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To my parents





Since one must turn his eyes toward heaven to look at them, we think of
them . . . as the throne of God . . . That makes me hope that if I can explain
their nature . . . one will easily believe that it is possible in some manner to find
the causes of everything wonderful about the Earth.

Rene Descartes
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FOREWORD

Clouds play an important role in the atmospheric radiative transfer and global
water cycle. However, their properties are poorly understood. This is the main
reason behind great efforts undertaken by the international research community to
better understand cloud characteristics. Every year a lot of papers are published on
various aspects of cloud research.

Optical remote sensing of clouds enables us to study cloud microphysical and
geometrical characteristics using airborne, spaceborne, and ground-based optical
instrumentation. Therefore, knowledge in the area of cloud optics is of great im-
portance to any cloud physicist. Most important concepts of cloud optics and, in
particular its theoretical basis, were formulated in 20th century. Time has come to
summarize these concepts in a coherent way to establish a solid basis for cloud
optics as a specific branch of physical optics in general.

Clouds are collections of droplets and crystals suspended in the air. There-
fore, the main problem is to understand the laws of photon diffusion, scattering,
absorption, and emission in a random collection of solid and liquid particles. The
relationships of transmitted and reflected light fluxes with the geometrical and mi-
crophysical characteristics of clouds are of particular importance. Intuitively, one
expects that the solar light transmittance by clouds decreases with cloud thickness.
Also the cloud reflectance is larger for thicker clouds. Clearly, ice and liquid wa-
ter absorption bands are present in spectral cloud reflectance as measured by the
optical spectrometer orbiting the planet. However, what is the precise relationship
of registered spectra and the cloud microstructure (e.g., the size of crystals and
droplets)? The main aim of this book is to prepare the reader to deal with these
and similar problems in a quantitative way. Therefore, we concentrate mostly on

xi



xii FOREWORD

theoretical cloud optics. The description of optical instruments is outside the scope
of this book.

Cloud optics is based on electromagnetic theory and statistical physics. In
particular, Maxwell equations are used to establish laws of scattering and absorption
of a light beam by a single droplet or an ice crystal. This allows us to calculate
characteristics of single light scattering in a cloudy medium. Then the laws of
statistical physics are applied to study diffusion, absorption, emission, and multiple

The book consists of four Chapters. Chapter 1 presents a review of cloud mi-
crophysical and geometrical properties. The interaction of an electromagnetic wave
with a single liquid or solid particle is the main subject of Chapter 2. Here, start-
ing from Maxwell equations, light scattering angular distributions and absorption
characteristics are calculated depending on the size and shape of a single particle
or shape/size statistical distributions of noninteracting scatterers. The problem of
multiple light scattering is presented in Section 3. We introduce the radiative trans-
fer equation in its most general form valid for three-dimensional radiative transfer
with account for the change of light polarization due to scattering and transport
processes. Chapter 4 is devoted to the selected applications.

scattering of photons in clouds. In particular, the linearized Boltzmann transport

scattering effects in clouds.

The author is grateful to J. P. Burrows, A. Macke, B. Mayer, T. Nakajima, 
V. V. Rozanov, W. von Hoyningen-Huene, and E. P. Zege for many stimulating
discussions and cooperation.

equation, often used in statistical physics, forms a basis for studies of multiple



Chapter 1

MICROPHYSICS AND GEOMETRY OF CLOUDS

1.1 Microphysical Characteristics of Clouds

1.1.1 Droplet Size Distributions

Water clouds consist of small liquid droplets suspended in air. Cloud droplets
have a spherical shape in most cases, although particles of other shapes can exist due

works quite well (see Fig. 1.1).
Natural clouds with droplets of uniform size throughout the cloud volume

never occur due to the variability of physical properties of air both in space and in
time domains. Thus, one must consider the radius of a droplet a as a random value,
which is characterized by the probability distribution function f (a). This function
is normalized by the following condition:∫ ∞

0
f (a)da = 1. (1.1)

The integral

F(a) =
∫ a2

a1

f (a)da (1.2)

gives the fraction of particles with radii between a1 and a2 in a unit volume
of a cloud. The probability distribution function f (a) can be represented as a

1

to various external influences. The average radius of droplets in non-precipitating
water clouds is usually around 0.01 mm and the approximation of spherical particles 



2 CLOUD OPTICS

Fig. 1.1. A typical sample of cloud droplets caught on an oil slide and photographed under the
microscope in an aircraft. The largest droplet has a radius of about 15 μm (Mason, 1975).

histogram, graphically or in a tabular form. However, it is most common to use
an analytical form of this function, involving only one, two or three free pa-
rameters. This is, of course, a great simplification of real situations occurring
in natural clouds, but most optical characteristics of a cloud only weakly depend
on the fine structures of particle size distributions (PSDs) f (a). McGraw et al.
(1998) found that the local optical properties of polydispersions can be mod-
elled with high accuracy by just the first six moments of the PSD. The usage
of certain combinations of moments can reduce the number of parameters even
further.

In most cases, the experimentally measured function f (a) can be well repre-
sented by the gamma distribution (Deirmendjian, 1969):

f (a) = Naμe−μ(a/a0), (1.3)

where

N = μμ+1

�(μ+ 1)aμ+1
0

(1.4)

is the normalization constant and �(μ+ 1) is the gamma function. It follows from
Eq. (1.3) that the first derivative f ′(a0) = 0 and the second derivative f ′′(a0) < 0.
This means that the function f (a) has the maximum at a = a0. Equation (1.4)
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follows from Eqs. (1.1) and (1.3) and the definition of the gamma function:

�(μ) =
∫ ∞

0
xμ−1e−x dx . (1.5)

In particular, one derives at integer μ ≥ 1 : �(μ) = (μ− 1)!. The parameter
μ characterizes the width of the PSD f (a), being smaller for wider distributions.
Moments

〈an〉 =
∫ ∞

0
an f (a)da (1.6)

of the PSD (1.3) can be found analytically:

〈an〉 =
(

a0

μ

)n
�(μ+ n + 1)

�(μ+ 1)
. (1.7)

Equation (1.7) is used to find the average volume of spherical droplets

〈V 〉 = 4π

3

∫ ∞

0
a3 f (a)da, (1.8)

the average surface area

〈�〉 = 4π
∫ ∞

0
a2 f (a)da, (1.9)

and the average mass of droplets

〈W 〉 = ρ〈V 〉, (1.10)

where ρ = 1 g/cm3 is the density of water. It follows that

〈V 〉 = �(μ+ 4)

μ3�(μ+ 1)
v0, (1.11)

〈�〉 = �(μ+ 3)

μ2�(μ+ 1)
s0, (1.12)

〈W 〉 = �(μ+ 4)

μ3�(μ+ 1)
w0, (1.13)

where

v0 = 4πa3
0

3
, s0 = 4πa2

0,w0 = ρv0 (1.14)

are corresponding parameters for a droplet having the radius a0. In the case of
the most often employed cloud PSD given by Eq. (1.3) with a0 = 4μm and μ = 6
[Cloud C1 model (Deirmendjian, 1969)] one can obtain:

〈V 〉 = 7

3
v0, 〈�〉 = 14

9
s0, 〈W 〉 = 7

3
w0, (1.15)
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where v0 ≈ 2.7 × 10−16 m3, s0 ≈ 2 × 10−12 m2, w0 ≈ 2.7 × 10−10 g. Although
parameters (1.14) are small, very large numbers of cloud droplets (typically, 100
particles in cm3) create important factors for atmospheric processes.

Equation (1.3) allows to characterize the cloud droplet distribution by only
two parameters: a0 and μ. However, it should be remembered that neither a0 nor
μ is constant. They vary inside a cloud. Thus, a0 and μ depend on the averaging
scale, with large averaging scales producing more broad PSDs (with smaller values
of μ). The value of μ = 2 was found to be rather representative (Khrgian and
Mazin, 1952) and this number is advised to be used in low resolution cloud satellite
retrieval algorithms. It follows in this case: f (a) = 8a−3

0 a2 exp(−2a/a0) or f (a) =
a2 exp(−a) (in μm−1 if a is measured in μm) at a0 = 2 μm. This function reaches
a maximum at a0 = 2 μm and then decreases exponentially as a → ∞.

The parameter μ = 6 (Deirmendjian, 1969), used in the derivation of Eq.
(1.15), is typical only for small averaging scales (Fomin and Mazin, 1998). General
features of the droplet spectra in water clouds were studied experimentally in great
detail by Warner (1973).

Parameters a0 andμ are defined in terms of the specific unimodal cloud droplet
distribution (1.3). It is more lucrative to characterize cloud PSDs by their moments.
Moments can be retrieved from optical measurements without reference to specific
distribution laws (McGraw et al., 1998).

The effective radius (Hansen and Travis, 1974)

aef = 〈a3〉
〈a2〉 (1.16)

is one of the most important parameters of any PSD. It is proportional to the
average volume/surface ratio of droplets. The parameter (1.16) can be defined for
non-spherical particles as well. The coefficient of variance (CV) of the PSD

C = �

〈a〉 (1.17)

where

� =
√∫ ∞

0
(a − 〈a〉)2 f (a)da, (1.18)

is also of importance, especially for narrow droplet distributions. The value of �
is called the standard deviation. The CV, which is equal to the ratio of the standard
deviation to the mean radius 〈a〉, is often expressed in percent.

It follows for the PSD (1.3):

aef = a0

(
1 + 3

μ

)
, C = 1√

1 + μ (1.19)
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and, therefore,

μ = 1

C2
− 1, a0 = 1 − C2

1 + 2C2
aef . (1.20)

The effective radius aef is always larger than the mode radius a0. For instance,
we obtain at μ = 3: aef = 2a0,C = 0.5,� = 〈a〉/2. Therefore, the standard de-
viation is equal to half of average radius at μ = 3.

Equation (1.20) gives the meaning of the parameter μ in the PSD (1.3). In
particular, we have as C → 0 : μ→ ∞. In situ measurements show that the value
of a0 often varies from 4 to 20 μm (Mason, 1975) and that μ ∈ [2, 8] in most
cases. It should be pointed out that clouds with smaller droplets are not stable due
to coagulation and condensation processes. Larger particles cannot reside in the

Equation (1.19) and results for a0 and μ just reported lead to the effective
radius aef of water droplets being in the range from 5 to 50 μm, depending on
the cloud type. Near-global survey of the value of aef , using satellite data, shows
that typically 5 μm ≤ aef ≤ 15 μm (Han et al., 1994). We see that water clouds
with aef > 15 μm are rare. This can be used to discriminate satellite pixels with
ice crystals even at wavelengths where ice and water absorption coefficients are
almost equal. Such a possibility of discrimination is due to much larger (e.g., in
5–10×) effective sizes of ice crystals as compared to droplets. The large size of
ice crystals will reduce the reflection function in near infrared considerably as
compared to droplets. This reduction can be easily detected. Note that clouds with
aef > 15 μm are often raining (Masunaga et al., 2002). Pinsky and Khain (2002)
showed that the threshold of the occurrence of drizzle is around aef > 15 μm. Then
strong collisions of droplets start. The vertical extent and the thermodynamic state
of clouds also influences the probability of precipitation.

Some authors prefer to use the representation of the PSD by the following
analytical form (Ayvazyan, 1991):

f (a) = 1√
2πσa

exp

(
− ln2(a/am)

2σ 2

)
, (1.21)

which is called the log-normal distribution. The relations between values of
aef , 〈a〉 , � and parameters of the gamma and log-normal PSDs are presented

mode in the range of large particles (Ayvazyan, 1991).

terrestrial atmosphere for a long time due to the gravitational setting. Thus, several
physical processes lead to the existence of the most frequent mode radius range.
One can obtain from Eq. (1.19) and inequality 2 ≤ μ ≤ 8 that the value of C ∈
[0.3, 0.6]. Thus, it follows that the standard deviation of the radius of particles
in water droplets is usually 30–60% of an average radius. Smaller and larger
values of C do occur but values of C smaller than 0.1 were never observed
(Twomey, 1977). Larger values of C may indicate the presence of the second
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Table 1.1. Particle size distributions and their characteristics.

f (a) B 〈a〉 aef C

Gamma distribution
Baμe−μ(a/a0)

μμ+1

aμ+1
0 �(μ+ 1)

a0

(
1 + 1

μ

)
a0

(
1 + 3

μ

) √
1

μ+ 1

Log-normal distribution
1√

2πσ
ame0.5σ 2

ame2.5σ 2
√

eσ 2 − 1

B

a
exp

(
− ln2(a/am)

2σ 2

)

in Table 1.1. The value of �e f in this table represents the effective variance,
defined as:

�e f =
∫∞

0 (a − aef )2a2 f (a)da

a2
e f

∫∞
0 a2 f (a)da

. (1.22)

This parameter is often used instead of the coefficient of variance C (Hansen
and Travis, 1974) because of a special importance attached to the value of the
effective radius of droplets aef as compared to the average radius 〈a〉 for the
problems of cloud optics. For instance, light extinction in clouds is governed
mostly by values of aef and liquid water content (LWC) independently of the
type of PSD f (a) (Kokhanovsky, 2004a). PSDs (1.3) and (1.21) at aef = 6 μm and
C = 0.38 are shown in Fig. 1.2. Then it follows: a0 = 4 μm, μ = 6, am = 5.6 μm,
σ = 0.3673.

The influence of μ on the PSD (1.3) is shown in Fig.1.3 at μ = 2, 6, 8 and
aef = 6 μm. Light extinction in media having droplet size distributions shown in
Figs. 1.2 and 1.3 (and the same LWC) will be almost identical although PSDs are
quite different.

Particle number concentration, N , in addition to particle size and shape, is of
importance for the propagation, scattering and extinction of light in cloudy media.
The value of N gives the number of particles in a unit volume and is expressed in
cm−3. It is usually in the range 50–1000 cm−3 (Fomin and Mazin, 1998). Clearly,
the concentration of droplets depends on the concentration CN of atmospheric
condensation nuclei. The value of CN is smaller over oceans than over continents,
so the concentration of droplets in marine clouds is on average smaller than over
continents. Generally, the smaller concentration of droplets over oceans means that
they can grow larger, producing clouds with larger droplets over oceans, which is
confirmed by the analysis of satellite optical imagery as well (Han et al., 1994).
This influences the occurrence and the rate of precipitation.

Svensmark and Friis-Christensen (1997) and Marsh and Svensmark (2000)
have speculated that cosmic ray ionization could influence the production of
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Fig. 1.2. Particle size distributions (1-gamma distribution, 2-log-normal distribution).

condensation nuclei and, therefore, cloud properties. This is of importance for
climate change problems as discussed by Svensmark (1998).

The dimensionless volumetric concentration of droplets Cv = N 〈V 〉 and LWC
Cw = ρCv or [see Eq. (1.10)] Cw = N 〈W 〉 are often used in cloud studies as
well. The value of Cw is usually in the range 0.01–1.0 gm−3 with typical val-
ues of 0.1 gm−3. Therefore, the most frequent values of Cv are in the range of
[10−7, 10−5]. This means that only a very small fraction of a cloud volume is oc-
cupied by droplets. This simplifies the solution of many cloud optics problems.
In particular, local cloud optical characteristics can be calculated not accounting
for the close-packed media effects (Kokhanovsky, 2004a). Numbers given above
are representative, but it should be remembered that these values can change in
a broader range in real situations. The LWC is not constant throughout a cloud
but has larger values near the top of a cloud in most cases (Feigelson, 1981).
This is illustrated in Fig. 1.4. Such a behaviour is characteristic for aef as well
(see Fig. 1.5).
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Fig. 1.3. Gamma particle size distributions for various μ at aef = 6 μm.

Fig. 1.4. Squares give measured values of the LWC as the function of altitude. Line gives the
modelled LWC-profile. Further details are given by Ghosh et al. (2000).
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Fig. 1.5. Squares give measured values of the effective radius as the function of altitude. Line
gives the modelled profile of the effective radius assuming different concentrations of HNO3

acid in a cloud layer. Further details are given by Ghosh et al. (2000).

The liquid water path (LWP) w is defined as

w =
∫ z2

z1

Cw (z)dz, (1.23)

where z1 is the cloud bottom height and z2 is the cloud top height, l = z2 − z1 is
the geometrical thickness of a cloud. It follows at Cw = const:

w = Cwl. (1.24)

The geometrical thickness of clouds varies, depending on the cloud type. It is
in the range of 500–1000 m for stratocumulus clouds in most cases. Near-global

w is typically in the range of 50–150 g/m2. The annual mean is equal to 86 g/m2

(Han et al., 1994). Then we have at the cloud geometrical thickness l = 860 m:
Cw = 0.1 g/m3, which is a typical value of the LWC in water clouds (see Tables 1.2,
1.3 and Fig. 1.4). It should be underlined that remotely sensed values of the LWP
and aef depend on the scale of horizontal averaging and also on the assumptions
used in the retrieval procedures (see Figs. 1.6 and 1.7). Annual and monthly means
of the LWP and aef over the globe in combination with many other cloud parame-
ters derived from satellite data can be found at http://isccp.giss.nasa.gov/products/

data obtained by Han et al. (1994) from satellite measurements show that the LWP

data/dataprod/index.php (Platnick et al., 2003).
browsed2.html (Rossow and Schiffer, 1999) and also at http://modis.gsfc.nasa.gov/
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Table 1.2. Geometrical and microphysical characteristics of marine water clouds obtained
using experimental measurements (Miles et al., 2004).

B T H N LWC aef C a0 μ am σ

630 860 650 50 0.15 9.50 25.60 7.88 14.6 8.20 0.24
630 860 750 45 0.23 11.5 28.28 9.12 11.5 9.60 0.27
630 860 850 45 0.35 13.4 31.11 10.2 9.50 10.8 0.29
800 1000 900 75 0.28 11.2 49.69 6.53 4.20 7.55 0.40
800 1000 1000 100 0.49 13.0 44.00 6.16 2.70 7.70 0.46
240 760 240 23 0.01 5.75 42.50 2.97 3.20 3.60 0.43
240 760 440 56 0.13 8.95 32.00 6.82 9.60 7.25 0.29
240 760 620 111 0.37 9.80 27.59 8.29 16.5 8.55 0.23

— — — 91 0.18 7.95 15.13 7.44 43.6 7.50 0.15
— — 1300 66 0.13 8.20 23.33 7.28 23.6 7.05 0.19
— — 1300 22 0.03 7.60 30.53 6.10 12.2 6.40 0.26

610 960 700 160 0.09 6.00 43.68 3.50 4.20 4.05 0.40
610 960 800 182 0.31 8.00 29.20 6.27 10.9 6.60 0.28
610 960 930 158 0.47 9.60 28.31 7.63 11.6 8.00 0.27

1290 1460 1310 107 0.03 4.30 32.39 3.11 7.80 3.35 0.32
1290 1460 1340 142 0.06 5.10 30.59 3.87 9.40 4.15 0.29
1290 1460 1390 143 0.14 6.65 28.95 5.26 11.4 5.55 0.27
1290 1460 1430 140 0.22 7.65 98.54 6.47 16.5 6.70 0.23
— — 310 12 0.02 7.75 44.25 4.69 4.60 5.30 0.39
— — 380 5 0.004 7.20 47.92 3.48 2.80 4.35 0.45

420 730 460 28 0.08 9.90 42.48 6.74 6.40 7.40 0.34
420 730 530 39 0.13 11.2 55.70 5.95 3.40 7.20 0.42
420 730 610 59 0.2 11.3 60.14 5.46 2.80 6.80 0.45
420 730 690 73 0.17 11.0 69.23 3.48 1.40 5.30 0.54
380 830 480 79 0.16 8.90 40.00 5.68 5.30 6.35 0.37
380 830 730 94 0.59 12.5 33.65 9.58 10.0 10.1 0.24
408 684 575 296 0.22 6.45 41.67 4.00 4.90 4.65 0.35
408 684 682 228 0.29 7.75 41.74 4.77 4.80 5.35 0.39
410 740 410 116 0.04 4.75 22.35 3.95 14.8 4.10 0.24
410 740 580 123 0.29 9.00 29.61 6.86 9.60 7.30 0.29
410 740 740 149 0.35 9.80 33.75 6.86 7.00 7.60 0.32

1680 2350 1770 58 0.07 7.50 38.79 4.94 5.80 5.45 0.36
1680 2350 1890 40 0.08 9.00 40.74 5.63 5.00 6.35 0.38
1680 2350 240 30 0.10 12.0 60.00 4.50 1.80 6.30 0.51
1680 2350 2200 26 0.09 12.2 60.28 4.41 1.70 6.35 0.51
1310 1980 1250 40 0.12 10.4 42.48 6.24 4.50 7.15 0.38
1310 1980 1400 32 0.12 11.7 49.68 5.95 3.10 7.20 0.44
1310 1980 1620 52 0.26 12.2 40.98 7.63 5.00 8.60 0.37
1310 1980 1830 35 0.15 12.1 47.59 6.43 3.40 7.65 0.43

The meaning of columns as follows: B(m): cloud base height; T (m): cloud top height; H (m):
height of measurements; N : droplet number concentration (cm−3); LWC: liquid water content
(gm−3); aef : effective radius (μm); C : coefficient of variance; a0: mode radius (μm) for the
gamma PSD (1.3); μ: half-width parameter of the gamma PSD (1.3); and am (μm) and σ are
parameters of the log-normal PSD (1.21).
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Table 1.3. Geometrical and microphysical characteristics of continental water clouds obtained
using experimental measurements (Miles et al., 2004).

B T H N LWC aef C a0 μ am σ

310 — 320 21 0.0038 4.15 46.55 2.29 3.7 2.70 0.41
350 — 360 59 0.0025 2.35 30.77 1.74 8.6 1.85 0.31
360 — 370 12 0.003 4.40 53.57 2.04 2.6 2.55 0.46
400 — 410 147 0.0093 2.75 32.65 1.77 5.4 2.00 0.36
400 — 410 228 0.0137 2.55 28.57 1.81 7.3 1.95 0.33
630 870 675 350 0.22 5.75 29.59 4.48 10.6 4.75 0.28
630 870 750 285 0.28 6.70 30.09 5.15 10.0 5.45 0.29
630 870 850 270 0.6 8.50 22.73 7.31 18.5 7.55 0.22
808 1040 908 480 0.12 4.20 27.03 3.49 14.8 3.60 0.24
808 1040 990 260 0.13 5.35 30.43 4.25 11.7 4.45 0.27
808 1040 908 370 0.13 4.65 31.25 3.68 11.5 3.90 0.27
808 1040 990 190 0.09 5.45 39.53 3.83 7.1 4.15 0.33
250 530 250 15 0.02 10.0 70.00 1.67 0.6 3.85 0.62
250 530 390 35 0.08 11.4 76.85 2.62 0.9 4.85 0.58
300 630 470 40 0.11 12.7 83.04 2.12 0.6 5.00 0.61

1350 2250 1800 148 0.4 9.15 26.38 7.73 16.3 8.00 0.23
— — 800 215 0.01 2.60 58.06 1.65 5.2 1.85 0.37
— — 800 418 0.12 2.25 46.88 1.32 4.3 1.50 0.40

800 1000 1000 250 0.2 6.50 37.25 4.38 6.2 4.80 0.35
380 790 440 60 0.003 3.05 38.46 1.18 1.9 1.65 0.50
380 790 550 366 0.06 4.20 48.21 1.20 2.7 2.45 0.46
380 790 650 401 0.11 4.85 48.48 2.50 3.2 3.05 0.43
380 790 750 396 0.15 5.40 50.68 2.83 3.3 3.40 0.43

1430 2010 1700 190 0.3 9.00 53.51 4.09 2.5 5.20 0.47
1430 2010 1700 450 0.7 7.70 27.61 6.20 12.5 6.50 0.26
1750 1870 1815 220 0.24 7.50 44.44 4.33 4.1 5.00 0.40
1750 1870 1815 200 0.035 4.00 41.67 2.48 4.9 2.80 0.38

450 673 571 693 0.2 5.25 57.14 2.1 2.0 2.80 0.50
450 673 673 575 0.26 6.25 61.97 2.17 1.6 3.25 0.51
750 1090 750 160 0.03 3.85 30.77 2.95 9.8 3.15 0.29
750 1090 870 225 0.1 5.05 26.67 4.21 15.1 4.35 0.24
750 1090 950 165 0.19 6.75 21.77 5.95 22.2 6.10 0.20
750 1090 1040 310 0.41 7.20 25.58 6.04 15.7 6.30 0.24
820 1010 840 680 0.08 3.30 26.32 2.68 13.0 2.80 0.26
820 1010 925 440 0.17 4.75 24.42 4.05 17.3 4.15 0.23
820 1010 980 297 0.16 5.40 28.42 4.41 13.3 4.60 0.25
400 1210 480 80 0.09 7.15 31.93 5.28 8.5 5.65 0.31
400 1210 890 320 0.67 8.25 21.71 7.21 20.8 7.45 0.21
400 1210 1120 360 1.00 9.05 20.96 8.00 22.9 8.20 0.20

2470 2990 2710 96 0.1 7.00 34.51 4.94 7.2 5.35 0.33
2470 2990 2790 103 0.18 8.40 37.12 5.72 6.4 6.30 0.34
2470 2990 2870 93 0.28 10.0 35.63 7.00 7.0 7.60 0.33

(continued)
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Table 1.3. Continued

B T H N LWC aef C a0 μ am σ

2470 2990 2940 106 0.41 10.8 34.29 7.74 7.6 8.35 0.32
2470 2990 3020 96 0.45 12.0 41.57 7.38 4.8 8.35 0.38

200 500 430 139 0.14 7.75 57.73 3.52 2.5 4.45 0.47
1460 1940 1750 494 0.3 6.45 49.41 3.11 2.8 3.85 0.45
1460 1940 1840 432 0.33 6.80 48.91 3.51 3.2 4.25 0.43
1460 1940 1940 139 0.14 8.00 60.22 3.00 1.8 4.20 0.51

The meaning of columns as follows: B(m): cloud base height; T (m): cloud top height; H (m):
height of measurements; N : droplet number concentration (cm−3); LWC: liquid water content
(gm−3); aef : effective radius (μm); C: coefficient of variance; a0: mode radius (μm) for the
gamma PSD (1.3); μ: half-width parameter of the gamma PSD (1.3); and am (μm) and σ are
parameters of the log-normal PSD (1.21).

Miles et al. (2000) summarized in situ—derived experimental data for various
cloud parameters including N , aef ,Cw , a0, μ, am and σ . Some of them are shown

frequency histograms are shown in Figs. 1.8–1.15. Also the correlation plot of
LWC and N is given in Fig. 1.16 both for marine and continental clouds. We see
that there is no important correlation between these parameters although continental

Fig. 1.6. Comparison of the liquid water path as a function of distance along the nadir track of
the ER-2 as derived from remote sensing (solid line) and in situ measurements (solid circles)
(Nakajima et al., 1991).

in Tables 1.2–1.4 separately for marine and continental clouds. Corresponding
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Fig. 1.7. Comparison of the effective radius as a function of distance along the nadir track of
the ER-2 as derived from remote sensing (dashed line) and in situ measurements (solid circles)
(Nakajima et al., 1991).

clouds have larger values of N . Similar results for values of aef , C are shown in
Fig. 1.17. It follows that marine clouds have larger droplets, which is consistent
with results shown in Fig. 1.16. Clearly, droplets have more chances to attract water
molecules for smaller N . The frequently used cloud model C1 of Deirmendjian
(1969) with aef = 6 μm andμ = 6(C = 1/

√
7) is given by a circle in Fig. 1.17. We

see that this model represents average cloud properties quite well. The analysis of
Table 1.4 shows that the model is less accurate for marine clouds. So in addition

Table 1.4. Summary of results given in Tables 1.2 and 1.3 for average
values of correspondent cloud parameters.

The cloud parameter Continental clouds Marine clouds Average

aef , μm 6.0 9.0 7.5
C, % 44.0 43.0 43.5
N , cm−3 254.0 91.0 172.5
LWC, gm−3 0.20 0.17 0.185
a0,μm 4.0 6.0 5.0
μ 7.0 8.0 7.5
am,μm 4.0 6.0 5.5
σ 0.4 0.4 0.4
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Fig. 1.8. Frequency distribution of N (a) and LWC (b) for marine water clouds obtained analysing
multiple experimental measurements at different places and by different instruments and research
groups (Miles et al., 2000).
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Fig. 1.9. The same as in Fig. 1.8 except for aef (a) and C (b).
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Fig. 1.12. Frequency distribution of N (a) and LWC (b) for continental water clouds obtained
analysing multiple experimental measurements at different places and by different instruments
and research groups (Miles et al., 2000).
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Fig. 1.13. The same as in Fig. 1.12 except for aef (a) and C (b).
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Fig. 1.16. The correlation between values of LWC and N for marine and continental clouds.

to the Deimendjian’s continental cloud model (CCM), we propose also the marine
cloud model (MCM) with the radius a0 = 6 μm and N = 100 cm−3 (see Table 1.5).
We choose the parameterμ = 6 for the marine model because it provides physically
plausible dependence of the PSD on V at small values of V : f (V ) ∼ V 2, where
V is the volume of a droplet. Also, this value is close to values of μ equal to 7 and
8 given in Table 1.4.

Cloud systems can easily cover an area S ≈ 10 km2 (Kondratyev and Binenko,
1984). So the total amount of water W = w S (for idealized clouds having the same
LWP for the whole cloudy area) stored in such a water cloud system is equal

kg, if we assume that w = 100 g/m2, which is a typical
value for cloudy media (see Fig. 1.6). This underlines the importance of clouds
both for climate problems and human activity (e.g., crops production, flooding,
etc.).

approximately to 1011

6
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Table 1.5. The continental cloud model (CCM)
and the marine cloud model (MCM) proposed
to be used in combination with Eq. (1.3).

The cloud parameter CCM MCM

a0,μm 4 6
μ 6 6
N , cm−3 250 100
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Fig. 1.17. Correlation between values of C and aef for marine and continental clouds.
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in crystalline clouds. Major shapes of ice crystals are plates, columns, needles,
sheaths, dendrites, stars and bullets. Combinations of bullets and needles in one ice
cluster are also common. The Magano–Lee classification (see Table 1.6) of natural
crystals includes 80 shapes (Magano and Lee, 1966), ranging from the elementary
needle (classification index N1a) to the irregular germ (classification index G6). The
predominating shape of crystals depends on temperature and pressure. Therefore,
it varies inside a cloud. In particular, smaller and more irregular shapes are usually
found near cloud tops.

The concentration of crystals N varies with height, often in the range of 50–
50,000 crystals per cubic meter. The ice water content

Ci = N 〈W 〉, (1.25)

where 〈W 〉 is the average mass of crystals, is usually in the range of
10−4−10−1 g/m3. Therefore, 〈W 〉 is in the range of 2 × 10−9−2 × 10−3 g. Crys-
tals have a bulk density, ρ, less than that of bulk ice (ρ = 0.3−0.9g/cm3)) due the
presence of impurities and bubbles inside ice particles (Landolt-Börnstein, 1988).
The size of crystals is usually characterized by their maximal dimension H,which
is related to the effective size (Yang et al., 2000). H is usually in the range of
0.1–6 mm for single crystals and of 1–15 mm for snow crystal aggregates. Smaller
crystals (e.g., with maximal sizes around 20 μm) also are present in ice clouds (Yang
et al., 2001). The mode parameter H0 of size distribution curves f (H ) depends on
the shape of crystals, with characteristic values of H0 being 0.5 mm for plates and
columns, 1 mm for needles, sheaths and stars and 2 mm for dendrites. Distribution
curves can be modelled by gamma distributions with half-widths of distributions
�1/2 being larger for larger values of H . Frequently, it follows: �1/2 ≈ H̄ , where
H̄ is the average size of crystals.

Simple shapes of ice crystals (e.g., hexagonal prisms) can be characterized by
two dimensions: the length of the prism L and the diameter D = a

√
3/2, where

a is the side of a hexagonal cross-section. Even in this most simple case two-
dimensional distribution functions f (D, L) should be used. Note that f (D, L)
can be approximately reduced to one-dimensional functions f (D) due to the exis-
tence of empirical relationships between the length of crystals and their diameter
in natural clouds (Auer and Veal, 1970). For instance, it follows for hexagonal
columns with semi-width ζ and length L(Mitchel and Arnott, 1994) ζ = 0.35 L at
L < 100 μm and ζ = 3.48

√
L otherwise. Pruppacher and Klett (1978) give the fol-

lowing empirical relationship for plates: L = 2.4483ζ 0.474 at ζ ∈ [5 μm, 1500 μm].
Similar relationships can be obtained for other shapes (Mitchell and
Arnott, 1994).

1.1.2 Sizes and Shapes of Crystals

Microphysical properties of ice clouds cannot be characterized by a single PSD
curve as in the case of liquid clouds even if one considers relatively small volumes
of a cloudy medium. This is due to the extremely complex shapes of ice particles
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Table 1.6. Meteorological classification of snow crystals (Magano and Lee, 1966).

(continued)
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Table 1.6. Continued
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be characterized by just three numbers (e.g., the effective radius of droplets, the
CV of the droplet distribution function f (a) and the concentration of droplets)
(Deirmendjian, 1969).

By contrast, at least 80 multi-dimensional PSDs are needed if one would like to
use the classification of crystals developed by Magano and Lee (1966). This calls
for the introduction of a new way of particle characterization in the case of complex
particulate systems such as ice clouds. The same problem arises in the optics of
mineral aerosol, blown from the Earth’s surface to atmosphere (Mishchenko et al.,
2002; Volten et al., 2001).

One of the possible solutions to the problem is the characterization of ice
crystals in an elementary volume of a cloudy medium by the function

f (
a, 
b) =
N∑

r=1

cr fr (
a) +
M∑

i=1

ci fi (
b), (1.26)

where fr (
a) is the size distribution of particles of a regular shape (e.g., hexagonal
plates or columns), fi (
b) is the statistical distribution of particles with random
surfaces or so-called irregularly shaped particles. Values of ci and cr give con-
centrations of different crystal habits. Note that instead of single variables (e.g.,
the radius of particles a) we need to introduce vector-parameters 
a and 
b in the
case of crystalline clouds. In particular, we have for the components of the two-
dimensional vector-parameter 
a with coordinates a1, a2 in the case of an ideal-
ized cloud with hexagonal columns: a1 = D, a2 = L . Functions fi (
b) are distribu-
tions of some statistical characteristics of particles (e.g., average radii, correlation
lengths, etc.). Clearly, the simplest case is the function f (
a, 
b) given by a sum of
just two functions:

f (
a, 
b) = c1 f1(
a) + c2 f2(
b), (1.27)

where the function f1(
a) represents particles of a regular shape (say, hexagonal
cylinders) and the function f2(
b) represents statistical parameters of a single particle
of an irregular shape. This irregularly shaped particle can be presented, e.g., as a
fractal (Macke and Tzschihholz, 1992; Macke et al., 1996). It should be pointed out
that the function f2(
b) in this case represents fictive particles, which do not exist
in clouds at all. However, ice cloud optical characteristics, calculated using f2(
b),
indeed represent quite well the optical characteristics of particles with extremely
diverse shapes (Kokhanovsky, 2004a; Macke et al., 1996).

An important approach dealing with optical properties of large irregularly
shaped particles was developed by Peltoniemi et al. (1989) and Muinonen et al.
(1996). It is based on Monte-Carlo calculations of light scattering by a large particle

It should be pointed out, however, that the whole concept of a single distri-
bution function breaks down for ice clouds. Recall that the microphysical prop-
erties of most water clouds (as far as their optical properties are concerned) can
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Table 1.7. The frequency of occurrence of ice particle habits for the size ranges >125, >250,
and >500 μm (Korolev et al., 2000).

Fraction of
Fraction of Fraction needles and Fraction Particle
spheres, % irregulars, % columns, % dendrites, % concentration, l

T, degrees C 125 250 500 125 250 500 125 250 500 125 250 500 125 250 500

[−5,0] 13 11 10 69 63 52 13 15 18 5 11 20 3.2 1.5 0.9
[−10,−5] 14 10 9 69 65 58 10 9 8 8 16 24 2.8 1.5 0.9
[−15,−10] 6 5 4 75 71 64 7 4 3 12 20 28 2.8 1.8 1.2
[−20,−15] 8 9 10 84 83 80 6 3 3 3 4 6 2.6 1.8 1.1
[−25,−20] 7 7 9 87 88 84 5 3 3 1 2 4 2.5 1.7 0.9
[−30,−25] 6 3 6 90 94 88 4 2 4 0 1 2 3.3 1.7 0.6
[−35,−30] 3 2 8 93 96 86 4 2 4 0 0 2 3.0 1.5 0.2
[−40,−35] 1 0 3 95 97 85 4 2 10 0 0 2 3.7 1.1 0.04
[−45,−40] 0 0 0 91 89 80 9 11 19 0 0 1 0.9 0.3 0.04
[−45,0] 7 5 6 84 83 76 6 6 8 3 6 10 2.9 1.6 0.9

et al., 2001). The model as given by Muinonen et al. (1996) can be applied to the
case of ice clouds as well. For this the parameters of the irregularity of so-called
fictive particles (Kokhanovsky, 2004a) should be changed accordingly. This is due
to the different morphology of ice crystals (Magano and Lee, 1966) as compared to
mineral aerosol (Okada et al., 2001). Also note that the refractive index of aerosol
in the visible is larger than that of ice.

sized by experimental data shown in Table 1.7. These data confirm that the most
of particles in ice clouds are of irregular shape. Actually, the shape parameters
are functions of temperature and height inside of a cloud (see Fig. 1.18). Also it
follows from Fig. 1.18 that shapes are not evenly distributed in different size inter-
vals. Generally, smaller particles are closer to the spherical shape assumption as
compared to larger ones (see Fig. 1.18). Larger ice crystals are found at the bottom
of a cloud.

1.1.3 Refractive Indices of Liquid Water and Ice

The complex refractive index of particles suspended in the atmosphere is an-
other important parameter in atmospheric optics studies (Liou, 2002). This is due
to the fact that not only the size, shape and concentration of particles influence the
light propagation in the atmosphere. The chemical composition, thermodynamic

with a rough surface. The model of spheres with rough surfaces was successfully
applied to the optical characterization of irregularly shaped aerosol particles (Volten

The importance of irregularly shaped particles for optics of ice clouds is empha-
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25 Nov 1991 Replicator Profile

−55°C

−50°C

−45°C

−40°C

−35°C 300 mm

Fig. 1.18. Temperature profile of characteristic ice particles sampled by the NCAR balloon-
borne replicator in a cirrus cloud on November 25th, 1991, near Coffeyville, Kansas, USA,
during the NASA FIRE-II experiment (courtesy A. Heymsfield).

importance as well. The refractive index of water droplets and ice crystals varies
with the temperature and has been tabulated by many authors [see e.g., Hale and
Querry (1973) for liquid water and Warren (1984) for ice].

Spectral dependencies of real and imaginary parts of the complex refractive
index of water and ice are presented in Appendix A and also in Figs. 1.19 and 1.20.
The differences in light absorption by liquid and solid water are considerable, a
fact that can be used for the retrieval of the cloud thermodynamic phase (liquid,
ice or mixed-phase clouds) from ground (Dvoryashin, 2002) and satellite (Knap

phase, temperature, presence of impurities and inhomogeneity of particles are of
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Fig. 1.19. Real part of the refractive index of water and ice as the function of the wavelength.
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Fig. 1.20. The same as in Fig. 1.19 except for the imaginary part of the refractive index.
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et al., 2002) measurements. In particular, we see that the absorption band around
the wavelength λ = 1.55 μm for ice is shifted to larger wavelengths as compared
to liquid water. This shift in the absorption band position can be easily detected
with the use of modern spectrometers (see, e.g., Bovensmann et al., 1999).

The real part of the refractive indices of water nw and ice ni do not vary con-
siderably in the visible and near-infrared regions of the electromagnetic spectrum.
Generally ni (λ) < nw (λ), with nw in the range 1.33–1.34 for λ = 0.4−1 μm and
ni in the range 1.30–1.32 within the same spectral band. Somewhat larger values
of refractive indices occur at shorter wavelengths.

The spectral variability of the imaginary part of the refractive index of water
and ice, which is responsible for the level of absorption of solar radiation by clouds,
is much higher (see Fig. 1.20). It changes by six orders of magnitude in the spectral
range of 0.4−2 μm for both liquid water and ice.

Different impurities in water droplets, mainly soot (Markel, 2002) and various
aerosol particles (Twomey, 1977), can change the imaginary part of the refractive
index of droplets (especially in the visible, where water is almost transparent). This
may influence the accuracy of modern cloud remote sensing techniques (Asano
et al., 2001; Nakajima et al., 1991). Asano et al. (2001) found that the temperature
dependence (Kuo et al., 1993) of the liquid water absorption influences the droplet

1.2 Geometrical Characteristics of Clouds

Clouds are usually formed by the lifting of damp air. The lifting air parcel cools.
This leads to an increase of the relative humidity. The excess vapour condenses

coagulation processes. Drops at high altitudes freeze forming ice clouds. The ice
phase is of great importance to precipitation processes. Some crystals originate
on water-insoluble aerosol particles on which water vapour is deposited as ice.
Formed clouds can travel large distances due to atmospheric circulation. Particles
can evaporate. Also they can be deposited on the surface of our planet due to
precipitation (e.g., snow and rain).

More than 50% of the Earth’s surface is covered by clouds at any given time
(see Fig. 1.21). This underlines an important role of clouds both in the hydrological

sizing techniques. Warren and Brand (2008) published recently a new update of

more than 2% in the visible from the previous results (see Appendix A). There

visible, where it takes very small values (below 0.00000001). 
are considerable changes in the imaginary part of the refractive index of ice in the

the ice spectral refractive index (http://www.atmos.washington.edu/ice_optical_
constants/). The real part of the  refractive index in new tables does not differ by 

on tiny particles (cloud nuclei), producing water droplets, which can grow due to
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Fig. 1.21. Reflectivity of TOMS on September 17th, 2003. Bright areas correspond to clouds or
ice/snow. Hurricane Isabel is clearly visible to the north-east of Florida (courtesy of NASA).

particular, Stratocumulus (Sc), Stratus (St) and Nimbostratus (Ns) are classified as
low-level clouds (Hbot < 2 km). Typical values of Hbot for St are close to 0.4 km.
They are a little bit higher for Sc and Ns (≈1 km). These estimations are at least
1 km higher in the areas close to the equator. The geometrical thickness�H of Sc
is usually close to 0.6 km. St clouds have values of �H close to 1 km. Ns clouds
have the largest thickness of all low-level clouds (�H ≈ 1−3 km and even larger
than that). The position of the cloud top of low-level clouds depends on the season
with higher cloud tops in summer. The latitude is also an important factor. Usually
cloud top heights of St and Sc are close to 1 km and they are close to 2 km for Ns
at mid-latitudes.

Cumulus (Cu) are usually classified as low-level clouds because their cloud
bases are often below 2 km. Note that cumulus clouds belong to a category of
clouds having considerable vertical extent. In summer in the middle latitudes these

cycle and planetary radiative budget. The collections of droplets and crystals can
occupy large volumes of the troposphere at any place up to 20 km from the Earth’s
surface, depending on the latitude.

Clouds are classified not only in respect to their thermodynamic state (e.g.,
water, ice or mixed clouds) but also in respect to the cloud base height Hbot . In



MICROPHYSICS AND GEOMETRY OF CLOUDS 29

cloud classification, etymology, meaning of the Latin names and colour photos of
different cloud types are given at http://users.pandora.be/skystef/clasclouds.htm.

Note that Cb clouds belong to low-level clouds as far as the classification with
respect to Hbot is concerned. However, they have a typical geometrical thickness
of more than 3–4 km and can reach the tropopause and even the stratosphere (up
to 20 km in the tropics).

Middle-level clouds have cloud base heights in the region of 2–6 km (3–7 km in
the tropics). Altostratus (As) and Altocumulus (Ac) clouds belong to this category.
Usually Ac clouds are thinner (the geometrical thickness �H ≈ 0.2−0.7 km) as
compared to As (�H ≈ 1 km). Median values of middle-level cloud top heights are
in the range of 3–4 km in most of cases. High-level clouds are situated just below
the tropopause. Due to low temperatures at such heights, they are composed of ice
crystals. The values of Hbot are usually larger than 7 km. They are in the range
of 11–13 km for tropics and of 6–8 km at middle latitudes. However, the height
of high-level clouds is lower in the Arctic and the Antarctic (typically 5–6 km).
This is due to the lower position of the tropopause near the poles as compared to
the tropics. Cirrus (Ci), Cirrostratus (Cs) and Cirrocumulus (Cc) all belong to this
category of clouds.

Ci are white, transparent and thin clouds. The values of Hbot for these clouds
are in the range of 17–18 km in tropics. They are in the range of 7–10 km at middle
latitudes. These clouds, although very thin in the majority of cases, may extend till
the ground (e.g., in the Arctic) forming so-called “diamond dust”. Cs clouds give
an impression of a white or slightly bluish semi-transparent layers. They can have
a great horizontal extent and cover all sky above the observer. The thickness of Cs
is usually in the range of 0.1–3.0 km. Cc clouds are very thin non-precipitating
clouds (�H ≈ 0.2−0.4 km ). The frequency of appearance of such clouds is lower
than that of Ci and Cs.

Cloud top heights for high-level clouds are typically above 12–14 km in the
tropics, 9 km in middle altitudes and 8 km near poles. They can penetrate into the
stratosphere (10–15% cases). In most cases, the cloud top height is situated in the
2–3 km layer below the tropopause.

We summarize the cloud classification described above in Table 1.8. Clouds can
have various forms. Cumulus clouds may form clusters of about 3 km in diameter.
The distances between clouds in a cluster range from about 200 to 300 m. Such
groups can be 3–10 km apart. Fields of cumulus clouds typically occupy areas
ranging from 104 to 105 km2. Contrary to cumulus, stratocumulus clouds have
horizontal dimensions of orders of magnitude greater than their vertical dimensions.
In particular, it was found that such cloud systems can cover from 5 to 15 million
km2 on average. It should be remembered that all these different clouds are present

convective clouds have the following typical depths: Cu humilis, up to 1.0 km;
Cumulus mediocris, 1–2 km; Cumulus congestus, up to 2–3.5 km; Cumulus fractus,
0.4–0.7 km. Cumulonimbus (Cb) has an extent more than 3–4 km. The principles of
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Table 1.8. The cloud classification. Numbers in brackets give the most frequent altitudes,
where correspondent clouds appear. The optical thickness τ of clouds in the column 1 is
usually below 4. The sub-visual Cirrus clouds have optical thickness below 0.03. The optical
thickness for clouds in the second column is usually in the range 4–25. Clouds in the last
column are very thick (τ ≈ 25 − 400).

Thin clouds Clouds having the moderate thickness Thick clouds

Cirrus/6–6.5 km Cirrostratus/7–7.5 km Deep convection/0.5–6.5 km
Altocumulus/4–5 km Altostratus/3–4 km Nimbostratus/0.5–5 km
Cumulus/0.3–1 km Stratocumulus/0.3–1.0 km Stratus/0.5–1.0 km

just one single cloud layer is usually smaller (depending on the region and latitude)
than of having a muti-layered (two or more layers) cloud system. In particular, it
was found that the frequency of occurrence of single cloud layers over the territory
of the former Soviet Union is only 30–50% (without account for high-level clouds
above 6 km).

The typical cloudiness structure at a spring day over Cabauw (Netherlands)
is shown in Fig. 1.22. These data were obtained using radar observations. We see
Ci clouds around 8 km height, Cu—below 2 km and also middle-level clouds at

Fig. 1.22. The KNMI 35 GHz radar reflectivity as the function of time for May 9th, 2003 over
Cabaw (The Netherlands) (Kokhanovsky et al., 2004).

in the atmosphere simultaneously and at different levels. The probability of having
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4–6 km height. Most probably mixed-phase clouds also exist in the picture shown.
This figure makes it easy to understand the complexity associated with calcu-
lations of light fields transmitted and reflected by cloud systems (Marshak and
Davies, 2005). Because of this, most approaches (e.g., in operational cloud remote
sensing) assume homogeneous cloud layers. This is very remote from reality and
must be improved in future studies.





Chapter 2

OPTICS OF A SINGLE PARTICLE

2.1 Vector Wave Equation

The problem of light interaction with a single droplet or crystal lays in the very
heart of cloud optics. Only if this interaction is fully understood further advances in

transfer theory).
A light beam consists of electromagnetic waves having large frequency ν

(typically, 1015 oscillations per second). Therefore, we need to consider a gen-
eral problem of an electromagnetic wave interaction with a macroscopic liquid or
solid particle. The solution can be used at any ν (e.g., in the microwave region as
well).

The electromagnetic field is fully described by Maxwell equations:


∇ × 
E = −1

c

∂ 
B
∂t
, (2.1)


∇ × 
H = 1

c

∂ 
D
∂t

+ 4π

c

j, (2.2)


∇ · 
D = 4πρ, (2.3)

∇ · 
B = 0, (2.4)

where 
E is the electric vector, 
B is the magnetic induction, 
D is the electric dis-
placement, 
H is the magnetic vector, 
j is the electric current density, ρ is the density
of charge, t is time, and c is the speed of light. Vectors in Maxwell equations satisfy
the following relationships for the case of electromagnetic wave interaction with

33

studies of multiple light scattering in clouds are possible (e.g., using the radiative
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various isotropic symmetric substances (e. g., water)


j = σ 
E, (2.5)

D = ε
E, (2.6)

B = μ
H, (2.7)

where σ is the specific conductivity, ε is the permittivity, μ is the magnetic perme-
ability.

Equations (2.1)–(2.7) together with boundary conditions, which state that tan-
gential components of 
E and 
H are continuous across the interface, allow us to
consider a great variety of problems related to the interaction of electromagnetic
waves with various substances. This is the main subject of the electrodynamics of
continuous media.

Values of σ , ε, and μ are assumed to be known (e.g., from measurements).
They depend on the substance under study. It follows for a vacuum: ρ = σ =
0, ε = μ = 1, and therefore, 
j = 0, 
D = 
E, 
B = 
H. It is known that ρ = σ = 0
and μ = 1 for water at optical frequencies. So it follows from Eqs. (2.1)–(2.7) in
this case:


∇ × 
E = −1

c

∂ 
H
∂t
, (2.8)


∇ × 
H = ε

c

∂ 
E
∂t
, (2.9)


∇ · 
E = 
∇ · 
H = 0. (2.10)

We should find the solution of these equations, which are valid both inside
and outside a spherical particle. Also boundary conditions should be satisfied.
One possibility of the solution is the finite-difference time domain method. For
this Eqs. (2.8) and (2.9) are discretized in the time domain. This is often used
in studies of light scattering by nonspherical particles. We, however, would like
to consider now the much more simpler problem of light scattering by a sphere.
Then Eqs. (2.8) and (2.9) can be transformed into a single wave equation, which
can be solved analytically in terms of special functions. Note that Eq. (2.10) fol-
lows from Eqs. (2.8) and (2.9), assuming that ε does not depend on spatial coor-
dinates. The permittivity ε

(
ε = m2, m = n − iχ is the refractive index

)
depends

on the frequency ω. This frequency dependence is determined by the electronic
structure of a given substance and is the subject of quantum mechanics. We will
assume that ε (ω) is known (e.g., from measurements). Also, we consider only
plane monochromatic electromagnetic waves with the following time dependence:

E = 
Eeiωt , 
H = 
Heiωt . Note that only real parts of these fields have the physical


 
 
 
 
 

substituted by their exponential forms given above.
sense. So, e.g., the product E × H means Re(E) × Re(H), where E and H can be
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Equations (2.8) and (2.9) simplify to the following relationships with account
for exponential forms given above:


∇ × 
E = − iω

c

H , 
∇ × 
H = iεω

c

E . (2.11)

It follows from these expressions:


∇ × 
∇ × 
E = εω2

c2

E (2.12)

or

� 
E + k2m2 
E = 0, (2.13)

where k = ω/c and we accounted for Eq. (2.10), the vector identity 
∇ × 
∇ × 
E =

∇ · ( 
∇ · 
E) −� 
E and introduced the refractive index m = √

ε (see Appendix A).
Also we have:

� 
H + k2m2 
H = 0. (2.14)

Equations (2.13) and (2.14) have the form similar to that of the scalar wave equation:

�� + k2m2� = 0, (2.15)

where � is the scalar wave amplitude.
Vector and scalar wave equations have important applications in various

branches of physics. Therefore, they have been studied in great detail. In par-
ticular, it was found that the solution of the vector wave equation for the arbitary
vector 
M , namely:

� 
M + k2m2 
M = 0, (2.16)

can be related to the solution of the scalar wave equation. In particular, it follows
in spherical coordinates (r, θ, φ):


M = 
∇ × [ 
ar (r�)] = 
aθ 1

r sin θ

∂(r�)

∂φ
− 
aφ 1

r

∂(r�)

∂θ
, (2.17)

where � satisfies Eq. (2.15). Vectors 
ar , 
aθ and 
aφ are unit vectors in spherical
coordinates. Note that the vector


N = 1

mk

∇ × 
M (2.18)

also satifies Eq. (2.16). This vector can be written in spherical coordinates as
follows:


N = 
ar

mk

{
∂2(r�)

∂r2
+ m2k2r�

}
+ 
aθ 1

mkr

∂2(r�)

∂r∂θ
+ 
aϕ 1

mkr sin θ

∂2(r�)

∂r∂ϕ
.

(2.19)
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The soluton of Eq. (2.13) for the electric vector 
E can be presented as


E = 
Mv + i 
N u . (2.20)

Also we have:

H = m(− 
Mu + i 
N v). (2.21)

Equations (2.20) and (2.21) also satisfy Eq. (2.11). Subscripts u and v signify that

M and 
N are related to two independent solutions (u and v) of the scalar wave

Eq. (2.15).
Let us find the solution of Eq. (2.15) now. For this we follow the standard

procedure. Namely, because the scatterer has a spherical shape, we write this
equation in spherical coordinates:

1

r2

∂

∂r

(
r2 ∂�

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ 1

r2 sin θ

∂2�

∂ϕ
+ k2m2� = 0.

(2.22)

This insures an easy application of the boundary conditions at a later stage of
derivations.

We represent the solution of Eq. (2.22) as

�(r, θ, ϕ) = A(r )B(θ )C(ϕ). (2.23)

The substitution of Eq. (2.23) into Eq. (2.22) gives:[
sin2 θ

1

A

∂

∂r

(
r2 ∂A

∂r

)
+ sin θ

1

B

∂

∂θ

(
sin θ

∂B

∂θ

)
+ k2m2r2 sin2 θ

]
= − 1

C

∂2C

∂ϕ2
.

(2.24)

Right and left parts of Eq. (2.24) are functions of different arguments. Therefore,
the equality holds only if both parts are equal to the same constant j.Then it follows
from Eq. (2.24):

1

A

∂

∂r

(
r2 ∂A

∂r

)
+ k2m2r2 = − 1

sin θ

1

B

∂

∂θ

(
sin θ

∂B

∂θ

)
+ j

sin2 θ
(2.25)

and

1

C

∂2C

∂2ϕ
+ j = 0. (2.26)

Eq. (2.26) can be easily solved. The answer is:

C (ϕ) = ς j cos
√

jϕ + υ j sin
√

jϕ, (2.27)

where ς j and υ j are integration constants defined by boundary conditions.
Right and left parts of Eq. (2.25) depend on different arguments. So the equality

can be satisfied if both parts are equal to the same constant, which we denote
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n (n + 1) for further mathematical convenience:

∂2 (r A)

∂r2
+
{

k2m2 − n (n + 1)

r2

}
r A = 0, (2.28)

1

sin θ

d

dθ

(
sin θ

d B

∂θ

)
+
{

n (n + 1) − j

sin2 θ

}
B = 0. (2.29)

These two equations are well known in mathematical physics. In particular,
Eq. (2.29) is the standard equation defining the associated Legendre polynomial
Pl

n (cos θ ), where l = √
j . Therefore, we have: B ≡ Pl

n (cos θ ).
Equation (2.28) can be solved in terms of the spherical Bessel functions.

Namely, we have:

A (r ) = cn
ψn (kmr )

r
+ dn

χn (kmr )

r
, (2.30)

where

ψn (kmr ) =
√
πkmr

2
Jn+ 1

2
(kmr ) , (2.31)

χn (kmr ) = −
√
πkmr

2
Nn+ 1

2
(kmr ) (2.32)

and Jn+(1/2)(kmr ) and Nn+(1/2)(kmr ) are Bessel functions. Constants cn and dn are
defined by boundary conditions. Using Eq. (2.23), we have for the general solution

� (r, θ, φ) = r−1
∞∑

n=0

n∑
l=−n

Pl
n (cos θ ) [cnψn (kmr )

+ dnχn (kmr )] (ςl cos lφ + υl sin lφ) , (2.33)

where any term in the sum satisfies Eq. (2.15). Equation (2.33) can be used to
find the solution of the vector wave equations for 
E and 
H using Eqs. (2.17),
(2.19)–(2.21). This completes the solution.

Let us apply the mathematical theory presented above to the solution of a partic-
ular problem, namely electromagnetic light scattering by an isotropic homogeneous
sphere. The main issue is the derivation of arbitrary coefficients cn, dn, ς , υ in
Eq. (2.33) as functions of the refractive index and the size of a spherical particle.

2.2 Mie Theory

We consider the problem of a plane monochromatic linearly polarized electro-
magnetic wave scattering by an isotropic homogeneous sphere with the refractive
index m and the radius a. It is assumed that the sphere is surrounded by vacuum,

of the scalar wave equation

l l
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is the unity vector along the positive Z axis and the wavevector 
k(| 
k| = ω/c) points
in the direction of the wave propagation. The electric vector 
Ei of the incident wave
is assumed to be parallel to the unit vector 
ex along the coordinate axis OX:


Ei = Ei
0e−ikz 
ex . (2.34)

Then we have for the magnetic vector 
Hi of the incident wave:


Hi = Hi
0e−ikz 
ey . (2.35)

Here Ei
0 and Hi

0 are correspondent amplitudes and 
ey is the unity vector in the
direction of the positive axis OY. The unit vectors 
ar , 
aθ and 
aϕ in spherical coor-
dinates are related to unit vectors 
er , 
eθ and 
eϕ in Cartesian coordinates as


ar = 
ex sin θ cosφ + 
ey sin θ sinφ + ez cos θ, (2.36)


aθ = 
ex cos θ cosφ + 
ey cos θ sinφ − ez sin θ, (2.37)


aφ = − 
ex sinφ + 
ey cosφ. (2.38)

Taking into account Eqs. (2.36)–(2.38), we obtain:

Ei
r = 
Ei 
ar = Ei

0 sin θ cosφe−ikr cos θ , (2.39)

Ei
θ = 
Ei 
aθ = Ei

0 cos θ cosφe−ikr cos θ , (2.40)

Ei
φ = 
Ei 
aφ = −Ei

0 sinφe−ikr cos θ , (2.41)

where we accounted for the fact that z = r cos θ. Note that it also follows: x =
r sin θ cosφ, y = r sin θ sinφ. We obtain in a similar way:

Hi
r = Hi

0 sin θ sinφe−ikr cos θ , (2.42)

Hi
θ = Hi

0 cos θ sinφe−ikr cos θ , (2.43)

Hi
φ = Hi

0 cosφe−ikr cos θ . (2.44)

Let us find potentials u and v for the incident field. It follows from Eqs. (2.17),
(2.19) and (2.20):


E = Er 
ar + Eθ 
aθ + Eφ 
aφ, (2.45)

where

Er = i

mk

{
∂2 (ru)

∂r2
+ m2k2ru

}
, (2.46)

Eθ = 1

r sin θ

∂(rv)

∂φ
+ i

mkr

∂2(ru)

∂r∂θ
, (2.47)

Eφ = −1

r

∂(rv)

∂θ
+ i

mkr sin θ

∂2(ru)

∂r∂φ
(2.48)

which is a valid approximation for cloud droplets in air. Let us select the origin
of a rectangular coordinate system in the center of the sphere, with the positive


 z zZ axis along the direction of propagation of the incident wave (k ‖ e
). Here e
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Table 2.1. Scattered and internal field components expressed via scalar potentials of the
scattered field (us, vs) and internal field (ut , vt ). Here m̄ is the refractive index of outer space
assumed to be equal one in this work. The value of m gives the complex refractive index of a
scatterer.

Field component Scattered field Internal field

Er
i

m̄k

{
∂2(rus)

∂r 2
+ m̄2k2rus

}
i

mk

{
∂2(rut )

∂r 2
+ m2k2rut

}

Eθ
1

r sin θ

∂(rvs)

∂φ
+ i∂2(rus)

m̄kr∂r∂θ

1

r sin θ

∂(rvt )

∂φ
+ i∂2(rut )

mkr∂r∂θ

Eφ −∂(rvs)

r∂θ
+ i∂2(rus)

m̄kr sin θ∂r∂φ
−∂(rvt )

r∂θ
+ i∂2(rut )

mkr sin θ∂r∂φ

Hr
i

k

{
∂2(rvs)

∂r 2
+ m̄2k2rvs

}
− i

k

{
∂2(rvt )

∂r 2
+ m2k2rvt

}

Hθ − m̄

r sin θ

∂(rus)

∂φ
+ i

kr

∂2(rvs)

∂r∂θ
− m

r sin θ

∂(rut )

∂φ
+ i

kr

∂2(rvt )

∂θr∂θ

Hφ
m̄

r

∂(rus)

∂θ
+ i

kr sin θ

∂2(rvs)

∂r∂φ

m

r

∂(rut )

∂θ
+ i

kr sin θ

∂2(rvt )

∂r∂φ

and similarly for 
H . For convenience, we present electric and magnetic scattered
and internal field components in Table 2.1.

It follows from Eqs. (2.39) and (2.46):

Ei
r = i

k

(
∂2(rui )

∂r2
+ k2rui

)
= e−ikr cos θ sin θ cosφ, (2.49)

where we assumed that Ei
0 = 1 and accounted for the fact that m = 1 outside the

particle.
The next step is to determine ui from Eq. (2.49). We use the Bauer’s formula:

e−ikr cos θ =
∞∑

n=0

(−i)n (2n + 1)
ψn (kr )

kr
Pn (cos θ ) (2.50)

and also account for identities:

e−ikr cos θ sin θ= 1

ikr

∂

∂θ
(e−ikr cos θ ),

∂

∂θ
Pn (cos θ )=−P1

n (cos θ ) , P1
0 (cos θ )=0.

(2.51)

Then it follows:

e−ikr cos θ sin θ cosφ = 1

(kr )2

∞∑
n=1

(−i)n−1 (2n + 1)ψn (kr ) P1
n (cos θ) cosφ.

(2.52)
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We apply the following trial solution of Eq. (2.49) for ui :

ui = 1

kr

∞∑
n=1

αnψn (kr ) P1
n (cos θ) cosφ, (2.53)

which follows from Eq. (2.33) taking into account the form given by Eq. (2.52).
Substitution of Eqs. (2.52) and (2.53) into Eq. (2.49) gives the following result:

αn

[
k2ψn (kr ) + ∂

2ψn (kr )

∂r2

]
= (−i)n (2n + 1)

ψn (kr )

r2
. (2.54)

This can be written as

∂2ψn (kr )

∂r2
+
[
k2 − s

r2

]
ψn (kr ) = 0, (2.55)

where

s = (−i)n (2n + 1)α−1
n . (2.56)

It follows from Eq. (2.28) that Eq. (2.55) is satisfied if s = n(n + 1) or [see
Eq. (2.56)]

αn = (−i)n 2n + 1

n (n + 1)
. (2.57)

Therefore, we obtain [see Eqs. (2.53) and (2.57)]:

ui = 1

kr

∞∑
n=1

(−i)n 2n + 1

n (n + 1)
ψn (kr ) P1

n (cos θ ) cosφ. (2.58)

Using the same procedure and Eqs. (2.42), (2.17), (2.19) and (2.21), it follows:

vi = 1

kr

∞∑
n=1

(−i)n 2n + 1

n (n + 1)
ψn (kr ) P1

n (cos θ) sinφ (2.59)

and, therefore, vi = ui tanφ. Functions ui , vi can be used to calculate the compo-
nents of the incident electric vector Ei

θ , Ei
φ (and also Hi

θ , Hi
φ). The general solution

(2.33) should match ui and vi for the incident field at the boundary of the particle.
It means that only the case l = 1 should be left in Eq. (2.33). Then we have for the
internal wave potentials ut and vt :

ut = 1

kr

∞∑
n=1

c̄nψn

(
k̃r
)

P1
n (cos θ ) cosφ, (2.60)

vt = 1

kr

∞∑
n=1

d̄nψn

(
k̃r
)

P1
n (cos θ) sinφ, (2.61)
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where c̄n = kcnς1, d̄n = kdnυ1, and we neglected the terms with χn(kmr ) because
they lead to nonphysical results as r → 0 (e.g., an infinite value of an electric
field in the center of the sphere). Similar equations are valid for potentials of the
scattered wave outside the particle:

us = 1

kr

∞∑
n=1

c̃nξn (kr ) P1
n (cos θ ) cosφ, (2.62)

vs = 1

kr

∞∑
n=1

d̃nξn (kr ) P1
n (cos θ ) sinφ (2.63)

where we used functions

ξn (kr ) = ψn (kr ) + iχn (kr ) (2.64)

instead of ψn(kmr ) as in Eqs. (2.60) and (2.61) because functions ξn (kr ) (and
us , vs) vanish at infinity, which is the case for scattered fields.

Coefficients c̄n , d̄n , c̃n , d̃n can be derived using boundary conditions. Namely,
it follows:

Ei
θ + Es

θ = Et
θ , Hi

θ + H s
θ = H t

θ , Ei
φ + Es

φ = Et
φ, Hi

φ + H s
φ = H t

φ (2.65)

at the surface of the sphere (r = a). Components Eθ , Eφ (and also Hθ , Hφ)
depend on the following combinations: ∂(rv)/∂r, ∂(ru)/m∂r,mu, and also v.
These combinations should satisfy boundary conditions at r = a. This ensures
that boundary conditions for field components are satisfied as well. Therefore, we
have

∂

∂r
[r (ui + us)] = 1

m

∂

∂r
(rut ), (2.66)

∂

∂r
[r (vi + vs)] = ∂

∂r
(rvt ) (2.67)

ui + us = mut , vi + vs = vt . (2.68)

Let us introduce amplitude coefficients an, bn, pn, qn in such a way that

c̃n = −βn · an, d̃n = −βnbn, c̄n = βn pn

m
, d̄n = βnqn

m
(2.69)

where

βn = (−i)n 2n + 1

kn (n + 1)
. (2.70)

Then it follows from Eq. (2.66) at r = a:

ψ ′
n (ka) − anξ

′
n (ka) = 1

m
pnψ

′
n (kma) . (2.71)
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The value of m in the dominator appears because the prime denotes differentiation
with respect to the argument (∂ψn(mkr )/∂r = mkψ ′

n). Also we have from Eqs.
(2.68) at r = a:

ψn (ka) − anξn (ka) = pnψn (mka) . (2.72)

The combination of Eqs. (2.71) and (2.72) gives:

an = ψ ′
n (mka)ψn (ka) − mψ ′

n (ka)ψn (mka)

ψ ′
n (mka) ξn (ka) − mξ ′

n (ka)ψn (mka)
(2.73)

and

pn = m
(
ξn (ka)ψ ′

n (ka) − ψn (ka) ξ ′
n (ka)

)
ψ ′

n (mka) ξn (ka) − mξ ′
n (ka)ψn (mka)

. (2.74)

It follows from remaining boundary conditions:

ψ ′
n (ka) − bnξ

′
n (ka) = qnψ

′
n (kma) , (2.75)

ψn (ka) − bnξn (ka) = qn

m
ψn (kma) , (2.76)

where we used the properties

∂ψn (kmr )

∂r
= kmψ ′

n ,
∂ψn (kr )

∂r
= kψ ′

n (kr ) ,
∂ξn (kr )

∂r
= kξ ′

n (kr ) . (2.77)

This means that

bn = mψ ′
n (mka)ψn (ka) − ψn (mka)ψ ′

n (ka)

mψ ′
n (mka) ξn (ka) − ψn (mka) ξ ′

n (ka)
(2.78)

and

qn = m
(
ψ ′

n (ka) ξn (ka) − ψn (ka) ξ ′
n (ka)

)
mψ ′

n (mka) ξn (ka) − ψn (kma) ξ ′
n (ka)

. (2.79)

Now electric 
E and magnetic 
H fields inside and outside the spherical particle can
be easily found (see Table 2.1). The only obstacle is the calculation of Legendre
and Bessel functions. However, for this standard subroutines are available. These
equations can be used to find the electromagnetic field in any point outside and
inside a spherical particle. Internal field solutions are of a great importance to
studies of laser beams propagation in clouds. Then, depending on the intensity of
a beam, droplets can evaporate. Also other interesting effects are happening (see,
e.g., Prishivalko, 1983, Prishivalko et al., 1984).

Droplets in clouds are separated by large distances (kr � 1). This means that
only far-field solutions for a scattered field are of interest for most cloud optics
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Table 2.2. Far field solutions and incident fields (E0 = H0 = 1). The angular

functions are defined as follows: πn = P1
n (cos θ )

sin θ
, τn = d P1

n (cos θ )

dθ
.

Field component

Es
θ = H s

φ

1

ikr
e−ikr cosφ

∞∑
n=1

2n + 1

n(n + 1)
[anτn + bnπn]

Es
φ = −H s

θ − 1

ikr
e−ikr sinφ

∞∑
n=1

2n + 1

n(n + 1)
[anπn + bnτn]

Ei
θ = Hi

θ cotφ
1

kr
cosφ

∞∑
n=1

2n + 1

n(n + 1)
(−i)n

[
ψn(kr )πn + iψ ′

n(kr )τn

]

Ei
φ = −Hi

φ tanφ − 1

kr
sinφ

∞∑
n=1

2n + 1

n(n + 1)
(−i)n

[
ψn(kr )τn + iψ ′

n(kr )πn

]

studies. Then it follows: ξn(kr ) → i n+1 exp(−ikr ) and expressions for Us ≡ rus

and Vs = rvs are greatly simplified. Namely, we have:

Us = − ie−ikr cosφ

k

∞∑
n=1

(2n + 1)

n (n + 1)
an P1

n (cos θ ) , (2.80)

Vs = − ie−ikr sinφ

k

∞∑
n=1

(2n + 1)

n (n + 1)
bn P1

n (cos θ) . (2.81)

The substitution of these expressions in formulae given in Table 2.1 allows us to
obtain analytical equations for Eθ , Eφ, Hθ , Hφ (see Table 2.2) in terms of spherical
coordinates (r, θ, ϕ) and parameters of spherical cloud droplets (m, a). It follows
that Eθ , Eϕ, Hθ , Hφ ∼ (kr )−1 . It is easy to show that Er ∼ (kr )−2 . Therefore, the
radial component can be neglected, if one concentrates on far field effects.

Note that scattered fields depend on the product ka or 2πa/λ. This allows for
experimental studies of light scattering by small particles using microwave tech-
niques. Indeed scattered patterns for radiation of any wavelength coincide if the
parameter x = ka is kept constant. For this, however, the value of m should also
be constant, which is difficult to achieve taking into account strong spectral depen-
dencies of the refractive index of correspondent substances. Therefore, to model
light scattering, e.g., by an ice crystal of a given shape, using microwave techniques
one needs to prepare a sample having the same size/wavelength characteristics as
a crystal from a substance, which has the same value of m at a given microwave
frequency as, e.g., ice in visible light. Such experiments are of great importance
in studies of light scattering by nonspherical particles, where theory still did not

particles.

Far field solutions and incident fields

achieve the simplicity expressed in formulae given in Table 2.2 valid for spherical
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2.3 Differential and Integral Light
Scattering Characteristics

2.3.1 Amplitude Scattering Matrix

Expressions for 
E and 
H obtained in the previous section give a complete so-
lution of the problem of an electromagnetic wave interaction with a single spherical
particle. Now we will introduce a number of important characteristics, which are
used in studies of light scattering and propagation in cloudy media. We start from
the definition of the amplitude scattering matrix.

The distances between particles in clouds are much larger than the wavelength
of incident solar light. Therefore, we should use far-field (kr → ∞) solutions of
equations presented above. Then we have: ξn(kr ) ≈ i n+1 exp(−ikr ) and solutions
given in Table 2.2 can be presented in the following form:

Es
φ = i

kr
e−ikr sinφS1 (θ ) , Es

θ = − i

kr
e−ikr cosφS2 (θ ) , (2.82)

where we introduced the amplitude functions:

S1 (θ ) =
∞∑

n=1

(2n + 1)

n (n + 1)
(anπn + bnτn) , S2 (θ ) =

∞∑
n=1

(2n + 1)

n (n + 1)
(bnπn + anτn)

(2.83)
and

πn = P1
n (cos θ )

sin θ
, τn = d P1

n (cos θ )

dθ
. (2.84)

Note that it follows at θ = 0 :

πn (1) = τn (1) = n(n + 1)

2
(2.85)

and, therefore,

S (0) = S1 (0) = S2 (0) =
∞∑

n=1

(
n + 1

2

)
(an + bn) . (2.86)

Let us define components perpendicular (Er ) and parallel (El) to the scattering
plane, which holds incident and scattered beams. Then it follows:

Es
r = −Es

φ , Es
l = Es

θ . (2.87)

Also we have for the incident electric vector

Ei
r = e−ikz sinφ, Ei

l = e−ikz cosφ. (2.88)
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Therefore, it follows instead of Eqs. (2.82):(
Es

l

Es
r

)
= eik(z−r ) Ŝ (θ )

ikr

(
Ei

l

Ei
r

)
, (2.89)

where

Ŝ =
(

S2 0
0 S1

)
(2.90)

for homogeneous isotropic spherical particles. The elements of the matrix Ŝ are
S11(θ ) = S2(θ ), S22 = S1(θ ), S12(θ ) = S21

2.3.2 Cross Sections

2.3.2.1 Scattering and absorption cross sections

The values of Es
l , Es

r and, therefore, elements of the amplitude scattering matrix
can be directly measured using microwave techniques at large wavelengths. This is
not the case for optical frequencies (λ→ 0). Then only parameters quadratic with
respect to the field can be measured (e.g., scattered and absorbed energy). This issue
is considered in detail by Rozenberg (1973). It is known from the electromagnetic
theory that the intensity of energy flow at any point in the field is given by the
absolute value of the Poynting’s vector


P =
[

E × 
H

]
. (2.91)

This can be shown as follows. Let us multiply Eq. (2.1) by 
H and Eq. (2.2) by 
E
and subtract resulting equations from one another. Then it follows:


H 
∇ × 
E − 
E 
∇ × 
H = −1

c

[

H∂


B
∂t

+ 
E∂

D
∂t

+ 4π 
E 
j
]

(2.92)

or accounting for the vector identity


H 
∇ × 
E − 
E 
∇ × 
H = ∇
[

E × 
H

]
(2.93)

we have:


∇
[

E × 
H

]
+ 4π

c

E 
j = −

∂t
, (2.94)

S plays a paramount role in the light scattering theory. Elements of this matrix

This is considered in next sections in more detail.

(θ ) = 0. The amplitude scattering matrix

can be used to calculate all relevant light scattering and extinction characteristics.

ˆ

∂w
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where we introduced the derivative

∂

∂t
= 1

c

{

H∂


B
∂t

+ 
E∂

D
∂t

}
. (2.95)

This derivative can be interpreted as the rate of decrease of electric and magnetic
energy stored in the volume V (Stratton, 1941).

Let us integrate Eq. (2.94) over a volume V bounded by a surface S. Then it
follows: ∫

S


P 
nds + 4π

c

∫
V


E 
jdV = −∂W

∂t
, (2.96)

where

W =
∫

V
wdV (2.97)

and we used Eq. (2.91) and the Stokes theorem:∫
V


∇ × 
PdV =
∫

S


Pd 
S, (2.98)

where d 
S = 
nds is the unit area vector directed along the outer normal to the closed
surface S. Equation (2.96) states the decrease of energy in the volume is due to
two processes. The first one is given by the flux Asca of the vector 
P through the
surface S:

Asca =
∫

S


P 
nds. (2.99)

The second integral in Eq. (2.96) can be interpreted as the electromagnetic power
Aabs absorbed in the medium enclosed inside S per unit time. So we have:

∂W

∂t
= −Asca − Aabs (2.100)

and Asca can be interpreted as the total scattered power (per unit time). Optical
detectors are characterized by a time constant τ , which is very large in comparison

values of Aabs and Ascacan be measured. In particular, we have:

〈Asca〉 =
∫

S
〈 
P〉 
nds, (2.101)

〈Aabs〉 = 4π

c

∫
V

〈
E 
j〉dV, (2.102)

−15with the period of oscillations T ∼10 sec of optical waves. So only time-averaged

w
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where

〈P〉 = 1

τ

∫ τ

0


P(t)dt, (2.103)

〈
E 
j〉 = 1

τ

∫ τ

0


E(t) 
j(t)dt . (2.104)

Let us use the following representations: 
E = 
Eeiωt and 
H = 
Heiωt . Then it
follows


P(t)= [Re{
E}×Re{ 
H}]= 1

4
[ 
Ee−iωt + 
E∗eiωt ][ 
He−iωt +H ∗eiωt ] (2.105)

or


P(t)= 1

4
{[ 
E× 
H∗]+[ 
E∗ × 
H ]+[ 
E∗× 
H∗]e2iωt +[ 
E × 
H ]e−2iωt}, (2.106)

where we accounted for the fact that only real parts of electric and magnetic complex
vectors contribute to the measured signal. Taking into account that the last two terms
do not contribute to the measured signal due to their high frequency oscillations,
we obtain:

〈Asca〉 = 1

2

∫
S

Re[ 
E × 
H ∗] 
nds, (2.107)

where we accounted for the fact that

Re[ 
E × 
H∗] = 1

2
{[ 
E × 
H ∗] + [ 
E∗ × 
H ]}. (2.108)

The intensity I is defined as the energy for unit time through the unit surface. So
we have:

I = 1

2
Re[ 
E × 
H ∗] 
n, (2.109)

where high oscillations not relevant to optical measurements are removed. We may


E = Es
l 
el + Es

r 
er , (2.110)

H = −Es

r 
el − Es
l 
er , (2.111)

where the vector 
el is in the parallel to the scattering plane and 
er is perpendicular

Is = i1 sin2 φ + i2 cos2 φ

k2r2
I0, (2.112)

to this plane. Equations (2.88), (2.89), (2.109)–(2.111) lead us to the following
expression for the scattered light intensity:

write for a scattered part of the field (see Eqs. (2.87), (2.89)):
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where I0 is the intensity of incident light and

i1 = |S2|2 ≡ |S11(θ )|2, (2.113)

i2 = |S1| ≡ |S22(θ )|2. (2.114)

〈cos2 φ〉 = 〈sin2 φ〉 = 1/2

Is = i1 + i2

2k2r2
I0. (2.115)

This important equation allows to study the measurable quantity, namely, the scat-
tered light intensity in a given direction. The total scattered power is given by
Eq. (2.107). Taking into account that ds = r2 sin θdθdφ in spherical coordinates,
we obtain:

〈Asca〉 = I0

2k2

∫ 2π

0
dφ

∫ π

0
dθ(i1 + i2), (2.116)

where we used Eqs. (2.107), (2.109) and (2.115). Functions i1 and i2 depend only
on the scattering angle θ for spherical particles. Therefore, it follows

〈Asca〉 = π I0〈i〉
k2

, (2.117)

where

〈i〉 =
∫ π

0
[i1(θ ) + i2(θ )] sin θdθ. (2.118)

The parameter

Csca = π〈i〉
k2
, (2.119)

where 〈i〉 = 〈i1〉 + 〈i2〉, has the dimension of the area and is called the scattering
cross section. It gives the characteristic area for a scattering process. The value of
Csca allows to determine 〈Asca〉 for a given I0. It is defined as

Csca = 〈Asca〉
I0

(2.120)

for a particle of an arbitrary shape. One can also introduce the differential scattering
cross section

Csca(θ ) = r2 Is(θ )

I0
(2.121)

For the unpolarized incident light, the averages

must be used in Eq. (2.112). Then it follows:
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or

Csca(θ ) = i1 + i2

2k2
(2.122)

such that

Csca =
∫ 2π

0
dφ

∫ π

0
sin θdθCsca(θ). (2.123)

The results for scattering patterns are usually presented in the form of plots Csca(θ )
because then a constant factor r2/I0 is eliminated. Those working in the field of
radiative transfer prefer to use the normalized differential cross section

p(θ ) = 4πCsca(θ )

Csca
, (2.124)

which is called the phase function. We have for the integral of this function with
respect to the solid angle d� = sin θdθdφ∫

4π
p(θ )

d�

4π
= 1, (2.125)

where we used Eqs. (2.122) and (2.123). Clearly [see Eq. (2.124)], the function
p(θ ) gives the conditional probability of photon scattering in a given direction. It
follows from Eq. (2.125) in the case of an equal probability of light scattering in
all directions: p(θ ) = 1. For Mie scattering considered here, we have:

p(θ ) = 2π (i1 + i2)

k2Csca
. (2.126)

This follows from Eqs. (2.123)–(2.125). The phase function is often expressed in
terms of the following expansions:

p(θ ) =
∞∑

n=1

xn Pn(cos θ), (2.127)

where

xn = 2n + 1

2

∫ π

0
p(θ )Pn(cos θ ) sin θdθ (2.128)

and Pn(cos θ ) are Legendre polynomials. The discrete representation of the phase
function in terms of coefficients xn is largely equivalent to the continuous repre-

of multiple light scattering. The coefficient x1 = 3g, where [see Eq. (2.128)]

g = 1

2

∫ π

0
p(θ ) cos θ sin θdθ (2.129)

sentation given by Eq. (2. 126). However, Eq. (2.127) is more convenient in studies
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1 2

〈i1〉 =
∫ π

0
|S1|2 sin θdθ =

∞∑
n,m=1

(2m + 1)(2n + 1) (
ana∗

m〈πnπm〉 + bnb∗
m〈τnτm〉

+ anb∗
m〈πnτm〉 + bna∗

m〈τnπm〉) , (2.130)

where 〈 〉 represents the integral operator having the property

〈 f (θ )〉 =
∫ π

0
f (θ ) sin θdθ (2.131)

for any function f (θ ). Similarly, we have:

〈i2〉 =
∞∑

n,m=1

(2m + 1)(2n + 1)

m(m + 1)n(n + 1)
(bnb∗

m〈πnπm〉 + ana∗
m〈τnτm〉 + bna∗

m〈πnτm〉

+ anb∗
m〈τnπm〉). (2.132)

Therefore, it follows

〈i〉 =
∞∑

n,m=1

(2m + 1)(2n + 1)

m(m + 1)n(n + 1)

{(
ana∗

m + bnb∗
m

)
μnm + (

anb∗
m + bna∗

m

)
νnm

}
,

(2.133)
where integrals

μnm = 〈πnπm〉 + 〈τnτm〉 (2.134)

and

νnm = 〈πnτm〉 + 〈πnτm〉 (2.135)

μnm = 2n2(n + 1)2

2n + 1
δnm , νnm = 0, (2.136)

where δnm = 1 at n = m and δnm = 0 at n �= m. Therefore, one can derive the
following important relationships:

〈i〉 = 2
∞∑

n=1

(2n + 1)
(|an|2 + |bn|2

)
, (2.137)

Csca = 2π

k2

∞∑
n=0

(2n + 1)
(|an|2 + |bn|2

)
. (2.138)

Integrals 〈i〉 = 〈i 〉 + 〈i 〉 and g can be calculated analytically for spheres. In
particular, we have:

m(m + 1)n(n + 1)

is of a special importance for radiative transfer problems (van de Hulst, 1980).

can be calculated analytically. The result is (Debye, 1909):
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sca

Qsca = Csca

πa2
. (2.139)

It follows for this factor from Eq. (2.138):

Qsca = 2

x2

∞∑
n=1

(2n + 1)
(|an|2 + |bn|2

)
. (2.140)

For a given refractive index, Qsca depends only on the size parameter x = ka.
Let us find the analytical expression for g now. For this we substitute Eq. (2.126)

in Eq. (2.129) and obtain:

g = 2π〈 j〉
k2Csca

, (2.141)

where

〈 j〉 =
∫ π

0
(i1 + i2) cos θ sin θdθ (2.142)

Eq. (2.142) is similar to Eq. (2.130). Taking the same steps as in the derivation of
Eq. (2.133), we have:

〈 j〉 =
∞∑

n,m=1

(2n + 1) (2m + 1)

mn (m + 1) (n + 1)

{(
ana∗

m + bnb∗
m

)
μ̄nm + (

anb∗
m + bna∗

m

)
ν̄nm

}
,

(2.143)
where

μ̄nm = πnπm + τnτm, (2.144)

ν̄nm = πnτm + τnπm, (2.145)

and the overbar represents the integral operator having the property

f̄ (θ ) =
∫ π

0
f (θ ) sin θ cos θdθ (2.146)

for arbitrary f (θ ). Integrals μ̄nm and ν̄nm can be found analytically. The answer is
(Debye, 1909):

μ̄nm = 2
(n − 1)2 (n + 1)2

(2n − 1) (2n + 1)
δm,n−1 + 2

n2 (n + 1) (n + 2)2

(2n + 1) (2n + 3)
δm,n+1, (2.147)

ν̄nm = 2
n (

2n + 1
δmn. (2.148)

The dimensionless scattering efficiency factor Q is defined as:

n

n + 1)
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Therefore, it follows from Eq. (2.143):

j = 2
∞∑

n,m=1

(2n + 1) (2m + 1)

mn (m + 1) (n + 1)

〈(
ana∗

m + bnb∗
m

) { (n − 1)2 n (n + 1)2

(2n − 1) (2n + 1)
δm,n−1

+ n2 (n + 1) (n + 2)2

(2n + 1) (2n + 3)
δm,n+1

}
+ n (n + 1)

2n + 1

(
anb∗

m + bna∗
m

)
δnm

〉
(2.149)

or

j = 2
∞∑

n=1

{
2n + 1

n (n + 1)

[
anb∗ + bna∗ ] + n2 − 1

n

[
ana∗

n−1 + bnb∗
n−1

]

+ n (n + 2)

n + 1

[
ana∗

n+1 + bnb∗
n+1

]}
. (2.150)

The sum

A = 2
∞∑

n=2

n2 − 1

n

(
ana∗

−1 + bnb∗
n−1

)
(2.151)

in Eq. (2.150) can be reduced to

A = 2
∞∑

l=

l(l + 2)

l + 1

(
al+1a∗

l + bl+1b∗
l

)
(2.152)

using the index l = n – 1. So we obtain:

j = 4 Re
∞∑

n=1

{
2n + 1

n(n + 1)
anb∗

n + n(n + 2)

n + 1

(
ana∗

n+1 + bnb∗
n+1

)}
(2.153)

and therefore,

g = 4π

k2Csca
Re

∞∑
n=1

{
2n + 1

n (n + 1)
anb∗

n + n (n + 2)

n + 1

(
ana∗

n+1 + bnb∗
n+1

)}
, (2.154)

where we used the property: xy∗ + x∗y = 2 Re(xy∗). Sometimes Eq. (2.154) is
written in the form:

g = 4

x2 Qsca
Re

∞∑
n=1

{
2n + 1

n (n + 1)
anb∗

n + n (n + 2)

n + 1

(
ana∗

n+1+bnb∗
n+1

)}
, (2.155)

where x = ka and Eq. (2.139) was used. It follows that g depends only on the size
parameter x and the complex refractive index of particles m.

Clearly, using the formula similar to Eq. (2.120), we can also introduce the
absorption cross section Cabs,which describes the absorptive power of the particle
(see Eq. (2.102)):

Cabs = 〈Aabs〉
I0

(2.156)

n n

n

1
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or

Cabs = 2π

cI0

∫
V
σ

∣∣∣ 
E
∣∣∣2dV, (2.157)

where we accounted for the relationship:


j = σ 
E, (2.158)

and the property given by Eq. (2.106) as applied to the absorption term. It follows
from Eq. (2.157):

Cabs = k
∣∣∣ 
E0

∣∣∣−2
∫

V
ε′′
∣∣∣ 
E

∣∣∣2dV . (2.159)

where ε′′ = 4πσ/ω,ω = kc.
The total losses can be expressed as the sum of Cabs and Csca . Namely, we have:

Cext = Cabs + Csca. (2.160)

The analytical expression for Cabs (and, therefore, for Cext ) can be obtained directly
from Eq. (2.159) (Babenko et al., 2003). However, we prefer to calculate Cext first.
Then Eq. (2.160) can be used to find Cabs avoiding calculations of the volume
integral (2.159). It should be pointed out that for numerical reasons, the calculation
of Cabs

Cext − Csca can have large errors because Cext ≈ Csca then.

2.3.2.2 Extinction cross section

The total electric 
E and magnetic 
H fields outside a particle can be written as


E = 
Ei + 
Es , 
H = 
Hi + 
Hs, (2.161)

where the superposition principle was used. The substitution of Eq. (2.161) in
Eq. (2.109) gives:

I = 1

2
Re

[
Ei 
H∗
i + 
Es 
H∗

i + 
Ei 
H∗
s

] 
n = Ii + Is + Ie, (2.162)

where

Ii = 1

2
Re

[
Ei 
H∗
i

] 
n, (2.163)

Is = 1

2
Re

[
Es 
H∗
s

] 
n, (2.164)

Ie = 1

2
Re

[
Es

H∗

i + 
Ei 
H∗
s

] 
n. (2.165)

analytical form  (Babenko et  al., 2003)) because the calculation using the differ-
ence

for weakly absorbing particles is usually done with Eq. (2.159) (in its


 
 ∗
sE Hs+
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The value of Ii gives the intensity of incident light. Is is the intensity of scattered
light. The term Ie arises due to the interference of incident and scattered waves.
The surface integral of Eq. (2.162) with respect to the concentric spherical surface
placed at a large distance from the particle gives the total flux of energy

A = Ai + As − Ae, (2.166)

where

Ai =
∫

s
Ii ds, (2.167)

Ae = −
∫

s
Ieds, (2.168)

As =
∫

s
Isds (2.169)

Let us assume that both a particle and a surrounding medium do not absorb inci-
dent radiation. This means that the total flux passing through the surface in both
directions (to and from a particle) vanishes. This is a direct consequence of the con-
servation of energy principle. The same applies to Ai . Then it follows: Ae = As .

We see that fluxes Ae and As coincide then. Now we assume that a particle can
absorb incident light.

Then the value of A is not equal to zero. It becomes negative because the

Ae = Aabs s e

ext = Ae/I0

process:

Cext = Cabs + Csca, (2.170)

which is the extinction cross section introduced above. We see that the extinction or
total losses are solely due to the interference of incident and scattered waves. This
property allows us to find the value of Cext directly from the scattering amplitude
avoiding calculations of energy absorbed by a particle. Let us show this. It follows
for Cext (see Eqs. (2.165), (2.168)):

Cext = − 1

2I0

∫ 2π

0
dφ

∫ π

0
r2 sin θdθRe

([ 
Es 
H∗
i

]
p
+ [ 
Ei 
H∗

s

]
p

)
(2.171)

where we used Eq. (2.165) and p means the projection of the correspondent vector
on the direction specified by the vector 
n (see Eq. (2.165)). Taking into account
that

[ 
Es × 
H∗
i ]p = Es

θHi∗
φ − Es

φHi∗
θ (2.172)

escaping light flux at a given wavelength is smaller than the incident one. The
value of – A can be interpreted as the absorbed light flux. Therefore, it follows:

as the total scattered and+ A . This relation allows us to interpret A
absorbed power. So we obtain for the cross section C of the correspondent
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and

[ 
Ei × 
H∗
s ]p = Ei

θH s∗
φ − Ei

φH s∗
θ , (2.173)

we obtain:

Cext = − 1

2I0
Re

2π∫
0

N(φ)dφ, (2.174)

where

N(φ) =
π∫

0

F(θ, φ) sin θdθ (2.175)

and

F(θ, φ) = r2
[
Es
θHi∗

φ − Es
φHi∗

θ + Ei
θH s∗

φ − Ei
φH s∗

θ

]
. (2.176)

The functions Es
θ , Es

φ , H s
θ , H s

φ

components are presented in Table 2.2 as well. The substitution of these results
valid as r → ∞ in Eq. (2.176) allows us to perform the integration and find the
convenient analytical expression for Cext . For this we write field components in the
following form:

Es
θ = H s

φ = −i pne−ikr (anτn + bnπn) cosφ, (2.177)

Es
φ = −H s

θ = i pne−ikr (anπn + bnτn) sinφ, (2.178)

Ei
θ = Hi

θ cotφ = (−i)n pn(ψnπn + iψ ′
nτn) cosφ, (2.179)

Ei
φ = −Hi

φ tanφ = −(−i)n pn(ψnτn + iψ ′
nπn) sinφ, (2.180)

where arguments and the summation with respect to the index n are omitted for
simplicity. The coefficients pn are given by:

pn = E0

kr

2n + 1

n(n + 1)
(2.181)

andψn = sin(kr − πn/2), ψ ′
n = cos(kr − πn/2) for the case kr → ∞ considered

here. First of all, we note that the angle φ in Eqs. (2.177)–(2.180) occurs in com-
binations cos2 φ, sin2 φ only. This allows to perform integration with respect to φ
immediately, taking into account that∫ 2π

0
sin2 φdφ =

∫ 2π

0
cos2 φdφ = π. (2.182)

Let us introduce azimuthally averaged light field characteristics

D1 = r2

2π

∫ 2π

0

(
Es
φHi∗

θ − Es
θHi∗

φ

)
dφ (2.183)

are given in Table 2.2. Corresponding incident field
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and

D2 = r2

2π

∫ 2π

0

(
Ei
φH s∗

θ − Ei
θH s∗

φ

)
dφ. (2.184)

Then the extinction cross section can be written as

Cext = π

�0
Re

∫ π

0
(D1 + D2) sin θdθ (2.185)

with

D1 = 2−1im+1r2 pn pme−ikr
[
(anτn + bnπn)

(
ψmτm − iψ ′

mπm

)
+ (anπn + bnτn)

(
ψmπm − iψ ′

mτm

)]
, (2.186)

D2 = 2−1 (−i)m+1 r2 pn pme−ikr
[(

a∗
nτn + b∗

nπn

) (
ψmπm + iψ ′

mτm

)
+ (

a∗
nπn + b∗

nτn

) (
ψmτm + iψ ′

mπm

)]
,

where the summation with respect to repeating indices is understood. Performing
multiplications in brackets and substituting the result in Eq (2.185), we obtain;

Cext = π

E2
0

Re
[
i n+1r2 p2

nμnne−ikr
(
anψn − ibnψ

′
n

)
+ (−i)n+1 r2 p2

nμnneikr
(
b∗

nψn + ia∗
nψ

′
n

)]
, (2.187)

where we used integrals and the equality I0 = E2
0/2. This can be written as

Cext = π (2n + 1)

k2
Re {Q1 + Q2} , (2.188)

where

Q1 = 2i n+1e−ikr (anψn − ibnψ
′
n), (2.189)

Q2 = 2(−i)n+1eikr (b∗
nψn + ia∗

nψ
′
n) (2.190)

and we used the substitution (see Eqs. (2.136), (2.181)):

p2
nμnn

E2
0

= 2(2n + 1)

k2r2
. (2.191)

It follows that functions Q1 and Q2 depend on the distance from the particle r .
This dependence should disappear for the combination Re(Q1 + Q2). Indeed, both
scattered light intensity and attenuated light flux for a single particle placed in
vacuum should not depend on kr as kr → ∞. Let us show that this is the case. We
take into account that

ψn = ei(y−α) − e−i(y−α)

2i
(2.192)
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and

ψ ′
n = ei(y−α) + e−i(y−α)

2i
(2.193)

with y = kr , α = πn/2 in the asymptotic case considered here. Then it follows:

Q1 = i n+1e−ikr
(−√

ian

[
(−i)n eiy

] − ibn

[
(−i)n eiy + ie−iy

])
(2.194)

and

Q2 = (−i)n+1 eiy
(−ib∗

n

[
(−i)n eiy + (i)n e−iy

] − ia∗
n

[
(−i)n eiy + i ne−iy

])
,

(2.195)

where we accounted for the equality exp(±iα) = (±i)n, where α = πn/2. Per-
forming multiplications, we obtain:

Q1 = an(1 − (−1)ne−2iy) + bn(1 + (−i)n(−1)ne−2iy), (2.196)

Q2 = a∗
n (1 + (−i)ne2iy) + b∗

n(1 − (−i)ne2iy). (2.197)

Therefore, it follows

Q1 + Q2 = 2Re (an + bn) + 2i Im ( fn) , (2.198)

where

fn = (−1)n(bn − an)e−2iy . (2.199)

So we have for the extinction cross section:

Cext = 2π

k2
Re

∞∑
n=1

(2n + 1)(an + bn), (2.200)

This simple result for the extinction cross section was obtained by Mie (1908) and
has proved to be useful in a broad range of applications since then. Taking into
account Eq. (2.86), we obtain:

Cext = 4π

k2
Re [S(0)] . (2.201)

This important relationship is called the optical theorem. It manifests itself in a
broad range of wave scattering phenomena.

The absorption cross section

Cabs = Cext − Csca (2.202)

where the previously ignored sign of the summation is written explicitly now.
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or

Cabs = 2π

k2

∞∑
n=1

(2n + 1)
(
an − |an|2 + bn − |bn|2

)
(2.203)

should vanish for nonabsorbing particles. This means that

an = |an|2 , bn = |bn|2 (2.204)

in this case. Therefore, real phase angles αn and βn can be introduced:

an = 1

2
(1 − e−2iαn ), bn = 1

2
(1 − e−2iβn ). (2.205)

They insure that properties (2.204) are satisfied. Also we have then:

Cext = 2π

k2

∞∑
n=1

(2n + 1)
(
sin2 αn + sin2 βn

)
, (2.206)

where real angles are

αn = − 1

2i
ln(1 − 2an), βn = − 1

2i
ln(1 − 2bn). (2.207)

Using the property

sin2 z = 1

2
(1 − cos z), (2.208)

we obtain:

Cext = 2π

k2

∞∑
n=1

(2n + 1)(1 − s), (2.209)

where

s = 1

2
(cos 2αn + cos 2βn). (2.210)

The investigation of series for Cext shows that the main contribution to Cext comes
from values of n ≤ ka. It appears that s is a highly oscillating function for large
values of x . The summation of these oscillations results in no contribution to Cext

as the size parameter x → ∞. So we can write approximately:

Cext = 2π

k2

x∑
n=1

(2n + 1) ≈ 2π

k2

∫ x

0
(2n + 1)dn ≈ 2πa2, (2.211)

where we accounted for the fact that x = ka � 1. Then summation can be sub-
stituted by integration. Our derivations are confirmed by direct calculations as
shown in Fig. 2.1 for the ratio Qext = Cext/πa2. Also they are easily general-
ized to account for light absorption by a particle. Then phase angles become
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Fig. 2.1. Dependence of the extinction efficiency factor on the size parameter at n = 1.34.

complex numbers. It follows that Qext = 2 independent of the refractive in-
dex of a particle and the wavelength as x → ∞. This simple relationship ap-
pears very useful in cloud optics studies. In particular, it explains the cloud
colour (or the whiteness of clouds due to white light illumination conditions).
It should be emphasized that the values of Qabs and Qsca also saturate to a
constant value as x → ∞. This is shown in Fig. 2.2 for absorbing particles.
Clearly, it follows: Qabs = 1 − , Qsca = 1 + as x → ∞. So the asymptotic
result Qext = Qabs + Qsca

tive index only. Interestingly, all asymptotic efficiency factors are smaller than their
values for finite x (see Fig. 2.2). This is not the case for the asymmetry parameter
(see Fig. 2.3).

2.3.3 Mueller Matrix

The amplitude scattering matrix Ŝ(θ ) allows us to find the electric vector 
Es

of scattered light for a given electric vector 
Ei of an incident wave. In particular,

w w
= 2 is satisfied. The value of w depends on the refrac-
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Fig. 2.2. Dependence of the extinction efficiency factor Qext, the scattering efficiency factor
Qext, the absorption efficiency factor Qext on the size parameter at n = 1.333 − 0.01i .

we have:


Es = α

kr
Ŝ(θ ) 
Ei , (2.212)

where α = eik(r−z)−π i/2. Due to high-frequency oscillations of optical waves, the
direct measurements of electric fields is difficult to achieve in the optical range.
Instead quadratic values (e.g., 
E 
E∗) are measured.

Let us consider a completely polarized wave. Then it follows:


E = El 
e1 + Er 
e2, (2.213)

where

El = a exp(iϕ), Er = b exp(iψ). (2.214)

A completely polarized electromagnetic wave is characterized by four real numbers:
a, b, ϕ and ψ. Instead of a, b, ϕ and ψ Stokes parameters I , Q, U and V are
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Fig. 2.3. Dependence of the asymmetry parameter g on the size parameter at n = 1.34.

I = El E∗
l + Er E∗

r , (2.215)

Q = El E∗
l − Er E∗

r , (2.216)

U = El E∗
r + Er E∗

l , (2.217)

V = i(El E∗
r − Er E∗

l ) (2.218)

or

I = a2 + b2, (2.219)

Q = a2 − b2, (2.220)

U = 2ab cos δ, (2.221)

V = 2ab sin δ, (2.222)
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where δ = ϕ − ψ is the phase difference and the common multiplier is omitted.
Note that these parameters depend only on the difference δ = ϕ − ψ and not sep-
arately on ϕ and ψ. This underlines the fact that only parameters a, b and δ can
be measured by quadratic detectors (and not ϕ, ψ separately). Parameters I , Q, U

A retarder is a phase-shifting optical element, which has the property that the phase
of the x – component (E1) is advanced by ϕ/2 and the phase of the y component
(E2) is retarded by ϕ/2, written as −ϕ/2. Then components E ′

1, E ′
2 emerging from

the phase-shifting element are

E ′
1 = E1eiϕ/2, E ′

2 = E2e−iϕ/2. (2.223)

A polarizer has the property that the optical field can only pass along an axis known
as the transmission axis. If one places a polarizer after a retarder, the component of
E ′

1 along the transmission axis becomes E ′
1 cos θ,where θ is the angle between the

axis specified by the vector 
e1 and the transmission axis of a polarizer. Similarly,
the component of E ′

2 becomes E ′
2 sin θ. Clearly, the total field emerging from the

system retarder-polarizer is

E = E ′
1 cos θ + E ′

2 sin θ (2.224)

or

E = E1eiϕ/2 cos θ + E2e−iϕ/2 sin θ. (2.225)

The intensity of the beam is defined by J = E E∗. So we have:

J (θ, ϕ) = E1 E∗
1 cos2 θ + E2 E∗

2 sin2 θ + 1

2
E∗

1 E2 sin 2θe−iϕ

+ 1

2
E∗

2 E1 sin 2θeiϕ (2.226)

or after simple transformations using relationships: E1 E∗
1 = (I + Q)/2, E1 E∗

1 =
(I + Q) /2, E2 E∗

2 = (I − Q)/2, E1 E∗
2 = (U − iV )/2, and E2 E∗

1 = (U + iV )/2,
it follows:

J (θ, ϕ) = 1

2
(I + Q cos 2θ + U cosϕ sin 2θ + V sinϕ sin 2θ ). (2.227)

This means that measuring the intensity at four combinations (θ , ϕ) we obtain
parameters I , Q, U and V . In particular, it follows:

I = J (0◦, 0◦) + J (90◦, 0◦), (2.228)

Q = J (0◦, 0◦) − J (90◦, 0◦), (2.229)

U = 2J (45◦, 0◦) − J (0◦, 0◦) − J (90◦, 0◦), (2.230)

V = 2J (45◦, 90◦) − J (0◦, 0◦) − J (90◦, 0◦). (2.231)

multiplier. Components Q, U and V are measured using retarders and polarizers.
proportional to the intensity of light. It can be measured, e.g., using a standard photo
and V can be easily measured by optical instruments. In particular, the value of I is
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One obtains for a completely polarized wave that

I 2 = Q2 + U 2 + V 2. (2.232)

Therefore, it is enough to measure only three parameters (e.g., Q, U and V ) in
this case. The fourth parameter can be easily found (e.g., I =

√
Q2 + U 2 + V 2).

In practice, however, light fields are usually only partially polarized and

Q2 + U 2 + V 2 ≤ I 2. (2.233)

We can introduce, a degree of polarization

P =
√

Q2 + U 2 + V 2

I
, (2.234)

which changes from 0 (for unpolarized light) to 1 for completely polarized light.
Therefore, measuring I , Q, U and V we can determine

– the intensity of light field I
– the degree of polarization P

– the amplitudes a and b.

Independently, we can give a geometric representation of a simple electromagnetic
wave with the most general (elliptic) polarization:


E = c cosβ sin(ωt − kz + α) 
h1 + c sinβ cos(ωt − kz + α) 
h2, (2.235)

where 
h1 and 
h2 are unit vectors along the long and short axes of the polarization
ellipse. Simple algebraic calculations lead us to the following equations:

I = c2, (2.236)

Q = c2 cos 2β cos 2χ, (2.237)

U = c2 cos 2β sin 2χ, (2.238)

V = c2 sin 2β, (2.239)

where the orientation of the ellipse is given by the angle χ. It follows that values
of χ and β can easily be obtained from measured parameters I , Q, U and V . In
particular, we have:

χ = 1

2
arctan

(
U

Q

)
(2.240)

and

β = 1

2
arcsin

(
V

I

)
. (2.241)

The value ofβ specifies the ellipticity of radiation. In particular, we have at V = ±I :

– the phase shift δ = arctan(V/U )

sin 2β = ±1 and radiation is circularly polarized.The positive sign means a right-hand



64 CLOUD OPTICS

polarized light. In particular, an observer looking in the direction from which light
propagates will see the rotation of an electric vector in the clockwise direction. The
opposite is true for left-hand polarized light.

We see that the description of radiation in terms (I, P, χ, β) and (I , Q, U ,
V ) is largely equivalent. Intuitively, the description in terms (I, P, χ, β) is eas-
ily understood using well-known conceptions of intensity, degree of polarization,
the polarization ellipse orientation and ellipticity. However, (unlike I, P, χ, β) pa-
rameters I , Q, U and V have the same dimensions and can be directly measured
(Stokes, 1852). Therefore, in our analysis below we prefer to use them. Physi-
cally based characteristics P, χ and β can easily be calculated using rules given
above.

The question arises—how we can calculate Stokes parameters of scattered light
knowing the amplitude scattering matrix Ŝ. The problem can be easily solved using
Eq. (2.89). Let us introduce the density matrix ρ̂ as follows:

ρ̂ = 
E ⊗ 
E+, (2.242)

where ⊗ means the direct product and + gives the simultaneous operation of
conjugation and transportation. This can be written also in the matrix form:

ρ̂ =
(

El E∗
l El E∗

r

Er E∗
l Er E∗

r

)
. (2.243)

The relationship between matrices ρ̂ of scattered beam and the matrix ρ̂i of the
incident beam can be easily established now. In particular, we have (see Eq. (2.89)):

ρ̂ ≡ 
E ⊗ 
E+ = 1

k2r2
Ŝ 
Ei ⊗

(
Ŝ 
Ei

)+
(2.244)

or

ρ̂ = 1

k2r2
Ŝρ̂i Ŝ+. (2.245)

This gives us the law of transformation of the density matrix ρ̂. This matrix is
related to the Stokes vector by the following equation:

ρ̂ = 1

2
(I σ̂1 + Qσ̂2 + U σ̂3 + V σ̂4), (2.246)

where

σ̂1 =
(

1 0
0 1

)
, σ̂2 =

(
1 0
0 −1

)
, σ̂3 =

(
0 1
1 0

)
, σ̂4 =

(
0 −i
i 0

)
. (2.247)

Therefore, we have

I j = T r (σ̂ j ρ̂), (2.248)
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where I1 = I , I2 = Q, I3 = U , I4 = V and we used the property T r (σ̂q σ̂P ) =
2δqp. Here T r means the trace operation. Finally, we obtain:

I j = 1

k2r2
T r (σ̂ j Ŝρ̂0 Ŝ+). (2.249)

Also it follows:

ρ0 = 1

2

4∑
k=1

I0k σ̂k (2.250)

and, therefore,

I j = 1

k2r2
M jk I0k, (2.251)

where

M jk = 1

2
T r (σ̂ j Ŝσ̂k Ŝ+) (2.252)

are elements of 4*4 Mueller matrix M̂ . This establishes the law of transformation
of the Stokes vector of the incident light due to the scattering process. We see that
the dimensionless 4 × 4 transformation matrix M jk is determined solely by the 2∗2
amplitude scattering matrix Ŝ. Simple calculations give for nonzero elements of
this matrix for spheres:

M11 = M22 = 1

2
(i1 + i2), (2.253)

M12 = M21 = 1

2
(i1 − i2), (2.254)

M33 = M44 = Re(S11S∗
22), (2.255)

M34 = −M43 = Im(S11S∗
22), (2.256)

where i1 = S11S∗
11 , i2 = S22S∗

22.Note that we have for randomly oriented nonspher-
ical particles: M22 �= M11, M33 �= M44. It is useful to introduce the normalized
Mueller matrix having elements mi j = Mi j/M11.We can write for spheres:

m11 = m22 = 1, (2.257)

m12 = m21 = i1 − i2

i1 + i2
, (2.258)

m22 = m33 = Re(S1S∗
2 )

i1 + i2
, (2.259)

m34 = −m43 = Im(S1S∗
2 )

i1 + i2
(2.260)

with all other elements equal to zero. These elements have a simple physical

12

unpolarized (e.g., solar) light illumination conditions. The element m44 gives the
is equal to the degree of polarization P of scattered light undermeaning. Namely m



66 CLOUD OPTICS

degree of circular polarization Pc = V
/

I of scattered light assuming that incident
light is right-hand circularly polarized. The element m34 gives the value of Pc for
the case of linearly polarized incident light with the azimuth −45◦. To establish this
meaning, the following experiment can be performed. Let us illuminate a spherical
particle by light with the Stokes vector with components I0, Q0, U0, V0. Then it
follows:

I = M11 I0 + M12 Q0 Q = M12 I0 + M11 Q0, (2.261)

U = M44U0 + M34V0, V = −M34U0 + M44V0, (2.262)

where we neglected a common multiplier (kr )−2.

The physical sense of ratios m12 = M12/M11, m34 = M34/M11, m44 =
M44/M11 can be obtained using various assumptions on the polarization state
of an incident beam. For instance, assuming that incident light is unpolarized
(Q0 = U0 = V0), we have:

I = M11 I0, Q = M12I0,U = V = 0. (2.263)

This means that a spherical droplet polarizes incident unpolarized light (e.g., from

Pl = − Q

I
(2.264)

or

Pl = −m12. (2.265)

Therefore, the value of m12 gives (with the opposite sign) the degree of polarization
of scattered light for the unpolarized light illumination conditions. The sign is
chosen in such a way that the degree of polarization becomes positive as |mka| →
0 (for Rayleigh scattering). Then light is predominantly polarized in the plane
perpendicular to the scattering plane.

Let us assume now that a droplet is illuminated by a right-hand circularly
polarized beam. Then we have: I0 = V0 and U0 = Q0 = 0. This means that

I = M11 I0, Q = M12 I0, U = M34V0, V = M44V0. (2.266)

Scattered light becomes elliptically polarized with the total degree of polarization

P =
√

Q2 + U 2 + V 2

I
(2.267)

or

P =
√

M2
12 + M2

34 + M2
44

M11
. (2.268)

rization
the Sun). The scattered light becomes linearly polarized with the degree of pola-
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Note that the spherical particle does not depolarize the totally polarized scattering
beam. It means that P ≡ 1 in this case. The equality

M2
12 + M2

34 + M2
42 = M2

11 (2.269)

indeed holds for monodispersed spheres. This can be easily checked using exact
results given above. It also means that a spherical particle does not produce entropy
during the scattering process (Kokhanovsky, 2003a).

The total degree of polarization P can be written as

P =
√

P2
l + P2

c , (2.270)

where

Pl =
√

Q2 + U 2

I
(2.271)

is the degree of linear polarization of scattered light and

Pc = V

I
(2.272)

is the degree of circular polarization of scattered light. Note that m44 ≡ Pc for
illumination of a particle by the circularly polarized beam (I0 = V0 = 1, Q0 =
U0 = 0). This gives the physical sense of the element m44. In particular, this
elements describes the reduction (m44 ≤ 1) of the degree of circular polariza-
tion of the completely circularly polarized incident light beam due to a scattering
event.

Assuming that incident light is linearly polarized with the azimuth −45◦ (Q0 =
0, U0 = −I0, V0 = 0), we obtain:

I = M11 I0, Q = M12 I0, U = M44U0, V = −M34U0. (2.273)

Again we have for the degree of total polarization:

P =
√

M2
12 + M2

34 + M2
44

M11
≡ 1 (2.274)

and Pc = m34. Therefore, the element m34 describes the degree of linear to circular
polarization mode conversion. It coincides with the degree of circular polarization
of a scattered light beam, assuming that illuminated beam is linearly polarized
(with the azimuth −45◦). This element is usually small for cloud droplets. So
we conclude that such a transformation is not an effective process for cloudy
media.
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Summing up, we may write the single scattering law in the following form:


I = αp(θ )

⎛
⎜⎜⎝

1 m12 0 0
m12 1 0 0

0 0 m44 m34

0 0 −m34 m44

⎞
⎟⎟⎠ 
I 0, (2.275)

or


I = αp(θ )m̂(θ ) 
I 0, (2.276)

where p(θ ) = 4πM11/k2Csca is the phase function andα = d�s

/
4π is the relative

solid angle associated with scattering:

d�s = Csca

r2
. (2.277)

The element of the Mueller matrix M11 gives the transformation law for the unpo-
larized incident light due to a scattering event:

I = M11

k2r2
I0. (2.278)

It is useful to introduce the phase matrix

P̂(θ ) = p(θ )m̂(θ ). (2.279)

This matrix is of paramount importance for vector radiative transfer studies.
Note that it follows for the elements of the normalized phase matrix: pi j ≡
Pi j/P11 = mi j .

To conclude, we underline that Mie theory can be used to calculate not only
intensity but also other Stokes vector components of the scattered light beam.

2.3.4 Spherical Polydispersions

Water droplets in clouds have different sizes. Usually only average character-
istics of a cloud are of interest. In particular, the average extinction cross section
for a given particle size distribution f (a) can be presented as:

C̄ext =
∫ ∞

0
Cext (a) f (a)da. (2.280)

In a similar way other light scattering and absorption characteristics can be calcu-
lated. For instance, it follows for the average scattering cross section:

C̄sca =
∫ ∞

0
Csca(a) f (a)da, (2.281)
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and for the average phase function:

p(θ ) = 4π ī(θ )

k2C̄sca
, (2.282)

where

ī(θ ) = 1

2

∫ ∞

0
(i1(a) + i2(a)) f (a)da. (2.283)

Also we have for the average phase matrix elements:

Pi j (θ) = 4π M̄i j

k2C̄sca
, (2.284)

where

M̄i j =
∫ ∞

0
Mi j (a) f (a)da. (2.285)

The average asymmetry parameter is given by:

ḡ = 1

2

∫ π

0
p̄(θ ) sin θ cos θdθ (2.286)

or

ḡ =
∫∞

0 g(a)Csca(a) f (a)da∫∞
0 Csca(a) f (a)da

. (2.287)

Extinction σext , absorption σabs , and scattering σsca coefficients are determined
by the correspondent average cross sections, C̄ext , C̄abs = C̄ext − C̄sca , and C̄sca ,
respectively, as follows: σext = NC̄ext , σabs = NC̄abs, σsca = NC̄sca , where N =
Cv V̄ −1,Cv is the volumetric concentration of particles, and V̄ is the average volume
of particles. Furthermore, one can introduce the single scattering albedo ω0 =
σsca/σext and the probability of photon absorption β = 1 − ω0 = σabs/σext .

In Section 2.3.5 we show examples of functions given above calculated from
the Mie theory for the gamma droplet size distribution

f (a) = Aa6e−1.5a/aef , (2.288)

where and aef is the effective radius of droplets and A is the PSD normalization
constant.

But first of all we would like to demonstrate how closely theoretical results
obtained from Mie theory follow experimental data. This is shown in Fig. 2.4.
Experimental data given in Fig. 2.4 were obtained by Volten (2001) for spherical
polydispersions of water droplets at the wavelengths 441.6 and 632.8 nm. It follows
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that experimental data can be explained by the theory developed in this chapter using
the lognormal size distribution with the effective radius 1.1μm and the effective
variance equal to 0.5 and the refractive index m = 1.33.Mie theory and experiment
agree in every detail.

The following conclusions can be drawn from Fig. 2.4:

� Light scattering properties of water droplets little change in the visible.
� The phase function is highly extended in the forward scattering direction as

opposite to the Rayleigh scattering, where p(0) = p(π ).
� The probability of photon scattering reaches a minimum not at θ = 90◦ (as it is

the case for the molecular scattering) but rather at somewhat larger scattering
angle θ ≈ 110◦.

� The dependence of the phase function on the wavelength is more pronounced in
the directions close to forward and backward scattering.

� The degree of polarization P of scattered initially unpolarized light changes
its sign as opposite to the case of Rayleigh scattering, where it is positive for
all scattering angles. For droplets, P is negative (oscillations are predominantly
in the scattering plane) in the forward scattering hemisphere. The scattered light
in the backward hemisphere is generally characterized by positive values of P
but the sign of the degree of polarization changes at θ ≈ π.

� For most scattering angles, the direction of rotation of incident circularly po-
larized light is preserved (see the element P44). However, the absolute value of
the degree of circular polarization is substantially reduced due to the scattering
process and can vanish at the angle θ close to 170◦.

� The linear-to-circular polarization light conversion (see the element P34) is not
very effective in the forward direction. However, such a conversion could be of
importance in the backward hemisphere (e.g., at θ ≈ 135◦).

Although these conclusions are derived from a particular case presented in Fig. 2.4,
most of them remain valid for arbitrary f (a) in the range of radii characteristic for
water clouds.

Having shown that Mie theory satisfies experimental data in every detail, we
can investigate light scattering by water droplets theoretically not referring to ex-
perimental measurements. This is presented in the next section.

2.3.5 Local Optical Characteristics of Clouds

The phase function of a water cloud calculated using Mie theory and PSD
(2.288) at aef = 6μm is shown in Fig 2.5 at wavelengths 0.532, 1.064, 1.64, and
2.13 6μm. These wavelengths are often used in cloud remote sensing from ground
and space. We see that the rainbow feature around 145◦ is more pronounced in the
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Fig. 2.5. The phase function of water clouds at wavelengths 0.532, 1.064, 1.64, and 2.13 μm for
the cloud C1 PSD.

visible. There is a large asymmetry in forward—backward scattering. Interestingly,
the phase function around 30◦ is almost insensitive to the wavelength. The value
of the phase function is close to 2 at this angle. The peak in the forward direction
is more pronounced in the visible.

One can find even more differences in the degree of light polarization presented
in Fig. 2.6 at several wavelengths for solar light illumination conditions. We see
that the degree of polarization generally decreases with the wavelength. The largest
polarization is in the region of the rainbow. The degree of polarization is low at small

The normalized scattering matrix elements p34 and p44 are shown in Figs. 2.7
and 2.8. The element p34 coincides with the degree of circular polarization for lin-
early polarized light illumination conditions (with the azimuth –45◦). We see that

scattering angles. The degree of polarization changes its sign in the vicinity of
backward scattering.
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Fig. 2.6. The same as in Fig. 2.5 except for the degree of polarization.

there is a strong linear-to-circular polarization mode conversion at the scattering
angle close to 130◦. The element p44 also gives the degree of circular polarization
(DCP) but for the right-hand circularly polarized incident light conditions. Gener-
ally, DCP decreases with the scattering angle in the forward hemisphere. Then it
oscillates and reaches the value equal to –1 in the exact backward direction. We see

changes the direction of rotation and DCP is equal to −1 then (see Fig. (2.8)).
The dependence of the phase function and normalized phase matrix elements

on the PSD halfwidth parameter is shown in Fig. 2.9. It follows that the dependence
of the phase function and, generally, the phase matrix on this parameter is rather
weak with exception of scattering close to 150◦ in polarized light. This makes
it difficult to obtain the halfwidth parameter from light scattering experiments

that the degree of circular polarization of the scattered light is 100% both for
forward and backward scattering directions. However, the scattering at θ = π
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Fig. 2.7. The same as in Fig. 2.5 except for the normalized phase matrix element p34.

performed in cloudy media. Generally, only the value of the effective radius can
be retrieved. The dependence of the same characteristics on the imaginary part
of the refractive index is shown in Fig. 2.10. We see that absorbing additives
to clouds (e.g., soot) can change the phase function and phase matrix elements
considerably.

The spectral dependence of the cloud extinction coefficient is shown in
Fig. 2.11a. It is in the range 0.26–0.38 m−1 at aef = 6 μm, the volumetric con-
centration of droplets Cv = 10−6 and λ smaller than 5μm. Usually measurements
give values of σext around 0.03 m−1. This means that Cv is at least one order of
magnitude smaller (∼10−7) in natural clouds. The spectral absorption coefficient,
the probability of photon absorption, and the co-asymmetry parameter G = 1 − g
of water clouds are shown in Figs. 2.11b–d. It follows that absorption generally
increases with the wavelength. The asymmetry parameter does not change consid-
erably in the visible. However, it increases at the water absorption band close to
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Fig. 2.8. The same as in Fig. 2.5 except for the normalized phase matrix element p44.

3μm, where extinction is at a minimum. The increase of the droplet size leads to a
larger absorption as demonstrated in Fig. 2.12. Therefore, one can perform droplet
optical sizing measuring the absorption (or ratio absorption/extinction).

2.4 Geometrical Optics

2.4.1 Water Droplets

2.4.1.1 Scattered light intensity

A typical radius of a cloud droplet a is 10μm. This is approximately 20
times larger than the wavelength of visible light. Sizes of ice crystals are even
larger (typically, 100 μm). It means that the geometrical optics techniques valid
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Fig. 2.9. The phase function (a), the degree of polarization (b), the element p34 (c), and the
element p44 (d) of water clouds calculated using Mie theory for the gamma PSD with μ = 2, 6, 12
at aef = 6 μm and λ = 0.55 μm.
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Fig. 2.9. Continued.
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Fig. 2.10. The phase function (a), the degree of polarization (b), the element p34 (c), and the
element p44 (d) of light scattering media with water droplets calculated using Mie theory for
the gamma PSD with μ = 6, aef = 6 μm and λ = 0.55 μm. The imaginary part of the refractive
index is varied is in the range 0.0–0.1 as indicated in the Figure. The real part of the refractive
index n is equal to 1.333.
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Fig. 2.11. Extinction coefficient (a), absorption coefficient (b), probability of photon absorption
(c), and 1 −g (d) as functions of the wavelength for the cloud model C1.

as λ/a → 0 can be applied to cloud optics studies. Of course, geometrical optics
results provide only an approximate answer to the problem at hand. A full wave
solution (see, e.g., Mie theory above) must be used whenever it is possible. The
importance of geometrical optics is mainly due to the fact that the geometrical
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optics approach offers the possibility of physical insights and explanations of the
behaviour of various light scattering characteristics as functions of the wavelength,
size, and refractive index. For instance, it follows from Figs. 2.1 and 2.2 that
Qext → 2 and Qabs → 1 − w as λ

/
a → 0 but what is the reason for this? Also

we see that Qabs ∼ a as λ
/

a → 0 and αa → 0,where α = 4πχ/λ (see Fig. 2.12).
What is the underlying physics behind these and many other effects? To answer
this question the geometrical optics approach can be used. Geometrical optics also
allows us to obtain simple analytical relationships between light scattering and
microphysical characteristics, which are used for rapid estimations of various light
scattering characteristics, physical parameterizations and the solution of inverse
problems. The geometrical optics approach is of special importance for optics of
nonspherical ice crystals. Then Mie theory can not be applied.
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ϕ

ψ

Fig. 2.13. The refraction of a light beam in a homogeneous plane parallel slab.

The background of geometrical optics is quite simple. It is based on the Fresnel
theory. In particular, it was shown by Fresnel (1866) that the intensity of light
reflected from a plane surface can be presented as:

Il = |Rl |2 I0 (2.289)

for incident light with the intensity I0 polarized in the incidence plane, which holds
incident wave and normal to the layer, and

Ir = |Rr |2 I0 (2.290)

for incident light polarized in the plane perpendicular to the incidence plane. The
Fresnel coefficients Rl and Rr are given by the following simple equations:

Rl = cosϕ − m cosψ

cosϕ + m cosψ
, (2.291)

Rr = m cosϕ − cosψ

m cosϕ + cosψ
, (2.292)

where m = n − iχ is the relative refractive index of the medium (e.g., m = m2/m1,

where m1 is the refractive index of a medium from which light comes and m2 is
the refractive index of a medium, where light propagates after the refraction event).
The incidence ϕ and refractionψ angles (see Fig. 2.13) are related by the following
equation:

sinϕ = m sinψ, (2.293)

which is called the Snellius law. Therefore, the refracted wave propagates in the
direction specified by the angle

ψ = arcsin

(
sinϕ

m

)
(2.294)

in the incidence plane. The reflected light beam is in the same plane as an incident
light beam and makes the angle with the normal equal to the incidence angle ϕ
(see Fig. 2.12).
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These simple laws allow the study a lot of practically important optical prob-

lems. For instance, we can obtain for the reflectivity
�

R in the case of a plane-parallel
homogeneous layer illuminated by unpolarized light (Stokes, 1862):

�

R = R + c2 R(1 − R)2

1 − c2 R2
, (2.295)

where

R = 1

2
(|Rl |2 + |Rr |2) (2.296)

and

c = exp(−αL/cosψ) (2.297)

where α = 4πχ/λ and L is the thickness of the layer. We have for the transmittivity
T (Stokes, 1862):

T = c(1 − R)2

1 − c2 R2
. (2.298)

It follows for a nonabsorbing layer (c = 1) that
�

R + T = 1. However, one obtains

for an absorbing layer: T + �

R = 1 – A, where

A = (1 − R)(1 − c)

1 − cR
(2.299)

is the absorptivity of the layer. Similar but somewhat more complex results can be
obtained for a spherical scatterer. The difference of a particle from a slab is due
to the fact that a particle has finite dimensions and the scattered light energy is
composed of both reflected and refracted beams.

A finite pencil of light is characterized by the azimuth range dφ and the range
of incidence angles dϕ. The flux of energy F0 in this pencil is

F0 = I0d S, (2.300)

where

d S = a2 cosϕ sinϕdϕdφ (2.301)

is the illuminated surface element for a spherical particle with the radius a. The
reflected fractions of energy are

R1 = |Rl |2 (2.302)

and

R2 = |Rr |2 (2.303)

depending on the polarization of incident light. Here we assume that the spher-
ical surface element can be substituted by the plane surface element at a � λ.
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Therefore, we have for the reflected flux Fr :

Fr
j = R j F0 = R j I0d S. (2.304)

To find the intensity of reflected light we need to divide this expression by the
area d�, where the scattered beam is distributed. It is easy to show that this area
is equal to r2 sin θdθdφ, which is the surface element in the spherical coordinate
system. Here θ is the scattering angle and r is the distance to the observation point.
Therefore, we have for the intensity:

I r
j = R j I0

d S

d�
(2.305)

or

I r
j = R j a2 cosϕ sinϕ I0

r2 sin θN
, (2.306)

where

N =
∣∣∣∣dθ

dϕ

∣∣∣∣ . (2.307)

We take the absolute value of the derivative because I r
j ≥ 0. Usually the value I r

j

is represented in the following form:

I r
j = a2

r2
R j I0 D, (2.308)

where

D = sinϕ cosϕ

N sin θ
(2.309)

is the so-called divergence.
Let us consider the application of this formula to the calculation of light inten-

sity reflected in the direction specified by the scattering angle θ . First of all, we have:

θ = π − 2ϕ. (2.310)

for the reflected light. This means that

ϕ = π − θ
2

, N = 2, D = 1

4
(2.311)

and

ψ = arcsin

(
1

m
cos

(
θ

2

))
. (2.312)

Therefore, it follows:

I r
j = a2

4r2
R j I0, (2.313)
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where

R1 =

∣∣∣∣∣∣∣∣
sin
θ

2
−
√

m2 − cos2
θ

2

sin
θ

2
+
√

m2 − cos2
θ

2

∣∣∣∣∣∣∣∣

2

, (2.314)

R2 =

∣∣∣∣∣∣∣∣
m sin

θ

2
−
√

1 − m−2 cos2
θ

2

m sin
θ

2
+
√

1 − m−2 cos2
θ

2

∣∣∣∣∣∣∣∣

2

. (2.315)

In particular, we have for incident unpolarized light:

I r = i1 + i2

2k2r2
I0, (2.316)

where

i1 = x2

4
R1, i2 = x2

4
R2. (2.317)

This allows us to introduce a simple approximate way to calculate Mie dimen-
sionless intensities [see Eq. (2.114)] using geometrical optics results. Clearly, the
accuracy of such an approximation depends on the contribution of reflected light
in the general light scattered intensity.

Generally speaking, we need to consider the contribution of transmitted light as
well. The only change in Eq. (2.306) is the substitution of R j by (van de Hulst, 1981)

ε
p
j = (1 − R j )

2 R2(p−1)
j e−c̄ p, (2.318)

where c̄ = c cosψ, c = 2αa. In particular, we have at p = 1:

ε1
j = (1 − R j )

2 exp(−c̄). (2.319)

This term has a simple interpretation as a product of three processes:

– transmission of light through a host medium-particle interface (1 − R j );
– wave attenuation on the length � = d cosψ , where d = 2a;
– transmission through the particle-host medium interface back in outer space.

It follows for the scattering angle for rays with p = 1:

θ = 2(ϕ − ψ) (2.320)

and, therefore,

N = 2 − 2 cosϕ

m cosψ
, (2.321)

I 1
j = a2

r2
(1 − R j )

2e−c̄ sinϕ cosϕ

2

(
1 − cosϕ

m cosψ

)
sin θ

I0, (2.322)
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It means that

i t
j = x2

4
(1 − R j )

2e−c̄�(θ ) (2.323)

for transmitted light at p = 1. Here,

�(θ ) = m sinϕ cosϕ cosψ

(m cosψ − cosϕ) sin θ
. (2.324)

The next step is to express the pair (ϕ,ψ) via θ. Clearly, we have (see above):

cos

(
θ

2

)
= cos(ϕ − ψ) = cosϕ cosψ + sinϕ sinψ (2.325)

or

sinϕ = n

√
1 − q2

1 − 2qn + n2
(2.326)

and

sinψ = sinϕ

n
=
√

1 − q2

1 − 2qn + n2
, (2.327)

where q = cos(θ/2). Also it follows:

cosϕ =
√

1 − sin2 ϕ, cosψ =
√

1 − n−2 sin2 ϕ. (2.328)

Using these equations, we derive:

I 1
j = a2e−c̄

4r2b j

(
2n

n2 − 1

)4 {nq − 1}3{n − q}3

q(n2 + 1 − 2nq)2
, (2.329)

where b1 = 1, b2 = q4.

In particular, one obtains for incident unpolarized light

I t = i t
1 + i2

2k2r2
I0, (2.330)

where

i t
1 = x2e−c̄

4q

(
2n

n2 − 1

)4 (nq − 1)3(n − q)3

(1 + n2 − 2nq)2
, (2.331)

and

i2 = x2e−c̄

4q5

(
2n

n2 − 1

)4 (nq − 1)3(n − q)3

(1 + n2 − 2nq)2
. (2.332)
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Accounting for both reflected and transmitted (p = 1) light, we have:

I r,t = i1 + i2

2k2r2
I0, (2.333)

where

i1 = x2

4

(
R1 + e−c̄

q

(
2n

n2 − 1

)4 (nq − 1)3(n − q)3

(1 + n2 − 2nq)2

)
, (2.334)

i2 = x2

4

(
R2 + e−c̄

q5

(
2n

n2 − 1

)4 (nq − 1)3(n − q)3

(1 + n2 − 2nq)2

)
(2.335)

and

R1 =
∣∣∣∣∣
√

1 − q2 −
√

m2 − q2√
1 − q2 +

√
m2 − q2

∣∣∣∣∣
2

(2.336)

R2 =
∣∣∣∣∣m

2
√

1 − q2 −
√

m2 − q2

m2
√

1 − q2 +
√

m2 − q2

∣∣∣∣∣
2

(2.337)

Similarly, we can account for rays with p ≥ 2. Then we need to add additional
terms in expressions for i1, i2. In particular, it follows:

i j =
∞∑

p=0

i jp. (2.338)

Terms i j0, i j1 are given above. It is difficult to derive explicit expressions for i jp at
p ≥ 2.

Therefore, to find the total scattered intensity

I = I0

2k2r2

∞∑
p=0

(i1p + i2p) (2.339)

the following procedure is used. First of all for a given incidence angle ϕ, the
refraction angle ψ = arcsin(sinϕ/n) and the scattering angle

θ = (p − 2)π + 2(ϕ − (p − 1)ψ) (2.340)

are found. Then the intensity i jp is calculated:

i jp = x2ε
p
j D (2.341)

for all values of p at fixed angle ϕ. Repeating this procedure for different values
of ϕ (and, therefore, θ ) we can derive the dependence I (θ ).

,

.
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One can also introduce the gain function

G j (θ) = 4r2 I j (θ )

a2 I0
. (2.342)

This function does not depend on r and I0. It is defined as the ratio of the scattered
intensity to the intensity that would be found in any direction if the drop scattered
the entire incident light isotropically (ε p

j ≡ 1). The gain function for water droplets
is tabulated by van de Hulst (1981).

It should be underlined that we have completely ignored the wave phenomena in
our derivations. In particular, the diffraction of light by an obstacle is of importance
at small scattering angles. To account for this effect we should add the diffraction

component I G . So the full intensity Isca is given by:

Isca = I G + I D. (2.343)

Let us find the approximate equation for I D from Mie theory results. Namely, we
have as θ → 0:

I D = i(θ )

k2r2
, (2.344)

where we assumed that I0 = 1 and

i(θ ) = i1(θ ) + i2(θ )

2
, (2.345)

i1 =
∣∣∣∣∣

∞∑
n=1

2n + 1

n(n + 1)
(anτn + bnπn)

∣∣∣∣∣
2

, i2 =
∣∣∣∣∣

∞∑
n=1

2n + 1

n(n + 1)
(anπn + bnτn)

∣∣∣∣∣
2

.

(2.346)

Let us represent amplitude coefficients as:

an = 1

2
{1 − exp(−2iαn)}, bn = 1

2
{1 − exp(−2iβn)} (2.347)

and use the fact that

πn(θ ) ≈ n(n + 1)

2

{
J0

([
n + 1

2

]
θ

)
+ J2

([
n + 1

2

]
θ

)}
, (2.348)

τn(θ ) ≈ n(n + 1)

2

{
J0

([
n + 1

2

]
θ

)
− J2

([
n + 1

2

]
θ

)}
(2.349)

as θ → 0. Then one can write:

i1(θ ) ≈ i2(θ ) ≈
∣∣∣∣∣

∞∑
n=1

(
n + 1

2

)
J0

((
n + 1

2

)
θ

)∣∣∣∣∣
2

, (2.350)

where we have neglected small contributions from exponential terms. The

to the geometrical optics
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summation can be performed analytically as n → ∞. Namely, it holds approx-
imately:

∞∑
n=1

(
n + 1

2

)
J0

((
n + 1

2

)
θ

)
≈

x∫
0

y J0(yθ)dy, (2.351)

where we have taken into account that the number of terms in the sum is close to
x = ka. Therefore, using the representation:

J1(xθ ) = θx−1
∫ x

0
J0(yθ )ydy, (2.352)

we easily obtain:

S(θ ) = x2

2
ς(θ ) (2.353)

and

i(θ ) = x4

4
ς2(xθ ), (2.354)

where

ς (xθ) = 2J1(xθ)

xθ
. (2.355)

Note that we ignore effects of interference of diffracted and geometrical optics parts
of a general light scattered field. Therefore, it follows: I D = x4ς2(xθ )/4k2r2.

The function F(xθ) = ς2(xθ ) is shown in Fig. 2.14. We clearly see that its
contribution to the overall scattered light is of importance only for small scattering
angles (θ ≤ 3/x).

2.4.1.2 Cross sections

Let us calculate now the scattering cross section defined as

Csca = 1

I0

∫ 2π

0
dφ

∫ π

0
Isca(θ )R2 sin θdθ. (2.356)

Then we obtain

Csca = C D
sca + CG

sca, (2.357)

where

C D
sca = πa2 (2.358)
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Fig. 2.14. The dependence of F on y = xθ .

and

CG
sca = 1

2
πa2

2∑
j=1

∫ π/2

0
(R j + t j ) sinϕ cosϕdϕ, (2.359)

where

t j =
∞∑

p=1

ε
p
j . (2.360)

In particular, we obtain for nonabsorbing particles:

t j = (1 − R j )
2{1 + R j − R2

j + . . .} = (1 − R j )2

1 − R j
(2.361)

and

R j + t j = 1. (2.362)
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Therefore, it follows in this specific case that

Csca = Cext = 2πa2. (2.363)

This explains the asymptotic limit Qext ≡ Cext/πa2 = 2 in Fig. 2.1. It is inter-
esting to note that although CG

sca is smaller than πa2 for absorbing particles, the
value Cext is equal to 2πa2 for absorbing particles as well in the approximation
under study. This also means that Cabs ≡ Cext − Csca is given by the following
integral

Cabs = 1

2
πa2

2∑
j=1

∫ π/2

0
(1 − R j − t j ) sinϕ cosϕdϕ. (2.364)

The result for Cext can be easily derived from the optical theorem, which states
that

Cext = 4π

k2
Re(S(0)). (2.365)

Because in the forward direction (θ = 0) the diffracted light dominates, we
have:

Cext = 4π

k2
· x2

2
= 2πa2 (2.366)

at any absorption. The value t j can be presented in the following analytical
form:

t j =
∞∑

p=1

(1 − R j )
2(−R j )

2(p−1)e−c̄ p = (1 − R j )2e−c̄

1 − R j e−c̄
(2.367)

and, therefore,

Csca = πa2(1 + W ), (2.368)

where

W = 1

2

2∑
j=1

π/2∫
0

(
R j + (1 − R j )2e−c̄

1 − R j e−c̄

)
sinϕ cosϕdϕ. (2.369)

It means that

Cabs = πa2(1 − W ) (2.370)

or

Cabs = πa2

2

2∑
j=1

∫ π/2

0

(1 − R j )(1 − e−c̄)

1 − R j e−c̄
sinϕ cosϕdϕ. (2.371)
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Table 2.3. Parameters W∞, g0, g∞
the refractive index n.

n W∞ g0 g∞ y

1.1 0.0252 0.9731 0.9946 0.5180
1.2 0.0443 0.9341 0.9856 0.6528
1.25 0.0529 0.9147 0.9806 0.6948
1.3 0.0611 0.8961 0.9751 0.7280
1.333 0.0664 0.8843 0.9714 0.7468
1.34 0.0675 0.8818 0.9706 0.7505
1.35 0.0691 0.8783 0.9695 0.7555
1.4 0.0768 0.8613 0.9638 0.7785
1.45 0.0844 0.8542 0.9579 0.7985
1.5 0.0918 0.8299 0.9520 0.8160
1.55 0.0991 0.8154 0.9460 0.8315
1.60 0.1063 0.8015 0.9400 0.8453
1.65 0.1133 0.7884 0.9340 0.8580
1.70 0.1203 0.7759 0.9280 0.8695
1.90 0.1475 0.7314 0.9046 0.9080
2.00 0.1606 0.7121 0.8933 0.9340
2.10 0.1734 0.6945 0.8823 0.9383

Note that Csca decreases with c (from 2πa2 at c = 0 to (1 + W∞)πa2 as c →
∞). Here we introduced the factor W∞ ≡ W (c → ∞) given by the following
expression:

W∞ = 1

2

2∑
j=1

∫ π/2

0
R j sinϕ cosϕdϕ. (2.372)

This integral can be evaluated analytically (see also Table 2.3). It follows:

W∞ = �1 ln n + �2 ln

(
n − 1

n + 1

)
+ �3, (2.373)

�1 = 8n4(n4 + 1)

(n4 − 1)2(n2 + 1)
,�2 = n2(n2 − 1)2

(n2 + 1)3
,�3 =

7∑
j=0

A j n j

3(n4 − 1)(n2 + 1)(n + 1)
,

(2.374)

where A j = (−1,−1,−3, 7,−9,−13,−7, 3) and it was assumed that n > 1 and
χ/n � 1.

and y for various values of
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The same parameter W∞ determines the absorption cross section as c → ∞:

Cabs = πa2(1 − W∞). (2.375)

Cabs = f (n)αV, (2.376)

where

f (n) = 1 − (1 − n−2)3/2, (2.377)

V = 4πa3

3
, α = 4πχ

λ
. (2.378)

Therefore, we see that Cabs ∼ V as c → 0. This explains the dependence Qabs =
Cabs/πa2 ∼ a shown in Fig. 2.12. We underline that the absorption cross section
of large weakly absorbing particles is proportional to their volume. This general
result is valid for nonspherical particles with the geometrical cross section � as
well. For strongly absorbing particles (c → ∞), we have:

Cabs = �(1 − W∞), (2.379)

where the integral W∞ can be calculated analytically as it was shown above. The
curve Qabs(c) can be approximated as:

Qabs = 1 − M(c) − W (1 − e−cb)2, (2.380)

where

M = 2n2

c2
(e−bc(1 + bc) − e−c(1 + c)), b =

√
1 − n2. (2.381)

2.4.1.3 van de Hulst approximation

It was shown above that the extinction cross section of a large spherical particle
is equal to 2πa2as x → ∞ if the interference effects can be neglected. These effects
are of no importance for large phase shifts ρ on the diameter of the sphere d:
ρ = 2x |m − 1|. However, the interference plays an important role at small values
ρ, which is the case for some selected wavelength regions both for water and ice
in air. Then the diffraction pattern will be modified by effects of the interference
and Mie theory should preferably be used for calculations.

We derive here the analytical equation for Cext valid as x → ∞ and arbitrary
phase shifts ρ assuming that |m − 1| → 0 and using the optical theorem. Then we

It follows as c → 0:



94 CLOUD OPTICS

find:

S(0) =
∞∑

n=1

(
n + 1

2

)(
1 − 1

2
[exp(−2iαn) + exp(−2iβn)]

)
, (2.382)

where we used Eqs. (2.83) and (2.205) and accounted for the fact that

πn(θ = 0) = τn(θ = 0) = n(n + 1)

2
. (2.383)

If we neglect exponentials, then we arrive at the following diffraction optics result

S(0) = x2/2 (2.384)

as it was discussed above. So we will account for exponents but in an approx-
imate way. Taking into account Eqs. (2.205), (2.73) and (2.78), we obtain for
tgαn, tgβn:

tgαn = mψn(y)ψ ′
n(x) − ψ ′

n(y)ψn(x)

ψ ′
n(y)χn(x) − mψn(y)χ ′

n(x)
, (2.385)

tgβn = ψn(y)ψ ′
n(x) − mψ ′

n(y)ψn(x)

mψ ′
n(y)χn(x) − ψn(y)χ ′

n(x)
. (2.386)

Let us take into account that m → 1. Then the dominator D in both expressions is
given approximately by:

D = ψ ′
n(x)χn(x) − ψn(x)χ ′

n(x). (2.387)

One can show that D = 1 using the well-known properties of spherical Bessel
functions. Putting m = 1, we obtain that tgαn = tgβn and

tgαn = ψn(y)ψ ′
n(x) − ψ ′

n(y)ψn(x). (2.388)

Now we take into account that x → ∞. Then it follows:

ψn(x) =
cos

(
x f ′ − π

4

)
√

sin τ ′ , ψ ′
n(x) = −

√
sin τ ′ sin

(
x f ′ − π

4

)
, (2.389)

ψn(y) =
cos

(
y f ′ − π

4

)
√

sin τ ′ , ψ ′
n(y) = −

√
sin τ ′ sin

(
y f ′ − π

4

)
, (2.390)

where x cos τ = n + 1/2, f = sin τ − τ cos τ, y=mx, f ′ = sin τ ′ − τ ′ cos τ ′. Af-
ter simple algebraic calculations we get:

tgαn =sin
(

y f ′ − π
4

)
cos

(
x f − π

4

)
−sin

(
x f − π

4

)
cos

(
y f ′−π

4

)
(2.391)
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or

tgαn = sinϒ, (2.392)

where

ϒ = y f ′ − x f. (2.393)

We also can write:

ϒ = mx sin τ ′ − mτ ′ cos τ ′ + τ ′ cos τ ′ − x sin τ (2.394)

and

ϒ = (m − 1)x sin τ, (2.395)

where we accounted for the fact that τ ≈ τ ′ and cos τ ≈ cos τ ′ ≈ n + 1/2.Because
m → 1, we can write: αn ≈ ϒ. Therefore, transforming the sum to the integral, it
follows:

S(0) = x2
∫ x

0
(1 − exp(−iρ sin τ ) cos τd(x cos τ ) (2.396)

or

S(0) = x2 K (iρ), (2.397)

where

K (υ) = 1

2
+ e−υ

υ
+ e−υ − 1

υ2
. (2.398)

Finally, we have using the optical theorem:

Cext = 4πa2Re [K (iρ)] . (2.399)

In particular, it follows that

Cext = 2πa2{1 − 2ρ−1 sin ρ + 2ρ−2(1 − cos ρ)} (2.400)

for nonabsorbing large spheres as m → 1. The accuracy of this equation as applied
to the calculation of the extinction efficiency factor Qext = Cext/πa2 is shown
in Fig. 2.15a for nonabsorbing droplets. We see that results at the refractive in-
dex 1.01 closely correspond to the van de Hulst approximation shown by line.
This is not the case for the water refractive index. The adding edge term contri-
bution (Qext → Qext + 2(ka)−2/3) considerably improves the accuracy of van de
Hulst approximation as applied to water clouds (Kokhanovsky, 2004a). The de-
pendence of Qext on the attenuation parameter c = 4χka is shown in Fig. 2.15b
at various values of n. It follows that the asymptotical value of the extinction
efficiency factor is achieved more quickly for particles having larger refractive
indices.
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Fig. 2.15. (a) Dependence of extinction efficiency factor on the phase shift at n = 1.01, 1.1, and
1.333. The solid line shows the van de Hulst’s approximation. Results of Mie calculations for the
case of n = 1.01 are shown only for values of ρ smaller than 10. (b) Dependence of extinction
efficiency factor on the attenuation parameter at n = 1.01, 1.1, and 1.333.

The absorption efficiency factor Qabs = Cabs/πa2can be obtained in the ap-
proximation of straight rays (m → 1) as

Qabs = 1 + 2e−c

c
+ 2(e−c − 1)

c2
. (2.401)

These formulae were first derived by van de Hulst using the amplitude-phase
screen model and the approximation of straight rays. Results presented here can
be applied only for spherical particles. However, they can be easily generalized
to account for the nonsphericity and inhomogeneity of scatterers (Kokhanovsky,
2004a). This proved to be an useful approach in the optics of crystalline clouds.

2.4.1.4 The asymmetry parameter

The asymmetry of light scattering in respect to the incident light beam is
often described by the average cosine of the scattering angle or the asymmetry
parameter g:

g = 1

2

∫ π

0
p(θ ) sin θ cos θdθ, (2.402)
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where p(θ ) is the phase function. Let us derive the geometrical optical asymptotic
value for this important light scattering characteristic now.

The phase function is given by:

p(θ ) = 2π (i1 + i2)

k2Csca
(2.403)

or we can write in the case under consideration neglecting the interference
effects:

p(θ ) = C D
sca pD(θ ) + CG

sca pG(θ )

C D
sca + CG

sca

, (2.404)

where taking into account that i D = x4 F(θ )/4 [see Eq. (2.354] and C D
sca = πa2

pD(θ ) = x2 F(θ )

2
(2.405)

and

pG(θ ) = 2π (i G
1 + i G

2 )

k2CG
sca

. (2.406)

The normalization conditions are:

1

2

∫ π

0
pD(θ ) sin θdθ = 1. (2.407)

1

2

∫ π

0
pG(θ ) sin θdθ = 1. (2.408)

Clearly, we can obtain for the asymmetry parameter:

g = C D
scagD + CG

scagG

C D
sca + CG

sca

, (2.409)

where

gD = 1

2

∫ π

0
pD(θ ) sin θ cos θdθ, (2.410)

gG = 1

2

∫ π

0
pG(θ ) sin θ cos θdθ. (2.411)

Let us take into account that

C D
sca = πa2, (2.412)

CG
sca = Wπa2, gD ≈ 1. (2.413)

Then we have:

g = 1 + WgG

1 + W
. (2.414)
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Table 2.4. The phase function calculated in the framework of the geometrical optics
approximation (the diffraction is ignored) at the refractive index m = 1.333.

θ , deg pG (θ )

0.0000 0.164E+02
1.0000 0.163E+02
2.0000 0.161E+02
3.0000 0.160E+02
4.0000 0.158E+02
5.0000 0.154E+02
6.0000 0.151E+02
7.0000 0.148E+02
8.0000 0.144E+02
9.0000 0.139E+02

10.0000 0.135E+02
11.0000 0.130E+02
12.0000 0.125E+02
13.0000 0.120E+02
14.0000 0.115E+02
15.0000 0.110E+02
16.0000 0.105E+02
17.0000 0.998E+01
18.0000 0.953E+01
19.0000 0.898E+01
20.0000 0.856E+01
21.0000 0.807E+01
22.0000 0.762E+01
23.0000 0.723E+01
24.0000 0.676E+01
25.0000 0.640E+01
26.0000 0.599E+01
27.0000 0.566E+01
28.0000 0.529E+01
29.0000 0.502E+01
30.0000 0.467E+01
31.0000 0.437E+01
32.0000 0.411E+01
33.0000 0.384E+01
34.0000 0.360E+01
35.0000 0.336E+01
36.0000 0.316E+01
37.0000 0.294E+01
38.0000 0.277E+01
39.0000 0.258E+01
40.0000 0.240E+01
41.0000 0.229E+01
42.0000 0.211E+01
43.0000 0.191E+01

θ , deg pG (θ )

44.0000 0.181E+01
45.0000 0.166E+01
46.0000 0.153E+01
47.0000 0.141E+01
48.0000 0.131E+01
49.0000 0.120E+01
50.0000 0.111E+01
51.0000 0.104E+01
52.0000 0.941E+00
53.0000 0.849E+00
54.0000 0.791E+00
55.0000 0.727E+00
56.0000 0.653E+00
57.0000 0.600E+00
58.0000 0.538E+00
59.0000 0.487E+00
60.0000 0.438E+00
61.0000 0.404E+00
62.0000 0.360E+00
63.0000 0.319E+00
64.0000 0.283E+00
65.0000 0.248E+00
66.0000 0.217E+00
67.0000 0.189E+00
68.0000 0.169E+00
69.0000 0.147E+00
70.0000 0.125E+00
71.0000 0.106E+00
72.0000 0.936E–01
73.0000 0.821E–01
74.0000 0.670E–01
75.0000 0.606E–01
76.0000 0.522E–01
77.0000 0.467E–01
78.0000 0.407E–01
79.0000 0.380E–01
80.0000 0.351E–01
81.0000 0.340E–01
82.0000 0.329E–01
83.0000 0.322E–01
84.0000 0.317E–01
85.0000 0.311E–01
86.0000 0.306E–01
87.0000 0.300E–01
88.0000 0.297E–01
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Table 2.4. Continued

θ , deg pG (θ )

89.0000 0.294E–01
90.0000 0.295E–01
91.0000 0.291E–01
92.0000 0.280E–01
93.0000 0.276E–01
94.0000 0.273E–01
95.0000 0.270E–01
96.0000 0.267E–01
97.0000 0.265E–01
98.0000 0.262E–01
99.0000 0.260E–01

100.0000 0.258E–01
101.0000 0.256E–01
102.0000 0.256E–01
103.0000 0.276E–01
104.0000 0.265E–01
105.0000 0.258E–01
106.0000 0.253E–01
107.0000 0.252E–01
108.0000 0.251E–01
109.0000 0.251E–01
110.0000 0.252E–01
111.0000 0.252E–01
112.0000 0.253E–01
113.0000 0.255E–01
114.0000 0.266E–01
115.0000 0.275E–01
116.0000 0.295E–01
117.0000 0.322E–01
118.0000 0.359E–01
119.0000 0.391E–01
120.0000 0.429E–01
121.0000 0.499E–01
122.0000 0.547E–01
123.0000 0.601E–01
124.0000 0.696E–01
125.0000 0.787E–01
126.0000 0.925E–01
127.0000 0.111E+00
128.0000 0.162E+00
129.0000 0.246E+00
130.0000 0.284E–01
131.0000 0.263E–01
132.0000 0.246E–01
133.0000 0.231E–01
134.0000 0.222E–01

θ , deg pG (θ)

135.0000 0.215E–01
136.0000 0.211E–01
137.0000 0.210E–01
138.0000 0.125E+01
139.0000 0.843E+00
140.0000 0.616E+00
141.0000 0.518E+00
142.0000 0.462E+00
143.0000 0.418E+00
144.0000 0.392E+00
145.0000 0.364E+00
146.0000 0.337E+00
147.0000 0.328E+00
148.0000 0.309E+00
149.0000 0.273E+00
150.0000 0.265E+00
151.0000 0.240E+00
152.0000 0.230E+00
153.0000 0.210E+00
154.0000 0.198E+00
155.0000 0.181E+00
156.0000 0.169E+00
157.0000 0.152E+00
158.0000 0.147E+00
159.0000 0.131E+00
160.0000 0.125E+00
161.0000 0.115E+00
162.0000 0.108E+00
163.0000 0.105E+00
164.0000 0.102E+00
165.0000 0.101E+00
166.0000 0.101E+00
167.0000 0.100E+00
168.0000 0.100E+00
169.0000 0.998E–01
170.0000 0.997E–01
171.0000 0.100E+00
172.0000 0.103E+00
173.0000 0.106E+00
174.0000 0.111E+00
175.0000 0.100E+00
176.0000 0.987E–01
177.0000 0.985E–01
178.0000 0.990E–01
179.0000 0.986E–01
180.0000 1.012E–01
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Fig. 2.16. The phase function of water droplets having the gamma PSD with μ = 6, aef = 4 and
20 μm and λ = 0.55 μm. Results of geometrical optics calculations are also shown.

Therefore, to find the value of g we need to calculate the geometrical optics
contribution gG and also W [see Eq. (2.369)]. This can be done using precalculated
functions pG(θ ) (see Table 2.4 and Fig. 2.16). As an alternative, one can introduce

We account for the fact that

d B = pG(θ ) sin θ cos θdθ = 4π (i G
1 + i G

2 )

k2CG
sca

= 4πa2 cosϕ sinϕdϕ

k2CG
sca cos θdθ

2∑
j=1

∞∑
p=0

εpj sin θ cos θdθ (2.415)

geometrical optics expressions for intensities in Eq. (2.406) and then use Eq. 
(2.411).
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or

gG = 1

2W

2∑
j=1

∫ π/2

0

F j (τ ) sin 2τdτ

1 − 2R j e−cξ cos(2τ ′) + R2
j e

−cξ
(2.416)

where

F j (τ ) = e−cξ (1 − R j )
2 cos 2(τ − τ ′) + R j cos 2τ (1 − e−2cξ )

+ 2R2
j (e

−cξ − cos 2τ ′) cos 2τe−cξ , (2.417)

ξ =
√

1 − n−2 cos2 τ , (2.418)

n cos τ ′ = cos τ (2.419)

Eq. (2.415) can be simplified for nonabsorbing media (c = 0) and also for strongly
absorbing media (c → ∞). Then it follows:

gG
0 = 1

2

2∑
j=1

∫ π/2

0

[
(1 − R j )2 cos 2(τ − τ ′) + 2R2

j (1 − cos 2τ ′) cos 2τ
]

sin 2τdτ

1 − 2R j cos(2τ ′) + R2
j

(2.420)

at c = 0 and

gG
∞ = 1

2W

2∑
j=1

∫ π/2

0
R j cos 2τ sin 2τdτ (2.421)

as c → ∞. This means that the asymmetry parameter for nonabsorbing particles
can be derived from the following formula:

g0 = 1 + gG
0

2
(2.422)

It follows for strongly absorbing media:

g∞ = 1 + W∞gG
∞

1 + W∞
. (2.423)

The analytical integration of Eq. (2.241) gives:

gG
∞ = 1

W

{
1 + 1 ln n − 2 ln

n + 1

n − 1
+ 3

}
, (2.424)

where

 1 = 8n4(n6 − 3n4 + n2 − 1)

(n4 − 1)2(n2 + 1)2
, (2.425)

 2 = (n2 − 1)2(n8 + 12n6 − 54n4 − 4n2 + 1)

16(n2 + 1)4
, (2.426)
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 3 = �

24(n2 + 1)2(n4 − 1)(n + 1)
(2.427)

� =
12∑
j=1

B j n
j (2.428)

B j = (−3, 13,−89, 151, 186, 138,−282, 22, 25, 25, 3, 3) and it was assumed
that n > 1 and χ/n � 1.

The value of g at given n changes from g0 to g∞ with c. This change can be
approximately accounted for using the following approximation:

g = g∞ − (g∞ − g0)e−cy, (2.429)

where y depends on n and is given in Table 2.3. Similar parameterizations can be
derived for ice crystals as well.

2.4.1.5 Polarization characteristics

Geometrical optical technique allows us to find not only the intensity of
scattered light but also its polarization. In particular, it follows for the degree
of polarization of scattered light under unpolarized (e.g., solar) illumination
conditions:

Pl = i G
1 − i G

2

i G
1 + i G

2

. (2.430)

The dependence Pl(θ) at n = 1.33 is given in Fig. 2.17. Mie results are also shown
in this figure.

The Mueller matrix M̂ allows to find the Stokes vector of scattered light at any
illumination conditions:


I = 1

k2r2
M̂ 
I 0. (2.431)

We have for nonzero elements of this matrix for spheres:

M11 = M22 = 1

2
(|S11|2 + |S22|2),

M12 = M21 = 1

2
(|S11|2 − |S22|2), (2.432)

M33 = M44 = 1

2
Re

(
S11S∗

22

)
,

M34 = −M43 = Im(S11S∗
22)
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Fig. 2.17. The same as in Fig. 2.16 except for the degree of linear polarization.

Taking into account that

|S11|2 = i D + i G
2 , |S22|2 = i D + i G

1 ,Re(S11S∗
22) = i D +

√
i G
1 i G

2 , Im(S11S∗
22) = 0,

(2.433)

where we neglected the effects of interference and phase shifts, we obtain:

M̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i G
1 + i G

2

2

i G
2 − i G

1

2
0 0

i G
2 − i G

1

2

i G
1 + i G

2

2
0 0

0 0
√

i G
1 i G

2 0

0 0 0
√

i G
1 i G

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ i D Ê, (2.434)

where Ê is the 4 × 4 unity matrix.
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Fig. 2.18. The same as in Fig. 2.16 except for the degree of circular polarization (p34) .

We can also introduce the normalized matrix

m̂ = M̂

M11

⎛
⎜⎜⎝

1 −Pl 0 0
−Pl 1 0 0

0 0 Pc 0
0 0 0 Pc

⎞
⎟⎟⎠ (2.435)

where P = (i G
1 − i G

2 )/(i G
1 + i G

2 ), Pc = 2
√

i G
1 i G

2 /(i
G
1 + i G

2 ) and we neglected the
contribution of the diffraction, which is of importance only as θ → 0. The function
Pc gives the reduction of the degree of circular polarization for incident right
hand circularly polarized light as discussed above. Pl(θ ) describes the degree of
polarization of scattered light for incident unpolarized light beam. Functions Pl(θ)

l
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Fig. 2.19. The same as in Fig. 2.16 except for the degree of circular polarization (p44) .

and Pc(θ ) are given in Figs. 2.18 and 2.19. The geometrical optics phase function
of water droplets is shown in Fig. 2.20.

2.4.2 Ice Crystals

Geometrical optics techniques are of a special importance for studies of light
scattering in ice clouds. This is due to the following reasons:

– the size of crystals is even larger than that of droplets (typically, 100μm);
– the Mie-type solutions for ice crystals do not exist or require (e.g., for hexagonal

cylinders) large computational efforts.

An important problem is the variability of crystal shapes in ice clouds. It means that
even if we derive scattering characteristics for a given fixed shape of crystals, we
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Fig. 2.20. Geometrical optics phase function of a water droplet calculated using the standard
approach as described here (line) and the Monte-Carlo (Macke et al., 1996) technique (symbols)
at n = 1.333.

are not sure that results of calculations represent in-situ measured optical charac-
teristics (e.g., the phase function). Therefore, optical characteristics of ice clouds
are usually represented by a linear mixture of correspondent characteristics for
a finite number of shapes (e.g., hexagonal plates and columns, bullet rosettes,
etc.). We call this a multi-particle approach (MPA). The problem with this tech-
nique is due to the fact that neither typical shapes of crystals nor the weight-
ing factor for a given shape is known in advance for a crystalline cloud under
study.

Yet another method is to represent the single scattering of light by an elementary
volume of an ice cloud by the optical characteristics of single particles having an
extremely complex shape. In particular, particles with random surfaces or fractals
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Fig. 2.21. Geometrical optics phase function of a water droplet (solid line, n = 1.333) and ice
sphere (broken line, n = 1.31) calculated using the Monte-Carlo technique (Macke et al., 1996)
at the wavelength 550 nm.

are used. Such particles do not necessarily represent geometrical characteristics of
particles in clouds but they have scattering characteristics (e.g., phase functions)
similar to those measured in natural ice clouds. We call this a single-particle ap-
proach (SPA).

The choice between these two techniques (MPA, SPA) is largely determined
by the problem at hand. For instance, the MPA is routinely used in satellite ice
cloud retrieval algorithms. Then certain shapes are prescribed and the aim is to
find the size/concentration of particles in a given shape class. Retrieved sizes and
concentrations depend on the a priori assumptions and pre-selected shape classes
used in retrieval procedures. This constitutes a major problem of modern ice cloud
retrieval techniques.
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Fig. 2.22. Phase function of randomly oriented hexagonal ice crystals at λ = 0.858 μm. The
length of the cylinder is 400 μm. The ratio of the crystal length to the side of the hexagonal cross
section is equal to 4.0.

In principle, geometrical optical characteristics of nonspherical ice crystals can
be calculated using the same approach as outlined above for spheres. However, it
is difficult to give an analytical result for the scattering angle as the function of the
incidence angle. The problem is solved using the Monte Carlo technique (Macke
et al., 1996). This technique is based on the following steps:

– an incident Stokes vector is selected;
– a shape of a particle is defined; an emission surface is defined; emission points

(EP) on the emission surface are randomly determined;
– a light ray propagates from the EP in the direction of a particle;
– the check if the ray hits a particle is performed; if the ray does not hit a particle,

another EP is selected;
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Fig. 2.23. The same as in Fig. 2.22 except for the normalized phase matrix elements.

– the reflection or refraction at the interaction point is randomly chosen. The photon
is reflected if the reflection coefficient r = (r1 + r2)/2 is larger than the random
number q ∈ [0, 1] (otherwise, it is refracted);

– the incident Stokes vector is multiplied by a Mueller matrix for the reflection or
refraction process, respectively;

– the path length L between an incident point and the next internal incident point
is calculated using Snell’s law and the specific shape of a crystal;

– the transmission factor γ = exp(−αL), where α = 4πχ/λ is the absorption
coefficient, is calculated;

– if γ ≤ exp(−αLa), where La = − ln(p/α), p ≤ 1, is the random number, then
a photon is assumed to be absorbed; otherwise, a photon is transmitted; this
procedure is repeated for all photons inside the crystal;

– the foregoing procedure is repeated until the photon escapes from the crystal;
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Fig. 2.24. Geometrical optics phase function of randomly oriented fractal particles (Macke et al.,
1996) at n = 1.31.

– then a new EP is selected and the procedure is repeated till the convergence is
reached (usually, 108 − 109 photons are used);

– the single scattering albedoω0 is calculated as the ratio of the number of scattered
photons to the number of incident photons;

– the extinction cross section is assumed to be equal to 2S, where S is the sur-
face area of the particle on the plane perpendicular to the direction of light
propagation;

– the absorption cross section (Cabs = (1 − ω0)Cext ) and the asymmetry parameter
are calculated.

The results of such calculations for spherical, hexagonal and fractal particles
are given in Figs. 2.21–2.25. It follows from these figures that both intensity and
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Fig. 2.25. The same as in Fig. 2.24 except for the normalized phase matrix elements.

polarization of scattered light are highly dependent on the shape of particles. The
internal structure of particles also influences the light scattering characteristics
(Babenko et al., 2003). This remark is of great importance with respect to cloud
remote sensing problems (Yang et al., 2001).





Chapter 3

RADIATIVE TRANSFER

3.1 The Radiative Transfer Equation

Light scattering by a single macroscopic particle can be studied in the frame-
work of electrodynamics of continuous media. The same applies to clusters of
particles or scattering volumes, where multiple light scattering does not play an
important role. This is not the case for clouds. Here multiple scattering dominates
the registered signal. Therefore, generally speaking, techniques of multiple wave
scattering should be used in this case. However, they are quite complex and do not
always lead to results, which can be used as a base for the numerical algorithm.

Moreover, electromagnetic fields 
E cannot be measured in the optical range.
This is mostly due to their high oscillations (≈ 1015 oscillations per second).
Clearly, any measuring device makes temporal and spatial averaging of registered
radiation. Also optical instruments measure quantities quadratic with respect to the
field. This is similar to quantum mechanics, where the amplitude ψ is the main
notion of the theory, but it is |ψ |2, which is measured.

Therefore, this is of importance to formulate multiple light scattering theory
not in terms of field vectors but in terms of quadratic values, which can be easily
measured. The Stokes-vector parameter 
I with components I, Q,U, V is usually
used in this case. Of course, this leads to the omission of a number of theoretical
details (e.g., related to the phase effects). However, such an approach allows an
interpretation of most optical measurements. Also note that light beams having
the same values I, Q,U, V (but in principle different values of 
E) cannot be dis-

113

tinguished by optical instruments, which measure quadratic values. Therefore,
the main point is to force multiple light scattering theory to deal with intensities
rather than fields from the very beginning. Then we do not need to make the
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averaging procedures at the end of calculations to bring calculated values in cor-
respondence to the measured ones. The main task of this section is to introduce
an equation, which governs the transformation of the Stokes vector 
I in cloudy

For the sake of simplicity, we consider now the transformation of light inten-
sity and ignore other components of the Stokes vector. Clearly, if the process of
scattering is ignored we can write in the linear approximation:

d I = −σext Idl. (3.1)

This underlines the experimental fact that the reduction of light intensity on the
length dl in this case is proportional to this length and the value of I itself. The co-
efficient of proportionality is called the extinction coefficient. Actually it coincides
in this simple case with the absorption coefficient (σsca = 0). It follows that

I = I0 exp(−σext l) (3.2)

for a homogeneous (σext = const) layer, which is the well-known extinction law.
Here I0 is the incident intensity at l = 0. This formula should be modified for
light scattering media to account for light scattering from all other directions to a
given direction 
�. Then we have:

d I ( 
�) = −σext I ( 
�)dl +
∫

4π
σsca( 
�, 
�′)I ( 
�′)d 
�′dl, (3.3)

where σsca( 
�, 
�′) describes the local scattering law. Unfortunately, Eq. (3.3)
cannot be solved in such a simple way as for the case of Eq. (3.1) (no scattering).
This explains the mathematical complexity of the radiative transfer theory. Equa-
tion (3.3) is called the radiative transfer equation. It can be written in the following
form:

d I ( 
�)

dl
= −σext I ( 
�) +

∫
4π
σsca( 
�, 
�′)I ( 
�′)d 
�′. (3.4)

The radiative transfer theory is concerned with the solution of this equation for
scattering volumes (e.g., clouds), having different shapes, types of illuminations,
and microstructure. Actually, the Stokes vector 
I is governed by the same equation

but σext and σsca become matrices in this case:

d 
I ( 
�)

dl
= −σ̂ext 
I ( 
�) +

∫
4π

L̂2σ̂sca

(

�, 
�′

)
L̂1 
I ( 
�′)d 
�′. (3.5)

The matrix L̂1 transforms the Stokes vector defined in the meridional plane
holding the normal to the scattering layer and the direction 
�′ to the Stokes vector
in the scattering plane. The matrix L̂2 is needed for the transformation of the Stokes
vector of scattered light from the scattering plane back to the meridional plane. This

(Mishchenko, 2002)

media. The Stokes vector used in this section is defined via Eqs. (2.215)-(2.218)

Rozenberg (1973) and Mishchenko (2002).
with averaging procedures (in time and space domains) applied as discussed by
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Fig. 3.1. Geometry of the problem.

is due to the fact that the matrix σ̂sca in Eq. (3.5) is defined in the scattering plane
and the vector 
I is defined with respect to the meridional plane. For spherical water
droplets the matrix σ̂ext is reduced to a scalar value and

d 
I ( 
�)

dl
= −σext 
I ( 
�) +

∫
4π

L̂2σ̂sca

(

�, 
�′

)
L̂1 
I ( 
�′)d 
�′. (3.6)

However, for crystalline media, where particles can have a preferential orienta-
tion and be anisotropic, this is not the case. This fact adds an additional complexity
in radiative transfer studies for the case of ice clouds.

We will be mostly concerned with solutions of Eq. (3.6) for a plane-parallel
cloud layer illuminated by the Sun. The interaction of solar radiation with extended
cloud fields is well approximated by the solution of this idealized problem. The
geometry of the problem is given in Fig. 3.1. The solar light with the zenith angle
ϑ0 uniformly illuminates a plane-parallel scattering layer from above. We will
assume that properties of the layer do not change in the horizontal direction. Then
properties of light field depend only on the vertical coordinate Z (see Fig. 3.1) and
the direction 
�, specified by the zenith angle ϑ and the azimuth ϕ. The main task
is to calculate distributions 
I (ϑ, ϕ, z). Usually only measurements of 
I (ϑ, ϕ, 0) at
the top of the cloud (reflected light) and 
I (ϑ, ϕ, z0) at the cloud base (transmitted
light) are made (see Fig. 3.1). Therefore, we will be concerned mostly with these
two angular distributions.

Equation (3.6) takes the following form for the case shown in Fig. 3.1:

cosϑ
d 
I (ϑ, ϕ)

dz
= −σext 
I (ϑ, ϕ) +

∫ 2π

0
dϕ′

∫ π

0
dϑ ′ L̂2σ̂sca

(
ϑ ′, ϕ′ → ϑ, ϕ

)
× L̂1 
I (ϑ ′, ϕ′) (3.7)

The most simple case to study is that of idealized homogeneous clouds with
values of σext and σ̂sca not dependent on the position inside the cloud. Then we
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have from Eq. (3.7):

cosϑ
d 
I (ϑ, ϕ)

dτ
= − 
I (ϑ, ϕ) + ω0

4π

∫ 2π

0
dϕ′

∫ π

0
dϑ ′ L̂2 P̂(ϑ ′, ϕ′ → ϑ, ϕ)

× L̂1 
I (ϑ ′, ϕ′), (3.8)

where we introduced the optical depth

τ = σext l, (3.9)

the phase matrix

P̂ = 4πσ̂sca(ϑ ′, ϕ′ → ϑ, ϕ)

σsca
(3.10)

and the single-scattering albedo:

ω0 = σsca

σext
. (3.11)

Studies of Eq. (3.8) open ways to treat more complex cases, including clouds
with spatial varying microstructure characteristics and also cases of broken clouds
and clouds having various complex shapes. Equation (3.8) is reduced to the fol-
lowing simpler form:

cosϑ
d I (ϑ, ϕ)

dτ
= −I (ϑ, ϕ) + ω0

4π

∫ 2π

0
dϕ′

∫ π

0
dϑ ′ p(ϑ ′, ϕ′ → ϑ, ϕ)I (ϑ ′, ϕ′),

(3.12)
if the polarization effects are ignored. Here

p(ϑ ′, ϕ′ → ϑ, ϕ) = 4πσsca(ϑ ′, ϕ′ → ϑ, ϕ)

σsca
is the phase function.

It is useful to distinguish between diffuse 
I d and direct (or coherent) 
I c =

J 0δ(μ− μ0)δ(ϕ − ϕ0) light in the general solution 
I (ϑ, ϕ). Here 
J 0 describes

the Stokes vector of the incident attenuated flux. It is assumed that the layer is
illuminated in the direction defined by the incidence zenith angle ϑ0 = arccos(μ0)

0

specified by the zenith observation angleϑ = arccos(μ) and the azimuthϕ. Namely,
we write: 
I (ϑ, ϕ) = 
I d (ϑ, ϕ) + 
I c(ϑ, ϕ). The substitution of this formula in Eq.
(3.8) gives

cosϑ
d 
I d (ϑ, ϕ)

dτ
=− 
I d (ϑ, ϕ) + ω0

4π

∫ 2π

0
dϕ′

∫ π

0
dϑ ′ L̂2 P̂(ϑ ′, ϕ′ →ϑ, ϕ)L̂1

× 
I d (ϑ ′, ϕ′) + ω0

4π
P̂∗(ϑ0, ϕ0 →ϑ, ϕ) 
F exp

(
− τ

cosϑ0

)
(3.13)

and the azimuthal angle ϕ . The multiply scattered light is observed in the direction
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or

cosϑ
d Id (ϑ, ϕ)

dτ
= −Id (ϑ, ϕ) + ω0

4π

∫ 2π

0
dϕ′

∫ π

0
dϑ ′ p(ϑ ′, ϕ′ → ϑ, ϕ)Id (ϑ ′, ϕ′)

+ ω0

4π
p(ϑ0, ϕ0 → ϑ, ϕ)F exp

(
− τ

cosϑ0

)
(3.14)

P̂∗

 0 0 0

Q0 = U0 = V0.


I d (ϑ, ϕ).
Also it follows from Eqs. (3.8) and (3.13) that 
I c


I c(ϑ, ϕ) = 
F(ϑ, ϕ)δ(cosϑ − cosϑ0)δ(ϕ − ϕ0) exp

(
− τ

cosϑ0

)
(3.15)

or

Ic(ϑ, ϕ) = F(ϑ, ϕ)δ(cosϑ − cosϑ0)δ(ϕ − ϕ0) exp

(
− τ

cosϑ0

)
(3.16)

for the scalar case.
The solution of Eq. (3.13) is a more easy task than that of Eq. (3.8) because

we avoid the necessity to deal with the divergence in the direction of incident light
in the framework of Eq. (3.13).

3.2 Reflection and Transmission Functions

Reflectance and transmittance of light by cloud layers is usually defined in terms
of reflection R and transmission T functions. They relate incident light intensity

0 0 R T

it follows by definition:

IR(μ, ϕ) = 1

π

∫ 1

0
dϕ′

∫ 2π

0
R(τ, μ, ϕ, μ′, ϕ′)I0(μ′, ϕ′)μ′dμ′, (3.17)

IT (μ, ϕ) = 1

π

∫ 2π

0
dϕ′

∫ 1

0
T (τ, μ, ϕ, μ′, ϕ′)I0(μ′, ϕ′)μ′dμ′. (3.18)

Reflection and transmission functions allow to find the intensity of reflected
and transmitted light for arbitrary angular distributions of incident light with the
intensity I0(μ′, ϕ′).

(ϑ, ϕ) is given simply by:

is the scattering matrix defined with respect to thefor the scalar case. Here
meridional plane, F(F, Q ,U , V ) is the Stokes vector of incident light flux

The solution of this equation under boundary conditions stating that there is no
diffuse light entering the cloud from above and below, allows to find

at the top of a cloud. It follows for unpolarized solar light:

0I (ϑ , ϕ ) with reflected I (μ,ϕ) and transmitted I (μ,ϕ) light intensities.Namely,
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If incident light is azimuthally independent, these formulae simplify:

IR(μ, ϕ) = 2
∫ 1

0
R̄(τ, μ,μ′)I0(μ′)μ′dμ′, (3.19)

IT (μ, ϕ) = 2
∫ 1

0
T̄ (τ, μ,μ′)I0(μ′)μ′dμ′, (3.20)

where

R̄(τ, μ,μ′) = 1

2π

∫ 2π

0
R(τ, μ,μ′ϕ′)dϕ′, (3.21)

T̄ (τ, μ,μ′) = 1

2π

∫ 2π

0
T (τ, μ,μ′ϕ′)dϕ′. (3.22)

of a cloud by a wide beam (e.g., solar light). Then we can assume that

I0(μ′, ϕ′) = δ(μ′ − μ0)δ(ϕ′ − ϕ0)F, (3.23)

f (x0) =
∫ ∞

0
δ(x − x0) f (x)dx . (3.24)

Using this relation and equations for reflection and transmission functions
given above, we arrive at the following results:

IR(μ, ϕ) = Fμ0 R(τ, μ, ϕ, μ0, ϕ0)

π
, (3.25)

IT (μ, ϕ) = Fμ0T (τ, μ, ϕ, μ0, ϕ0)

π
, (3.26)

and, therefore,

R(τ, μ, ϕ, μ0, ϕ0) = π IR(μ, ϕ)

Fμ0
, (3.27)

T (τ, μ, ϕ, μ0, ϕ0) = π IT (μ, ϕ)

Fμ0
. (3.28)

These equations allow us to make the following interpretation of reflection
and transmission functions. Indeed, we have for an absolutely white Lambertian
surface by definition:

P L
R (μ, ϕ) =

∫
2π

I L
R (μ,μ′, ϕ, ϕ′)μ′d�′ =

∫ 2π

0
dϕ′

∫ 1

0
I L

R (μ,μ′, ϕ, ϕ′)μ′dμ′

=
∫ 2π

0
dϕ′

∫ 1

0
Cμ0μ

′dμ′ = πCμ0 (3.29),

having the following property:
a cloud perpendicular to the incident light beam and δ(x) is the delta function,

Note that relations (3.19) and (3.20) simplify for unidirectional illumination

where F is the solar flux density at the elementary area positioned at the top of
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where P L
R (ϑ, ϕ) is the total power scattered by a unit area of a Lambertian surface

into the upper hemisphere and we used the fact that intensity of light reflected
from a Lambertian surface is proportional to the cosine of the incidence angle
μ0(I L

R = Cμ0). The constant C can be found from the condition that the scattered

surface by definition. We have for the incident power:

P0 =
∫

2π
I0(μ′, μ0, ϕ

′, ϕ0)μ′d�′ =
∫ 2π

0
dϕ

∫ 1

0
δ(μ′−μ0)δ(ϕ′−ϕ0)Fμ′dμ′ = Fμ0

(3.30)
and, therefore: C = F/π . It means that intensity of light reflected from an abso-
lutely white Lambertian surface is given by:

I L
R = F

π
μ0, (3.31)

and, therefore, R(τ, μ, ϕ, μ0, ϕ0) [see Eq. (3.25)] is equal to the ratio of light
reflected from a given surface IR to the value of I L

R :

R = IR/I L
R . (3.32)

Also it means that R ≡ 1 by definition for a Lambertian ideally white surface.
Accordingly, it follows:

T = IT

/
I L

R . (3.33)

The results of calculations and measurements of cloud reflectance and trans-
mittance will be mostly presented in terms of functions R and T in this book. They
do not depend on the intensity of incident light and characterize inherent properties

integration of reflection and transmission functions with respect to angles allows
us to find the cloud plane (rd ) and spherical (r ) albedo, the cloud diffuse (td ) and
the global (t) transmittance, the cloud absorptance ad and the global absorptance
a (see Table 3.1 for definitions).

3.3 Polarization Characteristics

Clearly, Eqs. (3.15) and (3.16) should be modified if one would like to account
for light polarization. Namely, it follows:


I R(μ, ϕ) = 1

π

∫ 2π

0
dϕ

∫ 1

0
R̂(τ, μ, ϕ, μ′, ϕ′) 
I 0(μ′, ϕ′)μ′dμ′, (3.34)


I T (μ, ϕ) = 1

π

∫ 2π

0
dϕ

∫ 1

0
T̂ (τ, μ, ϕ, μ′, ϕ′) 
I 0(μ′, ϕ′)μ′dμ′. (3.35)

using Eqs. (3.17) and (3.18) for an arbitrary angular distribution of incident light. The
of a cloud layer. The intensity of reflected and transmitted light can be calculated

and incident powers are equal in the case of an absolutely white Lambertian
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Table 3.1. Radiative transfer characteristics
{

R̄ ≡ 1
2π

∫ 2π
0 R(μ0, μ, ϕ)dϕ, T̄ ≡

1
2π

∫ 2π
0 T (μ0, μ, ϕ)dϕ .

Radiative characteristic Symbol Definition

Plane albedo rd (μ0) 2
∫ 1

0 R̄(μ)μdμ

Spherical albedo r 2
∫ 1

0 rd (μ0)μ0dμ0

Diffuse transmittance td (μ0) 2
∫ 1

0 T̄ (μ0, μ)μdμ

Global transmittance t 2
∫ 1

0 td (μ0)μ0dμ0

Absorptance ad (μ0) 1 − rd (μ0) − td (μ0)
Global absorptance a 1 − r − t

Here 
I R(μ, ϕ) is the Stokes vector of reflected light, 
I T (μ, ϕ) is the Stokes
vector of transmitted light, 
I 0(μ, ϕ) is the Stokes vector of incident light, R̂ and T̂
are 4 × 4 reflection and transmission matrices, respectively, for illumination from
above. Clearly, we have: R ≡ R11, T ≡ T11. The Stokes vector for unidirectional
illumination of a cloud by a wide beam is


I 0(μ′, ϕ′) = δ(μ′ − μ0)δ(ϕ′ − ϕ0) 
F . (3.36)

The first element of 
F equals to the incident net flux F per unit perpendicular
area at the top of a cloud. Other elements of this vector (Q0, U0, V0) describe the
polarization state of incident light. They equal to zero for incident unpolarized
solar light. Obviously, we have in this case [see also Eqs. (3.25) and (3.26)]:


I R(ϑ0, ϑ, ϕ) = R̂ 
F
π
μ0, (3.37)


I T (ϑ0, ϑ, ϕ) = T̂ 
F
π
μ0. (3.38)

Let us assume that incident light is unpolarized. Then we have for the compo-
nents of the Stokes vector of reflected light:

IR(ϑ0, ϑ, ϕ) = R11 F

π
μ0, Q R(ϑ0, ϑ, ϕ) = R21 F

π
μ0, (3.39)

UR(ϑ0, ϑ, ϕ) = R31 F

π
μ0, VR(ϑ0, ϑ, ϕ) = R41 F

π
μ0, (3.40)

and

IT (ϑ0, ϑ, ϕ) = T11 F

π
μ0, QT (ϑ0, ϑ, ϕ) = T21 F

π
μ0, (3.41)

UT (ϑ0, ϑ, ϕ) = T31 F

π
μ0, VT (ϑ0, ϑ, ϕ) = T41 F

π
μ0 (3.42)

{
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for transmitted light. The degree of linear polarization of reflected light is defined as

pr
l ≡ −

√
Q2

R + U 2
R

IR
. (3.43)

Therefore, it follows:

pr
l ≡ −

√
R2

21 + R2
31

R11
. (3.44)

It follows for the total degree of polarization:

pr ≡ −
√

R2
21 + R2

31 + R2
41

R11
. (3.45)

The degree of circular polarization is given by:

pr
c ≡ − R41

R11
. (3.46)

Note that the following relation holds for the total degree of polarization:

pr ≡ √
pr

l + pr
c . (3.47)

Similar characteristics can be defined for the transmitted light:

pt
l ≡ −

√
T 2

21 + T 2
31

T11
, pt

c ≡ T41

T11
, pt ≡ −

√
T 2

21 + T 2
31 + T 2

41

T11
. (3.48)

A number of simplifications arise for particular observation and incidence

pr
c = pt

c = 0 and

pr
l ≡ − R21

R11
, pt

l ≡ −T21

T11
(3.49)

atμ0 = 1 and any observation conditions. Similarly, we have pr
c = pt

c = 0 atμ = 1
for arbitrary illumination conditions. Equations (3.49) hold at μ = 1 and ϕ = ϕ0

as well.

directions. For instance, if incidence and observation directions coincide and

reflection matrix for media with randomly oriented particles has the same structure
as the scattering matrix for a local scattering volume. Therefore, light reflected
in the nadir direction for the nadir illumination conditions is unpolarized. Also it
follows that

perpendicular to the scattering layer, then the principal plane is not defined and the
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3.4 Optically Thin Clouds

The radiative transfer in thin clouds (e.g., subvisual Cirrus) can be studied
using the single-scattering approximation. Indeed multiple light scattering is of no
importance in this case and the integral term in Eq. (3.13) can be omitted. Then it
follows from Eq. (3.13)

d 
I d (x)

dx
= − 
I d (x) + ω0(x)

4π
P̂(x) 
F exp(−sx), (3.50)

where x = τ/ cosϑ, s = cosϑ/ cosϑ0 and we omitted other arguments for sim-
plicity. The matrix P̂ in Eq. (3.50) is defined with respect to the meridional plane.
This equation can be solved analytically. For this we multiply both sides of Eq.
(3.50) by ex . Then it follows:

exp(x)
d 
I d (x)

dx
+ exp(x) 
I d (x) = ω0(x)

4π
P̂(x) 
F exp(−(s − 1)x) (3.51)

or

d
[


I d (x)ex
]

dx
= ω0(x)

4π
P̂(x) 
F exp(−(s − 1)x). (3.52)

It means that


I d (x) = 1

4π
e−x

∫ x

a
ω0(x ′)P̂(x ′) 
F exp(−(s − 1)x ′). (3.53)

Let us apply boundary conditions now:


I d↑(x = 0) = 0, cosϑ > 0, (3.54)

I d↓(x = x0) = 0, cosϑ < 0. (3.55)

They mean that there is no diffuse light entering the medium from above (x = 0)
or below (x = x0 = (τ0/ cosϑ)), τ0 is the optical thickness of a scattering layer. So
we have:


I d↓(x) = 1

4π
e−x

∫ x

0
ω0(x ′)P̂(x ′) 
F exp(−(s − 1)x ′), (3.56)


I d↑(x) = 1

4π
e−x

∫ x

x0

ω0(x ′)P̂(x ′) 
F exp(−(s − 1)x ′) (3.57)

and boundary conditions are satisfied automatically. A simple integration under
the assumption of a homogeneous cloud layer gives:


I d↓(x) = ω0 P̂ 
F
4π (s − 1)

{e−x − e−sx}, (3.58)


I d↑(x) = ω0 P̂ 
F
4π (s − 1)

{e−x−(s−1)x0 − e−sx} (3.59)
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for arbitrary x . It follows at the boundaries of a layer:


I d↓(x) = ω0 P̂ 
F
4π (s − 1)

{e−x0 − e−sx0}, 
I d↑(x) = ω0 P̂ 
F
4π (s − 1)

{e−(s−1)x0 − 1}
(3.60)

So we have for the reflection and transmission vectors:


I r = ω0 P̂
h
4(ξ + η)

{
1 − exp

[
−
(

1

ξ
+ 1

η

)
τ0

]}
,


I T = ω0 P̂
h
4(ξ − η)

{
exp

[
−τ0

ξ

]
− exp

[
−τ0

η

]}
, (3.61)

where η = | cosϑ |, ξ = cosϑ0, τ0 is the optical thickness of the scattering layer,
and 
h = 
F/F1. We see that matrices R̂ and T̂ introduced above are proportional
to P̂ and have the same structure.

Obviously, it follows for unpolarized incident light

R = ω0 p(θ)

4(ξ + η)

{
1 − exp

[
−
(

1

ξ
+ 1

η

)
τ0

]}
, (3.62)

T = ω0 p(θ )

4(ξ − η)

{
exp

[
−τ0

ξ

]
− exp

[
−τ0

η

]}
. (3.63)

Equations given above are very useful in estimations of the influence of thin
(τ0 → 0) clouds on light fluxes in the terrestrial atmosphere.

3.5 Small-Angle Approximation

Let us consider now the case of a highly anisotropically light scattering layer
(the asymmetry parameter g → 1) illuminated along the normal. In this case most
scattered photons propagate within the small-angle scattering region and there
is a possibility to simplify the radiative transfer equation. Thus, we assume that
cosϑ = 1 in Eq. (3.12) and obtain:

d I (τ, μ)

dτ
= −I (τ, μ) + ω0

2

∫ 1

0
dμ′ I (τ, μ′)p(μ,μ′), (3.64)

where

p(μ,μ′) = 1

2π

∫ 2π

−1
p(μ,μ′, φ)dφ. (3.65)

We used the fact that the intensity of scattered light field for layers with ran-
domly oriented particles does not depend on the azimuth for the illumination of
a layer along the normal. Note, that the value of I (τ, μ) is the total intensity in
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the direction given by arccos(μ), not the diffuse intensity as in Eq. (3.14), and
it includes the direct light. The phase function p(μ,μ′, ϕ) in Eq. (3.65) can be
represented in the following form (Minin, 1988)

p(μ,μ′, φ) = p(μ,μ′) + 2
∞∑

m=1

cos m(φ − φ′)
∞∑

i=m

xi
(i − m)!

(i + m)!
Pm

i (μ)Pm
i (μ′),

(3.66)
where

p(μ,μ′) =
∞∑

i=0

xi Pi (μ)Pi (μ
′) (3.67)

and Pi (μ) and Pm
i (μ) are Legendre and associated Legendre polynomials, respec-

tively. Note that it follows:

xi = 2i + 1

2

∫
p(θ )Pi (θ ) sin θdθ. (3.68)

We seek the solution of Eq. (3.64) in the following form:

I (τ, μ) =
∞∑

i=0

bi (τ )Pi (μ). (3.69)

Substituting Eqs. (3.67) and (3.69) in Eq. (3.64), one obtains:

dbi (τ )

dτ
= −ci bi (τ ), (3.70)

where

ci = 1 − ω0
xi

2i + 1
(3.71)

and the orthogonality of Legendre polynomials was used. Thus, it follows:

bi (τ ) = Ai exp(−ciτ ), (3.72)

where Ai = const .
We see that it is possible to obtain the intensity of the transmitted light with

the following formula:

I (τ, μ) =
∞∑

i=0

Ai e
−ci τ Pi (μ). (3.73)

Values of Ai are found from initial conditions. We will assume that

I (0, μ) = I0δ(1 − μ), (3.74)
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where δ(1 − μ) is the delta function, I0 is the density of incident light flux. The
delta function can be represented in the following form:

δ(1 − μ) = 1

4π

∞∑
i=0

(2i + 1)Pi (μ). (3.75)

Thus, it follows:

Ai = 2i + 1

4π
(3.76)

and, finally,

I (τ, μ) = B
∞∑

i=0

2i + 1

2
e−ci τ Pi (μ), (3.77)

where B = I0/2π .
This is a solution of the problem under consideration. Equation (3.77) describes

the angular distribution of the transmitted light at small angles for the normal inci-
dence of a light beam. This important formula can be rewritten in the integral form.
Indeed, the phase function p(θ ) has a sharp peak in the forward-scattering direction
(θ = 0) for cloudy media and the main contribution to the integral Eq. (3.68) comes
from the small-angle scattering region. Thus, it follows from Eq. (3.68) that

xi = 2i + 1

2

∫ ∞

0
p(θ )J0

(
θ

(
i + 1

2

))
θdθ, (3.78)

where the asymptotic relationship

lim
θ→0

Pi (cos θ ) = J0

(
θ

(
i + 1

2

))
(3.79)

was used.

∞∑
i=0

f
(
i + 1

2

) ≈
∫ ∞

0
f (σ )dσ , (3.80)

it follows:

I (τ, ϑ) = I0

2π

∫ ∞

0
dσ J0(σϑ) exp(−τ (1 − ω0 P(σ ))), (3.81)

where

P(σ ) = 1

2

∫ ∞

0
p(θ)J0(θσ )θdθ. (3.82)

From Eqs. must be (3.77)-(3.79) and the sum formula
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Table 3.2. Phase functions p(θ ) and their Fourier–Bessel transforms P(σ ) (ϒ is
the normalization constant, x is the size parameter).

p(θ ) P(σ )

2ϒ exp(−ϒθ )

θ

ϒ√
ϒ2 + σ 2

2ϒ2 exp(−ϒθ )
ϒ3

(ϒ2 + σ 2)3/2

2

ϒ2
exp

(
− θ2

2ϒ2

)
exp

(
−ϒ

2σ 2

2

)

4J 2
1 (θx)

θ 2

⎧⎪⎨
⎪⎩

2

π

{
arccos

( σ
2x

)
− σ

2x

√
1 −

( σ
2x

)2
}
, σ ≤ 2x

0, σ > 2x

Equation (3.81) in many cases is more easy to handle than Eq. (3.77). For instance,
Eq. (3.82) can be analytically integrated for special types of phase functions p(θ )
(see Table 3.2).

It follows from Eq. (3.81) for the diffuse intensity Id (τ, ϑ):

Id (τ, ϑ) = I0

2π

∫ ∞

0

[
e−τ (1−ω0 P(σ )) − e−τ ] J0(σϑ)σdσ , (3.83)

where we extracted the peak of light intensity exactly in the forward direction using
the equality:

I0

2π
e−τ

∫ ∞

0
J0(σϑ)σdσ = I0e−τ δ(ϑ). (3.84)

Equation (3.83) is often used for the solution of both direct and inverse problems
of cloud optics. It is valid at τ ≤ 5 and ϑ → 0. It follows that the phenomenon
of multiple light scattering is responsible for broadening of the angular spectrum
of the light transmitted by a scattering layer at small angles. The same effect is
also observed in the single-scattering regime if the sizes of particles decrease. This
remark is of importance for optical particle sizing in cloudy media.

The approximation, which was considered in this section, is called the small-
angle approximation (SAA). Moments of different radiative characteristics in this
approximation were studied by Lutomirski et al. (1995).

3.6 Optically thick clouds

3.6.1 Fundamental Relationships

Another case, where simple analytical results can be obtained, is that of thick
(τ0 → ∞) clouds. Note that final equations derived here can be actually applied at
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τ0 ≥ 10 or at somewhat smaller values depending on the accuracy requirements.
This means that this case covers most cloudy situations occurring in the terrestrial
atmosphere. Before we proceed to the derivation of analytical equations for func-
tions R and T at τ0 � 1, we need to establish some auxiliary asymptotic relations.

It is known that light intensity in deep layers of optically thick media is az-
imuthally independent. The azimuthally integrated radiative transfer equation [see
Eq. (3.14)] can be written in the following form:

η
d I (τ, η)

dτ
= −I (τ, η) + B(τ, η) + B0(τ, η), (3.85)

where

B(τ, η) = ω0

2

∫ 1

−1
p(η, η′)I (τ, η′)dη′, (3.86)

B0(τ, η) = ω0 F

4π
p(η, ξ )e−τ/ξ , (3.87)

and

p(η, ξ ) = 1

2π

∫ 2π

0
p(η, ξ, ϕ)dϕ (3.88)

is the azimuthally averaged phase function. We also neglect polarization effects.
Let us assume that τ → ∞. Then it follows: B0(τ, η) → 0 and

I (τ, η) = i(η)e−kτ . (3.89)

The last equation corresponds to the so-called deep-layer regime, when pa-
rameters η and τ are decoupled. Then the overall light flux f decreases with the
distance from the illuminated boundary preserving the scattered light angular pat-
tern given by the function i(η). The value of f decreases in e times on the optical
depth τe = 1/k. Both the function i(η) and the diffusion exponent k, play an im-
portant role in the theory considered here. These characteristics of the deep-layer
regime also define the intensity of transmitted and reflected light as will be shown
below.

So we have from Eq. (3.85):

(1 − kη)i(η) = ω0

2

∫ 1

−1
p(η, η′)i(η′)dη′. (3.90)

This integral equation is usually solved numerically. Let us assume that p = 1.
Then we have:

i(η) = ω0

2(1 − kη)

∫ 1

−1
i(η′)dη′ (3.91)
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or

i(η) = D

1 − kη
, (3.92)

where

D = ω0

2

∫ 1

−1
i(η′)dη′ (3.93)

does not depend on the angle. Note that i(η) satisfies the radiative transfer equation
(3.90) for any constant D and, therefore,

i(η) = 1

1 − kη
(3.94)

and

I (τ, η) = exp(−kτ )

1 − kη
, (3.95)

where we used the normalization condition: D = 1. The diffusion constant k can be
found as follows. Let us substitute (3.92) in (3.91) taking into account that D = 1.
Then we have:

ω0

2k
ln

(
1 + k

1 − k

)
= 1. (3.96)

This equation allows to find k at arbitrary ω0 and p(θ ) = 1. Clearly, we have at
ω0 = 1 : k = 0. The dependence k(ω0) at p(θ ) = 1 is given in Fig. 3.2. For more
complex phase functions a numerical solution is needed. The results of correspon-
dent calculations for the Heney–Greenstein phase function

p(θ ) =
∞∑

n=1

gn Pn(cos θ) (3.97)

at the asymmetry parameters g = 0.75 (ice clouds) and g = 0.85 (water clouds)
are also given in Fig. 3.2. We see that 0 ≤ k ≤ 1. This means that the decrease
rate of the diffuse light in the deep-layer regime (exp(−kτ )) for absorbing media
is smaller than that of the direct light (exp(−τ )).

It follows also:

(1 + kη)i(−η) = ω0

2

∫ 1

−1
p(−η, η′)i(η′)dη′ (3.98)

or

(1 + kη)i(−η) = ω0

2

∫ 1

−1
p(η, η′)i(−η′)dη′, (3.99)

where we used the property: p(−η,−η′) = p(η, η′).
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Fig. 3.2. Dependence of the diffusion exponent on the single-scattering albedo for isotropic
scattering. Calculations of the diffusion exponent for single-scattering albedos typical for water
(0.85) and ice (0.75) clouds are also shown. It follows that the value of k decreases with g for a
given ω0.

Let us establish now the relationship between the intensity i↓(η) for light prop-
agated downwards and the intensity i↑(−η) for light propagated upwards. Arrows
show the direction of light propagation. The value of η = | cosϑ | is positive by def-
inition. Note that negative cosϑ corresponds to upwelling light flux. We consider

plane at τ � 1 is illuminated not only by light coming from above and having
the intensity ia but also by light coming from below and reflected from the layer
laying above the plane of cut. We denote this contribution to the total intensity as
ib. Clearly, we have:

i↓(η) = ia(η) + ib(η). (3.100)

a cut parallel to the upper boundary but at a large optical depth. The corresponding
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Fig. 3.3. Contributions to downward light flux.

So the function i↓(η) can be presented as a sum of two terms (see Fig. 3.3). Clearly,
ia(η) is proportional to the angular distribution u(η) of light transmitted by the
upper layer:

ia(η) = Mu(η), (3.101)

where M is the unknown proportionality constant. We will find this constant at later
stages of our derivations. Also it follows from Eq. (3.19) for the intensity ib(η):

ib(η) = 2
∫ 1

0
R(η, η′)i(−η′)η′dη′, (3.102)

where R(η, η′) is the azimuthally averaged reflection function of the upper layer
under illumination from below (η > 0, η′ > 0). This layer could be chosen to be
arbitrary thick. So we will assume that R(η, η′) coincides with the azimuthally
averaged reflection function of a semi-infinite layer R∞(η, η′).

Summing up, it follows:

i↓(η) = Mu(η) + 2
∫ 1

0
R∞(η, ξ )i(−ξ )ξdξ . (3.103)

Let us find M . For this we multiply the last equation by ηi↓(η) and integrate it
from 0 to 1 with respect to η. Then we have:∫ 1

0
ηi↓2(η)dη = M

∫ 1

0
u(η)i↓(η)ηdη + � (3.104)



RADIATIVE TRANSFER 131

where the two-dimensional integral

� = 2
∫ 1

0
i↓(η)ηdη

∫ 1

0
R∞(η, ξ )i↑(−ξ )ξdξ (3.105)

can be simplified. For this we note that it follows

i↑(−ξ ) = 2
∫ 1

0
i↓(η)R∞(η, ξ )ηdη (3.106)

and, therefore,

� =
∫ 1

0
i↑2(−ξ )ξdξ (3.107)

or

� = −
∫ 0

−1
i↓2(ξ )ξdξ . (3.108)

Therefore, it follows:

M = C

∫ 1

−1
i2(η)ηdη, (3.109)

where

C =
[∫ 1

0
u(η)i(η)dη

]−1

. (3.110)

We will use the normalization condition: C = 2. Then one derives:

M = 2
∫ 1

−1
i2(η)ηdη. (3.111)

We present the equation for M together with other important relationships in
Table 3.3. The constant N defined in the property 8 (see Table 3.3) will be used in
further derivations devoted to studies of relationships between auxiliary functions
defined as

P(τ ) =
∫ 1

−1
ηi(η)I (τ, η)dη (3.112)

and

Q(τ ) =
∫ 1

−1
ηi(−η)I (τ, η)dη. (3.113)

The relationships between functions P(τ ) and Q(τ ) can be used for the derivation
of asymptotic equations for reflection and transmission functions valid as τ0 → ∞.
Let us show this.
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Table 3.3. Main equations and constants (u0 ≡ u(ω0 = 1), R0∞ ≡ R0∞(ω0 = 1)).

N Property

1 (1 − kη)i(η) = ω0
2

∫ 1
−1 p(η, η′)i(η′)dη′

2 (1 + kη)i(−η) = ω0
2

∫ 1
−1 p(η, η′)i(−η′)dη′

3 ω0
2

∫ 1
−1 i(η)dη = 1

4 i(−η) = 2
∫ 1

0 i(ξ )R∞(ξ, η)ξdξ

5 i(η) = 2
∫ 1

0 i(−ξ )R∞(ξ, η)ξdξ + Mu(η)

6 2
∫ 1

0 u(η)i(η)ηdη = 1

7 M = 2
∫ 1

−1 i2(η)ηdη

8 N = 2
∫ 1

0 i(−η)u(η)ηdη

9 δ = ∫ 1
0 u0(ξ )ξ 2dξ

10 u0(ξ ) = 3
4

(
ξ + 2

∫ 1
0 R0∞(ξ, η)η2dη

)
11 2

∫ 1
0 u0(η)ηdη = 1

12 2
∫ 1

0 R0∞(ξ, η)ηdη = 1

First of all, we note that it follows from Eq. (3.90) after multiplication of this
equation by i(η) and integration from –1 to 1:

d P(τ )

dτ
= −k P(τ ) + P0(τ ), (3.114)

where

P0(τ ) =
∫ 1

−1
i(η)B0(τ, η)dη (3.115)

and we used the equality

−k P(τ ) =
∫ 1

−1
B(τ, η)i(η)dη −

∫ 1

−1
i(η)I (τ, η)dη. (3.116)

multiplying Eq. (1) in Table 3.3 by I (τ, η) and integrating this equation from –1
to 1 with respect to η:∫ 1

−1
I (τ, η)i(η)dη − k P(τ ) = ω0

2

∫ 1

−1
dη

∫ 1

−1
I (τ, η)p(η, η′)i(η′)dη′ (3.117)

This equality can be obtained from property 1 in Table 3.3. Namely, we have after
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or ∫ 1

−1
I (τ, η)i(η)dη − k P(τ ) =

∫ 1

−1
dη′ B(τ, η′)i(η′)dη′, (3.118)

where we used the property: p(η, η′) = p(η′, η). The last equation coincides with
Eq. (3.116).

The next step is to find P(τ ). For this we use the following substitution in
Eq. (3.114):

P(τ ) = f (τ )e−kτ . (3.119)

Then it follows:
d f (τ )

dτ
= P0(τ )ekτ (3.120)

or

f

∣∣∣∣ ττ1
=
∫ τ

τ1

P0(t)ekt dt . (3.121)

It means that

f (τ ) = f (τ1) +
∫ τ

τ1

P0(t)ekt dt . (3.122)

So we we have:

P(τ ) = f (τ1)e−kτ + e−kτ
∫ τ

τ1

P0(t)ekt dt . (3.123)

The value of τ1 can be found from boundary conditions. In particular, we are
interested in the diffuse light. Diffuse light does not enter the medium from above
or below (I (0, η) = 0 for η > 0 and I (τ0, η) = 0 for η < 0). Therefore, we have:
τ1

follows

P(τ ) = P(0)e−kτ +
∫ τ

0
P0(t)ek(t−τ )dt . (3.124)

A similar relationship can be obtained for Q(τ, η). Then we have:

d Q(τ )

dτ
= k Q(τ ) + Q0(τ ), (3.125)

where

Q0(τ ) =
∫ 1

−1
i(−η)B0(τ, η)dη. (3.126)

This equation differs for the correspondent equation for P only by the sign before
k. So we have:

Q(τ, η) = ψ (
τ ∗

1

)
ekτ + ekτ

∫ τ

τ ∗
1

Q0(t)e−kt dt, (3.127)

= 0. Then the boundary condition at the upper boundary is satisfied. Finally, it
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where it was assumed that

Q(τ ) = ψ(τ )ekτ . (3.128)

The value of τ ∗
1 can be found from the boundary condition at the lower boundary

of a medium. Namely, we have: τ ∗
1 = τ0. Therefore, it follows:

Q(τ ) = Q(τ0)ek(τ−τ0) +
∫ τ

τ0

Q0(t)e−k(t−τ )dt . (3.129)

This equation is satisfied automatically at τ = τ0 due to the accurate account for
the boundary conditions.

Summing up, we have the following important relationships:

P(τ ) = P(0)e−kτ + V (τ ), (3.130)

Q(τ ) = Q(τ0)ek(τ−τ0) + W (τ ), (3.131)

where

V (τ ) =
∫ τ

0
P0(t)ek(t−τ )dt, (3.132)

W (τ ) =
∫ τ

τ0

Q0(t)e−k(t−τ )dt . (3.133)

These fundamental relationships are valid for any τ and for any light sources
represented by B0 (Sobolev, 1975). They can be used for the derivation of a number
of important results of cloud optics.

We will use a particular case at τ = 0 in the first equation and a case τ = τ0

in the second equation. Then it follows:

P(τ0) = P(0) exp(−kτ0) + V (τ0), (3.134)

Q(0) = Q(τ0) exp(−kτ0) + W (0), (3.135)

where

V (τ0, η) = e−kτ0

∫ τ

0
P0dt

∫ 1

−1
i(η)

ω0

4
p(η, ξ )e−t((1/ξ )−k)dξ

= 1

2

(
ekτ0 − e−τ0/ξ

)
ξ i(−ξ ), (3.136)

and we used property 2 in Table 3.3. Also we have:

W (0, η) =
∫ 0

τ0

e−kt dt

∫ 1

−1
i(−η)

ω0

4
p(η, ξ )e−t/ξdη

= −1

2

(
1 − e−(k+(1/ξ ))τ0

)
ξ i(−ξ ). (3.137)
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Therefore, neglecting small numbers e−τ0/ξ , it follows as τ0 → ∞:

P(0, η) = −P(τ0, η)ekτ0 + 1

2
ξ i(−ξ ), (3.138)

Q(0, η) = Q(τ0, η)e−kτ0 − 1

2
ξ i(−ξ ). (3.139)

These are auxiliary relations we were bound to establish from the very start.
They can be also written in the following form:

i(ξ ) = 2
∫ 1

−1
T (η, ξ, τ0)i(η)ηdη + 2e−kτ0

∫ 1

−1
R(η, ξ, τ0)i(−η)dη, (3.140)

i(−ξ ) = 2
∫ 1

−1
R(η, ξ, τ0)i(η)ηdη + 2e−kτ0

∫ 1

−1
T (η, ξ, τ0)i(−η)ηdη, (3.141)

where T and R are determined as

R = π IR

μ0 F
, T = π IT

μ0 F
. (3.142)

3.6.2 Asymptotic Equations

The general form of functions R(η, ξ, τ0) and T (η, ξ, τ0) can be obtained using
physical arguments. In particular T should be proportional to u(η) (and, actually
due to the reciprocity principal also to u(ξ )). Therefore, we have:

T (η, ξ, τ0) = α(τ0)u(η)u(ξ ). (3.143)

Let us consider now a semi-infinite layer (see Fig. 3.4) and make a cut at a
large optical thickness τ0. Then we can represent R∞(η, ξ ) as a sum of reflection

21

O

Z

z=zc

z=0

Fig. 3.4. Contributions to upward light flux.
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from upper layer R(τ0, η, ξ ) (contribution 1, see Fig. 3.4) and light transmitted
by the upper layer and reflected back (contribution 2, see Fig. 3.4). The angular
distribution of the transmitted light should be proportional to u(η) as it was specified
above. So we have:

R∞(η, ξ ) = R(η, ξ, τ0) + β(τ0)u(η)u(ξ ). (3.144)

Let us find α and β substituting two last equations in asymptotic formulae
(3.140), (3.141). Then it follows:

i(ξ ) = 2ekτ0

∫ 1

−1
α(τ0)u(η)u(ξ )i(η)ηdη + 2

∫ 1

−1
(R∞(η, ξ )

− β(τ0)u(η)u(ξ ))i(−η)ηdη, (3.145)

i(−ξ ) = 2
∫ 1

−1
(R∞(η, ξ ) − β(τ0)u(η)u(ξ ))i(η)dη

+ 2e−kτ0

∫ 1

−1
α(τ0)u(η)u(ξ )i(−η)ηdη, (3.146)

and, therefore,

i(ξ ) = ekτ0α(τ0)u(ξ ) + i(ξ ) − Mu(ξ ) − β(τ0)u(ξ )N , (3.147)

i(−ξ ) = i(−ξ ) − β(τ0)u(ξ ) + αNe−kτ0 u(ξ ), (3.148)

where we introduced the integral (see Table 3.3)

N = 2
∫ 1

−1
u(η)i(−η)ηdη. (3.149)

It follows:

α(τ0) − Me−kτ0 − βNe−kτ0 = 0, (3.150)
β(τ0) = α(τ0)Ne−kτ0 (3.151)

and, therefore,

α(τ0) = Me−kτ0

1 − N 2e−2kτ0
. (3.151)

Finally, we have (Sobolev, 1975, 1984):

R(η, ξ, ϕ, τ0) = R∞(η, ξ, ϕ) − T (ξ, η, τ0)Ne−kτ0, (3.152)

T (ξ, η) = Me−kτ0

1 − N 2e−2kτ0
u(η)u(ξ ), (3.153)

where we accounted for the fact that the transmitted light does not depend on the
azimuth ϕ.

These formulae are central equations of the cloud optics. The importance of
these equations is due to the fact that the dependence on τ0 is given explicitly. Our
next task is to derive approximate equations for constants k,M, N and functions
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u(η), R∞(η, ξ, ϕ) in a number of particular cases. Numerical calculations of these
functions have been performed by Nakajima and King (1992). The accuracy of

3.6.3 Weak Absorption Limit

Equations given above can be simplified considerably for the case of values
of ω0 close to one. This case is of particular importance for cloud optics due to

approximate expressions for functions R∞(η, ξ ), u(η) and also for parameters k,
M , N as ω0 → 1. Let us concentrate on this problem now.

3.6.3.1 The constants k, M and the diffuse light field in deep layers

The parameter M depends on the diffuse light intensity i(η) in deep layers of
a cloud:

M = 2
∫ 1

−1
i2(η)ηdη. (3.154)

So we need to study functions i(η) as ω0 → 1. The radiative transfer equation
for the normalized light intensity i(η) deep inside of a homogeneous cloudy medium
has the following form as it was discussed above:

(1 − kη)i(η) = ω0

2

∫ 1

−1
p(η, η′)i(η′)dη′, (3.155)

where p(η, η′) is the azimuthally averaged phase function, ω0 is the single-
scattering albedo and k is the diffusion exponent. The normalization condition
for i(η) has the following form:

ω0

2

∫ 1

−1
i(η′)dη′ = 1. (3.156)

We introduce the following expansions:

p(η, η′) =
∞∑

n=0

xn Pn(η)Pn(η′) (3.157)

and

i(η) =
∞∑

n=0

σn Pn(η). (3.158)

Eqs. (3.152), (3.153) was studied by Konovalov (1975), Melnikova and Vasyliev 
(2005), and Kokhanovsky and Nauss (2006).

weak absorption of water in the visible and near-infrared. Therefore, we need to find
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The task is to find σn knowing xn and using Eq. (3.155). So we have from Eq.
(3.155):

B =
∞∑

n=0

σn Pn(η) − kη
∞∑

n=0

σn Pn(η), (3.159)

where

B = ω0

2

∞∑
l=0

∞∑
n=0

∫ 1

−1
xlσn Pl(η)Pl(η

′)Pn(η′)dη′ (3.160)

or

B = ω0

∞∑
l=0

∞∑
n=0

σnxlδnl[2n + 1]−1 Pn(η) (3.161)

and after simplifications:

B = ω0

∞∑
n=0

xnσn[2n + 1]−1 Pn(η). (3.162)

We used the following orthogonality relationship:∫ 1

−1
Pn(η)P (η)dη = 2δnl[2n + 1]−1, (3.163)

where δnl is the Kronecker symbol.
Therefore, it follows:

1

k

∞∑
n=0

σn

{
1 − xnω0

2n + 1

}
Pn(η) =

∞∑
n=0

σn

{
n + 1

2n + 1
Pn+1(η) + n

2n + 1
Pn−1(η)

}
,

(3.164)
where we used the property:

Pn(η) = n + 1

2n + 1
Pn+1(η) + n

2n + 1
Pn−1(η). (3.165)

The expressions for

ς (η) =
∞∑

n=0

σn
n + 1

2n + 1
Pn+1(η) (3.166)

and

υ(η) =
∞∑

n=0

σn
n

2n + 1
Pn−1(η) (3.167)

l
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can be written as

ς (η) =
∞∑

l=1

σl−1
l

2l − 1
Pl(η) (3.168)

and

υ(η) =
∞∑

s=0

σs+1
s + 1

2s + 3
P (η), (3.169)

where l = n + 1, s = n − 1.
Therefore, it follows:

∞∑
m=0

[
1

k
σm − xmω0

(2m + 1)k
σm − m

2m − 1
σm−1 − m + 1

2m + 3
σm+1

]
P (η) = 0

(3.170)
for arbitrary η. This means that

1

k
σm − xmω0

(2m + 1)k
σm − m

2m − 1
σm−1 − m + 1

2m + 3
σm+1 = 0 (3.171)

or

σm+1 = (2m + 3)(2m − ω0xm + 1)

(2m + 1)(m + 1)k
σm + (2m + 3)m

(2m − 1)(m + 1)
σm−1. (3.172)

Let us assume that m = 0. Then we have:

σ1 = 3σ0(1 − ω0)

k
. (3.173)

It is easy to derive the analytical expression for the value of σ0. It follows that

σm = 2m + 1

2

∫ 1

−1
i(η)Pn(η)dη (3.174)

and, therefore,

σ0 = 1

2

∫ 1

−1
i(η)dη. (3.175)

0 = ω−1
0 and, therefore,

σ1 = 3(1 − ω0)

kω0
. (3.176)

This allows to obtain the following asymptotic expression from Eq. (3.158):

i(η) = ω−1
0

{
1 + 3k−1(1 − ω0)η

}
, (3.177)

s

m

So we can derive  (see property 3 in Table 3.3): σ
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where we neglected higher order terms. It follows as ω0 → 1:

i(η) = 1 + 3k−1(1 − ω0)η. (3.178)

Recurrence relations (3.172) allow us to find σm and i(η) at any k. We will not

0

For this we introduce:

m = σm

σm−1
. (3.179)

Then it follows from Eq. (3.172):

ϒm+1 = (2m + 3)(2m − ω0xm + 1)

(2m + 1)(m + 1)k
− (2m + 3)m

(2m − 1)(m + 1)ϒm
(3.180)

and

ϒm = (2m + 3)m

(2m − 1)(m + 1)
[

(2m+3)(2m+1−ω0xm )
(2m+1)(m+1)k −ϒm+1

] (3.181)

or

ϒm = (2m + 3)(2m + 1)mk

(2m + 3)(2m − 1)(2m + 1 − ω0xm) − εm
, (3.182)

where

(3.183)

Because we are interested in the asymptotic solution valid as k → 0, we can
ignore εm and derive at m = 1:

ϒ1 = 3k

(3 − ω0x1)
. (3.184)

So it follows:

σ1 = 3k

(3 − ω0x1)
σ0 (3.185)

or

σ1 = 3k

(3 − ω0x1)ω0
. (3.186)

Therefore, we finally derive (see also Eq. (3.176)):

k =
√

3(1 − ω0)(1 − gω0), (3.187)

where g = x1/3 is the asymmetry parameter. This important equation shows that
the intensity in the deep layers of clouds decreases faster for smaller values of g

εm = m + 1ϒk(4m2 )(m + 1) .

consider correspondent results here, however, but rather concentrate on the derivation
of the approximate equation

ϒ

for k valid asω → 1.

− 1
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(less extended in the forward direction phase functions). Our derivations are valid
as ω0 → 1 only. So we can also write:

k =
√

3(1 − ω0)(1 − g). (3.188)

The approximate expression for the diffusion constant given here is of a great

i(η) = 1 +
√

3sη, (3.189)

where

s =
√

1 − ω0

1 − g
(3.190)

0 media having different ω0 and g but the same s have
ω0 ≈ 1.

Let us introduce the ratio D = i(−1)/ i(1). This ratio is equal to one for nonab-
sorbing media. However, it follows from Eq. (3.189) for weakly absorbing media:
D = 1 − ς√1 − ω0, ς = 2

√
3/(1 − g). Therefore, measurements of g and D can

be used to find the probability of light absorption β = 1 − ω0. Namely, it follows:
β = (1 − D)2/ς2.

The parameters k and s are of a crucial importance for the theory considered
here. We expect that other asymptotic constants and functions must depend on
these parameters as well. In particular, we derive using property 7 in Table 3.3:

M = 8s√
3

(3.191)

as k → 0.

3.6.3.2 The constant N and the escape function

The expansion of u(η) with respect to the diffusion coefficient k can be pre-
sented as

u(η) =
∞∑

n=0

knun(η). (3.192)

(3.178):
importance for cloud optics studies. In particular, we can derive from Eqs. (3.187),

is the similarity parameter. Surprising result is that the angular pattern i(η) does

ω

not depend on the choice of the particular light scattering medium if s kept
ηconstant. The function i( ) is completely determined by the similarity parameter s as

→ 1. Therefore, cloudy
very similar light angular distributions in deep layers at

ω0
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We are interested only in the case of weak absorption. Then it follows:

u(η) = u0(η) + ku1(η). (3.193)

The task is to calculate the function u1(η). This will be performed in two steps.

0 1 0

0

2
∫ 1

0
u(η)i(η)ηdη = 1. (3.194)

u(η) = u0(η)(1 + bk) (3.195)

and

i(η) = 1 + akη, (3.196)

where a = (1 − g )−1 as underlined above.
Then it follows (see Eqs. (3.188), (3.189)):

2
∫ 1

0
u0(η)ηdη + 2bk

∫ 1

0
u0(η)ηdη + 2ak

∫ 1

0
u0(η)η2dη = 1 (3.197)

or

b = −2a

∫ 1

0
u0(η)η2dη, (3.198)

where we accounted for the fact that (see property 6 at ω0 = 1 (i = 1) in Table 3.3)

2
∫ 1

0
u0(η)ηdη = 1 (3.199)

Finally, it follows:

b = − 2δ

1 − g
, (3.200)

where we accounted for the fact that a = (1 − g )−1 and

δ =
∫ 1

0
u0(η)η2dη (3.201)

First of all we note that the weak absorption of light does not alter single scattering

u(η) ≈ u (η)
determined  l a rgely by the multiple   s c  attering processes. So it is safe to assume that
angular pattern considerably. The angular distribution of emerging light u(η) is

as k → 0 or u (η) = bu (η), where the constant b should be deter-
mined. Clearly, due to physical reasons we should have: u(η)< u (η) and b < 0.
Therefore, absorption plays the role of a veil in this case. It reduces the contrast
but it does not change details of the scattering pattern. We start from the expression:

Let us use the following expansions in this formula:

ω0

ω0

ω0

and we neglect the terms of second order with respect to k.
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is the second moment of the escape function. Therefore, one finally derives:

u(η) =
(

1 − 2δk

1 − g

)
u0(η). (3.202)

This equation allows to find the constant N as k → 0. Namely, it follows from
property 8 in Table 3.3:

N = 2
∫ 1

−1
dηu0(η)

{
1 − 2δk

1 − g

}{
1

kη

1 − g

}
(3.203)

or

N = 1 − 3δk

2(1 − g )
, (3.204)

where we neglected terms of the second order with respect to k. We can also write:

N = 1 − 3
√

3s

2
. (3.205)

F(η, ξ ) = 8s√
3

u0(η)u0(ξ ). (3.206)

3.6.3.3 The reflection function of a semi-infinite layer R∞(ξ, η)

The last point in our derivations of asymptotics as ω0 → 1 is the derivation
of the weak absorption approximation for the reflection function of a semi-infinite
medium R∞(ξ, η). This will be done in two steps.

Step 1.
The expression for a plane albedo of a semi-infinite medium is written by
a definition as

rd (ξ ) = 2
∫ 1

0
R∞(ξ, η)ηdη. (3.207)

We will use the following expansion of R∞(ξ, η) with respect to k:

R∞(ξ, η) = R0∞(ξ, η) − k R1∞(ξ, η), (3.208)

1∞
∞(ξ, η) ≤ R0∞

rd (ξ ) = 1 − k J (ξ ), (3.209)

ω0

ω0
−

ω0

δ

absorption processes. One can see that

ω0

0

F(η, ξ ) = Mu(η)u(ξ ). This means that one can useformulae in the combination: 
the following approximation valid as k → 0 (see Eq. (3.191)):

Note that due to the reciprocity principle functions u (μ) enter asymptotic

where R (ξ,η) is the function we need to derive. The minus signifies
(ξ,η) due to reduction of  reflection by the fact that R
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where

J (ξ ) = 2
∫ 1

0
R1(ξ, η)ηdη (3.210)

and we used the property:

2
∫ 1

0
R0∞(ξ, η)ηdη = 1. (3.211)

Step 2.
We derive now the asymptotic equation for rd (ξ ) as k → 0 using other set
of equations. This will allow us to give a relationship between J (ξ ) and

0

i(−ξ ) = 2
∫ 1

0
i(η)R∞(ξ, η)ηdη. (3.212)

Substituting expansions with respect to k and ignore high-order terms, we
obtain:

1 − kξ

1 − g
= 2

∫ 1

0

(
1 + kη

1 − g

)
(R0∞(ξ, η) − k R1∞(ξ, η))ηdη.

(3.213)
This means that

1 − kξ

1 − g
= 1 − k J + 2k

1 − g

∫ 1

0
R0∞(ξ, η)η2dη (3.214)

or

− ξ

1 − g
= − J + 2

1 − g

∫ 1

0
R0∞(ξ, η)η2dη, (3.215)

where [see Eq. (3.209)]

J = 1 − rd (ξ )

k
. (3.216)

This means that

(1 − g )(1 − rd (ξ ))k−1 = 2
∫ 1

0
R0∞(ξ, η)η2dη + ξ (3.217)

or

rd (ξ ) = 1 − k

1 − g

{
ξ + 2

∫ 1

0
R0∞(ξ, η)η2dη

}
. (3.218)

in Table 3.3):

u (ξ ). We start from the following equation derived above (see property 4 

ω0 ω0

ω0 ω0

ω0 ω0

ω0

ω0

at d = 1 ω0rEq. (3.211)  follows from Eq. (3.207) and the fact that = 1.
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i(ξ ) = Mu(ξ ) + 2
∫ 1

0
i(−η)R∞(ξ, η)ηdη (3.219)

or as k → 0:

1+ kξ

1−g
= 8ku0(ξ )

3(1−g )
+ 2

∫ 1

0

(
1− kη

1−g

)
(R0∞(ξ, η)−k R1∞(ξ, η))ηdη.

(3.220)
This means that

kξ

1 − g
= 8ku0(ξ )

3(1 − g)
− 2k

1 − g

∫ 1

0
R0∞(ξ, η)η2dη − k J (ξ )

(3.221)
or

ξ = 8

3
u0(ξ ) − 2

∫ 1

0
R0∞(ξ, η)η2dη − (1 − g )J (ξ ). (3.222)

J (ξ ) = 2
∫ 1

0
R1∞(ξ, η)ηdη = (1 − rd (ξ ))k−1. (3.223)

Therefore, it follows:

(1 − rd (ξ ))k−1 = (1 − g )−1

(
ξ + 2

∫1
0

R0∞(ξ, η)η2dη

)
(3.224)

and

J (ξ ) = (1 − g)−1

(
ξ + 2

∫ 1

0
R0∞(ξ, η)η2dη

)
(3.225)

ξ = 8u0(ξ )

3
− ξ − 4

∫ 1

0
R0∞(ξ, η)η2dη (3.226)

and

8u0(ξ )

3
= 2ξ + 4

∫ 1

0
R0∞(ξ, η)η2dη. (3.227)

This allows us to derive the following important relationship:

u0(ξ ) = 3

4

[
ξ + 2

∫ 1

0
R0∞(ξ, η)η2dη

]
. (3.228)

Comparing this formula with Eq. (3.224), we obtain:

rd (ξ ) = 1 − 4ku0(ξ )

3(1 − g )
. (3.229)

On the other hand, we have (see property 5 in Table 3.3):

ω0 ω0 ω0

ω0

We remind that (see Eq. (3.216))

ω0

or (see Eq. (3.222) and Eq. (3.225))

ω0
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But also we derived:

rd (ξ ) = 1 − k J (ξ ). (3.230)

This means that

J (ξ ) = 2
∫ 1

0
R1∞(ξ, η)ηdη = 4u0(ξ )

3(1 − g )
. (3.231)

R1∞
with respect to the pair (ξ, η). Therefore, it follows:

R1∞(ξ, η) = cu0(ξ )u0(η). (3.232)

Substituting this formula in Eq. (3.231) given above, we derive for the
constant c:

c = 4

3(1 − g )
, (3.233)

2
∫ 1

0
u0(η)ηdη = 1. (3.234)

Finally, we have:

R∞(ξ, η) = R0∞(ξ, η) − 4k

3(1 − g )
u0(ξ )u0(η) (3.235)

or

R∞(ξ, η) = R0∞(ξ, η) − 4su0(ξ )u0(η). (3.236)

r = 1 − 4√
3

s (3.237)

and

rd (ξ ) = 1 − 4√
3

su0(ξ ). (3.238)

Main asymptotic equations valid as k → 0 are given in Table 3.4. It follows
that R and T in the case of weak absorption can be easily calculated if the functions
u0(ξ ) and R0∞(ξ, η) are known. Moreover, Eq. (3.228) can be used to find u0(ξ )
from R0∞(ξ, η).

The choice of the normalization condition for the function u(ξ ) (and also for
i(ξ ) and derived parameters like M) is arbitrary. We followed notations of Sobolev

ω0

Due to the reciprocity principle, the function (ξ, η) must be symmetric

ω0

ω0

This also means that the spherical albedo (see Table 3.1)

(1975). They differ from corresponding equations used by van de Hulst (1980). For

where we used the property 11 in Table 3.3
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Table 3.4. Asymptotic equations valid as k → 0
(
δ = ∫ 1

0 u0(ξ )ξ 2dξ, s =
√

1−ω0

1−g

)
.

R∞(ξ, η, ϕ) R0∞(ξ, η, ϕ) − 4k

3(1 − g )
u0(ξ )u0(η)

u(ξ )

(
1 −

)
u0(ξ )

M
8k

3(1 − g )

N 1 − δk

1 − g

Mu(ξ )u(η)
8k

3(1 − g )
u0(ξ )u0(η)

k
√

3(1 − ω0)(1 − g )

r 1 − 4s/
√

3

rd (ξ ) 1 − 4su0(ξ )/
√

3

instance, van de Hulst’s diffusion pattern P(ξ ) must be divided by ω0 to yield i(ξ ).
His escape function K (ξ ) must be multiplied by ω0 to yield u(ξ ), and his Mequals
to that used by Sobolev multiplied by ω2

0. These differences do not lead to any
extra factors in main equations. However, they must be remembered. Clearly, all
differences between normalizations disappear for the case of nonabsorbing clouds.
This case will be considered in the next Section.

3.6.4 Nonabsorbing Optically Thick Clouds

3.6.4.1 Main equations

Let us assume that there is no absorption in the medium (e.g., water clouds in
the visible). Then it follows using Table 3.4 and Eqs. (3.152) and (3.153):

R(ξ, η, ϕ) = R0∞(ξ, η, ϕ) − tu0(ξ )u0(ξ ) (3.239)

and

T (ξ, η) = tu0(ξ )u0(ξ ), (3.240)

where we accounted for the fact that the transmittance of a thick cloud layer does
not depend on the azimuth ϕ and

t = 1

α + 0.75(1 − g)τ
, (3.241)

ω0

δk2

(1 − g )

ω0

ω0

ω0

ω0

ω0
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where α = 3δ. The plane albedo rd (ξ ), the spherical albedo r , the diffuse transmit-

d

rd (ξ ) = 2
∫ 1

0
R(ξ, η)ηdη, (3.242)

r = 2
∫ 1

0
rd (ξ )ξdξ, (3.243)

td (ξ ) = 2
∫ 1

0
T (ξ, η)ηdη, (3.244)

t = 2
∫ 1

0
td (ξ )ξdξ . (3.245)

This allows to derive the following analytical relationships:

rd (ξ ) = 1 − tu0(ξ ), r = 1 − t, td (ξ ) = tu0(ξ ) (3.246)

and also confirm that tgiven by Eq. (3.241) coincides with the global transmittance.
It follows that the calculation of reflection and transmission functions of optically
thick nonabsorbing cloud layers is reduced to the calculation of the reflection
function of a semi-infinite nonabsorbing cloud R0∞(ξ, η, ϕ). The functions u0(ξ )
can be calculated from Eq.(3.228) and the parameter α is defined as

α = 3
∫ 1

0
u0(η)η2dη. (3.247)

We will show later that α ≈ 1.07 independent of the phase function
(Kokhanovsky et al., 2004a). The function R0∞(ξ, η, ϕ) can be derived from the

In the next section we introduce useful approximations for R0∞(ξ, η, ϕ) and
also for u0(ξ ). The important property of these functions is the fact that they do not
depend on the pair (ω0, τ ) and that they are completely determined by the phase
function. Moreover, the dependence on the phase function is rather weak because
functions u0(ξ ), R0∞(ξ, η, ϕ) are related to the problems involving light diffusion
in semi-infinite nonabsorbing media. So multiple light scattering is quite important
in this case. It leads to the averaging of the scattering features characteristic for a
single-scattering event. This also means that a good starting point for the derivation
of approximate solutions for u0(ξ ), R0∞(ξ, η, ϕ) valid at arbitrary g is the case of
g = 0 (isotropic scattering).

tance t (ξ ) and the global transmittance t are given as (see Table 3.1)

numerical solution of the corresponding integral equation (Ambartsumian, 1943).
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3.6.4.2 Auxiliary functions

We start the consideration of auxiliary functions from the well studied case of
isotropic scattering. Then the nonlinear integral equation for the reflection function
of a nonabsorbing semi-infinite medium can be presented in the following form
(Ambartsumian, 1943):

R0∞(ξ, η) = 1 + 2ξ
∫ 1

0 R0∞( , η′)dη′ + 2η
∫ 1

0 R0∞(η , η′)dη′ + G(ξ, η)

4(ξ + η)
,

(3.248)
where

G(ξ, η) = 4ξη
∫ 1

0

∫ 1

0
R0∞(ξ, η′)R0∞(η, η′′)dη′dη′′. (3.249)

The inspection of this equation shows that it can be reduced to the following more
simple form:

R0∞(ξ, η) = H (ξ )H (η)

4(ξ + η)
(3.250)

with

H (ξ ) = 1 + 2ξ
∫ 1

0
R0∞(ξ, η′)dη′. (3.251)

The last two equations allow to formulate the integral equation for the function
H (ξ ):

H (ξ ) = 1 + 0.5ξH (ξ )
∫ 1

0

H (η)

ξ + ηdη. (3.252)

It follows immediately: H (0) = 1.0.Numerical calculations show that the function
H (ξ ) can be approximated by the linear function [H (ξ ) = 1 + 2ξ (see Fig. 3.5)].
The substitution of this linear approximation into the expression for R0∞(ξ, η)
gives:

R0∞(ξ, η) = 1 + 2(ξ + η) + 4ξη

4(ξ + η)
. (3.253)

This is a rather accurate approximation of the reality in the isotropic scattering
case. Further, we note that the value of R0∞(ξ, η) can be separated in two parts:

R0∞(ξ, η) = Rs
0∞(ξ, η) + Rm

0∞(ξ, η), (3.254)

where the first term is due to single scattering [Rs
0∞(ξ, η) = 0.25(ξ + η)−1, see

Eq. (3.62) at p = 1, ω0 = 1, τ0 → ∞] and the second one (Rm
0∞(ξ, η) = [0.5 +

ξη(ξ + η)−1]) is due to multiple light scattering.

ξ
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exact result
1+2ξ

ξ

Fig. 3.5. Dependence of the H -function on the cosine of incidence angle using exact calculations
and approximation H (ξ ) = 1 + 2ξ.

Then we have:

Rs
0∞(ξ, η) = 0.25p(θ )(ξ + η)−1 (3.255)

Rm
0∞(ξ, η) = A + B(ξ + η) + Cξη

4(ξ + η)
, (3.256)

where A, B and C are constants to be determined. There are different ways to get
these constants. In particular integral relationships involving the function R0∞(ξ, η)
can be used.

They can be also found using the following fitting technique. The func-
tion R0∞(ξ, η, ϕ) is calculated using the exact radiative transfer equation
and then functions $(ξ, η, ϕ) = 4(ξ + η)R̃0∞(ξ, η, ϕ), where R̃0∞(ξ, η, ϕ) =

We make the same separation for the anisotropic (g �= 0) scattering case.

and we assume that it holds for anisotropic multiple light scattering:
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Fig. 3.6. Dependence of reflection function at the nadir observation of a semi-infinite cloud on
the solar zenith angle at aef = 4, 16 μm and λ = 0.55 μm. The gamma PSD with μ = 6 was
used in calculations. Results both exact and approximate calculations are shown.

R0∞(ξ, η, ϕ) − Rs
0∞(ξ, η, ϕ), are fitted by linear functions of the argument as-

suming, e.g., η = 1.This technique gives: A = 3.944, B = −2.5, C = 10.664 for
water clouds, and A = 1.247, B = 1.186, C = 5.157 for ice clouds as discussed by
Kokhanovsky (2004b, 2005). The results of numerical calculations of R0∞(ξ, η, ϕ)
are given in Fig. 3.6. It follows that the reflection function of clouds having differ-
ent values of aef almost coincide at ω0 = 1 [although phase functions do depend
on the size of particles (see Fig. 3.7)]. Note that the shape of particles has some
influence on functions R0∞(ξ, η, ϕ) as shown in Fig. 3.8.

0

This can be done in the following way.
It was shown above that the following relationship holds:

u0(ξ ) = 3

4

[
ξ + 2

∫ 1

0
R0∞(ξ, η)η2dη

]
. (3.257)

Let us substitute R0∞(ξ, η) for the isotropic case in this equation. Then it follows:

u0 (ξ ) = 3

4

[
ξ + 1

2

∫ 1

0

H (ξ )H (η)

ξ + η η2dη

]
. (3.258)

The next point is to derive the corresponding equation for the function u (ξ ).
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Fig. 3.7. Dependence of the cloud phase function on the effective size of water droplets at
λ = 0.55 μm. The gamma PSD with μ = 6 was used in calculations.
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Fig. 3.8. Dependence of reflection function at the nadir observation of a semi-infinite cloud
on the solar zenith angle for spherical particles (gamma PSD, aef = 6 μm, μ = 6), hexagonal
randomly oriented ice cylinders with aspect ratio 1.0 and ice fractal particles calculated using
exact radiative transfer code (Mishchenko et al., 1999) at λ = 0.55 μm.
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We can represent H (η)η(ξ + η)−1 as H (η)(1 − ξ (ξ + η)−1). So we have:

u0(ξ ) = 3

4

[
ξ + 1

2
H (ξ )

∫ 1

0
H (η)ηdη − H (ξ )ξ

2

∫ 1

0

H (η)

ξ + ηηdη

]
. (3.259)

This can be written as

u0(ξ ) = 3

4

[
ξ + 1

2
CH (ξ ) −�ξ

]
, (3.260)

where

C =
∫ 1

0
H (η)ηdη (3.261)

and (see Eq. (3.250))

� = 2
∫ 1

0
R0∞(ξ, η)ηdη. (3.262)

But we have, due to property 11 (see also property 4) in Table 3.3 (the conservation
energy law): � = 1 and

u0(ξ ) = 3C

8
H (ξ ). (3.263)

This means that the function u0(ξ ) is proportional to H (ξ ). The constant C can
easily be derived for the isotropic scattering. For this we multiply the last equation
by 2ξ and integrate with respect to ξ. Then it follows:

C = 2√
3
, (3.264)

where we used normalization conditions. Therefore, we establish an important
relationship:

u0(ξ ) =
√

3

4
H (ξ ). (3.265)

Surprisingly, two completely separate radiative transfer problems [for the determi-
nation of H (ξ ) and u0(ξ )] have shown themselves to be interrelated in the case
under study. This important theoretical result, valid for isotropic scattering allows

0

for H (ξ ). A number of parameterizations and approximations can be derived in
such a way.

We will use the fact that H (ξ ) is well approximated by the function 1 + 2ξ
(see Fig. 3.5). Then it follows:

u0(ξ ) = Q(1 + 2ξ ), (3.266)

to derive approximate equations for u (ξ ) just using the corresponding equations
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Fig. 3.9. Dependence of the escape function on the cosine of the zenith observation angle at g =
0, 0.75, and 0.85. Results of calculations obtained using the approximation u0(ξ ) = 3(1 + 2ξ )/7
are also shown.

where Q = √
3/4 ≈ 3/7.We use the approximate equality (the error is under 1%)

here to satisfy the normalization condition (see property 11 in Table 3.3). So finally,
we have:

u0(ξ ) = 3

7
(1 + 2ξ ). (3.267)

Although this result is strictly valid only for isotropic scattering, we find that the
error of this approximation is below 2% at ξ ≥ 0.2 (see Fig. 3.9). This also allows
to derive the value of δ = 15/42 (see property 9 in Table 3.3). Therefore, one can
use for α [see Eq. (3.247)]:α ≡ 3δ ≈ 1.07. This completes our derivations for the
nonabsorbing case.
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3.6.5 Exponential Approximation

3.6.5.1 Statistical physics approach

small values of the probability of photon absorption β = 1 − ω0, if correspon-
dent characteristics are known for the nonabsorbing case. The results are limited
to a very narrow range of β (typically, β ≤ 0.001). There are two possibilities to
avoid this problem. One is related to the derivation of higher order corrections
to the results given in Table 3.4 (generally, following the same path as described
above).

Yet another approach is based on the exponential approximation often used
in the diffusion theory. To demonstrate this technique, we represent the spherical
albedo as a series with respect to ω0 :

r (ω0) =
∞∑

n=1

anω
n
0 , (3.268)

where

r (ω0) = 2
∫ 1

0
rd (ξ )ξdξ . (3.269)

with

r (1) =
∞∑

n=1

an. (3.270)

However, it also follows by the definition: r (1) = 1,which is due to the energy
conservation law. Thus, one obtains that

∞∑
n=1

an = 1 (3.271)

and numbers an can be interpreted in terms of the probability theory. Such an
approach is often used in statistical physics. In particular, the value of a1 gives us
the probability that a photon will be singly scattered before escaping a cloud. The
probabilities of scattering events a1, a2, a3, . . . do not depend on each other. The
theorem of adding independent probabilities brings us to Eq. (3.268) as well. Let
us substitute the following exact expansion in Eq. (3.268):

ωn
0 ≡ (1 − β)n =

n∑
j=0

(−1) j

(
n
j

)
β j , (3.272)

Asymptotic solutions for weak absorption derived above allow for the consider-
ation of the influence of light absorption on cloud radiative characteristics for
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where (
n
j

)
≡ n!

j!(n − j)!
. (3.273)

Then it follows from Eq. (3.268):

r (β) =
∞∑

n=1

an

n∑
j=0

(−1) j

(
n
j

)
β j (3.274)

or in the explicit form:

r (β) =
∞∑

n=1

an

[
1 − βn + β

2n(n − 1)

2
− β

3n(n − 1)(n − 2)

6
+ . . .

]
, (3.275)

where we accounted for equalities:(
n
0

)
= 1,

(
n
1

)
= n,

(
n
2

)
= n(n − 1)

2
,

(
n
3

)
= n(n − 1)(n − 2)

6
. (3.276)

Equation (3.275) can be rewritten in the following form:

r = 1 − βn̄ + β
2n(n − 1)

2
− β

3n(n − 1)(n − 2)

6
+ . . . , (3.277)

where we used the normalization condition (3.271) and defined the following
averages:

n̄ =
∞∑

n=1

nan, n(n − 1) =
∞∑

n=1

n(n − 1)an, n(n − 1)(n − 2) =
∞∑

n=1

n(n −1)(n −2)an.

(3.278)
and so on. Here n̄ is the average number of scattering events in the medium.

Equation (3.277) is an exact formula. We did not make any approximations so
far. Now we should make some assumptions to have a possibility to sum series in
Eq. (3.277). First of all, we assume that the value of n̄ is large and, consequently,
n(n − 1) ≈ n2, n(n − 1)(n − 2) = n3 and so on. Clearly, such an approximation is
valid as β → 0 only. This gives us instead of Eq. (3.277):

r = 1 − βn + β
2

2
n2 − β

3

6
n3 + . . . (3.279)

or

r = exp(−βn), (3.280)
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where we used the expansion

exp(−βn) =
∞∑

k=0

(−1)k(βn)k

k!
. (3.281)

Thus, the value of r is given by

r =
∞∑

n=1

exp(−βn)an. (3.282)

Applying the sum formula

∞∑
n=1

f (n) =
∫ ∞

0
f (x)dx, (3.283)

we have:

r =
∫ ∞

0
exp(−βx)a(x)dx . (3.284)

r = exp(−βx). (3.285)

We also used the integral form of the normalization condition (3.271):∫ ∞

0
a(x)dx = 1. (3.286)

We did not specify any specific laws of a scattering event in the derivation of
Eq. (3.277). Thus, Eq. (3.285) can be applied in a much broader context than just

(3.285) shows us that x̄ → n̄ as β → 0. However, generally speaking, x̄ �= n̄. This
is due to the differences σ2 = n2 − n̄2, σ3 = n3 − n̄3 and so on, which are not
necessary to be exact zeros.

The problem we face now is the determination of the parameter x̄ . For this we
will use the well-known asymptotic result of the radiative transfer theory derived
above (see Table 3.4):

r = 1 −
√

16β

3(1 − g)
, (3.287)

which is valid as β → 0.
Eq. (3.285) takes the following form as β → 0:

r = 1 − βx . (3.288)

It follows from the mean value theorem:

scattering of light by particles in clouds. The comparison of Eqs. (3.277) and
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So, comparing Eqs. (3.287) and (3.288) we have

x = 4

k
, (3.289)

√
3(1 − g

Therefore, it follows:

r = exp

(
−4

√
1 − ω0

3(1 − g )

)
. (3.290)

We notice that the combination of local optical characteristics, given by

y = 4

√
1 − ω0

3(1 − g)
(3.291)

completely determines the spherical albedo. The value of y = 4s/
√

3 can be also
measured experimentally (y = ln(1/r )).

By analogy, relationships similar to Eq. (3.290) must be valid also for other
asymptotic parameters. This allows to derive the following relationships using
Table 3.4 (Zege et al., 1991):

R∞(ξ, η, ϕ) = R0∞(ξ, η, ϕ) exp(−yu0(ξ )u0(η)R−1
0∞(ξ, η, ϕ)), (3.292.a)

rd∞(ξ ) = exp(−yu0(ξ )), (3.292.b)

M = 1 − exp( 8k/(3(1 − g )), )), (3.292.c)

Mu(ξ )u(η) = (1 − exp(−8k/3(1 − g )))u0(ξ )u0(η). (3.292.d)

We obtain using these relationships:

R(ξ, η, ϕ) = R0∞ exp(−yu(ξ, η, ϕ)) − t exp(−x − y)u0(ξ )u0(η), (3.293)

T (ξ, η) = tu0(ξ )u0(η), (3.294)

t = sinh y

sinh(αy + x)
. (3.295)

We can also derive the analytical results for the plane and spherical albedos and

Equation (3.293) transforms into Eq. (3.239) [and also Eq. (3.294) transforms
into Eq. (3.240)] as β = 0.However, Eq. (3.292a) unlike Eq. (3.239) allows to con-
sider absorbing media as well. It is important that no new angular functions arise in
Eq. (3.292a) as compared to Eq. (3.239). This is in contrast with Eq. (3.152), where

 
0 0 0∞

The global transmittance t is given by:
where we introduced a new parameter x = kτ, u(ξ,η,ϕ) = u (ξ )u (η)/R (ξ,η,ϕ).

ω0)β is the diffusion exponent of the radiative transfer theory.where k =

ω0

ω0(1 − gδk/2N = exp(−3ω0−
ω0

the diffuse transmittance. Corresponding equations are summarized in Table 3.5.
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Table 3.5. Radiative transfer characteristics in the framework of the exponential
approximation (rd∞(ξ ) = exp(−yu0(ξ )), u0(ξ ) = 3

7 (1 + 2ξ ), r∞ = e−y,

x = kτ, y = kτ, k = √
3(1 − ω0)(1 − g ), α = 1.07).

Radiative characteristic Symbol Equation

Plane albedo rd (ξ ) rd∞(ξ ) − (r∞ − r )u0(ξ )

Spherical albedo r r∞ − t exp(−x − y)

Diffuse transmittance td (ξ ) tu0(ξ )

Global transmittance t
sinh(y)

sinh(x + αy)

parameters and functions have an implicit and complex dependence on the probabil-
ity of photon absorption, β. Equation (3.293) can be used for the rapid estimations
of light reflection from cloudy media and also for the speeding up cloud retrieval
algorithms (Kokhanovsky et al., 2003).

The range of applicability of the exponential approximation (3.293) with re-
spect to cloud optical thickness can be extended using correction terms derived
from the numerical solution of the radiative transfer equation. In particular, we
find that the accuracy of Eq. (3.293) for cloudy media can be increased using the

t → t −�, where

� = a + bμξ + cμ2μ2
0

τ 3
exp(x) (3.296)

and a = 4.86, b = −13.08, c = 12.76. Therefore, the final equation for the cloud
reflection function can be written as

R(η, ξ, ϕ, τ ) = R0∞ exp(− y(1− 0.05y)u(η, ξ, ϕ)) − (t −�) exp(−x − y)

× u0(η)u0(ξ ). (3.297)

Equation (3.297) is called the Modified Exponential Approximation (MEA). We
show the accuracy of the MEA given by Eq. (3.297) in Figs. 3.10 and 3.11 for
the nadir observation conditions, the solar zenith angle 60◦ and wavelengths 865
and 2130 nm. These wavelengths are often used in cloud retrieval techniques. Note
that the single-scattering albedo is equal to 1.0 and 0.9872 at these wavelengths,
respectively. The asymmetry parameter is 0.8435 for the smaller wavelength. It is
0.8054 for the wavelength 2130 nm. Exact data shown in Fig. 3.10 are obtained
using the vector radiative transfer code based on the discrete ordinate approach and
thoroughly tested against tabular results presented by Siewert (2000). It follows that
the accuracy of the approximation is better than 6% for the cloud optical thickness
τ ≥ 4 in the case considered.

following substitutions: u → u (1 − 0.05y) (in the argument of the exponent in
Eq. 3.293),

ω0
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Fig. 3.10. Dependence of reflection function on the optical thickness at wavelengths 865 and
2130 nm calculated using the Cloud C1 PSD model. Solid lines give the approximate results
according to exponential approximation and points are obtained solving the exact radiative
transfer equation using SCIATRAN (Rozanov et al., 2005).

Figs. 3.12–3.18) that the accuracy only weakly depends on the geometry, providing
that grazing observation and illumination conditions are excluded (Kokhanovsky
and Rozanov, 2003). It means that the top-of-atmosphere reflectance over cloudy
scenes can be accurately modelled in the framework of the MEA (even as compared
to the vector radiative transfer model). It follows from Fig. 3.11 that the accuracy of
the MEA could be increased if the exact result for the reflection function of a semi-
infinite layer is used in calculations. Note that we used in Eq. (3.297) the follow-
ing simple formula valid for the nadir observation conditions only (Kokhanovsky,

Calculations performed for other angles and cloud optical thicknesses show (see
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Fig. 3.11. Errors of exponential approximation calculated using data shown in Fig. 3.10. Upper
curve corresponds to the wavelength 2130 nm, where single-scattering albedo is equal to 0.9872.
Lower curve corresponds to a nonabsorbing cloud at λ = 865 nm.

2002):

R0∞(η, ξ, ϕ) = 0.37 + 1.94ξ

1 + ξ . (3.298)

The accuracy of Eq. (3.298) can be further increased adding the function F =
0.25p(1 − arccos(μ0)) to the nominator.

The analysis of Figs. 3.12–3.18 shows that the exponential approximation is
applicable for τ ≥ 5 and most solar angles for the nadir observation. Also these
figures show main dependencies related to light reflection from cloud media, like the
increase in reflection with τ (see Fig. 3.12) and a high sensitivity of reflectances
in the infrared to the size of particles (see Fig. 3.17). This sensitivity is almost
negligible in the visible (see Fig. 3.12).
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Fig. 3.12. Dependence of cloud reflection on the solar zenith angle at τ = 5, 10, 30, 100 and
aef = 4, 6, 16 μm (the gamma PSD with μ = 6) for nadir observations. Symbols show exact
calculations and lines are obtained using the approximate result at λ = 0.55 μm.
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Fig. 3.13. Relative errors of the approximation as functions of the optical thickness for several
solar zenith angles calculated using data shown in Fig. 3.12 at aef = 6 μm.
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Fig. 3.14. Relative errors of the approximation as functions of the solar zenith angle at the optical
thickness 5 and 10 and aef = 4, 6, 16 μm calculated using data shown in Fig. 3.12.
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Fig. 3.15. Dependence of cloud reflection on the solar zenith angle at τ = 5, 10, 20, 100 and
aef = 6 (the gamma PSD with μ = 6) for nadir observations at λ = 1.55 μm. Symbols show
exact calculations and lines are obtained using the approximate result.
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Fig. 3.16. Relative errors of the approximation as functions of the solar zenith angle at the optical
thickness 5, 10, 20, and 100 and aef = 6 μm calculated using data shown in Fig. 3.15.
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Fig. 3.17. Dependence of cloud reflection on the solar zenith angle at τ = 5, 100 and aef =
4, 6, 16 μm (the gamma PSD with μ = 6) for nadir observations at λ = 1.55 μm. Symbols
show exact calculations and lines are obtained using the approximate result.
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Fig. 3.18. Errors of the approximation at various values of the single-scattering albedo as func-
tions of the solar zenith angle at the nadir observation and τ = 5. The curves 1–5 were obtained
using phase functions and single-scattering albedos derived from the Mie theory for the C1
PSD at the wavelength 1.55 μm assuming that the refractive index is equal to 1.3109 – iχ with
χ = 0.00001(1), 0.00005(2), 0.0001(3), 0.0005(4), and 0.001(5). The values of β = 1 − ω0

were equal to 0.0005(1), 0.0034(2), 0.0047(3), 0.0226(4), and 0.0435(5).

3.6.5.2 The radiative transfer in the gaseous absorption band

The exponential approximation presented above can be easily extended to ac-
count for the gaseous absorption. Then one should use the following substitutions in
equations given above: τ → τ + τg, β → (σabs + σabs,g)/(σext + σabs,g), where
the subscript ‘g’ relates the correspondent value to the gaseous absorption process.
The phase function does not need to be modified because we ignore molecular scat-
tering. This could easily be accounted for if necessary. However, we account for the
additional light absorption in the atmosphere above a cloud. Therefore, it follows
for the cloud reflection function R̄ in the gaseous absorption band: R̄ = T1 RT2,

where we omitted arguments for the sake of simplicity. The value of R is given by
Eq. (3.297) and Tj = exp(−m jτabs), j = 1, 2, where m1 = 1/ξ,m2 = 1/η, and

τabs =
N∑

i=1

∫ z2

z1

Cabs,i (z)ςi (z)dz, (3.299)

where Cabs,i is the i th gas absorption cross section, N is the total number of
gases present and ςi (z) is the concentration of the i th gas at a given height. The
integration extends from the upper cloud boundary position z1 to the height of
the optical instrument z2. The accuracy of the MEA for the gaseous absorption
band can be increased if the single-scattering contribution in the signal from the
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atmospheric layer above the cloud Rs (Kokhanovsky and Rozanov, 2004) is also
taken into account. Then it follows:

R̄ = T1 RT2 + Rs (3.300)

We checked the accuracy of Eq. (3.300) by performing exact calculations using
the radiative transfer code SCIATRAN (Rozanov et al., 2005) for the oxygen
absorption A-band located at wavelengths 758–768 nm. The atmospheric model
used in calculations coincides with that described by Kokhanovsky and Rozanov
(2004). The values of R̄ are averaged with respect to the Gaussian instrument
response function with the half-width of 0.225 nm. The absorption by the oxygen
was accounted for by using the HITRAN 2000 (Rothman et al., 2003) database in
conjunction with the correlated k-distribution approximation (Kokhanovsky and
Rozanov, 2004). To increase the accuracy of the model, we accounted for light
scattering and absorption below the cloud layer using the approximate technique
developed by Kokhanovsky and Rozanov (2004). Results are given in Fig. 3.19
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Fig. 3.19. Oxygen A-band cloud reflectance spectrum calculated using the approximate theory
and SCIATRAN solver at τ = 20, the cloud geometrical thickness equal to 1 km and the cloud
top altitudes 1, 3, 6, 9, 12, and 15 km for the nadir observation and the solar zenith angle 60◦.
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for different cloud top heights. It follows from the analysis of the data presented
that the accuracy of approximate calculations is better than 5% (see Fig. 3.20) in
most cases. The errors increase for low clouds having larger values of τ due to
the simplicity of our model, which accounts for the cloud – upper atmospheric
layer interaction in a first coarse approximation only (Kokhanovsky and Rozanov,
2004). This interaction becomes more important for lower thick clouds (see
Fig. 3.20).

from airborne and satellite-based optical sensors. We see that the depth of the

concentration must be known in advance. This is a difficult task, e.g., for water
vapour, which has a lot of absorption bands in the optical range. However, unlike
oxygen, this gas does not belong to the category of well-mixed gases with stable
vertical profiles and concentrations.
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Fig. 3.20. Relative errors of the approximation obtained using Fig. 3.18.

(see Fig. 3.21) can be used for this purpose, the vertical distribution of the gaseous

The parameterization developed here is useful for cloud top altitudes retrievals

oxygen A-band depends on cloud altitude. Although other gaseous absorption bands
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Fig. 3.21. The cloud reflection function calculated with SCIATRAN (Rozanov et al., 2005)
accounting for molecular and aerosol scattering and absorption using forward model described
by Kokhanovsky and Rozanov (2004) at the nadir observation, the solar incidence angle 60˚, and
τ = 20. Results of calculations for the artificial case with no gaseous absorption are also shown.
Dashed line corresponds to the artificial case, when only cloud presents in atmosphere. Rayleigh
scattering enhances the reflection function at short wavelengths. The decrease in the reflection
function (dashed line) in UV is due to the gaseous absorption.

Note that approximations for optically thick layers discussed here are of great
importance for cloud optics, because such clouds are very common (see Fig. 3.22).

3.6.6 Polarization of Light by Optically Thick Clouds

Equations for optically thick clouds presented in the previous section can be

averaged reflection R̂ and transmission T̂ matrices were obtained by Domke
(1978a,b). They have the following forms for isotropic symmetric light scatter-
ing media:

R̂(ξ, η) = R̂∞(ξ, η) − N T̂ (ξ, η) exp(−kτ ), (3.301)

T̂ (ξ, η) = M exp(−kτ )

1 − N 2 exp(−2kτ )

K (η) 
K T (ξ ), (3.302)

generalized to account for polarization. Corresponding equations for azimuthally
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Fig. 3.22. Frequency of a given cloud optical thickness as observed using ground and satellite
observations. (Trishchenko and Liu, 2001)

where only two-dimensional matrices and vectors are involved. Other components
of generally four-dimensional matrices and vectors vanish due the azimuthal aver-
aging. Note that this is also the case for a normal illumination of the scattering layer.
Then the azimuth does not enter theory at all. Here R̂∞(ξ, η) is the azimuthally
averaged reflection matrix of a semi-infinite medium with the same optical charac-

describes the intensity and degree of light polarization in deep layers of a semi-
infinite scattering medium (in a so-called asymptotic regime, when the intensity
and polarization angular distributions are symmetrical with respect to the normal
to a scattering layer and exponentially decrease with the depth ∼ exp(−kτ )). Func-
tions R̂∞
The explicit equations for their calculation are discussed by Domke (1978a,b).

We see, therefore, that intensity and polarization characteristics of reflected and
transmitted light for optically thick turbid media are determined by the reflection
matrix of a semi-infinite layer and the angular distribution of the light intensity
and polarization in deep layers of the same medium. This reduction of a problem
for a finite optical thick slab to the case of a semi-infinite medium is of a general
importance for the radiative transfer theory. Note that the matrix R̂∞ and vector

found elsewhere (van de Hulst, 1980; de Rooij, 1985).

teristics as a finite slab under study. One can also introduce the vector K(μ) , which

(ξ, η) and K(η) determine all parameters in the equations given above.

K are obtained from solutions of the well-known integral equations, which can be
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Equations (3.301) and (3.302) are valid only for the azimuthally averaged
matrices. In practice, however, measurements are performed for a fixed azimuth.
The transmission matrix is azimuthally independent in the case of optically thick
layers. The azimuthal dependence in the reflected light disappears in some specific
cases (e.g., for the case of normal illumination of an isotropic light scattering
plane-parallel slabs).

Equations (3.301) and (3.302) are simplified for nonabsorbing media. Then it
follows:

R̂(ξ, η) = R̂0∞(ξ, η) − T̂ (ξ, η), (3.303)

T̂ (ξ, η) = 4

3(τ + 2q0)(1 − g)

K0(ξ ) 
K T

0 (η), (3.304)

where

q0 = 2

1 − g

∫ 1

0
dηη2 
K T

0 (η) 
j . (3.305)

Here


j =
(

1

0

)
(3.306)

is the unity vector,

g = 1

4

∫ π

0
p(θ ) sin 2θdθ (3.307)

is the asymmetry parameter,


K0(η) = 3

4

[
η + 2

∫ 1

0
dξξ 2 R̂0∞(ξ, η)

]

j (3.308)

and R̂0∞(μ,μ0) is the azimuthally averaged reflection matrix of a semi-infinite
nonabsorbing medium. This matrix is completely determined by the phase matrix
P̂ , introduced above. It does not depend on the single-scattering albedo and optical
thickness by definition. Clearly, the first component of the vector 
K0 coincides with
the escape function u0 discussed above.

auxiliary functions and parameters are known. Their calculations, however, can be
quite a complex procedure.

However, it appears that for weakly absorbing media, when single-scattering
albedo ω0 = σsca/σext is close to one, simplifications are possible. Then it follows
(Kokhanovsky, 2003a,b):

R̂(ξ, η) = R̂0∞(ξ, η) exp(−y D̂(ξ, η)) − T̂ (ξ, η) exp(−x − y), (3.309)

T̂ (ξ, η) = t 
K0(ξ ) 
K T
0 (η). (3.310)

Eqs. (3.301), (3.302) are simple in form. However, they can be used only if
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where

x = kτ, y = 4

√
1 − ω0

3(1 − g )
, k =

√
3(1 − ω0)(1 − g ),

D̂(ξ, η) = R̂−1
0∞(ξ, η) 
K0(ξ ) 
K0(η),

t = sinh y

sinh(x + αy)
is the global transmittance of a scattering layer,

α = 1
2

∫ 1
0 u0(η)η2dη ≈ 1.07 and R̂0∞(μ,μ0) is the reflection matrix of a semi-

infinite nonabsorbing layer with the same phase matrix as an absorbing layer of a
finite thickness under study. The two-dimensional vector 
K0(μ) describes the po-
larization and intensity of light in the Milne problem for nonabsorbing semi-infinite
media (Wauben, 1992). The components K01(μ) and K02(μ) of this vector were
calculated by Chandrasekhar (1950) for Rayeigh particles (g = 0) and by Wauben
(1992) for spherical particles with the refractive index n = 1.44 and the gamma
particle size distribution (1.5) withμ = 11.3, a0 = 0.83 μm. The wavelengthλwas
equal to 0.55 μm. Note, that the model of spheres withμ = 11.3, r0 = 0.83 μm and
n = 1.44 is generally used to characterize particles in clouds on Venus (Hansen
and Hovenier, 1974). It follows for the effective size aef , the effective variance
�e f , and the asymmetry parameter g, respectively, in this case: aef = 1.05 μm,
�e f = 0.07 μm, g = 0.718. It was found that the ratio pl = −K02/K01, which
gives the degree of polarization for transmitted light is very low. It changes from
zero to 1.2% while the escape angle changes from 0 till 90◦. Note that for Rayleigh
scattering we have a change from 0 till 11.7% for the same conditions. This means
that light transmitted by thick clouds is almost unpolarized. It is possible to under-
stand this on general grounds. Indeed, the polarization of unpolarized solar light oc-
curs due to single-scattering events. Multiple light scattering leads to an increase of
entropy and the reduction of initial polarization arising in single-scattering events.

Note that the ellipticity is equal to zero in this case and that Pl ≤ 0, which
means that light is polarized in the plane perpendicular to the meridional plane.

Formulae (3.309) and (3.310) can be simplified for nonabsorbing media (y= 0):

R̂(ξ, η) = R̂0∞(ξ, η) − T̂ (ξ, η), (3.311)

T̂ (ξ, η) = t 
K0(ξ ) 
K T
0 (η), (3.312)

where

t = 1

α + 3
4τ (1 − g)

(3.313)

is the global transmittance.
Let us apply Eq. (3.311) to a particular problem, namely, to the derivation of a

relation between the spherical albedo r = 1 − t and the degree of polarization of
reflected light pl(η) at the illumination along the normal to the scattering layer

ω0
ω0
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(ξ = 1) by a wide, unidirectional unpolarized light beam. The value of pl(μ)
is given simply by −R21(1, μ)/R11(1, μ) in this case. Thus, it follows from Eq.
(3.311):

pl(η) = pl∞(η)

1 − (1 − r )N(η)
, (3.314)

where

N(η) = u0(1)u0(η)

R0∞(1, μ)
(3.315)

pl∞(η) = − R∞21(1, η)

R∞(1, η)
(3.316)

and we accounted for the equality: K02(1) = 0.
Our calculations show that the value of N(η) is close to 1 for most of obser-

vation angles, which implies the inverse proportionality between the brightness of
a turbid medium and the degree of polarization of reflected light (r pl ≈ pl∞). The
accuracy of Eq. (3.314) is shown in Fig. 3.23.

This inverse proportionality between the spherical albedo r and the degree of
polarization pl was discovered experimentally by Umow (1905). Equation (3.314)
can be considered as a manifestation of this important law, which has important
applications in reflectance spectroscopy (Hapke,1993).

Equation (3.314) is easily generalized to account for the absorption of light in a
medium using the exponential approximation described above. Namely, it follows:

pl(η) = p∗
l∞(η)

1 − N∗(η)t exp(−x − y)
, (3.317)

where

t = sinh y

sinh(x + αy)
(3.318)

and

N∗(η) = u0(1)u0(η)

R∗∞(1, η)
. (3.319)

Values of p∗
l∞(η) and R∗

∞(1, η) represent the degree of polarization and reflec-
tion function of a semi-infinite weakly absorbing medium at the nadir illumination.
Note, that Eq. (3.317) can be written in the following form:

p1(η) = c(η, τ )p∗
l∞(η), (3.320)

where

c(η, τ ) = 1

1 − N∗(η)t exp(−x − y)
(3.321)
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Fig. 3.23. Degree of linear polarization of light reflected from a cloudy atmosphere as the
function of the cloud optical thickness at aef = 6μm (the gamma PSD with μ = 6) for nadir
observations at λ = 0.55μm. The solar zenith angle is equal to 60◦. Both exact (symbols) and
approximate (lines) results are shown.

can be interpreted as the polarization enhancement factor, which is solely due to
a finite cloud depth. It follows for semi-infinite layers that the transmittance t is
equal to zero and c = 1 as it should be. Also it follows from Eq. (3.320) that zeroes
of polarization curves for semi-infinite and optically thick finite layers almost
coincide, which is supported by numerical calculations with the radiative transfer
code (see Fig. 3.24). This is due to the fact that the function N∗(η) only weakly
depends on the angle.

Multiple light scattering fails to produce the polarization of incident unpolar-
ized light. It only diminishes the polarization of singly scattered light. Thus, the
angles where polarization is equal to zero for semi-infinite layers are almost equal
to those for the case of single light scattering.
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Fig. 3.24. Degree of linear polarization of light reflected from a cloudy atmosphere as the
function of the solar zenith angle at the cloud optical thickness 8, 15, and 30, aef = 6 μm (the
gamma PSD with μ = 6) for nadir observations at λ = 0.55 μm. The solar zenith angle is equal
to 60◦. Both exact (symbols) and approximate (lines) results are shown.

The exact calculations for the case of a cloudy atmosphere takes much more
computer time as compared to molecular scattering. This is not related to the larger
optical thickness of clouds, which can reach 100 and more, but solely due to the

number N of qaussian quadrature points required to solve this problem (N ≈ L/2).
This obstacle can be avoided using the so-called delta-M approximation (Nakajima
and Tanaka, 1988; Min and Duan, 2004).

We show the cloud reflection function calculated using exact vector code in
Fig. 3.25a. As one might expect, the reflection function increases with τ . It reaches
an asymptotic value for a semi-infinite cloud at τ ≈ 11 for wavelength 2130 nm.
For a nonabsorbing wavelength the asymptotic value is reached at much higher
values of τ (τ ∼ 500 at wavelength 865 nm, see Fig. 3.25a). The single-scattering
approximation (SSA) works quite well for τ ≈ 0.03 and below. So it can be used
for the estimation of scattering characteristics of subvisual Cirrus, but not for most
water and ice clouds present in the troposphere. The performance of the SSA for
the polarization difference D = −πQr/F0μ0 is much better. It is valid at least

peaked phase functions of water clouds. This means that one must account for many
Legendre polynomials in the correspondent expansions. This also leads to a large
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Fig. 3.25. Dependence of the cloud reflection function on the cloud optical thickness at wave-
lengths 865 and 2130 nm. The results for the semi-infinite layer and the single-scattering ap-
proximation are also shown. The solar zenith angle is 60◦. The observation zenith angle is 0◦.
The phase function was calculated using Mie theory for the Deirmendjian’s Cloud C1 model
(Deirmendjian, 1969). (b) Dependence of the polarization difference D on the cloud optical
thickness at wavelengths 865, 1640, and 2130 nm. The results for the semi-infinite layer and the
single-scattering approximation are also shown. The solar zenith angle is 60◦. The observation
zenith angle is 0◦. The phase function was calculated using Mie theory for the Deirmendjian’s
Cloud C1 model.

up to τ = 0.1 (and even up to τ = 1.0 for the wavelength λ = 2130 nm, see Fig.
3.25b).

There is a peculiarity in the behavior of the function D(τ ) at λ = 2130 nm
shown in Fig. 3.25b. In particular, there is a maximum around τ = 1. Such maxima
are not particularly pronounced for other solar angles shown in Fig. 3.26. The
existence of the maximum cannot be explained on physical grounds because the
difference D does not have a direct physical meaning. Physically based quantities
Il, Ir , R, and also the degree of polarization

p = D

R
(3.322)

all behave in a monotonous way [see, e.g., Fig. 3.27)]. Yet another peculiarity
of the function D(τ ) is that it reaches its asymptotical value for a semi-infinite
cloud D∞ at relatively small values of τ = τ∞ (τ∞ = 1 − 4 , depending on the
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Cloud C1 model is also shown. Values of ω0 and g give correspondent values of the single-
scattering albedo and the asymmetry parameter.

wavelength, see Fig. 3.26), which is not the case for R and P (see Figs. 3.25a
and 3.27). The optical thickness of clouds is usually larger than τ∞. It means that
the value of D is a priori known for a given wavelength and the effective radius
of droplets. Such a peculiarity can be used to estimate the sub-pixel cloud fraction
K from remote sensing measurements. Indeed, the values of R and D can be
presented as

R = K Rc + (1 − K )Ra, D = K Dc + (1 − K )Da, (3.323)

for a partially cloudy scene, where the symbol c shows that the correspondent char-
acteristic is related to the cloudy portion of the pixel and a denotes the characteristic
of a cloudless atmosphere. It is known that values of Ra and Da are determined
mostly by the molecular scattering in the UV region of the electromagnetic spectrum
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Fig. 3.27. The same as in Fig. 3.25b but for the degree of polarization in percent.

(Ra → Rm, Da → Dm, where m denotes the pure molecular scattering case (no
clouds and aerosols)). This contribution is known a priori due to the relative sta-
bility of the Rayleigh optical thickness for a given wavelength. Then it follows in
the UV:

K = D − Dm

D∞ − Dm
, Rc = K −1 R − (K −1 − 1)Rm, (3.324)

which allows also to find the cloud optical thickness in a partially cloudy scene.
Another interesting possibility arises at geometries, where Dc = 0 (and, therefore,
P = 0). Then it follows from Eq. (3.324): K = 1 − DD−1

m . So if the measured
value of D is equal to Dm , then we have: K = 0. K is equal to one for a completely
cloudy atmosphere (D = 0 for clouds at the chosen favorable geometry). It follows
from Fig. 3.24 that Dc ≈ 0 at the solar angle 22◦ and the nadir observation. This
corresponds to a scattering angle of 158◦. So if one constructs the device capable to
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Fig. 3.28. Dependence of the degree of polarization P on the solar zenith angle at the optical
thickness 500, nadir observation, and several effective radii of droplets. The phase function was
calculated using Mie theory for the Deirmendjian’s Cloud C1 model but with different effective
radii aef = 4, 6, and 15 μm at the wavelength 865 nm. The maximum corresponds to the size
dependent rainbow scattering.

measure D at this scattering angle, one will be able to determine the cloud fraction
K quite accurately. The origin of a minimum at θ = 158◦ is due to peculiarities
of single scattering by water droplets. Note that multiple scattering hardly moves
the positions, where the degree of polarization of singly scattered light vanishes
(Kokhanovsky, 2003a).

The degree of polarization of light reflected from clouds for several values of
aef is shown in Fig. 3.28. We see that the degree of polarization is more pronounced
at the rainbow geometry.

Studies of polarization characteristics of solar light transmitted and reflected
by cloudy media have a long history. However, the real burst of research in this area
was given by a launch of the POLDER (Polarization and Directionality of Earth
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Reflectances) instrument on board of Japanese ADEOS-I and ADEOS-II satellites.
The POLDER (Goloub et al., 2000) was able to transmit to the Earth a huge amount
of information about polarization characteristics of light reflected from cloudy me-
dia, aerosols and underlying surfaces at several wavelengths. Specifically, the first
three components of the Stokes vector 
Sr (I, Q,U, V ) have been measured for
wavelengths λ equal to 443, 670 and 865 nm. There is no doubt that even more ad-
vanced polarimeters with wide spectral coverage will appear on board of different
satellites in future, which makes further theoretical studies of polarization charac-
teristics of cloudy media extremely important. This is due to potential possibilities
for global retrievals of cloud microstructure, the shape of particles and the optical
thickness of clouds based on polarization measurements.

Of course, similar information can be obtained from reflected intensity mea-
surements. However, it could well appear that the degree of polarization can be
used as a source of additional information about cloud particle size distributions
close to the top of a cloud. Indeed, the high proportion of photons scattered from
a thin upper layer of a cloud in creating light polarization is quite understandable.
Multiply scattered light fluxes from deep layers are hardly polarized at all. Radiative
characteristics, on the other hand, represent the cloud as a whole. Thus, the effec-
tive radius derived from radiative measurements is an average of large ensembles
of possibly very different particle size distributions, presented in different parts of
cloudy media.

The polarization characteristics of cloudy media can be studied applying nu-
merical codes, based on the vector radiative transfer equation solution. However,
one can also use the fact that cloud fields are optically thick in most cases. This
allows to apply asymptotic analytical relations, derived for optically thick disperse
media with arbitrary phase functions and absorption. These solutions help us to
explain physical mechanisms and main features behind the polarization change
due to the increase of the size of droplets or the thickness of a cloud. Analytical
solutions also provide an important tool for the simplification of the inverse prob-
lem. They can be used, e.g., in studies of the information content of polarimetric
measurements (Deschamps et al., 1994).

3.7 Clouds Over Reflective Surfaces

Equations for R and T derived above can be easily generalized to account for
the underlying surface reflection.

Light intensity observed in a direction specified by the pair (ϑ, ϕ) can be
considered as composed of two parts: due to the cloud itself (I1) and due to surface
contribution (I2). The contribution I2 can be also separated into two terms (I21, I22),
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namely

I21 = Is t(η) (3.325a)

for the contributions of the surface in the diffused light (η = cosϑ) and

I22 = Ise−τ/η (3.325b)

for the contribution of the surface in the direct light.
Summing up, we have:

I (η, ϕ) = I1(η, ϕ) + Is t(η) + Ise−τ/η, (3.326)

where we assumed that the surface is Lambertian. This means that the upward
intensity Is for the light emerging from the ground surface does not depend on
angle. Let us relate Is to the albedo A of underlying Lambertian surface. For this
we note that the upward flux density is

Fu =
∫

2π
Is cosϑd� =

∫ 2π

0
dϕ

∫ π/2

0
dϑ Is cosϑ sinϑ = π Is . (3.327)

We have for the ideally reflecting Lambertian surface (A = 1): Fu = Fd or
Fd = π Is , where Fd is the downward flux density. Fd is composed of three com-
ponents: the direct transmission component Fdir = ξF0e−τ/ξ , the diffuse trans-
mission component Fdi f = ξF0t(ξ ) and the component coming from the surface
but reflected by a scattering layer back to the underlying surface: Fref = r Fu ,
where r is the spherical albedo of a scattering layer under illumination from below.
Obviously, for the underlying surface with arbitrary ground albedo A, we have:

Fu = AFd (3.328)

and, therefore,

π Is = A
[
ξF0

(
t(ξ ) + e−r/ξ

) + πr Is

]
. (3.329)

The intensity Is can be easily found from this equation. Namely, it follows:

Is = At∗(ξ )ξF0

π (1 − Ar )
(3.330)

where

t∗(ξ ) = t(ξ ) + e−τ/ξ (3.331)

is the total transmittance. Therefore, we have (Liou, 2002):

I (η, ϕ) = I1(η, ϕ) + At∗(η)t∗(ξ )ξF0

π (1 − Ar )
(3.332)
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or

R(η, ξϕ) = Rb(η, ξϕ) + At∗(η)t∗(ξ )

1 − Ar
, (3.333)

where Rb(η, ξ, ϕ) ≡ R(η, ξ, ϕ) at A = 0. All functions presented in this equation
have been studied in the previous section. A similar simple account for the Lam-
bertian underlying surface can be performed also for the transmitted component.
Namely, we have then:

Itr (η, ϕ) = I1tr (η, ϕ) + Isrd (η), (3.334)

where the first component is due to light transmission by a cloud itself and the
second component accounts for the reflection of the diffuse light (Is) coming from

Itr (η, ϕ) = I1tr (η, ϕ) + At∗(ξ )rd (η)ξF0

π (1 − Ar )
(3.335)

or for the transmission function:

T (ξ, η, ϕ) = Tb(ξ, η, ϕ) + Ard (ξ )t∗(η)

1 − Ar
, (3.336)

where Tb(ξ, η, ϕ) ≡ T (ξ, η, ϕ) at A = 0.

3.8 Vertically Inhomogeneous Clouds

Vertically inhomogeneous disperse media are of frequent occurrence both in
nature (e.g., multi-level cloud systems, snow deposited at different times at a given
place, terrestrial atmosphere and ocean, biological tissues, etc.) and technologi-
cal applications (multi-layered painted surfaces, paper, etc.). This explains a great
interest in studies of radiative transfer in vertically inhomogeneous media. Re-
cent advances in this area have been summarized by Yanovitskij (1997). A great
number of exact (see, e. g., Minin, 1988; Rozanov et al., 2005) and approximate
(Germogenova and Konovalov, 1974; Minin, 1988; Melnikova and Vasilyev, 2005)
techniques has been developed. At present there is no problem to account for an ar-
bitrary vertical inhomogeneity of a horizontally homogeneous plane-parallel light
scattering medium. However, it appears that one needs to perform quite complex
numerical calculations with the use of up-to-date computer technology. On the
other hand, the practical work requires simple approximate solutions, which can
be used to perform rapid estimations of the influence of vertical inhomogeneity
on light reflection and transmission by cloudy media. Such results are presented
in this section. To derive approximate solutions, we make an assumption that the

dthe surface,  r (η) is the plane albedo for illumination from below. Finally, we have:
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Fig. 3.29. Geometry of the problem.

probability of light absorption by droplets in a cloud is small and the exponential
approximation can be applied.

Let us assume that a cloudy medium is composed of several cloud layers having
different light scattering characteristics (e.g., the phase function p(θ ) , the absorp-
tion σabs and extinction σext coefficients). The geometry of the problem is shown
in Fig. 3.29. Light enters a disperse medium at the angle θ0. The reflected light is
observed at the angle θ1 and the diffusely transmitted light is observed in the direc-
tion specified by the angle θ2. We need to model the intensity of diffusely reflected
and transmitted beams taking into account effects of vertical inhomogeneity of the
medium under consideration.

Note that we put no limitations on the number of layers in a cloudy medium.
The region which separates clouds is assumed to be free of light scattering and
absorption. This means that the situation we consider is equivalent to the touching
light scattering layers (e.g., several snow layers). This assumption, however, is
not crucial for the theory developed here [e.g., absorption and scattering of light
by gases and aerosols between clouds can be accounted for, if needed (see, e.g.,
Kokhanovsky and Rozanov, 2004)]. We assume that all layers are optically thick
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(li � %i , where li is the geometrical thickness of i-layer and %i is the photon free path
length in the layer, which is equal to the inverse value of the extinction coefficient
in a given layer) and weakly absorbing (the probability of photon absorption β =
σabs/σext → 0). We need these assumptions to apply the exponential approximation
as discussed above. There is no limitation on the type of the cloud phase function,
however. Although our assumptions severely restrict the applicability of the model
to many natural clouds, they do provide an accurate approach to the solution of a
number of important problems.

The starting point is the expression for the reflection function of a single
homogeneous, optically thick, weakly absorbing layer. This can be written in the
following form for a scattering layer above a Lambertian surface with albedoA:

RA(ξ, η, τ ) = R(ξ, η, τ ) + Atd (ξ )td (η)

1 − Ar
, (3.337)

where

R(ξ, η, τ ) = R∞(ξ, η) − t exp(−x − y)u0(ξ )u0(η) (3.338)

is the reflection function of a scattering layer for the black (A = 0) underlying
surface, RA(ξ, η, τ ) is the same function but for the scattering layer–underlying
surface system, x = kτ , k = √

3β(1 − g) is the diffusion exponent, g is the asym-
metry parameter, τ = σext l is the optical thickness, l is the geometrical thickness
of a scattering layer, y = 4k/3(1 − g) , r is the spherical albedo of a scattering
layer for an illumination from below at A = 0, td (ξ ) is the diffuse transmittance
for the illumination in the direction θ0

d

2

Eq. (3.338) on the azimuth is omitted for simplicity. Also we neglect the direct
light transmittance, which takes rather small values for optically thick layers. Con-
venient approximate equations for functions td (ξ ), R∞(ξ, η) and r are presented
above.

Let us proceed further now. It is known that the reflection of light from an
optically thick weakly absorbing strongly light scattering layer is rather close to
that of a Lambertian reflector. This is due to well-developed multiple light scattering
in the medium in this case. Therefore, to find the reflectance from a multi-layered

spherical albedo r∗
2 of the multi-layered system below the upper layer (see Fig. 3.29).

Other functions in Eq. (3.337) then refer to the first layer from the illumination side.
Such an approach was proposed and successfully used by Melnikova and Minin
(1977) for studies of light fluxes in a cloudy atmosphere.

at A = 0. The function t (η) is the diffuse transmittance for the illumination
in the direction θ = arccos (η). The dependence of the reflection function in

system as given in Fig. 3.29, one can use Eq . (3.337) with A substituted by the

= arccos (ξ ), t  is the global transmittance
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The spherical albedo r∗
2 can be easily found integrating Eq. (3.337). Indeed, it

follows from Eq. (3.337):

r∗
2 = r2 + t2

2 r∗
3

1 − r2r∗
3

. (3.339)

Here r∗
3 is the spherical albedo of the system starting from the 3rd layer down (see

Fig. 1), t2 is the global transmittance of the second layer, r2 is the spherical albedo
of the second scattering layer for an illumination from below. The spherical albedo
r∗

3 can be found using equation similar to Eq. (3.339):

r∗
3 = r3 + t2

3 r∗
4

1 − r3r∗
4

(3.340)

with meaning of all parameters similar to those in Eq. (3.339). Clearly, we need to
repeat this procedure till the underlying surface is reached. Then we have:

r∗
n = rn + t2

n A

1 − rn A
(3.341)

and the procedure is complete.
Let us check the accuracy of the straightforward procedure outlined above using

the exact solution of the radiative transfer equation with SCIATRAN (Rozanov
et al., 2005) for a two-layered disperse system over a black surface. Then A in
Eq. (3.339) should be substituted by the spherical albedo of a lower layer r2. All
other parameters in Eq. (3.339) refer to an upper layer. Note that SCIATRAN
is a well-documented and thoroughly tested radiative transfer code based on the
discrete ordinates approach. Its accuracy is better than 1%.

The results of comparisons are shown in Figs. 3.30a–c. In particular, we give
the dependence of the reflection function of a disperse medium on the incidence
angle for the nadir observation. Due to the reciprocity principle, our calculations
are also valid for the nadir illumination and varying observation angles.

The middle curves in Figs. 3.30a–c correspond to a two-layered cloud system
with an optical thickness of the bottom layer τb = 30 and an optical thickness of
the upper layer τu = 10. We assume that the upper layer does not absorb incident
radiation. The single-scattering albedo of the bottom layer is equal to 0.9945 (Fig.
3.30a), 0.9982 (Fig. 3.30b), 0.9681 (Fig. 3.30c).

The upper curves in these figures correspond to a single layer having an optical
thickness τ = τb + τu and the single-scattering albedo equal to 1. Lower curves in
Figs. 3.30a–c correspond to a single layer having an optical thickness τ = τb + τu

and the single-scattering albedo equal to 0.9945 (Fig. 3.30a), 0.9982 (Fig. 3.30b),
0.9681 (Fig. 3.30c). Exact results are shown by symbols. Lines correspond to
calculations according to the approximation developed here.
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Fig. 3.30. (a) The dependence of the reflection function of a cloud medium on the incidence
angle for the nadir observation. Symbols give exact results and lines are due to the approximation
(see details in text). The curve in the middle was obtained for an upper nonabsorbing layer and
the absorbing layer with ω0 = 0.9945 at the bottom. Upper curves correspond to a nonabsorbing
single layer. Lower curves correspond to an absorbing single layer. The total optical thickness is
kept constant for all calculations (τ = 40). The phase function was calculated using Mie theory
for the gamma droplet distribution with aef = 10 μm,μ = 1/9, λ = 0.65 μm, and the refractive
index 1.331 − iχ , χ = 0 (upper curve) and χ = 0.00005 (lower curve). (b) The same as in Fig.
3.30a except χ = 0.0001 for a lower curve andω0 = 0.9892. (c) The same as in Fig. 3.30a except
χ = 0.0003 for a lower curve and ω0 = 0.9691.
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The phase function was found using the narrow gamma droplet size distribution
with the effective radius 10 μm and the effective variance equal to 1/9 at wavelength
λ = 0.65μm for water droplets with the refractive index m equal to 1.331-0i (Figs.
3.29a–c, upper curves), 1.331–0.00005i (Fig. 3.30a, lower curves), 1.331–0.0001i
(Fig. 3.30b, lower curves), 1.331–0.0003i (Fig. 3.30c, lower curves).

Note that the variation of the imaginary part of the refractive index allows
us to model various levels of cloud pollution (e.g., due to black carbon). The
phase function differs not significantly for all layers. For instance, the asymmetry
parameter is equal to 0.85 at m = 1.331–0i , 0.8513 at m = 1.331–i0.00005i , 0.8525
at m = 1.331–0.0001i and 0.8571 at m = 1.331–0.0003i . This is according to the
general fact that the phase function of weakly absorbing particles is not particularly
affected by the level of light absorption. However, note that there is a slight tendency
to the general increase of the asymmetry parameter with the imaginary part of the
refractive index.

It follows from Figs. 3.30a–c that the accuracy of our simple approximation
is quite high for the case considered. In fact it is comparable with the accuracy of

is explained by the fact that the accuracy of the approximation is highly influenced
by the value of ω0. The average value of ω0 is, however, lower for a two-layered
system (with a nonabsorbing upper layer) as compared to a single absorbing layer
having the same optical thickness.

We see that the two-layered system with total optical thickness 40 has values of
R intermediate between those for an upper layer (at τ = 40) and lower layer (also
at τ = 40). This can be expected on general grounds as well. Errors are generally
below 5% but they increase for oblique incidence angles. The accuracy decreases
with β. The value of β ≈ 0.03 can be considered as an upper boundary for the
application of this theory. Although it can be applied to slightly larger values of
β if the accuracy is not a primary concern (e.g., for rapid estimations of vertical
inhomogeneity effects).

It is interesting to see the performance of equations for larger and smaller values
of τb, τu . This is shown in Figs. 3.31a and 3.31b for an absorbing lower layer and
nonabsorbing upper layer. We see that the accuracy of our equations is robust
against change of the turbid layer thickness. Note that the variation of the optical
thickness of a lower layer (see Fig. 3.31a) does not change the reflection function
very much. This is due to the fact that the spherical albedo of a lower absorbing
cloud does not depend strongly on τb. On the other hand, the variation of the upper
layer optical thickness τu (see Fig. 3.31b ) changes the result considerably. Clouds
become much brighter with a larger thickness of the upper layer. Obviously, for a
very thick upper layer the sensitivity of the reflection function to the presence of a
turbid layer at the bottom is lost. This is similar to the effect of the disappearance
of objects in a heavy fog. Therefore, we conclude that high nonabsorbing clouds

corresponding equations for a single layer or even higher than that. This paradox
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Fig. 3.31. (a) The dependence of the reflection function of a two-layered cloud medium on the
incidence angle for the nadir observation at τu = 10 and τb = 5, 10, 30. The upper layer does
not absorb radiation. The bottom layer is characterized by the single-scattering albedo 0.9892.
Symbols give exact results and lines are due to the approximation (see details in the text). (b) The
dependence of the reflection function of a two-layered cloud medium on the incidence angle for
the nadir observation at τu = 5, 10, 30 and τb = 30. The upper layer does not absorb radiation.
The bottom layer is characterized by the single-scattering albedo 0.9892. Symbols give exact
results and lines are due to the approximation (see details in the text).

can shield lower (and possibly) polluted clouds. This can lead to important climatic
effects not accounted for in Global Circulation Models at the moment.

To make this point more clear, we present the reflection function of a single
absorbing cloud layer with the optical thickness 30 in Fig. 3.32. Then we add
a nonabsorbing cloud at the higher level in the atmosphere. It follows that the
reflection of the system considerably increases both for warm water and cold ice
upper-level clouds. The phase function of an ice cloud was taken from a study by
Mishchenko et al. (1999) (the fractal particle model) and the phase function of the
water cloud was calculated as indicated above (at m = 1.331 − 0.0001i for a lower
cloud and m = 1.331 for an upper cloud in the two-layered system). The increase
in the reflection is much more pronounced for crystalline clouds. It means that ice
clouds not only warm the system by trapping terrestrial radiation. They also may
shield lower polluted cloud systems (e. g., in urban areas) and increase general
reflection of the surface–atmosphere system. This indicates the complexity of the
issue of cloud influence on the climate.
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Fig. 3.32. The dependence of the reflection function on the incidence angle for the nadir obser-
vation for a two-layered cloud medium at τu = 10, τb = 30 (upper curves) and for an absorbing
single cloud layer with τ = 30 (lower curves). The upper layer does not absorb radiation and
composed either of water droplets or ice crystals. The bottom layer and a single absorbing layer
is characterized by the single-scattering albedo 0.9892. Symbols give exact results and lines are
due to the approximation (see details in text).

The question arises if the model presented above can be applied to studies of
light transmission. The answer on this question is positive. Indeed, we have for the
transmission function of a single homogeneous disperse layer over a Lambertian
surface with surface albedo A :

TA(ξ, η, τ ) = T (ξ, η, τ ) + Atd (ξ )rd (η)

1 − Ar
. (3.342)

Here rd (η) is the plane albedo of the layer for the illumination from below. Again
assuming that the layers below the upper one can be substituted by a Lambertian
reflector, we have for the transmission function T̄1(ξ, η) of the first layer in the
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n-layer system:

T̄1(ξ, η) = T1(ξ, η) + td1(ξ )rd1(η)r∗
2

1 − r1r∗
2

, (3.343)

where we omitted the dependence on the optical thickness and r∗
2 is found using

the iterative procedure starting from the ground surface as underlined in the previ-
ous section. Functions T1(ξ, η), td1(ξ ), r1 and rd1(η) have the same meaning as in
Table 3.1 but for the first layer.

Let us consider now the transmittance under the second layer. The second layer
is illuminated by the diffuse light transmitted by the first layer. It follows that the
diffuse transmittance t̄ d1(ξ )is given by:

t̄d1(ξ ) = td1(ξ ) + td1(ξ )r1r∗
2

1 − r1r∗
2

(3.344)

or

t̄d1(ξ ) = t1(ξ )

1 − r1r∗
2

. (3.345)

Also we have for the global transmittance:

t̄1 = t1
1 − r1r∗

2

. (3.346)

Therefore, the transmission function T̄2 after the second layer in the n-layered
system is given as

T̄2(ξ, η) = t̄d1(ξ )t̄d2(ξ )(η), (3.347)

where

t̄d2(η) = t̄d2(η)

1 − r2r∗
3

. (3.348)

Following this procedure, we can obtain the transmission function under the third
layer:

T̄3(ξ, η) = t̄d1(ξ )t̄2 t̄d3(η), (3.349)

where t̄2 = t2/(1 − r2r∗
3 ) and we accounted for the fact that the second layer is

illuminated from above by diffuse light and that it also serves as a diffuse light
source for the third layer. Repeating this procedure for each layer, we can arrive
finally to the transmission function of a whole system:

T̄n(ξ, η) = t̄d1(ξ )t̄2 t̄3 . . . t̄n−1 t̄dn(η), (3.350)
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where t̄ j = t j/(1 − r jr∗
j+1) and rn+1 ≡ A. Interestingly, Eq. (3.350) can be written

in the form similar to that for a homogeneous layer:

T̄n(ξ, η) = te f K0(ξ )K0(η), (3.351)

where the effective global transmittance is given by:

te f =
∏n

j=1 t j∏n
j=1

(
1 − r jr∗

j+1

) (3.352)

with all parameters defined in the theory for a single layer. Note that we have used
here the equality: td j = t j u0(ξ ), where u0(ξ ) is the escape function.

Let us check the applicability of our assumptions making comparisons with
exact radiative transfer calculations using SCIATRAN (Rozanov et al., 2005) for
a special case of a two-layered medium over a black surface. Then Eq. (3.350) is
reduced to the following form:

T̄2(ξ, η) = t1t2u0(ξ )u0(η)

1 − r1r2
, (3.353)

where we accounted for the fact that te f = t1t2(1 − r1r2)−1 in this case. Note that
if neither of both layers absorb radiation, the sensitivity of transmitted light to
the vertical inhomogeneity is low and in a good approximation one can use the
reflection function for a single layer having the optical thickness equal to the
sum of optical thicknesses of both layers and the average value of the asymmetry
parameter (Sobolev, 1972).

The results of calculations using simple approximation (3.353) are shown in

errors and outcome of exact calculations for the incident angle equal to 60◦ and
the azimuth equal to 0◦. In particular, we give the dependence of the transmission
function on the observation angle for a single layer having the optical thickness
equal to 40 at ω0 = 0.9945 and ω0 = 1.0 in Fig. 3.33. The results of computations
for a two-layered medium having the total optical thickness 40 but ω0 = 0.9945
in the bottom layer (τb = 30) and ω0 = 1.0 in upper layer (τu = 10) are also given
in the same figure (the middle line). Note that phase functions in all calculations
given here are very close to each other. So the change of transmission is mostly
due to the absorption effect. As expected the largest transmission is observed for
a nonabsorbing single layer. It is reduced considerably if absorption is introduced
in the bottom part of a layer. Of course, the minimum of transmission occurs
for a single absorbing layer (see, e.g., a lower line in Fig. 3.33). It follows that
exact and approximate results are quite close to each other for observation angles
smaller than 70◦. Then the error of approximation is smaller than 5%. The error
increases for slabs having larger absorption, however. This is illustrated in Fig. 3.34,
where we show a dependence similar to that in Fig. 3.33 but now for the increased

Figs. 3.33–3.37 as functions of the observation angle together with corresponding
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Fig. 3.33. The dependence of the transmission function on the zenith observation angle at the
zenith incidence angle equal to 60◦ and the azimuth equal to 0◦ for a single homogeneous layer
and a two – layered turbid medium with the total optical thickness equal to 40. The single-
scattering albedo is equal to 0.9945. Lines correspond to Eq. (3.353) and symbols are obtained
from exact calculations. Further explanations are given in the text.

absorption (ω0 = 0.9892). It is interesting that the error of Eq. (3.353) for a two-
layered medium is smaller than that for a single layer with the optical thickness
40 and ω0

is mostly influenced by the total light absorption and transmission and not by a
number of layers. Note that the accuracy of reflected light calculation is generally
higher than that for the diffusely transmitted light (for a given level of absorption).

Calculations for a two-layered turbid slab with the optical thickness of a lower
absorbing layer equal to 30 for various thicknesses of a nonabsorbing upper layer
are shown in Fig. 3.35. The middle lines in this figure coincide with the middle line
in Fig. 3.33. We see that the accuracy is better than 5% in this case. The decrease of

= 0.9892. This points to the fact that the accuracy of the technique
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Fig. 3.34. The same as in Fig. 3.33 but at ω0 = 0.9892.

the optical thickness of an upper layer leads to the increase of the light transmission
as one might expect.

Fig. 3.36 is similar to Fig. 3.35, but now the optical thickness of an absorbing
layer at the bottom is varied from 5 till 30. The optical thickness of an upper layer
is fixed and equal to 10. Clearly, the error approximation increases for thinner
layers, which is in accordance with general assumptions of our approximation,
which is valid only for weakly absorbing optically thick layers (Kokhanovsky and
Rozanov, 2003). However Eq. (3.353) has a comparatively high accuracy even at
such comparatively small values of τ as 5 (see Fig. 3.36).

In conclusion, we show the transmission function of a single absorbing layer
having optical thickness 40 atω0 = 0.9945 in Fig. 3.37 (middle line) in comparison
with transmission functions of a two-layered system havingω0 = 0.9945 in the up-
per layer (τu = 30) andω0 = 0.9892 in the layer at the bottom (τb = 10) (lower line
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Fig. 3.35. The same as in Fig. 3.33 but for other values of optical thickness of an upper layer.

in Fig. 3.37). Clearly, in the later case the transmission should be lower. Figure 3.37
quantifies this decrease. The upper line in Fig. 3.37 corresponds to a two-layered
system with total optical thickness equal to 40 and local optical characteristics
of a lower layer equal to that of a single layer shown by the middle line in Fig.
3.37 but having a nonabsorbing scattering layer at the top of the system (τu = 10).
Then, due to the general decrease of absorption in the system, transmission should
increase. This is confirmed by Fig. 3.37. It follows from Fig. 3.37 that the error of
Eq. (3.353) is smaller than 5%, which is acceptable for a broad range of applica-
tions (e.g., rapid estimations of stratification effects on diffusely transmitted and
reflected light fields).

Detailed studies of radiative transfer in vertically inhomogeneous clouds in-
cluding those with smooth vertical profiles of scattering and absorption character-
istics have been performed by Yanovitskij (1997).
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Fig. 3.36. The same as in Fig. 3.33 but for other values of optical thickness of a bottom layer.

3.9 Horizontally Inhomogeneous Clouds

3.9.1 Independent Pixel Approximation

The influence of the horizontal inhomogeneity of clouds on their radiative
characteristics is a major subject of modern cloud optics studies (Cahalan et al.,
1994, 2001; Barker et al., 1996; Loeb and Davies, 1996; Marshak et al., 1998;
Platnick, 2001; Scheirer and Macke, 2001; Davis and Marshak, 2002). In particular,
it was found that the horizontal inhomogeneity of clouds effects their abilities to
absorb, reflect and transmit solar light (Feigelson, 1981; Scheirer and Macke, 2001).
Thus, cloud remote sensing techniques, based on the spectral reflectance method
(Kondratyev and Binenko, 1984; Arking and Childs, 1985; Nakajima and King,
1990; Nakajima et al., 1991; King et al., 1992; Han et al., 1994; Rossow et al.,
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Fig. 3.37. The dependence of the transmission function on the zenith observation angle at the
zenith incidence angle equal to 60◦ and the azimuth equal to 0◦ for a single homogeneous layer
(middle line, ω0 = 0.9945, τ = 40) and a two-layered turbid medium [ω0 = 0.9945, τ = 30 for
a lower layer and ω0 = 1.0, τ = 10 for an upper layer (upper line) and ω0 = 0.9892, τ = 10
for a lower layer and ω0 = 0.9945, τ = 30 for an upper layer (lower line)]. Lines correspond
to results obtained with Eq. (3.353) and symbols are obtained from exact calculations. Further
explanations are given in text.

1989; Rossow and Schiffer, 1999), must account for the sub-pixel cloud horizontal
inhomogeneity. This is not generally the case so far.

It is known that pixels with inhomogeneous clouds are darker than pixels with
homogeneous cloud layers, having the same average optical thickness (Cahalan
et al., 1994). This leads to the underestimation of cloud optical thickness by modern
satellite retrieval techniques. There are semi-empirical approaches to overcome

The correct magnitude of these adjustments, however, cannot be assumed a priori.

this problem. They are based on the artificial increase of the measured reflection
function to account for the horizontal inhomogeneity of a cloud field under study.
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So they lack a physical basis. This issue is discussed in detail by Pincus and Klein

Another way to solve the problem is to use 3-D Monte Carlo calculations (see,
e.g., Scheirer and Macke, 2001). However, they are time-consuming for realistic
clouds and can be used mostly for theoretical studies and not as a core of operational
cloud satellite retrieval algorithms. Monte Carlo calculations have shown, however,
that in some cases a high accuracy can be achieved if a 3-D cloud field is substituted
by N noninteracting vertical columns or cells. A cloud field in each cell is modelled
as a horizontally homogeneous plane-parallel layer of an infinite horizontal extent.
The optical thickness (and, possibly, microstructure) of each cell varies, depending
on its position in a cloud field. Such an approach is called the Independent Column
Approximation (ICA) or the Independent Pixel Approximation (IPA). The range
of applicability of the ICA was studied by Davis et al. (1997) and Scheirer and
Macke (2001).

Effectively, the ICA reduces the 3-D radiative transfer problem to N standard
radiative transfer problems for homogeneous media. The number N can be large.
Thus, the problem remains computationally very expensive.

It can be simplified, however, if one applies approximate solutions of the ra-
diative transfer problem for each cloud cell. This is done usually in the framework
of the two-stream approximation (Barker, 1996; Barker et al., 1996; Barker and
Fu, 2000). In particular, one can assume that the cloud optical thickness for a
given cloud field obeys the probability distribution law (e.g., as those given in
Fig. 3.38). However, the accuracy of two-stream approximations is rather low as
compared to exact radiative transfer calculations (King and Harshvardhan, 1986;
Thomas and Stamnes, 1999). In particular, for some cases errors introduced by the
approximation can be larger than differences of radiative fluxes for horizontally
homogeneous and inhomogeneous cloud fields themselves. Also this approxima-
tion does not allow consideration of the bi-directional reflection function of clouds,
which is routinely measured by various radiometers and spectrometers on satellite
platforms. With this in mind, Kokhanovsky (2003b) proposed to use the exponential
approximation of the radiative transfer theory to solve each of N standard radia-
tive problems, discussed above. Then it follows for the whole cloud field under
observation:

〈R(ξ, η, φ)〉 =
∫ ∞

0
R(ξ, η, φ, τ ) f (τ )dτ, (3.354)

where f (τ ) is the cloud optical thickness distribution and R(ξ, η, φ, τ ) is the
reflection function of a cloud with given τ . This equation and also similar formulae
for other cloud radiative characteristics allow us to study the influence of cloud

(2000). Also cloud inhomogeneity could lead to unphysical dependencies of the 

Davies, 1996).
retrieved cloud optical thickness on illumination and viewing geometry (Loeb and
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Fig. 3.38. Spatial optical thickness distribution modeled using the gamma distribution for dif-
ferent values of ρτ defined as �/〈τ 〉, where � is the standard deviation of the optical thickness
and 〈τ 〉 is the average optical thickness.

inhomogeneity parameters on the measured reflection function for a given cloudy
scene in a simple way. In particular, it follows for a nonabsorbing case:

〈R(ξ, η, φ)〉 = R∞(ξ, η, φ) − 〈t〉u0(ξ )u0(η), (3.355)

where R∞(ξ, η, φ) does not depend on τ by definition (see Fig. 3.39) and

〈t〉 =
∫ ∞

0
t(τ ) f (τ )dτ. (3.356)

Let us assume that τ → ∞. Then we have:

t(τ ) ≈ 4

3τ (1 − g)
(3.357)

and

〈t〉 =
4
(

1 + 1
μ

)
3〈 〉(1 − g)

, (3.358)
τ
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Fig. 3.39. Dependence of reflection functions of a semi-infinite nonabsorbing water and ice
cloud on the incidence angle at the nadir observation. Symbols give exact results and lines are
due to the approximation (Kokhanovsky, 2004b, 2005).

where we used the following distribution:

f (τ ) = �τμ exp

(
−μ τ
τ0

)
(3.359)

with

� = μμ+1

τ
μ+1
0 �(μ+ 1)

(3.360)

and 〈τ 〉 = τ0(1 + (1/μ)) is the average optical thickness defined as

〈 〉 =
∫ ∞

0
τ f (τ )dτ. (3.361)τ
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So we have:

〈t(τ )〉/t(〈 〉) ≈
(

1 + 1

μ

)
(3.362)

as 〈τ 〉 → ∞. It means that 〈t(τ )〉/t(〈τ 〉) ≥ 1, where we accounted for the fact
that μ > 1. Also because of this we have: 〈R(ξ, η, φ, τ )〉 < R(ξ, η, φ, 〈τ 〉) . It
means that reflectances of inhomogeneous cloud fields, calculated assuming that
the optical thickness is equal to the average optical thickness, give larger values
as compared to measured reflectances. So we conclude that inhomogeneity leads
to darkening of correspondent pixels as compared to the case of homogeneous
clouds with the same optical thickness 〈τ 〉. On the other hand, the transmission of
light by inhomogeneous clouds increases as compared to the case of a horizontally
homogeneous cloud with the cloud optical thickness equal to 〈τ 〉.

3.9.2 Multidimensional Radiative Transfer in Clouds

3.9.2.1 General remarks

Radiative transfer in a cloudy atmosphere is usually studied in the framework of
the plane-parallel approximation or the IPA as shown above. Then the diffuse light
field changes only along the vertical direction for wide solar beam illumination
conditions. There is no any change in the radiation field in the horizontal direction.
Although this approximation, which is often called 1-D case, is very important for
the case of extended cloudiness (e.g., extended fields of Stratocumulus clouds),
it cannot be applied for the majority of cloudy scenes. Indeed cloudiness has a
horizontal structure (e.g., holes between clouds).

These effects can be accounted for in the framework of the 3-D radiative transfer
equation, where the spatial variation of local optical properties is fully accounted
for. Various approaches to deal with 3-D clouds are known (Liou, 2002). The most
popular techniques are the Monte Carlo method (Marchuk et al., 1980; Shreier and
Macke, 2001), the diffusion approximation (Liou, 2002), the spherical harmonics
discrete ordinate method (Evans, 1998), and the iteration technique (Nikolaeva
et al., 2005).

In the iteration technique, the phase function in the scattering integral is rep-
resented by the spherical harmonics and the integral is replaced by a quadrature
sum. Spatial grids are introduced and obtained partial differential equations are ap-
proximated by the system of linear algebraic equations. To solve it, the successive-
orders-of-scattering (SOS) approach is applied.

Each partial differential equation is integrated along its characteristic through-
out the whole calculation region in the framework of the well-known Evans’s algo-
rithm (Evans, 1998). These methods have some advantages and some deficiencies.

τ
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In particular, some of them may be non-conservative, e.g., do not conserve the
number of photons in the transport problem. This defect can lead to significant
errors in the solution obtained.

Other spherical harmonics discrete ordinate methods use the local approxima-
tion for partial differential equations. Such methods were widely used in various
neutron and photon transport problems in the last 50 years. They are conservative
and economic since they use very simple equations and do not apply complicated
logic (all spatial meshes are calculated successively). In particular, such methods
have been incorporated in the RADUGA 3-D solver described by Nikolaeva et al.
(2005).

3.9.2.2 The three-dimensional radiative transfer equation

The 3-D radiative transfer equation can be written in the following form:

ξ
∂ I (x, y, z, θ, φ)

∂x
+ η∂ I (x, y, z, θ, φ)

∂y
+ β ∂ I (x, y, z, θ, φ)

∂z
+ σext (x, y, z)

× I (x, y, z, θ, φ) = 1

4π
σsca(x, y, z)

∫ π

0
sin θ ′dθ ′

∫ 2π

0
I (x, y, z, θ ′, φ′)p(x, y, z,

χ (θ, φ, θ ′, φ′))dφ′ + 1

4π
σsca(x, y, z)F0 p(x, y, z, χ (θ, φ,&,�)) exp(−t),

(3.363)

where σsca and σext are scattering and extinction coefficients, p(x, y, z, χ ) is the
phase function. The function I (x, y, z, θ, φ) is the diffuse light intensity at the
point (x, y, z) propagated in the direction (θ, φ), see Fig. 3.40. Also we have: ξ =
sin θ cosφ, η = sin θ sinφ, β = cos θ . Scalar productχ is defined by the following
relation

χ (θ, φ, θ ′, φ′) = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′). (3.364)

The value ot t in Eq. (3.363) is the optical path between two points defined by
radius vector 
r0 and 
r : t = ∫ d

0 σext(
r0 + ζ 
r )dζ , where d = |
r − 
r0|.
The vector 
r0 defines the crossing point of the light beam with the boundary

of the scattering medium under study.
We assume that there is no diffuse light entering the medium. Therefore, bound-

ary conditions have the following form:

I (
r , 
�) = 0 at 
�
n(
r ) < 0 for all 
r (x, y, z) ∈ Gfinite,

I (
r , 
�) = I (
r∗, 
�) at 
�
n(
r ) < 0 for all 
r (x, y, z) ∈ G infinite,

Here Gfinite is the finite part of the medium boundary (on z), G infinite is the infinite
one (on x and y), 
r∗ is an inner point for the periodic boundary conditions.
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Fig. 3.40. Geometry of the problem.

This full 3-D transport equation is reduced to 2-D equation in some particular
cases. For instance, let us assume that the line LM (see Fig. 3.40) coincides with
the visualization line. This means that the solution becomes invariant in respect to
the coordinate y. Then we can drop the dependence on y in Eq. (3.363) and arrive
at the following simplified 2-D transport equation:

ξ
∂ I (x, y, z, θ, φ)

∂x
+ β ∂ I (x, y, z, θ, φ)

∂z
+ σext (x, z)I (x, z, θ, φ) = F̂ I,

(3.365)
where

F̂ I ≡ 1

4π
σsca(x, z)

∫ π

0
sin θ ′dθ ′

∫ 2π

0
I (x, z, θ ′, φ′)p(x, z, χ (θ, φ, θ ′, φ′))dφ′

+ 1

4π
σsca(x, z)F0 p(x, z, χ (θ, φ,&,�)) exp(−t). (3.366)

Equation (3.365) can be solved using the method of successive orders of scat-
tering. Namely, at first we neglect the integral term in Eq. (3.366) and calculate
the diffuse intensity I (x, z, θ, φ) from the solution of the partial differential equa-
tion. Then the obtained diffuse intensity is substituted in the scattering integral in
Eq. (3.366) and the next approximation for I (x, z, θ, φ) is found from the solu-
tion of the partial differential equation (3.365). The algorithm is stopped when the
convergence is reached.
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Therefore, the problem at hand is reduced to the solution of the following
transport equation:

ξ
∂ I (x, y, θ, φ)

∂x
+ β ∂ I (x, y, θ, φ)

∂z
+ σext (x)I (x, z, θ, φ) = �(x, z, θ, φ),

(3.367)
where I (x, z, θ, φ) is the diffuse light intensity at the point 
r (x, z) propagated
in the direction (θ, φ), �(x, z, θ, φ) = F̂ Ĩ (x, z, θ, φ) and Ĩ (x, z, θ, φ) is a known
function obtained from the previous iteration as described above.

We introduce an angular quadrature and replace functions I (x, z, θ, φ),
Ĩ (x, z, θ, φ) and �(x, z, θ, φ) by their values in quadrature nodes. Integral
�(x, z, θ, φ) is calculated using the following standard steps:

� the expansion of function Ĩ (x, z, θ, φ) in terms of spherical harmonics,
� the representation of integral �(x, z, θ, φ) by spherical harmonics,
� the calculation of �(x, z, θ, φ) values in quadrature nodes.

A standard grid method to approximate the partial differential equation of the
first order is used. In particular, grids with respect to spatial variables x and z are
introduced:

x1/2 < . . . < xk+1/2 < . . . < xk+1/2, z1/2 < . . . < z%+1/2 < . . . < zL+1/2.

A single two-dimensional cell (k, l) has the following dimensions:
[xk−1/2, xk+1/2] × [z%−1/2, z%+1/2]. Correspondingly, its size is [�xk] × [�zl],
where �xk = xk+1/2 − xk−1/2 and �zk = zK+1/2 − zk−1/2. Also the integral
operator

�̂k,% = 1

�xk�y%

∫ xk+1/2

xk−1/2

dx

∫ z%+1/2

x%−1/2

dz

is applied to both parts of Eq. (3.365). Then it follows:

ξ (Ik+1/2,% − Ik−1/2,%)/�xk + β(Ik,%+1/2 − Ik,%−1/2)/�z% + σ k,%
ext Ik,% = �k,%,

(3.368)
where

Ik,% = 1

�xk�z%

∫ xk+1/2

xk−1/2

dx

∫ z%+1/2

x%−1/2

dz I (x, z),�k,% = 1

�xk�z%

∫ xk+1/2

xk−1/2

dx

×
∫ z%+1/2

x%−1/2

dz�(x, z), (3.369)
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are the average values of the intensity and the source function, respectively, over
a given cell and

Ik±1/2,% = 1

�z%

∫ z%+1/2

x%−1/2

dz I (xk±1/2, z), Ik,%±1/2 = 1

�xk

∫ xk+1/2

xk−1/2

dx I (x, z%±1/2),

(3.370)
are correspondent average values of the intensity on boundaries of the cell (k, l).
Fulfilment of Eq. (3.368) guarantees that a presented scheme is a conservative one.

Intensities Ik−1/2,l and Ik,l−1/2 are known either from boundary conditions or
from the result of the calculation for the previous cell. So we need to determine only
values of Ik−1/2,l , Ik,l−1/2 and Ik,l . It is not possible to evaluate three parameters
from a single equation (3.368). So we need to introduce two approximate relations
among these three unknown parameters. They are given as follows:

Ik,% = (1 − νx,k,%)Ik+s(ξ )/2,% + νx,k,% Ik−s(ξ )/2,%, (3.371)

Ik,% = (1 − νz,k,%)Ik,%+s(β)/2,% + νz,k,% Ik,%−s(β)/2, (3.372)

where s(ξ ) = sign(ξ ), s(β) = sign(β), νx,k,% ∈ [0, 1) and νz,k,% ∈ [0, 1) are weight
parameters. One can use values of weight parameters as follows:

νx,k,% = 1/(2 + hx,k,%), νz,k,%
(hx,k,%/hz,k,%)(1 + hx,k,%)

2 + 2hx,k,% + h2
x,k,%

at hx,k,% ≤ hz,k,%, (3.373)

νx,k,% = (hz,k,%/hx,k,%)(1 + hz,k,%)

2 + 2hz,k,% + h2
z,k,%

νz,k,% = 1/(2 + hz,k,% at hx,k,% ≥ hz,k,%. (3.374)

Optical steps hx,k,% and hz,k,% are defined as:

hx,k,% = σ k,%
ext �xk/|ξ |, hx,k,% = σ k,%

ext �zk/|β|. (3.375)

This scheme defines outside fluxes Ik+s(ξ )/2,%, Ik,%+s(β)/2 via entering fluxes
Ik−s(ξ )/2,%, Ik,%−s(β)/2 in a physically correct manner in any cell of any grid. It
permits to obtain discontinuous solutions and solutions with large gradients ac-
curately. This completes a brief description of this technique. Further details are
given by Nikolaeva et al. (2005).

3.9.2.3 Numerical results

Let us consider results of numerical calculations for the case presented in
Fig. 3.40, where a rectangular coordinate system xyz is introduced. Solar light is
approximated by the monodirectional source having intensity F0δ(μ− M)δ(φ −
�). Here M = cos&, μ = cos θ and the pair (&,�) gives the direction of solar
light propagation in the spherical coordinate system defined by the axis z and angles
(θ, φ). The azimuth � is counted with respect to the positive direction of the axis
x . In this chapter only results for� = 0 and� = π will be reported. It means that
solar light enters the atmosphere from the direction of the positive values of x (then
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� = π ) or from the direction of the negative values of x(then� = 0). The intensity
of multiply scattered light is calculated along the axis x in the zenith direction as
shown in Fig. 3.40 (see the line of visualization in Fig. 3.40).

We divide the terrestrial atmosphere in two equal semi-spaces separated by
a local vertical plane. One part is filled by a cloudy medium and another one by
the atmospheric aerosol. The processes of molecular scattering and absorption are
neglected. Scattering media are assumed to be homogeneous and infinite in planes
z = const . We assume that there are no light scattering particles at z > 4 km. All
downwardly propagated photons, which reach the plane z = 0, are assumed to be
absorbed. Therefore, the contribution of the ground albedo is neglected.

Droplets in a cloud are characterized by the Cloud C.1 particle size distribution
with the effective radius equal to 6 μm. The single-scattering diagram for an
elementary volume of a cloudy medium is calculated at wavelength 412 nm using
the Mie theory. The phase function in the aerosol medium is represented by the
Henyey–Greenstein formula. The asymmetry parameter of the cloud phase function
g is equal to 0.85. The value of g for the aerosol phase function is equal to 0.7.
The optical thickness of cloudy and aerosol portions of the scene are 30 and 1.2,
respectively. Also we have studied the variation of the reflected light as observed
from a satellite for a nadir observation geometry as the function of the solar angle&.

Under conditions specified above, the considered problem is reduced to the
2-D problem. Both aerosol and cloud are homogeneous around z-direction on the
height interval (0 km, 4 km). They are contained in rectangular boxes. We will
study the upwelling light field in the zenith direction along the line of visualization
shown in Fig. 3.40. Clearly, the intensity of the reflected light field must depend
on the coordinate x .

The largest gradients of the reflection function R(x) are expected in the area
closest to the cloud boundary. Because both an aerosol and a cloud are extended to
infinity along axis x , this function far from boundaries must be equal to the value,
which can be obtained from the 1-D radiative transfer equation.

The results of calculations using the RADUGA code (Nikolaeva et al., 2005)
are given in Figs. 3.41 and 3.42. We also show comparisons with 3-D Monte Carlo
code MYSTIC in Figs. 3.41 and 3.42. The MYSTIC (Mayer, 1999) is the Monte
Carlo code for the physically correct tracing of photons in cloudy atmospheres.
The MYSTIC is a forward Monte Carlo code which traces photons on their in-
dividual paths through the atmosphere, similar to what is described by Cahalan
et al. (1994). Radiances are calculated using a local estimate technique. In this
configuration, MYSTIC has been successfully validated in the intercomparison of
3-D radiation codes (see http://climate.gsfc.nasa.gov/I3RC). MYSTIC is operated
within the libRadtran package (see http://www.libradtran.org), which prepares the
optical properties of the atmosphere to be used in the model. A model domain of
80 km in x was used. A large domain size is important since MYSTIC uses periodic
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Fig. 3.41. The reflection function in the vicinity of the cloud edge in the nadir direction. Cal-
culations are performed for the illumination from a clear sky side with the solar zenith angle
60◦. The aerosol optical thickness is equal to 1.2 and the cloud optical thickness is equal to 30.
Results of the RADUGA and MYSTIC codes in the direction perpendicular to the cloud band
are shown (Nikolaeva et al., 2005).

Fig. 3.42. The same as in Fig. 3.41 but for the illumination from the cloud side (Nikolaeva et al.,
2005).
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boundary conditions. The model resolution was set to 0.1 km; the MYSTIC results
are, therefore, averages over 0.1 km bins.

It follows from results of comparisons as shown in Figs. 3.41 and 3.42 that
differences are below 1%. Therefore, both the MYSTIC and RADUGA provide
very accurate results as far as calculations of the light reflected by an aerosol-cloudy
medium are concerned.

Some physical dependencies are clearly seen in Figs. 3.41 and 3.42. For in-
stance, it follows from Fig. 3.42 that there is a shadow near the cloud border for
the illumination from the cloud side (� = π ). It follows from geometrical con-
siderations that the shadow extends from the cloud boundary up to the distance
Z = Htgϑ0, where H is the cloud top altitude and ϑ0 is the solar zenith angle.
Therefore, the shadow covers a larger region for larger solar zenith angles.

Also we have a brightening effect in Fig. 3.41 due to the cloud side illumination
effects (� = 0). These two effects (shadowing and brightening) are primarily due
to the direct light interaction with a scattering medium. They lead to roughening
effects in 2-D–3-D transfer problems. We also observe (see Fig. 3.42) the decrease
of the reflection near the border of the cloud (inside the cloud) as compared to
the 1-D case. This is due to photon leaking in the area with a smaller extinction

in Fig. 3.41 close to the cloud is due to channelling of photons from a cloud to
the aerosol side. These two effects (photons channelling and leaking) lead to a
smoothening of the radiative field. The four effects considered here are valid not
only for a simple case studied here but also for broken cloud systems (Varnai and
Marshak, 2003).

Three-dimensional effects can be parameterized taking into consideration these
four fundamental effects. The parameterization of 3-D effects is of a great impor-
tance for satellite remote sensing because calculations presented here are computa-
tionally expensive and can not be included in the operational aerosol/cloud retrieval
algorithms. Also, these effects cannot be neglected. In particular, if satellite pixels

retrieved cloud/aerosol parameters are expected (see Figs. 3.41 and 3.42). This
also points to the necessity of the development of the simultaneous aerosol-cloud
(and surface) retrieval algorithm. This complex system should be considered in the
retrieval process as a whole (Cahalan et al., 2001), which will allow us to obtain
the most accurate estimations of the atmospheric and surface parameters from both
airborne and satellite remote sensing measurements.

coefficient in the clear part of the scene. The increase in the aerosol reflection function

contain areas corresponding to brightening/shadowing effects, then large biases in



Chapter 4

APPLICATIONS

4.1 Optical Phenomena in Clouds

4.1.1 Corona

Sky under extended cloudiness looks grey with a uniform variation of trans-
mitted light intensity. Isolated clouds look white on the background of a blue sky.
This whiteness is primarily due to nonselective light scattering by water droplets
in the visible. The solar light is composed of a mixture of waves having vari-
ous wavelengths. A prism can divide the sunlight beam in a continuous colour
spectrum. This is due to the change of the refractive index of the prism with the
wavelength. Interestingly, clouds can also exhibit spectrally selective scattering if
special conditions are met. In particular, coloured rings can appear in some ob-
servation directions. These phenomena are rather easily observed for thin clouds.
Thick clouds are characterized by multiple light scattering, which reduces possible
spectral variations of light scattered by single water droplets.

A typical example of an optical phenomenon associated with thin clouds is
the corona. A corona appears as a sequence of coloured rings around a white light
source observed through a cloud. These rings are most often observed at night
in sunlight reflected from the Moon and passed through a thin cloud on its way
to the detector or towards an observer’s eye. The brightness of the background is
low at night and the phenomenon is easily observed. Also the observation of the
moonlight is not harmful for the human eye as compared to the direct observation
of sunlight, even if seen through a thin cloud.

The corona can be fully described using the Mie theory for monodispersed
droplets or polydispersions having very small coefficients of variance. Clouds with

207
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large variations of droplet sizes produce the colourless corona, which is due to
enhanced light scattering for small scattering angles. The information on the size
of droplets can in principle be obtained using measurements of the angular light
distribution in the corona. In particular, smaller droplets generally produce a more
extended solar corona as compared to larger droplets. A simple Fraunhofer diffrac-
tion theory can be used to understand the phenomenon. It has been shown above that
angular distribution of light intensity I (θ ) scattered by a single spherical droplet at
small angles θ � 1 is described by the following function:

I (θ ) = k2a2 J 2
1 (z)

θ2
I0, (4.1)

where I0 is the intensity of incident light, J1 is the Bessel function, a is the radius of
a droplet, and k = 2π

/
λ, λ is the wavelength, and z = ka sin θ ≈ kaθ as θ → 0.

In particular, we have at θ = 0:

I (0) = k4a4

4
, (4.2)

where we used the following property of the Bessel function: J1(x) ≈ x/2 as
x → 0. Also we have for the dimensionless Mie intensity i(θ ) in the framework of
this approximation:

i(θ ) = x4 J 2
1 (z)

z2
. (4.3)

It follows from this equation that the intensity of scattered light in the forward
direction is proportional to the squared geometrical cross-section of the particle
and it is inversely proportional to the fourth power of the wavelength. So incident
light with a smaller wavelength produces a brighter central core as compared to
incident light having a larger wavelength. The Bessel function J1(z) (and, therefore,
the function I (θ )) oscillates with θ . Zeros of the Bessel function J1(z) are located
at z equal to 3.8317, 7.0156, 10.1735, 13.3237, and 16.4706. Therefore, at these
angles dark circles in the Fraunhofer pattern are expected. We have for the angular
position θmin of the first dark ring:

θmin = 3.8317

ka
. (4.4)

It follows that this angle decreases with a. However, it increases with λ. These basic
rules also hold for other minima and maxima. This means that the inner part of
every circle in the diffraction pattern for white light illumination conditions must
be bluish as compared to the reddish colour of the outer part of each diffraction
ring. The first three maxima of the diffraction pattern are located at z equal to
5.1365, 8.4163, and 11.5925, respectively. Therefore, the angular position of the
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first bright ring θmax is given by

θmax = 5.1365

ka
(4.5)

or

θmax = 0.8175λ

a
. (4.6)

Again we see that red light maxima are shifted to outer parts of the rings.
This is actually what is observed in a corona. In particular, taking a = 6 μm, we

obtain θmax = 3.1◦, 3.9◦, and 5.5◦ at λ = 0.4, 0.5, and 0.7 μm, respectively. How-
ever, it should be noted that in reality angles θmin and θmax are shifted from the
values given above. This is referred to as the anomalous diffraction phenomenon.
The effect is explained by the fact that the Fraunhofer diffraction gives only the
first coarse approximation to the reality. As a matter of fact the Mie theory should
be used for an accurate simulation of the corona. Then one has a possibility to
account for contributions not only by diffracted but also by reflected and refracted
light beams in a given scattering direction.

We show the phase function of a spherical water droplet calculated using Mie
theory at a = 100 μm, λ = 0.5 μm, and n = 1.33 in Fig. 4.1. It follows that posi-
tions of maxima and minima coincide with those calculated using the Fraunhofer
diffraction theory given above. In particular, it follows from the Fraunhofer theory
that that minima must be located at 0.19◦, 0.35◦, 0.51◦, 0.67◦, and 0.83◦. The po-
sitions of the first three maxima are at 0.26◦, 0.42◦, and 0.58◦ for the case studied.
These numbers coincide with those obtained from Mie theory (see Fig. 4.1). So
both the Fraunhofer theory and the Mie theory can be used to predict the positions
of minima and maxima for large spherical particles. These positions can be used
for optical droplet sizing.

Note that the polarization of scattered light is low at small scattering angles.

4.1.2 Glory

Glory or anticorona appears at scattering angles close the backward direction

particular, he showed that the scattered light intensity Isca(θ ) can be described as:

Isca(θ, a) = (
c1 J 2

0 (ka(π − θ )) + c2 J 2
2 (ka(π − θ ))

)
x2 I0, (4.7)

where constants c1 and c2 depend on the refractive index of particles and their size.
Interestingly, the anticorona is much more robust to the change of the coefficient

θ =π . The physical mechanism behind the glory occurence is the interference of back-
scattered rays. An approximate theory has been proposed by van de Hulst (1981). In
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Fig. 4.1. Phase function of a water droplet having the radius 100 μm at λ = 0.55 μm. Only the
small angle scattering region is shown.

of variance of the droplet size distribution as compared to the corona. In particular,
it exists for relatively broad size distributions.

Let us generalize the van de Hulst’s equation for the anticorona to the polydis-
persed case. Then it follows for the average intensity:

Īsca(θ ) =
∫ ∞

0
Isca(θ, a) f (a) da (4.8)

or approximately

Īsca(θ, a) = (
c∗

1 J 2
0 (kã(π − θ )) + c∗

2 J 2
2 (kã(π − θ))

)
I0, (4.9)

where we used the approximation:∫ a2

a1

φ(ζ ) f (ζ ) dζ = f (a3)
∫ a2

a1

φ(ζ ) dζ, (4.10)
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with a3 ∈ [a1, a2] and

c∗
j = k2

∫ ∞

0
a2c j (a) f (a) da, j = 1, 2. (4.11)

Therefore, we have for the phase function:

p(θ ) = p(π )J 2
0 (ka3(π − θ)) + q J 2

2 (ka3(π − θ )) . (4.12)

Parameters a3 and q can be found fitting Eq. (4.69) with the use of Mie calculations.
Also, we have used the fact that J0(0) = 1, J2(0) = 0. The value of a3 is generally
unknown. Let us assume that a3 = aef. Then it follows:

p(θ ) = p(π )J 2
0

(
kaef (π − θ )

) + q J 2
2

(
kaef (π − θ )

)
. (4.13)

Therefore, we might expect that the phase function must depend mostly on the
scaling parameter

z = (π − θ )kaef. (4.14)

ef

λ = 0.532 μm is shown in Fig. 4.2. Points give results according to the approximate
equation given above at q = 4.0, p(π ) = 0.62. It follows that p(θ) depends mainly
on the parameter z, although there is a spread depending on the effective radius.
The phase function in the exact backward direction p(π) is almost insensitive to
the value of aef and close to 0.62 at aef = 4 μm. There is a maximum of the phase
function at zmax ≈ 3 at aef = 16 μm. The angular position of the maximum θmax

values of zmax for smaller particles. It follows, therefore:

θmax ≈ π − 3λ

2πaef
. (4.15)

This means that shorter wavelengths produce larger values of θmax making the
inner region of the glory ring related to the second maximum bluish. The outer

Mie calculations (see Fig. 4.3). It follows from Fig. 4.2 that the value of the phase
function in the maximum decreases with aef in the range of parameters studied.
The accuracy of Eq. (4.13) decreases with z. The approximation can not be used
at z > 2.0. However, the multiplication of the second term in Eq. (4.13) by ν =
exp(−0.07z) extends the applicability of the approximation till z = 4. Therefore,
the approximation can be used, e.g., in conjunction with analytical results of laser
sounding theory (Katsev et al., 1998).

We show the phase function p(θ ) for several wavelengths at aef = 6 μm in
Fig. 4.3. It follows from Figs. 4.2 and 4.3 that glory rings can be used for optical

The dependence of the phase function on the value of z at a = 4(2)16 μm and

parts of the ring appear reddish. This is also confirmed by the experiments and by

only weakly depends on the size of particles for a given wavelength with smaller
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Fig. 4.2. Phase function of a water cloud at λ = 532 nm, aef = 4, 6, 8, 10, 12, 14, 16 μm as
the function of the scaling parameter z. Points show the results using the approximate formula.

particle sizing techniques. Also we see that glory (although invisible to the hu-
man eye) exists in the infrared as well. The degree of light polarization in glory
under solar light illumination conditions is shown in Fig. 4.4. It is interesting that
the degree of polarization changes its sign. The neutral point, where the degree
of linear polarization vanishes, depends on the wavelength. The angular position
of this point θn is closer to the backward direction for smaller wavelengths (or
larger droplets). The degree of linear polarization in the vicinity of the backward
direction θ ≈ π is positive with larger values for larger effective size parameters
xef = 2πaef/λ (oscillations are in predominantly in the plane perpendicular to the
scattering plane). The degree of polarization is equal to zero at θ = π. The nor-
malized phase matrix element p34 shown in Fig. 4.5 describes the linear-to-circular
polarization mode conversion (Kokhanovsky, 2003a). It gives the degree of circu-
lar polarization of scattered light under linearly (the azimuth 45◦) polarized light
illumination conditions. It follows that the circular polarization of glory for linearly
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Fig. 4.3. Phase function of a water cloud at λ = 0.532, 1.064, 1.64 and 2.13 μm aef = 6 μm
as the function of the scattering angle in the glory region.

frared). The circular polarization also changes its sign in the glory region. The pul-
sations of circular polarization as shown in Fig. 4.5 can be used for optical particle
sizing.

The normalized phase matrix element p44 shown in Fig. 4.6 describes the
degree of circular (e.g., lidar) polarization for scattered light under circular light
polarization conditions. We see that the degree of circular polarization is close
to −1 for angles θ → π . This means that the backward scattering (θ ≈ π) does not
change the absolute value of the circular polarization. However, the rotation of the
electric vector is reversed. So the scattering at θ = π can be used in technological
applications to switch the rotation direction of the electric vector. The position of the
neutral point is closer to the backward scattering direction for shorter wavelengths
and larger particles. This can be used for optical particle sizing using circularly
polarized light beams.

(e.g., lidar) light illumination conditions can be quite large (especially in the in-
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Fig. 4.4. The same as in Fig. 4.3 except for the degree of polarization.

4.1.3

Perhaps the best known and most familiar optical effect associated with clouds
is that of the rainbow. The rainbow occurs due to the interference of rays reflected
one or several times inside the droplet. Mie theory is capable to describe main
features of the rainbow with a high accuracy. However, we will begin by providing
some insights using the geometrical optics approximation. In particular, simple
geometrical optics calculations give the following expression for the scattering
angle of a singly internally reflected ray:

θr = π + 2(ϕ − 2ψ), (4.16)

where ϕ is the incidence angle and ψ is the refraction angle. Let us consider the

Rainbow
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derivative of θr with respect to the incidence angle. Then it follows that

dθr
dϕ

= 2 − 4
dψ

dϕ
(4.17)

or
dθr
dϕ

= 2 − 4
cosϕ

n cosψ
, (4.18)

where n is the refractive index and we used the Snellius law:

sinϕ = n sinψ. (4.19)

It follows that θ takes a minimal value at

ϕr =
{√

n2 − 1

3

}
. (4.20)arccos
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Fig. 4.6. The same as in Fig. 4.3 except for the element p44.

This means that a lot of incident rays will contribute in the correspondent scattering
direction. This will lead to brightening of the sky in the direction of rainbow.
In particular, we have at λ = 0.5 μm and n = 1.333: ϕ ≈ 59◦, and, therefore,
θr = 139◦. Therefore, to observe a rainbow, one should have a light source behind
and look in the direction that makes a scattering angle of 139◦.

Clearly, the same angle can be achieved for different azimuths. It will produce
a characteristic feature known as the rainbow. As was noted above the angle ϕ
depends on n, which means that both ϕ and θ depend on λ due to the wavelength
dependence of n. In practice, this leads to the separation of colours in the rain-
bow. Because n slightly decreases with the wavelength for water in the visible, ϕ
and θ decrease as well. Therefore, the outer parts of rainbow must be reddish in
colour.
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Quite often the secondary rainbow is observed. This rainbow originates due to
double internally reflected light beams. Therefore, it is weaker in brightness than
the primary rainbow. It follows for the scattering angle associated with two-times
internally reflected rays:

θ ′
r = 2(ϕ − ψ). (4.21)

Repeating the same procedure as above, we obtain that the derivative of this angle
vanishes at {√

n2 − 1

4

}
(4.22)

This gives that θ ′
r = 129 degrees at n = 1.33. Therefore, the secondary rainbow is

observed at smaller scattering angles than the primary rainbow.
The accurate angular positions of maxima of light in a rainbow are given by

the Mie theory. We show a characteristic rainbow pattern calculated with the Mie
theory at aef = 6 μm and several wavelengths in Fig. 4.7. It follows that the rainbow
maximum moves to smaller scattering angles for smaller wavelengths (or smaller
droplets, see Fig. 4.8). This leads to the reddish colour of the outer band of a primary
rainbow as observed in nature. For the secondary rainbow, the order of colors is
opposite (see, e.g., http://www.philiplaven.com/index1.html).

The approximate theory of rainbow is given by Airy (1838) and Nussenzveig
(1992). In particular, Airy has shown that the angular distribution of light in a
rainbow at a given size parameter x = ka is approximately proportional to the
integral:

A(θ ) =
{∫ ∞

0
cos

[π
2

(
by − y3

)]
dy

}2

, (4.23)

where

b = 3

√
12x2

π2c
{θ − θr } (4.24)

with c = 4.89 for the first rainbow and c = 27.86 for the second rainbow. Studies
of this integral show that the maximum of the rainbow intensity does not coincide
with θr but rather occurs at the somewhat larger angle θmax depending on x :

θmax = θr + Cx−2/3, (4.25)

where C = 3

√
9cπ2

4 ≈ 4.77. A similar equation, but with a different constant C, is
valid for the secondary rainbow. This dependence is confirmed by exact data shown
in Fig. 4.8. It follows that the rainbow intensity at maximum increases with aef .

The thorough review of rainbow and glory theories has been conducted by
Adam (2002) (see also Jackson (1999)).

ϕ = arccos
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Fig. 4.7. Phase function of a water cloud at λ = 0.532, 1.064, 1.64, and 2.13μm aef = 6 μm as
the function of the scattering angle in the rainbow region.

The degree of light polarization in a rainbow for solar light illumination con-
ditions is quite large as shown in Fig. 4.9. It can reach 80% and even larger
values depending on the size of particles and the wavelength. Oscillations occur
predominantly in the plane perpendicular to the scattering plane. The reason for
such a high polarization of the rainbow is due to the fact that the internal reflection
of the rainbow ray in the drop occurs at the angle close to the Brewster angle equal

It follows from Figs. 4.7 and 4.9 that the secondary rainbow at θ ≈ 120◦ is better
visible in the degree of polarization angular pattern as compared to the intensity
angular distribution. Oscillations in Fig. 4.9 at θ ≥ 145◦ are due to supernumery
rainbows. They are sometimes observed in nature close to the outer band of the
main rainbow.

to arctan(n).
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The wavelength dependence of the normalized phase matrix elements p34 and
p44 in the vicinity of the rainbow angle is shown in Figs. 4.10 and 4.11.

4.1.4 Halo

The halo is a bright ring, which is observed around the moon or the sun.
The difference from the corona is in the radius of this ring. In particular, the
corona is observed for scattering angles θ = 0 − 5◦, depending on the size of
particles. The halo is observed at 22◦. It should be pointed out that the Mie theory
does not predict any anomaly in light scattering around 22◦ (see Fig. 4.8). So the
halo can be explained using only the model of nonspherical particles, namely ice
crystals. The most important shape of ice crystals in the terrestrial atmosphere



220 CLOUD OPTICS

1.0

0.8

0.6

0.4

0.2

0.0

de
gr

ee
 o

f p
ol

ar
iz

at
io

n

−0.2

−0.4

−0.6

−0.8

−1.0
110 120 130 140

scattering angle, degrees

150 160 170

0.532μm
1.064μm

1.64μm

2.13μm

Fig. 4.9. The same as in Fig. 4.7 except for the degree of polarization.

is the hexagon. The path of a light ray in the part of crystal with the angle A
is shown in Fig. 4.12. The halo corresponds to the minimal value Dmin of the
deviation angle D = i1 − r1 + i2 − r2. The value of D is minimal at i1 = i2 ≡ i ,
r1 = r2

(see Fig. 4.12) and Dmin = 2i−A. The angle of the light beam deviation for the

r = A / 2 and i = (Dmin + A)/2. This means that

Dmin

{
n sin A

2

}
− A. (4.26)

It follows from this equation that Dmin = 21◦54′ for hexagons with A = 60◦ at
n = 1.31. Also we have Dmin = 45◦44′ for angles A = 90◦ at n = 1.31. The ha-
los associated with angles A equal to 60◦ and 90◦ are regularly observed in the

= 2 arcsin

−1= r = sini ). Here n is the refractive index. Then we have A = 2rarcsin(n

hexagonal prism can be obtained from the Snell’s law: n sin r = sin i , where
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Fig. 4.10. The same as in Fig. 4.7 except for the element p34.

atmosphere for randomly oriented crystals. Oriented crystals can produce the ha-
los at other positions (Tricker, 1967). The inner part of both halos is reddish in
color. This is due to the fact that Dmin = 21◦36′ for red light with n = 1.307 and
Dmin = 22◦22′ for violet light with n = 1.317 at A = 60◦. Also we have at A = 90◦:
Dmin = 45◦ for red light with n = 1.307 and Dmin = 47◦14′ for violet light with
n = 1.317. Therefore, it follows that the 46◦ halo has an angular width twice as
broad. It has a smaller intensity as compared to the halo located at θ = 22◦.

We conclude that a 46◦ halo develops when light enters one side of a columnar
ice crystal and exits from either the top or bottom face of the crystal (A = 90◦). The
light is refracted twice as it passes through the ice crystal and the two refractions
bend the light by 46◦ from its original direction. This bending produces a ring of
light observed at 46◦ from the sun or the moon. A 22◦ halo develops when light
enters one side of a columnar ice crystal and exits through another side (A = 60◦).
The light is refracted when it enters the ice crystal and once again when it leaves
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the ice crystal. The occurrence of the 46◦ halo is rare (about 2% of all cases). The
22◦ halo is more frequent.

The halo is more easily observed for large crystals because the intensity of
halos decrease with the size of crystals. A typical phase function of hexagonal ice
crystals calculated using the geometrical optics approach is shown in Fig. 4.13.
The halos at 22◦ and 46◦ clearly emerge from these calculations. The maximum at

A

r
2

i
2r

1

i
1

Fig. 4.12. Geometry of the problem.
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Fig. 4.13. The phase function of randomly oriented hexagonal cylinders with the effective radius
40 μm at the wavelengths 0.55 μm averaged over the size and aspect ratios distributions. The
refractive index is equal to n = 1.31 (courtesy A. Macke).

◦ is also clearly visible. The halo can be washed out by the presence of small
or irregularly shaped crystals. The effects of multiple light scattering and the
possible presence of supercooled water droplets also reduce the probability of halo
formation. However, the halo is an atmospheric effect which occurs quite often.
Some observers report a frequency of 10 times per month at certain locations.

4.2 Cloud Remote Sensing

4.2.1 Penetration Depth

The penetration depth is a parameter required in various remote sensing appli-
cations. It is defined as the length at which the intensity of incident wave is reduced

155
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by the factor exp(−1). If the absorption coefficient of a homogeneous medium
under study is known, the penetration depth can easily be estimated. It could be
of value to extend this notion to random media. However, this leads to a number
of problems. In particular, let us take a cloud in the sky. In this case, a strongly
developed multiple light scattering occurs in the medium. The downward diffuse
light intensity reaches a maximum and starts to decrease preserving the angular
pattern of scattered light. Brightness of this pattern decreases as exp(−kτ ), where
k is the diffusion exponent and τ is the optical depth.

Space remote sensing applications require information on the thickness of an
effective layer of a cloud, which interacts with incident electromagnetic radiation.
This depth can be defined as the distance % at which the reflection function reaches
90% of its value for the semi-infinite layer. We can state that scattering layers
positioned at depths larger than % only weakly influence the signal detected by an
orbiting optical instrument.

The aim of this section is to present simple analytical equations, which can
be used for estimations of % in a cloudy atmosphere. Generally, the equations
derived can be used inside and outside gaseous absorption bands. However, in
the results of the numerical calculations presented, we neglect the influence of
the gaseous absorption bands on the value of the penetration depth. Generally
speaking, the penetration depth can be found using results of the radiative transfer
calculations similar to those presented in Fig. 4.14, where we show the dependence
of the reflection function on cloud optical thickness for multiple wavelengths. Data
for Fig. 4.14 were obtained using the discrete ordinate method of the radiative
transfer equation solution. It was assumed that droplets are characterized by the
gamma particle size distribution (PSD) with the effective radius of 6 μm and the
coefficient of variance of the PSD equal to 38%. Calculations were performed at
ξ = 0.5, η = 1.0 (nadir observation). Here ξ is the cosine of the solar angle and η
is the cosine of the observation angle. Obviously, the results do not depend on the
relative azimuth ϕ for the nadir observation conditions.

It follows from Fig. 4.14 that the penetration depth decreases with wavelength.
This is mostly due to the fact that water absorption generally increases with the
wavelength. In particular, we find using data shown in Fig. 4.14 that the optical
penetration depth τp = %/s (with s = 1/σext as the photon free path in a cloud) is
equal to 65.5, 37.0, 20.0, 13.2, and 5.7 for wavelengths λ = 900 nm, 1240 nm,
2250 nm, and 3700 nm, respectively.

Computations as those shown in Fig. 4.14 require a radiative transfer code.
Let us show that the penetration depth can also be found using a simple analytical
equation. For this we will use the exponential approximation. In particular, the
reflection function R(ξ, η, ϕ, τ ) can be presented as

R(ξ, η, ϕ, τ ) = R∞(ξ, η, ϕ) − t(τ ) exp(−x − y)u0(ξ )u0(η), (4.27)
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Fig. 4.14. The dependence of the reflection function on the optical thickness for several wave-
lengths of incident light (see details in text).

where R∞(ξ, η, ϕ) is the reflection function of a semi-infinite medium having the
same microphysical characteristics as a finite layer under study. The function t(τ )
is the global transmittance given approximately by

t(τ ) = sinh(y)

sinh(x + αy)
. (4.28)

Here, x = kτ, y = 4k/[3(1 − g)], k = √
3(1 − g)(1 − ω0), ω0 = 1 − σabs/σext,

α ≈ 15/14, g is the asymmetry parameter of the phase function, σabs is the ab-
sorption coefficient and σext ≡ 1/s is the extinction coefficient. The accuracy of
Eq. (4.27) has been thoroughly studied above.

It follows from Eq. (4.27) at τ = τp:

ut(τp) exp(−x(τp) − y(1 − u∗)) = b, (4.29)
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where b = 0.1. We used the following approximate result for the reflection function
of a semi-infinite weakly absorbing medium:

R∞(ξ, η, ϕ) = R0∞(ξ, η, ϕ) exp(−Cy), (4.30)

where R0∞(ξ, η, ϕ) is the reflection function of a semi-infinite medium, under the
assumption that absorption of radiation in a cloud does not take place and

C = (1 − 0.05y)N, (4.31)

N = u0(ξ )u0(η)

R0∞(ξ, η, ϕ, τ )
. (4.32)

Equation (4.30) is accurate to within 5% at y ≤ 1.7. After simple algebraic deriva-
tions, it follows from Eq. (4.29):

τp = 1

2k
ln {2pN sinh(y) exp [−(1 − C)y] + exp(−αy)} − 2α

3(1 − g)
, (4.33)

where p = 1/b. We have from Eq. (4.33) at k = 0 taking a limit:

τp = 4(pN − α)

3(1 − g)
. (4.34)

Equation (4.33) gives the result that we intended to gain from the very beginning.
The dependence τp(λ) for a water cloud having the same microphysical character-
istics and observation conditions as those used in Fig. 4.14 are shown in Fig. 4.15.
The Mie theory was used to calculate ω0, σext = 1/s, and g in Eq. (4.33). The
gaseous absorption was neglected. Symbols correspond to values of τp obtained
from the data given in Fig. 4.14. We see that our approximate equation can be used
for an accurate estimation of the sunlight penetration in clouds. Note that values
obtained for τ < 10 may be biased as the accuracy of Eq. (4.27) decreases in these
cases. However, we do not restrict this plot to values below 2 μm to show the gen-
eral trend of τp(λ). Furthermore, the point at 3.7 μm indicates that Eq. (4.33) might
even be used at τp ∈ [5, 10]. The following approximate result for the function
R0∞(1, ξ ) was used in the calculations presented in Fig. 4.14:

R ∞0 (1, ξ ) = 0.37 + 1.94ξ

1 + ξ . (4.35)

This equation is accurate to within 5% for the nadir observation and most so-
lar incident angles used for cloud remote sensing (oblique incident angles are
excluded).

Figure 4.14 quantifies the result already mentioned above. Namely, the opti-
cal penetration depth generally decreases with the wavelength. However, at some
narrow spectral intervals, the opposite is true (see, e.g., the region close to 1 μm
in Fig. 4.15). The value of τp changes from approximately 100 at λ = 0.5 μm
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Fig. 4.15. The dependence of the penetration optical thickness on the wavelength obtained using
the approximate equation for water droplets having the effective size 6 μm at the nadir observation
and the solar angle equal to 60◦. Symbols give the results obtained using the numerical solution
of the integro-differential radiative transfer equation.

originates in part from different cloud depths. This sets an important question
as far as cloud satellite remote sensing is concerned. Namely, the cloud liquid
water path (LWP) and the effective radius of droplets are usually obtained from
measurements of reflectances at multiple wavelengths. This does not lead to com-
plications for homogeneous clouds. However, homogeneous clouds do not exist.

ext
−1

after the rescaling the ordinate. For example, the ordinate should be multiplied
by 10 at σext = 100 km−1. Then % is given in meters.

, we obtain that the value of % changes from 120 mtypical value of σ = 50 km
at λ= 3.7 μm to 2000 m at λ= 0.5 μm. In fact, Fig. 4.15 is also applicable to %

to approximately 6 at λ = 3.7 μm for the typical case shown in Fig. 4.15. Using a

It follows from Fig. 4.15 that the radiance detected at different wavelengths
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Fig. 4.16. The same as in Fig. 4.15 except the results for the solar angle 10◦ are also shown.

For example, the size of droplets usually increases from the bottom to the top of a
cloud layer. It means that the radius of droplets obtained at 3.7μm (aef (3.7 μm))
is not necessarily representative for a whole cloud. In this case, the derivation of
the LWP as the product of the optical thickness in the visible and aef (3.7 μm)(we
omit a numerical multiplier) may bias the derived LWP considerably. Therefore, it
is of importance to specify the wavelengths used to derive aef and the LWP while
referring to their values obtained from the optical instruments onboard satellites.
Generally, decreasing the wavelength will lead to smaller values of a derived aef

(and also smaller values of the LWP).
It follows from Fig. 4.16 that the value of τp is larger for the illumination closer

The spectral dependence of the optical penetration thickness is shown in
Fig. 4.17 for various sizes of particles. We see that the value of τp decreases with
the size of particles in the infrared. This can be expected from the greater light
absorption by larger droplets. We also found that the optical penetration depth is
slightly larger for larger droplets in the visible. This is due to larger values of g for

as deeply as photons incident on a given medium along the normal.
absorbing turbid medium along oblique angles escape easier and do not penetrate
to the normal. This can be explained by the fact that photons injected into the 
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Fig. 4.17. The same as in Fig. 4.15 except the results for the several values of the effective droplet
radius are shown.

clouds with larger droplets. The account for the gaseous absorption will modify
the data shown in Fig. 4.16, adding an oscillating part on the general background
curve depending on the gas type/concentration. However, we do not consider this
contribution in any detail here.

Equation (4.33) becomes less accurate for values of the single scattering albedo
(SSA) smaller than 0.95. This case may be of importance for polluted clouds and
also for ice clouds having large crystals and, therefore, increased value of light
absorption. In this case, the problem can be solved using the general asymptotic
equation valid for cloud optical thicknesses larger than 10 and an arbitrary SSA.
This equation has the following form (Nakajima and King, 1992):

R(ξ, η, ϕ, τ ) = R∞(ξ, η, ϕ)
[
1 − mlN̄(ξ, η, ϕ, τ )

(
1 − l2 exp(−z)

)−1
exp(−z)

]
,

(4.36)
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where N̄(ξ, η, ϕ) = u(ξ )u(η)/R∞(ξ, η, ϕ), z = 2kτ, and, therefore,

τp = (2k)−1 ln
(
ap + l2

)
, (4.37)

where

a = mlu(ξ )u(η)

R∞(ξ, η, ϕ)
. (4.38)

The issues related to the numerical calculation of asymptotic parameters and func-
tions k, l, m, u(ξ ) and R∞(ξ, η, ϕ) are discussed by Nakajima and King (1992).
However, note that the essential simplicity characteristic to Eq. (4.33) is lost then.

Equation (4.27) follows from Eq. (4.36), assuming that l = exp(−αy),

mu(ξ )u(η) = (1 − exp(−2y)) u0(ξ )u0(η) (4.39)

as shown above. The same correspondence exists between Eqs. (4.37) and (4.33)
(with account for Eq. (4.30)).

4.2.2 Cloud Optical Thickness

4.2.2.1 Retrieval procedure

Equations presented in Chapter 3 can be used for rapid estimations of the
radiative and polarization characteristics of cloudy media. They can also be used
to check the accuracy of new algorithms, using the fact that the numerical solution
of the radiative transfer equation, and the results presented above for optically thick
layers should converge as τ → ∞ and β → 0.

The most important area of application of approximate solutions lies in the
field of remote sensing (King, 1981, 1987; Kokhanovsky, 2000; Kokhanovsky,
2001; Kokhanovsky and Zege, 1996; Kokhanovsky et al., 2003; Rozenberg, 1967;
Rozenberg et al., 1978). In particular, the usage of asymptotic equations (valid as
τ0 → ∞) allows us to avoid the compilation of so-called look-up tables (LUTs) in
the case of optically thick clouds and, therefore, to speed up the retrieval process.
Currently, LUTs are widely used in passive cloud remote sensing (Arking and
Childs, 1985; Nakajima and King, 1990; Rossow et al., 1989). The minimization
of differences between measured and stored (e.g., in LUTs) spectral reflectances
is used as a main tool to derive cloud optical and microphysical characteristics.

The reflection function of a cloud over a reflective surface with the Lambertian
albedo A can be presented as

R = Rb + At2u0 (ξ ) u0(η)

1 − Ar
, (4.40a)
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with

Rb = R0∞ − tu0 (ξ ) u0(η) (4.40b)

in the visible. Here,

t = 1

α + 0.75τ ∗ (4.40c)

is the global transmittance with α ≈ 1.07 and τ ∗ = τ (1 − g).
We have for the global transmittance in the visible from Eq. (4.40a) after simple

algebraic calculations:

t = (1 − r A) 

1 − r A(1 + )
, (4.41a)

where the function  is introduced. It is given by

 ≡  (η, ξ, ϕ) = R0∞(η, ξ, ϕ) − R̂mes(η, ξ, ϕ, τ )

u0(η)u0(ξ )
. (4.41b)

The analytical results for functions R0∞(η, ξ, ϕ) and u0(η) have been presented
above. Thus, the global transmittance t , and correspondingly the total reflectance
or the spherical albedo r = 1 − t , can be obtained from Eqs. (4.40) and (4.41)
and knowledge of the surface albedo A and the measured value of the reflection
function R̂mes(η, ξ, ϕ, τ ).

For such a retrieval it is not necessary to know the optical thickness of clouds
and the average size of droplets. This is an extremely important point for climate
studies, where the global and temporally averaged value of the cloud spherical
albedo r = 1 − t is an important parameter. Usually r < 0.8 for natural water
clouds in the visible (Danielson et al., 1969), which implies that clouds with optical
thicknesses larger than 70–100 appear not very often (Trishchenko et al., 2001).
The reduced reflectance in the visible can be also related to aerosol absorption in
clouds (Melnikova and Mikhailov, 1994, 2000) and to the inhomogeneity and finite
size of clouds (Stephens and Tsay, 1990).

Using Eq. (4.40), we obtain t ≡  at A = 0, and t = 0 (r = 1) at A = 1. This
shows that all photons incident on optically thick nonabsorbing clouds over surfaces
with A = 1 survive and return back to outer space. They yield no information about
actual cloud thickness. This explains why the retrieval of cloud parameters over
bright surfaces (e.g., snow and ice) can be hardly performed in the visible (Platnick
et al., 2001).

The information on the global transmittance t can be used to find the scaled
optical thickness (King, 1987; Rozenberg et al., 1978), given by

τ ∗ = τ (1 − g). (4.42)
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It follows from Eq. (4.40c):

τ ∗ = 4

3

[
t−1 − α], (4.43)

∗

Equation (4.43) can be used for the retrieval of τ ∗ from the measurement of
the reflection function at a single wavelength (King, 1987). Equation (4.42) is used
for the derivation of the optical thickness τ if the value of g is known (Rossow,
1989) (approximately 0.74 for ice clouds as previously discussed). However, for
warm clouds the asymmetry parameter g depends on the size of droplets even for
nonabsorbing channels. Often the dependence g(aef) is neglected and it is assumed
that aef = 10 μm for water clouds (Rossow and Schiffer, 1999). Then it follows
from that g = 0.86 at λ = 0.65 μm and aef = 10 μm. This value of g can be used
for a crude estimation of the optical thickness of liquid clouds.

Errors can be introduced if one assumes the fixed a priori defined value of g.

e f

(4.42), we have τ = �τ ∗, � ≡ (1 − g)−1 ≈ 6.3–7.6 and τ ∈ [9.4, 11.5] at τ ∗ =
1.5, depending on the value of g used. The assumption that aef = 10 μm yields
g = 0.86 and � = 7.2, τ = 10.7. This leads to a relative error of 7–14% in the
retrieved optical thickness (i.e., a range of possible values from τ = 9.4 to τ = 11.5
instead of τ = 10.7). This uncertainty in the optical thickness can be removed if
measurements in the near infrared region of the electromagnetic spectrum are
performed, enabling the size of droplets and, therefore, the asymmetry parameter

not an ice or a mixed phase cloud. Another uncertainty arises due to the possible
contamination of clouds by absorbing aerosols (Asano et al., 2001, 2002). Then Eq.
(4.40) is not valid and we must account for the fact that the cloud single scattering
albedo (SSA) differs from one.

4.2.2.2 Hurricane Erin

Let us consider optical thickness retrieval for the Hurricane Erin, located in
the western Atlantic (39.3 N, 60.4 W) on September 13th, 2001 (16:21 UTC). By
definition, hurricanes contain winds in excess of 119 km per hour and large areas
of heavy rainfall. Therefore, they belong to the most dangerous natural hazards.
This explains the great interest in hurricane research especially in recent years
(Simpson, 2002). Physical characteristics of hurricanes are usually obtained using
radar remote sensing techniques (Heymsfield et al., 2001). The optical imagery

absence of information about the size of droplets and the actual optical thickness
of clouds.

where t is given by Eq. (4.40). The value of τ can be obtained even in the

= 4–20 μm. From Eq.It follows at λ = 0.65 μm that g = 0.84–0.87 at a

g estimation. For this, however, we should be sure that we have a liquid and
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serves as an important tool for a timely identification of hurricanes and for track-
ing their trajectories (especially where radar is not available). The optical remote
sensing techniques can also be used to study physical characteristics of hurricanes
like hurricane-top height, the LWP, the thermodynamic phase of particles and
their size. The enhanced spatial resolution of optical imagery allows for important
complimentary information as compared to microwave techniques. Clearly, some
additional difficulties and problems can arise in this case. They are related mostly
to the relative importance of three-dimensional (3-D) effects (e.g., in a hurricane
wall), scattering by nonspherical particles, and large values of the geometrical and
optical thickness of hurricanes.

Erin can be traced back to a tropical wave that emerged from Western Africa
on August 30th, 2001. The hurricane took a long journey from the coast of
Africa to the northern Leeward Islands and then to Greenland over the western
Atlantic before it merged with high-latitude cyclonic flow on September 17th,
2001. Note that this hurricane was the first one for which a comprehensive 3-D
image of the complete inner core (including the eyewall and the eye) has been
created.

The retrieval procedure is performed using the SeaWiFS local area coverage
imagery with the spatial resolution of about 1 × 1 km, taken on September 13th,
2001. The SeaWiFS instrument measures the top-of-atmosphere backscattered light
intensity in eight channels (412, 443, 490, 510, 555, 670, 765, and 865 nm). Only
data for the wavelength 412 nm are used in this study. This is due to a low spectral
variation of the hurricane reflectance, which is due to large size of particles (as
compared to the light wavelength) in a hurricane.

The map of retrieved values of transport optical thickness is given in Fig. 4.18.
We see that the value of the transport optical thickness is mostly in the range of
4–10 for the hurricane studied.

We also have selected a core of a hurricane and made the retrieval of the
transport optical thickness for this special case. The map obtained is shown in Fig.
4.19. The statistical distribution of the transport optical thickness for this case is
given in Fig. 4.20.

One can find black areas surrounded by white color in Fig. 4.19. They corre-
spond to negative values of the reduced optical thickness obtained owing to possible
influence of 3-D effects as discussed above (e.g., shadowing effects). To determine
the hurricane optical thickness, the value of the asymmetry parameter should be
known. The value of g is around 0.85 for water clouds and it is close to 0.75 for ice
clouds. The retrieved cloud optical thickness distribution, assuming the value of g
= 0.85, coincides with that given in Figs. 4.18–4.20 (but scaled using the factor
B = 1/(1− g)). Note that we have at g = 0.85, B ≈ 6.7. Therefore, the spatial
distribution of τ for the case given in Fig. 4.18 has a main maximum at cloud
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Fig. 4.18. The transport optical thickness map.

optical thickness equal to 35. Note that results at small and large values of cloud
optical thickness can be biased because the accuracy of our technique decreases
there. However, it works well for values of optical thickness in the range of 10–100,
which are characteristic numbers for most pixels with a hurricane. We also found
a highly nonuniform distribution of cloud optical thickness in the hurricane eye.
The mode optical thickness was found to be equal seven in the hurricane eye.

The hurricane spherical albedo map and frequency distribution are given in

around 0.86. The distribution of the spherical albedo is similar to the well-known
beta distribution, having abrupt decrease at r close to 1.0. Large values of r for a
hurricane suggest that hurricanes can potentially modify planetary albedo (at least
during the hurricane season). This can be also enhanced by foam-covered rough
seas, which are produced by hurricanes.

Figs.4.21a and 4.21b. We see that most frequent value of a hurricane albedo is
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Fig. 4.19. The same as in Fig. 4.18 but for the region close to the hurricane eye.
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Fig. 4.20. The transport optical thickness frequency distribution.

4.2.2.3 The influence of ground albedo

The results of the cloud optical thickness retrievals are influenced by the ground
reflectance. The ground reflectance is generally unknown. This may lead to con-
siderable biases in retrievals. Sometimes minimal reflectance databases for a given
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Fig. 4.21. The spherical albedo map (a) and the the spherical albedo frequency distribution (b).

location/month obtained from spaceborne observations for clear sky conditions are
used to constrain the ground spectral reflectance.

It is of importance to understand in which conditions the influence of the
ground reflectance can be neglected. Taking into account that the calibration error
of modern spectrometers and radiometers is around 5%, we pose the following
question. What is the Lambertian ground reflectance Amax, which lead to not more
than 5% differences between the cloud reflectances for a given τ = τ ′ over black
and not black underlying surfaces? Clearly, we can neglect the influence of the
ground reflectance at A < Amax for a given cloud optical thickness τ = τ ′.

This corresponds to the following equation:

1 − Rb

RA
= p, (4.44)

where p = 0.05, Rb is the reflection function of a cloud over a black surface and
RA is the reflection function of a cloud over the ground surface having the albedo
A = Amax. This equation can be rewritten in the following form for the Lambertian
ground surface:

Amaxt2u0(μ)u0(μ)

(1 − Amax(1 − t)) (R0∞ − tu0(μ)u0 (μ0))
= 1 − p

p
, (4.45)
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Fig. 4.22. (a) The dependence of the maximal ground albedo on the cloud transmission. (b) The
dependence of the maximal ground albedo on the cloud optical thickness at g = 0.75, 0.85.

where we used Eq. (4.40a). So we have:

Amax = γ {Q − t}
γ (1 − t) {Q − t} + t2

, (4.46)

where γ = p/(1 − p), Q = R0∞ (η, ξ, ϕ) /u0 (η) u0 (ξ ). This equation allows to
estimate the maximal value of the ground albedo, which can be neglected for a
given p, t, and geometry. This can be easily generalized to account for the case
ω0 �= 1. Then values of Amax increase for a given τ .

The dependence of Amax on t is shown in Fig. 4.22a. It follows that for clouds
having t < 0.1, the ground reflectance is of no importance for the geometry speci-
fied. We also show the dependence of Amax on cloud optical thickness in Fig. 4.22b
at g = 0.75 (ice clouds), 0.85 (water clouds). Clearly, larger values of g lead to
smaller cloud transmittances and, therefore, to smaller values of Amax for a given
τ . This is supported by data shown in Fig. 4.22b as well. So we conclude that the
account for ground reflectance is more important for water clouds as compared to
ice clouds at a given τ . However, ice clouds are generally thinner as compared to
water clouds and Amax decreases for smaller τ . So generally, surface effects cannot
be neglected for ice clouds as well.

The snow ground reflectance in the visible is around 0.8. Then the ground
albedo can be neglected for cloud optical thickness retrievals over snow at τ > τ ′,
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where τ ′ = 40 for water clouds at τ ′ = 67 for the geometry as specified in Fig.
4.22b. The value of τ ′ is around 5–10 for clouds over the ocean, where the ground
albedo is small (generally, below 0.05 in the visible).

4.2.3 The Size of Droplets and Crystals

As was specified above, for a correct estimation of optical thickness of clouds
from space, we need to know not only the surface albedo but also the effective
radius of droplets. The size of droplets can be found if the reflection function in
the near-infrared is measured simultaneously (Nakajima and King, 1990). This is
due to the fact that the reflection function in the infrared strongly depends on the
probability of photon absorption by droplets. This probability is proportional to
the effective radius of droplets, as was discussed above.

The influence of absorption and scattering of light by molecules and aerosol
particles on the measured value R(μ,μ0, ϕ, τ ) is often neglected in the cloud
retrieval algorithms. However, correction can be easily taken into account if needed
(Goloub et al., 2000; Wang and King, 1997). The influence of surface reflection on
the cloud reflection function, assuming that the surface is Lambertian with albedo
r , is easily taken into account, leading to following results (Kokhanovsky et al.,
2003):

R̂1
(
aef,w

) = R0∞ − t1
(
aef ,w

)
[1 − A1]

1 − A1
[
1 − t1

(
aef ,w

)]u0(ξ )u0(η), (4.47a)

R̂2
(
aef,w

) = R0∞ exp
(−y

(
aef

) (
1 − cy

(
aef

))
u
)

−
[

exp
(−x

(
aef,w

) − y
(
aef

)) − t2
(
aef,w

)
A2

1 − A2r2
(
aef,w

)
]

× t2
(
aef,w

)
u0(ξ )u0 (η) . (4.47b)

The subscripts ‘1’ and ‘2’ refer to wavelengths λ1 and λ2 in the visible and the

1 and A2

albedos in the visible and the near-infrared. The explicit dependence of functions
involved on the parameters aef and w to be retrieved is introduced in brackets.
The LWP w is preferred to the optical thickness in retrieval procedures due to the
independence of w on wavelength. The optical thickness is uniquely defined if aef

and w are known.
Equations 4.47a and (4.47b) form a nonlinear system of two algebraic equa-

tions having two unknowns (aef and w), which can be solved by standard methods
and programs. In particular, we can find the value of w from Eq. (4.47a) analytically

near-infrared channels respectively. The values of A give us the surface
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(Kokhanovsky et al., 2003). Substitution of this result in Eq. (4.47b) gives us a single
transcendent equation for the effective radius of droplets determination. The accu-
racy of this semi-analytical retrieval algorithm has been studied by Kokhanovsky
et al. (2003).

A similar approach can be used for the estimation of sizes of crystals in ice
clouds. The simplification is possible in this case. Due to the large size of crystals
one can ignore the dependence of the reflectance in the visible on the size of
particles and assume that g ≈ 3/4 (Garrett et al., 2001; Kokhanovsky, 2004a).
Then it follows assuming that A1 = 0:

R = R0∞ − u0(ξ )u0(η)

1.072 + 0.188τ
. (4.48)

This equation allows for a simple estimation of τ in the case of thick ice clouds
over black underlying surface. The functions u0(ξ ) and R0∞ can be found from
Eqs. (3.267) and (3.256), respectively. Knowing the value of τ and also accounting
for the spectral neutrality of τ for ice clouds, we can obtain the cloud SSA. The size
of particles can be derived from the value of SSA assuming the shape of ice crystals.
Instead of the derivation of a crystal size for a given shape model, one can retrieve
the particle absorption length as discussed by Kokhanovsky and Nauss (2005).

Usually the surface albedo is not known in advance and must be assessed using
a priori assumptions or measurements over the same place but at a different time,
when clear conditions prevail.

4.2.4 Single Scattering Albedo

Single scattering albedo measurements in infrared are easy and can be per-
formed using LUT approach. Also the retrieved values of aef can be used to estimate
the value of SSA. The problem is much harder in the visible, where the value of SSA
is close to one. For polluted clouds the SSA is associated with pollutants (e.g., soot)
and not with cloud droplets. Measurements in the infrared can be used to find both
aef and τ enabling the calculation of the reflectance in the visible. This calculated
value of the reflection function can be compared to the measured one to quantify
the load of pollutants. However, it is not easy to estimate β = 1 − ω0 → 0 from
reflectance measurements due to calibration problems and also model assumptions
used in retrieval procedures (e.g., cloud homogeneity). Generally, cloud absorp-
tance can be measured using two aircrafts flying below and above a cloud and mea-

transmitted/reflected fluxes can be used to estimate the cloud absorptance a. How-
ever, the value of a is close to zero. Therefore, large errors in the retrieved value are
possible.

suring transmittance and reflectance. Then the difference between incident and
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King (1981) proposed to use just one aircraft but flying deep inside a cloud
far from the boundaries. The aircraft must have instruments to measure downward
and upward light fluxes or light filed intensities i(±η). Then one can derive for an
infinite cloud as β → 0 : D = i(−1)/ i(1) = 1 − ζ√β, where ζ = 2

√
3/(1 − g)

as it was shown above. Therefore, it follows: β = (1 − D)2/ζ 2 as β → 0.
One must account for the influence of cloud boundaries. Then we have for the

downward propagated light intensity (van de Hulst, 1968):

I (η) ∼ i(η) − Wi(−η), (4.49)

where the second term accounts for the influence of the boundary. Clearly, it fol-
lows: W → 0 with τB, τB is the optical distance from the boundary to the level
of measurements. Van de Hulst (1968) found that W = exp(−2k(τB + q)), where
q ≈ 0.71/(1 − g). So we have for the ratio D̃ = I (−1)/I (1):

D̃ = i(−1) − Wi(1)

i(1) − Wi(−1)
, (4.50)

where we assume that the aircraft flies exactly in the middle of cloud and τB = τ0/2,
where τ0 is the cloud optical thickness. Clearly, it follows for an infinite cloud:
τ0 → ∞ and D̃ → D. Also we can write:

D̃ = D − W

1 − DW
. (4.51)

This equation allows to find the value of β, if D̃ is measured. For this, however,
independent measurements of the cloud asymmetry parameter g are needed (Garrett
et al., 2001). The analytical approximate expression for D valid at arbitrary β has
been proposed by King (1986):

D = (1 − σ s)(1 − s)

1 + ρs
, (4.52)

where σ = 0.979, ρ = 1.503, s = √
(1 − ω0)/(1 − ω0g).

4.2.5 Cloud Thermodynamic Phase

The discrimination of liquid water from ice clouds is of importance for many
applications, including flight safety and Earth climate studies. The size and shape of
particles in warm and ice clouds are different. This influences the energy transmitted
and reflected by a cloud.

This discrimination can be performed, taking into account the difference in
angular or spectral distribution of reflected light. Also one can use polarization
measurements as discussed by Goloub et al. (2000). It is known that minima in
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the reflection function of ice clouds (e.g., near 1.5 and 2.0 μm) are moved to
larger wavelengths as compared to the case of liquid droplets. This is, of course,
due to the difference in spectral behaviour of the imaginary parts of the complex
refractive index of liquid water and ice. Minima for liquid water also moved to
larger wavelengths as compared to the absorption bands of water vapour. These
different positions of minima can easily be registered with modern spectrometers
(see, e.g., Dvoryashin, 2002; Knap et al., 2002).

Another possibility is to consider different angular behaviour of the reflection
function for ice and water clouds at specific scattering geometries (e.g., rainbow,
glory and halo scattering). In particular, the reflection function of water clouds,
as distinct from ice clouds, has a maximum near the rainbow scattering angle,
which also can easily be detected. This feature becomes even more pronounced if

4.2.6 Cloud Top Height and Cloud Fraction

Another important characteristic of a cloud is its height. It can be retrieved using
data from space-borne lidars (Winker and Trepte, 1998). Passive measurements can
also be used. For instance, Yamomoto and Wark (1961) proposed the use of the
oxygen A band, centred at 0.761 μm. The physical basis of this method depends
on a deep minimum around 0.761 μm due to oxygen absorption. The depth of

thick clouds and be absorbed by the oxygen in the air column below the cloud.
This will increase the value of the reflection function at 0.761 μm for the case

et al., 2001; Kuze and Chance, 1994; Rozanov and Kokhanovsky, 2004). First of

varies with temperature and pressure. Thus, one should use a priori assumptions
on the temperature and pressure variation with height in the Earth’s atmosphere.

the degree of polarization [e.g., at the rainbow geometry] is studied (Goloub et al.,
2000; Kokhanovsky, 2003b).

Yet another important problem is the detection of supercooled water in clouds. 
Kokhanovsky et al. (2006) proposed to use the P-T diagram for this purpose. Here P 
is the phase index equal to the ratio of the top-of-atmosphere reflectance at 1550 to 
that at 1670nm, T is the cloud top height temperature. The values of T above 273K 
correspond to water clouds. Then the values of P are above 0.8. However, it follows 
from the analysis of satellite data that in some cases T is below 273K at P > 0.8. 
These are areas, where supercooled water may exist. This issue is of importance for 
aircraft acing and safety.  

the absorption band will depend on the cloud height. Photons can hardly penetrate

of clouds at high altitudes. The depth of the absorption band is larger for low
clouds. Practical applications of the method, however, are not so simple (Koelemeijer

all, the depth of band also depends on the oxygen absorption cross-section, which

The generally unknown surface albedo cloud geometrical thicknessand
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Rozanov and Kokhanovsky (2004) proposed the usage of the modified expo-
nential approximation in the cloud top height retrievals. This allows to speed up
the retrieval process considerably.

Global information on cloud fraction/cover Q is of a considerable importance
by itself. Usually the value of Q varies in the range 0.55–0.85, depending on the
exact region under study. Globally, clouds cover around 60% of the atmosphere.
This once more underlines the importance of clouds in the radiation balance and
atmosphere heating rates studies.

Palle and Butler (2001) state that the global cloud cover increased during the
past century. They argue against a dominating role of solar activity (via galactic
cosmic rays) on cloud formation.

4.2.7 Cloud Bottom Height

The cloud bottom height is usually determined using ground-based laser mea-
surements. However, one can also assess the cloud bottom altitude from satellite
measurements, if the cloud top altitude is known (e.g., from space lidar mea-
surements). Let us show this considering a single homogeneous cloud. The cloud
reflectance spectrum is hardly sensitive to the cloud geometrical characteristics out-
side gaseous absorption bands. The situation is radically changed if we consider
the radiative transfer in the molecular absorption line (Rozanov and Kokhanovsky,
2004; Rozanov et al., 2004; Yamomoto and Wark, 1961). Indeed, let us assume
that we have a gas in a planetary atmosphere, which absorbs almost all incident
radiation in a narrow band. Then the depth of this band, measured by a receiver on
a satellite will depend on the cloud altitude. Gas concentrations generally decrease
with the distance from the ground. Therefore, clouds at a high altitude do not allow
most photons to penetrate to low atmospheric layers and be absorbed there. So

are present in the field of view of a sensor. The next question to address is the
influence of cloud geometrical thickness on the reflectance spectrum R(λ) in the
gaseous absorption band. One expects that spectra R(λ) in the gaseous absorption
band for clouds having the same top heights but different cloud geometrical thick-

problem Koelemeijer et al. (2001) proposed an algorithm that retrieves simulta-
neously effective cloud top height/pressure and cloud fraction, assuming that a
cloud is a Lambertian surface with a given albedo. Such an assumption leads to
underestimation of cloud top heights as compared to in situ measurements.

influence the retrieval accuracy. Other possible sources of errors are described in
detail by Kuze and Chance (1994) and Koelemeijer et al. (2001).

The largest complication arises for pixels that are only partially covered by
clouds. Ignoring them will lead to a big reduction of data, so to overcome this

the depth of a molecular band in the reflected light will decrease, if high clouds
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Fig. 4.23. Cloud reflection function in the oxygen A-band calculated using SCIATRAN (lines)
(Rozanov et al., 2005) and asymptotic analytical theory (symbols) (Kokhanovsky and Rozanov,
2004) at the nadir observation, the solar zenith angle equal to 60◦, the optical thickness equal
to 50, the cloud top height equal to 9 km and cloud bottom height equal to 3 km (circles) and
7 km (triangles). All other parameters needed to calculations (e.g., atmospheric vertical profiles)
coincide with those described by Kokhanovsky and Rozanov (2004). The reflectance function is
averaged with the step 0.2 nm using SCIAMACHY (Bovensmann et al., 1999) response function.

Fist of all the TOA reflectance R is presented in the form of a Taylor expansion
around the assumed value of the cloud bottom height equal to H0:

R(H ) = R(H0) +
∞∑

i=1

ai (H − H0)i , (4.53)

nesses will differ even if the cloud optical thicknesses τ coincide (Kokhanovsky
and Rozanov, 2004). This is due to the fact that multiple light scattering will lead to
large average photon path lengths in clouds as compared to a cloudless atmosphere,
thereby increasing absorption. This must lead to a decrease of the reflectance for
geometrically thicker clouds. Radiative transfer calculations confirm this fact.

The dependence of the spectrum R(λ) as shown in Fig. 4.23 can be used to
determine the cloud bottom height from a satellite. The main steps of the inversion
technique are given below.
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introduce the vector 
Rmes with components (R(λ1), R(λ2), . . . R(λn)). The same
applies to other scalars in Eq. (4.53).

Therefore, Eq. (4.54) can be written in the following vector form:


y = 
ax (4.55)

where 
y = 
Rmes − 
R(H0), 
a = 
R′(H0) and x = H − H0. Note that both measure-
ment and model errors are contained in Eq. (4.55). The solution x̂ of the inverse
problem is obtained by minimizing the following cost function:

� = ‖
y − 
ax‖2
, (4.56)

where ‖ ‖ means the norm in the Euclid space of the correspondent dimension.
The value of x̂, where the function � has a minimum can be presented as

x̂ = (
y, 
a)

(
a, 
a)
=

∑n
i=1 ai yi∑n
i=1 a2

i

, (4.57)

where (
y, 
a) denotes a scalar product in the Euclid space, and n is the number of
wavelengths where the reflection function is measured.

The functions 
R(H0) and 
R′(H0) in Eq. (4.57) must be calculated using the ra-
diative transfer theory with input parameters characteristic for a given atmospheric
state. We use the approximate analytical theory for such a calculation. The details of
this theory are given by Kokhanovsky and Rozanov (2004). Basically, the approx-
imation has an accuracy better than 5% as compared to line-by-line calculations
in the O2 A-band (Kokhanovsky and Rozanov, 2004) for typical cloudiness with
τ ≥ 5. The use of the exact radiative transfer theory is also possible but it leads to
a huge calculation time and does not provide a better approach to the problem at
hand due to all uncertainties involved (e.g., possible multi-layered cloudiness).

Therefore, knowing values of the measured spectral reflection function Rmes

and also values of the calculated reflection function R and its derivative R′ at
H = H0 and several wavelengths, the value of the cloud bottom height can be
found from Eq. (4.57) and equality: H = x̂ + H0. The value of H0 can be taken

procedures (Rozanov et al., 1998). We found that the function R(H ) is close to a
linear one in a broad interval of the argument change (Kokhanovsky and Rozanov,
2004). Therefore, we neglect nonlinear terms in Eq. (4.53). Then it follows:

R = R(H0) + R′(H0)(H − H0), (4.54)

where R′ = dR/dH. We assume that R is measured at several wavelengths
(λ1, λ2, . . . λn) in the oxygen A-band. Then instead of the scalar quantity R we can

where ai = R(i)(H0)/ i!. Here R(i)(H0) is the i-derivative of R at the point H0.

The next step is the linearization, which is a standard technique in the inversion
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We have found that the cloud optical thickness τ is the most important parameter
which influences the retrieval. So we find the value of τ from measurements outside
the gaseous absorption band as described by Kokhanovsky and von Hoyningen-
Huene (2004).

Clearly, if the forward and inverse models use the same system of equations,
the inverse problem solution accurately reproduces the input parameters for the
forward model in the absence of the measurement noise. We have checked this
using the forward and inverse models based on the same set of analytical equa-
tions as described by Rozanov and Kokhanovsky (2004). Indeed, the cloud bottom
height used as input in the retrieval scheme coincided with the cloud bottom height
retrieved by the solution of the inverse problem as specified above in this case.

The next possible step is to introduce measurement errors and see the influence
of these errors on the retrieval of H. However, we have chosen a different strat-
egy. Namely, we calculate the cloud reflectance spectrum R(λ) in the O2 A-band
using the exact radiative transfer calculations with the radiative transfer solver
SCIATRAN (Rozanov et al., 2005) and use this exact spectrum in the analytical
retrieval procedure described above. Because possible measurement errors are well
below the accuracy of analytical equations, such an approach can be considered as
a simulation of noise in the inversion procedure having as an input SCIATRAN-
generated synthetic spectra.

Results of the inversion procedure described above are shown in Fig. 4.24. It
follows that with the exclusion of clouds having large top altitude and small cloud
bottom height (very thick clouds), which are rare cases in terrestrial atmosphere,
there is a one-to-one correspondence between retrieved Hr and exact He cloud
bottom heights. Biases�H = Hr − He are given in Fig. 4.25. It follows that biases
are only weakly influenced by values of τ and generally they are below 0.5 km for
clouds having the geometrical thickness below 4.5 km. Most clouds in the terrestrial
atmosphere have geometrical thicknesses below 1 km. Then biases are just 0.25
km as shown in Fig. 4.25.

Therefore, we conclude that the technique presented here can be used for an
accurate estimation of a cloud bottom height from a satellite.

The retrieved value of H is compared to H0. If the difference is smaller than
100 m, the value of H is taken as a retrieved value and the inversion procedure is
finished. Otherwise, the retrieved value of H is substituted in Eq. (4.56) instead of
H0 and iterations are performed until the convergence is reached.

Several additional parameters are needed in the retrieval procedure. They are
the cloud optical thickness, the cloud liquid water profile, the cloud droplet radii,
etc. They must be simultaneously derived or assumed using climatological values.

equal to 0.5 km, which is a typical value for low level clouds. The main assumption
in our derivation is that the dependence of R on H can be presented by a linear
function on the interval x (Kokhanovsky and Rozanov, 2004).
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Fig. 4.24. Dependence of the retrieved cloud bottom height on the exact cloud bottom height at
τ = 20 for cloud top height 9 km (stars), 7 km (triangles), 5 km (circles), 3 km (squares).

as shown in Fig. 4.25 are generally below 30 m then. It means that the considered
technique can be easily implemented using the lidar system. Lidars can detect the
cloud boundary with the accuracy better than 20 m.

The results given in Figs. 4.24 and 4.25 are obtained allowing for the cloud top
height measurements uncertainty�h = ±10 m. They are not changed appreciably
even when increasing this uncertainty 10× (e.g., to 100 m). The changes of biases

It follows from Fig. 4.25 that the accuracy of the retrieval decreases for smaller

biases as far as the operational cloud retrievals are concerned.

values of H. This is related to the fact that analytical equations have large errors

and large values of the cloud top height is low. So values with large biases of the
retrieved cloud bottom altitude as shown in Fig. 4.25 do not produce significant 

for smaller H . Note that the probability of single clouds having small values of H
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Fig. 4.25. Dependence of the absolute error of the retrieved cloud bottom height on the exact
cloud bottom height at τ = 20 for cloud top height 9 km (stars), 7 km (triangles), 5 km (circles),
3 km (squares). Data are obtained from Fig. 4.24.

of a multiply scattered light field. This inhomogeneity arises solely due to bound-
ary conditions. A laser beam enters a cloud effectively at one point. So instead of

4.3 Laser Beam Propagation Through a Cloud

the angular distribution of a light field inside a cloud under laser beam illumination
conditions along a normal to a cloud or fog layer (e.g., along axis OZ). Unlike most
problems considered above, we need to account for the horizontal inhomogeneity

for a number of applied problems including sounding of clouds and also for image
transfer, vision and communication problems. The aim of this section is to derive

The studies of laser beam propagation through fogs and clouds are of importance
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The task is to find the angular distribution of light field I (
r , 
s) at a given point

r in the direction specified by the vector 
s assuming a narrow beam illumination
condition. Generally, the problem looks complicated and calls for the numerical
implementation. However, an important approximate solution can be derived, if
one is interested in the distribution I (
r , 
s) close to the axis of the laser beam for
vectors 
s directed along OZ or in the directions almost parallel to OZ. Let us show
this.

We present vectors 
r and 
s as


r = x
ex + y
ey + z
ez, (4.59)


s = sx
ex + sy
ey + sz
ez, (4.60)

where (
ex , 
ey, 
ez) are unity vectors directed along the axes OX, OY, and OZ. Axes
OX and OY specify the plane perpendicular to OZ. We can write in the spherical
coordinate system:

sx = sin θ cosϕ, sy = sin θ sinϕ, sz = cos θ. (4.61)

Here ϕ is the azimuthal angle and θ is the angle between the axis OZ and the ob-
servation direction. We will assume that θ → 0 in our derivations. Hence, the cor-
respondent approximation is called the small angle approximation (SAA). Clearly,
this is the generalization of the SAA considered above for a case of narrow beams.

Let us introduce the vector


∇⊥ ≡ 
ex
∂

∂x
+ 
ey

∂

∂y
. (4.62)

Then it follows

(
s 
∇⊥)I (z, 
ρ, 
s) + ∂ I (z, 
ρ, 
s)

∂z
+ σext I (z, 
ρ, 
s)

− σsca

4π

∫ ∞

−∞
dsx

∫ ∞

−∞
dsy I (z, 
ρ, 
s ′)p(
s ′− 
s ) = 0, (4.63)′ ′

observation direction but also on the distance of a given point from the axis OZ,
which gives the illumination direction. For simplicity of derivations we will assume
that a cloud is represented by a homogeneous layer. Theory is easily extended for
a case of vertically inhomogeneous cloudy media.

The main equation of the problem can be written in the following form:

(
s 
∇)I (
r , 
s) + σext I (
r , 
s) − σsca

4π

∫
4π

I (
r , 
s ′)p(
s ′, 
s)d�′ = 0. (4.58)

uniform illumination of the cloud boundary, we have illumination of a cloud by
a narrow beam. The intensity of light at a given depth depends not only on the
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Table 4.1. Fourier transforms.

N Fourier transform Definition

1 Ĩ (z, 
ν, 
s)
∫ ∞

−∞
∫ ∞

−∞ I (z, 
ρ, 
s)ei 
ν 
ρd 
ρ

2 I (z, 
ρ, 
s)
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Ĩ (z, 
ν, 
s)e−i 
ν 
ρd
s

3 −i
s
ν Ĩ (z, 
ν, 
s)
∫ ∞

−∞
∫ ∞

−∞ (
s 
∇⊥)I (z, 
ρ, 
s)ei 
ν 
ρd 
ρ

4 p̃(
q)
∫ ∞

−∞
∫ ∞

−∞ p(
s)ei 
q
sd
s

5 h̃(
ν) = f̃ (
ν)g̃(
ν) h(
β) = ∫ ∞
−∞

∫ ∞
−∞ f (
α)g(
β − 
α)d 
α

6 ˜̃G(z, 
ν, 
q)
∫ ∞

−∞
∫ ∞

−∞ p(
s)ei(
q−z
ν)
sd
s

7 D̃(z, 
ν, 
s)
1

4π2

∫ ∞

−∞

∫ ∞

−∞
˜̃D(z, 
ν, 
q)e−i 
q
sd
q

8 1
∫ ∞

−∞
∫ ∞

−∞ δ(
s)e−i 
ν
sd
s

we have using definitions specified in Table 4.1:

�̂ Ĩ (z, 
ν, 
s) − σsca

4π

∫ ∞

−∞

∫ ∞

−∞
d
s ′ Ĩ (z, 
ν, 
s ′)p(
s − 
s ′) = 0, (4.64)

where �̂ ≡ (∂/∂z) + σext − i
s
ν. This equation can be simplified using the substi-
tution:

Ĩ (z, 
ν, 
s) = D̃(z, 
ν, 
s) exp(i z
ν
s − τ ), (4.65)

where we used the fact that dsx dsy = cos θ sin θdθdϕ = cos θd� ≈ d� and
sz ≈ 1 as θ → 0. Also we assume that the phase function depends only on the
difference vector 
d = 
s − 
s ′

x + y
ey .

We use infinite limits of integration because the contribution of photons located at
large distances from the axis OZ is low. Clearly, our assumptions are valid only if
light scattering occurs predominantly in the forward direction and this is really the
case for fogs and clouds due to highly extended phase functions for these cases.
The approximation considered is not valid in deep layers of a cloud (e.g., at τ ≥ 5)
because then light deviates from the axis OZ considerably.

Equation (4.63) can be solved analytically. We show this using the Fourier trans-

and introduce the transverse vector ρ
 = xe


form technique. Applying the Fourier transform with respect to ρ
 to Eq. (4.63),
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˜̃

˜̃

˜̃ ˜

˜̃D(z, 
ν, 
q) = A exp

{
σsca

4π

∫ z

0
p̃ (
q − 
νz) dz

}
, (4.69)

where A ≡ ˜̃D(0, 
ν, 
q) is the integration constant. This solves the problem at hand.
Indeed, the value of D̃(z, 
ν, 
s) in Eq. (4.65) can be found using the inverse Fourier

I (z, 
ρ, 
s) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
Ĩ (z, 
ν, 
s)e−i 
ν 
ρd
ν, (4.70)

where

Ĩ (z, 
ν, 
s) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
D̃(z, 
ν, 
q) exp(−i
s
q + i
s
νz − τ )d
q. (4.71)

Although the numerical integration is required to find I (z, 
ρ, 
s), a number
of important results can be obtained in numerous special cases as considered by
Ishimaru (1978).

Note that Eq. (4.70) can be rewritten in yet another form:

I (z, 
ρ, 
s) =
(

1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
˜̃I (z, 
ν, 
q)e−i(
νρ+
q
s)d
νd
q, (4.72)

Di

The expression for G is given in Table 4.1. Comparing lines 1 and 5 in Table 4.1,

we derive: G ≡ p(q
 − 
νz). Therefore, it follows from Eq. (4.68):

transform as specified in Table 4.1 (line 7). Then it follows for the angular distri-
bution of light at point ρ
 in the direction 
s (see line 2 in Table 4.1):

where τ = σext z. Then it follows:

d D̃(z, 
ν, 
s)

dz
− σsca

4π

∫ ∞

−∞

∫ ∞

−∞
D̃(z, 
ν, 
s ′)G̃(z, 
ν, 
s − 
s ′)d
s ′ = 0, (4.66)

where

G̃(
s − 
s ′) = p(
s − 
s ′) exp(i 
νz(
s − 
s ′)). (4.67)

Let us apply the Fourier transform with respect to 
s to Eq. (4.66). The integral
in Eq. (4.66) can be transformed using the convolution property 5 in Table 4.1.
Then it follows:

d ˜̃D(z, 
ν, 
q)

dz
− σsca

4π
˜̃D(z, 
ν, 
q) ˜̃G(z, 
ν, 
q) = 0. (4.68)

the double Fourier transform of D (with respect to both ρ
 and 
s ). 
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Calculations of p̃ can be simplified assuming the circular symmetry of the phase
function: p(
s) ≡ p(|
s⊥|) = p(s). Then it follows:

p̃(κ) = 2π

∞∫
0

p(s)J0(κs)sds. (4.76)

Therefore, we can write:

˜̃I (z, 
ν, 
q) = exp

{
−σscaz + σsca

2

∫ z

0
dz′

∫ ∞

0
dθp(θ )J0((q − νz′)θ )θ

}
.

(4.77)

It follows from this equation at 
ν = 
q = 
0:

˜̃I (z, 
0, 
0) = exp

{
−σscaz + σsca

2

∫ z

0
dz′

∫ ∞

0
dθp(θ )θ

}
(4.78)

or ˜̃I (z, 
0, 
0) = 1, where we accounted for the phase function normalization
condition:

1

2

∫ ∞

0
p(θ )θdθ = 1. (4.79)

The SAA as considered here can be generalized for the inclined incident beams
with the incidence angle ϑ0 �= 0. It can be also used to study laser backscattering in
a simple approximation based on the consideration of small angle scattering in the
forward direction, one single scattering backwards and the SAA in the backward

where

˜̃I (z, 
ν, 
q) = H (
ν, 
q + 
νz) exp

{
−σscaz + σsca

4π

∫ z

0
p̃(
q − 
ν(z′ − z))dz′

}
(4.73)

and H (
ν, 
κ) is determined from boundary conditions:

H (
ν, 
κ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d 
ρd
s I (0, 
ρ, 
s). (4.74)

Equation (4.73) plays an important role in Fourier optics of light scattering media.
In particular, assuming that I (0, 
ρ, 
s) = δ(
ρ)δ(
s) and using property 8 in Table 4.1,
we derive:

˜̃I (z, 
ν, 
q) = exp

{
−σscaz + σsca

4π

∫ z

0
p̃(
q − 
ν(z′ − z))dz′

}
. (4.75)
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reduced considerably in comparison with low frequency signals as a result of light
scattering. We introduce here the main concepts of the Fourier optics of clouds.

Any diffused source of light can be considered as a superposition of point
light sources. Thus, in linear optical systems the image of such an object with the
irradiance a0(
r ′) is a linear superposition of images of point sources. This can be
represented as

a(
r ) =
∫ ∞

−∞

∫ ∞

−∞
S(
r , 
r ′)a0(
r ′)d
r ′, (4.81)

where the point spread function (PSF) S(
r ′, 
r ) describes the process of the trans-
formation of the object irradiance a0(
r ′) in the initial plane to the image irradiance
a(
r ) in the image plane. The PSF is a main notion of the image transfer theory
(ITT). Equation (4.81) takes a simpler form in the frequency domain:

a(
υ) = S(
υ)a0(
υ), (4.82)

where

a(
υ) =
∫ ∞

−∞

∫ ∞

−∞
a(
r ′)e−i 
υr̄ ′

d
r ′, (4.83)

a0(
υ) =
∫ ∞

−∞

∫ ∞

−∞
a0(
r ′)e−i 
υ
r ′

d
r ′, (4.84)

S(
υ) =
∫ ∞

−∞

∫ ∞

−∞
S
(
r ′) e−i 
υ
r ′

d
r ′, (4.85)

et al. (1998). Note that the QSA considerably improves theoretical considerations
of laser backscattering by cloudy media as compared to the traditionally used lidar
equation:

I = Cz−2σsca(z) exp

⎧⎨
⎩−2

z∫
0

σext(z
′)dz′

⎫⎬
⎭ . (4.80)

Here C is the lidar constant dependent on the transmitted power, pulse duration and
receiver characteristics. The value of σsca(z) gives the backscattering coefficient at
the range z.

4.4 Image Transfer Through Clouds and Fogs

From the point of view of the linear systems theory a cloud is a high frequency
filter. The transmission of high frequency signals (in time and space domains) is

direction [the quasi-single approximation (QSA)]. Details are given by Katsev
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to a cloud layer. In this case the OTF is a real function. It does not depend on the
azimuth for randomly oriented particles.

The SAA for the OTF follows from Eq. (4.77) at 
q = 0. Namely, we have:

˜̃I (z, ν, 0) = exp

{
−σscaz + σsca

2

∫ z

0
dz′

∫ ∞

0
dθp (θ ) J0

(
νz′θ

)
θ

}
. (4.88)

It can be proved that ˜̃I (z, ν, 0) ≡ S(z, ν). Indeed, the double Fourier transform of
the intensity I (z, 
ρ, 
s) has the following form:

I (z, 
ν, 
q) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
I (z, 
ρ, 
s)ei(
ν 
ρ+
q
s)d
νd
s. (4.89)

So we have at 
q = 0:

I (z, 
ν, 0) =
∫ ∞

−∞

∫ ∞

−∞
a(z, 
ρ)ei 
ν 
ρd
ν, (4.90)

where

a(z, 
ρ) =
∫ ∞

−∞

∫ ∞

−∞
I (z, 
ρ, 
s)d
s. (4.91)

Comparing Eqs. (4.28) and (4.33), we conclude that S(z, 
ν) ≡ I (z, 
ν, 0). So we
have:

S(z, ν) = exp {−τ {1 − ω0 B(ν, z)}} , (4.92)

and 
υ is the space frequency. We see that the integration procedures in the Fourier
space can be substituted by the multiplication. This makes all calculations much
simpler.

One of the basic problems of the ITT is to determine the Fourier transform of
the PSF, namely the optical transfer function (OTF) S (
υ) or the modulation transfer
function

T (
υ) = |S(
υ)|
|S(0)| . (4.86)

Also we have then:

a(
r ′) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
a(
υ)ei 
υ
r d 
υ. (4.87)

The OTF depends on the properties of media between an object and an image

consider the case of fogs and cloudy media in the visible range. Then particles are
large as compared to the wavelength and the SAA as described above can be used
to solve the problem. We will study the image transfer along axis OZ perpendicular

(Wells, 1969; Ishimaru, 1978; Volnistova and Drofa, 1986; Zege et al., 1991). Let us
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in the initial plane using Eq. (4.82). Also it follows:

a0(κ) = S−1(κ)a(κ). (4.97)

Therefore, the initial image can be reconstructed, if the OTF is known.
It follows at κ = 0: S(κ) = exp(−σabs z). Therefore, only absorption processes

are responsible for the OTF reduction at the zero frequency.
Let us approximate the phase function of a cloud medium as

p(θ ) = 4α2 exp(−α2θ2). (4.98)

Then it follows:

p̃(ςκ) = exp

{
−ς

2κ2

4α2

}
(4.99)

and, therefore:

B(κ) = α
√
π

κ
erf

[ κ
2α

]
, (4.100)

where the error function

erf(u) = 2√
π

∫ u

0
exp(−φ2)dφ (4.101)

where

B(ν, z) = 1

2z

∫ z

0
dz′ p̃(ν(z − z′)). (4.93)

Let us introduce a new variable ς = 1 − z′/z. Then it follows:

B(ν, z) = 1

2

1∫
0

dς p̃(νzς ). (4.94)

We see that B(ν, z) depends on the dimensionless frequency κ = νz. The same is
true for the OTF. Therefore, it follows:

S(κ) = exp{−τ {1 − ω0 B(κ)}}, (4.95)

where

B(κ) = 1

2

∫ 1

0
p̃(κς )dς. (4.96)

Equation (4.95) is of a great importance in the Fourier optics of clouds. This equa-
tion allows to derive the irradiance in the image plane if one knows the irradiance
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In conclusion, let us consider the case 
ν = 0 in the general expression. Then
it follows:

˜̃I (z, 0, q) = exp

{
−σscaz + σscaz

2

∫ ∞

0
dθp (θ ) J0 (qθ) θ

}
(4.105)

or

˜̃I (z, 0, q) = exp{−σscaz(1 − p̃(q)}, (4.106)

where

p̃(q) = 1

2

∫ ∞

0
p(θ )J0(qθ )θdθ. (4.107)

Using Eq. (4.32), we obtain:

I (z, 0, 
s) =
∫ ∞

−∞

∫ ∞

−∞
I (z, 
s)ei 
q
sd
s, (4.108)

where

I (z, 
s) =
∫ ∞

−∞

∫ ∞

−∞
I (z, 
ρ, 
s)d 
ρ. (4.109)

˜̃I (z, 0, q) gives the angular spectrum of transmitted light. According to Zege et al.
(1991), this function coincides with the mutual coherence function (MCF) �(z, q):

is introduced. So we obtain the following analytical expression for the OTF:

S(κ) = exp

{
−τ

{
1 − αω0

√
π

κ
erf

[ κ
2α

]}}
. (4.102)

In particular, it follows as κ → 0:

erf
[ κ

2α

]
≈ κ

α
√
π

[
1 − κ2

12α2

]
(4.103)

and, therefore,

S(κ) = exp

{
−τ

[
1 − ω0

(
1 − κ2

12α2

)]}
. (4.104)

It follows for non-absorbing media: S(κ) = exp{−$κ2}, where $ = τ/12α2.We
see that the distribution S(κ) has the Gaussain shape at small dimensionless fre-
quencies κ. Larger droplets in clouds are characterized by more extended phase
functions. Therefore, α must be larger for larger particles. This also means that the
OTF is larger for larger particles. This will lead to a better image quality for media
having larger particles. Further details on the image transfer are given by Ishimaru
(1978) and Zege et al. (1991).
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constitutes a major scientific problem of modern time, namely, the climate change
and its influence on the biosphere. Another issue is how we may change human
behaviour to minimize its possibly disastrous influence on climate (e.g., melting
of ice at northern latitudes). Clouds influence climate in many ways. First of all
they reflect a large portion of incident solar energy back to outer space cooling the
system. So the change of cloud albedo, which is influenced by cloud optical thick-
ness and in a smaller extent by cloud thermodynamic state and size of particles is
very important. Clouds also warm the system protecting the escape of energy from
our planet at night. This is especially true for high clouds. Therefore, we see that
not only the cloud thicknesses but also their altitudes are of importance for climate
studies. Polluted clouds (e.g., containing soot) also warm the Earth-atmosphere
system reflecting less solar energy back to outer space. However, pollution can
also lead to larger droplet concentrations and, therefore, to smaller particles. This
leads to the increase of reflectance by cloudy media.

The energy balance equation can be written in the following form:

(1 − r )
E0

4
= σT 4, (4.111)

where r is the global average albedo, σ is the Stefan–Botzman constant, E0 is
the solar constant and Tef is averaged radiation temperature. The coefficient 1/4

2

So one can study also the coherence loss due to scattering processes in cloudy
media using approximate results presented here. By definition, the inverse Fourier
transform of �(z, q) gives the angular distribution of light transmitted through a
scattering layer having the geometrical thickness z. Further discussions of this topic
are given by Zege and Kokhanovsky (1994).

�(z, q) = exp {−σscaz(1 − p̃(q))} . (4.110)

4.5 Clouds and Climate

The weather could be highly variable at any given place. However, meteorolog-
ical characteristics (e.g., surface temperature Ts) are quite stable if one considers
their average values for long periods of time (e.g., month, year, 100 years). The
climate is the averaged weather. It is argued that the human activity leads to the
climate change on a global scale. For instance, there is a strong correlation between
the increase of the surface temperature Ts and the increase of the concentration c
of CO2 in the atmosphere. It is believed that c increases due to human activity and
this leads to the increase of Ts . There are also other human factors, which influence
the climate (in particular, the extensive land use and industrial production). All this

shows that the illuminated surface (πa ) is 4 times smaller than the emission surface
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(4πa2). Here a is the radius of Earth. Basically, this equation means that energy
transmitted through the top-of-atmosphere escapes to outer space through thermal
radiative effects. This equation is only approximately valid because it ignores many

ef is
influenced mainly by the albedo of the planet r :

Tef = 4

√
1 − r

4σ
E0. (4.112)

In turn, the albedo of the planet is mainly determined by its cloud cover and cloud
thickness. This simple example shows the importance of clouds in the climate

(e.g., 1 year) is highly correlated with the product x = σT 4
ef . In particular, it was

found that (in ◦C): Ts = 0.5σT 4
ef − 104. Using values E0 = 1360 W

m2 , r = 0.3, we
obtain that 1% increase in r will result in the cooling of the surface by approximately
0.5◦C.

Therefore, it is of great importance to monitor the albedo of cloudless atmo-
sphere and also clouds on a global scale.

important processes. However, Eq. (4.111) clearly shows that the temperature T

sproblem. Note that the surface temperature T averaged on large time intervals

Such observations make a substantial contribution to the  most  important 
scientific problem of modern time—studies of climate change.



Chapter A

APPENDIX A. REFRACTIVE INDICES

Table A.1. Water (Hale and Querry, 1973).

λ (μm) n χ λ (μm) n χ

0.2 1.396 1.1 × 10−7 2.0 1.306 1.1 × 10−3

0.225 1.373 4.9 × 10−8 2.2 1.296 2.89 × 10−4

0.250 1.362 3.35 × 10−8 2.4 1.279 9.56 × 10−4

0.275 1.354 2.35 × 10−8 2.6 1.242 3.17 × 10−3

0.300 1.349 1.6 × 10−8 2.65 1.219 6.7 × 10−3

0.325 1.346 1.08 × 10−8 2.70 1.188 0.019
0.350 1.343 6.5 × 10−9 2.75 1.157 0.059
0.375 1.341 3.5 × 10−9 2.80 1.142 0.115
0.400 1.339 1.86 × 10−9 2.85 1.149 0.185
0.425 1.338 1.3 × 10−9 2.90 1.201 0.268
0.450 1.337 1.02 × 10−9 2.95 1.292 0.298
0.475 1.336 9.35 × 10−9 3.00 1.371 0.272
0.500 1.335 1.00 × 10−9 3.05 1.426 0.240
0.525 1.334 1.32 × 10−9 3.10 1.467 0.192
0.550 1.333 1.96 × 10−9 3.15 1.483 0.135
0.575 1.333 3.60 × 10−9 3.20 1.478 0.0924
0.600 1.332 1.09 × 10−9 3.25 1.467 0.0610
0.625 1.332 1.39 × 10−8 3.30 1.450 0.0368
0.650 1.331 1.64 × 10−8 3.35 1.432 0.0261
0.675 1.331 2.23 × 10−8 3.40 1.420 0.0195
0.700 1.331 3.35 × 10−8 3.45 1.410 0.0132
0.725 1.330 9.15 × 10−8 3.50 1.400 0.0094
0.750 1.330 1.56 × 10−7 3.6 1.385 0.00515
0.775 1.330 1.48 × 10−7 3.7 1.374 0.00360
0.800 1.329 1.25 × 10−7 3.8 1.364 0.00340

(continued)
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Table A.1. (Continued)

λ (μm) n χ λ (μm) n χ

0.825 1.329 1.82 × 10−7 3.9 1.357 0.00380
0.850 1.329 2.93 × 10−7 4.0 1.351 0.00460
0.875 1.328 3.91 × 10−7 4.1 1.346 0.00562
0.900 1.328 4.86 × 10−7 4.2 1.342 0.00688
0.925 1.328 1.06 × 10−6 4.3 1.338 0.00845
0.950 1.327 2.93 × 10−6 4.4 1.334 0.0103
0.975 1.327 3.48 × 10−6 4.5 1.332 0.0134
1.0 1.327 2.89 × 10−6 4.6 1.330 0.0147
1.2 1.324 9.89 × 10−6 4.7 1.330 0.0157
1.4 1.321 1.38 × 10−4 4.8 1.330 0.0150
1.6 1.317 8.55 × 10−5 4.9 1.328 0.0137
1.8 1.312 1.15 × 10−4 5.0 1.325 0.0124

Table A.2. Ice (Warren, 1984 (with updates given by S. G. Warren in 1995)).

λ,μm n χ λ,μm n χ

2.00363E − 01 1.39309E + 00 3.74825E − 08 3.35598E − 01 1.32739E + 00 7.27663E − 09
2.04227E − 01 1.38776E + 00 3.15556E − 08 3.42071E − 01 1.32624E + 00 6.81271E − 09
2.08166E − 01 1.38244E + 00 2.69447E − 08 3.48668E − 01 1.32512E + 00 6.25559E − 09
2.12181E − 01 1.37829E + 00 2.35935E − 08 3.55393E − 01 1.32430E + 00 5.55574E − 09
2.16273E − 01 1.37512E + 00 2.12678E − 08 3.62247E − 01 1.32353E + 00 4.86137E − 09
2.20445E − 01 1.37196E + 00 1.96115E − 08 3.69234E − 01 1.32269E + 00 4.19643E − 09
2.24696E − 01 1.36873E + 00 1.79143E − 08 3.76355E − 01 1.32190E + 00 3.66810E − 09
2.29030E − 01 1.36551E + 00 1.64961E − 08 3.83614E − 01 1.32110E + 00 3.31362E − 09
2.33447E − 01 1.36231E + 00 1.53601E − 08 3.91013E − 01 1.32030E + 00 3.08786E − 09
2.37950E − 01 1.35913E + 00 1.45812E − 08 3.98554E − 01 1.31954E + 00 2.86107E − 09
2.42539E − 01 1.35591E + 00 1.39906E − 08 4.06241E − 01 1.31884E + 00 2.62143E − 09
2.47217E − 01 1.35268E + 00 1.35202E − 08 4.14076E − 01 1.31819E + 00 2.40419E − 09
2.51985E − 01 1.35007E + 00 1.32798E − 08 4.22062E − 01 1.31760E + 00 2.22129E − 09
2.56845E − 01 1.34832E + 00 1.32311E − 08 4.30202E − 01 1.31701E + 00 2.07637E − 09
2.61798E − 01 1.34656E + 00 1.31632E − 08 4.38500E − 01 1.31643E + 00 1.93435E − 09
2.66848E − 01 1.34479E + 00 1.30619E − 08 4.46957E − 01 1.31588E + 00 1.64345E − 09
2.71994E − 01 1.34301E + 00 1.29180E − 08 4.55577E − 01 1.31535E + 00 1.53439E − 09
2.77240E − 01 1.34123E + 00 1.27077E − 08 4.64364E − 01 1.31484E + 00 1.53875E − 09
2.82587E − 01 1.33946E + 00 1.23852E − 08 4.73320E − 01 1.31434E + 00 1.57953E − 09
2.88037E − 01 1.33772E + 00 1.19507E − 08 4.82449E − 01 1.31387E + 00 1.67349E − 09
2.93593E − 01 1.33594E + 00 1.15029E − 08 4.91754E − 01 1.31341E + 00 1.80232E − 09
2.99255E − 01 1.33413E + 00 1.10568E − 08 5.01238E − 01 1.31296E + 00 1.93731E − 09
3.05027E − 01 1.33294E + 00 1.00918E − 08 5.10905E − 01 1.31253E + 00 2.15069E − 09
3.10910E − 01 1.33183E + 00 9.17977E − 09 5.20759E − 01 1.31212E + 00 2.28030E − 09
3.16906E − 01 1.33075E + 00 8.55242E − 09 5.30803E − 01 1.31172E + 00 2.56955E − 09
3.23018E − 01 1.32965E + 00 8.06212E − 09 5.41040E − 01 1.31132E + 00 2.94838E − 09
3.29248E − 01 1.32853E + 00 7.69293E − 09 5.51475E − 01 1.31094E + 00 3.13612E − 09
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Table A.2. (Continued)

λ,μm n χ λ,μm n χ

5.62111E − 01 1.31057E + 00 3.33761E − 09 1.27811E + 00 1.29650E + 00 1.33375E − 05
5.72953E − 01 1.31021E + 00 3.66707E − 09 1.30276E + 00 1.29599E + 00 1.31723E − 05
5.84003E − 01 1.30987E + 00 4.35903E − 09 1.32788E + 00 1.29546E + 00 1.32000E − 05
5.95266E − 01 1.30952E + 00 5.31240E − 09 1.35349E + 00 1.29491E + 00 1.40043E − 05
6.06747E − 01 1.30918E + 00 6.49113E − 09 1.37960E + 00 1.29431E + 00 1.57585E − 05
6.18449E − 01 1.30886E + 00 8.29497E − 09 1.40620E + 00 1.29365E + 00 2.28869E − 05
6.30377E − 01 1.30854E + 00 1.04633E − 08 1.43333E + 00 1.29290E + 00 1.01737E − 04
6.42535E − 01 1.30823E + 00 1.27042E − 08 1.46097E + 00 1.29230E + 00 2.88632E − 04
6.54928E − 01 1.30792E + 00 1.53949E − 08 1.48915E + 00 1.29178E + 00 5.28659E − 04
6.67559E − 01 1.30762E + 00 1.83140E − 08 1.51787E + 00 1.29124E + 00 5.02587E − 04
6.80434E − 01 1.30732E + 00 2.10267E − 08 1.54714E + 00 1.29062E + 00 4.27116E − 04
6.93557E − 01 1.30702E + 00 2.56793E − 08 1.57698E + 00 1.28991E + 00 3.25113E − 04
7.06934E − 01 1.30673E + 00 3.26536E − 08 1.60740E + 00 1.28901E + 00 2.59410E − 04
7.20568E − 01 1.30645E + 00 4.04497E − 08 1.63840E + 00 1.28813E + 00 2.35842E − 04
7.34466E − 01 1.30616E + 00 4.56762E − 08 1.67000E + 00 1.28718E + 00 2.00162E − 04
7.48631E − 01 1.30588E + 00 5.73064E − 08 1.70221E + 00 1.28615E + 00 1.70685E − 04
7.63070E − 01 1.30560E + 00 7.51223E − 08 1.73504E + 00 1.28504E + 00 1.49527E − 04
7.77787E − 01 1.30532E + 00 9.81886E − 08 1.76850E + 00 1.28375E + 00 1.38725E − 04
7.92788E − 01 1.30504E + 00 1.22278E − 07 1.80261E + 00 1.28248E + 00 1.30382E − 04
8.08078E − 01 1.30476E + 00 1.38832E − 07 1.83737E + 00 1.28104E + 00 1.23000E − 04
8.23663E − 01 1.30448E + 00 1.43732E − 07 1.87281E + 00 1.27939E + 00 1.56453E − 04
8.39549E − 01 1.30420E + 00 1.50726E − 07 1.90893E + 00 1.27748E + 00 4.88735E − 04
8.55741E − 01 1.30392E + 00 2.00786E − 07 1.94575E + 00 1.27599E + 00 1.16465E − 03
8.72246E − 01 1.30363E + 00 2.79390E − 07 1.98328E + 00 1.27462E + 00 1.62574E − 03
8.89069E − 01 1.30335E + 00 3.86335E − 07 2.02153E + 00 1.27320E + 00 1.56339E − 03
9.06216E − 01 1.30305E + 00 4.34792E − 07 2.06052E + 00 1.27146E + 00 1.28836E − 03
9.23694E − 01 1.30277E + 00 4.87391E − 07 2.10026E + 00 1.26933E + 00 8.26460E − 04
9.41509E − 01 1.30246E + 00 5.60162E − 07 2.14076E + 00 1.26659E + 00 4.59263E − 04
9.59668E − 01 1.30217E + 00 7.49369E − 07 2.18205E + 00 1.26341E + 00 2.96285E − 04
9.78177E − 01 1.30185E + 00 1.08198E − 06 2.22414E + 00 1.26002E + 00 2.25004E − 04
9.97042E − 01 1.30154E + 00 1.52851E − 06 2.26703E + 00 1.25605E + 00 2.21324E − 04
1.01627E + 00 1.30122E + 00 2.15364E − 06 2.31076E + 00 1.25172E + 00 3.25536E − 04
1.03587E + 00 1.30089E + 00 2.33000E − 06 2.35532E + 00 1.24687E + 00 4.86439E − 04
1.05585E + 00 1.30055E + 00 2.04429E − 06 2.40075E + 00 1.24122E + 00 5.93097E − 04
1.07622E + 00 1.30020E + 00 1.76609E − 06 2.44705E + 00 1.23469E + 00 6.81003E − 04
1.09697E + 00 1.29984E + 00 1.70900E − 06 2.49425E + 00 1.22677E + 00 7.89017E − 04
1.11813E + 00 1.29948E + 00 1.80866E − 06 2.54236E + 00 1.21713E + 00 8.49488E − 04
1.13969E + 00 1.29910E + 00 2.24330E − 06 2.59139E + 00 1.20466E + 00 9.40740E − 04
1.16168E + 00 1.29870E + 00 3.16177E − 06 2.64137E + 00 1.18723E + 00 1.94166E − 03
1.18408E + 00 1.29829E + 00 5.15251E − 06 2.69231E + 00 1.16478E + 00 4.58211E − 03
1.20692E + 00 1.29787E + 00 8.00677E − 06 2.74424E + 00 1.13285E + 00 1.11083E − 02
1.23019E + 00 1.29743E + 00 1.13169E − 05 2.79717E + 00 1.08780E + 00 2.74474E − 02
1.25392E + 00 1.29698E + 00 1.30171E − 05 2.85111E + 00 1.02346E + 00 7.08075E − 02

(continued)
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Table A.2. (Continued)

λ,μm n χ λ,μm n χ

2.90610E + 00 9.62625E − 01 1.90406E − 01 3.87041E + 00 1.37485E + 00 7.34151E − 03
2.96215E + 00 1.00242E + 00 3.36656E − 01 3.94505E + 00 1.36697E + 00 8.68508E − 03
3.01928E + 00 1.07280E + 00 4.87479E − 01 4.02114E + 00 1.36029E + 00 9.90104E − 03
3.07751E + 00 1.32783E + 00 6.24110E − 01 4.09870E + 00 1.35416E + 00 1.10951E − 02
3.13687E + 00 1.55554E + 00 4.85772E − 01 4.17775E + 00 1.34871E + 00 1.29144E − 02
3.19737E + 00 1.64935E + 00 2.91863E − 01 4.25832E + 00 1.34353E + 00 1.53598E − 02
3.25904E + 00 1.61095E + 00 1.54136E − 01 4.34045E + 00 1.33921E + 00 1.95646E − 02
3.32189E + 00 1.55778E + 00 8.36852E − 02 4.42416E + 00 1.33833E + 00 2.49185E − 02
3.38596E + 00 1.51404E + 00 4.40622E − 02 4.50949E + 00 1.34078E + 00 2.90321E − 02
3.45126E + 00 1.47661E + 00 2.38255E − 02 4.59646E + 00 1.34609E + 00 2.68426E − 02
3.51783E + 00 1.44807E + 00 1.42235E − 02 4.68512E + 00 1.34473E + 00 1.95120E − 02
3.58568E + 00 1.42618E + 00 9.44774E − 03 4.77548E + 00 1.34122E + 00 1.57984E − 02
3.65483E + 00 1.40937E + 00 7.66333E − 03 4.86758E + 00 1.33641E + 00 1.36552E − 02
3.72532E + 00 1.39547E + 00 6.91620E − 03 4.96146E + 00 1.33119E + 00 1.23514E − 02
3.79717E + 00 1.38423E + 00 6.70954E − 03 5.05715E + 00 1.32573E + 00 1.22845E − 02

2.500E-001 1.3509 2.0E-011 
3.000E-001 1.3339 2.0E-011 
3.500E-001 1.3249 2.0E-011 
3.900E-001 1.3203 2.0E-011 
4.000E-001 1.3194 2.365E-011
4.100E-001 1.3185 2.669E-011
4.200E-001 1.3177 3.135E-011
4.300E-001 1.3170 4.140E-011
4.400E-001 1.3163 6.268E-011
4.500E-001 1.3157 9.239E-011
4.600E-001 1.3151 1.325E-010
4.700E-001 1.3145 1.956E-010
4.800E-001 1.3140 2.861E-010
4.900E-001 1.3135 4.172E-010
5.000E-001 1.3130 5.889E-010
5.100E-001 1.3126 8.036E-010
5.200E-001 1.3121 1.076E-009
5.300E-001 1.3117 1.409E-009
5.400E-001 1.3114 1.813E-009
5.500E-001 1.3110 2.289E-009
5.600E-001 1.3106 2.839E-009
5.700E-001 1.3103 3.461E-009
5.800E-001 1.3100 4.159E-009
5.900E-001 1.3097 4.930E-009

6.000E-001 1.3094 5.730E-009 
6.100E-001 1.3091 6.890E-009 
6.200E-001 1.3088 8.580E-009 
6.300E-001 1.3085 1.040E-008 
6.400E-001 1.3083 1.220E-008 

�, �m n � �, �m n � 

6.500E-001 1.3080 1.430E-008 
6.600E-001 1.3078 1.660E-008 
6.700E-001 1.3076 1.890E-008 
6.800E-001 1.3073 2.090E-008 
6.900E-001 1.3071 2.400E-008 
7.000E-001 1.3069 2.900E-008 
7.100E-001 1.3067 3.440E-008 
7.200E-001 1.3065 4.030E-008 
7.300E-001 1.3062 4.300E-008 
7.400E-001 1.3060 4.920E-008 
7.500E-001 1.3059 5.870E-008 
7.600E-001 1.3057 7.080E-008 
7.700E-001 1.3055 8.580E-008 
7.800E-001 1.3053 1.020E-007 
7.900E-001 1.3051 1.180E-007 
8.000E-001 1.3049 1.340E-007 
8.100E-001 1.3047 1.400E-007 
8.200E-001 1.3046 1.430E-007 
8.300E-001 1.3044 1.450E-007 

 
Table A.3. Updated spectra of real and imaginary parts of ice refractive index (Warren and 
Brandt, 2008). Only results in the spectral range 0.25-2.5 �m are given. 
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8.400E-001  1.3042  1.510E-007 
8.500E-001  1.3040  1.830E-007 
8.600E-001  1.3039  2.150E-007 
8.700E-001  1.3037  2.650E-007 
8.800E-001  1.3035  3.350E-007 
8.900E-001  1.3033  3.920E-007 
9.000E-001  1.3032  4.200E-007 
9.100E-001  1.3030  4.440E-007 
9.200E-001  1.3028  4.740E-007 
9.300E-001  1.3027  5.110E-007 
9.400E-001  1.3025  5.530E-007 
9.500E-001  1.3023  6.020E-007 
9.600E-001  1.3022  7.550E-007 
9.700E-001  1.3020  9.260E-007 
9.800E-001  1.3019  1.120E-006 
9.900E-001  1.3017  1.330E-006 
1.000E+000  1.3015  1.620E-006 
1.010E+000  1.3014  2.000E-006 
1.020E+000  1.3012  2.250E-006 
1.030E+000  1.3010  2.330E-006 
1.040E+000  1.3009  2.330E-006 
1.050E+000  1.3007  2.170E-006 
1.060E+000  1.3005  1.960E-006 
1.070E+000  1.3003  1.810E-006 
1.080E+000  1.3002  1.740E-006 
1.090E+000  1.3000  1.730E-006 
1.100E+000  1.2998  1.700E-006 
1.110E+000  1.2997  1.760E-006 
1.120E+000  1.2995  1.820E-006 
1.130E+000  1.2993  2.040E-006 
1.140E+000  1.2991  2.250E-006 
1.150E+000  1.2990  2.290E-006 
1.160E+000  1.2988  3.040E-006 
1.170E+000  1.2986  3.840E-006 
1.180E+000  1.2984  4.770E-006 
1.190E+000  1.2982  5.760E-006 
1.200E+000  1.2980  6.710E-006 

Table A.3. (Continued )

�, �m n � �, �m n � 

1.210E+000  1.2979  8.660E-006 
1.220E+000  1.2977  1.020E-005 
1.230E+000  1.2975  1.130E-005 
1.240E+000  1.2973  1.220E-005 
1.250E+000  1.2971  1.290E-005 
1.260E+000  1.2969  1.320E-005 
1.270E+000  1.2967  1.350E-005 
1.280E+000  1.2965  1.330E-005 
1.290E+000  1.2963  1.320E-005 
1.300E+000  1.2961  1.320E-005 
1.310E+000  1.2959  1.310E-005 

1.320E+000  1.2957  1.320E-005 
1.330E+000  1.2955  1.320E-005 
1.340E+000  1.2953  1.340E-005 
1.350E+000  1.2951  1.390E-005 
1.360E+000  1.2949  1.420E-005 
1.370E+000  1.2946  1.480E-005 
1.380E+000  1.2944  1.580E-005 
1.390E+000  1.2941  1.740E-005 
1.400E+000  1.2939  1.980E-005 
1.410E+000  1.2937  3.442E-005 
1.420E+000  1.2934  5.959E-005 
1.430E+000  1.2931  1.028E-004 
1.440E+000  1.2929  1.516E-004 
1.449E+000  1.2927  2.030E-004 
1.460E+000  1.2924  2.942E-004 
1.471E+000  1.2921  3.987E-004 
1.481E+000  1.2920  4.941E-004 
1.493E+000  1.2918  5.532E-004 
1.504E+000  1.2916  5.373E-004 
1.515E+000  1.2914  5.143E-004 
1.527E+000  1.2912  4.908E-004 
1.538E+000  1.2909  4.594E-004 
1.563E+000  1.2903  3.858E-004 
1.587E+000  1.2897  3.105E-004 
1.613E+000  1.2890  2.659E-004 
1.650E+000  1.2879  2.361E-004 
1.680E+000  1.2870  2.046E-004 
1.700E+000  1.2863  1.875E-004 
1.730E+000  1.2853  1.650E-004 
1.760E+000  1.2843  1.522E-004 
1.800E+000  1.2828  1.411E-004 
1.830E+000  1.2816  1.302E-004 
1.840E+000  1.2811  1.310E-004 
1.850E+000  1.2807  1.339E-004 
1.855E+000  1.2805  1.377E-004 
1.860E+000  1.2802  1.432E-004 
1.870E+000  1.2797  1.632E-004 
1.890E+000  1.2788  2.566E-004 
1.905E+000  1.2780  4.081E-004 
1.923E+000  1.2771  7.060E-004 
1.942E+000  1.2762  1.108E-003 
1.961E+000  1.2756  1.442E-003 
1.980E+000  1.2750  1.614E-003 
2.000E+000  1.2744  1.640E-003 
2.020E+000  1.2736  1.566E-003 
2.041E+000  1.2728  1.458E-003 
2.062E+000  1.2718  1.267E-003 
2.083E+000  1.2707  1.023E-003 

(continued)
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Table A.3. (Continued )

�, �m n � �, �m n � 

2.105E+000  1.2694 7.586E-004 
2.130E+000  1.2677 5.255E-004 
2.150E+000  1.2663 4.025E-004 
2.170E+000  1.2648 3.235E-004 
2.190E+000  1.2633 2.707E-004 
2.220E+000  1.2609 2.228E-004 
2.240E+000  1.2591 2.037E-004 
2.245E+000  1.2587 2.026E-004 
2.250E+000  1.2582 2.035E-004 
2.260E+000  1.2573 2.078E-004 
2.270E+000  1.2564 2.171E-004 

2.290E+000  1.2545 2.538E-004 
2.310E+000  1.2525 3.138E-004 
2.330E+000  1.2504 3.858E-004 
2.350E+000  1.2482 4.591E-004 
2.370E+000  1.2459 5.187E-004 
2.390E+000  1.2435 5.605E-004 
2.410E+000  1.2409 5.956E-004 
2.430E+000  1.2382 6.259E-004 
2.460E+000  1.2337 6.820E-004 
2.500E+000  1.2270 7.530E-004 



Chapter B

APPENDIX B. PHASE FUNCTIONS

Table B.1. Phase functions of clouds at wavelength 0.5 μm ( g is the asymmetry parameter).

θ Water cloud (Kokhanovsky, Ice cloud (Liou,
2004a) g = 0.8552 1992) g = 0.75

0.0 3.386 × 103 1.083 × 105

0.1 3.361 × 103 6.037 × 104

0.2 3.286 × 103 3.231 × 104

0.3 3.166 × 103 1.809 × 104

0.4 3.005 × 103 9.985 × 103

0.5 2.813 × 103 5.477 × 103

0.6 2.597 × 103 3.210 × 103

0.7 2.366 × 103 2.106 × 103

0.8 2.130 × 103 1.502 × 103

0.9 1.894 × 103 1.095 × 103

1.0 1.667 × 103 7.875 × 102

1.1 1.451 × 103 5.550 × 102

1.2 1.253 × 103 3.855× 102

1.3 1.074 × 103 2.758× 102

1.4 9.133 × 102 2.027× 102

1.5 7.728 × 102 1.563× 102

1.6 6.511 × 102 1.267× 102

1.7 5.470 × 102 1.069× 102

1.8 4.587 × 102 9.266 × 10
1.9 3.846 × 102 8.151 × 10
2.0 3.229 × 102 7.210 × 10
3.0 7.524 × 10 2.223 × 10
4.0 3.437 × 10 9.666
5.0 2.146 × 10 5.198

(continued)
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Table B.1. (Continued)

θ Water cloud (Kokhanovsky, Ice cloud (Liou,
2004a) g = 0.8552 1992) g = 0.75

6.0 1.538 × 10 3.208
7.0 1.212 × 10 2.182
8.0 9.934 1.598
9.0 8.871 1.236

10 8.316 1.013
11 7.378 8.296 × 10−1

12 6.786 7.494 × 10−1

13 6.371 6.753 × 10−1

14 5.912 6.220 × 10−1

15 5.714 5.681 × 10−1

16 5.319 5.248 × 10−1

17 5.018 4.883 × 10−1

18 4.755 4.598 × 10−1

19 4.493 4.409 × 10−1

20 4.183 4.227 × 10−1

21 3.982 1.935
22 3.738 5.333
23 3.471 6.137
24 3.322 6.043
25 3.092 4.660
26 2.915 3.665
27 2.744 2.955
28 2.586 2.404
29 2.422 1.982
30 2.275 1.638
31 2.138 1.342
32 2.0128 1.130
33 1.864 9.85 × 10−1

34 1.768 8.54 × 10−1

35 1.643 7.24 × 10−1

36 1.548 6.26 × 10−1

37 1.443 5.55 × 10−1

38 1.347 5.55 × 10−1

39 1.261 4.45 × 10−1

40 1.179 4.12 × 10−1

41 1.104 4.03 × 10−1

42 1.026 3.74 × 10−1

43 9.604 × 10−1 3.57 × 10−1

44 8.976× 10−1 4.09 × 10−1

45 8.312 × 10−1 5.44 × 10−1

46 7.795 × 10−1 7.44 × 10−1

47 7.260 × 10−1 8.88 × 10−1

48 6.746 × 10−1 8.78 × 10−1

49 6.313 × 10−1 8.10 × 10−1
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Table B.1. (Continued)

θ Water cloud (Kokhanovsky, Ice cloud (Liou,
2004a) g = 0.8552 1992) g = 0.75

50 5.839 × 10−1 7.15 × 10−1

51 5.467 × 10−1 6.56 × 10−1

52 5.055 × 10−1 5.91 × 10−1

53 4.731 × 10−1 5.09 × 10−1

54 4.370 × 10−1 4.52 × 10−1

55 4.098 × 10−1 4.16 × 10−1

56 3.773 × 10−1 3.89 × 10−1

57 3.504 × 10−1 3.72 × 10−1

58 3.287 × 10−1 3.58 × 10−1

59 3.022 × 10−1 3.47 × 10−1

60 2.808 × 10−1 3.46 × 10−1

61 2.606 × 10−1 3.44 × 10−1

62 2.423 × 10−1 3.43 × 10−1

63 2.239 × 10−1 3.44 × 10−1

64 2.076 × 10−1 3.43 × 10−1

65 1.931 × 10−1 3.40 × 10−1

66 1.785 × 10−1 3.38 × 10−1

67 1.648 × 10−1 3.37 × 10−1

68 1.532 × 10−1 3.36 × 10−1

69 1.419 × 10−1 3.36 × 10−1

70 1.322 × 10−1 3.36 × 10−1

71 1.214 × 10−1 3.35 × 10−1

72 1.134 × 10−1 3.34 × 10−1

73 1.049 × 10−1 3.33 × 10−1

74 9.713 × 10−2 3.32 × 10−1

75 9.033 × 10−1 3.31 × 10−1

76 8.429 × 10−2 3.29 × 10−1

77 7.781 × 10−2 3.27 × 10−1

78 7.263 × 10−2 3.25 × 10−1

79 6.780 × 10−2 3.24 × 10−1

80 6.780 × 10−2 3.22 × 10−1

81 6.285 × 10−2 3.21 × 10−1

82 5.887 × 10−2 3.18 × 10−1

83 5.510 × 10−2 3.14 × 10−1

84 5.155 × 10−2 3.11 × 10−1

85 4.834 × 10−2 3.11 × 10−1

86 4.564 × 10−2 3.08 × 10−1

87 4.056 × 10−2 3.03 × 10−1

88 3.822 × 10−2 2.98 × 10−1

89 3.640 × 10−2 2.95 × 10−1

90 3.442 × 10−2 2.91 × 10−1

91 3.293 × 10−2 2.89 × 10−1

92 3.153 × 10−2 2.87 × 10−1

(continued)
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Table B.1. (Continued)

θ Water cloud (Kokhanovsky, Ice cloud (Liou,
2004a) g = 0.8552 1992) g = 0.75

93 3.021 × 10−2 2.85 × 10−1

94 2.926 × 10−2 2.83 × 10−1

95 2.851 × 10−2 2.82 × 10−1

96 2.768 × 10−2 2.81 × 10−1

97 2.699 × 10−2 2.78 × 10−1

98 2.659 × 10−2 2.75 × 10−1

99 2.612 × 10−2 2.72 × 10−1

100 2.560 × 10−2 2.68 × 10−1

101 2.521 × 10−2 2.62 × 10−1

102 2.506 × 10−2 2.56 × 10−1

103 2.459 × 10−2 2.53 × 10−1

104 2.460 × 10−2 2.48 × 10−1

105 2.453 × 10−2 2.42 × 10−1

106 2.467 × 10−2 2.35 × 10−1

107 2.463 × 10−2 2.27 × 10−1

108 2.482 × 10−2 2.21 × 10−1

109 2.524 × 10−2 2.16 × 10−1

110 2.571 × 10−2 2.11 × 10−1

111 2.659 × 10−2 2.05 × 10−1

112 2.788 × 10−2 1.99 × 10−1

113 2.942 × 10−2 1.96 × 10−1

114 3.175 × 10−2 1.89 × 10−1

115 3.386 × 10−2 1.79 × 10−1

116 3.654 × 10−2 1.64 × 10−1

117 3.916 × 10−2 1.42 × 10−1

118 4.138 × 10−2 1.27 × 10−1

119 4.363 × 10−2 1.18 × 10−1

120 4.548 × 10−2 1.11 × 10−1

121 4.701 × 10−2 1.04 × 10−1

122 4.785 × 10−2 9.93 × 10−2

123 4.835 × 10−2 9.86 × 10−2

124 4.873 × 10−2 9.79 × 10−2

125 4.792 × 10−2 9.70 × 10−2

126 4.757 × 10−2 9.67 × 10−2

127 4.717 × 10−2 9.68 × 10−2

128 4.714 × 10−2 9.76 × 10−2

129 4.757 × 10−2 9.97 × 10−2

130 4.933 × 10−2 1.01 × 10−1

131 5.242 × 10−2 1.03 × 10−1

132 5.760 × 10−2 1.04 × 10−1

133 6.597 × 10−2 1.02 × 10−1

134 7.796 × 10−2 1.02 × 10−1

135 9.477 × 10−2 9.96 × 10−2

136 1.150 × 10−1 1.02 × 10−1
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Table B.1. (Continued)

θ Water cloud (Kokhanovsky, Ice cloud (Liou,
2004a) g = 0.8552 1992) g = 0.75

137 1.435 × 10−1 1.12 × 10−1

138 1.756 × 10−1 1.21 × 10−1

139 2.109 × 10−1 1.27 × 10−1

140 2.467 × 10−1 1.35 × 10−1

141 2.773 × 10−1 1.44 × 10−1

142 2.959 × 10−1 1.54 × 10−1

143 2.988 × 10−1 1.66 × 10−1

144 2.886 × 10−1 1.78 × 10−1

145 2.622 × 10−1 1.91 × 10−1

146 2.289 × 10−1 2.04 × 10−1

147 1.980 × 10−1 2.13 × 10−1

148 1.734 × 10−1 2.25 × 10−1

149 1.613 × 10−1 2.43 × 10−1

150 1.546 × 10−1 2.63 × 10−1

151 1.554 × 10−1 2.87 × 10−1

152 1.564 × 10−1 3.04 × 10−1

153 1.565 × 10−1 3.08 × 10−1

154 1.561 × 10−1 3.09 × 10−1

155 1.534 × 10−1 3.07 × 10−1

156 1.507 × 10−1 2.99 × 10−1

157 1.473 × 10−1 2.80 × 10−1

158 1.472 × 10−1 2.63 × 10−1

159 1.425 × 10−1 2.52 × 10−1

160 1.449 × 10−1 2.36 × 10−1

161 1.435 × 10−1 2.13 × 10−1

162 1.398 × 10−1 1.95 × 10−1

163 1.421 × 10−1 1.77 × 10−1

164 1.394 × 10−1 1.66 × 10−1

165 1.399 × 10−1 1.57 × 10−1

166 1.444 × 10−1 1.58 × 10−1

167 1.440 × 10−1 1.69 × 10−1

168 1.488 × 10−1 1.90 × 10−1

169 1.491 × 10−1 2.35 × 10−1

170 1.511 × 10−1 2.71 × 10−1

171 1.700 × 10−1 2.84 × 10−1

172 1.696 × 10−1 2.88 × 10−1

173 1.795 × 10−1 2.63 × 10−1

174 2.040 × 10−1 2.67 × 10−1

175 2.400 × 10−1 3.04 × 10−1

176 2.984 × 10−1 3.81 × 10−1

177 4.177 × 10−1 5.76 × 10−1

178 4.992 × 10−1 7.98 × 10−1

179 3.968 × 10−1 1.01
180 6.779 × 10−1 1.18
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