

(4.14) (d′/ds) = (Vµ + iD∂µ)∂µ

Now assume that the large scale part of any mechanical system can be char-
acterized by a complex action S leading one to write

(4.15) δS = −mcδ

∫ b

a

ds = 0; ds = LS <
√

dXνdXν >

This leads to δS = −mc
∫ b

a
Vνd(δxν) with δxν = LS < dXν >. Integrating by

parts yields

(4.16) δS = −[mcδxν ]ba + mc

∫ b

a

δxν(dVµ/ds)ds

To get the equations of motion one has to determine δS = 0 between the same
two points, i.e. at the limits (δxν)a = (δxν)b = 0. From (4.16) one obtains then
a differential geodesic equation dV/ds = 0. One can also write the elementary
variation of the action as a functional of the coordinates. So consider the point a
as fixed so (δxν)a = 0 and consider b as variable. The only admissable solutions
are those satisfying the equations of motion so the integral in (4.16) vanishes and
writing (δxν)b as δxν gives δS = −mcVνδxν (the minus sign comes from the choice
of signature). The complex momentum is now

(4.17) Pν = mcVν = −∂νS

and the complex action completely characterizes the dynamical state of the parti-
cle. Hence introduce a wave function ψ = exp(iS/S0) and via (4.17) one gets

(4.18) Vν = (iS0/mc)∂ν log(ψ)

Now for the scale relativistic prescription replace the derivative in d/ds by its
covariant expression d′/ds. Using (4.18) one transforms dV/ds = 0 into

(4.19) − S2
0

m2c2
∂µlog(ψ)∂µ∂ν log(ψ)− S0D

mc
∂µ∂µ∂ν log(ψ) = 0
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The choice S0 = � = 2mcD allows a simplification of (4.19) when one uses the
identity

(4.20)
1
2

(
∂µ∂µψ

ψ

)
=
(

∂µlog(ψ) +
1
2
∂µ

)
∂µ∂ν log(ψ)

Dividing byD2 one obtains the equation of motion for the free particle ∂ν [∂µ∂µψ/ψ] =
0. Therefore the KG equation (no electromagnetic field) is

(4.21) ∂µ∂µψ + (m2c2/�2)ψ = 0

and this becomes an integral of motion of the free particle provided the integration
constant is chosen in terms of a squared mass term m2c2/�2. Thus the quantum
behavior described by this equation and the probabilistic interpretation given to
ψ is reduced here to the description of a free fall in a fractal spacetime, in analogy
with Einstein’s general relativity. Moreover these equations are covariant since the
relativistic quantum equation written in terms of d′/ds has the same form as the
equation of a relativistic macroscopic and free particle using d/ds. One notes that
the metric form of relativity, namely V µVµ = 1 is not conserved in QM and it is
shown in [775] that the free particle KG equation expressed in terms of V leads
to a new equality

(4.22) VµVµ + 2iD∂µVµ = 1

In the scale relativistic framework this expression defines the metric that is induced
by the internal scale structures of the fractal spacetime. In the absence of an
electromagnetic field Vµ and S are related by (4.17) which can be writen as Vµ =
−(1/mc)∂µS so (4.22) becomes

(4.23) ∂µ
S∂µS− 2imcD∂µ∂µS = m2c2

which is the new form taken by the Hamilton-Jacobi equation.

REMARK 3.4.1. We go back to [716, 775] now and repeat some of their
steps in a perhaps more primitive but revealing form. Thus one omits the LS
notation and uses λ ∼ 2D; equations (4.8) - (4.14) and (4.11) are the same and
one writes now d/ds for d′/ds. Then d/ds = Vµ∂µ + (iλ/2)∂µ∂µ plays the role
of a scale covariant derivative and one simply takes the equation of motion of
a free relativistic quantum particle to be given as (d/ds)Vν = 0, which can be
interpreted as the equations of free motion in a fractal spacetime or as geodesic
equations. In fact now (d/ds)Vν = 0 leads directly to the KG equation upon
writing ψ = exp(iS/mcλ) and Pµ = −∂µS = mcVµ so that iS = mcλlog(ψ) and
Vµ = iλ∂µlog(ψ). Then

(4.24)
(
Vµ∂µ +

iλ

2
∂µ∂µ

)
∂ν log(ψ) = 0 = iλ

(
∂µψ

ψ
∂µ +

1
2
∂µ∂µ

)
∂ν log(ψ)

Now some identities are given in [775] for aid in calculation here, namely

(4.25)
∂µψ

ψ
∂µ

∂νψ

ψ
=

∂µψ

ψ
∂ν

(
∂µψ

ψ

)
=

=
1
2
∂ν

(
∂µψ

ψ

∂µψ

ψ

)
; ∂µ

(
∂µψ

ψ

)
+

∂µψ

ψ

∂µψ

ψ
=

∂µ∂µψ

ψ
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The first term in the last equation of (4.24) is then (1/2)[(∂µψ/ψ)(∂µψ/ψ)] and
the second is

(4.26) (1/2)∂µ∂µ∂ν log(ψ) = (1/2)∂µ∂ν∂µlog(ψ) =

= (1/2)∂ν∂µ∂µlog(ψ) = (1/2)∂ν

(
∂µ∂µψ

ψ
− ∂µψ∂µψ

ψ2

)
Combining we get (1/2)∂ν(∂µ∂µψ/ψ) = 0 which integrates then to a KG equation

(4.27) −(�2/m2c2)∂µ∂µψ = ψ

for suitable choice of integration constant (note �/mc is the Compton wave length).

Now in this context or above we refer back to Section 2.2 for example and write
Q = −(1/2m)(�R/R) (cf. Section 2.2 before Remark 2.2.1 and take � = c = 1 for
convenience here). Then recall ψ = exp(iS/mλ) and Pµ = mVµ = −∂µS with
iS = mλlog(ψ). Also Vµ = −(1/m)∂µS = iλ∂µlog(ψ) with ψ = Rexp(iS/mλ) so
log(ψ) = iS/mλ = log(R) + iS/mλ, leading to

(4.28) Vµ = iλ[∂µlog(R) + (i/mλ)∂µS] = − 1
m

∂µS + iλ∂µlog(R) = Vµ + iUµ

Then � = ∂µ∂µ and Uµ = λ∂µlog(R) leads to

(4.29) ∂µUµ = λ∂µ∂µlog(R) = λ�log(R)

Further ∂µ∂ν log(R) = (∂µ∂νR/R)− (RνRµ/R2) so

(4.30) �log(R) = ∂µ∂µlog(R) = (�R/R)− (
∑

R2
µ/R2) =

= (�R/R)−
∑

(∂µR/R)2 = (�R/R)− |U |2

for |U |2 =
∑

U2
µ. Hence via λ = 1/2m for example one has

(4.31) Q = −(1/2m)(�R/R) = − 1
2m

[
|U |2 +

1
λ

�log(R)
]

=

= − 1
2m

[
|U |2 +

1
λ

∂µUµ

]
= − 1

2m
|U |2 − 1

2
div(�U)

(cf. Section 2.2).

REMARK 3.4.2. The words fractal spacetime as used in the scale relativity
methods of Nottalle et al for producing geodesic equations (SE or KG equation) are
somewhat misleading in that essentially one is only looking at continuous nondif-
ferentiable paths for example. Scaling as such is of course considered extensively
at other times. It would be nice to create a fractal derivative based on scaling
properties and H-dimension alone for example which would permit the powerful
techniques of calculus to be used in a fractal context. There has been of course
some work in this direction already in e.g. [187, 257, 411, 437, 466, 471, 562,
721, 748, 816].
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5. QUANTUM MEASUREMENT AND GEOMETRY

We consider here a paper [989], which is based in part on a famous paper of
London [611] (reprinted in [731]). In [611] it was shown that the ratio of the Weyl
scale factor to the Schrödinger wave function is constant if the proportionality con-
stant between the Weyl potential and the EM potential is taken to be imaginary;
this observation gave birth to modern gauge theories and the original Weyl theory
was absorbed into QM with the original scale freedom becoming invariance under
unitary gauge transformations (cf. also Section 3.5.1). Both the Weyl theory and
the Schrödinger theory describe the evolution of a field in time and given the fac-
tor of i and the Kaluza-Klein framework used by London, those evolutions are the
same. In the Weyl picture the field characterizes the length scales of fundamental
matter, while in the Schrödinger picture it is the wave function corresponding to a
fundamental particle. This analogy is pursued further in [989] with a main theme
being the equivalence between Weyl measurement and quantum measurement; a
complete theory of measurement in a Weyl geometry is said to contain the crucial
elements of quantization and analogies of the following sort are indicated.

(5.1)

Weyl − quantum correspondence Quantum mechanics
Zero−Weyl − weight number Real eigenvalue

Diffusion equation SE
Weiner path integral Feynman path integral

Weightful length field ψw Complex state function ψ
Weyl conjugate ψ−w ψ∗

Probability ψwψ−w Probability |ψ|2
ψw → ewφψw (conformal) ψ → eiφψ (unitary)

We will try to make sense out of this following [989] (cf. also [63, 64]). Begin with
a real 4-dimensional manifold (M, [g]) where [g] is a conformal equivalence class
of Lorentz metrics. In addition to local coordinate transformations one has Weyl
(conformal) transformations given via T (x)′ = exp[w(T )Λ(x)]T (x) where T is a
tensor field and w(T ) is the Weyl weight (a real number). One takes a coordinate
basis Eα = ∂/∂xα and Eα = dxα in the tangent and cotangent space satisfying
w(Eα) = w(Eα) = 0.

DEFINITION 5.1. One defines a torsion free derivative D via
• Linearity: D(aT1 + bT2) = aDT1 + bDT2 for real a, b
• Leibniz: D(T1T2) = (DT1)T2 + T1(DT2)
• Weyl covariant: D(fT ) = [df + w(f)Wf ]T + fDT where W is a real

1-form (Weyl potential)
• Zero weight: w(DT ) = w(T )

Under a Weyl transformation W → W ′ = W − dΛ and one has

(5.2) DT = DµTα
βEµ ⊗Eα ⊗ Eβ ; DµTα

β =

= ∂µTα
β + T ρ

βΓα
ρµ − Tα

ρΓ
ρ
βµ + w(T )WµTα

β

There is no unique metric on the space; instead the metric is to be taken of
the Weyl type w(g) = 2 so that under a Weyl transformation g′ = exp[2Λ(x)]g.
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The principle fields of the theory are related by the requirement Dg = 0, or in
components

(5.3) Dµgαβ = 0 = ∂µgαβ − gρβΓρ
αµ − gαρΓ

ρ
βµ + 2Wµgαβ

This can be solved to give

(5.4) Γα
βµ =

{
α

β µ

}
+ (δα

βWµ + δα
µWβ − gβµWα)

Vanishing torsion has been assumed in (5.4) so that the bracket expression is the
usual Christoffel connection. The curvature tensor is then

(5.5) Rα
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

ρµΓρ
βν − Γα

ρνΓρ
βµ

Unlike the Riemannian curvature tensor the Weyl curvature has nonvanishing trace
on the first pair of indices so that (1/2)Rα

αµν = Wν,µ−Wµ,ν = Wµν where Wµµ is
the gauge invariant field strength of the Weyl potential. One says that two fields
are Weyl conjugate if they have the same Lorenz transformation properties but
opposite Weyl weights.

Now for a theory of measurement one first looks at zero weight fields. In this
direction note that fields with nonvanishing Weyl weight will experience changes
under parallel transport. For example the mass squared transported along a path
with unit tangent vector uµ = dxµ/dτ satisfies

(5.6) 0 = uµDµ(m2) = uµ∂µ(m2) + w(m2)uµWµm2

Integrating along the path of motion one finds a path dependence of the form
m2 = m2

0exp[w(m2)
∫

Wµuµdτ ] where the line integral has been written in terms
of the path parameter τ . Note this is analogous to m2 = m2

0exp(Q) in the
Shojai theory of Section 3.2 suggesting some relation to a quantum potential
Q ∼ w(m2)

∫
Wµuµdτ . However at this point there is no quantum matter posited

and no density ρ so a Weyl vector Wµ ∼ ∂µlog(ρ) as in Remark 3.3.1 is unten-
able and no comparison to (3.28) can be undertaken. However this does show a
geometrical dependence of mass in general and in the flat space of Remark 3.3.1
it is replaced by a quantum potential. Indeed this (Schouten-Haantjes) confor-
mal mass thus depends on the Weyl vector and if two particles of identical mass
are allowed to propagate freely (by parallel transport) along different paths and
brought together there will be a mass difference

(5.7) ∆m2 = m2
0e

w(m2)
∮

Wµuµdτ ≡ m2
0e

w(m2)
∫

S
WµνdSµν

where dSµν is an element of any 2-surface S bounded by the closed curve defined
by the two particles. Hence unless the surface integral of the Weyl field strength
vanishes there will be a path dependence for masses and of any other field of
nonzero weight. One postulates now (I) that all quantities of vanishing Weyl
weight should be physically meaningful (observables) and (II) that all fields occur
in conjugate pairs satisfying conjugate equations of motion. Assume that M±
evolves by parallel transport along a path as above via

(5.8) 0 = uµDµD± = uµD̄µM± ± w(M)M±Wµuµ
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where D̄ is a derivation using the full connection (5.4) and one sets w(M) =
w(M+) > 0 for convenience. One has also

(5.9) M± = Mexp[∓w(M)
∫

Wµuµdτ ]

where M is weightless with uµD̄µM = 0. Now suppose one wants to measure some
characteristic of M (i.e. of M+ or M−). M can be scaled by an arbitrary gauge
function and one transports M along a path so that its covariant derivative in the
dirction of motion vanishes. Then the change in size is specified by (5.9) but it
is not clear that we can tell what path a particle has taken. In a Riemannian
space there are geodesics determining the paths of classical matter but that is
not true in a Weyl space (in this regard we refer to [188], Section 3.2, and to
[133, 796, 797, 798, 799]).

In order to study the motion of M one begins with the observation that a Weyl
geometry provides a probability PAB(M) of finding a value M at a point B for a
system which is known to have had a value M0 at point A. Finding PAB(M) is
tantamount to finding the fraction of paths which the system may follow leading
to any given value of M. Since there may be no special paths in a Weyl geometry
one has to settle for moments of the distribution. To find the average value of
magnitude of M denoted by < M > one integrates (5.9) over all paths via

(5.10) < M >=
∫
D[x]M0exp[w(M)

∫ B

A

Wµuµdτ ]

where the usual path integral normalization is included implicitly in D[x] (see e.g.
[362, 457, 855]) for path integrals). However this gives no information as to
whether one should expect M to actualy reach B. In [989] there is then a long
discussion (and a detailed Appendix) involving path averages, probability, Wiener
integrals, etc. plus a postulate (III) that the probability a system will undergo
a given infinitesimal displacement xµ is inversely proportional to the change in
length such a displacement produces in the system. Now d� = w(M)Wµdxµ =
w(M)Wµuµdτ and a plausible (rigorous) argument is given then to represent the
probability of the system reaching any spacetime point x from x0 as

(5.11) G(x0;x) =
∫
D[x]exp[w(M)

∫ x

x0

Wµuµdτ ]

(which bears an obvious resemblence to (5.10)). Comparison of (5.10) and (5.11)
involves noting first that (5.11) is gauge dependent but the gauge dependence
comes out of the path integral since it depends only on the end points. Thus

(5.12) G′(x0;x) =
∫
D[x]exp[w(M)

∫ x

x0

(Wµ − ∂µφ)uµdτ ] =

= e−w(M)[φ(x)−φ(x0)]

∫
D[x]exp[w(M)

∫ x

x0

Wµuµdτ ]
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This means that one can eleiminate the gauge factor by multiplying by the Weyl
conjugate expression

(5.13) Ḡ′(x0;x) = ew(M)[φ(x)−φ(x0)]

∫
D[x]exp[−w(M)

∫ x

x0

Wµuµdτ ]

to give a meaningful gauge invariant probability P (x0, x) = Ḡ(x0;x)G(x0;x) which
is the probability of detecting the dilating system at x given its presence at x0. It
may be thought of as the joint probability of finding both M and M̄ at x. Here
one is dealing with a real path integral, unlike QM, and the phase invariance of a
wave function ψ′ = exp(iφ)ψ is replaced by conformal invariance M ′ = exp(φ)M
(this is the same factor of i introduced by London in 1927). Since that time
gauge transformations have appeared as phases and the wave interpretation has
been maintained; now one maintains a real gauge transformation and changes
the interpretation of physical phenomena (see [989] for more discussion in this
direction).

Now one shows the equivalence to QM of the nonrelativistic limit of (5.11)
when the exponent in the path integral is identified with a multiple of the classical
action, i.e.

∫
Wµuµdτ = λS = λ

∫
Ldτ . The integrands here may also be equated

except for the possible addition of the total derivative of a function of τ . But
such a derivative is already known to be both a gauge freedom of Wµ and a
transformation of L that leaves the equations of motion unaltered. So the possible
equivalent versions of L may be understood as gauge changes of the underlying
geometry. This identification fixes the physical interpretation of Wµ up to the
gauge choice and since uµ = ẋµ equating the integrands gives

(5.14) λPµ = λ(∂L/∂uµ) = Wµ

so that Wµ is proportional to the generalized momentum Pµ conjugate to xµ.
Now Weyl had originally identified Wµ with the derivative of an EM potential
∂µU ∼ Aµ and the present approach suggests Wµ = λ(pµ + Aµ) so that all energy
provides a surce of expansion rather than just EM energy. This still allows gauge
transformations of Wµ to be identified with gauge transformations of Aµ. Next one
goes to the nonrelativistic limit of the path integral to find a differential equation
for the amplitudes G(x0;x). It is convenient to explicitly separate the kinetic
term pµuµ from Wµuµ which will enable one to identify the path integral in (5.11)
with a Wiener integral. Thus with full generality one writes Wµ = λ(pµ + W̃µ)
where any gauge transformation is understood to apply to W̃µ. Now consider the
nonrelativistic limit where the integral

∫
pµuµdτ ∼ mc2

∫
dτ so that mc2

∫
dτ ∼∫

[mc2 − (m/2)v2]dt. To this order the path integral becomes (suppressing limits
of integration)

(5.15) G(x0;x) =
∫
D[x]eλw(M)

∫
[(1/2)mv2+W̃ ·v−W̃ 0−mc2)]dt

This is of the form

(5.16) P (x0;x) =
∫
D[x]exp[−(1/2)

∫
((q̇ + w)2 −∇ ·w)dt]
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where P (x0;x) is the propagator for the Fokker-Planck equation ∂tP = (1/2)∇2P+
∇ · (wP ) provided one makes the identifications

(5.17) q̇ =
√
−w(M)λmv; ∇x =

√
−w(M)λm∇q; ψ = Pe−2mc2

;

w =
√
−w(M)λ/mW̃; 2w(M)λ(mc2 + W̃0) = w2 −∇ ·w

(cf. [457, 672, 674, 698, 856]). Carrying out the substitutions and setting
λW̃µ = −U(λφ,A) one obtains ψ(x) =

∫
ψ(x′)G(x, x′)dx′ as a solution to

(5.18)
1

w(M)λ
∂tψ = − 1

2m[w(M)λ]2
[∇+ w(M)λA]2 + (mc2 + Uφ)ψ

with initial condition ψ = ψ(x′) (this should be checked to clarify the roles of U
and φ). If one sets λ = �−1 and the time is allowed to become imaginary the
SE minimally coupled to EM arises. Thus choose λ = �−1 but leave time alone
since it is not needed; then (5.18) can be interpreted as a stochastic form of QM.
Evidently the Weyl weight serves the function of i, changing sign appropriately for
the conjugate field. The emergence of the Fokker-Planck equation indicates diffu-
sion and this is discussed at length in [186, 672, 674, 698, 856]. In addition the
matter is discussed in [989] from various points of view. In particular one takes
(1/�)S =

∫
Wµuµdτ and observes that a classical limit of the Weyl geometry will

exist whenever there is an extremum to the action (as in the Feynman path inte-
gral). Thus a classical limit of (5.11) occurs whenever Ψ = exp[w(M)

∫ x

x0
Wµuµdτ ]

is extremal. However there is a difference here involving Ψ as a length factor.
One shows that δΨ = 0 corresponds to a special case of the Weyl field since∫ B

A
dτ(Wµ,ν−Wν,µ)uµδxν = 0 arises via variation which means Wµνuν = 0. Some

calculation then shows that Wα = ξ∂αχ (up to a gauge transformation) for any
appropriately normalized functions ξ, χ satisfying

(5.19) (Dµχ)uν = (Dµχ)vµ = (Dµξ)uν = (Dµξ)vµ = 0;

(1/2)εµναβWαβ = uµvν − uνvµ

with ε the Levi-Civita tensor (cf. [302, 989]). Now Wα = ξ∂αχ is a rather
remarkable relation; it represents a restricted form of Wα since it is easy to find
a Weyl vector such that Wµνuν ∼ Wµ0 �= 0 for all nonspacelike uν . Since this
formula arises for an arbitrary set of paths uα it is clear that not all Weyl fields
will have a classical limit. Thus as argued at the beginning the generic Weyl
geometry lacks preferred paths and requires a path average. On the other hand
if one chooses a gauge where Wαuα = 0 (which is possible) then weightful bodies
followed the preferred classical trajectories and experience no dilation. There is
considerable discussion along these lines in [989] which is omitted here; there
is also interesting material on relations to general relativity. In particular it is
pointed out that size changes associated with nonvanishing Weyl field strength
are not necessarily classically observable. However the Weyl field itself must be
present and consequently must be detectable. Finding the physical field that it
corresponds to simply requires substituting the appropriate conjugate momentum
for Wµ in the classical equation of motion Wµνuν = 0. Since the only long range
forces are gravity and EM and gravity is still accounted for by the Riemannian
curvature, Wµ must be electromagnetic. The most general classical conjugate
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momentum is therefore that of a point particle with charge q moving in an EM
field. Then in an arbitrary gauge

(5.20) Wµ = (1/�)(pµ + qAµ + ∂µΛ)

where pµ = muµ and uµuµ = −1. Then

(5.21) 0 = Wµνuν = (1/�)(pµ,ν − pν,µ + qAµ,ν − qAνµ)uν

or (using (uµuµ),ν = 0) dpµ/dτ = quνFµν which is the Lorenz force law (note that
Planck’s constant drops out). For the interpretation of Wµ itself one can combine
the curl of (5.20) with

(5.22) Wαβ = DαχDβξ −DβχDαξ = ∂αχ∂βξ − ∂βχ∂αξ

(cf. (5.19) and the surrounding discussion); this leads to

(5.23) ∂αχ∂βξ − ∂βχ∂αξ = (1/�)(pα,β − pβ,α + qAα,β − qAβ,α)

the time component of which gives again the Lorenz law. The spatial components
can be solved for the magnetic field to give

(5.24) B = (�/q)(∇χ×∇ξ)− (m/q)(∇× v)

The two fields χ and ξ on the right side of B are sufficient to guarantee the
existence of any type of physical magnetic field. Conversely one can use (5.24)
to solve for the Weyl field in terms of B and v (which of course depend on �).
One notes that for vanishing Weyl field (5.24) reduces to the London equation
for superconductivity. This means that matter fields which conspire to produce a
Riemannian geometry become superconducting.

5.1. MEASUREMENT ON A BICONFORMAL SPACE. We con-
tinue the theme of Section 3.5 with a more general perspective from [35] based on
biconformal geometry (cf. Appendix E for some background material and see also
[35, 36, 113, 497, 558, 987, 980, 981, 989, 990, 991, 992, 993, 994, 1010]).
We regard this approach via biconformal geometry as very interesting and will try
to present it faithfully. The background material in Appendix E should be read
first; results in [994] for example create a unified geometrical theory of gravity
and electromagnetism based on biconformal geometry. One develops in [35] an in-
terpretation for quantum behavior within the context of biconformal gauge theory
based on the following postulates:

(1) A σC biconformal space provides the physical arena for quantum and
classical physics.

(2) Quantities of vanishing conformal weight comprise the class of physically
meaningful observables.

(3) The probability that a system will follow any given infinitesimal dis-
placement is inversely proportional to the dilatation the displacement
produces in the system.

From these assumptions follow the basic properties of classical and quantum me-
chanics. The symplectic structure of biconformal space is similar to classical phase
space and also gives rise to Hamilton’s equations, Hamilton’s principal function,
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conjugate variables, fundamental Poisson brackets, and Liouville theory when pos-
tulate 3 is replaced by a postulate of extremal motion. We sketch this here (some-
what brutally) and refer to [35] for details, philosophy, and further references;
the details for the biconformal geometry are spelled out in [992, 994]. Thus one
wants a physical arena which contains 4-D spacetime in a straightforward manner
but which is large enough and structured so as to contain both general relativ-
ity (GR) and quantum theory (QT) at the same time. One demands therefore
invariance under global Lorentz transformations, translations, and scalings (see
below) and the Lie group characterizing this is the conformal group O(4, 2) or its
covering group SU(2, 2). In Appendix E the basic facts about Lorentz transforma-
tions Ma

b = −Mba = ηacM
c
b, translations Pa, special conformal transformations

Ka, and dilatations D are exhibited in the context of conformal gauge theory
(a, b = 0, 1, 2, 3). One has two involutive automorphisms of the conformal algebra,
first

(5.25) σ1 : (Ma
b, Pa,Ka, D) → (Ma

b,−Pa,−Ka, D)

which identifies the residual local Lorentz and dilatation symmetry characteristic
of biconformal gauging and this corresponds (resp. for the Poincaré Lie algebra
or the Weyl algebra) to

(5.26) σ1 : (Ma
b, Pa)→ (Ma

b,−Pa) or σ1 : (Ma
b, Pa, D) → (Ma

b,−Pa, D)

There is also a second involution for the conformal group, namely

(5.27) σ2 : (Ma
b, Pa,Ka, D) → (Ma

b,Ka, P a,−D)

Some representations of the conformal algebra, namely su(2, 2), are necessarily
complex and σ2 can be realized as complex conjugation. Specifically one thinks of
a representation in which Pa and Ka are complex conjugates while Ma

b is real and
D is purely imaginary and such representations will be called σC representations.
Biconformal spaces for which the connection 1-forms (and hence curvatures) have
this property are then called σC spaces (see Appendix E for examples). This leads
to postulate 1 above, namely the physical arena for QT and classical physics is a
σC biconformal space. Now biconformal gauging of the conformal group provides
in particular a symplectic structure as follows. Gauging D introduces a single
gauge 1-form ω (the Weyl vector) and the corresponding dilatational curvature
2-form is

(5.28) Ω = dω − 2ωaωa

where ωa, ωa are 1-form gauge fields for the translation and special conformal
transformations respectively, which span an 8-dimensional space as an orthonormal
basis (note ωa = ηabω̄

b for σC representations and products are wedge products).
Now for all torsion free solutions to the biconformal field equations (i.e. ∗d∗dω0

0 =
J, ω0

a = Ta + ·, etc. - cf. Appendix E) the dilatational curvature takes the form
(•) Ω = κωaωa with κ constant, so the structure equation becomes (••) dω = (κ+
2)ωaωa. As a result dω is closed and nondegenerate and hence symplectic (since
ωa, ωa span the space). There is also a biconformal metric arising from the group
invariant Killing metric KΣΠ = cΛ

∆Σc∆
ΛΠ where cΛ

∆Σ (Σ,Π, · · · = 1, 2, · · · , 15) are
the real structure constants from the Lie algebra. This metric has a nondegenerate
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projection to the 8-D subspace spanned by Pa, Ka and provides a natural pseudo-
Riemannian metric on biconformal manifolds. The projection takes the form

(5.29) KAB =
(

ηab

ηab

)
(A,B = 0, 1, · · · , 7)

One defines now conformal weights w of a definite weight field F via (�) Dφ :
F → [exp(wφ)]F where Dφ is dilatation by exp(φ) (cf. [989] and Section 3.5).
One assumes now postulate 2 and concludes that for a field with nontrivial Weyl
weight to have physical meaning it must be possible to construct weightless scalars
by combining it with other fields (easily done with conjugate fields); one notes
that zero weight fields are self conjugate. The symplectic form Θ = ωaωa defines
a symplectic bracket via

(5.30) {f, g} = ΘMN ∂f

∂uM

∂g

∂uN

where uM = (xa, yb). For real solutions f, g to the field equations f and g are
conjugate if they satisfy {f, f} = 1, {f, f} = {g, g} = 0. However for σC rep-
resentations ω is a pure imaginary 1-form since it is defined as the dual to the
dilatation generator D which is pure imaginary. One sees then that

(5.31) ωaωa = ω̄aω̄a = ηabωbηacω
c = −ωaωa

so the dilatational curvature and the symplectic form are imaginary (cf. also
[35, 529]). Consequently, for use of a complex gauge vector with real gauge
transformations, the fundamental brackets should take here the form

(5.32) {f, g} = i; {f, f} = {g, g} = 0; wf = −wg

In an arbitrary biconformal space one sets either

(5.33)
1
�
S =

1
�

∫
Ldλ =

∫
ω =

∫
(Wadxa + W̄adya) or

i

�
S =

i

�

∫
Ldλ =

∫
ω =

∫
(Wadxa + W̄adya)

The second form holds in a σC representation for the conformal group. An ar-
bitrary parameter λ is OK since the integral of the Weyl 1-form is independent
of parametrization. This integral also governs measurable size change since under
parallel transport the Minkowski length of a vector V a changes by

(5.34) � = �0exp

∫
ω; �2 = ηabV

aV b

(cf. Appendix E). This change occurs because ηab = (−1, 1, 1, 1) is not a natural
structure for biconformal space. This is in contrast to the Killing metric KAB

where lengths are of zero conformal weight. In a σC representation the Weyl vector
is imaginary so the measurable part of the change in � is not a real dilatation -
rather, it is a change of phase. Now for classical mechanics one uses a variation of
postulate 3, namely: The motion of a (classical) physical system is given
by extrema of the integral of the Weyl vector. Biconformal spaces are real
symplectic manifolds so the Weyl vector can be chosen so that the symplectic form
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satisfies the Darboux theorem ω = Wadxa = −yzdxa; for σC representations the
Darboux equations still holds but now with

(5.35) ω = Wadxa = −iyadxa

and the classical motion is independent of which form is chosen. Thus the symplec-
tic form for the σC case is Θ = dω = −idyadxa and one has (��) {xa, yb} = iδa

b .
Thus from (��) it follows that yb is the conjugate variable to the position coordi-
nate xb and in mechanical units one may set ya = αpa with

(5.36) iαS =
∫

ω = −iα

∫
(p0dt + pidxi)

(α can be any constant with appropriate dimensions). Now if one requires t as an
invariant parameter (so δt = 0) one can vary the corresponding canonical bracket
to find

(5.37) 0 = δ{t, p0} = {δt, p0}+ {t, δp0} =
∂(δp0)
∂p0

Thus δp0 can depend only on the remaining coordinates so δp0 = −δH(yi, x
j , t)

and the existence of a Hamiltonian is a consequence of choosing time as a nonvaried
parameter of the motion. Applying the postulate δS = 0 variation leads to

(5.38) 0 = iαδS = −iα

∫
(δp0dt + δpidxi − dpiδx

i) =

= −iα

∫ (
−∂H

∂xi
δxidt− ∂H

∂pi
δpidt + δpidxi − dpiδx

i

)
and this gives the standard Hamilton’s equations

(5.39) 0 = −∂H

∂pi
dt + dxi; 0 = −∂H

∂xi
dt− dpi

(note i and α drop out of the equations).

In the presence of nonvanishing dilatational curvature one then considers a
classical experiment to measure size (or phase) change along C1, while a ruler
measured by λ moves along C2 (Ci are classical paths between two fixed points).
Some argument (see [35]) leads to an unchanged ratio of lengths via

(5.40)
�

λ
=

�0
λ0

exp

∫
C−1−C−2

ω =
�0
λ0

exp

∮
ω =

�0
λ0

exp

∫ ∫
S

dω =
�0
λ0

where S is any surface bounded by the closed curve C1−C2 (cf. also Section 3.5).
Thus no dilatations are observable along classical paths. This calculation also
shows that the restriction of ω to classical paths is exact and proves the existence
of Hamilton’s principal function S with

(5.41) αS(x) =
∫ x

Wadxa =
∫ x

Wa
dxa

dt
dt

There is further argument in [35] via gauge freedom to show that classical objects
do not exhibit measurable length change (in the complex case the phase changes
cannot be removed by gauge choice but they are unobservable). Relations between
phase space and biconformal space are discussed and one arrives at QM.
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From the above one knows that there is no measurable size change along
classical pathes in a biconformal geometry but for systems evolving along other
than extremal paths (where the Hamilton equations do not apply for example)
there may be measurable dilatation. To deal with this one needs nonclassical
motion and one goes to the basic postulate 3, namely that the probability a system
will follow any given infinitesimal displacement is inversely proportional to the
dilatation the displacement produces in the system. The properties of biconformal
space determine the evolution of Minkowski lengths along arbitrary curves and
the imaginary Weyl vector produces measurable phase changes in the same way
as the wave function. Combining this with the classically probabilistic motion of
postulate 3, together with the necessary use of a standard of length to comply
with postulate 2, one concludes that the probability of a system at xa

0 arriving at
the point xa

1 is given by

(5.42) P (xi
1) =

∫
D[xC′ ]exp

(∫
C′

ω

)∫
D[xC ]exp

(
−
∫

C

ω

)
=

= P(xi
1)P(−xi

1) = P(xi
1)P̄(xi

1)

where a path average over all paths connecting the two points is involved and P̄(x)
is simulaneously the probability amplitude of the conformally conjugate system
reaching xi

1. Here one considers ratios �/λ as above and includes all possible
ruler paths. These are standard Feynman path integrals which are known to
lead to the Schrödinger equation (not Wiener integrals as in [989]) and it is the
requirement of a length standard that forces the product structure in (5.42). Note
that the phase invariance of a wave function ψ′ = exp(iφ)ψ is created by the σC

conformal invariance M ′ = exp(λw)M . The i in the Weyl vector is the crucial i
noted by London in [611] (cf. [989] and Section 3.5). Note also that the path
integral in (5.42) and the biconformal paths depend generically on the spacetime
and momentum variables so one can immediately generalize to the usual integrals
of QM, namely

(5.43) P(xi
1) =

∫
D[xC ]D[yC ]exp(

∫
Cω)

Note also that the failure of the base space to break into space like and mo-
mentum like submanifolds indicates a fundamental coupling between position and
momentum and suggests a connection to the Heisenberg uncertainty principle.
The arguments in [35] have a somewhat heuristic flavor at times but are certainly
plausible and do refine the techniques of [989] (sketched in Section 3.5) in many
ways. Given the success of biconformal geometry in unifying GR and EM it would
seem only natural and just that QM could be encompassed as well in the same
framework and further developments are eagerly awaited.

REMARK 3.5.1 We note from [993] that when identifying biconformal coor-
dinates (xµ, yν) with phase space coordinates (xµ, pν) one sets naturally yν = βpν .
This β must account for a sign difference in ηµνβpµβpν = −ηµνyµyν (cf. [993]) so
β is pure imaginary. Further to account for the different units of yν (length−1) and
pν (momentum) one chooses yν = (i/�)pν and this relation between the geometric
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variables of conformal gauge theory and the physical momentum variables is the
source of complex quantities in QM.



CHAPTER 4

GEOMETRY AND COSMOLOGY

This chapter and the next will cover a number of more or less related topics
having to do with cosmology, the zero point field (ZPF), the aether and vacuum,
quantum geometry, electromagnetic (EM) phenomena, and Dirac-Weyl geometry.

1. DIRAC-WEYL GEOMETRY

A sketch of Dirac Weyl geometry following [302] was given in [188] in con-
nection with deBroglie-Bohm theory in the spirit of the Tehran school (cf. [117,
118, 668, 669, 831, 832, 833, 834, 835, 836, 837, 838, 864, 865, 866, 867,
868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879]). We go now to
[498, 499, 500, 501, 502, 503, 817] for generalizations of the Dirac Weyl the-
ory involved in discussing magnetic monopoles, dark matter, quintessence, matter
creation, etc. We skip [500] where some notational problems seem to arise in the
Lagrangian and go to [499] where in particular an integrable Weyl-Dirac theory is
developed (the book [498] is a lovely exposition but the work in [499] is somwhat
newer). Note, as remarked in [645] (where twistors are used), the integrable Weyl-
Dirac geometry is desirable in order that the natural frequency of an atom at a
point should not depend on the whole world line of the atom. The first paper
in [499] is designed to investigate the integrable Weyl-Dirac (Int-W-D) geometry
and its ability to create massive matter. For example in this theory a spherically
symmetric static geometric formation can be spatially confined and an exterior
observer will recognize it as a massive entity. This may be either a fundamen-
tal particle or a cosmic black hole both confined by a Schwarzschild surface. We
summarize again some basic features in order to establish notation, etc. Thus in
the Weyl geometry one has a metric gµν = gνµ and a length connection vector wµ

along with an idea of Weyl gauge transformation (WGT)

(1.1) gµν → g̃µν = e2λgµν ; gµν → g̃µν = e−2λgµν

where λ(xµ) is an arbitrary differerentiable function (cf. also [319, 320, 762,
853, 854] for Weyl geometry). One is interested in covariant quantities satisfying
ψ → ψ̃ = exp(nλ)ψ where the Weyl power n is described via π(ψ) = n, π(gµν) = 2,
and π(gµν) = −2. If n = 0 the quantity ψ is said to be gauge invariant (in-
invariant). Under parallel displacement one has length changes and for a vector

(1.2) (i) dBµ = −BσΓµ
σνdxν ; (ii) B = (BµBνgµν)1/2; (iii) dB = Bwνdxν

143
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(note π(B) = 1). In order to have agreement between (i) and (iii) one requires

(1.3) Γλ
µν =

{
λ

µ ν

}
+ gµνwλ − δλ

ν wµ − δλ
µwν

where
{

λ
µ ν

}
is the Christoffel symbol based on gµν . In order for (iii) to hold in

any gauge one must have the WGT wµ → w̃µ = wµ + ∂µλ and if the vector Bµ is
transported by parallel displacement around an infinitesimal closed parallelogram
one finds

(1.4) ∆Bλ = BσKλ
σµνdxµδxν ; ∆B = BWµνdxµδxν

where

(1.5) Kλ
σµν = −Γλ

σµ,ν + Γλ
σν,µ − Γα

σµΓλ
αν + Γα

σνΓλ
αµ

is the curvature tensor formed from (1.3) and Wµν = wµ,ν − wν,µ. Equations
for the WGT wµ → w̃µ and the definition of Wµν led Weyl to identify wµ with
the potential vector and Wµν with the EM field strength; he used a variational
principle δI = 0 with I =

∫
L
√−gd4x with L built up from Kλ

σµν and Wµν . In
order to have an action invariant under both coordinate transformations and WGT
he was forced to use R2 (R the Riemannian curvature scalar) and this led to the
gravitational field.

Dirac revised this with a scalar field β(xν) which under WGT changes via
β → β̃ = e−λβ (i.e. π(β) = −1). His in-invariant action integral is then (f,µ ≡
∂µf)

(1.6) I =
∫

[WλσWλσ − β2R + β2(k − 6)wσwσ + 2(k − 6)βwσβ,σ+

+kβ,σβ,σ + 2Λβ4 + LM ]
√
−gd4x

Here k is a parameter, Λ is the cosmological constant, LM is the Lagrangian density
of matter, and an underlined index is to be raised with gµν . Now according to
(1.4) this is a nonintegrable geometry but there may be situations when geometric
vector fields are ruled out by physical constraints (e.g. the FRW universe). In
this case one can preserve the WD character of the spacetime by assuming that
wν is the gradient of a scalar function w so that wν = w,ν = ∂νw. One has then
Wµν = 0 and from (1.4) results ∆B = 0 yielding an integrable spacetime (Int-W-D
spacetime). To develop this begin with (1.6) but with wν given by wν = ∂νw so
the first term in (1.6) vanishes. The parameter k is not fixed and the dynamical
variables are gµν , w, and β. Further it is assumed that LM depends on (gµν , w, β).
For convenience write

(1.7) bµ = (log(β)),µ = β,µ/β

and use a modified Weyl connection vector Wµ = wµ+bµ which is a gauge invariant
gradient vector. Write also k − 6 = 16πκ and varying w in (1.6) one gets a field
equation

(1.8) 2(κβ2W ν);ν = S
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where the semicolon denotes covariant differentiation with the Christoffel symbols
and S is the Weylian scalar charge given by 16πS = δLM/δw. Varying gµν one
gets also

(1.9) Gν
µ = −8π

T ν
µ

β2
+ 16πκ

(
W νWµ −

1
2
δν
µW σWσ

)
+

+2(δν
µbσ

;σ − bν
;µ) + 2bνbµ + δν

µbσ
σ − δν

µβ2Λ
where Gν

µ represents the Einstein tensor and the EM density tensor of ordinary
matter is

(1.10) 8π
√
−gTµν = δ(

√
−gLM )/δgµν

Finally the variation with respect to β gives an equation for the β field

(1.11) R + k(bσ
;σ + bσbσ) = 16πκ(wσwσ − wσ

;σ) + 4β2Λ + 8πβ−1B

Note in (1.11) R is the Riemannian curvature scalar and the Dirac charge B is a
conjugate of the Dirac gauge function β, namely 16πB = δLM/δβ.

By a simple procedure (cf. [302]) one can derive conservation laws; consider
e.g. IM =

∫
LM

√−gd4x. This is an in-invariant so its variation due to coordinate
transformation or WGT vanishes. Making use of 16πS = δLM/δw, (1.10), and
16πB = δLM/δβ one can write

(1.12) δIM = 8π
∫

(Tµνδgµν + 2Sδw + 2Bδβ)
√
−gd4x

Via xµ → x̃µ = xµ + ηµ for an arbitrary infinitesimal vector ηµ one can write

(1.13) δgµν = gλνηλ
;µ + gµληλ

;ν ; δw = w,νην ; δβ = β,νην

Taking into account xµ → x̃µ we have δIM = 0 and making use of (1.13) one gets
from (1.12) the energy momentum relations

(1.14) Tλ
µ;λ − Swµ − βBbµ = 0

Further considering a WGT with infinitesimal λ(xµ) one has from (1.12) the equa-
tion S+T−βB = 0 with T = T σ

σ . One can contract (1.9) and make use of (1.8) and
S + T = βB giving again (1.11), so that (1.11) is a corollary rather than an inde-
pendent equation and one is free to choose the gauge function β in accordance with
the gauge covariant nature of the theory. Going back to the energy-momentum
relations one inserts S + T = βB into (1.14) to get Tλ

µ;λ − Tbµ = SWµ. Now go
back to the field equation (1.9) and introduce the EM density tensor of the Wµ

field

(1.15) 8πΘµν = 16πκβ2[(1/2)gµνWλWλ −WµW ν ]

Making use of (1.8) one can prove Θλ
µ;ν −Θbµ = −SWµ and using Tλ

µ;λ − TBµ =
SWµ one has an equation for the joint energy momentum density

(1.16) (Tλ
µ + Θλ

µ);λ − (T + Θ)bµ = 0

One can derive now the equation of motion of a test particle (following [817]).
Consider matter consisting of identical particles with rest mass m and Weyl scalar
charge qs, being in the stage of a pressureless gas so that the EM density tensor can
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be written Tµν = ρUµUν where Uµ is the 4-velocity and the scalar mass density
ρ is given by ρ = mρn with ρn the particle density. Taking into account the
conservation of particle number one obtains from Tλ

µ;λ−Tbµ = SWµ the equation
of motion

(1.17)
dUµ

ds
+
{

µ
λ σ

}
UλUσ =

(
bλ +

qs

m
Wλ

)
(gµλ − UµUλ)

In the Einstein gauge (β = 1) we are then left with

(1.18)
dUµ

ds
+
{

µ
λ σ

}
UλUσ =

qs

m
wλ(gµλ − UµUλ)

EXAMPLE 1.1. Following [499] one considers a static spherically symmetric
situation with line element

(1.19) ds2 = eνdt2 − eλdr2 − r2(dθ2 + Sin2(θ)dφ2)

and all functions λ, ν, β, w, T ν
µ , S, B depend only on r. One looks for local

phenomena so Λ = 0. The field equations (1.9) can be written explicitly for
(µν) = (0, 0), (1, 1), (2, 2), or (3, 3) to obtain

(1.20) e−λ

(
−λ′

r
+

1
r2

)
− 1

r2
= −8πT 0

0

β2
+

+2e−λ

(
− (b′)2

2
− b′′ +

λ′b′

2
− 2b′

r

)
+ 8πκe−λ(W ′)2;

e−λ

(
ν′

r
+

1
r2

)
− 1

r2
= −8πT 1

1

β2
− 2e−λ

(
ν′b′

2
+

2b′

r
+

3(b′)2

2

)
− 8πκe−λ(W ′)2;

1
4

(
ν′′ +

(ν′)2

2
+

ν′ − λ′

r
− ν′λ′

2

)
=

= −4eλπT 2
2

β2
−
(

b′′ +
(ν′ − λ′)b′

2
+

b′

r
+

(b′)2

2

)
+ 4πκe−λ(W ′)2

From (1.8) one has the equation for the W field

(1.21) 2κ
[
W ′′ +

(
2b′ +

ν′ − λ′

2
+

2
r

)
W ′

]
= −eλS

β2

The most intriquing situation is when ordinary matter is absent, so Tµ
ν = 0, and

then from S + T = βB and Tλ
µ;λ − Tbµ = SWµ one has S = 0 and B = 0. Take

first the simple case when W ′ = 0 or κ = 0 so (1.21) is satisfied identically and
(1.20) takes the simple form

(1.22) e−λ

(
−λ′

r
+

1
r2

)
− 1

r2
= 2e−λ

(
− (b′)2

2
− b′′ +

λ′b′

2
− 2b′

r

)
;

e−λ

(
ν′

r
+

1
r2

)
− 1

r2
= −2e−λ

(
ν′b′

2
+

2b′

r
+

2(b′)2

2

)
;

e−λ

2

(
ν′′ +

(ν′)2

2
+

ν′ − λ′

r
− ν′λ′

2

)
= −2e−λ

(
b′′ +

ν′ − λ′

2
+

b′

r
+

(b′)2

2

)
Subtracting the first equation from the second one obtains (1/r)(λ′ + ν′) = 2b′ −
(λ′ + ν′)b′ − 2(b′)2. The scalar b = log(β) is still arbitrary so that one can impose
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a condition on it. Thus writing b′′ − (b′)2 = 0 one can integrate to get b(r) =
log[1/(a− cr)] (curiously enough this is true) with a, c arbitrary constants which
are taken to be positive. Using b′′ = (b′)2 one obtains the equation λ′ + ν′ = 0
and hence via b = log[1/(a − cr)] there rsults from (1.22) a solution exp(ν) =
exp(−λ) = (a− cr)2/a2. Now go back to the Einstein equations Gν

µ = −8πT ν
µ ; if

one thinks of β as creating matter we can then calculate the matter density and
pressure. From (1.22) the density is given by 8πρ = −(3c2/a2) + (4c/ar) and the
radial pressure is Pr = −ρ (so there is tension rather than pressure). One notes
that Pr = −ρ has been used as the equation of state of prematter in cosmology (cf.
[502]). Finally one can calculate the transverse pressure from (1.22) as 8πPt =
(3c2/a2) − (2c/ar) (which is anisotropic). Now suppose there is a spherically
symmetric body filled with matter described by 8πρ = −3c2/a2 +4c/ar, Pr = −ρ,
and 8πPt = (3c2/a2(−(2c/ar). Since the matter density can take only nonnegative
values one has a limit on the size of the body rboundary ≤ (4a/3c). Several models
are possible; take e.g. a body with maximum radius rbound = 4a/3c. One sees
that on the boundary the density and radial pressure vanish so that this is an open
model. Go back for a moment to the first equation in (1.3). It may be integrated,
giving exp(−λ) = exp(ν) = 1− (8π/r)

∫ r

0
ρr2dr. Assume that outside of the body

the Einstein gauge holds, i.e. β = 1 (b = 0) for r > (4a/3c) so that one is left with
the ordinary Riemannian geometry and with the exterior Schwarzschld solution
exp(−λ) = exp(ν) = 1− (2m/r). Comparing and using the equations at hand one
obtains

(1.23) m = 4π
∫ 4a/3c

0

ρr2dr = (16a/27c) = (4/9)rbound

Note that in the body (at rs = a/c) there is a singularity of β and of the metric;
however the physical quantities ρ, Pr, Pt are regular there (cf. [503]). An external
observer staying in the Riemannian spacetime will recognize the above entity, made
of Weyl-Dirac geometry, as a body having mass (1.23) and radius 4a/3c.

EXAMPLE 1.2. Another example of matter creation via geometry is also
given in [499] with a homogeneous and isotropic FRW universe and line element

(1.24) ds2 = dt2 −R2(t)
[

dr2

1− k̃r2
+ r2dΩ2

]
Here R(t) is the cosmic scale factor, k̃ = 0, ±1 stands for the spatial curvature
parameter, and dΩ2 = dθ2 + Sin2(θ)dφ2 is the line element on the unit sphere.
The universe is filled with ordinary cosmic matter in the state of a perfect fluid
at rest and with the cosmic scalar fields β and w. One considers, for κ ≥ 0,
T 0

0 = ρ(t), T 1
1 = T 2

2 = T 3
3 = −P (t), T = ρ − 3P, β = β(t), and = w(t). Use

also the Einstein gauge β = 1 ∼ b = 0 and the Einstein-Friedmann equations (cf.
[499]). After much calculation one looks at the expansion of the universe (with
no ordinary matter) and the model provides a high rate of matter creation from
an initial empty egg (i.e. geometry brings matter into being). Another model
along similar lines looks at interaction between geometric fields and matter during
radiation and dust dominated periods with a number of interesting results. In
particular matter creation takes place in the radiation dominated universe and
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also for open and flat models in a dust dominated era while in a closed dust
universe there is matter creation for awhile after which matter annihilation arises
stimulated by the w field.

EXAMPLE 1.3. We go now to the second paper in [498] which builds
up a singularity free cosmological model that originates from pure geometry.
The Planckian state (characterized by ρP = c3/�G = 3.83 · 1065 cm−2, RI =
(3/8πρP )1/2 = 5.58 · 10−34 cm, and TI = 2.65 · 10−180 K) is preceeded by a pre-
Planckian period. This starts from a primary empty spacetime entity, described
by an integrable WD geometry. During the pre-Planckian period geometry creates
cosmic matter and a the end of this creation process one has the Planckian cosmic
egg filled with prematter. The prematter model of [499] will be updated according
to present observational data and also modified by the introduction of a nonzero
cosmological constant. Thus, reviewing a bit, we have gµν , β, and wµ as above
with wµ = ∂−µw to provide an integrable WD theory. There is an action (1.6) and
one uses (1.7) and Wµ = wµ+bµ. Also k−6 = 16πκ (here σ is used in place of κ and
later σ becomes −κ2 so we will think of κ → −κ2 later on. As before one has (1.8),
16πS = δLM/δw, (1.9), (1.10), (1.11), 16πB = δLM/δB, IM =

∫
LM

√−gd4x,
(1.14), S + T = βB, and Tλ

µ;λ − Tbµ = SWµ. Recall also (1.11) is a corollary so
that β and the Dirac charge B can be chosen arbitrarily. Further (1.15), (1.16),
etc. will still apply after which one has an Int-W-D theory. One considers a ho-
mogeneous isotropic spatially closed (k̃ = 1) universe described by the FRW line
element of (1.24). For a universe filled with cosmic matter in the state of a perfect
fluid at rest its EM tensor has nonvanishing components T i

i (i = 0, 1, 2, 3) and
in addition to any matter field there are two cosmic scalar fields β(t) and W (t)
stemming from the geometric framework. Taking into account (1.24), one obtains
from (1.9) the cosmological equations

(1.25)
Ṙ2

R2
=

8πT 0
0

3β2
− 8πσẆ 2

3
− 2Ṙḃ

R
− ḃ2 +

β2Λ
3
− 1

R2

R̈

R
=

4π

β2

(
T 1

1 −
T 0

0

3

)
+

16πσẆ 2

3
− b̈− Ṙḃ

R
+

β2Λ
3

From (1.9) one also gets the trace equation

(1.26) Gσ
σ = −8πT

β2
− 16πσẆ 2 + 6b̈ + 18

Ṙḃ

R
+ 6ḃ2 − 4βΛ

Comparing (1.25) with the usual Einstein equations for cosmology one concludes
that the observable density and pressure of the cosmic matter are ρ = T 0

0 /β2 and
P = −T 1

1 /β2. Now we let σ → −κ2 and regard β(t) as a function of R(t) so that

(1.27) β = β(R), β̇ = β′Ṙ; β̈ = β′′Ṙ2 + β′R̈

Taking into account (1.27) one can rewrite (1.25) as

(1.28)
Ṙ2

R2

(
1 +

β′R
β

)2

=
8π

3
(ρ + κ2Ẇ 2) +

β2Λ
3
− 1

R2
;

R̈

R

(
1 +

β′R
β

)
+

Ṙ2

R2

(
β′′R2

β
− (β′)2R2

β2
+

β′R
β

)
= −4π

3
(3P + ρ + 4κ2Ẇ 2) +

β2Λ
3
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Further the equation (1.8) of the W field takes the form

(1.29) Ẅ +

(
2β̇

β
+

3Ṙ

R

)
= − S

2κ2β2
≡ ∂t(Ẇβ2R3) = −SR3

2κ2

With (1.24) (and the density and pressure terms above) the EM relation for matter
is now

(1.30) ρ̇ + 3(Ṙ/R)(ρ + P ) + (β̇/β)(ρ + 3P ) = (SẆ/β2)

and S + T = βB can be written as

(1.31) S + (ρ− 3P )β2 −Bβ = 0

For the FRW line element (1.24) the β field equation (1.11) takes the form (σ ∼
−κ2)

(1.32) Rσ
σ + κ

[
(ḃR3),t

R3
+ ḃ2

]
+ 16πσ

[
(ẇR3),t

R3
− ẇ2

]
− 4β2Λ− 8πβ−1B = 0

By (1.29) and (1.31) this turns out to be identical with the trace equation (1.26)
and B may be cancelled from the equations (i.e. β and B are arbitrary - recall
that (1.11) is a corollary, etc.). Now introduce the energy density and pressure of
the W field via

(1.33) ρw = Θ0
0; Pw = −Θ1

1 = −Θ2
2 = −Θ3

3

Making use of (1.24) one obtains ρw = Pw = κ2β2Ẇ 2 leading to

(1.34) (ρ + κ2Ẇ 2),t +
β̇

β
(ρ + 3P + 4κ2Ẇ 2) +

3Ṙ

R
(ρ + P + 2κ2Ẇ 2) = 0

Then introduce the reduced energy density and pressure ρ̄w and P̄w via

(1.35) ρ̄w = ρw/β2; P̄w = Pw/β2; ρ̄w = P̄w = κ2Ẇ 2

and write ρ̄ = ρ + ρ̄w = ρ + κ2Ẇ 2 and P̄ = P + P̄w = P + κ2Ẇ 2; then (1.28)
becomes

(1.36)
Ṙ2

R2

(
1 +

β′R
β

)2

=
8πρ̄

3
+

β2Λ
3
− 1

R2
;

R̈

R

(
1 +

β′R
β

)
+

Ṙ2

R2

(
β′′R2

β
− (β′)2R2

β2
+

β′R
β

)
= −4π

3
(3P̄ + ρ̄) +

β2Λ
3

and the energy momentum relation (1.34) is

(1.37) ρ̄ +
β̇

β
(ρ̄ + 3P̄ ) + 3

Ṙ

R
(ρ̄ + P̄ ) = 0

Now for the pre-Planckian period one looks for matter production by geometry
and returns to (1.29) and (1.30). From (1.30) one sees that the W field can act as
a creator of matter even if at the beginning moment no matter was present (surely
someone has thought of a Higgs role for the W field ?). According to (1.29) the W
field depends on the source function S. On the whole one adopts the singularity
free cosmological model of [502] with its initial prematter period but completed
with a nonzero cosmological constant. Also some constants such as the Hubble
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constant, matter densities, etc. are updated. The initial Planckian egg is thus
preceded by a pre-Planckian period originating from a primary geometric state
(primary state) at R0 = 5.58 ·10−36 cm and lasting up to the initial Planckian egg
at RI = 5.58 · 10−34 cm. This spherically symmetric homogeneous and isotropic
universe is described by the Int-W-D geometry (no cosmic matter) with nothing
but geometry, including the W and β fields, at R0 = 5.58 ·10−36 cm, ρ0 = 0, P0 =
0, β0 �= 0, and W0 �= 0. Assume this was quasistatic with Ṙ0 = 0 and via (1.27)
also β̇0 = 0. Thus one obtains from (1.28) at the beginning moment

(1.38) (8π/3)κ2Ẇ 2
0 + (1/3)β2

0Λ− (1/R2
0) = 0

Since B may be chosen arbitrarily one can take a suitable function for the Weylian
scalar charge S and then calculate the Dirac charge B according to (1.31). An
“appropriate” choice is S = S0(β2β̇/R3 with S0 constant (explanation omitted).
Inserting this into (1.29) and integrating one gets Ẇ = −(S0/6κ2)(β/R3) so Ẅ = 0
and one can rewrite (1.38) as

(1.39) (8π/3)(S2
0/36κ2)(β2

0/R6
0) + (1/3)Λβ2

0 − (1/R2
0) = 0

One will use this below to calculate the value of β0 but first the scenario of the very
early universe must be completed by an equation of state of cosmic matter during
the pre-Planckian period. According to (1.30) and (1.34) the matter is created by
the W field which has an EM density tensor (1.14), etc. The components of this
tensor are related by (1.33), etc., so that the pressure of this field is equal to its
energy density. Thus one writes P = ρ and then one can rewrite (1.30) as

(1.40) ρ̇ + 6(Ṙ/R)ρ + 4(β̇/β)ρ = SẆ/β2 ≡ ρ = (1/β4R6)
∫

SẆβ2R6dt

The density of matter created by geometry is given now by the expression

(1.41) ρ = (S2
0β6

0/36κ2β4R6)[1− (β/β0)6]

Thus there was a zero matter density and pressure (with the assumptions above) at
the beginning moment and for a rapidly decreasing β(R) one can have (βI/β0)6 <<
1 where βI = β(RI). According to this scenario at R = RI the matter density
reaches its maximum ρP = 3.83 · 1065 cm−2 there so that from (1.41), etc., one
gets ρP = S2

0β6
0/36κ2β4

I R6
I . From this one can calculate S2

0/36κ2 for a given gauge
function β(R). Now for a moment go back to the energy equation (1.40); it can
be rewritten as

(1.42) ρ̇ + 6(Ṙ/R)ρ + 4(β̇/β)ρ = −(S2
0/6κ2)(β2/R6)(β̇/β)

Then the term on the right side of (1.42), which describes matter creation by the
W field can be compared with the third term on the left side which represents the
existing amount of matter. Making use of (1.41) this gives

(1.43) (1/4ρ)(S2
0β2/6κ2R6) = [3β6/2(β6

0 − β6)]

Further, comparing the matter energy with that of the W field in the equations
(1.28) one gets

(1.44) (κ2Ẇ 2/ρ) = [β6/(β6
0 − β6)]
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Thus in the beginning when β0−β is small Ẇ dominates the matter creation while
for large R, when β << β0, the matter creation term becomes negligible.

This is just a sampling of results in [498, 499, 500, 501, 502, 503]. Many
other cosmological questions of great interest including dark matter, quintessence,
etc. are also treated. There are in addition many fascinating papers speculating
about the original universe from many points of view and we attempt no survey
here. The approach here via Weyl-Dirac geometry seems however too lovely to
ignore and it may provide further insight into questions of quantum fluctuations.
The inroads into cosmology here are an inevitable consequence of the presence of
Weyl-Dirac theory in dealing with quantum fluctuations and once wave functins
and Bohmian ideas are introduced the quantum potential will automatically arise
via β and wµ.

2. REMARKS ON COSMOLOGY

We begin with some background information (cf. [1, 186, 187, 188, 189,
741, 882, 883, 903]. Thus recall that the deBroglie wave length is λ = �/p and
the Compton wave length is Λ = �/mc. The uncertainty principle states that
(∆x)(∆p) ≥ � and the diffusion coefficient for Brownian motion is proportional to
D = �/m. The fractal dimension of a quantum path is df = 2 at scales between λ
and Λ but becomes df = 1 at scales smaller than Λ. Brownian motion characterizes
the domain between Λ and λ (cf. [1, 903]). Heuristically from ∆p = m(∆x/∆t)
and ∆x∆p ≥ � we have m(∆x/∆t) = ∆p ≥ �/∆x or (∆x)2 ≥ (�/m)∆t which can
be rephrased as < x2 >∼ Dt for D = �/m. Further note that from E ∼ p2/2m
one has ∆E ∼ (1/2m)(∆p)2 (working around p0 = 0 say). Then from ∆p ≥ �/∆x
and (∆x)2 ∼ D∆t (with ∆x∆p ≥ �) we obtain (1/2m)(∆p)2 ≥ (�2/2mD∆t) from
which ∆E∆t ∼ �/2.

Now from [883] one looks at Weyl geometry and refers to the Lagrangian of
[840] of the form L = LC(q, q̇, t) + γ(�2/m)R(q, t) where R is the Ricci scalar
curvature in the Weyl geometry (cf. Section 3.3). Then it turns out that the
quantum potential Q has the form Q = −γ(�2/m)R and the Q can be related to
quantum fluctuations via Fisher information. In [883] one replaces the Weyl vector
φ (which measures length dilations) by a noncommutative (NC) geometry ds2 =
(hµν + h̄µν)dxµdxν with a tensor density h̄µν arising via the antisymmetric part.
This corresponds then to [dxµ, dxν ] ∼ �2 �= 0 and in a certain sense legitimizes
the approach of [840]. Moreover the NC geometry produces a multiply connected
space in which a closed circuit cannot be shrunk to a point so for a circle C of
diameter λ in e.g. a doubly connected space one will have (V = (�/m)�∇S and v
is some average velocity)

(2.1) Γ =
∫

C

m�V · d�r = �

∫
C

�∇S · d�r = �

∮
dS = mvπλ = π�

Consequently λ = �/mv and this shows an emergence of the deBroglie wavelength
following from the NC geometry. We note also from [188, 189, 840] that for
ψ =

√
ρexp(iS/�) the Weyl vector φ ∼ −∇log(ρ) and ψ satisfies (for Ak = 0) an
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equation

(2.2) i�ψt = − �2

2m

(
1
√

g
∂i
√

g

)
gik∂kψ +

(
V − γ�2

m
Ṙ

)
ψ

where Ṙ is the Riemannian curvature. Here grad(f) ∼ ∂kf and ∆f corresponds
to taking the divergence of the associated contravariant vector gik∂kf , i.e. ∆f =
div(grad(f)) = (1/

√
g)∂i

√
ggik∂kf). Note also in forming a Lagrangian ẋα =

2gαβpβ or pα = (1/2)gαβ ẋβ so that (cf. [12])

(2.3) H = gαβpαpβ �→ L = ẋαpα − gαβpαpβ = (1/4)gαβ ẋαẋβ

Thus one has a complete geometrization of quantum mechanics (QM) via (2.2)
(recall also that the Ricci-Weyl curvature has the form

(2.4) R = Ṙ + (1/2γ
√

ρ)[(1/
√

g)∂i(
√

ggik∂k
√

ρ)]

where γ = 1/12 here.

REMARK 4.2.1. We recall now that in the Nottale derivation of the
Schrödinger equation SE) one has a complex velocity V − iU due to fractal
quantum paths (cf. [186, 187, 188, 272, 715]). Here U = D(d/dx)(log(ρ))
can be “conveniently” taken to be a constant α (cf. [272]) which would imply
log(ρ) = (α/D)x = βx and Q = −(�2/8m)β2 as pointed out in [882] (recall
Q = −(�2/2m)(∂2√ρ/

√
ρ) with

√
ρ = exp(βx/2) here). Now one can apparently

make a case for the Zitterbewegung or self interaction effects within a minimum
cutoff Compton wavelength to generate inertial mass. If Q is inertial energy, say
Q = −δmc2, with (�2/8m)β2 = (�2/8m)(α2/D2) = mα2/8 = δmc2 one arrives at
α ∼ (8δ)c (omitting constants such as 8δ etc. in approximations involving large
and small numbers). It is then argued that the stochastic-fractal formulation of
Nottale leads to the emergence of spacetime coordinates (x, ict) and such matters
are obviously intriguing.

There is a great deal of fascinating information available concerning vari-
ous fundamental constants and large numbers in physics (we refer here to [604,
715, 723, 961, 972] for example and for more “adventurous” material to e.g.
[850, 837, 884, 885, 886, 887, 888] and the numerous papers of M. El Naschie
in the journal Chaos, Solitons, and Fractals). Dirac had previously spoken elo-
quently about the importance of large numbers and their relations and in this spirit
one is compelled to look as such matters. One seems at times to be simply playing
with numbers (sometimes called numerology) but there are too many remarkable
coincidences to be ignored and e.g. El Naschie’s program of tying matters together
via Cantor sets and the golden mean φ is in my opinion worth serious considera-
tion. Sidharth’s arguments about Cantorian E∞ also lend some structural meaning
and should be pursued further. In any event we gather here first a collection of
numbers and ideas in no particular order following [882, 883, 884, 885].

(1) The average distance � covered in N steps in a random walk is � = R/
√

N
where R is the dimension of the system. Such a relation with R ∼ 1028

cm (radius of the universe) and N ∼ 1080 (number of particles in the
universe) gives � ∼ 10−12 ∼ 10−13 = �π which is the Compton wavelength
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of a typical elementary particle (the pion). The stipulation that 10−12 ∼
10−13 is of course reasonable but somewhat unsettling).

(2) The Planck scale is defined via �P = (�G/c3)1/2 ∼ 10−33 cm and tP =
(�G/c5)1/2 ∼ 10−42 sec with mP = 10−5 gm the Planck mass. Here tP
is also the Compton time for the Planck mass (�P = ctP ).

(3) R ∼ cT where T is the age of the universe so, from item 1, T ∼
√

Nτ
where τ = �π/c is the Compton time for a pion. Further M = Nm where
M is the mass of the universe and m is the (typical) pion mass.

(4) The energy of fluctuations of the magnetic field �B in a region of length �
is B2 ∼ �c/�4 so for � ∼ Compton wave length the resultant particle fluc-
tuation energy in a volume ∼ �3 is �3B2 ∼ �c/� = mc2. Thus the entire
energy of an elementary particle of mass m is generated by fluctuations
alone.

(5) The fluctuation in particle number is of order
√

N (cf. [483]) and a
typical time interval of uncertainty is ∆t ∼ �/mc2 (via ∆E∆t ∼ �). In
the spirit of Prigogine Heisenberg uncertainty gives rise to production
of energy over short intervals of time leading to a one way creation of
particles. Thus dN/dt ∼

√
N(mc2/�) leading to T ∼ (�/2mc2)

√
N =√

Nτ as in item 3 (τ = �/c = (�/mc)/c - a factor of 2 is included here).
(6) Now recall R ∼ GM/c2 where Nm = M where m is the mass of a

typical elementary particle. Then random walk considerations and fluc-
tuations of order

√
N from the ZPF give R =

√
N�. Going to [888] we

note first for H = Gm3c/�2 (H ∼ Hubble constant) and R = GmN/c2

one has, for G constant, Ṙ = (Gm/c2)Ṅ ∼ (Gm/c2)(mc2
√

N/�) =
(Gm3c/�2)(�/mc)

√
N = HR as it should. In fact H is often defined as

Ṙ/R. In particular one can conclude from Ṙ = RH and H constant that
R̈ = RH2.

Consider now [715, 716, 814] where scale relations in micro and macro physics
abound. Let us begin with H = Gm3c/�2 or m = (�2H/cG)1/3 (m presumably
refers to pion mass here). Then one notes that the cosmological constant Λ has
dimension 1/L2 and this suggests that there should be a maximal scale length
L = 1/

√
Λ. Next a version of Mach’s principle is achieved by requiring that the

gravitational energy of interaction of a body with the universe (described as a
mass M at average distance R) should be equal to its self energy of inertial origin
E = mc2, namely

(2.5) GmM/R = mc2 ⇒ (GM/Rc2) ∼ 1

Now 2GM/c2 corresponds to the classical radius of a Schwartzschild black hole so
(2.5) says that the universe is like a black hole. Next imagine M = 4πρR3/3 with
Ṙ = c = RH so from 2GM/c2R = 1 there results (2G/c2R)(4πρR3/3) = 1 which
implies (8πGρ/3H2) = Ω = 1 (space flatness condition - with a cosmological
constant the Schwartzschild relation is (2GM/c2R) + (ΛR2/3) = 1 ∼ (8πGρ +
Λc2)/3H2 = 1 - cf. [716, 720]). Another formula arises by introducing the Planck
mass as a natural unit and writing Newton’s law with Gm2

P = �c (following from
R = �/mc and (Gm2/R) = mc2 which implies Gm2 = �c for m = mP ) in the form
F = �c[(m/mP )(m′/mP )]/R2 (since �cmm′/m2

P R2 = Gmm′/R2); such a formula
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appears also in [176, 417]. Regarding the cosmological constant one notes first
that the Planck length ΛP = (�G/c3)1/2 is the only length that can be envisioned
with the three fundamental constants �, G, c. Here the maximum scale length L
should have the form L = ΛP K = 1/

√
Λ. This gives a number K ∼ 1061. Now

if the universe is a black hole, looking at a resolution scale 1/L in the Einstein
model the maximal separation between points is πL so the effective mass should be
characterized by 2GM/c2πL = 1. This leads to one of the classical large number
coincidences m/mP = (π/2)K which for K ∼ 1061 gives a characteristic mass
∼ 1023 solar masses (which corresponds to 1011 galaxies of 1012 solar masses). To
get m/mP = (π/2)K one uses an argument comparing lengths � = Gm/ < v2 >
and λ = �/mv which if equivalent yields Planck mass with v = c and Gm2

P = �c
or m2

P = �c/G. Then from 2GM/c62πL = 1 one has

(2.6)
π

2
K =

GM

c2L

L

ΛP
=

GM

c2ΛP
=

�cM

m2
P c2ΛP

=
�M

m2
P cΛP

=
M

mP

Finally consider a characteristic minimal energy Emin = �c/L and, for the electron
of purely electromagnetic (EM) origin, a scale r0 is defined where e2/r0 = mec

2 (i.e.
r0 = αλC is the classical radius of the electron - note r0 = e2/mc2 = λ(�/mc) =
αλC where λC is the Compton wavelength and α� = e2/c or α = e2/�c is the fine
structure constan - sometimes written as α = e2/4π�c in suitable units). Then
assume the gravitational self energy of the electron at scale r0 equals the minimal
energy Emin; this implies Gm2(r0)/r0 = �c/L (here m(r0) ∼ α−1me modulo a
small scale dependence of α) and leads to α(mP /me) = K1/3. To see this write
G = �c/m2

P as before and recll m = α−1me; then

(2.7)
Gm2

r0
=

�c

L
=

�c

ΛP K
⇒ �cm2

r0m2
P

=
�c

ΛP K
⇒ K =

r0m
2
P

m2ΛP

But ΛP = �/mP c and r0 = �/mc so K = m2
P �/m3cΛP = m4

P /m3 which means
K1/3 = mP /m = α(mP /me). For completeness we note

(2.8) �P =
(

�G

c3

)1/2

∼ 1.62 · 10−33 cm; λP =
�P

c
∼ 5.4 · 10−44 sec;

mP =
�

�P c
∼ 2.17 · 10−5 gram

We jump ahead now to the more recent articles [716, 720, 717, 814] and to
the discussion in [220, 221, 222] (we also find it curious that Nottale’s scale
relativity has not been “blessed” with any establishment interest). We recall
first a few basic facts following [814]. The simplest form for a scale differen-
tial equation describing the dependence of a fractal coordinate X in terms of
resolution ε is given by a first order, linear, renormalization group like equa-
tion (∂X(t, ε)/∂log(ε)) = a − δX with solution X(t, ε) = x(t)[1 + ζ(t)(λ/ε)δ].
This involves a fractal asymptotic behavior at small scales with fractal dimen-
sion D = 1 + δ, which is broken at large scale beyond the transition scale λ (cf.
[715, 716, 720] for more detail). By differentiating one obtains dX = dx + dξ
where dξ is a scale dependent fractal part and dx is a scale independent classical
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part such that dx = vdt and dξ = η
√

2D(dt2)1/2D where < η >= 0 and < η2 >= 1
(one considers here only D = 2). Here each individual trajectory is assumed frac-
tal and the test paricles can follow an infinity of possible trajectories. This leads
one to a nondeterministic, fluid like description, in terms of v = v(x(t), t). The
reflection invariance dt → −dt is broken via nondifferentiablity leading to a two
valued velocity vector (cf. [186, 187, 272, 715]) and one arrives at a complex
time derivative (d′/dt) = ∂t + V · ∇ − iD∆. Setting ψ = exp(iS/2mD) one ob-
tains a geodesic equation in fractal space via (d′/dt)V = 0 which becomes the
free Schrödinger equation (SE) D2∆ψ + iD∂tψ = 0. Now in [814] one is inter-
ested in macrophysical applications and considers a free particle in a curved space
time whose spatial part is also fractal beyond some time or space transition. The
equation of motion can be written (to first order approximation) by a free motion
geodesic equation combining the relativistic covariant derivative (describing curva-
ture) and the scale relativistic covariant derivative d′/dt (describing fracticality).
We refer to [188, 189, 873] for variations on this. Thus one considers in the
Newtonian limit

(2.9) (D/dt)V = (d′/dt)V +∇(φ/m) = 0

where φ is the Newton potential energy. In terms of ψ one obtains

(2.10) D2∆ψ + iD∂tψ = (φ/2m)ψ

Since the imaginary part of this equation is the equation of continuity (and think-
ing of the motion in terms of an infinite family of geodesics) ρ = ψψ† can be
interpreted as the probability density of the particle postions. For a Kepler po-
tential (in the stationary case) one has then

(2.11) 2D2∆ψ + [(E/m) + (GM/r)]ψ = 0

Via the equivalence principle (cf. [13]) this must be independent of the test particle
mass while GM provides the natural length unit; hence D = (GM/2w) where w
is a fundamental constant with the dimensions of velocity. The ratio αg = w/c
actually plays the role of a macroscopic gravitation coupling constant (cf. [13]).
One shows in [814] that the solutions of this gravitational SE are characterized
by a universal quantization of velocities in terms of the constant w = 144.7± 0.5
km/s (or its multiples or submultiples); the precise law of quantization depends
on the potential. Depending on the scale either the classical or the fractal part
dominates. Various situations are examined and we only indicate a few here.
The evolution equations are the Schrödinger - Newton equation and the classical
Poisson equation (cf. [632])

(2.12) D2∆ψ + iD∂ψ

∂t
− φ

2m
ψ = 0; ∆Φ = 4πGρ (φ = mΦ)

Here Φ is the potential and φ = mΦ the potential energy. Separating the real and
imaginary parts one arives at

(2.13)

m
(

∂
∂t + V · ∇

)
V = −∇(φ + Q); ∂P

∂t + div(PV ) = 0; Q = −2mD2 ∆
√

P√
P
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In the situation where the particles are assumed to fill the “orbitals” the density of
matter becomes proportional to the probability density, i.e. ρ ∝ P = ψψ† and the
two equations combine to form a single Hartree equation for matter alone, namely

(2.14) ∆
(
D2∆ψ + iD∂tψ

ψ

)
− 2πGρ0|ψ|2 = 0

Another case arises when the number of bodies is small and they follow at ran-
dom one among the possible trajectories so that P = ψψ† is nothing else than a
probability density while space remains essentially empty. It is suggested that this
allows one to explain some effects that up to now have been attributed to dark
matter (cf. [290, 716, 720] and below for more on this).

We mention in particular the case where Φ = −GM/r and the SE becomes
D2∆ψ+iD∂tψ+(GM/2r)ψ = 0. One looks for solutions ψ = ψ(r)exp(−iEt/2mD)
and makes substitutions �/2m ∼ D and e2 ∼ GMm where m is the test parti-
cle inertial mass. This yields an equation similar to the quantum hydrogen atom
equation whose solution involves Laguerre polynomials ψ(r) = ψn�m(r, θ, φ) =
Rn�(r)Y m

� (θ, φ) and the energy/mass ratio is quantized as

(2.15) En/m = −(G2M2/8D2n2) = −(1/2)(w2
0/n2)

while the natural length unit is the Bohr radius a0 = 4D2/GM = GM/w2
0. Con-

sider now particles such as gas, dust, etc. in a highly chaotic and irreversible
motion in a central Kepler potential; via the SE (2.11) there are solutions char-
acterized by well defined and quantized values of conservative quantities such as
energy etc. One therefore expects the particles to self-organize into “orbitals” and
then to form planets etc. by accretion. Once so accreted one can recover classical
elements such as eccentricity, semi-major axis, etc. We refer to [716, 720, 814]
for more discussion and details of this and many other examples.

One refers later in the paper [814] to the dark matter problem and its connec-
tion to the formation of galaxies and large scale structure. Scale relativity allows
one to suggest some solutions. Indeed the fractal geometry of a nondifferentiable
space time solves the problem of formation on many scales and it also implies
the appearance of a new scalar potential (as in (2.13) which manifests the frac-
tality of space in the same way as Newton’s potential manifests its curvature. It
is suggested that this new potential (Q) may explain the anomalous dynamical
effects without needing any missing mass. In this direction consider the case of
the flat rotation curves of spiral galaxies. The formation of an isolated galaxy
from a cosmological background of uniform density is obtaind in its first steps as
the fundamental level solution n = 0 of the SE with an harmonic oscillator grav-
itational potential (2π/3)Gρr2 (for which some details are worked out in [814]).
Once the galaxy is formed let r0 be its outer radius beyond which the amount
of visible matter becomes small. The potential energy at this point is given via
φ0 = −(GMm/r0) = −mv2

0 where M ∼ mass of the galaxy. Observational data
says that the velocity in the exterior region of the galaxy keeps the constant value
v0 and from the virial theorem the potential energy is proportional to the kinetic
energy so that it also keeps the constant value φ0 = −GMm/r0. Therefore r0
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is the distance at which the rotation curve begins to be flat and v0 is the cor-
responding constant velocity. In the standard approach this flat rotation curve
is in contradiction with the visible matter alone from which one would expect to
observe a variable Keplerian potential energy φ = −GMm/r. This means that
one observes an additional potential energy Qobs = −(GMm/r0)[1− (r0/r)]. Now
the regions exterior to the galaxy are described in the scale relativity approach by
a SE with a Kepler potential enery φ = −GMm/r where M is still the sole visible
mass, since we assume here no dark matter. The radial solution for the funda-
mental level is

√
P = 2exp(−r/rB) where rB = GM/w2

0 is the macroscopic Bohr
radius of the galaxy. Now one computes the theoretically predicted new potential
Q from (2.13) (using D = GM/2w0) to get

(2.16) Qpred = −2mD2 ∆
√

P√
P

= −GMm

2rB

(
1− 2rB

r

)
= −1

2
w2

0

(
1− 2rB

r

)
Thus one obtains, without any added hypotheses, the observed form Qobs of the
new potential. Moreover the visible radius and the Bohr radius are now related
via r0 = 2rB . The constant velocity v0 of the flat rotation curve is also linked
to the fundamental gravitational constant w0 via w0 =

√
2v0. Observational data

supporting all this is also given.

3. WDW EQUATION

We go now to the famous Wheeler-deWitt equation (which might also be
thought of as an Einstein-Schrödinger equation). Some background about this is
given in Appendix C along with an introduction to the Ashtekar variables (fol-
lowing the beautiful exposition of [69]). The approach here follows [870, 876]
which provides a Bohmian interpretation of quantum gravity and we cite also
[55, 56, 57, 58, 62, 70, 119, 303, 394, 476, 545, 551, 556, 630, 665, 819,
820, 896, 897, 929, 930, 931, 932] for material on WDW and quantum gravity.
Extracting liberally (and optimistically) now from [876] (first paper) one writes
the Lagrangian density for general relativity (GR) in the form (16πG = 1)

(3.1) L =
√
−gR =

√
qN(3R + Tr(K2))

where 3R is the 3-dimensional Ricci scalar, Kij is the extrinsic curvature, and qij

is the induced spatial metric. The canonical momentum of the 3-metric is given
by

(3.2) pij =
∂L

∂q̇ij
=
√

q(Kij − qijTr(K))

The classial Hamiltonian is

(3.3) H =
∫

d3xH; H =
√

q(NC + N iCi)

where the lapse and shift functions, N and Ni, are given via (cf. [69])

(3.4) C = 3
R +

1
q

(
Tr(p2)− 1

2
(Tr(p))2

)
= −2Gµνnµnν ;



158 4. GEOMETRY AND COSMOLOGY

Ci = −23∇j

(
pij√

q

)
= −2Gµin

µ

Here nµ is the normal vector to the spatial hypersurfaces given by nµ = (1/N,− �N/N).
Now in the Bohmian approach one must add the quantum potential to the Hamil-
tonian to get the correct equations of motion so H → H + Q via H → Q where

(3.5) Q =
∫

d3xQ; Q = �2NqGijk�
1
|ψ|

δ2|ψ|
δqijδk�

Here Gijk� is the superspace metric and ψ is the wavefunction satisfying the WDW
equation. This means that we must modify the classical constraints via

(3.6) C → C +
Q
√

qN
; Ci → Ci

Now for the constraint algebra one uses the integrated forms of the constraints
defined as

(3.7) C(N) =
∫

d3x
√

qNC; C̃( �N)
∫

d3x
√

qN iCi

Then (cf. [69, 870] and Appendix C for notation)

(3.8) {C̃( �N), C̃( �N ′)} = C̃( �N · ∇ �N ′ − �N ′ · ∇ �N) ≡ C̃(N i�∇N ′
i −N

′i�∇Ni);

{C̃( �N), C(N)} = C( �N · �∇N); {C(N), C(N ′)} ∼ 0
The first 3-diffeomorphism subalgebra does not change with respect to the classical
situation and the second, representing the fact that the Hamiltonian constraint is
a scalar under the 3-diffeomorphism, is also the same as in the classical case.
In the third the quantum potential changes the Hamiltonian constraint algebra
dramatically giving a result weakly equal to zero (i.e. zero when the equations
of motion are satisfied). Following [876] we will give a number of calculations
now regarding this Hamiltonian constraint. Thus first write the Poisson bracket
explicitly as

(3.9) {C(N), C(N ′)} =
∫

d3z
√

q(z)
(

δC(N)
δqij(z)

δC(N ′)
δpij(z)

− δC(N)
δpij(z)

δC(N ′)
δqij(z)

)
=

= C̃(N �∇N ′ −N ′�∇N) + 2
∫

d3zd3x
√

q(z)Gijk�(z)pk�(z)×

×(−N(z)N ′(x) + N(x)N ′(z))
δ(Q/

√
qN))

δqij(z)
To simplify one differentiates the Bohmian HJ equation to get (cf. [870])

(3.10)
1
N

δ

δqij

Q
√

q
=

3
4
√

q
qk�p

ijpk�δ(x− z)−
√

q

2
qij(3R− 2Λ)δ(x− z)−√q

δ3R

δqij

and use this in evaluation of the Poisson bracket giving the result indicated in
(3.8). This calculation is given in the Appendix to [876] and we repeat it here for
clarity.

REMARK 4.3.1. We follow here the Appendix to [876] and to evaluate the
integral (3.9), in view of (3.10), one needs to consider

∫
d3zF (q, p,N,N ′)(δ 3R/δqij).
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First look at the variation of the Ricci scalar with respect to the metric. Using
the Palatini identity and dropping the superscript 3 one has

(3.11) δRij = (1/2)qk�(∇j∇iδqk� −∇k∇jδq�i −∇k∇iδq�j +∇k∇�qij)

Consequently

(3.12)
δRij(x)
δqab(z)

=
1
2
√

qqk�

(
δa
kδb

�∇j∇i
δ(x− z)
√

q
− δa

� δb
i∇k∇j

δ(x− z)
√

q
−

−δa
� δb

j∇k∇i
δ(x− z)
√

q
+ δa

i δb
j∇k∇�

δ(x− z)
√

q

)
and therefore

(3.13)
δR(x)
δqab

=
δ(qijRij)(x)

δqab
= −R

abδ(x− z) +
√

q(qab∇2 −∇a∇b)
δ(x− z)
√

q

Using this identity in the equation of motion (3.10) the only nonvanishing terms
in (3.9) are
(3.14)

{C(N), C(N ′)} ∼ C̃(N �∇N ′ −N ′�∇N)− 2
∫

d3zd3x
√

q(x)q(z)Gijk�(z)pk�(z)

×(N(x)N ′(z)−N(z)N ′(x))
(

qij(x)∇2
x

δ(x− z)
√

q
−∇i

x∇j
x

δ(x− z)
√

q

)
where ∼ means the equality is weak (i.e. modulo the equation of motion). Inte-
grating by parts gives

(3.15) {C(N), C(N ′)} ∼ 2
∫

d3x(∇j(N∇iN
′)−∇j(N ′∇iN))pij+

+
∫

d3x
√

qGijk�p
k�(N ′∇i∇jN −N∇i∇jN ′)−

−
∫

d3x
√

qGijk�p
k�qij(N ′∇2N −N∇2N ′)

Hence there results

(3.16) {C(N), C(N ′)} ∼ 2
∫

d3x(N∇j∇iN
′ −N ′∇j∇iN)pij+

+
∫

d3xpk�(N ′∇k∇�N −N∇k∇�N
′ + N ′∇�∇kN −N∇�∇kN ′−

−qk�(N ′∇2N −N∇2N ′)) +
∫

d3xqk�p
k�(N ′∇2N −N∇2N ′) = 0

as desired.

One sees that the presence of the quantum potential means that the quantum
algebra is the 3-diffeomorphism algebra times an Abelian subalgebra and the only
difference with [631] is that this algebra is weakly closed. One sees that the algebra
(3.8) is a clear projection of the general coordinate transformations to the spatial
and temporal diffeomorphisms and in fact the equations of motion are invariant
under such transformations (cf. also [769]). In particular although the form of
the quantum potential will depend on regularization and ordering, in the quantum
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constraint algebra the form of the quantum potential is not important; the algebra
holds independently of the form of the quantum potential. Further it appears that
the inclusion of matter terms will not change anything.

One goes next to the quantum Einstein equations (QEI). For the dynamical
part consider the Hamiltonian equations

(3.17) q̇ij = {H, qij}; ṗij = {H, pij}
which produce the quantum equations (note the square bracket [ ] means that
one is to antisymmetrize over all permutations of the enclosed indices, multiplying
each term in the sum by the sign (±1) of the permutation)

(3.18) q̇ij =
2
√

q
N

(
pij −

1
2
pk

kqij

)
+ 2 3∇[iNj]

(3.19) ṗij = −N
√

q

(
3
R

ij − 1
2

3
Rqij

)
+

N

2
√

q
qij

(
pabpab −

1
2
(pa

a)2
)
−

−2N
√

q

(
piapj

a −
1
2
pa

apij

)
+
√

q(∇i∇jN − qij 3∇a 3∇aN)+

+
√

q 3∇a

(
Na

√
q
pij

)
− 2pa[i 3∇aN j] −√q

δQ

δqij

Combining these two equations one obtains after some calculation

(3.20) G
ij = − 1

N

δQ

δqij

which means that the quantum force modifies the dynamical part of the Einstein
equations. For the nondynamical parts one uses the constraint relations (3.4) to
get

(3.21) G
00 =

Q

2N3√q
; G

0i = − Q

2N3√q
N i

These last two equations can be written via

(3.22) G
0µ =

Q

2
√−g

g0µ

and the nondynamical parts are also modified by the quantum potential.

One addresses next the possibility that for a reparametrization invariant the-
ory the equations obtained by the Hamiltonian may differ from those given by the
phase of the wavefunction and the guidance formula (in a Bohmian spirit). How-
ever it is seen that there is no difference. Indeed write the Bohmian HJ equation
(cf. [123, 477, 557]) by decomposing the phase part of the WDW equation; this
gives

(3.23) Gijk�
δS

δqij

δS

δqk�
−√q (3R−Q) = 0

where S is the phase of the WDW wave function. In order to get the equation
of motion one differentiates the HJ equation with respect to qab and uses the
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guidance formula pk� ≡ √q(Kk�−qk�K) = δS/δqk�. After considerable calculation
one arrives again at (3.20). Thus the evolution generated by the Hamiltonian is
compatible with the guidance formula, i.e. the Poisson brackets of the Hamiltonian
and the guidance relation (χk� = pk� − δS/δqk�) are zero. This can be evaluated
explicitly and equals zero weakly so consistency prevails.

Next one shows explicitly that these modified Einstein equations (MEI) are
covariant under spatial and temporal diffeomorphisms. Consider first t → t′ = f(t)
with �x unchanged; one has

(3.24) q′ij = qij ; N ′
i = (df/dt)Ni; N ′ = (df/dt)N

Putting these in the MEI one sees that the right side transforms as a second rank
tensor under time reparametrization. Similarly consider �x → �x′ = �g(�x) with t
unchanged; one has

(3.25) q′ij =
∂x�

∂x′i
∂xm

∂x′j q�m; N ′
i =

∂x�

∂x′i N�; N ′ = N

Again the right side of MEI is a second rank tensor under a spatial 3-diffeomorphism.
Inclusion of matter field is straightforward via

(3.26) G
ij = −κT

ij − 1
N

δ(QG + Qm)
δgij

; G
0µ = −κT

0µ +
QG + Qm

2
√−g

g0µ

where

(3.27) Qm = �2 N
√

q

2
1
|ψ|

δ2|ψ|
δφ2

where φ is the matter field and, as before,

(3.28) QG = �2NqGijk�
1
|ψ|

δ2|ψ|
δqijδqk�

(3.29) QG =
∫

d3xQG; Qm =
∫

d3xQm

Equations (3.26) are the Bohm-Einstein equations which are in fact the quantum
version of the Einstein equations; regularization only affects the quantum poten-
tial but the QEI are the same. They are invariant under temporal and spatial
diffeomorphisms and can be written as

(3.30) G
µν = −κT

µν + S
µν

(3.31) S
0µ =

QG + Qm

2
√−g

g0µ =
Q

2
√−g

g0µ; S
ij = − 1

N

δ(QG + Qm)
δgij

= − 1
N

δQ

δgij

(Sµ,ν is the quantum correction tensor - under the temporal ⊗ spatial diffeomor-
phism subgroup which is peculiar to the ADM decomposition). Note that the
QEI were derived for a Robertson-Walker metric in [961] but without symmetry
considerations or more general metrics. One concludes with the conservation law
via taking the divergence of (3.30) to get

(3.32) ∇µT
µν =

1
κ
∇µS

µν



162 4. GEOMETRY AND COSMOLOGY

REMARK 4.3.2. We refer to [724] for a discussion of the Lichnerowicz-York
equation as a solution to the constraint equations of GR.

3.1. CONSTRAINTS IN ASHTEKAR VARIABLES. We go now to
the third paper in [876] where the new variables (or Ashtekar variables) are em-
ployed and it is shown that the Poisson bracket of the Hamiltonian with itself
changes with respect to its classical counterpart but is still weakly equal to zero
(as above in Section 4.3). Caution is advised however since ill defined terms have
not been regularized; for this one needs a background metric and the result must
be independent of such a metric. Thus the dynamical variables are the self dual
connection Ai

a and athe canonical momenta are Ẽa
i with constraints given via

(3.33) Gi = DẼa
i ; Cb = Ẽa

i F i
ab; H = εij

k Ẽa
i Ẽb

jF
k
ab

where Da represents the self-dual covariant derivative and F k
ab is the self-dual

curvature (we refer to Appendix for the new variables). Canonical quantization of
these constraints can be achieved via changing Ẽa

i → −�(δ/δAi
a) to get

(3.34) �Da
δψ(A)
δAi

a

= 0; �F i
ab

δψ(A)
δAi

a

; �2εij
k F k

ab

δ2ψ(A)
δAi

aδAj
b

= 0

In order to get the causal interpretation one puts a definition ψ = Rexp(iS/�)
into these relations to obtain

(3.35) (A) Da
δR(A)
δAi

a

= 0; (B) Da
δS(A)
δAi

a

= 0;

(C) F i
ab

δR(A)
δAi

a

= 0; (D) F i
ab

δS(A)
δAi

a

= 0;

(E) εij
k F k

ab

δ

δAi
a

(
R2 δS(A)

δAj
b

)
= 0; (F) − εij

k F k
ab

δS(A)
δAi

a

δS(A)
δAj

b

+ Q = 0

where the quantum potential is defined as

(3.36) Q = −�2εij
k F k

ab

1
R

δ2R(A)
δAi

aδAj
b

Here (E) is the continuity equation while (F) is the quantum Einstein-Hamilton-
Jacobi (EHJ) equation. The quantum trajectories would be achieved via the guid-
ance relation

(3.37) Ẽa
i = i

δS(A)
δAi

a

Now for the constraint algebra; in terms of smeared out Gauss, vector, and
scalar constraints (the notation N∼ is not clearly defined here - cf. (3.3))

(3.38) G(Λi) = −i

∫
d3xΛiDaẼa

i ; H(N∼) =
1
2

∫
d3xN∼εij

k Ẽa
i Ẽb

jF
k
ab;

C( �N) = i

∫
d3xN bẼa

i F i
ab −G(NaAi

a)

the classical algebra is

(3.39) {G(Λi),G(Θj)} = G(εi
ijkΛjΘk); {C( �N), C( �M)} = C(L �M

�N);
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{C( �N),G(Λi)} = G(L �NΛi); {C( �N),H(M∼)} = H(LN∼M∼)

{G(Λi),H(N∼)} = 0; {H(N∼),H(M∼;)} = C( �K) + G(KaAi
a)

where Ka = Ẽa
i Ẽbi(N∼∂bM∼−M∼∂bN∼). The quantum trajectories can now be obtained

from the quantum Hamiltonian given by HQ = H + Q and the smeared out
gauge and diffeomorphism constraints will not change; the Hamiltonian constraint
becomes

(3.40) HQ(N∼) =
1
2

∫
d3xN∼εij

k Ẽa
i Ẽb

jF
k
ab + Q(N∼)

where Q(N∼) =
∫

d3xN∼Q (the notation Q and Q is switched here from previous
use above). The first three constraint Poisson brackets in (3.39) will not change
and the fourth is still valid because the quantum potential is a scalar density and
one has

(3.41) {C( �N),HQ(M∼)} = HQ(L �NM∼)

This applies also to the fifth bracket because

(3.42) {G(Λi),HQ(N∼)} = 0

but the last bracket changes via

(3.43) {HQ(N∼),HQ(M∼)} = {H(N∼),H(M∼)}+ {Q(N∼),H(M∼)}+

+{H(N∼),Q(M∼)}+ {Q(N∼),Q(M∼)}
Here the last term is identically zero, since the quantum potential is a functional
of the connection only. The sum of the second and third terms is

(3.44) {Q(N∼),H(M∼)}+ {H(N∼),Q(M∼)} ∼

∼ −
∫

d3x
(
N∼εij

k F k
abẼ

b
jDc(M∼ε�m

i Ẽa
� Ẽc

m)−M∼εij
k F k

abẼ
b
jDc(N∼ε�m

i Ẽa
� Ẽc

m)
)

A calculation then shows that the Poisson bracket of the quantum Hamiltonian
with itself is given via

(3.45) {HQ(N∼),HQ(M∼)} ∼ 0

which is similar to the situation with the old variables (cf. Remark 4.3.1).

Now in order to obtain the quantum equations of motion via the Hamilton
equations one has

(3.46) Ȧi
a = −iεijkN∼Ẽb

jFabk −N bF i
ab;

˙̃E = iεjk
i Db(N∼Ẽa

j Ẽb
k);

−2Db(N [aẼ
b]
i ) +

i

2

∫
d3x

δQ(N∼)
δAi

a(z)
Further to recover the real quantum general relativity one must set the reality
conditions, which are

(3.47) Ẽa
i Ẽbi must be real;

iεijkẼ
(a
i Da(Ẽb)

k Ẽc
j ) +

i

2

∫
d3x

δQ

δAi
(a(z)

Ẽb)(x) must be real
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(note round brackets ( ) mean symmetrization with respect to the indices con-
cerned). Thus formally one can construct a causal version of canonical quantum
gravity using the Bohm-deBroglie interpretation of QM. All of the quantum be-
havior is encoded in the quantum potential. One has a well defined trajectory and
no operators arise; the algebra action is in fact the Poisson bracket and only the
Poisson bracket of the Hamiltonian with itself will change relative to the classical
algebra by being weakly instead of strongly equal to zero. The result is similar to
that obtained above with the old variables and one can give meaning to the idea
of time generator for the Hamiltonian constraint. The equations of motion when
finally written out should contain the quantum force. Regularization of ill defined
terms remains and is promised in forthcoming papers of F. and A. Shojai.

The approach here in Sections 4.3 and 4.3.1 is so clean and beautiful that we
suspend any attempt at criticism. Eventually one will have to reconcile this with
results of [770, 772] for example (cf. Section 4.5). We remark also that in [880]
one makes a preliminary study of Bohmian ideas in loop quantum gravity using
Ashtekar variables.

4. REMARKS ON REGULARIZATION

In [961] (second paper) for example one considers the classical and WDW
description of a gravity-minisuperspace model (cf. also [573]). Thus consider a
homogeneous and isotropic metric defined via

(4.1) ds2 = −N(t)2dt2 + a(t)2dΩ2
3

where dΩ2
3 is a standard metric on 3-space. The lapse function N and the scale

factor a depend on a time parameter t. A minisuperspace model represented by a
single homogeneous mode φ is defined by the Lagrangian

(4.2) L = −a3

[
1

2N

(
ȧ

a

)2

+ NVG(a)

]
+ a3

[
φ2

2N
−NVM (φ)

]
One uses the Planck mass m2

P = 3/4πG to scale all dimensional quantities so
a ≡ amP , φ ≡ φ/mP , etc.; VM is the potential for the scalar mode φ and the
gravitational potential VG(a) = −(1/2)Ka−2 +(1/6)Λ may contain a cosmological
constant Λ and a curvature constant K = 1, 0, or −1 for a spherical, planar, or
hyperspherical 3-space. From the Lagragian one derives now the classical equations
of motion by varying N, a, and φ respectively to obtain

(4.3)
1
2

(
ȧ

a

)2

− VG(a) =
1
2
φ̇2 + VM (φ);

1
2

(
ȧ

a

)2

+
ä

a
− 3Vg(a)− a∂aVG(a) + 3

(
1
2
φ̇2 − VM (φ)

)
= 0;

φ̈ + 3
(

ȧ

a

)
φ̇ + ∂φVM (φ) = 0

Here one has chosen the gauge N = 1 and t is identified with the classical time.
However the time parameter is not directly observble, only the correlations a(φ)
or φ(a) which follow from the solutions of (4.3). One could imagine an additional
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degree of freedom τ(t) to be used as a clock but this need not be done. One
derives the WDW equation from (4.2) in the standard manner. After computing
the classical Hamiltonian and replacing the canonical momenta pa = −aȧ and
pφ = a3φ̇ by operators pφ → −i∂φ and pa → −i∂a the WDW Hamiltonian is

(4.4) HWDW =
[
1
2
a−3(a∂a)2 + a3VG(a)

]
+
[
1
2
a−3∂2

φ + a3VM (φ)
]

= HG + HM

The WDW equations is HWDW ψ = 0 and there is an operator ordering ambiguity;
the “Lagrangian” ordering has been chosen which makes HWDW formaly selfad-
joint in the inner product (ψ, ψ) =

∫
a2dadφψ∗(a, φ)φ(a, φ). It is not clear that

HWDW can be used as a generator for time evolution since time has disappeared
altogether in (4.4).

Now in the dBB treatment one has

(4.5) Ṡ +
1

2m
(∂xS)2 + V + Q = 0; Ṙ2 + ∂x(R2∂xS) = 0

where Q = −∂2
xR/2mR. The trajectories are found by solving the autonomous

system ẋ = (1/m)∂xS and the measure R2dx gives the probability for trajectories
crossing the interval (x, x + dx). Now treat the WDW equation as a SE which
happens to be time independent and write it in the quantum potential form with
ψ = R(a, φ)exp(iS(a, φ)) leading to

(4.6)
1
2
a−3[−(a∂aS)2 + (∂φS)2] + a3[VG + VM + QGM ] = 0;

−a∂a(R2a∂aS) + ∂φ(R2∂φ) = 0

These equations come from the real and imaginary part of HWDW ψ = 0 and the
quantum potential is

(4.7) QGM = −1
2
a−6

[
−−(a∂a)2R

R
+

∂2
φR

R

]
Trajectories (a(t), φ(t)) ae obtained from S(a, φ) by identifying ∂aS with the mo-
mentum pa and ∂φS with pφ; thus one uses the definition of the canonical momenta
given before (4.4) to define trajectories parametrized by a time parameter t, via

(4.8) ȧ = −a−1∂aS(a, φ); φ̇ = a−3/2∂φS(a, φ)

One notes that the probability measure R2(a, φ)a2dadφ is conserved in time t if
(a, φ) are solutions of (4.7). This is a consequence of using the measure a2dadφ
together with the Lagrangian factor ordering making HWDW formally self adjoint.
In using t as in (4.8) one should eliminate t after solving in order to determine
a(φ) or φ(a); for trajectories where e.g a(t) is 1-1 the scale factor can be used as
a clock. The analogues of equations (4.3) are obtained by differentiating the first
equation in (4.6) with respect to a and φ and then eliminating S, using

(4.9) −∂t(aȧ) = ∂2
aSȧ + ∂φ∂aSφ̇; ∂t(a3φ̇) = ∂a∂φȧ + ∂2

φSφ̇
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leading to

(4.10)
1
2
aȧ2 − VG(a)− a3 1

2
φ̇2 + VM (φ)

]
= QGM (a, φ);

1
2
ȧ2 + aä− ∂aVG(a) + a2

[
1
2
φ̇2 − VM (φ)

]
= ∂aQGM (a, φ);

φ̈ + 3
ȧ

a
+ ∂φVM (φ) = −a−3/2∂φQGM (a, φ)

This evidently generalizes (4.3). There is more in this paper which we omit here,
namely a semiclassical development is given as well as and some exact solutions
of WDW for toy models.

In [123] one looks at an equation

(4.11) Hψ(x) =
(

1
2
gij(x)∇i∇j − V (x)

)
ψ(x) =

(
1
2
�− V (x)

)
ψ(x) = 0

Assume ψ = R(x)exp(iS(x)/�) with R, S real leading to

(4.12) H[S(x)] =
1
2
gij

∂S

∂xi

∂S

∂xj
+ V (x) =

�2

2R
�R; R�S + 2gij ∂S

∂xi

∂S

∂xj
= 0

Introduce time via

(4.13)
dxi

dt
= gij δH[S(x)]

δ(∂S/∂xj)

This defines the trajectory xi(t) in terms of the phase of the wave function S. Put
this now back into (1.2) to obtain

(4.14)
1
2
gij ẋ

iẋj + V (x) + Q = 0; Q = − �2

2R
�R

Now define classical momenta

(4.15) pi =
δH[S(x)]
δ(∂S/∂xi)

= gij ẋ
j

and write (4.14) in the form

(4.16) H =
1
2
gijpipj + V (x) + Q = 0; ṗi = −∂H

∂xi
; ẋi =

∂H

∂pi

This gives a method of identifying the time evolution corresponding to the wave
function of a WDW type equation (e.g. the wave function of the universe). The
following points are mentioned in [123]:

• (4.16) is equivalent to the classical equations of motion except for the
quantum potential which therefore. in some sense, clarifies the effect of
quantum matter on gravity.

• A semiclassical theory can be constructed from the above.

[
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• The quantum potential provides a natural way to introduce time even
when the Hamiltonian constraint (which doesn’t involve time) is acting.
In this connection note that the definition of time is not unique. One
could use a more general expression

(4.17) ẋj = N(x)
δH[S(x)]
δ(∂S/∂xj)

where N could be identified with the lapse function for the ADM formu-
lation.

In [123] one also studies situations of the form

(4.18) ds2 = −N2dt2 +
3∑
1

gii(ωi)2

where N is a lapse function and ωi are appropriate 1-forms (some Bianchi types
are classified) and we refer to [123] for details and [84] for criticism.

In [124] one starts with the classical constraints of Einstein’s gravity, namely
the diffeomorphism and Hamiltonian constraint in the form

(4.19) Da = ∇aπab; H = κ2Gabcdπ
abπcd − 1

κ2

√
h(R + 2Λ)

Here πab are momenta associated with the 3-metric hab where

(4.20) Gabcd =
1

2
√

h
(hachbd + hadhbc − habhcd

is the WDW metric where R is the 3-dimensional scalar curvature, κ is the grav-
itational constant, and Λ the cosmological constant. The constraints satisfy the
algebra

(4.21) [D,D] ∼ D; [D,H] ∼ H; [H,H] ∼ D

The rules of quantization given by the metric representation of the canonical com-
mutation relations are

(4.22) [πab(x), hcd(y)] = −iδa
c δb

dδ(x, y); πab(x) = − δ

δhab(x)

There are problems here of all types (cf. [124]) which we will not discuss but
in [572] a class of exact solutions of the WDW equation was found via heat
kernel regularization of the Hamiltonian with a suitable ordering and the question
addressed here is the level of arbitrariness in this construction. One bases now such
constructions on the principle that the algebra of constraints should be anomaly
free, i.e. the algebra should be weakly identical with the classical one. One chooses
a starting space of states to consist of integrals over compact 3-space of scalar
densities like V =

∫
M

√
h, R =

∫
M

√
hR, etc. so ψ = ψ(V,R, · · · ). For the

diffeomorphism constraint one takes the representation Da(x) = −i∇x
b (δ/δhab(x))

where ∇x
b means the covariant derivative acting at the point x. This constraint
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then annihilates all the states and the first commutator relation (1.21) is satisfied.
Further the second relation in (4.21) reduces to the formal relation

(4.23) D(Hψ) ∼ Hψ

Now for the construction of the WDW operator one makes a point split in the
kinetic term of the form

(4.24) Gabcd(x)πab(x)πcd(x) �

∫
dx′Kabcd(x, x′, t)

δ

δhab(x)
δ

δhcd(x′)

where limt→0+Kabcd(x, x′, t) = δ(x, x′) and in particular one takes

(4.25) Kabcd(x, x′, t) = Gabcd(x′)∆(x, x′, t)(1 + K(x, t));

∆ =
exp(−(1/4t)hab(x− x′)a(x− x′)b)

4πt3/2

with K(x, t) analytic in t. Next to resolve the ordering ambiguity in H one adds a
new term Lab(x)(δ/δhab(x)) where Lab is a tensor to be derived along with K(x, t).
Thus the WDW operator will have the form

(4.26) H(x) = κ2

∫
dx′Kabcd(x, x′, t)

δ

δhab(x)
δ

δhcd(x′)
+

+Lab(x)
δ

δhab(x)
+

1
κ2

√
h(R + 2Λ)

Next one needs to define the action of operators on states which involves discussions
of regularization and renormalization. Regularization is a trade off here of + and
- powers of t for δ(0) type singularities and for renormalization one drops positive
powers of t and replaces singular terms t−k/2 by renormalization coefficients ρk (cf.
[124] for more details and references). Then to interpret (4.23) for example one
thinks of an operator acting on a state and the resulting state after renormalization
can be acted upon by another operator. Thus (4.23) means

(4.27) D(Hψ)ren ∼ (Hψ)ren

Similarly for the Hamiltonian constraint

(4.28) (H[N ](H(M)ψ)ren)ren − (H[M ](H[N ]ψ)ren)ren = 0

(since ψ is diffeomorphism invariant); here one is using the smeared form of the
WDW operatr H[M ] =

∫
dxM(x)H(x). After some calculation one also concludes

that for the states which are integrals of scalar densities there is no anomaly in the
diffeomorphism - Hamiltonian commutator. As for the Hamiltonian - Hamiltonian
commutator one claims that if (Hψ)ren contains terms which contain 4 or more
derivatives of the metric like R2, RabR

ab, etc. then (4.28) cannot be satisfied.
This was checked for some low order terms but is otherwise open. The form of the
wave function must also be examined and this leads to further conditions on the
WDW operator, which is finally advanced in the form

(4.29) H(x) = κ2

∫
dx′Gagcd(x′)∆(x, x′, t)

δ

δhab(x)
δ

δhcd(x′)
+

+
(

1
κ

αhab + κγ

(
1
4
habR + Rab

))
(x)

δ

δhab(x)
+

1
κ2

√
h(R + 2Λ)
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where α, γ are independent constants.

When one now works with a Bohmian approach where ψ = exp(Γ)exp(iΣ)
and one considers only the real part of the resulting equation, namely

(4.30) −κ2Gabcd(x)
δΣ

δhab(x)
δΣ

δhcd(x)
+

1
κ

√
h(x)(R(x)+2Λ)+�(L)ab(x)

δΓ
δhab(x)

−

−�(L)ab(x)
δΣ

δhab(x)
+ e−Γκ2

(
δ2eΓ

δh2

)
ren

(x) = 0

Identifying now

(4.31) pab(x) =
δΣ

δhab(x)

we see that the first two terms in (4.30) are the same as the Hamiltonian constraint
of classical relativity. The remaining terms are quantum corrections (and if � were
inserted they would all be proportional to �2). The wave function is subject to the
second set of equations, namely those enforcing the 3-dimensional diffeomorphism
invariance, which read (for the imaginary part)

(4.32) ∇a δΣ
δhab(x)

= ∇apab = 0

Thus the theory is defined by two equations (1.30) (with the pab inserted) and
(4.32). This leads then to the full set of ten equations governing the quantum
gravity in the quantum potential approach, namely

(4.33) 0 = H
a = ∇apab;

0 = H⊥ = −κ2Gabcd(x)pabpcd +
1
κ2

√
h(x)(R(x) + 2Λ)+

+�(L)ab(x)
δΓ

δhab(x)
−�(L)ab(x)pab + κ2e−Γ

(
δ2eΓ

δh2

)
ren

(x);

ḣab(x, t) = {hab(x, t),H[N, �N ]}; ṗab(x, t) = {pab(x, t),H[N, �N ]}

where (cf. Section 4.3)

(4.34) H[N, �N ] =
∫

d3x(N(x)H⊥(x) + Na(x)Ha(x))

This all shows in particular that when questions of regularization and renormal-
ization are taken into account life becomes more complicated. Various examples
are treated in [123, 124, 571] where the quantum potential approach works very
well but others where time translation becomes a problem.



170 4. GEOMETRY AND COSMOLOGY

5. PILOT WAVE COSMOLOGY

We refer here to [74, 75, 77, 84, 85, 86, 81, 769, 770, 771, 772, 881] (other
references to be given as we go along). First from [881] a set of nonrelativistic
spinless particles are described via spatial coordinates x = (x1, · · · , xn) and the
wave function ψ satisfies the SE

(5.1) i�
∂ψ

∂t
= −�2

2

∑ 1
mn

∆nψ + V ψ

Putting in ψ = Rexp(iS/�) gives then

(5.2)
∂S

∂t
+
∑

n

1
2mn

(∇nS)2 + V + Q = 0; Q = −
∑

n

�2

2mn

∆nR

R
;

∂R2

∂t
+
∑

n

1
mn
∇n(R2∇nS) = 0

In the pilot wave interpretation the evolution of coordinates is governed by the
phase via mnẋn = ∇nS. In the relativistic theory of spin 1/2 one continues to
describe particles by their spatial coordinates but the guidance conditions and the
equations for the wave are now different, namely for the multispinor ψα1···αn

(x, t)
the Dirac equation is (α ∼ (α1 · · ·αn))

(5.3) iψ̇α =
∑

n

(HD)ψ)α; HD = −iγ0γi∇i + mγ0

The guidance condition is

(5.4)
dxµ

n

dt
=

ψ†(γ0γµ)nψ

ψ†ψ
Here the label n enumerates the arguments of the multispinor ψ and the γµ

n act on
the corresponding spinor index αn; ψ is chosen to be antisymmetric with respect to
interchange of any pair of its arguments. For integer spin the formulation in which
the role of configuration variables is played by coordinates seems to be impossible;
instead one has to consider the field spatial configurations as fundamental config-
uration variables guided by the corresponding wave functionals. For example the
wave functional χ[φ(x), t] for a scalar field φ will obey the standard SE for the
case of curved spacetime with guidance equation as indicated (notational gaps are
filled in below)

(5.5) φ̇(x, t) =
δ

δφ(x)
S[φ(x), t]

∣∣∣∣
φ(x)=φ(x,t)

(here S[φ(x, t] is � times the phase of χ[φ(x), t]). The classical limit in the dynam-
ics here is achieved for those configuration variables for which the quantum poten-
tial becomes negligible and such variables evolve in accord with classical laws (cf.
[471]). One can emphasize that the temporal dynamics of the particle coordinates
and bosonic field configurations completely determine the state, be it microscopic
or macroscopic. The role of the wave function in all physical situations is also the
same, namely to provide the guidance laws for configuration variables. In order
that the probabilities of of different measurements coincide with those calculated
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in the standard approach it is necessary to assume that the configuration variables
of the system in a pure quantume ensemble are distributed in accord with the rule
p(x) = |ψ(x)|2 (quantum equilibrium condition - cf. [954, 327], Section 2.5, and
references to Dürr, Goldstein, Holland, Valentini, Zanghi, et al for discussion).

Now for quantum gravity recall the ADM formulation for bosonic fields

(5.6) I =
∫

M

d3xdt(πabġab + πΦΦ̇−NH−Na
Ha)

(here Φ is the set of bosonic fields). The restraints of GR are

(5.7) H =
1
2µ

Gabcdπ
abπcd + µ

√
g(2Λ− 3

R) + H
Φ ≈ 0; Ha ≡ −2∇bπ

b
a + H

Φ
a ≈ 0

(only the gravitational parts of the constraints are explicitly written out). Here
µ = (16πG)−1 with G the Newton constant and

(5.8) Gabcd =
1
√

g
(gacgbd + gadgbc − gabgcd)

while ∇a ∼ covariant derivative relative to gab and 3R is the scalar curvature for
the metric g. The classical equations of motion for g are

(5.9) ġab =
N

µ
Gabcdπ

cd +∇aNb +∇bNa

Recall that in the Schrödinger representation the GR quantum system will be de-
scribed by the wave functional Ψ[gab(x,Φ(x), t] over a manifold Σ with coordinates
x and the quantum constraint equations are ĤµΨ = 0 (Ĥ refers to all the com-
ponents mentioned above (operator ordering and regularization are not treated in
[881]). Putting in now Ψ = Rexp(iS/�) one arrives at

(5.10)
1
2µ

δS ◦ δS + µ
√

g(2Λ− 3
R)− �2

2µ

δ ◦ δR

R
+
�(Ψ†ĤΨ)

R2
= 0;

δ ◦ (R2δS)− 2µ

�
�(Ψ†

Ĥ
ΦΨ) = 0

(here δ ∼ δ/δgab(x) and ◦means contraction with respect to Wheeler’s supermetric
(5.8)). Note that for � → 0 the first equation in (5.10) reduces to the classical
Einstein-HJ equation. Via the general guidance rules the quantum evolution of
the gab is now given by (5.9) with the substitution

(5.11) πab(x) → δS

δgab(x)

∣∣∣∣
gab(x)=gab(x,t)

The Lagrange multipliers N and Na in (5.9) remain undetermined and are to
be specified arbitrarily. This is analogous to the classical situation where this
arbitrariness reflects reparameterization freedom. Thus to get a solution gab and
Φ depending on (x, t) one must first solve the constraint equation ĤµΨ = 0,
then specify the initial configuration (e.g. at t = 0) for gab and Φ, then specify
arbitrarily N(x, t) and Na(x, t), and then solve the guidance equations (5.9) and
the analogous equations for Φ. The solution should then represent a 4-geometry
foliated by spatial hypersurfaces Σ(t) on which the 3-metric is gab(x, t), the lapse
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function is N(x, t), the shift vector is Na(x, t) and the field configuration is Φ(x, t).
This would be lovely but unfortunately there are complications as indicated below
from [770, 772]; such matters are partially anticipated in [881] however and there
is some discussion and calculation. The question of quantum randomness in pilot
wave QM is picked up again in the first paper of [881] along with a continuation
of time considerations. We only remark here that time in (5.9) is just a universal
label of succession for spatial field configurations; it is not an observable.

5.1. EUCLIDEAN QUANTUM GRAVITY. The discussion here re-
volves around [770] and the first paper of [772] (cf. also [263, 264, 266, 218]).
We go to [770] directly and refer to [772] for some background calculations and
philosophy. [770] is a review paper of deBroglie-Bohm theory in quantum cos-
mology. Extracting liberally one can argue convincingly against the Copenhagen
interpretation of quantum phenomena in cosmology, in particular because it im-
poses the existence of a classical domain (cf. [729]). Decoherence is discussed
but this does not seem to be a complete answer to the measurement problem
(cf. [551, 412, 770]) and one can also argue against the many-worlds theory (cf.
[320, 471, 770]). Thence one goes to deBroglie-Bohm as in [84, 881, 954, 961]
etc. and the quantum potential enters in a natural manner as we have already
seen. Let us follow the notation of [770] here (with some repetition of other dis-
cussions) and write H =

∫
d3x(NH + N jHj) where (in standard notation) for GR

with a scalar field φ

(5.12) Hj = −2Diπ
i
jπφ∂jφ; H = κGijk�π

ijπk� +
1
2
h−1/2π2

φ+

+h1/2

[
−κ−1(R(3) − 2Λ) +

1
2
hij∂iφ∂jφ + U(φ)

]
The canonical momentum is expressed via (we use πij instead of Πij)

(5.13) πij = −h1/2(Kij − hijK) = Gijk�(ḣk� −DkN� −D�Nk);

Kij = − 1
2N

(ḣij −DiNj −DjNi)

K is the extrinsic curvature of the 3-D hypersurface Σ in question with indices
lowered and raised via the surface metric hij and its inverse). The canonical
momentum of the scalar field is

(5.14) πφ =
h1/2

N
(φ̇−N j∂jφ)

As usual R(3) is the intrinsic curvature of the hypersurfaces and N, Nj are the
standard Lagrange multipliers for the super-Hamiltonian constraint H ≈ 0 and
the super momentum constraint Hi ≈ 0. These multipliers are present due to the
invariance of GR under spacetime coordinate transformations. Recall also

(5.15) Gijk� =
1
2
h1/2(hikhj� + hi�hjk − 2hijhk�);

Gijk� =
1
2
h−1/2(hikhj� + hi�hjk − hijhk�)
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(called the deWitt metric). Here Di is the i-component of the covariant derivative
on the hypersurface and κ = 16πG/c4. The classical 4-metric

(5.16) ds2 = −(N2 −N iNi)dt2 + 2Nidxidt + hijdxidxj

and the scalar field which are solutions of the Einstein equations can be obtained
from the Hamilton equations

(5.17) ḣij = {hij ,H}; π̇ij = {πij ,H}; φ̇ = {φ,H}; π̇φ = {πφ,H}
for some choice of N, N j provided initial conditions are compatible with the con-
straints H ≈ 0 and Hj ≈ 0. It is a feature of the Hamiltonian structure that the
4-metrics (5.6) constructed in this way with the same initial conditions describe
the same 4-geometry for any choice of N and N j . The algebra of constraints closes
in the following form (cf. [470])

(5.18) {H(x),H(x′)} = H
i(x)∂iδ

3(x, x′)− H
i(x′)∂iδ(x′, x);

{Hi(x),H(x′)} = H(x)∂iδ(x, x′);

{Hi(x),Hj(x′)} = Hi(x)∂jδ
3(x, x′) + Hj(x′)∂iδ

3(x, x′)

One quantizes following Dirac to get Ĥi|ψ >= 0 and Ĥ|ψ >= 0 and in the metric
and field representation the first equation is

(5.19) −2h�iDj
δψ(hij , φ)

δh�j
+

δψ(hijφ)
δφ

∂iφ = 0

which implies that the wave functional ψ is invariant under space coordinate trans-
formations. The second equation is the WDW equation which (in unregularized
form) is

(5.20)
{
−�2

[
κGijk�

δ

δhij

δ

δhk�
+

1
2
h−1/2 δ2

δφ2

]
+ V

}
ψ(hij , φ) = 0;

V = h1/2

[
−κ−1/2(R(3) − 2Λ) +

1
2
hij∂iφ∂jφ + U(φ)

]
(V is the classical potential). This equation involves products of local operators
at the same point and hence must be regulated (cf. also Section 4.4). After that
one should find a factor ordering which makes the theory free of anomalies, in the
sense that the commutator of the operator version of the constraints closes in the
same way as their respective classical Poisson brackets (cf. [476, 572, 616]).

Consider now the dBB interpretation of (5.19)-(5.20) where ψ = Aexp(iS/�)
with A, S functionals of hij and φ. One arrives at
(5.21)

−2h�iDj
δS(hijφ)

δh�j
+

δS(hij , φ)
δφ

∂iφ = 0; −2h�iDj
δA(hij , φ)

δh�j
+

δA(hij , φ)
δφ

= 0

upon writing ψ = Aexp(iS/�). These equations will depend on the factor ordering;
however in any case one of the equations will have the form

(5.22) κGijk�
δS

δhij

δS

δhk�
+

1
2
h−1/2

(
δS

δφ

)2

+ V + Q = 0
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where V is the classical potential. Contrary to the other terms in (5.22), which
are already well defined, the precise form of Q depends on the regularization and
factor ordering which are prescribed for the WDW equation. In the unregulated
form of (5.20)

(5.23) Q = −�2

A

(
κGijk�

δ2A

δhijδhk�
+

h−1/2

2
δ2A

δφ2

)
The other equation (in addition to (5.22)) is

(5.24) κGijk�
δ

δhij

(
A2 δS

δhk�

)
+

1
2
h−1/2 δ

δφ

(
A2 δS

δφ

)
= 0

Now consider the dBB interpretation. First (5.21) and (5.22), which are valid
irrespective of any factor ordering, are like the HJ equations for GR supplemented
by an extra term Q for (5.22) (which does depend on factor ordering etc.). One
postulates that the 3-metric, the scalar field, and their canonical momenta always
exist (independent of observation) and that the evolution of the 3-metric and scalar
field can be obtained from the guidance relations

(5.25) πij =
δS(hab, φ)

δhij
; πφ =

δS(hij , φ)
δφ

(cf. (5.13)-(5.14)). The evolution of these fields will be different from the classical
one due to the presence of Q in (5.22). The only difference between the cases
of the nonrelativistic particle and QFT in flat spacetime is the fact that (5.24)
for canonical QG cannot be interpreted as a continuity equation for a probability
density A2 because of the hyperbolic nature of the deWitt metric Gijk�. However
even without a notion of probability density one can extract a lot of information
from (5.22), whatever Q may be. First note that whatever the form of Q it must
be a scalar density of weight one (via the HJ equation (5.22)). From this equation
one can express Q via

(5.26) Q = −κGijk�
δS

δhij

δS

δhk�
− 1

2
h−1/2

(
δS

δφ

)2

− V

Since S is an invariant (via (5.21)) it follows that δS/δhij and δS/δφ must be a
second rank tensor density and a scalar density respectively, both of weight one.
When their products are contracted with Gijk� and multiplied by h−1/2 they form
a scalar density of weight one. As V is also a scalar density of weight one then
so must be Q. Further Q must depend only on hij and φ because it comes from
the wave functional which depends only on these variabes. Of course it can be
nonlocal but it cannot depend on the momenta.

A minisuperspace is the set of spacelike geometries where all but a set of hij
(n)(t)

and the corresponding momenta π
(n)
ij (t) are put identically equal to zero (this vio-

lates the uncertainty principle but one hopes to retain suitable qualitative features
- cf. [770] for references). In the case of a minisuperspace of homogeneous models,
one puts Hi = 0 and Ni in H can be set equal to zero without losing any of the
Einstein equations. The Hamiltonian becomes HGR = N(t)H(pα(t), qα(t)) where
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the qα and pα represent homogeneous degrees of freedom coming from πij(x, t)
and hij(x, t). Equations (5.23)-(5.25) become then

(5.27)
1
2
fαβ(qµ)

∂S

∂qα

∂S

∂qβ
+ U(qµ) + Q(qµ) = 0;

Q(qµ) = − 1
R

fαβ
∂2R

∂qα∂qβ
; pα =

∂S

∂qα
= fαβ 1

N

∂qβ

∂t
= 0

where fαβ(qµ) and U(qµ) are the minisuperspace particularizations of Gijk� and
−h1/2R(3)(hij). The last equation is invariant under time reparametrization and
hence even at the quantum level different choices of N(t) yield the same spacetime
geometry for a given nonclassical solution qα(x, t).

After some discussion and computations involving the avoidance of singulari-
ties and quantum isotropization of the universe one goes now in [770] to the general
situation in full superspace. From the guidance equations (5.25) one obtains

(5.28) ḣij = 2NGijk�
δS

δhk�
+ DiNj + DjNi; φ̇ = Nh−1/2 δS

δφ
+ N i∂iφ

The question here is, given some initial 3-metric and scalar field, what kind of
structure do we obtain upon integration in t? In particuar does this structure
form a 4-dimensional geometry with a scalar field for any choice of the lapse and
shift functions? Classically all is well but with S a solution of the modified HJ
equation containing Q there is no guarantee. One goes to the Hamiltonian picture
because strong results have been obtained from that point of view historically (cf.
[470, 926]). One constructs now a Hamiltonian formalism consistent with the
guidance relations (5.25) which yields the Bohmian trajectories (5.28). Given this
Hamiltonian one can then use results from the literature to obtain new results for
the dBB picture of quantum geometrodynamics. Thus from (5.21)-(5.22) one can
easily guess that the Hamiltonian which generates the Bohmian trajectories, once
the guidance relations (5.25) are satisfied initially, should be

(5.29) HQ =
∫

d3x
[
N(H + Q) + N i

Hi

]
; HQ = H + Q

Here H and Hi are the usual GR quantities from (5.12) and in fact the guidance
relations (5.25) are consistent with the constraints HQ ≈ 0 and Hi ≈ 0 because
S satisfies (5.21)-(5.22). Furthermore they are conserved by the Hamiltonian evo-
lution given by (5.29). Then one can show that indeed (5.28) can be obtained
from HQ with the guidance relations (5.25) viewed as additional constraints (cf.
[769, 772] for details). Thus one has a Hamiltonian HQ which generates the
Bohmian trajectories once the guidance relations (5.25) are imposed initially. Now
one asks about the evolution of the fields driven by HQ forms a 4-geometry as in
classical geometrodynamics. First recall a result from [926] which shows that if
the 3-geometries and field configurations defined on hypersurfaces are evolved by
some Hamiltonian with the form H̃ =

∫
d3x(N H̃ + N iH̃i) and if this motion can

be viewed as the motion of a 3-dimensional cut in a 4-dimensional spacetime then
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the constraints H̃ ≈ 0 and H̃i ≈ 0 must satisfy the algebra

(5.30) {H̃(x), H̃(x′)} = −ε[H̃i(x)∂iδ
3(x′, x)− H̃(x′)∂iδ

3(x, x′);

{H̃i(x), H̃(x′)} = H̃(x)∂iδ
3(x, x′);

{H̃i(x), H̃j(x′)} = H̃i(x)∂jδ
3(x, x′)− H̃j(x′)∂iδ

3(x, x′)

The constant ε can be ±1 (if the 4-geometry is Euclidean (+1) or hyperbolic (−1));
these are the conditions for the existence of spacetime. For ε = −1 this algebra is
the same as (5.18) for GR, but the Hamiltonian (5.29) is different via Q in HQ.
The Poisson bracket {Hi(x),Hj(x′)} satisfies (5.30) because the Hi of HQ defined
in (5.29) is the same as in GR. Also {Hi(x),HQ(x′)} satisfies (5.30) because Hi

is the generator of spatial coordinate transformations and since HQ is a scalar
density of weight one (recall Q is a scalar density of weight one) it must satisfy
this Poisson bracket relation with Hi. What remains to be verified is whether the
Poisson bracket {HQ(x),HQ(x′)} closes as in (5.30). For this one recalls a result
of [470] where there is a general super Hamiltonian H̃ which satisfies (5.30), is a
scalar density of weight one (whose geometrical degrees of freedom are given only
by hij and its canonical momentum), and which contains only even powers and
no non-local term in the momenta. From [470] this means that H̃ must have the
form

(5.31) H̃ = κGijk�π
ijπk� +

1
2
h−1/2π2

φ + VG;

VG = −εh1/2

[
−κ−1(R(3) − 2Λ) +

1
2
hij∂iφ∂jφ + U(φ)

]
Note that HQ satisfies the hypotheses since it is quadraic in the momenta and the
quantum potential does not contain any nonlocal term in the momenta. Conse-
quently there are three possible scenarios for the dBB quantum geometrodynam-
ics, depending on the form of the quantum potential. First assume that quantum
geometrodynamics is consistent (independent of the choice of lapse and shift func-
tions) and forms a nondegenerate 4-geometry. Then {HQ,HQ} must satisfy the
first equation in (5.30) and consequently, combining with (5.30) for H̃, Q must be
such that V + Q = VG with V given by (5.20) yielding
(5.32)

Q = −h1/2

[
(ε + 1)

(
−κ−1R(3) +

1
2
hij∂iφ∂jφ

)
+

2
κ

(εΛ̃ + Λ) + εŨ(φ) + U(φ)
]

For this situation there are two possibilities, namely
(1) The spacetime is hyperbolic with ε = −1 and

(5.33) Q = −h1/2

[
2
κ

(Λ− Λ̃)− Ũ(φ) + U(φ)
]

Hence Q is like a classical potential; its effect is to renormalize the cos-
mological constant and the classical scalar potential, nothing more. The
quantum geometrodynamics is indistinguishable from the classical one.
It is not necessary to require Q = 0 since VG = V + Q may already
describe the classical universe in which we live.
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(2) The spacetime is Euclidean with ε = 1 in which case

(5.34) Q = −h1/2

[
2
(
−κ−1R(3) +

1
2
hij∂iφ∂jφ

)
+

2
κ

(Λ̃ + Λ) + Ũ(φ) + U(φ)
]

Now Q not only renormalizes the cosmological constant and the classical
scalar field but also changes the signature of spacetime. The total po-
tential VG = V + Q may describe some era of the early universe when it
had Euclidean signature but not the present era when it is hyperbolic.
The transition between these two phases must happen in a hypersur-
face where Q = 0 which is the classical limit. This result points in the
direction of [410].

There remains the possiblity that the evolution is consistent but does not form
a nondegenerate 4-geometry. In this case the Poisson bracket {HQ,HQ} does not
satisfy (5.30) but is weakly zero in some other manner. Consider for example

(1) For real solutions of the WDW equation, which is a real equation, the
phase S is zero and from (5.22) one can see that Q = −V . Hence the
quantum super Hamiltonian (5.29) will contain only the kinetic term and
{HQ,HQ} = 0 (strong equality). This case is connected with the strong
gravity limit of GR (cf. [770] for references and further discussion).

(2) Any nonlocal quantum potential breaks spacetime and as an example
consider Q = γV where γ is a function of the functional S (hence is
nonlocal). Calculating one obtains (cf. [769, 772])

(5.35) {HQ(x),HQ(x′)} = (1 + γ)[Hi(x)∂iδ
3(x, x′)− H

i(x′)∂iδ
3(x′, x)]−

− dγ

dS
V (x′)[2HQ(x)− 2κGijk�(x)πij(x)Φk�(x)− h−1/2πΦ(x)Φφ(x)+

+
dγ

dS
V (x)[2HQ(x′)− 2κGijk�(x′)πij(x′)Φk�(x′)− h−1/2πφ(x′)Φφ(x′)] ≈ 0

The last equation is weakly zero because it is a combination of the con-
straints and the guidance relations of Bohmian theory. This means that
the Hamiltonian evolution with the quantum potential Q = γV is con-
sistent only when restricted to the Bohmian trajectories. For other tra-
jectories it is inconsistent.

In these examples one makes contact with the structure constants of the algebra
characterizing the foam like pregeometry structure pointed out long ago by J.A.
Wheeler. Another fact here of interest is that there are no inconsistent Bohmian
trajectories (cf. [772]). We call attention also to [77] where in particular one
considers noncommutative geometry and cosmology in connection with Bohmian
theory; the results are very interesting.

6. BOHM AND NONCOMMUTATIVE GEOMETRY

We extract here from [77, 78, 399] with other references as we go along (cf.
in particular [230, 261, 318, 341, 552, 771, 772, 773, 897, 901]). First from
[77] one refers to [78] where a new interpretation of the canonical commutation

(6.1) [X̂µ, X̂ν ] = iθµν
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was proposed. The idea was that it is possible to interpret the commutation
relation as a property of the particle coordinate observables rather than of the
spacetime coordinates and this enforced a reinterpretation of the meaning of the
wave function in noncommutative QM (NCQM). In [77] one develops a Bohmian
interpretation for NCQM amd forms a deterministic theory of hidden variables
that exhibit canonical noncommutativity (6.1) between the particle position ob-
servables. There are several motivations for reconsideration of hidden variable
theory (see e.g. [475]) and we begin with a Moyal star product defined via

(6.2) (f ∗ g) =
1

(2π)n

∫
dmkdnpei(kµ+pµ)xµ−(1/2)kµθµνpν f(k)g(p) =

= e(1/2)θµν(∂/∂ξµ)(∂/∂ην)f(x + ξ)g(x + η)|ξ=η=0

(cf. [192] for an extensive treatment of star products and some noncommutative
geometry). The commutative coordinates xi are called the Weyl symbols (WS)
of position operators X̂i and one will consider them as spacetime coordinates
following [78]. One assumes here that θ0i = 0 and the Hilbert space of states of
NCQM can be taken as in commutative QM with noncommutative SE now given
by

(6.3) i�
∂ψ(xi, t)

∂t
= − �2

2m
∇2ψ(xi, t) + V (xi) ∗ ψ(xi, t) =

=
�2

2m
∇2ψ(xi, t) + V

(
xj + i

θjk

2
∂k

)
ψ(xi, t)

The operators

(6.4) X̂j = xj +
iθjk∂k

2
are the observables corresponding to the physical positions of the particles and
xi are the associated canonical coordinates. For intition one could think here in
terms of a “half dipole” whose extent is proportional to the canonical momentum
∆xi = θijpj/2�; one of its endpoints carries the mass and is responsible for its
interaction. The NCQM formulated with (6.3)-(6.4) can be considered as the
uaual QM with a Hamiltonian not quadratic in momenta and “unusual” position
operators. From this point of view the BNCQM below can be considered as an
extension along the same lines. Any attempt to localize the particles must satisfy
the uncertainty relations

(6.5) ∆Xi∆Xj ≥ |θij |/2

The expression for the definition of probability density ρ(xi, t) = |ψ(xi, t)|2 has
a meaning that differs from ordinary QM. Namely the quantity ρ(xi, t)d3x must
be interpreted as the probability that the system is found in a configuration such
that the canonical coordinate of the particle is contained in a volume d3x around
the point x at time t. Given an arbitrary physical observable characterized by a
Hermitian operator Â(x̂i, p̂i) (which includes e.g. Â(X̂i(x̂i, p̂i), p̂i)) its expected
value is

(6.6) < Â >t=
∫

d3xψ∗(xi, t)Â(xj ,−i�∂j)ψ(xi, t)
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A HJ formalism for NCQM is found by writing ψ = Rexp(iS/�), putting it in
(6.3), and splitting real and imaginary terms; the real part is

(6.7)
∂S

∂t
+

(∇S)2

2m
+ V + Vnc + QK + QI = 0

Here the three new potential terms are defined as

(6.8) Vnc = V

(
xi − θij

2�
∂jS

)
− V (xi);

QK = �
(
− �2

2m

∇2ψ

ψ

)
−
(

�2

2m
(∇S)2

)
= − �2

2m

∇2R

R
;

QI = �
(

V [xj + (iθjk/2)∂k]ψ
ψ

)
− V

(
xi − θij

2�
∂jS

)
Vnc is the potential that accounts for the NC classical interactions while QK and
QI account for the quantum effects. The NC contributions contained in the latter
two can be split out by defining

(6.9) Qnc = QK + QI −Qc; Qc = − �2

2m

∇2Rc

Rc
; Rc =

√
ψ∗

cψc

Here ψc is the wave function obtained from the commutative SE containing the
usual potential V (xi), i.e. the equation obtained by setting θij = 0 in (6.3) before
solving. The imaginary part of the SE which yields the probability conservation
law, is

(6.10)
∂R2

∂t
+∇ ·

(
R2∇S

m

)
+ Σθ = 0; Σθ = −2R

�
�
[
e−iS/�V ∗ (ReiS/�)

]
By integrating the first equation we obtain

(6.11)
d

dt

∫
R2d3x = 0;

∫
Σθd

3x = 0

when R2 vanishes at infinity.

Now for an ontological theory of motion one follows the traditional methods
(cf. [126, 471]). Necessary conditions for the theory to be capable of reproducing
the same statistical results as the standard interpretation of NCQM constrain the
admissible form for the functions Xi(t) which eliminates a certain arbitrariness in
the constructions. First for the rules, with an arbitrary physical characterized by
a Hermitian operator Â(x̂i, p̂i) it is possible to associate a function A(xi, t), the
local expectation value of Â (cf. [471]), which when averated over the ensemble of
density ρ(xi, t) = |ψ|2 gives the same expectation value obtained by the standard
operator formalism. Thus it is natural to define the ensemble average via

(6.12) < Â >t=
∫

ρ(xi, t)A(xi, t)d3x

For this to agree with (6.6) A(xi, t) must be defined as

(6.13) A(xi, t) =
�
[
ψ∗(xi, t)Â(xj ,−i�∂j)ψ(xi, t)

]
ψ∗(xi, t)ψ(xi, t)

= A(xi, t) + QA(xi, t)
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where the real part is taken to account for the hemiticity of Â(x̂i, p̂i) and A(xi, t) =
A[xi, pi = ∂iS(xi, t)] while QA is defined via

(6.14) QA = �
[

Â(xj ,−i�∂j)ψ(xk, t)
ψ(xi, t)

]
−A(xi, t)

and this is the quantum potential that accompanies A(xi, t). From (6.13) one finds
that the local expectation value of (6.4) is

(6.15) Xi = xi − θij

2�
∂jS(xi, t)

Now to find the Xi(t) the relevant information for particle motion can be extracted
from the guiding wave ψ(xi, t) by first computing the associated canonical position
tracks xi(t) and then evaluating (6.15) at xi = xi(t). In order to find a good
equation for the xi(t) it is interesting to consider the Heisenberg formulation and
the equations of motion for the observables. Thus for the x̂i one has

(6.16)
dx̂i

H

dt
=

1
i�

[x̂i
H , Ĥ] =

p̂i
H

m
+

θij

2�

∂V̂ (X̂k
H)

∂X̂j
H

By passing the right side of (6.16) to the Schrödinger picture one can define the
velocity operators

(6.17) v̂i =
1
�
[x̂i, Ĥ] =

p̂i

m
+

θij

2�

∂V̂ (X̂)
∂X̂

The differential equation for the canonical positions xi(t) is now found by identi-
fying dxi(t)/dt with the local expectation value of v̂i, thus

(6.18)
dxi(t)

dt
=
[
∂iS(xi, t)

m
+

θij

2�

∂V (Xk)
∂Xj

+
Qi

2

]∣∣∣∣
xi=xi(t)

where Xi is given in (6.15), S(xi, t0 is the phase of ψ, and

(6.19) Q
i = �

(
(θij/�)[∂V̂ (X̂k)/∂X̂j ]ψ(xi, t)

ψ(xi, t)

)
− θij

�

∂V (Xk)
∂Xj

The potentials Qi account for quantum effects coming from derivatives of order 2
and higher contained in ∂V̂ (X̂i)/∂X̂j . Then once the xi(t) are known the particle
trajectories are given via

(6.20) Xi(t) = xi(t)− θij

2�
∂jS(xk(t), t)

One notes that the particles positions are not defined on nodal regions of ψ, where
S is undefined, so the particles cannot run through such regions. Hence the van-
ishing of the wave function can be adopted as a boundary condition, implying that
the particle does not run through such a region (see [77] for more discussion). The
preceeding theory is now summarized in a formal structure as follows:

(1) The spacetime is commutative and has a pointwise manifold structure
with canonical coordinates xi. The observables correspondin to opera-
tors of position coordinates X̂i of particles satisfy the commutation rules
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[X̂k, X̂j ] = iθkj . The position observables can be represented in the coor-
dinate space as X̂j = xj + iθjk∂k/2 and the xj are canonical coordinates
associated with the particle.

(2) A quantum system is composed of a point particle and a wave ψ. The
particle moves in spacetime under the guidance of the wave which satisfies
the SE i�∂tψ(xi, t) = −(�2/2m)∇2ψ + V (X̂i)ψ (ψ = ψ(xi, t)).

(3) The particle moves with trajectory Xi(t) = xi(t)− (θij/2�)∂jS(xi(t), t)
independently of observation, where S is the phase of ψ and the xi(t)
describe the canonical position trajectories found by solving

dxi(t)
dt

=
[
∂iS(�x, t)

m
+

θij

2�

∂V (Xk)
∂Xj

+
Qi

2

]∣∣∣∣
xi=xi(t)

To find the path followed by a particle, one must specify its initial canoni-
cal position xi(0), solve the second equation, and then obtain the physical
path from the first equation.

These three postulates constitute on their own a consisent theory of motion, and
is intended to give a finer view of QM, namely a detailed description of the in-
dividual physical processes and to provide the same statistical predictions. In
ordinary commutative Bohmian mechanics, in order to reproduce the statistics
the additional requirement that ρ(xi, t0) = |ψ(�x, t0)|2 is imposed for some initial
time t0. Then ρ is said to be equivariant if this property persists under evolution
ẋi(t) = f i(xj , t); in such a case

(6.21)
∂ρ

∂t
+

∂(ρẋi)
∂xi

= 0

In ordinary commutative QM the equivariance property is satisfied via ẋi(t) =
J i/ρ which is a consequenc of the identification between ẋi and the local expecta-
tion value of the v̂i. In the BNCQM proposed here the same identification is valid
but it is not sufficient to guarantee equivariance in all cases. This is clear after
computing the canonical probability current

(6.22) J i(xi, t) = �[ψ∗v̂ψ] = |ψ|2
[
∂iS(�x, t)

m
+

θij

2�

∂V (Xk)
∂Xj

+
Qi

2

]
= ρẋi

Then regrouping the terms in (6.10) so that the canonical probability flux (6.22)
appears explicitly one obtains

(6.23)
∂ρ

∂t
+

∂(ρẋi

∂xi
− ∂

∂xi

[
ρ

(
θij

2�

∂V (Xk)
∂Xj

+
Qi

2

)]
+ Σθ = 0

For equivariance to occur an additional condition that the sum of the last two
terms in the right side of (6.23) vanishes is required. When V (Xi) is a linear or
quadratic function, as in many applications, such a condition is trivially satisfied,
and then ρ(xi, t) = |ψ(xi, t)|2 as desired. The same may occur for other situations
when other potentials are considered in #2 above and this is also discussed in [77].

In [77] (second paper) one looks at a Kantowski-Sachs (KS) universe (see e.g.
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[230, 261, 399, 901]). Recall in the ADM formulation a line element is written
in the form

(6.24) ds2 = (NiN
i −N2)dt2 + 2Nidxidt + hijdxidxj

and the Hamiltonian of GR without matter is

(6.25) H =
∫

d3x(NH + N)iHj); H = Gijk�π
ijπk� − h1/2R(3); H

j = 2Diπ
ij

Units are chosen so that � = c = 16πG = 1. The momenta πij are canonically
conjugate to hij and the deWitt metric Gijk� are given via

(6.26) πij = −h1/2(Kij − hijK); Gijk� =
1
2
h−1/2(hikhj� + hi�hjk − hijhk�)

where Kij = −(∂thij −DiNj −DjNi)/(2N) is the second fundamental form. The
super Hamiltonian constraint H ≈ 0 yields the WDW equation

(6.27)
(

Gijk� δ

δhij

δ

δhk�
+ h1/2R(3)

)
ψ[hij ] = 0

In the Bohmian approach now one has

(6.28) πij = −h1/2(Kij − hijD) = �
{

1
ψ∗ψ

[
ψ∗

(
−i

δ

δhij

)
ψ

]}
=

δS

δhij

If one puts ψ = Aexp(iS) in (6.27) there results

(6.29) Gijk� δS

δhij

δS

δhk�
− h1/2R(3) + Q = 0;

Gijk� δS

δhij

(
A2 δS

δhk�

)
= 0; Q = − 1

A
Gijk� δ2A

δhijhk�

(one should really include �2 here in dealing with Q).

The Kantowski-Sachs universe is an important anisotropic model; the line
element is

(6.30) ds2 = −Ndt2 + X2(t)dr2 + Y 2(t)(dθ2 + Sin2(θ)dφ2)

In the Misner parametrization this becomes (cf. [399])

(6.31) ds2 = −N2dt2 + e2
√

3βdr2 + e−2
√

3βe−2
√

3Ω(dθ2 + Sin2(θ)dφ2)

The Hamiltonian is then

(6.32) H = NH = Nexp
(√

3β + 2
√

3Ω
)[
−P 2

Ω

24
+

P 2
β

24
− 2exp(−2

√
3Ω)

]
One sets Θ = V α

;α (volume expansion - V α = δα
0 /N), and σ2 = σαβσαβ/2 (shear)

where σαβ = (hµ
αhν

β+hµ
βhν

α)Vµ;ν/2. The semicolon denotes 4-dimensional covariant
differentiation and hµ

α = δµ
α +V µVα is the projector orthogonal to the observer V α

(cf. [458]). A characteristic length scale is defined via Θ = 3�̇/(�N) and in the
gauge N = 24exp(−

√
3β − 2

√
3Ω) one has

(6.33) Θ(t) =
1
N

(
Ẋ

X
+ 2

Ẏ

Y

)
= −

√
3

24
(β̇ + 2Ω̇)e

√
3β+2

√
3Ω;
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σ(t) =
1

N
√

3

(
Ẋ

X
− Ẏ

Y

)
=

1
24

(2β̇ + Ω̇)e
√

3β+2
√

3Ω;

�3(t) = X(t)Y 2(t) = e−
√

3β(t)−2
√

3Ω(t)

In order to distinguish the role of the quantum and noncommutative effects in
a NC quantum universe one starts now with a KS geometry in the commutative
classical version. The Poisson brackets for the classical phase space variables are

(6.34) {Ω, PΩ} = 1 = {β, Pβ}; {PΩ, Pβ} = 0 = {Ω, β}

For the metric (6.31) the constraint H ≈ 0 is reduced to

(6.35) H = ξh ≈ 0; ξ =
1
24

e
√

3β+2
√

3Ω; h = −P 2
Ω + P 2

β − 48e−2
√

3Ω ≈ 0

The classical equations of motion for the phase space variables Ω, PΩ, β, and Pβ

are then

(6.36) Ω̇ = N{Ω,H} = −2PΩ; β̇ = N{β,H} = 2Pβ ;

ṖΩ = N{PΩ,H} = −96
√

3e−2
√

3Ω; Ṗβ = N{Pβ ,H} = 0

Explicit formulas are found and exhibited in [77].

Now for a NC classical model one considers

(6.37) {Ω, PΩ} = 1; {β, Pβ} = 1; {PΩ, Pβ} = 0; {Ω, β} = θ

The equations of motion can be written as

(6.38) Ω̇ = −2PΩ; ṖΩ = −96
√

3e−2
√

3Ω; β̇ = 2Pβ − 96
√

3θe−2
√

3Ω; Ṗβ = 0

The solutions for Ω and β are then

(6.39) Ω(t) =
√

3
6

log

{
48
P 2

β0

Cosh2
[
2
√

3Pβ0(t− t0)
]}

;

β(t) = 2Pβ0(t− t0) + β0 − θPβ0Tanh[2
√

3Pβ0(t− t0]

Further calculations appear in [77].

For the commutative quantum model one works with the minisuperspace con-
struction of homogeneous models and freezing out an infinite number of degrees
of freedom. First an Ansatz of the form (6.31) is introduced and the spatial de-
pendence of the metric is integrated out. The WDW equation is then reduced to
a KG equation which for the KS universe has the form

(6.40)
[
−P̂ 2

Ω + P̂ 2
β − 48e−2

√
3Ω
]
ψ(Ω, β) = 0

where P̂Ω = −i∂/∂Ω and P̂β = −i∂/∂β. A solution to (6.40) is then (cf. [399])

(6.41) ψν(Ω, β) = eiν
√

3βKiν

(
4e−

√
3Ω
)
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where Kiν is a modified Bessel function and ν is a real constant. Once a quantum
state of the universe is given as, e.g. a superposition of states

(6.42) ψ(Ω, β) =
∑

ν

Cνeiν
√

3βKiν

(
4e−

√
3Ω
)

= ReiS

the evolution can be determined by integrating the guiding equation (6.28). In
the minisuperspace approach the analogue of that equation is

(6.43) PΩ = −1
2
Ω̇ = �

{
[ψ∗(−i�∂Ω)ψ]

ψ∗ψ

}
=

∂S

∂Ω
;

Pβ =
1
2
β̇ = �

{
[ψ∗(−i�∂β)ψ]

ψ∗ψ

}
=

∂S

∂β

As before one has fixed the gauge N = 24�3 = 24exp(−
√

3β − 2
√

3Ω). Usually
different choices of time yield different quantum theories but when one uses the
Bohmian interpretation in minisuperspace models the situation is identical to that
of the classical case (but not beyond minisuperspace - cf. [772]), namely different
choices yield the same theory (cf. [84]). Hence as long as �3(t) does not pass
through zero (a singularity) the above choice for N(t) is valid for the history of
the universe. The minisuperspace analogue of the HJ equation in (6.29) is

(6.44) − 1
24

(
∂S

∂Ω

)2

+
1
24

(
∂S

∂β

)2

− 2e−2
√

3Ω +
1

24R

(
∂2R

∂Ω2
− ∂2R

∂β2

)
= 0

Explicit calculations are then given in [77] with graphs and pictures.

Now for the NC quantum model one takes

(6.45) [Ω̂, β̂] = iθ

According to the Weyl quantization procedure (cf. [318]) the realization of (6.45)
in terms of commutative functions is made by the Moyal star product defined via
(cf. [192])

(6.46) f(Ωc, βc) ∗ g(Ωc, βc) = f(Ωc, βc)ei(θ/2)(
←−
∂ Ωc

−→
∂ βc−

←−
∂ βc

−→
∂ gOc )g((Ωc, βc)

The commutative coordinates Ωc, βc are called Weyl symbols of the operators
Ω̂, β̂. In order to compare evolutions with the same time parameter as above one
again fixes the gauge N = 24exp(−

√
3β − 2

√
3Ω) and the WDW equation for the

NC KS model is (cf. [399])

(6.47)
[
−P 2

Ωc
+ P 2

βc
− 48e−2

√
3Ωc

]
∗ ψ(Ωc, βc) = 0

which is the Moyal deformed version of (6.40). By using properties of the Moyal
bracket (cf. [192]) one can write the potential term (denoted by V to include the
general case) as

(6.48) V (Ωc, βc) ∗ ψ(Ωc, βc) = V

(
Ωc + i

θ

2
∂βc

, βc − i
θ

2
∂Ωc

)
ψ(Ωc, βc) =

= V (Ω̂, β̂)ψ(Ωc, βc); Ω̂ = Ω̂c −
θ

2
P̂βc

; β̂ = β̂c +
θ

2
P̂Ωc
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The WDW equation then reads as

(6.49)
[
−P̂ 2

Ωc
+ P̂ 2

βc
− 48e−2

√
3Ω̂c+

√
3θP̂βc

]
ψ(Ωc, βc)

Two consistent interpretations for the cosmology emerging from these equations
are possible. One consists in considering the Weyl symbols Ωc and βc as the
constituents of the physical metric, which makes things essentially commutative
with a modified interaction. The second, as adopted in [78, 79], involves the
Weyl symbols being considered as auxiliary coordinates, and thereby one studies
the evolution of a NC quantum universe.

Next for the Bohmian formulation of the NC minisuperspace one looks at

(6.50) [x̂i, p̂j ] = i�δij

Note the operator formalism of QM is not a primary concept in Bohmian mechan-
ics. Thus it is reasonable to expect that in Bohmian NC quantum cosmology it
should be possible to describe the metric variables as well defined entities, although
the operators Ω̂ and β̂ satisfy (6.45). This is exactly what is proposed here. One
wants to give an objective meaning to the wavefunction and the metric variables
Ω and β and the wave function is obtained by solving (6.47). What is missing is
the evolution law for Ω and β. To find this one associates a function A(Ωc, βc) to
Â(Ω̂c, β̂c, P̂Ωc

, P̂βc
) according to the rule

(6.51) B[Â] =
�[ψ∗(Ωc, βc)Â(Ωc, βc,−i�∂Ωc

,−i�∂βc
)ψ(Ωc, βc)]

ψ∗(Ωc, βc)ψ(Ωc, βc)
= A(Ωc, βc)

where the real part takes into account the hermiticity of Â (the B here refers to
the idea of “beable”). Applying this to the operators Ω̂ and β̂ one arrives at

(6.52) Ω(Ωc, βc) = B[Ω̂] =
�[ψ∗(Ωc, βc)Ω̂(Ωc,−i�∂βc

)ψ(Ωc, βc)]
ψ∗(Ωc, βc)ψ(Ωc, βc)

= Ωc −
θ

2
∂βc

S;

β(Ωc, βc) = B[β̂] =
�[ψ∗(Ωc, βc)β̂(βc,−i�∂Ωc

)ψ(Ωc, βc)]
ψ∗ψ

= βc +
θ

2
∂Ωc

S

Thus the relevant information for universe evolution can be extracted from the
guiding wave ψ(Ωc, βc) by first computing the associated canonical position tracks
Ωc(t) and βc(t). Then one obtains Ω(t) and β(t) by evaluating (6.52) at Ωc = Ωc(t)
and βc = βc(t) (similar procedures are worked out in [77] for the NC classical sit-
uation). Differential equations for the canonical positions Ωc(t) and βc(t) can be
found by identifying Ω̇c(t) and β̇c(t) with the beables associated with their time
evolution and formulas are worked out in [77].

The combination of NC geometry and Bohmian type quantum physics is some-
what like a fusion of two apparently opposite ways of thinking, one fuzzy and the
other refering ontologically to point particles. Every Hermitian operator can be
associated with an ontological element and by averaging the beable B[Â] over an
ensemble of particles with probability density ρ = |ψ|2 one gets the same result
as computing the expectation value of the observable Â in standard operational
formalism. In the KS universe, where WDW is of KG type (with no notion of
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probability) the beable mapping is well defined, even in the NC case. In the
commutative context this formulation leads to the Bohmian quantum gravity pro-
posed by Holland in [471] in the minisuperspace approximation. The work here
shows that noncommutativity can modify appreciably the universe evolution in
the quantum context (qualitatively as well as quantitively).

We go next to [78] and consider NC in the evolution of Friedman-Robertson-
Walker (FRW) universes with a conformally coupled scalar field. First take the
commutative situation and restrict attention to the case of constant positive cur-
vature of the spatial sections. The action is then

(6.53) S =
∫

d4x
√
−g

[
−1

2
φ;µφ;µ +

R

16πG
− Rφ2

12

]
Units are chosen so that � = c = 1 and 8πG = 3�2P where �P is the Planck
length. For the FRW model with a homogeneous scalar field the following Ansatz
of minisuperspace can be adopted

(6.54) ds2 = −N2(t)dt2 + a2(t)
[

dr2

1− r2
+ r2(dθ2 + Sin2(θ)dφ2)

]
; φ = φ(t)

Rescaling the scalar field via χ = φa�P /
√

2 one obtains the minisuperspace action,
Hamiltonian, and momenta

(6.55) S =
∫

dt

(
Na− aȧ2

N
+

aχ̇2

N
− Nχ2

a

)
; Pa = −2aȧ

N
;

H = N

[
−P 2

a

4a
+

P 2
χ

4a
− a +

χ2

a

]
= NH; Pχ =

2aχ̇

N

For the classical phase space variables one knows {a, χ} = 0 = {Pa, Pχ} and
{a, Pa} = 1 = {χ, Pχ} and the equations for the metric and matter field variables
following from this and (6.54) are

(6.56) ȧ = {a,H} = −NPa

2a
; Ṗa = {Pa,H} = 2N ;

χ̇ = {χ,H} =
NPχ

2a
; Ṗχ = {Pχ,H} = −2Nχ

a
Now one adopts the conformal time gauge N = ȧ and the general solution of (6.56)
in this gauge is

(6.57) a(t) = (A + C)Cos(t) + (B + D)Sin(t);

χ(t) = (A− C)Cos(t) + (B −D)Sin(t)

where the constraint H ≈ 0 imposes the relation AC + BD = 0.

Next look at a NC deformation by keeping the Hamiltonian with the same
functional form as in (6.55) but now with NC variables

(6.58) H = N

[
−

P 2
anc

4anc
+

P 2
χnc

4anc
− anc +

χ2
nc

anc

]
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where

(6.59) {anc, χnc} = θ; {anc, Panc
} = 1 = {χnc, Pχnc

}; {Panc
, Pχnc

} = 0

Now make the substitution

(6.60) anc = ac −
θ

2
Pχc

; χnc = χc +
θ

2
Pac

; Pac
= Panc

, Pχc
= Pχnc

Then the theory defined by (6.58)-(6.59) can be mapped to a theory where the
metric and matter variables satisfy

(6.61) {ac, χc} = 0 = {Pac
, Pχc

}; {ac, Pac
} = {χc, Pχc

} = 1

In the case where ac, χc are taken as the preferred variables one has a commutative
theory referred to as a theory realized in the C-frame (cf. [399]). When anc and
χnc are used as constituents of the physical metric and matter field one refers
to the NC frame (cf. [77, 78, 79]). Some work assumes the difference between
the C and NC variables is negligible (cf. [234]) but as shown in [79] even in
simple models the difference in behavior between these two types of variables can
be appreciable; here one shows that the assumption of C or NC frame leads to
dramatic differences in the analysis of universe history. Calculations are made for
the classical situation in both sets of variables which we omit here.

Next comes the quantum version of the commutative universe model for the
FRW universe with conformally coupled scalar field; this has been investigated
on the basis of the WDW equation in e.g. [108] using Bohmian trajectories but
there was there a restriction to the regime of small scale parameters and the
wavefunctions there were different from those used here. One writes then Pa =
−∂/∂a and Pχ = −i∂/∂χ to get from (6.55) the WDW equation

(6.62)
[
− ∂2

∂a2
+

∂2

∂χ2
+ 4(a2 − χ2)

]
ψ(a, χ) = 0

One can separate variables as in [108, 552] but here one chooses a different route
more suitable for application in the NC situation. Thus write a = ξCosh(η) and
χ = ξSinh(η) to get

(6.63)
[(

∂2

∂ξ2
+

1
ξ

∂

∂ξ
− 1

ξ2

∂2

∂η2

)
− 4ξ2

]
ψ(ξ, η) = 0

Putting in ψ = R(ξ)exp(iαη) one obtains

(6.64)
∂2R

∂ξ2
+

1
ξ

∂R

∂ξ
+
(

α2

ξ2
− 4ξ2

)
R = 0

A solution is R(ξ) = AKiα/2(ξ2)+BIiα/2(ξ2) where Kν and Iν are Bessel functions
of the second kind, A, B are constants, and α is a real number. The solution of
WDW is then

(6.65) ψ(ξ, η) = AKiα/2(ξ2)eiαη + BIiα/2(ξ2)eiαη

Such wavefunctions appear in the study of quantum wormholes (cf. [230]) and in
quantum cosmology for the KS universe (cf. [399, 892]). One often discards the
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Iν solution (not always wisely) and uses

(6.66) ψ(ξ, η) =
∑
α

AαKiα/2(ξ2)eiαη

as a solution.

Now for the Bohmian approach one recalls from quantum information theory
that the wavefunction has a nonphysical character (cf. [758]) and Bohmian theory
should be in accord with this in some way. In the present picture the object of
attention is the primordial quantum universe, characterized in the minisuperspace
formalism by the configuration variables a and χ. Having fixed the ontological
objects one must determine how they evolve in time and this is done with the aid
of the wave function. Thus an evolution law is ascribed to point particles via

(6.67) ẋi = �
{

1
m

[ψ∗(−i�∂i)ψ]
ψ∗ψ

}
=
∇S

m
; i�∂ψ = − �2

2m
∇2ψ + V ψ

where ψ is the wavefunction of the universe and S comes from ψ = Aexp(iS).
All phenomena governed by nonrelativistic QM follow from the analysis of this
dynamical system. The expectation value of a physical quantity associated with a
Hermitian operator Â(x̂i, p̂i) can be computed in the Bohmian formalism via

(6.68) B(Â) = �
{

[ψ∗Â(x̂i,−i�∂i)ψ]
ψ∗ψ

}
= A(xi, t)

which represents the same quantity when seen from the Bohmian perspective (cf.
[471]). In the context of nonrelativistic QM it can be shown from first principles
that for an ensemble of particles obeying the evolution law (6.67) (first equation)
the associated probability density is ρ = |ψ|2 (cf. [327]). This is why computing
the ensemble average of A(xi, t) via

(6.69)
∫

d3xρA(xi, t) =
∫

d3xψ∗Â(x̂i,−i�∂i)ψ =< Â >t

leads to the same result as the standard operator formalism. Note that the law
of motion in (6.67) can itself be obtained from (6.68) by associating ẋi with the
beable corresponding to the velocity operator, namely

(6.70) ẋi = B(i[Ĥ, x̂i]) = ∇S/m

Again Bohmian mechanics does not give to probability a privileged role, but, as
discussed in [327], probability is a derived concept arising from the laws of motion
of point particles. In this sense the Bohmian approach is suited to an isolated
system (such as the universe) but on the other hand there might be an ensemble
of universes.

Now for quantum cosmology on the present context of a FRW universe with
a conformally coupled scalar field. In the commutative case the resulting Bohmian
minisuperspace formalism matches with the minisuperspace version of the Bohmian
quantum gravity proposed in [471] and employed in [108]. From (6.70) one has
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in the gauge N = a

(6.71) ȧ = �
{

[ψ∗(−i∂a/2)ψ]
ψ∗ψ

}
= −1

2
∂S

∂a
; χ̇ = �

{
[ψ∗(−i∂χ/2)ψ]

ψ∗ψ

}
=

1
2

∂S

∂χ

Changing into the (ξ, η) coordinates we obtain

(6.72)
dξ

dt
= −1

2
∂S(ξ, η)

∂ξ
;

dη

dt
=

1
2ξ2

∂S(ξ, η)
∂η

For a single Bessel function in (6.66) one has ψ(ξ, η) = AKiα/2(ξ2)exp(iαη) where
A is a constant. From S = αη the equations of motion in (6.72) reduce to

(6.73)
dξ

dt
= 0;

dη

dt
=

α

2ξ2
⇒ ξ = ξ0; η =

α

2ξ2
0

t + η0

leading to

(6.74) a(t) = ξ0Cosh

(
α

2ξ2
0

+ η0

)
; χ(t) = ξ0Sinh

(
α

2ξ2
0

+ η0

)
Quantum effects can therefore remove the cosmological singularity giving rise to
bouncing universes. The case of a superposition of two Bessel functions of type
Kiν is also written out in part but the calculations become difficult.

For the NC quantum model one takes the quantum version of (6.59) as

(6.75) [â, χ̂] = iθ; [â, P̂a] = i; [χ̂, P̂χ] = i; [P̂a, P̂χ] = 0

These commutation relations can be realized in terms of commutative functions
by making use of star products as in (6.46). The commutative coordinates ac, χc

are called Weyl symbols as before and a WDW equation is

(6.76)
[
P̂ 2

ac
− P̂ 2

χc

]
ψ(ac, χc) + 4(a2

c − χ2
c) ∗ ψ(ac, χc) = 0

(obtained by Moyal deforming (6.62)). The resulting equations are simply operator
versions of (6.60).

For the NC Bohmian version one departs from the C-frame and uses the
beable mapping (6.68) to ascribe an evolution law to the canonical variables. In
time gauge N = anc the Hamiltonian (6.58) reduces to

(6.77) h =

[
−

P 2
anc

4
+

P 2
χnc

4
− a2

nc + χ2
nc

]
One can therefore use h to generate time dependence and obtain the Bohmian
equations as

(6.78)
dac

dt
= B(i[ĥ, âc]) = −1

2
(1− θ2)

∂S

∂ac
+ θχc;

dχc

dt
= B(i[ĝ, χ̂c]) =

1
2
(1− θ2)

∂S

∂χc
+ θac

The connection between the C and NC frame variables is established b applying
the “beable” mapping to the operator equations based on (6.60), namely â =
âc − (θ/2)P̂χc

, etc.; that is by defining a ≡ B(â) and χ = B(χ̂). Once the
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trajectories are determined in the C frame one can find their counterparts in the
NC frame by evaluating the variables a and χ along the C-frame trajectories

(6.79) a(t) = B(â)| ac=ac(t)
χc=χc(t)

= ac(t)−
θ

2
∂χc

S[ac(t), χc(t)];

χ(t) = B(χ̂)| ac=ac(t)
χc=χc(t)

= χc(t) +
θ

2
∂ac

S[ac(t), χc(t)]

Now for an application to NC quantum cosmology use Pac
= −i∂ac

and Pχc
=

−i∂χc
with NC WDW from (6.76) written as

(6.80)
[
β

(
− ∂2

∂a2
c

+
∂2

∂χ2
c

)
+ 4(a2

c − χ2
c) + 4iθ

(
χc

∂

∂ac
+ ac

∂

∂χc

)]
ψ(ac, χc) = 0

where β = 1− θ2. Separation of variables works, after writing ac = ξCosh(η) and
χc = ξSinh(η), allowing (6.80) to be rewritten as

(6.81)
[
β

(
∂2

∂ξ2
+

1
ξ

∂

∂ξ
− 1

ξ2

∂2

∂η2

)
− 4iθ

∂

∂η
− rξ2

]
ψ(ξ, η) = 0

Using (6.78) one can write the Bohmian equations of motion as

(6.82)
dξ

dt
= −1

2
(1− θ2)

∂S(ξ, η)
∂ξ

;
dη

dt
=

1
2ξ2

(1− θ2)
∂S(ξ, η)

∂η
+ θ

(6.79) can be written in the new set of coordinates as

(6.83) anc(t) = ac(t) +
θ

2
Sinh(η)∂ξS[ξ(t), η(t)]− θ

2
ξ−1Cosh(η)∂ηS[ξ(t), η(t)];

χnc(t) = χc(t) +
θ

2
Cosh(η)∂ξS[ξ(t), η(t)]− θ

2
ξ−1Sinh(η)∂ηS[ξ(t), η(t)]

The paper continues with extensive computations for a variety of situations and
we hope to have captured the spirit of investigtion.

7. EXACT UNCERTAINTY AND GRAVITY

We go here to [444] (cf. Remarks 1.1.4 and 1.1.5 along with Section 3.1) and
[186, 187, 189, 203] for background (for the original sources see e.g.[446, 447,
448, 449, 450, 805, 806, 807]). The theme here is that the exact uncertainty
approach may be promoted to the fundamental element distinguishing quantum
and classical mechanics. Nonclassical fluctuations are addded to the usual de-
terministic connection between the configuration and momentum properties of a
physical system. Assuming that the uncertainty introduced to the momentum
(i.e. the fluctuation strength) is fully determined by the uncertainty in the con-
figuration via the configuration probability density one arrives at QM from CM.
We remark that the quantum potential arises from variation of the Fisher metric
with respect to the probability P and this is another significant feature relating
the quantum potential to fluctuations and indirectly to the Bohmian formulation
of QM (cf. [186, 187, 189, 203]). For a quick review of the particle situa-
tion let H = (p2/2m) + V (x) be the Hamiltonian for a spinless particle with SE
i�∂tψ = H(x,−i�∇, t)ψ = −(�2/2m)∇2ψ + V ψ and recall that the probability
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density P is specified as |ψ|2. Thus in this canonical approach there is a lot of black
magic while in the exact uncertainty approach one uses statistical concepts from
the beginning and the wavefunction and SE are derived rather than postulated.
Thus assume an ensemble picture from the beginning (due to uncertainty in the
position) and assume that a fundamental position probability density P follows
from an action principle involving

(7.1) A =
∫

dt

[
H̃ +

∫
dxP

∂S

∂t

]
;

∂P

∂t
=

δH̃

δS
;

∂S

∂t
= −δH̃

δP

(no ψ is assumed here). One shows that conservation of probability requires H̃ is
invariant under S → S + c and if H̃ has no explicit time dependence then its value
is a conserved quantity corresponding to energy. As an example here consider the
classical ensemble Hamiltonian

(7.2) H̃c[P, S] =
∫

dxP

[
|∇S|2
2m

+ V

]
Then as above

(7.3)
∂P

∂t
+∇ ·

[
P
∇S

m

]
= 0;

∂S

∂t
+
|∇S|2
2m

+ V = 0

This formalism based on an action principle for the position probability density
successfully describes the motion of ensembles of classical particles; moreover it is
considerably more general (see e.g. [450]). In particular the essential difference
between classical and quantum ensembles becomes a matter of form, being charac-
terized by a simple difference in the forms of the emsemble Hamiltonians H̃c and
H̃q.

Thus assume the physical momentum is given via (♣) p = ∇S + f where
the fluctuation field f vanishes almost everywhere on average. This is not dis-
similar from e.g. Nelson’s mechanics where a Brownian motion is attached, or
the approach of scale relativity (cf. [186, 187, 188, 189, 203] for an extensive
treatment of such matters). One will see that such fluctuations introduce inde-
terminism at the level of individual particles but not at the ensemble level. Write
now an overline to denote averaging over the fluctuations at a given position so
f = 0 and p = ∇S by assumption and the classical ensemble energy is replaced by

(7.4) < E >=
∫

dxP [(2m)−1|∇S + f |2 + V ] =

=
∫

dxP [(2m)−1(|∇S|2 + 2f · ∇S + f · f) + V ] = H̃c +
∫

dxP
f · f
2m

Now one asks whether this modified classical ensemble can be subsumed within
the general formalism above and this is OK proved that f · f is determined by
some function of P, S and their derivatives, i.e.

(7.5) f · f = α(x, P, S,∇P,∇S, · · · )
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In this case one can define a modified ensemble Hamiltonian

(7.6) H̃q = H̃c +
∫

dxP
α(x, p, S,∇P,∇S, · · · )

2m

The aim of the exact uncertainty approach is to fix the form of α uniquely and
this is done by requiring first three generally desirable principles to be satisfied
(causality, invariance, and independence), plus an exact uncertainty principle, and
given this the resulting equations of motion are equivalent to the SE for a quantum
ensemble of particles. This is covered at length in [186, 205, 203] and in [447] for
example and slightly different versions are given here, following [449] for bosonic
fields, in order to make a connection with qauntum gravity. The requirements are:
(i) The modified ensemble Hamiltonian H̃q leads to causal equations of motion (so
α cannot depend on second and higher derivatives of P and S) (ii) The respective
fluctuation strengths for noninteracting uncorrelated ensembles are independent
(thus f1 · f1 and f2 · f2 are independent of P1 and P2 respectively when P (x) =
P1(x2)P2(x2)) (iii) The fluctuations transform correctly under linear canonical
transformations (thus f → LT f for any invertible linear coordinate transformation
x → L−1x). The fourth assumption is: (iv) The strength of the momentum
fluctuations α = f · f is determined solely by the uncertainty in position - hence
α can only depend on x, P and derivatives. It is shown in the references above
that these four principles lead to the unique form

(7.7) H̃q[P, S] = H̃c[P, S] + C

∫
dx
∇P · ∇P

2mP

where C is a positive universal constant (i.e. having the same value for all en-
sembles). Moreover if one sets � = 2

√
C and ψ =

√
Pexp(iS/�) the SE results as

above.

Now for gravitational situations we have an ADM metric

(7.8) ds2 = −(N2 − hijNiNj)dt2 + 2Nidxidt + hijdxidxj

where N and Nj refer to lapse and shifts with hij the spatial metric. Consider
now the possibility that the configuration of the field is an inherently imprecise
notion, hence requiring a probability functional P [hij ] for its description. Assume
that the dynamics of the corresponding statistical ensemble are generated by an
action principle δA = 0 where A =

∫
dt[H̃ +

∫
DhP (∂S/∂t)] analogous to (7.1).

Here
∫

Dh denotes a functional integral over configuration space and H̃ depends
on P [hij ] and its conjugate functional S[hij ]. The equations of motion are then

(7.9)
∂P

∂t
=

∆H̃

∆S
;

∂S

∂t
= −∆H̃

∆P

where ∆/∆F denotes the variational derivative with respect to the functional F (cf.
[449] for details and Remark 5.1). A suitable “classical” ensemble Hamiltonian
may be constructed from knowledge of the classical equations of motion for an
individual field via (cf. [449])

(7.10) H̃c[P, S] =
∫

DhPH0[hij , δS/δhij ]
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where

(7.11) H0[hij , π
ij ] =

∫
dx

[
N

(
1
2
Gijk�π

ijπk� + V (hij)
)
− 2Niπ

ij
|j

]
where V is the negative of twice the product of the 3-curvature scalar with
[det(h)]1/2 and |j denotes the covariant 3-derivative (this is the single field Hamil-
tonian). For the ensemble Hamiltonian H̃c in (7.10) one has now

(7.12)
∂P

∂t
+
∫

dx
δ

δhij
(Pḣij) = 0;

∂S

∂t
+ H0[hij , δS/δhij ] = 0;

ḣij = NGijk�
δS

δhk�
−Ni|j −Nj|i

These equations of motion correspond to the conservation of probality with prob-
ability flow ḣij and the HJ equation for an individual gravitational field with
configuration hij As is well known the lack of conjugate momenta for the lapse
and shift components N and Ni places constraints on the classical equations of
motion. In the ensemble formalism these constraints take the form (cf. [449])

(7.13)
δP

δN
=

δP

δNi
=

∂P

∂t
= 0;

(
δP

δhij

)∣∣∣∣
|j

= 0;

δS

δN
=

δS

δNi
=

∂S

∂t
= 0;

(
δS

δhij

)∣∣∣∣
|j

= 0

and this corresponds to invariance of the dynamics with respect to the choice of
lapse and shift functions and initial time - and to the invariance of P and S under
arbitrary spatial coordinate transformations. Applying these constraints to the
above classical equations of motion yields for the Gaussian choice N = 1, Ni = 0
the reduced classical equations

(7.14)
δ

δhij

(
PGijk�

δS

δhk�

)
= 0;

1
2
Gijk�

δS

δhij

δS

δhk�
+ V = 0

Now the exact uncertainty approach can be adapted in a straightforward way
to obtain a modified ensemble Hamiltonian that generates the quantum equations
of motion. It is assumed first that the classical deterministic relation between the
field configuration hij and its conjugate momentum density πij is relaxed to

(7.15) πij =
δS

δhij
+ f ij

analogous to (♣) where here f ij vanishes on average for all configurations. This
adds a kinetic term to the average ensemble energy analogous to (7.4) with

(7.16) H̃q =< E >= H̃x +
1
2

∫
DhP

∫
dxNGijk�f ijfk�

Note here that the term in (7.11) linear in the derivative of πij can be integrated
by parts to give a term directly proportional to πij , which remains unchanged
when the fluctuations are added and averaging is performed. Next one fixes the
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form of H̃q using the same principles of causality, independence, invariance and
exact uncertainty used before (cf. [449] for details) leading to

(7.17) H̃q[P, S] = H̃c[P, S] +
C

2

∫
Dh

∫
dxNGijk�

1
P

δP

δhij

δP

δhk�

analogous to (7.7) where C is a positive constant with the same value for all fields.
The corresponding modified equations of motion may be calculated via (7.9) and
the constraints in (7.13) applied to obtain reduced equations analogous to (7.14).
If one now defines � = 2

√
C and Ψ[hij ] =

√
Pexp(iS/�) these reduced equations

can be rewritten in the form (cf. [449])

(7.18)
[
−�2

2
δ

δhij
Gijk�

δ

δhk�
+ V

]
Ψ = 0

This is of course the WDW equation for quantum gravity. Note also that the
constraints in (7.13) may be rewritten in terms of the wavefunctional Ψ as

(7.19)
δΨ
δN

=
δΨ
δNi

=
∂Ψ
∂t

= 0;
(

δΨ
δhij

)∣∣∣∣
|j

= 0

An interesting aspect of the WDW equation in (7.19) is that it has been obtained
with a particular operator ordering, namely the supermetric Gijk� is sandwiched
between the two functional derivatives. This constrasts with the canonical ap-
proach which is unable to specify a unique ordering (cf. [444] for references). It
should be noted that different orderings can lead to different physical predictions
and hence the exact uncertainty approach is able to remove ambiguity in this
respect. An analogous removal of ambiguity is obtained for quantum particles
having a position dependent mass (cf. [449]) with the exact uncertainty approach
specifying, via (7.7), the unique sandwich ordering

(7.20) i�
∂ψ

∂t
= −�2

2
∇ · 1

m
∇ψ + V ψ

for the SE.

Summarizing now it follows that physical ensembles are described by a proba-
bility density on configuration space (P), a corresponding conjugate quantity (S),
and an ensemble Hamiltonian H̃[P, S]. The transition from classical ensembles to
quantum ensembles then follows as a consequence of the addition of nonclassical
fluctuations, under the assumption that the fluctuation uncertainty is fully deter-
mined by the configuration uncertainty. In contrast to the canonical approach the
SE and WDW equations are derived, rather than postulated, and the probability
connection P = |ψ|2 is a simple consequence of the definition of ψ in terms of P
and S. Planck’s constant appears as a consequence of a derived universal scale for
the nonclassical momentum fluctuations instead of being an unexplained constant
in the canonical approach. A (nonserious) limitation appear in that the momen-
tum of a classical ensemble must contribute quadratically to the ensemble energy
for the exact uncertainty approach to go through whereas the canonical approach
is indifferent to this. We refer to [444, 449] for more details and discussion.
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REMARK 4.7.1. We extract here from the appendix to [449] for some nota-
tion and constructions involving functional derivatives. One considers functionals
F [f ] with

(7.21) δF = F [f + δf ]− F [f ] =
∫

dx
δF

δfx
δfx

Here f ∼ f(x) refers to fields with real or complex values. Thus the functional
derivative is a field density δF/δf having the value δF/δfx at position x. For
curved spaces one would need a more elaborate notation, and volume element,
etc. The choice F [f ] = fx′ in (7.21) yields δfx′/δfx = δ(x − x′) and if the field
depends on a parameter t then writing δfx = fx(t + δt) − fx(t) one arrives at
(♠) dF/dt = ∂tF +

∫
dx(δF/δfx)∂tfx for the rate of change of F with respect

t. Functional integrals correspond to integration of functionals over the vector
space of physical fields (or equivalence classes thereof) and the only property one
requires for the present discussion is the existence of a measure Df on this vector
space which is translation invariant (i.e.

∫
Df ≡

∫
Df ′ for f ′ = f + h). This

property implies e.g.

(7.22)
∫

Df
δF

δf
= 0 if

∫
DfF [f ] <∞

This follows immediately via

(7.23) 0 =
∫

Df(F [f + δf ]− F [f ]) =
∫

dxδfx

(∫
Df

δF

δfx

)
In particular if F [f ] has a finite expectation value with respect to some probability
density functional P [f ] then (7.22) gives an integration by parts formula

(7.24)
∫

DfP (δF/δf) = −
∫

Df(δP/δf)F

Moreover again via (7.22) the total probability
∫

DfP is conserved for any prob-
ability flow satisfying a continuity condition

(7.25)
∂P

∂t
+
∫

dx
δ

δfx
[PVx] = 0

provided that the average flow rate < Vx > is finite. Next consider a functional
integral of the form I[F ] =

∫
Dfξ(F, δF/δf); then variation of I[F ] with respect

to F gives to first order

(7.26) ∆I = I[F + ∆F ]− I[F ] =

=
∫

Df

{
(∂ξ/∂F )∆F +

∫
dx[∂ξ/∂(δF/δfx)][δ(∆F )/δfx]

}
=

=
∫

Df

{
(∂ξ/∂F )−

∫
dx

δ

δfx
[∂ξ/∂(δF/δfx)]

}
∆F+

+
∫

dx

∫
Df

δ

δfx
{[∂ξ/∂(δF/δfx)]∆F}

One assumes here that Df is translation invariant and hence if the functional
integral of the expression in curly brackets in the last term of (7.26) is finite the
term will vanish, yielding the result ∆I =

∫
Df(∆I/∆F )∆F where ∆I/∆F =
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∂F ξ −
∫

dx(δ/δfx)[∂ξ/∂(δF/δfx)].

REMARK 4.7.2. Regarding the general HJ formulation of classical field
theory we go to Appendix B of [449]. Two classical fields f, g are canonically
conjugate if there is a Hamiltonian functional H[f, g, t] such that

(7.27)
∂f

∂t
=

δH

δg
;

∂g

∂t
= −δH

δf

These equations follow from the action principle δA = 0 with A =
∫

dt[−H +∫
dxgx(∂fx/∂t))]. The rate of change of an arbitrary functional G[f, g, t] follows

from (7.27) and (♠) as

(7.28)
dG

dt
=

∂G

∂t
+
∫

dx

(
δG

δfx

δH

δgx
− δG

δgx

δH

δfx

)
=

∂G

∂t
+ {G,H}

A canonical transformation maps f, g,H to f ′, g′,H ′ such that the equations of
motion for the latter retain the canonical form of (7.27). Equating the variations
of the corresponding actions A and A’ t zero it follows that physical trajectories
must satisfy

(7.29) −H +
∫

dxgx(∂fx/∂t) = −H ′ +
∫

dxg′x(∂f ′
x/∂t) + (dF/dt)

for some generating functional F. Now any two of the fields f, g, f ′, g′ determine
the remaining two fields for a given canonical transformation; choosing f, g′ as
independent and defining the new generating functional G[f, g′, t] = F +

∫
dxf ′

xg′x
gives then via (♠)

(7.30) H ′ = H +
∂G

∂t
+
∫

dx

[
∂fx

∂t

(
δG

δfx
− gx

)
+

∂g′x
∂t

(
δG

δg′x
− f ′

x

)]
The terms in round brackets therefore vanish identically yielding the generating
realtions

(7.31) H ′ = H + ∂G/∂t; g = δG/δf ; f ′ = δG/δg′

A canonical transformation is thus completely specified by the associated generat-
ing function. To obtain the HJ formulation of the equations of motion consider a
canonical transformation to fields f ′, g′ which are time independent. From (7.27)
one may choose the corresponding Hamiltonian H ′ = 0 without loss of general-
ity and hence from (7.31) the momentum density and the associated generating
functional S are specified by

(7.32) g =
δS

δf
;

∂S

∂t
+ H[f, δS/δf, t] = 0

the latter being the desired HJ equation. Solving this equation for S is equivalent
to solving (7.27) for f and g.

Note that along a physical trajectory one has g′ = constant and hence from
(♠) and (7.32)

(7.33)
dS

dt
=

∂S

∂t
+
∫

dx
δS

δfx

∂fx

∂t
= −H +

∫
dxgx

∂fx

∂t
=

dA

dt



7. EXACT UNCERTAINTY AND GRAVITY 197

Thus the HJ functional S is equal to the action functional A up to an additive
constant. This relation underlies the connection between the derivation of the
HJ equaiton from a particular type of canonical transformation as above and the
derivation from a particular type of variation of the action. The HJ formulation
has the feature that once S is specified the momentum density is determined by
the relation g = δS/δf , i.e. it is a functional of f . Thus unlike the Hamiltonian
formulation of (7.27) an ensemble of fields is specified by a probability density
functional P [f ], not by a phase space density functional ρ[f, g]. In either case
the equation of motion for the probability density corresponds to the conservation
of probability, i.e. to a continuity equation as in (7.25). For example in the
Hamiltonian formulation the associated continuity equation for ρ[f, g] is

(7.34)
∂ρ

∂t
+
∫

dx{(δ/δfx)[ρ(∂fx/∂t)] + (δ/δgx)[ρ(∂gx/∂t)]} = 0

which reduces to the Liuville equation ∂tρ = {H, ρ} via (7.27). Similarly in the
HJ formulation the rate of change of f follows from (7.27) and (7.32) as

(7.35) Vx[f ] =
∂fx

∂t
=
(

δH

δgx

)∣∣∣∣
g=δS/δf

and hence the associated continuity equation for an ensemble of fields described
by P [f ] follows as in (7.25) to be

(7.36)
∂P

∂t
+
∫

dx
δ

δfx

[
P

δH

δgx

∣∣∣∣
g=δS/δf

]
Everything generalizes naturally for multicomponent fields.

Given the background in Remarks 4.7.1 and 4.7.2 the development in [449]
is worth sketching in connection with general bosonic field calculations. Thus
one looks at the HJ formalism which provides a straightforward mechanism for
adding momentum fluctuations to an ensemble of fields. First the equation of
motion for an individual classical field is given by the HJ equation (•) ∂tS +
H[f, δS/δf, t] = 0 where S[f ] denotes the HJ functional. The momentum density
associated with the field f is g = δS/δf and hence S is called a momentum
potential. Next the description of an ensemble of such fields further requires
a probability density functional P [f ] whose equation of motion corresponds to
conservation of probability, i.e. to the continuity equation (cf. (7.36))

(7.37)
∂P

∂t
+
∑

a

∫
dx

δ

δfa
x

(
P

δH

δga
x

∣∣∣∣
g=δS/δf

)
= 0

Equations (7.37) and (•) describe the motion of the ensemble completely via P
and S and this can be written in the Hamiltonian form

(7.38)
∂P

∂t
=

∆H̃

∆S
;

∂S

∂t
= −∆H̃

∆P
; H̃[P, S, t] =< H >=

∫
DfPH[f, (δS/δf), t]

(cf. Remark 4.7.1). The functional integral H̃ in (7.38) will be referred to then as
the ensemble Hamiltonian and in analogy to (7.27) P and S may be regarded as
canonically conjugate functionals. Note from (7.38) that H̃ typically corresponds
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to the mean energy of the ensemble; moreover (7.38) follows from the action prin-
ciple ∆Ã = 0 with action Ã =

∫
dt[−H̃ +

∫
DfS(∂P/∂t)]. In the following one

specializes to ensembles for which the associated Hamiltonian is quadratic in the
momentum field density, i.e. of the form

(7.39) H[f, g, t] =
∑
a,b

∫
dxKab

x [f ]ga
xgb

x + V [f ]

Here Kab
x = Kba

x is a kinetic factor coupling components of the momentum density
and V [f ] is a potential energy functional. The corresponding ensemble Hamilton-
ian is given via (7.38) and one notes that cross terms of the form ga

xgb
x′ with x �= x′

are not permitted in local field theories and hence are not considered here.

The approach of [449] to obtain a quantum ensemble of fields is now simply to
add nonclassical fluctuations to the momentum density with the magnitude of the
fluctuations derermined by the uncertainty in the field. This leads to equations
of motion equivalent to those of a bosonic field with the advantage of a unique
operator ordering for the associated SE. Note here also the analogy with adding a
quantum potential to the HJ equation in the Bohmian theory. Thus suppose now
that δS/δf is in fact an average momentum density associated with the field f in
the sense that the true momentum density is given by

(7.40) g =
δS

δf
+ N

where N is a fluctuation field that vanishes on the average for any given f . The
meaning of S becomes then that of being an average momentum potential. No
specific underlying model for N is assumed or necessary; one may in fact interpret
the source of the fluctuations as the field uncertainty itself. The main effect of the
fluctuation field is to remove any deterministic connection between f and g. Since
the momentum fluctuations my conceivably depend on the field f the average over
such fluctuations for a given quantity A[f,N ] will be denoted by A[f ] and the
average over fluctuations and the field by < A >. Thus N = 0 by assumption
and in general < A >=

∫
DfP [f ]A[f ]. Assuming a quadratic dependence on

momentum as in (7.39) it follows that when the fluctuations are significant the
classical ensemble Hamiltonian H̃ =< H > in (7.38) should be replaced by

(7.41) H̃ ′ =< H[f, (δS/δf) + N, t] >= H̃ +
∑
a,b

∫
Df

∫
dxPKab

x Na
xN b

x =

=
∑
a,b

∫
Df

∫
dxPKab

x [(δS/δfa
x ) + Na

x ][(δS/δf b
x) + N b

x]+ < V >

Thus the momentum fluctuations lead to an additional nonclassical term in the
ensemble Hamiltonian specified via the covariance matrix

(7.42) [Covx(N)]ab = Na
xN b

x

This covariance matrix is uniquely determined (up to a multiplicative constant)
by the following four assumptions:
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(1) Causality: H̃ ′ is an ensemble Hamiltonian for the canonical conjugate
functionals P and S which yield causal equations of motion. Thus no
higher than first order functional derivatives can appear in the additional
term in (7.41) which implies

Covx(N) = α

(
P,

δP

δfx
, S,

δS

δfx
, fx, t

)
for some symmetric matrix function α. Note the fourth assumption be-
low removes the possibility of dependence here on auxillary fields and
functionals.

(2) Independence: If the ensemble has two independent noninteracting
subensembles 1 and 2 with a factorisable probability density functional
P [f1, f2] = P1[f1]P2[f2] then any dependence of the corresponding N1, N2

on P only enters via P1, P2 in the form

Covx(N1)|P1P2 = Covx(N1)|P1 ; Covx(N2)|P1P2 = Covx(N2)|P2

This implies that the ensemble Hamiltonian H̃ ′ in (7.41) is additive for
independent noninteracting ensembles (as is the corresponding action
Ã′).

(3) Invariance: The covariance matrix transforms correctly under linear canon-
ical transormations of the field components. Thus f → Λ−1f, g → ΛT g
is a canonical transformation for any invertible matrix Λ preserving the
quadratic form of H in (7.39) and leaving the momentum potential S
invariant (since δ/δf → ΛT δ/δf) and thus from (7.40) N → ΛT N so
Covx(N) → ΛT covx(N)Λ for f → Λ−1f is required. For single com-
ponent fields this reduces to a scaling relation for the variance of the
fluctuations at each point x.

(4) Exact uncertainty: The uncertanty of the momentum density fluctua-
tions, as characterized by the covariance matrix, is specified by the field
uncertainty and hence by the probability density functional P; hence
Covx(N) cannot depend on S or explicitly on t.

One proves then in [449]

THEOREM 7.1. Under the above four assumptions one has

(7.43) Na
xN b

x =
C

P 2

δP

δfa
x

δP

δf b
x

where C is a positive universal constant.

COROLLARY 7.1. The equations of motion corresponding to the ensemble
Hamiltonian H̃ ′ can be expressed in the form

i�
∂Ψ
∂t

= H

[
f,−i�

δ

δf
, t

]
Ψ = −�2

⎛⎝∑
a,b

∫
dx

δ

δfa
x

Kab
x [f ]

δ

δf b
x

⎞⎠Ψ + V [f ]Ψ

where � = 2
√

C and Ψ =
√

Pexp(iS/�).

One notes that the corollary specifies a unique operator ordering for the func-
tional derivative operators. The proofs are given below following [449] and this is
substantially different from (and stronger than) proofs of analogous theorems for
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quantum particles in [447].

PROOF OF THEOREM AND COROLLARY:
From the causality and exact uncertainty assumptions one has Covx(N) =

α(P, (δP/δfx), fx). Next to avoid issues of regularisation it is convenient to con-
sider a position dependent canonical transformation fx → Λ−1

x fx such that A[Λ] =
exp[

∫
dxlog(|det(Λx)|)] < ∞. Then the probability density functional P and the

measure Df transform as P → AP and Df → A−1Df respectively (for conserva-
tion of probability) and the invariance assumption requires

(7.44) α(AP,AΛT
x u, Λ−1

x w) ≡ ΛT
x α(P, u,w)Λx

where ua, wa denote respectively δP/δfa
x , fa

x for a given value of x. This must
hold for A and Λx independently so choosing Λx to be the identity matrix at some
point x, one has α(AP,Au,w) = α(P, u,w) for all A, which implies that α can
involve P only via the combination v = u/P . Consequently

(7.45) α(ΛT v,Λ−1w) = ΛT α(v, w)Λ

This equation is linear and invariant under multiplication of α by any function
of the scalar J = vT w. Moreover one checks that if σ and τ are solutions then
so are στ−1σ and τσ−1τ . Choosing the two independent solutions σ = vvT and
τ = (wwT )−1 it follows that the general solution has the form

(7.46) α(v, w) = β(J)vvT + γ(J)(wwT )−1

for arbitrary functions β and γ. Now for P = P1P2 one has v = (v1, v2) and
w = (w1, w2) so the independence assumption reduces to the requirements

(7.47) β(J1 + J2)v1v
T
1 + γ(J1 + J2)(w1w

T
1 )−1 = β1(J1)v1v

T
1 + γ1(J1)(w1w

T
1 )−1;

β(J1 + J2)v2v
T
2 + γ(J1 + J2)(w2w

T
2 )−1 = β2(J2)v2v

T
2 + γ2(J2)(w2w

T
2 )−1

Thus β = β1 = β2 = C and γ = γ1 = γ2 = D for universal C and D yielding the
general form

(7.48) [covx(N)]ab = C
1

P 2

δP

δfa
x

δP

δf b
x

+ DW ab
x [f ]

where Wx[f ] denotes the inverse of the matrix with ab-coefficient fa
xf b

x. Since
Wx[f ] is purely a functional of f it merely contributes a classical additive potential
term to the ensemble Hamiltonian of (7.41); thus it has no nonclassical role and
can be absorbed directly into the classical potential < V >. In fact for fields with
more than one component this term is ill-defined and can discarded on physical
grounds; consequently one can take D = 0 without loss of generality. Positivity of
C follows from positivity of the covariance matrix and the theorem is proved.

For the corollary one notes first that the equations of motion corresponding
to the ensemble Hamiltonian H̃ ′ follow via the theorem and (7.38) as first: The
continuity equation (7.37) as before (since the additional term does not depend
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on S) and following (7.39) this takes the form

(7.49)
∂P

∂t
+ 2

∑
a,b

∫
dx

δ

δfa
x

(
PKab

x

δS

δf b
x

)
= 0

and second: The modified HJ equation

(7.50)
∂S

∂t
= −∆H̃ ′

∆P
= −H[f, (δS/δf), t]− ∆(H̃ ′ − H̃)

∆P

Calculating the last term via (7.43) and Remark 5.1 this simplifies to
(7.51)

∂S

∂t
+ H[f, (δS/δf), t]− 4CP−1/2

∑
a,b

∫
dx

(
Kab

x

δ2P 1/2

δfa
x δf b

x

+
δKab

x

δfa
x

δP 1/2

δf b
x

)
= 0

Now writing Ψ = P 1/2exp(iS/�), multiplying each side of the equation in the
corollary by Ψ−1, and expanding, one obtains a complex equation for P and S.
The imaginary part is just the continuity equation (7.49) and the real part is the
modified HJ equation (7.50) provided C = �2/4.

EXAMPLE 7.1. This formulation is applied to gravitational fields for exam-
ple to obtain a version of the WDW equation as in (7.18). Thus write (with some
repetition from before)

(7.52) ds2 = gµνdxµdxν = −(N2 −N ·N)dt2 + 2Nidxidt + hijdxidxj

as before and recall that the Einstein field equations follow from the Hamiltonian
functional

(7.53) H[h, π,N,N) =
∫

dxNHG[h, π]− 2
∫

dxNiπ
ij
|j

where π = (πij) is the momentum density conjugate to h and |j denotes the
covariant 3-derivative. Further

(7.54) HG = (1/2)Gijk�[h]πijπk� − 2 3R[h](det(h))1/2

Here 3R is the scalar curvature corresponding to h and

(7.55) Gijk�[h] = (hikhj� + hi�hjk − hijhk�)(det(h))−1/2

The Hamiltonian functional corresponds to the standard Lagrangian given via
L =

∫
dx(−det(g))1/2R[g] where the momenta π0 and πi conjugate to N and Ni

vanish identically. However the lack of dependence of H on π0 and πi is consistently
maintained only if the rates of change of these momenta also vanish, i.e. (noting
(7.27), only if the constraints

(7.56)
δH

δN
= HG = 0;

δH

δNi
= −2πij

|j = 0

are satisfied. Thus the dynamics of the field are independent of N and Ni so that
these functions may be fixed arbitrarily. Moreover these constraints immediately
yield H = 0 in (7.53) and hence the system is static with no explicit time de-
pendence. It follows that in the HJ formulation of the equations of motion the
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momentum potential S is independent of N, N, and t. Noting that π = δS/δh in
this formulation (7.56) yields the corresponding constraints

(7.57)
δS

δN
=

δS

δNi
=

∂S

∂t
= 0;

(
δS

δhij

)∣∣∣∣
|j

= 0

As shown in [759] a given functional F [h] is invariant under spatial coordinae
transformations if and only if (δF/δhij)||j = 0 and hence the fourth constraint
in (7.57) is equivalent to the invariance of S under such transformations. This
constraint implies moreover that the second term in (7.53) may be dropped from
the Hamiltonian yielding the reduced Hamiltonian

(7.58) HG[h, π,N ] =
∫

dxNHG[h, π]

For an ensemble of classical gravitational fields the independence of the dynamics
with respect to (N, N, t) implies that members of the ensemble are distinguish-
able only by their corresponding 3-metric h. Moreover it is natural to impose
the additional geometric requirement that the ensemble is invariant under spatial
coordinate transformations. Consequently one has constraints

(7.59)
δP

δN
=

δP

δNi
=

∂P

∂t
= 0;

(
δP

δhij

)∣∣∣∣
|j

= 0

The first two constraints imply that ensemble averages only involve integration
over hij .

Now in view of (7.54) the Hamiltonian HG in (7.58) has the quadratic form
of (7.39) so the exact uncertainty approach is applicable and leads immediately to
the SE

(7.60) i�
∂Ψ
∂t

=
∫

dxNHG[h,−i�(δ/δh)]Ψ

for a quantum ensemble of gravitational fields. One follows the guiding principle
used before that all constraints imposed on the classical ensemble should be car-
ried over to the corresponding constraints on the quantum ensemble. Thus from
(7.57) and (7.59) one requires that P and S and hence Ψ in the equation of the
Corollary above are independent of N, N, and t as well as invariant under spatial
transformations. Thus

(7.61)
δΨ
δN

=
δΨ
δNi

=
∂Ψ
∂t

= 0;
(

δΨ
δhij

)∣∣∣∣
|j

= 0

Applying the first and third of these constraints to (7.60) gives then, via (7.54),
the reduced SE
(7.62)

HG[h,−i�(δ/δh)]Ψ = (−�2/2)
δ

δhij
Gijk�[h]

δ

δhk�
Ψ− 2 3R[h](det(h))1/2Ψ = 0

which is again the WDW equation.



CHAPTER 5

FLUCTUATIONS AND GEOMETRY

1. THE ZERO POINT FIELD

The zero point field (ZPF) arising from the quantum vacuum is still a con-
tentious idea and we only make a few remarks following [18, 144, 145, 148, 183,
251, 252, 253, 293, 310, 321, 438, 439, 440, 441, 442, 487, 488, 490, 606,
650, 651, 753, 754, 791, 792, 793, 804, 813, 823, 825, 824, 955, 968, 969]
(see also [136, 377, 378, 379, 1006] for stochastic spacetime and gravity fluc-
tuations). It is to be noted that a certain amount of research on ZPF is moti-
vated (and funded) by the desire to extract energy from the vacuum for “space
travel” and in this direction one is referred to publications of the CIPA (see
http://www.calphysics.org/sci.html) where a number of papers discussed here
originate or are referenced. In a sense the quest here seems also to be an effort to
really understand the equation E = mc2. There is of course some firm physical
evidence for forces induced by quantum fluctuations via the Casimir effect for ex-
ample and it is very stimulating to see so much speculation now in the literature
about questions of mass, inertia, Zitterbewegung, and the vacuum. We extract
here first from [438] (cf. also [441]). No attempt is made here to be complete; the
quantum vacuum is a relatively hot topic and there are many unsolved matters
(for survey material see e.g. [655, 651, 753, 968, 969]). There are apparently
at least two main views on the origin of the EM ZPF as embodied in QED and
Stochastic electrodynamics (SED). QED is “standard” physics and the arguments
go as follows. The Heisenberg uncertainty principle sets a fundamental limit on
the precision wieh thich conjugate quantities are allowed to be determined. Thus
∆x∆p ≥ �/2 and ∆E∆t ≥ �/2. It is standard to work via harmonic oscillators
(see below) and there are two non-classical results for a quantized harmonic oscil-
lator. First the energy levels are discrete; one can add energy but only in units
of �ν where ν is a frequency. The second stems from the fact that if an oscillator
were able to come completely to rest ∆x would be zero and this would violate
∆x∆p ≥ �/2. Hence there is a minimum energy of �ν/2 and the oscillator can
only take on values E = (n + 1/2)�ν which can never be zero. The argument
is then made that the EM field is analogous to a mechanical harmonic oscillator
since the fields �E and �B are modes of oscillating plane waves with minimum en-
ergy �ν/2. The density of modes between ν and ν + dν is given by the density of
states function Nνdν = (8πν2/c3)dν. Each state has a minimum �ν/2 of energy
and thus the ZPF spectral density function is

(1.1) ρ(ν)dν = (8πν2/c3)(�ν/2)dν

203
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It is instructive to compare this with the blackbody radiation

(1.2) ρ(ν, T )dν =
8πν2

c3

(
�ν

e�ν/kT − 1
+

�ν

2

)
dν

If one takes away all the thermal energy (T → 0) what remains is the ZPF term.
It is traditionally assumed in QM that the ZPF can be ignored or subtracted away.
In SED is is assumed that the ZPF is as real as any other EM field and just came
with the universe. In this spirit the Heisenberg uncertainty relations for example
are not a result of quantum laws but a consequence of ZPF. Philosophically one
could ask whether or not the universe is classical with ZPF (as envisioned at times
by Planck, Einstein, and Nerst and later by Nelson et al) or has two sets of laws,
quantum and classical.

It was shown in the 1970’s that a Planck like component of the ZPF will arise
in a uniformly accelerated coordinate system having constant proper acceleration
a with what amounts to an effective temperature Ta = �a/2πck (cf. [293]). More
precisely one says that an observer who accelerates in the conventional quantum
vacuum of Minkowski space will perceive a bath of radiation, while an inertial
observer of course perceives nothing. This is a quantum phenomenon and the
temperature is negligible for most accelerations, becoming significant only in ex-
tremely large gravitational fields. Thus for the case of no true external thermal
radiation (T = 0), but including this acceleration effect Ta, equation (1.1) becomes

(1.3) ρ(ν, Ta)dν =
8πν2

c3

[
1 +

( a

2πcν

)2
] [

�ν

2
+

�ν

e�ν/kTa − 1

]
dν

(the pseudo-Planckian component at the end is generally very small).

There have been (at least) two approaches demonstrating how a reaction force
proportional to acceleration (�fr = −mZP�a) arises out of properties of the ZPF.

force arising from the stochastically averaged magnetic component of the ZPF,
namely < �BZP >, as the basis of �fr. The second, called RH after [823], considers
only the relativistic transformations of the ZPF itself to an accelerated frame,
leading to a nonzero stochastically averaged Poynting vector (c/4π) < �EZP ×
�BZP > which leads immediately to a nonzero EM ZPF momentum flux as viewed
by an accelerating object. If the quarks and electrons in such an accelerating
object scatter this asymmetric radiation an acceleration dependent reaction force
�fr arises. In this context �fr is the space part of a relativistic four vector so
that the resulting equation of motion is not simply the classical �f = m�a but
rather the properly relativistic F = dP/dτ (which becomes exactly to �f = m�a
for subrelativistic velocities). The expression for inertial mass in HRP for an
individual particle is mZP = Γz�ω2

c/2πc2 where Γz represents a damping constant
for Zitterbewegung oscillations (a free parameter) and ωc represents an assumed
cutoff frequency for the ZPF spectrum (another free parameter). The expression

based on the first paperOne, called HRP and in [438], identified the Lorentz
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for inertial mass in RH for an object with volume V0 is

(1.4) mi = mZP =
(

V0

c2

∫
η(ω)

�ω3

2π2c3
dω

)
=

V0

c2

∫
η(ω)ρZP dω

(note from (1.1) ω ∼ 2πν and mi here refers to inertial mass). Also from [440]
recall that 4-momentum is defined as �P = (E/c, �p) = (γm0c, γm0�v) where |�P | =
m0c and E = γm0c

2 (γ is a Lorentz contraction factor). Recall that the Compton
frequency is given via �νC = m0c

2 for a particle of rest mass m0 (note λC = �/m0c
so c = (�/m0c)νC = λCνC ⇒ νC = c/λC has dimension T−1). Further λB = �/p
for a particle of momentum p and here p ∼ m0γv so one expects

(1.5) λB = �/m0γv = m0cλC/m0γv = (c/γv)λC

(cf. also [577]). In any event in [824] one argues that what appears as inertial
mass in a local frame corresonds to gravitational mass mg and identifies mi in
(1.4) with mg.

REMARK 5.1.1. We mention here a thoughtful analysis about the origin of
inertial mass etc. in [488] (second paper), which refers to the material developed
above in [438, 439, 823, 824]. It is worthwhile extracting in some detail as follows
(cf. also [441, 487, 650, 753]). The purpose of the paper is stated to be that of
suggesting qualifications in some claims that the classical equilibrium spectrum of
charged matter is that of the classically conceived ZFF (cf. here [487] where one
introduces an alternative classical ZPF with a different stochastic character which
reproduces the statistics of QED). It is pointed out that a classical massless charge
cannot acquire mass from nothing as a result of immersion in any EM field and
therefore that the ZPF alone cannot provide a full explanation of intertial mass.
Thus as background one mentions several works where classical representations
of the ZPF have been used to derive a variety of quantum results, e.g. the van
der Waals binding (cf. [145]), the Casimir effect (cf. [650]), the Davies-Unruh
effect (cf. [293]), the ground state behavior of the QM harmonc oscillator (cf.
[487]), and the blackbody spectrum (cf. [145, 252]). In its role as the originator
of inertial mass the ZPF has been evisined as an external energizing influence for
a classical particle whose mass is to be explained. In SED a free charged particle
is deemed to obey the (relativistic version of the) Braffort-Marshall equation

(1.6) m0a
µ −m0τ0

[
daµ

dτ
+

aλaλ

c2
uµ

]
= eFµλuλ

where τ0 = e2/6πε0m0c
3 and f is the field tensor of the ZPF interpreted classically

(cf. [487]) for the correspondence between this and the vacuum state of the EM
field - indicated also later in this paper). If F is the ZPF field tensor operator then
(1.6) is a relativistic generalization of the Heisenberg equation of motion for the
QM position operator of a free charged particle, properly taking into account the
vacuum sate of the quantized EM field (cf. [650]). From the standpoint of QED,
once coupling to the EM field is switched on and radiation reaction admitted, the
action of the vacuum field is not an optional extra, but a necessary component of
the fluctuation dissipation relation between atom and field. In the ZPF inertial
mass studies the electrodynamics of the charge in its pre-mass condition has not
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received attention, presumably on the grounds that the ZPF energization will
quickly render the particle massive so that the intermediate state of masslessness
is on no import. However letting m0 → 0 one sees that Fµλuλ → 0 which demands
that E·v → 0 (the massless particle moves orthogonal to E - cf. [488], first paper).
It is concluded that if a charge is initially massless, there is no means by which
it can acquire inertial mass energy from an EM field, including the ZPF, and
one must discount the possibility that the given ZPF can alone explain inertial
mass of such a particle (this does not take into consideration however the possible
effects of Dirac-Weyl geomety on mass creation - cf. Section 4.1). This is not to
deny that mass may yet emerge from a process involving the ZPF or some other
EM field, only that it cannot be the whole story. Note here that in earlier works
[441, 823] an internal structure is implied by the use of a mass-specific frequency
dependent coupling constant between the charged particles and the ZPF so there
is no contradiction to the arguments above, namely to the statement that the
classical structureless charge particle cannot acquire mass solely as a result of
immersion in the ZPF. One must also be concerned with a distinction between
inertia as a reaction force and inertial mass as energy. For example one could ask
whether the ZPF could be the cause of resistance to acceleration without it having
to be the cause of mass-energy. To address this consider the geometric form of the
mass action

(1.7) I = −m0c
2

∫
γ−1dt

which simultaneously gives both the mass acceleration fµ = m0a
µ and the Noether

conserved quantity under time translations E = γm0c
2 = m(v)c2 (i.e. the tradi-

tional mechanical energy (γ is the Lorenz factor). Thus the distinction between
the two qualities of mass appears to be one of epistemology. In some work (cf.
[438]) the ZPF has been envisioned as an external energizing influence for an ex-
plicitly declared local interal degree of freedom, intrinsic to the charged particle
whose mass is to be energized. Upon immersion in the ZPF this (Planck) oscilla-
tor is energized and the energy so acquired is some of all of its observed inertial
mass. Such a particle is not a structureless point in the usual classical sense and
so does not suffer from an inability to acquire mass from the ZPF, provided the
proposed components (sub-electron charges) already carry some inertia. There is
much more interesting discussion which should be read. Note that one is excluding
here such matters as the (mythical) Higgs field as well as renormalization.

One of the first objections typically raised against the existence of a real ZPF
is that the mass equivalent of the energy embodied in (1.1) would generate an
enormous spacetime curvature that would shrink the universe to microscopic size
(apparently refuted however via the principle of equivalence - cf. [438]). One notes
that all matter at the level of quarks and electrons is driven to oscillate (Zitter-
bewegung) by the ZPF and every oscillating charge will generate its own minute
EM fields. Thus any particle wil experience the ZPF as modified ever so slightly
by the fields of adjacent particles - but that might be gravitation as a kind of long
range van der Waals force. A ZPF based theory of gravitation is however only
exploratory at this point and there are disputes (see e.g. [183, 253, 310, 792]
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- discussed in part later). In any event following [440, 441, 824] the preceeding
analysis leads to F = dP/dτ = (d/dτ)(γmic, p) for the relativistic force where
mi ∼ mZP ∼ mg. More generally via [823] (which improves [438]) plausible
arguments are given to show that the EM quantum vacuum makes a contribu-
tion to the inertial mass mi in the sense that at least part of the inertial force of
opposition to acceleration, or inertia reaction force, springs from the EM quan-
tum vacuum. Specifically, the properties of the EM vacuum as experienced in
a Rindler constant acceleration frame were investigated, and the existence of an
EM flux was discovered, called for convenience the Rindler flux (RF). The RF,
and its relative, Unruh-Davies radiation, both stem from event horizon effects in
accelerating reference frames. The force of radiation pressure produced by the RF
proves to be proportional to the acceleration of the reference fame, which leads to
the hypothesis that at least part of the inertia of an object should be due to the
individual and collective interaction of its quarks and electrons with the RF. This
is called the quantum vacuum inertia hypothesis (QVIH). This is consistent with
general relativity (GR) and it answers a fundamental question left open within
GR, namely, whether there is a physical mechanism that generates the reaction
force known as weight when a specific nongeodesic motion is imposed on an object.
Put another way, while geometrodynamics dictates the spacetime metric and thus
specifies geodesics, whether there is an identifiable mechanism for enforcing the
motion of freely falling bodies along geodesic trajectories. The QVIH provides
such a mechanism since by assuming local Lorentz invariance (LLI) one can im-
mediately show that the same RF arises due to curved spacetime geometry as for
acceleration in flat spacetime. Thus the previously derived expression for the iner-
tial mass contribution from the EM quantum vacuum field is exactly equal to the
corresonding contribution to the gravitational mass mg and the Newtonian weak
equivalence principle mi = mg ensues. One also adopts the assumption of space
and time uniformity (uniformity assumption (UA) stating that the laws of physics
are the same at any time or place within the universe. With such hypotheses one
also derives in [824] the Newtonian gravitational law f = −(GMm/r2)ṙ while dis-
claiming the success of such attempts in earlier work (cf. [183, 253, 439, 792]).
We mention also some quite appropriate comments about the mystical Higgs field
in [441] (cf. also [442]), the main point being perhaps that even if the Higgs exists
it does not necessaarily explain inertial mass.

ZPF also plays the role of a Lorentz invariant EM component of a Dirac ether
(cf. [439]). Thus Newton’s equation of motion in special relativity can be writ-
ten as m(d2xµ/dτ2) = Fµ where four vectors are involved and Fµ represents a
nongravitational force. In general relativity this becomes

(1.8) m

(
d2xµ

dτ2
+ Γµ

νρ

dxν

dτ

dxρ

dτ

)
= Fµ

The velocity dxµ/dτ is a time-like 4-vector and Fµ is a space-like 4-vector or-
thogonal to the velocity. If Fµ �= 0 in any coordinate frame it will be nonzero in
all coordinate frames. The Γµ

νρ represent the gravitational force and can be set
equal to zero by a coordinate transformation but Fµ cannot be transformed away.
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Turning the arguments around the absolute nature of nongravitational accelera-
tion is demonstrated by the manifestation of a force that cannot be transformed
away. Thus there is need for a special reference frame that is not perceptible on
account of uniform motion but that is perceptible on account of non gravitational
acceleration and one proposes that the Lorentz invariant ZPF plays this role. We
refer to [144, 825] for background here.

REMARK 5.1.2. We mention for heuristic purposes some developments
following [442, 700] (cf. also [494] and Section 5.2 for possible comparison). One
addresses the quantum theoretic prediction that the Zitterbewegung of particles
occurs at the speed of light, that particles exihbit spin, and that pair creation can
occur. Given motion at the speed of light the particles involved in Zitterbewegung
would seem to be massless (and in this respect we refer to [494]). A suitable
equation for motion of a massless charge can be derived as a massless limit of the
Lorentz force equation maµ = (q/c)Fµνuν where q is charge and m will be go
to zero; Fµν is the EM field tensor of impressed fields, including the ZPF. The
acceleration a and velocity u are four vectors and in terms of the usual three space
quanties a and v one can write

(1.9) m

[
γ2aj + γ4v · avj

c

]
=

q

c
γ

[
3∑
1

F jkvk − F j0c

]
;

mγ4 v · a
c

=
q

c
γ

[
3∑
1

F 0kvk − F 00c

]
where γ = 1/

√
1− (v2/c2). Combining leads to

(1.10) mγaj =
q

c

[
3∑
1

(
F jk − F 0k vj

c

)
vk −

(
F j0 − F 00 vj

c

)
c

]
Now let m → 0 and γ → ∞ with mγ remaining finite; thus one will have
limm→0,v→cmγ = m∗ and m∗ has the dimensions of mass but is not mass. We
need further v = cn where n is a unit vector in the direction of the particle mo-
tion. Acceleration can therefore only be due to changes in the direction of the
form a = c(dn/dt) so that

(1.11) m∗c
dnj

dt
=

q

c

[
3∑
1

(
F jk − F 0k vj

c

)
vk −

(
F j0 − F 00 vj

c

)
c

]
In terms of EM fields this is (dn/dt) = (q/m∗c)[n × B − (n · E)n + E]. Since
the particle is moving at the speed of light it should see a universe Lorentz con-
tracted to two transverse dimensions and can only be accelerated by forces from
the side. When the impressed fields include the ZPF this motion can be regarded
as Schrödinger’s Zitterbewegung. When a field above the vacuum is applied the
charge will be observed to drift in a preferred direction in its Zitterbewegung wan-
dering. When viewed in a zoom picture one sees spin line orbital motion driven
by the ZPF. Now equation (1.11) does not exhibit inertia which seems in violation
of relativity. However the ZPF fields have the vacuum energy density spectrum
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of the form ρ(ω)dω = (�ω3/2π2c3)dω where ω = 2πν (cf. (1.1)). The cubic fre-
quency dependence endows the spectrum with Lorentz invariance and all inertial
frames see an isotropic ZPF. A Lorentz transformation will cause a Doppler shift
of each frequency component but an equal amount of energy is shifted into and out
of each frequency bin. When there are no fields above the vacuum in an inertial
frame an observer in that frame should expect to see a zero-mean random walk
due to the isotropic ZPF. Thus in our example an observer in a frame comoving
with the average motion of the charge just before the driving field is switched off
should expect to see continued zero-mean Zitterbewegung in his frame whereas
(1.11) produces zero-mean motion in whatever frame the calculation is performed.
To have a consistent theory Lorentz covariance must be restored. Thus assume
(1.11) holds in the spacetime of the particle and describes a null geodesic. The
curvature is defined by the EM fields in the particles history and since the par-
ticle is massless and moving at the speed of light one cannot use proper time as
the affine parameter of the geodesic (since proper time intervals vanish for null
geodesics). However normal time serves as well for time parameter and (1.11) is
replaced with

(1.12)
dpµ

dt
+

1
m∗

Γµ
νρp

νpρ = 0; pµ = m∗cnµ; nµ = (n0,n)

One equates the connection terms with the Lorentz force terms of maµ = (q/c)Fµνuν ,
i.e.

(1.13) Γµ
νρp

νpρ = −(q/c)Fµ
ν pν

and these equations can be solved for the metric of the particle’s spacetime (al-
though not uniquely - there is apparently a class of metrics). Further constraints
are needed to select a particular solution and in particular the geodesic should be
a null curve as expected for a massless object. Using (1.13) the geodesic equation
in (1.12) is claimed to be

(1.14)
dnj

dt
=

q

m∗c

[
F j

ν nν − F o
ν nν nj

n0

]
+

nj

n0

dn0

dt
;

dm∗
dt

=
q

c
F 0

ν

nν

n0
− m∗

n0

dn0

dt

In general n0 does not retain a value of 1 but should change in a way that pre-
serves the null curve property gµνpµpν = 0. We note that the second equation
in (1.14) is an equation for the parameter m∗, which is therefore not a constant
but rather varies in response to applied forces. The effect is to introduce time
dilation (or Doppler shifting) in the EM 4-vector analogous to the gravitational
redshift of GR. Also note that inertia is not assumed here by the requirement
that the particle travel on a null geodesic; the particle is not restricted but its
motion is used to define the spacetime and metric that the particle sees. It is only
after a transformation to Minkowski spacetime that inertial behavior appears. To
find solutions of (1.13) consider an infinitesimal region around the charge and
require gµν = ηµν + gµν,ρdxρ where ηµν is the flat spacetime metric (signature
(−1, 1, 1, 1)). The Christoffel symbols are then calculated in terms of the deriv-
atives gµν,ρ and substituted into (1.13). A simple local solution is written down
with some interesting properties for which we refer to [442, 700].
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1.1. REMARKS ON THE AETHER AND VACUUM. Regarding
massless particles and Maxwell’s equations we refer here to [9, 19, 29, 152, 233,
331, 405, 442, 543, 666, 700, 863, 864, 920] and consider first [405]. Thus the
Dirac equation is derived from the relativistic condition (E2−c2p2−m2c4)I4ψ = 0
where I4 is a 4×4 unit matrix and ψ is a fourcomponent (bispinor) wave function.
This can be decomposed via

(1.15)[
EI4 +

(
mc2I2 cp · σ
cp · σ −mc2I2

)]
×
[
EI4 −

(
mc2I2 cp · σ
cp · σ −mc2I2

)]
ψ = 0;

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
and I2 is a 2×2 unit matrix. The two component neutrino equation can be derived
from the decomposition

(1.16) (E2 − c2p2)I2ψ = [EI2 − cp · σ][EI2 + cp · σ[ψ = 0

where ψ is a two component spinor wavefunction. The photon equation can be
derived from the decomposition
(1.17)(

E2

c2
− p2

)
I3 =

(
E

c
I3 − p · S

)(
E

c
I3 + p · S

)
−

⎛⎝ p2
x pxpy pxpz

pypx p2
y pypx

pxpz pxpy p2
z

⎞⎠ = 0;

Sx =

⎛⎝ 0 0 0
0 0 −i
0 i 0

⎞⎠ ; Sy =

⎛⎝ 0 0 i
0 0 0
−i 0 0

⎞⎠ ; Sz =

⎛⎝ 0 −i 0
i 0 0
0 0 0

⎞⎠
and I3 is a 3 unit matrix. Further

(1.18) [Sx, Sy] = iSz, [Sz, Sx] = iSy, [Sy, Sz] = iSx, S2 = 2I3

One notes that the last matrix in (1.17) (first line) can be written as (px py pz)T ·
(px py pz). This leads to the photon equation in the form

(1.19)
(

E2

c2
− p2

)
ψ =

(
E

c
I3 − p · S

)(
E

c
I3 + p · S

)
ψ −

⎛⎝ px

py

pz

⎞⎠ (p · ψ) = 0

where ψ is a 3-component column wave function. (1.19) will be satisfied if

(1.20)
(

E

c
I3 + p · S

)
ψ = 0; p · ψ = 0

For real energies and momenta conjugation leads to

(1.21)
(

E

c
I3 − p · S

)
ψ∗ = 0; p · ψ∗ = 0
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The only difference here is that (1.20) is the negative helicity equation while (1.21)
represents positive helicity. Now in (1.20) make the substitutions E ∼ i�∂t and
p ∼ −i�∇ with ψE− iB. Then (p · S)ψ = �∇× ψ and this leads to

(1.22)
i�

c
∂tψ = −�∇× ψ; −i�∇ · ψ = 0

Cancelling � (!) one obtains then

(1.23) ∇× (E− iB) = − i

c
∂t(E− iB); ∇ · (E− iB) = 0

If the electric and magnetic fields are real one obtains the Maxwell equations

(1.24) ∇×E = −1
c
∂tB; ∇×B =

1
c
∂tE; ∇ ·E = ∇ ·B = 0

The Planck constant � does not appear since it cancelled out! In any event this
shows the QM nature of the Maxwell equations and hence of EM fields.

REMARK 5.1.3. One notes here a similar formula arising in [9] going back
to work of Majorana, Weinberg, et al (see [9] for references). The idea there
involves the matrices S of (1.17) written as s1, s2, s3 with

(1.25) i
∂E
∂t

=
1
i
(s · ∇)iB; i

∂(iB)
∂t

=
1
i
(s · ∇)E; E =

⎛⎝ E1

E2

E3

⎞⎠ ; B =

⎛⎝ B1

B2

B3

⎞⎠
corresponding to the first two equations in (1.24). Then a fermion-like formulation
is created via 6× 6 matrices

(1.26) Γ0 =
(

I 0
0 −I

)
; �Γ =

(
0 s
−s 0

)
; Γ5 =

(
0 I
I 0

)
For S =

(
0 s
s 0

)
(1.25) becomes

(1.27) i∂tψ = (1/i)(S · ∇)ψ ⇒ (∂t + S · ∇)ψ = 0

Equation (1.27) resembles the massless Dirac equation and one can consider ψ as a
(quantum) wave function for the photon of type ψ = (E iB)T with ψ̄ = (E† iB†)
where ψ̄ = ψ†Γ0 is an analogue of Hermitian conjugate. Note ψ†ψ = E2 + B2

(where E† = E and B† = B) corresponds to the local mean number of photons.
The construction of ψ thus mimics a Dirac spinor and one can write

(1.28) iΓ0∂ − tψ =
1
i
(Γ0S · ∇)ψ =

1
i
(�Γ · ∇)ψ ⇒ (Γ0∂t + �Γ · ∇)ψ = 0

or more compactly Γµ∂µψ = 0 (although this is not manifestly covariant). One
goes on to construct a Lagrangian with a duality transformation and we refer to
[9] for more details.

REMARK 5.1.4. Going to [331] one finds some generalizations of [405] in
the form

(1.29) ∇×E = −1
c
∂tB +∇�(χ); ∇×B =

1
c
∂tE +∇�(χ);
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∇ ·E = −1
c
∂t�(χ); ∇ ·B =

1
c
∂t�(χ)

and some further analysis of spin situations.. If one assumes no monopoles it may
be suggested that χ(x)is a real field and its derivatives play the role of charge and
current densities; there is also some flexibility here in interpretation.

1.2. A VERSION OF THE DIRAC AETHER. We go here to [215,
216] (cf. also [302, 499, 500, 727]). Dirac adopted the idea of using spurious
degrees of freedom associated to the gauge potential to describe the electron via
a gauge condition A2 = k2. In fact in [302] this was introduced as a gauge fixing
term in the Lagrangian L = −(1/4)F 2 + (λ/2)(A2− k2) leading to ∂νFµν = Jµ ≡
λAµ. Here the gauge condition doesn’t intend to eliminate spurious degrees of
freedom but rather acquires a physical meaning as the condition allowing the right
description of the physics without having to introduce extra fields. From this Dirac
argued that it would be possible to consider an aether provided that one interprets
its four velocity v as a quantity subjected to uncertainty conditions. Admitting the
aether velocity as defining a point in a hyperboloid with equation v2

0−�v2 = 1 with
v0 > 0 it could be related to the gauge potential (satisfying A2 = k2) via (1/k)Aµ =
vµ. Then v (the aether velocity) would be the velocity with which an electric charge
would flow if placed in the aether. The model in [215] is a continuation of [727]
and it is implicit in the present formulation that there is an inertial frame (the
aether frame) in which the aether is at rest; one writes (1, 0, 0, 0) (∼ vµ

aether) for
the aether frame. Then an action S =

∫
dx(−(1/4)F 2 + σvαFαµAµ) is proposed

with v being the aether’s velocity relative to a generic observer (inertial or not).
For inertial observers vµ = Λµ

νvν
aether = Λµ

0 is still constant and one obtains from
the equations of motion a current Jµ = −σvµ∂ ·A + σvν∂µAν that is understood
as being induced in the aether by the presence of the EM field. Therefore it defines
a polarization tensor Mαβ from which one obtains the vectors of polarization and
magnetization of the medium. In the aether reference frame this allows one to
define the electric displacement vector as D = E+σA while H = B; the resulting
equations are similar in form with the macroscopic Maxwell equations in a medium,
in agreement with [537, 959] but with the difference that D �= εE. Hence the
aether cannot be thought of as an isotropic medium. Moreover in a generic refernce
frame moving relative to the aether D and H will depend on v. There is more
summary material in [215] but we proceed directly here to the equations.

For flat spacetime one takes for ηµν = diag(+,−,−,−)

(1.30) xµ = (x0, xi) = (t,x); xµ = (x0, xi) = (t,−x); Aµ = (A0, Ai) = (φ,−A);

∂µ = (∂0, ∂i) = (∂t,−∇); ∂µ = (∂0, ∂i) = (∂t,∇); Aµ = (A0, Ai) = (φ,A);

F0i = Ei; Fij = −εijkBk; F 0i = −F0i = −Ei; F ij = Fij = −εijkBk

Take now

(1.31) S =
∫

dx(−(1/4)F 2 + J̃ ·A);

J̃µ = σvαFαµ; Fµν = ∂µAν − ∂νAµ
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The constant σ is associated to the aether conductivity and J̃ will be conserved
(we drop the bold face here); J̃ · A defines an interaction of the gauge field with
itself. Then the equation of motion for Aµ is

(1.32) ∂νF νµ + σvµ∂ ·A− σvν∂µAν = 0

and this assumes the form of the Maxwell equations in the presence of a source
∂νF νµ ≡ Jµ provided that one identifies Jµ = −σvµ∂ · A + σvν∂µAν with a
conserved 4-current. This is the same as Dirac in which the term jµ = λAµ is
interpreted as a 4-current but here this arises from the interaction term J̃ · A
instead of via a gauge fixing term (1/2)λ(A2 − k2) in the action. Now taking the
divergence of ∂νF νµ = Jµ one gets

(1.33) 0 = ∂µJµ = σvµ(�Aµ − ∂µ∂ ·A) = σvµ∂νF νµ = σvµJµ = σ2(−v2∂ ·A+

+vαvβ∂αAβ); ∂ ·A = (vαvβ/v2)∂αAβ

This constraint is a new feature of this model; its origin is independent of any
local symmetry of the action.

For global gauge invariance one considers an invariance defined via the equa-
tion Aµ → A′

µ = Aµ + λvµ (where ∂µλ = 0); this is associated to the Noether
current

(1.34) Θµ = Fµνvν − σvµA · v + σv2Aµ ≡ Θµνvν

where Θµν = Fµν − σvµAν + σvνAµ. Later this Θµν will be interpreted as Hµν

which in the aether frame becomes Hµν = (D,H). In a system at rest relative
to the aether one has Θµ = (0,E + σA) and (1.33) implies ∇ · A = 0. Then
the conservation equation for Θµ gives ∇ · E = 0. In this model there is another
conserved current

(1.35) Ĵµ = −σvµ∂ ·A + σv · ∂Aµ

where J̃ = Ĵ − J so that conservation of J̃ will follow immediately. Equivalently
one can think of J̃ν as originating from the divergence of Θµν , i.e. ∂µΘµν =
−J̃ν . In the classical formulation of electrodynamics in conducting media the
nonhomogeneous Maxwell equations are written covariantly as ∂µHµν = −jν

ext

with Hµν having D and H as its components. Here Θµν above generalizes Hµν

and ∂µΘµν = −J̃ν corresponds to ∂µH = −jν
ext. This allows one to interpret J̃µ as

the corresponding 4-current in much the same way as Dirac interpreted jµ = λAµ

as a 4-current in [302]. The interaction term J̃ ·A then parallels the same term in
the usual electrodynamics. The global symmetry above is a new feature with no
counterpart in the Maxwell formulation. It is also possible to add a mass term to
S above that preserves this global symmetry; in fact the action

(1.36) S =
∫

dx(−(1/4)F 2 + J̃ ·A− (1/2)σ2Aµ(v2gµν − vµvν)Aν)

is invariant. From this one obtains the equation

(1.37) ∂νF νµ ≡ J̄µ = −σvµ∂ ·A + σvν∂µAν + σ2(v2gµν − vµvν)Aν ∼

∼ [gµν(�− σ2v2) = ∂µ∂ν + σ(vµ∂ν − vν∂µ) + σ2vµvν ]Aν = 0
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Here the conservation of the current J̄ that follows from (1.37) doesn’t produce
any constraint on A; further the conserved current in (1.34) is associated to the
global symmetry. Finally the local gauge invariance depends on a parameter θ(x)
and has the usual form Aµ → A′

µ = Aµ + ∂µθ and (1.33) adds some new features
to the analysis. In fact let A′ and A be two fields related by A′

µ = Aµ +∂µθ. Since
both field configurations should obey (1.33) one must have

(1.38) ∂ ·A′ = (1/v2)(v · ∂)(v ·A′) ⇐⇒ �θ = (vαvβ/v2)∂α∂βθ

Now let ∂ · A �= 0 and choose θ so that it ensures ∂ · A′ = 0; one should then
have θ satisfying �θ = −∂ · A. This last condition together with the constraints
(1.33) and (1.38) give then ∂α∂βθ = −(1/2)(∂αAβ + ∂βAα) which represents a
stronger restriction than that shown in �θ = −∂ ·A. Equivalently one can obtain
this stronger restriction directly from 0 = ∂ · A′ = (vαvβ/v2)∂α(Aβ + ∂βθ) using
(1.33).

Now one considers this model in the aether reference frame where v = (1, 0, 0, 0)
and it is supposed that the aether is a medium without any given density of charge
or current. From ∂νF νµ = Jµ one has

(1.39) ∇ ·E = −σ∇ ·A; ∇×B =
∂E
∂t

+ σ
∂A
∂t

+ σE

to which is added the homogeneous equations ∇ · B = 0 and ∇ × E = −∂tB.
Since ∇ · E �= 0 we see that (1.39) introduces a new feature for the physical
vacuum (cf. also [597]). Essentially a divergenceless equation for E signals that the
vacuum is not merely an empty space but it is also capable of becoming electrically
polarized. The presence of additional terms depending on the potential vector in
(1.39) indicates the response of the medium to the presence of the fields (E,B),
which resembles the phenomena of polarization and magnetization of a medium.
Therefore one rewrites (1.39) as ∇ ·D = 0 with D = E + σA +∇ ×K. At this
point K is an arbitrary vector that can be thought of as playing the role of a gauge
parameter. Now rewrite (1.39) with an assignment for K as

(1.40) ∇×B = ∂tD + σE− ∂t∇×K with ∂t∇×K = σE

Then using ∇ ·B = 0 and ∇×E = −∂tB one obtains ∂t∇× (σA +∇×K) = 0.
The vector K can be still further restricted so that σA+∇×K = 0 and this gives
E = D and B = H with the Maxwell equations in free space, namely

(1.41) ∇ ·E = 0; ∇×B = ∂tE; ∇ ·B = 0; ∇×E = −∂tB

Conditions (1.40) with σA + ∇ ×K = 0 can be interpreted as originating from
the imposition of the temporal gauge and together they imply ∇A0 = 0 which is
naturally satisfied by putting A0 = 0. It is possible to give another description for
the present electrodynamics without using K. Thus from (1.39) one can simply
identify D = E + σA and B = H, leading to

(1.42) ∇ ·D = 0; ∇×B = ∂tD + σE; ∇ ·B = 0; ∇×E = −∂tB

and this coincides with the aether equations of [537, 959]. In the identification
D = E + σA and B = H the aether behaves like a medium that responds to the
presence of the electric field by creating a polarization P = σA. One also has a
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curreent J = σE which is in agreement with the supposition of the aether being
a medium with conductivity σ. According to Schwinger’s idea of a structureless
vacuum an EM field disturbs the vacuum affecting its properties of homogeneity
and isotropy. This is exactly the situation obtained in the present model where
the presence of an EM field in a vacuum with conductivity σ produces a response
of the medium (D �= εE) that signals its nonisotropy.

Thus for a flat spacetime and a reference frame at rest relative to the aether
one has D = E + σA and B = H. In the case of a curved spacetime and a
noninertial reference frame moving relative to the aether one will have a more
complicated relation between H and F. Indeed in a medium that is at rest in any
reference fame with a metric gαβ one knows from [967] that the relation between
H and F has the form

(1.43)
√
−gHαβ =

√
−ggαγgβκSµ

γ Sν
κFµν

where Sα
β characterizes the EM properties of the medium. It is convenient to

rewrite (1.43) as

(1.44)
√
−gHαβ =

√
−ggαγgβκSµ

γκAµ;

Sµ
γκ = (Sν

γSµ
κ − Sµ

γ Sν
κ)∂ν

As an application of (1.43) it was shown in [967] that for the vacuum (considered
from an inertial reference frame) the tensor Sα

β has the form Sα
β = δα

β and the ma-
terial equations become

√−gHαβ =
√−ggαµgβνFµν which reproduces the usual

equations of free electrodynamics in a curved background (cf. [793]). Also in the
case of a linear isotropic medium that is at rest in an inertial reference frame the
tensor Sα

β is given by S0
0 = ε

√
µ, S1

1 = S2
2 = S3

3 = 1/
√

µ and one obtains the usual
relations D = εE and H = (1/µ)B. In the present model in order to define Hαβ

for a generic reference frame in a curved background and t find a suitable material
relation of the type (1.44) one should first follow the preceeding approach which
allows one to define Hµν directly from the equation of motion for Aµ. Explicitly
take the equation of motion in a curved background to be

(1.45) ∂ν(
√
−gFµν − σ

√
−gvνAµ + σ

√
−gvµAν) = Jµ = −σ

√
−gvνF νµ

Then one defines

(1.46)
√
−gHαβ =

√
−g(Fαβ − σvαAβ + σvβAα)

This is equivaent to the introduction of an antisymmetric polarization tensor Mαβ

(cf. [967]) of the form

(1.47)
√
−gHαβ =

√
−g(Fαβ + Mαβ) ⇐⇒

√
−gHαβ =

√
−ggαν(Fνµ + Mνµ)

provided we identify

(1.48) Mαβ = −σvαAβ + σvβAα ⇐⇒ Mαβ = −σvαAβ + σvβAα;

Fµν = gµαgνβFαβ , Fµν = ∂µAν − ∂νAµ; Mµν = gµαgνβMαβ

Finally in order to obtain the material equations one extends (1.44) by allowing
Sµ

αβ to be a generic operator not restricted as in (1.44) but given by Sµ
αβ = δµ

β (∂α−
σvα) − δµ

α(∂β − σvβ). Here the tensor Sµ
αβ may contain not only EM properties
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of the medium (as in the case of (1.44)) but also information about the reference
frame (implicit in the 4-velocity vα). Adopting the convention Di =

√−gHi0 and
Hi = −(1/2)εijk

√−gHjk (cf. [967]) and considering a flat spacetime one obtains
(in the aether frame) the relations D = E + σA and B = H.

1.3. MASSLESS PARTICLES. We review again some classical and quan-
tum features of EM with some repetition of earlier material. First, following [650],
recall the Maxwell equations

(1.49) ∇ · E = 0; ∇ ·B = 0; ∇× E = −1
c
Bt; ∇×B =

1
c
Et

(bold face is omitted). Recall now the vector potential A eners via B = ∇ × A
and from the third equation in (1.49) E = −(1/c)At − ∇φ where φ is the scalar
potential. Hence ∇2A− (1/c2)Att = 0 in the Coulomb gauge defined via ∇·A = 0
and in the absence of sources φ = 0. Separation of variables gives monochromatic
solutions

(1.50) A(x, t) = α(t)A0(x) + α∗(t)A∗
0(x) = α(0)e−iωtA0(x) + α∗(0)eiωtA∗

0(x)

where (F2) ∇2A0(x) + k2A0(x) = 0 (k = ω/c) and α̈ = −ω2α. Consequently

(1.51) E(x, t) = −1
c
[α̇(t)A0(r) + α̇∗(t)A∗

0(x);

B(x, t) = α(t)∇×A0(x) + α∗(t)∇×A∗
0(x)

and a calculation gives the EM energy as

(1.52) HF = (1/8π)
∫

d3x(E2 + B2) = (k2/2π)|α(t)|2

where A0 is normalized via
∫

d3x|A0(x)|2 = 1 Now defining

(1.53) q(t) =
i

c
√

4π
[α(t)− α∗(t)]; p(t) =

k√
4π

[α(t) + α∗(t)]

gives HF = (1/2)(p2 + ω2q2) so the field mode of frequency ω is mathematically
equivalent to a harmonic oscillator of frequency ω. Note q and p are canonically
conjugate since q̇ = p and ṗ = −ω2q corresponds to Hamiltonian equations with
Hamiltonian HF .

REMARK 5.1.5. We assume familiarity with harmonic oscillator calcula-
tions. For H = (p2/2m) + (1/2)mω2q2 one has q̇ = (i�)−1[q, H] = p/m and
ṗ = (i�)−1[p,H] = −mω2q. Then defining

(1.54) a =
1√

2m�ω
(p− iq); a† =

1√
2m�ω

(p + imωq) ≡

≡ q = i

√
�

2mω
(a− a†); p =

√
m�ω

2
(a + a†)

which yields [q, p] = i� and [a, a†] = 1 with H = (1/2)�ω(aa† + a†a) = �ω(a†a +
(1/2)). For N = a†a one has eigenkets N |n >= n|n > and a|n >=

√
n|n − 1 >

with a†|n >=
√

n + 1|n + 1 >; further En = [n + (1/2)]�ω.
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One can now replace (1.50) by

(1.55) A(x, t) =
(

2π�c2

ω

)1/2

[a(t)A0(x) + a†(t)A∗
0(x)];

E(x, t) = i(2π�ω)1/2[a(t)A0(x)− a†(t)A∗
0(x)];

B(x, t) =
(

2π�c2

ω

)1/2

[a(t)∇×A0(x) + a†(t)A∗
0(x)]

and HF becomes HF = �ω[a†a+(1/2)]. Now the vacuum state |0 > has no photons
but has an energy (1/2)�ω and QM thus predicts the ZPF. In all stationary states
|n > one has < E(x, t) >=< B(x, t) >= 0 since < n|a|n >= 0. This means that
E and B fluctuate with zero mean in the state |n > even though the state has a
definite nonfluctuating energy [n + (1/2)]�ω. A computation also gives

(1.56) < E2(x, t)[n + (1/2)]4π�ω|A0(x)|2 = 4π�ω|A0(x)|2n+ < E2(x) >0

The factor n is the number of photons and |A0(x)|2 gives the same spatial intensity
as in the classical theory. Normal ordering is used of course in QM (a† to the left
of a) and this eliminates contributions of ZPF to various calculations. However
one does not eliminate the ZPF by dropping its energy from the Hamiltonian. In
the vacuum state E and B do not have definite values (they fluctuate about a
zero mean value) and one arrives at energy densities etc. as before. An atom is
often considered to be “dressed” by emmision and reabsorption of virutal photons
from the vacuum which itself has an infinite energy. Some thermal aspects were
mentioned before (cf. (1.2) for example) and this is enormously important (in this
direction there is much information in [650, 950]).

REMARK 5.1.6. We refer next to the first paper in [488] on massless clas-
sical electrodynamics for some interesting calculations (some details are omitted
here). One considers a bare charge, free of self action, compensating forces, and
radiation reaction (cf. [488] for a long discussion on all this). Use the convention
uava = u0v0 − u · v and Heavyside-Lorentz units with c = 1 in general. With
the fields given the Euler equation for the (massless) lone particle degree of free-
dom is simply that the Lorentz force on the particle in question must vanish, i.e.
F νµuµ� = 0 where F is the EM field stregth tensor and the fields E, B are to be
evaluated along the trajectory. In 3 + 1 form, omitting particle labels, this is

(1.57) (dt(λ)/dλ)E(x(λ), t(λ)) + (dx(λ)/dλ)×B(x(λ), t(λ)) = 0

In order for F νµuµ� = 0 to have a solution the determinant of F must vanish which
gives

(1.58) S(x(λ)) ≡ E(x(λ)) ·B(x(λ)) = 0

This imposes a constraint on the fields along the trajectory which can be inter-
preted as the condition that the Lorentz force on a particle must vanish (recognized
as the constraint on the fields such that there exist a frame in which the electric
field is zero). Calculation leads to

(1.59) v(x, t) =
dx/dλ

dt/dλ
=

E ×∇S −BSt

B · ∇S
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as the ordinary velocity of the trajectory passing through (t(λ), x(λ)). The right
side is an arbitrary function of (x, t) decided by the fields and in general (1.59)
will not admit a solution of the form x = f(t) since the solution trajectory may
be nonmonotonic in time. Various situations are discussed including the particles
advanced and retarded fields. In particular the particle does not respond to force
in the traditional sense of Newton’s second law. Its motion is precisely that which
causes it to feel no force. Yet its motion is uniquely prescribed by E and B, which
decide the particle trajectory (given some initial condition) just as the Lorentz
force determines the motion of a massive particle. The important difference is
that traditionally the fields determine acceleration whereas here they determine
the velocity. The massless particle discussed cannot be a relative of the neutrino
and it does not seem to be a traditional classical object in need of quantization.

1.4. EINSTEIN AETHER WAVES. We go now to [510] where the vi-
olation of Lorentz invariance by quantum gravity effects is examined (cf. also
[28, 51, 337, 338, 380, 459, 518, 642]). In a nongravitational setting it suf-
fices to specify fixed background fields violating Lorentz symmetry in order to
formulate the Lorentz violating (LV) matter dynamics. However this would break
general covariance, which is not an option, so one promotes the LV background
fields to dynamical fields, governed by a generally covariant action. Virtually any
configuration of matter fields breaks Lorentz invariance but here the LV fields
contemplated are constrained dynamically or kinematically not to vanish, so that
every relevant field configuration violates local Lorentz symmetry everywhere, even
in the “vacuum”. If the Lorentz violation preserves a 3-dimensional rotation sub-
group then the background field must be a timelike vector and one considers here
the case where the LV field is a unit timelike vector ua which can be viewed as the
minimal structure required to determine a local preferred rest frame. One opts
to call this field the “aether” as it is ubiquitous and determines a local preferred
rest frame. Kinetic terms in the action couple the ether directly to the spacetime
metric in addition to any couplings that might be present between the aether and
the matter fields. This system of the metric coupled to the aether will be referred
to as Einstein-aether theory. In [401] an essentially equivalent theory appears
based on a tetrad formalism (cf. also [510, 642] for various special cases).

In the spirit of effective field theory consider a derivative expansion of the
action for the metric gab and aether ua. The most general action that is diffeo-
morphism invariant and quadratic in derivatives is

(1.60)
S = 1

16πG

∫
d4x
√−g(−R + Lu − λ(jaua − 1)); Lu = −Kab

mn∇aum∇bu
n;

Kab
mn = c1g

abgmn + c2δ
a
mδb

n + c3δ
a
nδb

m + c4u
aubgmn

Here R is the Ricci scalar and λ is a Lagrange multiplier enforcing the unit con-
straint. The signature is (+,−,−,−) and c = 1 (cf. [972] for other notation).
The possible term Rabu

aub is proportional to the difference of the c2 and c3 terms
via integration by parts and hence has been omitted. Also any matter coupling
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is omitted since one wants to concentrate on the metric-aether sector in vacuum.
Varying the action with respect t ua, gab, and λ yields the field equations

(1.61) ∇aJa
m = c4u̇a∇mua = λum; Gab = Tab; gabu

aub = 1

Here one has Ja
m = Kab

mn∇bu
n and u̇m = ua∇aum and the aether stress tensor

is

(1.62) Tab = ∇m(J m
(a ub) − Jm

(aub) − J(ab)u
m)+

+c1[(∇mua)(∇mub)− (∇aum)(∇bu
m)] + c4u̇au̇b+

+[un(∇mJmn)− c4u̇
2]uaub −

1
2
gabLu

Here the constraint has been used to eliminate the term that arises from varying√−g in the constraint term in (1.60) and in the last line λ has been eliminated
using the aether field equations.

Now the first step in finding the wave modes is to linearize the field equaitons
about the flat Minkowski background ηab and the constant unit vector ua. The
expanded fields are then

(1.63) gab = ηab + γab; ua = ua + va

The Lagrange multiplier λ vanishes in the background so we use the same notation
for its linearized version. Indices will be raised and lowered now with ηab and
one adopts Minkowski coordinates (x0, xi) aligned with ua; i.e. for which ηab =
diag(1,−1,−1,−1) and ua = (1, 0, 0, 0). Keeping only the first order terms in va

and γab the field equations become

(1.64) ∂aJ (1)a
m = λum; G

(1)
ab = T

(1)
ab ; v0 +

1
2
γ00 = 0

where the superscript (1) denotes the first order part. The linearized Einstein
tensor is

(1.65) G
(1)
ab = −1

2
�γab −

1
2
γ,ab + γ m

m(a,b) +
1
2
ηab(�γ − γ mn

mn, )

where γ m
m is the trace, while the linearized aether stress tensor is

(1.66) T
(1)
ab = ∂m[J (1)m

(a ub) − J
(1)m
(a ub) − J

(1)
(ab)u

m] + [un(∂mJ (1)mn)]uaub

In one imposes the linearized aether field equation (1.64) then the second and last
terms of this expression for T

(1)
ab cancel, yielding

(1.67) T
(1)
ab = −∂0J

(1)
(ab) + ∂mJ

(1)m
(a ub);

J
(1)
ab = c1∇aub + c2ηab∇mum + c3∇bua + c4ua∇0ub

where the covariant derivatives of ua are expanded to linear order, i.e. replaced
by

(1.68) (∇aub)(1) = (vb + (1/2)γ0b),a + (1/2)γab,0 − (1/2)γa0,b

Were it not for the aether background the linearized aether stress tensor (1.66)
would vanish and the metric would drop out of the aether field equation, leaving
all modes uncoupled.
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Now diffeomorphism invariance of the action (1.60) implies that the field equa-
tions are tensorial and hence covariant under diffeomorphisms. The linearized
equations inherit the linearized version of this symmetry and to find the indepen-
dent physical wave modes one must fix the corresponding gauge symmetry. Thus
an infinitesimal diffeomorphism generated by a vector field ξa transforms gab and
ua by

(1.69) δgab = Lξgab = ∇aξb +∇bξa; δua = Lξu
a = ξm∇mua − um∇mξa

ξa is itself first order in the perturbations so the linearized gauge transformations
take the form

(1.70) γ′
ab = γab + ∂aξb + ∂bξa; v

′a = va − ∂0ξ
a

The usual choice of gauge in vacuum GR is the Lorentz gauge ∂aγ̄ab = 0 where
γ̄ab = γab− (1/2)γηab but for various reasons this is inappropriate here (cf. [510]).
Instead one imposes directly the four gauge conditions

(1.71) γ0i = 0; vi,i = 0

To see that this is accessible note that the gauge variations of γ0i and vi,i are,
according to (1.70)

(1.72) δγ0i = ξi,0 + ξ0,i; δvi,i = −ξi,i0

Thus to achieve (1.71) one must choose ξ0 and ξi to satisfy equations of the form

(1.73) (A) ξi,0 + ξ0,i = Xi (B) ξi,i0 = Y

Subtracting the second equation from the divergence of the first gives ξ0,ii =
Xi,i − Y which determines ξ0 up to constants of integration by solving a Poisson
equation. Then ξi can be determined up to a time independent field by integrating
(A) in (1.73) with respect to time. From these choices of ξ0 and ξi (A) in (1.73)
holds and the divergence of this gives (B) in (1.73). In the gauge (1.71) the tensors
in the aether and spatial metric equations in (1.64) take the forms

(1.74) J a
ai, = c14(vi,00 − (1/2)γ00,i0)− c1vi,kk − (1/2)c13γik,k0 − (1/2)c2γkk,0i;

G
(1)
ij = −(1/2)�γij − (1/2)γ,ij − γk(i,j)k − (1/2)δij(�γ − γ00,00 − γk�,k�);

T
(1)
ij = −c13(v(i,j)0 + (1/2)γij,00 − (1/2)c2δijγkk,00

where e.g. c14 = c1 + c4 etc. Various wave modes are calculated and in particular
there are a total of 5 modes, 2 with an unexcited aether which correspond to the
usual GR modes, two “transverse” aether-metric modes, and a fifth trace aether-
metric mode. We refer to [510] for details and discussion.

REMARK 5.2.1. The Lorentz violation theme and the idea of a preferred
reference frame is presently of a certain general interest in connection with pro-
posals of quantum gravity and we cite as before [28, 51, 76, 337, 338, 380,
518, 642]. We rephrase matters here as in [380]. Thus in an effective field the-
ory description the Lorentz symmetry breaking can be realized by a vector field
that defines the preferred frame. In the flat spacetime of the standard model this
field can be treated as non-dynamical background structure but in the context
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of GR diffeomorphism invariance (a symmetry distinct from local Lorentz invari-
ance) can be preserved by elevating this field to a dynamical quantity. This leads
to investigation of vector-tensor theories of gravity and one such model couples
gravity to a vector field that is constrained to be everywhere timelike and of unit
norm. The unit norm condition embodies the notion that the theory assigns no
physical importance to the norm of the vector and this corresponds to the Ein-
stein aether (AE) theory as in [337]. In [380] one demonstrates the effect of a
field redefinition on the conventional second order AE theory action. Thus take
gab → g′ab = A(gab − (1 − B)uaub) with ua → (u′)a = (1/

√
AB)ua where gab is a

Lorentzian metric and ua is the aether field. The action is taken as the most gen-
eral form which is generally covariant, second order in derivatives, and is consistent
with the unit norm constraint. The redefinition preserves this form and the net
effect is a rescaling of the action and a transformation of the coupling constants
(generalizing the work of [76]). Thus start with S = −(1/16πG)

∫ √
|g|L where

(1.75) L = R + c1(∇aub)(∇aub) + c2(∇aua)(∇bu
b)+

+c3(∇aub)(∇bu
a) + c4(ua∇auc)(ub∇buc)

where R is the scalar curvature of gab with signature (+,−,−,−) and the ci are
dimensionless constants. After the substitution indicated above one has

(1.76) (g′)ab =
1
A

(
gab −

(
1− 1

B

)
uaub

)
; u′

a =
√

ABua

(note (u′)au′
a = 1 is preserved). The net effect of A is a rescaling of the action

by a factor of A (with the Lagrangian scaling as 1/A while the volume scales as
A2). There are many calculations (omitted here) and the constructions simplify
the problem of characterizing solutions for a specific set of ci by transforming that
set into one in which one or more of the ci vanish. If non-aether matter is included
a metric redefinition not only changes the ci but also modifies the matter action
suggesting perhaps a universal metric to which the matter couples (cf. [213, 518]).

2. STOCHASTIC ELECTRODYNAMICS

From topics in Chapters 1,2,3, and 4 we are familiar with some stochastic
aspects of QM. Further the ZPF has been seen to be related to quantum phenom-
ena. The idea of stochastic electrodynamcs (SED) is essentially an attempt to
establish SED as the foundation for QM. There has been some partial success in
this direction but the methods break down when trying to deal with nonlinearities.
The paper [754] is a recent version of nonperturbative linear SED (LSED) which
provides a speculative mechanism leading to the quantum behavior of field and
matter based on 3 fundamental principles; it purports to explain for example why
all systems described by it (and hence by QM ?) behave as if they consisted of
a set of harmonic oscillators. We review here first some basic background issues
in SED arising from [753] (cf. also [250, 509, 650]) and then will sketch a few
matters from [754].
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Thus start with the homogeneous Maxwell equations

(3.1) ∇ ·D = 0; −1
c

∂D
∂t

+∇×H = 0; ∇ ·B = 0;
1
c

∂B
∂t

+∇×E = 0

One obtains then (we refer to [753] for details and discussion)

(3.2) B = ∇×A; E = −∇Φ− 1
c

∂A
∂t

; ∇×
(

1
c

∂A
∂t

+ E
)

= 0

Then the third and fourth Maxwell equations are satisfied identically and the first
two in combination with D = εE and B = µH determine the evolution of the
potentials A and Φ. In particular one has

(3.3) ∇2Φ +
1
c
∂t∇ ·A = 0; ∇2A

¯
− 1

c2

∂2A
∂t2

−∇
(
∇ ·A +

1
c

∂Φ
∂t

)
= 0

There is then room for gauge transformations

(3.4) A→ A′ = A +∇Λ; Φ → Φ′ = Φ− 1
c

∂Λ
∂t

Now choose the potentials to uncouple (3.3) via

(3.5) ∇ ·A +
1
c

∂Φ
∂t

; ∇2Φ− 1
c2

∂2Φ
∂t2

= 0; ∇2A− 1
c2

∂2A
∂t2

= 0

This set is equivalent in all respects to the Maxwell equations in vacuum (Lorentz
gauge) and this arrangement can always be achieved via

(3.6) ∇2Λ− 1
c2

∂2Λ
∂t2

= 0

Another gauge selection is the Coulomb gauge defined via

(3.7) ∇ ·A = 0; ∇2Φ = 0; ∇2A− 1
c2

∂2A
∂t2

=
1
c
∇∂tΦ

One can take Φ = 0 and the last equation reduces to the last equation of (3.5). In
any case for any gauge one has

(3.8) ∇2E− 1
c2

∂2E
∂t2

= 0; �2A = �2B = �2E = 0

where �2 = (1/c2)∂2
t − ∇2. One now goes into mode expansions with Fourier

series and integrals and we simply list formulas of the form (aα = aα(t) =
anλexp(−iωnt) = anλ(t))

(3.9) qα = i

√
Eα

2ω2
α

(aα − a∗
α); pα =

√
Eα

2
(aα + a∗

α);

H =
∑

Hα =
∑

Eαa∗
αaα =

∑ 1
2
(p2

α + ω2
αq2

α)

(3.10) A =
∑√

4πc2

ω2
nV

eλ
n[pnλCos(k · x) + ωnqnλSin(k · x)];

E =
∑√

4π

V
eλ

n[−pnλSin(k · x) + ωnqnλCos(k · x)];
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B =
∑√

4πc2

ω2
nV

(k × eλ
n)[−pnλSin(k · x) + ωnqnλCos(k · x)]

(we have written k for k ∼ kn, x for x, eλ
n for eλ

n, n for n ∼ (n1, n2, n3), etc. and
one is thinking of a reference volume V = L1L2L3 with sides Li and ωn = c|kn|.
Further kn has components ki = (2π/Li) and, setting k̂n = kn/|kn|, one has

(3.11) kn · eλ
n = 0; eλ

n · eλ′
n = δλλ′ ; k̂n = e1

n × e2
n; e1

n = −k̂n × e2
n; e2

n = k̂n × e1
n

Now the nonrelativistic Hamiltonian describing a charged particle in interac-
tion with the radiation field is

(3.12) H =
1

2m

(
p− e

c
A
)2

+ eΦ +
1
8π

∫
d3x(E⊥2 + B2)

Here E = E⊥ + E|| and the contribution from the longitudinal part has been
written as the Coulomb potential eΦ; in the Coulomb gauge E|| = −∇Φ so
(3.13)∫

d3E||2 =
∫

d3x(∇Φ)2 =
∫

d3x∇ · (Φ∇Φ)−
∫

d3xΦ∇2Φ = 4π

∫
d3xρ(x)Φ

since ∇2Φ = −∇·E|| = −4πρ(x) (Gauss law). From this one obtains the equations
of motion for the particle (x ∼ x)

(3.14) mẋ = p− e

c
A; ṗ =

e

c
[ẋ×B + (ẋ · ∇)A]− e∇Φ

and also the following Maxwell equations in the presence of the charge and its
current
(3.15)

∇ ·D = 4πρ; ∇×H =
4π

c
J +

1
c

∂D
∂t

; ρ = eδ3(x− xp(t)); J = eẋpδ
3(x− xp(t))

where xp(t) is the actual position of the particle. Combining these equations one
obtains the Newton second law with the Lorentz force

(3.16) mẍ = eE +
e

c
ẋ×B

Some simplification arises if one expresses matters via field modes (qα(t), pα(t))
and (x(t), p(t)) in the form (p ∼ p, x ∼ x, etc. with e′ = e

√
4π/V )

(3.17) mẋ = p− e

c
A; ṗ = F + e′

∑
(ẋ · eα)k

(
qαcos(k · x)− pα

ωα
Sin(k · x)

)
;

q̇α = pα − e′(ẋ · eα)
1

ωα
Cos(k · x); ṗα = −ω2

αqα + e′(ẋ · eα)Sin(k · x)

where F = −∇(eΦ) (without the Coulomb self-interaction). Write now

(3.18) cα(t) =
1√
2Eα

(pα − iωαqα); c∗α =
1√
2Eα

(pα + iωαqα)

Some calculation gives (x′ = x(t′))

(3.19) cα(t) = aα(t)− ie

√
2π

EαV
e−iωαt

∫ t

0

(ẋ′ · eα)e−ik·x′+iωαt′dt′
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Combining (3.17) and (3.19) one gets the equation of motion mẍ = F + F free
Lor +

Fself where

(3.20) F free
Lor = ie

∑√
2πEα

V

(
eα +

ẋ

c
× (k̂ × eα

)
× (aαe−ik·x − a∗

αeik·x);

Fself = −4πe2

V

∑(
eα +

ẋ

c
× (k̂ × eα

)
×
∫

dt′(ẋ′ · eα)Cos(ωα(t′− t)− k(x′−x))

The self force is too complicated to handle here and some approximations are made
(cf. [753] for details) leading to an expression

(3.21) Fself = −4e2

3c2

(
1
2
...
x (t)− ẍ(t)

π

∫ ∞

0

dω

)
= mτ

...
x (t)− δmẍ(t)

where τ = (2e2/3mc3) and δm = (4e2/3πc2)
∫∞
0

dω. The self radiation has two
effects now, within the present approximation (cf. also [650]). First there is a
reaction force on the particle proportional to the time derivative of the accelera-
tion (radiation reaction) and secondly there is a contribution to the term mẍ(t)
involving a total or dressed mass of the particle mT = m + δm. This contribution
is infinite for the point particle since

∫∞
0

dω is divergent but a cure is to take a
cutoff ωc so that δm = (2/π)mτωc. Even for huge ωc the quantity δm/m is smaller
than 1 since τ is very small and one conjectures that in a more precise calculation
the mass correction would be at most of order α = e2/�c = 1/137 (fine structure
constant). In any case one is led to the Abraham-Lorentz equation

(3.22) mT ẍ ≡ (m + δm)ẍ = F + F free
Lor + mT τ

...
x

Note that the self field terms have this simple form only in free space. In any
event such an equation is beset with problems; as an example one looks at a
homogeneous time dependent force F (t) and the equation mẍ = F (t) + mτ

...
x or

a− τa = F (t)/m with solution

(3.23) a(t) = et/τ

(
a(0)− 1

mτ

∫ t

0

et′/τF (t′)dt′
)

Problems with acausality arise and one comes to the conclusion that there seems
to be no (classical or relativistic) equation of motion for a radiating particle in
interaction with the radiation field that is free of conceptual difficulties.

A variation on the Abraham-Lorentz equation in the form

(3.24) mẍ = −mω2
0x + mτ

...
x + eEx(x, t) + e

(
ẋ

c
×B

)
is the Braffort-Marshall equation; it is the analogue of the Langevin equation in
Brownian motion (cf. here one refers back to the form mẍ = F +F free

Lor +Fself with
m ∼ mT and τ = 2e2/3mc3). Upon approximating

...
x by−ω2

0 ẋ and linearizing one
has something tractable but we do not discuss this here. There is also considerable
discussion of harmonic oscillators and Fokker-Planck equations which we omit here.
A Braffort-Marshall equation arises again in linear SED in the form

(3.25) mẍ = mτ
...
x + F (x) + eE(t)
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(1-D suffices here and one observes on p.303 of [753] that SED and QM are
incompatible theories). This is subsequently modified to

(3.26) mẍ = mτ
...
x + F (x) + e

∑
Ẽka0

ke−iωt + c.c.

Here one has started from a standard Fourier representation of the ZPF in the
form

(3.27) E =
∑

Ẽkake−iωnt + c.c.; a0
k ∼ eiφk ; ak → a0

k ∼ c→∞

with random phases φk uniformly distributed over (0, 2π) (x here describes the
response of the particle to the effective field). A lot of partial averaging has gone
into this and we refer to [753] for details and discussion. Even for simple examples
the calculations are a kind of horror story!

Let us try to summarize now some of [754]. One recalls that the central
premise of SED is that the quantum behavior of the particle is a result of its inter-
action with the vacuum radiation field or ZPF. This field is assumed to pervade
the space and is considered here to be in a stationary state with well defined sto-
chastic properties. Its action on the particle is to impress upon it at every point
a stochastic motion with an intensity characterized by Planck’s constant which is
a measure of the magnitude of fluctuations of the vacuum field. One begins with
the Braffort-Marshall equation in the form

(3.28) mẍ = f(x) + mτ
...
x + eE(t)

where τ = 2e2/3mc3 ∼ 10−23 for the electron. The term eE(t) stands for the
electric force exerted by the ZPF on the particle (the magnetic term is omitted
since one deals here with the nonrelativistic case). LSED is now to be based on
three principles:

(1) Principle 1. The system under study reaches an equilibrium state
at which the rate of energy radiated by the particle equals the
average rate of energy absorbed by it from the field. To make
this quantitative multiply (3.28) by ẋ to obtain

(3.29)
〈

dH

dt

〉
= −mτ 〈ẍ〉+ e 〈ẋ ·E〉

where H is the particle Hamiltonian including the Schott energy

(3.30) H =
1
2
mẋ2 + V (x)−mτ ẋ · ẍ

and V is the potential associated to the external force f . The average is
over the realizations of the background ZPF and when the system has
reached the state of energetic equilibrium we have

(3.31)
〈

dH

dt

〉
= 0 ⇒ mτ

〈
ẍ2
〉

= e 〈ẋ ·E〉

When this equilibrium is reached (or nearly so) one says the system has
reached the quantum regime. In LSED it is claimed that detailed energy
balance will hold (i.e. for every frequency). One sees that at equilibrium
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the term < ẍ > is determined by the ZPF and hence the acceleration
itself should be determined by the field.

(2) Principle 2. Once the quantum regime has been attained the
vacuum field has gained control over the motion of the material
part of the system. To apply this principle consider the free particle
with mẍ = mτ

...
x + eE(t) and express the field via

(3.32) E(t) =
∑

Ẽβaβeiωβt =
∑

ωβ>0

(Ẽ+
β aβeiωβt + Ẽ−

β a∗
βe−iωβt)

The aβ = aβ(ωβ) are stochastic variables and the present approach leaves
them momentarily unspecified. The amplitudes Ẽβ will be selected to
assign to each mode of the field the mean energy Eβ = (1/2)�ωβ and this
is the unique door through which Planck’s constant enters the theory.
Write now

(3.33) Eβ =
1
2

< p2
β + ω2

βq2
β >; pβ =

√
Eβ

2
(aω + a∗

ω); iωβqβ =

√
Eβ

2
(aω − a∗

ω)

The solution to mẍ = mτ
...
[ x] + eE(t) is then

(3.34) x(t) =
∑

x̃βaβeiωβt = −
∑ eẼβaβ

mω2
β + imτω3

β

eiωβt

Here all quantities except the aβ are “sure” numbers but upon intro-
duction of an external force f(x) these parameters become in principle
stochastic variables. Indeed from (3.28)

(3.35)
∑(

−mω2
βx̃β − imτω2

β x̃β +
f̃β

aβ

)
= e

∑
Ẽβaβeiωβt

For a generic force the Fourier coefficients f̃β will be a complicated func-
tion of (x̃β) and (aβ). Writing now

(3.36) x̃β = − eẼβ

mω2
β + imτω3

β + (f̃β/x̃βaβ)

and putting this into (3.34) one gets

(3.37) x(t) = −
∑ eẼβaβ

mω2
β + imτω3

β + (f̃β/x̃βaβ)

The problem of determining x(t) in general seems impossible. One tries
now to simplify matters by looking for stable “orbits” and this leads to

(3) Principle 3. There exist states of matter (quantum states) that
are unspecific to (or basically independent of) the particular
realization of the ZPF. The ensuing calculations in [754] seem to be
somewhat mysterious and we refer to this paper for further discussion
(cf. also [440, 784, 858]).
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REMARK 5.3.1. We refer here to [177, 363, 364, 365, 366]) where, following
Feynman, the idea is to introduce QM via the relativistic theory of free photons.
The arguments are very physical and historically based which would make a wel-
come complement to the mainly mathematical features of the rest of this book

3. PHOTONS AND EM

We go here to [940, 941] and will concentrate on the third paper in [940].
In [941] one sketches an heuristic approach to develop QM as a field theory with
quantum paricles (or rather clouds) an emergent phenomenon. This is continued
in [940] for EM fields and the photon but one comes to the conclusion that it
is wrong to think of the photon as the particle like duality partner of the wave
associated to the EM field. This leads to the idea that it is photons (not EM fields)
that are the basic ontology and EM fields are an emergent collective property of an
ensemble of photons. Quantization of the fields is thus not necessary. We sketch
this now following the second and third papers in [940]. First one notes that
quantization of the Lagrangian field theory for EM presents several difficulties
and may not be the way to go (cf. [940, 982]). Second in order to maintain
relativistic covariance every Lorentz transformation must be accompanied by a
gauge transformation (cf. [1007]). This seems to indicate a clear preference for
thinking of the photons as the entities responsible for the EM fields. The elements
of physical reality for the classical relativistic photon can be encoded in a photon
tensor fµν described in terms of three vectors e and b. To arrive at this one
uses gµν = gµν = diag(1,−1,−1,−1) and the completely antisymmetric tensors
εjk�, εkµσρ. One postulates the existence of a massless physical system, called
photons, transporting energy E, momentum P, and intrinsic angular momentum
or spin S. The relativistic kinemmatics of a massless particle requires that its speed
must be c and the energy, momentum, and spin are related via

(4.1) E = c|P|; S×P = 0

The second relation, called the transversality constraint, follows from the fact that
the intrinsic angular momentum of an extended object moving at the speed c can
not have any component perpendicular to the direction of propagation (easy ar-
gument). Further one thinks of particles as having spatial extension since massive
particles can not be localized beyond their Compton wavelength and a photon
moving in a well defined direction must be extended in a direction perpendicular
to the direction of movement via the uncertainty principle. The massless character
of the photon suggests that its energy must be proportional to some frequency;
i.e. something in the photon must be changing periodically in time. Thus for
motion with pµ = (E,E, 0, 0) for example (and c = 1) a Lorentz transformation
with speed β and Lorentz factor γ = (1 − β2)−1/2 in the direction of the x1 axis
leads to an energy decrease

(4.2) E′ = Eγ(1− β) = E

√
1− β

1 + β

and there is a lovely interplay of physical ideas (cf. also [1021]).
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in the primed reference frame. However this is precisely the transformation prop-
erty of a frequency (Doppler shift) and one can therefore expect that the energy
of a photon depends on some frequency (note that the argument is classical and
one knows from QM that E = �ν). An argument is then made in [940] that the

(4.3) fµν =

⎛⎜⎜⎝
0 e1 e2 e3

−e1 0 b3 −b2

−e2 −b3 0 b1

−e3 b2 −b1 0

⎞⎟⎟⎠
Note e and b are not the space components of a 4-vector but they transform as
3-vectors under the subgroup of Lorentz transformations corresponding to space
rotations and translations.The energy, momentum, and spin are related by (4.1),
and in any reference frame one visualizes a positive or negative helicity photon of
energy E and spin �, propagating with speed c in a direction k, as a unit vector ê
rotating clockwise of counterclockwise in a plane orthogonal to k with frequency
ω = E/�. In the same plane there is another unit vector b̂ = k× ê and with the
vectors e = ωê and b = ωb̂ one can build the photon tensor fµν whose Lorentz
transformations provide the description of the photon in other reference frames.
The rotating vectors es, corresponding to a photon of helicity s = ±1, can be
given more conveniently via circular polarization vectors εs defined by

(4.4) ε+ =
1√
2
(ê + ib̂); ε− =

1√
2
(iê + b̂)

resulting in

(4.5) e+(t) = ω(êCos(ωt) + b̂Sin(ωt)) =
(

ω√
2
ε+e−iωt + c.c

)
;

e− = ω(b̂Cos(ωt) + êSin(ωt)) =
(

ω√
2
ε−e−iωt + c.c.

)
(c.c. means complex conjugation of the previous terms). Another initial position of
the vector can be achieved via multiplication of the circular polarization complex
vectors by a phase exp(−iθ)εs to get

(4.6) es(t) =
(

ω√
2
εse

−iωt + c.c

)
The other vector bs needed to build the photon tensor is simply bs(t) = k× es(t)
(note one should write εs(k) but this will be omitted). The usual orthogonality
equations are

(4.7) ε∗s · k = 0; ε∗s · εs′ = δs,s′ ; ε∗s × εs′ = iskδs,s′ ; k× εs = sε∗−s

A few other relations are

(4.8)
ε− = iε∗+; εs · εs′ = i(1− δs,s′) = iδs,−s′ ; εs × εs′ = sk(1− δs,s′) = skδs,−s′

(4.9)
∑
s=±

(ε∗s)i(εs)j = δij − (k)i(k)j

natural object representing the photon will be a tensor (cf. [1021])
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where the components refer to an arbitrary set of orthogonal unit vectors (x̂1, x̂2, x̂3).

The QM description of a photon in a Hilbert space H = HS ⊗ HK (spin and
kinematic part) is done in terms of eigenstates of fixed helicity s = ±1 and momen-
tum p (in the direction k), denoted by φs,p = χk

s ⊗ φp. One takes spin operators

(4.10)

Sx = �

⎛⎝ 0 0 0
0 0 −i
0 i 0

⎞⎠ ; Sy = �

⎛⎝ 0 0 i
0 0 0
−i 0 0

⎞⎠ ; Sz = �

⎛⎝ 0 −i 0
i 0 0
0 0 0

⎞⎠
Thus (Sj)k� = −i�εjk� and the helicity states are

(4.11)

χ± = 1

2
√

1−kxky−kykz−kzkx

⎛⎝ 1− kx(kx + ky + kz)± i(ky − kz)
1− ky(kx + ky + kz)± i(kz − kx)
1− kz(kx + ky + kz)± i(kx − ky)

⎞⎠
For the kinematic part use (rigged) square integrable functions (cf. [202]) of the
form

(4.12) φp(r) =
1

(
√

2π�)3
exp

(
i

�
p · r

)
One will show now how the EM fields are built and emerge as an observable
property of an ensemble of photons.

For many photons one builds up a Fock space with Hilbert spaces for 1, 2, · · ·
times)

(4.13) a†
s(p)φs1p1,··· ,snpn

=
√

n + 1φsp,s1p1,··· ,snpn
;

as(p)φs1p1,··· ,snpn
=

1√
n

n∑
1

δs,si
δ(p− pi)φs1p1,··· ,ŝipi,··· ,snpn

where ŝipi means that these indices are eliminated. The vacuum state φ0 with
zero photons is such that as(p)φ0 = 0 and an n-photon state can be built up via

(4.14) φs1p1,··· ,snpn
=

1√
n!

a†
s1

(p1) · · · a†
sn

(pn)φ0

The symmetry requirements for identical boson states impose the commutation
relations

(4.15) [as(p), as′(p′)] = δs,s′δ3(p− p′); [a†
s(p), as′(p′)] = [as(p), as′(p′)] = 0

Finally the number operator is Ns(p) = a†
s(p)as(p) (number of photons with helic-

ity s and momentum in d3p centered at p) and the operator for the total number
of photons in the system is N =

∑
s

∫
d3pNs(p).

If we accept that the photons have objective existence and that each of them

photons with annihilation and creation operators via (we write p for p at
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carries momentum p, energy E = c|p| = �ω and spin � in the direction of prop-
agation k then for a system of many noninteracting particles the total energy,
momentum, and spin are
(4.16)

H =
∑

s

∫
d3p�ωNs(p); P =

∑
s

∫
d3ppNs(p); S =

∫
d3p�k(N+(p)−N−(p))

The noninteraction is a reasonably good approximation since the leading interac-
tion photon-photon contribution is of fourth order in perturbation theory. Now a
nonhermitian operator like a†

s(p) or as(p) is related to two hermitian operators, the
number operator (corresponding to a modulus squared) and another observable of
the form

(4.17)
∑

s

∫
d3p(f(s, p, E, r, t)as(p)± c.c)

and one can guess its form. This leads to the two hermitian operators

(4.18) E(r, t) =
1

2π�

∑
s

∫
d3p
√

ω(ias(p)εse
(i/�)(p·r−Et) + h.c.);

B(r, t) =
1

2π�

∑
s

∫
d3p
√

ω(ias(p)(k× εs)e(i/�)(p·r−Et) + h.c.)

One can show that these operators are indeed the EM fields and one has

(4.19) A(r, t) =
c

2π�

∑
s

∫
d3p

1√
ω

(as(p)εse
(i/�)(p·r−Et) + h.c.);

E(r, t) = −1
c
∂tkA(r, t); B(r, t) = ∇×A(r, t)

(4.20) H =
1
8π

∫
d3r(E2 + B2); P =

1
8πc

∫
d3r(E×B−B×E;

S =
1

8πc

∫
d3r(E×A−A×E)

(4.21) −∇×E =
1
c
∂tB; ∇×B =

1
c
∂tE; ∇ ·E = 0; ∇ ·B = 0

Further, defining

(4.22) D(ρ, τ) =
−1

(2π�)3

∫
d3pe(i/�)p·ρ Sin)ωτ)

ω
=

−1
8π2cρ

[δ)ρ− cτ)− δ(ρ + cτ)]

one finds commutator formulas for the components of E and B in terms of D(ρ, τ).
The singular character of such formulas casts some question on the meaningful-
ness of the EM fields as QM observables but in any event one can also calculate
commutator relations between E, B, A and the number operator N. There are a
number of interesting calculations in [940] which we omit here but we do mention
the divergent vacuum expectation value

(4.23) < φ0,E2(r, t)φ0 >=
1

(2π�)2

∫
d3pω

± =s 1±means )(
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which indicates the presence of fluctuations of E in the vacuum; this is infinite
but if averaged over a small region the value would be finite. One shows also that
the EM field of an indefinite number of photons, all with the same helicity and
momentum, is a plane wave with circular polarization; in fact for ψ

∑
n Cnφn(sp)

one has

(4.24) < ψ,E(r, t)ψ >=
√

ω

2π�

(
i
∑

n

C∗
nCn+1εse

(i/�)p·rEt) + c.c.

)
In any event it is wrong to think that the photon is the particle like duality
partner of the wave like EM field. Another confusion analyzed in [940] is the
erroneous identification of Maxwell’s equations for the EM fields with the SE for
the photon. The standard derivations of Maxwell’s equation from the SE is shown
to be incorrect.

REMARK 5.4.1. We refer to [724] for further approaches to wave-particle
duality and a correspondence between linearized spacetime metrics of GR and
wave equations of QM.

4. QUANTUM GEOMETRY

First we sketch the relevant symbolism for geometrical QM from [54] without
much philosophy; the philosophy is eloquently phrased there and in [153, 244,
550, 654] for example. Thus let H be the Hilbert space of QM and write it as
a real Hilbert space with a complex structure J. The Hermitian inner product is
then < φ,ψ >= (1/2�)G(φ, ψ) + (i/2�)Ω(φ, ψ) (note G(φ, ψ) = 2��(φ, ψ) is the
natural Fubini-Study (FS) metric - cf. [244]). Here G is a positive definite real
inner product and Ω is a symplectic form (both strongly nondegenerate). Moreover
< φ, Jψ >= i < φ, ψ > and G(φ, ψ) = Ω(φ, Jψ). Thus the triple (J,G,Ω) equips
H with the structure of a Kähler space. Now, from [998], on a real vector space V
with complex structure J a Hermitian form satisfies h(JX, JY ) = h(X,Y ). Then
V becomes a complex vector space via (a + ib)X = aX + bJX. A Riemannian
metric g on a manifold M is Hermitian if g(X,Y ) = g(JX, JY ) for X,Y vector
fields on M. Let ∇X be he Levi-Civita connection for g (i.e. parallel transport
preserves inner products and the torsion is zero. A manifold M with J as above
is called almost complex. A complex manifold is a paracompact Hausdorff space
with complex analytic patch transformation functions. An almost complex M with
Kähler metric (i.e. ∇XJ = 0) is called an almost Kähler manifold and if in addition
the Nijenhuis tensor vanishes it is a Kähler manifold (cf. (4.1) below). Here the
defining equations for the Levi-Civita connection and the Nijenhuis tensor are

(4.1) Γk
ij =

1
2
ghk[∂igjk + ∂jgik − ∂kgji];

N(X,Y ) = [JX, JY ]− [X,Y ]− J [X,JY ]− J [JX, Y ]
Further discussion can be found in [998]. Material on the Fubini-Study metric
will be provided later. Next by use of the canonical identification of the tangent
space (at any point of H) with H itself, Ω is naturally extended to a strongly
nondegenerate, closed, differential 2-form on H, denoted also by Ω. The inverse of
Ω may be used to define Poisson brackets and Hamiltonian vector fields. Now in
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QM the observables may be viewed as vector fields, since linear operators associate
a vector to each element of the Hilbert space. Moreover the Schrödinger equation,
written here as ψ̇ = −(1/�)JĤψ, motivates one to associate to each quantum
observable F̂ the vector field YF̂ (ψ) = −(1/�)JF̂ψ. The Schrödinger vector field
is defined so that the time evolution of the system corresponds to the flow along
the Schrödinger vector field and one can show that the vector field YF̂ , being
the generator of a one parameter family of unitary mappings on H, preserves
both the metric G and the symplectic form Ω. Hence is is locally, and indeed
globally, Hamiltonian. In fact the function which generates this Hamiltonian vector
ield is simply the expectation value of F̂ . To see this write F : H → R via
F (ψ) =< ψ, F̂ψ >=< F̂ >= (1/2�)G(ψ, F̂ψ). Then if η is any tangent vector at
ψ

(4.2) (dF )(η) =
d

dt
< ψ + tη, F̂ (ψ + tη) > |t=0 =< ψ, F̂ η > + < η, F̂ψ >=

=
1
�
G(F̂ψ, η) = Ω(YF̂ , η) = (iYF̂

Ω)(η)

where one uses the selfadjointness of F̂ and the definition of YF̂ (recall the Hamil-
tonian vector field Xf generated by f satisfies the equation iXf

Ω = df and the
Poisson bracket is defined via {f, g} = Ω(Xf , Xg)). Thus the time evolution of
any quantum mechanical system may be written in terms of Hamilton’s equa-
tion of classical mechanics; the Hamiltonian function is simply the expectation
value of the Hamiltonian operator. Consequently Schrödinger’s equation is simply
Hamilton’s equation in disguise. For Poisson brackets we have

(4.3) {F,K}Ω = Ω(XF , XK) =
〈

1
i�

[F̂ , K̂]
〉

where the right side involves the quantum Lie bracket. Note this is not Dirac’s
correspondence principle since the Poisson bracket here is the quantum one deter-
mined by the imaginary part of the Hermitian inner product.

Now look at the role played by G. It enables one to define a real inner product
G(XF , XK) between any two Hamiltonian vector fields and one expects that this
inner product is related to the Jordan product. Indeed

(4.4) {F,K}+ =
�

2
G(XF , XK) =

〈
1
2
[F̂ , K̂]+

〉
Since the classical phase space is generally not equipped with a Riemannian metric
the Riemann product does not have a classical analogue; however it does have a
physical interpretation. One notes that the uncertainty of the observable F̂ at a
state with unit norm is (∆F̂ )2 =< F̂ 2 > − < F̂ 2 >= {F, F}+ − F 2. Hence the
uncertainty involves the Riemann bracket in a simple manner. In fact Heisenberg’s
uncertainty relation has a nice form as seen via

(4.5) (∆F̂ )2(∆K̂)2 ≥
〈

1
2i

[F̂ , K̂]
〉2

+
〈

1
2
[F̂⊥, K̂⊥]+

〉2
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where F̂⊥ is the nonlinear operator defined by F̂⊥(ψ) = F̂ (ψ)−F (ψ). Thus F̂⊥(ψ)
is orthogonal to ψ if ‖ψ‖ = 1. Using this one can write (4.5) in the form

(4.6) (∆F̂ )2(∆K̂)2 ≥
(

�

2
{F,K}Ω

)2

+ ({F,K}+ − FK)2

The last expression in (4.6) can be interpreted as the quantum covariance of F̂

and K̂.

The discussion in [54] continues in this spirit and is eminently worth reading;
however we digress here for a more “hands on” approach following [189, 244, 245,
246, 247, 248]. Assume H is separable with a complete orthonormal system {un}
and for any ψ ∈ H denote by [ψ] the ray generated by ψ while ηn = (un|ψ). Define
for k ∈ N

(4.7) Uk = {[ψ] ∈ P (H); ηk �= 0}; φk : Uk → �2(C) :

φk([ψ]) =
(

η1

ηk
, · · · ,

ηk−1

ηk
,
ηk+1

ηk
, · · ·

)
where �2(C) denotes square summable functions. Evidently P (H) = ∪kUk and
φk ◦ φ−1

j is biholomorphic. It is easily shown that the structure is independent of
the choice of complete orthonormal system. The coordinates for [ψ] relative to the
chart (Uk, φk) are {zk

n} given via zk
n = (ηn/ηk) for n < k and zk

n = (ηn+1/ηk) for
n ≥ k. To convert this to a real manifold one can use zk

n = (1/
√

2)(xk
n + iyk

n) with

(4.8)
∂

∂zk
n

=
1√
2

(
∂

∂xk
n

+ i
∂

∂yk
n

)
;

∂

∂z̄k
n

=
1√
2

(
∂

∂xk
n

− i
∂

∂yk
n

)
etc. Instead of nondegeneracy as a criterion for a symplectic form inducing a
bundle isomorphism between TM and T ∗M one assumes here that a symplectic
form on M is a closed 2-form which induces at each point p ∈ M a toplinear
isomorphism between the tangent and cotangent spaces at p. For P (H) one can
do more than simply exhibit such a natural symplectic form; in fact one shows
that P (H) is a Kähler manifold (meaning that the fundamental 2-form is closed).
Thus one can choose a Hermitian metric G =

∑
gk

mndzk
m ⊗ dz̄k

n with

(4.9) gk
mn = (1 +

∑
i

zk
i z̄k

i )−1δmn − (1 +
∑
1

zk
i z̄k

i )−2z̄k
mzk

n

relative to the chart Uk, φk). The fundamental 2-form of the metric G is ω =
i
∑

m,n gk
mndzk

m ∧ dz̄k
n and to show that this is closed note that ω = i∂∂̄f where

locally f = log(1 +
∑

zk
i z̄k

i ) (the local Kähler function). Note here that ∂ + ∂̄ = d
and d2 = 0 implies ∂2 = ∂̄2 = 0 so dω = 0 and thus P (H) is a K manifold.

Now on P (H) the observables will be represented via a class of real smooth
functions on P (H) (projective Hilbert space) called Kählerian functions. Consider
a real smooth Banach manifold M with tangent space TM, and cotangent space
T ∗M . We remark that the extension of standard differential geometry to the infi-
nite dimensional situation of Banach manifolds etc. is essentially routine modulo
some functional analysis; there are a few surprises and some interesting technical
machinery but we omit all this here. One should also use bundle terminology at
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various places but we will not be pedantic about this. One hopes here to sim-
ply give a clear picture of what is happening. Thus e.g. L(T ∗

x M,TxM) denotes
bounded linear operators T ∗

x M → TxM and Ln(TxM,R) denotes bounded n-linear
forms on TxM . An almost complex structure is provided by a smooth section J
of L(TM) = vector bundle of bounded linear operators with fibres L(TxM) such
that J2 = −1. Such a J is called integrable if its torsion is zero, i.e. N(X,Y ) = 0
with N as in (4.1). An almost Kähler (K) manifold is a triple (M,J, g) where M
is a real smooth Hilbert manifold, J is an almost complex structure, and g is a K
metric, i.e. a Riemannian metric such that

• g is invariant; i.e. gx(JxXx, JxYx) = gx(Xx, Yx).
• The fundamental two form of the metric is closed; i.e.

(4.10) ωx(Xx, Yx) = gx(JxXx, Yx)

is closed (which means dω = 0).
Note that an almost K manifold is canonically symplectic and if J is integrable
one says that M is a K manifold. Now fix an almost K manifold (M,J, g). The
form ω and the K metric g induce two top-linear isomorphisms Ix and Gx between
T ∗

x M and TxM via ωx(Ixax, Xx) =< ax, Xx > and gx(Gxaz, Xx) =< ax, Xx >.
Denoting the smooth sections by I, G one checks that G = J ◦ I.

Definition 5.4.1. For f, h ∈ C∞(M,R) the Poisson and Riemann brackets
are defined via {f, h} =< df, Idh > and ((f, h)) =< df,Gdh >. From the above
one can reformulate this as
(4.11)

{f, h} = ω(Idf, Idh) = ω(Gdf,Gdh); ((f, h)) = g(Gdf,Gdh) = g(Idf, Idh)

Definition 5.4.2. For f, h ∈ C∞(M,C) the K bracket is < f, h >= ((f, h))+
i{f, h} and one defines products f ◦ν h = (1/2)ν((f, h))+fh (ν will be determined
to be �) and f ∗ν h = (1/2)ν < f, h > +fh. One observes also that

(4.12) f ∗ν h = f ◦ν h + (i/2)ν{f, h}; f ◦ν h = (1/2)(f ∗ν h + h ∗ν f);

{f, h} = (1/iν)(f ∗ν h− h ∗ν f)

Definition 5.4.3. For f ∈ C∞(M,R) let X = Idf ; then f is called Kählerian
(K) if LXg = 0 where LX is the Lie derivative along X (recall LXf = Xf, LXY =
[X,Y ], LX(ω(Y )) = (LXω)(Y )+ω(LX(Y )), · · · ). More generally if f ∈ C∞(M,C)
one says that f is K if �f and �f are K; the set of K functions is denoted by
K(M,R) or K(M,C).

Remark 5.4.1. In the language of symplectic manifolds X = df is the Hamil-
tonian vector field corresponding to f and the condition LXg = 0 means that the
integral flow of X, or the Hamiltonian flow of f , preserves the metric g. From
this follows also LXJ = 0 (since J is uniquely determined by ω and g via (2.26)).
Therefore if f is K the Hamiltonian flow of f preserves the whole K structure.
Note also that K(M,R) (resp. K(M,C)) is a Lie subalgebra of C∞(M,R) (resp.
C∞(M,C)).
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Now P (H) is the set of one dimensional subspaces or rays of H; for every
x ∈ H/{0}, [x] is the ray through x. If H is the Hilbert space of a Schrödinger
quantum system then H represents the pure states of the system and P (H) can
be regarded as the state manifold (when provided with the differentiable struc-
ture below). One defines the K structure as follows. On P (H) one has an atlas
{(Vh, bh, Ch)} where h ∈ H with ‖h‖ = 1. Here (Vh, bh, Ch) is the chart with
domain Vh and local model the complex Hilbert space Ch where

(4.13) Vh = {[x] ∈ P (H); (h|x) �= 0}; Ch = [h]⊥;

bh : Vh → Ch; [x] → bh([x]) =
x

(h|x)
− h

This produces a analytic manifold structure on P (H). As a real manifold one uses
an atlas {(Vh, R ◦ bh, RCh)} where e.g. RCh is the realification of Ch (the real
Hilbert space with R instead of C as scalar field) and R : Ch → RCh; v → Rv is
the canonical bijection (note Rv �= �v). Now consider the form of the K metric
relative to a chart (Vh, R ◦ bh, RCh) where the metric g is a smooth section of
L2(TP (H),R) with local expression gh : RCh → L2(RCh,R); Rz �→ gh

Rz where

(4.14) gh
Rz(Rv,Rw) = 2ν�

(
(v|w)

1 + ‖z‖2 −
(v|z)(z|w)
(1 + ‖z‖2)2

)
The fundamental form ω is a section of L2(TP (H),R), i.e. one can write ωh :
RCh → L2(RCh,R); Rz → ωh

Rz, given via

(4.15) ωh
Rz(Rv,Rw) = 2ν�

(
(v|w)

1 + ‖z‖2 −
(v|z)(z|w)
(1 + ‖z‖2)2

)
Then using e.g. (4.14) for the FS metric in P (H) consider a Schrödinger

Hilbert space with dynamics determined via R × P (H) → P (H) : (t, [x]) �→
[exp(−(i/�)tH)x] where H is a (typically unbounded) self adjoint operator in H.
One thinks then of Kähler isomorphisms of P (H) (i.e. smooth diffeomorphisms
Φ : P (H) → P (H) with the properties Φ∗J = J and Φ∗g = g). If U is any
unitary operator on H the map [x] �→ [Ux] is a K isomorphism of P (H). Con-
versely (cf. [246]) any K isomorphism of P (H) is induced by a unitary operator U
(unique up to phase factor). Further for every self adjoint operator A in H (pos-
sibly unbounded) the family of maps (Φt)t∈R given via Φt : [x] → [exp(−itA)x]
is a continuous one parameter group of K isomorphisms of P (H) and vice versa
(every K isomorphism of P (H) is induced by a self adjoint operator where bound-
edness of A corresponds to smoothness of the Φt). Thus in the present framework
the dynamics of QM is described by a continuous one parameter group of K iso-
morphisms, which automatically are symplectic isomorphisms (for the structure
defined by the fundamental form) and one has a Hamiltonian system. Next ide-
ally one can suppose that every self adjoint operator represents an observable and
these will be shown to be in 1− 1 correspondence with the real K functions.

Definition 5.4.4. Let A be a bounded linear operator on H and denote by
< A > the mean value function of A defined via < A >: P (H) → C, [x] �→<
A >[x]= (x|Ax)/‖x‖2. The square dispersion is defined via ∆2A : P (H) →
C, [x] �→ ∆2

[x]A =< (A− < A >[x])2 >[x].
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These maps in Definition 2.4 are smooth and if A is self adjoint < A > is
real, ∆2A is nonnegative, and one can define ∆A =

√
∆2A. To obtain local ex-

pressions one writes < A >h: Ch → R and (d < A >)h : Ch → (Ch)∗ via
< A >h (R) = (z + h)|A(z + h))/(1 + ‖z‖2) and
(4.16)

< (d < A >)h
Rz|Rv >= 2�

(
A(z + h)
1 + ‖z‖2 −

(h|A(z + h))
1 + ‖z‖2 h− (A(z + h)|z + h)

(1 + ‖z‖2)2 z

∣∣∣∣Rv

)
Further the local expressions Xh : RCh → RCh and Y h : RCh → RCh of the
vector fields X = Id < A > and Y = Gd < A > are

(4.17) Xh(Rz) = (1/ν)R(i(h|A(z + h))(z + h)− iA(z + h));

Y h(Rz) = (1/ν)R(−(h|A(z + h))(z + h) + A(z + h))
One proves then (cf. [246, 446]) that the flow of the vector field X = Id < A > is
complete and is given via Φt([x]) = [exp(−i(t/ν)A)x]. This leads to the statement
that if f is a complex valued function on P (H) then f is Kählerian if and only if
there is a bounded operator A such that f =< A >. From the above it is clear that
one should take ν = � for QM if we want to have < H > represent Hamiltonian
flow (H ∼ a Hamiltonian operator) and this gives a geometrical interpretation
of Planck’s constant. The following formulas are obtained for the Poisson and
Riemann brackets

(4.18) {< A >,< B >}h(Rz) =

=
(z + h|(1/iν)(AB −BA)(z + h))

1 + ‖z‖2 ; ((< A >,< B >))h(Rz) =

=
1
ν

(z + h|(AB + BA)(z + h))
1 + ‖z‖2 − 2

ν

(z + h|A(z + h))
1 + ‖z‖2

(z + h|B(z + h))
1 + ‖z‖2

This leads to the results
(1) {< A >, < B >} =< (1/iν)[A,B] >
(2) ((< A >,< B >)) = (1/ν) < AB + BA > −(2/ν) < A >< B >; ((<

A >< A >)) = (2/ν)∆2A
(3) << A >,< B >>= (2/ν)(< AB > − < A >< B >)
(4) < A > ◦ν < B >= (1/2) < AB + BA >
(5) < A > ∗ν < B >=< AB >

Remark 5.4.2. One notes that (setting ν = �) item 1 gives the relation between
Poisson brackets and commutators in QM. Further the Riemann bracket is the
operation needed to compute the dispersion of observables. In particular putting
ν = � in item 2 one sees that for every observable f ∈ K(P (H),R) and every
state [x] ∈ P (H) the results of a large number of measurements of f in the state
[x] are distributed with standard deviation

√
(�/2)((f, f))([x]) around the mean

value f([x]). This explains the role of the Riemann structure in QM, namely it
is the structure needed for the probabilistic description of QM. Moreover the ◦ν

product corresponds to the Jordan product between operators (cf. item 5) and
item 4 tells us that the ∗ν product corresponds to the operator product. This
allows one to formulate a functional representation for the algebra L(H). Thus
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put ‖f‖ν =
√

sup[x](f̄ ∗ν f)([x]). Equipped with this norm K(P (H),C) becomes
a W ∗ algebra and the map of W ∗ algebras between K(P (H),C and L(H) is an
isomorphism. This makes it possible to develop a general functional representation
theory for C∗ algebras generalizing the classical spectral representation for commu-
tative C∗ algebras. The K manifold P (H)is replaced by a topological fibre bundle
in which every fibre is a K manifold isomorphic to a projective space. In particular
a nonzero vector x ∈ H is an eigenvector of A if and only if d[x] < A >= 0 or
equivalently if and only if [x] is a fixed point for the vector field Id < A > (in
which case the corresponding eigenvalue is < A >[x]).

4.1. PROBABILITY ASPECTS. We go here to [33, 54, 55, 151, 153,
189, 244, 247, 257, 268, 389, 408, 409, 446, 447, 612, 621, 661, 742, 765,
766, 805, 937, 1005] and refer also to Section 3.1 and Remark 3.3.2. First from
[151, 1005] one defines a (Riemann) metric (statistical distance) on the space of
probability distributions P of the form

(4.19) ds2
PD =

∑
(dp2

j/pj) =
∑

pj(dlog(pj))2

Here one thinks of the central limit theorem and a distance between probability
distributions distinguished via a Gaussian exp[−(N/2)(p̃j−pj)2/pj ] for two nearby
distributions (involving N samples with probabilities pj , p̃j). This can be gener-
alized to quantum mechanical pure states via (note ψ ∼ √pexp(iφ) in a generic
manner)
(4.20)
|ψ >=

∑√
pje

iφj |j >; |ψ̃ >= |ψ > +|dψ >=
∑√

pj + dpje
i(φj+dφj)|j >

Normalization requires �(< ψ|dψ >) = −1/2 < dψ|dψ > and measurements
described by the one dimensional projectors |j >< j| can distinguish |ψ > and |ψ̃ >
according to the metric (4.19). The maximum (for optimal disatinguishability) is
given by the Hilbert space angle cos−1(| < ψ̃|ψ > |) and the corresponding line
element (PS ∼ pure state)

(4.21)
1
4
ds2

PS = [cos−1(| < ψ̃|ψ > |)]2 ∼ 1− | < ψ̃|ψ > |2 =< dψ⊥|dψ⊥ >∼

∼ 1
4

∑ dp2
j

pj
+
[∑

pjdφ2
j − (

∑
pjdφj)2

]
(called the Fubini-Study (FS) metric) is the natural metric on the manifold of
Hilbert space rays. Here

(4.22) |dψ⊥ >= |dψ > −|ψ >< ψ|dψ >

is the projection of |dψ > orthogonal to |ψ >. Note that if cos−1(| < ψ̃|ψ > | = θ

then cos(θ) = | < ψ̃|ψ > | and cos2(θ) = | < ψ̃|ψ > |2 = 1− Sin2(θ) ∼ 1− θ2 for
small θ. Hence θ2 ∼ 1− cos2(θ) = 1− | < ψ̃|ψ > |2. The term in square brackets
(the variance of phase changes) is nonnegative and an appropriate choice of basis
makes it zero. In [151] one then goes on to discuss distance formulas in terms



238 5. FLUCTUATIONS AND GEOMETRY

of density operators and Fisher information but we omit this here. Generally as
in [1005] one observes that the angle in Hilbert space is the only Riemannian
metric on the set of rays which is invariant uder unitary transformations. In
any event ds2 =

∑
(dp2

i /pi),
∑

pi = 1 is referred to as the Fisher metric (cf.
[661]). Note in terms of dpi = p̃i − pi one can write d

√
p = (1/2)dp/

√
p with

(d
√

p)2 = (1/4)(dp2/p) and think of
∑

(d
√

pi) as a metric. Alternatively from
cos−1(| < ψ̃|ψ > | one obtains ds12 = cos−1(

∑√
p1i
√

p2i) as a distance in P.
Note from (4.21) that ds2

12 = 4cos−1| < ψ1|ψ2 > | ∼ 4(1 − |(ψ1|ψ2)|2 ≡ 4(<
dψ|dψ > − < dψ|ψ >< ψ|dψ >) begins to look like a FS metric before passing to
projective coordinates. In this direction we observe from [661] that the FS metric
can be expressed also via

(4.23) ∂∂̄log(|z|2) = φ =
1
|z|2

∑
dzi ∧ dz̄i −

1
|z|4

(∑
z̄idzi

)
∧
(∑

zidz̄i

)
so for v ∼

∑
vi∂i + v̄i∂̄i and w ∼

∑
wi∂i + w̄i∂̄i and |z|2 = 1 one has φ(v, w) =

(v|w)− (v|z)(z|w) (cf. (3.4)).

REMARK 5.4.3. We refer now to Section 3.1 and Remark 3.3.2 for connec-
tions between quantum geometry and the quantum potential via Fisher informa-
tion and probability.



CHAPTER 6

INFORMATION AND ENTROPY

Information and entropy have been discussed in Sections 1.3.2, 3.3.1, 4.7, etc.
and we continue with a further elaboration (see in particular [10, 23, 72, 146,
173, 174, 175, 240, 343, 388, 396, 400, 431, 446, 452, 481, 512, 634, 637,
639, 694, 740, 749, 755, 765, 766, 856, 914, 916, 915, 906, 976]). As
before we will again encounter relations to the quantum potential which serves as
a persistent theme of development. There is an enormous literature on entropy
and we try to select aspects which fit in with ideas of quantum diffusion and
information theory.

1. THE DYNAMICS OF UNCERTAINTY

We begin with some topics from [396] to which we refer for certain tutorial
aspects. Given events Aj (1 ≤ j ≤ N) with probabilities µj of occurance in some
game of chance with N possible outcomes one calls log(µj) an uncertainty function
for Aj . We write the natural logarithm as log and recall that e.g. log2(b) =
log(b)/ln(2) (the information theoretic base is taken as 2 in some contexts). The
quantity (Shannon entropy)

(1.1) S(µ) = −
N∑
1

µj log2(µj)

stands for the measure of the mean uncertainty of the possible outcomes of the
game and at the same time quantifies the mean information which is accessible
from an experiment (i.e. actually playing the game). Thus if one identifies the
Ai as labels for discrete states of a system (1.1) can be interpreted as a mea-
sure of uncertainty of the state before this state is chosen and the Shannon en-
tropy is a measure of the degree of ignorance concerning which possibility (event
Aj) may hold true in the set of all A

′s
i with a given a priori probability distri-

bution (µi). Note also that 0 ≤ S(µ) ≤ log2(N) (since certainty means one
entry with probability 1 and maximum uncertainty occurs when all events are
equally probable with µj = 1/N). There is some discussion of the Boltzman law
S = kBlog(W ) = −kBlog(P ) (P = 1/W ) and its relation to Shannon entropy,
coarse graining, and differential entropy defined as

(1.2) S(ρ) = −
∫

ρ(x)log(ρ(x))dx

(cf. Sections 1.1.6 and 1.1.8). One recalls also the vonNeumann entropy

(1.3) S(ρ̂) = −kBTr(ρ̂log(ρ̂))

239
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where ρ̂ is the density operator for a quantum state (ρ̂log(ρ) is defined via func-
tional calculus for selfadjoint operators (cf. [916]). For diagonal density operators
with eigenvalues pi this will coincide with the Shannon entropy

∑
pilog(pi). We go

now directly to an extension of the discussion in Sections 1.1.6-1.1.8. It is known
from [862] that among all one dimensional distributions ρ(x) with a finite mean,
subject to the condition that the standard deviation is fixed at σ, it is the Gauss-
ian with half width σ which sets a maximum of the differential entropy. Thus for
the Gaussian with ρ(x) = (1/σ

√
2π)exp[−(x− x0)2/2σ2] one has

(1.4) S(ρ) ≤ 1
2
log(2πeσ2) ⇒ 1√

2πe
exp[S(ρ)] ≤ σ

A result of this is that the major role of the differential entropy is to be a mea-
sure of localization in the configuration space (note that even for relatively large
mean deviations σ < 1/

√
2πe 
 .26 the differential entropy S(ρ) is negative. Con-

sider now a one parameter family of probability densities ρα(x) on R whose first
(mean) and second moments (variance) are finite. Write

∫
xρα(x)dx = f(α) with∫

x2ραdx < ∞. Under suitable hypotheses (implying that ∂ρα/∂α is bounded by
a function G(x) which together with xG(x) is integrable on R) one obtains

(1.5)
∫

(x− α)2ρα(x)dx ·
∫ (

∂log(ρα)
∂α

)2

ραdx ≥
(

df(α)
dα

)2

which results from

(1.6)
df

dα
=
∫

[(x− α)ρ1/2
α ]

[
∂(log(ρα))

∂α
ρ1/2

α

]
dx

and the Schwartz inequality. Assume now that the mean value of ρα actually is
α and fix at σ2 the value of the variance < (x− α)2 >=< x2 > −α2. Then (1.5)
takes the familiar form

(1.7) Fα =
∫

1
ρα

(
∂ρα

∂α

)2

dx ≥ 1
σ2

where the left side is the Fisher information for ρα. This says that the Fisher
information is a more sensitive indicator of the wave packet localization than the
entropy power in (1.4). Consider now ρα = ρ(x − α) so Fα = F is no longer
dependent on α and one can transform this to the QM form (up to a factor of D2

where D = �/2m which we acknowledge here via the symbol ∼)

(1.8)
1
2
F =

∫
1
ρ

(
∂ρ

∂x

)2

dx ∼
∫

ρ · u2

2
dx ∼ − < Q̃ >

where u = ∇log(ρ) is the osmotic velocity field and the average < Q̃ >=
∫

ρ ·
Q̃dx involves the quantum potential Q̃ = 2(∆

√
ρ/
√

ρ) (cf. equations (6.1.13)
- (6.1.16) where Q = −(�2/2m)(∆

√
ρ/
√

ρ), Q̃ = −(1/m)Q, D = �/2m, and
u = D∇log(ρ)). Consequently − < Q̃ >≥ (1/2σ2) for all relevant probability
densities with any finite mean (with variance fixed at σ2). We continue in this
section with the notation Q̃ = 2(∆

√
ρ/
√

ρ) and note that D2Q̃ is in fact the correct
Q̃ = −(1/m)Q (which occasionally arises here as well, in a diffusion context).

1
2



1. THE DYNAMICS OF UNCERTAINTY 241

Next one defines the Kullback entropy K(θ, θ′) for a one parameter family
of probability densities ρθ so that the distance between any two densities can be
directly evaluated. Let pθ′ be the reference density and one writes

(1.9) K(θ, θ′) = K(ρθ|ρθ′) =
∫

ρθ(x)log
ρθ(x)
ρθ′(x)

dx

(note this is positive and sometimes one refers to Hc = −K as a conditional
entropy). If one takes θ′ = θ + ∆θ with ∆θ << 1 then under a number of
standard assumptions

(1.10) K(θ, θ + ∆θ) 
 1
2
Fθ · (∆θ)2

where Fθ denotes the Fisher information measure as in (1.7). More generally for
a two parameter family θ ∼ (θ1, θ2) of densities one has

(1.11) K(θ, + ∆θ) 
 1
2

∑
Fij∆θi∆θj ; Fij =

∫
ρθ

∂log(ρθ)
∂θi

∂log(ρθ)
∂θj

dx

For Gaussian densities at fixed σ with θ = α one has then K(α, α + ∆α) 

(∆α)2/2σ2. Various related formulas are derived and in particular one relates the
Shannon entropy for a coarse grained density ρB to the differential entropy of the
density ρ leading to a formula S(ρB) − S(ρ′B) 
 S(ρ) − S(ρ′). One considers
also spatial Markov diffusion processes in R with a diffusion coefficient D which
drive space-time inhomogeneous probability density densities ρ(x, t). For example
a free Brownian motion characterized by v = −u = −D∇log(ρ(x, t)) and diffusion
current j = v · ρ obeys the continuity equation ∂tρ = −∇j which is equivalent
to the heat equation. As in Sections 1.1.6-1.1.8 and 6.1 we have the important
relations

(1.12) Q̃ = 2D2 ∆ρ1/2

ρ1/2
=

1
2
u2 + D∇ · u; ∂tv + (v · ∇)v = −∇Q̃

A straightforward generalization refers to a diffusive dynamics of a mass m in a
conservative force field F = −∇V . The associated Smoluchowski diffusion with a
forward drift b(x) = F/mβ is analyzed in terms of a Fokker-Planck (FP) equation
∂tρ = D∆ρ − ∇(b · ρ) with initial data ρ0(x) = ρ(x, 0). For standard Brownian
motion in an external force field one has D = kBT/mβ where β ∼ friction, T is
temperature and kB is the Boltzman constant. With suitable hypotheses one has
the following compatibility equations in the form of hydrodynamical conservation
laws

(1.13) ∂tρ +∇(vρ) = 0; (∂t + v · ∇)v = ∇(Ω− Q̃)

where Ω(x) is the volume potential for the process, namely

(1.14) Ω =
1
2

(
F

mβ

)2

+ D∇ ·
(

F

mβ

)
Herev = b − u = (F/mβ) − D(∇ρ/ρ) defines the current velocity of Brownian
partices in an external force field. With a solution ρ of the FP equation one asso-
ciates a differential entropy S(t) = −

∫
ρlog(ρ)dx which is typically not conserved.

θ
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With boundary conditions on ρ, vρ, and bρ involving vanishing at boundaries or
at infinity one obtains

(1.15)
dS

dt
=
∫ [

ρ(∇ · b) + D
(∇ρ)2

ρ

]
dx

One emphasizes that it is not obvious whether the differential entropy grows,
decreases, or whatever. One can rewrite (1.15) in the forms

(1.16) DṠ = D < ∇ · b > + < u2 >= D < ∇ · v >;

DṠ =< v2 > − < b · v >= − < v · u >

where < > denotes the mean value relative to ρ. For b = F/mβ and j = vρ this
leads to a characteristic “power release” expression

(1.17)
dQ̃

dt
=

1
D

∫
1

mβ
F · jcx =

1
D

< b · v >

Again Q̇ can be positive (power removal) or negative (power absorption). In
thermodynamic terms one deals here with the time rate at which the mechanical
work per unit of mass is dissipated (removed from the reservoir) in the form of
heat in the course of the Smoluchowski diffusion process - i.e. kBT ˙̃Q =

∫
F · jdx

where T is the temperature of the bath. For b = 0 (no external forces) one has
DṠ = D2

∫
[(∇ρ)2/ρ]dx = D2F = −D2 < Q̃ > and one can also write

(1.18)
dS

dt
=
(

dS

dt

)
in

− dQ̃

dt

from (1.15) and (1.16) (here (Ṡ)in = (1/D) < v2 >.

One goes now to mean energy and the dynamics of Fisher information and
considers −ρ and s where v = ∇s as canonically conjugate fields; then one can
use variational calculus to derive the continuity and FP equations together with
the HJ type equations whose gradient gives the hydrodynamical conservation law

(1.19) ∂ts + (1/2)(∇s)2 − (Ω− Q̃) = 0

Here the mean Lagrangian is

(1.20) L = −
∫

ρ

[
∂ts +

1
2
(∇s)2 −

(
u2

2
+ Ω

)]
dx

The related Hamiltonian (mean energy of the diffusion process per unit of mass)
is

(1.21) H =
∫

ρ

[
1
2
(∇s)2 −

(
u2

2
+ Ω

)]
dx =

1
2
(< v2 > − < u2 >)− < Ω >

(note here v = ∇s satisfies v = b−u with u = D∇log(ρ) and we refer to Section 1.1
for clarification). One defines a thermodynamic force Fth = v/D associated with
the Smoluchowski diffusion with a corresponding potential −∇Ψ = kBTFth =
F − kBT∇log(ρ) so in the absence of external forces Fth = −∇log(ρ) = −(1/D)u.
The mean value of the thermodynamic force associates with the diffusion process
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an analogue of the Helmholz free energy < Ψ >=< V > −TSG where the di-
mensional version SG = kBS of information entropy has been introduced (it is a
configuration space analogue of the Gibbs entropy). Here the term < V > plays
the role of (mean) internal energy and assuming ρv vanishes at boundaries (or
infinity) one obtains the time rate of change of Helmholz free energy at a constant
temperature, namely
(1.22)

d

dt
< Ψ >= −kBT ˙̃Q− T ṠG ⇒

d

dt
< Ψ >= −(kBT )

(
dS

dt

)
in

= −(mβ) < v2 >

Now one can evaluate an expectation value of (1.19) which implies an identity
H = − < ∂ts >. Then using Ψ = V + kBT log(ρ) (with time independent V) one
arrives at Ψ̇ = (kBT/ρ)∇(vρ) and since vρ = 0 at integration boundaries we get
< Ψ̇ >= 0. Since v = −(1/mβ)∇Ψ define then s(x, t) = (1/mβ)Ψ(x, t) so that
< ∂ts >= 0 and hence H = 0 identically. This gives an interplay between the
mean energy and the information entropy production rate in the form

(1.23)
D

2

(
dS

dt

)
in

=
1
2

< v2 >=
∫

ρ

(
u2

2
+ Ω

)
dx ≥ 0

Next recalling (1.7)-(1.8) and setting F = D2Fα one obtains

(1.24) F =< v2 > −2 < Ω >≥ 0

where (1/2)F = − < Q̃ > holds for probability densities with finite mean and
variance. One also derives the following formulas (under suitable hypotheses)

(1.25) ∂t(ρv2) = −∇ · [(ρv3)]− 2ρv · ∇(Q̃− Ω);

d

dt
< Ω >=< v · ∇Ω >;

d

dt
F =

d

dt
[< v2 > −2 < Ω >] = −2 < v · ∇Q̃ >

Then since ∇Q̃ = ∇P/ρ where P = D2ρ∆log(ρ) (this is the real Q̃) the previous
equation takes the form Ḟ = −

∫
ρv∇Q̃dx = −

∫
v∇Pdx which is an analogue of

the familiar expression for the power release (dE/dt) = F · v with F = −∇V in
classical mechanics.

Next in [396] there is a discussion of differential entropy dynamics in quantum
theory. Assume one has an arbitrary continuous function V(x, t) with dimensions
of energy and consider the SE in the form i∂tψ = −D∆ψ + (V/2mD)ψ. Using
ψ = ρ1/2exp(is) with v = ∇s one arrives at the standard equations ∂tρ = −∇(vρ)
and ∂ts + (1/2)(∇s)2 + (Ω − Q̃) = 0 where Ω = V/m and Q̃ has the same form
as in (1.12) (note a sign change of the Ω − Q̃ term in comparison with (1.19)).
These two equations generate a Markovian diffusion type process the probability
density of which is propagated by a FP dynamics as before with drift b = v − u
(instead of v = b−u) where u = D∇log(ρ) is an osmotic velocity field. Repeating
the variational calculations one looks at (cf. (1.21))

(1.26) H =
∫

ρ

[
1
2
(∇s)2 +

(
u2

2
+ Ω

)]
dx



244 6. INFORMATION AND ENTROPY

Then

(1.27) H = (1/2)[< v2 > + < u2 >]+ < Ω >= − < ∂ts >

For time independent V one has H = − < ∂ts >= E = const. and the FP
equation propagates a probability density |ψ|2 = ρ whose differential entropy S

may nontrivially evolve in time. Maintaining the previous derivations involving
(Ṡ)in one arrives at

(1.28) (Ṡ)in =
2
D

[
E −

(
1
2
F+ < Ω >

)]
≥ 0

One recalls (1/2)F = − < Q̃ > > 0 so E− < Ω >≥ (1/2)F > 0. Hence the
localization measure F has a definite upper bound and the pertinent wave packet
cannot be localized too sharply. Note also that F = 2(E− < Ω >)− < v2 > in
general evolves in time (here E is a constant and Ω̇ = 0). Using the hydrodynamical
conservation laws one sees that the dynamics of Fisher information follows the rules

(1.29)
dF

dt
= 2 < v∇Q̃ >;

1
2
Ḟ = − d

dt

[
1
2

< v2 > + < ω >

]
However Ḟ =

∫
v∇Pdx where P = D2ρ∆log(ρ) and one interprets Ḟ as the mea-

sure of power transfer - keeping intact an overall mean energy H = E . We refer
to [396] for much more discussion and examples. We have concentrated on topics
where the quantum potential appears in some form.

1.1. INFORMATION DYNAMICS. We go here to [173, 174, 175] and
consider the idea of introducing some kind of dynamics in a reasoning process
(Fisher information can apparently be linked to semantics - cf. [907, 970]). In
[173, 174] one looks at the Fisher metric defined by

(1.30) gµν =
∫

X

d4xpθ(x)
(

1
pθ(x)

∂pθ(x)
∂θµ

)(
1

pθ(x)

)(
∂pθ(x)
∂θν

)
and constructs a Riemannian geometry via

(1.31) Γσ
λν =

1
2
gνσ

(
∂gµν

∂θλ
+

∂gλν

∂θµ
− ∂gµλ

∂θν

)
;

Rλ
µνκ =

∂Γλ
µν

∂θκ
−

∂Γλ
µκ

∂θν
+ Γη

µνΓλ
κη − Γη

µκΓλ
νη

Then the Ricci tensor is Rµκ = Rλ
µλκ and the curvature scalar is R = gµκRµκ.

The dynamics associated with this metric can then be described via functionals

(1.32) J [gµν ] = − 1
16π

∫ √
g(θ)R(θ)d4θ

leading upon variation in gµν to equations

(1.33) Rµν(θ)− 1
2
gµν(θ)R(θ) = 0

Contracting with gµν gives then the Einstein equations Rµν(θ) = 0 (since R = 0).
J is also invariant under θ → θ + ε(θ) and variation here plus contraction leads
to a contracted Bianchi identity. Constraints can be built in by adding terms
(1/2)

∫ √
gTµνgµνd4θ to J [gµν ]. If one is fixed on a given probability distribution
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p(x) with variable θµ attached to give pθ(x) then this could conceivably describe
some gravitational metric based on quantum fluctuations for example. As exam-
ples a Euclidean metric is produced in 3-space via Gaussian p(x) and complex
Gaussians will give a Lorentz metric in 4-space. However it seems to be very re-
strictive to have a fixed p(x) as the basis; it would be nice if one could vary the
probability distribution in some more general manner and study the corresponding
Fisher metrics (and this seems eminently doable with a Fisher metric over a space
of probability distributions).

1.2. INFORMATION MEASURES FOR QM. We follow here [749]
and derive the SE within an information theoretic framework somewhat different
from the exact uncertainty principle of Hall and Reginatto (cf. Sections 1.1, 3.1,
and 4.7). Begin with a SE for N particles in d + 1 dimensions of the form i�ψt =
[−(�2/2m)gij∂i∂j + V ]ψ with gij = δij/m[i] where i, j = 1, · · · , dN and [i] is the
smallest integer ≥ i/d. Use the Madelung transformation ψ =

√
ρexp(iS/�) (cf.

[614]) to get
(1.34)

∂tS +
gij

2
∂iS∂jS + V − �2

8
gij

(
2∂i∂jρ

ρ
− ∂iρ∂jρ

ρ2

)
= 0; ∂tρ + gij∂i(ρ∂jS) = 0

These equations can be obtained from a variational principle, minimizing the ac-
tion

(1.35) Φ =
∫

ρ
[
∂tS +

gij

2
∂iS∂jS + V

]
dxNddt +

�2

8
IF ;

IF =
∫

dxNddtgijρ(∂ilog(ρ))(∂j log(ρ))

Here IF resembles the Fisher information of [369] whose inverse sets a lower bound
on the variance of the probabiliy distribution ρ via the Cramer-Rao inequaliity (see
Section 1.1). (1.35) was used to derive the SE through a procedure analogous to
the principle of maximum entropy in [807, 806] (cf. also Section 1.1). However
the method of [806] does not explain a priori the form of information measure that
should be used; i.e. why must the Fisher information be minimized rather than
something else. The aim of [749] is to construct permissible information measures
I. Thus the relevant action is

(1.36) A =
∫

ρ
[
∂tS +

gij

2
∂iS∂jkS + V

]
dxNddt + λI

with λ a Lagrange multiplier. Varying this action will lead in general to a nonlinear
SE

(1.37) i�∂tψ =
[
−�2

2
gij∂i∂j + V

]
ψ + F (ψ, ψ†)ψ

In order to have deformations of the linear theory that permit maximal preserva-
tion of the usual interpretation of the wave function one considers the following
conditions:

(1) I should be real valued and positive definite for all ρ = ψ†ψ and should
be independent of V.
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(2) I should be of the form I =
∫

dxNddtρH(ρ) where H is a function of
ρ(x, t) and its spatial derivatives. This will insure the weak superposition
principle in the equations of motion.

(3) H should be invariant under scaling, i.e. H(λρ) = H(ρ) which allows
solutions of (1.37) to be renormalized, etc.

(4) H should be separable for the case of two independent subsystems for
which the wave function factorizes, i.e. H(ρ1ρ2) = H(ρ1) + H(ρ2).

(5) H should be Galilean invariant.
(6) The action should not contain derivatives beyond second order (Absence

of higher order derivatives or AHD condition). This will insure that the
multiplier λ, and hence Planck’s constant, will be the only new parame-
ter that is required in making the transition from classical to quantum
mechanics.

The conditions 2-6 are already satisfied by the classical part of the action so it is
quite minimalist to require them also of I. The homogeneity requirement 3 cannot
be satisfied if H depends only on ρ; it must contain derivatives and the AHD and
rotational invariance conditions imply then that H = gij(U1∂iU2∂jU3 +V1∂i∂jV2)
where the Ui, Vi are functions of ρ. One can write then

(1.38) H = gij

(
∂iρ∂jρ

ρ2
[U1U

′
2U

′
3ρ

2 + V1V
′′
2 ρ2] +

∂i∂jρ

ρ
[V1V

′
2ρ]

)
where the prime denotes a derivative with respect to ρ. Scaling conditions plus
positivity and universality then lead to

(1.39) I =
∫

dtdxNdρgij
∂iρ∂jρ

ρ2

Consequently the unique solution of the conditions 1-6 is the Fisher information
measure and one arrives at the linear SE since the Lagrange multiplier must then
have the dimension of action2 thereby introducing the Planck constant. Note
condition 4 was not used but it will be useful below. Further one notes that the
AHD condition ensures that within the information theoretic approach the SE
is the unique single parameter extension of the classical HJ equations. One also
argues that a different choice of metric in the information term would in fact lead
back to the original gij after a nonlinear gauge transformation; this suggests that a
nonlinear SE is not automatically pathological. Further argument also shows that
I should not depend on S. The main difference between this and the Hall-Reginatto
method is to replace the exact uncertainly principle by condition 3.

1.3. PHASE TRANSITIONS. Referring here to [512] the introduction
of a metric onto the space of parameters in models in statistical mechanics gives
an alternative perspective on their phase structure. In fact the scalar curvature
R plays a central role where for a flat geometry R = 0 (noninteracting system)
while R diverges at the critical point of an interacting one. Thus models are
characterized by certain sets of parameters and given a probability distribution
p(x|θ) and a sample xi the object is to estimate the parameter θ. This can be
done by maximizing the so-called likelihood function L(θ) =

∏n
1 p(xi|θ) or its
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logarithm. Thus one writes
(1.40)

log(L(θ)) =
n∑
1

log(p(xi|θ)); U(θ) =
d log(L(θ))

dθ
; V ar[U(θ)] = −

[
−d2log(L(θ))

dθ2

]
The last term V ar[U(θ))] is called the expected or Fisher information and we note
that it is the same as (1.30) (see below) and in multidimensional form is expressed
via

(1.41) Gij(θ) = −E

[
∂2log(p(x|θ))

∂θi∂θj

]
= −

∫
p(x|θ)∂2log(p(x|θ))

∂θi∂θj
dx

In generic statistical-physics models one often has two parameters β (inverse tem-
perature) and h (external field); in this case the Fisher-Rao metric is given by
Gij = ∂i∂jf where f is the reduced free energy per site and this leads to a scalar
curvature

(1.42) R = − 1
2G2

∣∣∣∣∣∣
∂2

βf ∂β∂hf ∂2
hf

∂3
βf ∂2

β∂hf ∂β∂2
hf

∂2
β∂hf ∂β∂2

hf ∂3
hf

∣∣∣∣∣∣
where G = det(Gij). In some sense R measures the complexity of the system since
for R = 0 the system is not interacting and (in all known systems) the curvature
diverges at, and only at, a phase transition point. As an example under standard
scaling assumptions one can anticipate the behavior of R near a second order
critical point. Set t = 1− (β/βc) and consider

(1.43) f(β, h) = λ−1f(tλat , hλah) = t1/atψ(ht−ah/at); at =
1
νd

; ah =
βδ

νd

at, ah are the scaling dimensions for the energy and spin operators and d is the
space dimension. For the scalar curvature there results

(1.44) R = − 1
2G2

∣∣∣∣∣∣
t(1/at)−2 0 t(1/at)−2(ah/at)

t(1/at)−3 0 t(1/at)−2(ah/at)−1

0 t(1/at)−2(ah/at)−1 t(1/at)−3(ah/at)

∣∣∣∣∣∣ ;
G ∼ t(2/at)+2(ah/at)−2 ⇒ R ∼ ξd ∼ |β − βc|α−2

where hyperscaling (νd = 2 − α) is assumed and ξ is the correlation length. We
refer to [512] for more details, examples, and references.

1.4. FISHER INFORMATION AND HAMILTON’S EQUATIONS.
Going to [755] one shows that the mathematical form of the Fisher information
I for a Gibb’s canonical probability distribution incorporates important features
of the intrinsic structure of classical mechanics and has a universal form in terms
of forces and accelerations (i.e. one that is valid for all Hamiltonians of the form
T + V ). First one has shown that the Fisher information measure provides a
powerful variational principle, that of extreme information, which yields most of
the canonical Lagrangians of theoretical physics. In addition I provides an inter-
esting characterization of the “arrow of time”, alternative to the one associated
with the Boltzman entropy (cf. [776, 777]). Following [381, 384] one consid-
ers a (θ, z) “scenario” in which we deal with a system specified by a physical
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parameter θ while z is a stochastic variable (z ∈ RM ) and fθ(z) is a probabil-
ity density for z. One makes a measurement of z and has to infer θ, calling
the resulting estimate θ̃ = θ̃(z). Estimation theory states that the best possi-
ble estimator θ̃(z), after a large number of samples, suffers a mean-square error
e2 from θ that obeys a relationship involving Fisher’s I, namely Ie2 = 1, where
I(θ) =

∫
dzfθ(z)[∂log(fθ(z))/∂θ]2 (only unbiased estimators with < θ̃ >= θ are

in competition). The result here is that Ie2 ≥ 1 (Cramer-Rao bound). A case
of great importance here concerns shift invariant distribution functions where the
form does not change under θ displacements and one can write

(1.45) I =
∫

dzf(z)
(

∂log(f(z))
∂z

)2

If one is dealing with phase space where z is a M=2N dimensional vector with co-
ordinates r and p then I(z) = I(r)+I(p) (cf. [755]). Now assume that one wishes
to describe a classical system of N identical particles of mass m with Hamiltonian

(1.46) H = T + V =
N∑
1

p2
i

2m
+

N∑
1

V (ri)

This is a simple situation but the analysis is not limited to such systems. Assume
also that the system is in equilibrium at temperature T so that in the canonical
ensemble the probability density is

(1.47) ρ(r, p) =
e−βH(r,p)

Z
; Z =

∫
d3Nrd3Np

N !h3N
e−βH(r,p)

(here for h an elementary cell in phase space one writes dτ = d3Nrd3Np/(N !h3N ,
β = 1/kT with k the Boltzman constant, and Z is the partition function). Then
from Hamilton’s equations ∂pH = ṙ and ∂rH = −ṗ there results

(1.48) −kT
∂log(ρ(r, p))

∂p
= ṙ; −kT

∂log(ρ(r, p))
∂r

= −ṗ

One can now write the Fisher information measure in the form
(1.49)

Iτ =
∫

d3Nrd3Np

N !h3N
ρ(r, p)A(r, p); A = a

(
∂log(ρ(r, p))

∂p

)2

+ b

(
∂log(ρ(r, p))

∂r

)2

One needs two coefficients for dimensional balance (cf. [755]). One notes that

(1.50)
∂log(ρ(r, p))

∂p
= −β

∂H

∂p
;

∂log(ρ(r, p))
∂r

= −β
∂H

∂r

leading to the Fisher information in the form

(1.51) (kT )2Iτ = a

〈(
∂H

∂p

)2
〉

+ b

〈(
∂H

∂r

)2
〉
⇒ Iτ = β2[a < ṙ2 > +b < ṗ2 >]

This gives the universal Fisher form for any Hamiltonian of the form (1.46) and
we refer to [607] for connections to kinetic theory. Many other interesting results
on Fisher can be found in [381, 382, 755].
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1.5. UNCERTAINTY AND FLUCTUATIONS. We go first to [38] and
recall the idea of a phase space distribution in the form (♣) µ(p, q) =< z|ρ|z >
where ρ is the density matrix and |z > denotes coherent states (cf. [191, 757]
for coherent states). The chosen measure of uncertainty here is the Shannon
information

(1.52) I = −
∫

dpdq

2π�
µ(p, q)log(µ(p, q))

The uncertainty principle manifests itself via the inequality (♠) I ≥ 1 with equality
if and only if ρ is a coherent state (cf. [609, 987]). In [38] one wants to generalize
this to include the effects of thermal fluctuations in nonequilibrium systems and
we sketch some of the ideas at least for equilibrium systems. There are in general
three contributions to the uncertainty:

(1) The quantum mechanical uncertainty (quantum fluctuations) which is
not dependent on the dynamics.

(2) The uncertainty due to spreading or reassembly of the wave packet. This
is a dynamical effect and it may increase or decrease the uncertainty.

(3) The uncertainty due to the coupling to a thermal environment (diffusion
and dissipation).

The time evolution It of I is studied for nonequilibrium systems and it is shown
to generally settle down to monotone increase. Imin

t is a measure of the amount
of quantum and thermal noise the system must suffer after a nonunitary evolution
for time t (we do not deal with this here but refer to [38] for the nonequilibrium
situation where the system decomposes into a distinguished system S plus the
rest, referred to as the environment; the resulting time evolution of ρ is then
nonunitary). In any event the lower bound Imin

t includes the effects of 1 and 3
but avoids 2.

One recalls the Shannon information (discussed earlier)

(1.53) I(S) = −
N∑
1

pilog(pi); 0 ≤ I(S) ≤ log(N)

This is often referred to as entropy but here the word entropy is reserved for
the vonNeumann entropy. In a similar manner, for continuous distributions (X a
random variable with probability density p(x) and

∫
p(x)dx = 1), the information

of X is defined as

(1.54) I(X) = −
∫

dxp(x)log(p(x))

One emphasize that p(x) here is a density (so it may be greater that 1 and I(X)
may be negative). However it retains its utility as a measure of uncertainty and
e.g. for a Gaussian

(1.55) p(x) =
1

[2π(∆x)2]1/2
exp

(
− (x− x0)2

2(∆x)2

)
; I(X) = log

(
2πe(∆x)2

)1/2

Thus I(X) is unbounded from below and goes to −∞ as ∆x→ 0 and p(x) goes to
a delta function. I(X) is also unbounded from above but if the variance is fixed
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then I(X) is maximized by the Gaussian distribution (1.55). Hence one has

(1.56) I(X) ≤ log
(
2πe(∆x)2

)1/2

The generalization to more than one variable is straightforward, e.g.

(1.57) I(X,Y ) = −
∫

dxdyp(x, y)log(p(x, y)) ⇒ I(X,Y ) ≤ I(X) + I(Y )

where e.g. I(X) =
∫

dyp(x, y). It is useful to introduce QM phase space distribu-
tions of the form
(1.58)

µ(p, q) =< z|ρ|z >; < x|z >=< x|p, q >=
(

1
2πσ2

q

)1/4

exp

(
− (x− q)2

4σ2
q

+ ipx

)
Here < x|z > is a coherent state with σqσp = (1/2)� and there is a normalization∫

(dpdq/2π�)µ(p, q) = 1. One can also show that

(1.59) µ(p, q) = 2
∫

dp′dq′exp

(
− (p− p′)2

2σ2
p

− (q − q′)2

2σ2
q

)
Wρ(p′, q′);

Wρ(p, q) =
1

2π�

∫
dξe−(i/�)pξρ(q + (1/2)ξ, q − (1/2)ξ)

(Wigner function - cf. [191, 192]). One is interested in the extent to which
µ(p, q) is peaked about some region in phase space and the Shannon information
is a natural measure of the extent to which a probability distribution is peaked.
Thus one takes as a measure of uncertainty the information

(1.60) I(P,Q) = −
∫

dpdq

2π�
µ(p, q)log(µ(p, q))

One expects there to be a lower bound for I and it should be achieved on a coherent
state and this was in fact proved (cf. [609, 987]) in the form I(P,Q) ≥ 1 with
equality if and only if ρ is the density matrix of a coherent state |z′ >< z′|. Further

(1.61) log
( e

�
∆µq∆µp

)
≥ I(Q) + I(P ) ≥ I(P,Q)

The variances here have the form

(1.62) (∆µq)2 = (∆ρq)2 + σ2
q ; (∆µp)2 = (∆ρp)2 + σ2

p

where ∆ρ denotes the QM variance and hence

(1.63)
(
(∆ρq)2 + σ2

q

) (
(∆ρp)2 + σ2

p

)
≥ �2

Minimizing (1.63) over σq (and recalling that σqσp = (1/2)�) one obtains the
standard uncertainty relation ∆x∆p ≥ (�/2). Now suppose one has a genuinely
mixed state so that

(1.64) ρ =
∑

n

pn|n >< n|; pn < 1; µ(p, q) =
∑

pn| < z|n > |2
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The information of (1.64) will always satisfy I(P,Q) ≥ 1 but this is a very low
lower bound; indeed from the inequality

(1.65) −
(∫

dxf(x)g(x)
)

log

(∫
dyf(y)g(y)

)
≥ −

∫
dxg(x)g(x)log(x)

we have
(1.66)

I ≥ −
∫

dpdq

2π�

∑
n

| < z|n > |2pnlog(pn) = −
∑

pnlog(pn) = −Tr(ρlog(ρ)) ≡ S[ρ]

Thus I is bounded from below by the vonNeumann entropy S[ρ] and this is a virtue
of the chosen measure of uncertainty. One sees that I is a useful measure of both
quantum and thermal fluctuations. It has a lower bound expressing the effect of
quantum fluctuations which is connected to entropy and this in turn is a measure
of thermal fluctuations.

Consider now the situation of thermal equilibrium. Let the density matrix be
thermal, ρ = Z−1exp(−βH) where Z = Tr(e−βH) is the partition function and
β = 1/kT . Then

(1.67) < z|ρ|z >=
1
Z

∑
e−βEn | < z|n > |2

where |n > are energy eigenstates with eigenvalue En. For simplicity look at a
harmonic oscillator for which

(1.68) H =
1
2

(
p2

M
+ Mω2q2

)
; | < z|n > |2 =

|z|2n

n!
e−|z|2 ; En = �ω(n + (1/2))

Here z = (1/2)[(q/σq) + i(p/σp)] where σqσq = (1/2)� and σq = (�/2Mω)1/2 (cf.
[191, 559, 757] for coherent states). There results

(1.69) µ(q, p) =< z|ρ|z >=
(
1− e−β�ω

)
exp

(
−(1− e−β�ω)|z|2

)
The information (1.60) is then (•) I = 1 − log(1 − e−β�ω) which is exactly what
one expects; as T → 0 one has β → ∞ and the uncertainty reduces to the Lieb-
Wehrl result I(P,Q) ≥ 1 expressing purely quantum fluctuations. For nonzero
temperature however the uncertainty is larger tending to the value −log(β�ω) as
T → ∞ which expresses purely thermal fluctuations. It is interesting to compare
(•) with the entropy S = −Tr(ρlog(ρ)). Here the partition function is Z =
[2Sinh((1/2)β�ω)]−1 and the entropy is then S = −β(∂β(log(Z)) + log(Z) or

(1.70) S = −log[2Sinh((1/2)β�ω)] + (1/2)β�ωCoth[(1/2)β�ω]

For large T one has then S 
 −log(β�ω) coinciding with I but S → 0 as T → 0
while I goes to a nontrivial lower bound. Hence one sees that I is a useful measure
of uncertainty in both the quantum and thermal regimes. We refer also to [4]
where an information theoretic uncertainty relation including the effects of thermal
fluctuations at thermal equilibrium has been derived using thermofield dynamics
(cf. [950]); their information theoretic measure is however different than that in
[38]. On goes next to non-equilibrium systems and proves for linear systems that,
for each t, I has a lower bound Imin

t over all possible initial states. It coincides
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with the Lieb-Wehrl bound in the absence of an environment and is related to the
vonNeumann entropy in the long time limit. We refer to [38] for details.

2. A TOUCH OF CHAOS

For quantum chaos we refer to [33, 96, 97, 185, 218, 282, 359, 435, 484,
491, 517, 518, 584, 659, 747, 787, 936] and begin here with [747]. Chaos
is quantitatively measured by the Lyapunov spectrum of characteristic exponents
which represent the principal rates of orbit divergence in phase space, or alter-
natively by the Kolmogorov-Sinai (KS) invariant, which quantifies the rate of
information production by the dynamical system. Chaos is conspicuously absent
in finite quantum systems but the chaotic nature of a given classical Hamiltonian
produces certain characteristic features in the dynamical behavior of its quantized
version; these features are referred to as quantum chaos (cf. [218, 435]). They in-
clude short term instabilities and diffusive behavior versus dynamical localization
and other effects. One is concerned here with an approach to the information dy-
namics of the quantum-classical transition based on the HJ formalism with the KS
invariant playing a central role. The extension to the quantum domain is accom-
plished via the orbits introduced by Madelung and Bohm (cf. [129, 614]); these
are natural extensions of the classical phase space flow to QM and provide the
required bridge across the transition. One striking result is that the quantum KS
invariant for a given Madelung-Bohm (MB) orbit is equal to the mean decay rate
of the probability density along the orbit. Further one shows that the quantum
KS invariant averaged over the ensemble of MB orbits equals the mean growth
rate of configuration space information and a general and rigorous argument is
given for the conjecture that the standard quantum-classical correspondence (or
the classical limit) breaks down for classically chaotic Hamiltonians.

We give only a sketch of results here. Thus consider a classical system of N
degrees of freedom described by canonical variables (qi, pi) with 1 ≤ i ≤ N and
denote the Hamiltonian as H(q,p, t) with Hamilton principal function S(q, t,p0)
where p0 being the initial momenta. In matrix form Hamilton’s equations are
ξ̇ = J∇ξH(ξ, t) where ξ stands for the 2N dimensional phase space vector (q,p).
Here J is a real antisymmetric matrix of order 2N with a 2 ⊗ N block form
(0N , IN ,−IN , 0N ) which is a listing of blocks in the order (11, 12, 21, 22). The
tangent dynamics of the system is described by the 2N × 2N nonsingular matrix
Tµν(t, ξ0) = ∂ξµ(t, ξ0)/∂ξ0ν (the sensitivity matrix) where ξ(t, ξ0) is the trajectory
starting from ξ0 at time t0. One can in fact write (S̃ ≡ ST - matrix transpose)

(2.1) T = (S−1
p0q,−Sp0qSp0p0 , SqqS−1

p0q, S̃p0q − SqqS−1
p0qSp0p0)

where (Sp0q)ij = ∂2S/∂qj
∂p0i. It is shown that one can write T in an upper trian-

gular block form Γ = Ω(Θ)T where Ω(Θ) = (cos(Θ),−Sin(Θ), Sin(Θ), Cos(Θ))
and −σ = Tan(Θ) = −Sqq. Here Θ is a real symmetric matrix of order N while
Ω is orthogonal and symplectic (symplectic phase matrix). The upper triangular
form (Γ11,Γ12, 0N ,Γ22) of Γ satisfies Γ−1

11 = Γ̃22 and the upper half of the Lyapunov
spectrum is obtained from the singular values of Γ11 (see [747]). In particular the
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Kolmogorov-Sinai (KS) entropy is given via

(2.2) k = limt→∞log[det(Γ11)]/t

For illustration consider the standard form H = p2/2+V (q, t) with N-dimensional
vectors q, p. Then

(2.3) k =< Tr(σ) >p.v.; < f >= limt→∞
1
t

∫ t

0

f(t′)dt′

where p.v. stipulates a principal value evaluation (σ will have simple pole behavior
near singularities and the principal value contribution vanishes). Since Tr(σ) =
∇2

qS along the orbit (2.3) simply states that the KS invariant equals the time
average of the Laplacian of the action along the orbit. Now the MB formalism
associates a phase space flow with a quantum system via

(2.4) ψ = exp[iS(x, t)/� + R(x, t)]; q̇(t,q0,p0) = p = ∇S[q, t]

It can be verified that the expectation value of any observable in the state ψ is
given by its average over the ensemble of orbits thus defined (e.g. Ehrenfest’s
equations arise in this manner). The correspondence thus allows us to define the
quantum KS invariant for a given orbit as

(2.5) k =< ∇2S >p.v.

(the averaging process is with respect to the time along the MB orbit to which S
is restricted). Now intuitively one would expect that orbits neighboring a hypo-
thetical chaotic orbit in the ensemble diverge from it on the average thus causing
the orbit density along the chaotic orbit to decrease with a mean rate related to
k. This is fully realized here as one sees by considering the equation of motion for
R(x, t) as inherited from the SE, namely ∂tR+∇R ·∇S = −(1/2)∇2S. The char-
acteristic curves for this equation are the MB orbits so that it takes the following
form along these orbits;

(2.6)
dR

dt
= −1

2
∇2S ⇒ k = −2

〈
dR

dt

〉
= −

〈
d log(|ψ|2)

dt

〉
p.v.

This says that the quantum KS invariant for a given orbit is the mean decay rate
of the probability density along the orbit. Comparing this to a classical system
where k �= 0 while k = 0 for the quantum version one sees that the classical limit
cannot hold for chaotic Hamiltonians and since chaotic classical Hamiltonians are
certainly more common than regular ones the idea of classical limit is not a reliable
test for quantum systems. Finally let k̄ be the MB ensemble average, which is the
same as the QM expectation value, leading to

(2.7) k̄ = limt→∞
1
t

∫
dq|ψ|2log(|ψ|2)

which is an information entropy measure. The discussion here is very incomplete
but should motivate further investigation and we refer to [747] for more detail (cf.
also [976, 977] involving chaos, fractals, and entropy.
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2.1. CHAOS AND THE QUANTUM POTENTIAL. The paper [745]
offers an interesting perspective on the quantum potential. Thus consider a system
of n particles with the SE

(2.8) i�∂tψ =

[
n∑
1

(
−�2

2mi

)
∇2

i + V

]
ψ; ∇i =

(
∂

∂xi
,

∂

∂yi
,

∂

∂zi

)
(here xi = (xi, yi, zi)). Set ψ = Rexp[i(S/�)] and there results as usual

(2.9) ∂tS +
n∑
1

(∇iS)2(2mi)−1 + Q + V = 0; ∂tR
2 +

n∑
1

∇i ·
(

R2∇iS

mi

)
= 0

where Q = −
∑n

1 (�2/2miR)∇2
i R. Now just as the causal form of the HJ equation

contains the additional term Q so the causal form of Newton’s second law contains
Q as follows

(2.10) Ṗi = −∇iV −∇iQ; P =
n∑
1

Pi; Ṗ =
dP

dt
= −

n∑
1

∇iV −
n∑
1

∇iQ

The author cites a number of curious and conflicting statements in the litera-
ture concerning the effect of the quantum potential on Bohmian trajectories, for
clarification of which he observes that for an isolated system one has

(2.11) −
∑

∇iV = 0; Ṗ = 0; −
∑

∇iQ = −
∑

Fi = 0

Thus the sum of all the quantum forces is zero so Fi =
∑n

j �=i(−Fj). Thus the net
quantum force on a given particle is the result of all the other particles exerting
force on this particle via the intermediary of the quantum potential. This then is
his explanation for the guidance role of the wave function.

Next it is noted that removing Q from the HJ equation is equivalent to adding
the term

(2.12)
(

�2

2m

)
exp(iS/�)∇2R =

(
�2

2m

)
|ψ|−1ψ∇2|ψ| = −Qψ

to the SE so that the effective Hamiltonian becomes

(2.13) Heff = −
(

�2

2m

)
∇2 + V +

(
�2

2m

)
|ψ|−1∇2|ψ|

Since Heff = Heff (ψ) depends on ψ the superposition principle no longer applies.
When φ �= ψ we have

(2.14)
∫

(φ∗Heffψ−ψHeffφ∗)dτ =
(

�2

2m

)∫
φ∗ψ[|ψ|−1∇2|ψ|−|φ|−1∇2|φ|] �= 0

so Heff is not Hermitian. Hence the time development operator exp[(i/�)Heff t]
is not unitary and the time dependent SE is a nonunitary flow. Then since
i�∂t(ψ∗ψ) = ψ∗Heffψ − ψHeffψ∗ one has

(2.15) ∂t

∫
|ψ − φ|2dτ =

(
�2

2m

)∫
i[ψ∗φ− φ∗ψ][|ψ|−1∇2|ψ| − |φ|−1|φ|]dτ �= 0
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Consider then the case where two initial conditions for the time dependent SE
differ only infinitesimally. As time progresses the two corresponding wave func-
tions can become quite different, indicating the possibity of deterministic chaos,
and this is a consequence of Heff being a functional of the state upon which it is
acting. If the term (�2/2m)|ψ|−1∇2|ψ| is removed from (2.13) one is left with a
Hermitian Hamiltonian and the normalization of (ψ − φ) is time independent, so
there can be no deterministic chaos. Thus in particular Q acts as a constraining
force preventing deterministic chaos (cf. also [623]).

There are many different aspects of quantum chaos and
the perspective of [?] just mentioned does not deal with everything covered in
the references already cited (cf. also [633, 983, 1000, 1001] for additional ref-
erencers). We are not expert enough to attempt any kind of in depth coverage
but extract here briefly from a few papers. First from [1000] one notes that the
dBB theory of quantum motion provides motion in deterministic orbits under the
influence of the quantum potential. This quantum potential can be very intricate
because it generates wave interferences and further numerical work has shown the
presence of chaos and complex behavior of quantum trajectories in various systems
(cf. [746]). In [1000] one indicates that movement of the zeros of the wave func-
tion (called vortices) implies chaos in the dynamics of quantum trajectories. These
vortices result from wave function interferences and have no classical explanation.
In systems without magnetic fields the bulk vorticity ∇ × v in the probability
fluid is determined by points where the phase S is singular (which can occur when
the wave function vanishes). Due to singlevaluedness of the wave function the
circulation Γ =

∫
C

ṙdr = (2πn/m) around a closed contour C encircling a vortex
is quantized with n an integer and the velocity must diverge as one approaches a
vortex. This leads to a universal mechanism producing chaotic behavior of quan-
tum trajectories (cf. also [746, 1001]).

Next in [983] one speaks of the edge of quantum chaos (the border between
chaotic and non-chaotic regions) where the Lyapunov exponent goes to zero; it is
then replaced by a generalized Lyapunov coefficient describing power-law rather
than exponential divergence of classical trajectories. In [983] one characterizes
quantum chaos by comparing the evolution of an initially chosen state under the
chaotic dynamics with the same state evolved under a perturbed dynamics (cf.
[761]). When the initial state is in a regular region of a mixed system (one with
regular and chaotic regions) the overlap remains close to one; however when the
initial state is in a chaotic zone the overlap decay is exponential. It is shown that
at the edge of quantum chaos there is a region of polynomial overlap decay. Here
the overlap is defined as O(t) = | < ψu(t)|ψp(t) > | where ψuis the state evolved
under the unperturbed system operator and ψp is the state evolved under the per-
turbed operator.

In various papers (e.g. [185, 484, 485, 517, 518, 584]) one characterizes

REMARK 6.2.1.



256 6. INFORMATION AND ENTROPY

quantum chaos via the quantum action. This is defined via

(2.16) S̃[x] =
∫

dt
m̃

2
ẋ2 − Ṽ (x)

for a given classical action

(2.17) S[x] =
∫

dt
m

2
ẋ2 − V (x)

so that the QM transition amplitude is

(2.18) G(xf , tf ;xi, ti) = Z̃exp

[
i

�
Σ̃
∣∣∣+ xi, ti

xf ,tf

]
;

Σ̃
∣∣∣xf ,tf

xi,ti

= S̃[x̃cl]
∣∣∣xf ,tf

xi,ti

=
∫ tf

ti

dt
m̃

2
˙̃x2
cl − Ṽ )x̃cl)

∣∣∣+ xi
xf

where x̃cl is the classical path corresponding to the action S̃. One requires here 2-
point boundary conditions x̃cl(t = ti) = xi and x̃cl(t = tf ) = xf and Z̃ stands for
a dimensionful normalisation factor. The parameters of the quantum action (i.e.
mass and potential) are independent of the boundary points but depend on the
transition time T = tf − ti. A general existence proof is lacking but such quantum
actions exist in many interesting cases. Then quantum chaos is defined as follows.
Given a classical system with action S the corresponding quantum system displays
quantum chaos if the corresponding quantum action S̃ in the asymptotic regime
T →∞ generates a chaotic phase space.

3. GENERALIZED THERMOSTATISTICS

We refer to [38, 262, 382, 384, 694, 696, 755, 778, 779] for discussion
of various entropies based on deformed exponential functions (generalizations of
the Boltzman-Gibbs formalism for equilibrium statistical physics), the entropies
of Beck-Cohen, Kaniadakis, Renyi, Tsallis, etc., maximum entropy ideas, escort
density operators, and a host of other matters in generalized theormstatistics. We
sketch here first a few ideas following the third paper in [694]. Thus a model of
thermostatistics is described by a density of states ρ(E) and a probability distri-
bution p(E) and for a system in thermal equilibrium at temperature T one has

(3.1) p(E) =
1

Z(T )
e−E/T ; Z(T ) =

∫
dEρ(E)e−E/T

(Boltzman’s constant is set equal to one here). Thermal averages are defined
via < f >=

∫
dEρ(E)p(E)f(E) (this is a simplified treatment with T not made

explicit - i.e. p(E) ∼ p(E, T )). A microscopic model of thermostatistics is specified
via an energy functional H(γ) over phase space Γ which is the set of all possible
microstates. Using ρ(E)dE = dγ one can write

(3.2) < f >=
∫

Γ

dγp(γ)f(γ); p(γ) =
e−H(γ)/T )

Z(T )
; Z(T ) =

∫
Γ

dγe−H(γ)/T )

In the quantum case the integration is replaced by a trace to obtain

(3.3) < f >=
1

Z(T )
Tr exp(−H/T )f ; Z(T ) = Tr exp(−H/T )
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In relevant examples of thermostatistics the density of states ρ(E) increases as
a power law ρ(E) ∼ EαN with N the number of particles and α > 0. There is
an energy - entropy balance where the increase of density of states ρ(E) compen-
sates for the exponential decrease of probability density p(E) with a maximum of
ρ(E)p(E) reached at some macroscopic energy far above the ground state energy.
One can write ρ(E)p(E) = (1/Z)exp(log(ρ(E))− E/T ) with the argument of the
exponential maximal when E satisfies

(3.4)
1

ρ(E)
ρ′(E) =

1
T

where ρ′(E) is the derivative dρ/dE. If ρ(E) ∼ EαN then E ∼ αNT follows which
is the equipartition theorem. The form of the theory here indicaters that the actual
form of the probability distribution is not very essential; alternative expressions for
p(E) are acceptable provided they satisfy the equipartition theorem and reproduce
thermodynamics. One begins here by generalizing the equipartition result (3.4)
and postulates the existence of an increasing positive function φ(x) defined for
x ≥ 0 such that (•) (1/T ) = −[p′(E)/φ(p(E))] holds for all E and T. Then the
equation for the maximum of ρ(E)p(E) becomes

(3.5) 0 =
d

dE
[ρ(E)p(E)] = ρ′(E)p(E)− 1

T
ρ(E)φ(p(E)) ≡ ρ′(E)

ρ(E)
=

1
T

φ(p(E))
p(E)

The Boltzman-Gibbs case is recovered when φ(x) = x. Now (•) fixes the form of
the probability distribution p(E); to see this introduce a function logφ(x) via

(3.6) logφ(x) =
∫ x

1

1
φ(y)

dy

The inverse is expφ(x) and from the identity 1 = exp′φ(logφ(x))log′φ(x) there results
(�) φ(x) = exp′φ(logφ(x)). Hence (•) can be written as

(3.7) p′(E) = − 1
T

exp′φ[logφ(p(E))] ⇒ p(E) = expφ(Gφ(T )− (E/T ))

The function Gφ(T ) is the integration constant and it must be chosen so that
1 =

∫
dEρ(E)p(E) is satisfied. The formula (3.7) resembles the Boltzman-Gibbs

distribution but the normalization constant appears inside the function expφ(x);
for φ(x) = x one has then Gφ(T ) = −log(Z(T )).

In general it is difficult to determine Gφ(T ) but an expression for its temper-
ature derivative can be obtained via escort probabilities (cf. [146, 943]). The
general definition is

(3.8) P (E) =
1

Z(T )
φ(p(E)); Z(T ) =

∫
dEρ(E)φ(p(E))

Then expectation values for P (E) are denoted by

(3.9) < f >∗=
∫

dEρ(E)P (E)f(E)
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Note P (E) = p(E) in the Boltzman-Gibbs case φ(x) = x. Now calculate using
(�) and (3.8) to get

(3.10)
d

dT
p(E) = exp′φ(Gφ(T )− (E/T ))

(
d

dT
Gφ(T ) +

E

T 2

)
=

= Z(T )P (E)
(

d

dT
Gφ(T ) +

E

T 2

)
from which follows (recall

∫
dEρ(E)p(E) = 1)

(3.11) 0 =
∫

dEρ(E)
d

dT
p(E) = Z(T )

d

dT
Gφ(T ) +

1
T 2

Z(T ) < E >∗⇒

⇒ d

dT
Gφ(T ) = − 1

T 2
< E >∗

Note also that combining (3.10) and (3.11) one obtains

(3.12)
d

dT
p(E) =

1
T 2

Z(T )P (E)(E− < E >∗)

One wants now to show that generalized thermodynamics is compatible with
thermodynamics begins by establishing thermal stability. Internal energy U(T ) is
defined via U(T ) =< E > with p(E) given by (3.7), so using (3.12) one obtains
(3.13)

d

dT
U(T ) =

∫
dEρ(E)E

d

dT
p(E) =

∫
dEρ(E)

E

T 2
Z(T )P (E)(E− < E >∗) =

=
1

T 2
Z(T )(< E2 >∗ − < E >2

∗) ≥ 0

Hence average energy is an increasing function of T but thermal stability requires
more so define φ entropy (relative to ρ(E)dE via

(3.14) Sφ(p) =
∫

dEρ(E)[(1− p(E))Fφ(0)− Fφ(p(E))]; Fφ(x) =
∫ x

1

dylogφ(y)

One postulates that thermodynamic entropy S(T ) equals the value of the above
entropy Sφ(p) with p given by (3.7). Then

(3.15)
d

dT
S(T ) =

∫
dEρ(E)(−logφ(p(E))− Fφ(0))

d

dT
p(E) =

=
∫

dEρ(E)
(
−Gφ(T ) +

E

T
− Fφ(0)

)
d

dT
p(E) =

1
T

d

dT
U(T )

(recall that p(E) is normalized to 1). This shows that temperature T satisfies the
thermodynamic relation (1/T ) = dS/dU and since E is an increasing function of
T one concludes that S is a concave function of U; this is called thermal stability.
One can also introduce the Helmholz free energy F (T ) via the well known F (T ) =
U(T )− TS(T ) so from (3.15) it follows that

(3.16)
d

dβ
βF (T ) = U(T ) (β = 1/T )

Going back to (3.11) which is similar to (3.16) with F (T ) replaced by TGφ(T )
and with U(T ) =< E > replaced by < E >∗ the comparison shows that TGφ(T )
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is the free energy associated with the escort probability distribution P (E) up to a
constant independent of T.

The most obvious generalization now involves φ(x) = xq with q > 0 and this
essentially produces the Tsallis entropy where one has

(3.17) logq(x) =
∫ x

1

dyy−q =
1

1− q
(x1−q − 1); expq(x) = [1 + (1− q)x]1/(1−q)

+

(cf. [?]). The probability distribution (3.17) becomes
(3.18)

p(E) = [1 + (1− q)(Gq(T )− (E/T ))]1/(1−q)
+ =

1
zq(T )

[1− (1− q)β∗
q (T )E]1/(1−q)

+

zq(T ) = (1 + (1− q)Gq(T ))1/(1−q); β∗
q (T ) = zq(T )1−q/T

A nice feature of the Tsallis theory is that the correspondence between p(E) and
the escort P (E) leads to a dual structure q ↔ 1/q; indeed

(3.19) P (E) =
1

Zq(T )
p(E)q ⇒ p(E) =

1
Z1/q(T )

P (E)1/q

Moreover there is also a q − 2 ↔ q duality; given logφ(x) a new deformed logψ(x)
is obtained via

(3.20) logψ(x) = (x−1)Fφ(0)−xFφ(1/x);
1

ψ(x)
= Fφ(0)−Fφ(1/x)+

1
x

logφ(1/x)

and for φ = xq one has ψ = (2− q)x2−q. One notes also that the definition (3.14)
of entropy Sφ(p) can be written as

(3.21) Sφ(p) =
∫

dEρ(E)p(E)logψ(1/p(E))

and with ψ(x) = xq

(3.22) Sq(p) =
∫

dEρ(E)
1

1− q
(p(E)q − p(E))

3.1. NONEXTENSIVE STATISTICAL THERMODYNAMICS. We
go here to [944] for an lovely introduction and extract liberally. The Boltzman-
Gibbs entropy is given via

(3.23) SBG = −k

W∑
1

pilog(pi);
W∑
1

pi = 1

Here pi is the probability for the system to be in the ith microstate and k is the
Boltzman constant kB (taken now to be 1). If every microstate has the same
probability pi = 1/W then SBG = klog(W ). The entropy (3.23) can be shown
to be nonnegative, concave, extensive, and stable (or experimentally robust). By
extensive one means that if A and B are two independent systems (i.e. pA+B

ij =
pA

i pB
j ) then

(3.24) SBG(A + B) = SBG(A) + SBG(B)

we get the Tsallis entropy(cf. also [1025, 1027])
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One can still not derive this form of entropy (3.23) from first principles. There is
also good reason to conclude that physical entropies different from (3.23) would
be more appropriate for anomalous systems. In this spirit the Tsallis entropy
was proposed in [945] and the property thereby generalized is extensivity. One
discusses motivations etc. in [841] and in particular observes that the function

(3.25) y =
x1−q − 1

1− q
= logq(x)

satisfies

(3.26) logq(xAxB) = logq(xA) + logq(XB) + (1− q)(logq(XA))(logq(XB))

Now rewrite (3.23) in the form (k = 1)

(3.27) SBG = −
W∑
1

pilog(pi) =
W∑
1

pilog(1/pi) =
〈

log
1
pi

〉
The quantity log(1/pi) is called surprise or unexpectedness and one thinks of a
q-surprise logq(1/pi) in defining

(3.28) Sq =
〈

logq
1
pi

〉
=

W∑
1

pilogq(1/pi) =
1−

∑W
1 pq

i

q − 1

In the limit q → 1 one gets S1 = SBG and assuming equiprobability pi = 1/W
one gets

(3.29) Sq =
W 1−q − 1

1− q
= logq(W )

Consequently Sq is a genuine generalization of the BG entropy and the pseudo-
additivity of the q-logarithm implies (restoring momentarily k)

(3.30)
Sq(A + B)

k
=

Sq(A)
k

+
Sq(B)

k
+ (1− q)

Sq(A)
k

Sq(B)
k

if A and B are two independent systems (i.e. pA+B
ij = pA

i pB
j ). Thus q = 1, q < 1,

and q > 1 respectively correspond to the extensive, superextensive, and subex-
tensive cases and the q-generalization of statistical mechanics is referred to as
nonextensive statistical mechanics. (3.30) is true for independent A and B but
if A and B are correlated in some way one can ask if extensivity would hold for
some q. For example a system whose elements are correlated at at scales might
correspond to W (N) ∼ Nρ ρ > 0 with entropy

(3.31) Sq(N) = logqW (N) ∼ Nρ(1−q) − 1
1− q

and extensivity is obtained if and only if q = 1 − (1/ρ) < 1 or Sq(N) ∝ N .
Shannon and Khinchin gave early similar sets of axioms for the form of the entropy
functional, both leading to (3.23). These were generalized in [5, 781, 780, 843]
leading to the entropy

(3.32) S(p1, · · · , pW ) = k
1−

∑W
1 pq

i

q − 1
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and it was shown that Sq is the only possible entropy extending the Boltzman-
Gibbs entropy maintaining all the basic properties except extensivity for q �= 1.

Some other properties are also discussed, e.g. bias, concavity, and stability.
First note

(3.33) SBG = −
[

d

dx

W∑
1

px
i

]
x=1

(x here is referred to as a bias). Similarly

(3.34) Sq = −
[
Dq

W∑
1

px
i

]
x=1

; Dqh(x) =
h(qx)− h(x)

qx− 1

(Jackson derivative) and this may open the door to quantum groups (see e.g.
[192]). As for concavity consider for p′′i = µpi + (1 − µ)p′i (0 < µ < 1) concavity
defined via

(3.35) S({p′′i }) ≥ µS({pi}) + (1− µ)S({p′i})
It can be shown that Sq is concave for every {pi} and q > 0. This implies the-
ormdynamic stability in the framework of statistical mechanics (i.e. stability of
the system with regard to energetic perturbations). This means that the entropy
functional is defined such that the stationary state (thermodynamic equilibrium)
makes it extreme.

There are also other generalizations of the BG entropy and we mention the
Renyi entropy

(3.36) SR
q =

log
∑W

1 pq
i

1− q
=

log[1 + (1− q)Sq]
1− q

and an entropy due to Landsberg, Vedral, Rajagopal, Abe defined via

(3.37) SN
q = SLV RA

q =
1− 1∑W

1 pq
i

1− q
=

Sq

1 + (1− q)Sq

These are however not concave nor experimentally robust and seem unsuited for
thermodynamical purposes; on the other hand Renyi entropy seems useful for
geometrically characterizing multifractals.

Various connections of Sq to thermodynamics are indicated in [944] and we
mention here first the Legendre structure. Thus for all values of q

(3.38)
1
T

=
∂Sq

∂Uq
; T =

1
kβ

; Uq = − ∂

∂β
logqZq;

logqZq =
Z1−q

q − 1
1− q

=
Z̄1−q − 1

1− q
− βUq; Fq = Uq − TSq = − 1

β
logqZq

Here Uq ∼ internal energy and Fq ∼ free energy and the specific heat is

(3.39) Cq = T
∂Sq

∂T
=

∂Uq

∂T
= −T

∂2Fq

∂T 2
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Finally a list of other properties follows supporting the thesis that Sq is a correct
road for generalizing the BG theory (see [944] for details and references); we
mention a few here via

(1) Boltzmann H-theorem (macroscopic time irreversibility) q(dSq/dt) ≥
0 (∀q)

(2) Ehrenfest theorem: For an observable Ô and a Hamiltonian Ĥ one has
d < Ô >q /dt = (i/�) < [Ĥ, Ô >q (∀q)

(3) Pesin theorem (connection between sensitivity to initial conditions and
the entropy production per unit time). Define the q-generalized Kolmogorov-
Sinai entropy as

(3.40) Kq = limt→∞limW→∞limN→∞
< Sq > (t)

t

where N is the number of initial conditions, W is the number of windows
in the partition (fine graining), and t is discrete time (cf. also [593]).
The q-generalized Lyapunov coefficient λq can be defined via sensitivity
to initial conditions

(3.41) ξ = lim∆x(0)→0
∆x(t)
∆x(0)

= eλqt
q

(focusing on a 1-D system, basically x(t+1) = g(x(t)) with g nonlinear).
It was proved in [73] that for unimodal maps Kq = λq if λq > 0 and
Kq = 0 otherwise. More explicitly K1 = λ1 if λ1 ≥ 0 (and K1 = 0
if λ1 < 0). But if λ1 = 0 then there is a special value of q such that
Kq = λq if λq ≥ 0 (and Kq = 0 if λq < 0).

We refer also to [30, 31, 785, 636] for other results and approaches to thermo-
dynamics, temperature, fluctuations, etc. in generalized thermostatistics and to
[595] for relativistic nonextensive thermodynamics.

4. FISHER PHYSICS

The book [381] purports (with notable success) to unify several subdisciplines
of physics via Fisher information and this theme appears also in many papers, e.g.
[217, 262, 239, 382, 383, 384, 385, 660, 755, 776, 777, 778, 779, 780, 781,
949]. We sketch some of this here and note in passing an interesting classical-
quantum trajectory in [386] which differs from a Bohmian trajectory (cf. also
[93, 269, 376, 579, 629, 812, 999]). First let us sketch some summary items
from [381] and then provide some details. Thus in Chapter 12 of [381] Frieden
lists (among other things) the following items:

(1) Writing p = q2 in the standard formulas one can express the Fisher
information as I = 4

∫
dx(dq/dx)2 with q a real probability amplitude for

fluctuations in measurement. Under suitable conditions (see below) the
information I obeys an I-theorem dI/dt ≤ 0. In the same spirit by which
a positive increment in therodynamic time corresponds to an increase in
Boltzman entropy there is a positive increment in Fisher time defined by
a decrease in information I (the two times do not always agree). Let θ be
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the measured phenomenon and define the Fisher temperature Tθ via

(4.1)
1
Tθ

= −kθ
∂I

∂θ
(kθ = const.)

When θ is taken to be the sysem energy E then the Fisher temperature
has analogous properties to the ordinary Boltzman temperature, in par-
ticular there is a perfect gas law p̄V = kETEI where p̄ is the pressure.
The I theorem can be extended to a multiparameter, multicomponent
scenario with

(4.2) I = 4
∫

dx
∑

n

∇qn · ∇qn

(2) Any measurement of physical parameters initiates a transformation of
Fisher information J → I connecting the phenomenon with the “intrin-
sic data”. The phenomenological or “bound” information is denoted by
J and the acquired information is I; J is ultimately identified by an in-
variance principle that characterizes the measured phenomenon. In any
exchange of information one must δJ = δI (conservation law) and for
K = I − J one arrives at a variational principle (extreme physical infor-
mation or EPI) K = I − J = extremum. Since J ≥ I always the EPI
zero principle involves I − κJ = 0 (0 ≤ κ ≤ 1). These equations follow
(independently of the axiomatic approach taken and of the I-theorem) if
there is e.g. a unitary transformation connecting the measurement space
with a physically meaningful conjugate space. In this manner one arrives
at the Lagrangian approach to physics, often using the Fourier transform
to connect I and J. This seems a little mystical at first but many convinc-
ing examples are given involving the SE, wave equations, KG equation,
Dirac equation, Maxwell equations, Einstein equations, WDW equation,
etc.

There is much more summary material in [381] which we omit here. A certain
amount of metaphysical thinking seems necessary and Frieden remarks that John
Wheeler (cf. [988]) anticipated a lot of this in his remarks that “All things physical
are information-theoretic in origin and this is a participatory universe....Observer
participancy gives rise to information and information gives rise to physics.” Going
now to [381] recall I =

∫
dx[(p′)2/p] = 4

∫
dx(q′)2 for p = q2 and one derives the

inequality e2I ≥ 1 as follows. Look at estimators θ̂ satisfying

(4.3) < θ̂(y)− θ >=
∫

dy[θ̂(y)− θ]p(y|θ) = 0

where p(y|θ) describes fluctuations in data values y. Hence

(4.4)
∫

dy(θ̂ − θ)
∂p

∂θ
−
∫

dyp = 0
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Use now ∂θp = p(∂log(p)/∂θ) and normalization to get
∫

dy(θ̂−θ)(∂log(p)/∂θ)p =
1 which becomes
(4.5)∫

dy

[
∂log(p)

∂θ

√
p

]
[(θ̂ − θ)

√
p] = 1⇒

[∫
dy

(
∂log(p)

∂θ

)2

p

] [∫
dy(θ̂ − θ)2p

]
≥ 1

For e2 =
∫

dy(θ̂− θ)2p this gives immediately e2I ≥ 1. One notes that if p(y|θ) =
p(y−θ) then I is simply I =

∫
dx(∂log(p(x))/∂x)2p(x) where x ∼ y−θ. We recall

also the Shannon entropy as H = −
∫

dxp(x)log(p(x)) and the Kullback-Leibler
entropy is defined as

(4.6) G = −
∫

dxp(x)log
p(x)
r(x)

where r(x) is a reference probability distribution function (PDF). Consider now a
discrete form of Fisher information
(4.7)

I = (∆x)−1
∑

n

[p(xn+1)− p(xn)]2

p(xn)
= (∆x)−1

∑
n

p(xn)
[
p(xn + ∆x)

p(xn)
− 1

]2

Here p(xn+∆x)/p(xn)is close to 1 for ∆x small and one writes [p(xn+∆x)/p(xn)]−
1 = ν. Then log(1 + ν) ∼ ν − (ν2/2) or ν2 = 2[ν − log(1 + ν)]. Hence I becomes

(4.8) I = −2(∆x)−1
∑

n

p(xn)log
p(xn + ∆x)

p(xn)
+

2(∆x)−1
∑

n

p(xn + ∆x)− 2(∆x)−1
∑

n

p(xn)

But each of the last two terms is (∆x)−1 by normalization so they cancel leaving

(4.9) I = − 2
∆x

∑
p(xn)log

p(xn + ∆x)
p(xn)

→ − 2
∆x

G[p(x), p(x + ∆x)]

One notes (cf. [381]) that I results as a cross information between p(x) and
p(x+∆x) for many different types of information measure, e.g. Renyi and Wooters
information and in this sense serves as a kind of “mother” information. Next the
I-theorem says that dI/dt ≤ 0 and this can be seen as follows. Start with (4.9) in
the form

(4.10) I(t) = −2lim∆x→0(∆x)−2

∫
dx plog

p∆x

p
; p∆x

= p(x + ∆x|t); p = p(x|t)

Under certain conditions (cf. [381]) p obeys a FK equation

(4.11)
∂p

∂t
= − d

dx
[D1(x, t)p] +

d2

dx2
[D2(x, t)p]

where D1 is a drift function and D2 a diffusion function. Then it is shown (cf.
[776, 811]) that two PDF such as p and p∆x

that obey the FP equation have a
cross entropy satisfying an H-theorem

(4.12) G(t) = −
∫

dx plog
p

p∆x

;
dG(t)

dt
≥ 0
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Hence I obeys an I theorem dI/dt ≤ 0. We refer to [381] for more on temperature,
pressure, and gas laws.

For multivariable situations one writes I = 4
∫

dx
∑
∇qn · ∇qn with pn = q2

n.
An interesting notation here is

(4.13) ψn =
1√
N

(q2n−1 + iq2n) (n = 1, · · · , N/2);
N/2∑
1

ψ∗
nψn =

1
N

∑
q2
n = p(x)

In such situations one finds for In = 4
∫

dx∇qn · ∇qn and I =
∑

In (cf. [381])

(4.14) In = − 2
(∆x)2

Gn[pn(x|t), pn(x + ∆x|t)]; ∂In

∂t
≤ 0; I(t) → min.

Now one looks at minimization problems for I where δI[q(x|t)] = 0 and for any-
thing meaningful to happen the physics has to be introduced via constraints and
covariance (we refer to [381] for a more thorough discussion of these matters).
Thus one is considering K = I − J and the physics is introduced via J. One can
write e.g. I =

∫
dx

∑
in(x) and J =

∫
dx

∑
jn(x) where in = 4∇qn · ∇qn. In

general now the functional form of J follows from a statement about invariance for
the system. Examples of invariance are (i) unitary transformations such as that
between the space and momentum space in QM (ii) gauge invariance as in EM
or gravitational theory (iii) a continuity equation for the flow, usually involving
sources. The answer q for EPI is completely dependent on the particular J(q)
for that problem and that in turn depends completely on the invariance principle
that is used. If the invariance principle is not sufficiently strong in defining the
system then one can expect the EPI output q to be only approximately correct.
One has I ≤ J generally but I = J for an optimally strong invariance principle.
Note κ = I/J measures the efficiency of the EPI in transferring Fisher information
from the phenomenon (specfied by J) to the output (specified by I). Thus κ < 1
indicates that the answer q is only approximate. When the invariance principle is
the statement of a unitary transformation between the measurement space and a
conjugate coordinate space then the solution to the requirement I − κJ = 0 will
simply be the reexpression of I in the conjugate space; when this holds then one
can show that in fact I = J (i.e. κ = 1). In this situation the out put q will be
“correct”, i.e. not explicitly incorrect due to ignored quantum effects for example.
There are in fact nonquantum and nonunitary theories for which κ = 1 (or in fact
any real number) and the nature of κ is not yet fully understood.

Let us call attention also to the information demon of Frieden and Soffer (cf.
[381, 384]). For real Fisher coordinates x the EPI process amounts to carrying
through a zero sum game betweem an observer (who wants to acquire maximal
information) and an information demon (who wants to minimize the information
transfer) with a limited resource of intrinsic information. The demon represents
nature (and always wins or breaks even of course) and K = I − J ≤ 0. Further
since ∆I = K one has ∆I ≤ 0 while ∆t ≥ 0; hence the I-theorem follows.

We run through the EPI procedure here for the KG equation which illustrates
many points. Define x1 = ix, x2 = iy, x3 = iz, x4 = ct with r = (x, y, z) and
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x = (x1, x2, x3, x4) and use the ψn notation of (4.13). From I = 4
∫

dx
∑
∇qn ·∇qn

we get

(4.15) I = 4Nc

N/2∑
1

∫ ∫
drdt

[
−(∇ψn)∗ · ∇ψn +

(
1
c2

)2

(∂tψn)∗(∂tψn)

]
The invariance principle here involves a unitary Fourier transformation from x to
µ in the form
(4.16)

(ir, ct) → (iµ/�, E/c�); ψn(r, t) =
1

(2π�)2

∫ ∫
dµdEφn(µ, E)e−i(µ·r−Et)/�

One recalls

(4.17)
∫ ∫

drdtψ∗
mψn =

∫ ∫
dµdEφ∗

mφn

Differentiating in (4.16) one has (∇ψn, ∂tψn) → (−iµφn/�, iEφn/�) and via∇ψn ∼
−iµφn/� one gets

(4.18)
∫ ∫

drdt(∇ψn)∗ · ∇ψn =
1
�2

∫ ∫
dµdE|φn(µ, E)|2µ2;∫ ∫

drdt(∂tψn)∗∂tψn =
1
�2

∫ ∫
dµdE|φn(µ, E)|2E2

Putting this in (4.15) gives

(4.19) I =
(

4Nc

�2

)N/2∑
1

∫ ∫
dµdE|φn(µ, E)|2

(
−µ2 +

E2

c2

)
= J

This is the invariance principle for the given scenario. The same value of I can
be expressed in the new space (µ, E) where it is called J and J is then the bound
(physical) information. Now one has from (4.17)

(4.20) c

∫ ∫
drdt|ψn|2 = c

∫ ∫
dµdE|φn|2 (n = 1, · · · , N/2

Summing over n and using p =
∑N/2

1 ψ∗
nψ = (1/N)

∑
q2
n with normalization gives

(4.21) 1 =
∫

dµdeP (µ, E); P (µ, E) = c

N/2∑
1

|φn(µ, E)|2

so P is a PDF in the (µ, E) space. One obtains then
(4.22)

I = J =
4N

�2

∫ ∫
dµdEP (µ, E)

(
−µ2 +

E2

c2

)
; J =

(
4N

�2

)〈
−µ2 +

E2

c2

〉
One must have J a universal constant here so −µ2 + (E2/c2) = const. = A2(m, c)
where A is some function of the rest mass m and c (which are the only other
parameters (� must also be a constant). By dimensional analysis A = mc so E2 =
c2µ2 + m2c4 which links mass, momentum, and energy. This defines coordinates
µ and E as momentum and energy values. One has then I = 4N(mc/�)2 = J
and the intrinsic information I in the 4-position of a particle is proportional to the
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square of its intrinsic energy mc2. Since J is a universal constant (see comments
below), c is fixed, and given that � has been fixed, one concludes that the rest
mass m is a universal constant. Since I measures the capacity of the observed
phenomenon to provide information about (in this case) 4-length it follows that I
should translate into a figure for the ultimate fluctuation (resolution) length that is
intrinsic to QM. Here the information is I = (4N/L2) with L = �/mc the reduced
Compton wavelength. If all N estimates have the same accuracy some argument
then leads to emin = L and emin corresponds to a minimal resolution length (i.e.
ability to know). Finally putting things together one gets

(4.23) J =
4Nm2c3

�2

∫ ∫
dµdE

N/2∑
1

φ∗
nφn =

4Nm2c3

�2

∫ ∫
drdt

N/2∑
1

ψ∗
nψ

(4.24) K = I − J =

= 4Nc

N/2∑
1

∫ ∫
drdt

[
−(∇ψn)∗ · ∇ψn +

(
1
c2

)
∂tψ

∗
n∂tψn −

m2c2

�2
ψ∗

nψn

]
There is much more material in [381] to enhance and refine the above ideas.

There are certain subtle features as well. In 4-dimensions the Fourier transform
is unitary and covariance is achieved in all variables (treating t separately as in
qn(x|t) is not a covariant formalism). EPI treats all phenomena as being statistical
in origin and every Euler-Lagrange (EL) equation determines a kind of QM for
the particular phenomenon (think here of the qn as fields). This includes classical
electromagnetism for example where the vector potential A is considered as a kind
of probability “amplitude” for photons. In 4-D the Lorentz transformation satisfies
the requirement that Fisher information I is invariant under a change of reference
frame and this property is transmitted to J and K. Thus invariance of accuracy
(or of error estimation) under a change of reference frame leads to the Lorentz
transformation and to the requirement of covariance. Historically the classical
Lagrangian has often been a contrivance for getting the correct answers and a
main idea in [381] is to present a systematic approach to deriving Lagrangians.
The Lagrangian represents the physical information k(x) =

∑
kn(x), kn(x) =

in(x)− jn(x), and
∫

k(x) is the total physical information K for the system. The
solution to the variational problem for the Lagrangian can represent then (for real
coordinates) the payoff in a mathematical information game (e.g. the KG equation
is a payoff expression). We exhibit now a derivation of the SE from [381] to show
robustness of the EPI scheme. The position of a particle of mass m is measured as
a value y = x + θ where x is a random excursion whose probability amplitude law
q(x) is sought. Since the time t is being ignored here one is in effect looking for a
stationary solution to the problem. Note the issue of covariance does not arise here
and the time dependent SE is not treated since in particular it is not covariant; it
can however be obtained from the KG equation as a nonrelativistic limit. Assume
that the particle is moving in a conservative field of scalar potential V (x) with
total energy W conserved. One defines complex wave functions as before and can
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write

(4.25) I = 4N
N/2∑
1

∫
dx

∣∣∣∣dψn(x)
dx

∣∣∣∣2
A Fourier transform space is defined via ψn(x) = (1/

√
2π�

∫
dµφn(µ)exp(−iµx/�)

where µ ∼ momentum. The unitary nature of this transformation guarantees the
validity of the EPI variational procedure. One uses the Parseval theorem to get

(4.26) I =
4N

�2

∫
dµµ2

∑
n

|φn(µ)|2 = J

This corresponds to (4.19) and is the invariance principle for the given measure-
ment problem. The x-coordinate expressions analogous to (4.20) and (4.21) show
that the sum in (4.26) is actually an expectation J = (4N/�2) < µ2 >. Now use
the specifically nonrelativistic approximation that the kinetic energy Ekin of the
particle is µ2/2m and then

(4.27) J =
8Nm

µ2
< Ekin >=

8Nm

�2
< [W − V (x)] >=

=
8Nm

�2

∫
dx[W − V (x)]

∑
|ψn(x)|2

where the last expression is the PDF p(x). This J is the bound information
functional J [q] = J(ψ) and κ = 1 here. This leads to a variational problem

(4.28) K = N

N/2∑
1

∫
dx

[
4
∣∣∣∣dψn(x)

dx

∣∣∣∣2 − 8m

�2
[W − V (x)]|ψn(x)|2

]
= extremum

The Euler-Lagrange equations are then (ψ∗
nx = ∂ψ∗

n/∂x)

(4.29)
d

dx

(
∂L

∂ψ∗
nx

)
=

∂L

∂ψ∗
n

; ψ′′
n(x) +

2m

�2
[W − V (x)]ψn(x) = 0

which is the stationary SE. Since the form of equation (4.29) is the same for each
index value n the scenario admits N = 2 degrees of freedom qn(x) or one com-
plex degree of freedom ψ(x); hence the SE defines a single complex wave function.
Since this derivation works with a real coordinate x the information transfer game
is being played here and the payoff is the Schrödinger wave function.

There are generalizations of EPI to nonextensive infor-
mation measures in [217, 262, 239] (cf. also [755, 756, 776, 778]).

4.1. LEGENDRE THERMODYNAMICS. We go to the last paper in
[382] which provides a discussion of Fisher thermodynamics and the Legendre
transformation. It is shown that the Legendre transform structure of classical
thermodynamics can be replicated without change if one replaces the entropy S
by the Fisher information I. This produces a thermodynamics capable of treat-
ing equilibrium and nonequilibrium situations in a traditional manner. We recall
the Shannon information measure S = −

∑
P (i)log[P (i)]; it is known that if one

chooses the Boltzmann constant as the informational unit and identifies Shannon’s

REMARK 6.4.1.
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entropy with the thermodynamic entropy then the whole of statistical mechan-
ics can be elegantly reformulated without any reference to the idea of ensemble.
The success of thermodynamics and statistical physics depends crucially on the
Legendre structure and one shows now that such relationships all hold if one re-
places S by the Fisher information measure. We recall that for

∫
g(x, θ)dx = 1 one

writes I =
∫

dxg(x, θ)[∂θg/g]2 and for shift invariant g one has I =
∫

dx[(g′)2/g].
There are two approaches to using Fisher information, EPI and minimum Fisher
information (MFI), and both lead to the same results here. We write (shifting to
a probability function f)

(4.30)
∫

dxf(x, θ) = 1; I[f ] =
∫

dxFFisher(f); FFisher(f) = f(x)[f ′/f ]2

Assume that for M functions Ai(x) the mean values < Ai > are known where

(4.31) < Ai >=
∫

dxAi(x)f(x)

This represents information at some appropriate (fixed) time t. The analysis will
use MFI (or EPI) to find the probability distribution fI = fMFI that extremizes
I subject to prior conditions < Ai > and the result will be given via solutions of
a stationary Schrödinger like equation. The Fisher based extremization problem
has the form (F (f) = FFisher(f))

(4.32) δf

[
I(f)− α < 1 > −

M∑
1

λi < Ai >

]
= 0 ≡

δf

[∫
dx

(
F (f)− αf −

M∑
1

λiAif

)]
= 0

Variation leads to ((α, λ1, · · · , λM ) are Lagrange multipliers)

(4.33)
∫

dxδf

[
(f)−2

(
∂f

∂x

)2

+
∂

∂x

(
2
f

∂f

∂x

)
+ α +

M∑
1

λiAi

]
= 0

and on account of the arbitrariness of δf this yields

(4.34) (f)−2(f ′)2 +
∂

∂x
(2/f)f ′) + α +

M∑
1

λiAi = 0

The normalization condition on f makes α a function of the λi and we assume
fI(x, λ) to be a solution of (4.34) where λ ∼ (λi). The extreme Fisher information
is then

(4.35) I =
∫

dxf−1
I (∂xfI)2

Now to find a general solution of (4.34) define G(x) = α +
∑M

1 λiAi(x) and write
(4.34) in the form

(4.36)
[
∂log(fI)

∂x

]2

+ 2
∂2log(fI)

∂x2
+ G(x) = 0
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Make the identification fI = (ψ)2 now the introduce a new variable v(x) =
∂log(ψ(x))/∂x. Then (4.36) becomes

(4.37) v′(x) = −
[
G(x)

4
+ v2(x)

]
which is a Riccati equation. This leads to

(4.38) u(x) = exp

[∫ x

dx[v(x)]
]

= exp

[∫ x

dx
dlog(ψ)

dx

]
= ψ;

−1
2
ψ′′(x)− 1

8

M∑
1

λiAi(x)ψ(x) =
α

8
ψ(x)

where the Lagrange multiplier α/8 plays the role of an energy eigenvalue and the
sum of the λiAi(x) is an effective potential function U(x) = (1/8)

∑M
1 λiAi(x).

We note (in keeping with the Lagrangian spirit of EPI) that the Fisher informa-
tion measure corresponds to the expectation value of the kinetic energy of the
SE. Note also that (4.38) has multiple solutions and it is reasonable to suppose
that the solution leading to the lowest I is the equilibrium one. Now standard
thermodynamics uses derivatives of the entropy S with respect to λi and < Ai >
and we start from (4.35) and write after an integration by parts

(4.39)
∂I

∂λi
=
∫

dx
∂fI

∂λi

[
−f−2

I (f ′
I)

2 − ∂

∂x

(
2
fI

f ′
I

)]
Comparing this to (4.34) one arrives at

(4.40)
∂I

∂λi
=
∫

dx
∂fI

∂λi

[
α +

M∑
1

λjAj

]
which on account of normalization yields

(4.41)
∂I

∂λi
=

M∑
1

λj
∂

∂λi

∫
dxfIAj(x) ≡ ∂I

∂λi
=

N∑
1

λj
∂

∂λi
< Aj >

This is a generalized Fisher-Euler theorem whose thermodynamic counterpart is
the derivative of the entropy with respect to the mean values. One computes easily

(4.42)
∑

i

∂I

∂λi

∂λi

∂ < Aj >
=
∑

i

∑
k

λk
∂ < Ak >

∂λi

∂λi

∂ < Aj >
⇒ ∂I

∂ < Aj >
= λj

as expected. The Lagrange multipliers and mean values are seen to be conjugate
variables and one can also say that fI = fI(λ1, · · · , λM ).

Now as the density fI formally depends on M + 1 Lagrange multipliers,
normalization

∫
dxfI(x) = 1 makes α a function of the λi and we write α =

α(λ1, · · · , λM ). One can assume that the input information refers to the λi and
not to the < Ai >. Introduce then a generalized thermodynamic potential (Le-
gendre transform of I) as

(4.43) λJ(λ1, · · · , λM ) = I(< A1 >, · · · , < AM >)−
M∑
1

λi < Ai >
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Then

(4.44)
∂λJ

∂λi
=

M∑
1

∂I

∂ < Aj >

∂ < Aj >

∂λi
−

M∑
1

λj
∂ < Aj >

∂λi
− < Ai) = − < Ai >

where (4.42) has been used. Thus the Legendre structure can be summed up in

(4.45) λJ = I −
M∑
1

λi < Ai >;
∂λJ

∂λi
= − < Ai >;

∂I

∂ < Ai >
= λi;

∂λi

∂ < Aj >
=

∂λj

∂ < Ai >
=

∂2I

∂ < Ai > ∂ < Aj >
;

∂ < Aj >

∂λi
=

∂ < Ai >

∂λj
= − ∂2λJ

∂λi∂λj

As a consequence one can recast (4.41) in the form

(4.46)
∂I

∂λi
=

M∑
1

λj
∂

∂λj
< Ai >

Thus the Legendre transform structure of thermodynamics is entirely translated
into the Fisher context.

4.2. FIRST AND SECOND LAWS. We go here to [779] where one shows
the coimplication of the first and second laws of thermodynamics. Thus macro-
scopically in classical phenomenological thermodynamics the first and second laws
can be regarded as independent statements. In statistical mechanics an underly-
ing microscopic substratum is added that is able to explain thermodynamics itself.
Of this substratum a microscopic probability distribution (PD) that controls the
population of microstates is a basic ingredient. Changes that affect exclusively mi-
crostate population give rise to heat and how these changes are related to energy
changes provides the essential content of the first law (cf. [809]). In [779] one
shows that the PD establishes a link between the first and second laws according
to the following scheme.

• Given: An entropic form (or an information measure) S, a mean energy
U and a temperature T, and for any system described by a microscopic
PD pi a heat transfer process via pi → pi + dpi then

• If the PD pi maximizes S this entails dU = TdS and alternatively
• If dU = TdS then this predetermines a unique PD that maximizes S.

For the second law one wants to maximize entropy S with M appropriate con-
straints Ak which take values Ak(i) at the microstate i; the constrains have the
form

(4.47) < Ak >=
∑

i

piAk(i) (k = 1, · · ·M)

The Boltzman constant is kB and assume that k = 1 in (4.47) corresponds to the
energy E with A1(i) = εi so that the above expression specializes to

(4.48) U =< A1 >=
∑

piεi
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One should now maximize the “Lagrangian” Φ given by

(4.49) Φ =
S

kB
− α

∑
i

pi − β
∑

i

piεi −
M∑
2

λk

∑
i

piAk(pi)

in order to obtain the actual distribution pi from the equation δpi
Φ = 0. Since here

one is interested just in the “heat” part the last term on the right of (4.49) will
not be considered. It is argued that if pi changes to pi + dpi because of δpi

Φ = 0
one will have

(4.50) 0 =
dS

kB
− βdU

(note
∑

i δpi = 0 via normalization). Since β = 1/kBT we get dU = TdS so
MaxEnt implies the first law.

The central goal here is to go the other way so assume one has a rather general
information measure of the form

(4.51) S = k
∑

i

pif(pi)

where k ∼ kB . The sum runs over a set of quantum numbers denoted by i (char-
acterizing levels of energy εi) that specify an appropriate basis in Hilbert space,
P = {pi} is an (as yet unknown) probability distribution with

∑
pi = constant,

and f is an arbitrary smooth function of the pi. Assume further that mean values
of quantities A that take the value Ai with probability pi are evaluated via

(4.52) < A >=
∑

i

Aig(pi)

In particular the mean energy U is given by U =
∑

i εig(pi). Assume now that
the set P changes in the fashion

(4.53) pi → pi + dpi;
∑

dpi = 0

(the last via
∑

pi = constant. This in turn generates corresponding changes dS
and dU and one is thinking here of level population changes, i.e. heat. To insure
the first law one assumes (•) dU − TdS = 0 and as a consequence of (•) a little
algebra gives (up to first order in the dpi the condition

(4.54) εig
′(pi)− kT [f(pi) + pif

′(pi)] = 0

This equation is now examined for several situations. First look at Shannon en-
tropy with

(4.55) f(pi) = −log(pi); g(pi) = pi

In this situation (4.54) becomes

(4.56) −εi = kT [log(pi) + 1] ⇒ pi =
1
e
exp(−εi/kT )

After normalization this is the canonical Boltzmann distribution and this is the
only distribution that guarantees obedience to the first law for Shannon’s informa-
tion measure. A posteriori this distribution maximizes entropy as well with U as
a constraint which establishes a link with the second law. Several other measures
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are considered, in particular the Tsallis measure, and we refer to [779] for details.
In summary if one assumes entropy is maximum one immediately derives the first
law and if you assume the first law and an information measure this predetermines
a probability distribution that maximizes entropy.

There is currently a great interest in acoustic wave phe-
nomena, sound and vortices, acoustic spacetime, acoustic black holes, etc. A prime
source of material involves superfluid physics à la Volovik [968, 969] and Bose-
Einstein condensates (see e.g. [39, 40, 86, 81, 101, 115, 369, 370, 912, 913,
963]). We had originally written out material from [912, 913] in preparation for
sketching some material from [968]. However we realized that there is simply too
much to include in this book; at least 2-3 more chapters would be needed to even
get off the ground.

REMARK 6.4.2.



CHAPTER 7

ON THE QUANTUM POTENTIAL

1. RESUMÉ

We have seen already how the quantum potential arises in many contexts as
a fundamental ingredient connected with quantum matter, and how it provides
linkage between e.g. statistics and uncertainty, Fisher information and entropy,
Weyl geometry, and quantum Kähler geometry. We expand further on certain
aspects of the quantum potential in this Chapter aafter the resumé from Chapters
1-6 Moreover we have seen how the trajectory representation à la deBroglie-Bohm
(dBB) can be used to develop meaningful insight and results in quantum field
theory (QFT) and cosmology. This is achieved mainly without the elaborate ma-
chinery of Fock spaces, Feynman diagrams, operator algebras, etc. in a straight-
forward manner. The conclusion seems inevitable that dBB theory is essentially
all pervasive and represents perhaps the most powerful tool available for under-
standing not only QM but the universe itself. There are of course many papers
and opinions concerning such conclusions (some already discussed) and we will
make further comments along these lines in this Chapter. We remark that there
is some hesitation in postulating an ensemble interpretation when using dBB the-
ory in cosmology with a wave function of the universe for example but we see no
obstacle here, once an ensemble of universes is admitted. This is surely as reason-
able as dealing with many string theories as is now fashionable. In any event we

1.1. THE SCHRÖDINGER EQUATION. We list some examples pri-
marily concerned with QM.

(1) The SE in 1-dimension with ψ = Rexp(iS/�) and associated HJ and
continuity equations are

(1.1) − �2

2m
ψxx + V ψ = i�ψt; St +

S2
x

2m
+ V + Q = 0;

Q = −�2R′′

2mR
; ∂t(R2) +

1
m

(R2Sx)x = 0

Here P = R2 = |ψ|2 is a probability density, p = mẋ = Sx (with S
not constant!) is the momentum, ρ = mP is a mass density, and Q
is the quantum potential of Bohm. Classical mechanics involves a HJ
equation with Q = 0 and can be derived as follows (cf. [304]). Consider
a Lagrangian L = pẋ−H with Hamiltonian H = (p2/2m)+V and action

275

begin with a resumé of highlights from Chapters 1-6 and gather some material
→here (see also [1026] for information on the map SE Q).
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S =
∫ t2

t1
dtL(x, ẋ, t). One computes

(1.2) δS =
∫ t2

t1

dt

[
p

d

dt
δx + ẋδp− δH −H

d

dt
δt

]
where δH = Hxδx + Hpδp + Htδt = Vxδx + (p/m)δp + Htδt. Then

(1.3) δS =
∫ t2

t1

dt

[
p

d

dt
δx + ẋδp− Vxδx− p

m
δp−Htδt−H

d

dt
δt

]
=

=
∫ t2

t1

dt

{
d

dt
[pδx−Hδt] + δp

(
ẋ− p

m

)
− δx

(
dp

dt
+ Vx

)
+ δt[Ḣ −Ht]

}
Consequently, writing δS = (Sxδx + Stδt)|t2t1 one arrives at

(1.4) ẋ =
p

m
; ṗ = −Vx; Ḣ = Ht; p = Sx; St + H = 0

Note here the “surface” term (from integration) is G = pδx − Hδt and
δS = G2 − G1 which should equal δS = (∂S/∂x1)δx1 + (∂S/∂x2)δx2 +
(∂S/∂t1)δt1 + (∂S/∂t2)δt2 where x1 = x(t1) and x2 = x(t2) One sees
then directly how the addition of Q to a classical HJ equation produces
a quantum situation.

(2) Another classical connection comes via hydrodynamics (cf. Section 1.1)
where (1.1) can be put in the form

(1.5) ∂t(ρv) + ∂(ρv2) +
ρ

m
(∂V + ∂Q) = 0

which is like an Euler equation in fluid mechanics moduo a pressure
term −ρ−1∂P on the right. If we identify (ρ/m)∂Q = ρ−1∂P ≡ P =
∂−1(ρ2/m)∂Q (with some definition of ∂−1 - cf. [205]) then the quantum
term could be thought of as providing a pressure with Q corresponding
e.g. to a stress tensor of a quantum fluid. We refer also to Remark 1.1.2
and work of Kaniadakis et al where the quantum state coressponds to
a subquantum statistical ensemble whose time evolution is governed by
classical kinetics in phase space.

(3) The Fisher information connection à la Remarks 1.1.4 - 1.1.5 involves a
classical ensemble with particle mass m moving under a potential V

(1.6) St +
1

2m
(S′)2 + V = 0; Pt +

1
m

∂(PS′)′ = 0

where S is a momentum potential; note that no quantum potential is
present but this will be added on in the form of a term (1/2m)

∫
dt(∆N)2

in the Lagrangian which measures the strength of fluctuations. This
can then be specified in terms of the probability density P as indicated
in Remark 1.1.4 leading to a SE where by Theorem 1.1.1 (∆N)2 ∼
c
∫

[(P ′)2/P ]dx. A “neater” approach is given in Remark 1.1.5 leading in
1-D to

(1.7) St +
1

2m
(S′)2 + V +

λ

m

(
(P ′)2

P 2
− 2P ′′

P

)
= 0

Note that Q = −(�2/2m)(R′′/R) becomes for R = P 1/2 an equation
Q = −(�2/8m)[(2P ′′/P ) − (P ′/P )2]. Thus the addition of the Fisher
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information serves to quantize the classical system via a quantum po-
tential and this gives a direct connection of the quantum potential with
fluctuations.

(4) The Nagasawa theory (based in part on Nelson’s work) is very revealing
and fascinating. The essense of Theorem 1.1.2 is that ψ = exp(R + iS)
satisfies the SE iψt + (1/2)ψ′′ + iaψ′ − V ψ = 0 if and only if

(1.8) V = −St +
1
2
R′′ +

1
2
(R′)2 − 1

2
(S′)2 − aS′; 0 = Rt +

1
2
S′′ + S′R′ + aR′

Changing variables (X = (�/
√

m)x and T = �t) one arrives at i�ψT =
−(�2/2m)ψXX − iAψX + V ψ where A = a�/

√
m and

(1.9) i�RT + (�2/m2)RXSX + (�2/2m2)SXX + ARX = 0;

V = −i�ST + (�2/2m)RXX + (�2/2m2)R2
X − (�2/2m2)S2

X −ASX

The diffusion equations then take the form

(1.10) �φT +
�2

2m
φXX + AφX + c̃φ = 0; −�φ̂T +

�2

2m
φ̂XX −Aφ̂X + c̃φ̂ = 0;

c̃ = −Ṽ (X,T )− 2�ST −
�2

m
S2

X − 2ASX

It is now possible to introduce a role for the quantum potential in this
theory. Thus from ψ = exp(R + iS) (with � = m = 1 say) we have ψ =
ρ1/2exp(iS) with ρ1/2 = exp(R) or R = (1/2)log(ρ). Hence (1/2)(ρ′/ρ) =
R′ and R′′ = (1/2)[(ρ′′/ρ) − (ρ′/ρ)2] while the quantum potential is
Q = (1/2)(∂2ρ1/2/ρ1/2) = −(1/8)[(2ρ′′/ρ) − (ρ′/ρ)2]. Equation (1.8)
becomes then

(1.11) V = −St +
1
8

(
2ρ′′

ρ
− (ρ′)2

ρ2

)
− 1

2
(S′)2 − aS′ ≡

≡ St +
1
2
(S′)2 +V +Q+aS′ = 0; ρt +ρS′′ +S′ρ′ +aρ′ = 0 ≡ ρt +(ρS′)′ +aρ′ = 0

Thus −2St − (S′)2 = 2V + 2Q + 2aS′ and one has

PROPOSITION 1.1. The creation-annihilation term c in the dif-
fusion equations (cf. Theorem 1.1.2) becomes

(1.12) c = −V − 2St − (S′)2 − 2aS′ = V + 2Q

where Q is the quantum potential.

(5) Going to Remarks 1.1.6-1.1.8 we set

(1.13) Q̃ =
�2

2m2

∂2√ρ
√

ρ
= − 1

m
Q; D =

�

2m
; u = D∂(log(ρ)) =

h

2m

ρ′

ρ

Then u is called an osmotic velocity field and Brownian motion involves
v = −u for the diffusion current. In particular

(1.14) Q̃ =
1
2
u2 + D∂u
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One defines an entropy term S = −
∫

ρlog(ρ)dx leading, for suitable
regions of integration and behavior of ρ at infinity, and using ρt = −∂(vρ)
from (1.1), to

(1.15)
∂S

∂t
= −

∫
ρt(1 + log(ρ)) =

∫
(1 + log(ρ))∂(vρ) =

= −
∫

vρ′ =
∫

uρ′ = D

∫
(ρ′)2

ρ

Note also

(1.16) Q̃ =
D2

2

(
2ρ′′

ρ
−
(

ρ′

ρ

)2
)
⇒

∫
ρQ̃ = −D2

2

∫
(ρ′)2

ρ

Thus generally ∂S/∂t ≥ 0 and F = −(2/D2)
∫

ρQ̃ is a functional form
of Fisher information with St = DF.

(6) The development of the SE by Nottale, Cresson, et al in Section 1.2 is
basically QM and is peripheral to scale relativity as such. The idea is
roughly to to imagine e.g. continuous nondifferentiable quantum paths
and to describe the velocity in terms of an average V = (1/2)(b+ + b−)
and a discrepancy U = (1/2)(b+− b−) where b± are given by (2.1). Not-
tale’s derivation is heuristic but revealing and working with a complex
velocity he captures the complex nature of QM. In particular the quan-
tum potential can be written as Q = −(m/2)U2−(�/2)∂U corresponding
to (1.14) via Q̃ = −(1/m)Q. As indicated in Proposition 1.2.1 this re-
veals the quantum potential as a manifestation of the “fractal” nature
of quantum paths - smooth paths correspond to Q = 0 which seems to
preclude smooth trajectories for quantum particles. In such a case the
standard formula ẋ = (�/2m)�[ψ∗∂ψ/|ψ|2] requires a discontinuous ẋ
wich places some constraints on ψ and the whole guidance idea. This
whole matter should be addressed further along with considerations of
osmotic velocity, etc. Another approach to quantum fractals is given in
Section 1.5.

(7) In section 2.3.1 we sketched some of the Bertoldi-Faraggi-Matone (BFM)
version of Bohmian mechanics and in particular for the stationary quan-
tum HJ equation (QHJE) (1/2m)S2

x + W = E (W = V + Q), arising
from −(�2/2m)ψ′′ + V ψ = Eψ, one can extract from [347] the formulas
for trajectories (using Floydian time t ∼ ∂S/∂E). Thus (∂EW = ∂EQ)

(1.17) t ∼ ∂E

∫
Sxdx = ∂E

∫
[E −W ]1/2dx =

(m

2

)1/2
∫

(1− ∂EQ√
E −W

dx

Hence

(1.18)
dt

dx
=
(m

2

)1/2 1− ∂EQ√
E −W

⇒ ẋ =
Sx

m

1
1− ∂EQ

Thus m(1 − ∂EQ)ẋ = mQẋ = Sx and this is defined as p with mQ

representing a quantum mass. Note ẋ �= p/m and we refer to [194,
191, 347, 373, 374] for discussion of all this. Further via p′ = m′

Qẋ +
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mQ(ẍ/ẋ), etc., one can rewrite the QSHJ as a third order trajectory (or
microstate) equation (see also Remark 7.4)

(1.19)
m2

Q

2m
ẋ2 + V − E +

�2

4m

(
m′′

Q

mQ
− 3

2

(
m′

Q

mQ

)2

−
m′

Q

mQ

ẍ

ẋ2
+

...
x

ẋ3
− 5

2
ẍ2

ẋ4

)
= 0

In Remark 2.2.2 with Theorem 2.1 we observed how the uncertainty prin-
ciple of QM can be envisioned as due to incomplete information about
microstates when working in the Hilbert space formulation of QM based
on the SE. It was shown how ∆q∆x = O(�) arises automatically from a
BFM perspective. Thus the canonical QM in Hilbert space cannot see a
single trajectory and hence is obliged to operate in terms of ensembles
and probability. We have also seen how a probabilistic ensemble picture
with quantum fluctuations comes about with the fluctuations correspond-
ing to the quantum potential (see Item 3 above). This suggests that a
background motivation for the Hilbert space may really exist (beyond
its pragmatic black magic) since these fluctuations represent a form of
information (and uncertainty). The hydrodynamic and diffusion models
are also directly connected to this and produce as in Item 5 above a
connection to entropy.

1.2. DEBROGLIE-BOHM. There are many approaches to dBB theory
and in fact much of the book is concerned with this. David Bohm wrote exten-
sively about the subject but we have omitted much of the philosophy (implicate
order, etc.). The book by Holland [471] is excellent and a modern theory is be-
ing constructed by Dürr, Goldstein, Zanghi, et al (cf. also the work of Bertoldi,
Farragi, Matone, and Floyd). Some new directions in QFT, Weyl geometry, and
cosmology are also covered in the book, due to Barbosa, Pinto-Neto, Nikolić, A.
and F. Shojai, et al, and we will try to summarize some of that here.

(1) The BFM theory is quite novel (and profound) in that it is based en-
tirely on an equivalence principle (EP) stating that all physical systems
can be connected by a coordinate transformation to the free situation
with vanishing energy. One bases the stationary situation of energy E
in the nonrelativistic case with the SE as in Item 7 above. In the rela-
tivistic case (Remark 2.2.3) one can work in the same spirit directly with
a Minkowski metric to obtain the Klein-Gordon (KG) equation with a
relativistic quantum potential

(1.20) Qrel = − �2

2m

�R

R

Note that the probability aspects concerning R appear to be absent in the
relativistic theory. It is interesting to note (cf. Remark 2.2.1) that the
EP implies that all mass can be generated by a coordinate transformation
and since mass can be expressed in terms of the quantum potential Q
this provides yet another role for the quantum potential.

(2) Some quantum field theory (QFT) aspects of the Bohm theory are de-
veloped in [471] and sketched here in Example 2.1.1. One arrives at a
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formula, namely

(1.21) �ψ = − δQ[ψ(x), t]
δψ(x)

∣∣∣∣
ψ(x)=ψ(x,t)

; Q[ψ, t] = − 1
2R

∫
d3x

δ2R

δψ2

More recently there have been some impressive papers by Nikolić in-
volving Bohmian theory and QFT. First there are papers on bosonic
and fermionic Bohmian QFT sketched in Sections 3.2 and 3.3. These
are lovely but even more attractive are two newer papers [708, 713] by
Nikolić which we displayed in Sections 2.4 and 2.6. In [708] one utilizes
the deDonder-Weyl formulation of QFT (reviewed in Appendix A) and
a Bohmian formulation is not postulated but derived from the technical
requirements of covariance and consistency with standard QM. One in-
troduces a preferred foliation of spacetime with Rµ normal to the leaf Σ
and writes R([φ],Σ) =

∫
Σ

dΣµRµ with S([φ], x) =
∫
Σ

dΣµSµ. This pro-
duces a covariant version of Bohmian mechanics with Ψ = Rexp(iS/�)
via

(1.22)
1
2

dSµ

dφ

dSµ

dφ
+ V + Q + ∂µSµ = 0;

dRµ

dφ

dSµ

dφ
+ J + ∂µRµ = 0

(1.23) Q = − �2

2R

δ2R

δΣφ2(x)
; J =

R

2
δ2S

δΣφ2(x)

In [713] one uses the many fingered time (MF) Tomonaga-Schwinger
(TS) equation where a Cauchy hypersurface Σ is defined via x0 = T (x)
with x corresponding to coordinates on Σ. The TS equation is

(1.24) i
δΨ[φ, T ]
δT (x)

= ĤΨ[φ, T ]

Take a free scalar field for convenience with

(1.25) Ĥ(x) = −1
2

δ2

δφ2(x)
+

1
2
[(∇φ(x))2 + m2φ2(x)]

Then for a manifestly covariant theory one introduces parameters s =
(s1, s2, s3) to serve as coordinates on a 3-dimensional manifold Σ in space-
time with xµ = Xµ(s) the embedding coordinates. The induced metric
on Σ is

(1.26) qij(s) = gµν(X(s))
∂Xµ(s)

∂si

∂Xν(s)
∂sj

Similarly a normal (resp. unit normal - transforming as as a spacetime
vector) to the surface are

(1.27) ñ(s) = εµαβγ
∂Xα

∂s1

∂Xβ

∂s2

∂Xγ

∂s3
; nµ(s) =

gµν ñν√
|gαβñαñβ |

Then for x→ s and δ
δT (x) → nµ(s) δ

δXµ(s) the TS equation becomes

(1.28) Ĥ(s)Ψ[φ,X] = inµ(s)
δΨ[φ,X]
δXµ(s)
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and the Bohmian equations of motion are (Ψ = Rexp(iS) )

(1.29)
∂Φ(s, T ]
∂τ(s)

=
1

|q(s)|1/2

δS

δφ(s)

∣∣∣∣
φ=Φ

;
∂

∂τ(s)
≡ limσx→0

∫
σx

d3snµ(s)
δ

δXµ(s)

In the same spirit the quantum MFT KG equation is

(1.30)

[(
∂

∂τ(s)

)2

+∇i∇i + m2

]
Φ(s, X] = − 1

|q(s)|1/2

∂Q(s, φ,X]
∂φs)

∣∣∣∣
φ=Φ

where ∇i is the covariant derivative with respect to si and

(1.31) Q(s, φ,X] = − 1
|q(s)|1/2

1
2R

δ2R

δφ2(s)

(3) The QFT model in Section 2.5 involving stochastic jumps is quite techni-
cal and should be read in conjunction with Nagasawa’s book [674]. The
idea (cf. [326]) is that for the Hamiltonian of a QFT there is associated
a |ψ|2 distributed Markov process, typically a jump process (to accound
for creation and annihilation processes) on the configuration space of a
variable number of particles. One treats this via functional analysis, op-
erator thery, and probability, which leads to mountains of detail, only a
small portion of which is sketched in this book.

(4) In Section 3.2 we give a sketch of dBB in Weyl geometry following A.
and F. Shojai [873]. This is a lovely approach and using Dirac-Weyl
methods one is led comfortably into general relativity (GR), cosmology,
and quantum gravity, in a Bohmian context. Such theories dominate
Chapters 3 and 4. First one looks at the relativistic energy equation
ηµνpµpν = m2c2 generalized to

(1.32) ηµνPµP ν = m2c2(1 +Q) = M2c2; Q = (�2/m2c2)(�|Ψ|/|Ψ|)

(1.33) M2 = m2

(
1 + α

�|Ψ|
|Ψ|

)
; α =

�2

m2c2

(obtained e.g. by setting ψ =
√

ρexp(iS/�) in the KG equation). Here
M2 is not positive definite and in fact (1.32) is the wrong equation!
Some interesting arguments involving Lorentz invariance lead to better
equations and for a particle in a curved background the natural quantum
HJ equation is most comfortably phrased as

(1.34) ∇µ(ρ∇µS) = 0; gµν∇µS∇νS = M
2c2; M

2 = m2eQ; Q =
�2

m2c2

�g|Ψ|
|Ψ|

This is equivalent to

(1.35)
(

m2

M2

)
gµν∇µS∇νS = m2c2

showing that the quantum effects correspond to a change in spacetime
metric gµµ → g̃µν = (M2/m2)gµν . This is a conformal transformation
and leads to Weyl geometry where (1.35) takes the form g̃µν∇̃µS∇̃νS =
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m2c2 with ∇̃µ the covariant derivative in the metric g̃µν . The particle
motion is then

(1.36) M
d2xµ

dτ2
+ MΓµ

νκuνuκ = (c2gµν − uµuν)∇νM

and the introduction of a quantum potential is equivalent to introduc-
ing a conformal factor Ω2 = M2/m2 in the metric (i.e. QM corre-
sponds to Weyl geometry). One considers then a general relativistic
system containing gravity and matter (no quantum effects) and links it
to quantum matter by the conformal factor Ω2 (using an approximation
1 + Q ∼ exp(Q) for simplicity); then the appropriate Einstein equations
are written out. Here the conformal factor and the quantum potential
are made into dynamical fields to create a scalar-tensor theory with two
scalar fields. Examples are developed and we refer to Section 3.2 and
[873] for more details. Back reaction effects of the quantum factor on
the background metric are indicated in the modified Einstein equations.
Thus the conformal factor is a function of the quantum potential and the
mass of a relativistic particle is a field produced by quantum corrections
to the classical mass. In general frames both the spacetime metric and
the mass field have quantum properties.

(5) The Dirac-Weyl theory is developed also in [873] via the action

(1.37) A =
∫

d4x
√
−g(FµνFµν − β2 WR+ (σ + 6)β;µβ;µ + Lmatter

The gravitational field gµν and Weyl field φµ plus β determine the space-
time geometry and one finds a Bohmian theory with β ∼ M (Bohmian
quantum mass field). We will say much more about Dirac-Weyl theory
below.

(6) There is an interesting approach by Santamato in [840, 841] dealing with
the SE and KG equation in Weyl geometry (cf. Section 3.3 and [189,
203]). In the first paper on the SE one assumes particle motion given
by a random process qi(t, ω) with probability density ρ(q, t), q̇i(t, ω) =
vi(q(t, ω), t), and random initial conditions qi

0(ω) (i = 1, · · · , n). One be-
gins with a stochastic construction of (averaged) classical type Lagrange
equations in generalized coordinates for a differentiable manifold M in
which a notion of scalar curvature R is meaningful (this is where statis-
tics enters the geometry). It is then shown that a theory equivalent to QM
(via a SE) can be constructed where the “quantum force” (arising from
a quantum potential Q) can be related to (or described by) geometric
properties of space. To do this one assumes that a (quantum) Lagrangian
can be constructed in the form L(q, q̇, t) = LC(q, q̇, t) + γ(�2/m)R(q, t)
where γ = (1/6)(n− 2)/(n − 1) with n = dim(M) and R is a curvature
scalar. Now for a Riemannian geometry ds2 = gik(q)dqidqk it is standard
that in a transplantation qi → qi +δqi one has δAi = Γi

k�A
�dqk, and here

it is assumed that for � = (gikAiAk)1/2 one has δ� = �φkdqk where the φk

are covariant components of an arbitrary vector of M (Weyl geometry).
Thus the actual affine connections Γi

k� can be found by comparing this
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with δ�2 = δ(gikAiAk) and one finds

(1.38) Γi
k� = −

{
i

k �

}
+ gim(gmkφ� + gm�φk − gk�φm)

Thus we may prescribe the metric tensor gik and φi and determine via
(1.38) the connection coefficients. Covariant derivatives are defined via
commas and the curvature tensor Ri

k�m in Weyl geometry is introduced
via Ai

,k,� − Ai
,�,k = F i

mk�A
m from which arises the standard formula of

Riemannian geometry Ri
mk� = −∂�Γi

mk+∂kΓi
m�+Γi

n�Γ
n
mk−Γi

nkΓn
m� where

(1.38) must be used in place of the Riemannian Christoffel symbols. The
Ricci symmetric tensor Rik and the scalar curvature R are defined via
Rik = R�

i�k and R = gikRik, while

(1.39) R = Ṙ + (n− 1)[(n− 2)φiφ
i − 2(1/

√
g)∂i(

√
gφi)]

where Ṙ is the Riemannian curvature built by the Christoffel symbols.
Now the geometry is to be derived from physical principles so the φi

cannot be arbitrary but are obtained by the same (averaged) least action
principle giving the motion of the particle (statistical determination of
geometry) and when n ≥ 3 the minimization involves only (1.39). One
shows that ρ̂(q, t) = ρ(q, t)/

√
g transforms as a scalar in a coordinate

change and this will be called the scalar probability density of the random
motion of the particle. Starting from ∂tρ + ∂i(ρvi) = 0 a manifestly
covariant equation for ρ̂ is found to be

(1.40) ∂tρ̂ + (1/
√

g)∂i(
√

gviρ̂) = 0

Some calculation then yields a minimum over R when

(1.41) φi(q, t) = −[1/(n− 2)]∂i[log(ρ̂)(q, t)]

This shows that the geometric properties of space are indeed affected
by the presence of the particle and in turn the alteration of geometry
acts on the particle through the quantum force fi = γ(�2/m)∂iR which
according to (1.39) depends on the gauge vector and its derivatives. It is
this peculiar feedback between the geometry of space and the motion of
the particle which produces quantum effects. In this spirit one goes next
to a geometrical derivation of the SE. Thus inserting (1.41) into (1.39)
one gets

(1.42) R = Ṙ + (1/2γ
√

ρ̂)[1/
√

g)∂i(
√

ggik∂k

√
ρ̂)]

where the value γ = (1/6)[(n− 2)/(n− 1)] has been used. On the other
hand the HJ equation can be written as

(1.43) ∂tS + HC(q,∇S, t)− γ(�2/m)R = 0

When (1.42) is introduced into (1.43) the HJ equation and the continuity
equation (1.40), with velocity field given by vi = (∂H/∂pi)(q,∇S, t), form
a set of two nonlinear PDE which are coupled by the curvature of space.
Therefore self consistent random motions of the “particle” are obtained
by solving (1.40) and (1.43) simultaneously. For every pair of solutions
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S(q, t, ρ̂(q, t)) one gets a possible random motion for the particle whose
invariant probability density is ρ̂. The present approach is so different
from traditional QM that a proof of equivalence is needed and this is only
done for Hamiltonians of the form HC(q, p, t) = (1/2m)gik(pi−Ai)(pk−
Ak) + V (which is not very restrictive) leading to

(1.44) ∂tS +
1

2m
gik(∂iS −Ai)(∂kS −Ak) + V − γ

�2

m
R = 0

(R in (1.43)). The continuity equation (1.40) is

(1.45) ∂tρ̂ + (1/m
√

g)∂i[ρ̂
√

ggik(∂kS −Ak)] = 0

Owing to (1.42), (1.44) and (1.45) form a set of two nonlinear PDE which
must be solved for the unknown functions S and ρ̂. Then a straightfor-
ward calculation shows that, setting ψ(q, t) =

√
ρ̂(q, t)exp](i/�)S(q, t)]

the quantity ψ obeys a linear SE

(1.46) i�∂tψ =
1

2m

{[
i�∂i

√
g

√
g

+ Ai

]
gik(i�∂k + Ak)

}
ψ +

[
V − γ

�2

m
Ṙ

]
ψ

where only the Riemannian curvature Ṙ is present (any explicit reference
to the gauge vector φi having disappeared).

We recall that in the nonrelativistic context the quantum potential
has the form Q = −(�2/2m)(∂2√ρ/

√
ρ) (ρ ∼ ρ̂ here) and in more di-

mensions this corresponds to Q = −(�2/2m)(∆
√

ρ/
√

ρ). The continuity
equation in (1.45) corresponds to ∂tρ + (1/m

√
g)∂i[ρ

√
ggik(∂kS)] = 0

(ρ ∼ ρ̂ here). For Ak = 0 (1.44) becomes ∂tS + (1/2m)gik∂iS∂kS + V −
γ(�2/m)R = 0. This leads to an identification Q ∼ −γ(�2/m)R where
R is the Ricci scalar in the Weyl geometry (related to the Riemann-
ian curvature built on standard Christoffel symbols via (1.39). Here
γ = (1/6)[(n− 2)/(n− 1)] which for n = 3 becomes γ = 1/12; further by
(1.41) the Weyl field is φi = −∂ilog(ρ). Consequently for the SE (1.46)
in Weyl space the quantum potential is Q = −(�2/12m)R where R is
the Weyl-Ricci scalar curvature. For Riemannian flat space Ṙ = 0 this
becomes via (1.42)

(1.47) R =
1

2γ
√

ρ
∂ig

ik∂k
√

ρ ∼ 1
2γ

∆
√

ρ
√

ρ
⇒ Q = − �2

2m

∆
√

ρ
√

ρ

as desired; the SE (1.46) reduces to the standard SE i�∂tψ = −(�2/2m)∆ψ+
V ψ (Ak = 0). Moreover (1.39) provides an interaction between gravity
(involving Ṙ and g) and QM (which generates φi via ρ and R via Q).

(7) In [841] the KG equation is also derived via an average action principle
with the restriction of a priori Weyl geometry removed. The spacetime
geometry is then obtained from the average action principle to be of
Weyl type with a gauge field φµ = ∂µlog(ρ). One has a kind of “moral”
equivalence between QM in Riemannian spaces and classical statistical
mechanics in a Weyl space. Traditional QM based on wave equations and
ad hoc probability calculus is merely a convenient tool to overcome the
complications arisin from a nontrivial spacetime geometrical structure.
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In the KG situation there is a relation m2 − (R/6) ∼ M2 ∼ m2(1 + Q)
(approximating m2exp(Q)) and Q ∼ �

√
ρ/m2√ρ which implies R/6 ∼

−�
√

ρ/
√

ρ.
(8) Referring to Item 3 in Section 6.1.1 we note that for φµ ∼ Aµ = ∂µlog(P ) (P ∼

ρ) one can envision a complex velocity pµ + iλAµ leading to

(1.48) |pµ + i
√

λAµ|2 = p2
µ + λA2

µ ∼ gµν

(
∂S

∂xµ

∂S

∂xν
+

λ

P 2

∂P

∂xµ

∂P

∂xν

)
This is exactly the term arising in a Fisher information Lagrangian

(1.49)

LQM = LCL + λI =
∫

P

{
∂S

∂t
+

1
2
gµν

[
∂S

∂xµ

∂S

∂xν
+

λ

P 2

∂P

∂xµ

∂P

∂xν

]
+ V

}
dtdnx

where I is the information term (see Section 3.1)

(1.50) I = gikIik =
gik

2

∫
1
P

∂P

∂yi

∂P

∂yk
dny

known from φµ. Hence we have a direct connection between Fisher in-
formation and the Weyl field φµ along with a motivation for a complex
velocity (cf. [223]). Further we note, via [189] and quantum geometry
in the form ds2 ∼

∑
dp2

j/pj on a space of probability distributions, that
(1.50) can be defined as a Fisher information metric (positive definite via
its connection to (∆N)2) and

(1.51) Q ∼ −2�2gµν

[
1

P 2

∂P

∂xµ

∂P

∂xν
− 2

P

∂2P

∂xµ∂xν

]
(corresponding to −(�2/2m)(∂2√ρ/

√
ρ) = −(�2/8m)[(2ρ′′/ρ)−(ρ′/ρ)2]).

Further from u = −D�φ with Q = D2((1/2)|u|2−∇ · �φ), one expresses Q
directly in terms of the Weyl vector. This enforces the idea that QM is
built into Weyl geometry and moreover that fluctuations generate Weyl
geometry.

(9) In Section 3.3 the WDW equation is treated following [876, 870] from
a Bohmian point of view. One builds up a Lagrangian and Hamiltonian
in terms of lapse and shift functions with a quantum potential

(1.52) Q =
∫

d3xQ; Q = �2NqGijk�
1
|ψ|

δ2|ψ|
δqijδk�

The quantum potential changes the Hamiltonian constraint algebra to
require weak closure (i.e. closure modulo the equations of motion); reg-
ularization and ordering are not considered here but will not affect the
constraint algebra. The quantum Einstein equations are derived in the
form

(1.53) G
ij = − 1

N

δQ

δqij
; G

0µ =
Q

2
√−g

g0µ

The Bohmian HJ equation is

(1.54) Gijk�
δS

δqij

δS

δqk�
−√q (3R−Q) = 0
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where S is the phase of the WDW wave function and this leads to the
same equations of motion (1.53). The modified Einstein equations are
given in Bohmian form via

(1.55) G
ij = −κT

ij − 1
N

δ(QG + Qm)
δgij

; G
0µ = −κT

0µ +
QG + Qm

2
√−g

g0µ

(1.56) Qm = �2 N
√

q

2
1
|ψ|

δ2|ψ|
δφ2

; QG = �2NqGijk�
1
|ψ|

δ2|ψ|
δqij ; δqk�

QG =
∫

d3xQG; Qm =
∫

d3xQm

In the third paper of [876] the Ashtekar variables are employed and it
is shown that the Poisson bracket of the Hamiltonian with itself changes
with respect to its classical counterpart but is still weakly equal to zero
(modulo regularization, etc.); we refer to [876] and Section 4.3.1 for
details.

1.3. GEOMETRY, GRAVITY, AND QM. We have already indicated
some interaction of QM and geometry via Bohmian mechanics and remark here
upon other aspects.

(1) It is known that one can develop a quantum geometry via Kähler geom-
etry on a preHilbert space P (H) (see e.g. [54, 153, 188, 189, 203,
244, 245, 246, 247, 248]). Thus P (H) is a Kähler manifold with a
Fubini-Study metric based on (|dψ⊥ >= |dψ > −|ψ >< ψ|dψ >)

(1.57)
1
4
ds2

PS = [cos−1(| < ψ̃|ψ > |)]2 ∼ 1− | < ψ̃|ψ > |2 =< dψ⊥|dψ⊥ >

where ds2
PS =

∑
dp2

j/pj =
∑

pj(d log(pj))2 gives the connection to prob-
ability distributions. We have already seen in Item 8 of Section 6.1.2 how
this probability metric is related to Fisher information, fluctuations, and
the quantum potential.

(2) There is a fascinating series of papers by Arias, Bonal, Cardenas, Gonza-
lez, Leyva, Martin, and Quiros dealing with general relativity (GR) and
conformal variations (cf. Section 3.2.2). We omit details here but simply
remark that conformal GR with ĝab = Ω2gab is shown to be the only con-
sistent formulation of gravity. Here consistent refers to invariance under
the group of transformations of units of length, time, and mass.

(3) In Section 4.5.1 one goes into the Bohmian interpretation of quantum
cosmology à la [770, 772, 774, 961] for example (cf. also [123, 124,
571, 572, 573]). Thus write H =

∫
d3x(NH + N jHj) where for GR

with a scalar field

(1.58) Hj = −2Diπ
i
jπφ∂jφ; H = κGijk�π

ijπk� +
1
2
h−1/2π2

φ+

+h1/2

[
−κ−1(R(3) − 2Λ) +

1
2
hij∂iφ∂jφ + U(φ)

]
The canonical momentum is

(1.59) πij = −h1/2(Kij − hijK) = Gijk�(ḣk� −DkN� −D�Nk);
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Kij = − 1
2N

(ḣij −DiNj −DjNi)

K is the extrinsic curvature of the 3-D hypersurface Σ in question with
indices lowered and raised via the surface metric hij and its inverse) and
πφ = (h1/2/N)(φ̇−N j∂jφ) is the momentum of the scalar field (Di is the
covariant derivative on Σ). Recall also the deWitt metric

(1.60) Gijk� =
1
2
h−1/2(hikhj� + hi�hjk − hijhk�)

The classical 4-metric and scalar field which satisfy the Einstein equations
can be obtained from the Hamiltonian equations

(1.61) ds2 = −(N2 −N iNi)dt2 + 2Nidxidt + hijdxidxj ;

ḣij = {hij ,H}; π̇ij = {πij ,H}; φ̇ = {φ,H}; π̇φ = {πφ,H}
One has the standard constraint equations which when put in Bohmian
form with ψ = Aexp(iS/�) become

(1.62)

−2h�iDj
δS(hijφ)

δh�j
+

δS(hij , φ)
δφ

∂iφ = 0; −2h�iDj
δA(hij , φ)

δh�j
+

δA(hij , φ)
δφ

= 0

These depend on the factor ordering but in any case will have the form

(1.63) κGijk�
δS

δhij

δS

δhk�
+

1
2
h−1/2

(
δS

δφ

)2

+ V + Q = 0

Q = −�2

A

(
κGijk�

δ2A

δhijδhk�
+

h−1/2

2
δ2A

δφ2

)

(1.64) κGijk�
δ

δhij

(
A2 δS

δhk�

)
+

1
2
h−1/2 δ

δφ

(
A2 δS

δφ

)
= 0

Now in the dBB interpretation one has guidance relations

(1.65) πij =
δS(hab, φ)

δhij
; πφ =

δS(hij , φ)
δφ

One then develops the Bohmian theory and from (1.65) results

(1.66) ḣij = 2NGijk�
δS

δhk�
+ DiNj + DjNi; φ̇ = Nh−1/2 δS

δφ
+ N i∂iφ

The question posed now is to find what kind of structure arises from
(1.66). The Hamiltonian is evidently HQ =

∫
d3x

[
N(H + Q) + N iHi

]
;

HQ = H + Q and the first question is whether the evolution of the fields
driven by HQ forms a 4-geometry as in classical gravitational dynamics.
Various situations are examined and (for Q of a specific form) some-
times the quantum geometry is consistent (i.e. independent of the choice
of lapse and shift functions) and forms a nondegenerate 4-geometry (of
Euclidean type). However it can also be consistent and not form a non-
degenerate 4-geometry. In general, and always when the quantum po-
tential is nonlocal, spacetime is broken and the evolving 3-geometries do
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not stick together to form a nondegenerate 4-geometry. These are very
interesting results and mandate further study.

(4) Next (cf. Section 4.6) one goes to noncommutative (NC) theories folow-
ing [77, 78, 79, 772]. First from [77, 78] one considers canonical co-
mutation relations [X̂µ, X̂ν ] = iθµν and develops a Bohmian theory for
a noncommutative QM (NCQM) via a Moyal product

(1.67) (f ∗ g) =
1

(2π)n

∫
dmkdnpei(kµ+pµ)xµ−(1/2)kµθµνpν f(k)g(p) =

For θ0i = 0 one has a Hilbert space as in commutative QM with a NC
SE

(1.68) i�
∂ψ(xi, t)

∂t
= − �2

2m
∇2ψ(xi, t) + V (xi) ∗ ψ(xi, t) =

=
�2

2m
∇2ψ(xi, t) + V

(
xj + i

θjk

2
∂k

)
ψ(xi, t)

The operators X̂j = xj + iθjk∂k

2 are the observables with canonical co-
ordinates xi and ρd3x = |ψ|2d3x is intepreted as the porbability that
the system is in a region of volume d3x around x at time t. One writes
ψ = Rexp(iS/�) and there results

(1.69)
∂S

∂t
+

(∇S)2

2m
+V +Vnc +QK +QI = 0; Vnc = V

(
xi − θij

2�
∂jS

)
−V (xi);

QK = �
(
− �2

2m

∇2ψ

ψ

)
−
(

�2

2m
(∇S)2

)
= − �2

2m

∇2R

R
;

QI = �
(

V [xj + (iθjk/2)∂k]ψ
ψ

)
− V

(
xi − θij

2�
∂jS

)
One arrives at a formal structure involving

(1.70) X̂j = xi + iθjk∂k/2; Xi(t) = xi(t)− (θij/2�)∂jS(xi(t), t);

dxi(t)
dt

=
[
∂iS(�x, t)

m
+

θij

2�

∂V (Xk)
∂Xj

+
Qi

2

]∣∣∣∣
xi=xi(t)

One finds then

(1.71)
∂ρ

∂t
+

∂(ρẋi

∂xi
− ∂

∂xi

[
ρ

(
θij

2�

∂V (Xk)
∂Xj

+
Qi

2

)]
+ Σθ = 0

so for equivariance (ρ = |ψ|2) it is necessary that the sum of the last
two terms in (1.71) vanish and when V (Xi) is linear or quadratic this
holds. In [77, 78] one also looks at NC theory in Kantowski-Sachs (KS)
universes and at Friedman-Robertson-Walker (FRW) universes with a
conformally coupled scalar field. Many specific situations are examined,
especially in a minisuperspace context.
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(5) Next (cf. Item 3 in Section 6.1.1 and Item 8 in Section 6.1.2) we con-
sider [449, 444]. One gives a new derivation of the SE via the exact
uncertainty principle and a formula

(1.72) H̃q[P, S] = H̃c[P, S] + C

∫
dx
∇P · ∇P

2mP

for the quantum situation. Consider then the gravitational framework

(1.73) ds2 = −(N2 − hijNiNj)dt2 + 2Nidxidt + hijdxidxj

One introduces fluctuations via πij = (δS/δhij) + f ij and arrives at a
WDW equation

(1.74)
[
−�2

2
δ

δhij
Gijk�

δ

δhk�
+ V

]
Ψ = 0

Note that an operator ordering is implicit and thus ordering ambiguities
do not arise (similarly for quantum particle motion). The work here in
[449, 444] is significant and very interesting; it is developed in some
detail in Section 4.7.

(6) In Section 4.1 we followed work of M. Israelit and N. Rosen on Dirac-
Weyl geometry (see in particular [498, 499, 817]). Recall that in Weyl
geometry gµν → g̃µν = exp(2λ)gµν is a gauge transformation and for a
vector �B of length B one has dB = Bwνdxν where wν ∼ φν is the Weyl
vector. The Weyl connection coefficients are

(1.75) ∆Bλ = BσKλ
σµνdxµδxν ; ∆B = BWµνdxµδxν

and under a gauge transformation wµ → w̄µ = wµ + ∂µλ. One writes
Wµν = wµ,ν − wν,µ (where commas denote partial derivatives). The
Dirac-Weyl action here is given via a field β (β → β̄ = exp(−λ)β under
a gauge transformation) in the form

(1.76) I =
∫

[WλσWλσ − β2R + β2(k − 6)wσwσ + 2(k − 6)βwσβ,σ+

+kβ,σβ,σ + 2Λβ4 + LM ]
√
−gd4x

Note here the difference in appearance from (1.37) or the Dirac form
in Appendix D; these are all equivalent after suitable adjustment (cf.
Remark 6.1). Under parallel transport ∆B = BWµνdxµδxν so one
takes Wµν = 0 via wν = ∂νw and we have what is called an inte-
grable Weyl geometry with generating elements (gµν , w, β). Further set
bµ = ∂µ(log(β)) = βµ/β and use a modified Weyl connection vector
Wµ = wµ + bµ. Then varying (1.76) in w and gµν gives

(1.77) 2(κβ2W ν);ν = S; Gν
µ = −8π

T ν
µ

β2
+

+16πκ

(
W νWµ −

1
2
δν
µW σWσ

)
+ 2(δν

µbσ
;σ − bν

;µ) + 2bνbµ + δν
µbσ

σ − δν
µβ2Λ
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where S is the Weyl scalar charge 16πS = δLM/δw, Gν
µ is the Einstein

tensor, and the energy momentum tensor of ordinary matter is

(1.78) 8π
√
−gTµν = δ(

√
−gLM )/δgµν

Finally variation in β gives an equation for he β field

(1.79) R + k(bσ
;σ + bσbσ) = 16πκ(wσwσ − wσ

;σ) + 4β2Λ + 8πβ−1B

(here 16πB = δLM/δβ is the Dirac charge conjugate to β). Note

(1.80) δIM = 8π
∫

(Tµνδgµν + 2Sδw + 2Bδβ)
√
−gd4x

yielding the energy momentum relation Tλ
µ;λ−Swµ−βBbµ = 0. Actually

via (1.77) with S + T = βB one obtains again (1.79) which is seen
therefore as a corollary and not an independent equation. One derives
now conservation laws etc. and following [817] produces an equation of
motion for a test particle. Thus consider matter made up on identical
particles of rest mass m and Weyl scalar charge qs, being in the stage of
a pressureless gas so Tµν = ρUµUν where Uν is the 4-velocity and note
also Tλ

µ;λ − Tbµ = SWµ. Then one arrives at

(1.81)
dUµ

ds
+
{

µ
λ σ

}
UλUσ =

(
bλ +

qs

m
Wλ

)
(gµλ − UµUλ)

Further a number of illustrations are worked out involving the creation of
mass like objects from Weyl-Dirac geometry, in a FRW universe for ex-
ample (i.e. an external observer sitting in Riemannian spacetime would
recognize the object as massive). Cosmological models are also con-
structed with the Weyl field serving to create matter. The treatment is
extensive and profound.

REMARK 7.1.1. We have encountered Dirac-Weyl-Bohm (DWB) in Section
2.1 (Section 7.1.2, Item 5) and Dirac-Weyl geometry in Section 4.1 and Appendix
D (Section 7.1.3, Item 6). The formulations are somewhat different and we try
now to compare certain features. In Section 7.1.2 one has

(1.82) A =
∫

d4x
√
−g(FµνFµν − β2 WR+ (σ + 6)β;µβ;µ + Lmatter

for the action; in Section 7.1.3 the action is

(1.83) I =
∫

[WλσWλσ − β2R + β2(k − 6)wσwσ + 2(k − 6)βwσβ,σ+

+kβ,σβ,σ + 2Λβ4 + LM ]
√
−gd4x

and in Appendix D we have (for the simplest vacuum equations and g =
√−g)

(1.84) I =
∫

[(1/4)FµνFµν − β2R + 6βµβµ + cβ4]gd4x

We recall the idea of co-covariant derivative from Appendix D where for a scalar
S of Weyl power n one has S∗µ = S;µ = nwµS ≡ Sµ − nwµS (Sµ = ∂µS) and I in
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(1.84) is originally

(1.85) I =
∫

[(1/4)FµνFµν − β2∗R + kβ∗µβ∗µ + cβ4]gd4x

However β is a co-scalar of weight −1 and β∗µβ∗µ = (βµ + βwµ)(βµ + βwµ) so
using

(1.86) −β2∗R + kβ∗µβ∗µ = −β2R + kβµβµ + (k − 6)β2κµκµ+

+6(β2κµ):µ + (2k − 12)βκµβµ

one obtains (1.84) for k = 6. Further recall that Wµ = wµ+∂µlog(β) so Wµν = Fµν

and c in (1.84) corresponds to Λ in (1.83). The notation WR in (1.82) is the same
as R and β;µ ∼ βµ = ∂µβ so (σ+6) = 6 provides a complete identification (modulo
matter terms to be added in (1.84)); note σ = k−6 from [817]. Now in [872, 873]
one takes a Dirac-Weyl action of the form (1.82) and relates it to a Bohmian theory
as in Section 3.2.1. The same arguments hold also for σ = 0 here with

(1.87) β ∼M;
8πT

R
∼ m2; α =

�2

m2c2
∼ − 6

R
; ∇νT

µν − T
∇µβ

β
= 0

Note also 16πT = βψ where ψ = δLM/δβ ∼ 16πB so B ∼ T/β. One assumes
here that 16πJµ = δLM/δwµ = 0 where wµ ∼ φµ.

REMARK 7.1.2. We recall from Section 3.2 that β ∼ M and M2/m2 =
exp(Q) is a conformal factor. Further for β0 → β0exp(−Ξ(x)) one has wµ →
wµ + ∂µΞ where −Ξ = log(β/β0) showing an interplay between mass and geom-
etry. Recall also the relation ∇µ(βwµ + β∇µβ) = 0. This indicates a number of
connections between the quantum potential, geometry, and mass. Hence virtually
any results in Dirac-Weyl theory models will involve the quantum potential. This
is made explicit in Section 3.2 from [873] and could be developed for the examples
and theory from [499] once wave functions and Bohmian ideas are inserted.

1.4. GEOMETRIC PHASES. We go now to [283] for some remarks on
geometric phase and the quantum potential. One refers back here to geometric
phases of Berry [108] and Levy-Leblond [603] for example where the latter shows
that when a quanton propagates through a tube, within which it is confined by
impenetrable walls, it acquires a phase when it comes out of the tube. Thus
consider a tube with square section of side a and length L. Before entering the tube
the quanton’s wave function is φ = exp(ipx/�) where p is the initial momentum.
In the tube the wave function has the form

(1.88) ψ = Sin
(
nxπ

x

a

)
Sin

(
nyπ

y

a

)
exp(ip′x/�)

with appropriate transverse boundary conditions. After entering the tube the
energy E of the quanton is unchanged but satisfies

(1.89) E =
(p′)2

2m
(n2

x + n2
y)

π2

2ma
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For the simplest case nx = ny = 1 it was found that after the quanton left the
tube there was an additional phase

(1.90) ∆Φ =
π2�2

pa2
L

Subsequently Kastner [539] related this to the quantum potential that arises in
the tube. Thus let the wave function in the tube be Rexp[(iS/�)+(ipx/�)] in polar
form. The eventual changes in the phase of the wave function, due to the tube,
are now concentrated in S. In order to single out the influence of the tube on the
wave function write ψ1 = ψexp(ipx/�) and the quantum potential corresponding
to ψ is then

(1.91) Q = − �2

2m

∆R

R
=

π2�2

ma2

Now turn to the laws of parallel transport where for the Berry phase the law of
parallel transport for the wave function is (cf. [892])

(1.92) � < ψ|ψ̇ >= 0

For the Levy-Leblond phase the law of parallel transport is given by

(1.93) � < ψ|ψ̇ >= −1
�
Q|ψ|2

In this approach the wave function acquires an additional phase after the quanton
has left the tube in the form

(1.94) ψ(t + ∆t) = exp(−iQ∆t/�)ψ(t)

which after expansion in ∆t leads to the law of parallel transport in (1.93). Indeed

(1.95) Q∆t =
π2�2

ma2
∆t =

π2�2

ma2

mL

p
=

π2�2

pa2
L = ∆Φ

If we use the polar form for the wave function (1.93) gives (∂S/∂t) = −Q and this
means that this new law of parallel transport eliminates the quantum potential
from the quantum HJ equation. The whole quantum information is now carried by
the phase of the wave function. One can see that the nature of this phase is quite
different from Berry’s phase; it is related to the presence or not of constraints in
the system (in this case the tube).

Now consider a quite different type of constrained system where again a new
geometric phase will arise. Look at a quantum particle constrained to move on a
circle. The wave function has the form ψ ∼ sin(ns/ρ0) where ρ0 is the radius of
the circle and s is the arc length with origin at a tangent point. Then the wave
function will have a node at this tangent point. For a circle the value n = 1/2 is
also allowed (cf. [467, 570]) and the corresponding quantum potential for n = 1/2
is

(1.96) Q =
h2

8mρ2
0

which is exactly equal to the constant E0 appearing in the Hamiltonian for a
particle on a circle with radius ρ0 following the Dirac quantization procedure
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for constrained systems (cf. [846]). The phase which a quanton would acquire
traveling along the circle is then

(1.97) Q
2πρ0m

p
=

π�2

4ρ0p

Note that if the circle becomes very small then the geometrical phase can not get
bigger than ∼ (�/m). This limit is imposed by the Heisenberg uncertainty relation
ρ0p ∼ �. This is not the case for the Levy-Leblond phase which can get very large
provided L >> a.

1.5. ENTROPY AND CHAOS. Connections of the quantum potential to
Fisher information have already been recalled in e.g. Section 7.1.1 and we recall
here from Chapter 6 a few matters.

(1) An extensive discussion relating Fisher information (as a “mother” infor-
mation) to various forms of entropy is developed in Chapter 6 and this
gives implicitly at least many relations between entropy, kinetic theory,
uncertainty, and the quantum potential.

(2) A particular result of interest in Section 6.2.1 shows how the quantum
potential acts as a constraining force to prevent deterministic chaos.

2. HYDRODYNAMICS AND GEOMETRY

We mentioned briefly some hydrodynamical aspects of the SE in Sections 1.1
and 1.3.2 and return to that now following [294]. Here one wants to limit the role
of statistics and measurement to unveil some geometric features of the so called
Madelung approach. Thus, with some repetition from Section 1.1, consider a SE
(�/i)ψt + H(x, (�/i)∇)ψ = 0 with ψ = Rexp(iS/�) to arrive at

(2.1)
∂S

∂t
+ H(x,∇S)− �2

2m

∆R

R
= 0;

∂P

∂t
+

∂

∂xi
(Pẋi) = 0; ẋi =

[
∂H

∂pi

]
p=∇S

(where P = R2), and Madelung equations of the form (cf. (1.5))

(2.2)
∂S

∂t
+ H(x,∇S)− �2

2m

∆
√

ρ
√

ρ
= 0;

∂ρ

∂t
+

∂

∂xi
(ρẋi) = 0

where, in a continuum picture, ρ = mP is the mass density of an extended particle
whose shape is dictated by P. Setting vi = ẋi one has then an Euler equation of
the form

(2.3)
∂

∂t
(ρvi) +

∂

∂xk
(ρvivk) = − ρ

m

∂V

∂xi
+

∂

∂xk
τ ik

Following [924] one has expressed the quantum force term here as the divergence
of a symmetric “quantum stress” tensor

(2.4) τij =
(

�

2m

)2

ρ
∂2(log(ρ))

∂xi∂xj
; pi =

�2

2m2
ρ

∂2σ

∂(xi)2

where pi denotes diagonal elements or principal stresses expressed in normal co-
ordinates (with ρ = exp(2σ)). The stress pi is tension like (resp. pressure like) if
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pi > 0 (resp. pi < 0) and the mean pressure is

(2.5) p̄ = −1
3
Tr(τij) = − �2

6m2
ρ∆σ

In classical hydrodynamics negative pressures are often associated with cavitation
which involves the formation of topological defects in the form of bubbles. For
an ideal fluid one would need τij = −p̄δoj and this occurs if and only if the mass
density is Gaussian σ ∝ −xixi in which case p̄ ∝ (�2/2m)ρ. Generally the stress
tensor will not be isotropic, and not an ideal fluid; moreover if one had a viscous
fluid one would expect τij to be coupled to the rate of deformation tensor (derived
from Dv). Since this does not occur one does not call this form of matter a fluid
but rather a Madelung continuum, corresponding to something like an inviscid
fluid which also supports shear stresses, whereas the Gaussian wave packet of QM
corresponds to an ideal compressible irrotational fluid medium.

If now one adds time as the zeroth coordinate and extends the velocity vector
by v0 = 1 then, defining the energy momentum tensor as

(2.6) T
µν = ρ

[
vµvν −

(
�

2m

)2
∂2(log(ρ))
∂xµ∂xν

]
then the Euler and continuity equations can be combined in the form ∂Tµν/∂xµ =
−(ρ/m)∂νV ; this is somewhat misleading since it is based on a nonrelativistic
approach but it leads now to the relativistic theory. First start with the KG
equation

(2.7)
[
−�2ηµν ∂2

∂xµ∂xν
+ m2

0c
2

]
ψ = 0

For ψ = Rexp(iS/�) one gets now

(2.8) ηµν ∂S

∂xµ

∂S

∂xν
+ m2

0c
2 − �2 �R

R
= 0; ηµν ∂

∂xµ

(
P

∂S

∂xν

)
= 0

Define now the 4-velocity, rest mass energy, energy momentum, and stress tensor
via

(2.9) uµ =
1

m0

∂S

∂xµ
; ρ = m0P ; pµ = ρuµ;

τµν =
(

�

2m0

)2
∂2(log(ρ))
∂xµ∂xν

; Tµν = ρ[uµuν + τµν ]

to arrive at relativistic equations for the medium described by ρ and uµ in the
form (♣) ∂µTµν = 0 and ∂µpµ = 0 (the second equation is an incompressibility
equation and this does not contradict the nonrelativistic compressibility of the
medium since in relativity incompressibility in fluid media is equivalant to an in-
finite speed of light corresponding to rigidity in solid media).

One then erects an elegant mathematical framework involving spacetime foli-
ations related to the complex character of ψ (see also the second paper in [294] on
foliated cobordism, etc.). This is lovely but rather too abstract for the style of this
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book so we will not try to reproduce it here; we can however skip to some calcula-
tions involving the geometric origin of the quantum potential. Thus consider the
consequences of choosing a scale of unit norm via the function

√
ρ. One takes a

conformally related metric ḡ = Ω2g on a manifold M (where Ω2 > 0) and, writing
Ω = exp(σ), one obtains the following formulas for the Levi-Civita connection,
Ricci curvature, and scalar curvature

(2.10) Γ̄i
jk = Γi

jk = δi
j∂kσ + δi

k∂jσ − gjkgi�∂�σ;

R̄ij = Rij − (n− 2)σij − [∆σ + (n− 2)(∂kσ∂kσ)]gij

R̄ = e−2σ[R− 2(n− 1)∆σ − (n− 1)(n− 2)(∂iσ∂iσ)]

where σij = ∂i∂jσ − ∂jσ∂iσ. Now if the constant m is replaced by the function ρ
then one must contend with the derivatives ∂iρ and for ρ = exp(2σ) the Minkowski
metric will be deformed from g = η, Γi

jk = 0, Rij = R = 0 to

(2.11) Γ̄i
jk = δi

j∂kσ + δi
k∂jσ − ηjkηi�∂�σ; R̄ij = −2σij − [�σ + 2(∂kσ∂kσ)]ηij

R̄ = −6e−2σ[�σ + (∂iσ∂iσ]

Putting Ω back into the equation for scalar curvature one obtains

(2.12) R̄ = − 6
Ω2

(
�Ω
Ω

)
;

�
√

ρ
√

ρ
=

�Ω
Ω

= −1
6
R̄Ω2 = −1

6
ρR̄

This identifies the quantum potential as a mass density times a scalar curvature
and resembles some results obtained earlier from [840, 841] for example (cf. Sec-
tion 3.3 and 3.3.2). One has also

(2.13) ∂iR̄ij = ∂i

(
1
2
gijR̄

)
=

1
2
∂jR̄ ⇒ ∂iR̄ij = −3∂iτij

so the Takabayashi stress tensor differs from the Ricci curvature only by a term
of vanishing divergence. Hence there is no loss of generality in using the Ricci
curvature of g = ρη as the stress tensor since both define the same force field;
this means in particular that one is dealing with principal curvatures instead of
principal stresses. To extend all this to a more general Lorentz manifold one
notes that under a conformal change of spacetime metric to the energy metric the
Einstein tensor becomes

(2.14) Ḡµν = R̄µν −
1
2
ḡµνR̄ = Gµν − 2σµν + [2�σ + ∂λσ∂λσ]gµν

Thus it seems to assume that this implies a quantum correction to the Einstein
equation

(2.15) Gµν +
(

�σ +
1
2
∂λσ∂λσ

)
gµν = 8πGTµν + 2σµν
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2.1. PARTICLE AND WAVE PICTURES. An interesting discussion of
hydrodynamic features of QM, electrodynamics, and Bohmian mechanics appears
in [474] and we will sketch more or less thoroughly a few ideas here. Thus a hydro-
dynamic model of QM provides an interpretation of two pictures, wave mechanical
(Eulerian) and particle (Lagrangian), and the two versions of QM have associated
Hamiltonian formulations that are connected by a canonical transformation. This
gives a new and precise meaning to the notion of wave-particle duality. However
it is necessary to distinguish the dBB corpuscle from a fluid particle. Consider
a fluid as a continuum of particles with history encoded in the position variables
q(a, t) where each particle is distinguished by a continuous vector label a. The
motion is continuous in that the mapping from a-space to q-space is single valued
and differentiable with inverse a(q, t). Let ρ0(a) be the initial quantum probability
density with

∫
ρ0(a)d3a = 1. Introduce a mass parameter m so that the mass of

an elementary volume d3a attached to the point a is given by mρ0(a)d3a. Note∫
mρ0(a)d3a = m so this is a total mass of the system. The conservation of mass

of a fluid element in the course of its motion is

(2.16) mρ(q(a, t))d3q(a, t) = mρ0(a)d3a; ρ(a, t) = J−1(a, t)ρ0(a);

J =
1
3!

εijkε�mn
∂qi

∂a�

∂qj

∂am

∂qk

∂an

J is the Jacobian of the transformation between the two sets of coordinates and
εijk is the completely antisymmetric tensor with ε123 = 1. Let V be the potential
of an external classical body force and U the internal potential energy of the fluid
due to interparticle interactions. Here assume U depends on ρ(q) and its first
derivatives and hence via (2.16) on the second order derivatives of q with respect
to a. The Lagrangian is then (with integrand � = [· · · ])

(2.17) L[q, qt, t] =
∫ [

1
2
mρ0(a)

(
∂q(a, t)

∂t

)2

− ρ0(a)U(ρ)− ρ0(a)V (q(a))

]
d3a

(one substitutes for ρ from (2.16)). It is the action of the conservative force
derived from U on the trajectories that represents the quantum effects here. They
are characterized by the following choice for U, motivated by the known Eulerian
expression for internal energy,

(2.18) U =
�2

8m

1
ρ2

∂ρ

∂qi

∂ρ

∂qi
=

�2

8m

1
ρ2
0

JijJik
∂

∂aj

(ρ0

J

) ∂

∂ak

(ρ0

J

)
;

∂

∂qi
= J−1Jij

∂

∂aj
; Ji� =

∂J

∂(∂qi/∂a�)
=

1
2
εijkε�mn

∂qj

∂am

∂qk

∂an
;

∂qk

∂aj
Jki = Jδij

Thus Ji� is the cofactor of ∂qi/∂a�. The interaction in the quantum case is not
conceptually different from classical fluid dynamics but differs in that the order of
derivative coupling of the particles is higher than in a classical equation of state.
The Euler-Lagrange equations for the coordinates are

(2.19)
∂

∂t

∂L

∂(∂qi(a, t)/∂t)
− δL

δqi(a)
= 0;
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δL

δqi
=

∂�

∂qi
− ∂

∂aj

∂�

∂(∂qi/∂aj)
+

∂2

∂aj∂ak

∂�

∂(∂2qi/∂aj∂ak)
which yield

(2.20) mρ0(a)
∂2qi(a)

∂t2
= −ρ0(a)

∂V

∂qi
− ∂Wij

∂aj
;

Wij = −ρ0(a)
∂U

∂(∂qi/∂aj)
+

∂

∂ak

(
ρ0(a)

∂U

∂(∂2qi/∂aj∂ak)

)
This has the form of Newton’s second law and instead of giving an explicit form
for Wij one uses a more useful tensor σij defined via Wik = Jjkσij where σij is
the analogue of the classical pressure tensor pδij . Using (2.18) one can invert to
obtain
(2.21)

σij = J−1Wik
∂qj

∂ak
=

�2

4mJ3
Jik

[
ρ−1
0 Jj�

∂ρ0

∂ak

∂ρ0

∂a�
+ (J−1Jj�Jmn − JjmJ�n)×

×∂ρ0

∂a�

∂2qm

∂ak∂an
− Jj�

∂2ρ0

∂ak∂a�
+ ρ0(J−1JmnJjr�s + J−1Jj�Jmrns − 2J−2Jj�JmnJrs)×

× ∂2qr

∂ak∂as

∂2qm

∂a�∂an
+ ρ0J

−1Jj�Jmn
∂3qm

∂ak∂a�∂an

]
;

Jjm�n =
∂Jj�

∂(∂qm/∂an)
= εjmkε�nr

∂qk

∂ar

One checks that σij is symmetric and the equation of motion of the ath particle
moving in the field of the other particles and the external force is then

(2.22) mρ0(a)
∂2qi(a)

∂t2
= −ρ0(a)

∂V

∂qi
− Jkj

∂σik

∂aj
;

∂Jij

∂aj
= 0

(the latter equation is an identity used in the calculation). The result in (2.22) is
the principal equation for the quantum Lagrangian method; its solutions, subject
to specification of ∂qi0/∂t, lead to solutions of the SE. Multiplying by ∂qi/∂ak one
obtains the Lagrangian form

(2.23) mρ0(a)
∂2qi(a)

∂t2
∂qi

∂ak
= −ρ0(a)

∂V

∂ak
− ∂qi

∂ak
Jkj

∂σik

∂aj
;

pi(a) =
∂L

∂(∂qi(a)/∂t)
= mρ0(a)

∂qi(a)
∂t

A Hamiltonian form can also be obtained via the canonical field momenta pi(a) =
∂L/∂(∂qi(a)/∂t) = mρ0(a)(∂qi(a)/∂t) with
(2.24)

H =
∫

pi(a)
∂qi(a)

∂t
d3a− L =

∫ [
p(a)3

2mρ0(a)
+ ρ0(a)U(J−1ρ0) + ρ0(a)V (q(a))

]
d3a

Hamilton’s equations via Poisson brackets {qi(a), qj(a′)} = {pi(a), pj(a′)} = 0 and
{qi(a), pj(a′)} = δij(a − a′) are ∂tqi(a) = δH/δpi(a) and ∂tpi(a) = −δH/δqi(a)
which when combined reproduce (2.22). Now to obtain a flow that is representative
of QM one restricts the initial conditions for (2.22) to something corresponding to
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quasi-potential flow which means (�) ∂qi0/∂t = (1/m)(∂S0(a)/∂ai). However the
flow is not irrotational everywhere because the potential S0(a) obeys the quanti-
zation condition

(2.25)
∮

C

∂qi0(a)
∂t

dai =
∮

C

1
m

∂S0(a)
∂ai

dai =
n�

m
(n ∈ Z)

where C is a closed curve composed of material paricles. If it exists vorticity occurs
in nodal regions (where the density vanishes) and it is assumed that C passes
through a region of good fluid where ρ0 �= 0. To show that these assumptions
imply motion characteristic of QM one demonstrates that they are preserved by
the dynamical system. One first puts (2.23) into a more convenient form. Thus,
using (2.16), the stress tensor (2.21) takes a simpler form

(2.26) σij =
�2

4m

(
1
ρ

∂ρ

∂qi

∂ρ

∂qj
− ∂2ρ

∂qi∂qj

)
Using

(2.27)
1
ρ

∂σij

∂qj
=

∂VQ

∂qi
; VQ =

�2

4mρ

(
1
2ρ

∂ρ

∂qi

∂ρ

∂qi
− ∂2ρ

∂qi∂qi

)
(note VQ is the dBB quantum potential) one sees that (2.23) can also be simplified
as

(2.28) m
∂2qi

∂t2
∂qi

∂ak
=

∂

∂ak
(V + VQ)

Now integrate this equation between limits (0, t) to get

(2.29) m
∂qi

∂t

∂qi

∂ak
= m

∂qi0

∂t
+

∂χ(a, t)
∂ak

; χ =
∫ t

0

(
1
2
m

(
∂q

∂t

)2

− V − VQ

)
dt

Then using (�) one has

(2.30)
∂qi

∂t

∂qi

∂ak
=

1
m

∂S

∂ak
; S(a, t) = S0(a) + χ(a, t)

with initial conditions q = a, χ0 = 0. To obtain the q-components multiply by
J−1Jik and use (2.18) to get (♠) ∂qi/∂t = (1/m)(∂S/∂qi) where S = S(a(q, t), t).
Thus the velocity is a gradient for all time and (♠) is a form of the law of motion.
Correspondingly one can write (2.28) as

(2.31) m
∂2qi

∂t2
= − ∂

∂qi
(V + VQ)

This puts the fluid dynamical law of motion (2.22) in a form of Newton’s law
for a particle of mass m. Note that the motion is quasi potential since the value
(2.25) is preserved, i.e. (•) ∂t

∮
C(t)

(∂qi/∂t)dqi = 0 where C(t) is the evolute of the
material particles conposing C (cf. [113]). To obtain the equation governing S
use the chain rule Ft|a = ∂tF |q +(∂tqi)(∂F/∂qi) and since χ = S−S0 from (2.30)
one has

(2.32)
∂χ

∂t

∣∣∣∣
a

=
∂S

∂t

∣∣∣∣
q

+
∂qi

∂t

∂S

∂qi
−
(

∂S0

∂t

∣∣∣∣
q

+
∂qi

∂t

∂S0

∂qi

)



2. HYDRODYNAMICS AND GEOMETRY 299

The two terms in the bracket sum to ∂S0(a)/∂t = 0 and using (♠) one obtains
(∂χ/∂t)|a = (∂S/∂t)|q + m(∂q/∂t)2. Hence from (2.29) and (♠) one has

(2.33)
∂χ

∂t

∣∣∣∣
a

=
1
2
m

(
∂q

∂t

)2

− V − VQ ⇒
∂S

∂t
+

1
2m

(
∂S

∂q

)2

+ V + VQ = 0

This is the quantum HJ equation and one has shown that the equations (2.16),
(2.22), and (�) are equivalent to the 5 equations (2.16), (2.30), and (2.33); they
determine the functions (qi, ρ, S). Note that although the particle velocity is
orthogonal to a moving surface S = c the surface does not keep step with the
particles that initially compose it and hence is not a material surface. There is
also some interesting discussion about vortex lines for which we refer to [474].

The fundamental link between the particle (Lagrangian) and wave mechanical
(Eulerian) pictures is defined by the following expression for the Eulerian density

(2.34) ρ(x, t) =
∫

δ(x− q(a, t))ρ0(a)d3a

The corresponding formula for the Eulerian velocity is contained in the expression
for the current

(2.35) ρ(x, t)vi(x, t) =
∫

∂qi(a, t)
∂t

δ(x− q(a, t))ρ0(a)d3a

These relations play an analogous role in the approach to the Huygen’s formula

(2.36) ψ(x, t) =
∫

G(x, t; a, 0)ψ0(a)d3a

in the Feynman theory; thus one refers to δ(x−q9a, t)) as a propagator. Unlike the
many to one mapping embodied in (2.36) the quantum evolution here is described
by a local point to point development. Using the result

(2.37) δ(x− q(a, t)) = J−1
∣∣
a(x,t)

δ(a− a0(x, t)); x− q(a0, t) = 0

and evaluating the integrals (2.34) and (2.22) are equivalent to

(2.38) ρ(x, t) = J−1
∣∣
a(x,t)

ρ0(a(x, t)); ρ(x(a, t), t) = J−1(a, t)ρ0(a)

vi(x, t) =
∂qi(a, t)

∂t

∣∣∣∣
a(x,t)

; vi(x, t)|a(x,t) =
∂qi(a, t)

∂t

These restate the conservation equation (2.16) and give the relations between the
velocities in the two pictures; J−1 could be called a local propagator. Now from
(2.38) one can relate the accelerations in the two pictures via

(2.39)
∂vi

∂t
+ vj

∂vi

∂xj
=

∂2qi(a, t)
∂t2

∣∣∣∣
a(x,t)

;
(

∂vi

∂t
+ vj

∂vi

∂xj

)∣∣∣∣
a(x,t)

=
∂2qi(a, t)

∂t2

One can now translate the Lagrangian flow equations into Lagrangian language.
Differentiating (2.34) in t and using (2.35) one finds the continuity equation

(2.40)
∂ρ

∂t
+

∂

∂xi
(ρvi) = 0
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Next differentiating (2.35) and using (2.31) and (2.40) one obtains the quantum
analogue of Euler’s equation

(2.41)
∂vi

∂t
+ vj

∂vi

∂xj
= − 1

m

∂

∂xi
(V + VQ)

Finally the quasi potential condition (♠) becomes (�) vi = (1/m)(∂S(x, t)/∂xi).
(2.38) gives the general solutions of the continuity equation (2.40) and Euler’s
equation (2.41) in terms of the paths and initial density. To establish the connec-
tion between the Eulerian equations and the SE note that (2.41) and (�) can be
written

(2.42)
∂

∂xi

(
∂S

∂t
+

1
2m

∂S

∂xi

∂S

∂xi
+ V + VQ

)
= 0

The quantity in brackets is thus a function of time and since this does not affect
the velocity field one may absorb it in S (i.e. set it equal to zero) leading to

(2.43)
∂S

∂t
+

1
2m

∂S

∂xi

∂S

∂xi
+ V + VQ = 0

Combining all this the function ψ =
√

ρexp(iS/�) satisfies the SE

(2.44) i�
∂ψ

∂t
= − �2

2m

∂2ψ

∂xi∂xi
+ V ψ

This has all been deduced from (2.22) subject to the quasi potential requirement.
The quantization condition (•) becomes (••)

∫
C0

(∂S(x, t)/∂xi)dxi = n� (n ∈ Z
where C0 is a closed curve fixed in space that does not pass through nodes. Given
the initial wave function ψ0(a) one can now compute ψ for all (x, t) as follows. first
solve (2.22) subject to initial conditions q0(a) = a, ∂qi0(a)/∂t = m−1∂S0(a)/∂a
to get the set of trajectories for all (x, t). Then substitute q(a, t) and qt in (2.36)
to find ρ and ∂S/∂x which gives S up to an additive function of time f(t). To fix
this function up t a constant use (2.43) and one gets finally

(2.45) ψ(x, t) =
√

(J−1ρ0|a(x,t)exp

[
i

�

(∫
m(∂qi(a, t)/∂t)|a(x,t)dxi + f(t)

)]
The Eulerian equations (2.40) and (2.41) form a closed system of four coupled
PDE to determine the four independent fields (ρ(x), vi(x)) and do not refer to the
material paths. One notes that the Lagrangian theory from which the Eulerian
system was derived comprises seven independent fields (ρ, q(a), p(a)). In the case
of quasi potential flow there are respectively 2 or 5 independent fields. This may
be regarded as an incompleteness in the Eulerian description or a redundancy in
the Lagrangian description; it could also be viewed in terms of refinement. One
notes also that the law of motion (2.29) for the fluid elements coincides with that
of the dBB interpretation of QM and one must be careful to discriminate between
the two points of view.
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2.2. ELECTROMAGNETISM AND THE SE. We go next to the sec-
ond paper in [474] which connects the electromagnetic (EM) fields to hydrody-
namics and relates this to the quantum potential. Thus the source free Maxwell
equations in free space are

(2.46) εijk∂jEk = −∂Bi

∂t
; εijk∂jBk =

1
c2

∂Ei

∂t
; ∂iEi = ∂iBi = 0

One regards the last two equations as constraints rather than dynamical equations.
First one goes to a representation of these equations in Schrödinger form and begins
with the Riemann-Silberstein 3-vector Fi =

√
ε0/2(Ei + icBi) and 3 × 3 angular

momentum matrices si so that

(2.47) (si)jk = −i�εijk; [si, sj ] = i�εijksk

so that (2.46) is equivalent to

(2.48) i�
∂Fi

∂t
= −ic(sj)ik∂jFk; ∂iFi = 0

To formulate groundwork for continuous representation of the spin freedoms one
transforms to a representation of the si where the z-component is diagonal via the
unitary matrix

(2.49) Uai =
1√
2

⎛⎝ −1 i 0
0 0

√
2

1 i 0

⎞⎠
and Maxwell’s equations become

(2.50) i�
∂Ga

∂t
= −ic(Jj)ab∂jGb; Ga = UaiFi; Ji = UsiU

−1; (a, b = 1, 0,−1)

Here one has

(2.51)

⎛⎝ G1

G0

G−1

⎞⎠ =
1√
2

⎛⎝ −F1 + iF2√
2F3

F1 + iF2

⎞⎠ ; J1 =
�√
2

⎛⎝ 0 1 0
1 0 1
0 1 0

⎞⎠ ;

J2 =
�√
2

⎛⎝ 0 −i 0
i 0 −i
0 i 0

⎞⎠ ; J3 = �

⎛⎝ 1 0 0
0 0 0
0 0 −1

⎞⎠
Next one passes to an angular coordinate representation using the Euler angles
(αr) = (α, β, γ) and conventions of [471] so that

(2.52) M̂1 = i�(Cos(β)∂α − Sin(β)Ctn(α)∂β + Sin(β)Csc(α)∂γ);

M̂2 = i�(−Sin(β)∂α − Cos(β)Ctn(α)∂β + Cos(β)Csc(α)∂γ); M̂3 = i�∂β

The SE (2.50) becomes then

(2.53) i�
∂ψ(x, α)

∂t
= −icM̂i∂iψ(x, α) ≡ i�

∂ψ

∂t
= −c�λ̂i∂iψ

(
λ̂i =

M̂i

−i�

)
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where ψ is a function on the 6-dimensional manifold M = R3 ⊗ SO(3) whose
points are labeled by (x, α). The wave function may be expanded in terms of an
orthornormal set of spin 1 basis functions ua(α) (cf. [471]) in the form

(2.54) ψ(x, α, t) = Ga(x, t)ua(α) (a = 1, 0,−1); u1(α) =
√

3
4π

Sin(α)e−iβ ;

u0(α) =
ii
√

3
2
√

2π
Cos(α); u−1(α) =

√
3

4π
Sin(α)eiβ ;

where
∫

u∗
a(α)ub(α)dΩ = δab with dΩ = Sin(α)dαdβdγ and α ∈ [0, π], β ∈

[0, 2π], γ ∈ [0, 2π]. One can show that
∫

u∗
aM̂iub(α)dΩ = (Ji)ab and multiply-

ing (2.53) (with use of (2.54)) one recovers the Maxwell equations in the form
(2.50). In this formulation the field equations (2.53) come out as second order
PDE and summation over i or a is replaced by integration in αr. For example the
energy density and Poynting vector have the alternate expressions

(2.55)
ε0
2

(E2 + c2B2) = F ∗
i Fi = G∗

aGa =
∫
|ψ(x, α)|2dΩ;

ε0c
2(E×B)i =

c

�
F ∗

j (si)jkFk =
c

�
G∗

a(Ji)abGb =
c

�

∫
ψ∗(x, α)M̂iψ(x, α)dΩ

For the hydrodynamic model one writes ψ =
√

ρexp(iS/�) and splitting (2.53)
into real and imaginary parts we get

(2.56)
∂S

∂t
+

c

�
λ̂iS∂iS+Q = 0;

∂ρ

∂t
+

c

�
∂i(ρλ̂iS)+

c

�
λ̂(ρ∂iS) = 0; Q = −c�

λ̂i∂i
√

ρ
√

ρ

These equations are equivalent to the Maxwell equations provided ρ and S obey
certain conditions; in particular single valuedness of the wave function requires

(2.57)
∮

C0

∂iSdxi + ∂rSdαr = n� (n ∈ Z)

where C0 is a closed curve in M. In the hydrodynamic model n is interpreted as the
net strength of the vortices contained in C0 (these occur in nodal regions (ψ = 0)
where S is singular). Comparing (2.56) with the Eulerian continuity equation
corresponding to a fluid of density ρ with translational and rotational freedom one
expects

(2.58)
∂ρ

∂t
+ ∂i(ρvi) + λ̂i(ρωi) = 0; vi ∼ (c/�)λ̂S; ωi ∼ (c/�)∂iS

Thus one obtains a kind of potential flow (strictly quasi-potential in view of (2.57))
with potential (c/�)S. The quantity Q in (2.56) is of course the analogue for
the Maxwell equations of the quantum potential and will have the classical form
−∇2√ρ/

√
ρ when the appropriate metric on M is identified. From the Bernoulli-

like (or HJ-like) equation in (2.56) we obtain the analogue of Euler’s force law for
the EM field. Thus applying first ∂i and using (2.58) one gets

(2.59)
(

∂

∂t
+ vj∂j + ωj λ̂j

)
ωi = − c

�
∂iQ
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Acting on this with λ̂i and using [λ̂i, λ̂j ] = −εijkλ̂k yields

(2.60)
(

∂

∂t
+ vj∂j + ωiλ̂j

)
vi = εijkωjvk −

c

�
λ̂iQ

which contains a Coriolis type force in addition to the quantum contribution. The
paths x = x(x0, α0, t) and α = α(x0, α0, t) of the fluid particles in M are obtained
by solving the differential equations

(2.61) vi(x, α, t) =
∂xi

∂t
; vr(x, α, t) =

∂αr

∂t

These paths are an analogue in the full wave theory of a ray.

Now one generalizes this to coordinates xµ in an N-dimensional Riemannian
manifold M with (static) metric gµν(x). The history of the fluid is encoded in the
positions ξ(ξ0, t) of distinct fluid elements and one assumes a single valued and dif-
ferentiable map between coordinates (cf. Section 7.2.1). Let P0(ξ0) be the initial
density of some continuously distributed quantity in M (mass in ordinary hydro-
dynamics, energy here) and set g = det(gµν). Then the quantity in an elementary
volume dNξ0 attached to the point ξ0 is P0(ξ0)

√
−g(ξ0)dNξ0 and conservation of

this quantity is expressed via

(2.62) P (ξ(ξ0, t))
√
−g(ξ(ξ0, t))dNξ(ξ0, t) = P0(ξ0)

√
−g(ξ0d

Nξ0 ≡

≡ P (ξ0, t) = D−1(ξ0, t)P0(ξ0); D(ξ0, t) =
√

g(ξ)/g(ξ0)J(ξ0, t)

where J is the Jacobian

(2.63) J =
1

N !
εµ1···µn

εν1···νn
∂ξµ1

∂ξν1
0

· · · ∂ξµN

∂ξνN
0

One assumes the Lagrangian for the set of fluid particles has a kinetic term and
an internal potential representing a certain kind of particle interaciton

(2.64) L =
∫

P0(ξ0)
(

1
2
gµν(ξ)

∂ξµ

∂t

∂ξν

∂t
− gµν c2�2

8
1

P 2

∂P

∂ξµ

∂P

∂ξν

)√
−g(ξ0)dNξ0

Here � is a constant with the dimension of length (introduced for dimensional
reasons) and ξ = ξ(ξ0, t); one substitutes now for P from (2.62) and writes

(2.65)
∂

∂ξµ
= J−1Jν

µ

∂

∂ξν
0

; Jν
µ =

∂J

∂(∂ξµ/∂ξν
0 )

;
∂ξµ

∂ξν
0

Jσ
µ = Jδσ

ν

One assumes suitable behavior at infinity so that surface terms in the variational
calculations vanish and the Euler-Lagrange equations are then
(2.66)

∂2ξµ

∂t2
+
{

µ
ν σ

}
∂ξν

∂t

∂ξσ

∂t
= −c�

�
gµν ∂Q

∂ξν
; Q =

−�c�

2
√
−gP

∂

∂ξµ

(
√
−ggµν ∂

√
P

∂ξν

)
{

µ
ν σ

}
=

1
2
gµρ

(
∂gσρ

∂xiν
+

∂gνρ

∂ξσ
− ∂gνσ

∂ξρ

)
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Now one restricts to quasi-potential flows with conditions

(2.67) gµν(ξ0)
∂ξµ

0

∂t
=

c�

�

∂S0(ξ0)
∂ξν

0

;
∮

C

∂S0(ξ0)
∂ξµ

0

dξµ
0 = h� (n ∈ Z)

One follows the same procedures as in Section 7.2.1 so multiplying (2.66) by
gσµ(∂ξσ/∂ξρ

0) and integrating gives
(2.68)

gσµ(ξ(ξ0, t))
∂ξσ

∂ξρ
0

∂ξµ

∂t
= gρµ(ξ0)

∂ξµ
0

∂t
+

∂

∂ξρ
0

∫ t

0

(
1
2
gµν(ξ(ξ0, t))

∂ξµ

∂t

∂ξν

∂t
− c�

�
Q

)
dt

Then substituting (2.67) one has

(2.69) gσµ
∂ξσ

∂ξρ
0

∂ξµ

∂t
=

c�

�

∂S

∂ξρ
0

; S = S0 +
∫ t

0

(
�

2c�
gµν

∂ξµ

∂t

∂ξν

∂t
−Q

)
dt

The left side gives the velocity at time t relative to ξ0 and this is a gradient. To
obtain the ξ components multiply by J−1Jρ

ν and use (2.65) to get gµν(∂ξν/∂t) =
(c�/�)(∂S/∂ξµ) where S = S(ξ0(ξ, t), t). Thus for all time the covariant velocity
of each particle is the gradient of a potential with respect to the current position.
Finally to see that the motion is quasi-potential since (2.66) holds and the value
in (2.67) of the circulation is preserved following the flow, i.e.

(2.70)
∂

∂t

∮
C

(t)gµν
∂ξν

∂t
dξµ = 0

Finally for the SE one defines a fundamental link between the particle (La-
grangian) and wave-mechanical (Eulerian) pictures via

(2.71) P (x, t)
√
−g(x) =

∫
δ(x− ξ(ξ0, g))P0(ξ0)

√
−g(ξ0)dNξ0

The corresponding formla for the Eulerian velocity is contained in the current
expression

(2.72) P (x, t)
√
−g(x)vµ(x, t) =

∫
∂ξµ

∂t
δ(x− ξ(ξ0, t))P0(ξ0)

√
−g(ξ0)dNξ0

These are equivalent to the following local expressions (ξ0 ∼ ξ0(x, t))
(2.73)

P (x, t)
√
−g(x) = J−1

∣∣
ξ0

P0(ξ0(x, t))
√
−g(ξ0(x, t)); vµ(x, t) =

∂ξµ(ξ0, t)
∂t

∣∣∣∣
ξ0

We can now translate the Lagrangian flow equations into Eulerian language. First
differentiate (2.71) in t and use (2.72) to get

(2.74)
∂P

∂t
+

1√−g

∂

∂xµ
(P
√
−gvµ) = 0

Then, differentiating (2.72) and using (2.66) and (2.74) one obtains the analogue
of the classical Euler equation

(2.75)
∂vµ

∂t
+ vν ∂vµ

∂xν
+
{

µ
ν σ

}
vνvσ = −c�

�
gµν ∂Q

∂xν
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where Q is given by (2.66) with ξ replaced by x. Finally the quasi-potential
condition becomes

(2.76) vµ =
c�

�
gµν ∂S(x, t)

∂xν

Formula (2.73) give the general solution of the coupled continuity and Euler equa-
tions (2.74) and (2.75) in terms of the paths and initial density. To establish the
connection between the Eulerian equations and the SE note that (2.75) and (2.76)
can be written

(2.77)
∂

∂xµ

(
∂S

∂t
+

c�

2�
gνσ ∂S

∂xν

∂S

∂xσ
+ Q

)
= 0

Again the quantity in brackets is a function of time which is incorporated into S
if necessary and one arrives at

(2.78)
∂S

∂t
+

c�

2�
gνσ ∂S

∂xν

∂S

∂xσ
+ Q = 0

Combining (2.78) with (2.74) and using (2.76) one finds for ψ =
√

Pexp(i/�) the
equation

(2.79) i�
∂ψ

∂t
= − −�c�

2
√−g

∂

∂xµ

(√
−ggµν ∂ψ

∂xν

)
(for a system of mass �/c�). The quantization condition (2.70) becomes

(2.80)
∮

C0

∂S(x, t)
∂xµ

dxµ = n� (n ∈ Z)

Now an alternate representation of the internal angular motion can be given
in terms of the velocity fields vr(x, α, t) conjugate to the Euler angles. One has

(2.81) ωi = (A−1)irvr; vr = Ariωi;

(A−1)ir =

⎛⎝ −Cos(β) 0 −Sin(α)Sin(β)
Sin(β) 0 −Sin(α)Cos(β)

0 −1 −Cos(α)

⎞⎠ ;

The relations (2.52) may be written as λ̂i = Air∂r and hence ωj λ̂j = vr∂r. In
terms of the conjugate velocities Euler’s equations (2.59) and (2.60) become

(2.82)
(

∂

∂t
+ vj∂j + vr∂r

)
vs + Asi∂r(A−1)iqvqvr = − c

�
Asi∂iQ;(

∂

∂t
+ vj∂j + vr∂r

)
vi + εijk(A−1)krvjvr = − c

�
λ̂iQ

Now one specializes the general treatment to the manifold M = R3 × SO(3) with
coordinates xµ = (xi, αr) and metric

(2.83) gµν =
(

0 �−1Air

�−1Ari 0

)
; gµν =

(
0 �(A−1)ir

�(A−1)ri 0

)
and density P = ρ/�3. From ∂r(

√−ggir) = 0 and �gir∂r = λ̂i one gets via
[λ̂i, λ̂j ] = −εijkλ̂k the relation gir(∂sgrj − ∂rgsj) = �−1εijkgsk. Then the relation
(2.76) becomes (2.58), (2.74) becomes (2.56), (2.75) becomes (2.82), (2.66) (with ξ
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replaced by x) becomes (2.56), (2.78) becomes (2.56), (2.79) becomes (2.53), and
(2.80) becomes (2.57). Writing ξµ = (qi, θr) for the Lagrangian coordinates (2.64)
becomes

(2.84) L =
∫

�ρ0(q0, θ0)
(

(A−1)ir
∂qi

∂t

∂θr

∂t
−Air

c2

4ρ2

∂ρ

∂qi

∂ρ

∂θr

)
Sin(θ0)d3θ0d

3q0

Newton’s law (2.66) reduces to the coupled relations

(2.85)
∂2qi

∂t2
+ εijk(A−1)ir

∂qj

∂t

∂θr

∂t
= − c

�
Air

∂Q

∂θr
;

∂2θs

∂g2
+ Asi

∂

∂θr
(A−1)iq

∂θq

∂t

∂θr

∂t
= − c

�
Asi

∂Q

∂qi

where Air is given via (2.81) with αr replaced by θr(q0, θ0, t) and one substitutes
ρ(q0, θ0, t) = D−1(q0, θ0, t)ρ0(q0, θ0) along with

(2.86) Q = −c�Air
1
√

ρ

∂2√ρ

∂θr∂qi
;

∂

∂qi
= J−1

(
Jij

∂

∂q0j
+ Jis

∂

∂θ0s

)
;

∂

∂θr
= J−1

(
Jrj

∂

∂q0j
+ Jrs

∂

∂θ0s

)
Given the initial wavefunction ψ0(x, α) = G0a(x)ua(α) =

√
ρ0exp(iS0/�) one

can solve (2.85) subject to initial conditions ∂q0i/∂t = (c/�)Air(∂S0/∂θ0r) and
∂θ0r/∂t = (c/�)Ari(θ0)(∂S0/∂q0i) to get the set of trajectories for all (q0, θ0, t).
Then invert these functions and substitute q0(x, α, t) and θ0(x, α, t) in the right
side of (2.85) to find ρ(x, α, t) and in the right sides of the equations

(2.87) ∂rS =
�

c
(A−1)ir

∂qi

∂t
; ∂iS =

�

c
(A−1)ri

∂θr

∂t

to get S up to an additive function of time �f(t), which is adjusted as before (cf.
(2.56)). There results
(2.88)

ψ =
√

D−1ρ0)|q0,θ0e
[(i/c)

∫
(A−1)ir(∂qi/∂t)|q0,θ0dαr+(A−1)ri(∂θr/∂t)|q0,θ0dxi+if(t)]

Finally the components of the time dependent EM field may be read off from
(2.50) where

(2.89) Ga =
∫

ψ(x, α)u∗
a(α)dΩ

EXAMPLE 2.1. One computes the time dependence of the EM field whose
initial form is E0i = (ECos(kz), 0, 0) with B0i = (0, (1/c)ECos(kz), 0). The initial
wavefunction is ψ0 = G01u1 or

(2.90) ψ0(q0, θ0) = −
√

3
2
√

2π
ECos(kq03)Sin(θ01)e−iθ02

One looks for solutions to (2.85) that generate a time dependent wavefunction
whose spatial dependence is on z alone. The Hamiltonian in the SE (2.53) then re-
duces to −icM̂3∂3ψ(x, α) alone which preserves the spin dependence of ψ0. Hence,
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since ρ is independent of θ3, the quantum potential Q in (2.86) vanishes. Some
calculation leads to

(2.91) ψ(x, α, t) = −
√

3
2
√

2π
ECos(k(z − ct))Sin(α)e−iβ ;

Ei = (Ecos(k(ct− z)), 0, 0); Bi = (0, (1/c)ECos(k(ct− z)), 0)
Note that one obtains oscillatory behavior of the Eulerian variables from a model
in which the individual fluid elements do not oscillate! This circumvents one of
the classical problems where it was considered necessary for the elements of a
continuum to vibrate in order to support a wave motion. Another interesting
feature is that the speed of each element |v| = |cCosc(θ01)| obeys c ≤ |v| <
∞. One might regard the occurence of superluminal speeds as evidence that the
Lagrangian model is only a mathematical tool. Indeed performing a weighed sum
of the velocity over the angles to get the Poynting vector ε0c

2(E×B)i =
∫

ρvidΩ
the collective x and y motions cancel to give the conventional geometrical optics
rays propagating at speed c in the z-direction.

3. SOME SPECULATIONS ON THE AETHER

We give first some themes and subsequently some details and speculations.
(1) In a hauntingly appealing paper [494] P. Isaev makes conjectures, with

supporting arguments, which arrive at a definition of the aether as a Bose-
Einstein condensate of neutrino-antineutrino pairs of Cooper type (Bose-
Einstein condensates of various types have been considered by others in
this context - cf. [262, 263, 338, 398, 482, 510, 606, 893, 960] and
Remark 5.3.1). The equation for the ψ-aether is then a solution of the
massless Klein-Gordon (KG) equation (photon equation)(

�2∆− �2

c2
∂2

t

)
ψ = 0

(cf. also [911]). This ψ field heuristically acts as a carrier of waves
(playground for waves) and one might say that special relativity (SR)
is a way of including the influence of the aether on physical processes
and consequently SR does not see the aether (cf. here also the idea of a
Dirac aether in [215, 216, 302, 537, 727] and Einstein-aether theories
as in [338, 510] - some of this is developed below). In the electromag-
netic (EM) theory one looks at �ψ = (φ, �A) with �ψi = 0 as the defining
equation for a real ψ-aether, in terms of the potentials φ and �A which
therefore define the ψ-aether. EM waves are then considered as oscilla-
tions of the ψ aether and wave processes in the aether accompanying a
moving particle determine wave properties of the particle. The ensemble
point of view can be considered artificial, in accord wth a conclusion we
made in [194, 197, 203], based on Theme 3 below, that uncertainty
and the ensemble “cloud” are based on the lack of deterimation of par-
ticle trajectories when using the SE instead of a third order equation.
Thus it is the SE context which automatically (and gratuitously) intro-
duces probability; nevertheless, given the limitations of measurement, it
produces an amazingly accurate theory.

(3.1)
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(2) Next there is the classical deBroglie-Bohm (dBB) theory (cf. [191, 186,
187, 188, 189, 205, 203, 471] - and references in these papers) where,
working from a Schrödinger equation (SE)

− �2

2m
∆ψ + V ψ = i�ψt; ψ = ReiS/�

one arrives at a quantum potential Q = −(�2/2m)(∆
√

ρ/
√

ρ) (R =
√

ρ)
associated to a quantum Hamilton-Jacobi equation (QHJE)

St +
(∇S)2

2m
+ V + Q = 0

The ensuing particle theory exhibits trajectory motion choreographed by
ψ via Q = −(�2/2m)(∆|ψ|/|ψ|) or directly via the guidance equation

�̇x = �v = ��ψ∗∇ψ

ψ∗ψ

(cf. [186, 187, 188, 203] for extensive references). Relativistic and
geometrical aspects are also provided below.

(3) In [346] Faraggi and Matone develop a theory of x−ψ duality, related to
Seiberg-Witten theory in the string arena, which was expanded in vari-
ous ways in [2, 41, 110, 198, 194, 191, 249, 640, 751, 958]. Here one
works from a stationary SE [−(�2/2m)∆+V (x)]ψ = Eψ, and, assuming
for convenience one space dimension, the space variable x is determined
by the wave function ψ from a prepotential F via Legendre transforma-
tions. The theory suggests that x plays the role of a macroscopic variable
for a statistical system with a scaling term �. Thus define a prepotential
FE(ψ) = F(ψ) such that the dual variable ψD = ∂F/∂ψ is a (linearly in-
dependent) solution of the same SE. Take V and E real so that ψ̄ = ψD

qualifies and write ∂xF = ψD∂xψ = (1/2)[∂x(ψψD)+W )] where W is the
Wronskian. This leads to (ψD = ψ̄) the relation F = (1/2)ψψ̄ + (W/2)x
(setting the integration constant to zero). Consequently, scaling W to
−2i

√
2m/� one obtains

i
√

2m

�
x =

1
2
ψ

∂F

∂ψ
− F ≡ i

√
2m

�
x = ψ2 ∂F

∂ψ2
− F

which exhibits x as a Legendre transform of F with respect to ψ2. Duality
of the Legendre transform then gives also

F = φ∂φ

(
i
√

2m x

�

)
−
(

i
√

2m x

�

)
; φ = ∂ψ2F =

ψ̄

2ψ

so that F and (i
√

2m x/�) form a Legendre pair. In particular one has ρ =
|ψ|2 = 2i

√
2m

� x+2F which also relates x and the probability density (but
indirectly since the x term really only cancels the imaginary part of 2F).
In any event one sees that the wave function ψ specifically determines the
exact location of the “particle” whose quantum evolution is described by

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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ψ. We mention here also that the (stationary) SE can be replaced by a
third order equation

4F′′′ + (V (x)− E)(F′ − ψF
′′)3 = 0; F

′ ∼ ∂F

∂ψ

and a dual stationary SE has the form

�2

2m

∂2x

∂ψ2
= ψ[E − V ]

(
∂x

∂ψ

)3

A noncommutative version of this is developed in the second paper of
[958].

(4) We also note for comparison and analogy some relations between Le-
gendre duals in mechanics, thermodynamics, and (x, ψ) duality. Thus
(cf. [202, 596]) one has in mechanics pẋ−L = H via L = (/2)mẋ2 − V
and H = (p2/2m) + V with p = ∂L/∂ẋ and ẋ = ∂H/∂p. In thermody-
namics one has a Helmholtz free energy F with F = U−TS for energy U,
entropy S, and temperature T. Set F = −F to obtain F = T (∂F/∂T )−U
and U = S∂SU − F (where ∂TF = S and ∂SU = T ). Now put this in a
table where we write the (x, ψ) duality in the form χ = ψ2(∂F/∂ψ2)− F

with F = φ(∂χ/∂φ) − χ (for χ = (i
√

2m/�)x and φ = (∂F/∂ψ2)). This
leads to a table

Mechanics Thermodynamics (x, ψ) duality
ẋ, p, L, H T, S, F , U ψ2, φ, F, χ

pẋ−H = L TS − U = F ψ2φ− F = χ

L = ẋ∂H
∂p −H F = S ∂U

∂S − U F = φ∂χ
∂φ − χ

H = p∂L
∂ẋ − L U = T ∂F

∂T −F χ = ψ2 ∂F
∂ψ2 − F

One says that e.g. (F, χ) or (F , U) or (L,H) form a Legendre dual pair and in the
first situation one refers to (x, ψ) duality. One sees in particular that F = ψ2

−χ where ψ2φ ∼ ẋp in mechanics. Note that φ = ∂F/∂ψ2 = (1/2ψ)(∂F/∂ψ) =
ψ̄/2ψ with ψ2φ = (1/2)ψψ̄ = (1/2)|ψ|2. In any event χ = −i(

√
2m/�)x and we

will see below how the physics can be expressed via ψ, ∂/∂ψ, dψ etc. without
mentioning x. This allows one to think of the coordinate x as an emergent entity
and we like to think of x− ψ duality in this spirit.

3.1. DISCUSSION OF A PUTATIVE PSI AETHER. We mention
[650, 753, 935] for some material on the aether and the vacuum and refer to
the bibliography for other references. We sketch first some material from [2, 41,
110, 249, 751, 958] which extends theme 3 to the Klein-Gordon (KG) equation.
Following [958] take a spacetime manifold M with a metric field g and a scalar
field φ satisfying the KG equation. Locally one has cartesian coordinates xα (α =
0, 1. · · · , n− 1) in which the metric is diagonal with gαβ(x) = ηαβ(x) and the KG

equation has the form (�x+m2)φ(x) = 0 (�x
?∼ (�2/c2)[(∂2

t /c2)−∇2] - cf. (2.26)).
Defining prepotentials such that φ̃(α) = ∂F(α)[φ(α)]/∂φ(α) where φ(α) and φ̃(α) are
two linearly independent solutions of the KG equation depending on a variable xα

(where the xβ for β �= α enter φα and φ̃α as parameters) one has as above (with

(3.7)

(3.8)

(3.9)

φ
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a different scaling factor)
√

2m

�
xα =

1
2
φ(α) ∂F(α)[φα)]

∂φ(α)

This is suggested in [346] and used in [958]; the factor
√

2m/� is simply a scaling
factor and it may be more appropriate to scale x0 ∼ ct differently or in fact to scale
all variables as indicated below with factors βi(xj , t). Locally now F(α) satisfies
the third order equation

4F(α)
′′′

+ [V (α)(xα) + m2](φ(α)
F

(α)
′′
− F

(α)′))3 = 0

where ′ ∼ ∂/∂φ(α) and the “effective” potential V has the form

V (α)(xα) =

⎡⎣ 1
φ(x)

n−1∑
β=0, β �=α

∂β∂βφ(x)

⎤⎦∣∣∣∣∣∣
xβ �=α fixed

REMARK 7.3.1. Strictly speaking V α does not have the form �R/R of a
quantum potential; however since it is created by the wave function φ we could
well think of it as a form of quantum potential. We will refer to it as the effective
potential as in [346] and note from Section 3.2 that with ηµν = (−1, 1, 1, 1) and
� = −(1/c2)∂2

t + ∆, one has for φ = Rexp(iS/�)

1
2m

(∂S)2 =
�2

2m

�φ

φ
+

�2

2m

�R

R
;

∂(R2∂S) = 0; Qrel = − �2

2m

�R

R
The discussion below indicates that much further development of these themes
should be possible.

As indicated in [346], once xα is replaced with its functional dependence on
Fα α(φα);
further the functional structure of Fα does not depend on the parameters xβ for
β �= α (which enter φα

∂

∂xα
=

(8m)1/2

�

1
E(α)

∂

∂φ(α)
; dxα =

�

(8m)1/2
E(α)dφ(α)

where E(α) = φ(α)F(α)
′′
−F(α)′

on the spaces TP (U) and T ∗
P (U) (P ∈ U - local tangent and cotangent spaces).

Now using the linearity of the
metric tensor field (cf. [322]) one sees that the components of the metric in the
{(φ(α),F(α)} are

Gαβ(φ) =
�2

8m
E(α)E(β)ηαβ(x)

Now let zµ (µ = 0, 1, · · · , n − 1) be a general coordinate system in U and write
the coordinate transformation matrices via

Aα
µ =

∂xα

∂zµ
; (A−1)µ

α =
∂zµ

∂xα

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(α) α
∂α−V α φ

α)∂− F ; ( = 0

Note there is no summation over α in (3.14).

given in (3.10), (3.11) becomes an ordinary differential equation for F

as parameters). Now as a consequence of (3.10) one has

. Here (3.14) represents an induced parametrization
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The metric then takes the form

gµν(z) =
8m

�2

1
E(α)E(β)

Aα
µAβ

νGαβ(φ)

The components of the metric connection can be computed via

Γρ
µν =

1
2
gρσ(z)

∑
P

εPP [∂gσν(z)/∂zµ]

where P is a cyclic permutation of the ordered set of indices {σνµ} and εP is the
(α) depends

on all the zµ. (α),F(α)}
parametrization via

Γρ
µν =

(
2m

�

)1/2
E(ρ)E(σ)

E(γ)
(A−1)ρ

τ (A−1)σ
χGτχ×

×
∑
P

εPP
[
Aγ

µ

∂

∂φ(γ)

(
1

E(α)E(β)
Aα

σAβ
νGαβ

)]
In [958] one computes, in the (φ(α),F(α)) parametrization, the components of the
curvature tensor, the Ricci tensor, and the scalar curvature and gives an expression
for the Einstein equations (we omit the details here). These matters are taken up
again in [41] for a general curved spacetime and some sufficient constraints are
isolated which make the theory work. Also in both papers a quantized version of
the KG equation is also treated and the relevant x − ψ duality is spelled out in
operator form. We omit this also in remarking that the main feature here for our
purposes is the fact that one can describe spacetime geometry (at least locally) in
terms of (field) solutions of a KG equation and prepotentials (which are themselves
functions of the fields). In other words the coordinates are programmed by fields
and if the motion of some particle of mass m is involved then its coordinates
are choreographed by the fields with a quantum potential entering the picture

coordinates and to connect this with the aether idea one should examine the above
formulas for m→ 0.

Thus (cf. [191, 198, 206, 346]) one writes (in 1-D)

∂ψF = ψD ∼ ψ̄; ∂xF = ∂ψF∂xψ = ψDψx =
1
2
[∂x(ψDψ) + W ]; W = ψDψx − ψD

x ψ

and W = constant (this is the scaling factor). For example with x ∼ ct we write

F =
1
2
ψEψ + Wct =

1
2
ψDψ + γct

to find (χ0 ∼ γct)

γct =
1
2
φ0 ∂F0

∂φ0
− F

0; E0 = φ0 ∂2F0

∂(φ0)2
− ∂F0

∂φ0

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

signature of P. Via the coordinate transformation (3.16) the function φ
The metric connection (3.18) can be expressed in the {φ

via (3.12). In [2] a similar duality is worked out for the Dirac field and cartesian

Let us do some rescaling now and recall the origin of equations such as (3.10).
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dt =
E0dφ0

2γc
; ∂t =

2γc

E0

∂

∂φ0

For the other variables x1, x2, x3 we write γc = β and

dxi =
Eidφi

2β
;

∂

∂xi
=

2β

Ei

∂

∂φi

√
2m/� by γc when ct ∼

t = x0 and by βi for the xi (1 ≤ i ≤ 3) to obtain for example (here βi = βi(xj , t)
and β0 = γc)

Gασ(φ) =
4EαEσ

βαβσ
ηασ

in place of (2.15). Consequently we obtain an heuristic result

THEOREM 3.1. One can then continue this process to find analogues of
2
t /c2)−∇2

x+(c2m2/�2)]φ =
0 so letting m → 0 we obtain the photon (or aether) equation (2.10) of Isaev (as-
suming the scaling factors βi can be taken independently of m). Now however we

Let us sketch next some arguments from [494] where we omit the historical and
philosophical introduction describing some opinions and ideas of famous people,
e.g. Dirac, Einstein, Faraday, Lorentz, Maxwell, Planck, Poincaré, Schwinger, et
al. One begins with a KG equation(

�2∇2 − �2

c2

∂2

∂t2
−m2c2

)
ψ(s, t) = 0 ≡ (�2�−m2c2)ψ = 0

One asserts that any relativistic equation for a free particle with mass m whould
be understood not as an equation in vacuum but as an equation for a particle
with mass m in the aether; thence setting the mass equal to zero one arrives at

This is called the ψ-aether in contrast
to the (impossible!) Lorentz-Maxwell aether. Now consider the case of an EM
field with H = curl(A) and E = −(1/c)∂tA−∇φ and use the Lorentz condition
divA + (1/c)∂tφ = 0. Then the potentials A and φ satisfy

�A = ∇2A− 1
c2

∂2A
∂t2

= 0; �φ = ∇2φ− 1
c2

∂2φ

∂t
= 0

Using the Lorentz gauge one can take φ = 0 so the charge independent part of the
potentials is determined via

�A = 0; divA = 0; φ = 0; E = −1
c

∂A
∂t

; H = curlA

the general solution is given by a superposition of transverse waves. For a more
�

i

0; these are called the equations for the real ψ-aether.

The classical unphysicality of φ, A now is removed in attaching them to the

(3.23)

(3.24)

(3.25)

(3.16) - (3.19) and we think now of the KG equation as [(∂

have in addition a geometry for this putative aether via (3.22) - (3.25) and their

(3.26)

(3.1) for the equation of the aether itself.

(3.27)

(3.28)

This system (3.28) is completely equivalent to the Maxwell-Lorentz equations and

symmetric representation one can write ψ = (φ,A) and (3.27) becomes �ψ (x, t) =

continuations (see [1021]).

Again (3.11) holds along with (3.12). Now simply replace
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physically observable reality of the ψ-aether. Indeed the KG equation can be
written as a product of two commuting matrix operators

Iαβ(�−m2) =
∑

δ

(
iγn ∂

∂xn
+ m

)
αδ

(
iγk ∂

∂xk
−m

)
δβ

and in order that the field function satisfy the KG equation one could require that
it satisfy also one of the first order equations(

iγn ∂

∂xn
+ m

)
ψ = 0 or

(
iγn ∂

∂xn
−m

)
ψ = 0

field (there may be some question about m = 0 here). Recall that particle solutions
of the KG equation corresponding to single valued representations of the Lorentz
group have integer spins while particles with half-integer spin are described by
a spinor representation. One also knows that the neutrino has spin �/2. In any

but are connected to physical reality in the form of the ψ-aether by neutrino-anti-
neutrino pairs (cf. [494] for further arguments along these lines).

For an interesting connection of the ψ-aether with QM consider a hydrogen
atom with spherically symetric and time independent potential V (r) = V (r) where
r = |r|. The solution to the SE −i�∂tψ = −(�2/2m)∇2ψ + V (r)ψ is obtained by
separation of variables ψ = u(r)f(t) with u(r) = R(r)Y (θ, φ). This is a problem
of two body interaction (a proton and an electron) and for stationary states with
energy E one looks at ψ(x, t) = Cexp(−iEt/�) satisfying

1
sin(θ)

∂

∂θ

(
sin(θ)

∂Y

∂θ
+

1
sin2(θ)

∂2Y

∂φ2

)
+ λY = 0;

1
r2

d

dr

(
r2 dR

dr

)
+
{

2µ

�2
[E − V (r)]− λ

r2

}
R = 0

Here µ is the reduced mass of the system (proton + electron), E is the energy level
2

is solved by further separation of variables Y = Θ(θ)Φ(φ) leading to

∂2Φ
∂φ2

+ νΦ = 0;
1

sin(θ)
d

dθ

(
sin(θ)

∂Θ
∂θ

)
+
(
λ− ν

sin2θ

)
Θ = 0

The solution for Φ is Φm(φ) = (1/2π)exp(imφ) with ν = m2 and physically

with |m| ≤ �. For R one has

1
r2

d

dr

(
r2 dR

dr

)
+

2µ

�2

e2

r
R(r) +

2µ

�2
ER(r)− �(� + 1)

r2
R = 0

Now here V (r) = (2µ/�2)(e2/r) = [�(� + 1)/r2] and the term involving e2/r is
responsible for the Coulomb interaction of a proton with an electron; however the
second term �(�+1)/r2 does not depend on any physical interaction (even though
in [847] it is said to be connected with angular momentum). Now putting the
Coulomb interaction to zero the �(�+ 1)/r2 term does not disappear and it makes

(3.29)

(3.30)

Putting m = 0 in (3.30) one has possible equations for the neutrino-anti-neutrino

event (cf. (3.27)-(3.28)) the potentials φ and A are not merely auxilliary functions

(3.31)

admissible solutions for Θ (associated Legendre polynomials) require λ = �(� + 1)

(3.32)

(3.33)

for the bound state p + e (E < 0), and V (r) = e /r is the potential energy. (3.31)
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no sense to attribute it to angular momentum. It is now claimed that in fact this
term arises because of the ψ-aether and an argument based on standing waves in
a spherical resonator is given. Thus following [155] one considers an associated
Borgnis function U(r, θ, φ), having definite connections to E and H, and when it
satisfies

∂2U

∂r2
+

1
r2sin(θ)

[
∂

sin(θ)
∂U

∂θ
+

∂

∂φ

1
sin(θ)

∂U

∂φ

]
+ k2U = 0

the Maxwell equations are also valid. Further U is connected by definite relations
with A and φ, i.e. with the ψ-aether (presumably all this is spelled out in [155]).

1 2

there results

(A)
1

sin(θ)
∂

∂θ
sin(θ)

∂F2

∂θ
+

1
sin2θ

∂2F2

∂φ2
+ γF2 = 0

(B) r2 ∂2F1

∂r2
+ k2r2F1 − γF1 = 0

One considers here EM waves harmonic in time and characterized either by the
frequency ν = kc/2π or by the wave vector k = 2πν/c with [k] = 1/cm. Now

Setting F1(r) = rf(r) one
obtains then

d2f

dr2
+

2
r

df

dr
+
[
k2 − n(n + 1)

r2

]
f(r) = 0

d2R

dr2
+

2
r

dR

dr
+
(

2µE

�2
+

2µe2

�2r
− �(� + 1)

r2

)
R = 0

2 2 2

d2R

dr2
+

2
r

dR

dr
+
(

k2 − �(� + 1)
r2

)
R = 0

where 2µ2p2/2µ�2 = k2�2/�2 = k2

are identical and are solved under the same boundary conditions (i.e. f(r) should
be finite as r → 0 and when r → ∞ one wants f(r) → 0 on the boundary of
a sphere).
the sphere at values n = 0, 1, · · · with m ≤ n. Since EM waves are nothing
but oscillations of the ψ-aether the term n(n + 1)/r2

standing waves of the ψ-aether in a sphere resonator. Thus (mathematically at
least) one can say that the problem of finding the energy levels in a hydrogen
atom via the SE is equivalent to the problem of finding natural EM oscillations
in a spherical resonator. One recalls that one of the basic postulates of QM
(quantization of orbits in a hydrogen atom à la Bohr with mvr = n�/2π) is
equivalent to determination of conditions for existence of standing waves of the
ψ-aether in a spherical resonator. This suggests that QM may be equivalent to
“mechanics” of the ψ-aether. One remarks that until now only a small part of
the alleged ψ-aether properties have been observed, namely in superfluidity and

(3.34)

(3.35)

(A) in (3.35) is the same as (3.31) with spherical function solutions and regular

∂θ

solutions of (B) in (3.35) exist when γ = n(n + 1).

(3.36)

(3.37)

(3.38)

with k the wave vector). Now (3.36) and (3.38)

The corresponding solutions to (3.36) represent standing waves inside

in (3.36) is responsible for

To solve (3.34) one writes U = F (r)F (θ, φ) (following the notation of [155]) and

Setting 2µe /� r = 0 and replacing E by E = p /2µ in (3.37) one obtains

A little calculation puts (3.33) into the form
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superconductivity (see e.g. [968]). It is suggested that one might well rethink a lot
of physics in terms of the aether, rather than, for example, the standard model.
In any event there is much further discussion in [494], related to real physical
situations, and well worth reading.

4. REMARKS ON TRAJECTORIES

There have been a number of papers written involving microstates and Bohmian
mechanics (cf. [138, 140, 139, 191, 194, 197, 203, 305, 306, 307, 308, 309,
347, 373, 374, 375, 376, 348, 349, 520]) and we sketch here some features of
the Bouda-Djama method following [309]. There are some disagreements regard-
ing quantum trajectories, discussed in [138, 375], which we will not deal with
here. Generally we have followed [347] in our previous discussion and microstates
were not explicitly considered (beyond mentioning the third order equation and
the comments in Remark 2.2.2). Thus, referring to [309] for philosophy, one be-
gins with the SE −(�2/2m)∆ψ + V ψ = i�ψt where ψ = Rexp(iS/�) in 3-D and
arrives at the standard

(4.1)
1

2m
(∇S)2 − �2

2m

∆R

R
+ V = −St; ∇ ·

(
R2∇S

m

)
+ V = −∂(R2)

witeh Q = −(�2/2m)(∆R/R). Then one sets

(4.2) j =
�

2mi
(ψ∗∇ψ − ψ∇ψ∗) = R2∇S

m
⇒ ∇ · j + ∂tR

2 = 0

and ρ = |ψ|2 = R2 as usual. The velocity v is taken as v = j/ρ = ∇S/m here
in the spirit of Bohm (and Dürr, Goldstein, Zanghi, et al). Working in 1-D with
S = S0(x,E) − Et one recovers the stationary HJ equation of Section 2.2 for
example and there is some discussion about the situation S0 = constant referring
to Floyd and Farragi-Matone. Explicit calculations for microstates are considered
and comparisons are indicated. The EP of Faraggi-Matone is then discussed as in
Section 2.2 and the quantum mass field mQ = m(1 − ∂EQ) is introduced. This
leads to the third order differential equation for ẋ (where P = ∂xS0 = mQẋ)

(4.3)
m2

Q

2m
+ V (x)− E +

|hbar2

4m

(
m′′

Q

mQ
− 3

2
(m′

Q)2

m2
Q

−
m′

Q

mQ

ẍ

ẋ2
+

...
x

ẋ3
− 5

2
ẍ2

ẋ4

)
= 0

It is observed correctly that (4.3) is a difficult equation to manipulate, requiring
a priori a solution of the QSHJE.

Now one proposes a Lagrangian which depends on x, ẋ and the set of hidden
variables Γ which is connected to constants of integration from an equation like
(4.3). This approach was developed in order to avoid dealing with the Jacobi
type formula t − t0 = ∂S0/∂E which the authors felt should be restricted to HJ
equations of first order. Then one looks for a quantum Lagrangian Lq such that
(d/dt)(∂Lq/∂ẋ)− ∂xLq = 0 and writes

(4.4) Lq(x, ẋ,Γ) =
m

2
ẋ2f(x,Γ)− V (x);

∂Lq

∂ẋ
= mẋf(x,Γ);

∂Lq

∂x
=

m

2
ẋ2fx − Vx
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This leads to

(4.5) mf(x,Γ)ẍ +
mẋ2

2
fx + Vx = 0

Then set Hq = (∂xLq)ẋ− Lq and P = ∂Lq/∂ẋ = mẋf so

(4.6) Hq =
mẋ2

2
f(x,Γ) + V (x) =

P 2

2mf
+ V (x)

Working with the stationary situation S = S0(x,Γ) − Et some calculation gives
then

(4.7)
1

2mf
S2

x + V = −St ⇒
1

2mf
(∂xS0)2 + V (x)− E = 0

Now referring to the general equation (2.18) in Chapter 2 (extracted from [347])
one writes here w = θ̃/φ̃ ∼ ψD/ψ ∈ R with (α ∼ ω) so that (cf. [?, ?])

(4.8) e2iS0/� = eiω (θ̃/φ̃) + i�̄

(g̃t/φ̃)− i�
� S0 = �Tan−1 θ + µφ

νθ + φ

(cf. [139] for details). For the QSHJE the basic equation is (2.2.17) which we
repeat as

(4.9)
1

2m (S′
0)

2 + W + Q = 0; W = − �2

4m

{
e2iS0/�, x

}
∼ V − E; Q = �2

4m{S0, x}

There is a “quantum” transformation x → x̂ described in [347, 348] with the
QSHJE arising then from a conformal modification of the CSHJE. Thus note
(•) {x, S0} = −(S′

0)
−2{S0, x} and define U(S0) = {x, S0}/2 = −(1/2)(S′

0)
−2{S0, x}.

This gives a conformal rescaling 1
2m (S′

0)
2[1− �2U] + V − E = 0 since

(4.10)
1

2m
(S′

0)
2[1− �2

U] =
1

2m
(S′

0)
2[1− �2

2
{x, S0}] =

1
2m

(S′
0)

2[1 +
�2

2
(S′

0)
−2{S0, x}] =

=
1

2m
(S′

0)
2 +

�2

4m
{S0, x} =

1
2m

(S′
0)

2 + Q ⇒ Q = − �2

2m
(S′

0)
2
U

which agrees with Q = (�2/4m){S0, x} using (•). Then from (4.10)

(4.11)
(

∂x

∂x̂

)2

= 1 = �2
U(S0) = 1 + 2m(S′

0)
2Q ⇒ x̂ =

∫ x dx√
1 + 2m(∂S0)−2Q

Similarly using the QSHJE (2.2.17) we have

(4.12)
(

∂x

∂x̂

)2

= (S′
0)

−2[(S′
0)

2 + 2mQ] = [(S′
0)

2 − 2mW](S′
0)

−2 ⇒

⇒ x̂ =
∫ x S′

0dx√
2m(E − V )
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This all follows from [347, 348] and is used in [309]. Now from (4.7), (4.9), (4.10),
and the QSHJE one can write (correcting a sign in [309])

(4.13) f(x,Γ) =
[
1 +

�2

2
(S′

0)
−2{S0, x}

]−1

⇒ f =
(S′

0)
2

2m(E − V )

and via (4.8) Γ = Γ(E,µ, ν) with f = f(x, E, µ, ν). Putting this in (4.7) gives
then

(4.14) E =
mẋ2

2
(S′

0)
2

2m(E − V )
+ V ⇒ ẋS′

0 = 2(E − V )

Note that this equation also follows from (4.5), namely mẋf = ∂Lq/∂ẋ, and
integration (cf. [309]). Now for the appropriate third order trajectory equation
in this framework, one finds from (4.14) and the QSHJE

(4.15) (E − V )4 − mẋ2

2
(E − V )3 +

�2

8

[
3
2

(
ẍ

ẋ

)2

−
...
x

ẋ

]
(E − V )2−

−�2

8

[
ẋ2 d2V

dx2
+ ẍ

dV

dx

]
(E − V )− 3�2

16

[
ẋ

dV

dx

]2

= 0

(cf. [138, 309]). This is somewhat simpler to solve that (4.3) since it is indepen-
dent of the SE and the QSHJE. We refer now to [138, 140, 139, 305, 306, 307,
308, 309] for more in this direction.



CHAPTER 8

REMARKS ON QFT AND TAU FUNCTIONS

1. INTRODUCTION AND BACKGROUND

The idea here is to connect various aspects of quantum groups, quantum field
Actually the

are already in place but we want to make matters explicit
For references we have in mind

[191, 205] for Wick’s theorem and tau functions, [157, 158, 159, 160, 161, 162,
168] for quantum groups and QFT, and [147, 192, 193, 207, 212, 656, 662,
664] for q-tau functions and Hirota formulas.

We go first to the beautiful set of ideas in [157, 158, 159, 161] (and ref-
erences there) and will sketch some of the results (sometimes without proof).
The main theme is to create an algebraic framework which “tames” the intri-
cate combinatorics of QFT. Thus the main concepts used in the practical calcu-
lation of observables are covered, namely, normal and time ordering and renor-
malization. One begins with a finite dimensional vector space V (ei a basis)
and then the symmetric algebra S(V ) is defined as S(V ) = ⊕∞

0 Sn(V ) where
S0(V ) = C, S1(V ) = V, and Sn(V ) is spanned by elements ei1 ∨ · · · ∨ ein

with
i1 ≤ i2 ≤ · · · ≤ in. The symbol ∨ denotes the associative and commutative
product ∨ : Sm(V ) ⊗ Sn(V ) → Sm+n(V ) defined on elements of the basis via
(ei1 ∨ · · · ∨ eim

) ∨ (eim+1 ∨ · · · ∨ eim+n
) = eiσ(1) ∨ · · · ∨ eiσ(m+n) where σ is the

permutation on m + n elements such that iσ(1) ≤ · · · ≤ iσ(m+n) (extended by
linearity and associativity to all elements of S(V ). The unit of S(V ) is 1 ∈ C
(i.e. for any u ∈ S(V ) one has 1 ∨ u = u ∨ 1 = u). The algebra is graded via
|u| = n for u ∈ Sn(V ) and ∨ is a graded map (i.e. if |u| = n and |v| = m then
|u∨ v| = m + n). In fact S(V ) is the algebra of polynomials in ei with elements of
Sn(V ) being homogeneous polynomials of degree n. Let now u, v, w be elements
of S(V ), a, ai, b, c ∈ V and ei basis elements of V as above. Define a coproduct
over S(V ) via

(1.1) ∆1 = 1⊗ 1; ∆a = a⊗ 1 + 1⊗ a; ∆(u ∨ v) =
∑

(u1 ∨ v1)⊗ (u2 ∨ v2)

(here e.g. ∆u =
∑

u1 ⊗ u2 etc.). This coproduct is coassociative and cocommu-
tative and equivalent to a coproduct from [768]. Note in particular

(1.2) ∆(a ∨ b) =
∑

(a1 ∨ b1)⊗ (a2 ∨ b2)
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and since ∆a = a⊗ 1 + 1⊗ a with ∆b = b⊗ 1 + 1⊗ b one obtains

(1.3) ∆(a ∨ b) = (a ∨ b)⊗ 1 + 1 + a⊗ b + b⊗ a + 1⊗ (a ∨ b)

At the next order ∆(a ∨ b ∨ c) = 1⊗ a ∨ b ∨ c + a⊗ b ∨ c + b⊗ a ∨ c + c⊗ a ∨ b +
a ∨ b⊗ c + a ∨ c⊗ b + b ∨ c⊗ a + a ∨ b ∨ c⊗ 1. Generally if u = a1 ∨ a2 ∨ · · · ∨ an

one has following [610]

(1.4) ∆u = u⊗ 1 + 1⊗ u +
n−1∑
p=1

∑
σ

aσ(1) ∨ · · · ∨ aσ(p) ⊗ aσ(p+1) ∨ · · · ∨ aσ(n)

where σ runs over the (p, n − p) shuffles. Such a shuffle is a pemutation σ of
1, · · · , n such that σ(1) < σ(2) < · · · < σ(p) and σ(p + 1) < · · · < σ(n). The
counit is defined via ε(1) = 1 and ε(u) = 0 if u ∈ Sn(V ) for n > 0. The antipode
is defined via s(u) = (−1)nu for u ∈ Sn(V ) and in particular s(1) = 1. Since the
symmetric product is commutative the antipode is an algebra morphism(s(u∨v) =
s(u) ∨ s(v)). This algebra is called the symmetric Hopf algebra.

One goes next to the Laplace pairing on S(V ) defined as a bilinear form
V × V → C denoted (a|b) and extended to S(V ) via

(1.5) (u ∨ v|w) =
∑

(u|w1)(v|w2); (u|v ∨ w) =
∑

(u1|v)(u2|w)

A priori the bilinear form is neither symmetric nor antisymmetric (cf. [433] where
the form is still more general). The term Laplace pairing comes from the Laplace
identities in determinant theory where the determinant is expressed in terms of
minors. In [433] it is proved that if u = a1 ∨ a2 ∨ · · · ak and v = b1 ∨ b2 ∨ · · · ∨ bn

then (u|v) = 0 if n �= k and (u|v) = perm(ai|bj) if n = k where

(1.6) perm(ai|bj) =
∑

σ

(a1|bσ(1)) · · · (ak|bσ(k))

over all permutations σ of (1, · · · , k). The permanent is a kind of determinant
where all signs are positive. For example (a ∨ b|c ∨ d) = (a|c)(b|d) + (a|d)(b|c).
A Laplace-Hopf algebra now means the symmetric Hopf algebra with a Laplace
pairing.

Now comes the circle product which treats in one stroke the operator product
and the time ordered product according to the definition of the bilinear form (a|b).
Following [804] the circle product is defined via v ◦ v =

∑
u1 ∨ v1(u2|v2) which by

cocommutativity of the coproduct on S(V ) is equivalent to

(1.7) u ◦ v =
∑

u1 ∨ v2(u2|v1) =
∑

u2 ∨ v1(u1|v2) =
∑

(u1|v1)u2 ∨ v2

A few examples are instructive, thus

(1.8) a ◦ b = a ∨ b + (a|b); (a ∨ b) ◦ c = a ∨ b ∨ c + (a|c)b + (b|c)a; a ◦ (b ∨ c) =

= a ∨ b ∨ c + (a|c)b + (a|b)c; a ◦ b ◦ c = a ∨ b ∨ c + (a|b)c + (a|c)b + (b|c)a
Further some useful properties are

(1.9) u ◦ 1 = 1 ◦ u = u; u ◦ (v + w) = u ◦ v + u ◦w; u ◦ (λv) = (λu) ◦ v = λ(u ◦ v)
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A detailed proof of the associativity of ◦ is given in [158] which is based on two
lemmas which we record as (u|v ◦ w) = (u ◦ v|w) and

(1.10) ∆(u ◦ v) =
∑

(u1 ∨ v1)⊗ (u2 ◦ v2) =
∑

(u1 ◦ v1)⊗ (u2 ∨ v2)

The proofs are straightforward and associativity of ◦ follows directly. One has
also a useful formula (proved in [158])

(1.11) u ∨ v =
∑

(s(u1)|v1)u2 ◦ v2 =
∑

(u1|s(v1))u2 ◦ v2

Next in [158] one proves a few additional formulas, namely

(1.12)
(u|v) =

∑
s(u1 ∨ v1) ∨ (u2 ◦ v2); u ◦ (v ∨ w) =

∑
(u11 ◦ v) ∨ (u12 ◦ w) ∨ s(u2)

1.1. WICK’S THEOREM AND RENORMALIZATION. One shows
next that the circle product satisfies a generalized version of Wick’s theorem.
There are two such theorems for normal or time ordered products but they have an
identical structure (cf. [935]). In verbal form one has e.g. that the time or normal
ordered product of a given number of elements of V is equal to the sum over all
possible pairs of contractions (resp. pairings). A contraction a•b• is the difference
between the time ordered and the normal product. Thus a•b• = T (ab)− : ab :.
A pairing a�b� is the difference between the operator product and the normal
product, namely a�b� = ab− : ab :. Both the contraction and the pairing are
scalars and one can identify the normal product : ab : with a∨b because the normal
product has all the properties required for a symmetric product (see remarks
later). Now on the one hand the time ordered product is symmetric and a•b• is
a symmetric bilinear form that we can identify with (a|b). Then the time ordered
product of two operators is equal to the circle product obtained from the symmetric
bilinear form. On the other hand the pairing obtained from the operator product
is an antisymmetric bilinear form a�b� = (ab−ba)/2 that we can also identify with
(a different) (a|b). The operator product of two elements of V is now the circle
product obtained with this antisymmetric bilinear form.

so a�b� = ab− : ab :∼ ab = a ◦ b = a ∨ b + (a|b) with (a|b) = a�b�. Similarly for
a•b• = (a|b) = T (ab)− a ∨ b ∼ T (ab) = (a|b) + a ∨ b with T (ab) = a ◦ b.

Now the main ingredient in proving Wick’s theorem as in [995] is to go from
a product of n elements of V to a product of n + 1 elements via

(1.13) : a1 · · · an : b =: a1 · · · anb : +
n∑

j=1

a•
j b

• : a1 · · · aj−1aj+1 · · · an :

To prove this we use the definition of the circle product and (1.1) to get

(1.14) u ◦ b = u ∨ b +
∑

(u1|b)u2; u = u1 ∨ · · · ∨ an

(note ∆b = b⊗1+1⊗b and u◦b =
∑

(u1|b1)u2∨b2 =
∑

(u1|b)u2∨1+
∑

(u1|1)u2∨b;
but w ∨ 1 = w and u ◦ 1 = u =

∑
(u1|1)u2 since ∆1 = 1⊗ 1). The Laplace pairing

(u1|b) is zero if the grading of u1 is different from 1, so u1 must be an element of V.

REMARK 8.1.1. To put this in a more visible form recall a ◦ b = a∨ b + (a|b)
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According to the general definition (1.4) for ∆u this happens only for the (1, n−1)
shuffles. By definition then a (1, n − 1) shuffle is a permutation σ of (1, · · · , n)
such that σ(2) < · · · < σ(n) and the corresponding terms of the coproduct in ∆u
are

∑n
1 aj ⊗ a1 ∨ · · · ∨ aj−1 ∨ aj+1 ∨ · · · ∨ an. This proves the required identity so

the circle product satisfies Wick’s theorem. One repeats that if the bilinear form
is 1/2 of the commutator then one has the Wick theorem for operator products
and if the bilinear form is the Feynman propagator then one has Wick’s theorem
for time ordered products.

Now one introduces a renormalised circle product ◦̄. In a finite dimensional
vector space the purpose of renormalisation is no longer to remove infinities, since
everything is finite, but to provide a deformation of the circle product involving
an infinite number of parameters. The physical meaning of the parameters goes
as follows. Time ordering of operators is clear when two operators are defined at
different times; however the meaning is ambiguous when the operators are defined
at the same time. Renormalisation is present to parametrise the ambiguity. The
parameters are defined as a linear map ζ : S(V ) → C such that ζ(1) = 1 and
ζ(a) = 0 for a ∈ V . The parameters form a renormalisation group with product ∗
defined via

(1.15) (ζ ∗ ζ ′)(u) =
∑

ζ(u1)ζ ′(u2)

This is called the convolution of the Hopf algebra. The coassociativity and co-
commutativity of the Hopf algebra implies that ∗ is associative and commutative.
The unit of the group is the counit ε of the Hopf algebra and the inverse ζ−1 is
defined via (ζ ∗ ζ−1)(u) = ε(u) or recursively via

(1.16) ζ−1(1) = 1; ζ−1(u) = −ζ(u)−
′∑

ζ(u1)ζ−1(u2)

where
∑′

u1 ⊗ u2 = ∆u − 1 ⊗ u − u ⊗ 1 for u ∈ Sn(V ) with n > 0. As examples
note

(1.17) ζ−1(a) = 0; ζ−1(a ∨ b) = −ζ(a ∨ b); ζ−1(a ∨ b ∨ c) = −ζ(a ∨ b ∨ c);

ζ−1(a∨b∨c∨d) = −ζ(a∨b∨c∨d)+2ζ(a∨b)ζ(c∨d)+2ζ(a∨c)ζ(b∨d)+2ζ(a∨d)ζ(b∨c)
Now from the renormalization parameters one defines a Z-pairing

(1.18) Z(u, v) =
∑

ζ−1(u1)ζ−1(v1)ζ(u2 ∨ v2)

A few examples are
(1.19)
Z(u, v) = Z(v, u); Z(1, u) = ε(u); Z(a, b) = ζ(a ∨ b); Z(a, b ∨ c) = ζ(a ∨ b ∨ c);

Z(a ∨ b, c ∨ d) = ζ(a ∨ b ∨ c ∨ d)− ζ(a ∨ b)ζ(c ∨ d)
The main property of the Z-pairing is the coupling identity

(1.20)
∑

Z(u1 ∨ v1, w)Z(u2, v2) =
∑

Z(u, v1 ∨ w1)Z(v2, w2)

One can check e.g. when u = a, v = b, w = c ∨ d that

(1.21) Z(a ∨ b, c ∨ d) = Z(a, b ∨ c ∨ d) + Z(a, c)Z(b, d) + Z(b, c)Z(a, d)
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To show (1.20) one uses the lemma
∑

ζ−1(u1 ∨ v1)Z(u2, v2) = ζ−1(u)ζ−1(v) (cf.
[158] for proof). To prove the coupling identity one expands Z via
(1.22)∑

Z(u1 ∨ v1, w)Z(u1, v2) =
∑

ζ−1(u11 ∨ v11)ζ−1(w1)ζ(u12 ∨ v12 ∨ w2)Z(u2, v2)

Some calculation (cf. [158]) yields

(1.23)
∑

Z(u1 ∨ v1, w)Z(u2, v2) = ζ−1(u1)ζ−1(v1)ζ−1(w1)ζ(u2 ∨ v2 ∨ w2)

The right side is fully symmetric in u, v, w so all permutations of u, v, w in the left
side give the same result. In particular the permutation (u, v, w) → (v, w, u) and
the symmetry of Z transform the left side of (1.20) into its right side, and this
proves (1.20). One can check also that the Laplace pairing satisfies the coupling
identity

(1.24)
∑

(u1 ∨ v1|w)(u2|v2) =
∑

(u|v1 ∨ w1)(v2|w2)

It would be interesting to know the most general solution of the coupling identity.

One defines next a modified Laplace pairing via (♣) (u|v) =
∑

kZ(u1, v1)(u2|v2);
thus e.g.

(1.25) (u|1) = (1|u) = ε(u); (a|b) = ζ ∗ a ∨ b) + (a|b); (a|b ∨ c) = ζ(a ∨ b ∨ c)

The modified Laplace pairing also satisfies the coupling identity

(1.26)
∑

(u1 ∨ v1|w)(u2|v2) =
∑

(u|v1 ∨ w1)(v2|w2)

(cf. [158]). Finally one can define a renormalized circle product via (♠) u◦̄v =∑
(u1|v1)u2 ∨ v2. As examples one has

(1.27) 1◦̄u = u◦̄1 = u; (u|v) = ε(u◦̄v); a◦̄b = a ∨ b + ζ(a ∨ b) + (a|b)
The renormalised circle product is associative (cf. [158]) and that is considered a
main result. One notes that the renormalisation group acts on the circle product
(not on the elements of the algebra) even thought the action is expressed via the
algebra.

1.2. PRODUCTS AND RELATIONS TO PHYSICS. In QFT the bo-
son operators commute inside a t-product and we consider now the circle product
to be commutative. Then in particular a ◦ b = b ◦ a so (a|b) = (b|a). Conversely
if (a|b) = (b|a) for all a, b ∈ V then u ◦ v = v ◦ u for all u, v ∈ S(V ). To see this
note that if (a|b) = (b|a) then (u|v) = (v|u) for all u, v ∈ S(V ) (cf. (1.6)). Then
because of the commutativity of the symmetric product one obtains

(1.28) u ◦ v =
∑

u1 ∨ v1(u2|v2) =
∑

v1 ∨ u1(v2|u2) = v ◦ u

Now one defines a T map from S(V ) to S(V ) via T (1) = 1, T (a) = a for a ∈ V
and T (u ∨ v) = T (u) ◦ T (v). More explicitly T (a1 ∨ · · · an) = a1 ◦ · · · an. The
circle product is associative and here commutative so T is well defined. The main
property we need is

(1.29) ∆T (u) =
∑

u1 ⊗ T (u2) =
∑

T (u1)⊗ u2
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(cf. [158] for proof). Next one shows that the T map can be written as the
exponential of an operator Σ. First define a derivation δk attached to a basis ek

of V by requiring

(1.30) δk1 = 0, δkej = δkj ; δk(u ∨ v) = (δku) ∨ v + u ∨ (δkv)

This gives a Leibnitz relation yielding δ1(e1 ∨ e2) = e2 and δ2(e1 ∨ e2) = e1. From
this follows δiδj = δjδi; further one notes δi(u|v) = 0. Now define the infinitesimal
T map as Σ = (1/2)

∑
i,j(ei|ej)δiδj . One shows that T = exp(Σ). First one needs

[Σ, a] =
∑

(a|ei)δi and to see this apply Σ to an element ek ∨ u to get

(1.31) Σ(ek ∨ u) =
1
2

∑
i,j

(ei|ej)δiδj(ek ∨ u) =
1
2

∑
(ei|ej)δi(δjku + ek ∨ δju) =

=
1
2

∑
i

(ei|ej)δiu+
1
2

∑
j

(ek|ej)δju+
1
2

∑
(ei|ej)ek∨δiδju =

∑
j

(ek|ej)δju+ek∨Σu

Extending this by linearity to V one obtains Σ(a∨ u) = a∨Σu +
∑

(a|ej)δju and
more generally

(1.32) Σ(u ∨ v) = (Σu) ∨ v + u ∨ (Σv) +
∑
i,j

(ei|ej)(δiu) ∨ (δjv)

From the commutation of the derivations we obtain [Σ, δk] = 0 and [Σ, [Σ, a]] = 0;
therefore the classical formula (cf. [507]) yields exp(Σ)aexp(−Σ) = a + [Σ, a] so
that

(1.33) [exp(Σ), a] =
∑

(a|ei)δiexp(Σ) = exp(Σ)
∑

(a|ei)δi ≡

≡ exp(Σ)(a ∨ u) = a ∨ (exp(Σ)u) + [Σ, a](exp(Σ)u)

Note also a ◦ u = a ∨ u + [Σ, a]u. From this one preceeds inductively. One has
T (1) = exp(Σ)1 = 1 and T (a) = a = exp(Σ)a since Σa = 0. Assuming the
property T = exp(Σ) is true up to grading k take u ∈ Sk(V ) and calculate

(1.34) T (a∨u) = a◦T (u) = a∨T (u)+[Σ, a]T (u) = a∨eσu+[Σ, a]eΣu = eΣ(a∨u)

Thus the property is true for a ∨ u of grading k + 1.

Now one can write the T map as a sum of scalars multiplied by elements of
S(V ) in the form T (u) =

∑
t(u1)u2 where t is a linear map S(V ) → C defined

recursively by t(1) = 1, t(a) = 0 for a ∈ V and

(1.35) t(u ∨ v) =
∑

t(u1)t(v1)(u2|v2)

This is called the t map and the details are in [158]. The t map is well defined
because t(u) = ε(T (u)) which can be proved by recursion. It is true for u = 1 and
u = a and if true up to grading k take w = u ∨ v and one has

(1.36) ε(T (w)) =
∑

t(w1)ε(w2) = t(
∑

w1ε(w2)) = t(w)

A few examples are

(1.37) t(a ∨ b) = (a|b); t(a ∨ b ∨ c ∨ d) = (a|b)(c|d) + (a|c)(b|d) + (a|d)(b|c)



1. INTRODUCTION AND BACKGROUND 325

The general formula for t(a1 ∨ · · · ∨a2n) has (2n− 1)!! terms which can be written

(1.38) t(a1 ∨ · · · ∨ a2n) =
∑

σ

n∏
j=1

(aσ(j)|aσ(j+n))

where the sum is over permutations σ of (1, · · · , 2n) such that σ(1) < · · · < σ(n)
and σ(j) < σ(j +n) for j = 1, · · · , n. Alternatively as a sum over all permutations
of (1, · · · , 2n) (since (a|b) = (b|a) here) one has

(1.39) t(a1 ∨ · · · ∨ a2n) =
1

2nn!

∑
σ

(aσ(1)|aσ(2)) · · · (aσ(2n−1)|aσ(2n))

Next one defines renormalised T maps and shows that they coincide with the
renormalised t products of QFT. A renormalised T map T̄ is a linear map S(V ) →
S(V ) such that T̄ (1) = 1, T̄ (a) = a for a ∈ V , and T̄ (u ∨ v)T̄ (u)◦̄T̄ (v). Since the
circle product is assumed commutative here the renormalised circle product is also
commutative and the map T̄ is well defined. Now following the proof of (1.29)
one can show that ∆T̄ (u) =

∑
u1 ⊗ T̄ (u2) and one derives two renormalisation

identities which we state without proof, namely

(1.40) T (u)◦̄T (v) =
∑

Z(u1, v1)T (u2) ◦ T (v2); T̄ (u) =
∑

ζ(u1)T (u2)

The second is a second main result of [158] and corresponds to Pinter’s identity in
[770]. Its importance stems from the fact that it is valid also for field theories that
are only renormalisable with an infinite number of renormalisation parameters. A
proof of the formula for T (u) goes as follows. It is true for u = 1 or u = a and
v = 1 or v = b. Suppose it holds for u and v; then by definition and using the
recursion hypothesis

(1.41) T̄ (u ∨ v) = T̄ (u)◦̄T̄ (v) =
∑

ζ(u1)ζ(v1)T (u2)◦̄T (v2)

But a ◦ u = a ∨ u + [Σ, a]u so

(1.42) T̄ (u ∨ v) =
∑

ζ(u1)ζ(v1)Z(u21, v21)T (u22) ◦ T (v22)

From the coassociativity of the coproduct and the definition (1.18) of the Z pairing
one obtains

(1.43) T̄ (u ∨ v) =
∑

ζ(u1 ∨ v1)T (u2) ◦ T (v2) =
∑

ζ((u ∨ v)1)T ((u ∨ v)2)

which is the required identity for u ∨ v.

Now the reasoning leading to the scalar t map can be followed exactly to
define a scalar renormalised t map as a linear map t̄ : S(V ) → C such that
t̄(1) = 1, t̄(a) = 0 for a ∈ V and t̄(u ∨ v) =

∑
t̄(u1)t̄(v1)(u2|v2). Consequently

t̄(u) = ε(T̄ (u)) and T̄ (u) =
∑

t̄(u1)u2. Further T̄ (u) =
∑

ζ(u1) ⊗ T̄ (u2) enables
one to show that t̄(u) =

∑
ζ(u1)t(u2). As examples consider

(1.44) t̄(a ∨ b) = (a|b) + ζ(a ∨ b); t̄(a ∨ b ∨ c) = ζ(a ∨ b ∨ c)

The scalar renormalised t produce corresponds to the numerical distributions of
the causal approach (cf. [768, 848]).



326 8. REMARKS ON QFT AND TAU FUNCTIONS

To define a normal product one starts from creation and annihilation operators
a+

k and a−
k taken as basis vectors of V + and V −. These two bases are in involution

via (a+
k )∗ = a−

k and (a−
k )∗ = a+

k . The creation operators commute and there is no
other relation between them (similarly for the annihilation operators). Thus the
Hopf algebra of the creation operators is the symmetric algebra S(V +) and that
of the annihilitation operators is S(V −). One defines V = V +⊕V − (a = a+ +a−)
and let P (resp. M) be the projector V → V + (resp. V → V −). Thus P (a) = a+

and M(a) = a−. There is an isomorphism φ between S(V ) and the tensor product
S(V +) ⊗ S(V −) via φ(u) =

∑
P (u1) ⊗ M(u2). Now S(V ) is the vector space

of normal products and one recovers the fact that a normal product puts all
annihilation operators on the right of all creation operators. The isomorphism
can be defined recursively via

(1.45) P (1) = 1; M(1) = 1; P (a) = a+; M(a) = a−; φ(1) = 1⊗ 1;

φ(a) = P (a)⊗ 1 + 1⊗M(a);

φ(u ∨ v) =
∑

P (u1)P (v1)⊗M(u2)M(v2);

P (u ∨ v) = P (u)P (v); M(v ∨ v) = M(u)M(v)
The algebra S(V ) is graded by the number of creation and annihilation operators.
Note here a subtelty. It appears that one has forgotten the operator product
of elements of V + with elements of V −. One has replaced a+

k a−
� by a+

k ⊗ a−
�

and lost all information concerning the commutation of creation and annihilation
operators. But an operator with creation operators on the left and annihilation
operators on the right would not be well defined (cf. [935]). For instance a−

k a+
k and

a+
k a−

k +1 are equal as operators but their normal products a+
k a−

k and a+
k a−

k +1 are
different!. Thus it is not consistent to consider a normal product as obtained from
the transformation of an operator product and one naturally loses all information
about commutation relations in QFT. However one recalls that an antisymmetric
Laplace pairing enables one to build a circle product in S(V ) which is an operator
product. In that sense normal products are a basic concept and operator products
are a derived concept of QFT. Thus in the present picture QFT starts with the
space S(V ) of normal products and the operator product and time ordered product
are deformations of the symmetric product.

Note in QFT for scalar particles the basis ak is not indexed by k but by a
continuous variable x and (unfortunately) creation operators are denoted by φ−(x)
and annihilation operators by φ+(x). This leads (cf. [507]) to a bilinear form for
the definition of operator products of the type (φ(x)|φ(y)) = iD(x − y) and a
bilinear form for the time ordered products as (φ(x)|φ(y)) = iGF (x− y) where for
massless bosons

(1.46) D(x) = − 1
2π

sign(x0)δ(x2); GF (x− y) =
1

4π2

1
x2 + i0

are distributions.

There is a striking identity in S(V ), namely ε(u) =< 0|u|0 > which can
be shown as follows. First < 0|u|0 > is a linear map S(V ) → C. Second for
elements u ∈ Sn(V ) with n > 0 one has ε(u) = 0 and < 0|u|0 >= 0 because
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u is a normal product. Finally the symmetric Hopf algebra S(V ) is connected
so all elements of S0(V ) are multiples of the unit (i.e. u = λ(u)1). But then
ε(u) = λ(u)ε(1) = λ(u) so u = ε(u)1. But the vacuum is assumed to be normalized
so < 0|u|0 >= ε(u) < 0|1|0 >= ε(u) showing that the counit and the vacuum
expectation value are the same. We refer to [158] (and subsequent sections) for
further comments on the physics.

2. QUANTUM FIELDS AND QUANTUM GROUPS

We follow now [157, 160]. First from [160] we recall that a quantum group
(QG) is a quasitriangular Hopf algebra (cf. [192]). Thus we want a Hopf algebra H
with an R matrix R ∈ H⊗H. However since Hopf algebras have a self dual nature
we can also describe a QG as a Hopf algebra with a coquasitriangular structure.
This means there is an invertible linear map R : H ×H → C such that

(2.1) R(a · b, c) =
∑

R(a, c1)R(b, c2); R(a, b · c) =
∑

R(a1, c)R(a2, b)

For a commutative and cocommutative Hopf algebra no other condition is required
for R and one restricts consideration to this situation. One uses R to define a
twisted product

(2.2) a ◦ b =
∑

R(a1, b1)a2 · b2

This is a special case of Sweedler’s crossed product (see [923]) and given (2.1)
with a cocommutative coproduct the twisted product is associative. Now consider
a real scalar particle with field operator

(2.3) φ(x) =
∫

dk
(2π)3

√
2ωk

(
e−ip·xa(k) + eip·xa†(k)

)
where ωk =

√
m2 + |k|2, p = (ωk,k), and a†(k), a(k) are the creation and anni-

hilation operators acting in a symmetric Fock space of scalar particles Fs. One
considers the vector space of smoothed fields V = {φ(f), f ∈ D(R4)} where
φ(f) =

∫
dxf(x)φ(x) (D is the standard Schwartz space). Now from V one

builds the symmetric Hopf algebra S(V ) = ⊕∞
0 Sn(V ) as in Section 8.1 with

S0(V ) = C · 1, S1(V ) = V, and Sn(V ) generated by the symmetric product
of n elements of V. Here one is thinking of φ(f) ∨ φ(g) ∼: φ(f)φ(g) : and 1 is the
unit operator in Fs. The coproduct is defined via ∆φ(f) = φ(f) ⊗ 1 + 1 ⊗ φ(f)
and extended to S(V ) as before; thus e.g.

(2.4) ∆(φ(f) ∨ φ(g)) = (φ(f) ∨ φ(g))⊗ 1 + φ(f)⊗ φ(g)+

+φ(g)⊗ φ(f) + 1⊗ (φ(f) ∨ φ(g))

(cf. (1.3)). This coproduct is cocommutative with counit ε(a) = 0 for a ∈ Sn(V )
with n > 0 and ε(1) = 1; further ε(a) =< 0|a|0 > as indicated in Section 8.1. Thus
S(V ) is a commutative, cocommutative, star Hopf algebra with the involution
φ(f)∗ = φ(f∗) where f∗ = f̄ . To make S(V ) a quantum group now we can
add a coquasitriangular structure determined entirely by its value on V. Thus if
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a = u1 ∨ · · · ∨ vm ∈ Sm(V ) and b = v1 ∨ · · · ∨ vn ∈ Sn(V ) then (2.1) implies that
R(a, b) = 0 if m �= n and R(a, b) = perm(ui, vj) if m = n. Here

(2.5) perm(ui, vj) =
∑

R(u1, vσ(1)) · · ·R(un, vσ(n))

where the sum is over all permutations σ of (1, · · · , n). The most general Poincaré
invariant coquasitriangular structure on S(V ) is determined by values on V which
can be written

(2.6) R(φ(f), φ(g)) =
∫

dxdyf(x)G(x− y)g(y)

where G(x) is a Lorentz invariant distribution. Now R gives rise to a twisted
product on S(V ) as in (2.3) and by choosing the proper G(x) this twisted product
can become the operator product or the time ordered product. Explicitly if

(2.7) G(x) = G+(x) =
∫

dke−ip·x

(2π)32ωk

the twisted product is the usual operator product. If G(x) is the Feynman prop-
agator

(2.8) GF (x) = i

∫
d4pe−ip·x

(2π)4(p2 −m2 + iε)

then the twisted product (2.3) is the time ordered product. The proof is sketched
in [160] with the observation that (2.3) is of course Wick’s theorem as discussed
in Section 8.1.

Next we look at the second paper in [160]. The first sections are mainly a
repetition from [158] which we have covered in Section 8.2. We pick up the story
in Section 4 (with some repetition from [158, 160]). One takes a vector space V of
operators from which the space of normal products S(V ) will be constructed. The
elements of V are defined as operators acting in a Fock space. For scalar bosons
one takes M = RN (N = 3 for the usual space time) and we set H = L2(M). To
define the symmetric Fock space set H⊗n = H ⊗ · · · ⊗H and Sn acts on H⊗n via

(2.9) Sn(f1(k1)⊗ · · · fn(kn)) =
1
n!

∑
σ∈Sn

fσ(1)(k1)⊗ · · · ⊗ fσ(n)(kn)

where Sn is the group of permutations of n elements. The symmetric Fock space
is

(2.10) Fs(H) = ⊕∞
n=0SnH⊗n; S0H

⊗0 = C; S1H
⊗1 = H;

|ψ >= (ψ0, ψ1(k1), · · · , ψn(k1,k2, · · ·kn), · · · )
where ψ0 ∈ C and each ψn(k1, · · · ,kn) ∈ L2(Mn) is left invariant under any
permutation of the variables. The components of |ψ > satisfy

(2.11) ‖|ψ > ‖2 =< ψ|ψ >= |ψ0|2 +
∞∑
1

|ψn(k1, · · · ,kn)|2dk1 · · · dkn < ∞

An element of Fs(H) for which ψn = 0 for all but finitely many n is called a
finite particle vector and the set of such vectors is denoted by F0. Define now the
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annihilation operator a(k) by its action in Fs(H). The action of a(k) on |ψ > is
given by the coordinates (a(k|ψ > in the form

(2.12) (a(k)|ψ >n (k1, · · · ,kn) =
√

n + 1ψn+1(k,k1, · · · ,kn)

The domain of a(k) is DS = {|ψ >∈ F0, ψn ∈ S(Mn) for n > 0} where S is the
Schwartz space of functions of rapid decrease. The adjoint of a(k) is not densely
defined but a†(k) is well defined as a quadratic form on DS × DS as follows. If
|φ > and |ψ > belong to DS then (�) < φ|a†(k)ψ >=< a(k)φ|ψ >. If now
|ψ >∈ DS then it can be checked that a(k)|ψ >∈ DS so we can calculate the
operator product a(k1) · a(k2)|ψ >∈ DS (the operator product is denoted by ·).
By definitions and symmetry one knows that a(k1) · a(k2) = a(k2) · a(k1) which
implies a†(k1) · a†(k2) = a†(k2) · a†(k1) but nothing is known about a(k1) · a†(k2)
for example in view of the definition (�) which demands that all the a†(k) must be
on the left of the a(k). The vectors a†(k1) · · · a†(km) · a(q1) · · · a(qn) for m,n ≥ 0
generate a vector space W. The element where m = n = 0 is called 1 (unit
operator). The space W is equipped with a product (normal product) denoted by
∨. If u = a†(k1) · · · a†(km) · a(q1) · · · a(qn) and v ∈ W then

(2.13) u ∨ v = v ∨ u = a†(k1) · · · a†(km) · v · a(q1) · · · a(qn)

W is a commutative and associative star algebra with unit generated by the a(k)
and a†(k) with star structure a(k)∗ = a†(k). For V one takes V = {φ(f), f ∈
D(RN+1) where (cf. (2.3))

(2.14) φ(f) =
∫

dx

∫
dk

(2π)3
√

2ωk

(
f(x)e−ip·xa(k) + f(x)eip·xa†(k)

)
(again ωk =

√
m2 + |k|2 and p = (ωk,k). Note that the smoothed fields can also

be written as φ(f) =
∫

dxf(x)φ(x) with φ(x) given via (2.3) (note that φ(x) �∈ V ).
Now to define S(V ) in terms of operators we know S0(V ) = C1 where 1 is the unit
operator (i.e. for any |ψ >∈ Fs(H), 1|ψ >= |ψ >). Also we know S1(V ) = V . To
identify Sn(V ) we need only determine the symmetric product from the normal
product of creation and annihilation operators. Thus e.g.

(2.15) φ(f) ∨ φ(g) =
∫

dxdx′
∫

dk
(2π)3

√
2ωk

dk′

(2π)3
√

2ωk′
f(x)g(x′)×

×
(
e−i(p·x+p′·x′)a(k) · a(k′) + e−i(p·x−p′·x′)a†(k′) · a(k)+

+ei(p·x−p′·x′)a†(k) · a(k′) + ei(p·x+p′·x′)a†(k) · a†(k′)
)

These involve Fourier transforms and elementary arguments show that everything
is well defined and the product is an operator in DS . The same reasoning shows
that the symmetric product ∨ is well defined in S(V ) where the coproduct is
generated by ∆φ(f) = φ(f)⊗1+1⊗φ(f) and the antipode is defined by s(φ(f1)∨
· · · ∨ φ(fn)) = (−1)nφ(f1) ∨ · · · ∨ φ(fn). Again the counit gives the vacuum
expectation value as follows. Define the vacuum in DS by |0 >= (1, 0, · · · ) so by
definitions a(k|0 >= 0 and < 0|a†(k) = 0. A little argument as before then gives
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ε(u) =< 0|u|0 >. The star structure in S(V ) involves (λ1)∗ = λ̄1, φ(g)∗ = φ(ḡ),
and (u ∨ v)∗ = v∗ ∨ u∗ = u∗ ∨ v∗. This makes S(V ) a Hopf star algebra since

(2.16) ∆(φ(g)∗) = ∆φ(ḡ) = φ(ḡ)⊗1+1⊗φ(ḡ) = φ(g)∗⊗1+1⊗φ(g)∗ = (∆φ(g))∗

Hence ∆u∗ =
∑

u∗
1 ⊗ u∗

2 for any u ∈ S(V ) and

(2.17) s(u∗) = (−1)nu∗; s(s(u)∗)∗ = (−1)ns(u∗)∗ = (u∗)∗ = u

A little recapitulation here for illustrative purposes gives the following. The
twisted product can be defined from the Laplace pairing

(2.18) (φ(f)|φ(g))+ =
∫

dxdyf(x)G+(x− y)g(y)

(cf. Section 8.2). This is denoted by φ(f) • φ(g) and one has as in Section 8.2
φ(f)•φ(g) = φ(f)∨φ(g)+(φ(f)|φ(g))+. On the other hand Wick’s theorem gives
φ(f) · φ(g) = φ(f) ∨ φ(g)+ < 0|φ(f) · φ(g)|0 > and the last term can be written
< 0|φ(f) ·φ(g)|0 >=

∫
dxdyf(x)g(y) < 0|φ(x) ·φ(y)|0 > where < 0|φ(x) ·φ(y)|0 >

is the Wightman function G+(x− y). Thus φ(f) • φ(g) = φ(f) · φ(g) as indicated
earlier.

For the time ordered product one considers the Laplace pairing

(2.19) (φ(f)|φ(g))F = −i

∫
dxdyf(x)GF (x− y)g(y)

We denote by ◦ the corresponding twisted product; for example φ(f) ◦ φ(g) =
φ(f) ∨ φ(g) + (φ(f)|φ(g))F . In particular it can be checked that

(2.20) < 0|φ(f) ◦ φ(g)|0 >= (φ(f)|φ(g))F = −i

∫
dxdyf(x)GF (x− y)g(y)

We see that the twisted product of two operators is equal to their time ordered
product because −iGF (x− y) =< 0|T (φ(x)φ(y))|0 >. One notes that GF (−x) =
GF (x) so the Laplace coupling ( | ) is symmetric and the time ordered product is
commutative (it is also associative). One notes also

(2.21) < 0|T (φ(f1)φ(f2) · · ·φ(fn))|0 >= ε(φ(f1) ◦ φ(f2) ◦ · · · ◦ φ(fn)) =

= t(φ(f1) ∨ φ(f2) ∨ · · · ∨ φ(fn))

Next we go to [157] where interacting quantum fields are considered. We
summarize as follows. If C is a cocommutative coalgebra with coproduct ∆′

and counit ε′ the symmetric algebra S(C) = ⊕∞
0 Sn(C) can be equipped with

the structure of a bialgebra. The product is denoted here by · and the co-
product is defined on S1(C) = C by ∆a = ∆′z and extended to S(C) via
∆(uv) =

∑
u1 · v1 ⊗ u2 · v2. The counit ε of S(C) is defined as ε′ on S1(C) = C

and extended via ε(1) = 1 with ε(u · v) = ε(u)ε(v). One checks that ∆ is coasso-
ciative and cocommutative and that

∑
ε(u1)u2 =

∑
u1ε(u2) = u. Thus S(C) is

a commutative and cocommutative bialgebra graded as an algebra. We note that
∆k is defined via ∆0a = a, ∆1a = ∆a, and ∆k+1a = (id⊗ · · · ⊗ id⊗∆)∆ka with
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∆ka =
∑

a1 ⊗ · · · ⊗ ak+1. A Laplace pairing is (again) defined as in (1.5) (with ∨
replaced by ·). Then from these definitions one gets for uj , vj ∈ S(C)

(2.22) (u1 · · · · · uk|v1 · · · · · v�) =
∑ k∏

i=1

�∏
j=1

(ui
j |v

j
i )

For example (u·v ·w|s·t) =
∑

(u1|s1))u2|t1)(v1|s2)(v2|t2)(w1|s3)(w2|t3). A Laplace
pairing is entirely determined by its value on C and it induces a twisted product
◦ on S(C) as before (cf. (1.7)). Applying the counit to both sides in (1.7) yields
ε(u ◦ v) = (u|v). Following the proofs in [160] (sketched in Section 8.1) one gets
formulas such as (1.10) - (1.11), etc. and in addition

(2.23) ∆(u1 ◦ · · · ◦ uk) =
∑

u1
1 ◦ · · · ◦ uk

1 ⊗ u1
2 · · · · · uk

2

This leads to the important relation

(2.24) u1 ◦ · · · ◦ uk =
∑

ε(u1
1 ◦ · · · ◦ uk

1)u1
2 · · · · · uk

2

A second important identity in this context is also proved, namely

(2.25) ε(u1 ◦ · · · ◦ uk) =
∑ k−1∏

i=1

k∏
j=1+1

(ui
j−1|u

j
i ) =

∑∏
j>i

(ui
j−1|u

j
i )

(the proof is in [157]).

Now one goes to interacting quantum fields. Recall the scalar fields are defined
via (2.3) and interacting fields are products of fields at the same point. Thus
define powers of fields φn(x) as the normal product of n fields at x (i.e. φn(x) =:
φ(x) · · ·φ(x) :). This is meaningful for n > 0 and φ0(x) = 1. Consider the
coalgebra C generated by φn(x) where x runs over space time and n goes from 0 to
3 for a φ3 theory and from 0 to 4 for a φ4 theory. The coproduct in C is ∆φn(x) =∑n

0 φk(x) ⊗ φn−k(x) and the counit is ε(φn(x)) = δn,0. Scalar fields are bosons
so we work with the symmetric algebra S(C) with product =: uv : and ε(u) =<
0|u|0 >. In S(C) the Laplace pairing is entirely determined by (φn(x)|φm(x))
which itself is determined by the value of (φ(x)|φ(y) = G(x, y) if we consider
φn(x) as a product of fields. More precisely (φn(x)|φm(y)) = δm,nG(x, y)(n) where
G(x, y)(n) = (1/n!)G(x, y)n. Here G ∼ G+ or GF as before. Now noting that
∆k−1φn(x) =

∑
φm1(x)⊗ · · · ⊗ φmk(x), with a sum over all nonnegative integers

mi such that
∑k

1 mi = n one can specialize (2.22) to C as

(2.26) (: φn1(x1) · · ·φnk(xk) : | : φp1(y1) · · ·φp�(y�) :) =
∑
M

k∏
i=1

�∏
j=1

G(xi, yj)(mij)

where the sum is over all k × � matrices M of nonnegative integers mij such that∑�
j=1 mij = ni and

∑k
i=1 mij = pj . Note now that (2.24) applied to C yields a

classical result of QFT, namely

(2.27) φ(n1)(x1)◦· · ·◦φ(nk)(xk) =
n1∑

i1=0

· · ·
nk∑

ik=0

< 0|φ(i1)(x1)◦· · ·◦φ(ik)(xk)|0 > ×
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× : φ(n1−i1)(x1) · · ·φnk−ik)(xk) :
This equation appeared in [339] but (2.24) is clearly more compact and more
general than (2.27). Finally specializing (2.25) to C one obtains

(2.28) < 0|φ(n1)(x1) ◦ · · · ◦ φ(nk)(xk)|0 >=
∑
M

k−1∏
i=1

k∏
j=1+1

G(xi, xj)(mij

over all symmetric k×k matrices M of nonnegative integers mij with
∑k

j=1 mij =
nj and mii = 0 for all i. When the twisted product is the operator product this
expression appears in [168] but (2.28) is proved with a few lines of algebra whereas
the QFT proof is long and combinatorial. When the twisted product is the time
ordered product (2.28) has a diagrammatic interpretation in the spirit of Feynman
(cf. [157] for details).

3. RENORMALIZATION AND ALGEBRA

We go now to [157] and start with the physics in order to motivate the algebra.
Thus let B be the bialgebra of scalar fields generated by φn(x) for x ∈ R4 and
n ≥ 0 (recall φn(x) is the normal product of n fields φ(x)). The product of fields
is the commutative normal product φn(x) · φm(x) = φm+n(x) and the coproduct
is

(3.1) δBφn(x) =
n∑
0

(
n
k

)
φk(x)⊗ φn−k(x)

The counit is εB(φn(x)) = δn,0. One defines the symmetric algebra S(B) as the al-
gebra generated by the unit operator 1 and normal products : φn1(x1) · · ·φnm(xm) :.
The symmetric product is the normal product and the coproduct on S(B) is de-
duced from δB via

(3.2) δ : φn1(x1) · · ·φnm(xm) :=
n1∑

i1=0

· · ·
nm∑

im=0

(
n1

i1

)
· · ·

(
nm

im

)
×

: φi1(x1) · · ·φim(xm) : ⊗ : φn1−im(x1) · · ·φnm−im(xm :
The counit of S(B) is given by the expectation value over the vacuum, i.e. ε(a) =<
0|a|0 > for a ∈ S(B).

Now for the time ordered product of a ∈ S(B) one takes T (a) =
∑

t(a1)a2

where t(a) = ε(T (a)). In expressions like T (φn1(x1) · · ·φnm(xm)) the product
inside T ( ) is usually considered to be the operator product. However since the
fields φni(xi) commute inside T ( ) it is also possible to consider T as a map
S(B) → S(B). To stress this point one writes T (: φn1(x1) · · ·φnm(xm) :). From
T (a) =

∑
t(a1)a2 and the definition of the coproduct and counit one recovers the

standard formula (cf. [168, 339])

(3.3) T (: φn1(x1) · · ·φnm(xm) :) =
n1∑

i1=0

· · ·
nm∑

im=0

(
n1

i1

)
· · ·

(
nm

im

)
×

< 0|T (: φi1(x1) · · ·φim(xm) :)|0 >: φn1−im(x1) · · ·φnm−im :
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The relation between two time ordered products T and T̃ (cf. [788] and also
Section 8.1) can be written (up to a convolution with test functions) as

(3.4) T̃ (a) =
∑

T (”O(b1) · · ·O(bk) :); a =: φn1(x1 · · ·φnm(xm) :

and the sum is over partitions of a (i.e. the different ways to write a as : b1 · · · bk :
where bi ∈ S(B) and k is the number of blocks of the partition), while O is a map
S(B) → B such that O(: φn1(x1) · · ·φnm(xm) :) is supported on x1 = x2 = · · · =
xm (the notation ∆ is used in [768] for the map O but is changed here to avoid
confusion with the coproduct). For consistency one must put T (1) = O(1) = 1
and in standard QFT a single vertex is not renormalised so T̃ (a) = T (a) = a if
a ∈ B. This enables one to show that O(a) = a if a ∈ B since if a ∈ B there
is only one partition of a, namely a, and (3.4) becomes T̃ (a) = T (O(a)). But
O(a) ∈ B so T (O(a)) = O(a); the fact that T̃ (a) = a implies that O(a) = a. If
a =: φn1(x1) · · ·φnm(xm) : with m > 1 then (3.4) can be rewritten

(3.5) (̃a) = T (a) + T (O(a)) +
′∑
u

T (: O(b1) · · ·O(bk) :)

where
∑′

u is the sum over all partitions except u = {φn1(x1), · · · , φnm(xm)} and
u = a. However O(a) ∈ B and T acts as the identity on B so

(3.6) T̃ (a) = T (a) + O(a) +
′∑
u

T (: O(b1) · · ·O(bk) :)

In fact one proves in [157] that if a =: φn1(x1) · · ·φnm(xm) : then O(a) =∑
c(a1)a2 where c(a) = ε(O(a)) is a distribution supported on x1 = · · ·xm which

can be obtained recursively from t̃ and t via

(3.7) c(a) = t̃(a)− t(a)−
′∑
u

∑
c(b1

1) · · · c(bk
1)t(: b1

2 · · · bk
2 :)

We will sketch the induction procedure. If a =: φn1(x1) · · ·φnm(xm) : with m = 2
there are only two partitions of a, namely u = {: φn1(x1)φn2(x2) :} and u =
{φn1(x1), φn2(x2)}. Thus T̃ (a) = T (a) + O(a). We know that T (a) =

∑
t(a1)a2

and T̃ (a) =
∑

t̃(a1)a2 so O(a) =
∑

c(a1)a2 with c = t̃−t. Assume the proposition
(3.7) is true up to m − 1 and take a =: φn1 · · ·φnm(xm) :. In (3.6) then the
proposition is true for all O(bi) and thus

(3.8) T̃ (a) = T (a) + O(a) +
′∑
u

T (: O(b1) · · ·O(bk) :) = T (a) + O(a)+

+
′∑
u

∑
c(b1

1) · · · c(bk
1)T (: b1

2 · · · bk
2 :)

T (a) =
∑

t(a1)a2 yields now
(3.9)∑

t̃(a1)a2 =
∑

t(a1)a2 + O(a) +
′∑
u

∑
c(b1

1) · · · c(bk
1)t(: b1

2 · · · bk
2 :) : b1

3 · · · bk
3 :
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Since a =: b1 · · · bk : the factor : b1
3 · · · bk

3 : can be written a3 and the proposition is
proved using the coassociativity of the coproduct. To prove the support properties
of c(a) use the fact that O(a) is supported on x1 = · · · = xm so c(a) = ε(O(a)) is
supported on the same set and c(a) = P (∂)δ(x2 − x1) · · · δ(xm − x1) where P (∂)
is a polynomial in ∂xi

.

From the proposition one has now

(3.10) O(: φn1(x1) · · ·φnm(xm) :) =
n1∑

i1=0

· · ·
nm∑

im=0

(
n1

i1

)
· · ·

(
nm

im

)
×

×c(: φn1(x1) · · ·φnm(xm) :) : φn1−im(x1) · · ·φnm−im(xm) :

Because of the support properties of c this can be rewritten as

(3.11) O(: φn1(x1) · · ·φnm(xm) :) =
n1∑

i1=0

· · ·
nm∑

im=0

(
n1

i1

)
· · ·

(
nm

im

)
×

×c(: φn1(x1) · · ·φnm(xm) :) : φn1−im(x1) · · ·φnm−im(x1) :=
n1∑

i1=0

· · ·
nm∑

im=0

×

×
(

n1

i1

)
· · ·

(
nm

im

)
c(: φn1(x1) · · ·φnm(xm) :)φn1−im(x1) · · ·φnm−im(x1)

where the product in the last line is in B. Thus we can rewrite this as O(a) =∑
c(a1)

∏
a2.

It remains to relate the last result with the renormalisation coproduct. By
combining (3.4) and O(a) =

∑
c(a1)

∏
a2 one gets

(3.12)
T̃ (a) =

∑
u

T (: O(b1) · · ·O(bk) :) =
∑

u

∑
c(b1

1) · · · c(bk
1)T (:

∏
b1
2 · · ·

∏
bk
2 :)

If we compare this with the commutative renormalisation coproduct

(3.13) ∆b =
∑

u

b1
1 · · · b

�(u)
1 ⊗ {

∏
b1
2, · · · ,

∏
b
�(u)
2 }

one sees that T̃ (a) =
∑

C(a[1])T (a[2]) (there are two coproducts here to be
indicated below and the notation [i] will be clarifed at that time); similarly
t̃(a) =

∑
C(a[1])t(a[2]). In any event this shows that the renormalisation cooprod-

uct gives the same result as the Epstein-Glaser renormalisation. Further in order
to deal with renormalisation in curved space time renormalisation at a point is
needed and this is provided via

(3.14) φ̃n(x) =
n∑
0

(
n
k

)
c(φk(x))φn−k(x)

instead of T (φn(x)) = φn(x).

We go now to the beginning of [157] and deal with the algebra. We will take
B as a (not necessarily unital) bialgebra with coproduct δB and counit εB . The



3. RENORMALIZATION AND ALGEBRA 335

product is denoted x ·y and T (B)+ is the subalgebra ⊕n≥1T
n(B). Here the gener-

ators x1⊗· · ·⊗xn are denoted by (x1, · · · , xn) and xi ∈ B and one uses ◦ to denote
tensor product so that (x1, · · · , xn)◦ (xn+1, · · · , xm+n) = (x1, · · · , xm+n). Finally
write the product operation in T (T (B+) by juxtaposition so T k(T (B)+) is gener-
ated by a1a2 · · · ak where ai ∈ T (B)+. The coproduct δ = δB and counit ε = εB

extend uniquely to a coproduct and counit on T (B) compatible with the multipli-
cation of T (B), making T (B) a bialgebra. This construction ignores completely
the algebra structure of B; the bialgebra T (B) is the free bialgebra on the underly-
ing coalgebra of B. Similarly the coproduct and counit of the nonunital bialgebra
T (B)+ extend to define a free bialgebra structure on T (T (B)+). The coproduct
of both T (B) and T (T (B)+) is denoted by δ. Hence if one uses the Sweedler no-
tation δ(x) =

∑
x1⊗x2 for the coproduct in B then for a = (x1, · · · , xn) ∈ T b(B)

and u = a1 · · · ak ∈ T k(T (B)+) we have

(3.15) δ(a) =
∑

(x1
1, · · · , xn

1 )⊗ (x1
2, · · · , xn

2 ); δ(u) =
∑

a1
1 · · · ak

1 ⊗ a1
2 · · · ak

2

The counit is defined by ε(a) = εB(x1) · · · εB(xn) and ε(u) = ε(a1) · · · ε(ak).

Before giving the new coalgebra structure on T (T (B)+) some terminology
arises. A composition ρ is a (possibly empty) finite sequence of positive integers
(parts of ρ). The length is �(ρ) (number of parts) and |ρ| is the sum of the parts;
ρ is called a composition of n if |ρ| = n. Let Cn be the set of all compositions of
n and by C the set ∪n≥0Cn of all compositions of all nonnegative integers. For
example ρ = {1, 3, 1, 2} is a composition of 7 having length 4. The first four Cn

are C0 = {e} where e is the empty composition, C1 = {(1)}, C2 = {(1, 1), (2)},
and C3 = {(1, 1, 1), (1, 2), (2, 1), (3)}. The total number of compositions of n is
2n−1, the number of compositions of n of length k is (n− 1)!/(k− 1)!(n− k)!, and
the number of compositions of n containing α1 times the integer 1, α2 times 2,· · · ,
and αn times n, with α1 + 2α2 + · · · + nαn = n is (α1 + · · · + αn)!/α1! · · ·αn!.
The set C is a monoid under the operation ◦ of concatenation of sequences, i.e.
(r1, · · · , rn)◦(rn+1, · · · , rm+n) = (r1, · · · , rn+m) and the identity of C is the empty
composition e.

Now the refinement relation goes as follows. If ρ and σ are compositions with
σ = (s1, · · · , sk) then ρ ≤ σ ⇐⇒ ρ factors in C as ρ = (ρ|gs1) ◦ · · · ◦ (ρ|σk) where
(ρ|σi) is a composition of si for each i ∈ {1, · · · , k}; (ρ|σi) is called the restriction
of ρ to the ith part of σ. For example if σ = (4, 5) and ρ = (1, 2, 1, 2, 2, 1) then ρ =
(ρ|σ1)◦ (ρ|σ2) where (ρ|σ1) = (1, 2, 1) is a composition of 4 and (ρ|σ2) = (2, 2, 1) is
a composition of 5. Thus ρ ≤ σ and on can say that ρ is a refinement of σ. Note
that |ρ| = |σ| and �(ρ) ≥ �(σ) if ρ ≤ σ. If ρ ≤ σ one defines the quotient σ/ρ to
be the composition of �(ρ) given by (t1, · · · , tk) where ti = �((ρ|σi)) for 1 ≤ i ≤ k.
In the example above σ/ρ = (3, 3). Note that for σ ∈ Cn with �(σ) = k one has
(n)/σ = (k), σ/(1, 1, · · · , 1) = σ, and σ/σ = (1, 1, · · · , 1) ∈ Ck. Each of the sets
Cn (as well as all of C) is partially ordered by refinement. Each Cn has unique
minimal element (1, · · · , 1) and unique maximal element (n) and these are all the
minimal and maximal elements in C. The partially ordered sets Cn are actually
Boolean algebras.
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One proves a lemma now needed to prove coassociativity of the coproduct.
Thus if ρ ≤ τ in C then the map σ → σ/ρ is a bijection from {σ : ρ ≤ σ ≤ τ} onto
{γ : γ ≤ τ/ρ}. To see this suppose ρ = (r1, · · · , rk) and γ = (s1, · · · , s�) ≤ τ/ρ.
Define γ̄ ∈ C via

(3.16) γ̄ = (r1 + · · ·+ rs1 , rs1+1 + · · ·+ rx1+s2 , · · · rk−s�+1 + · · ·+ rk)

Then evidently ρ ≤ γ̄ ≤ τ and the map γ → γ̄ is inverse to the map σ → σ/ρ.

The monoid of compositions allows a grading on T (T (B)+). For all n ≥ 0 and
ρ = (r1, · · · , rk) in Cn let T ρ(B) be the subspace of T k(T (B)+) given by T r1(B)⊗
· · ·⊗T rk(B). Then there is a direct sum decomposition T (T (B)+) = ⊕ρ∈CT ρ(B)
where T ρ(B) · T τ (B) ⊆ T ρ◦τ (B) for all ρ, τ ∈ C and 1T (T (B)) ∈ T e(B) (thus
T (T (B)+) is a C-graded algebra). One uses this grading to define operations on
T (T (B)+). Given a = (x1, · · · , xn) ∈ Tn(B) and ρ = (r1, · · · , rk) ∈ Cn define
a|ρ ∈ T ρ(B) and a/ρ ∈ T k(B) via

(3.17) a|ρ = (x1, · · · , xr1)(xr1+1, · · · , xr1+r2) · · · (xn−rk+1, · · · , xn);

a/ρ = (x1 · · ·xr1 , xr1+1 · · ·xr1+r2 , · · · , xn−rk+1 · · ·xn)

where x1 · · ·xj is the product in B. More generally for u = a1 · · · a� ∈ T σ(B) and
ρ ≤ σ in C one defines u|ρ ∈ T ρ(B) and u/ρ ∈ T σ/ρ(B) via

(3.18) u|ρ = a1|(ρ|σ1) · · · a�(ρ|σ�); u/ρ = a1/(ρ|σ1) · · · a�/(ρ|σ�)

EXAMPLE 3.1. Let ρ = (1, 2, 1, 2, 2, 1), σ = (3, 1, 2, 3), and τ = (4, 5) in C
so that ρ ≤ σ ≤ τ in C. Then σ/ρ = (2, 1, 1, 2), τ/ρ = (3, 3), and τ/σ = (2, 2). If
u = (x1, x2, x3, x4)(y1, y2, y3, y4, y5) in T r(B) then

(3.19) u|ρ = (x1)(x2, x3)(x4)(y1, y2)(y3, y4)(y5) ∈ T ρ(B;

u|σ = (x1, x2, x3)(x4)(y1, y2)(y3, y4, y5) ∈ T σ(B);

u/ρ = (x1, x2 · x3, x4)(y1 · y2, y3 · y4, y5) ∈ T τ/ρ(B);

u/σ = (x1 · x2 · x3, x4)(y1 · y2, y3 · y4 · y5) ∈ T τ/σ(B);

(u|σ)/ρ = (u/ρ)|(σ/ρ) = (x1, x2 · x3)(x4)(y1 · y2)(y3 · y4, y5) ∈ T σ/ρ(B)

The last equality illustrates the lemma that for all ρ ≤ σ ≤ τ in C and u ∈ T r(B)
the equalities

(3.20) (u|σ)|ρ = u|ρ; (u/ρ)/(σ/ρ) = u/σ; (u|σ)/ρ = (u/ρ)|(σ/ρ)

hold in Tσ/ρ(B).

We refer to [157] for proof of

LEMMA 3.1. For all ρ ≤ σ and u ∈ T σ(B) with free coproduct δ(u) =∑
u1 ⊗ u2 one has

(3.21) δ(u/ρ) =
∑

u1|ρ⊗ u2|ρ; δ(u/ρ) =
∑

u1/ρ⊗ u2/ρ
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Now define the coproduct ∆ on T (T (B)+) via

(3.22) ∆u =
∑
σ≤τ

u1|σ ⊗ u2/σ

for u ∈ T r(B) with free coproduct δ(u) =
∑

u1 ⊗ u2. Here ∆ is called the
renormalisation coproduct; it is an algebra map and hence is determined via ∆a =∑

σ∈Cn
a1|σ ⊗ a2/σ for all a ∈ Tn(B) with n ≥ 1. As an example consider

(3.23)
∆x =

∑
(x1)⊗ (x2); ∆(x, y) =

∑
(x1)(y1)⊗ (x2, y2) +

∑
(x1, y1)⊗ (x2 · y2);

∆(x, y, z) =
∑

(x1)(y1)(z1)⊗ (x2, y2, z2) +
∑

(x1)(y1, z1)⊗ (x2, y2 · z2)+

+
∑

(x1, y1)(z1)⊗ (x2 · y2, z2) +
∑

(x1, y1, z1)⊗ (x2 · y2 · z2)

The counit ε of T (T (B)+) is the algebra map to C whose restriction to T (B)+ is
given by ε((x)) = εB(x) for x ∈ B and ε((x1, · · · , xn)) = 0 for n ≥ 1. One proves
then in [157]

THEOREM 3.1. The algebra T (T (B)+) together with the structure maps
∆ and ε defined above is a bialgebra called the renormalisation algebra.

One has now two coproducts on T (T (B)+), namely δ and ∆ defined via (3.22)
and to avoid confusion one uses an alternate Sweedler notation for the new co-
product, namely ∆u =

∑
u[1] ⊗ u[2] for u ∈ T (T (B)+). Note

(3.24)
∑

(x)[1] ⊗ (x)[2] =
∑

(x1)⊗ (x2)

for x ∈ B. A recursive definition of the coproduct can also be given. Thus the
action of B on itself by left multiplication extends to an action B⊗T (B) → T (B)
denoted by x ⊗ a → x � a via (•) x � a = (x · x1, · · · , xn) for x ∈ B and a =
(x1, · · · , xn). This action in turn extends to an action of B on T (T (B)+) denoted
similarly by x⊗ u → x � u in the form (••) x � u = (x � a1)a2 · · · ak for x ∈ B and
u = a1 · · · ak ∈ T (T (B)+). The following proposition together with ∆1 = 1 ⊗ 1
and ∆x =

∑
(x1) ⊗ (x2) for x ∈ B determines ∆ recursively on T (B) and hence

by multiplicativity determines ∆ on all T (T (B)+).

PROPOSITION 3.1. For all a ∈ T (B) with n ≥ 1 and x ∈ B

(3.25) ∆((x) ◦ a) =
∑

(x1)a[1] ⊗ (x2) ◦ a[2] +
∑

(x1) ◦ a[1] ⊗ x2 � a[2]

We refer to [157] for proof. One may formulate (3.25) as follows. Correspond-
ing to an element x ∈ B there are 3 linear operators on T (T (B)+), namely

(3.26) Ax(u) = x � u; Bx(u) = ((x) ◦ a1)a2 · · · ak; Cx(u) = (x)u

induced by left multiplication in B, T (B), and T (T (B)+) respectively. With this
notation (3.25) takes the form

(3.27) ∆(Bx(a)) =
∑

(Cx1 ⊗Bx2 + Bx1 ⊗Ax2)∆a
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As a third formulation let A,B,C be the mappings from B to the set of linear
operators on T (T (B)+) respectively given by x → Ax, x → Bx, and x → Cx.
Then (3.25) takes the form

(3.28) ∆(Bx(a)) = (A⊗B + B ⊗ C)(δ(x))(∆(a)

One also has

(3.29) ∆(Ax(a)) = (A⊗A)(δ(x))(∆a); ∆(Cx(a)) = (C ⊗ C)(δ(x))(∆a)

Finally one has a more explicit expression for the coproduct which is useful in
defining a coproduct on S(S(B)+). Thus if a = (x1, · · · , xn) one has

(3.30) ∆a =
∑

u

a1
1 · · · a

�(u)
1 ⊗ (

∏
a1
2, · · · ,

∏
a

�(u)
2 )

where the product a1
1 · · · a

�(u)
1 is in T (T (B)+). This is a simple rewriting of (3.22)

and u runs over the compositions of a. By a composition of a one means an element
u ∈ T (T (B)+) such that u = (a|ρ) for some ρ ∈ Cn. If the length of ρ is k one can
write u = a1 · · · ak whre ai ∈ T (B) are called the blocks of u. Finally the length
of u is �(u) = �(ρ) = k. To complete the definition of (3.30) one must still define
ai
1 and

∏
ai
2. If ai = (y1, · · · , ym) is a block then ai

1 = (y1
1 , · · · , ym

1 ) ∈ T (B)+ and∏
ai
2y

1
2 · · · ym

2 ∈ B.

Now assume B is a graded bialgebra which is no loss of generality since one
can always consider that all elements of B have degree zero. The grading of B

will be used to define a grading on T (T (B)+). Denote by |x| the degree of a
homogeneous element x ∈ B and by deg(a) the degree (to be defined) of a ho-
mogeneous a ∈ T (T (B)+). First for T (B) the degree of 1 is zero, the degree of
(x) ∈ T 1(B) is equal to the degree |x| of x ∈ B. More generally the degree of
(x1, · · · , xn) ∈ T (B) is (A82) deg((x1, · · · , xn)) = |x1|+ · · ·+ |xn|+n−1. Finally
if a1, · · · , ak are homogeneoous elements of T (B)+ the degree of their product
in T (T (B)+) is (A83) deg(a1 · · · ak) = deg(a1) + · · · + deg(ak). Thus the degree
is compatible with the multiplication in T (T (B)+) and one shows that it is also
compatible with the renormalisation coproduct (cf. [157] for details). For dealing
with fermions one uses a Z2 graded algebra B and we omit this for now (cf. [157]).

When the bialgebra B is commutative one can work with the symmetric al-
gebra S(S(B)+) and to define S(T (B)+) one takes quotients from T (T (B)+) via
the ideal I = {u(ab− ba)v; u, v ∈ T (T (B)+), a, b ∈ T (B)+}. Note that

(3.31) ∆u(ab− ba)v =
∑

u[1]a[1]b[1]v[1] ⊗ u[2]a[2]b[2]v[2] −
∑

u[1]b[1]a[1]v[1]⊗

⊗u[2]b[2]a[2]v[2] =
∑

u[1](a[1]b[1] − b[1]a[1])v[1] ⊗ u[2]a[2]b[2]v[2]+

+
∑

u[1]b[1]a[1]v[1] ⊗ u[2](a[2]b[2] − b[2]a[2])v[2]

Thus ∆I ⊂ I⊗T (T (B)+)+T (T (B)+)⊗I. Moreover ε(I) = 0 because ε(ab−ba) =
0. Therefore I is a coideal and since it is also an ideal the quotient S(T (B)+) =
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T (T (B)+)/I is a bialgebra which is commutative. Now one defines S(B)+ as the
subspace of T (B)+ generated as a vector space by elements

(3.32) {x1, · · · , xn} =
∑

(xσ(1), · · · , xσ(n))

where σ runs over the permutations of n elements. The symmetric product in
S(B)+ is denoted by ∨ so that {x1, · · · , xn}∨{xn+1, · · · , xn+m} = {x1, · · · , xm+n}.
If B is commutative one shows that S(S(B)+) is a subbialgebra of S(T (B)+) with
coproduct given by (3.13) (cf. [157] for the combinatorial proof). Some examples
are given via

(3.33) ∆{x} =
∑
{x1} ⊗ {x2}; ∆{x, y} =

=
∑
{x1}{y1} ⊗ {x2, y2}+

∑
{x1, y1} ⊗ {x2 · y2}

3.1. VARIOUS ALGEBRAS. When B is the Hopf algebra of a commu-
tative group there is a homomorphism between the gialgebra S(S(B)+) and the
Faa di Bruno algebra. As an algebra this is the polynomial algebra generated by
un for 1 ≤ n < ∞. The coproduct of un is

(3.34) ∆un =
n∑

k=1

∑
α

n!(u1)α1 · · · (un)αn

α1! · · ·αn!(1!)α1 · · · (n!)αn
⊗ uk

The sum is over the n-tuples of nonnegative integers α = (α1, · · · , αn) such that
α + 1 + 2α2 + · · ·+ nαn = n and α1 + · · ·+ αn = k. For example

(3.35) ∆u1 = u1⊗u1; ∆u2 = u2⊗u1+u2
1⊗u2; ∆u3 = u3⊗u1+3u1u2⊗u2+u3

1⊗u3

It is a commutative noncocommutative bialgebra. To see the relation of this bialge-
bra with the composition of functions consider formal series f(x) =

∑∞
1 fn(xn/n!)

and g(x) =
∑∞

1 gn(xn/n!). Define linear maps from the algebra of such formal
series to C via un(f) = fn. If one defines ∆u =

∑
u1 ⊗ u2 then the terms of

f(g(x)) are

(3.36) f(g(x)) =
∞∑
1

un(f ◦ g)
xn

n!
=

∞∑
1

∑
un(1)(g)un(2)(f)

xn

n!

For example
(3.37)
df(g(x))

dx
= g1f1;

d2f(g(x))
dx2

= g2f1 + g2
1f2;

d3f(g(x))
dx3

= g3f1 + 3g1g2f2 + g3
1f3

Following [259] it is possible to introduce a new (noncommutative) element X in
the algebra such that X,un] = un+1 and then to generate the FdB coproduct via
∆u1 = u1 ⊗ u1 and ∆X = X ⊗ 1 + u1 ⊗ X. Now take the bialgebra B to be a
commutative group Hopf algebra. If G is a commutative group the commutative
algebra B is the vector space generated by the elements of G and the algebra
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product is induced by the product in G. The coproduct is defined by δBx = x⊗ x
for all x ∈ G. The definition (3.13) of coproduct becomes

(3.38) ∆b =
∑

u

b1 · · · b�(u) ⊗ {
∏

b1, · · · ,
∏

b�(u)}

The homomorphism φ between S(S(B)+) and the FdB bialgebra is given by φ(1) =
1 and φ(a) = un for any a ∈ Sn(B) with n > 0. It can be established from (3.38)
by noticing that the number of partitions of {x1, · · · , xn} with α1 blocks of size
1, · · · , αn blocks of size n is n!/α1! · · ·αn!(1)α1 · · · (n!)αn .

Next comes the Pinter Hopf algebra. The bialgebras T (T (B)+) and S(S(B)+)
can be turned into Hopf algebras by quotienting with an ideal. The subspace
I = {(x)− εB(x)1; x ∈ B} is a coideal because

(3.39) ∆((x)− εB(x)1) =
∑

(x1)⊗ (x2)− εB(x)1⊗ 1 =
∑

(x1)⊗ (x2)−

−
∑

εB(x1)εB(x2)1⊗1 =
∑

((x1)−εB(x1)1)⊗(x2)+
∑

εB(x1)1⊗((x2)−εB(x2)1)

Since ε(I) = 0 the subspace I is a coideal. Therefore the space J of elements
of the form uav where u, v ∈ T (T (B)+) and a ∈ I is an ideal and a coideal so
T (T (B)+)/J is a bialgebra. The action of the quotient is to replace all the (x) by
ε(x)1. For example

(3.40) ∆(x, y) =
∑

1⊗ (x, y) +
∑

(x, y)⊗ 1; ∆(x, y, z) =
∑

1⊗ (x, y, z)+

+
∑

(y1, z1)⊗ (x, y2 · z2) +
∑

(x1, y1)⊗ (x2 · y2, z) +
∑

(x, y, z)⊗ 1

More generally if a = (x1, · · · , xn) one writes

(3.41) ∆a = a⊗ 1 + 1⊗ a +
′∑

a1 ⊗ a2

where
∑′ involves elements a1, a2 of degrees strictly smaller that the degree of a.

Hence the antipode can be defined as in [861] and T (T (B)+)/J is a connected
Hopf algebra. The same is true of S(S(B)+)/J ′ where J ′ is the subspace of
elements of the form uav with u,∈ S(S(B)+) and a ∈ {{x} − εB(x)1; x ∈ B}.

Finally consider the Connes-Moscovici algebra. If we take the same quotient
of the FdB bialgebra (i.e. by letting u1 = 1) one obtains a Hopf algebra (FdB
Hopf algebra). In [259] there is defined a Hopf algebra related to the FdB Hopf
algebra as follows. If φ(x) = x +

∑∞
2 unxn/n! one defines δn for n > 0 via

(3.42) −logφ′(x) =
∞∑
1

δn(xn/n!)

To calculate δn as a function of uk write φ′(x) = 1+
∑∞

1 un+1x
n/n! and −log(1+

z) =
∑∞

1 (−1)k−1(k − 1)!zk/k!. Since the FdB formulas describe the composition
of series one can use it to write

(3.43) δn =
n∑
1

(−1)k−1(k − 1)!
∑
α

n!(u2)α2 · · · (un+1)αn

α1! · · ·αn!(1!)α1 · · · (n!)αn
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where the sum is over the n-tuples of nonnegative integers α = (α1, · · · , αn) as
before. For example δ1 = u2, δ2 = u3 − u2

2, δ3 = u4 − 3u3u2 + 2u3
2, etc. Except

for the shift the relation between un and δn

the moments of a distribution and its cumulants, or between unconnected Greens
functions and connected Greens functions. The inverse relation is obtained from
φ(x) =

∫ x

0
dtexp(−

∑∞
1 δn(tn/n!). Thus

(3.44) un+1 =
∑

n!(δ1)α1 · · · (δn)αn)/(α1! · · ·αn!(1!)α1 · · · (n!)αn)

4. TAU FUNCTION AND FREE FERMIONS

We follow here [191, 192, 205, 455, 737, 738, 739]. For free fermions we
∗

(4.1) ψn|0 >= 0 =< 0|ψ∗
n (n < 0); ψ∗

n|0 >= 0 =< 0|ψn (n ≥ 0)

Here the algebra of free fermions is a Clifford algebra A over C with

(4.2) [ψm, ψn]+ = [ψ∗
m, ψ∗

n]+ = 0; [ψm, ψ∗
n] = δmn

An element of W = (⊕m∈ZCψm) ⊕ (⊕m∈ZCψ∗
m) is called a free fermion. The

Clifford algebra has a standard representation (Fock representation) as follows.
Let

(4.3) Wan = (⊕m<0Cψm)⊕ (⊕m≥0Cψ∗
m); Wcr = (⊕m≥0Cψm)⊕ (⊕m<0Cψ∗

m)

Then consider the left (resp. right) A-module F = A/AWan (resp. F ∗ =
WcrA/A). These are cyclic A- modules generated by the vectors |0 >= 1 mod
AWan (resp. by < 0| = 1 mod WcrA) with the properties given in (4.1). The Fock
spaces F and F ∗ are dual with pairing defined via the vacuum expectation value
< 0| · |0 > which has the properties

(4.4) < 0|1|0 >= 1; < 0|ψmψ∗
m|0 >= 1 (m < 0); < 0|ψ∗

mψm|0 >= 1 (m ≥ 0);

< 0|ψmψn|0 >= (0|ψ∗
mψ∗

n|0 >= 0; < 0|ψmψ∗
n|0 >= 0 (m �= n)

and the Wick property applies, namely

(4.5) < 0|w1 · · ·w2n+1|0 >= 0;

< 0|w1 · · ·w2n|0 >=
∑

σ

sgn(σ) < 0|wσ(1)wσ(2)|0 > · · · < 0|wσ(2n−1)wσ(2n)|0 >

where wk ∈ W and σ runs over permutations such that σ(1) < σ(2), · · · , σ(2n −
1) < σ(2n) and σ(1) < σ(3) < · · · < σ(2n − 1). One considers also infinite
matrices (aij)i,j∈Z satisfying the condition that there is an N such that aij = 0
for |i − j| > N ; these are called generalized Jacobi matrices. They form a Lie
algebra with bracket [A,B] = AB − BA. The quadratic elements

∑
aij : ψiψ

∗
j :

are important where : ψψ∗
j := ψiψ

∗
j− < 0|ψiψ

∗
j |0 >. These elements (with 1) span

an infinite dimensional Lie algebra ĝ�(∞) where

(4.6) [
∑

aij : ψiψ
∗
j :,

∑
bij : ψiψ

∗
j :] =

∑
cij : ψiψ

∗
j : +c0;

cij =
∑

k

aikbkj −
∑

k

bikakj ; c0 =
∑

i<0,j≥0

aijbji −
∑

i≥0,j<0

aijbji

adopt the notation of [737] for convenience (note in [191] ψ ↔ ψ ). Thus

is the same as the relation between
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The last term c0 commutes with each quadratic term. Thus the Lie algebra of
quadratic elements

∑
aij : ψiψ

∗
j : is different from the algebra of generalized

Jacobi matrices by virtue of the central extension c0.

Now g = exp(
∑

anm : ψnψm :) is an operator belong to the formal group
corresponding to the Lie algebra ĝ�(∞). Using (4.6) one obtains

(4.7) gψn =
∑
m

ψmAmng; ψ∗
ng = g

∑
m

Anmψ∗
m

where the coefficients Anm are determined via anm. Then (4.7) implies

(4.8) [
∑
n∈Z

ψn ⊗ ψ∗
n, g ⊗ g] = 0

This is very important and is in fact equivalent to the Hirota bilinear identity (cf.
[191, 664]). One introduces now

(4.9) Hn =
∞∑
−∞

ψkψ∗
k+n (n �= 0); H(t) =

∞∑
1

tnHn; H∗(t∗) =
∞∑
1

t∗nH−n

Here Hn ∈ ĝ�(∞) while H(t), H∗(t∗) belong to ĝ�(∞) if one restricts the number
of non-vanishing parameters tm, t∗m. For Hn we have Heisenberg algebra commuta-
tion relations [Hn,Hm] = nδm+n,0. One notes also Hn|0 >= 0 =< 0|H−n (n > 0).
Next one introduces the fermions

(4.10) ψ(z) =
∑

k

ψkzk; ψ∗(z) =
∑

k

ψ∗
kz−k−1dz

Using (4.2) and (4.9) there results (ξ(t, z) =
∑∞

1 tnzn)

(4.11) eH(t)ψ(z)e−H(t) = ψ(z)eξ(t,z); eH(t)ψ∗(z)eH(t) = ψ∗(z)e−ξ(t,z);

e−H∗(t∗)ψ(z)eH∗(t∗) = ψ(z)e−ξ(t∗,z−1); e−H∗(t∗)ψ∗(z)eH(t∗) = ψ∗(z)eξ(t∗,z−1)

Using

(4.12)
∑
n∈Z

ψn ⊗ ψ∗
n = Resz=0ψ(z)⊗ ψ∗(z)

and (4.6) one arrives at

(4.13) [
∑
n∈Z

ψn ⊗ ψ∗
n, eH(t) ⊗ eH(t)] = 0; [

∑
n∈Z

ψn ⊗ ψ∗
n, eH∗(t∗) ⊗ eH∗(t∗)] = 0

Therefore if g solves (4.8) then eH(t)geH∗(t∗) also solves (4.8), i.e.

(4.14) [Resz=0ψ(z)⊗ ψ∗(z), eH(t)geH∗(t∗) ⊗ eH(t)geH∗(t∗)] = 0

Next to generate some generalized tau functions one defines vacuum vectors
labelled by an integer. Thus write

(4.15) < n| =< 0|Ψ∗
n; |n >= Ψn|0 >; Ψn = ψn−1 · · ·ψ1ψ0 (n > 0); Ψn =

= ψ∗
n · · ·ψ∗

−2ψ
∗
−1 (n < 0); Ψ∗

n = ψ∗
0ψ∗

1 · · ·ψ∗
n−1 (n > 0); Ψ∗

n = ψ−1ψ−2 · · ·ψn

(n < 0). Now given g satisfying the bilinear identity (4.8) one constructs Kadomtsev-
Petviashvili (KP) and Toda lattice (TL) tau functions via
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• τKP (n, t) =< n|exp(H(t))g|n >
• τTL(n, t, t∗) =< n|exp(H(t))gexp(H∗(t∗))|n >

If one fixes the variables n, t∗ then τTL becomes τKP . Next one recalls the Schur
functions via

(4.16) sλ(t) = det(hλi−i+j(t))1≤i,j≤r

hm(t) is the elementary Schur function defined by exp(ξ(t, z)) = exp(
∑∞

1 tkzk) =∑∞
0 znhn(t). Another way of calculating sλ(t) follows from the formula

(4.17)
< (s− k)|eH(t)ψ∗

−j1 · · ·ψ
∗
−jk

ψis
· · ·ψi1 |0 >= (−1)j1+···jk+(k−s)(k−s+1)/2sλ(t)

where −j1 < · · · < −jk < 0 ≤ is < · · · < i1 and s − k ≥ 0. The partition λ in
(4.16) is defined in a complicated way and we prefer to use (4.17).

4.1. SYMMETRIC FUNCTIONS. A few words now on symmetric func-
tions are in order. Thus one defines the power sums (∗) γm = (1/m)

∑
i xm

i which
is the same as the Hirota-Miwa change of variables

(4.18) mtm =
∑

xm
i ; mt∗m =

∑
ym

i

The vector γ = (γ1, γ2, · · · ) is an analogue of the higher times in KP theory. The
complete symmetric functions hn are given by the generating function

(4.19)
∏
i≥1

(1− xiz)−1 =
∑
n≥1

hn(x)zn

The symmetric polynomials with rational integer coefficients in n variables form a
ring Λn; a ring of symmetric functions in countably many variables is denoted by
Λ. If one defines hλ = hλ1hλ2 · · · for any λ then the hλ form a Z-basis of Λ. The
complete symmetric functions are expressed in terms of power sums via

(4.20) exp(
∞∑
1

γmzm) =
∑
n≥0

hn(γ)zn

where h0 = 1 (thus hn ∼ Schur polynomial). Suppose now that n is finite and
given a partition λ the Schur function sλ is defined via

(4.21) sλ(x) =
det(xλi+n−j

i )1≤i,j≤n

det(xn−j
i )1≤i,j≤n

; det(xn−j
i )1≤i,j≤n =

∏
1≤i<j≤n

(xi − xj)

The Schur functions sλ(x, · · · , xn) where �(λ) ≤ n form a Z-basis of Λn. Note again
that the Schur function sλ can be expressed as in (4.16) as a polynomial in the com-
plete symmetric functions where n ≥ �(λ) (namely sλ = det(hλi−1+j)1 ≤ i, j ≤ n).
Next one defines a scalar product on Λ by requiring that for any pair of partitions
λ and µ one has

(4.22) < pλ, pµ >= δλ,µzλ; zλ =
∏
i≥1

imi ·mi!

where mi = mi(λ) is the number of parts of λ equal to i (here pn =
∑

xm
i and

the pλ = pλ1pλ2 · · · form a basis of symmetric polynomial functions with rational
coefficients). For any pair of partitions λ and µ one has < sλ, sµ >= δλ,µ so that
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the sλ form an orthonormal basis of Λ and the sλ such that |λ| = n form an
orthonormal basis for the symmetric polynomials of degree n.

Consider now a function r which depends on a single variable n (integer);
given a partition λ define rλ(x) =

∏
i,j∈λ r(x + j − i). This is a product over

all nodes of a Young diagram (i=row, j=column); we refer to [205, 737] for
pictures). The value of i − j is zero on the main diagonal and, listing the rows
via length, the partition (3, 3, 1) will have j − i = 0, 1, 2,−1, 0, 1,−2 so rλ(x) =
r(x + 2)(r(x + 1))2(r(x))2r(x− 1)r(x− 2). Given integer n and a function on the
lattice r(n), n ∈ Z, define now a scalar product

(4.23) < sλ, sµ >r,n= rλ(n)δλ,µ

If ni ∈ Z are the zeros of r and k = min|n − ni| then the product (4.23) is
nondegenerate on Λk. Indeed if k = n − ni > 0 the factor rλ(n) never vanishes
for partitions of length no more than k. Hence the Schur functions of k vari-
abes {sλ(xk), �(λ) ≤ k} form a basis on Λk. If n − ni = −k < 0 the factor
rλ(n) never vanishes for the partitions λ : �(λ′) ≤ k} where λ′ is the conjugate
partition (formed by reflecting the Young diagram in the main diagonal); then
{sλ(xk), �(λ′) ≤ k} form a basis on Λk. If r is nonvanishing then the scalar prod-
uct is nondegenerate on Λ∞.

Take now r(0) = 0 and set x̂ = (1/x)r(D) where D = x(d/dx) so x̂ · xn|x=0 =
δm,nr(1)r(2) · · · r(n). Then it is proved in [737] that

(4.24) < f(x), g(x) >r,n=
1
n!

∆(x̂)f(x̂) ·∆(x)g(x)|x=0; ∆(x̂ =
∏

1≤i<j≤n

(x̂i − x̂j)

The proof follows from
(4.25)

1
n!

det(x̂λj+n−j)i,j=1,··· ,n · det(xµj+n−j
i )i,j=1,··· ,n|x=0 = δλ,µrλ(n) =< sλ, sµ >r,n

Next one recalls the Cauchy-Littlewood formula
∏

i,j(1−xiyj)−1 =
∑

sλ(x)sλ(y)
with Schur functions defined as in (4.21). If now γ = (γ1, γ2, · · · ) and γ∗ =
(γ∗

1 , γ∗
2 , · · · ) then one proves in [737] that

(4.26) exp(
∞∑
1

mγmγ∗
m) =

∑
λ

sλ(γ)sλ(γ∗)

where the sλ are constructed as in (4.16) and (4.20). We will sketch the proof
later. Consider now the pair of functions

(4.27) exp(
∞∑
1

mγmtm); exp(
∑

mγmt∗m)

Using (4.23) and (4.26) one obtains

(4.28) < exp(
∞∑
1

mγmtm), exp(
∞∑
1

mγmt∗m) >r,n=
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=
∑

�(λ)≤k

rλ(n)sλ(t)sλ(t∗) =
∑

λ

rλ(n)sλ(t)sλ(t∗)

The series (4.28) is called a series of hypergeometric type; it is not necessarily
convergent (cf. [737] for more on this).

Now given a partition λ = (λi) with Young diagram (λ1, λ2, · · · ) let there be
r nodes (i, i). Set αi = λi − i for the number of nodes in the ith row to the right
of (i, i) and βi = λ′

i − i be the number of nodes in the ith column of λ below (i, i)
(1 ≤ i ≤ r). Then α1 > α2 > · · · > αr ≥ 0 and β1 > β2 > · · · > βr ≥ 0; one writes

(4.29) λ = (α1, · · · , αr|β1, · · · , βr)

(Frobenius notation). For example given λ = (3, 3, 1) we get α1 = 3− 1 = 2, α2 =
3 − 2 = 1, β1 = 3 − 1 = 2, and β2 = 2 − 2 = 0 so λ = (2, 1|2, 0) in Frobenius
notation. Now to prove (4.26) consider the vacuum TL tau function

(4.30) < 0|exp(H(t))exp(H∗(t∗))|0 >

By the Heisenberg algebra commutation relations this is equal to exp(
∑

mtmt∗m).
On the other hand one can develop exp(H∗(t∗)) in Taylor series and use the
explicit form of H∗ in terms of free fermions (cf. (4.9)) and then use (4.17) to get∑

λ sλ(t)sλ(t∗) (sum over all partitions including the zero partition). Now given
λ = (i1, · · · , is|j1 − 1, · · · , js − 1) write

(4.31) |λ >= (−1)j1+···+jsψ∗
−j1 · · ·ψ

∗
−js

ψis
· · ·ψi1 |0 >;

< λ| = (−1)j1+···+js < 0|ψ∗
i1 · · ·ψ

∗
is

ψ−js
· · ·ψ−j1

Then

(4.32) < λ|µ >= δλ,µ, sλ(H∗)|0 >= |λ >; < 0|sλ(H) =< λ|
where sλ is defined via

(4.33) sλ(t) = det(hλi−i+j(t))|1≤i,j≤�(λ); exp(
∞∑
1

zmtm) =
∞∑
0

zkhk(t)

with t replaced by

(4.34) H∗ =
(

H−1,
H−2

2
, · · · ,

H−m

m
, · · ·

)
; H =

(
H1,

H2

2
, · · · ,

Hm

m
· · ·

)
The proof of (4.32) follows from using (4.17) and (4.26) so that exp(

∑∞
1 Hmtm) =∑

λ sλ(H)sλ(t). Next one shows sλ(−A)|0 >= rλ(0)|λ > where sλ is defined via
(4.33) with t replaced by
(4.35)

A =
(

A1,
A2

2
, · · · ,

Am

m
, · · ·

)
; Ak =

∞∑
−∞

ψ∗
n−kψnr(n)r(n− 1) · · · r(n− k + 1)

(k = 1, 2, · · · ). The proof goes as follows. First the components of A mutu-
ally commute (i.e. [Am, Ak] = 0) so apply the development exp(

∑∞
1 Amtm) =∑

λ sλ(−A)sλ(t) to both sides of the right vacuum vector, i.e. exp(
∑∞

1 Amtm)|0 >=∑
λ sλ(t)sλ(−A)|0 >. Then use a Taylor expansion of the exponential function and

(4.35), (4.17), the definition of |λ >, and (4.32).



346 8. REMARKS ON QFT AND TAU FUNCTIONS

Recall now the definition of scalar product (4.22); it is known that one may
present it directly via

(4.36) ∂̃ = (∂γ1 , (1/2)∂γ2 , · · · , (1/n)∂γn
, · · · )

(cf. (*)). Then it is also known that the scalar product of polynomial functions
may be written as

(4.37)

< f, g >= (f(∂̃) · g(γ))|γ=0; < γn, γm >= (1/n)δn,m; < pn, pm >= nδn,m

(which is a particular case of (4.22). One proves then in [737] that with the scalar
product (4.37) one has

(4.38) < f, g >=< 0|f(H)g(H∗)|0 >

where H, H∗ are as in (4.34). This follows from the fact that higher times and
derivatives with respect to higher times give a realization of the Heisenberg algebra
HkHm −HmHk = kδk+m,0 and that

(4.39) ∂γk
·mγm −mγm · ∂γk

= kδk+m,0; ∂γm
· 1 = 0

(i.e. the free term of ∂γm
is zero) and

(4.40) Hm|n >= 0 (m > 0); < n|Hm = 0 (m < 0)

Now consider the deformed scalar product < sµ, sλ >r,n= rλ(n)δµ,λ. Each polyno-
mial function is a linear combination of Schur functions and one has the following
realization of the deformed scalar product, namely

(4.41) < f, g >r,n=< n|f(H)g(−A)|N >

where H and A are determined as in (4.9), (4.34), (4.35). Now for the collection
of independent variables t∗ = (t∗1, t

∗
2, · · · ) one writes A(t∗) =

∑∞
1 t∗mAm with Am

as in (4.33). Using the explicit form of Am, (4.33), and (4.2) one obtains
(4.42)

eA(t∗)ψ(z)e−A(t∗) = e−ξr(t∗,z−1) · ψ(z); eA(t∗)ψ∗(z)e−A(t∗) = eξr′ (t
∗,z−1) · ψ∗(z)

where the operators

(4.43) ξr(t∗, z−1) =
∞∑
1

tm

(
1
z
r(D)

)m

; D = z
d

dz
; r′(D) = r(−D)

act on functions of z on the right side according to the rule r(D)·zn = r(n)zn. The
exponents in (4.42) - (4.43) are considered as their Taylor series. Next using (4.42)
- (4.43) and the fact that inside Resz the operator (1/z)r(D) is the conjugate of
(1/z)r(−D) = (1/z)r′(D) one gets

(4.44) [Resz=0ψ(z)⊗ ψ∗(z), eA(t∗) ⊗ eA(t∗)] = 0

Now it is natural to consider the following tau function

(4.45) τr(n, t, t∗) =< n|eH(t)e−A(t∗)|n >
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Using the fermionic realization of the scalar product (4.41) one gets

(4.46) τr(n, t, t∗) =< exp(
∞∑
1

mtmγm), exp(
∞∑
1

mt∗mγm) >r,n

Then due to (4.28) one obtains

(4.47) τr(n, t, t∗) =
∑

λ

rλ(n)sλ(t)sλ(t∗)

Convergence questions are ignored here. The variables n, t play the role of higher
KP times and t∗ is a collection of group times for a commuting subalgebra of addi-
tional symmetries of KP (cf. [191, 205]). From another point of view (4.47) is a
tau function of a two dimensional Toda lattice with two sets of continuous variables
t, t∗ and one discrete variable n. Defining r′(n) = r(−n) one has properties

(4.48) τr(n, t, t∗) = τr(n, t∗, t); τr′(−n,−t,−t∗) = τr(n, t, t∗)

Also τr(n, t, t∗) does not change if tm → amtm, t∗m → a−mt∗m, m = 1, 2, · · · and it
does change (?) if tm → amtm, m = 1, 2, · · · , and r(n) → a−1r(n). (4.48) follows
from the relations r′λ(n) = rλ′(−n) and sλ(t) = (−1)|λ|sλ′(−t). One should note
also that (4.47) can be viewed as a result of the action of additional symmetries
on the vacuum tau function (cf. [191, 205] for terminology).

4.2. PSDO ON A CIRCLE. Given functions r, r̃ the operators
(4.49)

Am = −
∞∑
−∞

r(n) · · · r(n−m+1)ψnψ∗
n−m; Ãm =

∞∑
−∞

r̃(n+1) · · · r̃(n+m)ψnψ∗
n+m

belong to the Lie algebra of pseudodifferential operators (PSDO) on a circle with
central extension. These operators may be written in the form
(4.50)

Am =
1

2πi

∮
: ψ∗(z)

(
1
z
r(D)

)m

· ψ(z) :; Ãm = − 1
2πi

∮
: ψ∗(z)(r̃(D)z)m · ψ(z) :

(recall D = z(d/dz)). The action is given via r(D) · zn = r(n)zn and one works in
the punctured disc 0 < |z| < 1. Central extensions of the Lie algebra of generators
(4.49) are described by the formulae

(4.51) ωn(Am, Ak) = δmkr̃(n + m− 1) · · · r̃(n)r(n) · · · r(n−m + 1)

with ωn−ωn′ ∼ 0. The extensions differing by the choice of n are cohomologically
described. The choice corresponds to a choice of normal ordering : : which may
be chosen in a different manner via : a := a− < n|a|n > (n is an integer).
When r, r̃ are polynomials the operators [(1/z)r(D)]m and (r̃(D)z)m belong to
the W∞ algebra while the fermionic operators (4.35) and (4.49) belong to the
central extension Ŵ∞ (cf. [579]). Here one is interested in calculating the vacuum
expectation values of different products of operators of the type exp(

∑
Amt∗m)
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and exp(
∑

Ãmtm) and for partitions λ = (i1, · · · , is|j1 − 1, · · · , js − 1) and µ =
(̃i1, · · · ĩr|j̃1 − 1, · · · , j̃r − 1) satisfying µ ⊆ λ one has

(4.52) < 0|ψ∗
ĩ1
· · ·ψ∗

ĩr
ψ−j̃1

· · ·ψj̃1
eA(t∗)ψ∗

j1 · · ·ψ
∗
js

ψis
· · ·ψi1 |0 >=

= (−1)j̃1+···+j̃r+j1+···+jssλ/µ(t∗)rλ/µ(0)

(4.53) < 0|ψ∗
i1 · · ·ψis

ψ−js
· · ·ψj1e

Ã(t)ψ∗
j̃1
· · ·ψ∗

−j̃r
ψĩr
· · ·ψĩ1

|0 >=

= (−1)j̃1+···+j̃r+j1+···+jssλ/µ(t)r̃λ/µ(0)
where sλ/µ(t) is a skew Schur function

(4.54) sλ/µ(t) = det(hλi−µj−i+j(t)); rλ/µ =

=
∏

i,j∈λ/µ

r(n + j − i); r̃λ/µ(n) =
∏

i,j∈λ/µ

r̃(n + j − 1)

The proof goes via a development of exp(A) = 1+A+· · · and exp(Ã) = 1+Ã+· · ·
and the direct evaluation of vacuum expectations (4.52) and (4.53) along with a
determinant formula for the skew Schur function.

Now introduce vectors

(4.55) |λ, n >= (−1)j1+···+jsψ∗
−j1+n, · · · , ψ∗

−js+nψis+n · · ·ψi1+n|n >;

< λ, n| = (−1)j1+···js < n|ψ∗
i1+n, · · ·ψ∗

is+nψ−js+n · · ·ψ−j1+n

We see that < λ, n|µ, m >= δmnδλµ One notes from (4.10) that

(4.56)
∮
· · ·

∮
ψ(z1) · · ·ψ(zn)|0 >< 0|ψ∗(zn) · · ·ψ∗(z1) =

∑
λ,�(λ)≤n

|λ, n >< λ, n|

which projects any state to the component Fn of the Fock space F = ⊕n∈ZFn.
Next using (4.36) one obtains

(4.57) |λ, n >= sλ(H∗)|n >; < λ, n| =< n|sλ(H);

sλ(−A)|n >= rλ(n)sλ(H∗)|n >; < n|sλ(Ã) = r̃(n) < n|sλ(H); Ã =

(
Ãn

n

)
where Am, Ãm are given via (4.31) and (4.49). One has then the following devel-
opments

(4.58) e−A(t∗) =
∑
n∈Z

∑
µ⊆λ

|µ, n > sλ/µ(t∗)rλ/µ(n) < λ, n|;

eÃ(t) =
∑
n∈Z

∑
µ⊆λ

|λ, n > sλ/µ(t)r̃λ/µ(n) < µ, n|

where sλ/µ is the skew Schur function (4.54) and r, r̃ are also defined in (4.54).
The proof follows from the relation < sλ/µ, sν >=< sλ, sµsν >. It follows from
(4.58) that

(4.59) sν(−A) =
∑
n∈Z

∑
µ⊆λ

Cλ
µνrλ/µ(n)|µ, n >< λ, n|;
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sν(Ã) =
∑
n∈Z

∑
µ⊆λ

Cλ
µν r̃λ/µ(n)|λ, n >< µ, n|

Some calculation using < λ, n|µ, m >= δmnδλµ leads then to

(4.60) τg(n, t, t∗) =< n|exp(H(t))gexp(H(t∗))|n >=
∑
λ,µ

sλ(t)gλµ(n)sµ(t∗);

gλµ =< λ, n|g|µ, n >

Consequently one has the property

(4.61) (g1g2)λµ(n) =
∑

ν

(g1)λν(n)(g2)νµ(n)

Hence introduce the “integrable” scalar product < sλ, sµ >g,n= gλµ(n) (generally
degenerate). This leads to

(4.62) < τg1(n1, t, γ), τg2(n2, γ, t∗) >g,n= τg3(0, t, t∗);

g3(k) = g1(n1 + k)g(n + k)g2(n2 + k)

and one actually takes here gλµ(n) = δλµrλ(n). There is much much more in [737]
but we stop here for the moment.

5. INTERTWINING

We extract here from [192]. Intertwining is important in group representation
theory and we indicate some aspects of this in quantum group situations. From
[191, 192, 287, 525] consider classical KP/Toda. Vertex operators are (ξ(t, z) =∑∞

1 tkzk and ξ(∂̃, z−1) =
∑∞

1 z−k∂k/k)

(5.1) X(z) = eξ(t,z)e−ξ(∂̃,z−1); X∗(z) =−ξ(t,z) eξ(∂̃,z−1);

X∗(λ)X(µ) =
λ

λ− µ
X(λ, µ, t); X(λ)X∗(µ) =

λ

λ− µ
X(µ, λ, t)

X(z, ζ, t) = e
∑∞

1 (ζk−zk)e
∑∞

1 (z−k−ζ−k)∂k/k =
∞∑
0

(ζ − z)m

m!

∞∑
p=−∞

z−p−mWm
p

The wave functions are defined as usual in terms of the tau function via

(5.2) ψ(t, z) =
X(z)τ(t)

τ(t)
; ψ∗(t, z) =

X∗(z)τ(t)
τ(t)

ψ∗(t, λ)ψ(t, µ) =
1

µ− λ
∂

(
X(λ, µ, t)τ(t)

τ(t)

)
Now consider the free fermion operators

(5.3) [ψn, ψm]+ = 0 = [ψ∗
m, ψ∗

n]+; [ψm, ψ∗
n]+ = δmn

with (|vac >∼ |0 > and < 0|vac ∼< 0|)
(1) ψn|0 >= 0 =< 0|ψ∗

n (n < 0)
(2) ψ∗

n|0 >= 0 =< 0|ψn (n ≥ 0)
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Vacuum expectation values are defined via

(5.4) < 1 >= 1; < ψiψ
∗
j >= δij− < ψ∗

j ψi >=
{

= 1 (i = j < 0)
0 otherwise

One expresses normal ordering via

(5.5) : ψiψ
∗
j := ψiψ

∗
j− < ψiψ

∗
j >; H(t) =

∞∑
1

tk
∑
Z

ψnψ∗
k+n

and we see directly that H(t)|0 >= 0 while < 0|H(t) �= 0. The noncommutative
algebra generated by ψn, ψ∗

m is denoted by A and one writes V = ⊕ZCψn and
V ∗ = ⊕ZCψ∗

n with W = V ⊕ V ∗. The left (resp. right) module with cyclic
vector |0 > (resp. < 0|) is called a left (resp. right) Fock space on which on has
representations of A via #1, 2 above. The vacuum expectation values give a C
bilinear pairing

(5.6) < 0|A⊗ A|0 >→ C; < 0|a1 ⊗ a2|0 >�→< 0|a1a2|0 >

One denotes by G(V, V ∗) the Clifford group characterized via gψn =
∑

ψmgamn

and ψ∗
ng =

∑
gψ∗

manm. Tau functions of KP are parametrized by G(V, V ∗) orbits
of |0 > for example and such orbits (modulo constant multiples) can be identified
with an infinite dimensional Grassmann manifold (UGM). The t-evolution of an
operator a ∈ A is defined as a(t) = exp[H(t)]aexp[−H(t)].

We note that quadratic operators ψmψ∗
n satisfy

(5.7) [ψmψ∗
n, ψpψ

∗
q ] = δnpψmψ∗

q − δmqψpψ
∗
n

and (with the element 1) these span an infinite dimensional Lie algebra g(V, V ∗)
whose corresponding group is G(V, V ∗). Then exp[H(t)] belongs to the formal
completion of G(V, V ∗). One writes further Λ ∼ (δm+1,n)m,n∈Z and recalls the
Schur polynomials are defined via

(5.8) exp

( ∞∑
1

tkzk

)
=

∞∑
0

s�(t)z�

It follows that (via a(t) = exp[H(t)]aexp[−H(t)])

(5.9) ψn(t) =
∑

ψn−�s�(t); ψ∗
n(t) =

∑
ψ∗

n+�s�(−t)

and for tau functions one has for v = g|0 > (recall H(t)|0 >= 0)

(5.10) τ(t, v) =< 0|eH(t)g|0 >

This exhibits the context in which tau functions eventually can be regarded in
terms of matrix elements in the representation theory of say G(V, V ∗) (some details
below). To develop this one defines degree (or charge) via

(5.11) deg(ψn) = 1; deg(ψ∗
n) = −1
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so vectors ψ∗
m1
· · ·ψ∗

mk
ψnk

· · ·ψn1 |0 > with m1 < · · · < mk < 0 ≤ nk < · · ·n1

contribute a basis of A(0)|0 >. Similarly for charge n one specifies vectors

(5.12) < n| =

⎧⎨⎩ < 0|ψ−1 · · ·ψ−n (n < 0)
< 0| (n = 0)

< 0|ψ∗
0 · · ·ψ∗

n−1 (n > 0)

Putting in a bookkeeping parameter z one has an isomorphism

(5.13) i : A|0 >→ C[t1, t2, · · · ; z, z−1]; a|0 >�→
∑
Z

< m|eH(t)a|0 > zm

This leads to the action of A on C[ti; z, z−1] via differential operators. Thus write

(5.14) ψ(z) =
∑

ψnzn; ψ∗(z) =
∑

ψ∗
nz−n

and one checks that t-evolution is diagonalizable via

(5.15) eH(t)ψ(z)e−H(t) = eξ(t,z)ψ(z); eH(t)ψ∗(z)eH(t) = e−ξ(t,z)ψ∗(z)

It will then follow (nontrivially) that

(5.16) < m|eH(t)ψ(z) = zm−1X(z) < m− 1|eH(t);

< m|eH(t)ψ∗(z) = z−mX∗(z) < m + 1|eH(t)

This is actually a somewhat profound result whose clearest proof involves Wick’s
theorem and we refer to [191, 205] for details. This leads to the fundamental
Hirota bilinear identity

(5.17)
∮

dzψ(t, z)ψ∗(t′, z) = 0

via free fermion arguments which can be written out as

(5.18)
∑
j∈Z

sj(2yi)sj+1(−∂̃y)τg(xi + yi)τg(xi − yi) = 0

in an obvious notation and this is KP theory.

Group theory underlies classical integrable systems and there are some differ-
ent group structures for the same integrable system. Some of the groups act in
the space of solutions to the integrable hierarchy and others can act on just the
space time variables of the equations. In order to quantize an integrable system
one needs only replace the first type of group structures by their quantum counter-
parts. However the groups acting in the space time still remain classical even for
quantum systems. Now for KP elements of the form g =: exp{

∑
mn amnψ∗

mψn} :
are in 1-1 correspondence with solutions to the KP hierarchy and the group acting
in the space of solutions is GL(∞). The same group acts in the Toda hierarchy
with two infinite sets of times {tk} and {t̃k} with tau functions given by

(5.19) τn(t, t̃|g) =
< n|eH(t)geH̃(t̃)|n >

< n|g|n >
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where H̃(t̃) =
∑

H−k t̃k. To extend KP/Toda one looks first at GL(∞) as a Hopf
algebra with ∆(g) = g ⊗ g with

(5.20) gψig
−1 =

∑
Rikψk; gψ∗

i g−1 =
∑

ψ∗
kR−1

ki

This means that the fermions are intertwining operators which intertwine the
fundamental representations of GL(∞). For g�(∞) each vertex on the Dynkin
diagram (∞ in both directions) corresponds to a fundamental representation Fn

with arbitrary fixed origin n = 0; here ψ∗
k|Fn >= 0 for k ≥ n and ψk|Fn >= 0

for k < n. The relation (5.20) implies that
∑

ψi ⊗ ψ∗
i commutes with g and leads

to the Hirota bilinear identities. Now for the general case (following [403, 404,
548, 549, 566, 656, 663, 664, 952]) take a highest weight representation λ
of a Lie algebra g with UEA U(g). The tau function is defined as (cf. (5.10) -
τ = τλ(t, t̃|g))

(5.21) τ =< 0|
∏
k

etkT k
−g

∏
i

et̃T i
+ |0 >λ=

∑
< n|g|m >λ

∏ tni
i t̃

mj

j

ni!mj !

where the vacuum state means the highest weight vector, T k
± are the generators of

the corresonding Borel subalgebras of g, and the exponentials are supposed to be
normal ordered in some fashion. One then proceeds as in the classical situation.
For quantization one replaces the group by the corresponding quantum group and
repeats the procedures but with the following new features:

• The tau function is no longer commutative. It is defined as in (5.21) with
exponentials replaced by quantum exponentials.

• One will need to distinguish between left and right intertwiners.
• The counterpart of the group element g defined by ∆(g) = g ⊗ g does

not belong to the universal enveloping algebra (UEA) Uq(g) but rather
to Uq(g)⊗U∗

q (g) where U∗
q (g) = Aq(G) is the algebra of functions on the

quantum group.
Thus the tau function (5.21) is the average of an element from Uq(g)⊗Aq(G) over
some representation of Uq(g) and hence belongs to Aq(G) (and is consequently
noncommutative).

More generally one considers a universal enveloping algebra (UEA) U(g) and a
Verma module V of this algebra. A tau function is then defined to be a generating
function of matrix elements < k|g|n >V of the form (we think of the q-deformed
theory from the outset here)

(5.22) τV (t, t̃|g) = V < 0|
∏
α>0

eq(tαTα)g
∏
α>0

eq(t̃αT−α)|0 >V =

=
∑

kα≥0,nα≥0

∏
α>0

tkα
α t̃nα

α

[kα]![nα]!V < kα|g|nα >V

where [n] = (qn − q−n)/(q − q−1) with [n]! = [n][n − 1] · · · [1] and eq(x) =∑
n≥0(x

n/[n]!), etc. The T±α are generators of ± maximal nilpotent subalge-
bras N(g) and Ñ(g) with a suitable ordering of positive roots α while tα and
t̃α ∼ t−α are associated times. A vacuum state is annihilated by Tα for α > 0
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(i.e. Tα|0 >= 0). The Verma module is V = {|nα >V =
∏

α>0 Tnα−α|0 >V }. Except
for special circumstances all α ∈ N(g) are involved and since not all Tα are com-
mutative the tau function has nothing a priori to do with Hamiltonian integrable
systems. Sometimes (e.g. for fundamental representations of s�(n)) the system
of bilinear equations obtained via intertwining can be reduced to one involving a
smaller number of time variables (e.g. rank(g)) and this returns one to the field of
Hamiltonian integrable systems. One works with four Verma modules V, V̂ , V ′, V̂ ′;
given V, V ′ every allowed choice of V̂ , V̂ ′ provides a separate set of bilinear identi-
ties. The starting point is (A): Embed V̂ into V ⊗W where W is some irreducible
finite dimensional representation of g (there are only a finite number of possible
V̂ ). One defines a right vertex operator (or intertwining operator) of type W as a
homomorphism of g modules ER : V̂ → V ⊗W . This intertwining operator can
be explicitly continued to the whole representation once it is constructed for its
vacuum (highest weight) state

(5.23) V̂ = {|nα >V̂ =
∏
α>0

(∆T−α)nα |0 >V̂ }

where

(5.24) |0 >V̂ =

⎛⎝ ∑
(pα,iα)

A(pα, iα)

(∏
α>0

(T−α)pα ⊗ (T−α)iα

)⎞⎠ |0 >V ⊗|0 >W

Then every |nα >V̂ is a finite sum of |mα >V with coefficients in W. Next (B):
Take another triple defining a left vertex operator Ẽ′

L : V̂ ′ → W ′ ⊗ V ′ such that
W ⊗W ′ contains a unit representation of g with projection π : W ⊗ W ′ → I.
Using π one can build a new intertwining operator

(5.25) Γ : V̂ ⊗ V̂ ′ E⊗E′;→ V ⊗W ⊗W ′ ⊗ V ′ I⊗π⊗I→ V ⊗ V ′

such that (��) Γ(g⊗g) = (g⊗g)Γ for any group element g such that ∆(g) = g⊗g
((��) is in fact an algebraic form of the bilinear identities - one can use (5.22)
to average (��) with the evolution exponentials over the enveloping algebra and
group elements can be constructed using the universal T operator). Finally (C):
One looks at a matrix element of (��) between four states, namely
(5.26)

V ′ < k′| V < k|(g ⊗ g)Γ|n >V̂ |n
′ >V̂ ′= V ′ < k′| V < k|Γ(g ⊗ g)|n >V̂ |n

′ >V̂ ′

and rewrites this suitably.

In terms of functions the action of Γ can be presented via

(5.27) Γ|n >λ̂ |n
′ >λ̂′=

∑
�,�′
|� >λ �′ >λ′ Γ(�, �′, n, n′)

(⊗ omitted) so (5.26) becomes

(5.28)
∑

m,m′
Γ(k, k′|m,m′)

‖k‖2λ‖k′‖2λ′

‖m‖2
λ̂
‖m′‖2

λ̂′
< m|g|n >λ̂< m′|g|n′ >λ̂′=
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=
∑
�,�′

< k|g|� >λ< k′|g|�′ >λ′ Γ(�, �′|n, n′)

To rewrite this as a differential or difference expression one needs to use formulas
like (τ = τV (t, t̃|g))

(5.29) τ =
∑

m,m̃∈V

sV
m,m̃(t, t̃) < m|g|m̃ >V ; τV (t, t̃|g) =< 0V |U(t)gŨ(t̃)|0V >

which will give a generating function for identities (making use of explicit forms
for Γ(�, �′|n, n′) that arise in a group theoretic framework - Clebsch-Gordon coef-
ficients, etc.).

REMARK 8.5.1. Examples abound (see e.g. [403, 404, 548, 549, 566,
663, 664]) and the theory can be made very general and abstract. The fact
that matrix elements for group representations along with intertwining is impor-
tant is not new or surprising. What is interesting is the fact that group theory
and intertwining leads to Hirota type formulas as in KP/Toda with their accom-
panying differential or q-difference equations involving tau functions as generat-
ing functions for the matrix elements. One knows also of course that special
functions and q-special functions arise as matrix elements in the representation
theory of groups and quantum groups with associated differential or q-difference
operators whose intertwining corresponds to classical transmutation theory as in
[202, 205, 208, 209]. However from (5.21) - (5.22) for example one sees that the
t variables arise from Borel subalgebras of g and it is the coefficients < n|g|m >
which give rise to variables x ∼ R for the radial part of a Casimir operator (cf.
[210]).

With a view toward closer relations with operator transmutation we go to
[237] and consider s�(2) defined via [e, f ] = h, [h, e] = 2e, [h, f ] = −2f with
quadratic Casimir C = (ef + fe)+ (1/2)h2 = 2fe+h+(1/2)h2. One looks at the
principal series of representations with space Vλ and algebra actions

(5.30) e = ∂x, h = −2x∂x + λ, f = −x2∂x + λx

the vacua correspond to constants via highest weight vectors e|0 >= 0 with h|0 >=
λ|0 >. A Whittaker vector |w >µ

λ∈ Vλ with e|w >µ
λ= µ|w >µ

λ is given via

(5.31) |w >µ
λ= exp(µx) =

∑
[µnfn/n!(λ, n)]|0 >

where (λ, n) = λ(λ− 1) · · · (λ− n + 1). A dual Whittaker vector is then

(5.32) µ
λ < w| =

∑
λ < 0|[µnen/n!(λ, n)] = x−λ−2exp(−µx)

and one defines a Whittaker function W = WµL,µR

λ (φ) via
(5.33)

Wλ = µL

λ < w|eφh|w >µR

λ = Wλ(φ) = 2e(λ+1)φ

(√
µL

µR

)−(λ+1)

Kλ+1(2
√

µLµRe−φ)
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(Macdonald function Kλ). One has then

(5.34)
(

1
2
∂2

φ + ∂φ − 2µLµRe−2φ

)
Wλ(φ) =

(
1
2
λ2 + λ

)
Wλ(φ)

Raising and lowering operators are obtained via intertwining of Vλ spaces

(5.35) Wλ+1 = eφ ∂φ + λ + 2
2(λ + 1)

Wλ; µLWλ−1 =
λ

µR
eφ λ− ∂φ

2
Wλ

Similarly, using intertwiners Vλ+1 ⊗ Vν+1 → Vλ ⊗ Vν one gets bilinear relations
leading to nonlinear Hirota type equations

(5.36)
∂φ + λ + 2
2(λ + 1)

Wλ
µR

2 (1− ∂φ)
ν + 1

Wν +
µR

1

λ + 1
Wλ

(∂φ + λ + 2)
ν + 1

(1 + ∂φ)Wν =

= −Wλ+1
µ + 1− ∂φ

2µL
2

∂φWµ+1 +
λ + 1− ∂φ

2µL
1

Wλ+1∂φWν+1

Product formulas are also obtained and all this extends to quantum group sit-
uations. Now, operator transmutation as envisioned in Section 1 would involve
say P ∼ Cλ = (1/2)∂2

φ + ∂φ − 2µLµRexp(−2φ) and Q ∼ some other operator in
Vλ with eigenvalue (1/2)λ2 + λ (which could be arranged by scaling). The group
theory makes no obvious entry and in fact one is much better off doing operator
transmutation in a distribution context such as D′

φ where differential equations
involving Cλ for Wλ would still prevail (a Hilbert space framework is restrictive).
There may be some possible use of Hirota type formulas however in studying oper-
ator transmutation of “interesting” differential operators such as Cλ but this is not
clear. We have mainly given in this Section a glimpse of quantum transmutations
= intertwinings in the group theory context with many relations to integrable sys-
tems; this seems to emphasize a deep correspondence between group theory and
integrability.

REMARK 8.5.2. Some perspective can perhaps be gained as follows. Ex-
tracting here from [205] let us specify and expand now some facts to be developed
further. The classical Wick’s theorem from say [935] is stated as: The time or-
dered product of n free fields Ai equals the sum of normal ordered products of all
possible partial and complete contractions. Thus one stipulates that a contraction
is Â1A2 =< 0|T (A1A2)|0 > satisfying the equation : A1Á2A3À4 := Â2A4 : A1A3 :.
Setting Cij for the operator contracting Ai and Aj one has e.g.

(5.37) T (A1A2A3) =: A1A2A3 : + : (C12 + C13 + C23)A1A2A3 :=

=: A1A2A3 : +Â1A2A3 + Â1A3A2 + Â2A3A1

One finds also for Ai = A+
i + A−

i (+ ∼ creation)

(5.38) Â1A2 = [A−
1 , A+

2 ] (t1 > t2); Â1A2 = [A−
2 , A+

1 ] (t2 > t1)

where Â1A2 = T (A1A2)− : A1A2 : can serve as a definition. Comparing to Section
8.1 we have (a ◦ b ∼ ab)

(5.39) a•b• (or a�b�) = (a|b) ∼ âb; a ◦ b ∼ T (ab) (or ab); a ∨ b ∼: ab :
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Note also from (4.5)
(5.40)
< 0|w1 · · ·w2n|0 >=

∑
σ

sgn(σ) < 0|(wσ(j)wσ(j+1)|0 > · · · < 0|wσ(2n−1)wσ(2n)|0 >

where σ(1) < σ(2), · · · , σ(2n − 1) < σ(2n) and σ(1) < σ(3) < · · · < σ(2n − 1).
Now the proof sketched in [935] (for W (A1, · · · , An) the sum of all normal ordered
partial and complete contractions) involved

(5.41) T (A1 · · ·An) = A1T (A2 · · ·An) = A1W (A2, · · · , An) =

= A+
1 W + WA−

1 + [A−
1 ,W ] = W (A1, · · · , An)

since [A−
1 ,W ] can be reduced to a sum of brackets as in (5.38). Next in (1.13) one

looks at

(5.42) : a1 · · · an : b =: a1 · · · anb : +
n∑

j=1

a•
j b

• : a1 · · · aj−1aj+1 · · · an :

which corresponds to a•
j b

• = (aj |b) = âjb and ub = u ◦ b. Note

(5.43)

(a1 ∨ · · · ∨ an)b = a1 ∨ · · · ∨ an ∨ b +
∑n

1 âjba1 ∨ · · · ∨ aj−1 ∨ aj+1 ∨ · · · ∨ an

Here u ◦ b ∼ T (ub). One compares also with (1.35), (1.38), and (1.39), Thus for
u = a1 ∨ · · · ∨ an (cf. (1.4))
(5.44)

T (u) =
∑

t(u1)u2; ∆(u) = u⊗1+1⊗u+
2n−1∑
p=1

∑
σ

aσ(1)∨· · · aσ(p)⊗aσ(p+1)∨· · ·∨aσ(2n)

(5.45) T (u) = t(u) + u +
∑∑

t(aσ(1) ∨ · · · ∨ aσ(p))aσ(p+1) ∨ · · · ∨ aσ(2n)

Recall t(1) = 1, t(a) = 0 for a ∈ V and t(u ∨ v) =
∑

t(u1)t(v1)(u2|v2). Hence in
particular

(5.46) t(a ∨ b ∨ c) =
∑

t(a1 ∨ b1)t(c1)(a2 ∨ b2|c2) = 0

and we recall the equivalence of (1.38) and (1.39) (for ( | ) symmetric), namely

(5.47) t(a1 ∨ · · · ∨ a2n) =
∑

σ

n∏
j=1

(aσ(j)|aσ(j+n)) ≡

≡ 1
2nn!

∑
σ

(aσ(1)|aσ(2) · · · (aσ(2n−1)|aσ(2n))

We recall also that Wick à la (5.39) implies (5.16) or

(5.48) < m|eH(t)ψ(z) = zm−1X(z) < m− 1|eH(t);

< m|eH(t)ψ∗(z) = z−mX∗(z) < m + 1|eH(t)
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REMARK 8.5.3

also [45, 146, 278, 339, 356, 368, 369, 489, 582] and
Section 8.6 to follow).

REMARK 8.5.4. Tau functions may provide new perspective relative to
try to write down a tau

function for operator objects u, v based on ai ∈ W where W ∼ W+ ⊕W− say
(e.g. W+ ∼ Wcr and W− ∼ Wan as in Section 8.4). One could look for analogues∑∞

1 tkHk with
Hk ∼

∑∞
−∞ ψnψ∗

k+n), etc. or analogues of the vertex operators X, etc. of Section
8.6, and of the Hirota equations and one could also consider Hopf algebra ideas
for free fermions. Consider normal order a ∨ b and operator product ◦ (no time
order is needed momentarily) and a�b� ∼ âb ∼ (a|b) and look at some formulas
from preceeding sections
(5.49)
a ∨ b ∼: ab :; Wan = ⊕m<0Cψm ⊕⊕m≥0Cψ∗

m;Wcr = ⊕m≥0Cψm ⊕⊕m<0Cψ∗
m;

ψn|0 >= 0 (n < 0); ψ∗
n|0 >= 0 (n ≥ 0); < 0|ψn = 0 (n ≥ 0); < 0|ψ∗

n = 0 (n < 0)

One could ask for ∆ as before with ab = a ◦ b = a ∨ b + (a|b); note
(5.50)

[ψn, ψm]+ = [ψ∗
m, ψ∗

n]+ = 0; [ψm, ψ∗
n]+ = δmn; ψmψ∗

n =: ψmψ∗
n : +(ψm|ψ∗

n);

: ψmψn∗ := ψmψ∗
n− < 0|ψmψ∗

n|0 >⇒ (ψm|ψ∗
n) =< 0|ψmψ∗

n|0 >

Note also ψm ∈ Wan for m < 0 so ψmψ∗
n has an annihilation operator on the

left. Thus consider : ψmψ∗
n := ψmψ∗

n− < 0|ψmψ∗
n|0 >. For m ≥ 0 or n ≥ 0

the bracket < >= 0; otherwise m < 0 and n < 0 which means ψm ∈ Wan and
ψ∗

n ∈ Wcr so < 0|ψmψ∗
n|0 >= [ψm, ψ∗

n]+ and : ψmψ∗
n := −ψ∗

nψm. Recall we have
a Clifford algebra here with [ψm, ψ∗

n]+ = δmn. This says that < 0|ψmψ∗
n|0 > is

antisymmetric. Recall also H(t) =
∑∞

1 t�
∑

n∈Z ψnψ∗
n+� =

∑
t�
∑

n∈Z : ψnψ∗
n+� :.

Also H(t)|0 >= 0 and < 0|H(t) �= 0; to see this note for n > 0 one has ψ∗
n+�|0 >= 0

while for n < 0 one has : ψnψ∗
n+� := −ψ∗

n+�ψn and ψn|0 >= 0. For < 0|H(t)
consider for n > 0, < 0|ψnψ∗

n+� = − < 0|ψ∗
n+�ψn �= 0 when n < 0 and n + � ≥ 0.

Note also < 0|H−n = 0 for n > 0 since H−n =
∑

Z ψjψ
∗
j−n and < 0|ψjψ

∗
j−n =

− < 0|ψ∗
j−nψj = 0 for j < 0. Recall also

(5.51) [
∑

aij : ψiψ
∗
j :,

∑
bij : ψiψ

∗
j :] =

∑
cij : ψiψ

∗
j : +c0;

cij =
∑

k

aikbkj −
∑

k

bikakj ; c0 =
∑

i<0,j≥0

aijbji −
∑

i≥0,j<0

aijbji

One could ask now about the meaning in QFT (if any) of e.g.

ψ(z) =
∑

ψnzn; ψ∗(z); ψ(t, z) = (X(z)τ(t)/τ(t); τ(t) =< 0|exp(H(t)g|0 >;

exp(H(t))ψ(z)exp(−H(t)) = exp(ξ(t, z))ψ(z);

< m|exp(H(t))ψ(z) = zm−1X(z) < m− 1|exp(H(t))

(cf.

of H(t) since τ(t, v) =< 0|exp(H(t))g|0 > with v = g|0 > (H(t) ∼

(and QFT) following work of Brouder, et al, Fauser et al, and Effros, et al should
be worth exploring

QFT and we mention one possible direction. Thus

Connections of tau functions to Hopf and Clifford algebras
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some further input is needed if we are to
properly express some putative “role” of tau functions in QFT (cf. [191, 211,
662]). The most obvious role seems to be in terms of the partition function of
a matrix model for example. It seems that in order to gain any true insight into
the tau function we need more perspective and one could begin by specifying the
various known ways in which the tau function arises (beyond its emergence in the
soliton mathematics of the Japanese school (Date, Hirota, Jimbo, Miwa, Sato,
et. al. and more recently Shiota, Takasaki, Takebe, et. al.). We will refer to
[132, 142, 147, 191, 200, 205, 211, 564, 565, 566, 568, 569, 635, 652,
653, 996, 1009] for tau functions and complex analysis, [925] for general ideas
involving Riemann surfaces, [20, 21, 137, 142, 340, 455, 456, 542, 569, 737,
738, 739, 1017] for matrix models, [567, 600] for tau functions, Hurwitz spaces,
and Frobenius manifolds, and [638] for twistor connections.

REMARK 8.5.5. We want to mention here the beautiful paper [335]. This
gives an approach to q-Feynman diagrms using combinatorics and graph theory;
it delves into q-Fock spaces, q-Wick formulas, q-Gaussians, etc. and is thoroughly
lovely. Moreover the analysis of partitions, graphs, and symmetric functions leads
one to the area of free probability theory and related topics for which we refer to
[45, 114, 146, 391, 406, 433, 818, 904, 908, 966]. We wrote up a sketch of
[335] with additional notes on free probability theory but it is too long to insert
here.

6. VERTEX OPERATORS AND SYMMETRIC FUNCTIONS

For references here see [92, 513, 516, 546] and we begin wih [516]. One
constructs first a family of symmetric functions generalizing the Hall-Littlewood
symmetric functions and derives a raising operator formula. Thus let {an}n∈N

be a set of indeterminates and H an infinite dimensional Heisenberg algebra with
infinitely many parameters ai over C generated by hn, n ∈ Z× = Z/{0} and a
central element c such that (�) [hm, hn] = (m/a|m|)δm,−nc. The vector space
V is the polynomial algebra generated by the h−n (n ∈ N) and H acts on V by
the basic representation where h−n ∼ multiplication operator and hn acts as a
differentiation operator subject to the commutation relations (�). One defines
vertex operators on V [z, z−1] via

(6.1) X(z) = exp

( ∞∑
1

an

n
h−nzn

)
exp

(
−

∞∑
1

an

n
hnz−n

)
=
∑
n∈Z

Xnz−n;

X∗(z) = exp

(
−

∞∑
1

an

n
h−nzn

)
exp

( ∞∑
1

an

n
hnz−n

)
=
∑
n∈Z

X∗
−nzn

The space V is a graded algebra with respect to the grading

(6.2) V = ⊕n∈ZVn, Vn = {v ∈ V ; deg(v) = n}, deg(hi1
−1 · · ·hik

−k) = i1 + · · ·+kik

The operators Xn, X∗
n act on the space via Xn : Vm → Vm+n, X∗

n : Vm →
Vm−n. The normal product : : is defined as moving the elements hn to the right

It seems clear however that
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of the elements h−n and in order to calculate the product of vertex operators one
introduces the analytic function

(6.3) f(x) = exp

(
−

∞∑
1

an

n
xn

)
=

∞∏
1

exp
(
−an

n
xn
)

As long as the variable |x| < limn→∞|an/an+1| the infinite product converges
absolutely. Thus f(x) will be analytic in the corresponding region. There are
two cases of special interest when an = qn and an = (1− tn)/(1− qn) (assuming
t, q > 0). The convergence radius is q−1 in the first case and for the second case

• 1 for t < 1, q < 1
• q/t for t > 1, q > 1
• 1/t for t > 1, q < 1
• 1/q for t < 1, q > 1

One writes now λ ( n to represent a partition of n of the form λ = (λ1, λ2, · · · )
with n = λ1 + λ2 + · · · . The q numbers and factorials follow the standard rules

(6.4) (a; q)n = (1− a)(1− aq) · · · (1− aqn−1); (a; q)∞ =
∏
n≥0

(1− aqn)

The space V can be identified with the ring of symmetric functions in infinitely
many variables xi by mapping hn to the nth power sum symmetric function pn =∑

xn
i . The ring of symmetric functions has various useful bases, e.g. the Q

basis of power sum symmetric functions pλ = pλ1 · · · pλk
; the Z basis of monomial

symmetric functions mλ =
∑

xλ1
i1
· · ·xλk

ik
; The Z basis of complete symmetric

functions cλ = cλ1 · · · cλk
with cr =

∑
|λ|=r mλ; or the Z basis of Schur functions

sλ = det(cλi−i+j = mλ + · · · which can also be determined via

(6.5) sλ(x1, · · · , xn) =

∑
w∈Sn

sgn(w)xw(λ+δ)∏
i<j(xi − xj)

(δ = (n − 1, n − 2, · · · , 1, 0)). Using Schur functions one can give an explicit
expression for f(x) and f(x)−1. Thus

(6.6) f(x) =
∑
n≥0

fnxn =
∑
n≥0

(∑
λ�n

(−1)�(λ) aλ1 · · · aλk

zλ

)
xn

where

(6.7) zλ(a) =
∏
i≥1

imimi!(aλ1 · · · aλk
)−1 (λ ∼ (1m12m2 · · · ))

Here the fn are Schur functions s1n in terms of power sum variables an, e.g.

(6.8) f1 = −a1; f2 = −a2

2
+

a2
1

2
; f3 = −a2

2
+

a1a2

2
− a3

1

6
; · · ·

Similarly f(x)−1 =
∑

n≥0 gnxn with gn = sn, i.e.

(6.9) gn =
∑
λ�n

aλ1 · · · aλk

zλ
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We will also need the symmetric function Qn defined as the vector X−n · 1 in V,
i.e.

(6.10)
∞∑
0

Qnzn = exp

( ∞∑
1

an

n
h−nzn

)
which is a generalized homogeneous symmetric function. One also writes qλ =
Qλ1 · · ·Qλk

and notes that X(z)X(w) =: X(z)X(w) : f(w/z) where normal or-
dering moves the hn to the right of the h−n (roughly hn ∼ ∂/∂h−n).

One proves next that for any tuple µ = (µ1, µ2, · · · , µk)

(6.11) X−µ = X−µ1 · · ·X−µk
· 1 =

∏
i<j

f(Rij)Qµ1 · · ·Qµk
;

Rij(Qµ1 · · ·Qµk
) = Qµ1 · · ·Qµi+1 · · ·Qµj−1 · · ·Qµk

REMARK 8.6.1. Here and in other places the first paper in [516] is sketchy
and there are typos. However it does survey a lot of material so we continue even
if some confusion arises. To review the whole subject of vertex operators and
symmetric functions would be an enormous task and we only want to select a few
areas for delectation under the possible illusion that upon typing this out I will
learn what is going on.

The proof of (6.11) involves the assertion that X−λ is the coefficient of zλ =
zλ1
1 · · · zλk

k in the expression

(6.12)
∏
i<j

f(zj/zi) : X(z1) · · ·X(zk) :

where |z1| > ρ−1z2 > · · · > ρ−k+1|zk| and ρ is the radius of convergence. In
most cases one can assume ρ = 1 where the symmetric function X−λ can be
expressed as a contour integral with the above function (6.12) as the integrand
and the integration contours are concentric circles with radius |z1| > · · · > |zk|.
The symmetric functions X−λ form a basis in V and with various choices of the
an they are or are closely related to some of the well known orthogonal symmetric
functions.

• If an = 1 then f(x) = 1 − x and X−λ ∼ Schur symmetric functions
associated to the partitions λ

• If an = 1− tn then f(x) = (1− x)/(1− tx) and X−λ ∼ Hall-Littlewood
symmetric functions for the partitions λ

• If an = (1 − tn)/(1 − qn) then f(x) = (x; q)∞/(tx; q)∞ ∼ Macdonald
symmetric functions via basic hypergeometric functions (at least for two
row partitions). This case contains all the above cases and especially the
Jack polynomials corresponding to an = α.

• Below one treats also an = qn which originates from the vertex represen-
tations of quantum affine algebras

Now define a Hermitian structure in v via h∗
n = h−n so that the power sum

symmetric functions h−λ = h−λ1 · · ·h−λk
are orthogonal in the sense that <
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h−λ, h−µ >= δλµzλ(a) (see above). The generalized orthogonal symmetric func-
tions are defined by

(6.13) Pλ(a, x) = mλ(x) +
∑
λ>′µ

cλµmµ(x)

where >′ is a fixed total order (e.g. inverse lexicographic order) compatible to the
dominance order on the partitions and mλ = xλ1

1 · · ·xλk

k + · · · are the monomial
symmetric functions (cf. [613]). The dominance order > is defined by comparing
two partitions via their partial sums of the respective parts; the compatibility
means that if λ ′µ then λ > µ. This definition seems to depend on the total order
but Macdonald polynomials have the triangularity relation for dominance order
and thus they are unique up to any total (or partial) order compatible to the
dominance order (somewhat mysterious). We are actually interested in the dual
basis Qλ i.e. < Pλ, Qµ >= δλµ which can be rephrased via
(6.14)∏

i,j

f(xiyj) =
∑

λ

1
zλ(a)

hλ(x)hλ(y) =
∑

Pλ(a, x)Qλ(a, y) =
∑

λ

mλ(x)qλ(y)

One notes that the X−λ are not orthogonal in general although it is the case for
the one row partition (i.e. X−n ·1 = Qn). In fact the inner product < X−λ, X−µ >
is the coefficient of zλwµ in the series expansion

(6.15)
∏
i<j

f

(
zi

zj

)∏
i<j

f

(
wi

wj

)∏
i,j

f(ziwj)−1

To see this one notes that from the product of vertex operators follows that <
X−λ · 1, X−µ · 1 > is the coefficient of zλwµ in the inner product

(6.16) < X(z1) · · ·X(zk) · 1, X(w1) · · ·X(w�) · 1 >=

=<: X(z1) · · ·X(zk) : 1, : X(w1, · · ·X(w�) : 1 > ×

×
∏
ij

f

(
zj

zi

)
f

(
wj

wi

)
=
∏
i<j

f

(
zi

zj

)∏
i<j

f

(
wi

wj

)∏
ij

f(ziwj)−1

When an = 1 − tn the function f(x) = (1 − x)/(1 − tx) and one has proved
elsewhere that the matrix coefficients < X−λ, X−µ > are zero except when λ = µ
which means that the X−λ are the Hall-Littlewood functions. In general one
can calculate general matrix coefficients as follows. For an element h−λ in V we
associate a sequence of nonnegative integers m = m(λ) = (m1,m2, · · · ) where mi

is the multiplicity of i in the partition and write |m >= h−λ = hm1
−1hm2

−2 · · · . Let
< m| = hλ be the dual basis and then for any sequences r and s one has

(6.17) < r|X(z)|s >=
∞∏
1

znrn(−z−1)nsn
2F0

(
−rn,−sn;−;− n

an

)
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where 2F0

(
−n,−x;−;− 1

a

)
= C

(a)
n (x) is a Charlier polynomial. More generally

for real αi one has
(6.18)

< r|Xα1(z1) · · ·Xαk
(zk)|s >=

∏
i,j

f

(
aj

ai

)αiαj ∞∏
1

(∑
i

αiz
n

)rn
(
−
∑

i

αiz
−n

)sn

×

×2F0

⎛⎝−rn,−sn;−;−n

⎛⎝∑
i,j

αiαj
zn

i

zn
j

⎞⎠ /an

⎞⎠
As for classical symmetric note that using < h−λ, h−ν >= δλµzλ(a) one can

realize Schur and Hall-Littlewood functions in V. For practice take the case of
Macdonald polynomials as an illustration. Thus introduce vertex operators

(6.19) s(z) = exp

( ∞∑
1

1
n

h−nzn

)
exp

(
−

∞∑
1

an

n
hnz−n

)
=
∑
n∈Z

snz−n;

H(z) = exp

( ∞∑
1

1− tn

n
h−nzn

)
exp

(
−

∞∑
1

an

n
z−n

)
=
∑
n∈Z

H−nzn;

S(z) = exp

(∑ 1− tn

n
h−nzn

)
exp

(
−

∞∑
1

an

n(1− tn)
hnz−n

)
=
∑
n∈Z

Snz−n

which realize the HL functions in variables xi and the Schur functions in fictitious
variables ξi via

∏
i(1 − ξiy) =

∏
i(1 − txiy)/(1 − xiy). In order to find vertex

operators giving the dual symmetric functions one looks at dual vertex operators
defined via

(6.20) s̄(z) = exp

⎛⎝∑
n≥1

an

n
h−nzn

⎞⎠ exp

⎛⎝−∑
n≥1

1
n

hnz−n

⎞⎠ ;

H̄(z) = exp

⎛⎝∑
n≥1

an

n
h−nzn

⎞⎠ exp

⎛⎝−∑
n≥1

1− tn

n
hnz−n

⎞⎠ ;

S̄(z) = exp

⎛⎝∑
n≥1

an

(1− tn)n
h−nzn

⎞⎠ exp

⎛⎝−∑
�1

1− tn

n
hnz−n

⎞⎠
Moreover s̄−µ is the Schur function associated to the function

∏
i f(xi)−1. To

prove that these are dual operators for s, H, S one considers

(6.21) Y (z) = exp

( ∞∑
1

an

n
bnh−nzn

)
exp

(
−

∞∑
1

1− pn

nbn
hnz−n

)
;

Ȳ (z) = exp

( ∞∑
1

1− pn

nbn
h−nzn

)
exp

(
−

∞∑
1

an

n
bnhnz−n

)
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with bn, p two independent scalars. One computes easily

(6.22) Y (z)Y (w) =: Y (z)Y (w) :
z − w

z − pw
; Y (z)Ȳ (w) =

=: Y (z)Ȳ (w) :
z − pw

z − w
; Y ∗

h (z) = Ȳh(z−1)

The contraction functions are exactly those for HL functions and it follows then
from the orthogonality of the HL functions that < Y−λ, Ȳ−µ >= 0 except when
λ = µ so Y and Ȳ are dual operators. The specific results (6.19) follow by taking
(6.23)

(1) bn = a−1
n , p = 0; (2) bn = (1− tn)/an, p = t; (3) bn = (1− tn)/an p = 0

REMARK 8.6.2. Other meaningful orthogonal operators may be obtaining
by specializing bn and p. For example consider (A) bn = a−1

n , (B) bn = 1 −
qn, (C) bn = 1/an(1− qn), (4) bn = 1. For case (A) one has e.g.

(6.24) Y (z) = exp

⎛⎝∑
n≥1

1
n

h−nzn

⎞⎠ exp

⎛⎝−∑
n≥1

(1− pn)an

n
hnz−n

⎞⎠
There are typos here in [516].

Going back to the usual Heisenberg algebra with [hm, hn] = mδm,−nc one takes
V as the symmetric algebra generated by the elements h−n (n ∈ N). However
there is is difference now in that one is changing the underlying inner product by
taking Schur functions as the basic orthogonal symmetric functions instead of the
generalized HL polynomials (usually Macdonald functions). The vertex operator
approach is more suitable now in that some of the fundamental results beocme
extremely simple. Define

(6.25) s(z) = exp

( ∞∑
1

1
n

h−nzn

)
exp

(
−

∞∑
1

1
n

hnz−n

)
;

H(z) = exp

( ∞∑
1

1− tn

n
h−nzn

)
exp

(
−

∞∑
1

1
n

hnz−n

)
;

Q(z) = exp

( ∞∑
1

1− tn

n(1− qn)
h−nzn

)
exp

(
−

∞∑
1

1
n

hnz−n

)
These are the vertex operators associated to the Schur functions, HL functions,
and Macdonald functions respectively. Here the difference is that the elements hn

satisfy the new commutation relations above. More generally let

(6.26) X(z) = exp

( ∞∑
1

an

n
h−nzn

)
exp

(
−

∞∑
1

1
n

hnz−n

)
;

X∗(z) = exp

(
−

∞∑
1

1
n

h−nzn

)
exp

( ∞∑
1

an

n
hnz−n

)
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One has again (6.7) and for any tuple of integers µ = (µ1, · · · , µk)
(6.27)

X−µ = X−µ1 · · ·X−µk
=
∏
i<j

F (Rij)qµ; X∗
−µ = X∗

−µ1
· · ·X−µk

=
∏
i<j

F (Rij)eµ

where qλ = Qλ1 · · ·Qλk
are defined in (6.10) and en is the elementary symmetric

function. It follows that the vertex operator s(z) is a self dual operator under
h∗

n = h−n and the dual of H(z) is
(6.28)

H̄(z) = exp

( ∞∑
1

1
n

h−nzn

)
exp

(
−

∞∑
1

1− tn

n
hnz−n

)
; < H−λ, H̄−µ >= δλµbλ(t)

where bλ(t) =
∏

i≥1(t; t)mi(λ). Consequently < sλ, H̄−µ > are the Kostka-Foulkes
polynomials mλ,µ.

The vertex operator representations of the quantum affine algebras are con-
nected to the case an = qn. To describe this we use again [hm, hn] = mδm,−nc (m,n ∈
Z) and define
(6.29)

X±(z) = exp

(
±

∞∑
1

q∓n

n
h−nzn

)
exp

(
∓

∞∑
1

q∓n

n
hnz−n

)
=

∑
n∈Z+

X±
n z−n

The commutation relations are

(6.30) X±(z)X∓(w) =: X±(z)X±(w) : [1− (w/z)]−1; X±(z)X±(w) =

=: X±(z)X±(w) : [1− (q∓(w/z)]; [X±(z), X∓(w)] =: X±(z)X∓(w) : δ(w/z)
where as usual δ(x) =

∑
n∈Z xn. It follows that the symmetric function X±

−λ is
given by

(6.31) X±
−λ = X±

−λ1
· · ·X±

−λk
· 1 =

∏
i<j

(1− q∓Rij)Qλ1 · · ·Qλk
q∓|λ|/2

where the Qn is the complete symmetric function (cn) or the Qn defined with
an = 1. Note that when q = 1 we obtain the Schur function so this is a deforma-
tion around q = 1 while the HL function is a deformation of the Schur function
around t = 0. There are many other formulas which we omit. There are no earth
shaking conclusions here; we have simply exhibited a number of formulas involving
combinatorics, probability, QFT, tau functions, symmetric functions, vertex oper-
ators, etc. We believe that these will all be important in developing the program
suggested in [662].



APPENDIX A

DeDONDER-WEYL THEORY

We extract here from [586] where a lovely discussion of Lagrangian systems
can be found. Roughly let L(x, z, v) is the Lagrangian density for a system with
x = (x1, · · · , xm), z = (z1, · · · , zn), with za = fa(x) on the extremals and v =
(v1

1 · · · , vn
m) where va

µ = ∂µfa(x). Set πµ
a = ∂L/∂va

µ and H = πµ
ava

µ−L. Then the
deDonder-Weyl Hamilton-Jacobi (DWHJ) equation is

(A.1) ∂µSµ(x, z) + H(x, z, πµ
a − ∂aSµ) = 0; πµ

a = ∂aSµ(x, z) = ∂Sµ/∂za

Solutions Sµ(x, z), zb = f b(x) lead to conserved currents Gµ = ∂Sµ/∂a(x, z =
f(x)) (a = 1, · · · , n) In [586] one reformulates matters à la LePage [599] and we
sketch only a few aspects here (standard differential geometry is mainly assumed to
be known). One takes M � to be an �-dimensional differential manifold with tangent
vectors Y (t) and local coordinates y so Y ∼ aλ(y)∂λ with Yp ∼ Yy ∈ Ty(p). Integral
curves of Y are given via dyλ/dt = aλ(y) with yλ(0) = yλ

0 (λ = 1, · · · , �). For M2n

with coordinates y = (q1, · · · , qn, p1, · · · , pn) and Hamiltonian function H(q, p) the
integral curves φt of the vector field YH = (∂H/∂pi)(∂/∂qi) − (∂H/∂qi)(∂/∂pi)
define Hamiltonian flows. Each 1-parameter local transformation group φt : y →
φt(y) induces a vector field on M � via

(A.2) Y f(y) = limt→0
1
t
[f(φt(y))− f(y)]

One forms (or Pfaffian forms) ω = bλ(y)dyλ are dual to vector fields and one writes
ω(Y ) = bλ(y)aλ(y). The wedge spaces ∧nT ∗(M �) ∼ ∧n are defined as usual and
we recall

(A.3) ω1 ∧ ω2 = (−1)pqω2 ∧ ω1; (ω1 ∈ ∧1, ω2 ∈ ∧q); dim∧p =
(

�
p

)
Given a map φ : M � → Nk one has maps φ∗ : T (M �) → T (Nk) and φ∗ :
T ∗(Nk) → T ∗(M �) satisfying φ∗ω(Y1, · · · , Yp) = ω(φ∗(Y1), · · · , φ∗(Yp)). Further
d : ∧p → ∧p+1 satisfies d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ ω2 for ω1 ∈ ∧p while
d(dω) = 0 (where df = ∂λfdyλ). In addition dω(Y1, Y2) = Y1ω(Y2) − Y2ω(Y1) −
ω([Y1, Y2]) for ω ∈ ∧1. Then dφ∗(ω) = φ∗(dω) and (Poincaré lemma) if dω = 0
in a contractible region (ω ∈ ∧p) then there exists θ ∈ ∧p−1 such that ω = dθ.
Interior multiplication is defined via i(Y ) : ∧p → ∧p−1 where (ω1 ∈ ∧p)

(A.4) i(Y )f = 0; i(Y )df = Y f ; i(Y )(ω1 ∧ ω2) = (i(Y )ω1) ∧ ω2+

+(−1)pω1 ∧ (i(Y )ω2); (i(Y )ω)(Y1, · · · , Yp−1) = ω(Y, Y1, · · · , Yp−1)

365
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The Lie derivative is defined via

(A.5) L(Y ) = i(Y )d + di(Y ); L(Y )f = Y f ; L(Y )df = d(Y f);

L(Y )ω = limt→0
1
t
(φ∗

t ω − ω)

where φt is generated by Y. One recalls also
∫

φ(G)
=
∫

G
φ∗ω and (Stokes’ theorem)∫

G
dω =

∫
∂G

ω for suitable G. In particular if φτ (y) is a 1-parameter “variation”
on M � with φτ=0(y) = y and V is the vector field generated by this variation then

(A.6) Aτ =
∫

φτ (G)

=
∫

G

φ∗
τω;

dAτ

dτ
= lim

t→0

1
τ

(Aτ −A0) =

=
∫

limt→0(φ∗
τω − ω) =

∫
G

L(V )ω =
∫

G

i(V )dω +
∫

∂G

i(V )ω

One can treat many differential problems on manifolds via differential forms (Pfaf-
fian systems - cf. [214, 526]). Thus linearly independent vector fields X1, · · · , Xm

on M � define a system of partial differential equations (PDE) whose solutions
form an m-dimensional integral submanifold Im(X1, · · · , Xm) if certain integra-
bility conditions hold, namely [Xµ, Xν ] = 0 (Frobenius integrability criterion).
This can be restated in terms of differential forms as follows. Assume e.g. Xµ =
∂µ + φa

µ(x, z)∂a (µ = 1, · · · ,m) where x = (x1, · · · , xm) and z = (z1, · · · , zn) with
m+n = �. One wants 1-forms ωa (a = 1, · · · , n) such that ωa(Xµ) = 0 (satisfied if
ωa = dza−φa

µdxµ). The forms ωa generate an ideal I[ωa] in ∧ = ∧0⊕∧1⊕· · ·⊕∧�

(i.e. if ωa vanishes on a set of vector fields Xµ so does ω∧ωa for any ω ∈ ∧). The
integrability condition for the Xµ is equivalent to dω ∈ I[ωa] if ω ∈ I[ωa]. Next
if ω ∈ ∧p the minimal number r of linearly independent 1-forms θρ = fρ

λ(y)dyλ

by means of which ω can be expressed is called the rank of ω. If r = p then ω is
simple, i.e. ω = θ1 ∧ · · · ∧ θp. At each point y the θρ generate an r-dimensional
subspace of T ∗

y and the union of these subspaces generated by the θρ is called
A∗(ω). This determines an �−r dimensional system A(ω) ⊂ T (M �) of vector fields
Y = aλ(y)∂λ satisfying θρ(Y ) = fρ

λaλ = 0. Thus Y is associated with ω if and only
if i(Y )ω = 0. Note here that A∗(ω) is generated by the 1-forms i(∂λp−1) · · · i(∂λ1)ω
where λ1, · · · , λp−1 = 1, · · · , l. Indeed, since i(Y1)i(Y2) = −i(Y2)i(Y1) one has

i(Y )[i(∂λp−1) · · · i(∂λ1)ω] = (−1)p−1i(∂λp−1) · · · i(∂λ1)i(Y )ω = 0

A completely integrable differential system C(ω) = A(ω) ∩ A(dω) is associated
with ω and C∗(ω) = A∗(ω) ∪ A∗(dω) is the space of 1-forms annihilating C(ω)
(characteristic Pfaffian system of ω). Evidently Y ∈ C(ω) ⇐⇒ i(Y )ω = 0 =
i(Y )dω which is equivalent to i(Y )ω = 0 = L(Y )ω.

EXAMPLE A.1. Consider the form θ = −Hdt + pjdqj on R2n+1 with

(A.7) dθ = −dH(t, q, p) ∧ dt + ddp− j ∧ dqj = −(∂jHdqj+

+
∂H

∂pj
dpj + ∂tHdt) ∧ dt + dpj ∧ dqj = (dpj + ∂jHdt) ∧

(
dqj − ∂H

∂pj
dt

)
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Its associated system (= characteristic system since dθ is exact) is generated by
the 2n Pfaffian forms

(A.8) i(∂j)dθ = −(dpj + ∂jHdt) = −θj ; i(∂/∂pj) = dqj − ∂H

∂pj
dt = ωj

If there are no additional constraints the rank and class of dθ are 2n and the
space A(dθ) = C(dθ) of (characteristic) vector fields associated with dθ is 1-
dimensional and can be generated via XH = ∂j + (∂H/∂pj)∂j − (∂H/∂qj)(∂/∂pj)
(since θj(XH) = 0 = ωj(XH) = 0. Thus the associated integral manifolds of dθ
are the 1-dimensional solutions q̇j = ∂H/∂pj and ṗj = −∂H/∂qj .

We recall next the Legendre transformation vj → pj with L → H. Thus
the time evolution of a system involves a curve C0(t) based on q̇ = dq/dt in say
[t1, t2]×Gn = Gn+1. For suitable L the curve is characterized by making the ac-
tion integral A[C] =

∫ t2
t1

L(t, q, q̇)dt stationary, leading to the Euler-Lagrange (EL)
equations (d/dt)(∂L/∂q̇j) − ∂jL = 0 for (j = 1, · · · , n). This can be rephrased
as follows (with a view toward the Lepage theory). Consider the Lagrangian
L̂ = L(t, q, v) − λj(vj − q̇j) with EL equations ∂L̂/∂vj = ∂L/∂vj − λj = 0
(since ∂L̂/∂v̇j = 0) leading to L̂(t, q, q̇, v) = L(t, q, v) − vj∂L/∂vj + q̇j∂L/∂vj .
Then introduce new variables pj = ∂L/∂vj and assume the matrix (∂pj/∂vk) =
(∂2L/∂vk∂vj) to be regular. Solve the equations pj = ∂L/∂vj for vj = φ̂(t, q, p)
and define H(t, q, p) = φ̂(t, q, p)pj −L[t, q, v = φ̂(t, q, p)]. Then one obtains for the
Lagrangian L̂ the result L̂(t, q, q̇, p) = −H(t, q, p)+ q̇jpj which contains 2n depen-
dent variables q, p but depends only on the derivatives in q (not in p). Hence the EL
equations are −∂L̂/∂pj = ∂H/∂pj − q̇j = 0 and (d/dt)(∂L̂/∂dotqj) − ∂L̂/∂qj) =
ṗj + ∂jH = 0.

The Lepage method is now similar in spirit to this introduction of Hamil-
ton’s function H(t, q, p) and the resulting derivation of the canonical equations
of motion, but via the use of differential forms, it is more efficient. Thus let
ω = L(t, q, q̇)dt and the introduction of new variables vj equal to q̇j on the ex-
tremals is equivalent to introducing 1-forms ωj = dqj − vjdt which vanish on the
extremals q(t) where dqj(t) = q̇jdt, or where the tangent vectors et = ∂t + q̇j∂j are
annihilated by each ωj (i.e. ωj(et) = q̇j−vj = 0). Thus as far as the extremals are
concerned the form ω = Ldt is only one representative in an equivalence class of
1-forms, the most general of which is Ω = L(t, q, v)dt + hjω

j (note the n Pfaffian
forms ωj generate an ideal I[ωj ] which vanishes on the extremals). The coeffi-
cients hj (which correspond to Lagrange multipliers λj above) can be arbitrary
functions of t, q, v and according to the Lepage theory they can be determined by
the following condition. Thus note

(A.9) dΩ =
(

∂L

∂vj
− hj

)
dvj ∧ dt + (−∂jLdt + dhj) ∧ ωj =

=
(

∂L

∂vj
− hj

)
dvj ∧ dt (mod I[ωj ])

e
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We therefore have dΩ = 0 on the extremals where ωj = 0 if and only if hj =
∂L/∂vj = pj . Inserting this value for hj into Ω one obtains

(A.10) Ω = Ldt + pjω
j = Ldt + pj(dqj − vjdt) = −Hdt + pjdqj = θ

These equations provide an interpretation of the Legendre transformation via vj →
pj = (∂L/∂vj)(t, q, v) with L → H = vjpj − L (this can be implemented by a
change of basis dt → dt and ωj → dqj) and this point of view is of importance in
field theories.

Now one goes to the implications of generalizing Lepage’s equivalence relation
θ ≡ Ldt (mod I[ωj ]) and dθ ≡ 0 (mod I[ωj ]) for θ = Ldt + pjω

j = −Hdt + pjdqj

to a field theory context. Thus working with 2 independent variables for simplicity
let xµ µ = 1, 2 be independent variables and za, a = 1, · · · , n those variables of
y = (x1, x2, z1, · · · , zn) which become the dependent variables za = fa(x) on 2-
dimensional submanifolds Σ2. Further the variables va

µ become the derivatives
∂µza(x) = ∂µfa(x) on Σ2 and especially on the extremals Σ2

0 defined below. This
last property says that the forms ωa = dza − va

µdxµ vanish on the extremals Σ2
0

where va
µ = ∂µza(x). Consider the action integral A[Σ2] =

∫
G2 L(x, z, ∂z)dx1dx2

which is supposed to become stationary for the extremals Σ2
0 when we vary the

functions za(x) and ∂µza(x) (see below). By using the forms ωa = dza−va
µdxµ one

can argue here as before with mechanics. As far as extremals go the Lagrangian
2-form ω = L(x, z, v)dx1 ∧ dx2 is one representative in an equivalence class of
2-forms which can be written as

(A.11) Ω = ω + h1
aωa ∧ dx2 + h2

adxx1 ∧ ωa +
1
2
habω

a ∧ ωb ≡

ω (mod I[ωa]); hba = −hab

The term with hab is new compared to mechanics and is only possible because Ω
is a 2-form and if n ≥ 2. In mechanics the coefficients hj in Ω = Ldt + hjω

j were
determined by the requirement dΩ = 0 mod I[ωj ] and for field theories we have

(A.12) dΩ =
(

∂aLdza +
∂L

∂va
µ

dva
µ

)
∧ dx1 ∧ dx2 + dh1

a ∧ ωa ∧ dx2−

−h1
adva

1 ∧ dx1 ∧ dx2 + dh2
a ∧ dx2 ∧ ωa + dh2

a ∧ dx1 ∧ ωa + h2
adx1 ∧ dva

2 ∧ dx2+

+
1
2
d(habω

a ∧ ωb) =
(

∂

∂va
µ

− hµ
a

)
dva

µ ∧ dx1 ∧ dx2 + O(mod I[ωa])

where the equality dza ∧ dx1 ∧ dx2 = ωa ∧ dx1 ∧ dx2 has been used. Thus the
condition dΩ = 0 mod I[ωa] is equivalent to hµ

a = ∂L/∂va
µ = πµ

a (as in mechanics).
What is new however is that the condition dΩ = 0 mod I[ωa] does not impose any
restrictions on hab and this has far reaching consequences. Indeed inserting the
formula for hµ

a = πa
µ into (A.11) one gets

(A.13) Ω = Ldx1 ∧ dx2 + π1
aωa ∧ dx2 + π2

adx1 ∧ ωa + (1/2)habω
a ∧ ωb

Each choice of hab defines a canonical form Ωh and the implications will be seen.
First introduce some notational simplifications via aµ = Ldxµ + πµ

aωa and εµν =
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εµν , ε12 = 1, and εµν = −ενµ. Then (A.13) can be written as

(A.14) Ω = Ldx1 ∧ dx2 + πµ
aωa ∧ dΣµ + (1/2)habω

a ∧ ωb =

= aµ ∧ dΣµ − Ldx1 ∧ dx2 + (1/2)habω
a ∧ ωb; dΣµ = εµνdxν

Now recall that the Legendre transformation vj → pj , L → H was imple-
mented via a change of basis dt → dt, ωj → dqj by inserting for ωj the expression
dqj − vjdt and subsequent identifications. Generalizing this procedure to (A.14)
means that we replace ωa by dza − va

µdxµ and write Ω in terms of the basis
dx1 ∧ dx2, dza ∧ dx2, dx1 ∧ dza, and dza ∧ dzb to get

(A.15) Ω = [L− πµ
ava

µ + (1/2)hab(va
1vb

2 − va
2vb

1)dx1 ∧ dx2+

+(π1
a − habv

b
2)dza ∧ dx2 + (π2

a + habv
b
1)dx1 ∧ dza + (1/2)habdza ∧ dzb

Define now hµν
ab = εµνhab and rewrite the last equation as

(A.16) Ω = (L− πµ
ava

µ + (1/2)hµν
ab va

µvb
ν)dx1 ∧ dx2+

+(πµ
a − hµν

ab vb
ν)dza ∧ dΣµ + (1/2)habdza ∧ dzb

The generalized Legendre transformation (à la Lepage) defines the canonical mo-
menta pµ

a as pµ
a = πµ

a−hµν
ab vb

ν and the Hamiltonian as H = πµ
ava

µ−(1/2)hµν
ab va

µvb
ν−L

leading to

(A.17) Ω = −Hdx1 ∧ dx2 + pµ
adza ∧ dΣµ + (1/2)habdza ∧ dzb

In order to express H and hab as functions of pµ
a the Legendre transformation

va
µ → pµ

a has to be regular, namely

(A.18)
∣∣∣∣∂pµ

a

∂vb
ν

∣∣∣∣ =
∣∣∣∣( ∂2L

∂vb
ν∂va

µ

− ∂hµλ
ac

∂vb
ν

vc
λ − hµν

ab

)∣∣∣∣ �= 0

The coefficients hµν
ab have been arbitrary up to now and an appropriate choice

can always guarantee the inequality (A.18) which is an interesting possibility for
defining a regular Legendre transformation if the conventional one va

µ → πµ
a is

singular as in gauge theories.

Assume now one can solve pµ
a = πµ

a − hµν
ab vb

ν for the va
µ, i.e. va

µ = φ̂a
µ(x, z, p)

and putting this into hµν
a (x, z, v) one obtains ηµν

ab (x, z, p) = hµν
ab (x, z, v = φ̂(x, z, p))

leading to

(A.19) H(x, z, p) = πµ
a [x, z, v = φ̂(x, z, p)]φ̂a

µ(x, z, p)−

−(1/2)ηµν
ab φ̂a

µφ̂b
ν − L(x, z, v = φ̂(x, z, p)]

This leads to

(A.20) dH = va
µdπµ

a + πµ
adva

µ − (1/2)d(hµν
ab va

µvb
ν)− dL;

dπµ
a = dpµ

a + d(hµν
ab vb

ν)
Combining these equations yields

(A.21) dH = va
µdpµ

a + πµ
adva

µ + (1/2)va
µvb

νdhµν
ab − dL
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Inserting now into (A.21) dH = ∂µHdxµ + ∂aHdza + (∂H/∂pµ
a)dpµ

a where it is
specified that ∂µH = (∂H/∂xµ)|z,p fixed along with

(A.22) dL = ∂µLdxµ + ∂aLdza + πµ
adva

µ; dhµν
ab = dηµν

ab =

= ∂ληµν
ab dxλ + ∂cη

µν
ab dzc +

∂ηµν
ab

dpλ
c

dpλ
c

and comparing coefficients of dxµ, dza, dpµ
a yields then

(A.23) ∂λH − 1
2
φ̂a

µφ̂b
ν∂ληµν

ab = −∂λL;

∂cH − 1
2
φ̂a

µφ̂b
ν∂cη

µν
ab = −∂cL;

∂H

∂pλ
c

− 1
2
φ̂a

µφ̂b
ν

∂ηµν
ab

∂pλ
c

= vc
λ

Up to now the variables xµ, za, and va
µ or pµ

a have been treated as independent
and this is no longer the case if one looks for the extremals Σ̂2

0, namely those
2-dimensional submanifolds za = fa(x), pµ

a = gµ
a (x) for which the variational

derivative dA[Σ̂2]/dτ vanishes at τ = 0, i.e.

(A.24) A[Σ̂2] =
∫

Σ̂2
Ω;

dAτ

dτ

∣∣∣∣
τ=0

[Σ̂2
0] =

∫
Σ̂2

0

i(V )dΩ +
∫

∂Σ̂2
0

i(V )Ω = 0

V = V µ
(x)∂µ + V a

(z)∂a + V µ
(p)a(∂/∂pµ

a)

Some calculations then lead to

(A.25) −∂aH − ∂µpµ
a − (∂µηµν

ab )∂νzb + (1/2)(∂aηµν
bc )∂µzb∂νzc−

−(∂cη
µν
ab )∂µzc∂νzb − ∂ηλν

ac

∂pµ
b

∂λpµ
b ∂νzc = 0

which are the analogue of the canonical equations ṗj + ∂jH = 0. If one defines
now

(A.26)
d

dxµ
F (x, z, p) = ∂µF + ∂aF∂µza +

∂F

∂pν
a

∂µpν
a

(e.g. dza(x)/dxµ = ∂µza(x)) one can rewrite (A.25) as

(A.27)
dpµ

a

dxµ
+ ∂aH = (1/2)∂aηµν

bc ∂µzb∂νzc − (dηµν
ab /dxµ)∂νzb

Further there are equations

(A.28) − ∂H

∂pµ
a

+ ∂µza +
1
2

∂ηλν
bc

∂pµ
a

∂λzb∂νzc = 0

which are the same as the equations in (A.23), if ∂µza(x) = va
µ (which is a con-

sequence of (A.18)). The equations (A.27) and (A.28) represent a system of
n + 2n = 3n first order PDE for the 3n functions za = fa(x) and pµ

a = gµ
a (x).

By eliminating the canonical momenta pµ
a one obtains a system of n second order

PDE for the za, namely the EL equations (d/dxµ)(∂L/∂va
µ)− ∂aL = 0 (cf. [586]

for details and note the hab have dropped out completely). One can also show
that the inequality (A.18) implies va

µ = ∂µza(x) on the extremals (at least in a
neighborhood of va

µ = 0 - recall πa
µ = ∂L/∂va

µ).

REMARK A.1. One notes an important structural difference between the
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variational system {i(∂a)dΩ, i(∂/∂pµ
a)dΩ} of differential forms which determine the

extremals here and the system {i(∂j)dθ, i(∂/∂pj)dθ} arising in mechanics. In the
latter case the 1-forms i(∂j)dθ, i(∂/∂pj)dθ generate the characteristic Pfaffian sys-
tem C∗(dθ) of dθ; i.e. the extremals associated with the canonical form θ coincide
with the characteristic integral submanifolds of the form dθ which means that the
tangent vectors ∂t + q̇jpj + ṗj(∂/∂pj) = ∂t +(∂H/∂pj)∂j − (∂H/∂qj)(∂/∂pj) form
a characteristic vector field associated with dθ (i.e. this vector field is annihilated
by the forms i(∂j)dθ and i(∂/∂pj)dθ). The situation is different for field theories;
here the tangent vectors Σ̂′

(µ) = ∂µ + ∂µza∂a + ∂µpν
a(∂/∂pν

a) are annihilated in

pairs - as a 2-vector Σ̂′
(1)∧ Σ̂′

(2) by the 3n+2 two forms i(∂a)dΩ, i(∂/∂pµ
a)dΩ, and

i(∂µ)dΩ. On the other hand the characteristic Pfaffian system C∗(dΩ) is generated
by

(A.29) i(∂µ)i(∂ν)dΩ; i(∂µ)i(∂a)dΩ; i(∂a)i(∂b)dΩ;

i(∂µ)i(∂/∂pµ
a)dΩ; i(∂a)i(∂/∂pν

b )dΩ
Each characteristic vector Y of the form dΩ (i.e. i(Y )dΩ = 0) is also annihilated by
the 2-forms i(V )dΩ where V = ∂µ, ∂a, or ∂/∂pµ

a . However if i(Y )i(V )dΩ = 0 = 0
one cannot conclude that i(Y )dΩ = 0. As a simple example take n = 1 and
L = T (v)− V (z) (a not unusual form in physics). Then pµ = πµ and

(A.30) Ω = Ldx1 ∧ dx2 + π1ω ∧ dx2 + π2dx1 ∧ ω =

−Hdx1 ∧ dx2 + π1dz ∧ dx2 + π2dx1 ∧ dz; ω = dz − vµdxµ; H = πµvµ − L

Then dΩ = (∂zLdx1∧dx2−dπ1∧dx2−dx1∧dπ2)∧ω is a 3-form in the 5 variables
xµ, z, vµ (µ = 1, 2). Evidently ω ∈ C∗(dΩ) but the factor

(A.31) ρ = ∂zLdx1 ∧ dx2 − dπ1 ∧ dx2 − dx1 ∧ dπ2 =

= ∂zLdx1 ∧ dx2 − ∂2L

∂v1∂vν
dvν ∧ dx2 − ∂2L

∂v2∂vν
dx1 ∧ dvν

is a 2-form in the 4 variables xµ and vµ with nontrivial rank 4 (cf. [586]). Hence
dΩ has rank 5 and the integral submanifolds of the characteristic system C∗(dΩ)
are 0-dimensional, whereas the integral submanifolds (the extremals) of the vari-
ational system i(∂µdΩ, i(∂a)dΩ, i(∂/∂pµ

a)dΩ are 2-dimensional in this example.
Only if Ω is a 1-form will the variational system coincide with the characteristic
system C∗(dΩ).

The essential new feature of the canonical framework above are the hab(x, z, v) =
ηab(x, z, p). There are several examples: hab = 0 in which case pµ

a = πµ
a and H =

πµ
ava

µ − L. If the Legendre transformation va
µ → πµ

a is regular (i.e. (∂2L/∂va
µ∂b

ν)
is regular, one can express H as a function of x, z, π and the canonical equations
(A.27) - (A.28) take the form ∂µπµ

a = −∂aH and ∂µza = ∂H/∂πµ
a = φ̂a

µ(x, z, π).
The choice hab = 0 is the conventiional one and is called the canonical theory for
fields of deDonder and Weyl. For a system with just one real field this is the only
possible one since there can be no nonvanishing hab. In more detail look at the
variational system I[i(V )dΩ0] which is generated by the 2-forms

(A.32) i(∂a)dΩ0 = −∂aHdx1 ∧ dx2 − dπµ
a ∧ dΣµ = λa;
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i(∂/∂πµ
a )dΩ0 = ωa ∧ dΣµ = ωa

µ; i(∂µ)dΩ0 =

= ωa ∧ (∂aHdΣµ + εµρdπρ
a)− φ̂a

µλa = (dh− ∂ρHdxρ) ∧ dΣµ + εµρdza ∧ dπρ
a = ωµ

This differential system (A.32) has some peculiar properties
(1) One has

(A.33) dλa = −d(∂aH) ∧ dx1 ∧ dx2; dωa
µ = −d(φ̂a

µ) ∧ dx1 ∧ dx2;

dωµ = −d(∂µH) ∧ dx1 ∧ dx2

and since dxµ∧λa = dπµ
a ∧dx1∧dx2 with dxµ∧ωa

ν = −δµ
ν dza∧dx1∧dx2

we see that dλa, dωa
µ, and dωµ belong to I[λa, ωa

µ, ωµ].
(2) The 3n + 2 forms λa, ωa

µ and dωµ are linearly independent.
(3) If v = Aµ∂µ + Ba∂a + Cµ

a (∂/∂πµ
a ) is an arbitrary tangent vector then it

is a 1-dimensional integral element of the system (A.32) (which contains
no 1-forms) and its “polar” system i(v)λa, i(v)ωa

µ, i(v)ωµ has at most
the rank 2n + 1. This follows from the relations

(A.34) Aµi(v)ωa
µ = (Ba −Aρφ̂a

ρ)AµdΣµ;

Aµi(v)ωµ + Bai(v)λa + Cµ
a i(v)ωa

µ = i(v)i(v)dΩ0 = 0
which shows that at most 2n + 2 of the 1-forms i(v)λa, i(v)ωa

µ, i(v)ωµ

are linearly independent. The maximal rank 2n+2 is relized e.g. for the
vector v = ∂/∂x1.

REMARK A.2. In more conventional language the terms involving hab may be
interpreted as follows. Defining

(A.35)
d

dxµ
= ∂µ + va

µ∂a + va
µν

∂

∂va
ν

; va
νµ = va

µν

one has, with hµν
ab = εµνhab, hµν

ab va
µvb

ν = hµν
ab d(zavb

ν)/dxµ. If in addition dhµν
ab /dxµ =

0 (e.g. if the hµν
ab are constants, then hµν

ab va
µvb

ν = d(hµν
ab zavb

ν) (i.e. the term
hµν

ab va
µvb

ν is a total divergence. This implies that the Lagrangian L∗(x, z, v) =
L(x, z, v)− (1/2)hµν

ab va
µvb

ν gives the same field equations as L itself, but the canon-
ical momenta are ∂L∗/∂va

µ = πµ
a − hµν

ab vb
ν = pµ

a .

EXAMPLE A.2. A nontrivial unique choice of the hab is obtained as fol-
lows. By means of 1-forms aµ = Ldxµ + πµ

aωa and θµ = −Hdxµ + pµ
adza one can

construct forms as in (A.13) - (A.14), namely

(A.36)
Ωc = 1

La1 ∧ a2 = Ldx1 ∧ dx2 + πµ
aωa ∧ dΣµ + 1

2L (π1
aπ2

b − π2
aπ1

b )ωa ∧ ωb =

= − 1
H

θ1 ∧ θ2 = −Hdx1 ∧ dx2 + pµ
adza ∧ dΣµ − 1

2H
(p1

ap2
b − p2

ap1
b)dza ∧ dzb

This form Ωc is unique among all possible forms (A.13) because it is the only one
which has the minimal rank 2 and it defines Carathéodory’s canonical theory for
fields.

REMARK A.3. In mechanics if one replaces a given Lagrangian L(t, q, q̇) by
L∗ = L + df(q)/dt = L + q̇j∂jf then the EL equations of L and L∗ are the same.
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However for the canonical momenta one has p∗j = ∂L∗/∂q̇j = ∂L/∂q̇j + ∂jf =
pj +∂jf so the canonical momenta are changed. Thus the canonical reformulation
of n second order differential equations by a system of 2n first order differential
equations is not unique. Further in field theories the corresponding freedom is even
more substantial if n ≥ 2. The most important classifying criterion will be the
rank of the form Ω for a given set of coefficients hab since for rank(Ω) = r (with
dΩ = 0 on the extremals) the integral submanifolds associated with the canonical
form Ω have dimension n + 2− r (r ≥ 2). As examples consider:

• If n = 1 (i.e. only one dependent variable z) the rank of Ω is always 2.
• If all hab = 0 the deDonder-Weyl canonical form

(A.37) Ω0 = aµ ∧ dΣµ − Ldx1 ∧ dx2

has rank 4 (for n ≥ 2) so the integral submanifolds of Ω0 have dimension
2 + n− 4 = n− 2

• Carathéodory’s canonical form (A.36) has rank 2; it is the only canonical
form which allows for n-dimensional wave fronts.

We go now to the Hamilton-Jacobi (HJ) theory for deDonder-Weyl (DW) fields.
One recalls that in mechanics the property dθ = 0 with θ = −Hdt + pjdqj on
the extremals, combined with the Poincaré lemma implies the basic HJ relation
dS(t, q) = −Hdt + pjdqj . In the same manner one can conclude from dΩ =
0 (mod I[ωa]) that Ω is locally an exact 2-form on the extremals Σ2

0, which means
that Ω is expressable by differentials dS1(x, z), dS2(x, z), and dx1, dx2, · · · where
the number of these differentials equals rank ω. For example in the Carathéodory
theory where Ω = Ωc has rank 2 one has dS1 ∧ dS2 = −(1/H)θ1 ∧ θ2. For the
deDonder-Weyl theory where Ω = Ω0 has rank 4 one has

(A.38) Ω0 = dS1(x, z) ∧ dx2 + dx1 ∧ dS2(x, z) = −Hdx1 ∧ dx2 + πµ
adza ∧ dΣµ

which implies

(A.39) (a) πµ
a = ∂aSµ(x, z) = ψµ

a (x, z);

(b) ∂µSµ(x, z) = H(x, z, π = ψ(x, z))
These are simple generalizations of the relations pj = ∂jS and ∂tS + H = 0 in
mechanics. Further according to (A.38) the wave fronts are given by Sµ(x, z) =
σµ = const. and xµ = const. because

(A.40) i(w)Ω0 = dS1(w)dx2 − w(2)dS1 + w(1)dS2 − dS2(w)dx1 = 0;

w = w(µ)∂(µ) + wa∂a; ∂(µ) = ∂/∂xµ; dSµ(w) = w(ν)∂(ν)S
µ + wa∂aSµ

implies w(µ) = 0 for µ = 1, 2 and wa∂aSµ = waπµ
a = 0 so the wave fronts associated

with Ω0 are (n − 2)-dimensional and lie in the characteristic planes xµ = const..
Note also that (A.39)-b is a first order PDE for two functions Sµ so we can choose
one, say S2, with a large degree of arbitrariness and then solve for S1. The main
restriction on S2 is the transversality condition that at each point (x, z = f(x))
the derivatives ∂aS2(x, z) equal the canonical momenta πµ

a (x).

Another important difference between HJ theories in mechanics and in field
theories should be mentioned. Recall that any solution of the HJ equation in
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mechanics leads to a system q̇j = φj(t, q) = (∂H/∂j)(t, q, p = ∂S(t, q)) whose
solutions qj(t) = f j(t, u) (u = (u1, · · · , un) constitute an n-parameter family of
extremals which generate S(t, q) provided |∂qj/∂uk)| �= 0. Now calculate S(t, q)
by computing σ(t, u) =

∫ t
dτL(τ, f(τ, u), ∂τf(τ, u)), solving qj = f j(t, u) for uk =

χ(t, q), and inserting the functions χk(t, q) into σ(t, u) to get S(t, q) = σ(t, χ(t, q)).
This procedure is not possible in field theories. Indeed in the DW theory one has
va

µ = ∂H/∂πµ
a and given any solution Sµ(x, z) of the DWHJ equation (A.39)-b we

define the slope functions

(A.41) φa
µ(x, z) =

∂H

∂πµ
a

(x, z, πµ
a = ∂aSµ(x, z))

However the PDE ∂µza(x) = φa
µ(x, z) will only have solutions za = fa(x) under

the integrability conditions

(A.42)
d

dxν
φa

µ(x, z(x)) = ∂νφa
µ + ∂bφ

a
µ · φb

ν =

=
d

dxµ
φa

ν(x, z(x)) = ∂µφa
ν + ∂bφ

a
ν · φb

µ

This involves rather stringent conditions (cf. [586] for examples). Suppose how-
ever that we have found solutions Sµ of the DWHJ equations (A.39)-b such that
the slope functions (A.41) do obey the integrability conditions (A.42); then the
solutions za = fa(x) of ∂µza = φa

µ are extremals and satisfy dπµ
a = −∂aH as well.

To see this recall πµ
a (x) = ψµ

a (x, z(x)) = ∂aSµ(x, z(x)) which implies

(A.43)
dπµ

a

dxµ
= ∂a∂µSµ(x, z(x)) + ∂b∂aSµ(x, z(x))∂µzb(x)

On the other hand one has ∂µSµ = −H[x, z(x), π = ∂S(x, z(x)) and (dH/dza) =
DaH = ∂aH + (∂H/∂πν

b )∂b∂aSν . Consequently

(A.44)
dπµ

a

dxµ
= −∂aH +

(
∂µzb(x)− ∂H

∂πµ
b

)
∂a∂bS

µ

which shows that the canonical equations dπµ
a/dxµ = −∂aH are a consequence of

(A.41).

Regarding currents note that if S(t, q, a) is a solution of the HJ equation
depending on a parameter a then G(t, q, a) = ∂S(t, q, a)/∂a is a constant of motion
along any extremal where pj(t) = ∂jS(t, q(t), a) holds. Thus (d/dt)G(, q(t), a) = 0
when qj(t) = f j(t) is an extremal and to see this consider

(A.45) dS(t, q, a) = ∂tSdt + ∂jSdqj + (∂S/∂a)da =

= −H(t, q, p = ψ(t, q))dt + ψj(t, q, a)dqj + Gda; ψj = ∂jS(t, q, a)

Exterior differentiation of (A.45) gives

(A.46) 0 = −
[
−∂ − jHdqj +

|ppH

∂pj
dψj(t, q, a)

]
∧dt+dψj(t, q, a)∧dqj +dG∧da
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Now suppose qj = qj(t) is an arbitrary curve (not necessarily an extremal); then
since dψj = ∂tψj + ∂kψjdqk + (∂ψj/∂a)da with dqj = q̇dt it follows from (A.46)
that

(A.47)
[
q̇j − ∂H

∂pj
(t, q, ψ(t, q))

]
∂ψj

∂a
=

d

dt
G = 0

Thus if q̇j = ∂H/∂pj then from (A.47) follows immediately dG/dt = 0 (Noether’s
theorem is a special case).

Recall that in mechanics if S(t, q, a) is a solution of the HJ equaiton depending
on n parameters aj such that

(A.48)
∣∣∣∣( ∂2S

∂qj∂ak
=

∂ψj

∂ak
(t, q, a)

)∣∣∣∣ �= 0

then one can solve the equations ∂S/∂ak = bk = const. (k = 1, · · · , n) for the
coordinates qj = f j(t, a, b) and the curves q = f(t, a, b) are extremals. This follows
from (A.47) where G = bk = const. now and this implies (q̇j−(∂H/∂pj))(∂ψj/∂k) =
0. In view of (A.48) the coefficients q̇j − (∂H/∂pj) of this homogeneous system
have to vanish which means that the functions qj = f j(t, a, g) are solutions of
the canonical equations q̇j = (∂H/∂pj)(t, q, pj = ∂jS(t, q)). It then follows from
previous discussion that they are also solutions of ṗj = −∂jH as well and such a
solution S of the HJ equation with the property (A.48) is called a complete inte-
gral; it provides a set of solutions qj = f j(t, a, b) of the equations of motion which
depends on the largest possible number (2n) of constants of integration (i.e. the set
is complete). There is a straightforward generalization to field theories. Suppose
one has a solution Sµ(x, z) of (A.39)-b depending on 2n parameters aν

b such that
|(∂2Sµ/∂zc∂aν

b ) = (∂ψµ
c /∂aν

b )| �= 0 and for which the equations (A.42) hold. Then
each of the 2n parameters aν

b will generate a current Ga;b
ν = (∂Sµ/∂aν

b )(x, z, a).
Suppose one has 4n functions gµ;b

ν (x), arbitrary up to the two properties that
(d/dxµ)gµ;b

ν = 0, such that

(A.49) Gµ;b
ν (x, z, a) =

∂Sµ

∂aν
b

(x, z, a) = gµ;b
ν (x)

should be a solvable system of 4n equations for the n variables zb. Thus 3n of the
equations (A.49) cannot be independent of the other n and such functions satisfy-
ing (d/dxµ)gµ;b

ν (x) = 0 are not difficult to find. Indeed one can take 2n arbitrary
smooth functions hb

ν(x) with gµ;b
ν (x) = εµλ∂λhb

ν(x). Then one needs appropriate
solutions Sµ(x, z, a) and functions gµ;b

ν (x) such that the 4n equations (A.49) have
n solutions za = fa(x); once found they will automatically be extremals since (cf.
[586] for details)

(A.50) (∂µzb(x)− (∂H/∂πµ
b ))(∂ψµ

b /∂aν
c ) = 0

Combined with the inequality above one concludes that ∂b
µ(x) − (∂H/∂πµ

b ) =
0 leading to fulfillment of the integrability condition (A.42) with (dπµ

a/dxµ) =
−∂aH. Thus for finding solutions of the field equations via the DWHJ equation
(A.39)-b one can look for solutions Sµ which fulfill the integrability condition
(A.42) and then either solve the equations ∂µza = φa

µ, or, if the solution Sµ is
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a complete integral one can try to solve the algebraic equations (A.49). Another
method is also indicated in [586].

For extension to m > 2 independent variables a few remarks are extracted
here from [586]. Thus take ω = Ldx1 ∧ · · · ∧ dxn as the Lagrangian m-form
belonging to an equivalence class of m-forms Ω which consist of ω plus a linear
combination of all m-forms obtained from dx1 ∧ dxm by replacing the dxµ by
1-forms ωa = dza − va

µdxµ which vanish on the extremals where va
µ = ∂µfa(x)

and generate an ideal I[ωa]. More specifically consider Minkowski space with
coordinates x0, · · · , x3 (with c = 1) and forms

(A.51) Ω = Ldx0 ∧ · · · ∧ dx3 + hµ
z ωa ∧ d3Σµ + (1/4)hµν

ab ωa ∧ ωb ∧ d2Sµν+

+
1
3!

habc;µωa ∧ ωb ∧ ωc ∧ dxµ +
1
4!

habcsω
a ∧ ωb ∧ ωc ∧ ωs

d3Σµ =
1
3!

εµαβγdxα ∧ dxβ ∧ dxγ ; d2Sµν = (1/2)εµναβdxα ∧ dxβ

Here εµνρσ is totally antisymmetric with ε0123 = 1, hµν
ab are antisymmetric in

(µν) and (a, b) separately, habc;µ are completely antisymmetric in (a, b, c), etc.
Thus the term habcs can occur only if n ≥ 4 and the h-coefficients are arbitrary
functions of x, z, v. As before hµ

a are determined to be equal to πµ
a = ∂L/∂va

µ by
the requirement that dΩ = 0 (mod I[ωa]). The Legendre transformation va

µ → pµ
a

and L → H is again implemented by inserting on the right in (A.51) for ωa the
expression dza− va

µdxµ and identifying H with the resulting negative coefficient of
dx0 ∧ · · · ∧ dx3 while the canonical momenta pµ

a are the coefficients of dza ∧ d3Σµ.
If habc;µ = 0 = habcs one obtains

(A.52) pµ
a = πµ

a − hµν
ab vb

ν ; H = πµ
ava

µ − (1/2)hµν
ab va

µvb
ν − L

One notes the following identities (cf. [657])

(A.53) εαβγµd3Σµ = dxα ∧ dxβ ∧ dxγ ; dxρ ∧ d3Σµ = δρ
µdx0 ∧ · · · ∧ dx3;

dxρ ∧ d2Sµν = δρ
νd3Σµ − δρ

µd3Σν ; dxσ ∧ dxρ ∧ d2Sµν = (δσ
µδρ

ν − δσ
ν δρ

µ)dx0 ∧ · · · dx3

If d(hµν
ab )dxµ = 0 where (d/dxµ) = ∂µ + va

µ∂a + va
µν∂/∂va

ν , and va
µν = va

νµ, then

(A.54) hµν
ab va

µvb
ν =

d

dxµ
(hµν

ab zavb
ν)

For the DW canonical theory where all hµν
ab = 0 (A.51) becomes

(A.55)
Ω0 = Ldx0 ∧ · · · ∧ dx3 + πµ

aωa ∧ d3dΣµ = aµ ∧ d3dΣµ − 3Ldx0 ∧ · · · ∧ dx3

where aµ = Ldxµ + πµ
aωa = −Tµ

ν dxν + πµ
adza. (A.55) shows that Ω0 may be ex-

pressed by the 8 linearly independent 1-forms dx0, · · · , dx3, a0, · · · , a3 and there-
fore has rank 8 if n ≥ 2 (for n = 1 it has rank 4 since one p-form in p+1 variables
always has rank p). Replacing ωa in Ω0 by dza − va

µdxµ results in

(A.56) Ω0 = −HDW dx0 ∧ · · · ∧ dx3 + πµ
adz0 ∧ d3Σµ; HDW = πµ

ava
µ − L
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and the DWHJ equation is obtained from

(A.57) dSµ ∧ d3Σµ = −HDW dx0 ∧ · · · ∧ dx3 + πµ
adza ∧ d3Σµ

which implies

(A.58) ∂µSµ(x, z) + HDW (x, z, π) = 0; πµ
a = ∂aSµ

D DONDER-WEYL THEORYe



APPENDIX B

RELATIVITY AND ELECTROMAGNETISM

We extract first from [12], which still appears to be the best book ever written
on classical general relativity, and will sketch some of the essential features. Four
criteria for field equations are stated as:

(1) Physical laws do not distinguish between accelerated systems and inertial
systems. This will hold if all laws are written in tensor form.

(2) Both gravitational forces and fictitious forces appear as Christoffel sym-
bols (connection coefficients) in a mathematically similar form. This is
desirable since they should be indistinguishable in the small.

(3) The gravitational equations should be phrased in covariant tensor form
and should be of second order in the components of the metric tensor.

(4) For unique solutions one wishes the field equations to be quasi-linear (i.e.
the second derivatives enter linearly).

Now the signature for a Lorentz metric is taken to be (1,−1,−1,−1) and one
writes f|α = ∂f/∂xα while f||α is the covariant derivative (defined below). We
assume known here the standard techniques of differential geometry as used in
[12]. Then e.g. for a contravariant (resp. covariant) vector ξi (resp. ηm) one
writes

(B.1) ξi
||k = ξi

|k − Γi
k�ξ

�; Γi
k� = −

{
i

k �

}
; ηm||� = ηm|� +

{
r

m �

}
(the bracket notation is used for Christofel symbols which are connection coeffi-
cients). One defines the Riemann curvature tensor via

(B.2) Rα
ηβγ =

{
α

β η

}
|γ
−
{

α
η γ

}
|β

+
{

α
τ γ

}{
τ

β η

}
−
{

α
τ β

}{
τ

γ η

}
and a necessary (and sufficient) condition for a Riemann space to have a Lorentz
metric is Rα

ηβγ = 0 (i.e. the space is flat); this equation is in fact a field equation
for a flat and gravity free space (with Lorentz metric as a solution). Note here
ξα

||β||γ − ξα
||γ||β = Rα

ηβγξη which implies ξα||β||γ − ξα||γ||β = Rαρβγξρ in a metric
space (since the metric is used to lower indices, i.e. Tα

γ = gγβTαβ etc.). Also one
has generally

(B.3) Tαδ
||β||γ − Tαδ

||γ||β = Rα
τβγT τδ + Rδ

τβγTατ

379
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The notation {Rαηβγξη}(α,β,γ) = 0 = {Rαηβγ}(α,β,γ)ξ
η involves an antisymmetriza-

tion in α, β, γ and since ξη is arbitrary this means {Rαηβγ}(α,β,γ) = 0. Written
out (with some relabeling and combination) this means that there are symmetries

(B.4) Rαηβγ = −Rαηγβ , Rαηβγ = −Rηαβγ , Rαηβγ = Rβγαη

and R1023 + R2031 + R3012 = 0. The Bianchi identities are {Rαηβγ||δ}(β,γ,δ) = 0.

Next via parallel transport one has dξα = −
{

α
β γ

}
ξβdxγ and displacements

along paths dx, dx̂ and dx̂, dx respectively leads to a vector transport difference
∆ξα = Rα

βηγξβdxηdx̂γ . Now the only meaningful contraction of Rαβγδ is given by
Rηγ = Rα

ηαγ = gαβRβηαγ = gαβRαγβη = Rγη with 10 independent components.
The equation Rβδ = 0 satisfies conditions 1-4 above and has the Lorentz metric
for one solution. Note here
(B.5)

Rβδ =
{

α
β α

}
|δ
−
{

α
β δ

}
|α

+
{

α
τ δ

}{
τ

β α

}
−
{

α
τ α

}{
τ

β δ

}
= 0

can be written out in terms of the metric tensor gαγ and this is the free space
Einstein field equation. Some calculation shows that this can be written also in
terms of the zero divergence Ricci tensor Gβδ = Rβδ − (1/2)gβδR = 0 where
R = Rη

η is the Riemann scalar). Finally for a one parameter family Γ(v) of
geodesics given by xµ = xµ(u, v) one has geodesic equations

(B.6)
∂2xµ

∂u2
= −

{
α

β γ

}
∂xβ

∂u

∂xγ

∂u

Now one can write out (B.5) in the form

(B.7) Rµν =
1
2
gρσ

[
−gµσ|ν|ρ − gνρ|µ|σ + gµν|ρ|σ + gρσ|µ|ν

]
+ Kµν

where Kµν contains only metric potentials and their first derivatives. One thinks
of solving an initial value problem with data on a 3-dimensional hypersurface
S described locally via x0 = 0 (so g00 > 0). On S one gives gαβ and all first
derivatives (only gµν and gµν|0 need to be prescribed). Then one can calculate
that

(B.8) Rij = (1/2)g00gij|0|0 + Mij = 0; Ri0 = −(1/2)g0jgij|0|0 + Mi0 = 0;

R00 = (1/2)gijgij|0|0 + M00 = 0
where the Mµν can be computed from data on S. A change of coordinates will
make all gλ0|0|0 = 0 on S (these are not contained in (B.8)) and thus (B.8) consists
of 10 equations for six unknowns gij|0|0 on S which is overdetermined and leads to
compatability conditions for the data Mµν on S. This can be reduced to the form

(B.9) Rij = 0; G 0
λ = 0

The first set of 6 equations determines the six unknowns gij|0|0 from initial data.
The additional 4 equations in terms of the Ricci tensor G 0

λ represent necessary
conditions on the initial data in order to insure a solution. There is much more
material in [12] about the Cauchy problem which we omit here. For the Einstein
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equations in nonempty space one needs an energy momentum tensor for which a
typical form is

(B.10) Tµν = ρ0u
µuν + (p/c2)(uµuν − gµν)

where ρ0 is a density, p a pressure term, and uµ a 4-velocity field. One assumes
Tµν has zero divergence or Tµν

||ν = 0 (which is a covariant formulation of fluid flow
under the effect of its own internal pressure force).

REMARK B.1 One can also include EM fields in Tµν by dealing with a
Lorentz force f i = σ(E + (v/c) × H)i ∼ −σ0F

iνuν where F iν is the EM field
tensor. However we will work in electromagnetism later in more elegant fashion
via the Dirac-Weyl theory and omit this here (cf. [12] for more details).

In any event the Einstein field equations for nonempty space involve a zero
divergence Tµν so one uses the Ricci tensor Gµν = Rµν − (1/2)gµνR and notes
that the most general second order tensor Bαγ of zero divergence can be written
as Bαγ = Gαγ + Λgαγ (a result of E. Cartan). Hence one takes the Einstein field
equations to be Gαγ + Λgαγ = cTαγ .

The exposition in Section 5.2 suggests the desirability of having a differential
form discription of EM fields and we supply this via [723]. Thus one thinks of
tensors T = T σ

µν∂σ⊗dxµ⊗dxν with contractions of the form T (dxσ, ∂σ) ∼ Tνdxν .
For η = ηµνdxµ ⊗ dxν one has η−1 = ηµν∂µ ⊗ ∂ν and ηη−1 = 1 ∼ diag(δµ

µ). Note
also e.g.

(B.11) ηµνdxµ ⊗ dxν(u,w) = ηµνdxµ(u)dxν(w) =

= ηµνdxµ(uα∂α)dxν(wτ∂τ ) = ηµνuµwν

(B.12) η(u) = ηµνdxµ ⊗ dxν(u) = ηµνdxµ(u)dxν =

= ηµνdxµ(uα∂α)dxν = ηµνuµdxν = uνdxν

for a metric η. Recall α ∧ β = α⊗ β − β ⊗ α and

(B.13) α ∧ β = αµdxµ ∧ βνdxν = (1/2)(αµβν − ανβµ)dxµ ∧ dxν

The EM field tensor is F = (1/2)Fµνdxµ ∧ dxν where

(B.14) Fµν =

⎛⎜⎜⎝
0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞⎟⎟⎠ ;

F = Exdx0 ∧ dx1 + Eydx0 ∧ dx2 + Ezdx0 ∧ dx3−
−Bzdx1 ∧ dx2 + Bydx1 ∧ dx3 −Bxdx2 ∧ dx3

The equations of motion of an electric charge is then dp/dτ = (e/m)F(p) where
p = pµ∂µ. There is only one 4-form, namely ε = dx0 ∧ dx1 ∧ dx2 ∧ dx3 =
(1/4!)εµνστdxµ∧dxν ∧dxσ ∧dxτ where εµνστ is totally antisymmetric. Recall also
for α = αµν···dxµ ∧ dxν · · · one has dα = dαµν··· ∧ dxµ ∧ dxν · · · = ∂ααµν···dxσ ∧
dxµ ∧ dxν · · · and ddα = 0. Define also the Hodge star operator on F and j via
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∗F = (1/4)εµνστF στdxµ ∧ dxν and ∗j = (1/3!)εµνστ jτdxµ ∧ dxν ∧ dxσ; these are
called dual tensors. Now the Maxwell equations are

(B.15) ∂µFµν =
4π

c
jν ; ∂αFµν + ∂µF να + ∂νFαµ = 0

and this can now be written in the form

(B.16) dF = 0; d∗F =
4π

c
∗ j

and 0 = d∗j = 0 is automatic. In terms of A = Aµdxµ where F = dA the relation
dF = 0 is an identity ddA = 0.

A few remarks about the tensor nature of jµ and Fµν are in order and we write
n = n(x) and v = v(x) for number density and velocity with charge density ρ(x) =
qn(x) and current density j = qn(x)v(x). The conservation of particle number
leads to∇·j+ρt = 0 and one writes jν = (cρ, jx, jy, jz) = (cρn, qnvx, qnvy, qnvz) or
equivalently jν = n0qu

ν ≡ jν = ρ0u
ν where n0 = n

√
1− (v2/c2) and ρ0 = qn0 (ρ0

here is charge density). Since jν consists of uν multiplied by a scalar it must have
the transformation law of a 4-vector j

′β = aβ
νjν under Lorentz transformations.

Then the conservation law can be written as ∂νjν = 0 with obvious Lorentz
invariance. After some argument one shows also that Fµν = a ν

β a µ
α F

′αβ under
Lorentz transformations so Fµν is indeed a tensor. The equation of motion for
a charged particle can be written now as (dp/dt) = qE + (q/c)v ×B where p =
mv/

√
1− (v2/c2) is the relativistic momentum. This is equivalent to dpµ/dt =

(q/m)pνFµν with obvious Lorentz invariance. The energy momentum tensor of
the EM field is

(B.17) Tµν = −(1/4π)[FµαF ν
α − (1/4)ηµνFαβFαβ ]

(cf. [723] for details) and in particular T 00 = (1/8π)(E2 +B2) while the Poynting
vector is T 0k = (1/4π)(E×B)k.

One can equally well work in a curved space where e.g. covariant derivatives
are defined via

(B.18) ∇nT = limdλ→0[(T (λ + dλ)− T (λ)− δT ]/dλ

where δT is the change in T produced by parallel transport. One has then the
usual rules ∇u(T ⊗ R) = ∇uT ⊗ R + T ⊗ ∇uR and for v = vν∂ν one finds
∇µv = ∂µvν∂ν + vν∇µ∂ν . Now if v was constructed by parallel transport its
covariant derivative is zero so, acting with the dual vector dxα gives

(B.19)
∂xν

∂xµ
dxα(∂ν) + vνdxα(∇µ∂ν) = 0 ≡ ∂µvα + vνdxα(∇µ∂ν) = 0

Comparing this with the standard ∂µvα + Γα
µνvν = 0 gives dxα(∇µ∂ν) = Γα

µν .
One can show also for vectors u, v, w (boldface omitted) and a 1-form α
(B.20)
(∇u∇v −∇v∇u − uv + vu)α(w) = R(α, u, v, w); R = Fσ

βµν∂σ ⊗ dxβ ⊗ dxµ ⊗ dxν

so R represents the Riemann tensor.
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For the nonrelativistic theory first we go to [650] we define a transverse and
longitudinal component of a field F via

(B.21) F ||(r) = − 1
4π

∫
d3r′

∇′ · F (r′)
|r − r′| ; F⊥(r) =

1
4π
∇×∇×

∫
d3r′

F (r′)
|r − r′|

For a point particle of mass m and charge e in a field with potentials A and φ
one has nonrelativistic equations mẍ = eE + (e/c)v × B (boldface is suppressed
here) where one recalls B = ∇ × A, v = ẋ, and E = −∇φ − (1/c)At with H =
(1/2m)(p− (e/c)A)2 + eφ leading to

(B.22) ẋ =
1

2m

(
p− e

c
A
)

; ṗ =
e

c
[v ×B + (v · ∇)A]− e∇φ

Recall here also

(B.23) B = ∇×A, ∇ · E = 0, ∇ ·B = 0, ∇× E = −(1/c)Bt,

∇×B = (1/c)Et, E = −(1/c)At −∇φ

(the Coulomb gauge∇·A = 0 is used here). One has now E = E⊥+E|| ∼ ET +EL

with ∇ · E⊥ = 0 and ∇ × E|| = 0 and in Coulomb gauge E⊥ = −(1/c)At and
E|| = −∇φ. Further

(B.24) H ∼ 1
2m

(
p− e

c
A
)2

+ eφ +
1
8π

∫
d3r((E⊥)2 + B2)

(covering time evolution of both particle and fields).

For the relativistic theory one goes to the Dirac equation i(∂t+α ·∇)ψ = βmψ
which, to satisfy E2 = p2 + m2 with E ∼ i∂t and p ∼ −i∇, implies −∂2

t ψ =
(−iα · ∇ + βm)2ψ and ψ will satisfy the Klein-Gordon (KG) equation if β2 =
1, αiβ + βαi ≡ {αi, β} = 0, and {αi, αj} = 2δij (note c = � = 1 here with
α · ∇ ∼

∑
αµ∂µ and cf. [650, 632] for notations and background). This leads to

matrices

(B.25) σ1 =
(

0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
;

αi =
(

0 σi

σi 0

)
; β =

(
1 0
0 −1

)
where αi and β are 4 × 4 matrices. Then for convenience take γ0 = β and γi =
βαi which satisfy {γµ, γν} = 2gµν (Lorentz metric) with (γi)† = −γi, (γi)2 =
−1, (γ0)† = γ0, and (γ0)2 = 1. The Dirac equation for a free particle can now be
written

(B.26)
(

iγµ ∂

∂xµ
−m

)
ψ = 0 ≡ (i∂/−m)ψ = 0

where A/ = gµνγµAν = γµAµ and ∂/ = γµ∂µ. Taking Hermitian conjugates in,
noting that α and β are Hermitian, one gets ψ̄(i

←−
∂/ + m) = 0 where ψ̄ = ψ†β. To

define a conserved current one has an equation ψ̄γµ∂µψ +γµψ̄µψ = ∂µ(ψ̄γµψ) = 0
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leading to the conserved current jµ = ψ̄γµψ = (ψ†ψ, ψ†αψ) (this means ρ = ψ†ψ
and j = ψ†αψ with ∂tρ+∇· j = 0). The Dirac equation has the Hamiltonian form

(B.27) i∂tψ = −iα · ∇ψ + βmψ = (α · p + βm)ψ ≡ Hψ

(α · p ∼
∑

αµpµ). To obtain a Dirac equation for an electron coupled to a pre-
scribed external EM field with vector and scalar potentials A and φ one substitutes
pµ → pµ − eAµ, i.e. p→ p− eA and p0 = i∂t → i∂t − eΦ, to obtain

(B.28) i∂tψ = [α · (p− eA) + eΦ + βm]ψ

This identifies the Hamiltonian as H = α · (p−eA)+eΦ+βm = α ·p+βm+Hint

where Hint = −eα · A + eΦ, suggesting α as the operator corresponding to the
velocity v/c; this is strengthened by the Heisenberg equations of motion

(B.29) ṙ =
(

1
i�

)
[r,H] = α; π̇ =

(
1
i�

)
[π,H] = e(E + α×B)

Another bit of notation now from [647] is useful. Thus (again with c = � = 1)
one can define e.g. σz = −iαxαy, σx = −iαyαz, σy = −iαzαx, ρ3 = β, ρ1 =
σzαz = −iαxαyαz, and ρ2 = iρ1ρ3 = βαxαyαz so that β = ρ3 and αk = ρ1σ

k.
Recall also that the angular momentum �� of a particle is �� = r× p (∼ (−i)r×∇)
with components �k satisfying [�x, �y] = i�z, [�y, �z] = i�x, and [�z, �x] = i�y. Any
vector operator L satisfying such relations is called an angular momentum. Next
one defines σµν = (1/2)i[γµ, γν ] = iγµγν (µ �= ν) and Sαβ = (1/2)σαβ . Then the
6 components Sαβ satisfy

(B.30) S10 = (i/2)αx; S20 = (i/2)αy; S30 = (i/1)αz;

S23 = (1/2)σx; , S31 = (1/2)σy; S12 = (1/2)σz

The Sαβ arise in representing infinitesimal rotations for the orthochronous Lorentz
group via matrices I + iεSαβ . Further one can represent total angular momentum
J in the form J = L + S where L = r × p and S = (1/2)σ (L is orbital angular
momentum and S represents spin). We recall that the gamma matrices are given
via γ = βα. Now from

(B.31) [(i∂t − eφ)− α · (−i∇− eA)− βm]ψ = 0

one gets

(B.32) [iγµDµ −m)ψ = [γµ(i∂µ − eAµ)−m]ψ = 0

where Dµ = ∂µ + ieAµ ≡ (∂0 + ieφ,∇− ieA). Working on the left with (−iγλDλ−
m) gives then [γλγµDλDµ + m2]ψ = 0 where γλγµ = gλµ + (1/2)[γλ, γµ]. By
renaming the dummy indices one obtains

(B.33) [γλ, γµ]DλDµ = −[γλ, γµ]DµDλ = (1/2)[γλ, γµ][Dλ, Dµ]

leading to

(B.34) [Dλ, Dµ] = ie[∂λ, Aµ] + ie[Aλ, ∂µ] = ie(∂λAµ − ∂µAλ) = ieFλµ

This yields then

(B.35) γλγµDλDµ = DµDλ + eSλµFλµ
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where Sλµ represents the spin of the particle. Therefore [DµDµ + eSλµFλµ +
m2]ψ = 0. Comparing with the standard form of the KG equation we see that
this differs by the term eSλµFλµ which is the spin coupling of the particle to the
EM field and has no classical analogue.
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REMARKS ON QUANTUM GRAVITY

We refer here to [55, 56, 57, 58, 60, 61, 62, 69, 70, 184, 303, 394, 495,
551, 630, 665, 819, 820, 896, 897, 898, 929, 930, 931, 932] and will mainly
follow [69, 551] for basic material. First (cf. [69] recall that upon assuming the
spacetime manifold M to be diffeomorphic to R × S where S is a 3-dimensional
manifold one can choose spacelike slices Σ ⊂M with a space Met(Σ) of Riemann-
ian metrics. Writing φ : M → R×S one defines a time coordinate via τ = φ∗t and
Σ ⊂ M is determined via τ = constant. The extrinsic curvature K of Σ provides
Cauchy data (3g,K) for the metric and regarding Einstein’s 10 equations, 4 are
constraint equations for the Cauchy data and 6 are evolution equations saying how
the 3-metric changes in time. This is the Arnowitt-Deser-Misner (ADM) formula-
tion. Now in more detail, one takes g(v, v) > 0 for v ∈ TΣ and g(n, n) = −1 (where
n is the unit normal vector to Σ). One can write v = −g(v, n)n+(v + g(v, n)n) in
terms of orthogonal vectors and, for ∇ corresponding to the covariant derivative
for the Levi-Civita connection, one can write

(C.1) ∇uv = −g(∇uv, n) + (∇uv + g(∇uv, n)n); K(u, v)n = −g(∇uv, n)n

where K defines the extrinsic curvature. Since ∇ is torsion free one has K(u, v) =
K(v, u) and

(C.2) Kiju
ivj = K(∂i, ∂j)uivj ; K(u, v) = g(∇un, v)

Write now ∂τ = Nn + �N whee �N is the shift field and N the lapse function. Then
one has

(C.3) N = −g(∂τ , n); �N = ∂τ + g(∂τ , n)n

Write the Christoffel symbols of the connection ∇ on Σ as 3Γi
jk and the Riemann

tensor of 3g as 3Rm
ijk. Then some calculation (cf. [69]) gives the Gauss-Codazzi

equations

(C.4) R(∂i, ∂j)∂k = (3∇iKjk − 3∇jKik)n + (3Rm
ijk + KjkKm

i −KikKm
j )∂m

Now the Einstein tensor has the form Gµν = Rµν− (1/2)gµνR where Rµν = Rα
µαν

with R = Rαβ
αβ and for vectors ∂j tangent to Σ at a point in question this leads

to (cf. [69]

(C.5) Gµνnµnν = −1
2
(3R + (TrK)2 − Tr(K2)); Gνin

µ = 3∇jK
j
i − 3∇iK

j
j

387
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The remaining 6 Einstein equations Gij = 0 are dynamical in nature and describe
the time evolution of 3g. Now looking only at the vacuum Einstein equations one
writes qij ∼ 3gij with q for det(qij). It can be shown then (cf. [69]) that

(C.6) Kij =
1
2
N−1(q̇ij − 3∇iNj − 3∇jNi)

The Lagrangian density for the Einstein-Hilbert action is R
√
−detgd4x and one

writes here L = R
√−g which in terms of the 3-metric and lapse function becomes

L = q1/2NR. Discarding terms that give total divergences (and would integrate
to zero for compact Σ at least) one has then

(C.7) L = q1/2N(3R + Tr(K2)− (trK)2)

Now the conjugate momenta are determined via

(C.8) pij =
∂L

∂q̇ij
= q1/2(Kij − Tr(K)qij)

The Hamiltonian structure involves now

(C.9) H(pij , qij) = pij q̇
ij − L; H =

∫
Hd3x; H = q1/2(NC + N iCi)

where

(C.10) C = −3R + q−1

(
Tr(p2)− 1

2
Tr(p)2

)
; Ci = −2 3∇j(q−1/2pij)

Note one must specify the lapse and shift to know the meaning of time evolution.
However one can compute that

(C.11) C = −2Gµνnµnν ; Ci = −2Gµin
µ

Now the equations C = Ci = 0 are precisely the constraint Einstein equations and
hence H = 0 is a constraint on the phase space in T ∗Met(Σ) yet the dynamics is
not trivial. To formulate Hamilton’s equations one can define Poisson brackets on
phase space via

(C.12) {f, g} =
∫

Σ

{
∂f

∂pij(x)
∂g

∂qij(x)
− ∂f

∂qij(x)
∂g

∂pij(x)

}
q1/2d3x

This is often written in a functional derivative notation but it simply amounts to
defining say ∂f/∂qij(x) for example via

(C.13)
∫

Σ

hij(x)
∂f

∂qij(x)
q1/2d3x =

d

ds
f(q + sh)|s=0

for every symmetric (0, 2) tensor field h (for h ∼ δg one writes the right side of
(C.13) as δf . In this spirit one arrives at

(C.14) {pij(x), qk�(y)} = (δi
kδj

� + δi
�δ

j
k)δ3(x− y);

{pij(x), pk�(y)} = 0; {qij(x), qk�(y)} = 0
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The equations Gij = 0 in this disguise are now simply q̇ij = {H, qij} and ṗij =
{H, pij} which take the form

(C.15) q̇ij = 2q−1/2N

(
pij −

1
2
pk

kqij

)
+ 2 3∇[iNj];

ṗij = −Nq1/2

(
3Rij − 1

2
3Rqij

)
+

1
2
Nq−1/2qij

(
pabp

ab −−1
2
(pa

a)2
)
−

−2Nq−1

(
piapj

a −
1
2
pa

aqij

)
+ q1/2(∇i∇jN − qij 3∇a 3∇aN)+

+q1/2∇a(q−1/2Napij)− 2pa[i3∇aN j]

This is a horror story but it does show that the time evolution given by Hamilton’s
equations is nontrivial. One notes in passing that the lapse and shift measure
how much the time evolution push the slice Σ in the normal or tangent direction
respectively. For example for shift (resp. lapse) zero one has

(C.16) C(N) =
∫

Σ

NCq1/2d3x (resp. C( �N) =
∫

Σ

N iCiq
1/2d3x)

Here C( �N) or Ci (resp. C(N) or C) is called the diffeomorphism (resp. Hamil-
tonian) constraint and one can calculate

(C.17) {C( �N), C( �N ′)} = C([ �N, �N ′]); {C( �N), C(N ′)} = C( �NN ′);

{C(N), C(N ′)} = C((N∂iN ′ −N ′∂iN)∂i)

where �NN ′ is the derivative of N ′ in the direction �N and (N∂iN ′ −N ′∂iN)∂i is
the result of converting the 1-form NdN ′ − N ′dN into a vector field by raising
indices. These formulas are known as the Dirac algebra and one notes that the
constraints are closed under Poisson brackets.

Now for quantization one proceeds formally for various reasons (cf. [69]) and
takes the operator corresponding to the 3-metric (and momentum) to be

(C.18) (q̂ij(x)ψ)(q) = gij(x)ψ(q); (p̂ij(x)ψ)(q) = −i
∂

∂qij(x)
ψ(q)

where g ∈ Met(Σ). These operators satisfy then

(C.19) [p̂ij(x), q̂k�(y)] = −i(δi
kδj

� + δi
�δ

j
k)δ3(x, y);

[p̂ij(x), p̂k�(y)] = 0; [q̂ij(x), q̂k�(y)] = 0

In order to obtain quantum versions Ĉ and Ĉi one encounters operator ordering
problems; ideally one would like

(C.20) [Ĉ( �N), Ĉ( �N ′)] = −iĈ( �N, �N ′]); [Ĉ( �N, Ĉ(N ′)] = −iĈ( �NN ′);

[Ĉ(N), Ĉ(N ′)] = −iĈ((N∂iN ′ −N ′∂iN)∂i)
but this seems virtually impossible to achieve. Suppose nevertheless that one
obtained somehow satisfactory operators Ĉ and Ĉi; then one could write

(C.21) Ĥ =
∫

Σ

(NĈ + N iĈi)q1/2d3x
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It could then be said that a vector ψ ∈ L2(Met(Σ)) (whatever that may mean)
is a physical state if it satisfies Ĉ(N)ψ = Ĉ( �N)ψ = 0 or alternatively Ĥψ = 0
for all choices of lapse and shift and this is the WDW equation. There are many
problems here and even if one could find solutions there arises the problem of time,
namely the Hamiltonian vanishes on the space of physical states so any operator
A on Hphys must satisfy (d/dt)At = i[Ĥ, At] = 0 and the dynamics disappears.
Recent developments using the Ashtekar variables have made some progress in this
area and will be discussed briefly below.

We describe briefly now the Ashtekar variables following [69] which are based
on a modification of the Palatini formalism. First for background the Palatini
action is S(g) =

∫
M

R · vol rewritten so that it is not a function of the metric
but rather a function of a connection and a frame field. Thus a trivialization
of TM is a vector bundle isomorphism e : M × Rn → TM sending each fiber
{p} ×Rn of the trivial bundle M ×Rn to the corresponding tangent space TpM .
A trivialization of TM is also called a frame field sending the standard basis of
Rn to a basis of tangent vectors at p or a frame. If M is 3 (resp. 4) dimensional
a frame field is called a triad (resp. tetrad). One goes back and forth now using
the frame field e and its inverse e−1 : TM → M ×Rn. Given a basis of sections
of M × Rn of the form ξi = (0, · · · , 0, 1, 0, 0, · · · ) one writes any section as s =
sIξI where I denotes an internal index (whereas ∂µ refers to coordinate vector
fields on a chart). Thus e(ξI) = eα

I ∂α and e(ξI) ∼ eI . Now given sections s, s′

one can define η(s, s′) = ηIJsIs
′J where ηIJ is copied after a Minkowski metric

(−1, 1, · · · , 1) (internal metric). One can raise and lower indices via ηIJ and set
g(v, v′) = gαβvαv

′β . The frame field is said to be orthonormal if g(eI , eJ ) = ηIJ ;
in this case one has g(e(s), e(s′)) = η(s, s′) since

(C.22) g(e(s), e(x′)) = g(e(SIξI), e(sJξJ)) = sIsJg(eI , eJ ) = ηIJsIsJ =

= η(sIξI , s
JξJ ) = η(s, s′)

Note that one can write ηIJ = g(eI , eJ ) = gαβeα
I eβ

J and hence δI
J = eI

αeα
J . Further

e−1v = eI
αvαξI since if v = e(s) one has e−1v = eI

αvαξI = eI
αeα

JsJξI = δI
JsJξI =

sIξI = s This leads to a formula for the metric g in terms of the coframe field eI
α,

namely

(C.23) gαβ = g(∂α, ∂β) = η(e−1∂α, e−1∂β) = η(eI
αξI , e

J
βξJ) = ηIJeI

αeJ
β

The other ingredient in the Palatini formalism is a connection on the trivial bun-
dle M ×Rn. One says a connection D here is a Lorentz connection if vη(x, s′) =
η(Dvs, s′)+η(s, Dvs′) (standard S(O(n, 1) connection). Note torsion free is mean-
ingless and there is no Levi-Civita connection on M×Rn; however the standard flat
connection D0s = v(sI)ξI is nice and any connection can be written as D = D0+A
for some potential A, which is an End(Rn)-valued 1-form on M. Thus

(C.24) Dvs = (v(sJ) + AJ
µIv

µsI)ξJ ; F IJ
αβ = ∂αAIJ

β − ∂βAIJ
α + [Aα, Aβ ]IJ

where F IJ
αβ is the curvature of D. If A defines a Lorentz connection then F IJ

αβ =
−F IJ

βα = −F JI
αβ . Next given a frame field e and a Lorentz connection D one can
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transfer the Lorentz connection from M ×RN to TM to obtain a connection ∇̄
given by

(C.25) ∇̄α∂β = Γ̄γ
αβ∂γ ; Γ̄γ

αβ = AJ
αIe

I
βeγ

J

Here ∇̄ is called the imitation Levi-Civita connection and Γ̄γ
αβ are the imitation

Christoffel symbols, leading to an imitation Riemann tensor

(C.26) R̄ δ
αβ = F IJ

αβeγ
I eδ

J ; R̄αβ = R̄γ
αγβ ; R̄ = R̄α

α

Now the Palatini action is basically the Einstein-Hilbert action in disguise, being
a function of the frame field given by gαβ = ηIJeI

αeJ
β in the form

(C.27) S(A, e) =
∫

M

eα
I eβ

JF IJ
αβ · vol; δS = 2

∫
M

(R̄αβ − (1/2)R̄gαβηIJeβ
J (δeα

I ) · vol

Thus δS = 0 for an arbitrary variation of the frame field when R̄αβ−(1/2)R̄gαβ = 0
which is of course Einstein’s equation when ∇̄ = ∇. We refer to [69] for further
computations, formulas, and discussion.

Now for the Ashtekar variables themselves define the complexified tangent
bundle CTM to have fibers C × TpM and an imitation complexified tangent
bundle M ×C4. A complex frame field is an isomorphism e : M ×C4 → CTM .
A connection A on M ×C4 is an End(C4) valued 1-form on M with components
AJ

αI or AIJ
α ; it is Lorentz if AIJ

α = −AJI
α . Recall the Hodge ∗ operator maps

2-forms to 2-forms in 4 dimensions and define it here via

(C.28) ∗T IJ = (1/2)εIJ
KLTKL; εi1,··· ,in =

{
sgn(i1, · · · , in) ij distinct

0 otherwise

for any T with two antisymmetric raised internal indices. In particular

(C.29) (∗A)IJ
α = (1/2)εIJ

KLAKL
α

Now write any Lorentz connection A as a sum of self-dual and anti-self-dual parts

(C.30) A = +A + −A; ∗±A = ±i±A; ±A = (1/2)(A∓ i ∗A)

In the self dual formulation of GR one of the two basic fields is a self-dual Lorentz
connection, i.e. a Lorentz connection on M × C4 with ∗+A = i+A. The other
basic field is a complex frame field e : M × C4 → CTM and the action is built
using the curvature +F of +A via

(C.31) +F IJ
αβ = ∂α

+AIJ
β − ∂β

+AIJ
α + [+Aα, +Aβ ]IJ

As in the Palatini formalism one writes

(C.32) gαβ = ηIJeI
αeJ

β ; e−1∂α = eI
αξI

(note the metric is now complex). The self dual action is

(C.33) SSD(+A, e) =
∫

M

eα
I eβ

J
+F IJ

αβ · vol; vol =
√
−gd4x
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Now define the internal Hodge dual of the curvature of a connection F on M ×C4

via

(C.34) (∗F )IJ
αβ = (1/2)εIJ

KLFKL
αβ

and call the curvature self dual if ∗F = iF . It turns out that the curvature of
a self dual Lorentz connection is self dual (computation needed) and this has Lie
algebraic meaning (cf. [69] for details). Next compute δSSD = 0 and following
[69] one obtains two equations. First by varying the self dual connection there
is an equation saying that +A is the self dual part of a Lorentz connection A for
which the self dual part of the Riemann tensor of g is related to +F , namely

(C.35) +Rα δ
βγ = (1/2)(Rα δ

βγ − (i/2)εαδ
µνRµ ν

βγ ); +Rα δ
βγ = +F IJ

βγ eα
I eδ

J

Second by varying the frame field there arises a self dual analogue of Einstein’s
equation

(C.36) +Rαβ − (1/2)gαβ
+R = 0; +Rαβ = +Rγ

αγβ ; +R = +Rα
α

Using symmetries of the Riemann tensor this is equivalent to the vacuum Einstein
equation. Note however that we have complex metrics here; some reality conditions
are needed and this is not exactly a trivial matter. Thus let Σ be a spacelike
slice and work in coordinates such that ∂0 is normal to Σ and ∂i is tangent for
spacelike indices. Given a self dual Lorentz connection +AIJ

α on M ×C4 one can
restrict it to a connection AIJ

i on Γ × C4 with AIJ
i = −AJI

i and ∗A = iA (the
+ sign is gratuitously omitted here). Since sl(2,C) has a basis in terms of Pauli
matrices one can also write this as −(i/2)Aa

i σa (a = 1, 2, 3). The field playing the
role analogous to position is the self dual Lorentz conection Aa

i with conjugate
momentum Ẽi

a = q1/2ei
a and one has Poisson brackets

(C.37) {Ẽi
a(x), Ab

j(y)} = −iδb
aδi

jδ
3(x, y); {Ẽi

a(x), Ẽj
b (y)} = 0 = {Aa

i (x), Ab
j(y)}

The Hamiltonian and diffeomorphism constraints are given via

(C.38) C̃ = εabcẼi
aẼj

bFijc; Cj = Ẽk
aF a

jk; Ga = DiẼ
i
a

(the latter being a Gauss law constraint). The tilde appears because of densitation,
i.e. C̃ is q1/2 times the earlier C. To quantize now one writes

(C.39) (Âa
i (x)ψ)(A) = Aa

i (x)ψ(A); (Êi
a(x)ψ)(A) =

∂

∂Aa
i (x)

ψ(A)

(C.40) [Êi
a(x), Âb

j(y)] = δb
aδi

jδ
3(x, y); [Êi

a(x), Êj
b (y)] = 0 = [Âa

i (x), Âb
j(y)]

A convenient choice of operator orderings is now
(C.41)

Ĉ = εabcÊi
aÊj

b F̂ijc; Ĉj = Êk
a F̂ a

jk; Ĝa = D̂iÊ
i
a; (F̂ a

jk(x)ψ)(A) = F a
jk(x)ψ(A)

It seems that these operators satisfy commutation relations analogous to the Pois-
son brackets of the classical constraints. The physical state space Hphys then
consists of functions ψ(A) satisfying the constraints in quantum form, i.e.

(C.42) Hphys = {ψ : Ĉψ = Ĉjψ = Ĝaψ = 0}
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Here Ĉjψ = 0 means ψ(A) = ψ(A′) whenever A′ is obtained from A by applying a
diffeomorphism connected to the identity by a flow. Similarly Ĝaψ = 0 says that
ψ(A) = ψ(A′) whenever A′ is obtained from A by a small gauge transformation.
The Hamiltonian constraint Ĉψ = 0 contains the dynamics of the theory and find-
ing solutions is difficult.

There is an interesting relation between Chern-Simons (CS) theory and quan-
tum gravity however that provides some solutions. First if the cosmological con-
stant is nonzero the Hamiltonian constraint becomes

(C.43) Ĉ = εabcÊi
aÊj

b F̂ijc −
Λ
6

εijkεabcÊi
aÊj

b Êk
c

The CS state ψCS is defined as ψCS(A) = exp[−(6/�)SCS(A)] where SCS(A) =∫
Σ

Tr(A∧dA+(2/3)A∧A∧A). It is then shown in [69] that ĈjψCS = ĜaψCS =
ĈψCS = 0 with some discussion. The book [69] was written in 1994 and there
has since been enormous activity in loop quantum gravity for which we refer to
[53, 57, 60, 184, 303, 394, 551, 819, 820, 896, 929, 930, 931, 932]. (cf. also
[714 ] for connections between thermodynamics and gravity).
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DIRAC ON WEYL GEOMETRY

First we give some background on Weyl geometry and Brans-Dicke theory
following [12]; for differential geometry we use the tensor notation of [12] and
refer to e.g. [149, 358, 458, 723, 731, 972, 998] for other notation (see also
[990] for interesting variations). For general background see [156, 179, 235, 350,
351, 361, 556, 601, 786, 801, 937, 938, 939, 1004, 1014] and note that for
our purposes the most important background features appear already in Sections
3.2, 3.2.2, and 4.1. One thinks of a differential manifold M = {Ui, φi} with
φ : Ui → R4 and metric g ∼ gijdxidxj satisfying g(∂k, ∂�) = gk� =< ∂k, ∂� >=
g�k. This is for the bare essentials; one can also imagine tangent vectors Xi ∼
∂i and dual cotangent vectors θi ∼ dxi, etc. Given a coordinate change x̃i =
x̃i(xj) a vector ξi transforming via ξ̃i =

∑
∂ix̃

jξj is called contravariant (e.g.
dx̃i =

∑
∂j x̃

idxj). On the other hand ∂φ/∂x̃i =
∑

(∂φ/∂xj)(∂xj/∂x̃i leads to
the idea of covariant vectors Aj ∼ ∂φ/∂xj transforming via Ãi =

∑
(∂xj/∂x̃i)Aj

(i.e. ∂/∂x̃i ∼ (∂xj/∂x̃j)∂/∂xj). Now define connection coefficients or Christoffel
symbols via (strictly one writes T γ

α = gαβT γβ and T γ
α = gαβT βγ which are

generally different; we use that notation here but it is not used in subsequent
sections since it is unnecessary)

(D.1) Γr
ki = −

{
r

k i

}
= −1

2

∑
(∂igk� + ∂kg�i − ∂�gik)g�r = Γr

ik

(note this differs by a minus sign from some other authors). Note also that (D.1)
follows from equations

(D.2) ∂�gik + grkΓr
i� + girΓr

�k = 0

and cyclic permutation; the basic definition of Γi
mj is found in the transplantation

law

(D.3) dξi = Γi
mjdxmξj

Next for tensors Tα
βγ define derivatives

(D.4) Tα
βγ|k = ∂kTα

βγ ; Tα
βγ||� = ∂�T

α
βγ − Γα

�sT
s
βγ + Γs

�βTα
sγ + Γs

�γTα
βs

In particular covariant derivatives for contravariant and covariant vectors respec-
tively are defined via

(D.5) ξi
||k = ∂kξi − Γi

k�ξ
� = ∇kξi; ηm||� = ∂�ηm + Γr

m�ηr = ∇�ηm

395
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Now to describe Weyl geometry one notes first that for Riemannian geometry
(D.3) holds along with

(D.6) �2 = ‖ξ‖2 = gαβξαξβ ; ξαηα = gαβξαηβ

However one does not demand conservation of lengths and scalar products under
affine transplantation (D.3). Thus assume

(D.7) d� = (φβdxβ)�

where the covariant vector φβ plays a role analogous to Γα
βγ . Combining one

obtains

(D.8) d�2 = 2�2(φβdxβ) = d(gαβξαξβ) =

= gαβ|γξαξβdxγ + gαβΓα
ργξρξβdxγ + gαβΓβ

ργξαξρdxγ

Rearranging etc. and using (D.6) again gives

(D.9) (gαβ|γ − 2gαβφγ) + gσβΓσ
αγ + gσαΓσ

βγ = 0

leading to

(D.10) Γα
βγ = −

{
α

β γ

}
+ gσα[gσβφγ + gσγφβ − gβγφσ]

Thus we can prescribe the metric gαβ and the covariant vector field φγ and de-
termine by (D.10) the field of connection coefficients Γα

βγ which admits the affine
transplantation law (D.3). If one takes φγ = 0 the Weyl geometry reduces to Rie-
mannian geometry. This leads one to consider new metric tensors via the gauge
transformation ĝαβ = f(xλ)gαβ and it turns out that (1/2)∂log(f)/∂xλ plays the

role of φλ in (D.7). The ordinary connections
{

α
β γ

}
constructed from gαβ

are equal to the more general connections Γ̂α
βγ constructed according to (D.10)

from ĝαβ and φ̂λ = (1/2)∂log(f)/∂xλ. The generalized differential geometry is
conformal in that the ratio

(D.11)
ξαηα

‖ξ‖‖η‖ =
gαβξαηβ

[(gαβξαξβ)(gαβηαηβ)]1/2

does not change under the gauge transformation above. Again if one has a Weyl
geometry characterized by gαβ and φα with connections determined by (D.10) one
may replace the geometric quantities by use of a scalar field f with

(D.12) ĝαβ = f(xλ)gαβ , φ̂α = φα + (1/2)(log(f)|α; Γ̂α
βγ = Γα

βγ

without changing the intrinsic geometric properties of vector fields; the only change
is that of local lengths of a vector via �̂2 = f(xλ)�2. Note that one can reduce
φ̂α to the zero vector field if and only if φα is a gradient field, namely Fαβ =
φα|β − φβ|α = 0 (i.e. φα = (1/2)∂alog(f) ≡ ∂βφα = ∂αφβ). In this case one has
length preservation after transplantation around an arbitrary closed curve and the
vanishing of Fαβ guarantees a choice of metric in which the Weyl geometry becomes
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Riemannian; thus Fαβ is an intrinsic geometric quantity for Weyl geometry - note
Fαβ = −Fβα and

(D.13) {Fαβ|γ} = 0; {Fµν|λ} = Fµν|λ + Fλµ|ν + Fνλ|µ

Similarly the concept of covariant differentiation depends only on the idea of vector
transplantation. Indeed one can define

(D.14) ξα
||β = ξα

|β − Γα
βγξγ

In Riemann geometry the curvature tensor is

(D.15) ξα
||β|γ − ξα

||γ|β = Rα
ηβγξη

Hence here we can write

(D.16) Rα
βγδ = −Γα

βγ|δ + Γα
βδ|γ + Γα

τδΓ
τ
βγ − Γα

τγΓτ
βδ

Using (D.11) one then can express this in terms of gαβ and φα but this is compli-
cated. Equations for Rβδ = Rα

βαδ and R = gβδRβδ are however given in [12]. One
notes that in Weyl geometry if a vector ξα is given, independent of the metric, then
ξα = gαβξβ will depend on the metric and under a gauge transformation one has
ξ̂α = f(xλ)ξα. Hence the covariant form of a gauge invariant contravariant vector
becomes gauge dependent and one says that a tensor is of weight n if, under a
gauge transformation T̂α···

β··· = f(xλ)nTα···
β··· . Note φα plays a singular role in (D.12)

and has no weight. Similarly (
√
−ĝ = f2√−g (weight 2) and Fαβ = gαµgβνFµν

has weight −2 while ,Fαβ = Fαβ√−g has weight 0 and is gauge invariant; further
FαβFαβ√−g is gauge invariant. Now for Weyl’s theory of electromagnetism one
wants to interpret φα as an EM potential and one has automatically the Maxwell
equations {Fαβ|γ} = 0 along with a gauge invariant complementary set F

αβ
|β = sα

(source equations). These equations are gauge invariant as a natural consequence
of the geometric interpretation of the EM field. For the interaction between the
EM and gravitational fields one sets up some field equations as indicated in [?]
and the interaction between the metric quantities and the EM fields is exhibited
there.

REMARK 5.3.1. As indicated earlier in [12] Ri
jk is defined with a minus

sign compared with e.g. [723, 998]. There is also a difference in definition of the
Ricci tensor which is taken to be Gβδ = Rβδ − (1/2)gβδR in [12] with R = Rδ

δ

so that Gµγ = gµβgγδG
βδ = Rµγ − (1/2)gµγR with Gγ

η = Rη
η − 2R ⇒ Gη

η = −R
(recall n = 4). In [723] the Ricci tensor is simply Rβµ = Rα

βµα where Rα
βµν

is the Riemann curvature tensor and R = Rη
η again. This is similar to [998]

where the Ricci tensor is defined as ρj� = Ri
ji�. To clarify all this we note that

Rηγ = Rα
ηαγ = gαβRβηαγ = −gαβRβηγα = −Rα

ηγα which confirms the minus sign
difference.

For completeness it is worthwhile to reflect on the comments of a master
craftsman and hence we refer her to [302] where first there are two papers on a
new classical theory of the electron and in the third paper of [302] the original
Dirac-Weyl action is developed (cf. also Sections 3.2.1 and 4.1) which we sketch
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here in some detail. The main point is to think of EM fields as a property of space-
time rather than something occuring in a gravity formed spacetime. This seems
to be in the spirit of considering a microstructure of the vacuum (or an ether) and
we find it attractive. The solution proposed by Weyl involved a length change
δ� = �κµδxµ under parallel transport xµ → xµ + δxµ. The κµ are field quantities
occuring along with the gµν in a fundamental role. Suppose � gets changed to
�′ = �λ(x) and � + δ� becomes

(D.17) �′ + δ�′ = (� + δ�)λ(x + δx) = (� + δ�)λ(x) + �λ,µδxµ

with neglect of second order terms (here λ,µ ≡ ∂λ/∂xµ). Then

(D.18) δ�′ = λδ� + �λ,µδxµ = λ(κµ + φ,µ)δxµ; φ = log(λ)

Hence

(D.19) δ�′ = �′κ′
µδxµ; κ′

µ = κµ + φ,µ

If the vector is transported by parallel displacement around a small closed loop
the total change in length is

(D.20) δ� = �FµνδSµν ; Fµν = κµ,ν − κν,µ

and δSµν is the element of area enclosed by the small loop. this change is un-
affected by (D.19). It will be seen that the field quantities κµ can be taken to
be EM potentials, subject to the transformations (D.19) which correspond to no
change in the geometry but a change only in the choice of artificial standards of
length. The derived quantities Fµν have a geometrical meaning independent of
the length standard and correspond to the EM fields. Thus the Weyl geometry
provides exactly what is needed for describing both gravitational and EM fields in
geometric terms. There was at first some apparent conflict with atomic standards
and the theory was rejected, leaving only the idea of gauge transformation for
length standard changes.

Dirac’s approach however helped to resurrect the Weyl theory; since we feel
that this theory is not perhaps sufficiently appreciated a sketch is given here (cf.
also [121]). Dirac first goes into a discussion of large numbers, e.g. e2/GMm
(proton and electron masses), e2/mc2 (age of universe), etc. and the Einsteinian
theory requires that G be constant which seems in contradiction to G ∼ t−1 where
t represents the epoch time, assumed to be increasing. Dirac reconciles this by
assuming the large numbers hypothesis (all dimensionless large numbers are con-
nected) and stipulating that the Einstein equations refer to an interval dsE which
is different from the interval dsA measured by atomic clocks. Then the objections
to Weyl’s theory vanish and it is assumed to refer to dsE . In this spirit then one
deals with transformations of the metric gauge under which any length such as
ds is multiplied by a factor λ(x) depending on its position x, i.e. ds′ = λds and
a localized quantity Y may get transformed according to Y ′ = λnY , in which
case Y is said to be of power n and is called a co-tensor. If n = 0 then Y is
called an in-tensor and it is invariant under gauge transformations. The equa-
tion ds2 = gµνdxµdxν shows that gµν is a co-tensor of power 2, since the dxµ are
not affected by a gauge transformation. Hence gµν is a co-tensor of power −2 and
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one writes g for
√−g with T:µ denoting the covariant derivative (∇µT would be

better). We see that the covariant derivative of a co-tensor is not generally a co-
tensor. However there is a modifed covariant derivative T∗µ which is a co-tensor.
Consider first a scalar S of power n; then S:µ = S,µ ≡ Sµ; under a change of gauge
it transforms to

(D.21) S′
µ = (λnS),µ = λnSµ + nλn−1λµS = λn[Sµ + n(κ′

µ − κµ)S]

(via (D.19)). Thus

(D.22) (Sµ − nκµS)′ = λn(Sµ − nκµS)

so Sµ−nκµS is a covector of power n and is defined to be the co-covariant derivative
of S, i.e.

(D.23) §∗µ = Sµ − nκµS

To obtain the co-covariant derivative of co-vectors and co-tensors we need a mod-
ified Christoffel symbol

(D.24) ∗Γα
µν = Γα

µν − gα
µκν − gα

ν κµ + gµνκα

(the notation Γα
µν for the more correct form Γα

µν is used in [302]). This is known
to be invariant under gauge transformations. Let now Aµ be a co-vector of power
n and form Aµ,ν − ∗Γα

µνAα which is evidently a tensor since it differs from the
covariant derivative Aµ:ν by a tensor and under gauge transformations one has
(cf. (D.19) where φ,µ = κ′

µ − κµ)

(D.25) (Aµ,ν − ∗Γα
µνAα)′ = λnAµ,ν + nλn−1λνAµ − ∗Γα

µνλnAα =

= λn[Aµ,ν + n(κ′
ν − κν)Aµ − ∗Γα

µνAα]
Thus

(D.26) (Aµ,ν − nκνAµ − ∗Γα
µνAα)′ = λn[Aµ,ν − nκνAµ − ∗Γα

µνAα]

so take

(D.27) Aµ∗ν = Aµ,ν − nκνAµ − ∗Γα
µν

as the co-covariant derivative of Aα. this can be written via (D.24) as

(D.28) Aµ∗ν = Aµ:ν − (n− 1)κνAµ + κµAν − gµνκαAα

Similarly for a vector Bµ of power n one has

(D.29) Bµ
∗ν = Bµ

:ν − (n + 1)κνBµ + κµBν − gµ
ν καBα

For a co-tensor with various suffixes up and down one can form the co-covariant
derivative via the same rules; one notes that the co-covariant derivative always has
the same power as the original. Next observe

(D.30) (TU)∗σ = T∗σU + TU∗σ

while

(D.31) gµν∗σ = 0; Gµν
∗σ = 0

so one can raise and lower suffixes freely in a co-tensor before carrying out co-
covariant differentiation. Thus one can raise the µ in (D.28) giving (D.29) with
Aµ replacing Bµ and n−2 in place of n. The potentials κµ do not form a co-vector
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because of the wrong transformation laws (D.19) but the Fµν defined by (D.19)
are unaffected by gauge transformations so they form an in-tensor. One obtains
the co-covariant divergence of a co-vector Bµ by putting ν = µ in (D.29) to get

(D.32) Bµ
∗µ = Bµ

:µ − (n + 4)κµBµ

(for n = −4 this is the ordinary covariant divergence).

We list some formulas for second co-covariant derivatives now with a sketch
of derivation. Thus for a scalar of power n

(D.33) S∗µ∗ν = S∗µ:ν − (n− 1)κνS∗µ + κµS∗ν − gµνκσS∗σ

Putting S∗µ = Sµ − nκµS on gets

(D.34)
S∗µ∗ν = Sµ:ν − nκµ:ν − nκµSν − nκν(Sµ − nκµS) + κνS∗µ + κµS∗ν − gµνκσSσ

Now Sµ:ν = Sν:µ so

(D.35) S∗µ∗ν − S∗ν∗µ = −n(κµ:ν − κν:µ)S = −nFµνS

This is tedious but instructive and we continue. Let Aµ be a co-vector of power n
so

(D.36) Aµ∗ν∗σ = Aµ∗ν:σ − nκσAµ∗ν + (gρ
µκσ + gρ

σκµ − gµσκρ)Aρ∗ν+

+(gρ
νκσ + gρ

σκν − gσνκρ)Aµ∗ρ

A lengthy calculation then yields

(D.37) Aµ∗ν∗σ −Aµ∗σ∗ν = ∗
BµνσρA

ρ − (n− 1)FνσAµ

where

(D.38)
∗Bµνσρ = Bµνσρ + gρν(κµ:σ + κµκσ) + gµσ(kρ:ν + κρκν)− gρσ(κµ:ν + κµκν)−

−gµν(κρ:σ + (κρκσ) + (gρσgµν − gρνgµσ)κακα

One can consider ∗B as a generalized Riemann-Christoffel tensor but it does not
have the usual symmetry properties for such a tensor; however one can write

(D.39) ∗
Bµνσρ = ∗Bµνσρ + (1/2)(gρνFµσ + gµσFρν − gρσFµν − gµνFρσ)

and then ∗Bµνσρ has all the usual symmetries, namely

(D.40)
∗Bµνσρ = −∗Bµσνρ = −∗Bρνσµ = ∗Bνµρσ; ∗Bµνσρ + ∗Bµσρν + ∗Bµρνσ = 0

Thus is is appropriate to call ∗Bµνσρ the Riemann-Christoffel (RC) tensor for Weyl
space; it is a co-tensor of power 2. The contracted RC tensor is

(D.41) ∗Rµν = ∗Bσ
µνσ = Rµν − κµ:ν − κν:µ − gµνκσ

:σ − 2κµκν + 2gµνκσκσ

and is an in-tensor. A further contraction gives the total curvature

(D.42) ∗R = ∗Rσ
σ = R− 6κσ

:σ + 6κσ
σ

which is a co-scalar of power -2.

One gets field equations from an action principle with an in-invariant action,
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hence one of the form I =
∫

Ωgd4x where Ω must be a co-scalar of power -4 to
compensate g having power 4. Ths usual contribution to Ω from the EM field is
(1/4)FµνFµν (of power -4 since it can be written as FµνFρσgµρgνσ with F factors
of power zero and g factors of power -2). One also needs a gravitational term and
the standard −R could be ∗R but this has power -2 and will not do. Weyl proposed
(∗R)2 which has the correct power but seems too complicated to be satisfactory.
Here one takes ∗R = 0 as a constraint and puts the constraint into the Lagrangian
via γ∗R with γ a co-scalar field of power -2 in the form of a Lagrange multiplier.
This leads to a scalar-tensor theory of gravitation and one can insert other terms
involving γ. For convenience one takes γ = −β2 with β as the basic field variable
(co-scalar of power -1) and adds terms kβ∗σβ∗σ (co-scalar of power -4); terms cβ4

can also be added to get

(D.43) I =
∫

[(1/4)FµνFµν − β2∗R + kβ∗µβ∗µ + cβ4]gd4x

as a vacuum action. Now β∗µβ∗µ = (βµ + βκµ)(βµ + βκµ) and using (D.42) one
obtains

(D.44) −β2∗R + kβ∗µβ∗µ = −β2R + kβµβµ + (k − 6)β2κµκµ+

+6(β2κµ):µ + (2k − 12)βκµβµ

The term involving (β2κµ):µ can be discarded since its contribution to the action
density is a perfect differential, namely (β2κµ):µg = (β2κµg),µ and for the simplest
vacuum equations one chooses k = 6 so that (D.43) becomes

(D.45) I =
∫

[(1/4)FµνFµν − β2R + 6βµβµ + cβ4]gd4x

Thus I no longer involves the κµ directly but only via Fµν and I is invariant under
transformations κµ → κµ + φ,µ so the equations of motion that follow from the
action principle will be unaffected by such transformations (i.e. they have no
physical significance). Now consider three kinds of transformation:

(1) Any transformation of coordinates.
(2) Any transformation of the metric gauge combined with the appropriate

transformation of potentials κµ → κµ + φ,µ.
(3) In the vacuum one may make a transformation of potentials as above

without changing the metric gauge or alternatively one may transform
the metric gauge without changing the potentials. This works only where
there is no matter.

For the field equations one makes small variations in all the field quantities gµν , κµ,
and β, calculates the change in I and sets it equal to zero. Thus write

(D.46) δI =
∫

[(1/2)Pµνδgµν + Qµδκµ + Sδβ)gd4x

and drop the cβ4g term since it is probably only of interest for cosmological pur-
poses. One has

(D.47) δ[(1/4)FµνFµν
g] = (1/2)Eµν

gδgµν − Jµ
gδκµ
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with neglect of a perfect differential. Here Eµν is the EM stress tensor

(D.48) Eµν = (1/4)gµνFαβFαβ − FµαF ν
α

and Jµ is the charge current vector

(D.49) Fµ = Fµν
:ν = g

−1(Fµν
g),ν

Considerable calculation and neglect of perfect differentials leads finally to

(D.50)
Pµν = Eµν + β2[2Rµν − gµνR]− 4gµνββρ

:ρ + 4ββµ:ν + 2gµνβσβσ − 8βµβν ;

Qµ = −Jµ; S = −2βR− 12βµ
:µ

and the field equations for the vacuum are

(D.51) Pµν = 0, Qµ = 0; S = 0

These are not all independent since

(D.52) P σ
σ = −2β2R− 12ββσ

:σ = βS

so the S equation is a consequence of the P equations. If one omits the EM term
from the action it becomes the same as the Brans-Dicke action except that the
latter allows an arbitrary value for k; with k �= 6 the vacuum equations are inde-
pendent so the BD theory has one more vacuum field equation, namely �(β2) = 0.

Now the action integral is invariant under transformations of the coordinate
sysem and transformations of gauge; each of these leads to a conservation law
connecting the quantities Pµν , Qµ, S defined via (D.46). For coordinate transfor-
mations xµ → xµ + bµ one gets

(D.53)
−δgµν = gµσbσ

,ν + gνσbσ
,µ + gµν,σbσ; −δβ = βσbσ; −δκµ = κσbσ

,µ + κµ,σbσ

Putting these variations in (D.46) yields

(D.54) δI = −
∫

[(1/2)Pµν(gµσbσ
,ν + gνσbσ

,µ + gµν,σbσ)+

+Qµ(κσbσ
,µ + κµ,σbσ) + Sβσbσ]gd4x =

=
∫

[(Pµ
σ g),µ − (1/2)Pµνgµν,σg + (Qµκσg),µ −Qµκµ,σg− Sβσg]bσd4x

This δI vanishes for arbitrary bσ so one puts the coefficient of bσ equal to zero;
using

(D.55) (Pµ
σ g),µ − (1/2)Pµνgµν,σg = Pµ

σ:µg; (Qµκσg),µ = κσQµ
:µg + κσ,µQµ

g

this reduces to

(D.56) Pµ
σ:µ + κσQµ

:µ + FσµQµ − Sβσ = 0

Next consider a small transformation in gauge

(D.57) δgµν = 2λgµν , δβ = −λβ; δκµ = [log(1 + λ)],µ = λµ
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Putting this in (D.46) yields

(D.58) δI =
∫

[Pµνλgµν + Qµλµ − Sλβ]gd4x =
∫

[Pµ
µ g− (Qµ

g),µ − Sβg]λd4x

Putting the coefficient of λ equal to zero gives Pµ
µ − Qµ

:µ − Sβ = 0 which with
(D.56) comprise the conservation laws. For the vacuum one sees that (D.58) is the
same as (D.52) since Qµ

:µ = 0 from (D.50); also (D.56) reduces to

(D.59) Pµ
σ:µ + FσµQµ − β−1βσPµ

µ = 0

which may be considered as a generalization of the Bianchi identities. The conser-
vation laws (D.56) and (D.58) hold more generally than for the vacuum, namely
whenever the action integral can be constructed from the field variables gµν , κµ, β
alone.

Now let the coordinates of a particle be zµ, functions of the proper time s
measured along its world line. Put dzµ/ds = vµ for velocity so vµvµ = 1 and vµ

is a co-vector of power -1. One adds to the action the further terms

(D.60) I1 = −m

∫
βds; I2 = e

∫
β−1β∗µvµds

(m and e being constants). Then these terms are in-invariants with

(D.61) I2 = e

∫
(β−1βµ + κµ)vµds = e

∫
[(d/ds)(log(β)) + κµvµ]ds

and the first term contributes nothing to the action principle. Thus I2 = e
∫

κµvµds
which is unchanged when κµ → κµ+φ,µ since the extra term is e

∫
(dφ/ds)ds. Thus

for a particle with action I1 + I2 the transformations (3) above are still possible.
Now some calculation yields

(D.62) m[gµσd(βvµ)/ds + βΓσµνvµvν − βσ] =

= −evµFµσ ≡ m[d(βvµ)/ds + Γµ
ρσvρvσ − βµ] = eFµνvν

This is the equation of motion for a particle of mass m and charge e; if e = 0
it could be called an in-geodesic. If one works with the Einstein gauge then the
case e = 0 gives the usual geodesic equation. Next one considers the influence the
of particle on the field and this is done by generating a dust of particles and a
continuous fluid leading to an equation

(D.63) ρ[(βvµ),ν + Γµ
ασvαvσ − βµ] = σµν

where ρ and σ refer to mass and charge density respectively.
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BICONFORMAL GEOMETRY

We sketch here some beautiful work of J. Wheeler [992, 994] which has
led to a number of important developments in mathematical physics (cf. also
[35, 36, 987, 980, 990, 991, 993]). The paper [992] (not published) gives a
very nice discussion of normal biconformal spaces and lays some of the foundation
for some later work of Wheeler et al for which [994] is apparently the best starting
point. We will therefore extract here from [994] and remark that this work alone
transcends earlier approaches to unifying GR and EM. One works over an 8-D
base space where in a flat situation the 4-D biconformal cospace to 4-D Minkowski
space corresponds to a standard tangent space (or momentum space) with vari-
ables pµ transforming via L−1 under Lorentz transformations L of xµ (or dxµ).
The symplectic form given by the exterior derivative of the Weyl 1-form provides
a typical Hamiltonian dynamical structure and one gives general necessary and
sufficient conditions for curved 8-D geometry to be in 1-1 correspondence with 4-
D Einstein-Maxwell spacetime; further a consistent unified geometrical theory of
gravity and electromagnetism is obtained. This is very powerful stuff and we can
only sketch a few items here. Some connections of biconformal geometry to QM
are given in Section 3.5.1 and we refer to [987, 994] for history and philosophy.

The conformal group is the most general set of transformations preserving
ratios of infinitesimal lengths. On a 4-D spacetime this group is 15 dimensional,
with Lorentz transformations (6), translations (4), 4 inverse translations (special
conformal transformations), and dilations (1). One concentrates on flat situa-
tions and develops biconformal structure as a conformal fiber bundle. This is
constructed as the quotient C/C0 of the conformal group by its isotropy subgroup
(7-D homogeneous Weyl group) producing a conformal Cartan connection on an
8-D manifold; this is then generalized to a curved 8-D manifold with the 7-D ho-
mogeneous Weyl group as fiber by the addition of horizontal curvature 2-forms
to the group structure equations. The resulting 8-D base manifold is called a
biconformal space and the full 15-D fiber bundle the biconformal bundle. We
will try to illustrate this via the equations. One uses the O(4, 2) representation
of the conformal group for notation where (A,B, · · · ) = (0, 1, · · · , 5). Then the
O(4.2) metric is ηab = diag(1, 1, 1,−1) (a, b = 1, · · · , 4) with η05 = η50 = 1 and all
other components are zero. Introducing a connection 1-form ωA

B one has covariant
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constancy via

(E.1) DηAB = dηAB − ηCBωC
A − ηACωC

B = 0

The conformal connection may be broken into 4 independent Weyl invariant parts,
the spin connection ωa

b , the solder form ωa
0 , the co-solder form ω0

a, and the Weyl
vector ω0

0 where the spin connection satisfies ωa
b = −ηbcη

adωc
d and the remaining

components of ωAB are related via

(E.2) ω5
0 = ω0

5 = 0; ω5
5 = −ω0

0 ; ωa
5 = −ηabω0

b ; ω5
a = −ηabω

b
0

These constraints reduce the number of independent connection forms ωA
B to the

required 15 and one can run A,B · · · from 0 to 4 (with 5 implicit). The structure
constants of the conformal Lie algebra now lead immediately to the Maurer-Cartan
(MC) equations of the conformal group as dωA

B = ωC
BωA

C (wedge product is ass-
sumed) or written out

(E.3) dωa
b = ωc

bω
a
c + ω0

bωa
0 − ηbcη

adω0
dωc

0;

dωa
0 = ω0

0ωa
0 + ωb

0ω
a
b ; dω0

a = ω0
aω0

0 + ωb
aω0

b ; dω0
0 = ωg

0o0
a

Note that d in (E.2) includes partial derivatives in all eight of the base space
directions and when using coordinates one will write (xµ, yν) corresponding to
index positions on (ωb

0, ω
0
b ). Also ∂µφ = ∂φ/∂xµ while ∂µφ = ∂φ/∂yµ. The

generalization of (E.3) to a curved base space is obtained via

(E.4) dωa
b = ωc

bω
a
c + ω0

bωa
0 − ηbcη

adω0
dωc

0 + Ωa
b = ωc

bω
a
c + ∆da

bc ω0
dωc

0 + Ωa
b ;

dωa
0 = ω0

0ωa
0 + ωb

0ω
a
b + Ωa

0 ; dω0
a = ω0

aω0
0 + ωb

aω0
b + Ω0

a; dω0
0 = ωa

0ω0
a + Ω0

0

One calls the four types of curvature Ωa
b , Ωa

0 , Ω0
a, Ω0

0 the Riemann curvature,
torsion, co-torsion, and dilational curvature respectively. Horizontality requires
each of the curvatures to take the form

(E.5) ΩA
B = (1/2)ΩA

Bcdω
c
0ω

d
0 + ΩAc

Bdω
d
0ω0

c + (1/2)ΩAcd
B ω0

cω0
d

The connection of a flat biconformal space is in the standard flat form when
written as

(E.6) ω0
0 = αa(x)dxa − yadxa ≡Wadxa; ωa

0 = dxa;

ω0
a = dya − (αa,b + WaWb − (1/2)W 2ηab)dxb; ωa

b = (ηacηbd − δa
dδc

b)Wcdxd

Note that the Weyl vector Wa = αa(x)− ya depends on an arbitrary 4-vector αa

and also on the 4 coordinates ya; the presence of αa gives the generality required
for the EM vector potential while the ya keeps the dilational curvature zero. In
general the dilational gauge vector of biconformal space is of the form

(E.7) ω0
0 = ω0

0µ(x, y)dxµ + ω0µ
0 (x, y)dyµ

(i.e. an 8-D vector field depending on 8 independent variables) but constraining the
biconformal geometry to have vanishing curvatures forces ω0

0 = (αµ(x) − yµ)dxµ

which is precisely the form required to give the Lorentz force law. Then one proves
in [994] that when the curvatures of biconformal space ΩA

B = 0 there exist global
coordinates xa, ya) such that the connection takes the standard flat form.

Note in (E.6) if one holds the y coordinates fixed then equations 1,2,4 are
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the connection forms for a 4-D Weyl spacetime with conformally flat metric ηab;
the remaining equation 3 is then simply a 1-form constructed from the Weyl-Ricci
tensor. However the dilational curvature of a 4-D Weyl geometry is given by the
curl of the Weyl vector, equivalent here to the curl of the arbitrary αa, and viewed
from the Weylian 4-D perspective the solution gives unphysical size change; it is
only with the inclusion of the additional momentum variables proportional to ya

that the dilational curvature can be seen to vanish. It is thus seen that the actual
motion of a particle in biconformal space is 8 dimensional and one can in fact
interpret biconformal space, and therefore conformal gauge theory, as a general-
ization of phase space (with symplectic structure). Indeed for a given Hamiltonian
system one can specify a unique flat biconformal space by judicious choice of the
solder and co-solder forms (see [994] for details); in particular the extra 4 dimen-
sions are identified with momenta and the integral of the Weyl vector is identified
with action. In order to make a full identification of a biconformal space with an
Einstein-Maxwell spacetime one can proceed as follows. The idea is that the solder
form should satisy the Einstein equations with arbitrary matter as source and the
vector potential obtained via αa = q(φ,−Ai) = −qAa should satisfy the Maxwell
field equations with arbitrary EM currents. One assumes for example that the
torsion is zero (but not the cotorsion) leading to constraints Ω0

0 = 0 and Ωa
0 = 0

and, setting ωa
0 = ea, one wants a completion fa to the ea basis in which Ωa

bac = 0.
Further one posits two field equations ∗d ∗ dω0

0 = J = Ja(x)ea and ω0
a = Ta + · · ·

where Ta = −(1/2)(Tab − (1/3)ηabT )eb. This can all be achieved and leads to the
general identification stated above (cf. [994]).

Now to set the stage for [35] and connections to QM we gather the material
from the appendices to [35] (where the formulation is different). The conformal
group generators include Lorentz transformations Ma

b = −MbaηacM
c
b , transla-

tions Pa, special conformal transformations Ka, and dilatations D satisfying the
commutation relations

(E.8) [Ma
b,M

c
d] = −(δc

bM
a
d + ηdfηacMf

b + ηbdη
aeM c

e − δa
dM c

b);

[Ma
b, Pc] = −(ηcbη

adPd − δa
c Pb); [Ma

b,K
d] = −(δd

b δa
c − ηadηbc)Dc;

[Pa,Kb] = 2M b
a − 2δb

aD; [D,Kb] = Kb; [D,Pa] = −Pa

(note dilatation corresponds to dilation and both terms seem to be popular). The
conformal Lie algebra has two independent involutive automorphisms; the first is

(E.9) σ1 : (Ma
b , Pa,Ka, D) → (Ma

b ,−Pa,−Ka, D)

and this identifies the invariant subgroup used as the isotropy subgroup in the
bicomformal gauging. The second is

(E.10) σ2 : (Ma
b , Pa,Ka, D) → (Ma

b ,−ηabK
b,−ηabPb,−D)

and may be chosen to be complex conjugation in order to define what are called σC

representations of the algebra. Thus if we assume the generators to be complex,
σC representations have Pa and Ka as complex conjugates, while Ma

b is real and
D pure imaginary. As an illustration note that while both so(3) and su(2) have
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involutive automorphisms the existence of a σC representation singles out su(2).
Thus while

(E.11) [Ji, Jj ] = εijkJk; [τi, τj ] = εijkτk

are both invariant under

(E.12) ρ : (J1, J2, J3) → (−J1, J2,−J3); (τ1, τ2, τ3) → (−τ1, τ2,−τ3)

where [Jj ]ik = εijk and τj = −(i/2)σj (σj being the Pauli matrices - cf. (B.25)) it is
only with the complex representation that ρ = ρC : (τ1, τ2, τ3) = (−τ1, τ2,−τ3) =
ρ(τ1, τ2, τ3). As examples of conformal representations with this property first
consider the covering group SU(2, 2), whose Lie algebra is isomorphic to that
of O(4, 2). Due to the local isomorphism between Spin(4, 2) and SU(2, 2) this
algebra can be represented via spinors. Thus using 4 × 4 Dirac matrices γa one
can write su(2, 2) via

(E.13) {γa, γb} = 2ηab = 2diag(−1, 1, 1, 1) (a, b = 0, , 1, 2, 3)

One also defines

(E.14) σab = −(1/8)[γa, γb]; γ5 = iγ0γ1γ2γ3

where the full Clifford algebra has the basis

(E.15) Γ = {1, i1, γa, σab, iσab, γ5γ
a, iγ5γ

a, γ5, iγ5}

The conformal Lie algebra may be obtained from this set be demanding invariance
of a spinor metric Q given by Q = iγ0. Then if one requires QΓ + Γ†Q = 0 the
generators of the conformal Lie algebra are (cf. [35])
(E.16)
Ma

b = ηbcσ
ac; Pa = (1/2)ηab(1 + γ5)γb; Ka = (1/2)(1− γ5)γa; D = −(1/2)γ5

Choosing any real representation for the Dirac matrices γ5 is necessarily imaginary
and it follows that

(E.17) M̄a
b = Ma

b; P̄a = ηabK
b; D̄ = −D

so the action of σC is realized. Alternatively one may consider a complex function
space representation of the conformal algebra via

(E.18) Mµ
ν = −1

2

(
zµ ∂

∂zν
+ z̄µ ∂

∂z̄ν
− zν

∂

∂zµ
− z̄ν ∂

∂z̄µ

)
;

D = zµ ∂

∂zµ
− z̄ν ∂

∂z̄ν
; Pµ =

∂

∂zµ
+
(

z̄µz̄ν − 1
2
z̄2δν

µ

)
∂

∂z̄ν
;

Kµ =
∂

∂z̄µ
+
(

zµzν − 1
2
z2δν

µ

)
∂

∂zν

Note the generators are complex but the group manifold is real. In either of these
representations the Maurer-Cartan (MC) equations inherit the same symmetry
under σC and in particular the gauge vector of dilatations (the Weyl vector) is
imaginary. To clarify this one shows that the dilatations generated by an imaginary
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D nevertheless give a real factor as expected. Thus first consider su(2, 2) with a
basis of Dirac matrices in which

(E.19) D = −1
2
γ5 = −1

2

(
−σy

σy

)
; σy =

(
−i

i

)
Define the definite conformal weight spinors χA, ψB via

(E.20) Dχ = (1/2)χ; Dψ = −(1/2)ψ; eλDχ = eλ/2χ; eλDψ = e−λ/2ψ

For the complex function space representation of the conformal group (E.18) one
has (for one variable z = rexp(iφ))

(E.21) D ∼ −i
∂

∂φ

so D measures the phase of a complex number. Homogeneous functions of z and
z̄ are then eigenfuncitons and D measures the degree of homogeneity. Thus if
f(z, z̄) = zaz̄b there results exp(λD)f(z, z̄) = exp[(a − b)λ]f(z, z̄) so there are
dilatations with the weight of the function encoded into the total phase. Similarly
in multiple complex dimensions eigenfunctions can be built up from powers of the
norms

(E.22) fα−β = (
√

z2)α(
√

z̄2)β ; Dfα−β = D(z2)α/2(z̄2)β/2 = (α− β)fα−β

Note that zaz̄a is of weight zero with D(zaz̄a) = 0.

Gauge transformations will remain real even though there is a complex valued
connection. A local gauge transformation is given via

(E.23) Λ = Ma
bΛ

b
a + DΛ0

Note Λ is complex, since Λb
a, Λ0 are real parameters used to exponentiate the

generators M (real) and D (imaginary), and it follows that a gauge transformation
of the Weyl vector is δω = −dΛ0 where Λ0; one can then define a scale covariant
derivative of a definite weight scalar field via

(E.24) Df = df + kωf

where k is the conformal weight of f . To see that this is a gauge invariant expres-
sion one takes a dilatational gauge transformation

(E.25) f ′ = fexp(kΛ0); ω′ = ω + δω = ω − dΛ0

which implies

(E.26) D′f ′ = d(fexp(kΛ0)) + k(ω − dΩ0)f = exp(kΛ0)Df

Thus the equation is covariant and the MC structure equations are invariant un-
der real scalings. Of course in generic gauges the Weyl vector is complex but
the invariance fo the structure equations under gauge transformations guarantees
consistency. Note also that whether the Weyl vector is complex or pure imaginary
exp(

∮
ω) remains a pure phase since the Weyl vector is pure imaginary in at least

one gauge and the above expression is gauge invariant. Finally one writes the
Cartan structure equations for flat σC biconformal space via

(E.27) dωa
b = ωc

bω
a
c + 2ωbω

a; dωa = ωcωa
c + ωωa; dω = 2ωaωa
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(and their conjugates); here ωa corresponds to translation generators, ω is the
Weyl vector, and ωa

b is the spin connection. A first order perturbative solution is

(E.28) ωa
b (δa

e ηcb − δa
c ηeb)xcdxe + (δa

e ηcb − δa
c ηeb)ycdye;

ω = i(yadxa − xadya); ωa = {dxa + idya+

+
(
−1

2
xaxe +

i

2
(δa

e xcy
c − xaye) +

1
2
yaye

)
(dxe − idye)}
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[104] K. Berndl, D. Dürr, S. Goldstein, G. Peruzzi, and N. Zanghi, Comm. Math. Phys.,

173 (1995), 647-673 (quant-ph 9503013)
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[329] D. Dürr, S. Goldstein, and N. Zanghi, quant-ph 9512031; Bohmian mechanics and

quantum theory, J. Cushing, et al (editors), Kluwer, 1996, pp. 21-44
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[704] H. Nikolić, Int. Jour. Mod. Phys. D12 (2003), 407-444 (hep-th 0202204); Phys.

Lett. B, 527 (2002), 119-124 (gr-qc 0111024) and 529 (2002), 265
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velocity, 12, 15, 19, 285

Compton time, 153

wave length, 57, 127, 152

configuration information entropy, 8

conformal factor, 96, 99

fibre bundle, 405

gauge theory, 138

general relativity, 111

geometry, 104

group, 138

Lie algebra, 407

transformation, 96, 405

weight, 409

congruence of curves, 121

coherent state, 250

connection, 405

coefficients, 91

one form, 405

Connes Moscovici algebra, 340

conserved current, 41

consistent formulation of gravity, 108, 110,

286

constraint algebra, 158, 173

continuity equations, 6, 9, 51, 54, 80, 94,

117, 162, 197, 20, 299

Copenhagen, 172

coproduct, 319, 331

coquasitriangular structure, 327

Coriolis force, 302

cosmic matter, 148

cosmological constant, 99, 127,, 144

cosolder form, 406

Coulomb gauge, 47, 216, 222

self interaction, 223

counit, 329

coupling identity, 322

covariance matrix, 198, 200

covariant conservation law, 57

derivative, 46, 56, 114

Cramer-Rao inequality, 6, 117, 245

creation, 11, 65, 229, 277, 326

of particles, 153

cross entropy, 118

current, 5, 60, 64

curvature tensor, 93, 144

Darboux theorem, 140

dark matter, 61, 151, 156

Davies Unruh effect, 205

deBroglie Bohm (dBB), 63

deBroglie wave length, 127, 151

decoherence, 172

deDonder Weyl canonical form, 373

formalism, 71

density, 5

operator, 240

matrix, 249

deWitt metric, 181, 287

diffeomorphism constraint, 163, 167

differential entropy, 239, 244

diffusion current velocity, 10

process, 12

dilatation (dilation), 138, 405

dilatational curvature, 138, 406

gauge transformation, 409

generator, 139

operator, 126

dilaton, 111

Dirac aether, 207

algebra, 389

equation, 47, 383
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dual tensor, 380

gauge function, 145

quantization, 292

Weyl action, 289, 397

Weyl geometry, 290

dissipative device, 37

distribution (Schwartz), 34

Doppler shift, 209, 228

double slit experiment, 78

dust dominated era, 148

Dynkin diagram, 352

effective field theory, 201

Hamiltonian, 254

mass, 64

effectivity, 64, 68

Ehrenfest equations, 3, 253

Einstein aether, 307

field equations, 201, 282, 287, 311

frame, 104

gauge, 145

Hilbert action, 388, 391

Maxwell spacetime, 407

tensor, 98, 145, 387

electromagnetic (EM) tensor, 45, 60, 97

field strength, 144

emergence, 152

emergent symmetry, 77

energy bounded below, 41

entropy balance, 256

momentum, 20

ensemble, 97, 191

average, 124

entropy, 119, 278

balance, 9

equipartition, 257

equivariance, 67, 80, 288

equivalence principle, 48, 50, 52, 55, 278

equivariant jump rates, 85

ergodic clump, 40

escort density operator, 256

probability, 257

Euler angles, 301, 305

equation, 2, 11, 276

Lagrange equations, 21, 296

Eulerian density, 299

velocity, 299

exact uncertainty, 7, 190, 289

extreme physical information (EPI), 263,
265

extremal motion, 138

extrinsic curvature, 157, 172

F continuous, 33

integrability, 32, 33

Faa da Bruno algebra, 339

factor ordering, 173

Feynman path integral, 136

propagator, 322, 328

quantum rules, 120

Fick law, 10

field redefinition, 221

theory, 20

finite particle vector, 328

Fisher Euler theorem, 270,

information, 10, 151, 238, 240, 242, 247,
24, 276, 285, 293

information matrix, 8, 118

information measure, 241, 248

length, 117

metric, 190, 245

temperature, 263

time, 262

flat biconformal space, 406

Floydian time, 5, 40, 49

flux density, 29

Fock space, 229, 341, 348

Fokker-Planck equation, 9, 15, 136

foliation, 74

forward derivative, 28

mean velocity, 15

fractal dimension, 15, 126

geometry, 126

path, 25

spacetime, 22, 130

spray, 26

string, 26

fractional derivative, 30

free energy, 50

fall, 130

free bialgebra, 338

coproduct, 336

fermions, 341, 348

Friedman Robertson Walker (FRW) line
element, 148

universe, 185, 288

Frobenius integrability condition, 366

Fubini Study metric, 231, 237

fuzzy, 37, 40

gamma matrices, 48

dependence, 134

freedom, 135

transformation, 93

vector, 115

gauge constraint, 163

Gauss constraint, 162

Codazzi equations, 387

law, 223

Gaussian, 237, 249
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equivalence principle, 101

Legendre transformation, 369

momentum, 135

Schrödinger equation, 22

tau function, 342

thermodynamic potential, 270

generating function, 358

geodesic equation, 16, 126, 155

geometric phase, 291

Gibbs canonical distribution, 247

ensemble, 120

golden ratio, 23

graded bialgebra, 338

gradient condition, 113

grading, 336

Grassman fields, 66

number, 65

manifold, 350

gravitational mass, 205

gravity quantum interaction, 100

guidance equation, 76, 161, 174

Hamiltonian constraint, 162, 167

vector field, 234

Hamilton Jacobi equation (HJE), 62, · · ·
Hamilton’s principal function, 49, 140

Hartree equation, 156

Hausdorff dimension, 14, 23, 25

Hawking radiation, 59

heat kernel regularization, 167

Heisenberg algebra, 342, 345, 363

equation, 48

picture, 62

helicity 228

equation, 211

state, 229

Helmholz conservation law, 242

free energy, 243, 268

Hermite function, 62

Hermitian metric, 233

hidden variables, 79, 315

Higgs field, 149, 206

Hirota bilinear identity, 342, 351

formulas, 319

Miwa variables, 343

Hodge star operator, 45, 387

Hopf algebra, 320, 339

horizontal curvature, 401

Hubble constant, 149, 153

Hurst exponent, 26

hydrodynamics, 2, 276, 293

hydrodynamical model, 28

hydrostatic potential, 17

pressure, 18

hypergeometric series, 345

inertial mass, 101, 152, 205

information, 118

demon, 265

entropy, 10, 243, 253

independence, 191, 198

in-geodesic, 403

invariant, 143

tensor, 398

integrable spacetime, 144

structures, 234

systems, 353

Weyl connection, 120

Weyl Dirac geometry, 143, 148, 289

integral curves, 71

manifold, 367, 371

interacting quantum fields, 331

internal energy, 296

Hodge dual, 392

stress tensor, 29

angular momentum, 305

intertwining, 349

intrinsic curvature, 172

information, 266

invariance, 191, 198

irrotational, 297

Jack polynomial, 342

Jackson derivative, 261

Jacobian, 50, 51, 125, 303

joint EM density, 145

probability density, 112

Jordan frame, 104

product, 232, 236

jump, 79, 83

KP hierarchy and theory, 342, 351

Kähler function, 233

geometry, 286

isomorphism, 235

manifold, 233

space, 231

Kaluza Klein, 132

Kaniadakis entropy, 256

Kantowski Sachs universe, 181, 182

Kepler potential, 156

kinematic pressure, 17

Klein Gordon equation, 41, · · ·
Kolgomorov representation, 82

Sinai entropy, 253

Kullback entropy, 241

Leibler entropy, 264

Lagrangian flow equations, 304

Laguerre polynomial, 156
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Langevin equation, 224
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pairing, 330

rules, 120
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Lax operator, 50

Legendre duality, 49

transformation, 268, 271, 308, 367

Leibnitz relation, 324

Lepage method, 367

equivalence relation, 368
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tensor, 136

Levy Leblond phase, 292

Lichnerowicz York metric, 162

Lie derivative, 366

LieWehrl bound, 252

likelihood function, 246

linear SED, 221

linearized aether stress tensor, 219

Einstein tensor, 219

London equation, 137

loop quantum gravity, 393

Lorenz boost, 43

force, 204, 402

gauge, 220

group, 43

invariance, 42, 46, 94

metric, 379

symmetry, 218

transformation, 138

violation, 218, 220

Lyapunov coefficient, 262

exponent, 255

spectrum, 252

Macdonald function, 355

Mach’s principle, 153

macrogravitational coupling constant, 155

Madelung, 2, 4, 112

manifest covariance, 88

many fingered time, 87

worlds, 172

Markov chain, 81

process, 81

wave equation, 11

mass function, 31

generator, 52

of universe, 153

massless Dirac equation, 211

KG equation, 307

particle, 210

matrix model, 357

matter creation, 147

Maurer Cartan equations, 406, 408

maximum entropy, 245

Maxwell equations, 45, 93,· · ·
metric redefinition, 221

tensor, 283

microstate, 52, 315

minimal free generator, 86

minimum Fisher information, 269
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Misner parametrization, 182

Möbius transformation, 49

modified Einstein equations, 97, 161, 282,
286

momentum fluctuation, 192

potential, 117, 197

Moyal bracket, 184

product, 288

Navier Stokes equations, 17, 29

neutrino, 218

Newton constant, 171

equation, 28

law, 153

Nijenhuis tensor, 231

Noether current, 213

theorem, 4

noncommutative geometry, 151

Schrödinger equation, 178

nonequilibrium system, 251

nondifferentiable, 16, 27, 278

nonlinear Schrödinger equation (NLSE), 4,
18, 20, 245
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ordering, 42, 56

product, 321, 326, 329

normalizable, 43

normalization, 44

observable, 61

operator ordering ambiguity, 165

product, 320, 357

orbitals, 156
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279

Palatini action, 390, 391

parallel transport, 46, 105

particle current, 57, 60

partition function, 251, 357

path space, 121

integral, 134

Pauli matrices, 408



442 INDEX

perfect, 31, 34

Pesin theorem, 262
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phase space distribution, 250

transition, 247

photon, 227

equation, 210, 312

tensor, 227

physical metric, 109

pion, 153

pilot equation 76

wave cosmology, 169

Pinter Hopf algebra, 340

identity, 325

Planck constant, 194, 225, 226, 236, 246

length, 40, 127

scale, 153

Planckian constant, 194

cosmic egg, 148

Poincaré invariant, 94

lemma, 365

Lie algebra, 138

Poisson bracket, 155, 158

polarization, 212

positive operator valued measure, 85

power absorbtion, 242

law, 126, 255
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removal, 242

Poynting vector, 204, 301

preferred reference frame, 220
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prePlanckian period, 148

prepotential, 50, 308

pressure, 2, 296

probability density, 6

projection valued measure, 79, 85

projective Hilbert space, 233

pseudodifferential operator, 347
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pure states, 235

quantization, 8, 119

quantum action, 256

chaos, 255

cosmology, 171, 188, 286

effects of matter, 96

Einstein equations, 160, 285

Einstein Hamilton Jacobi equation, 162
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equilibrium condition, 170

equilibrium density, 6, 41

equilibrium distribution, 77

equilibrium hypothesis, 6, 41, 77
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field theory, 42, · · ·
fluctuations, 66, 151

fluid, 4

force, 45, 111, 282, 283, 293

fractal, 34, 36
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group, 319, 327
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momentum fluctuations, 6
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regularization, 164
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quantum potential, 279
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Wooters information, 264
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Ricatti equation, 270
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Rolle’s theorem, 33
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tensor theory, 282
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Schwarzian connection, 49

derivative, 49
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second quantization, 41

self dual action, 391
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Shannon entropy, 239
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shift functions, 157, 285, 289

singularity, 175
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two point function, 59

uncertainty, 53, 98, 141, 178, 203

universal enveloping algebra, 352
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energy, 61, 208, 350

expectation, 230

state, 229

state, 342

van der Waals binding, 205

vector constraint, 162

velocity boost, 40

Verma module, 352
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