
Chapter 4

APPLICATIONS

4.1 Optical Phenomena in Clouds

4.1.1 Corona

Sky under extended cloudiness looks grey with a uniform variation of trans-

mitted light intensity. Isolated clouds look white on the background of a blue sky.

This whiteness is primarily due to nonselective light scattering by water droplets

in the visible. The solar light is composed of a mixture of waves having vari-

ous wavelengths. A prism can divide the sunlight beam in a continuous colour

spectrum. This is due to the change of the refractive index of the prism with the

wavelength. Interestingly, clouds can also exhibit spectrally selective scattering if

special conditions are met. In particular, coloured rings can appear in some ob-

servation directions. These phenomena are rather easily observed for thin clouds.

Thick clouds are characterized by multiple light scattering, which reduces possible

spectral variations of light scattered by single water droplets.

A typical example of an optical phenomenon associated with thin clouds is

the corona. A corona appears as a sequence of coloured rings around a white light

source observed through a cloud. These rings are most often observed at night

in sunlight reflected from the Moon and passed through a thin cloud on its way

to the detector or towards an observer’s eye. The brightness of the background is

low at night and the phenomenon is easily observed. Also the observation of the

moonlight is not harmful for the human eye as compared to the direct observation

of sunlight, even if seen through a thin cloud.

The corona can be fully described using the Mie theory for monodispersed

droplets or polydispersions having very small coefficients of variance. Clouds with
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large variations of droplet sizes produce the colourless corona, which is due to

enhanced light scattering for small scattering angles. The information on the size

of droplets can in principle be obtained using measurements of the angular light

distribution in the corona. In particular, smaller droplets generally produce a more

extended solar corona as compared to larger droplets. A simple Fraunhofer diffrac-

tion theory can be used to understand the phenomenon. It has been shown above that

angular distribution of light intensity I (θ ) scattered by a single spherical droplet at

small angles θ � 1 is described by the following function:

I (θ ) = k2a2 J 2
1 (z)

θ2
I0, (4.1)

where I0 is the intensity of incident light, J1 is the Bessel function, a is the radius of

a droplet, and k = 2π
/
λ, λ is the wavelength, and z = ka sin θ ≈ kaθ as θ → 0.

In particular, we have at θ = 0:

I (0) = k4a4

4
, (4.2)

where we used the following property of the Bessel function: J1(x) ≈ x/2 as

x → 0. Also we have for the dimensionless Mie intensity i(θ ) in the framework of

this approximation:

i(θ ) = x4 J 2
1 (z)

z2
. (4.3)

It follows from this equation that the intensity of scattered light in the forward

direction is proportional to the squared geometrical cross-section of the particle

and it is inversely proportional to the fourth power of the wavelength. So incident

light with a smaller wavelength produces a brighter central core as compared to

incident light having a larger wavelength. The Bessel function J1(z) (and, therefore,

the function I (θ )) oscillates with θ . Zeros of the Bessel function J1(z) are located

at z equal to 3.8317, 7.0156, 10.1735, 13.3237, and 16.4706. Therefore, at these

angles dark circles in the Fraunhofer pattern are expected. We have for the angular

position θmin of the first dark ring:

θmin = 3.8317

ka
. (4.4)

It follows that this angle decreases with a. However, it increases with λ. These basic

rules also hold for other minima and maxima. This means that the inner part of

every circle in the diffraction pattern for white light illumination conditions must

be bluish as compared to the reddish colour of the outer part of each diffraction

ring. The first three maxima of the diffraction pattern are located at z equal to

5.1365, 8.4163, and 11.5925, respectively. Therefore, the angular position of the
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first bright ring θmax is given by

θmax = 5.1365

ka
(4.5)

or

θmax = 0.8175λ

a
. (4.6)

Again we see that red light maxima are shifted to outer parts of the rings.

This is actually what is observed in a corona. In particular, taking a = 6 μm, we

obtain θmax = 3.1◦, 3.9◦, and 5.5◦ at λ = 0.4, 0.5, and 0.7 μm, respectively. How-

ever, it should be noted that in reality angles θmin and θmax are shifted from the

values given above. This is referred to as the anomalous diffraction phenomenon.

The effect is explained by the fact that the Fraunhofer diffraction gives only the

first coarse approximation to the reality. As a matter of fact the Mie theory should

be used for an accurate simulation of the corona. Then one has a possibility to

account for contributions not only by diffracted but also by reflected and refracted

light beams in a given scattering direction.

We show the phase function of a spherical water droplet calculated using Mie

theory at a = 100 μm, λ = 0.5 μm, and n = 1.33 in Fig. 4.1. It follows that posi-

tions of maxima and minima coincide with those calculated using the Fraunhofer

diffraction theory given above. In particular, it follows from the Fraunhofer theory

that that minima must be located at 0.19◦, 0.35◦, 0.51◦, 0.67◦, and 0.83◦. The po-

sitions of the first three maxima are at 0.26◦, 0.42◦, and 0.58◦ for the case studied.

These numbers coincide with those obtained from Mie theory (see Fig. 4.1). So

both the Fraunhofer theory and the Mie theory can be used to predict the positions

of minima and maxima for large spherical particles. These positions can be used

for optical droplet sizing.

Note that the polarization of scattered light is low at small scattering angles.

4.1.2 Glory

Glory or anticorona appears at scattering angles close the backward direction

particular, he showed that the scattered light intensity Isca(θ ) can be described as:

Isca(θ, a) = (
c1 J 2

0 (ka(π − θ )) + c2 J 2
2 (ka(π − θ ))

)
x2 I0, (4.7)

where constants c1 and c2 depend on the refractive index of particles and their size.

Interestingly, the anticorona is much more robust to the change of the coefficient

θ =π . The physical mechanism behind the glory occurence is the interference of back-

scattered rays. An approximate theory has been proposed by van de Hulst (1981). In
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Fig. 4.1. Phase function of a water droplet having the radius 100 μm at λ = 0.55 μm. Only the

small angle scattering region is shown.

of variance of the droplet size distribution as compared to the corona. In particular,

it exists for relatively broad size distributions.

Let us generalize the van de Hulst’s equation for the anticorona to the polydis-

persed case. Then it follows for the average intensity:

Īsca(θ ) =
∫ ∞

0

Isca(θ, a) f (a) da (4.8)

or approximately

Īsca(θ, a) = (
c∗

1 J 2
0 (kã(π − θ )) + c∗

2 J 2
2 (kã(π − θ ))

)
I0, (4.9)

where we used the approximation:∫ a2

a1

φ(ζ ) f (ζ ) dζ = f (a3)

∫ a2

a1

φ(ζ ) dζ, (4.10)
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with a3 ∈ [a1, a2] and

c∗
j = k2

∫ ∞

0

a2c j (a) f (a) da, j = 1, 2. (4.11)

Therefore, we have for the phase function:

p(θ ) = p(π )J 2
0 (ka3(π − θ )) + q J 2

2 (ka3(π − θ )) . (4.12)

Parameters a3 and q can be found fitting Eq. (4.69) with the use of Mie calculations.

Also, we have used the fact that J0(0) = 1, J2(0) = 0. The value of a3 is generally

unknown. Let us assume that a3 = aef. Then it follows:

p(θ ) = p(π )J 2
0

(
kaef (π − θ )

) + q J 2
2

(
kaef (π − θ )

)
. (4.13)

Therefore, we might expect that the phase function must depend mostly on the

scaling parameter

z = (π − θ )kaef. (4.14)

ef

λ = 0.532 μm is shown in Fig. 4.2. Points give results according to the approximate

equation given above at q = 4.0, p(π ) = 0.62. It follows that p(θ ) depends mainly

on the parameter z, although there is a spread depending on the effective radius.

The phase function in the exact backward direction p(π ) is almost insensitive to

the value of aef and close to 0.62 at aef = 4 μm. There is a maximum of the phase

function at zmax ≈ 3 at aef = 16 μm. The angular position of the maximum θmax

values of zmax for smaller particles. It follows, therefore:

θmax ≈ π − 3λ

2πaef
. (4.15)

This means that shorter wavelengths produce larger values of θmax making the

inner region of the glory ring related to the second maximum bluish. The outer

Mie calculations (see Fig. 4.3). It follows from Fig. 4.2 that the value of the phase

function in the maximum decreases with aef in the range of parameters studied.

The accuracy of Eq. (4.13) decreases with z. The approximation can not be used

at z > 2.0. However, the multiplication of the second term in Eq. (4.13) by ν =
exp(−0.07z) extends the applicability of the approximation till z = 4. Therefore,

the approximation can be used, e.g., in conjunction with analytical results of laser

sounding theory (Katsev et al., 1998).

We show the phase function p(θ ) for several wavelengths at aef = 6 μm in

Fig. 4.3. It follows from Figs. 4.2 and 4.3 that glory rings can be used for optical

The dependence of the phase function on the value of z at a = 4(2)16 μm and

parts of the ring appear reddish. This is also confirmed by the experiments and by

only weakly depends on the size of particles for a given wavelength with smaller
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Fig. 4.2. Phase function of a water cloud at λ = 532 nm, aef = 4, 6, 8, 10, 12, 14, 16 μm as

the function of the scaling parameter z. Points show the results using the approximate formula.

particle sizing techniques. Also we see that glory (although invisible to the hu-

man eye) exists in the infrared as well. The degree of light polarization in glory

under solar light illumination conditions is shown in Fig. 4.4. It is interesting that

the degree of polarization changes its sign. The neutral point, where the degree

of linear polarization vanishes, depends on the wavelength. The angular position

of this point θn is closer to the backward direction for smaller wavelengths (or

larger droplets). The degree of linear polarization in the vicinity of the backward

direction θ ≈ π is positive with larger values for larger effective size parameters

xef = 2πaef/λ (oscillations are in predominantly in the plane perpendicular to the

scattering plane). The degree of polarization is equal to zero at θ = π. The nor-

malized phase matrix element p34 shown in Fig. 4.5 describes the linear-to-circular

polarization mode conversion (Kokhanovsky, 2003a). It gives the degree of circu-

lar polarization of scattered light under linearly (the azimuth 45◦) polarized light

illumination conditions. It follows that the circular polarization of glory for linearly
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Fig. 4.3. Phase function of a water cloud at λ = 0.532, 1.064, 1.64 and 2.13 μm aef = 6 μm

as the function of the scattering angle in the glory region.

frared). The circular polarization also changes its sign in the glory region. The pul-

sations of circular polarization as shown in Fig. 4.5 can be used for optical particle

sizing.

The normalized phase matrix element p44 shown in Fig. 4.6 describes the

degree of circular (e.g., lidar) polarization for scattered light under circular light

polarization conditions. We see that the degree of circular polarization is close

to −1 for angles θ → π . This means that the backward scattering (θ ≈ π ) does not

change the absolute value of the circular polarization. However, the rotation of the

electric vector is reversed. So the scattering at θ = π can be used in technological

applications to switch the rotation direction of the electric vector. The position of the

neutral point is closer to the backward scattering direction for shorter wavelengths

and larger particles. This can be used for optical particle sizing using circularly

polarized light beams.

(e.g., lidar) light illumination conditions can be quite large (especially in the in-
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Fig. 4.4. The same as in Fig. 4.3 except for the degree of polarization.

4.1.3

Perhaps the best known and most familiar optical effect associated with clouds

is that of the rainbow. The rainbow occurs due to the interference of rays reflected

one or several times inside the droplet. Mie theory is capable to describe main

features of the rainbow with a high accuracy. However, we will begin by providing

some insights using the geometrical optics approximation. In particular, simple

geometrical optics calculations give the following expression for the scattering

angle of a singly internally reflected ray:

θr = π + 2(ϕ − 2ψ), (4.16)

where ϕ is the incidence angle and ψ is the refraction angle. Let us consider the

Rainbow
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Fig. 4.5. The same as in Fig. 4.3 except for the element p34.

derivative of θr with respect to the incidence angle. Then it follows that

dθr

dϕ
= 2 − 4

dψ

dϕ
(4.17)

or

dθr

dϕ
= 2 − 4

cos ϕ

n cos ψ
, (4.18)

where n is the refractive index and we used the Snellius law:

sin ϕ = n sin ψ. (4.19)

It follows that θ takes a minimal value at

ϕr =
{√

n2 − 1

3

}
. (4.20)arccos
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This means that a lot of incident rays will contribute in the correspondent scattering

direction. This will lead to brightening of the sky in the direction of rainbow.

In particular, we have at λ = 0.5 μm and n = 1.333: ϕ ≈ 59◦, and, therefore,

θr = 139◦. Therefore, to observe a rainbow, one should have a light source behind

and look in the direction that makes a scattering angle of 139◦.

Clearly, the same angle can be achieved for different azimuths. It will produce

a characteristic feature known as the rainbow. As was noted above the angle ϕ

depends on n, which means that both ϕ and θ depend on λ due to the wavelength

dependence of n. In practice, this leads to the separation of colours in the rain-

bow. Because n slightly decreases with the wavelength for water in the visible, ϕ

and θ decrease as well. Therefore, the outer parts of rainbow must be reddish in

colour.
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Quite often the secondary rainbow is observed. This rainbow originates due to

double internally reflected light beams. Therefore, it is weaker in brightness than

the primary rainbow. It follows for the scattering angle associated with two-times

internally reflected rays:

θ ′
r = 2(ϕ − ψ). (4.21)

Repeating the same procedure as above, we obtain that the derivative of this angle

vanishes at {√
n2 − 1

4

}
(4.22)

This gives that θ ′
r = 129 degrees at n = 1.33. Therefore, the secondary rainbow is

observed at smaller scattering angles than the primary rainbow.

The accurate angular positions of maxima of light in a rainbow are given by

the Mie theory. We show a characteristic rainbow pattern calculated with the Mie

theory at aef = 6 μm and several wavelengths in Fig. 4.7. It follows that the rainbow

maximum moves to smaller scattering angles for smaller wavelengths (or smaller

droplets, see Fig. 4.8). This leads to the reddish colour of the outer band of a primary

rainbow as observed in nature. For the secondary rainbow, the order of colors is

opposite (see, e.g., http://www.philiplaven.com/index1.html).

The approximate theory of rainbow is given by Airy (1838) and Nussenzveig

(1992). In particular, Airy has shown that the angular distribution of light in a

rainbow at a given size parameter x = ka is approximately proportional to the

integral:

A(θ ) =
{∫ ∞

0

cos
[π

2

(
by − y3

)]
dy

}2

, (4.23)

where

b = 3

√
12x2

π2c
{θ − θr } (4.24)

with c = 4.89 for the first rainbow and c = 27.86 for the second rainbow. Studies

of this integral show that the maximum of the rainbow intensity does not coincide

with θr but rather occurs at the somewhat larger angle θmax depending on x :

θmax = θr + Cx−2/3, (4.25)

where C = 3

√
9cπ2

4
≈ 4.77. A similar equation, but with a different constant C, is

valid for the secondary rainbow. This dependence is confirmed by exact data shown

in Fig. 4.8. It follows that the rainbow intensity at maximum increases with aef .

The thorough review of rainbow and glory theories has been conducted by

Adam (2002) (see also Jackson (1999)).

ϕ = arccos
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Fig. 4.7. Phase function of a water cloud at λ = 0.532, 1.064, 1.64, and 2.13μm aef = 6 μm as

the function of the scattering angle in the rainbow region.

The degree of light polarization in a rainbow for solar light illumination con-

ditions is quite large as shown in Fig. 4.9. It can reach 80% and even larger

values depending on the size of particles and the wavelength. Oscillations occur

predominantly in the plane perpendicular to the scattering plane. The reason for

such a high polarization of the rainbow is due to the fact that the internal reflection

of the rainbow ray in the drop occurs at the angle close to the Brewster angle equal

It follows from Figs. 4.7 and 4.9 that the secondary rainbow at θ ≈ 120◦ is better

visible in the degree of polarization angular pattern as compared to the intensity

angular distribution. Oscillations in Fig. 4.9 at θ ≥ 145◦ are due to supernumery

rainbows. They are sometimes observed in nature close to the outer band of the

main rainbow.

to arctan(n).
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The wavelength dependence of the normalized phase matrix elements p34 and

p44 in the vicinity of the rainbow angle is shown in Figs. 4.10 and 4.11.

4.1.4 Halo

The halo is a bright ring, which is observed around the moon or the sun.

The difference from the corona is in the radius of this ring. In particular, the

corona is observed for scattering angles θ = 0 − 5◦, depending on the size of

particles. The halo is observed at 22◦. It should be pointed out that the Mie theory

does not predict any anomaly in light scattering around 22◦ (see Fig. 4.8). So the

halo can be explained using only the model of nonspherical particles, namely ice

crystals. The most important shape of ice crystals in the terrestrial atmosphere
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Fig. 4.9. The same as in Fig. 4.7 except for the degree of polarization.

is the hexagon. The path of a light ray in the part of crystal with the angle A

is shown in Fig. 4.12. The halo corresponds to the minimal value Dmin of the

deviation angle D = i1 − r1 + i2 − r2. The value of D is minimal at i1 = i2 ≡ i ,
r1 = r2

(see Fig. 4.12) and Dmin = 2i−A. The angle of the light beam deviation for the

r = A / 2 and i = (Dmin + A)/2. This means that

Dmin

{
n sin A

2

}
− A. (4.26)

It follows from this equation that Dmin = 21◦54′ for hexagons with A = 60◦ at

n = 1.31. Also we have Dmin = 45◦44′ for angles A = 90◦ at n = 1.31. The ha-

los associated with angles A equal to 60◦ and 90◦ are regularly observed in the

= 2 arcsin

−1= r = sini ). Here n is the refractive index. Then we have A = 2rarcsin(n

hexagonal prism can be obtained from the Snell’s law: n sin r = sin i , where
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Fig. 4.10. The same as in Fig. 4.7 except for the element p34.

atmosphere for randomly oriented crystals. Oriented crystals can produce the ha-

los at other positions (Tricker, 1967). The inner part of both halos is reddish in

color. This is due to the fact that Dmin = 21◦36′ for red light with n = 1.307 and

Dmin = 22◦22′ for violet light with n = 1.317 at A = 60◦. Also we have at A = 90◦:

Dmin = 45◦ for red light with n = 1.307 and Dmin = 47◦14′ for violet light with

n = 1.317. Therefore, it follows that the 46◦ halo has an angular width twice as

broad. It has a smaller intensity as compared to the halo located at θ = 22◦.

We conclude that a 46◦ halo develops when light enters one side of a columnar

ice crystal and exits from either the top or bottom face of the crystal (A = 90◦). The

light is refracted twice as it passes through the ice crystal and the two refractions

bend the light by 46◦ from its original direction. This bending produces a ring of

light observed at 46◦ from the sun or the moon. A 22◦ halo develops when light

enters one side of a columnar ice crystal and exits through another side (A = 60◦).

The light is refracted when it enters the ice crystal and once again when it leaves
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the ice crystal. The occurrence of the 46◦ halo is rare (about 2% of all cases). The

22◦ halo is more frequent.

The halo is more easily observed for large crystals because the intensity of

halos decrease with the size of crystals. A typical phase function of hexagonal ice

crystals calculated using the geometrical optics approach is shown in Fig. 4.13.

The halos at 22◦ and 46◦ clearly emerge from these calculations. The maximum at

A

r
2

i
2r

1

i
1

Fig. 4.12. Geometry of the problem.
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Fig. 4.13. The phase function of randomly oriented hexagonal cylinders with the effective radius

40 μm at the wavelengths 0.55 μm averaged over the size and aspect ratios distributions. The

refractive index is equal to n = 1.31 (courtesy A. Macke).

◦ is also clearly visible. The halo can be washed out by the presence of small

or irregularly shaped crystals. The effects of multiple light scattering and the

possible presence of supercooled water droplets also reduce the probability of halo

formation. However, the halo is an atmospheric effect which occurs quite often.

Some observers report a frequency of 10 times per month at certain locations.

4.2 Cloud Remote Sensing

4.2.1 Penetration Depth

The penetration depth is a parameter required in various remote sensing appli-

cations. It is defined as the length at which the intensity of incident wave is reduced

155
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by the factor exp(−1). If the absorption coefficient of a homogeneous medium

under study is known, the penetration depth can easily be estimated. It could be

of value to extend this notion to random media. However, this leads to a number

of problems. In particular, let us take a cloud in the sky. In this case, a strongly

developed multiple light scattering occurs in the medium. The downward diffuse

light intensity reaches a maximum and starts to decrease preserving the angular

pattern of scattered light. Brightness of this pattern decreases as exp(−kτ ), where

k is the diffusion exponent and τ is the optical depth.

Space remote sensing applications require information on the thickness of an

effective layer of a cloud, which interacts with incident electromagnetic radiation.

This depth can be defined as the distance � at which the reflection function reaches

90% of its value for the semi-infinite layer. We can state that scattering layers

positioned at depths larger than � only weakly influence the signal detected by an

orbiting optical instrument.

The aim of this section is to present simple analytical equations, which can

be used for estimations of � in a cloudy atmosphere. Generally, the equations

derived can be used inside and outside gaseous absorption bands. However, in

the results of the numerical calculations presented, we neglect the influence of

the gaseous absorption bands on the value of the penetration depth. Generally

speaking, the penetration depth can be found using results of the radiative transfer

calculations similar to those presented in Fig. 4.14, where we show the dependence

of the reflection function on cloud optical thickness for multiple wavelengths. Data

for Fig. 4.14 were obtained using the discrete ordinate method of the radiative

transfer equation solution. It was assumed that droplets are characterized by the

gamma particle size distribution (PSD) with the effective radius of 6 μm and the

coefficient of variance of the PSD equal to 38%. Calculations were performed at

ξ = 0.5, η = 1.0 (nadir observation). Here ξ is the cosine of the solar angle and η

is the cosine of the observation angle. Obviously, the results do not depend on the

relative azimuth ϕ for the nadir observation conditions.

It follows from Fig. 4.14 that the penetration depth decreases with wavelength.

This is mostly due to the fact that water absorption generally increases with the

wavelength. In particular, we find using data shown in Fig. 4.14 that the optical

penetration depth τp = �/s (with s = 1/σext as the photon free path in a cloud) is

equal to 65.5, 37.0, 20.0, 13.2, and 5.7 for wavelengths λ = 900 nm, 1240 nm,

2250 nm, and 3700 nm, respectively.

Computations as those shown in Fig. 4.14 require a radiative transfer code.

Let us show that the penetration depth can also be found using a simple analytical

equation. For this we will use the exponential approximation. In particular, the

reflection function R(ξ, η, ϕ, τ ) can be presented as

R(ξ, η, ϕ, τ ) = R∞(ξ, η, ϕ) − t(τ ) exp(−x − y)u0(ξ )u0(η), (4.27)
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Fig. 4.14. The dependence of the reflection function on the optical thickness for several wave-

lengths of incident light (see details in text).

where R∞(ξ, η, ϕ) is the reflection function of a semi-infinite medium having the

same microphysical characteristics as a finite layer under study. The function t(τ )

is the global transmittance given approximately by

t(τ ) = sinh(y)

sinh(x + αy)
. (4.28)

Here, x = kτ, y = 4k/[3(1 − g)], k = √
3(1 − g)(1 − ω0), ω0 = 1 − σabs/σext,

α ≈ 15/14, g is the asymmetry parameter of the phase function, σabs is the ab-

sorption coefficient and σext ≡ 1/s is the extinction coefficient. The accuracy of

Eq. (4.27) has been thoroughly studied above.

It follows from Eq. (4.27) at τ = τp:

ut(τp) exp(−x(τp) − y(1 − u∗)) = b, (4.29)
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where b = 0.1. We used the following approximate result for the reflection function

of a semi-infinite weakly absorbing medium:

R∞(ξ, η, ϕ) = R0∞(ξ, η, ϕ) exp(−Cy), (4.30)

where R0∞(ξ, η, ϕ) is the reflection function of a semi-infinite medium, under the

assumption that absorption of radiation in a cloud does not take place and

C = (1 − 0.05y)N, (4.31)

N = u0(ξ )u0(η)

R0∞(ξ, η, ϕ, τ )
. (4.32)

Equation (4.30) is accurate to within 5% at y ≤ 1.7. After simple algebraic deriva-

tions, it follows from Eq. (4.29):

τp = 1

2k
ln {2pN sinh(y) exp [−(1 − C)y] + exp(−αy)} − 2α

3(1 − g)
, (4.33)

where p = 1/b. We have from Eq. (4.33) at k = 0 taking a limit:

τp = 4(pN − α)

3(1 − g)
. (4.34)

Equation (4.33) gives the result that we intended to gain from the very beginning.

The dependence τp(λ) for a water cloud having the same microphysical character-

istics and observation conditions as those used in Fig. 4.14 are shown in Fig. 4.15.

The Mie theory was used to calculate ω0, σext = 1/s, and g in Eq. (4.33). The

gaseous absorption was neglected. Symbols correspond to values of τp obtained

from the data given in Fig. 4.14. We see that our approximate equation can be used

for an accurate estimation of the sunlight penetration in clouds. Note that values

obtained for τ < 10 may be biased as the accuracy of Eq. (4.27) decreases in these

cases. However, we do not restrict this plot to values below 2 μm to show the gen-

eral trend of τp(λ). Furthermore, the point at 3.7 μm indicates that Eq. (4.33) might

even be used at τp ∈ [5, 10]. The following approximate result for the function

R0∞(1, ξ ) was used in the calculations presented in Fig. 4.14:

R ∞0 (1, ξ ) = 0.37 + 1.94ξ

1 + ξ
. (4.35)

This equation is accurate to within 5% for the nadir observation and most so-

lar incident angles used for cloud remote sensing (oblique incident angles are

excluded).

Figure 4.14 quantifies the result already mentioned above. Namely, the opti-

cal penetration depth generally decreases with the wavelength. However, at some

narrow spectral intervals, the opposite is true (see, e.g., the region close to 1 μm

in Fig. 4.15). The value of τp changes from approximately 100 at λ = 0.5 μm
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Fig. 4.15. The dependence of the penetration optical thickness on the wavelength obtained using

the approximate equation for water droplets having the effective size 6 μm at the nadir observation

and the solar angle equal to 60◦. Symbols give the results obtained using the numerical solution

of the integro-differential radiative transfer equation.

originates in part from different cloud depths. This sets an important question

as far as cloud satellite remote sensing is concerned. Namely, the cloud liquid

water path (LWP) and the effective radius of droplets are usually obtained from

measurements of reflectances at multiple wavelengths. This does not lead to com-

plications for homogeneous clouds. However, homogeneous clouds do not exist.

ext
−1

after the rescaling the ordinate. For example, the ordinate should be multiplied

by 10 at σext = 100 km−1. Then � is given in meters.

, we obtain that the value of � changes from 120 mtypical value of σ = 50 km

at λ = 3.7 μm to 2000 m at λ = 0.5 μm. In fact, Fig. 4.15 is also applicable to �

to approximately 6 at λ = 3.7 μm for the typical case shown in Fig. 4.15. Using a

It follows from Fig. 4.15 that the radiance detected at different wavelengths
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Fig. 4.16. The same as in Fig. 4.15 except the results for the solar angle 10◦ are also shown.

For example, the size of droplets usually increases from the bottom to the top of a

cloud layer. It means that the radius of droplets obtained at 3.7μm (aef (3.7 μm))

is not necessarily representative for a whole cloud. In this case, the derivation of

the LWP as the product of the optical thickness in the visible and aef (3.7 μm)(we

omit a numerical multiplier) may bias the derived LWP considerably. Therefore, it

is of importance to specify the wavelengths used to derive aef and the LWP while

referring to their values obtained from the optical instruments onboard satellites.

Generally, decreasing the wavelength will lead to smaller values of a derived aef

(and also smaller values of the LWP).

It follows from Fig. 4.16 that the value of τp is larger for the illumination closer

The spectral dependence of the optical penetration thickness is shown in

Fig. 4.17 for various sizes of particles. We see that the value of τp decreases with

the size of particles in the infrared. This can be expected from the greater light

absorption by larger droplets. We also found that the optical penetration depth is

slightly larger for larger droplets in the visible. This is due to larger values of g for

as deeply as photons incident on a given medium along the normal.

absorbing turbid medium along oblique angles escape easier and do not penetrate

to the normal. This can be explained by the fact that photons injected into the 
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Fig. 4.17. The same as in Fig. 4.15 except the results for the several values of the effective droplet

radius are shown.

clouds with larger droplets. The account for the gaseous absorption will modify

the data shown in Fig. 4.16, adding an oscillating part on the general background

curve depending on the gas type/concentration. However, we do not consider this

contribution in any detail here.

Equation (4.33) becomes less accurate for values of the single scattering albedo

(SSA) smaller than 0.95. This case may be of importance for polluted clouds and

also for ice clouds having large crystals and, therefore, increased value of light

absorption. In this case, the problem can be solved using the general asymptotic

equation valid for cloud optical thicknesses larger than 10 and an arbitrary SSA.

This equation has the following form (Nakajima and King, 1992):

R(ξ, η, ϕ, τ ) = R∞(ξ, η, ϕ)
[
1 − mlN̄(ξ, η, ϕ, τ )

(
1 − l2 exp(−z)

)−1
exp(−z)

]
,

(4.36)
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where N̄(ξ, η, ϕ) = u(ξ )u(η)/R∞(ξ, η, ϕ), z = 2kτ, and, therefore,

τp = (2k)−1 ln
(
ap + l2

)
, (4.37)

where

a = mlu(ξ )u(η)

R∞(ξ, η, ϕ)
. (4.38)

The issues related to the numerical calculation of asymptotic parameters and func-

tions k, l, m, u(ξ ) and R∞(ξ, η, ϕ) are discussed by Nakajima and King (1992).

However, note that the essential simplicity characteristic to Eq. (4.33) is lost then.

Equation (4.27) follows from Eq. (4.36), assuming that l = exp(−αy),

mu(ξ )u(η) = (1 − exp(−2y)) u0(ξ )u0(η) (4.39)

as shown above. The same correspondence exists between Eqs. (4.37) and (4.33)

(with account for Eq. (4.30)).

4.2.2 Cloud Optical Thickness

4.2.2.1 Retrieval procedure

Equations presented in Chapter 3 can be used for rapid estimations of the

radiative and polarization characteristics of cloudy media. They can also be used

to check the accuracy of new algorithms, using the fact that the numerical solution

of the radiative transfer equation, and the results presented above for optically thick

layers should converge as τ → ∞ and β → 0.

The most important area of application of approximate solutions lies in the

field of remote sensing (King, 1981, 1987; Kokhanovsky, 2000; Kokhanovsky,

2001; Kokhanovsky and Zege, 1996; Kokhanovsky et al., 2003; Rozenberg, 1967;

Rozenberg et al., 1978). In particular, the usage of asymptotic equations (valid as

τ0 → ∞) allows us to avoid the compilation of so-called look-up tables (LUTs) in

the case of optically thick clouds and, therefore, to speed up the retrieval process.

Currently, LUTs are widely used in passive cloud remote sensing (Arking and

Childs, 1985; Nakajima and King, 1990; Rossow et al., 1989). The minimization

of differences between measured and stored (e.g., in LUTs) spectral reflectances

is used as a main tool to derive cloud optical and microphysical characteristics.

The reflection function of a cloud over a reflective surface with the Lambertian

albedo A can be presented as

R = Rb + At2u0 (ξ ) u0(η)

1 − Ar
, (4.40a)
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with

Rb = R0∞ − tu0 (ξ ) u0(η) (4.40b)

in the visible. Here,

t = 1

α + 0.75τ ∗ (4.40c)

is the global transmittance with α ≈ 1.07 and τ ∗ = τ (1 − g).

We have for the global transmittance in the visible from Eq. (4.40a) after simple

algebraic calculations:

t = (1 − r A) �

1 − r A(1 + �)
, (4.41a)

where the function � is introduced. It is given by

� ≡ �(η, ξ, ϕ) = R0∞(η, ξ, ϕ) − R̂mes(η, ξ, ϕ, τ )

u0(η)u0(ξ )
. (4.41b)

The analytical results for functions R0∞(η, ξ, ϕ) and u0(η) have been presented

above. Thus, the global transmittance t , and correspondingly the total reflectance

or the spherical albedo r = 1 − t , can be obtained from Eqs. (4.40) and (4.41)

and knowledge of the surface albedo A and the measured value of the reflection

function R̂mes(η, ξ, ϕ, τ ).

For such a retrieval it is not necessary to know the optical thickness of clouds

and the average size of droplets. This is an extremely important point for climate

studies, where the global and temporally averaged value of the cloud spherical

albedo r = 1 − t is an important parameter. Usually r < 0.8 for natural water

clouds in the visible (Danielson et al., 1969), which implies that clouds with optical

thicknesses larger than 70–100 appear not very often (Trishchenko et al., 2001).

The reduced reflectance in the visible can be also related to aerosol absorption in

clouds (Melnikova and Mikhailov, 1994, 2000) and to the inhomogeneity and finite

size of clouds (Stephens and Tsay, 1990).

Using Eq. (4.40), we obtain t ≡ � at A = 0, and t = 0 (r = 1) at A = 1. This

shows that all photons incident on optically thick nonabsorbing clouds over surfaces

with A = 1 survive and return back to outer space. They yield no information about

actual cloud thickness. This explains why the retrieval of cloud parameters over

bright surfaces (e.g., snow and ice) can be hardly performed in the visible (Platnick

et al., 2001).

The information on the global transmittance t can be used to find the scaled

optical thickness (King, 1987; Rozenberg et al., 1978), given by

τ ∗ = τ (1 − g). (4.42)
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It follows from Eq. (4.40c):

τ ∗ = 4

3

[
t−1 − α

]
, (4.43)

∗

Equation (4.43) can be used for the retrieval of τ ∗ from the measurement of

the reflection function at a single wavelength (King, 1987). Equation (4.42) is used

for the derivation of the optical thickness τ if the value of g is known (Rossow,

1989) (approximately 0.74 for ice clouds as previously discussed). However, for

warm clouds the asymmetry parameter g depends on the size of droplets even for

nonabsorbing channels. Often the dependence g(aef) is neglected and it is assumed

that aef = 10 μm for water clouds (Rossow and Schiffer, 1999). Then it follows

from that g = 0.86 at λ = 0.65 μm and aef = 10 μm. This value of g can be used

for a crude estimation of the optical thickness of liquid clouds.

Errors can be introduced if one assumes the fixed a priori defined value of g.

e f

(4.42), we have τ = τ ∗,  ≡ (1 − g)−1 ≈ 6.3–7.6 and τ ∈ [9.4, 11.5] at τ ∗ =
1.5, depending on the value of g used. The assumption that aef = 10 μm yields

g = 0.86 and  = 7.2, τ = 10.7. This leads to a relative error of 7–14% in the

retrieved optical thickness (i.e., a range of possible values from τ = 9.4 to τ = 11.5

instead of τ = 10.7). This uncertainty in the optical thickness can be removed if

measurements in the near infrared region of the electromagnetic spectrum are

performed, enabling the size of droplets and, therefore, the asymmetry parameter

not an ice or a mixed phase cloud. Another uncertainty arises due to the possible

contamination of clouds by absorbing aerosols (Asano et al., 2001, 2002). Then Eq.

(4.40) is not valid and we must account for the fact that the cloud single scattering

albedo (SSA) differs from one.

4.2.2.2 Hurricane Erin

Let us consider optical thickness retrieval for the Hurricane Erin, located in

the western Atlantic (39.3 N, 60.4 W) on September 13th, 2001 (16:21 UTC). By

definition, hurricanes contain winds in excess of 119 km per hour and large areas

of heavy rainfall. Therefore, they belong to the most dangerous natural hazards.

This explains the great interest in hurricane research especially in recent years

(Simpson, 2002). Physical characteristics of hurricanes are usually obtained using

radar remote sensing techniques (Heymsfield et al., 2001). The optical imagery

absence of information about the size of droplets and the actual optical thickness

of clouds.

where t is given by Eq. (4.40). The value of τ can be obtained even in the

= 4–20 μm. From Eq.It follows at λ = 0.65 μm that g = 0.84–0.87 at a

g estimation. For this, however, we should be sure that we have a liquid and
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serves as an important tool for a timely identification of hurricanes and for track-

ing their trajectories (especially where radar is not available). The optical remote

sensing techniques can also be used to study physical characteristics of hurricanes

like hurricane-top height, the LWP, the thermodynamic phase of particles and

their size. The enhanced spatial resolution of optical imagery allows for important

complimentary information as compared to microwave techniques. Clearly, some

additional difficulties and problems can arise in this case. They are related mostly

to the relative importance of three-dimensional (3-D) effects (e.g., in a hurricane

wall), scattering by nonspherical particles, and large values of the geometrical and

optical thickness of hurricanes.

Erin can be traced back to a tropical wave that emerged from Western Africa

on August 30th, 2001. The hurricane took a long journey from the coast of

Africa to the northern Leeward Islands and then to Greenland over the western

Atlantic before it merged with high-latitude cyclonic flow on September 17th,

2001. Note that this hurricane was the first one for which a comprehensive 3-D

image of the complete inner core (including the eyewall and the eye) has been

created.

The retrieval procedure is performed using the SeaWiFS local area coverage

imagery with the spatial resolution of about 1 × 1 km, taken on September 13th,

2001. The SeaWiFS instrument measures the top-of-atmosphere backscattered light

intensity in eight channels (412, 443, 490, 510, 555, 670, 765, and 865 nm). Only

data for the wavelength 412 nm are used in this study. This is due to a low spectral

variation of the hurricane reflectance, which is due to large size of particles (as

compared to the light wavelength) in a hurricane.

The map of retrieved values of transport optical thickness is given in Fig. 4.18.

We see that the value of the transport optical thickness is mostly in the range of

4–10 for the hurricane studied.

We also have selected a core of a hurricane and made the retrieval of the

transport optical thickness for this special case. The map obtained is shown in Fig.

4.19. The statistical distribution of the transport optical thickness for this case is

given in Fig. 4.20.

One can find black areas surrounded by white color in Fig. 4.19. They corre-

spond to negative values of the reduced optical thickness obtained owing to possible

influence of 3-D effects as discussed above (e.g., shadowing effects). To determine

the hurricane optical thickness, the value of the asymmetry parameter should be

known. The value of g is around 0.85 for water clouds and it is close to 0.75 for ice

clouds. The retrieved cloud optical thickness distribution, assuming the value of g

= 0.85, coincides with that given in Figs. 4.18–4.20 (but scaled using the factor

B = 1/(1− g)). Note that we have at g = 0.85, B ≈ 6.7. Therefore, the spatial

distribution of τ for the case given in Fig. 4.18 has a main maximum at cloud
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Fig. 4.18. The transport optical thickness map.

optical thickness equal to 35. Note that results at small and large values of cloud

optical thickness can be biased because the accuracy of our technique decreases

there. However, it works well for values of optical thickness in the range of 10–100,

which are characteristic numbers for most pixels with a hurricane. We also found

a highly nonuniform distribution of cloud optical thickness in the hurricane eye.

The mode optical thickness was found to be equal seven in the hurricane eye.

The hurricane spherical albedo map and frequency distribution are given in

around 0.86. The distribution of the spherical albedo is similar to the well-known

beta distribution, having abrupt decrease at r close to 1.0. Large values of r for a

hurricane suggest that hurricanes can potentially modify planetary albedo (at least

during the hurricane season). This can be also enhanced by foam-covered rough

seas, which are produced by hurricanes.

Figs.4.21a and 4.21b. We see that most frequent value of a hurricane albedo is
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Fig. 4.19. The same as in Fig. 4.18 but for the region close to the hurricane eye.



236 CLOUD OPTICS

0 2 4 6 8 10 12 14 16 18 20

0

125

250

375

500

625

transport optical thickness

n
u
m
b
e
r
 
o
f
 
p
i
x
e
l
s

Fig. 4.20. The transport optical thickness frequency distribution.

4.2.2.3 The influence of ground albedo

The results of the cloud optical thickness retrievals are influenced by the ground

reflectance. The ground reflectance is generally unknown. This may lead to con-

siderable biases in retrievals. Sometimes minimal reflectance databases for a given
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Fig. 4.21. The spherical albedo map (a) and the the spherical albedo frequency distribution (b).

location/month obtained from spaceborne observations for clear sky conditions are

used to constrain the ground spectral reflectance.

It is of importance to understand in which conditions the influence of the

ground reflectance can be neglected. Taking into account that the calibration error

of modern spectrometers and radiometers is around 5%, we pose the following

question. What is the Lambertian ground reflectance Amax, which lead to not more

than 5% differences between the cloud reflectances for a given τ = τ ′ over black

and not black underlying surfaces? Clearly, we can neglect the influence of the

ground reflectance at A < Amax for a given cloud optical thickness τ = τ ′.
This corresponds to the following equation:

1 − Rb

RA
= p, (4.44)

where p = 0.05, Rb is the reflection function of a cloud over a black surface and

RA is the reflection function of a cloud over the ground surface having the albedo

A = Amax. This equation can be rewritten in the following form for the Lambertian

ground surface:

Amaxt2u0(μ)u0(μ)

(1 − Amax(1 − t)) (R0∞ − tu0(μ)u0 (μ0))
= 1 − p

p
, (4.45)
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Fig. 4.22. (a) The dependence of the maximal ground albedo on the cloud transmission. (b) The

dependence of the maximal ground albedo on the cloud optical thickness at g = 0.75, 0.85.

where we used Eq. (4.40a). So we have:

Amax = γ {Q − t}
γ (1 − t) {Q − t} + t2

, (4.46)

where γ = p/(1 − p), Q = R0∞ (η, ξ, ϕ) /u0 (η) u0 (ξ ). This equation allows to

estimate the maximal value of the ground albedo, which can be neglected for a

given p, t, and geometry. This can be easily generalized to account for the case

ω0 �= 1. Then values of Amax increase for a given τ .

The dependence of Amax on t is shown in Fig. 4.22a. It follows that for clouds

having t < 0.1, the ground reflectance is of no importance for the geometry speci-

fied. We also show the dependence of Amax on cloud optical thickness in Fig. 4.22b

at g = 0.75 (ice clouds), 0.85 (water clouds). Clearly, larger values of g lead to

smaller cloud transmittances and, therefore, to smaller values of Amax for a given

τ . This is supported by data shown in Fig. 4.22b as well. So we conclude that the

account for ground reflectance is more important for water clouds as compared to

ice clouds at a given τ . However, ice clouds are generally thinner as compared to

water clouds and Amax decreases for smaller τ . So generally, surface effects cannot

be neglected for ice clouds as well.

The snow ground reflectance in the visible is around 0.8. Then the ground

albedo can be neglected for cloud optical thickness retrievals over snow at τ > τ ′,
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where τ ′ = 40 for water clouds at τ ′ = 67 for the geometry as specified in Fig.

4.22b. The value of τ ′ is around 5–10 for clouds over the ocean, where the ground

albedo is small (generally, below 0.05 in the visible).

4.2.3 The Size of Droplets and Crystals

As was specified above, for a correct estimation of optical thickness of clouds

from space, we need to know not only the surface albedo but also the effective

radius of droplets. The size of droplets can be found if the reflection function in

the near-infrared is measured simultaneously (Nakajima and King, 1990). This is

due to the fact that the reflection function in the infrared strongly depends on the

probability of photon absorption by droplets. This probability is proportional to

the effective radius of droplets, as was discussed above.

The influence of absorption and scattering of light by molecules and aerosol

particles on the measured value R(μ, μ0, ϕ, τ ) is often neglected in the cloud

retrieval algorithms. However, correction can be easily taken into account if needed

(Goloub et al., 2000; Wang and King, 1997). The influence of surface reflection on

the cloud reflection function, assuming that the surface is Lambertian with albedo

r , is easily taken into account, leading to following results (Kokhanovsky et al.,

2003):

R̂1

(
aef, w

) = R0∞ − t1
(
aef , w

)
[1 − A1]

1 − A1

[
1 − t1

(
aef , w

)]u0(ξ )u0(η), (4.47a)

R̂2

(
aef, w

) = R0∞ exp
(−y

(
aef

) (
1 − cy

(
aef

))
u
)

−
[

exp
(−x

(
aef, w

) − y
(
aef

)) − t2
(
aef, w

)
A2

1 − A2r2

(
aef, w

)
]

× t2
(
aef, w

)
u0(ξ )u0 (η) . (4.47b)

The subscripts ‘1’ and ‘2’ refer to wavelengths λ1 and λ2 in the visible and the

1 and A2

albedos in the visible and the near-infrared. The explicit dependence of functions

involved on the parameters aef and w to be retrieved is introduced in brackets.

The LWP w is preferred to the optical thickness in retrieval procedures due to the

independence of w on wavelength. The optical thickness is uniquely defined if aef

and w are known.

Equations 4.47a and (4.47b) form a nonlinear system of two algebraic equa-

tions having two unknowns (aef and w), which can be solved by standard methods

and programs. In particular, we can find the value of w from Eq. (4.47a) analytically

near-infrared channels respectively. The values of A give us the surface



240 CLOUD OPTICS

(Kokhanovsky et al., 2003). Substitution of this result in Eq. (4.47b) gives us a single

transcendent equation for the effective radius of droplets determination. The accu-

racy of this semi-analytical retrieval algorithm has been studied by Kokhanovsky

et al. (2003).

A similar approach can be used for the estimation of sizes of crystals in ice

clouds. The simplification is possible in this case. Due to the large size of crystals

one can ignore the dependence of the reflectance in the visible on the size of

particles and assume that g ≈ 3/4 (Garrett et al., 2001; Kokhanovsky, 2004a).

Then it follows assuming that A1 = 0:

R = R0∞ − u0(ξ )u0(η)

1.072 + 0.188τ
. (4.48)

This equation allows for a simple estimation of τ in the case of thick ice clouds

over black underlying surface. The functions u0(ξ ) and R0∞ can be found from

Eqs. (3.267) and (3.256), respectively. Knowing the value of τ and also accounting

for the spectral neutrality of τ for ice clouds, we can obtain the cloud SSA. The size

of particles can be derived from the value of SSA assuming the shape of ice crystals.

Instead of the derivation of a crystal size for a given shape model, one can retrieve

the particle absorption length as discussed by Kokhanovsky and Nauss (2005).

Usually the surface albedo is not known in advance and must be assessed using

a priori assumptions or measurements over the same place but at a different time,

when clear conditions prevail.

4.2.4 Single Scattering Albedo

Single scattering albedo measurements in infrared are easy and can be per-

formed using LUT approach. Also the retrieved values of aef can be used to estimate

the value of SSA. The problem is much harder in the visible, where the value of SSA

is close to one. For polluted clouds the SSA is associated with pollutants (e.g., soot)

and not with cloud droplets. Measurements in the infrared can be used to find both

aef and τ enabling the calculation of the reflectance in the visible. This calculated

value of the reflection function can be compared to the measured one to quantify

the load of pollutants. However, it is not easy to estimate β = 1 − ω0 → 0 from

reflectance measurements due to calibration problems and also model assumptions

used in retrieval procedures (e.g., cloud homogeneity). Generally, cloud absorp-

tance can be measured using two aircrafts flying below and above a cloud and mea-

transmitted/reflected fluxes can be used to estimate the cloud absorptance a. How-

ever, the value of a is close to zero. Therefore, large errors in the retrieved value are

possible.

suring transmittance and reflectance. Then the difference between incident and
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King (1981) proposed to use just one aircraft but flying deep inside a cloud

far from the boundaries. The aircraft must have instruments to measure downward

and upward light fluxes or light filed intensities i(±η). Then one can derive for an

infinite cloud as β → 0 : D = i(−1)/ i(1) = 1 − ζ
√

β, where ζ = 2
√

3/(1 − g)

as it was shown above. Therefore, it follows: β = (1 − D)2/ζ 2 as β → 0.

One must account for the influence of cloud boundaries. Then we have for the

downward propagated light intensity (van de Hulst, 1968):

I (η) ∼ i(η) − Wi(−η), (4.49)

where the second term accounts for the influence of the boundary. Clearly, it fol-

lows: W → 0 with τB, τB is the optical distance from the boundary to the level

of measurements. Van de Hulst (1968) found that W = exp(−2k(τB + q)), where

q ≈ 0.71/(1 − g). So we have for the ratio D̃ = I (−1)/I (1):

D̃ = i(−1) − Wi(1)

i(1) − Wi(−1)
, (4.50)

where we assume that the aircraft flies exactly in the middle of cloud and τB = τ0/2,

where τ0 is the cloud optical thickness. Clearly, it follows for an infinite cloud:

τ0 → ∞ and D̃ → D. Also we can write:

D̃ = D − W

1 − DW
. (4.51)

This equation allows to find the value of β, if D̃ is measured. For this, however,

independent measurements of the cloud asymmetry parameter g are needed (Garrett

et al., 2001). The analytical approximate expression for D valid at arbitrary β has

been proposed by King (1986):

D = (1 − σ s)(1 − s)

1 + ρs
, (4.52)

where σ = 0.979, ρ = 1.503, s = √
(1 − ω0)/(1 − ω0g).

4.2.5 Cloud Thermodynamic Phase

The discrimination of liquid water from ice clouds is of importance for many

applications, including flight safety and Earth climate studies. The size and shape of

particles in warm and ice clouds are different. This influences the energy transmitted

and reflected by a cloud.

This discrimination can be performed, taking into account the difference in

angular or spectral distribution of reflected light. Also one can use polarization

measurements as discussed by Goloub et al. (2000). It is known that minima in
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the reflection function of ice clouds (e.g., near 1.5 and 2.0 μm) are moved to

larger wavelengths as compared to the case of liquid droplets. This is, of course,

due to the difference in spectral behaviour of the imaginary parts of the complex

refractive index of liquid water and ice. Minima for liquid water also moved to

larger wavelengths as compared to the absorption bands of water vapour. These

different positions of minima can easily be registered with modern spectrometers

(see, e.g., Dvoryashin, 2002; Knap et al., 2002).

Another possibility is to consider different angular behaviour of the reflection

function for ice and water clouds at specific scattering geometries (e.g., rainbow,

glory and halo scattering). In particular, the reflection function of water clouds,

as distinct from ice clouds, has a maximum near the rainbow scattering angle,

which also can easily be detected. This feature becomes even more pronounced if

4.2.6 Cloud Top Height and Cloud Fraction

Another important characteristic of a cloud is its height. It can be retrieved using

data from space-borne lidars (Winker and Trepte, 1998). Passive measurements can

also be used. For instance, Yamomoto and Wark (1961) proposed the use of the

oxygen A band, centred at 0.761 μm. The physical basis of this method depends

on a deep minimum around 0.761 μm due to oxygen absorption. The depth of

thick clouds and be absorbed by the oxygen in the air column below the cloud.

This will increase the value of the reflection function at 0.761 μm for the case

et al., 2001; Kuze and Chance, 1994; Rozanov and Kokhanovsky, 2004). First of

varies with temperature and pressure. Thus, one should use a priori assumptions

on the temperature and pressure variation with height in the Earth’s atmosphere.

the degree of polarization [e.g., at the rainbow geometry] is studied (Goloub et al.,

2000; Kokhanovsky, 2003b).

Yet another important problem is the detection of supercooled water in clouds. 

Kokhanovsky et al. (2006) proposed to use the P-T diagram for this purpose. Here P 

is the phase index equal to the ratio of the top-of-atmosphere reflectance at 1550 to 

that at 1670nm, T is the cloud top height temperature. The values of T above 273K 

correspond to water clouds. Then the values of P are above 0.8. However, it follows 

from the analysis of satellite data that in some cases T is below 273K at P > 0.8. 

These are areas, where supercooled water may exist. This issue is of importance for 

aircraft acing and safety.  

the absorption band will depend on the cloud height. Photons can hardly penetrate

of clouds at high altitudes. The depth of the absorption band is larger for low

clouds. Practical applications of the method, however, are not so simple (Koelemeijer

all, the depth of band also depends on the oxygen absorption cross-section, which

The generally unknown surface albedo cloud geometrical thicknessand
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Rozanov and Kokhanovsky (2004) proposed the usage of the modified expo-

nential approximation in the cloud top height retrievals. This allows to speed up

the retrieval process considerably.

Global information on cloud fraction/cover Q is of a considerable importance

by itself. Usually the value of Q varies in the range 0.55–0.85, depending on the

exact region under study. Globally, clouds cover around 60% of the atmosphere.

This once more underlines the importance of clouds in the radiation balance and

atmosphere heating rates studies.

Palle and Butler (2001) state that the global cloud cover increased during the

past century. They argue against a dominating role of solar activity (via galactic

cosmic rays) on cloud formation.

4.2.7 Cloud Bottom Height

The cloud bottom height is usually determined using ground-based laser mea-

surements. However, one can also assess the cloud bottom altitude from satellite

measurements, if the cloud top altitude is known (e.g., from space lidar mea-

surements). Let us show this considering a single homogeneous cloud. The cloud

reflectance spectrum is hardly sensitive to the cloud geometrical characteristics out-

side gaseous absorption bands. The situation is radically changed if we consider

the radiative transfer in the molecular absorption line (Rozanov and Kokhanovsky,

2004; Rozanov et al., 2004; Yamomoto and Wark, 1961). Indeed, let us assume

that we have a gas in a planetary atmosphere, which absorbs almost all incident

radiation in a narrow band. Then the depth of this band, measured by a receiver on

a satellite will depend on the cloud altitude. Gas concentrations generally decrease

with the distance from the ground. Therefore, clouds at a high altitude do not allow

most photons to penetrate to low atmospheric layers and be absorbed there. So

are present in the field of view of a sensor. The next question to address is the

influence of cloud geometrical thickness on the reflectance spectrum R(λ) in the

gaseous absorption band. One expects that spectra R(λ) in the gaseous absorption

band for clouds having the same top heights but different cloud geometrical thick-

problem Koelemeijer et al. (2001) proposed an algorithm that retrieves simulta-

neously effective cloud top height/pressure and cloud fraction, assuming that a

cloud is a Lambertian surface with a given albedo. Such an assumption leads to

underestimation of cloud top heights as compared to in situ measurements.

influence the retrieval accuracy. Other possible sources of errors are described in

detail by Kuze and Chance (1994) and Koelemeijer et al. (2001).

The largest complication arises for pixels that are only partially covered by

clouds. Ignoring them will lead to a big reduction of data, so to overcome this

the depth of a molecular band in the reflected light will decrease, if high clouds
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Fig. 4.23. Cloud reflection function in the oxygen A-band calculated using SCIATRAN (lines)

(Rozanov et al., 2005) and asymptotic analytical theory (symbols) (Kokhanovsky and Rozanov,

2004) at the nadir observation, the solar zenith angle equal to 60◦, the optical thickness equal

to 50, the cloud top height equal to 9 km and cloud bottom height equal to 3 km (circles) and

7 km (triangles). All other parameters needed to calculations (e.g., atmospheric vertical profiles)

coincide with those described by Kokhanovsky and Rozanov (2004). The reflectance function is

averaged with the step 0.2 nm using SCIAMACHY (Bovensmann et al., 1999) response function.

Fist of all the TOA reflectance R is presented in the form of a Taylor expansion

around the assumed value of the cloud bottom height equal to H0:

R(H ) = R(H0) +
∞∑

i=1

ai (H − H0)i , (4.53)

nesses will differ even if the cloud optical thicknesses τ coincide (Kokhanovsky

and Rozanov, 2004). This is due to the fact that multiple light scattering will lead to

large average photon path lengths in clouds as compared to a cloudless atmosphere,

thereby increasing absorption. This must lead to a decrease of the reflectance for

geometrically thicker clouds. Radiative transfer calculations confirm this fact.

The dependence of the spectrum R(λ) as shown in Fig. 4.23 can be used to

determine the cloud bottom height from a satellite. The main steps of the inversion

technique are given below.
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introduce the vector �Rmes with components (R(λ1), R(λ2), . . . R(λn)). The same

applies to other scalars in Eq. (4.53).

Therefore, Eq. (4.54) can be written in the following vector form:

�y = �ax (4.55)

where �y = �Rmes − �R(H0), �a = �R′(H0) and x = H − H0. Note that both measure-

ment and model errors are contained in Eq. (4.55). The solution x̂ of the inverse

problem is obtained by minimizing the following cost function:

� = ‖�y − �ax‖2
, (4.56)

where ‖ ‖ means the norm in the Euclid space of the correspondent dimension.

The value of x̂, where the function � has a minimum can be presented as

x̂ = (�y, �a)

(�a, �a)
=

∑n
i=1 ai yi∑n
i=1 a2

i

, (4.57)

where (�y, �a) denotes a scalar product in the Euclid space, and n is the number of

wavelengths where the reflection function is measured.

The functions �R(H0) and �R′(H0) in Eq. (4.57) must be calculated using the ra-

diative transfer theory with input parameters characteristic for a given atmospheric

state. We use the approximate analytical theory for such a calculation. The details of

this theory are given by Kokhanovsky and Rozanov (2004). Basically, the approx-

imation has an accuracy better than 5% as compared to line-by-line calculations

in the O2 A-band (Kokhanovsky and Rozanov, 2004) for typical cloudiness with

τ ≥ 5. The use of the exact radiative transfer theory is also possible but it leads to

a huge calculation time and does not provide a better approach to the problem at

hand due to all uncertainties involved (e.g., possible multi-layered cloudiness).

Therefore, knowing values of the measured spectral reflection function Rmes

and also values of the calculated reflection function R and its derivative R′ at

H = H0 and several wavelengths, the value of the cloud bottom height can be

found from Eq. (4.57) and equality: H = x̂ + H0. The value of H0 can be taken

procedures (Rozanov et al., 1998). We found that the function R(H ) is close to a

linear one in a broad interval of the argument change (Kokhanovsky and Rozanov,

2004). Therefore, we neglect nonlinear terms in Eq. (4.53). Then it follows:

R = R(H0) + R′(H0)(H − H0), (4.54)

where R′ = dR/dH. We assume that R is measured at several wavelengths

(λ1, λ2, . . . λn) in the oxygen A-band. Then instead of the scalar quantity R we can

where ai = R(i)(H0)/ i!. Here R(i)(H0) is the i-derivative of R at the point H0.

The next step is the linearization, which is a standard technique in the inversion
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We have found that the cloud optical thickness τ is the most important parameter

which influences the retrieval. So we find the value of τ from measurements outside

the gaseous absorption band as described by Kokhanovsky and von Hoyningen-

Huene (2004).

Clearly, if the forward and inverse models use the same system of equations,

the inverse problem solution accurately reproduces the input parameters for the

forward model in the absence of the measurement noise. We have checked this

using the forward and inverse models based on the same set of analytical equa-

tions as described by Rozanov and Kokhanovsky (2004). Indeed, the cloud bottom

height used as input in the retrieval scheme coincided with the cloud bottom height

retrieved by the solution of the inverse problem as specified above in this case.

The next possible step is to introduce measurement errors and see the influence

of these errors on the retrieval of H. However, we have chosen a different strat-

egy. Namely, we calculate the cloud reflectance spectrum R(λ) in the O2 A-band

using the exact radiative transfer calculations with the radiative transfer solver

SCIATRAN (Rozanov et al., 2005) and use this exact spectrum in the analytical

retrieval procedure described above. Because possible measurement errors are well

below the accuracy of analytical equations, such an approach can be considered as

a simulation of noise in the inversion procedure having as an input SCIATRAN-

generated synthetic spectra.

Results of the inversion procedure described above are shown in Fig. 4.24. It

follows that with the exclusion of clouds having large top altitude and small cloud

bottom height (very thick clouds), which are rare cases in terrestrial atmosphere,

there is a one-to-one correspondence between retrieved Hr and exact He cloud

bottom heights. Biases �H = Hr − He are given in Fig. 4.25. It follows that biases

are only weakly influenced by values of τ and generally they are below 0.5 km for

clouds having the geometrical thickness below 4.5 km. Most clouds in the terrestrial

atmosphere have geometrical thicknesses below 1 km. Then biases are just 0.25

km as shown in Fig. 4.25.

Therefore, we conclude that the technique presented here can be used for an

accurate estimation of a cloud bottom height from a satellite.

The retrieved value of H is compared to H0. If the difference is smaller than

100 m, the value of H is taken as a retrieved value and the inversion procedure is

finished. Otherwise, the retrieved value of H is substituted in Eq. (4.56) instead of

H0 and iterations are performed until the convergence is reached.

Several additional parameters are needed in the retrieval procedure. They are

the cloud optical thickness, the cloud liquid water profile, the cloud droplet radii,

etc. They must be simultaneously derived or assumed using climatological values.

equal to 0.5 km, which is a typical value for low level clouds. The main assumption

in our derivation is that the dependence of R on H can be presented by a linear

function on the interval x (Kokhanovsky and Rozanov, 2004).
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Fig. 4.24. Dependence of the retrieved cloud bottom height on the exact cloud bottom height at

τ = 20 for cloud top height 9 km (stars), 7 km (triangles), 5 km (circles), 3 km (squares).

as shown in Fig. 4.25 are generally below 30 m then. It means that the considered

technique can be easily implemented using the lidar system. Lidars can detect the

cloud boundary with the accuracy better than 20 m.

The results given in Figs. 4.24 and 4.25 are obtained allowing for the cloud top

height measurements uncertainty �h = ±10 m. They are not changed appreciably

even when increasing this uncertainty 10× (e.g., to 100 m). The changes of biases

It follows from Fig. 4.25 that the accuracy of the retrieval decreases for smaller

biases as far as the operational cloud retrievals are concerned.

values of H. This is related to the fact that analytical equations have large errors

and large values of the cloud top height is low. So values with large biases of the

retrieved cloud bottom altitude as shown in Fig. 4.25 do not produce significant 

for smaller H . Note that the probability of single clouds having small values of H
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Fig. 4.25. Dependence of the absolute error of the retrieved cloud bottom height on the exact

cloud bottom height at τ = 20 for cloud top height 9 km (stars), 7 km (triangles), 5 km (circles),

3 km (squares). Data are obtained from Fig. 4.24.

of a multiply scattered light field. This inhomogeneity arises solely due to bound-

ary conditions. A laser beam enters a cloud effectively at one point. So instead of

4.3 Laser Beam Propagation Through a Cloud

the angular distribution of a light field inside a cloud under laser beam illumination

conditions along a normal to a cloud or fog layer (e.g., along axis OZ). Unlike most

problems considered above, we need to account for the horizontal inhomogeneity

for a number of applied problems including sounding of clouds and also for image

transfer, vision and communication problems. The aim of this section is to derive

The studies of laser beam propagation through fogs and clouds are of importance
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The task is to find the angular distribution of light field I (�r , �s) at a given point

�r in the direction specified by the vector �s assuming a narrow beam illumination

condition. Generally, the problem looks complicated and calls for the numerical

implementation. However, an important approximate solution can be derived, if

one is interested in the distribution I (�r , �s) close to the axis of the laser beam for

vectors �s directed along OZ or in the directions almost parallel to OZ. Let us show

this.

We present vectors �r and �s as

�r = x�ex + y�ey + z�ez, (4.59)

�s = sx�ex + sy�ey + sz�ez, (4.60)

where (�ex , �ey, �ez) are unity vectors directed along the axes OX, OY, and OZ. Axes

OX and OY specify the plane perpendicular to OZ. We can write in the spherical

coordinate system:

sx = sin θ cos ϕ, sy = sin θ sin ϕ, sz = cos θ. (4.61)

Here ϕ is the azimuthal angle and θ is the angle between the axis OZ and the ob-

servation direction. We will assume that θ → 0 in our derivations. Hence, the cor-

respondent approximation is called the small angle approximation (SAA). Clearly,

this is the generalization of the SAA considered above for a case of narrow beams.

Let us introduce the vector

�∇⊥ ≡ �ex
∂

∂x
+ �ey

∂

∂y
. (4.62)

Then it follows

(�s �∇⊥)I (z, �ρ, �s) + ∂ I (z, �ρ, �s)

∂z
+ σext I (z, �ρ, �s)

− σsca

4π

∫ ∞

−∞
dsx

∫ ∞

−∞
dsy I (z, �ρ, �s ′)p(�s ′− �s ) = 0, (4.63)′ ′

observation direction but also on the distance of a given point from the axis OZ,

which gives the illumination direction. For simplicity of derivations we will assume

that a cloud is represented by a homogeneous layer. Theory is easily extended for

a case of vertically inhomogeneous cloudy media.

The main equation of the problem can be written in the following form:

(�s �∇)I (�r , �s) + σext I (�r , �s) − σsca

4π

∫
4π

I (�r , �s ′)p(�s ′, �s)d�′ = 0. (4.58)

uniform illumination of the cloud boundary, we have illumination of a cloud by

a narrow beam. The intensity of light at a given depth depends not only on the
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Table 4.1. Fourier transforms.

N Fourier transform Definition

1 Ĩ (z, �ν, �s)
∫ ∞

−∞
∫ ∞

−∞ I (z, �ρ, �s)ei �ν �ρd �ρ

2 I (z, �ρ, �s)
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Ĩ (z, �ν, �s)e−i �ν �ρd�s

3 −i�s�ν Ĩ (z, �ν, �s)
∫ ∞

−∞
∫ ∞

−∞ (�s �∇⊥)I (z, �ρ, �s)ei �ν �ρd �ρ

4 p̃(�q)
∫ ∞

−∞
∫ ∞

−∞ p(�s)ei �q�sd�s

5 h̃(�ν) = f̃ (�ν)g̃(�ν) h(�β) = ∫ ∞
−∞

∫ ∞
−∞ f (�α)g(�β − �α)d �α

6 ˜̃G(z, �ν, �q)
∫ ∞

−∞
∫ ∞

−∞ p(�s)ei(�q−z�ν)�sd�s

7 D̃(z, �ν, �s)
1

4π2

∫ ∞

−∞

∫ ∞

−∞
˜̃D(z, �ν, �q)e−i �q�sd�q

8 1
∫ ∞

−∞
∫ ∞

−∞ δ(�s)e−i �ν�sd�s

we have using definitions specified in Table 4.1:

�̂ Ĩ (z, �ν, �s) − σsca

4π

∫ ∞

−∞

∫ ∞

−∞
d�s ′ Ĩ (z, �ν, �s ′)p(�s − �s ′) = 0, (4.64)

where �̂ ≡ (∂/∂z) + σext − i�s�ν. This equation can be simplified using the substi-

tution:

Ĩ (z, �ν, �s) = D̃(z, �ν, �s) exp(i z�ν�s − τ ), (4.65)

where we used the fact that dsx dsy = cos θ sin θdθdϕ = cos θd� ≈ d� and

sz ≈ 1 as θ → 0. Also we assume that the phase function depends only on the

difference vector �d = �s − �s ′
x + y�ey .

We use infinite limits of integration because the contribution of photons located at

large distances from the axis OZ is low. Clearly, our assumptions are valid only if

light scattering occurs predominantly in the forward direction and this is really the

case for fogs and clouds due to highly extended phase functions for these cases.

The approximation considered is not valid in deep layers of a cloud (e.g., at τ ≥ 5)

because then light deviates from the axis OZ considerably.

Equation (4.63) can be solved analytically. We show this using the Fourier trans-

and introduce the transverse vector ρ� = xe�

form technique. Applying the Fourier transform with respect to ρ� to Eq. (4.63),
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˜̃

˜̃

˜̃ ˜

˜̃D(z, �ν, �q) = A exp

{
σsca

4π

∫ z

0

p̃ (�q − �νz) dz

}
, (4.69)

where A ≡ ˜̃D(0, �ν, �q) is the integration constant. This solves the problem at hand.

Indeed, the value of D̃(z, �ν, �s) in Eq. (4.65) can be found using the inverse Fourier

I (z, �ρ, �s) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
Ĩ (z, �ν, �s)e−i �ν �ρd�ν, (4.70)

where

Ĩ (z, �ν, �s) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
D̃(z, �ν, �q) exp(−i�s�q + i�s�νz − τ )d�q. (4.71)

Although the numerical integration is required to find I (z, �ρ, �s), a number

of important results can be obtained in numerous special cases as considered by

Ishimaru (1978).

Note that Eq. (4.70) can be rewritten in yet another form:

I (z, �ρ, �s) =
(

1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
˜̃I (z, �ν, �q)e−i(�νρ+�q�s)d�νd�q, (4.72)

Di

The expression for G is given in Table 4.1. Comparing lines 1 and 5 in Table 4.1,

we derive: G ≡ p(q� − �νz). Therefore, it follows from Eq. (4.68):

transform as specified in Table 4.1 (line 7). Then it follows for the angular distri-

bution of light at point ρ� in the direction �s (see line 2 in Table 4.1):

where τ = σext z. Then it follows:

d D̃(z, �ν, �s)

dz
− σsca

4π

∫ ∞

−∞

∫ ∞

−∞
D̃(z, �ν, �s ′)G̃(z, �ν, �s − �s ′)d�s ′ = 0, (4.66)

where

G̃(�s − �s ′) = p(�s − �s ′) exp(i �νz(�s − �s ′)). (4.67)

Let us apply the Fourier transform with respect to �s to Eq. (4.66). The integral

in Eq. (4.66) can be transformed using the convolution property 5 in Table 4.1.

Then it follows:

d ˜̃D(z, �ν, �q)

dz
− σsca

4π

˜̃D(z, �ν, �q) ˜̃G(z, �ν, �q) = 0. (4.68)

the double Fourier transform of D (with respect to both ρ� and �s ). 
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Calculations of p̃ can be simplified assuming the circular symmetry of the phase

function: p(�s) ≡ p(|�s⊥|) = p(s). Then it follows:

p̃(κ) = 2π

∞∫
0

p(s)J0(κs)sds. (4.76)

Therefore, we can write:

˜̃I (z, �ν, �q) = exp

{
−σscaz + σsca

2

∫ z

0

dz′
∫ ∞

0

dθp(θ )J0((q − νz′)θ )θ

}
.

(4.77)

It follows from this equation at �ν = �q = �0:

˜̃I (z, �0, �0) = exp

{
−σscaz + σsca

2

∫ z

0

dz′
∫ ∞

0

dθp(θ )θ

}
(4.78)

or ˜̃I (z, �0, �0) = 1, where we accounted for the phase function normalization

condition:

1

2

∫ ∞

0

p(θ )θdθ = 1. (4.79)

The SAA as considered here can be generalized for the inclined incident beams

with the incidence angle ϑ0 �= 0. It can be also used to study laser backscattering in

a simple approximation based on the consideration of small angle scattering in the

forward direction, one single scattering backwards and the SAA in the backward

where

˜̃I (z, �ν, �q) = H (�ν, �q + �νz) exp

{
−σscaz + σsca

4π

∫ z

0

p̃(�q − �ν(z′ − z))dz′
}
(4.73)

and H (�ν, �κ) is determined from boundary conditions:

H (�ν, �κ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d �ρd�s I (0, �ρ, �s). (4.74)

Equation (4.73) plays an important role in Fourier optics of light scattering media.

In particular, assuming that I (0, �ρ, �s) = δ(�ρ)δ(�s) and using property 8 in Table 4.1,

we derive:

˜̃I (z, �ν, �q) = exp

{
−σscaz + σsca

4π

∫ z

0

p̃(�q − �ν(z′ − z))dz′
}

. (4.75)
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reduced considerably in comparison with low frequency signals as a result of light

scattering. We introduce here the main concepts of the Fourier optics of clouds.

Any diffused source of light can be considered as a superposition of point

light sources. Thus, in linear optical systems the image of such an object with the

irradiance a0(�r ′) is a linear superposition of images of point sources. This can be

represented as

a(�r ) =
∫ ∞

−∞

∫ ∞

−∞
S(�r , �r ′)a0(�r ′)d�r ′, (4.81)

where the point spread function (PSF) S(�r ′, �r ) describes the process of the trans-

formation of the object irradiance a0(�r ′) in the initial plane to the image irradiance

a(�r ) in the image plane. The PSF is a main notion of the image transfer theory

(ITT). Equation (4.81) takes a simpler form in the frequency domain:

a(�υ) = S(�υ)a0(�υ), (4.82)

where

a(�υ) =
∫ ∞

−∞

∫ ∞

−∞
a(�r ′)e−i �υr̄ ′

d�r ′, (4.83)

a0(�υ) =
∫ ∞

−∞

∫ ∞

−∞
a0(�r ′)e−i �υ�r ′

d�r ′, (4.84)

S(�υ) =
∫ ∞

−∞

∫ ∞

−∞
S

(�r ′) e−i �υ�r ′
d�r ′, (4.85)

et al. (1998). Note that the QSA considerably improves theoretical considerations

of laser backscattering by cloudy media as compared to the traditionally used lidar

equation:

I = Cz−2σsca(z) exp

⎧⎨
⎩−2

z∫
0

σext(z
′)dz′

⎫⎬
⎭ . (4.80)

Here C is the lidar constant dependent on the transmitted power, pulse duration and

receiver characteristics. The value of σsca(z) gives the backscattering coefficient at

the range z.

4.4 Image Transfer Through Clouds and Fogs

From the point of view of the linear systems theory a cloud is a high frequency

filter. The transmission of high frequency signals (in time and space domains) is

direction [the quasi-single approximation (QSA)]. Details are given by Katsev
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to a cloud layer. In this case the OTF is a real function. It does not depend on the

azimuth for randomly oriented particles.

The SAA for the OTF follows from Eq. (4.77) at �q = 0. Namely, we have:

˜̃I (z, ν, 0) = exp

{
−σscaz + σsca

2

∫ z

0

dz′
∫ ∞

0

dθp (θ ) J0

(
νz′θ

)
θ

}
. (4.88)

It can be proved that ˜̃I (z, ν, 0) ≡ S(z, ν). Indeed, the double Fourier transform of

the intensity I (z, �ρ, �s) has the following form:

I (z, �ν, �q) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
I (z, �ρ, �s)ei(�ν �ρ+�q�s)d�νd�s. (4.89)

So we have at �q = 0:

I (z, �ν, 0) =
∫ ∞

−∞

∫ ∞

−∞
a(z, �ρ)ei �ν �ρd�ν, (4.90)

where

a(z, �ρ) =
∫ ∞

−∞

∫ ∞

−∞
I (z, �ρ, �s)d�s. (4.91)

Comparing Eqs. (4.28) and (4.33), we conclude that S(z, �ν) ≡ I (z, �ν, 0). So we

have:

S(z, ν) = exp {−τ {1 − ω0 B(ν, z)}} , (4.92)

and �υ is the space frequency. We see that the integration procedures in the Fourier

space can be substituted by the multiplication. This makes all calculations much

simpler.

One of the basic problems of the ITT is to determine the Fourier transform of

the PSF, namely the optical transfer function (OTF) S (�υ) or the modulation transfer

function

T (�υ) = |S(�υ)|
|S(0)| . (4.86)

Also we have then:

a(�r ′) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
a(�υ)ei �υ�r d �υ. (4.87)

The OTF depends on the properties of media between an object and an image

consider the case of fogs and cloudy media in the visible range. Then particles are

large as compared to the wavelength and the SAA as described above can be used

to solve the problem. We will study the image transfer along axis OZ perpendicular

(Wells, 1969; Ishimaru, 1978; Volnistova and Drofa, 1986; Zege et al., 1991). Let us
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in the initial plane using Eq. (4.82). Also it follows:

a0(κ) = S−1(κ)a(κ). (4.97)

Therefore, the initial image can be reconstructed, if the OTF is known.

It follows at κ = 0: S(κ) = exp(−σabs z). Therefore, only absorption processes

are responsible for the OTF reduction at the zero frequency.

Let us approximate the phase function of a cloud medium as

p(θ ) = 4α2 exp(−α2θ2). (4.98)

Then it follows:

p̃(ςκ) = exp

{
−ς2κ2

4α2

}
(4.99)

and, therefore:

B(κ) = α
√

π

κ
erf

[ κ

2α

]
, (4.100)

where the error function

erf(u) = 2√
π

∫ u

0

exp(−φ2)dφ (4.101)

where

B(ν, z) = 1

2z

∫ z

0

dz′ p̃(ν(z − z′)). (4.93)

Let us introduce a new variable ς = 1 − z′/z. Then it follows:

B(ν, z) = 1

2

1∫
0

dς p̃(νzς ). (4.94)

We see that B(ν, z) depends on the dimensionless frequency κ = νz. The same is

true for the OTF. Therefore, it follows:

S(κ) = exp{−τ {1 − ω0 B(κ)}}, (4.95)

where

B(κ) = 1

2

∫ 1

0

p̃(κς )dς. (4.96)

Equation (4.95) is of a great importance in the Fourier optics of clouds. This equa-

tion allows to derive the irradiance in the image plane if one knows the irradiance
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In conclusion, let us consider the case �ν = 0 in the general expression. Then

it follows:

˜̃I (z, 0, q) = exp

{
−σscaz + σscaz

2

∫ ∞

0

dθp (θ ) J0 (qθ ) θ

}
(4.105)

or

˜̃I (z, 0, q) = exp{−σscaz(1 − p̃(q)}, (4.106)

where

p̃(q) = 1

2

∫ ∞

0

p(θ )J0(qθ )θdθ. (4.107)

Using Eq. (4.32), we obtain:

I (z, 0, �s) =
∫ ∞

−∞

∫ ∞

−∞
I (z, �s)ei �q�sd�s, (4.108)

where

I (z, �s) =
∫ ∞

−∞

∫ ∞

−∞
I (z, �ρ, �s)d �ρ. (4.109)

˜̃I (z, 0, q) gives the angular spectrum of transmitted light. According to Zege et al.

(1991), this function coincides with the mutual coherence function (MCF) !(z, q):

is introduced. So we obtain the following analytical expression for the OTF:

S(κ) = exp

{
−τ

{
1 − αω0

√
π

κ
erf

[ κ

2α

]}}
. (4.102)

In particular, it follows as κ → 0:

erf
[ κ

2α

]
≈ κ

α
√

π

[
1 − κ2

12α2

]
(4.103)

and, therefore,

S(κ) = exp

{
−τ

[
1 − ω0

(
1 − κ2

12α2

)]}
. (4.104)

It follows for non-absorbing media: S(κ) = exp{−�κ2}, where � = τ/12α2. We

see that the distribution S(κ) has the Gaussain shape at small dimensionless fre-

quencies κ. Larger droplets in clouds are characterized by more extended phase

functions. Therefore, α must be larger for larger particles. This also means that the

OTF is larger for larger particles. This will lead to a better image quality for media

having larger particles. Further details on the image transfer are given by Ishimaru

(1978) and Zege et al. (1991).
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constitutes a major scientific problem of modern time, namely, the climate change

and its influence on the biosphere. Another issue is how we may change human

behaviour to minimize its possibly disastrous influence on climate (e.g., melting

of ice at northern latitudes). Clouds influence climate in many ways. First of all

they reflect a large portion of incident solar energy back to outer space cooling the

system. So the change of cloud albedo, which is influenced by cloud optical thick-

ness and in a smaller extent by cloud thermodynamic state and size of particles is

very important. Clouds also warm the system protecting the escape of energy from

our planet at night. This is especially true for high clouds. Therefore, we see that

not only the cloud thicknesses but also their altitudes are of importance for climate

studies. Polluted clouds (e.g., containing soot) also warm the Earth-atmosphere

system reflecting less solar energy back to outer space. However, pollution can

also lead to larger droplet concentrations and, therefore, to smaller particles. This

leads to the increase of reflectance by cloudy media.

The energy balance equation can be written in the following form:

(1 − r )
E0

4
= σ T 4, (4.111)

where r is the global average albedo, σ is the Stefan–Botzman constant, E0 is

the solar constant and Tef is averaged radiation temperature. The coefficient 1/4
2

So one can study also the coherence loss due to scattering processes in cloudy

media using approximate results presented here. By definition, the inverse Fourier

transform of !(z, q) gives the angular distribution of light transmitted through a

scattering layer having the geometrical thickness z. Further discussions of this topic

are given by Zege and Kokhanovsky (1994).

!(z, q) = exp {−σscaz(1 − p̃(q))} . (4.110)

4.5 Clouds and Climate

The weather could be highly variable at any given place. However, meteorolog-

ical characteristics (e.g., surface temperature Ts) are quite stable if one considers

their average values for long periods of time (e.g., month, year, 100 years). The

climate is the averaged weather. It is argued that the human activity leads to the

climate change on a global scale. For instance, there is a strong correlation between

the increase of the surface temperature Ts and the increase of the concentration c
of CO2 in the atmosphere. It is believed that c increases due to human activity and

this leads to the increase of Ts . There are also other human factors, which influence

the climate (in particular, the extensive land use and industrial production). All this

shows that the illuminated surface (πa ) is 4 times smaller than the emission surface
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(4πa2). Here a is the radius of Earth. Basically, this equation means that energy

transmitted through the top-of-atmosphere escapes to outer space through thermal

radiative effects. This equation is only approximately valid because it ignores many

ef is

influenced mainly by the albedo of the planet r :

Tef = 4

√
1 − r

4σ
E0. (4.112)

In turn, the albedo of the planet is mainly determined by its cloud cover and cloud

thickness. This simple example shows the importance of clouds in the climate

(e.g., 1 year) is highly correlated with the product x = σ T 4
ef . In particular, it was

found that (in ◦C): Ts = 0.5σ T 4
ef − 104. Using values E0 = 1360 W

m2 , r = 0.3, we

obtain that 1% increase in r will result in the cooling of the surface by approximately

0.5◦C.

Therefore, it is of great importance to monitor the albedo of cloudless atmo-

sphere and also clouds on a global scale.

important processes. However, Eq. (4.111) clearly shows that the temperature T

sproblem. Note that the surface temperature T averaged on large time intervals

Such observations make a substantial contribution to the  most  important 

scientific problem of modern time—studies of climate change.
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