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Abstract The present study is concerned with a probabilistic homogenization analysis of
polymeric cellular media to be used as core materials for sandwich structures.
The approach is based on a randomized representative volume element in con-
junction with a Monte Carlo simulation. The results for stiffness and strength
are evaluated by stochastic methods.
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1. INTRODUCTION

Solid polymeric foams are common core materials in modern sandwich con-
struction. Their main advantages are their low specific weight due to their high
void volume fraction, their low cost and the fact that foam core sandwich struc-
tures can be manufactured in a wide range of geometries.

For reasons of numerical efficiency, the analysis of cellular solids during
the industrial design process is preferrably performed in terms of macroscopic
effective properties rather than by a direct model of the given microstructure.
The determination of the effective properties can be performed either by exper-
iments or by numerical homogenization analyses. Since the pioneering work of
Gent and Thomas [5] appeared in 1963, numerous studies on the theoretical de-
termination of effective mechanical properties of foams have been published.
Overviews are given e.g. by Gibson and Ashby [6] or Hohe and Becker [8] and
others.

Although solid foams are amorphous media with a highly disordered mi-
crostructure (see e.g. experimental studies by Blazy et al. [1] and Ramamurty
and Paul [11] showing distinct disorder effects), most of the analytical stud-
ies available in literature are based on idealized regular periodic foam mod-
els. Only few studies have been performed concerning irregular, random mi-
crostructures. Based on a Voronoi tessalation of a large scale representative
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volume element, e.g. Silva et al. [12] and van der Burg et al. [13] have analyzed
the effect. More recent contributions have been published, among others, by
Fazekas et al. [3] and Zhu et al. [15].

On the other hand, it has been pointed out by Fortes and Ashby [4] that
a single analysis of a large-scale representative volume element with a ran-
dom microstructure might be inaccurate since, artificial anisotropies are re-
tained. Instead, a direct probabilistic approach based on a probability func-
tion for cell wall orientations is proposed. Other probabilistic approaches have
been provided by Cuitino and Zheng [2], Hall [7] as well as by Warren and~~
Kraynik [14].

The present study is concerned with an alternative probabilistic approach
where a previously developed homogenization procedure for periodic media
under finite deformation [9] is generalized to cellular solids with a random mi-
crostructure. The basic idea of this approach is to determine the exact spatial
positions of the cell wall intersections of a cellular solid randomly within pre-
scribed areas. The analysis is performed in multiple numerical experiments
which are evaluated by means of stochastic methods.

2. HOMOGENIZATION PROCEDURE FOR
PERIODIC MODEL FOAMS

The probabilistic homogenization procedure presented in Section 3 gener-
alizes a homogenization procedure for polymeric model foams with a periodic
microstructure presented previously (Hohe and Becker [9]). The approach is
based on the analysis of a representative volume element for the given micro-
structure according to Figure 1. For comparison, a virtual volume element of
the same shape and size consisting of the homogenized “effective” medium
is considered. The properties of the homogeneous volume element have to
chosen such that the macroscopic mechanical behavior of both volume ele-
ments is equivalent.

The macroscopic mechanical equivalence of both volume elements is defined
by the condition that the average strain energy densities w̄ and w̄∗ in both
volume elements have to be equal

w̄ = 1

V RVE

∫
�RVE

w dV = 1

V RVE

∫
�RVE∗

w∗ dV = w̄∗ (1)

provided that both volume elements experience a deformation which is equi-
valent on the macroscopic level of structural hierarchy. The deformation of
both volume elements is defined to be macroscopically equivalent, if the volume
averages
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Figure 1. Deterministic two-dimensional cellular microstructure (periodic).

F̄ijFF = 1

V RVE

∫
�RVE

FijFF dV = 1

V RVE

∫
�RVE∗

F ∗
ijFF dV = F̄ ∗

ijFF (2)

of the components FijFF = ∂ui/∂xj + δij of the deformation gradient are equal.
The components of the deformation gradient are related to the components

γ̄ijγγ of the macroscopic Green–Lagrange strain tensor by

γ̄ijγγ = 1

2

(
F̄kiFF F̄kjFF − δij

)
(3)

where δij are the components of the unit tensor. The components τ̄ijτ of the
effective second Piola-Kirchhoff stress tensor can be determined from the av-
erage strain energy density as the partial derivatives

τ̄ijτ = ∂w̄

∂γ̄ijγγ
≈ �w̄

�γ̄ijγγ
(4)

if a hyperelastic material behavior is postulated.
A homogenization scheme based on Equations (1) to (4) basically requires

the following four steps:

• identification of an appropriate representative volume element,

• deformation of a numerical (e.g. finite element) model of the represent-
ative volume element according to the prescribed effective strain state
γ̄ijγγ considering Equation (3),

• computation of the strain energy density for the prescribed strain state
and the corresponding partial derivatives,

• determination of the effective second Piola-Kirchhoff stress components
τ̄ijτ using Equation (4).

Details on the implementation of this procedure can be found in the original
contributions by Hohe and Becker [9, 10].
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Figure 2. Randomized two-dimensional cellular microstructure.

3. PROBABILISTIC APPROACH

The concept for homogenization of perfectly periodic microstructures out-
lined in Section 2 is now enhanced to cover the effect of microstructural irreg-
ularity. For this purpose, the microstructure is randomized prior to the homo-
genization analysis. The randomization is performed by determining the exact
spatial positions xint(j)

i of cell wall intersections j , (j = 1, . . . , n) randomly
within prescribed areas around the positions xint,reg(j)

i of the corresponding per-
fectly regular microstructure using a random number generator (see Figure 2).
In this context, the spatial dimensions�xi form additional material parameters
discribing the degree of microstructural disorder. In most cases, the choice of
equal spatial dimensions �xi of the cubes for random determination of the cell
wall intersections will be appropriate. The single remaining parameter �x can
easily be determined from micrographic analyses of the respective solid foam.

The random determination of the microstructural geometry and the sub-
sequent homogenization analysis are repeated in a number of numerical exper-
iments. The results are evaluated by means of stochastic methods. Therefore,
the effective stress τ̄ijτ for a given macroscopic strain state γ̄ijγγ is given in terms
of the mean value

τ̄ a
ijτ = 1

n

n∑
k=1

τ̄
(k)
ijτ (5)

where τ̄ (k)ijτ is the effective stress obtained in n individual numerical experi-
ments. The scatter in the effective stress-strain relation can be assessed in
terms of the standard deviation

τ̄ s
ijτ =

(
1

n− 1

n∑
k=1

(
τ̄ a
ijτ − τ̄ (k)ijτ

)2
) 1

2

(6)

or the probability density distribution of the effective stresses.
For determination of the probability density distributions, the stress results

τ̄
(k)
ijτ from the individual numerical experiments are arranged in increasing or-
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der. In this case, the accumulated probability P(σ̄ij ) for the occurrence of a
stress level of at least σ̄ij is

P(σ̄ij ) = k∗ − 1
2

n
(7)

where k∗ is the number of the numerical experiment with σ̄ (k
∗)

ij = σ̄ij after the
re-arrangement of the stress results into increasing order whereas n is the total
number of numerical experiments performed. From the accumulated probabil-
ity P(σ̄ij ), the probability density distribution is determined by

p(σ̄ij ) = ∂P (σ̄ij )

∂σ̄ij

(
= �P(σ̄ij )

�σ̄ij

)
(8)

where the partial derivative has to be computed numerically.
Advantage of the present probabilistic approach compared to the standard

approaches based on the single analysis of a large-scale representative volume
element is that not only the mean values of the effective stresses are obtained
but additional information about the corresponding scatter bands is derived.
The scatter can either be assessed in terms of the standard deviation or directly
by determination of the probability density distribution. Therefore, the scheme
provides an efficient and easy-to-use procedure for the numerical homogeniz-
ation of random microstructures.

4. EXAMPLE: TWO-DIMENSIONAL MODEL FOAM

As an example, the effective behavior of a two-dimensional model foam is
considered. As a periodic reference microstructure, a regular two-dimensional
hexagonal honeycomb is employed. The cell wall material is described by an
Ogden type constitutive equation

w =
n∑
k=1

µ(k)

α(k)

((
λdev

1

)α(k) + (
λdev

2

)α(k) + (
λdev

3

)α(k) − 3
)

+
n∑
k=1

κ(k) (J − 1)2k (9)

with
λdev
k = J− 1

3λk

where λk and J are the principal values of the deformation gradient and the
corresponding Jacobian respectively. The material parameters are assumed
as n = 2 with α1 = 1.5, µ1 = 1.4 GPa and κ1 = 0.8 GPa as well as α2 = 3,
µ2 = 1 GPa and κ2 = 0 which might be assumed as being within the typical
range for polymeric materials.
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Figure 3. Macroscopic stress-strain relations for uniaxial compression and tension.

Although for simplicity all subsequent examples are related to two-dimen-
sional microstructures, it should be noticed that the approach presented in Sec-
tions 2 and 3 can be applied to three-dimensional microstructures in the same
manner.

5. EFEECTIVE STRESS-STRAIN RELATIONS

As a first example, the macroscopic stress-strain relations of the two-dimen-
sional model foam characterized in Section 4 are analyzed. As an example, the
load cases of a uniaxial tensile and compressive deformation are considered.
In this context, the normal Green–Lagrange effective strain component γ̄11 is
varied from zero level up to a level of 20% tensile or compressive strain re-
spectively. The remaining in-plane components γ̄22γγ and γ̄12 of the macroscopic
Green–Lagrange strain tensor are assumed to vanish throughout the deforma-
tion history.

In Figure 3, the results are presented considering the effective normal stress
component τ̄11 acting within the direction of the applied macroscopic deform-
ation as well as the net stress component τ̄22ττ perpendicular to this direction.
Three different levels�x/l of microstructural disorder are analyzed, where l is
the (uniform) strut length for the reference model foam with regular hexagonal
microstructure. Results for this case are indicated by a solid line in the respect-
ive plot.
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Figure 4. Distribution of the accumulated stress probability for different effective load levels.

It is observed that in the tensile range both, the nominal effective stress
τ̄11 as well as the net stress τ̄22ττ decrease with increasing microstructural dis-
order. Thus, the increasing microstructural disorder leads to a weaker material
response on the effective level of structural hierarchy, whereas the perfectly
regular hexagonal foam model overestimates the effective stresses and thus the
effectve stiffness of the material. This effect is caused by a transition in the
microscopic mode of deformation. For the perfectly regular microstructure,
the deformation under a uniaxial effective strain state is governed by cell wall
stretching in the longitudinal direction of the individual struts. For increas-
ingly disordered microstructures, localized bending of the struts in the vicinity
of the cell wall intersections becomes more important, leading to a weaker
macroscopic material response.

In the compressive range, strong effects of the microstructural disorder are
observed especially at low levels −γ̄11 of the applied effective strain. In this
range, the perfectly regular microstructure exhibits a branching instability in
the effective material response caused by buckling of the cell walls. No such
instability in the rigorous Eulerian sense occurs for disordered microstructures,
resulting in a distinct weakening of the effective material in this range for in-
creasing microstructural disorder.

The accumulated probability P(τ̄11) for the occurence of an effective stress
level of at least τ̄11 is presented in Figure 4 at four different compressive and
tensile deformation levels γ̄11. A constant degree �x/l = 0.2 of the micro-
structural disorder is considered. In the tensile range, an increasing level of
the applied effective deformation leads to a monotonic increase of both, the
average effective stress τ̄ a

11 and the scatter band width characterized by a de-
creasing slope of the accumulated probability P . In the compressive range,
an additional transition of the curve shape of the accumulated stress probab-
ility is observed. At low effective stress levels, a bimodal behavior develops,
where the range of a low gradient belongs to microstructures in the pre-buckled
state whereas a the zone of a larger gradient of the accumulated probability at
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Figure 5. Distribution of the accumulated stress probability for different disorder degrees.

lower effective stress levels indicates a microstructural deformation mode in
the postbuckling range.

The effect of the degree�x/l of microstructural disorder on the stress prob-
ability at fixed levels γ̄11 = −0.005 and γ̄11 = 0.1 is analyzed in Figure 5.
Again, it is observed that an increasing degree of microstructural disorder does
not only cause an increasing scatter of the results but also has distinct effects
on the average stresses, resulting in a general weakening of the corresponding
effective material.

6. EFEECTIVE STRENGTH

In a final investigation, the effective strength of ordered and disordered cel-
lular solids is analyzed. In accordance with the weakest link concept, fail-
ure of the entire microstructure is assumed if the first strut in the repres-
entative volume element fails. Failure of the struts is assessed by a simple
maximum stress criterion assuming a maximum permitted v. Mises stress of
σeσσ = 125 MPa. From the effective stress-strain curves, the failure strain γ̄ f

ijγγ on
the effective level is computed as the effective strain, where the local failure
criterion is first satisfied anywhere in the representative volume element.

The results for uniaxial compressive and tensile deformation within the x1-
and x2-directions are presented in Figure 6. It is observed that an increasing
degree �x/l of microstructural disorder leads to a distinct decrease of the
effective failure load in the tensile range by about 30%. In the compressive
range, the consideration of the microstructural disorder results in the vanishing
of the strength anisotropy of the perfectly regular microstructure with different
effective failure stresses γ̄ f

11 and γ̄ f
22γγ within the x1- and x2-directions.

7. CONCLUSION

The present study provides a simple analytical scheme for the homogen-
ization analysis of solid foams accounting especially for the microstructural
disorder. The scheme is based on a Monte Carlo simulation of randomized
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Figure 6. Accumulated failure probability under tensile and compressive deformation.

small-scale representative volume elements in conjunction with a strain energy
based approach for the homogenization analysis.

Advantage of the approach is that it fully accounts for the misrostructural
irregularity. Due to its formulation in terms of numerical experiments in con-
junction with a stochastic assessment, both, the average properties of the ef-
fective material as well as the scatter can be assessed, which is impossible in
the previeous approaches based on a single analysis of a large-scale represent-
ative volume element consisting of a huge number of base cells.

In a number of numerical examples considering both the effective stress-
strain response of random cellular solids as well as their effective strength,
it is observed that the microstructural disorder does not only affect the scat-
ter to be expected in the respective effective material properties but also can
have distinct effects on the respective average values. In general, an increasing
degree of microstructural disorder results in a general weakening of the effect-
ive material behavior in terms of both, the effective stiffness and the effective
strength. Both of these quantities are overestimated by a classical approach
based on a perfectly regular, periodic model for the cellular microstructure.

REFERENCES

[1] J.S. Blazy, A. Marie-Louise, S. Forest, Y. Chastel, A. Pineau, A. Awade, C. Grolleron
and F. Moussy, F. Deformation and fracture of aluminium foams under proportional
and multi-axial loading: statistical analysis and size effect. International Journal of the
Mechanical Sciences 46:217-244, 2004.

933



J. Hohe

[2] A.M. Cuitino and S. Zheng. Taylor averaging on heterogeneous foams. Journal of Com-
posite Materials 37:701-713, 2003.

[3] A. Fazekas, R. Dendievel, L. Salvo and Y. Bréchet. Effect of microstructural topology
upon the stiffness and strength of 2D cellular structures. International Journal of the
Mechanical Sciences 44:2047-2066, 2002.

[4] M.A. Fortes and M.F. Ashby. The effect of non-uniformity on the in-plane modulus of
honeycombs. Acta Materialia 47:3469-3473, 1999.

[5] A.N. Gent and A.G. Thomas. Mechanics of foamed elastic materials. Rubber Chemistry
and Technology 36:597-610, 1963.

[6] L.J. Gibson, and M.F. Ashby. Cellular Solids – Structure and Properties. Cambridge
University Press, London 1997.

[7] R. Hall. Effective moduli of cellular materials. Journal of Reinforced Plastics and Com-
posites 12:186-197, 1993.

[8] J. Hohe and W. Becker. Effective stress-strain relations for two-dimensional cellular
sandwich cores: Homogenization, material models and properties. Applied Mechanics
Reviews 55:61-87, 2002.

[9] J. Hohe and W. Becker. Effective mechanical behavior of hyperelastic honeycombs and
two-dimensional model foams at finite strain. International Journal of the Mechanical
Sciences 45:891-913, 2003.

[10] J. Hohe and W. Becker. A probabilistic approach to the numerical homogenization of
irregular solid foams at finite strain. International Journal of Solids and Structures
42:3549-3569, 2005.

[11] U. Ramamurty and A. Paul. Variability in mechanical properties of a metal foam. Acta
Materialia 52:869-876, 2004.

[12] M.J. Silva, W.C. Hayes and L.J. Gibson. The effects of non-periodic microstructure on
the elastic properties of two-dimensional cellular solids. International Journal of the
Mechanical Sciences 37:1161-1177, 1995.

[13] M.W.D. van der Burg, V. Shulmeister, E. van der Giessen and R. Marissen. On the linear
elastic properties of regular and random open-cell foam models. Journal of Cellular
Plastics 33:31-54, 1997.

[14] W.E. Warren and A.M. Kraynik. Linear elastic behavior of a low-density Kelvin foam
with open cells. Journal of Applied Mechanics 64:787-794, 1997.

[15] H.X. Zhu, J.R. Hobdell and A.H. Windle. Effects of cell irregularity on the elastic proper-
ties of 2D Voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49:857-
870, 2001.

934




