
Chapter 3

RADIATIVE TRANSFER

3.1 The Radiative Transfer Equation

Light scattering by a single macroscopic particle can be studied in the frame-

work of electrodynamics of continuous media. The same applies to clusters of

particles or scattering volumes, where multiple light scattering does not play an

important role. This is not the case for clouds. Here multiple scattering dominates

the registered signal. Therefore, generally speaking, techniques of multiple wave

scattering should be used in this case. However, they are quite complex and do not

always lead to results, which can be used as a base for the numerical algorithm.

Moreover, electromagnetic fields �E cannot be measured in the optical range.

This is mostly due to their high oscillations (≈ 1015 oscillations per second).

Clearly, any measuring device makes temporal and spatial averaging of registered

radiation. Also optical instruments measure quantities quadratic with respect to the

field. This is similar to quantum mechanics, where the amplitude ψ is the main

notion of the theory, but it is |ψ |2, which is measured.

Therefore, this is of importance to formulate multiple light scattering theory

not in terms of field vectors but in terms of quadratic values, which can be easily

measured. The Stokes-vector parameter �I with components I, Q, U, V is usually

used in this case. Of course, this leads to the omission of a number of theoretical

details (e.g., related to the phase effects). However, such an approach allows an

interpretation of most optical measurements. Also note that light beams having

the same values I, Q, U, V (but in principle different values of �E) cannot be dis-
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tinguished by optical instruments, which measure quadratic values. Therefore,

the main point is to force multiple light scattering theory to deal with intensities

rather than fields from the very beginning. Then we do not need to make the
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averaging procedures at the end of calculations to bring calculated values in cor-

respondence to the measured ones. The main task of this section is to introduce

an equation, which governs the transformation of the Stokes vector �I in cloudy

For the sake of simplicity, we consider now the transformation of light inten-

sity and ignore other components of the Stokes vector. Clearly, if the process of

scattering is ignored we can write in the linear approximation:

d I = −σext Idl. (3.1)

This underlines the experimental fact that the reduction of light intensity on the

length dl in this case is proportional to this length and the value of I itself. The co-

efficient of proportionality is called the extinction coefficient. Actually it coincides

in this simple case with the absorption coefficient (σsca = 0). It follows that

I = I0 exp(−σext l) (3.2)

for a homogeneous (σext = const) layer, which is the well-known extinction law.

Here I0 is the incident intensity at l = 0. This formula should be modified for

light scattering media to account for light scattering from all other directions to a

given direction ��. Then we have:

d I ( ��) = −σext I ( ��)dl +
∫

4π

σsca( ��, ��′)I ( ��′)d ��′dl, (3.3)

where σsca( ��, ��′) describes the local scattering law. Unfortunately, Eq. (3.3)

cannot be solved in such a simple way as for the case of Eq. (3.1) (no scattering).

This explains the mathematical complexity of the radiative transfer theory. Equa-

tion (3.3) is called the radiative transfer equation. It can be written in the following

form:

d I ( ��)

dl
= −σext I ( ��) +

∫
4π

σsca( ��, ��′)I ( ��′)d ��′. (3.4)

The radiative transfer theory is concerned with the solution of this equation for

scattering volumes (e.g., clouds), having different shapes, types of illuminations,

and microstructure. Actually, the Stokes vector �I is governed by the same equation

but σext and σsca become matrices in this case:

d �I ( ��)

dl
= −σ̂ext �I ( ��) +

∫
4π

L̂2σ̂sca

(
��, ��′

)
L̂1

�I ( ��′)d ��′. (3.5)

The matrix L̂1 transforms the Stokes vector defined in the meridional plane

holding the normal to the scattering layer and the direction ��′ to the Stokes vector

in the scattering plane. The matrix L̂2 is needed for the transformation of the Stokes

vector of scattered light from the scattering plane back to the meridional plane. This

(Mishchenko, 2002)

media. The Stokes vector used in this section is defined via Eqs. (2.215_)-(2.218)

Rozenberg (1973) and Mishchenko (2002).
with averaging procedures (in time and space domains) applied as discussed by
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Fig. 3.1. Geometry of the problem.

is due to the fact that the matrix σ̂sca in Eq. (3.5) is defined in the scattering plane

and the vector �I is defined with respect to the meridional plane. For spherical water

droplets the matrix σ̂ext is reduced to a scalar value and

d �I ( ��)

dl
= −σext �I ( ��) +

∫
4π

L̂2σ̂sca

(
��, ��′

)
L̂1

�I ( ��′)d ��′. (3.6)

However, for crystalline media, where particles can have a preferential orienta-

tion and be anisotropic, this is not the case. This fact adds an additional complexity

in radiative transfer studies for the case of ice clouds.

We will be mostly concerned with solutions of Eq. (3.6) for a plane-parallel

cloud layer illuminated by the Sun. The interaction of solar radiation with extended

cloud fields is well approximated by the solution of this idealized problem. The

geometry of the problem is given in Fig. 3.1. The solar light with the zenith angle

ϑ0 uniformly illuminates a plane-parallel scattering layer from above. We will

assume that properties of the layer do not change in the horizontal direction. Then

properties of light field depend only on the vertical coordinate Z (see Fig. 3.1) and

the direction ��, specified by the zenith angle ϑ and the azimuth ϕ. The main task

is to calculate distributions �I (ϑ, ϕ, z). Usually only measurements of �I (ϑ, ϕ, 0) at

the top of the cloud (reflected light) and �I (ϑ, ϕ, z0) at the cloud base (transmitted

light) are made (see Fig. 3.1). Therefore, we will be concerned mostly with these

two angular distributions.

Equation (3.6) takes the following form for the case shown in Fig. 3.1:

cos ϑ
d �I (ϑ, ϕ)

dz
= −σext �I (ϑ, ϕ) +

∫ 2π

0

dϕ′
∫ π

0

dϑ ′ L̂2σ̂sca

(
ϑ ′, ϕ′ → ϑ, ϕ

)
× L̂1

�I (ϑ ′, ϕ′) (3.7)

The most simple case to study is that of idealized homogeneous clouds with

values of σext and σ̂sca not dependent on the position inside the cloud. Then we
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have from Eq. (3.7):

cos ϑ
d �I (ϑ, ϕ)

dτ
= − �I (ϑ, ϕ) + ω0

4π

∫ 2π

0

dϕ′
∫ π

0

dϑ ′ L̂2 P̂(ϑ ′, ϕ′ → ϑ, ϕ)

× L̂1
�I (ϑ ′, ϕ′), (3.8)

where we introduced the optical depth

τ = σext l, (3.9)

the phase matrix

P̂ = 4πσ̂sca(ϑ ′, ϕ′ → ϑ, ϕ)

σsca
(3.10)

and the single-scattering albedo:

ω0 = σsca

σext
. (3.11)

Studies of Eq. (3.8) open ways to treat more complex cases, including clouds

with spatial varying microstructure characteristics and also cases of broken clouds

and clouds having various complex shapes. Equation (3.8) is reduced to the fol-

lowing simpler form:

cos ϑ
d I (ϑ, ϕ)

dτ
= −I (ϑ, ϕ) + ω0

4π

∫ 2π

0

dϕ′
∫ π

0

dϑ ′ p(ϑ ′, ϕ′ → ϑ, ϕ)I (ϑ ′, ϕ′),

(3.12)

if the polarization effects are ignored. Here

p(ϑ ′, ϕ′ → ϑ, ϕ) = 4πσsca(ϑ ′, ϕ′ → ϑ, ϕ)

σsca
is the phase function.

It is useful to distinguish between diffuse �I d and direct (or coherent) �I c =
�J 0δ(μ − μ0)δ(ϕ − ϕ0) light in the general solution �I (ϑ, ϕ). Here �J 0 describes

the Stokes vector of the incident attenuated flux. It is assumed that the layer is

illuminated in the direction defined by the incidence zenith angle ϑ0 = arccos(μ0)

0

specified by the zenith observation angleϑ = arccos(μ) and the azimuthϕ. Namely,

we write: �I (ϑ, ϕ) = �I d (ϑ, ϕ) + �I c(ϑ, ϕ). The substitution of this formula in Eq.

(3.8) gives

cos ϑ
d �I d (ϑ, ϕ)

dτ
=− �I d (ϑ, ϕ) + ω0

4π

∫ 2π

0

dϕ′
∫ π

0

dϑ ′ L̂2 P̂(ϑ ′, ϕ′ → ϑ, ϕ)L̂1

× �I d (ϑ ′, ϕ′) + ω0

4π
P̂∗(ϑ0, ϕ0 → ϑ, ϕ) �F exp

(
− τ

cos ϑ0

)
(3.13)

and the azimuthal angle ϕ . The multiply scattered light is observed in the direction
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or

cos ϑ
d Id (ϑ, ϕ)

dτ
= −Id (ϑ, ϕ) + ω0

4π

∫ 2π

0

dϕ′
∫ π

0

dϑ ′ p(ϑ ′, ϕ′ → ϑ, ϕ)Id (ϑ ′, ϕ′)

+ ω0

4π
p(ϑ0, ϕ0 → ϑ, ϕ)F exp

(
− τ

cos ϑ0

)
(3.14)

P̂∗
�

0 0 0

Q0 = U0 = V0.

�I d (ϑ, ϕ).

Also it follows from Eqs. (3.8) and (3.13) that �I c

�I c(ϑ, ϕ) = �F(ϑ, ϕ)δ(cos ϑ − cos ϑ0)δ(ϕ − ϕ0) exp

(
− τ

cos ϑ0

)
(3.15)

or

Ic(ϑ, ϕ) = F(ϑ, ϕ)δ(cos ϑ − cos ϑ0)δ(ϕ − ϕ0) exp

(
− τ

cos ϑ0

)
(3.16)

for the scalar case.

The solution of Eq. (3.13) is a more easy task than that of Eq. (3.8) because

we avoid the necessity to deal with the divergence in the direction of incident light

in the framework of Eq. (3.13).

3.2 Reflection and Transmission Functions

Reflectance and transmittance of light by cloud layers is usually defined in terms

of reflection R and transmission T functions. They relate incident light intensity

0 0 R T

it follows by definition:

IR(μ, ϕ) = 1

π

∫ 1

0

dϕ′
∫ 2π

0

R(τ, μ, ϕ, μ′, ϕ′)I0(μ′, ϕ′)μ′dμ′, (3.17)

IT (μ, ϕ) = 1

π

∫ 2π

0

dϕ′
∫ 1

0

T (τ, μ, ϕ, μ′, ϕ′)I0(μ′, ϕ′)μ′dμ′. (3.18)

Reflection and transmission functions allow to find the intensity of reflected

and transmitted light for arbitrary angular distributions of incident light with the

intensity I0(μ′, ϕ′).

(ϑ, ϕ) is given simply by:

is the scattering matrix defined with respect to thefor the scalar case. Here

meridional plane, F(F, Q , U , V ) is the Stokes vector of incident light flux

The solution of this equation under boundary conditions stating that there is no

diffuse light entering the cloud from above and below, allows to find

at the top of a cloud. It follows for unpolarized solar light:

0I (ϑ , ϕ ) with reflected I (μ,ϕ) and transmitted I (μ,ϕ) light intensities.Namely,
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If incident light is azimuthally independent, these formulae simplify:

IR(μ, ϕ) = 2

∫ 1

0

R̄(τ, μ, μ′)I0(μ′)μ′dμ′, (3.19)

IT (μ, ϕ) = 2

∫ 1

0

T̄ (τ, μ, μ′)I0(μ′)μ′dμ′, (3.20)

where

R̄(τ, μ, μ′) = 1

2π

∫ 2π

0

R(τ, μ, μ′ϕ′)dϕ′, (3.21)

T̄ (τ, μ, μ′) = 1

2π

∫ 2π

0

T (τ, μ, μ′ϕ′)dϕ′. (3.22)

of a cloud by a wide beam (e.g., solar light). Then we can assume that

I0(μ′, ϕ′) = δ(μ′ − μ0)δ(ϕ′ − ϕ0)F, (3.23)

f (x0) =
∫ ∞

0

δ(x − x0) f (x)dx . (3.24)

Using this relation and equations for reflection and transmission functions

given above, we arrive at the following results:

IR(μ, ϕ) = Fμ0 R(τ, μ, ϕ, μ0, ϕ0)

π
, (3.25)

IT (μ, ϕ) = Fμ0T (τ, μ, ϕ, μ0, ϕ0)

π
, (3.26)

and, therefore,

R(τ, μ, ϕ, μ0, ϕ0) = π IR(μ, ϕ)

Fμ0

, (3.27)

T (τ, μ, ϕ, μ0, ϕ0) = π IT (μ, ϕ)

Fμ0

. (3.28)

These equations allow us to make the following interpretation of reflection

and transmission functions. Indeed, we have for an absolutely white Lambertian

surface by definition:

P L
R (μ, ϕ) =

∫
2π

I L
R (μ, μ′, ϕ, ϕ′)μ′d�′ =

∫ 2π

0

dϕ′
∫ 1

0

I L
R (μ, μ′, ϕ, ϕ′)μ′dμ′

=
∫ 2π

0

dϕ′
∫ 1

0

Cμ0μ
′dμ′ = πCμ0 (3.29),

having the following property:

a cloud perpendicular to the incident light beam and δ(x) is the delta function,

Note that relations (3.19) and (3.20) simplify for unidirectional illumination

where F is the solar flux density at the elementary area positioned at the top of
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where P L
R (ϑ, ϕ) is the total power scattered by a unit area of a Lambertian surface

into the upper hemisphere and we used the fact that intensity of light reflected

from a Lambertian surface is proportional to the cosine of the incidence angle

μ0(I L
R = Cμ0). The constant C can be found from the condition that the scattered

surface by definition. We have for the incident power:

P0 =
∫

2π

I0(μ′, μ0, ϕ
′, ϕ0)μ′d�′ =

∫ 2π

0

dϕ

∫ 1

0

δ(μ′−μ0)δ(ϕ′−ϕ0)Fμ′dμ′ = Fμ0

(3.30)

and, therefore: C = F/π . It means that intensity of light reflected from an abso-

lutely white Lambertian surface is given by:

I L
R = F

π
μ0, (3.31)

and, therefore, R(τ, μ, ϕ, μ0, ϕ0) [see Eq. (3.25)] is equal to the ratio of light

reflected from a given surface IR to the value of I L
R :

R = IR/I L
R . (3.32)

Also it means that R ≡ 1 by definition for a Lambertian ideally white surface.

Accordingly, it follows:

T = IT

/
I L

R . (3.33)

The results of calculations and measurements of cloud reflectance and trans-

mittance will be mostly presented in terms of functions R and T in this book. They

do not depend on the intensity of incident light and characterize inherent properties

integration of reflection and transmission functions with respect to angles allows

us to find the cloud plane (rd ) and spherical (r ) albedo, the cloud diffuse (td ) and

the global (t) transmittance, the cloud absorptance ad and the global absorptance

a (see Table 3.1 for definitions).

3.3 Polarization Characteristics

Clearly, Eqs. (3.15) and (3.16) should be modified if one would like to account

for light polarization. Namely, it follows:

�I R(μ, ϕ) = 1

π

∫ 2π

0

dϕ

∫ 1

0

R̂(τ, μ, ϕ, μ′, ϕ′) �I 0(μ′, ϕ′)μ′dμ′, (3.34)

�I T (μ, ϕ) = 1

π

∫ 2π

0

dϕ

∫ 1

0

T̂ (τ, μ, ϕ, μ′, ϕ′) �I 0(μ′, ϕ′)μ′dμ′. (3.35)

using Eqs. (3.17) and (3.18) for an arbitrary angular distribution of incident light. The

of a cloud layer. The intensity of reflected and transmitted light can be calculated

and incident powers are equal in the case of an absolutely white Lambertian
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Table 3.1. Radiative transfer characteristics
{

R̄ ≡ 1
2π

∫ 2π

0
R(μ0, μ, ϕ)dϕ, T̄ ≡

1
2π

∫ 2π

0
T (μ0, μ, ϕ)dϕ .

Radiative characteristic Symbol Definition

Plane albedo rd (μ0) 2
∫ 1

0
R̄(μ)μdμ

Spherical albedo r 2
∫ 1

0
rd (μ0)μ0dμ0

Diffuse transmittance td (μ0) 2
∫ 1

0
T̄ (μ0, μ)μdμ

Global transmittance t 2
∫ 1

0
td (μ0)μ0dμ0

Absorptance ad (μ0) 1 − rd (μ0) − td (μ0)

Global absorptance a 1 − r − t

Here �I R(μ, ϕ) is the Stokes vector of reflected light, �I T (μ, ϕ) is the Stokes

vector of transmitted light, �I 0(μ, ϕ) is the Stokes vector of incident light, R̂ and T̂
are 4 × 4 reflection and transmission matrices, respectively, for illumination from

above. Clearly, we have: R ≡ R11, T ≡ T11. The Stokes vector for unidirectional

illumination of a cloud by a wide beam is

�I 0(μ′, ϕ′) = δ(μ′ − μ0)δ(ϕ′ − ϕ0) �F . (3.36)

The first element of �F equals to the incident net flux F per unit perpendicular

area at the top of a cloud. Other elements of this vector (Q0, U0, V0) describe the

polarization state of incident light. They equal to zero for incident unpolarized

solar light. Obviously, we have in this case [see also Eqs. (3.25) and (3.26)]:

�I R(ϑ0, ϑ, ϕ) = R̂ �F
π

μ0, (3.37)

�I T (ϑ0, ϑ, ϕ) = T̂ �F
π

μ0. (3.38)

Let us assume that incident light is unpolarized. Then we have for the compo-

nents of the Stokes vector of reflected light:

IR(ϑ0, ϑ, ϕ) = R11 F

π
μ0, Q R(ϑ0, ϑ, ϕ) = R21 F

π
μ0, (3.39)

UR(ϑ0, ϑ, ϕ) = R31 F

π
μ0, VR(ϑ0, ϑ, ϕ) = R41 F

π
μ0, (3.40)

and

IT (ϑ0, ϑ, ϕ) = T11 F

π
μ0, QT (ϑ0, ϑ, ϕ) = T21 F

π
μ0, (3.41)

UT (ϑ0, ϑ, ϕ) = T31 F

π
μ0, VT (ϑ0, ϑ, ϕ) = T41 F

π
μ0 (3.42)

{
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for transmitted light. The degree of linear polarization of reflected light is defined as

pr
l ≡ −

√
Q2

R + U 2
R

IR
. (3.43)

Therefore, it follows:

pr
l ≡ −

√
R2

21 + R2
31

R11

. (3.44)

It follows for the total degree of polarization:

pr ≡ −
√

R2
21 + R2

31 + R2
41

R11

. (3.45)

The degree of circular polarization is given by:

pr
c ≡ − R41

R11

. (3.46)

Note that the following relation holds for the total degree of polarization:

pr ≡ √
pr

l + pr
c . (3.47)

Similar characteristics can be defined for the transmitted light:

pt
l ≡ −

√
T 2

21 + T 2
31

T11

, pt
c ≡ T41

T11

, pt ≡ −
√

T 2
21 + T 2

31 + T 2
41

T11

. (3.48)

A number of simplifications arise for particular observation and incidence

pr
c = pt

c = 0 and

pr
l ≡ − R21

R11

, pt
l ≡ −T21

T11

(3.49)

at μ0 = 1 and any observation conditions. Similarly, we have pr
c = pt

c = 0 at μ = 1

for arbitrary illumination conditions. Equations (3.49) hold at μ = 1 and ϕ = ϕ0

as well.

directions. For instance, if incidence and observation directions coincide and

reflection matrix for media with randomly oriented particles has the same structure

as the scattering matrix for a local scattering volume. Therefore, light reflected

in the nadir direction for the nadir illumination conditions is unpolarized. Also it

follows that

perpendicular to the scattering layer, then the principal plane is not defined and the
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3.4 Optically Thin Clouds

The radiative transfer in thin clouds (e.g., subvisual Cirrus) can be studied

using the single-scattering approximation. Indeed multiple light scattering is of no

importance in this case and the integral term in Eq. (3.13) can be omitted. Then it

follows from Eq. (3.13)

d �I d (x)

dx
= − �I d (x) + ω0(x)

4π
P̂(x) �F exp(−sx), (3.50)

where x = τ/ cos ϑ, s = cos ϑ/ cos ϑ0 and we omitted other arguments for sim-

plicity. The matrix P̂ in Eq. (3.50) is defined with respect to the meridional plane.

This equation can be solved analytically. For this we multiply both sides of Eq.

(3.50) by ex . Then it follows:

exp(x)
d �I d (x)

dx
+ exp(x) �I d (x) = ω0(x)

4π
P̂(x) �F exp(−(s − 1)x) (3.51)

or

d
[

�I d (x)ex
]

dx
= ω0(x)

4π
P̂(x) �F exp(−(s − 1)x). (3.52)

It means that

�I d (x) = 1

4π
e−x

∫ x

a
ω0(x ′)P̂(x ′) �F exp(−(s − 1)x ′). (3.53)

Let us apply boundary conditions now:

�I d↑(x = 0) = 0, cos ϑ > 0, (3.54)

�I d↓(x = x0) = 0, cos ϑ < 0. (3.55)

They mean that there is no diffuse light entering the medium from above (x = 0)

or below (x = x0 = (τ0/ cos ϑ)), τ0 is the optical thickness of a scattering layer. So

we have:

�I d↓(x) = 1

4π
e−x

∫ x

0

ω0(x ′)P̂(x ′) �F exp(−(s − 1)x ′), (3.56)

�I d↑(x) = 1

4π
e−x

∫ x

x0

ω0(x ′)P̂(x ′) �F exp(−(s − 1)x ′) (3.57)

and boundary conditions are satisfied automatically. A simple integration under

the assumption of a homogeneous cloud layer gives:

�I d↓(x) = ω0 P̂ �F
4π (s − 1)

{e−x − e−sx}, (3.58)

�I d↑(x) = ω0 P̂ �F
4π (s − 1)

{e−x−(s−1)x0 − e−sx} (3.59)
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for arbitrary x . It follows at the boundaries of a layer:

�I d↓(x) = ω0 P̂ �F
4π (s − 1)

{e−x0 − e−sx0}, �I d↑(x) = ω0 P̂ �F
4π (s − 1)

{e−(s−1)x0 − 1}
(3.60)

So we have for the reflection and transmission vectors:

�I r = ω0 P̂�h
4(ξ + η)

{
1 − exp

[
−

(
1

ξ
+ 1

η

)
τ0

]}
,

�I T = ω0 P̂�h
4(ξ − η)

{
exp

[
−τ0

ξ

]
− exp

[
−τ0

η

]}
, (3.61)

where η = | cos ϑ |, ξ = cos ϑ0, τ0 is the optical thickness of the scattering layer,

and �h = �F/F1. We see that matrices R̂ and T̂ introduced above are proportional

to P̂ and have the same structure.

Obviously, it follows for unpolarized incident light

R = ω0 p(θ )

4(ξ + η)

{
1 − exp

[
−

(
1

ξ
+ 1

η

)
τ0

]}
, (3.62)

T = ω0 p(θ )

4(ξ − η)

{
exp

[
−τ0

ξ

]
− exp

[
−τ0

η

]}
. (3.63)

Equations given above are very useful in estimations of the influence of thin

(τ0 → 0) clouds on light fluxes in the terrestrial atmosphere.

3.5 Small-Angle Approximation

Let us consider now the case of a highly anisotropically light scattering layer

(the asymmetry parameter g → 1) illuminated along the normal. In this case most

scattered photons propagate within the small-angle scattering region and there

is a possibility to simplify the radiative transfer equation. Thus, we assume that

cos ϑ = 1 in Eq. (3.12) and obtain:

d I (τ, μ)

dτ
= −I (τ, μ) + ω0

2

∫ 1

0

dμ′ I (τ, μ′)p(μ, μ′), (3.64)

where

p(μ, μ′) = 1

2π

∫ 2π

−1

p(μ, μ′, φ)dφ. (3.65)

We used the fact that the intensity of scattered light field for layers with ran-

domly oriented particles does not depend on the azimuth for the illumination of

a layer along the normal. Note, that the value of I (τ, μ) is the total intensity in
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the direction given by arccos(μ), not the diffuse intensity as in Eq. (3.14), and

it includes the direct light. The phase function p(μ, μ′, ϕ) in Eq. (3.65) can be

represented in the following form (Minin, 1988)

p(μ, μ′, φ) = p(μ, μ′) + 2
∞∑

m=1

cos m(φ − φ′)
∞∑

i=m

xi
(i − m)!

(i + m)!
Pm

i (μ)Pm
i (μ′),

(3.66)

where

p(μ, μ′) =
∞∑

i=0

xi Pi (μ)Pi (μ
′) (3.67)

and Pi (μ) and Pm
i (μ) are Legendre and associated Legendre polynomials, respec-

tively. Note that it follows:

xi = 2i + 1

2

∫
p(θ )Pi (θ ) sin θdθ. (3.68)

We seek the solution of Eq. (3.64) in the following form:

I (τ, μ) =
∞∑

i=0

bi (τ )Pi (μ). (3.69)

Substituting Eqs. (3.67) and (3.69) in Eq. (3.64), one obtains:

dbi (τ )

dτ
= −ci bi (τ ), (3.70)

where

ci = 1 − ω0

xi

2i + 1
(3.71)

and the orthogonality of Legendre polynomials was used. Thus, it follows:

bi (τ ) = Ai exp(−ciτ ), (3.72)

where Ai = const .
We see that it is possible to obtain the intensity of the transmitted light with

the following formula:

I (τ, μ) =
∞∑

i=0

Ai e
−ci τ Pi (μ). (3.73)

Values of Ai are found from initial conditions. We will assume that

I (0, μ) = I0δ(1 − μ), (3.74)
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where δ(1 − μ) is the delta function, I0 is the density of incident light flux. The

delta function can be represented in the following form:

δ(1 − μ) = 1

4π

∞∑
i=0

(2i + 1)Pi (μ). (3.75)

Thus, it follows:

Ai = 2i + 1

4π
(3.76)

and, finally,

I (τ, μ) = B
∞∑

i=0

2i + 1

2
e−ci τ Pi (μ), (3.77)

where B = I0/2π .

This is a solution of the problem under consideration. Equation (3.77) describes

the angular distribution of the transmitted light at small angles for the normal inci-

dence of a light beam. This important formula can be rewritten in the integral form.

Indeed, the phase function p(θ ) has a sharp peak in the forward-scattering direction

(θ = 0) for cloudy media and the main contribution to the integral Eq. (3.68) comes

from the small-angle scattering region. Thus, it follows from Eq. (3.68) that

xi = 2i + 1

2

∫ ∞

0

p(θ )J0

(
θ

(
i + 1

2

))
θdθ, (3.78)

where the asymptotic relationship

lim
θ→0

Pi (cos θ ) = J0

(
θ

(
i + 1

2

))
(3.79)

was used.

∞∑
i=0

f
(
i + 1

2

) ≈
∫ ∞

0

f (σ )dσ , (3.80)

it follows:

I (τ, ϑ) = I0

2π

∫ ∞

0

dσ J0(σϑ) exp(−τ (1 − ω0 P(σ ))), (3.81)

where

P(σ ) = 1

2

∫ ∞

0

p(θ )J0(θσ )θdθ. (3.82)

From Eqs. must be (3.77)-(3.79) and the sum formula
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Table 3.2. Phase functions p(θ ) and their Fourier–Bessel transforms P(σ ) (ϒ is

the normalization constant, x is the size parameter).

p(θ ) P(σ )

2ϒ exp(−ϒθ )

θ

ϒ√
ϒ2 + σ 2

2ϒ2 exp(−ϒθ )
ϒ3

(ϒ2 + σ 2)3/2

2

ϒ2
exp

(
− θ2

2ϒ2

)
exp

(
−ϒ2σ 2

2

)

4J 2
1 (θx)

θ 2

⎧⎪⎨
⎪⎩

2

π

{
arccos

( σ

2x

)
− σ

2x

√
1 −

( σ

2x

)2

}
, σ ≤ 2x

0, σ > 2x

Equation (3.81) in many cases is more easy to handle than Eq. (3.77). For instance,

Eq. (3.82) can be analytically integrated for special types of phase functions p(θ )

(see Table 3.2).

It follows from Eq. (3.81) for the diffuse intensity Id (τ, ϑ):

Id (τ, ϑ) = I0

2π

∫ ∞

0

[
e−τ (1−ω0 P(σ )) − e−τ

]
J0(σϑ)σdσ , (3.83)

where we extracted the peak of light intensity exactly in the forward direction using

the equality:

I0

2π
e−τ

∫ ∞

0

J0(σϑ)σdσ = I0e−τ δ(ϑ). (3.84)

Equation (3.83) is often used for the solution of both direct and inverse problems

of cloud optics. It is valid at τ ≤ 5 and ϑ → 0. It follows that the phenomenon

of multiple light scattering is responsible for broadening of the angular spectrum

of the light transmitted by a scattering layer at small angles. The same effect is

also observed in the single-scattering regime if the sizes of particles decrease. This

remark is of importance for optical particle sizing in cloudy media.

The approximation, which was considered in this section, is called the small-

angle approximation (SAA). Moments of different radiative characteristics in this

approximation were studied by Lutomirski et al. (1995).

3.6 Optically thick clouds

3.6.1 Fundamental Relationships

Another case, where simple analytical results can be obtained, is that of thick

(τ0 → ∞) clouds. Note that final equations derived here can be actually applied at
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τ0 ≥ 10 or at somewhat smaller values depending on the accuracy requirements.

This means that this case covers most cloudy situations occurring in the terrestrial

atmosphere. Before we proceed to the derivation of analytical equations for func-

tions R and T at τ0 � 1, we need to establish some auxiliary asymptotic relations.

It is known that light intensity in deep layers of optically thick media is az-

imuthally independent. The azimuthally integrated radiative transfer equation [see

Eq. (3.14)] can be written in the following form:

η
d I (τ, η)

dτ
= −I (τ, η) + B(τ, η) + B0(τ, η), (3.85)

where

B(τ, η) = ω0

2

∫ 1

−1

p(η, η′)I (τ, η′)dη′, (3.86)

B0(τ, η) = ω0 F

4π
p(η, ξ )e−τ/ξ , (3.87)

and

p(η, ξ ) = 1

2π

∫ 2π

0

p(η, ξ, ϕ)dϕ (3.88)

is the azimuthally averaged phase function. We also neglect polarization effects.

Let us assume that τ → ∞. Then it follows: B0(τ, η) → 0 and

I (τ, η) = i(η)e−kτ . (3.89)

The last equation corresponds to the so-called deep-layer regime, when pa-

rameters η and τ are decoupled. Then the overall light flux f decreases with the

distance from the illuminated boundary preserving the scattered light angular pat-

tern given by the function i(η). The value of f decreases in e times on the optical

depth τe = 1/k. Both the function i(η) and the diffusion exponent k, play an im-

portant role in the theory considered here. These characteristics of the deep-layer

regime also define the intensity of transmitted and reflected light as will be shown

below.

So we have from Eq. (3.85):

(1 − kη)i(η) = ω0

2

∫ 1

−1

p(η, η′)i(η′)dη′. (3.90)

This integral equation is usually solved numerically. Let us assume that p = 1.

Then we have:

i(η) = ω0

2(1 − kη)

∫ 1

−1

i(η′)dη′ (3.91)
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or

i(η) = D

1 − kη
, (3.92)

where

D = ω0

2

∫ 1

−1

i(η′)dη′ (3.93)

does not depend on the angle. Note that i(η) satisfies the radiative transfer equation

(3.90) for any constant D and, therefore,

i(η) = 1

1 − kη
(3.94)

and

I (τ, η) = exp(−kτ )

1 − kη
, (3.95)

where we used the normalization condition: D = 1. The diffusion constant k can be

found as follows. Let us substitute (3.92) in (3.91) taking into account that D = 1.

Then we have:

ω0

2k
ln

(
1 + k

1 − k

)
= 1. (3.96)

This equation allows to find k at arbitrary ω0 and p(θ ) = 1. Clearly, we have at

ω0 = 1 : k = 0. The dependence k(ω0) at p(θ ) = 1 is given in Fig. 3.2. For more

complex phase functions a numerical solution is needed. The results of correspon-

dent calculations for the Heney–Greenstein phase function

p(θ ) =
∞∑

n=1

gn Pn(cos θ ) (3.97)

at the asymmetry parameters g = 0.75 (ice clouds) and g = 0.85 (water clouds)

are also given in Fig. 3.2. We see that 0 ≤ k ≤ 1. This means that the decrease

rate of the diffuse light in the deep-layer regime (exp(−kτ )) for absorbing media

is smaller than that of the direct light (exp(−τ )).

It follows also:

(1 + kη)i(−η) = ω0

2

∫ 1

−1

p(−η, η′)i(η′)dη′ (3.98)

or

(1 + kη)i(−η) = ω0

2

∫ 1

−1

p(η, η′)i(−η′)dη′, (3.99)

where we used the property: p(−η, −η′) = p(η, η′).
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Fig. 3.2. Dependence of the diffusion exponent on the single-scattering albedo for isotropic

scattering. Calculations of the diffusion exponent for single-scattering albedos typical for water

(0.85) and ice (0.75) clouds are also shown. It follows that the value of k decreases with g for a

given ω0.

Let us establish now the relationship between the intensity i↓(η) for light prop-

agated downwards and the intensity i↑(−η) for light propagated upwards. Arrows

show the direction of light propagation. The value of η = | cos ϑ | is positive by def-

inition. Note that negative cos ϑ corresponds to upwelling light flux. We consider

plane at τ � 1 is illuminated not only by light coming from above and having

the intensity ia but also by light coming from below and reflected from the layer

laying above the plane of cut. We denote this contribution to the total intensity as

ib. Clearly, we have:

i↓(η) = ia(η) + ib(η). (3.100)

a cut parallel to the upper boundary but at a large optical depth. The corresponding
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Fig. 3.3. Contributions to downward light flux.

So the function i↓(η) can be presented as a sum of two terms (see Fig. 3.3). Clearly,

ia(η) is proportional to the angular distribution u(η) of light transmitted by the

upper layer:

ia(η) = Mu(η), (3.101)

where M is the unknown proportionality constant. We will find this constant at later

stages of our derivations. Also it follows from Eq. (3.19) for the intensity ib(η):

ib(η) = 2

∫ 1

0

R(η, η′)i(−η′)η′dη′, (3.102)

where R(η, η′) is the azimuthally averaged reflection function of the upper layer

under illumination from below (η > 0, η′ > 0). This layer could be chosen to be

arbitrary thick. So we will assume that R(η, η′) coincides with the azimuthally

averaged reflection function of a semi-infinite layer R∞(η, η′).
Summing up, it follows:

i↓(η) = Mu(η) + 2

∫ 1

0

R∞(η, ξ )i(−ξ )ξdξ . (3.103)

Let us find M . For this we multiply the last equation by ηi↓(η) and integrate it

from 0 to 1 with respect to η. Then we have:∫ 1

0

ηi↓2(η)dη = M

∫ 1

0

u(η)i↓(η)ηdη + � (3.104)
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where the two-dimensional integral

� = 2

∫ 1

0

i↓(η)ηdη

∫ 1

0

R∞(η, ξ )i↑(−ξ )ξdξ (3.105)

can be simplified. For this we note that it follows

i↑(−ξ ) = 2

∫ 1

0

i↓(η)R∞(η, ξ )ηdη (3.106)

and, therefore,

� =
∫ 1

0

i↑2(−ξ )ξdξ (3.107)

or

� = −
∫ 0

−1

i↓2(ξ )ξdξ . (3.108)

Therefore, it follows:

M = C

∫ 1

−1

i2(η)ηdη, (3.109)

where

C =
[∫ 1

0

u(η)i(η)dη

]−1

. (3.110)

We will use the normalization condition: C = 2. Then one derives:

M = 2

∫ 1

−1

i2(η)ηdη. (3.111)

We present the equation for M together with other important relationships in

Table 3.3. The constant N defined in the property 8 (see Table 3.3) will be used in

further derivations devoted to studies of relationships between auxiliary functions

defined as

P(τ ) =
∫ 1

−1

ηi(η)I (τ, η)dη (3.112)

and

Q(τ ) =
∫ 1

−1

ηi(−η)I (τ, η)dη. (3.113)

The relationships between functions P(τ ) and Q(τ ) can be used for the derivation

of asymptotic equations for reflection and transmission functions valid as τ0 → ∞.

Let us show this.
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Table 3.3. Main equations and constants (u0 ≡ u(ω0 = 1), R0∞ ≡ R0∞(ω0 = 1)).

N Property

1 (1 − kη)i(η) = ω0

2

∫ 1

−1
p(η, η′)i(η′)dη′

2 (1 + kη)i(−η) = ω0

2

∫ 1

−1
p(η, η′)i(−η′)dη′

3 ω0

2

∫ 1

−1
i(η)dη = 1

4 i(−η) = 2
∫ 1

0
i(ξ )R∞(ξ, η)ξdξ

5 i(η) = 2
∫ 1

0
i(−ξ )R∞(ξ, η)ξdξ + Mu(η)

6 2
∫ 1

0
u(η)i(η)ηdη = 1

7 M = 2
∫ 1

−1
i2(η)ηdη

8 N = 2
∫ 1

0
i(−η)u(η)ηdη

9 δ = ∫ 1

0
u0(ξ )ξ 2dξ

10 u0(ξ ) = 3
4

(
ξ + 2

∫ 1

0
R0∞(ξ, η)η2dη

)
11 2

∫ 1

0
u0(η)ηdη = 1

12 2
∫ 1

0
R0∞(ξ, η)ηdη = 1

First of all, we note that it follows from Eq. (3.90) after multiplication of this

equation by i(η) and integration from –1 to 1:

d P(τ )

dτ
= −k P(τ ) + P0(τ ), (3.114)

where

P0(τ ) =
∫ 1

−1

i(η)B0(τ, η)dη (3.115)

and we used the equality

−k P(τ ) =
∫ 1

−1

B(τ, η)i(η)dη −
∫ 1

−1

i(η)I (τ, η)dη. (3.116)

multiplying Eq. (1) in Table 3.3 by I (τ, η) and integrating this equation from –1

to 1 with respect to η:∫ 1

−1

I (τ, η)i(η)dη − k P(τ ) = ω0

2

∫ 1

−1

dη

∫ 1

−1

I (τ, η)p(η, η′)i(η′)dη′ (3.117)

This equality can be obtained from property 1 in Table 3.3. Namely, we have after
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or ∫ 1

−1

I (τ, η)i(η)dη − k P(τ ) =
∫ 1

−1

dη′ B(τ, η′)i(η′)dη′, (3.118)

where we used the property: p(η, η′) = p(η′, η). The last equation coincides with

Eq. (3.116).

The next step is to find P(τ ). For this we use the following substitution in

Eq. (3.114):

P(τ ) = f (τ )e−kτ . (3.119)

Then it follows:

d f (τ )

dτ
= P0(τ )ekτ (3.120)

or

f

∣∣∣∣ τ

τ1
=

∫ τ

τ1

P0(t)ekt dt . (3.121)

It means that

f (τ ) = f (τ1) +
∫ τ

τ1

P0(t)ekt dt . (3.122)

So we we have:

P(τ ) = f (τ1)e−kτ + e−kτ

∫ τ

τ1

P0(t)ekt dt . (3.123)

The value of τ1 can be found from boundary conditions. In particular, we are

interested in the diffuse light. Diffuse light does not enter the medium from above

or below (I (0, η) = 0 for η > 0 and I (τ0, η) = 0 for η < 0). Therefore, we have:

τ1

follows

P(τ ) = P(0)e−kτ +
∫ τ

0

P0(t)ek(t−τ )dt . (3.124)

A similar relationship can be obtained for Q(τ, η). Then we have:

d Q(τ )

dτ
= k Q(τ ) + Q0(τ ), (3.125)

where

Q0(τ ) =
∫ 1

−1

i(−η)B0(τ, η)dη. (3.126)

This equation differs for the correspondent equation for P only by the sign before

k. So we have:

Q(τ, η) = ψ
(
τ ∗

1

)
ekτ + ekτ

∫ τ

τ ∗
1

Q0(t)e−kt dt, (3.127)

= 0. Then the boundary condition at the upper boundary is satisfied. Finally, it
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where it was assumed that

Q(τ ) = ψ(τ )ekτ . (3.128)

The value of τ ∗
1 can be found from the boundary condition at the lower boundary

of a medium. Namely, we have: τ ∗
1 = τ0. Therefore, it follows:

Q(τ ) = Q(τ0)ek(τ−τ0) +
∫ τ

τ0

Q0(t)e−k(t−τ )dt . (3.129)

This equation is satisfied automatically at τ = τ0 due to the accurate account for

the boundary conditions.

Summing up, we have the following important relationships:

P(τ ) = P(0)e−kτ + V (τ ), (3.130)

Q(τ ) = Q(τ0)ek(τ−τ0) + W (τ ), (3.131)

where

V (τ ) =
∫ τ

0

P0(t)ek(t−τ )dt, (3.132)

W (τ ) =
∫ τ

τ0

Q0(t)e−k(t−τ )dt . (3.133)

These fundamental relationships are valid for any τ and for any light sources

represented by B0 (Sobolev, 1975). They can be used for the derivation of a number

of important results of cloud optics.

We will use a particular case at τ = 0 in the first equation and a case τ = τ0

in the second equation. Then it follows:

P(τ0) = P(0) exp(−kτ0) + V (τ0), (3.134)

Q(0) = Q(τ0) exp(−kτ0) + W (0), (3.135)

where

V (τ0, η) = e−kτ0

∫ τ

0

P0dt

∫ 1

−1

i(η)
ω0

4
p(η, ξ )e−t((1/ξ )−k)dξ

= 1

2

(
ekτ0 − e−τ0/ξ

)
ξ i(−ξ ), (3.136)

and we used property 2 in Table 3.3. Also we have:

W (0, η) =
∫ 0

τ0

e−kt dt

∫ 1

−1

i(−η)
ω0

4
p(η, ξ )e−t/ξ dη

= −1

2

(
1 − e−(k+(1/ξ ))τ0

)
ξ i(−ξ ). (3.137)
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Therefore, neglecting small numbers e−τ0/ξ , it follows as τ0 → ∞:

P(0, η) = −P(τ0, η)ekτ0 + 1

2
ξ i(−ξ ), (3.138)

Q(0, η) = Q(τ0, η)e−kτ0 − 1

2
ξ i(−ξ ). (3.139)

These are auxiliary relations we were bound to establish from the very start.

They can be also written in the following form:

i(ξ ) = 2

∫ 1

−1

T (η, ξ, τ0)i(η)ηdη + 2e−kτ0

∫ 1

−1

R(η, ξ, τ0)i(−η)dη, (3.140)

i(−ξ ) = 2

∫ 1

−1

R(η, ξ, τ0)i(η)ηdη + 2e−kτ0

∫ 1

−1

T (η, ξ, τ0)i(−η)ηdη, (3.141)

where T and R are determined as

R = π IR

μ0 F
, T = π IT

μ0 F
. (3.142)

3.6.2 Asymptotic Equations

The general form of functions R(η, ξ, τ0) and T (η, ξ, τ0) can be obtained using

physical arguments. In particular T should be proportional to u(η) (and, actually

due to the reciprocity principal also to u(ξ )). Therefore, we have:

T (η, ξ, τ0) = α(τ0)u(η)u(ξ ). (3.143)

Let us consider now a semi-infinite layer (see Fig. 3.4) and make a cut at a

large optical thickness τ0. Then we can represent R∞(η, ξ ) as a sum of reflection

21

O

Z

z=zc

z=0

Fig. 3.4. Contributions to upward light flux.
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from upper layer R(τ0, η, ξ ) (contribution 1, see Fig. 3.4) and light transmitted

by the upper layer and reflected back (contribution 2, see Fig. 3.4). The angular

distribution of the transmitted light should be proportional to u(η) as it was specified

above. So we have:

R∞(η, ξ ) = R(η, ξ, τ0) + β(τ0)u(η)u(ξ ). (3.144)

Let us find α and β substituting two last equations in asymptotic formulae

(3.140), (3.141). Then it follows:

i(ξ ) = 2ekτ0

∫ 1

−1

α(τ0)u(η)u(ξ )i(η)ηdη + 2

∫ 1

−1

(R∞(η, ξ )

− β(τ0)u(η)u(ξ ))i(−η)ηdη, (3.145)

i(−ξ ) = 2

∫ 1

−1

(R∞(η, ξ ) − β(τ0)u(η)u(ξ ))i(η)dη

+ 2e−kτ0

∫ 1

−1

α(τ0)u(η)u(ξ )i(−η)ηdη, (3.146)

and, therefore,

i(ξ ) = ekτ0α(τ0)u(ξ ) + i(ξ ) − Mu(ξ ) − β(τ0)u(ξ )N , (3.147)

i(−ξ ) = i(−ξ ) − β(τ0)u(ξ ) + αNe−kτ0 u(ξ ), (3.148)

where we introduced the integral (see Table 3.3)

N = 2

∫ 1

−1

u(η)i(−η)ηdη. (3.149)

It follows:

α(τ0) − Me−kτ0 − βNe−kτ0 = 0, (3.150)
β(τ0) = α(τ0)Ne−kτ0 (3.151)

and, therefore,

α(τ0) = Me−kτ0

1 − N 2e−2kτ0
. (3.151)

Finally, we have (Sobolev, 1975, 1984):

R(η, ξ, ϕ, τ0) = R∞(η, ξ, ϕ) − T (ξ, η, τ0)Ne−kτ0, (3.152)

T (ξ, η) = Me−kτ0

1 − N 2e−2kτ0
u(η)u(ξ ), (3.153)

where we accounted for the fact that the transmitted light does not depend on the

azimuth ϕ.

These formulae are central equations of the cloud optics. The importance of

these equations is due to the fact that the dependence on τ0 is given explicitly. Our

next task is to derive approximate equations for constants k, M, N and functions
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u(η), R∞(η, ξ, ϕ) in a number of particular cases. Numerical calculations of these

functions have been performed by Nakajima and King (1992). The accuracy of

3.6.3 Weak Absorption Limit

Equations given above can be simplified considerably for the case of values

of ω0 close to one. This case is of particular importance for cloud optics due to

approximate expressions for functions R∞(η, ξ ), u(η) and also for parameters k,

M , N as ω0 → 1. Let us concentrate on this problem now.

3.6.3.1 The constants k, M and the diffuse light field in deep layers

The parameter M depends on the diffuse light intensity i(η) in deep layers of

a cloud:

M = 2

∫ 1

−1

i2(η)ηdη. (3.154)

So we need to study functions i(η) as ω0 → 1. The radiative transfer equation

for the normalized light intensity i(η) deep inside of a homogeneous cloudy medium

has the following form as it was discussed above:

(1 − kη)i(η) = ω0

2

∫ 1

−1

p(η, η′)i(η′)dη′, (3.155)

where p(η, η′) is the azimuthally averaged phase function, ω0 is the single-

scattering albedo and k is the diffusion exponent. The normalization condition

for i(η) has the following form:

ω0

2

∫ 1

−1

i(η′)dη′ = 1. (3.156)

We introduce the following expansions:

p(η, η′) =
∞∑

n=0

xn Pn(η)Pn(η′) (3.157)

and

i(η) =
∞∑

n=0

σn Pn(η). (3.158)

Eqs. (3.152), (3.153) was studied by Konovalov (1975), Melnikova and Vasyliev 

(2005), and Kokhanovsky and Nauss (2006).

weak absorption of water in the visible and near-infrared. Therefore, we need to find
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The task is to find σn knowing xn and using Eq. (3.155). So we have from Eq.

(3.155):

B =
∞∑

n=0

σn Pn(η) − kη

∞∑
n=0

σn Pn(η), (3.159)

where

B = ω0

2

∞∑
l=0

∞∑
n=0

∫ 1

−1

xlσn Pl(η)Pl(η
′)Pn(η′)dη′ (3.160)

or

B = ω0

∞∑
l=0

∞∑
n=0

σnxlδnl[2n + 1]−1 Pn(η) (3.161)

and after simplifications:

B = ω0

∞∑
n=0

xnσn[2n + 1]−1 Pn(η). (3.162)

We used the following orthogonality relationship:∫ 1

−1

Pn(η)P (η)dη = 2δnl[2n + 1]−1, (3.163)

where δnl is the Kronecker symbol.

Therefore, it follows:

1

k

∞∑
n=0

σn

{
1 − xnω0

2n + 1

}
Pn(η) =

∞∑
n=0

σn

{
n + 1

2n + 1
Pn+1(η) + n

2n + 1
Pn−1(η)

}
,

(3.164)

where we used the property:

Pn(η) = n + 1

2n + 1
Pn+1(η) + n

2n + 1
Pn−1(η). (3.165)

The expressions for

ς (η) =
∞∑

n=0

σn
n + 1

2n + 1
Pn+1(η) (3.166)

and

υ(η) =
∞∑

n=0

σn
n

2n + 1
Pn−1(η) (3.167)

l
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can be written as

ς (η) =
∞∑

l=1

σl−1

l

2l − 1
Pl(η) (3.168)

and

υ(η) =
∞∑

s=0

σs+1

s + 1

2s + 3
P (η), (3.169)

where l = n + 1, s = n − 1.

Therefore, it follows:

∞∑
m=0

[
1

k
σm − xmω0

(2m + 1)k
σm − m

2m − 1
σm−1 − m + 1

2m + 3
σm+1

]
P (η) = 0

(3.170)

for arbitrary η. This means that

1

k
σm − xmω0

(2m + 1)k
σm − m

2m − 1
σm−1 − m + 1

2m + 3
σm+1 = 0 (3.171)

or

σm+1 = (2m + 3)(2m − ω0xm + 1)

(2m + 1)(m + 1)k
σm + (2m + 3)m

(2m − 1)(m + 1)
σm−1. (3.172)

Let us assume that m = 0. Then we have:

σ1 = 3σ0(1 − ω0)

k
. (3.173)

It is easy to derive the analytical expression for the value of σ0. It follows that

σm = 2m + 1

2

∫ 1

−1

i(η)Pn(η)dη (3.174)

and, therefore,

σ0 = 1

2

∫ 1

−1

i(η)dη. (3.175)

0 = ω−1
0 and, therefore,

σ1 = 3(1 − ω0)

kω0

. (3.176)

This allows to obtain the following asymptotic expression from Eq. (3.158):

i(η) = ω−1
0

{
1 + 3k−1(1 − ω0)η

}
, (3.177)

s

m

So we can derive  (see property 3 in Table 3.3): σ
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where we neglected higher order terms. It follows as ω0 → 1:

i(η) = 1 + 3k−1(1 − ω0)η. (3.178)

Recurrence relations (3.172) allow us to find σm and i(η) at any k. We will not

0

For this we introduce:

m = σm

σm−1

. (3.179)

Then it follows from Eq. (3.172):

ϒm+1 = (2m + 3)(2m − ω0xm + 1)

(2m + 1)(m + 1)k
− (2m + 3)m

(2m − 1)(m + 1)ϒm
(3.180)

and

ϒm = (2m + 3)m

(2m − 1)(m + 1)
[

(2m+3)(2m+1−ω0xm )
(2m+1)(m+1)k − ϒm+1

] (3.181)

or

ϒm = (2m + 3)(2m + 1)mk

(2m + 3)(2m − 1)(2m + 1 − ω0xm) − εm
, (3.182)

where

(3.183)

Because we are interested in the asymptotic solution valid as k → 0, we can

ignore εm and derive at m = 1:

ϒ1 = 3k

(3 − ω0x1)
. (3.184)

So it follows:

σ1 = 3k

(3 − ω0x1)
σ0 (3.185)

or

σ1 = 3k

(3 − ω0x1)ω0

. (3.186)

Therefore, we finally derive (see also Eq. (3.176)):

k =
√

3(1 − ω0)(1 − gω0), (3.187)

where g = x1/3 is the asymmetry parameter. This important equation shows that

the intensity in the deep layers of clouds decreases faster for smaller values of g

εm = m + 1ϒk(4m2 +)(m + 1) .

consider correspondent results here, however, but rather concentrate on the derivation

of the approximate equation

ϒ

for k valid as ω → 1.

− 1
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(less extended in the forward direction phase functions). Our derivations are valid

as ω0 → 1 only. So we can also write:

k =
√

3(1 − ω0)(1 − g). (3.188)

The approximate expression for the diffusion constant given here is of a great

i(η) = 1 +
√

3sη, (3.189)

where

s =
√

1 − ω0

1 − g
(3.190)

0 media having different ω0 and g but the same s have

ω0 ≈ 1.

Let us introduce the ratio D = i(−1)/ i(1). This ratio is equal to one for nonab-

sorbing media. However, it follows from Eq. (3.189) for weakly absorbing media:

D = 1 − ς
√

1 − ω0, ς = 2
√

3/(1 − g). Therefore, measurements of g and D can

be used to find the probability of light absorption β = 1 − ω0. Namely, it follows:

β = (1 − D)2/ς2.

The parameters k and s are of a crucial importance for the theory considered

here. We expect that other asymptotic constants and functions must depend on

these parameters as well. In particular, we derive using property 7 in Table 3.3:

M = 8s√
3

(3.191)

as k → 0.

3.6.3.2 The constant N and the escape function

The expansion of u(η) with respect to the diffusion coefficient k can be pre-

sented as

u(η) =
∞∑

n=0

knun(η). (3.192)

(3.178):

importance for cloud optics studies. In particular, we can derive from Eqs. (3.187),

is the similarity parameter. Surprising result is that the angular pattern i(η) does

ω

not depend on the choice of the particular light scattering medium if s kept
ηconstant. The function i( ) is completely determined by the similarity parameter s as

→ 1. Therefore, cloudy

very similar light angular distributions in deep layers at

ω0
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We are interested only in the case of weak absorption. Then it follows:

u(η) = u0(η) + ku1(η). (3.193)

The task is to calculate the function u1(η). This will be performed in two steps.

0 1 0

0

2

∫ 1

0

u(η)i(η)ηdη = 1. (3.194)

u(η) = u0(η)(1 + bk) (3.195)

and

i(η) = 1 + akη, (3.196)

where a = (1 − g )−1 as underlined above.

Then it follows (see Eqs. (3.188), (3.189)):

2

∫ 1

0

u0(η)ηdη + 2bk

∫ 1

0

u0(η)ηdη + 2ak

∫ 1

0

u0(η)η2dη = 1 (3.197)

or

b = −2a

∫ 1

0

u0(η)η2dη, (3.198)

where we accounted for the fact that (see property 6 at ω0 = 1 (i = 1) in Table 3.3)

2

∫ 1

0

u0(η)ηdη = 1 (3.199)

Finally, it follows:

b = − 2δ

1 − g
, (3.200)

where we accounted for the fact that a = (1 − g )−1 and

δ =
∫ 1

0

u0(η)η2dη (3.201)

First of all we note that the weak absorption of light does not alter single scattering

u(η) ≈ u (η)
determined  l a rgely by the multiple   s c  attering processes. So it is safe to assume that

angular pattern considerably. The angular distribution of emerging light u(η) is

as k → 0 or u (η) = bu (η), where the constant b should be deter-

mined. Clearly, due to physical reasons we should have: u(η) < u (η) and b < 0.

Therefore, absorption plays the role of a veil in this case. It reduces the contrast

but it does not change details of the scattering pattern. We start from the expression:

Let us use the following expansions in this formula:

ω0

ω0

ω0

and we neglect the terms of second order with respect to k.
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is the second moment of the escape function. Therefore, one finally derives:

u(η) =
(

1 − 2δk

1 − g

)
u0(η). (3.202)

This equation allows to find the constant N as k → 0. Namely, it follows from

property 8 in Table 3.3:

N = 2

∫ 1

−1

dηu0(η)

{
1 − 2δk

1 − g

} {
1

kη

1 − g

}
(3.203)

or

N = 1 − 3δk

2(1 − g )
, (3.204)

where we neglected terms of the second order with respect to k. We can also write:

N = 1 − 3
√

3s

2
. (3.205)

F(η, ξ ) = 8s√
3

u0(η)u0(ξ ). (3.206)

3.6.3.3 The reflection function of a semi-infinite layer R∞(ξ, η)

The last point in our derivations of asymptotics as ω0 → 1 is the derivation

of the weak absorption approximation for the reflection function of a semi-infinite

medium R∞(ξ, η). This will be done in two steps.

Step 1.
The expression for a plane albedo of a semi-infinite medium is written by

a definition as

rd (ξ ) = 2

∫ 1

0

R∞(ξ, η)ηdη. (3.207)

We will use the following expansion of R∞(ξ, η) with respect to k:

R∞(ξ, η) = R0∞(ξ, η) − k R1∞(ξ, η), (3.208)

1∞
∞(ξ, η) ≤ R0∞

rd (ξ ) = 1 − k J (ξ ), (3.209)

ω0

ω0

−
ω0

δ

absorption processes. One can see that

ω0

0

F(η, ξ ) = Mu(η)u(ξ ). This means that one can useformulae in the combination: 

the following approximation valid as k → 0 (see Eq. (3.191)):

Note that due to the reciprocity principle functions u (μ) enter asymptotic

where R (ξ,η) is the function we need to derive. The minus signifies

(ξ,η) due to reduction of  reflection by the fact that R
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where

J (ξ ) = 2

∫ 1

0

R1(ξ, η)ηdη (3.210)

and we used the property:

2

∫ 1

0

R0∞(ξ, η)ηdη = 1. (3.211)

Step 2.
We derive now the asymptotic equation for rd (ξ ) as k → 0 using other set

of equations. This will allow us to give a relationship between J (ξ ) and

0

i(−ξ ) = 2

∫ 1

0

i(η)R∞(ξ, η)ηdη. (3.212)

Substituting expansions with respect to k and ignore high-order terms, we

obtain:

1 − kξ

1 − g
= 2

∫ 1

0

(
1 + kη

1 − g

)
(R0∞(ξ, η) − k R1∞(ξ, η))ηdη.

(3.213)

This means that

1 − kξ

1 − g
= 1 − k J + 2k

1 − g

∫ 1

0

R0∞(ξ, η)η2dη (3.214)

or

− ξ

1 − g
= − J + 2

1 − g

∫ 1

0

R0∞(ξ, η)η2dη, (3.215)

where [see Eq. (3.209)]

J = 1 − rd (ξ )

k
. (3.216)

This means that

(1 − g )(1 − rd (ξ ))k−1 = 2

∫ 1

0

R0∞(ξ, η)η2dη + ξ (3.217)

or

rd (ξ ) = 1 − k

1 − g

{
ξ + 2

∫ 1

0

R0∞(ξ, η)η2dη

}
. (3.218)

in Table 3.3):

u (ξ ). We start from the following equation derived above (see property 4 

ω0 ω0

ω0 ω0

ω0 ω0

ω0

ω0

> at d = 1 ω0rEq. (3.211)  follows from Eq. (3.207) and the fact that = 1.
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i(ξ ) = Mu(ξ ) + 2

∫ 1

0

i(−η)R∞(ξ, η)ηdη (3.219)

or as k → 0:

1+ kξ

1−g
= 8ku0(ξ )

3(1−g )
+ 2

∫ 1

0

(
1− kη

1−g

)
(R0∞(ξ, η)−k R1∞(ξ, η))ηdη.

(3.220)

This means that

kξ

1 − g
= 8ku0(ξ )

3(1 − g)
− 2k

1 − g

∫ 1

0

R0∞(ξ, η)η2dη − k J (ξ )

(3.221)

or

ξ = 8

3
u0(ξ ) − 2

∫ 1

0

R0∞(ξ, η)η2dη − (1 − g )J (ξ ). (3.222)

J (ξ ) = 2

∫ 1

0

R1∞(ξ, η)ηdη = (1 − rd (ξ ))k−1. (3.223)

Therefore, it follows:

(1 − rd (ξ ))k−1 = (1 − g )−1

(
ξ + 2

∫1
0

R0∞(ξ, η)η2dη

)
(3.224)

and

J (ξ ) = (1 − g)−1

(
ξ + 2

∫ 1

0

R0∞(ξ, η)η2dη

)
(3.225)

ξ = 8u0(ξ )

3
− ξ − 4

∫ 1

0

R0∞(ξ, η)η2dη (3.226)

and

8u0(ξ )

3
= 2ξ + 4

∫ 1

0

R0∞(ξ, η)η2dη. (3.227)

This allows us to derive the following important relationship:

u0(ξ ) = 3

4

[
ξ + 2

∫ 1

0

R0∞(ξ, η)η2dη

]
. (3.228)

Comparing this formula with Eq. (3.224), we obtain:

rd (ξ ) = 1 − 4ku0(ξ )

3(1 − g )
. (3.229)

On the other hand, we have (see property 5 in Table 3.3):

ω0 ω0 ω0

ω0

We remind that (see Eq. (3.216))

ω0

or (see Eq. (3.222) and Eq. (3.225))

ω0
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But also we derived:

rd (ξ ) = 1 − k J (ξ ). (3.230)

This means that

J (ξ ) = 2

∫ 1

0

R1∞(ξ, η)ηdη = 4u0(ξ )

3(1 − g )
. (3.231)

R1∞
with respect to the pair (ξ, η). Therefore, it follows:

R1∞(ξ, η) = cu0(ξ )u0(η). (3.232)

Substituting this formula in Eq. (3.231) given above, we derive for the

constant c:

c = 4

3(1 − g )
, (3.233)

2

∫ 1

0

u0(η)ηdη = 1. (3.234)

Finally, we have:

R∞(ξ, η) = R0∞(ξ, η) − 4k

3(1 − g )
u0(ξ )u0(η) (3.235)

or

R∞(ξ, η) = R0∞(ξ, η) − 4su0(ξ )u0(η). (3.236)

r = 1 − 4√
3

s (3.237)

and

rd (ξ ) = 1 − 4√
3

su0(ξ ). (3.238)

Main asymptotic equations valid as k → 0 are given in Table 3.4. It follows

that R and T in the case of weak absorption can be easily calculated if the functions

u0(ξ ) and R0∞(ξ, η) are known. Moreover, Eq. (3.228) can be used to find u0(ξ )

from R0∞(ξ, η).

The choice of the normalization condition for the function u(ξ ) (and also for

i(ξ ) and derived parameters like M) is arbitrary. We followed notations of Sobolev

ω0

Due to the reciprocity principle, the function (ξ, η) must be symmetric

ω0

ω0

This also means that the spherical albedo (see Table 3.1)

(1975). They differ from corresponding equations used by van de Hulst (1980). For

where we used the property 11 in Table 3.3
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Table 3.4. Asymptotic equations valid as k → 0
(
δ = ∫ 1

0
u0(ξ )ξ 2dξ, s =

√
1−ω0

1−g

)
.

R∞(ξ, η, ϕ) R0∞(ξ, η, ϕ) − 4k

3(1 − g )
u0(ξ )u0(η)

u(ξ )

(
1 −

)
u0(ξ )

M
8k

3(1 − g )

N 1 − δk

1 − g

Mu(ξ )u(η)
8k

3(1 − g )
u0(ξ )u0(η)

k
√

3(1 − ω0)(1 − g )

r 1 − 4s/
√

3

rd (ξ ) 1 − 4su0(ξ )/
√

3

instance, van de Hulst’s diffusion pattern P(ξ ) must be divided by ω0 to yield i(ξ ).

His escape function K (ξ ) must be multiplied by ω0 to yield u(ξ ), and his Mequals

to that used by Sobolev multiplied by ω2
0. These differences do not lead to any

extra factors in main equations. However, they must be remembered. Clearly, all

differences between normalizations disappear for the case of nonabsorbing clouds.

This case will be considered in the next Section.

3.6.4 Nonabsorbing Optically Thick Clouds

3.6.4.1 Main equations

Let us assume that there is no absorption in the medium (e.g., water clouds in

the visible). Then it follows using Table 3.4 and Eqs. (3.152) and (3.153):

R(ξ, η, ϕ) = R0∞(ξ, η, ϕ) − tu0(ξ )u0(ξ ) (3.239)

and

T (ξ, η) = tu0(ξ )u0(ξ ), (3.240)

where we accounted for the fact that the transmittance of a thick cloud layer does

not depend on the azimuth ϕ and

t = 1

α + 0.75(1 − g)τ
, (3.241)

ω0

δk2

(1 − g )

ω0

ω0

ω0

ω0

ω0
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where α = 3δ. The plane albedo rd (ξ ), the spherical albedo r , the diffuse transmit-

d

rd (ξ ) = 2

∫ 1

0

R(ξ, η)ηdη, (3.242)

r = 2

∫ 1

0

rd (ξ )ξdξ, (3.243)

td (ξ ) = 2

∫ 1

0

T (ξ, η)ηdη, (3.244)

t = 2

∫ 1

0

td (ξ )ξdξ . (3.245)

This allows to derive the following analytical relationships:

rd (ξ ) = 1 − tu0(ξ ), r = 1 − t, td (ξ ) = tu0(ξ ) (3.246)

and also confirm that tgiven by Eq. (3.241) coincides with the global transmittance.

It follows that the calculation of reflection and transmission functions of optically

thick nonabsorbing cloud layers is reduced to the calculation of the reflection

function of a semi-infinite nonabsorbing cloud R0∞(ξ, η, ϕ). The functions u0(ξ )

can be calculated from Eq.(3.228) and the parameter α is defined as

α = 3

∫ 1

0

u0(η)η2dη. (3.247)

We will show later that α ≈ 1.07 independent of the phase function

(Kokhanovsky et al., 2004a). The function R0∞(ξ, η, ϕ) can be derived from the

In the next section we introduce useful approximations for R0∞(ξ, η, ϕ) and

also for u0(ξ ). The important property of these functions is the fact that they do not

depend on the pair (ω0, τ ) and that they are completely determined by the phase

function. Moreover, the dependence on the phase function is rather weak because

functions u0(ξ ), R0∞(ξ, η, ϕ) are related to the problems involving light diffusion

in semi-infinite nonabsorbing media. So multiple light scattering is quite important

in this case. It leads to the averaging of the scattering features characteristic for a

single-scattering event. This also means that a good starting point for the derivation

of approximate solutions for u0(ξ ), R0∞(ξ, η, ϕ) valid at arbitrary g is the case of

g = 0 (isotropic scattering).

tance t (ξ ) and the global transmittance t are given as (see Table 3.1)

numerical solution of the corresponding integral equation (Ambartsumian, 1943).
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3.6.4.2 Auxiliary functions

We start the consideration of auxiliary functions from the well studied case of

isotropic scattering. Then the nonlinear integral equation for the reflection function

of a nonabsorbing semi-infinite medium can be presented in the following form

(Ambartsumian, 1943):

R0∞(ξ, η) = 1 + 2ξ
∫ 1

0
R0∞( , η′)dη′ + 2η

∫ 1

0
R0∞(η , η′)dη′ + G(ξ, η)

4(ξ + η)
,

(3.248)

where

G(ξ, η) = 4ξη

∫ 1

0

∫ 1

0

R0∞(ξ, η′)R0∞(η, η′′)dη′dη′′. (3.249)

The inspection of this equation shows that it can be reduced to the following more

simple form:

R0∞(ξ, η) = H (ξ )H (η)

4(ξ + η)
(3.250)

with

H (ξ ) = 1 + 2ξ

∫ 1

0

R0∞(ξ, η′)dη′. (3.251)

The last two equations allow to formulate the integral equation for the function

H (ξ ):

H (ξ ) = 1 + 0.5ξ H (ξ )

∫ 1

0

H (η)

ξ + η
dη. (3.252)

It follows immediately: H (0) = 1.0. Numerical calculations show that the function

H (ξ ) can be approximated by the linear function [H (ξ ) = 1 + 2ξ (see Fig. 3.5)].

The substitution of this linear approximation into the expression for R0∞(ξ, η)

gives:

R0∞(ξ, η) = 1 + 2(ξ + η) + 4ξη

4(ξ + η)
. (3.253)

This is a rather accurate approximation of the reality in the isotropic scattering

case. Further, we note that the value of R0∞(ξ, η) can be separated in two parts:

R0∞(ξ, η) = Rs
0∞(ξ, η) + Rm

0∞(ξ, η), (3.254)

where the first term is due to single scattering [Rs
0∞(ξ, η) = 0.25(ξ + η)−1, see

Eq. (3.62) at p = 1, ω0 = 1, τ0 → ∞] and the second one (Rm
0∞(ξ, η) = [0.5 +

ξη(ξ + η)−1]) is due to multiple light scattering.

ξ
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3.0

2.5

2.0

H

1.5

1.0
0.0 0.2 0.4 0.6 0.8 1.0

exact result
1+2ξ

ξ

Fig. 3.5. Dependence of the H -function on the cosine of incidence angle using exact calculations

and approximation H (ξ ) = 1 + 2ξ.

Then we have:

Rs
0∞(ξ, η) = 0.25p(θ )(ξ + η)−1 (3.255)

Rm
0∞(ξ, η) = A + B(ξ + η) + Cξη

4(ξ + η)
, (3.256)

where A, B and C are constants to be determined. There are different ways to get

these constants. In particular integral relationships involving the function R0∞(ξ, η)

can be used.

They can be also found using the following fitting technique. The func-

tion R0∞(ξ, η, ϕ) is calculated using the exact radiative transfer equation

and then functions �(ξ, η, ϕ) = 4(ξ + η)R̃0∞(ξ, η, ϕ), where R̃0∞(ξ, η, ϕ) =

We make the same separation for the anisotropic (g �= 0) scattering case.

and we assume that it holds for anisotropic multiple light scattering:



RADIATIVE TRANSFER 151

0 20 40 60 80
0.2

0.4

0.6

0.8

1.0

1.2

1.4

re
fle

ct
io

n
 f

u
n

ct
io

n

incidence angle, degrees

 16 micrometers, exact data
 16 micrometers, approximation
 6 micrometers, exact data
 6 micrometers, approximation

Fig. 3.6. Dependence of reflection function at the nadir observation of a semi-infinite cloud on

the solar zenith angle at aef = 4, 16 μm and λ = 0.55 μm. The gamma PSD with μ = 6 was

used in calculations. Results both exact and approximate calculations are shown.

R0∞(ξ, η, ϕ) − Rs
0∞(ξ, η, ϕ), are fitted by linear functions of the argument as-

suming, e.g., η = 1.This technique gives: A = 3.944, B = −2.5, C = 10.664 for

water clouds, and A = 1.247, B = 1.186, C = 5.157 for ice clouds as discussed by

Kokhanovsky (2004b, 2005). The results of numerical calculations of R0∞(ξ, η, ϕ)

are given in Fig. 3.6. It follows that the reflection function of clouds having differ-

ent values of aef almost coincide at ω0 = 1 [although phase functions do depend

on the size of particles (see Fig. 3.7)]. Note that the shape of particles has some

influence on functions R0∞(ξ, η, ϕ) as shown in Fig. 3.8.

0

This can be done in the following way.

It was shown above that the following relationship holds:

u0(ξ ) = 3

4

[
ξ + 2

∫ 1

0

R0∞(ξ, η)η2dη

]
. (3.257)

Let us substitute R0∞(ξ, η) for the isotropic case in this equation. Then it follows:

u0 (ξ ) = 3

4

[
ξ + 1

2

∫ 1

0

H (ξ )H (η)

ξ + η
η2dη

]
. (3.258)

The next point is to derive the corresponding equation for the function u (ξ ).
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Fig. 3.8. Dependence of reflection function at the nadir observation of a semi-infinite cloud

on the solar zenith angle for spherical particles (gamma PSD, aef = 6 μm, μ = 6), hexagonal

randomly oriented ice cylinders with aspect ratio 1.0 and ice fractal particles calculated using

exact radiative transfer code (Mishchenko et al., 1999) at λ = 0.55 μm.
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We can represent H (η)η(ξ + η)−1 as H (η)(1 − ξ (ξ + η)−1). So we have:

u0(ξ ) = 3

4

[
ξ + 1

2
H (ξ )

∫ 1

0

H (η)ηdη − H (ξ )ξ

2

∫ 1

0

H (η)

ξ + η
ηdη

]
. (3.259)

This can be written as

u0(ξ ) = 3

4

[
ξ + 1

2
CH (ξ ) − �ξ

]
, (3.260)

where

C =
∫ 1

0

H (η)ηdη (3.261)

and (see Eq. (3.250))

� = 2

∫ 1

0

R0∞(ξ, η)ηdη. (3.262)

But we have, due to property 11 (see also property 4) in Table 3.3 (the conservation

energy law): � = 1 and

u0(ξ ) = 3C

8
H (ξ ). (3.263)

This means that the function u0(ξ ) is proportional to H (ξ ). The constant C can

easily be derived for the isotropic scattering. For this we multiply the last equation

by 2ξ and integrate with respect to ξ. Then it follows:

C = 2√
3
, (3.264)

where we used normalization conditions. Therefore, we establish an important

relationship:

u0(ξ ) =
√

3

4
H (ξ ). (3.265)

Surprisingly, two completely separate radiative transfer problems [for the determi-

nation of H (ξ ) and u0(ξ )] have shown themselves to be interrelated in the case

under study. This important theoretical result, valid for isotropic scattering allows

0

for H (ξ ). A number of parameterizations and approximations can be derived in

such a way.

We will use the fact that H (ξ ) is well approximated by the function 1 + 2ξ

(see Fig. 3.5). Then it follows:

u0(ξ ) = Q(1 + 2ξ ), (3.266)

to derive approximate equations for u (ξ ) just using the corresponding equations
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Fig. 3.9. Dependence of the escape function on the cosine of the zenith observation angle at g =

0, 0.75, and 0.85. Results of calculations obtained using the approximation u0(ξ ) = 3(1 + 2ξ )/7

are also shown.

where Q = √
3/4 ≈ 3/7. We use the approximate equality (the error is under 1%)

here to satisfy the normalization condition (see property 11 in Table 3.3). So finally,

we have:

u0(ξ ) = 3

7
(1 + 2ξ ). (3.267)

Although this result is strictly valid only for isotropic scattering, we find that the

error of this approximation is below 2% at ξ ≥ 0.2 (see Fig. 3.9). This also allows

to derive the value of δ = 15/42 (see property 9 in Table 3.3). Therefore, one can

use for α [see Eq. (3.247)]:α ≡ 3δ ≈ 1.07. This completes our derivations for the

nonabsorbing case.
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3.6.5 Exponential Approximation

3.6.5.1 Statistical physics approach

small values of the probability of photon absorption β = 1 − ω0, if correspon-

dent characteristics are known for the nonabsorbing case. The results are limited

to a very narrow range of β (typically, β ≤ 0.001). There are two possibilities to

avoid this problem. One is related to the derivation of higher order corrections

to the results given in Table 3.4 (generally, following the same path as described

above).

Yet another approach is based on the exponential approximation often used

in the diffusion theory. To demonstrate this technique, we represent the spherical

albedo as a series with respect to ω0 :

r (ω0) =
∞∑

n=1

anω
n
0 , (3.268)

where

r (ω0) = 2

∫ 1

0

rd (ξ )ξdξ . (3.269)

with

r (1) =
∞∑

n=1

an. (3.270)

However, it also follows by the definition: r (1) = 1, which is due to the energy

conservation law. Thus, one obtains that

∞∑
n=1

an = 1 (3.271)

and numbers an can be interpreted in terms of the probability theory. Such an

approach is often used in statistical physics. In particular, the value of a1 gives us

the probability that a photon will be singly scattered before escaping a cloud. The

probabilities of scattering events a1, a2, a3, . . . do not depend on each other. The

theorem of adding independent probabilities brings us to Eq. (3.268) as well. Let

us substitute the following exact expansion in Eq. (3.268):

ωn
0 ≡ (1 − β)n =

n∑
j=0

(−1) j

(
n
j

)
β j , (3.272)

Asymptotic solutions for weak absorption derived above allow for the consider-

ation of the influence of light absorption on cloud radiative characteristics for
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where (
n
j

)
≡ n!

j!(n − j)!
. (3.273)

Then it follows from Eq. (3.268):

r (β) =
∞∑

n=1

an

n∑
j=0

(−1) j

(
n
j

)
β j (3.274)

or in the explicit form:

r (β) =
∞∑

n=1

an

[
1 − βn + β2n(n − 1)

2
− β3n(n − 1)(n − 2)

6
+ . . .

]
, (3.275)

where we accounted for equalities:(
n
0

)
= 1,

(
n
1

)
= n,

(
n
2

)
= n(n − 1)

2
,

(
n
3

)
= n(n − 1)(n − 2)

6
. (3.276)

Equation (3.275) can be rewritten in the following form:

r = 1 − βn̄ + β2n(n − 1)

2
− β3n(n − 1)(n − 2)

6
+ . . . , (3.277)

where we used the normalization condition (3.271) and defined the following

averages:

n̄ =
∞∑

n=1

nan, n(n − 1) =
∞∑

n=1

n(n − 1)an, n(n − 1)(n − 2) =
∞∑

n=1

n(n −1)(n −2)an.

(3.278)

and so on. Here n̄ is the average number of scattering events in the medium.

Equation (3.277) is an exact formula. We did not make any approximations so

far. Now we should make some assumptions to have a possibility to sum series in

Eq. (3.277). First of all, we assume that the value of n̄ is large and, consequently,

n(n − 1) ≈ n2, n(n − 1)(n − 2) = n3 and so on. Clearly, such an approximation is

valid as β → 0 only. This gives us instead of Eq. (3.277):

r = 1 − βn + β2

2
n2 − β3

6
n3 + . . . (3.279)

or

r = exp(−βn), (3.280)
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where we used the expansion

exp(−βn) =
∞∑

k=0

(−1)k(βn)k

k!
. (3.281)

Thus, the value of r is given by

r =
∞∑

n=1

exp(−βn)an. (3.282)

Applying the sum formula

∞∑
n=1

f (n) =
∫ ∞

0

f (x)dx, (3.283)

we have:

r =
∫ ∞

0

exp(−βx)a(x)dx . (3.284)

r = exp(−βx). (3.285)

We also used the integral form of the normalization condition (3.271):∫ ∞

0

a(x)dx = 1. (3.286)

We did not specify any specific laws of a scattering event in the derivation of

Eq. (3.277). Thus, Eq. (3.285) can be applied in a much broader context than just

(3.285) shows us that x̄ → n̄ as β → 0. However, generally speaking, x̄ �= n̄. This

is due to the differences σ2 = n2 − n̄2, σ3 = n3 − n̄3 and so on, which are not

necessary to be exact zeros.

The problem we face now is the determination of the parameter x̄ . For this we

will use the well-known asymptotic result of the radiative transfer theory derived

above (see Table 3.4):

r = 1 −
√

16β

3(1 − g)
, (3.287)

which is valid as β → 0.

Eq. (3.285) takes the following form as β → 0:

r = 1 − βx . (3.288)

It follows from the mean value theorem:

scattering of light by particles in clouds. The comparison of Eqs. (3.277) and
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So, comparing Eqs. (3.287) and (3.288) we have

x = 4

k
, (3.289)

√
3(1 − g

Therefore, it follows:

r = exp

(
−4

√
1 − ω0

3(1 − g )

)
. (3.290)

We notice that the combination of local optical characteristics, given by

y = 4

√
1 − ω0

3(1 − g)
(3.291)

completely determines the spherical albedo. The value of y = 4s/
√

3 can be also

measured experimentally (y = ln(1/r )).

By analogy, relationships similar to Eq. (3.290) must be valid also for other

asymptotic parameters. This allows to derive the following relationships using

Table 3.4 (Zege et al., 1991):

R∞(ξ, η, ϕ) = R0∞(ξ, η, ϕ) exp(−yu0(ξ )u0(η)R−1
0∞(ξ, η, ϕ)), (3.292.a)

rd∞(ξ ) = exp(−yu0(ξ )), (3.292.b)

M = 1 − exp( 8k/(3(1 − g )), )), (3.292.c)

Mu(ξ )u(η) = (1 − exp(−8k/3(1 − g )))u0(ξ )u0(η). (3.292.d)

We obtain using these relationships:

R(ξ, η, ϕ) = R0∞ exp(−yu(ξ, η, ϕ)) − t exp(−x − y)u0(ξ )u0(η), (3.293)

T (ξ, η) = tu0(ξ )u0(η), (3.294)

t = sinh y

sinh(αy + x)
. (3.295)

We can also derive the analytical results for the plane and spherical albedos and

Equation (3.293) transforms into Eq. (3.239) [and also Eq. (3.294) transforms

into Eq. (3.240)] as β = 0. However, Eq. (3.292a) unlike Eq. (3.239) allows to con-

sider absorbing media as well. It is important that no new angular functions arise in

Eq. (3.292a) as compared to Eq. (3.239). This is in contrast with Eq. (3.152), where

 
0 0 0∞

The global transmittance t is given by:

where we introduced a new parameter x = kτ, u(ξ,η,ϕ) = u (ξ )u (η)/R (ξ,η,ϕ).

ω0)β is the diffusion exponent of the radiative transfer theory.where k =

ω0

ω0(1 − gδk/2N = exp(−3ω0−
ω0

the diffuse transmittance. Corresponding equations are summarized in Table 3.5.
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Table 3.5. Radiative transfer characteristics in the framework of the exponential

approximation (rd∞(ξ ) = exp(−yu0(ξ )), u0(ξ ) = 3
7
(1 + 2ξ ), r∞ = e−y,

x = kτ, y = kτ, k = √
3(1 − ω0)(1 − g ), α = 1.07).

Radiative characteristic Symbol Equation

Plane albedo rd (ξ ) rd∞(ξ ) − (r∞ − r )u0(ξ )

Spherical albedo r r∞ − t exp(−x − y)

Diffuse transmittance td (ξ ) tu0(ξ )

Global transmittance t
sinh(y)

sinh(x + αy)

parameters and functions have an implicit and complex dependence on the probabil-

ity of photon absorption, β. Equation (3.293) can be used for the rapid estimations

of light reflection from cloudy media and also for the speeding up cloud retrieval

algorithms (Kokhanovsky et al., 2003).

The range of applicability of the exponential approximation (3.293) with re-

spect to cloud optical thickness can be extended using correction terms derived

from the numerical solution of the radiative transfer equation. In particular, we

find that the accuracy of Eq. (3.293) for cloudy media can be increased using the

t → t − �, where

� = a + bμξ + cμ2μ2
0

τ 3
exp(x) (3.296)

and a = 4.86, b = −13.08, c = 12.76. Therefore, the final equation for the cloud

reflection function can be written as

R(η, ξ, ϕ, τ ) = R0∞ exp(− y(1− 0.05y)u(η, ξ, ϕ)) − (t − �) exp(−x − y)

× u0(η)u0(ξ ). (3.297)

Equation (3.297) is called the Modified Exponential Approximation (MEA). We

show the accuracy of the MEA given by Eq. (3.297) in Figs. 3.10 and 3.11 for

the nadir observation conditions, the solar zenith angle 60◦ and wavelengths 865

and 2130 nm. These wavelengths are often used in cloud retrieval techniques. Note

that the single-scattering albedo is equal to 1.0 and 0.9872 at these wavelengths,

respectively. The asymmetry parameter is 0.8435 for the smaller wavelength. It is

0.8054 for the wavelength 2130 nm. Exact data shown in Fig. 3.10 are obtained

using the vector radiative transfer code based on the discrete ordinate approach and

thoroughly tested against tabular results presented by Siewert (2000). It follows that

the accuracy of the approximation is better than 6% for the cloud optical thickness

τ ≥ 4 in the case considered.

following substitutions: u → u (1 − 0.05y) (in the argument of the exponent in

Eq. 3.293),

ω0
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Fig. 3.10. Dependence of reflection function on the optical thickness at wavelengths 865 and

2130 nm calculated using the Cloud C1 PSD model. Solid lines give the approximate results

according to exponential approximation and points are obtained solving the exact radiative

transfer equation using SCIATRAN (Rozanov et al., 2005).

Figs. 3.12–3.18) that the accuracy only weakly depends on the geometry, providing

that grazing observation and illumination conditions are excluded (Kokhanovsky

and Rozanov, 2003). It means that the top-of-atmosphere reflectance over cloudy

scenes can be accurately modelled in the framework of the MEA (even as compared

to the vector radiative transfer model). It follows from Fig. 3.11 that the accuracy of

the MEA could be increased if the exact result for the reflection function of a semi-

infinite layer is used in calculations. Note that we used in Eq. (3.297) the follow-

ing simple formula valid for the nadir observation conditions only (Kokhanovsky,

Calculations performed for other angles and cloud optical thicknesses show (see
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Fig. 3.11. Errors of exponential approximation calculated using data shown in Fig. 3.10. Upper

curve corresponds to the wavelength 2130 nm, where single-scattering albedo is equal to 0.9872.

Lower curve corresponds to a nonabsorbing cloud at λ = 865 nm.

2002):

R0∞(η, ξ, ϕ) = 0.37 + 1.94ξ

1 + ξ
. (3.298)

The accuracy of Eq. (3.298) can be further increased adding the function F =
0.25p(1 − arccos(μ0)) to the nominator.

The analysis of Figs. 3.12–3.18 shows that the exponential approximation is

applicable for τ ≥ 5 and most solar angles for the nadir observation. Also these

figures show main dependencies related to light reflection from cloud media, like the

increase in reflection with τ (see Fig. 3.12) and a high sensitivity of reflectances

in the infrared to the size of particles (see Fig. 3.17). This sensitivity is almost

negligible in the visible (see Fig. 3.12).
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Fig. 3.12. Dependence of cloud reflection on the solar zenith angle at τ = 5, 10, 30, 100 and

aef = 4, 6, 16 μm (the gamma PSD with μ = 6) for nadir observations. Symbols show exact

calculations and lines are obtained using the approximate result at λ = 0.55 μm.
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Fig. 3.13. Relative errors of the approximation as functions of the optical thickness for several

solar zenith angles calculated using data shown in Fig. 3.12 at aef = 6 μm.
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Fig. 3.14. Relative errors of the approximation as functions of the solar zenith angle at the optical

thickness 5 and 10 and aef = 4, 6, 16 μm calculated using data shown in Fig. 3.12.
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Fig. 3.15. Dependence of cloud reflection on the solar zenith angle at τ = 5, 10, 20, 100 and

aef = 6 (the gamma PSD with μ = 6) for nadir observations at λ = 1.55 μm. Symbols show

exact calculations and lines are obtained using the approximate result.
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Fig. 3.16. Relative errors of the approximation as functions of the solar zenith angle at the optical

thickness 5, 10, 20, and 100 and aef = 6 μm calculated using data shown in Fig. 3.15.
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Fig. 3.17. Dependence of cloud reflection on the solar zenith angle at τ = 5, 100 and aef =
4, 6, 16 μm (the gamma PSD with μ = 6) for nadir observations at λ = 1.55 μm. Symbols

show exact calculations and lines are obtained using the approximate result.
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Fig. 3.18. Errors of the approximation at various values of the single-scattering albedo as func-

tions of the solar zenith angle at the nadir observation and τ = 5. The curves 1–5 were obtained

using phase functions and single-scattering albedos derived from the Mie theory for the C1

PSD at the wavelength 1.55 μm assuming that the refractive index is equal to 1.3109 – iχ with

χ = 0.00001(1), 0.00005(2), 0.0001(3), 0.0005(4), and 0.001(5). The values of β = 1 − ω0

were equal to 0.0005(1), 0.0034(2), 0.0047(3), 0.0226(4), and 0.0435(5).

3.6.5.2 The radiative transfer in the gaseous absorption band

The exponential approximation presented above can be easily extended to ac-

count for the gaseous absorption. Then one should use the following substitutions in

equations given above: τ → τ + τg, β → (σabs + σabs,g)/(σext + σabs,g), where

the subscript ‘g’ relates the correspondent value to the gaseous absorption process.

The phase function does not need to be modified because we ignore molecular scat-

tering. This could easily be accounted for if necessary. However, we account for the

additional light absorption in the atmosphere above a cloud. Therefore, it follows

for the cloud reflection function R̄ in the gaseous absorption band: R̄ = T1 RT2,

where we omitted arguments for the sake of simplicity. The value of R is given by

Eq. (3.297) and Tj = exp(−m jτabs), j = 1, 2, where m1 = 1/ξ, m2 = 1/η, and

τabs =
N∑

i=1

∫ z2

z1

Cabs,i (z)ςi (z)dz, (3.299)

where Cabs,i is the i th gas absorption cross section, N is the total number of

gases present and ςi (z) is the concentration of the i th gas at a given height. The

integration extends from the upper cloud boundary position z1 to the height of

the optical instrument z2. The accuracy of the MEA for the gaseous absorption

band can be increased if the single-scattering contribution in the signal from the



166 CLOUD OPTICS

atmospheric layer above the cloud Rs (Kokhanovsky and Rozanov, 2004) is also

taken into account. Then it follows:

R̄ = T1 RT2 + Rs (3.300)

We checked the accuracy of Eq. (3.300) by performing exact calculations using

the radiative transfer code SCIATRAN (Rozanov et al., 2005) for the oxygen

absorption A-band located at wavelengths 758–768 nm. The atmospheric model

used in calculations coincides with that described by Kokhanovsky and Rozanov

(2004). The values of R̄ are averaged with respect to the Gaussian instrument

response function with the half-width of 0.225 nm. The absorption by the oxygen

was accounted for by using the HITRAN 2000 (Rothman et al., 2003) database in

conjunction with the correlated k-distribution approximation (Kokhanovsky and

Rozanov, 2004). To increase the accuracy of the model, we accounted for light

scattering and absorption below the cloud layer using the approximate technique

developed by Kokhanovsky and Rozanov (2004). Results are given in Fig. 3.19
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Fig. 3.19. Oxygen A-band cloud reflectance spectrum calculated using the approximate theory

and SCIATRAN solver at τ = 20, the cloud geometrical thickness equal to 1 km and the cloud

top altitudes 1, 3, 6, 9, 12, and 15 km for the nadir observation and the solar zenith angle 60◦.
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for different cloud top heights. It follows from the analysis of the data presented

that the accuracy of approximate calculations is better than 5% (see Fig. 3.20) in

most cases. The errors increase for low clouds having larger values of τ due to

the simplicity of our model, which accounts for the cloud – upper atmospheric

layer interaction in a first coarse approximation only (Kokhanovsky and Rozanov,

2004). This interaction becomes more important for lower thick clouds (see

Fig. 3.20).

from airborne and satellite-based optical sensors. We see that the depth of the

concentration must be known in advance. This is a difficult task, e.g., for water

vapour, which has a lot of absorption bands in the optical range. However, unlike

oxygen, this gas does not belong to the category of well-mixed gases with stable

vertical profiles and concentrations.
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Fig. 3.20. Relative errors of the approximation obtained using Fig. 3.18.

(see Fig. 3.21) can be used for this purpose, the vertical distribution of the gaseous

The parameterization developed here is useful for cloud top altitudes retrievals

oxygen A-band depends on cloud altitude. Although other gaseous absorption bands
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Fig. 3.21. The cloud reflection function calculated with SCIATRAN (Rozanov et al., 2005)

accounting for molecular and aerosol scattering and absorption using forward model described

by Kokhanovsky and Rozanov (2004) at the nadir observation, the solar incidence angle 60˚, and

τ = 20. Results of calculations for the artificial case with no gaseous absorption are also shown.

Dashed line corresponds to the artificial case, when only cloud presents in atmosphere. Rayleigh

scattering enhances the reflection function at short wavelengths. The decrease in the reflection

function (dashed line) in UV is due to the gaseous absorption.

Note that approximations for optically thick layers discussed here are of great

importance for cloud optics, because such clouds are very common (see Fig. 3.22).

3.6.6 Polarization of Light by Optically Thick Clouds

Equations for optically thick clouds presented in the previous section can be

averaged reflection R̂ and transmission T̂ matrices were obtained by Domke

(1978a,b). They have the following forms for isotropic symmetric light scatter-

ing media:

R̂(ξ, η) = R̂∞(ξ, η) − N T̂ (ξ, η) exp(−kτ ), (3.301)

T̂ (ξ, η) = M exp(−kτ )

1 − N 2 exp(−2kτ )
�K (η) �K T (ξ ), (3.302)

generalized to account for polarization. Corresponding equations for azimuthally
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Fig. 3.22. Frequency of a given cloud optical thickness as observed using ground and satellite

observations. (Trishchenko and Liu, 2001)

where only two-dimensional matrices and vectors are involved. Other components

of generally four-dimensional matrices and vectors vanish due the azimuthal aver-

aging. Note that this is also the case for a normal illumination of the scattering layer.

Then the azimuth does not enter theory at all. Here R̂∞(ξ, η) is the azimuthally

averaged reflection matrix of a semi-infinite medium with the same optical charac-

describes the intensity and degree of light polarization in deep layers of a semi-

infinite scattering medium (in a so-called asymptotic regime, when the intensity

and polarization angular distributions are symmetrical with respect to the normal

to a scattering layer and exponentially decrease with the depth ∼ exp(−kτ )). Func-

tions R̂∞
The explicit equations for their calculation are discussed by Domke (1978a,b).

We see, therefore, that intensity and polarization characteristics of reflected and

transmitted light for optically thick turbid media are determined by the reflection

matrix of a semi-infinite layer and the angular distribution of the light intensity

and polarization in deep layers of the same medium. This reduction of a problem

for a finite optical thick slab to the case of a semi-infinite medium is of a general

importance for the radiative transfer theory. Note that the matrix R̂∞ and vector

found elsewhere (van de Hulst, 1980; de Rooij, 1985).

teristics as a finite slab under study. One can also introduce the vector K(μ) , which

(ξ, η) and K(η) determine all parameters in the equations given above.

K are obtained from solutions of the well-known integral equations, which can be

�

�

�
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Equations (3.301) and (3.302) are valid only for the azimuthally averaged

matrices. In practice, however, measurements are performed for a fixed azimuth.

The transmission matrix is azimuthally independent in the case of optically thick

layers. The azimuthal dependence in the reflected light disappears in some specific

cases (e.g., for the case of normal illumination of an isotropic light scattering

plane-parallel slabs).

Equations (3.301) and (3.302) are simplified for nonabsorbing media. Then it

follows:

R̂(ξ, η) = R̂0∞(ξ, η) − T̂ (ξ, η), (3.303)

T̂ (ξ, η) = 4

3(τ + 2q0)(1 − g)
�K0(ξ ) �K T

0 (η), (3.304)

where

q0 = 2

1 − g

∫ 1

0

dηη2 �K T
0 (η) �j . (3.305)

Here

�j =
(

1

0

)
(3.306)

is the unity vector,

g = 1

4

∫ π

0

p(θ ) sin 2θdθ (3.307)

is the asymmetry parameter,

�K0(η) = 3

4

[
η + 2

∫ 1

0

dξξ 2 R̂0∞(ξ, η)

]
�j (3.308)

and R̂0∞(μ, μ0) is the azimuthally averaged reflection matrix of a semi-infinite

nonabsorbing medium. This matrix is completely determined by the phase matrix

P̂ , introduced above. It does not depend on the single-scattering albedo and optical

thickness by definition. Clearly, the first component of the vector �K0 coincides with

the escape function u0 discussed above.

auxiliary functions and parameters are known. Their calculations, however, can be

quite a complex procedure.

However, it appears that for weakly absorbing media, when single-scattering

albedo ω0 = σsca/σext is close to one, simplifications are possible. Then it follows

(Kokhanovsky, 2003a,b):

R̂(ξ, η) = R̂0∞(ξ, η) exp(−y D̂(ξ, η)) − T̂ (ξ, η) exp(−x − y), (3.309)

T̂ (ξ, η) = t �K0(ξ ) �K T
0 (η). (3.310)

Eqs. (3.301), (3.302) are simple in form. However, they can be used only if
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where

x = kτ, y = 4

√
1 − ω0

3(1 − g )
, k =

√
3(1 − ω0)(1 − g ),

D̂(ξ, η) = R̂−1
0∞(ξ, η) �K0(ξ ) �K0(η),

t = sinh y

sinh(x + αy)
is the global transmittance of a scattering layer,

α = 1
2

∫ 1

0
u0(η)η2dη ≈ 1.07 and R̂0∞(μ, μ0) is the reflection matrix of a semi-

infinite nonabsorbing layer with the same phase matrix as an absorbing layer of a

finite thickness under study. The two-dimensional vector �K0(μ) describes the po-

larization and intensity of light in the Milne problem for nonabsorbing semi-infinite

media (Wauben, 1992). The components K01(μ) and K02(μ) of this vector were

calculated by Chandrasekhar (1950) for Rayeigh particles (g = 0) and by Wauben

(1992) for spherical particles with the refractive index n = 1.44 and the gamma

particle size distribution (1.5) with μ = 11.3, a0 = 0.83 μm. The wavelength λ was

equal to 0.55 μm. Note, that the model of spheres with μ = 11.3, r0 = 0.83 μm and

n = 1.44 is generally used to characterize particles in clouds on Venus (Hansen

and Hovenier, 1974). It follows for the effective size aef , the effective variance

�e f , and the asymmetry parameter g, respectively, in this case: aef = 1.05 μm,

�e f = 0.07 μm, g = 0.718. It was found that the ratio pl = −K02/K01, which

gives the degree of polarization for transmitted light is very low. It changes from

zero to 1.2% while the escape angle changes from 0 till 90◦. Note that for Rayleigh

scattering we have a change from 0 till 11.7% for the same conditions. This means

that light transmitted by thick clouds is almost unpolarized. It is possible to under-

stand this on general grounds. Indeed, the polarization of unpolarized solar light oc-

curs due to single-scattering events. Multiple light scattering leads to an increase of

entropy and the reduction of initial polarization arising in single-scattering events.

Note that the ellipticity is equal to zero in this case and that Pl ≤ 0, which

means that light is polarized in the plane perpendicular to the meridional plane.

Formulae (3.309) and (3.310) can be simplified for nonabsorbing media (y= 0):

R̂(ξ, η) = R̂0∞(ξ, η) − T̂ (ξ, η), (3.311)

T̂ (ξ, η) = t �K0(ξ ) �K T
0 (η), (3.312)

where

t = 1

α + 3
4
τ (1 − g)

(3.313)

is the global transmittance.

Let us apply Eq. (3.311) to a particular problem, namely, to the derivation of a

relation between the spherical albedo r = 1 − t and the degree of polarization of

reflected light pl(η) at the illumination along the normal to the scattering layer

ω0

ω0
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(ξ = 1) by a wide, unidirectional unpolarized light beam. The value of pl(μ)

is given simply by −R21(1, μ)/R11(1, μ) in this case. Thus, it follows from Eq.

(3.311):

pl(η) = pl∞(η)

1 − (1 − r )N(η)
, (3.314)

where

N(η) = u0(1)u0(η)

R0∞(1, μ)
(3.315)

pl∞(η) = − R∞21(1, η)

R∞(1, η)
(3.316)

and we accounted for the equality: K02(1) = 0.

Our calculations show that the value of N(η) is close to 1 for most of obser-

vation angles, which implies the inverse proportionality between the brightness of

a turbid medium and the degree of polarization of reflected light (r pl ≈ pl∞). The

accuracy of Eq. (3.314) is shown in Fig. 3.23.

This inverse proportionality between the spherical albedo r and the degree of

polarization pl was discovered experimentally by Umow (1905). Equation (3.314)

can be considered as a manifestation of this important law, which has important

applications in reflectance spectroscopy (Hapke,1993).

Equation (3.314) is easily generalized to account for the absorption of light in a

medium using the exponential approximation described above. Namely, it follows:

pl(η) = p∗
l∞(η)

1 − N∗(η)t exp(−x − y)
, (3.317)

where

t = sinh y

sinh(x + αy)
(3.318)

and

N∗(η) = u0(1)u0(η)

R∗∞(1, η)
. (3.319)

Values of p∗
l∞(η) and R∗

∞(1, η) represent the degree of polarization and reflec-

tion function of a semi-infinite weakly absorbing medium at the nadir illumination.

Note, that Eq. (3.317) can be written in the following form:

p1(η) = c(η, τ )p∗
l∞(η), (3.320)

where

c(η, τ ) = 1

1 − N∗(η)t exp(−x − y)
(3.321)
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Fig. 3.23. Degree of linear polarization of light reflected from a cloudy atmosphere as the

function of the cloud optical thickness at aef = 6μm (the gamma PSD with μ = 6) for nadir

observations at λ = 0.55μm. The solar zenith angle is equal to 60◦. Both exact (symbols) and

approximate (lines) results are shown.

can be interpreted as the polarization enhancement factor, which is solely due to

a finite cloud depth. It follows for semi-infinite layers that the transmittance t is

equal to zero and c = 1 as it should be. Also it follows from Eq. (3.320) that zeroes

of polarization curves for semi-infinite and optically thick finite layers almost

coincide, which is supported by numerical calculations with the radiative transfer

code (see Fig. 3.24). This is due to the fact that the function N∗(η) only weakly

depends on the angle.

Multiple light scattering fails to produce the polarization of incident unpolar-

ized light. It only diminishes the polarization of singly scattered light. Thus, the

angles where polarization is equal to zero for semi-infinite layers are almost equal

to those for the case of single light scattering.
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Fig. 3.24. Degree of linear polarization of light reflected from a cloudy atmosphere as the

function of the solar zenith angle at the cloud optical thickness 8, 15, and 30, aef = 6 μm (the

gamma PSD with μ = 6) for nadir observations at λ = 0.55 μm. The solar zenith angle is equal

to 60◦. Both exact (symbols) and approximate (lines) results are shown.

The exact calculations for the case of a cloudy atmosphere takes much more

computer time as compared to molecular scattering. This is not related to the larger

optical thickness of clouds, which can reach 100 and more, but solely due to the

number N of qaussian quadrature points required to solve this problem (N ≈ L/2).

This obstacle can be avoided using the so-called delta-M approximation (Nakajima

and Tanaka, 1988; Min and Duan, 2004).

We show the cloud reflection function calculated using exact vector code in

Fig. 3.25a. As one might expect, the reflection function increases with τ . It reaches

an asymptotic value for a semi-infinite cloud at τ ≈ 11 for wavelength 2130 nm.

For a nonabsorbing wavelength the asymptotic value is reached at much higher

values of τ (τ ∼ 500 at wavelength 865 nm, see Fig. 3.25a). The single-scattering

approximation (SSA) works quite well for τ ≈ 0.03 and below. So it can be used

for the estimation of scattering characteristics of subvisual Cirrus, but not for most

water and ice clouds present in the troposphere. The performance of the SSA for

the polarization difference D = −π Qr/F0μ0 is much better. It is valid at least

peaked phase functions of water clouds. This means that one must account for many

Legendre polynomials in the correspondent expansions. This also leads to a large
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Fig. 3.25. Dependence of the cloud reflection function on the cloud optical thickness at wave-

lengths 865 and 2130 nm. The results for the semi-infinite layer and the single-scattering ap-

proximation are also shown. The solar zenith angle is 60◦. The observation zenith angle is 0◦.

The phase function was calculated using Mie theory for the Deirmendjian’s Cloud C1 model

(Deirmendjian, 1969). (b) Dependence of the polarization difference D on the cloud optical

thickness at wavelengths 865, 1640, and 2130 nm. The results for the semi-infinite layer and the

single-scattering approximation are also shown. The solar zenith angle is 60◦. The observation

zenith angle is 0◦. The phase function was calculated using Mie theory for the Deirmendjian’s

Cloud C1 model.

up to τ = 0.1 (and even up to τ = 1.0 for the wavelength λ = 2130 nm, see Fig.

3.25b).

There is a peculiarity in the behavior of the function D(τ ) at λ = 2130 nm

shown in Fig. 3.25b. In particular, there is a maximum around τ = 1. Such maxima

are not particularly pronounced for other solar angles shown in Fig. 3.26. The

existence of the maximum cannot be explained on physical grounds because the

difference D does not have a direct physical meaning. Physically based quantities

Il, Ir , R, and also the degree of polarization

p = D

R
(3.322)

all behave in a monotonous way [see, e.g., Fig. 3.27)]. Yet another peculiarity

of the function D(τ ) is that it reaches its asymptotical value for a semi-infinite

cloud D∞ at relatively small values of τ = τ∞ (τ∞ = 1 − 4 , depending on the
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Fig. 3.26. Dependence of D on τ for various solar zenith angles at the wavelength 2130 nm. The

refractive index used in calculations of the phase function using Mie theory for the Deirmendjian’s

Cloud C1 model is also shown. Values of ω0 and g give correspondent values of the single-

scattering albedo and the asymmetry parameter.

wavelength, see Fig. 3.26), which is not the case for R and P (see Figs. 3.25a

and 3.27). The optical thickness of clouds is usually larger than τ∞. It means that

the value of D is a priori known for a given wavelength and the effective radius

of droplets. Such a peculiarity can be used to estimate the sub-pixel cloud fraction

K from remote sensing measurements. Indeed, the values of R and D can be

presented as

R = K Rc + (1 − K )Ra, D = K Dc + (1 − K )Da, (3.323)

for a partially cloudy scene, where the symbol c shows that the correspondent char-

acteristic is related to the cloudy portion of the pixel and a denotes the characteristic

of a cloudless atmosphere. It is known that values of Ra and Da are determined

mostly by the molecular scattering in the UV region of the electromagnetic spectrum
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Fig. 3.27. The same as in Fig. 3.25b but for the degree of polarization in percent.

(Ra → Rm, Da → Dm, where m denotes the pure molecular scattering case (no

clouds and aerosols)). This contribution is known a priori due to the relative sta-

bility of the Rayleigh optical thickness for a given wavelength. Then it follows in

the UV:

K = D − Dm

D∞ − Dm
, Rc = K −1 R − (K −1 − 1)Rm, (3.324)

which allows also to find the cloud optical thickness in a partially cloudy scene.

Another interesting possibility arises at geometries, where Dc = 0 (and, therefore,

P = 0). Then it follows from Eq. (3.324): K = 1 − DD−1
m . So if the measured

value of D is equal to Dm , then we have: K = 0. K is equal to one for a completely

cloudy atmosphere (D = 0 for clouds at the chosen favorable geometry). It follows

from Fig. 3.24 that Dc ≈ 0 at the solar angle 22◦ and the nadir observation. This

corresponds to a scattering angle of 158◦. So if one constructs the device capable to
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Fig. 3.28. Dependence of the degree of polarization P on the solar zenith angle at the optical

thickness 500, nadir observation, and several effective radii of droplets. The phase function was

calculated using Mie theory for the Deirmendjian’s Cloud C1 model but with different effective

radii aef = 4, 6, and 15 μm at the wavelength 865 nm. The maximum corresponds to the size

dependent rainbow scattering.

measure D at this scattering angle, one will be able to determine the cloud fraction

K quite accurately. The origin of a minimum at θ = 158◦ is due to peculiarities

of single scattering by water droplets. Note that multiple scattering hardly moves

the positions, where the degree of polarization of singly scattered light vanishes

(Kokhanovsky, 2003a).

The degree of polarization of light reflected from clouds for several values of

aef is shown in Fig. 3.28. We see that the degree of polarization is more pronounced

at the rainbow geometry.

Studies of polarization characteristics of solar light transmitted and reflected

by cloudy media have a long history. However, the real burst of research in this area

was given by a launch of the POLDER (Polarization and Directionality of Earth
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Reflectances) instrument on board of Japanese ADEOS-I and ADEOS-II satellites.

The POLDER (Goloub et al., 2000) was able to transmit to the Earth a huge amount

of information about polarization characteristics of light reflected from cloudy me-

dia, aerosols and underlying surfaces at several wavelengths. Specifically, the first

three components of the Stokes vector �Sr (I, Q, U, V ) have been measured for

wavelengths λ equal to 443, 670 and 865 nm. There is no doubt that even more ad-

vanced polarimeters with wide spectral coverage will appear on board of different

satellites in future, which makes further theoretical studies of polarization charac-

teristics of cloudy media extremely important. This is due to potential possibilities

for global retrievals of cloud microstructure, the shape of particles and the optical

thickness of clouds based on polarization measurements.

Of course, similar information can be obtained from reflected intensity mea-

surements. However, it could well appear that the degree of polarization can be

used as a source of additional information about cloud particle size distributions

close to the top of a cloud. Indeed, the high proportion of photons scattered from

a thin upper layer of a cloud in creating light polarization is quite understandable.

Multiply scattered light fluxes from deep layers are hardly polarized at all. Radiative

characteristics, on the other hand, represent the cloud as a whole. Thus, the effec-

tive radius derived from radiative measurements is an average of large ensembles

of possibly very different particle size distributions, presented in different parts of

cloudy media.

The polarization characteristics of cloudy media can be studied applying nu-

merical codes, based on the vector radiative transfer equation solution. However,

one can also use the fact that cloud fields are optically thick in most cases. This

allows to apply asymptotic analytical relations, derived for optically thick disperse

media with arbitrary phase functions and absorption. These solutions help us to

explain physical mechanisms and main features behind the polarization change

due to the increase of the size of droplets or the thickness of a cloud. Analytical

solutions also provide an important tool for the simplification of the inverse prob-

lem. They can be used, e.g., in studies of the information content of polarimetric

measurements (Deschamps et al., 1994).

3.7 Clouds Over Reflective Surfaces

Equations for R and T derived above can be easily generalized to account for

the underlying surface reflection.

Light intensity observed in a direction specified by the pair (ϑ, ϕ) can be

considered as composed of two parts: due to the cloud itself (I1) and due to surface

contribution (I2). The contribution I2 can be also separated into two terms (I21, I22),
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namely

I21 = Is t(η) (3.325a)

for the contributions of the surface in the diffused light (η = cos ϑ) and

I22 = Ise−τ/η (3.325b)

for the contribution of the surface in the direct light.

Summing up, we have:

I (η, ϕ) = I1(η, ϕ) + Is t(η) + Ise−τ/η, (3.326)

where we assumed that the surface is Lambertian. This means that the upward

intensity Is for the light emerging from the ground surface does not depend on

angle. Let us relate Is to the albedo A of underlying Lambertian surface. For this

we note that the upward flux density is

Fu =
∫

2π

Is cos ϑd� =
∫ 2π

0

dϕ

∫ π/2

0

dϑ Is cos ϑ sin ϑ = π Is . (3.327)

We have for the ideally reflecting Lambertian surface (A = 1): Fu = Fd or

Fd = π Is , where Fd is the downward flux density. Fd is composed of three com-

ponents: the direct transmission component Fdir = ξ F0e−τ/ξ , the diffuse trans-

mission component Fdi f = ξ F0t(ξ ) and the component coming from the surface

but reflected by a scattering layer back to the underlying surface: Fref = r Fu ,

where r is the spherical albedo of a scattering layer under illumination from below.

Obviously, for the underlying surface with arbitrary ground albedo A, we have:

Fu = AFd (3.328)

and, therefore,

π Is = A
[
ξ F0

(
t(ξ ) + e−r/ξ

) + πr Is

]
. (3.329)

The intensity Is can be easily found from this equation. Namely, it follows:

Is = At∗(ξ )ξ F0

π (1 − Ar )
(3.330)

where

t∗(ξ ) = t(ξ ) + e−τ/ξ (3.331)

is the total transmittance. Therefore, we have (Liou, 2002):

I (η, ϕ) = I1(η, ϕ) + At∗(η)t∗(ξ )ξ F0

π (1 − Ar )
(3.332)
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or

R(η, ξϕ) = Rb(η, ξϕ) + At∗(η)t∗(ξ )

1 − Ar
, (3.333)

where Rb(η, ξ, ϕ) ≡ R(η, ξ, ϕ) at A = 0. All functions presented in this equation

have been studied in the previous section. A similar simple account for the Lam-

bertian underlying surface can be performed also for the transmitted component.

Namely, we have then:

Itr (η, ϕ) = I1tr (η, ϕ) + Isrd (η), (3.334)

where the first component is due to light transmission by a cloud itself and the

second component accounts for the reflection of the diffuse light (Is) coming from

Itr (η, ϕ) = I1tr (η, ϕ) + At∗(ξ )rd (η)ξ F0

π (1 − Ar )
(3.335)

or for the transmission function:

T (ξ, η, ϕ) = Tb(ξ, η, ϕ) + Ard (ξ )t∗(η)

1 − Ar
, (3.336)

where Tb(ξ, η, ϕ) ≡ T (ξ, η, ϕ) at A = 0.

3.8 Vertically Inhomogeneous Clouds

Vertically inhomogeneous disperse media are of frequent occurrence both in

nature (e.g., multi-level cloud systems, snow deposited at different times at a given

place, terrestrial atmosphere and ocean, biological tissues, etc.) and technologi-

cal applications (multi-layered painted surfaces, paper, etc.). This explains a great

interest in studies of radiative transfer in vertically inhomogeneous media. Re-

cent advances in this area have been summarized by Yanovitskij (1997). A great

number of exact (see, e. g., Minin, 1988; Rozanov et al., 2005) and approximate

(Germogenova and Konovalov, 1974; Minin, 1988; Melnikova and Vasilyev, 2005)

techniques has been developed. At present there is no problem to account for an ar-

bitrary vertical inhomogeneity of a horizontally homogeneous plane-parallel light

scattering medium. However, it appears that one needs to perform quite complex

numerical calculations with the use of up-to-date computer technology. On the

other hand, the practical work requires simple approximate solutions, which can

be used to perform rapid estimations of the influence of vertical inhomogeneity

on light reflection and transmission by cloudy media. Such results are presented

in this section. To derive approximate solutions, we make an assumption that the

dthe surface,  r (η) is the plane albedo for illumination from below. Finally, we have:
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Fig. 3.29. Geometry of the problem.

probability of light absorption by droplets in a cloud is small and the exponential

approximation can be applied.

Let us assume that a cloudy medium is composed of several cloud layers having

different light scattering characteristics (e.g., the phase function p(θ ) , the absorp-

tion σabs and extinction σext coefficients). The geometry of the problem is shown

in Fig. 3.29. Light enters a disperse medium at the angle θ0. The reflected light is

observed at the angle θ1 and the diffusely transmitted light is observed in the direc-

tion specified by the angle θ2. We need to model the intensity of diffusely reflected

and transmitted beams taking into account effects of vertical inhomogeneity of the

medium under consideration.

Note that we put no limitations on the number of layers in a cloudy medium.

The region which separates clouds is assumed to be free of light scattering and

absorption. This means that the situation we consider is equivalent to the touching

light scattering layers (e.g., several snow layers). This assumption, however, is

not crucial for the theory developed here [e.g., absorption and scattering of light

by gases and aerosols between clouds can be accounted for, if needed (see, e.g.,

Kokhanovsky and Rozanov, 2004)]. We assume that all layers are optically thick



RADIATIVE TRANSFER 183

(li � �i , where li is the geometrical thickness of i-layer and �i is the photon free path

length in the layer, which is equal to the inverse value of the extinction coefficient

in a given layer) and weakly absorbing (the probability of photon absorption β =
σabs/σext → 0). We need these assumptions to apply the exponential approximation

as discussed above. There is no limitation on the type of the cloud phase function,

however. Although our assumptions severely restrict the applicability of the model

to many natural clouds, they do provide an accurate approach to the solution of a

number of important problems.

The starting point is the expression for the reflection function of a single

homogeneous, optically thick, weakly absorbing layer. This can be written in the

following form for a scattering layer above a Lambertian surface with albedoA:

RA(ξ, η, τ ) = R(ξ, η, τ ) + Atd (ξ )td (η)

1 − Ar
, (3.337)

where

R(ξ, η, τ ) = R∞(ξ, η) − t exp(−x − y)u0(ξ )u0(η) (3.338)

is the reflection function of a scattering layer for the black (A = 0) underlying

surface, RA(ξ, η, τ ) is the same function but for the scattering layer–underlying

surface system, x = kτ , k = √
3β(1 − g) is the diffusion exponent, g is the asym-

metry parameter, τ = σext l is the optical thickness, l is the geometrical thickness

of a scattering layer, y = 4k/3(1 − g) , r is the spherical albedo of a scattering

layer for an illumination from below at A = 0, td (ξ ) is the diffuse transmittance

for the illumination in the direction θ0

d

2

Eq. (3.338) on the azimuth is omitted for simplicity. Also we neglect the direct

light transmittance, which takes rather small values for optically thick layers. Con-

venient approximate equations for functions td (ξ ), R∞(ξ, η) and r are presented

above.

Let us proceed further now. It is known that the reflection of light from an

optically thick weakly absorbing strongly light scattering layer is rather close to

that of a Lambertian reflector. This is due to well-developed multiple light scattering

in the medium in this case. Therefore, to find the reflectance from a multi-layered

spherical albedo r∗
2 of the multi-layered system below the upper layer (see Fig. 3.29).

Other functions in Eq. (3.337) then refer to the first layer from the illumination side.

Such an approach was proposed and successfully used by Melnikova and Minin

(1977) for studies of light fluxes in a cloudy atmosphere.

at A = 0. The function t (η) is the diffuse transmittance for the illumination

in the direction θ = arccos (η). The dependence of the reflection function in

system as given in Fig. 3.29, one can use Eq . (3.337) with A substituted by the

= arccos (ξ ), t  is the global transmittance
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The spherical albedo r∗
2 can be easily found integrating Eq. (3.337). Indeed, it

follows from Eq. (3.337):

r∗
2 = r2 + t2

2 r∗
3

1 − r2r∗
3

. (3.339)

Here r∗
3 is the spherical albedo of the system starting from the 3rd layer down (see

Fig. 1), t2 is the global transmittance of the second layer, r2 is the spherical albedo

of the second scattering layer for an illumination from below. The spherical albedo

r∗
3 can be found using equation similar to Eq. (3.339):

r∗
3 = r3 + t2

3 r∗
4

1 − r3r∗
4

(3.340)

with meaning of all parameters similar to those in Eq. (3.339). Clearly, we need to

repeat this procedure till the underlying surface is reached. Then we have:

r∗
n = rn + t2

n A

1 − rn A
(3.341)

and the procedure is complete.

Let us check the accuracy of the straightforward procedure outlined above using

the exact solution of the radiative transfer equation with SCIATRAN (Rozanov

et al., 2005) for a two-layered disperse system over a black surface. Then A in

Eq. (3.339) should be substituted by the spherical albedo of a lower layer r2. All

other parameters in Eq. (3.339) refer to an upper layer. Note that SCIATRAN

is a well-documented and thoroughly tested radiative transfer code based on the

discrete ordinates approach. Its accuracy is better than 1%.

The results of comparisons are shown in Figs. 3.30a–c. In particular, we give

the dependence of the reflection function of a disperse medium on the incidence

angle for the nadir observation. Due to the reciprocity principle, our calculations

are also valid for the nadir illumination and varying observation angles.

The middle curves in Figs. 3.30a–c correspond to a two-layered cloud system

with an optical thickness of the bottom layer τb = 30 and an optical thickness of

the upper layer τu = 10. We assume that the upper layer does not absorb incident

radiation. The single-scattering albedo of the bottom layer is equal to 0.9945 (Fig.

3.30a), 0.9982 (Fig. 3.30b), 0.9681 (Fig. 3.30c).

The upper curves in these figures correspond to a single layer having an optical

thickness τ = τb + τu and the single-scattering albedo equal to 1. Lower curves in

Figs. 3.30a–c correspond to a single layer having an optical thickness τ = τb + τu

and the single-scattering albedo equal to 0.9945 (Fig. 3.30a), 0.9982 (Fig. 3.30b),

0.9681 (Fig. 3.30c). Exact results are shown by symbols. Lines correspond to

calculations according to the approximation developed here.
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Fig. 3.30. (a) The dependence of the reflection function of a cloud medium on the incidence

angle for the nadir observation. Symbols give exact results and lines are due to the approximation

(see details in text). The curve in the middle was obtained for an upper nonabsorbing layer and

the absorbing layer with ω0 = 0.9945 at the bottom. Upper curves correspond to a nonabsorbing

single layer. Lower curves correspond to an absorbing single layer. The total optical thickness is

kept constant for all calculations (τ = 40). The phase function was calculated using Mie theory

for the gamma droplet distribution with aef = 10 μm, μ = 1/9, λ = 0.65 μm, and the refractive

index 1.331 − iχ , χ = 0 (upper curve) and χ = 0.00005 (lower curve). (b) The same as in Fig.

3.30a except χ = 0.0001 for a lower curve and ω0 = 0.9892. (c) The same as in Fig. 3.30a except

χ = 0.0003 for a lower curve and ω0 = 0.9691.
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The phase function was found using the narrow gamma droplet size distribution

with the effective radius 10 μm and the effective variance equal to 1/9 at wavelength

λ = 0.65μm for water droplets with the refractive index m equal to 1.331-0i (Figs.

3.29a–c, upper curves), 1.331–0.00005i (Fig. 3.30a, lower curves), 1.331–0.0001i
(Fig. 3.30b, lower curves), 1.331–0.0003i (Fig. 3.30c, lower curves).

Note that the variation of the imaginary part of the refractive index allows

us to model various levels of cloud pollution (e.g., due to black carbon). The

phase function differs not significantly for all layers. For instance, the asymmetry

parameter is equal to 0.85 at m = 1.331–0i , 0.8513 at m = 1.331–i0.00005i , 0.8525

at m = 1.331–0.0001i and 0.8571 at m = 1.331–0.0003i . This is according to the

general fact that the phase function of weakly absorbing particles is not particularly

affected by the level of light absorption. However, note that there is a slight tendency

to the general increase of the asymmetry parameter with the imaginary part of the

refractive index.

It follows from Figs. 3.30a–c that the accuracy of our simple approximation

is quite high for the case considered. In fact it is comparable with the accuracy of

is explained by the fact that the accuracy of the approximation is highly influenced

by the value of ω0. The average value of ω0 is, however, lower for a two-layered

system (with a nonabsorbing upper layer) as compared to a single absorbing layer

having the same optical thickness.

We see that the two-layered system with total optical thickness 40 has values of

R intermediate between those for an upper layer (at τ = 40) and lower layer (also

at τ = 40). This can be expected on general grounds as well. Errors are generally

below 5% but they increase for oblique incidence angles. The accuracy decreases

with β. The value of β ≈ 0.03 can be considered as an upper boundary for the

application of this theory. Although it can be applied to slightly larger values of

β if the accuracy is not a primary concern (e.g., for rapid estimations of vertical

inhomogeneity effects).

It is interesting to see the performance of equations for larger and smaller values

of τb, τu . This is shown in Figs. 3.31a and 3.31b for an absorbing lower layer and

nonabsorbing upper layer. We see that the accuracy of our equations is robust

against change of the turbid layer thickness. Note that the variation of the optical

thickness of a lower layer (see Fig. 3.31a) does not change the reflection function

very much. This is due to the fact that the spherical albedo of a lower absorbing

cloud does not depend strongly on τb. On the other hand, the variation of the upper

layer optical thickness τu (see Fig. 3.31b ) changes the result considerably. Clouds

become much brighter with a larger thickness of the upper layer. Obviously, for a

very thick upper layer the sensitivity of the reflection function to the presence of a

turbid layer at the bottom is lost. This is similar to the effect of the disappearance

of objects in a heavy fog. Therefore, we conclude that high nonabsorbing clouds

corresponding equations for a single layer or even higher than that. This paradox
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Fig. 3.31. (a) The dependence of the reflection function of a two-layered cloud medium on the

incidence angle for the nadir observation at τu = 10 and τb = 5, 10, 30. The upper layer does

not absorb radiation. The bottom layer is characterized by the single-scattering albedo 0.9892.

Symbols give exact results and lines are due to the approximation (see details in the text). (b) The

dependence of the reflection function of a two-layered cloud medium on the incidence angle for

the nadir observation at τu = 5, 10, 30 and τb = 30. The upper layer does not absorb radiation.

The bottom layer is characterized by the single-scattering albedo 0.9892. Symbols give exact

results and lines are due to the approximation (see details in the text).

can shield lower (and possibly) polluted clouds. This can lead to important climatic

effects not accounted for in Global Circulation Models at the moment.

To make this point more clear, we present the reflection function of a single

absorbing cloud layer with the optical thickness 30 in Fig. 3.32. Then we add

a nonabsorbing cloud at the higher level in the atmosphere. It follows that the

reflection of the system considerably increases both for warm water and cold ice

upper-level clouds. The phase function of an ice cloud was taken from a study by

Mishchenko et al. (1999) (the fractal particle model) and the phase function of the

water cloud was calculated as indicated above (at m = 1.331 − 0.0001i for a lower

cloud and m = 1.331 for an upper cloud in the two-layered system). The increase

in the reflection is much more pronounced for crystalline clouds. It means that ice

clouds not only warm the system by trapping terrestrial radiation. They also may

shield lower polluted cloud systems (e. g., in urban areas) and increase general

reflection of the surface–atmosphere system. This indicates the complexity of the

issue of cloud influence on the climate.
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Fig. 3.32. The dependence of the reflection function on the incidence angle for the nadir obser-

vation for a two-layered cloud medium at τu = 10, τb = 30 (upper curves) and for an absorbing

single cloud layer with τ = 30 (lower curves). The upper layer does not absorb radiation and

composed either of water droplets or ice crystals. The bottom layer and a single absorbing layer

is characterized by the single-scattering albedo 0.9892. Symbols give exact results and lines are

due to the approximation (see details in text).

The question arises if the model presented above can be applied to studies of

light transmission. The answer on this question is positive. Indeed, we have for the

transmission function of a single homogeneous disperse layer over a Lambertian

surface with surface albedo A :

TA(ξ, η, τ ) = T (ξ, η, τ ) + Atd (ξ )rd (η)

1 − Ar
. (3.342)

Here rd (η) is the plane albedo of the layer for the illumination from below. Again

assuming that the layers below the upper one can be substituted by a Lambertian

reflector, we have for the transmission function T̄1(ξ, η) of the first layer in the
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n-layer system:

T̄1(ξ, η) = T1(ξ, η) + td1(ξ )rd1(η)r∗
2

1 − r1r∗
2

, (3.343)

where we omitted the dependence on the optical thickness and r∗
2 is found using

the iterative procedure starting from the ground surface as underlined in the previ-

ous section. Functions T1(ξ, η), td1(ξ ), r1 and rd1(η) have the same meaning as in

Table 3.1 but for the first layer.

Let us consider now the transmittance under the second layer. The second layer

is illuminated by the diffuse light transmitted by the first layer. It follows that the

diffuse transmittance t̄ d1(ξ )is given by:

t̄d1(ξ ) = td1(ξ ) + td1(ξ )r1r∗
2

1 − r1r∗
2

(3.344)

or

t̄d1(ξ ) = t1(ξ )

1 − r1r∗
2

. (3.345)

Also we have for the global transmittance:

t̄1 = t1
1 − r1r∗

2

. (3.346)

Therefore, the transmission function T̄2 after the second layer in the n-layered

system is given as

T̄2(ξ, η) = t̄d1(ξ )t̄d2(ξ )(η), (3.347)

where

t̄d2(η) = t̄d2(η)

1 − r2r∗
3

. (3.348)

Following this procedure, we can obtain the transmission function under the third

layer:

T̄3(ξ, η) = t̄d1(ξ )t̄2 t̄d3(η), (3.349)

where t̄2 = t2/(1 − r2r∗
3 ) and we accounted for the fact that the second layer is

illuminated from above by diffuse light and that it also serves as a diffuse light

source for the third layer. Repeating this procedure for each layer, we can arrive

finally to the transmission function of a whole system:

T̄n(ξ, η) = t̄d1(ξ )t̄2 t̄3 . . . t̄n−1 t̄dn(η), (3.350)
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where t̄ j = t j/(1 − r jr∗
j+1) and rn+1 ≡ A. Interestingly, Eq. (3.350) can be written

in the form similar to that for a homogeneous layer:

T̄n(ξ, η) = te f K0(ξ )K0(η), (3.351)

where the effective global transmittance is given by:

te f =
∏n

j=1 t j∏n
j=1

(
1 − r jr∗

j+1

) (3.352)

with all parameters defined in the theory for a single layer. Note that we have used

here the equality: td j = t j u0(ξ ), where u0(ξ ) is the escape function.

Let us check the applicability of our assumptions making comparisons with

exact radiative transfer calculations using SCIATRAN (Rozanov et al., 2005) for

a special case of a two-layered medium over a black surface. Then Eq. (3.350) is

reduced to the following form:

T̄2(ξ, η) = t1t2u0(ξ )u0(η)

1 − r1r2

, (3.353)

where we accounted for the fact that te f = t1t2(1 − r1r2)−1 in this case. Note that

if neither of both layers absorb radiation, the sensitivity of transmitted light to

the vertical inhomogeneity is low and in a good approximation one can use the

reflection function for a single layer having the optical thickness equal to the

sum of optical thicknesses of both layers and the average value of the asymmetry

parameter (Sobolev, 1972).

The results of calculations using simple approximation (3.353) are shown in

errors and outcome of exact calculations for the incident angle equal to 60◦ and

the azimuth equal to 0◦. In particular, we give the dependence of the transmission

function on the observation angle for a single layer having the optical thickness

equal to 40 at ω0 = 0.9945 and ω0 = 1.0 in Fig. 3.33. The results of computations

for a two-layered medium having the total optical thickness 40 but ω0 = 0.9945

in the bottom layer (τb = 30) and ω0 = 1.0 in upper layer (τu = 10) are also given

in the same figure (the middle line). Note that phase functions in all calculations

given here are very close to each other. So the change of transmission is mostly

due to the absorption effect. As expected the largest transmission is observed for

a nonabsorbing single layer. It is reduced considerably if absorption is introduced

in the bottom part of a layer. Of course, the minimum of transmission occurs

for a single absorbing layer (see, e.g., a lower line in Fig. 3.33). It follows that

exact and approximate results are quite close to each other for observation angles

smaller than 70◦. Then the error of approximation is smaller than 5%. The error

increases for slabs having larger absorption, however. This is illustrated in Fig. 3.34,

where we show a dependence similar to that in Fig. 3.33 but now for the increased

Figs. 3.33–3.37 as functions of the observation angle together with corresponding
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Fig. 3.33. The dependence of the transmission function on the zenith observation angle at the

zenith incidence angle equal to 60◦ and the azimuth equal to 0◦ for a single homogeneous layer

and a two – layered turbid medium with the total optical thickness equal to 40. The single-

scattering albedo is equal to 0.9945. Lines correspond to Eq. (3.353) and symbols are obtained

from exact calculations. Further explanations are given in the text.

absorption (ω0 = 0.9892). It is interesting that the error of Eq. (3.353) for a two-

layered medium is smaller than that for a single layer with the optical thickness

40 and ω0

is mostly influenced by the total light absorption and transmission and not by a

number of layers. Note that the accuracy of reflected light calculation is generally

higher than that for the diffusely transmitted light (for a given level of absorption).

Calculations for a two-layered turbid slab with the optical thickness of a lower

absorbing layer equal to 30 for various thicknesses of a nonabsorbing upper layer

are shown in Fig. 3.35. The middle lines in this figure coincide with the middle line

in Fig. 3.33. We see that the accuracy is better than 5% in this case. The decrease of

= 0.9892. This points to the fact that the accuracy of the technique
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Fig. 3.34. The same as in Fig. 3.33 but at ω0 = 0.9892.

the optical thickness of an upper layer leads to the increase of the light transmission

as one might expect.

Fig. 3.36 is similar to Fig. 3.35, but now the optical thickness of an absorbing

layer at the bottom is varied from 5 till 30. The optical thickness of an upper layer

is fixed and equal to 10. Clearly, the error approximation increases for thinner

layers, which is in accordance with general assumptions of our approximation,

which is valid only for weakly absorbing optically thick layers (Kokhanovsky and

Rozanov, 2003). However Eq. (3.353) has a comparatively high accuracy even at

such comparatively small values of τ as 5 (see Fig. 3.36).

In conclusion, we show the transmission function of a single absorbing layer

having optical thickness 40 at ω0 = 0.9945 in Fig. 3.37 (middle line) in comparison

with transmission functions of a two-layered system having ω0 = 0.9945 in the up-

per layer (τu = 30) and ω0 = 0.9892 in the layer at the bottom (τb = 10) (lower line
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Fig. 3.35. The same as in Fig. 3.33 but for other values of optical thickness of an upper layer.

in Fig. 3.37). Clearly, in the later case the transmission should be lower. Figure 3.37

quantifies this decrease. The upper line in Fig. 3.37 corresponds to a two-layered

system with total optical thickness equal to 40 and local optical characteristics

of a lower layer equal to that of a single layer shown by the middle line in Fig.

3.37 but having a nonabsorbing scattering layer at the top of the system (τu = 10).

Then, due to the general decrease of absorption in the system, transmission should

increase. This is confirmed by Fig. 3.37. It follows from Fig. 3.37 that the error of

Eq. (3.353) is smaller than 5%, which is acceptable for a broad range of applica-

tions (e.g., rapid estimations of stratification effects on diffusely transmitted and

reflected light fields).

Detailed studies of radiative transfer in vertically inhomogeneous clouds in-

cluding those with smooth vertical profiles of scattering and absorption character-

istics have been performed by Yanovitskij (1997).
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Fig. 3.36. The same as in Fig. 3.33 but for other values of optical thickness of a bottom layer.

3.9 Horizontally Inhomogeneous Clouds

3.9.1 Independent Pixel Approximation

The influence of the horizontal inhomogeneity of clouds on their radiative

characteristics is a major subject of modern cloud optics studies (Cahalan et al.,

1994, 2001; Barker et al., 1996; Loeb and Davies, 1996; Marshak et al., 1998;

Platnick, 2001; Scheirer and Macke, 2001; Davis and Marshak, 2002). In particular,

it was found that the horizontal inhomogeneity of clouds effects their abilities to

absorb, reflect and transmit solar light (Feigelson, 1981; Scheirer and Macke, 2001).

Thus, cloud remote sensing techniques, based on the spectral reflectance method

(Kondratyev and Binenko, 1984; Arking and Childs, 1985; Nakajima and King,

1990; Nakajima et al., 1991; King et al., 1992; Han et al., 1994; Rossow et al.,
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Fig. 3.37. The dependence of the transmission function on the zenith observation angle at the

zenith incidence angle equal to 60◦ and the azimuth equal to 0◦ for a single homogeneous layer

(middle line, ω0 = 0.9945, τ = 40) and a two-layered turbid medium [ω0 = 0.9945, τ = 30 for

a lower layer and ω0 = 1.0, τ = 10 for an upper layer (upper line) and ω0 = 0.9892, τ = 10

for a lower layer and ω0 = 0.9945, τ = 30 for an upper layer (lower line)]. Lines correspond

to results obtained with Eq. (3.353) and symbols are obtained from exact calculations. Further

explanations are given in text.

1989; Rossow and Schiffer, 1999), must account for the sub-pixel cloud horizontal

inhomogeneity. This is not generally the case so far.

It is known that pixels with inhomogeneous clouds are darker than pixels with

homogeneous cloud layers, having the same average optical thickness (Cahalan

et al., 1994). This leads to the underestimation of cloud optical thickness by modern

satellite retrieval techniques. There are semi-empirical approaches to overcome

The correct magnitude of these adjustments, however, cannot be assumed a priori.

this problem. They are based on the artificial increase of the measured reflection

function to account for the horizontal inhomogeneity of a cloud field under study.
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So they lack a physical basis. This issue is discussed in detail by Pincus and Klein

Another way to solve the problem is to use 3-D Monte Carlo calculations (see,

e.g., Scheirer and Macke, 2001). However, they are time-consuming for realistic

clouds and can be used mostly for theoretical studies and not as a core of operational

cloud satellite retrieval algorithms. Monte Carlo calculations have shown, however,

that in some cases a high accuracy can be achieved if a 3-D cloud field is substituted

by N noninteracting vertical columns or cells. A cloud field in each cell is modelled

as a horizontally homogeneous plane-parallel layer of an infinite horizontal extent.

The optical thickness (and, possibly, microstructure) of each cell varies, depending

on its position in a cloud field. Such an approach is called the Independent Column

Approximation (ICA) or the Independent Pixel Approximation (IPA). The range

of applicability of the ICA was studied by Davis et al. (1997) and Scheirer and

Macke (2001).

Effectively, the ICA reduces the 3-D radiative transfer problem to N standard

radiative transfer problems for homogeneous media. The number N can be large.

Thus, the problem remains computationally very expensive.

It can be simplified, however, if one applies approximate solutions of the ra-

diative transfer problem for each cloud cell. This is done usually in the framework

of the two-stream approximation (Barker, 1996; Barker et al., 1996; Barker and

Fu, 2000). In particular, one can assume that the cloud optical thickness for a

given cloud field obeys the probability distribution law (e.g., as those given in

Fig. 3.38). However, the accuracy of two-stream approximations is rather low as

compared to exact radiative transfer calculations (King and Harshvardhan, 1986;

Thomas and Stamnes, 1999). In particular, for some cases errors introduced by the

approximation can be larger than differences of radiative fluxes for horizontally

homogeneous and inhomogeneous cloud fields themselves. Also this approxima-

tion does not allow consideration of the bi-directional reflection function of clouds,

which is routinely measured by various radiometers and spectrometers on satellite

platforms. With this in mind, Kokhanovsky (2003b) proposed to use the exponential

approximation of the radiative transfer theory to solve each of N standard radia-

tive problems, discussed above. Then it follows for the whole cloud field under

observation:

〈R(ξ, η, φ)〉 =
∫ ∞

0

R(ξ, η, φ, τ ) f (τ )dτ, (3.354)

where f (τ ) is the cloud optical thickness distribution and R(ξ, η, φ, τ ) is the

reflection function of a cloud with given τ . This equation and also similar formulae

for other cloud radiative characteristics allow us to study the influence of cloud

(2000). Also cloud inhomogeneity could lead to unphysical dependencies of the 

Davies, 1996).

retrieved cloud optical thickness on illumination and viewing geometry (Loeb and
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Fig. 3.38. Spatial optical thickness distribution modeled using the gamma distribution for dif-

ferent values of ρτ defined as �/〈τ 〉, where � is the standard deviation of the optical thickness

and 〈τ 〉 is the average optical thickness.

inhomogeneity parameters on the measured reflection function for a given cloudy

scene in a simple way. In particular, it follows for a nonabsorbing case:

〈R(ξ, η, φ)〉 = R∞(ξ, η, φ) − 〈t〉u0(ξ )u0(η), (3.355)

where R∞(ξ, η, φ) does not depend on τ by definition (see Fig. 3.39) and

〈t〉 =
∫ ∞

0

t(τ ) f (τ )dτ. (3.356)

Let us assume that τ → ∞. Then we have:

t(τ ) ≈ 4

3τ (1 − g)
(3.357)

and

〈t〉 =
4

(
1 + 1

μ

)
3〈 〉(1 − g)

, (3.358)
τ
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Fig. 3.39. Dependence of reflection functions of a semi-infinite nonabsorbing water and ice

cloud on the incidence angle at the nadir observation. Symbols give exact results and lines are

due to the approximation (Kokhanovsky, 2004b, 2005).

where we used the following distribution:

f (τ ) = �τμ exp

(
−μ

τ

τ0

)
(3.359)

with

� = μμ+1

τ
μ+1
0 �(μ + 1)

(3.360)

and 〈τ 〉 = τ0(1 + (1/μ)) is the average optical thickness defined as

〈 〉 =
∫ ∞

0

τ f (τ )dτ. (3.361)τ
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So we have:

〈t(τ )〉/t(〈 〉) ≈
(

1 + 1

μ

)
(3.362)

as 〈τ 〉 → ∞. It means that 〈t(τ )〉/t(〈τ 〉) ≥ 1, where we accounted for the fact

that μ > 1. Also because of this we have: 〈R(ξ, η, φ, τ )〉 < R(ξ, η, φ, 〈τ 〉) . It

means that reflectances of inhomogeneous cloud fields, calculated assuming that

the optical thickness is equal to the average optical thickness, give larger values

as compared to measured reflectances. So we conclude that inhomogeneity leads

to darkening of correspondent pixels as compared to the case of homogeneous

clouds with the same optical thickness 〈τ 〉. On the other hand, the transmission of

light by inhomogeneous clouds increases as compared to the case of a horizontally

homogeneous cloud with the cloud optical thickness equal to 〈τ 〉.

3.9.2 Multidimensional Radiative Transfer in Clouds

3.9.2.1 General remarks

Radiative transfer in a cloudy atmosphere is usually studied in the framework of

the plane-parallel approximation or the IPA as shown above. Then the diffuse light

field changes only along the vertical direction for wide solar beam illumination

conditions. There is no any change in the radiation field in the horizontal direction.

Although this approximation, which is often called 1-D case, is very important for

the case of extended cloudiness (e.g., extended fields of Stratocumulus clouds),

it cannot be applied for the majority of cloudy scenes. Indeed cloudiness has a

horizontal structure (e.g., holes between clouds).

These effects can be accounted for in the framework of the 3-D radiative transfer

equation, where the spatial variation of local optical properties is fully accounted

for. Various approaches to deal with 3-D clouds are known (Liou, 2002). The most

popular techniques are the Monte Carlo method (Marchuk et al., 1980; Shreier and

Macke, 2001), the diffusion approximation (Liou, 2002), the spherical harmonics

discrete ordinate method (Evans, 1998), and the iteration technique (Nikolaeva

et al., 2005).

In the iteration technique, the phase function in the scattering integral is rep-

resented by the spherical harmonics and the integral is replaced by a quadrature

sum. Spatial grids are introduced and obtained partial differential equations are ap-

proximated by the system of linear algebraic equations. To solve it, the successive-

orders-of-scattering (SOS) approach is applied.

Each partial differential equation is integrated along its characteristic through-

out the whole calculation region in the framework of the well-known Evans’s algo-

rithm (Evans, 1998). These methods have some advantages and some deficiencies.

τ
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In particular, some of them may be non-conservative, e.g., do not conserve the

number of photons in the transport problem. This defect can lead to significant

errors in the solution obtained.

Other spherical harmonics discrete ordinate methods use the local approxima-

tion for partial differential equations. Such methods were widely used in various

neutron and photon transport problems in the last 50 years. They are conservative

and economic since they use very simple equations and do not apply complicated

logic (all spatial meshes are calculated successively). In particular, such methods

have been incorporated in the RADUGA 3-D solver described by Nikolaeva et al.

(2005).

3.9.2.2 The three-dimensional radiative transfer equation

The 3-D radiative transfer equation can be written in the following form:

ξ
∂ I (x, y, z, θ, φ)

∂x
+ η

∂ I (x, y, z, θ, φ)

∂y
+ β

∂ I (x, y, z, θ, φ)

∂z
+ σext (x, y, z)

× I (x, y, z, θ, φ) = 1

4π
σsca(x, y, z)

∫ π

0

sin θ ′dθ ′
∫ 2π

0

I (x, y, z, θ ′, φ′)p(x, y, z,

χ (θ, φ, θ ′, φ′))dφ′ + 1

4π
σsca(x, y, z)F0 p(x, y, z, χ (θ, φ, �, !)) exp(−t),

(3.363)

where σsca and σext are scattering and extinction coefficients, p(x, y, z, χ ) is the

phase function. The function I (x, y, z, θ, φ) is the diffuse light intensity at the

point (x, y, z) propagated in the direction (θ, φ), see Fig. 3.40. Also we have: ξ =
sin θ cos φ, η = sin θ sin φ, β = cos θ . Scalar product χ is defined by the following

relation

χ (θ, φ, θ ′, φ′) = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′). (3.364)

The value ot t in Eq. (3.363) is the optical path between two points defined by

radius vector �r0 and �r : t = ∫ d
0

σext(�r0 + ζ �r )dζ , where d = |�r − �r0|.
The vector �r0 defines the crossing point of the light beam with the boundary

of the scattering medium under study.

We assume that there is no diffuse light entering the medium. Therefore, bound-

ary conditions have the following form:

I (�r , ��) = 0 at ���n(�r ) < 0 for all �r (x, y, z) ∈ Gfinite,

I (�r , ��) = I (�r∗, ��) at ���n(�r ) < 0 for all �r (x, y, z) ∈ G infinite,

Here Gfinite is the finite part of the medium boundary (on z), G infinite is the infinite

one (on x and y), �r∗ is an inner point for the periodic boundary conditions.
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Fig. 3.40. Geometry of the problem.

This full 3-D transport equation is reduced to 2-D equation in some particular

cases. For instance, let us assume that the line LM (see Fig. 3.40) coincides with

the visualization line. This means that the solution becomes invariant in respect to

the coordinate y. Then we can drop the dependence on y in Eq. (3.363) and arrive

at the following simplified 2-D transport equation:

ξ
∂ I (x, y, z, θ, φ)

∂x
+ β

∂ I (x, y, z, θ, φ)

∂z
+ σext (x, z)I (x, z, θ, φ) = F̂ I,

(3.365)

where

F̂ I ≡ 1

4π
σsca(x, z)

∫ π

0

sin θ ′dθ ′
∫ 2π

0

I (x, z, θ ′, φ′)p(x, z, χ (θ, φ, θ ′, φ′))dφ′

+ 1

4π
σsca(x, z)F0 p(x, z, χ (θ, φ, �, !)) exp(−t). (3.366)

Equation (3.365) can be solved using the method of successive orders of scat-

tering. Namely, at first we neglect the integral term in Eq. (3.366) and calculate

the diffuse intensity I (x, z, θ, φ) from the solution of the partial differential equa-

tion. Then the obtained diffuse intensity is substituted in the scattering integral in

Eq. (3.366) and the next approximation for I (x, z, θ, φ) is found from the solu-

tion of the partial differential equation (3.365). The algorithm is stopped when the

convergence is reached.
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Therefore, the problem at hand is reduced to the solution of the following

transport equation:

ξ
∂ I (x, y, θ, φ)

∂x
+ β

∂ I (x, y, θ, φ)

∂z
+ σext (x)I (x, z, θ, φ) = �(x, z, θ, φ),

(3.367)

where I (x, z, θ, φ) is the diffuse light intensity at the point �r (x, z) propagated

in the direction (θ, φ), �(x, z, θ, φ) = F̂ Ĩ (x, z, θ, φ) and Ĩ (x, z, θ, φ) is a known

function obtained from the previous iteration as described above.

We introduce an angular quadrature and replace functions I (x, z, θ, φ),

Ĩ (x, z, θ, φ) and �(x, z, θ, φ) by their values in quadrature nodes. Integral

�(x, z, θ, φ) is calculated using the following standard steps:

� the expansion of function Ĩ (x, z, θ, φ) in terms of spherical harmonics,
� the representation of integral �(x, z, θ, φ) by spherical harmonics,
� the calculation of �(x, z, θ, φ) values in quadrature nodes.

A standard grid method to approximate the partial differential equation of the

first order is used. In particular, grids with respect to spatial variables x and z are

introduced:

x1/2 < . . . < xk+1/2 < . . . < xk+1/2, z1/2 < . . . < z�+1/2 < . . . < zL+1/2.

A single two-dimensional cell (k, l) has the following dimensions:

[xk−1/2, xk+1/2] × [z�−1/2, z�+1/2]. Correspondingly, its size is [�xk] × [�zl],

where �xk = xk+1/2 − xk−1/2 and �zk = zK+1/2 − zk−1/2. Also the integral

operator

�̂k,� = 1

�xk�y�

∫ xk+1/2

xk−1/2

dx

∫ z�+1/2

x�−1/2

dz

is applied to both parts of Eq. (3.365). Then it follows:

ξ (Ik+1/2,� − Ik−1/2,�)/�xk + β(Ik,�+1/2 − Ik,�−1/2)/�z� + σ k,�
ext Ik,� = �k,�,

(3.368)

where

Ik,� = 1

�xk�z�

∫ xk+1/2

xk−1/2

dx

∫ z�+1/2

x�−1/2

dz I (x, z), �k,� = 1

�xk�z�

∫ xk+1/2

xk−1/2

dx

×
∫ z�+1/2

x�−1/2

dz�(x, z), (3.369)
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are the average values of the intensity and the source function, respectively, over

a given cell and

Ik±1/2,� = 1

�z�

∫ z�+1/2

x�−1/2

dz I (xk±1/2, z), Ik,�±1/2 = 1

�xk

∫ xk+1/2

xk−1/2

dx I (x, z�±1/2),

(3.370)

are correspondent average values of the intensity on boundaries of the cell (k, l).
Fulfilment of Eq. (3.368) guarantees that a presented scheme is a conservative one.

Intensities Ik−1/2,l and Ik,l−1/2 are known either from boundary conditions or

from the result of the calculation for the previous cell. So we need to determine only

values of Ik−1/2,l , Ik,l−1/2 and Ik,l . It is not possible to evaluate three parameters

from a single equation (3.368). So we need to introduce two approximate relations

among these three unknown parameters. They are given as follows:

Ik,� = (1 − νx,k,�)Ik+s(ξ )/2,� + νx,k,� Ik−s(ξ )/2,�, (3.371)

Ik,� = (1 − νz,k,�)Ik,�+s(β)/2,� + νz,k,� Ik,�−s(β)/2, (3.372)

where s(ξ ) = sign(ξ ), s(β) = sign(β), νx,k,� ∈ [0, 1) and νz,k,� ∈ [0, 1) are weight

parameters. One can use values of weight parameters as follows:

νx,k,� = 1/(2 + hx,k,�), νz,k,�

(hx,k,�/hz,k,�)(1 + hx,k,�)

2 + 2hx,k,� + h2
x,k,�

at hx,k,� ≤ hz,k,�, (3.373)

νx,k,� = (hz,k,�/hx,k,�)(1 + hz,k,�)

2 + 2hz,k,� + h2
z,k,�

νz,k,� = 1/(2 + hz,k,� at hx,k,� ≥ hz,k,�. (3.374)

Optical steps hx,k,� and hz,k,� are defined as:

hx,k,� = σ k,�
ext �xk/|ξ |, hx,k,� = σ k,�

ext �zk/|β|. (3.375)

This scheme defines outside fluxes Ik+s(ξ )/2,�, Ik,�+s(β)/2 via entering fluxes

Ik−s(ξ )/2,�, Ik,�−s(β)/2 in a physically correct manner in any cell of any grid. It

permits to obtain discontinuous solutions and solutions with large gradients ac-

curately. This completes a brief description of this technique. Further details are

given by Nikolaeva et al. (2005).

3.9.2.3 Numerical results

Let us consider results of numerical calculations for the case presented in

Fig. 3.40, where a rectangular coordinate system xyz is introduced. Solar light is

approximated by the monodirectional source having intensity F0δ(μ − M)δ(φ −
!). Here M = cos �, μ = cos θ and the pair (�, !) gives the direction of solar

light propagation in the spherical coordinate system defined by the axis z and angles

(θ, φ). The azimuth ! is counted with respect to the positive direction of the axis

x . In this chapter only results for ! = 0 and ! = π will be reported. It means that

solar light enters the atmosphere from the direction of the positive values of x (then
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! = π ) or from the direction of the negative values of x(then ! = 0). The intensity

of multiply scattered light is calculated along the axis x in the zenith direction as

shown in Fig. 3.40 (see the line of visualization in Fig. 3.40).

We divide the terrestrial atmosphere in two equal semi-spaces separated by

a local vertical plane. One part is filled by a cloudy medium and another one by

the atmospheric aerosol. The processes of molecular scattering and absorption are

neglected. Scattering media are assumed to be homogeneous and infinite in planes

z = const . We assume that there are no light scattering particles at z > 4 km. All

downwardly propagated photons, which reach the plane z = 0, are assumed to be

absorbed. Therefore, the contribution of the ground albedo is neglected.

Droplets in a cloud are characterized by the Cloud C.1 particle size distribution

with the effective radius equal to 6 μm. The single-scattering diagram for an

elementary volume of a cloudy medium is calculated at wavelength 412 nm using

the Mie theory. The phase function in the aerosol medium is represented by the

Henyey–Greenstein formula. The asymmetry parameter of the cloud phase function

g is equal to 0.85. The value of g for the aerosol phase function is equal to 0.7.

The optical thickness of cloudy and aerosol portions of the scene are 30 and 1.2,

respectively. Also we have studied the variation of the reflected light as observed

from a satellite for a nadir observation geometry as the function of the solar angle �.

Under conditions specified above, the considered problem is reduced to the

2-D problem. Both aerosol and cloud are homogeneous around z-direction on the

height interval (0 km, 4 km). They are contained in rectangular boxes. We will

study the upwelling light field in the zenith direction along the line of visualization

shown in Fig. 3.40. Clearly, the intensity of the reflected light field must depend

on the coordinate x .

The largest gradients of the reflection function R(x) are expected in the area

closest to the cloud boundary. Because both an aerosol and a cloud are extended to

infinity along axis x , this function far from boundaries must be equal to the value,

which can be obtained from the 1-D radiative transfer equation.

The results of calculations using the RADUGA code (Nikolaeva et al., 2005)

are given in Figs. 3.41 and 3.42. We also show comparisons with 3-D Monte Carlo

code MYSTIC in Figs. 3.41 and 3.42. The MYSTIC (Mayer, 1999) is the Monte

Carlo code for the physically correct tracing of photons in cloudy atmospheres.

The MYSTIC is a forward Monte Carlo code which traces photons on their in-

dividual paths through the atmosphere, similar to what is described by Cahalan

et al. (1994). Radiances are calculated using a local estimate technique. In this

configuration, MYSTIC has been successfully validated in the intercomparison of

3-D radiation codes (see http://climate.gsfc.nasa.gov/I3RC). MYSTIC is operated

within the libRadtran package (see http://www.libradtran.org), which prepares the

optical properties of the atmosphere to be used in the model. A model domain of

80 km in x was used. A large domain size is important since MYSTIC uses periodic
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Fig. 3.41. The reflection function in the vicinity of the cloud edge in the nadir direction. Cal-

culations are performed for the illumination from a clear sky side with the solar zenith angle

60◦. The aerosol optical thickness is equal to 1.2 and the cloud optical thickness is equal to 30.

Results of the RADUGA and MYSTIC codes in the direction perpendicular to the cloud band

are shown (Nikolaeva et al., 2005).

Fig. 3.42. The same as in Fig. 3.41 but for the illumination from the cloud side (Nikolaeva et al.,

2005).
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boundary conditions. The model resolution was set to 0.1 km; the MYSTIC results

are, therefore, averages over 0.1 km bins.

It follows from results of comparisons as shown in Figs. 3.41 and 3.42 that

differences are below 1%. Therefore, both the MYSTIC and RADUGA provide

very accurate results as far as calculations of the light reflected by an aerosol-cloudy

medium are concerned.

Some physical dependencies are clearly seen in Figs. 3.41 and 3.42. For in-

stance, it follows from Fig. 3.42 that there is a shadow near the cloud border for

the illumination from the cloud side (! = π ). It follows from geometrical con-

siderations that the shadow extends from the cloud boundary up to the distance

Z = Htgϑ0, where H is the cloud top altitude and ϑ0 is the solar zenith angle.

Therefore, the shadow covers a larger region for larger solar zenith angles.

Also we have a brightening effect in Fig. 3.41 due to the cloud side illumination

effects (! = 0). These two effects (shadowing and brightening) are primarily due

to the direct light interaction with a scattering medium. They lead to roughening

effects in 2-D–3-D transfer problems. We also observe (see Fig. 3.42) the decrease

of the reflection near the border of the cloud (inside the cloud) as compared to

the 1-D case. This is due to photon leaking in the area with a smaller extinction

in Fig. 3.41 close to the cloud is due to channelling of photons from a cloud to

the aerosol side. These two effects (photons channelling and leaking) lead to a

smoothening of the radiative field. The four effects considered here are valid not

only for a simple case studied here but also for broken cloud systems (Varnai and

Marshak, 2003).

Three-dimensional effects can be parameterized taking into consideration these

four fundamental effects. The parameterization of 3-D effects is of a great impor-

tance for satellite remote sensing because calculations presented here are computa-

tionally expensive and can not be included in the operational aerosol/cloud retrieval

algorithms. Also, these effects cannot be neglected. In particular, if satellite pixels

retrieved cloud/aerosol parameters are expected (see Figs. 3.41 and 3.42). This

also points to the necessity of the development of the simultaneous aerosol-cloud

(and surface) retrieval algorithm. This complex system should be considered in the

retrieval process as a whole (Cahalan et al., 2001), which will allow us to obtain

the most accurate estimations of the atmospheric and surface parameters from both

airborne and satellite remote sensing measurements.

coefficient in the clear part of the scene. The increase in the aerosol reflection function

contain areas corresponding to brightening/shadowing effects, then large biases in
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