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Abstract: This paper reviews recent advancements in the multiscale modeling of carbon 
nanotubes and their composites. The basic modeling tool is the molecular 
structural mechanics method developed by the authors, which has been 
successfully applied to simulate the static and dynamics properties of carbon 
nanotubes. Then, the nanotube/polymer composite is analyzed by combining 
the continuum finite element method and the molecular structural mechanics 
approach. Finally, the potential application of molecular structural mechanics 
for studying the thermal properties of nanotubes and composites is introduced.  
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1. INTRODUCTION 

 It has been theoretically and experimentally confirmed that carbon 
nanotubes possess exceptional high stiffness and strength. These properties 
as well as their high aspect ratio and low density suggest that carbon 
nanotubes may hold promise as reinforcements for nanocomposites [1]. The 
improvements in stiffness and strength due to the addition of carbon 
nanotubes in polymeric matrix materials have been demonstrated [2-4]. For 

have been made in improving their dispersion and alignment in the 
composites. Polymeric matrix composites with well-dispersed and well-
aligned nanotubes are now feasible [5-9]. Meanwhile, some efforts have also 
been devoted to the study of the load transfer between nanotubes and the 
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the effective utilization of nanotubes as reinforcements, various attempts 
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matrix [3, 4]. Lordi and Yao [10] used force-field-based molecular 
mechanics to model the interactions between nanotubes and several different 
kind of polymers. Wise and Hinkley [11] used molecular dynamics 
simulation for addressing the local changes in the interface of a single-
walled nanotube surrounded by polyethylene molecules. Odegard et al. [12] 
studied the effect of chemical functionalization on the mechanical properties 
of nanotube/polymer composites by using an equivalent-continuum 
modeling technique. However, due to the difficulty in modeling nanotube 
reinforced composites, studies on the load transfer between the matrix and 
nanotubes are still very limited.  

 In this paper, we introduce our multiscale modeling technique for 
simulating carbon nanotubes and their composites. This multiscale modeling 
technique is a combination of the atomistic molecular structural mechanics 
approach [13] and the continuum finite element method [14].   

2. MOLECULAR STRUCTURAL MECHANICS 
APPROACH

 The mechanical and physical properties of carbon nanotubes are highly 
size/structure dependent, and thus modeling of nanotubes at the atomistic 
scale is necessary. We developed the molecular structural mechanics 
approach [13] for modeling carbon nanotubes. The main concept of this 
approach is briefly outlined below. 

In the molecular structural mechanics approach, a single-walled carbon 
nanotube is simulated as a space frame structure, with the covalent bonds 
and carbon atoms as connecting beams and joint nodes, respectively. If the 
beam elements simulating the covalent bonds are assumed to be of round 
section, then only three stiffness parameters, i.e., the tensile resistance EA, 
the flexural rigidity EI and the torsional stiffness GJ, need to be determined 
for deformation analysis. Based on the energy equivalence between local 
potential energies in computational chemistry and elemental strain energies 
in structural mechanics, a direct relationship between the structural 
mechanics parameters and the molecular mechanics force field constants can 
be established [13], i.e., 
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where L denotes the bond length, and θkkr ,  and τk are the force field 
constants in molecular mechanics. The force field constants in our studies 
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are chosen as 4692/ =rk kcal mol-1 Å-2, 632/ =θk  kcal mol-1 rad-2, and 
202/ =τk  kcal mol-1 rad-2. 

 For simulations of van der Waals interactions between nested nanotube 
layers, a truss rod model was introduced [15]. This model is based on the 
Lennard-Jones “6-12” potential and the van der Waals force between two 
atoms in the nearest neighboring tube layers can be written as 
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where, r is the interatomic distance, ε  and σ  are the Lennard-Jones 
parameters. The activation of a truss rod is determined by the distance 
between the two atoms in the neighboring tube layers. If the distance is less 
than 2.5�, a truss rod is assumed to be activated. 

3. STATIC PROPERTIES OF CARBON NANOTUBES 

Using the molecular structural mechanics method, we can readily 
examine the elastic properties of carbon nanotubes. The basic elastic 
properties considered include axial Young’s modulus, radial Young’s 
modulus, circumferential Young’s modulus and shear modulus [13,14,19]. 
In the calculations of these elastic moduli, different loading conditions, such 
as tension, torsion and hydrostatic pressure, are applied. The wall thickness 
is usually taken as the interlayer separation of graphite, 0.34 nm. The 
number of atoms involved in the calculations is in the range of 240~3500, 
depending on the nanotube diameter. 

 Figures 1 and 2 give examples of simulation results of elastic moduli of 
carbon nanotubes by using the molecular structural mechanics approach. 
These results indicate that the elastic moduli of carbon nanotubes are highly 
dependent on the tube diameter but the effects of tube chirality are relatively 
small. 
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Figure 1  Young’s moduli of single-walled carbon nanotubes [13] 
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Figure 2  Radial moduli of single- and double-walled carbon nanotubes [14] 

4. DYNAMIC PROPERTIES OF CARBON 
NANOTUBES

 Although there are some studies in the literature regarding the use of 
carbon nanotubes as resonators [17] and oscillators [18], the vibrational 
properties of nanotubes are not well understood. There have been no reports 
on theoretical modeling of the dynamic properties of carbon nanotubes by 
molecular dynamics. Also, the continuum mechanics approach can not be 
readily applied for predicting the dynamic properties of carbon nanotubes 
because of the difficulty in distinguishing nanotube chirality and the 
uncertainty in defining the nanotube wall-thickness.  

 We studied dynamic properties of carbon nanotubes by employing the 
molecular structural mechanics approach [19, 20]. For determining the 
fundamental frequencies and vibrational modes of a carbon nanotube, we 
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simulate the nested tube layers by equivalent space frame structures and 
intertube van der Waals interactions by truss rods. According to the theory of 
structural dynamics, the equation of motion for the free vibration of an 
undamped structure is  

}0{}]{[}]{[ =+ yKyM �� ,                                       (3) 

where ][M  and ][K  are, respectively, the global mass and stiffness matrices, 
and }{y  and }{y��  are, respectively, the nodal displacement vector and 
acceleration vector.  

 The global stiffness matrix ][K  is assembled following the same 
procedure as that in simulating static properties. The global mass matrix ][M

can be assembled from the elemental mass matrix. By considering the 
atomistic feature of a carbon nanotube, the masses of electrons are neglected 
and the masses of carbon nuclei ( 26109943.1 −×=cm  kilogram) are assumed 
to be concentrated at the centers of atoms, i.e., the joints of beam members. 
Due to the extremely small radius ( 51075.2 −×=cr Å) of the carbon atomic 
nucleus, the coefficients in the mass matrix corresponding to flexural 

rotation and torsional rotation, 2
3

2
cc rm , are assumed to be zero. Only the 

coefficients corresponding to translatory displacements are kept. Thus, the 

elemental mass matrix eM ][  is given by  

[ ]0003/3/3/][ ccc
e mmmdiagM = ,               (4) 

The factor 1/3 in the elements of the elemental mass matrix is introduced 
because the three bonds of a carbon atom connects with the three nearest 
neighboring atoms and it ensures that the nodal mass has the value of a 
single atom in the assembled global mass matrix ][M . 

 The orders of the global stiffness matrix and mass matrix are reduced by 
the static condensation method for more efficient computations. Then, the 
natural frequencies f and mode shapes are obtained from the solution of the 
eigenproblem  

0}){][]([ s
2

s =− pyMK ω ,                             (5)   

where s][K , s][M  are the condensed stiffness matrix and condensed mass 
matrix, respectively, }{ py  is the displacement vector corresponding to the 

primary coordinates, i.e., the translatory displacements of carbon atoms, and 
fπω 2=  is the angular frequency. 

 The fundamental frequencies of carbon nanotubes depend on the tube 
diameter and length, as well as constraints on the nanotube ends. In our 
study, two forms of constraints, i.e., cantilevered and bridged, were analyzed 
[19]. The computational results of fundamental frequencies of single-walled 
carbon nanotubes are displayed in Fig. 3.  
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Figure 3  Fundamental frequencies of single-walled carbon nanotubes [19] 

 It is obvious from Fig. 3 that nanotubes possess very high fundamental 
frequencies. For nanotubes with diameters of 0.4~0.8 nm and 
length/diameter ratios of 6~20, the fundamental frequencies are in the ranges 
of 10~300 GHz and 100~1500 GHz, respectively, for cantilevered and 
bridged nanotubes. For the same aspect ratio, nanotubes with a smaller 
diameter have a higher fundamental frequency. Nanotube chirality does not 
have a significant effect on the fundamental frequency.   

 Our simulations also indicated that the fundamental frequency of a 
double-walled carbon nanotube is about 10% lower than that of a single-
walled carbon nanotube with the same outer diameter and the same length 
[24]. The vibration modes associated with the fundamental frequencies are 
almost coaxial, and noncoaxial vibrations are excited at higher frequencies. 
Our simulations identify that the noncoaxial vibration initiates at the third 
resonant frequency, which is usually much higher than the first two lowest 
frequencies.  

 It can be concluded that the fundamental frequencies of both single-
walled and double-walled carbon nanotubes are very high and are in the 
order of hundreds gigahertzs for the range of nanotube length studied. This 
level of fundamental frequency is much higher than the highest frequency 
nanomechanical resonator (~1.029 GHz) so far fabricated from SiC using 
optical and electron-beam lithography [21]. Thus, the high potential of using 
carbon nanotubes as nanomechanical resonators is unmistakable. Such high 
frequency mechanical nanodevices would facilitate the development of the 
fastest scanning probe microscopes, magnetic resonant force microscope and 
even mechanical supercomputers. 
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5. MULTISCALE MODELING OF CARBON 
NANOTUBE/POLYMER COMPOSITES 

By combining the molecular structural mechanics approach with the 
finite element method, we proposed a multiscale modeling method for 
simulating deformation behavior of carbon nanotube/polymer composites 
[22]. In the method, the nanotube was modeled at the atomistic scale by the 
molecular structural mechanics method, and the matrix deformation was 
analyzed at the macroscopic scale by the continuum finite element method.  

We have considered nanocomposites reinforced by single-walled carbon 
nanotubes. Two cylindrical unit cells were chosen as computational models. 
One is the discontinuous reinforcement model where the nanotube is entirely 
embedded in the matrix. Another is the continuous reinforcement model, 
where the length of the nanotube is assumed to be the same as the length of 
the surrounding polymer matrix. The first model is used for revealing the 
stress distribution around the interface, while the second is used in 
computing the effective modulus of nanotube/polymer composites. 

Because the nanotube is modeled at the atomistic scale and the polymeric 
matrix is treated as a continuum, the modeling of the nanotube/polymer 
interface is rather difficult. We considered two limiting cases in interfacial 
load transfer capability. The case of low interfacial load transfer is 
approximated by the van der Waals interface. The case of high interfacial 
load transfer is simulated by a perfect interface, which may exist in 
covalently bonded nanotube/matrix interface. 

For simulations of van der Waals interactions at the interface, the truss 
rod model is adopted, which was first developed for simulating the van der 
Waals forces between neighboring atomic layers of a multi-walled carbon 
nanotube (Fig.4a). At the nanotube/matrix interface, the activation of a truss  
rod is determined by the distance between an atom in the nanotube and a 
node in the finite element. For convenience in computation, we only 
consider the van der Waals interactions between the nanotube and the 
surface of the polymeric matrix immediately adjacent to the nanotube. This 
assumption may tend to underestimate the load transfer capability of the 
nanotube/polymer interface. For perfectly bonded interface, it is assumed 
that the outer surface of the nanotube coincides with the inner surface of the 
polymer matrix. But for matching the atoms in the nanotube and the nodes in 
the finite elements, the center of an atom in the nanotube is assumed to be 
located on the outer surface, not in the center of the tube wall (Fig.4b).    



62 Chunyu Li and Tsu-Wei Chou

The Young's modulus and Poisson’s ratio of the polymer matrix are 
taken as 2.41 GPa and 0.35, respectively, for simulating an epoxy polymer.  
The nanotube is assumed to be zigzag type. The effective Young's moduli of 
nanotube/polymer composites are analyzed using the long-tube 
computational model. The nanotube/polymer interfacial bonding in this case 
is assumed to be van der Waals interaction. Our computational results 
indicate that the effective axial Young's modulus of nanotube/polymer 
composite follows the rule-of-mixtures. 

Figure 5 displays the distributions of normalized shear stress in one 
quarter of the matrix material for perfect interface and van der Waals 
interface. It is observed that the maximum shear stresses occur at the vicinity 
of nanotube ends. The shapes of shear stress contours for the perfect 
interface and van der Waals interface cases are similar, but the maximum 
normalized shear stress in the former case is roughly twice as much as that 
of the latter case. Figure 6 shows the axial normal stress distributions in the 
polymeric matrix under isostrain and isostress loading conditions. It is 
observed that there are stress concentrations in the vicinity of the nanotube 
ends in both figures 5 and 6. The nature of stress concentrations in 
nanotube/polymer composites is similar to that in short fiber composites. 

Figure 4  Nanotube/polymer interface treatment 

(a) van der Waals interface and (b) perfect interface
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Figure 6  Axial stress distribution in polymer matrix [22] 
(a) perfect bonding, isostrain, (b) van der Waals bonding, isostrain
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6. THERMAL PROPERTIES OF CARBON 
NANOTUBES

 The molecular structural mechanics approach has been extended to the 
study of thermal properties of carbon nanotubes. The vibrational modes of 
the nanotube are quantized according to the theory of quantum mechanics. 
The partition function is directly expressed by the vibrational frequencies of 
carbon atoms. Then, based on the theory of statistical thermodynamics, we 
have calculated the specific heat and the coefficients of thermal expansion of 
single-walled carbon nanotubes. Our computational predictions are in fair 
agreement with available experimental as well as theoretical results. 

7. CONCLUSIONS 

 The molecular structural mechanics approach is an effective atomistic 
modeling technique for simulating carbon nanotubes. It has been used for the 
studies of static and dynamics properties of single- and multi-walled carbon 
nanotubes. It also has the potential of simulating thermal properties of 
carbon nanotubes as well as analyzing other nanomaterials. Its combination 
with the finite element method provides us with a unified capability of a 
multiscale modeling of carbon nanotube-reinforced composites.  
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