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1 Introduction

There are two different literatures on the subject of DSC and calorimetry
in general. The first deals mainly with its applications, the second primarily
with the technique itself. The latter includes, amongst other things, com-
mentary on instrument calibration, the limits of sensitivity and resolution,
the details of modelling the response of the calorimeter and separating the
effects of the measuring system from those due to the phenomenon being
studied. Certainly there is overlap between these two bodies of work. How-
ever, it is also true that it is not necessary to understand fully the details
of the equations that can be used to model heat flow in a DSC cell in or-
der to measure and interpret a glass transition successfully. In this book,
we attempt to strike a balance between satisfying both audiences. In this
chapter, in particular, we attempt, in the first part, to provide sufficient in-
formation to enable the polymer scientist to interpret correctly his or her
results while not burdening the reader with details that might ultimately
obscure the central meaning. This is intended for those more interested in
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the results themselves than the process by which they are derived. There is a
discussion of theory, but this is confined to the important results rather than
the details of their derivation. In the second part, a more extended discussion
is offered on the considerable complexities of understanding the details of
modulated temperature calorimetry in its modern form (i.e. an experiment
where both the response to the modulation and underlying heat flow are
obtained simultaneously and compared for a wide range of transitions). The
first part is called ‘Practical MTDSC’, the second ‘Detailed Discussion of
the Theory of MTDSC’.

It is not the intention of this chapter to be a review of the literature (if
the reader is looking for this, Ref. [1] is a recent example). Its purpose is
to serve as an introduction to the technique of MTDSC starting with fairly
basic and practical matters than progressing onto more advanced levels. It
is also intended to serve as a guide to understanding the remaining chapters
that deal with three principal classes of polymeric materials, thermosets,
thermoplastic polymer blends and semi-crystalline polymers.

The use of a modulated temperature profile with DSC, combined with a
deconvolution procedure in order to obtain the same information as conven-
tional DSC plus, at the same time, the response to the modulation, was first
proposed by Reading and co-workers [2–17]. In this section, we describe
the basic deconvolution procedure i.e. how that data are processed and pre-
sented for a typical polymer sample. We then consider how these data are
interpreted.

2 The Basics of Modulated Temperature Differential
Scanning Calorimetry

2.1 SOME PRELIMINARY OBSERVATIONS ON HEAT
CAPACITY

Heat capacity can be defined as the amount of energy required to increase
the temperature of a material by 1 degree Kelvin or Celsius. Thus,

Cp = Q/�T (1)

where Cp = the heat capacity
�T = the change in temperature

Q = amount of heat required to achieve �T .

Often, it would be considered that this is the heat stored in the molec-
ular motions available to the material, that is the vibrational, translational
motions etc. It is stored reversibly. Thus, the heat given out by the sample
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when it is cooled by 1◦C is exactly the same as that required to heat it by
the same amount. This type of heat capacity is often called vibrational heat
capacity. Where temperature is changing, the rate of heat flow required to
achieve this is given by

dQ/dt = CpdT/dt (2)

where t = time

This is intuitively obvious. Clearly, if one wishes to increase the temper-
ature of the material twice as fast, twice the amount of energy per unit time
must be supplied. If the sample has twice the heat capacity, this also doubles
the amount of heat required per unit time for a given rate of temperature rise.
Considering a linear temperature programme, such as is usually employed
in scanning calorimetry

T = T0 + βt (3)

where T = temperature
T0 = starting temperature
β = the heating rate, dT/dt.

This leads to

dQ/dt = βCp (4)

or
Cp = (dQ/dt)/β (5)

This provides one way of measuring heat capacity in a linear rising
temperature experiment: one simply divides the heat flow by the heating rate.
If the temperature programme is replaced by one comprising a linear tempe-
rature ramp modulated by a sine wave, this can be expressed as

T = T0 + βt + B sin ωt (6)

where B = the amplitude of the modulation
ω = the angular frequency of the modulation.

The derivative with respect to time of this is

dT/dt = β + ωB cos ωt (7)

Thus, it follows

dQ/dt = Cp(β + ωB cos ωt) (8)
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For the special case where β is zero, this yields

dQ/dt = CpωB cos ωt (9)

For the simplest possible case, from Eq. (2), the resultant heat flow must
also be a cosine wave. Thus,

AHF cos ωt = CpωB cos ωt (10)

where AHF = the amplitude of the heat flow modulation

It follows that ωB = the amplitude of the modulation in the heating rate.
Thus,

Cp = AHF/AHR (11)

where AHR = amplitude of modulation in heating rate (= ωB).

This provides a second method of measuring heat capacity, by looking at
the amplitude of the modulation. The same relationship applies even if there
is an underlying heating ramp.

In essence, MTDSC is based on simultaneously measuring the heat ca-
pacity of the sample using both methods, the response to the linear ramp and
the response to the modulation, and comparing them. When the sample is
inert and there are no significant temperature gradients between the sample
temperature sensor and the centre of the sample, both methods should give
the same value. The interest lies in the fact that during transitions, these two
methods give different values.

2.2 THE MTDSC EXPERIMENT AND
DECONVOLUTION PROCEDURE

Although many different forms of temperature programme are possible, a
sinusoidal temperature modulation is most often used, as illustrated in Fig-
ure 1.1. Figure 1.2 shows data for amorphous poly(ethylene terephthalate),
PET, from below its glass–rubber transition temperature (Tg) to above its
melting temperature. The modulation in heating rate and the resultant heat
flow is shown as well as one of the signals derived from the deconvolution
procedure, the phase lag between the modulation in the heating rate and that
in the heat flow. As the first step in the deconvolution process, the raw data
are averaged over the period of one oscillation to remove the modulation.
This then gives the total signal, which is equivalent to the signal that would
have been obtained had the modulation not been used, i.e. a conventional



Figure 1.1. Typical temperature–time curve for an MTSC experiment (top) with resultant
heating rate modulation and heat flow response (underlying heating rate: 2◦C/min, period: 60 s,

amplitude: 0.32◦C under nitrogen).

Figure 1.2. Raw data from an MTDSC experiment for quenched PET plus one signal resulting
from the Fourier transform, the phase lag (underlying heating rate: 2◦C/min, period: 60 s,

amplitude: 0.32◦C under nitrogen).
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DSC experiment (see below). The averaged signal is subtracted from the
raw data and the modulation is then analysed using a Fourier transform
procedure to obtain the amplitude and phase difference of the heat flow
response at the frequency of the imposed modulation.

In contrast to the very simple treatment outlined above in section 2.1, one
can allow for the situation that the heat flow modulation might not always
follow exactly the cosine modulation in the heating rate (for reasons that
will become clear in the discussions on various transitions). Thus, the heat
flow may lag behind.

The heat flow modulation = AHF cos (ωt − φ) (12)

where φ = the phase difference between the modulation in the heat flow
and the heating rate, also termed the ‘phase lag’.

The basic output from the first stage of the deconvolution procedure is
therefore,

〈dQ/dt〉 = the average or total heat flow

where 〈〉 denotes the average over one or more periods.
Q = heat,

AHF = amplitude of the heat flow modulation,
AHR = amplitude of modulation in the heating rate,

φ = the phase lag.

Having obtained the amplitudes of the modulations in heating rate and
heat flow, the next step is to use these quantities to calculate a value for the
heat capacity as in Eq. (11).

AHF/AHR = C ∗ (13)

where C ∗ = the reversing heat capacity (also called the cyclic heat capacity
or modulus of complex heat capacity. See below).

There are then two alternative ways of proceeding with the deconvolution
– both of which were originally proposed by Reading and co-workers [2–5].

2.2.1 The Simple Deconvolution Procedure
If the results are to be expressed as heat capacities, then the average total
heat flow is divided by the underlying heating rate β. Thus,

〈dQ/dt〉/β = CpT = the average or total heat capacity (14)
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Figure 1.3. Results from simple deconvolution procedure for the data shown in Figure 1.2.

Having obtained the reversing heat capacity, then one can calculate the
non-reversing heat capacity. Viz

〈dQ/dt〉/β − C ∗ = the non-reversing heat capacity = CpNR (15)

This is illustrated in Figure 1.3 using the data shown in Figure 1.2. Note
that in non-transition regions, for example below the glass transition and
in the molten state, the reversing and total heat capacities are the same.
As should be clear from the discussion in section 2.1, and the theoretical
arguments advanced below, this is exactly what we would expect. If measure-
ments were made on an inert material such as sapphire, then the reversing
and total signals should be coincident and the reversing signal would be
zero. However, all measurements contain errors and so exact agreement is
difficult to achieve. It requires careful calibration (see below) and good ex-
perimental practice. Where there are minor discrepancies, it is useful to use
non-transition regions as a kind of internal calibration and use a linear base-
line correction such as is illustrated in Figure 1.4. The two signals are forced
to be the same where it is known that they should be. Whether the total or
the reversing heat capacity is taken to give the ‘correct’ value is a matter of
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Figure 1.4. Total and reversing Cp before baseline correction applied to data in Fig. 1.3.

judgement given the experimental conditions used (and may well be irrele-
vant depending on what information is being sought from the experiment).
This is discussed below in the sections dealing with selection of experi-
mental conditions and calibration. The non-reversing signal is calculated
after any shift to make the non-transition reversing and total signals the
same.

It can be argued that enthalpies associated with, for example, crystallisa-
tion, should not be expressed as changes in heat capacity in the way shown
in Figure 1.3. Perhaps this term is best reserved for the reversible storage
of heat in the motions of the molecules such as we see in the non-transition
regions. This is a moot point. In practice, results are often expressed in terms
of heat capacity, regardless of any transitions that occur, and this convention
is followed in this book.

Although all of these signals in Figure 1.3 are expressed as heat capaci-
ties, they can equally well be expressed as heat flows.

〈dQ/dt〉 = average or total heat flow

C∗β. = reversing heat flow (16)
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This is then subtracted from the total heat flow to obtain the non-reversing
heat flow. Viz

〈dQ/dt〉 − C ∗β = non-reversing heat flow (17)

The convention often adopted for heat flux DSCs means that exotherms
go up and so, in addition to changing the units on the y-axis, expressing the
signals as heat flows also sometimes means inverting the curves compared
to Figure 1.3. However, it is not uncommon to express exotherms as going
down even when plotting the data as heat flow. The reader simply needs to
be careful in regard to what units and conventions are being used.

Note that the simple deconvolution procedure makes no use of the phase
lag signal.

2.2.2 The Complete Deconvolution Procedure
In this procedure, the phase lag is used to calculate the in- and out-of-phase
components of the cyclic heat capacity. Viz

C ∗cos φ = phase-corrected reversing heat capacity = CpPCR (18)

C ∗sin φ = kinetic heat capacity = CpK (19)

In reality, the phase angle cannot usually be used directly. A baseline
correction is required. This is dealt with in the calibration section below.

The complete deconvolution then proceeds in the same way as for the
simple deconvolution, except that the phase-corrected reversing heat capac-
ity is used instead of the reversing heat capacity. Thus

〈dQ/dt〉/β − CpPCR = phase-corrected non-reversing heat flow

= CpPCNR (20)

The results of this deconvolution applied to the data in Figure 1.2 are given
in Figure 1.5.

Again, all of the signals can also be expressed as heat flows.

〈dQ/dt〉 = average or total heat flow

CpPCRβ = phase-corrected reversing heat flow (21)

〈dQ/dt〉 − CpPCRβ. = phase-corrected non-reversing heat flow (22)

CpKβ = kinetic heat flow (23)
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Figure 1.5. Results of complete deconvolution procedure for the data shown in Figure 1.2.

Thus, in general, all signals can equally well be expressed as heat ca-
pacities or heat flows simply by multiplying or dividing by the underlying
heating rate, β, as appropriate. Often both types of signals are mixed, so
reversing heat capacity is co-plotted with non-reversing heat flow.

2.2.3 Comments on the Different Deconvolution Procedures
In Figure 1.6, a comparison is made between the reversing and the phase-
corrected reversing and non-reversing signals. It can be seen that there is
only a significant difference in the melt region. In reality, the simple decon-
volution is an approximate form of the complete deconvolution procedure.
The phase correction is, in most polymer transitions, except melting, negli-
gible, as illustrated in Figure 1.6. Thus,

C ∗ ≈ CpPCR (24)

A quantitative interpretation of results in the melt region, with or without
the use of the phase lag, is often problematic. As a consequence of this, it
often does not matter whether the phase correction has been applied or not
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Figure 1.6. Co-plot of reversing and non-reversing heat capacity arising from the simple and
full deconvolution procedures applied to the raw data from Figure 1.2.

unless the kinetic heat flow is specifically of interest. In many of the appli-
cations described in this book, no phase correction has been used. However,
it must be stressed that there is no conflict between the simple and complete
deconvolution procedures. Perhaps because of an initial misunderstanding
in the literature [2,15,17,18], even today authors present the deconvolution
into reversing and non-reversing as an alternative to using the phase cor-
rection (to derive the phase-corrected reversing and kinetic heat capacities
or complex heat capacity. See below). It is sometimes even presented as
a rival method. This confusion in the literature is an obstacle to a proper
understanding of the technique and it is to be hoped that in future it will
cease. The use of the phase lag is an optional refinement that has always
been part of MTDSC from the time it was first introduced [2]. The full
deconvolution does provide the maximum information and workers who
prefer this are encouraged to pursue it. If it is not used routinely, it is simply
because the phase lag is sensitive to non-ideal behaviour of the combination
of the sample, pan and measuring system and correcting for this requires
additional effort (see the calibration section below) often with little prac-
tical benefit. However, improvements in instrumentation and software will
probably make the full deconvolution routine in future.



12 A. A. Lacey et al.

2.2.4 Comments on Nomenclature
The reason for the nomenclature reversing and non-reversing will be given
below as part of the discussion on practical MTDSC in the section on
chemical reactions and related processes. It was the original intention of
Reading and co-workers that the term reversing should mean what is re-
ferred to above as the phase-corrected reversing [19], while accepting that
in most cases the phase lag correction would not be used because it is very
small. However, the de facto current practice is that reversing applies to the
non-phase-corrected signal and this is the convention that we use in this
book.

It is also possible, and often helpful, to use complex notation. The ra-
tio of the amplitudes of the modulations of the temperature rise and heat
flow gives one useful piece of information: C ∗ = AHF/AHR. The phase
lag gives another. These two bits of information are equivalent to know-
ing both CpPCR and CpK, or the single complex quality Ĉ = CpR − iCpK

where i = the square root of −1. Since the temperature rise and heat
flow modulations can be written as Re{ωBei� t} and Re{AHFei(ωt−φ)} =
Re{(AHF cos φ − i AHF sin φ)eiωt}, respectively, (AHR = ωB), the complex
heat capacity can be defined directly.

Ĉ = AHFe−iφ

AHR
= C ′ − iC ′′ (25)

where CpPCR = C ′ = the real component,
CpK = C ′′ = the imaginary component.

Manipulations needed to relate heat flow AHR to temperature changes
through theoretical models for transitions, or through properties of calorime-
ters, are usually more conveniently done via such complex qualities. The
value Ĉ can then lead directly to evaluations of real specific heat and pa-
rameters controlling kinetics. However, the use of complex notation does
not imply a different theoretical treatment or method. It is simply a more
convenient mathematical formalism. The terms ‘real’ and ‘imaginary’ heat
capacity and ‘phase-corrected reversing’ and ‘kinetic’ heat capacities are
interchangeable.

It is regrettable that such a proliferation of names is in common use and
this must be confusing to many workers. However, by paying close attention
to the above text, it should be possible to deduce the correct signal in almost
all cases.
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3 Practical Modulated Temperature DSC

3.1 THE IMPORTANCE OF LINEARITY

One point that needs to be mentioned is that the analysis described above
assumes that the sample’s response to the modulation can be approximated
as linear. Clearly, the processes such as those that follow Arrhenius kinetics
or related kinetics of a glass transition are not linear with temperature.
However, over a small temperature interval they can be approximated as
linear. Where this cannot be said to be true, the above analysis fails because
it assumes a linear response.

Where a multiplexed sine wave or saw-tooth modulation is used the
deconvolution procedure can be used to extract the response at a series
of frequencies [4,10,19,20]. However, current commercial products restrict
themselves to using the first component of the Fourier series, which is then,
with the assumption of linearity, equivalent to using a single sinusoidal
modulation. It is true that looking at the whole Fourier series, rather than just
the first component, offers scope for increasing the amount of information
that can be obtained from an MTDSC experiment. This applies even to single
sinusoidal modulations (because non-linearities produce harmonics) as well
as multiple simultaneous sine waves or saw-tooth modulations. This will be
considered in greater detail below in the section on advanced MTDSC.

3.2 SELECTION OF EXPERIMENTAL PARAMETERS

A fundamental consideration that always applies is the requirement that
there be many modulations over the course of any transition. Stated simply,
the deconvolution procedure described above can only make sense if the un-
derlying heat flow is changing slowly and smoothly under the modulation.
If this is true, averaging the modulated signal over the period of the mod-
ulation will provide, to a good approximation, the same information as an
un-modulated experiment. The averaging will usually mean the modulated
experiment looks ‘smoothed’ to some extent. Thus, the tops of peaks may
be a little ‘rounder’, but the areas under the peaks and all of the essential
features will be the same. If a significant part of a transition occurs over the
course of a single modulation, this invalidates the assumptions behind the
use of the Fourier series. As the reader proceeds through the sections on the-
ory and typical results, it is hoped that these points will become intuitively
obvious. As a general rule of thumb for most polymer applications, where the
transition is a peak in dQ/dt , then there should be at least five modulations
over the period represented by the width at half height. Where the transition
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Figure 1.7. Reversing Cp for sapphire as a function of period in helium and air
(quasi-isothermal measurement at 50◦C, amplitude 1◦C). Literature value from ref. 38.

is a step change, there should be at least five modulations over that part of
the transition where change is most rapid. Where there is doubt, the number
of modulations should be increased by reducing the underlying temperature
ramp to check whether this significantly changes the reversing signal.

There is the question of what period should be used. As mentioned above,
for an inert material the reversing heat capacity should provide an accurate
measure of the specific heat capacity (= heat capacity/mass) of the sample
when the calorimeter is calibrated in the conventional way (see below). This
is true when the period is long, typically over 100 s or more. As the period
becomes shorter, the apparent reversing heat capacity becomes smaller as
illustrated in Figure 1.7. This happens because there are thermal resistances
between the pan and the temperature sensor, the pan and the sample and
within the sample itself. A long period implies a slow underlying heating
rate that is undesirable because this means a long time for the experiment and
a reduction in the signal-to-noise in the total signal. A typical compromise
is 60 s used with a calibration factor determined using a calibrant with an
accurately known heat capacity. (This is described in the calibration sections
below). In Figure 1.7, it can be seen that the effects of the thermal resistances
are smaller when helium is used and a reasonable compromise is 40 s (again
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with a calibration factor). While it is true that considerable progress has
been made by some workers in characterising and compensating for these
non-ideal experimental conditions [12,21–27], for most experimentalists,
the best approach is to use longer periods that avoid the complications
engendered by these thermal resistances. It should be noted that, if helium
is used, the concentration of helium in the actual cell will generally not be
100% and will vary with flow rate. This means that the flow rate must be
accurately controlled (usually with a mass flow controller).

Once the period is chosen, the requirement that there be many modu-
lations over the course of all transitions then sets limits on the maximum
heating rate that can be used. A typical heating rate with a 60-s period would
be 2◦C/min, or 3◦C/min for a 40-s period. A lower rate might be used if a
transition is particularly sharp or more resolution is required. Alternatively,
there will be circumstances when a faster underlying heating rate might be
used. Generally, in current instruments, which usually use a nitrogen purge,
a 60-s period with a 2◦C/min ramp is a reasonable starting point, but as in
conventional DSC the conditions will vary according to the sample and the
specific information being sought.

The choice of modulation amplitude is firstly governed by the signal-to-
noise ratio. If the amplitude is too small, then it will be difficult to detect and
so the signal-to-noise will degrade. A few tenths of a degree should normally
be sufficient. If the amplitude is too large then this will ‘smear’ the transition.
Consider a glass transition that is 10◦C wide. If the modulation amplitude
is also 10◦C, then when the average temperature is 5◦C below its onset,
the modulation will already be significantly influenced by the transition.
There is also the problem of linearity. If the amplitude it too large, then the
response will be significantly non-linear. A check is to change the amplitude
and it should be possible to find a range of values where the result remains
invariant. An amplitude of 0.5◦C will often give satisfactory results for the
kinds of applications considered in this book.

It is possible to select a programme for a rising temperature experiment
such that the minimum heating rate is always positive or zero (this is the case
in Figure 1.2), or the heating rate is sometimes negative. In the next section,
the various different types of transition that can be studied by MTDSC are
discussed. In general, any type of heating programme can be used except
when it is the melting behaviour that is of interest. In the case of melting,
it has been shown that the material that melts while the temperature is
increasing will not crystallise when the temperature is decreased [8,10].
This then gives rise to a highly asymmetrical and, therefore, non-linear
response to the modulation. Consequently, when melting is being studied,
conditions should be chosen so that the heating rate is never negative. (This
is sometimes referred to as ‘heat-only’ conditions).
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In reality, it is not possible to recommend experimental conditions that
will apply very generally to a wide range of materials and types of study.
The above comments are intended as a simple guide for the novice. These
guidelines are often contravened in this this book! There is no substitute
for gaining a good understanding of the basic theory of MTDSC and then
building experience through practical study.

3.3 COMMON TRANSFORMATIONS STUDIED BY
MTDSC

In the next part of this chapter, we will consider the most commonly encoun-
tered types of processes that are studied by MTDSC in polymeric materials.
The types of results they give and the appropriate specific kinetic functions
will be discussed. The categories are as follows.
1) Chemical reactions and related processes.
2) Glass transitions.
3) Melting.

3.4 CHEMICAL REACTIONS AND RELATED
PROCESSES

3.4.1 Characteristics of MTDSC Results for Chemical Reactions and
Related Processes

In this section, the discussion will begin with the simplest case that can
realistically be considered—a zero-order irreversible chemical reaction. In
this example, the reaction rate is a function only of temperature until all
reactant is consumed and the reaction stops. The exact function governing
the temperature dependence of the reaction rate is not defined in this initial
analysis, but it can be, it is assumed, approximated to be linear over the small
temperature interval of the modulation. The more general case where the
chemical reaction can be considered to be a function of time (and therefore
conversion) and temperature is then treated. Finally, the Arrhenius equation
is dealt with, as this is the most relevant case to the subject of this book.

In the case of a zero-order reaction, the rate of the reaction is dependent
only on the temperature. Thus, it produces heat at a rate given by some
function of temperature. Taking the heating programme given above in
equation 6,

dQ/dt = Cp(β + ωB cos ωt) − h(T0 + βt + b sin ωt) (26)

where h(T ) = some function that determines how the heat output from the
reaction changes with temperature.
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Note that the contribution to the heat flow from the sample’s heat capacity
is included. As discussed above, the heat capacity can be considered as
the energy contained in the various vibrational, translational etc. modes
available to the sample. In this section, these processes are considered to be
very fast and can normally be treated as instantaneous when compared to
the frequency of the modulation that typically has a period of several tens
of seconds. This means that any heat flow deriving from the heat capacity
will not depend on the heating rate or frequency of the modulation. The
energy contained in these molecular motions is stored reversibly. This can
be contrasted with the enthalpy associated with the zero-order chemical
reaction being considered in this case, which is irreversible.

It can be shown (see section 4.3 on detailed MTDSC theory) that to a
good approximation under realistic conditions

dQ/dt = Cpβ − h(T0 + βt) + ωBCpcos ωt + C sin ωt (27)

For clarity, this can be rewritten as:

dQ/dt = Cpβ − h(T0 + βt) . . . the underlying signal

+ ωBCp cos ωt + C sin ωt . . . the response to the modulation (28)

where C = Bdh(T0 + βt)/dT = the derivative of h(T0 + βt) with respect
to temperature.

Note that the underlying signal is the same as would be obtained in a
conventional non-modulated experiment. Averaging over the period of a
modulation will suppress the modulation. Thus,

〈dQ/dt〉 = Cpβ − h(T0 + βt) (29)

Also,

CpPCR = Cp (30)

CpK = (dh(T0 + βt)/dT )/ω (31)

Thus, it follows that

〈dQ/dt〉 − CpPCRβ = h(T0 + βt) = the phase-corrected
non-reversing heat flow (32)

In other words, it is possible to separate the contribution in the total heat
flow from the heat capacity and which arises from the zero-order reaction. It
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is this ability that is one of the main advantages of MTDSC. In most cases,
it is not necessary to use the phase lag correction in order to achieve this.
So, the simple deconvolution procedure is adequate.

The above is intuitively satisfactory when one considers that, in a zero-
order reaction, the reaction rate will change only with temperature and
will thus follow the B sin ωt of the modulation. The contribution from the
heat capacity, on the other hand, follows the derivative of temperature and
thus follows ωB cos ωt. The in-phase contribution arises from a signal that
depends only on the heat capacity. Thus, this provides a means of separating
or deconvoluting these two different contributions to the heat flow.

We now consider a more general process that gives rise to a heat flow and
is governed by a kinetic function that is dependent on temperature and time,
f (t , T ). The derivation of this result given below is provided in section 4.3
on advanced theory. In effect, we come to essentially the same conclusion
as for the zero-order case.

dQ/dt = βCp + f (t, T0 + β) . . . the underlying signal

+ ωBCp cos ωt + C sin ωt . . . the response to modulation

(33)

where C = B(∂ f/∂T ) (as defined above) to some approximation, but may be
considered to include other terms depending on the experimental conditions
and the nature of the f (t ,T ) term. (See the section on detailed theory).

By analogy with the case considered above,

〈dQ/dt〉 − CpPCRβ = f (t, T0 + βt)

= the phase-corrected non-reversing heat flow (34)

Thus, as also demonstrated in Eq. (32), by carrying out this deconvo-
lution procedure it is possible to separate the two fundamentally different
contributions to the total heat flow: the reversible contribution that derives
from the heat capacity (the phase-corrected reversing heat flow) and the
contribution that derives from f (t,T ) which is, on the time-scale of the
modulation, irreversible. In most cases, the phase-corrected reversing heat
flow will be the same as the reversing heat flow to an accuracy greater than
that of the measurement being made.

In the description given above, essentially represented in Eqs. (26)–(34),
the ‘reversing’ signal was truly reversible and the ‘non-reversing’ signal
came from a nominally irreversible process. However, the non-reversing
signal can also be the heat from a crystallisation or from the loss of volatile
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material. Both of these processes are reversible in the sense that, with large-
scale temperature changes, crystals can be melted and, on cooling, moisture
can be reabsorbed. For this reason, the term non-reversing was coined to
denote that at the time and temperature the measurement was made the
process was not reversing although it might be reversible.

Most of the transitions being considered in this section will follow, to
some approximation, the Arrhenius equation, viz

dx/dt = f (x)Ae−E/RT (35)

where x = the extent of the reaction,
t = time,

f (x) = some function of the extent of reaction,
A = the pre-exponential constant,
E = the activation energy,
R = the gas constant,
T = absolute temperature.

This type of behaviour is associated with the well-known energy barrier
model for thermally activated processes. In this model, a material changes
from one form to another more thermodynamically stable form, but must
first overcome an energy barrier that requires an increase in Gibbs free en-
ergy. Only a certain fraction of the population of reactant molecules have
sufficient energy to do this and the extent of this fraction and the total num-
ber of reactant molecules determine the speed at which the transformation
occurs. The fraction of molecules with sufficient energy is dependent upon
the temperature in a way given by the form of the Arrhenius equation. Thus,
this must also be true for the transformation rate. The types of process that
can be modelled using this type of expression include chemical reactions,
diffusion controlled processes such as the desorption of a vapour from a
solid and some phase changes such as crystallisation. There will be some
constant of proportionality, H , such that the rate of heat flow can be directly
related to the rate of the process, viz

(dQ/dt)r = Hdx/dt = H f (x)Ae−E/RT (36)

One can derive the following equation. (See the advanced theory section)

dQ/dt = βCp + H f (〈x〉)Ae−E/RT . . . the underlying signal

+ BωCp cos ωt + C sin ωt . . . the response to modulation

(37)
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where C = B f (〈x〉)d(HAe−E/R〈T 〉)/dT = B f (〈x〉)(HAE/R〈T 〉2)e−E/R〈T 〉.

A typical form of f (x) might be

f (x) = (1 − x)n

where n = the reaction order.
However, there are many other possibilities that are already well estab-

lished in the literature 28. Some of these are considered in detail in Chapter 2.
Again, one can say

〈dQ/dt〉 = βCp + H f (〈x〉)Ae−E/RT (38)

〈dQ/dt〉 − CpPCRβ = H f (〈x〉)Ae−E/RT

= the non-reversing signal (39)

Thus, it is possible to conclude that the non-reversing heat flow contains
that part of the underlying signal that comes from the chemical reaction. In
most cases, it is also true to a very good approximation that C ∗ = CpPCR.

Thus, it is not necessary to use the phase correction in order to measure
the heat capacity and then calculate the non-reversing signal. So, the simple
deconvolution can be used.

Also since CpK = (HAE f (〈x〉)/ωR〈T 〉2)e−E/R〈T 〉 and a comparison with
the phase-corrected non-reversing signal shows that the activation energy
is given by

E = (ωR〈T 〉2CpK)/(〈dQ/dt〉 − CpPCR) (40)

Toda et al. have shown that Eq. (40) can be used to determine E [29].
Above, the simplest possible case (a zero-order reaction) has been con-

sidered. Here, the results are intuitively easy to understand. The general
case, f (t ,T ), where the kinetics are a function of both time and temperature
is then considered and essentially the same result is achieved. Finally, for
completeness, the most commonly encountered case (the Arrhenius equa-
tion) is dealt with. In all of these examples, we came to the same conclusions
(mathematical details are given in section 4.3 on MTDSC theory).

Figure 1.8 shows results for a curing sample. In the reversing signal, a
glass transition is observed during the course of the cure reaction, which pro-
vides the enthalpy change that appears in the non-reversing signal. Clearly,
it is not possible to obtain the same information from a conventional DSC
experiment, which would not be able to separate these two contributions to



Theory and Practice of MTDSC 21

Figure 1.8. Isothermal cure of an epoxy resin showing a glass transition during cure. Data from
Ref. [5].

the total heat flow. The advantages that this affords for the study of reacting
systems are illustrated extensively in Chapter 2.

Figure 1.9 shows an example of detecting a glass transition beneath a cold
crystallisation exotherm. The total heat flow corresponds to a conventional
DSC experiment. It is not possible from inspection of the distorted peak
in this curve to conclude that it is formed from an exotherm (from the
crystallisation of PET) superimposed on a glass–rubber transition (from the
polycarbonate). The additional signals of MTDSC make this interpretation
clear. In this case, the crystallisation acts like a chemical reaction: once
formed the crystals remain as the temperature increases through the peak.
Thus, the process is non-reversing.

Inspection of Figure 1.3 shows there is a decrease in reversing heat ca-
pacity as initially purely amorphous PET crystallises. This effect is present,
but cannot be seen easily in Figure 1.9, in part because the change is cor-
respondingly smaller in this sample as there is a large amount of second
amorphous material present and also due to the increase in heat capacity
through Tg. The results in Figure 1.3 are an accurate reflection of the fact
the crystals have a lower heat capacity than the amorphous material that
proceeded them. Note also that, during the cold crystallisation, the peak in
the phase lag is negative (and so, therefore, is the kinetic heat capacity).
This is exactly what theoretical analysis predicts.
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Figure 1.9. Crystallisation of PET:PC bilayer film showing detection of PC glass transition
during crystallisation of PET. Data from Ref. [3].

This ability to measure changes in vibrational heat capacity that occur
during the course of a process that gives rise to a heat flow such as a chemical
reaction or crystallisation is a very useful aspect of MTDSC. It applies
equally well to the loss of volatile material, for example, that can mask a
glass transition.

Often the deconvolution into reversing and non-reversing is most useful
when there is a ‘hidden’ glass transition such as in Figures 1.8 and 1.9.
For reasons that are discussed in the section below on glass transitions,
the presence of a glass transition in the reversing signal implies an error
in the non-reversing signal. This is because not all of the energy changes
associated with a glass transition is to be found in the reversing signal. At Tg,
there is always a (usually) small non-reversing contribution. In most cases,
this can be neglected. Where it is important to account for this, it can be
done by measuring the non-reversing signal of the relevant glass transition
when other processes are not present (see Ref. [38]).

3.4.2 Summary
� By averaging the modulated heat flow signal, one can recover results that

are equivalent to conventional DSC. This is important because DSC is
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a highly successful technique for the good reason that the information it
provides is very useful.

� One can measure the sample’s vibrational heat capacity independently
of any other process that is occurring, such as a chemical reaction, by
looking at the in-phase response to the modulation. This signal gives Cp

directly.
� The out-of-phase response can be expressed as the kinetic or, in complex

notation, the imaginary heat capacity or simply as C in many of the above
equations. It can take a variety of forms depending on the details of the
experiment conditions and the form of f (t ,T ). However, it is generally
approximated by taking the derivative with respect to temperature of the
heat flow generated by the reaction or other process. This signal can be
used to determine the activation energy for a reaction.

� Very often the out-of-phase component C is small, so the reversing heat
capacity (modulus of the complex heat capacity) is the same as the in-
phase component (phase-corrected reversing or real heat capacity). So,
the phase correction can be neglected. This means that the simple decon-
volution defined above can be used.

� The non-reversing signal gives a measure of the energy that arises from
the chemical reaction.

� Where a glass transition is present underneath a non-reversing peak due
to a cure reaction or a similar transformation, then this does imply an error
in the non-reversing signal because there is a non-reversing component
arising from devitrification. This can usually be neglected or corrected for.

3.5 THE GLASS TRANSITION

3.5.1 Characteristics of MTDSC Results for Glass Transitions
Figure 1.10 shows typical MTDSC results for a glass transition for a
polystyrene sample that has been annealed for different lengths of time.
It can be seen that, as expected, the total signal is the same as that observed
for a conventional DSC experiment. As annealing increases, the character-
istic endothermic peak at the glass transition increases. At low levels of
annealing, there are noticeable changes in the total signal as the characteris-
tic relaxation peak is seen to develop. However, the changes in the reversing
and kinetic signals are small. It follows that the non-reversing signal shows
an increasing peak with annealing time. The use of MTDSC seems to elim-
inate the influence of annealing and enables the relaxation endotherm to
be separated from the glass transition itself. To a first approximation, this
is true, but this must be understood within the context of the frequency
dependence of the glass transition.
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Figure 1.10. Typical results for a glass transition with different degrees of annealing
(polystyrene annealed at 90◦C and re-heated at 2◦C/min, period: 40 s, amplitude 0.21◦C

under helium).

It is well known that the temperature of the glass transition is frequency
dependent from measurements made with dynamic mechanical and dielec-
tric measurements. This same frequency dependence is seen in MTDSC
[30]. Figure 1.11 shows the results for polystyrene at a variety of frequen-
cies. For a cooling experiment with MTDSC, there is both a cooling rate,
β, and a frequency (the frequency of the modulation, ω). If the cooling
rate is kept the same and the frequency is varied, the underlying signal re-
mains constant, while the reversing signal changes. The underlying signal
will always give a lower Tg than the reversing signal because the underlying
measurement must, in some sense, be slower (i.e. on a longer time-scale)
than the reversing measurement. This is because of the requirement that
there be many modulations over the course of the transition. As the cooling
rates become slower, in other words as the time-scale of the measurement
becomes longer, Tg moves to a lower temperature. Similarly, as the frequency
decreases, Tg moves to lower temperatures. As a consequence of this, there
is a peak in the non-reversing signal as the sample is cooled that is clearly
not related to annealing, but is a consequence of the difference in effective
frequency between the average measurement and that of the modulation.
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Figure 1.11. Experimental results that illustrate the effect of frequency on the total, reversing
and non-reversing Cp for the glass transition of polystyrene in cooling (period: 20, 40, 80 and

160 s, underlying rate: 1◦C/min, ‘cool-only’ under helium).

Thus, the non-reversing signal changes with cooling rate and modulation
frequency. This is shown in Figure 1.11.

On heating, the non-reversing signal, as can be seen from Figure 1.10, is
related to the amount of annealing and also must contain the effects of the
different effective frequencies used in the measurement. These effects can
be treated as additive. Thus, the non-reversing signal gives a measure of the
enthalpy loss on annealing with an offset due to the frequency difference.
This is intuitively satisfactory, as the enthalpy that is regained by the sample
on heating after annealing cannot be lost again on a short time-scale at the
time and temperature at which the measurement is made. In this sense, it is
non-reversing in the same way as a chemical reaction or crystallisation event.
This simple picture is only a first approximation, but it will be adequate in
many cases. In particular, the non-reversing peak at the glass transition can
be used to rank systems in terms of degree of annealing.

In the discussion above it is assumed that, as indicated in Figure 1.10, the
reversing signal is not affected by annealing. In reality, this is not correct. At
higher degrees of annealing, the reversing signal becomes sharper. Thus, the
simple relationships outlined in the previous paragraph break down. This
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Figure 1.12. Effect of long annealing times on the total and reversing signals (polystyrene
unaged and aged at 90◦C for 40 h, re-heated at 2◦C/min, 40s period, amplitude: 0.21◦C under

helium).

is illustrated in Figure 1.12, which compares the behaviour of a sample of
polystyrene that has been subjected to a low and a high level of annealing.
Figure 1.13 shows that slower cooling rates also lead to sharper reversing
transitions. In both cases, the sample is closer to equilibrium when it under-
goes the transition in the reversing signal and this leads to a narrowing of
the temperature range over which it occurs. How this can be allowed for is
discussed below.

At first sight, the step change in Cp that occurs at the glass transition
might be interpreted as a discontinuity: that would mean that it would be
a second-order transition. In fact, the transition is gradual as it occurs over
about 10◦C or more. Its position also varies with heating rate (and with
frequency in MTDSC), which reveals that it is a kinetic phenomenon. The
co-operative motions that enable large-scale movement in polymers have
activation energies in a way that is similar to (but not the same as) the
energy barrier model mentioned above for Arrhenius processes. Thus, as
the temperature is decreased, they become slower until they appear frozen.
There is a contribution to the heat capacity that is associated with these
motions. Therefore, as the temperature is reduced, these large-scale motions
are no longer possible and consequently the material appears glassy (rigid)
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Figure 1.13. Experimental results that illustrate the effect of cooling rate on the total and
reversing Cp for the glass transition of polystyrene (period: 20s, underlying rate: 1, 2 and

5◦C/min, ‘cool-only’ under helium).

and the heat capacity decreases. In reality, whether a polymer appears glassy
or rubbery depends the time-scale of the observation. Thus, if the polymer
is being vibrated at a frequency of several times a minute, it may be springy
and return to its original shape when the stress is removed. If it is being
deformed and released over a period of a year, it may well behave like a
pliable material that creeps under load, thus retaining a permanent distortion
in dimensions when unloaded. There is a parallel dependence of the heat
capacity on how rapidly one is attempting to put heat into or take it out of
the sample. Thus, the position of Tg changes with heating and cooling rates.

Figures 1.14 and 1.15 give the enthalpy and heat capacity diagrams for
glass formation. The enthalpy gained, or lost, by a sample is determined
by integrating the area under the heat capacity curve. Above Tg, the sam-
ple is in equilibrium (provided no other processes such as crystallisation
are occurring). Consequently, this line is fixed regardless of the thermal
treatment of the sample and a given temperature corresponds to a unique
enthalpy stored within the sample. As the sample is cooled, there comes
a point at which the Cp changes as it goes through the glass transition.
Thus, dQ/dt changes and so does the slope of the enthalpy line. At different
cooling rates, the temperature at which this occurs changes. Thus, a different



Figure 1.14. Enthalpy diagrams for the glass transition – original data obtained on polystrene.
The change in Cp between the glass and rubber has been exaggerated for clarity.

Figure 1.15. Schematic heat capacity plot that corresponds to the enthalpy diagram shown in
Figure 1.14 showing the peak in Cp arising from annealing.
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glass with a different enthalpy is created. Above the transition, the sample
is at equilibrium. Below Tg, it is at some distance from this equilibrium line,
but is moving towards it very slowly. Thus, glasses are metastable. If the
glass is annealed at temperatures a little below the glass transition, it looses
enthalpy relatively rapidly and becomes a different glass as it moves toward
the equilibrium line. At temperatures far below Tg, the rate of enthalpy loss
becomes very slow and effectively falls to zero. When the sample is heated,
the enthalpy lost on annealing must be regained and this gives rise to the
characteristic peak at the glass transition as seen in Figure 1.10.

From a simple model [31] of the glass transition, it is possible to derive
approximate analytical expressions that model the response to the modula-
tion at the glass transition. (See the discussion in section 4.4). Viz

�CpPCR = �Cp/
(
1 + exp

(− 2Qω�h∗(T − Tgω)/RT 2
gω

))
(41)

CpK = q�CpPCR exp
(− Qω�h∗(T − Tgω)/RT 2

gω

)
/(

1 + exp
(− 2Qω�h∗(T − Tgω)/RT 2

gω

))
(42)

where �C p = the change in heat capacity at the glass transition,
Qω and q = shape factors related to the distribution of relaxation

times and mechanism of the relaxation process,
�h∗ = the apparent activation energy,
Tgω = the glass transition temperature (at half height) at

frequency ω.

The Tgω is given by relating the period of oscillation to the time-scale asso-
ciated with the Arrhenius relationship, viz

ω = Ae−�h∗/RTgω (43)

The change in the average or total signal for heating or cooling rate β can
be approximately modelled using the following relationship which simply
combines a step change (first term on rhs of the equation which is based on
the equation for the reversing signal, see equation 41) with a peak (second
term on rhs of the equation and which is zero on coling) viz:

�CpTβ = �Cp(
1 + exp

(− 2Qβ�h∗(T − Tgβ)/RT 2
g

))

+ h exp(T − Tgp)

(1 + a exp(T − Tgp))n
(44)
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Here, Tgβ = the apparent glass transition temperature for the total signal,
Qβ = shape factor for the underlying measurement at heating/

cooling rate, β, where this would generally be different
on heating and cooling.

Tgp, h and n are all fitted parameters that change with the degree of
annealing (see Fig. 17).

Equation (44) is an ad-hoc model that is used here for illustrative pur-
poses because it is often useful to think of the glass transition as a combina-
tion of a step change in heat capacity with an additional peak that increases
in size with increasing enthalpy loss. This is illustrated in Fig. 17. However,
it must be stressed that at higher levels of annealing this model cannot be
applied. There is no simple analytical expression that can be used and one is
forced to use numerical solutions to models such as that given in equation 94.

Tgβ would normally show an Arrhenius dependence on cooling rate:

β = z Ae−Dh∗/RTgβ (45)

where z is some constant with units of ◦C−1. In fact, this pre-exponential
factor can be considered to be a function of heating rate, but this is beyond the
scope of this discussion. For any frequency, there must be a cooling rate that
would give the same transition temperature (taken at the half height of the
step change) and so there should be a frequency–cooling rate equivalence.

These must of course be obtained from two separate experiments as
these signals can never give the same Tg in a single experiment. One way of
looking at this is to think in terms of the time taken to traverse the transition
as (with suitable weighting) a measure of the time-scale of the linear cooling
rate measurement. This then is related to the period that gives a measure of
the time-scale of the cyclic measurement. Thus, β and ω can be related by

zω = β (46)

The concept of a reversing response can be extended to the total signal
by considering a heating and cooling experiment at the same rate. The
vibrational heat capacity of a purely inert sample should be exactly the
same at any temperature and so completely reversing (and reversible). An
experiment where the sample is cooled through a glass transition, and then
heated at the same rate, will give a similar, but not identical, result in both
directions. Because of this, it is convenient to define a hysteresis factor
hβ(t,T ) describing this difference

hβ(t,T ) = �CpTβH − �CpTβC (47)
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where �CpTβC = the change in heat capacity on cooling

�CpTβH = the change in heat capacity on heating without annealing

It is possible to raise objections to this approach on the basis that change
below Tg never ceases. Thus, there is no end to the transition region on
cooling and so any choice of temperature at which to reverse the cooling
programme is arbitrary. This implies that the shape of the heating curve
cannot be fixed. However, in reality, the rate at which the sample approaches
the equilibrium line decreases very rapidly below the glass transition. Thus,
a few tens of degrees below the mid-point of the step change, the transition
can be said to have come to an end.

To a reasonable approximation

�CpTβC = �Cp/
(
1 + exp

(− 2QCβ�h∗(T − TgCβ)/RT 2
gCβ

))
(48)

�CpTβH = �Cp/
(
1 + exp

(− 2QHβ�h∗(T − TgHβ)/RT 2
gHβ

))
+ h exp(T − Tp)

(1 + a exp(T − Tp))n
(49)

Where �CpTβH = the change in heat capacity on heating with or without
annealing.

It is also convenient to define a function for the enthalpy recovery at Tg

due to any annealing.

Nβ(t, T ) = �CpTβH − �CpTβH ω (50)

so that
∫ Nβ(t , T ) dt = enthalpy loss on annealing.
Combining these equations, we obtain

�CpTβH = �CpTβC + hβ(t, T ) + Nβ(t, T ) (51)

Note that Eqs. (41), (42), (44), (47)–(49) and (51) give the behaviour
of the step change at the glass transition. For a more complete model, the
change in heat capacity as a function of temperature must be taken into
account above and below Tg. To deal with this, all equations that feature �Cp

can be adapted to follow real world behaviour by assuming a linear function
above and below the glass transition. Taking Eq. (41) as an example, yields

CpPCR = ((a2 − a1)T + (b2 − b1))/
(
1 + exp

(−2Qω�h∗(T − Tgω)/RT 2
gω

))
+ (a1T + b1) (52)
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Figure 1.16. Results of modelling the glass transition behaviour of polystyrene in cooling at
80 s period shown in Figure 1.11 by applying Eqs. (41), (42) and (44) (�h* = 690 kJ/mol,

Tgω = 105.5◦C, Qβ = 0.3, Tgβ = 93◦C, Qω = 0.45, q�C p = 0.0078 J/◦C/mol).

where Cpg = a1T + b1 belowTg, a1 and b1 being constants and
Cpl = a2T + b2 above Tg, a2 and b2 being constants.

This modification can also be applied to Eqs. (42), (44), (47)–(49) and
(51). Figure 1.16 provides an example of fitting with this expression for
all of the signals on cooling, while Figure 1.17 gives examples of fitting to
heating curves with different degrees of annealing.

If we return to the general expression for heat flow for MTDSC, we can
express the response at the glass transition as follows.

dQ/dt = βCpCβ + 〈 f (t, T )〉 . . . the underlying signal
+ Cpω Bω cos ωt + C sin ωt . . . the response to modulation

(53)

where Cpω = the heat capacity at the frequency ω, given approximately by
Eq. (41). The transition temperature and shape factor change
slightly with high levels of annealing or very slow cooling.

CpCβ = the ‘reversing’ heat capacity implied by the heating or cooling
rate, β, given approximately by Eq. (51).
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Figure 1.17. Results for modelling the glass transition for low and high levels of annealing by
combining a step change in Cp with a peak (first and second terms, respectively, of equation

44). The difference between these peaks arising from the second term of equation 44 is a
measure of the enthalpy loss. This approach breaks down at long annealing times.

C = the kinetic response = BωCpK where CpK is given by Eq. (42).
This signal becomes higher and narrower and occurs at a
higher temperature with high levels of annealing.

〈 f (t, T )〉 = βhβ(t, T ) + βNβ(t, T ) This expresses changes below Tg that
give rise to the hysteresis when heating with no annealing plus
the enthalpy recovery at Tg caused by any annealing. This can
be represented by equations (47) and (50).

The value of the approximate analytical expressions given in Eqs. (41)–
(52) is that they enable the experimenter to gain an intuitive understanding
of the phenomenology of the glass transition simply by inspection. The
form of CpK in Eq. (29) may be very different from the case of a chemical
reaction as given in Eqs. (28), (33) and (37). However, it is still basically
a manifestation of the kinetics of the glass transition. Thus, the concept
that this signal is a measure of the kinetics of the transition, remains valid.
An exact description of the non-reversing signal at Tg is complex because
of the influence of the time-scale dependence of all measurements at the
glass transition. However, for a sample cooled at a certain rate, annealed
then heated at the same rate, the non-reversing signal contains the enthalpy
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recovery necessitated by the annealing. Although reversible on a sufficiently
long time-scale, the enthalpy recovery due to annealing is non-reversing
under the conditions of the measurement. In this way, it is similar to the
non-reversing signal obtained during, for example, a reversible chemical
reaction. In the discussion on advanced theory, models are discussed that
are also phenomenological, but they have fewer variables and provide for
a more fundamental insight into the underlying mechanisms governing the
glass transition. However, they have to be solved numerically and thus cannot
by simple inspection provide a guide to thought. The model expressed in
Eqs. (41)–(52) is in part based on these models, but it is principally designed
as an aid to understanding the behaviour (rather than its causes). A detailed
discussion of the fundamental nature of the glass transition is beyond the
scope of this chapter.

MTDSC has several significant practical advantages for studying glass
transitions. The first is that the limit of detection is increased. The effect
of using a Fourier analysis to eliminate all responses not at the driving
frequency of the modulation reduces unwanted noise. The second is that
it increases resolution. A high signal from the heat capacity is assured by
a high rate of temperature change over the course of a modulation a high
resolution can be assured by using a low underlying rate of temperature
increase. The third is that it makes the correct assignment more certain.
When a glass transition is weak, and set against a rising baseline due to
the gradual increase in heat capacity of other components, the presence of
a relaxation endotherm can give the impression of a melt or some other
endothermic process rather than a glass transition. A clear step change in
the reversing signal makes a correct assignment unequivocal in most cases.
A fourth advantage is that quantification of amorphous phases is made
more accurate. The increase in signal to noise already discussed above is
obviously helpful in this respect. In addition, the suppression of annealing
effects makes it easier to quantify the increase in heat capacity correctly.
Examining the derivative of the reversing heat capacity with respect to
temperature is the best approach to doing this. This approximates very well
to a Gaussian distribution and numerical fitting procedures can be used to
quantify multiple phases. This is explored in detail in Chapter 3 on polymer
blends.

3.5.2 The Fictive Temperature and Enthalpy Loss on Annealing
The fictive temperature (Tgf) can be obtained by extrapolation of the linear
portions of the enthalpy lines above and below the glass transition as illus-
trated in Figure 1.18. This can be calculated in the case of MTDSC from
the following approximate relationship.

Tgf = Tgr + �HNR/�Cp (54)
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Figure 1.18. Schematic diagram illustrating the relationships between fictive temperatures,
enthalpy and heat capacity.

where Tgf = the fictive temperature
Tgr = the glass transition at the mid-point of the reversing signal

�HNR = the area under the non-reversing curve (i.e. the area
between the reversing and total curves)

�Cp = the heat capacity change at the glass transition.

The geometric relations illustrating this equation are given in Figure
1.18. If enthalpies are required relative to some reference glass, then one
approach is to use the following equation.

�H = (Tgfr − Tgfm)�Cp (55)

where �H = difference in enthalpy between reference state and the
measured sample

Tgfr = fictive temperature of the reference state
Tgfm = fictive temperature of the measured sample.

Equations (54) and (55) can be criticised because they assume a unique
value for �Cp whereas this varies slightly as the liquid and glass heat capac-
ities have different slopes. (For highest accuracy �Cp should be determined
for the mean of Tgf and Tgr). Alternatively, enthalpy loss on annealing is
often measured by using a result from a sample with low annealing (say
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Figure 1.19. Relationship between enthalpy change on annealing obtained from total Cp and
non-reversing Cp for polystyrene aged for different times at 85, 90 and 95◦C.

cooled at a specified rate then immediately heated again at that rate) as
the baseline that is subtracted from an annealed sample. At low degrees
of annealing there should be an approximately linear relationship between
this measurement and the area under the non-reversing signal because the
reversing signal is not greatly affected by low small amounts of annealing.
This is illustrated in Figure 1.19.

The early points show that the scatter in the data is greater than the de-
viation from the linear relationship, then there is a clear positive deviation
as annealing increases, which can exceed 20% [16], as we would expect.
This observation has also been made by Hutchinson [32,33] and Monser-
rat [34] who confirmed the earlier work of Reading et al. [16], but drew
the overly pessimistic conclusion that the non-reversing signal could not be
used for measuring enthalpy loss. Figure 1.19 here, Figure 4 in [34] and [35]
demonstrate that, while there are problems for highly annealed samples, for
low degrees of annealing a linear relationship can be assumed. In reality, a
deviation of the order of 5–10%, which is what is found at moderate anneal-
ing, is within the scatter that would typically be expected with two different
operators making ostensibly the same measurements. Experimenters must
judge for themselves whether this is adequate for their needs. Certainly it
is good enough to make comparisons between samples.
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Figure 1.20. As Figure 1.19 following correction due to change in reversing Tg.

However, any debate on this subject is redundant for two reasons. The
first is that the changes in the reversing signal can easily be compensated
for using the following correction.

�H = �HNR + �Tgr�Cpa (56)

where �Tgr = the change in the reversing glass transition temperature.
Figure 1.20 illustrates how applying this correction excellent agreement

with the more conventional approach is achieved. The second is that, whilst
it is useful to understand the relationships between the results given by
MTDSC and the kind of parameters often determined by conventional DSC
(such as fictive temperature and enthalpy loss), MTDSC does not afford
any advantages over conventional DSC for such studies. Conventional DSC
measurements are to be preferred in this case due to shorter measurement
times and less data processing [36].

3.5.3 Summary
In summary, the important concepts that should be born in mind when
considering glass transitions are as follows.
� The glass transition temperature (Tg), as measured by the reversing heat

capacity, is a function of frequency.
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� Tg as measured by the total heat capacity on cooling is a function of
cooling rate.

� Broadly, there is equivalence between these two observations because both
changing the frequency of the modulation and the cooling rate changes
the time-scale over which the measurement is made. This means that there
is always, in the non-reversing signal, a contribution from β(Cpβ − Cpω)
which is present regardless of annealing. (For example, it is present when
cooling.)

� Ageing below the glass transition produces an enthalpy loss that is recov-
ered as a peak overlaid on the glass transition. However, this ageing does
not, at low degrees of annealing, have a great effect on the reversing signal
and this is intuitively satisfactory as the ageing effect is not reversible on
the time-scale of the modulation. This means that the non-reversing signal
includes a contribution from the different time-scales of the cyclic and
underlying measurements, plus a contribution from annealing expressed
as N (t , T ) in Eq. (50). This implies that the relationship between the en-
thalpy loss on annealing and the area under the non-reversing peak should
be linear.

� At high degrees of annealing, the reversing signal is affected and the non-
reversing signal no longer increases linearly with enthalpy loss. However,
this can be compensated for by use of the fictive temperature and associ-
ated equations such as Eq. (56).

� The fact that the reversing signal is largely unaffected by annealing and
its derivative provides an approximately Gaussian peak makes it a much
better signal for assessing the structure of blends as described in Chap-
ter 3.

3.6 MELTING

3.6.1 Characteristics of MTDSC Results for Polymer Melting
A first-order phase transition is characterised as a change in specific volume
accompanied by a latent heat. The most common example studied by DSC is
melting. Typically, at the melt temperature, the sample will remain isother-
mal until the whole sample has melted. The factor that determines the speed
of the transition is the rate at which heat can be supplied by the calorimeter.
Normally this is fast compared with the overall rate of rise of temperature
so the transition is very sharp with a little ‘tail’, the length of which is deter-
mined by the speed with which the calorimeter can re-establish the heating
programme within the sample. The area under the peak is a measure of the
latent heat of the transition.

Pure, low molecular weight organic materials generally produce very nar-
row melting peaks. Because this narrow temperature range inevitably lies,
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either entirely or to a significant extent, within the course of only one modu-
lation, it means that the response to the modulation will not be linear and the
deconvolution procedure we have described above cannot be used. It is possi-
ble to obtain useful information by looking at the Lissajous figures generated
by the modulation. This is dealt with in Chapter 4, which covers melting.

Polymers, in contrast, produce a range of crystallites with different melt-
ing temperatures [44]. Typically, semi-crystalline polymers will contain a
distribution of crystals with differing degrees of perfection and thus different
melting temperatures. The melting transition in these materials is broad, as
a succession of crystallite populations melts one after the other, as the sam-
ple temperature reaches their melting temperatures. The amount of energy
required to melt these crystallites is fixed as is their melting temperature.
This means that if one wants to melt them twice as fast (i.e. the heating rate
is doubled) the rate of energy input must be twice as fast. It follows from
this that the heat flow required to melt the crystallites is a linear function of
heating rate. Therefore, the enthalpy of melting will be seen in the reversing
signal. In a simple case, this type of melting behaviour closely mimics heat
capacity. This is discussed in more detail in [12] and the advanced section.

It should be noted that this simple picture breaks down if cooling occurs
during the modulation. As we can see from Figure 1.1, it is not necessary
to have a negative heating rate at any point in an MTDSC experiment: there
can simply be faster and slower rates of heating. Having cooling at any
point is an option. If cooling does occur then, to maintain linearity, the
crystallites must crystallise instantly to form the same structure as before,
something that is generally unlikely both because super-cooling is common
and crystallisation to form exactly what was present before is uncommon.

Figure 1.21 shows some typical results for a semi-crystalline PET. It
can be seen that there is a strong frequency dependence of the results in the
melt region. The simple model discussed above (from [12]) does not predict
that this will occur. Figure 1.22 shows how the peak in the melt region is
also significantly affected by the underlying heating rate which is again in
contradiction to the simple model. In both cases, the simple model predicts
that the reversing signal should be invariant.

In Figure 1.3 it can be seen that, above the cold crystallisation tempera-
ture, the reversing signal is greater than the average until very near the end
of the melting peak. This means that the non-reversing signal is exothermic
over most of the melt region. This can be observed in more detail in Figure
1.23, which is an enlargement of a selected region of the raw data shown in
Figure 1.2. Here, at the lowest heating rates (approximately equal to zero),
an exotherm is observed within the modulation along with an endotherm
at the highest heating rates. At zero heating rate, where the contribution to
heat flow from the vibrational heat capacity must be zero, the heat flow is
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Figure 1.21. Effect of period (heating rate 2◦C/min) on reversing heat capacity for
semi-crystalline PET (‘heat-only’ conditions under helium).

Figure 1.22. Effect of heating rate (period: 40 s, ‘heat-only’ under helium) on reversing heat
capacity for semi-crystalline PET.
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Figure 1.23. Enlargement of raw data from Figure 1.2 illustrating the exothermic crystal
perfection during melting when the heating rate is zero.

exothermic. This is symptomatic of a rearrangement process. The molten
material produced by melting the crystallites with lower melting temper-
atures can crystallise to form more perfect crystals with a higher melting
temperature. This is seen because, at the lower heating rate, the rate of melt-
ing is lowest, thus the exothermic process can predominate. At the higher
heating rates the reverse is true. In conventional DSC, which provides the
same curve as the average signal, there is little or no indication that this
rearrangement process is occurring—as the exothermic and endothermic
processes cancel each other out. Thus, one benefit from using MTDSC
is simply the qualitative one that it can make the occurrence of this phe-
nomenon far more apparent.

Turning to some simple mathematical representation of melting be-
haviour, we can express this as follows.

dQ/dt = β(Cp + g(t, T )) (57)

where g(t, T ) = some function that models the contribution to the heat flow
from the melting process.

When the melting is rapid with respect to the measurement, g(t, T ) will
be simply a function of temperature, g(T ). This means that, in the case of
the distribution of crystallites, the melting contribution to heat flow will
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scale with heating rate exactly like heat capacity if no other process occurs.
Taking this simple model gives

dQ/dt = β[Cp + 〈g(T )〉] . . . the underlying signal

+ (Cp + E )Bω cos ωt +C sin ωt . . . the response to modulation (58)

where, approximately, E = 〈g(T )〉 and C = 0 for this simple case.

Frequently, what is encountered is a complex process that involves melt-
ing a population of crystallites with a range of melting temperatures to
form molten material which then recrystallises (following some kinetics,
thus involving some f (t , T )) to form a further population of crystallites
which then, in their turn, melt and possibly undergo further rearrangement.
The data shown in Figure 1.23 illustrate this process. To complicate matters
further, some workers have suggested that melting is often not rapid with
respect to the frequency of the modulation. Thus, there is a time dependency
in g(t , T ) [25] and C is not zero even without taking account of crystalli-
sation (see the advanced theory section). To allow for this complex range
of possibilities it is convenient to define a composite kinetic function that
includes all terms other than the heat capacity and models both melting and
the kinetics of crystallisation, viz

f (t, T ) = g(t, T ) dT/dt + f2(t, T ) (59)

Under modulated conditions with no cooling

f (t, T ) = 〈 f (t, T )〉 + D sin ωt + E Bω cos ω (60)

Equation (58) now becomes

dQ/dt = βCp + 〈 f (t, T )〉 . . . the underlying signal

+ Bω(Cp + E) cos ωt + D sin ωt . . . the response to

modulation (61)

Note that the ‘reversing’ signal during the melt no longer has the same
meaning as for an Arrhenius process and the glass transition because it
contains a contribution, E , from the melting of the crystallites which will
typically not be fully reversible due to super-cooling. As noted above, this
gives rise to the requirement that there be no cooling at any point during
the modulation so that the response does not become asymmetric and thus
strongly non-linear.
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The question arises as to what might be the form of f2(t, T ) and hence
E and D. At the current state of development, there are no well-established
candidates although this may well change in the near future. This point is
further discussed in the section dealing with details of the theory.

The situation becomes even more complex when we consider that, even
for Eq. (61) to be true, there must be no significant temperature gradients
in the sample. We can reasonably expect that, in the melt region, this will
generally not be true. Taking all of these factors into consideration, the
melt region is significantly more complex than the other transitions we have
considered and it is generally true that a quantitative interpretation of melting
behaviour, particularly during experiments with a non-zero underlying heat
rate, is not generally possible at present.

3.6.2 The Measurement of Polymer Crystallinity
A problem encountered frequently in determining the crystallinity of a poly-
mer using DSC is that, as illustrated in Figures 1.3 and 1.22, the sample
changes its crystallinity during the experiment. The problem becomes one
of establishing the initial crystallinity before the experiment started.

An understanding of the problem is best approached from the perspec-
tive of enthalpy diagrams [31]. Figure 1.24 shows an enthalpy-temperature
diagram for completely amorphous PET, 100% crystalline PET and a 50%
crystalline PET. In the molten state, all of these samples must have the same
enthalpy, so the curves obtained for each example are aligned to make this
the case. As the diagram indicates, below the melting temperature, the en-
thalpies are different due to contributions from the latent heat of fusion
and the different vibrational heat capacities of the crystal and/or glass com-
pared to that of the liquid.

The distance between the 100% amorphous and 100% crystalline en-
thalpy line is the enthalpy required to melt a 100% crystalline sample. This
changes with temperature. Consequently there is no unique enthalpy of
fusion for a given degree of crystallinity. This must be considered to be
function of temperature. A 50% crystalline material will follow an enthalpy
curve approximately half way between the lines defined by 0 and 100%
crystallinity. If one measures the enthalpy change between the equilibrium
melting temperature and just above the glass transition temperature, this can
be broken down into two contributions: one derived from the latent heat,
�Hm, and a contribution from the integral of the vibrational heat capacity,
�Hvib. The total change in enthalpy can always be measured. If one can
estimate the contribution for the vibrational heat capacity of the sample, the
difference between this value and the total change in enthalpy will be a mea-
sure of the latent heat of melting at the equilibrium melting temperature.
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Figure 1.24. Enthalpy diagram for 100% amorphous, 100% crystalline and 50% crystalline
PET (data from AThAS databank: http://web.utk.edu/∼athas/).

The reversing signal can be used to estimate this quantity. It should be
noted that this approach solves the problem of the temperature dependence
of enthalpy of melting. This is because the total enthalpy (equals latent heat
of melting plus the enthalpy required to account for the vibrational heat
capacity) must be the same when integrating over the whole of the rele-
vant temperature interval regardless of at which temperature the melting (or
crystallisation on cooling) occurs.

Starting by considering the simplest case of a purely amorphous polymer,
Figure 1.25 shows again the results for quenched PET. The simple decon-
volution procedure has been used (thus, the phase lag has been neglected)
and the non-reversing signal has not been calculated. One can consider the
reversing signal in isolation as shown in Figure 1.26. The broad peak that is
seen from about 150◦C is not due to vibrational heat capacity, but arises from
the contributions made by the melting and rearrangement processes that oc-
cur as the sample is heated as discussed above. In Figure 1.26, an attempt
is made to correct for this by interpolating a baseline to approximate the
vibrational heat capacity that would have been measured had crystallisation
not occurred. This ‘corrected’ signal can then be re-plotted with the total
signal and difference between them (Figure 1.27). This difference, when
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Figure 1.25. MTDSC results for quenched PET showing the peak in the reversing signal that
comes from the reorganisation process that occurs after the cold crystallisation (underlying

heating rate: 2◦C/min, period: 60 s, amplitude: 0.32◦C under nitrogen).

Figure 1.26. The reversing Cp from Figure 1.25 with the interpolation that seeks to approximate
the true vibrational heat capacity of the material before crystallisation and rearrangement.
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Figure 1.27. Co-plot of total heat capacity with the approximated vibrational heat capacity
obtained from the reversing Cp together with the difference between these two signals. The

integral of the difference gives the enthalpy associated with the latent heat of melting.

integrated, provides a measure of the enthalpy of melting which is, in this
example, zero (to within experimental error). This simple case does not
require the use of modulation to estimate the appropriate baseline heat
capacity. However, in more complex cases the use of modulation can provide
a distinct advantage. Note that, because the peak in the reversing signal
is eliminated, the use of the phase lag is irrelevant. Furthermore, had a
different frequency or heating rate been used, thus changing the area under
the reversing peak during melting, this would also have made no difference
to the calculation of crystallinity for the same reason.

Mathematically, we can express these measurements as follows.

�Hu = (1 − Xc(T1))
∫

Cp,adT + Xc(T1)
∫

Cp,x dT + Xc(T1)�H o(T2) (62)

where T1 = some temperature before melting begins
T2 = the equilibrium melting temperature of a 100% crystalline

sample
�Hu = the enthalpy of melting of the unknown sample

Xc = fraction crystallinity before heating.
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Figure 1.28. MTDSC results for a blend of PET and polycarbonate (underlying heating rate:
2◦C/min, period: 60 s, amplitude: 0.32◦C under nitrogen).

Cp,a = the heat capacity of the amorphous material
Cp,x = the heat capacity of the crystalline sample

�H o = the enthalpy of fusion of a 100% crystalline sample at T2.

With the interpolation procedure, we are attempting to estimate the quan-
tity �Hvib = (1 − Xc(T1)) ∫Cp,adT + Xc(T1) ∫Cp,xdT . When this is sub-
tracted from the total signal (i.e. to calculate the non-reversing signal), this
gives Xc(T1)�H o(T2)f and so, provided �H (T2)f is known, the crystallinity
at the start of the experiment.

Figure 1.28 shows a blend of polycarbonate (PC) with PET. The glass
transition of the amorphous PC occurs beneath the crystallisation peak of
the PET and this complicates the interpretation of the data considerably.
Again, the contribution from the rearrangement and melting of the PET can
be removed by interpolation to produce the approximated vibrational heat
capacity baseline shown in Figure 1.29. The difference signal estimates
the crystallinity of the PET as 2.5%, close to the correct value of zero.
There is an error that arises from the difference between the reversing and
total signal at the glass transition (see above). If this is corrected for, then
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Figure 1.29. Data from Figure 1.28 with interpolated approximation for the vibrational heat
capacity and the difference between them.

the apparent crystallinity becomes 1% i.e. the correct answer to within the
typical accuracy for this kind of measurement. In this example, �Hvib is
the vibrational heat capacity of everything except the component that can
crystallise and/or melt in the temperature range of interest. For an absolute
value for crystallinity the mass fraction of this component must be known.
Failing this relative crystallinity can be assessed.

There are assumptions in this approach. Probably the most important is
that the interpolation assumes the value for the heat capacity of the sam-
ple at the upper temperature is the same as the amorphous polymer. For
a 50% crystalline sample, for example, the vibrational heat capacity at T2

would not be the same as a 100% amorphous sample, which is, in effect, the
assumption that is made in this method. When the level of crystallinity is
low, then the error from this source will be small. As crystallinity increases
the potential error increases, but the fact that, for most polymers, the liquid
and crystalline vibrational heat capacities converge around the equilibrium
melting temperature tends to reduce this problem. For PET at 48% crys-
tallinity the error from this source has been estimated to be 1.5%. A fuller
description of this method can be found in [37].
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There are other approaches to measuring polymer crystallinity based
on conventional DSC [31]. They use database values for the crystalline and
amorphous heat capacity sometimes in combination with extrapolation pro-
cedures. Where they can be applied, these methods might be preferred as
they make fewer assumptions than the MTDSC approach described above.
However, industrially useful systems are often blends and/or contain fillers
or other additives, so complex samples are frequently encountered. When
this is the case, the more conventional approaches will either produce sig-
nificant errors or will simply be inapplicable. Under these circumstances
MTDSC can offer very real advantages.

3.6.3 Summary
� Because polymer melting is the result of a distribution of species all

melting at their equilibrium melting temperature, the enthalpy of melting
is found in whole or in part in the reversing signal. In principle, where there
is no cooling during the modulation cycle, this type of melting behaves
in a similar manner to heat capacity. Consequently, the reversing signal
no longer has the same meaning as it does when considering chemical
reactions and glass transitions because the reversing signal contains a
contribution from an essentially non-reversing process. Clearly, it could
be argued that this means the nomenclature for the different signals should
be changed. However, this nomenclature is now so well established that
it seems better to accept it, while bearing in mind that it is somewhat
misleading in the case of melting and rearrangement.

� When, during an experiment that has an underlying heating rate, part of
the modulation cycle causes cooling to occur, super-cooling will often
mean that the response to the modulation is distorted. Consequently, this
type of experiment is generally inadvisable. Conditions should be selected
that are ‘heat-only’.

� Quasi-isothermal experiments in the melt region can often reveal a wealth
of information and this is dealt with in detail in Chapter 4.

� When rearrangement is occurring as the sample is heated, the lower heat-
ing rates cause an exothermic response balanced by the endothermic re-
sponse at the higher heating rates. This causes the reversing heat capacity
to be higher than the total heat capacity. This behaviour is a good indi-
cation that rearrangement is occurring whereas conventional DSC often
provides little indication that this is happening. This is because the en-
dothermic and exothermic processes largely cancel each other out.

� The additional information given by MTDSC, compared to conventional
DSC, can help in quantifying crystallinity more accurately.
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3.7 CALIBRATION

3.7.1 Calibration of the Total and Reversing Signals
The calibration of the average, or total heat flow, or heat capacity is car-
ried out in the same way as conventional calorimetry because this signal
is the same as that normally obtained in conventional un-modulated DSC
(see [19]). Briefly, an empty-pan baseline run is carried out where the DSC
contains empty pans. This is then subtracted from a run in which sapphire
is used as the sample. Sapphire is a good calibrant because it undergoes no
transitions in the temperature range covered by most DSC’s used to study
polymers. The apparent heat capacity of the sample can then be calculated by
dividing the empty-pan corrected heat flow by the average heating rate. The
heat capacity of sapphire as a function of temperature has been established
to high accuracy [38]. Thus, these known values can be compared with the
apparent values calculated in the foregoing experiment. Correction factors
can then be calculated as a function of temperature. In this way, errors that
arise from an imperfect baseline and those derived from inaccuracies in the
calibration can be corrected for. In subsequent experiments, the sapphire is
replaced by a sample in a pan of matched weight. Note that the weight of
the pan is matched to that used during the calibration, not necessarily that
of the reference pan (see below the discussion on calibrating the revers-
ing signal). The same empty-pan baseline is subtracted and the correction
factors are applied to calculate the sample heat capacity as a function of
temperature.

The calibration of the reversing heat capacity is also carried out using a
heat capacity standard such as sapphire. The procedure is basically the same
as that used for calibrating for heat capacity in a conventional DSC experi-
ment described above. A baseline run is carried out with empty pans, then
the sapphire calibrant is used. After applying a correction for the empty-
pan baseline (see below) to the heat capacity measurements, comparisons
are made between the apparent values for the heat capacity calculated from
Eq. (13) and the known heat capacity of sapphire. Correction factors can
then be derived as a function of temperature. Sometimes a one point (i.e. at
one temperature) calibration is offered in commercial software. This then
applies the same correction factor over the whole temperature range. This
approach should be used with caution as the correction factors can change
significantly with temperature. Note, as shown in Figure 1.7, correction fac-
tors can be strongly influenced by the period of the modulation. The reasons
for this and methods of overcoming them are dealt with in the discussion
on advanced theory. Here one is considering the best, simple approach
that will work with comparatively long periods. In MTDSC, both of the
above calibrations are carried out simultaneously using the same empty-pan
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baseline and sapphire experiments. Any change to the experimental condi-
tions such as modulation period, heating rate etc. necessitates re-calibration.

The empty-pan baseline correction is somewhat more complex for the
reversing measurement than for the conventional measurement. This is be-
cause, if the cell-plus-pan asymmetry is such that the reference side has an
apparent heat capacity that is greater than the sample side, then this rep-
resents a heat capacity deficit that must be added to, not subtracted from,
the measured value for the sample heat capacity. Because the cyclic heat
capacity is derived from a ratio of amplitudes there can never be a negative
value. Thus, the problem is posed, how does one know when to subtract
and when to add the empty pan baseline? In principle, the phase lag will be
180◦ out-of-phase when the reference pan has a higher heat capacity than
the sample pan. However, many factors can affect the phase lag and, in gen-
eral, relying on this signal is inadvisable. Probably the simplest approach
is to use a lighter-than-average pan in the reference position and measure
the sample pan weight in order to ensure that it is heavier. In this way, the
empty-pan baseline can be systematically subtracted from any measure-
ment. Note that the sample pan weight must be matched to that used during
the calibration.

Sometimes the empty-pan baseline correction for heat capacity is omit-
ted for the reversing signal because, when closely matched sample and
reference pans are used, it is usually small. Whether this is adequate de-
pends on the type of information being sought. For example, if all that is
required is the glass transition temperature, then a full heat capacity cali-
bration may be excessive. However, as an absolute minimum, a calibration
must be performed to obtain a correction factor for the cyclic heat capacity
at one temperature in the range of interest.

It has become common practice to present MTDSC results both as heat
flow and heat capacity within the same data set. Typically, the greatest source
of error is that from the empty-pan baseline for the average signal. Many
workers, in order to save time, choose not to make this correction and then,
almost by default, the total signal is presented as heat flow rather than heat
capacity, because this correction has not been made. This is not necessarily
bad practice. The experimenters may well be able to obtain the information
they require without this additional calibration step. Consequently, one must
take care when reading the literature to ascertain what types of data reduction
and calibration have been carried out. The questions that must be asked are
as follows.
� Has an empty-pan baseline correction been carried out on the reversing

and/or total measurement?
� Has the heat capacity calibration constant been determined at a single

temperature or as a function of temperature?
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� Has the phase lag correction been applied when calculating the reversing
signal?

� What type of baseline correction has been applied to the phase lag signal?
If some, or all, of the answers to the above questions are absent, this

implies that a less than optimal procedure has been adopted. One must form
one’s own judgement as to whether this lack undermines the conclusions
that are drawn for a particular case.

It has been discussed in section 2.1.1 and illustrated in Figure 1.4, how
it can be useful to force the reversing signal to be equal to the total signal
in non-transition regions. When doing this, one must decide which signal
to take as the accurate one. If no empty-pan correction has been made on
the total signal, then the reversing signal would usually give the more re-
liable value. However, it should be noted that an empty-pan correction is
generally desirable to avoid the effect of baseline curvature which can signif-
icantly confuse interpretation even when forcing agreement, as illustrated in
Figure 1.4, is used because this method assumes a linear offset.

Where empty-pan corrections have been made, and long periods (60 s
or more) are used, this implies low underlying heating rates – as there must
be many modulations over each transition. Generally these conditions would
still mean the reversing signal is more accurate, as low heating rates give
poorer quantification in the total signal. However, a very thick sample would
mean the reversing signal could be significantly in error, because of the
effects of sample thermal conductivity (see the advanced theory section),
while the accuracy of the total signal is improved because the sample is
large. Shorter periods make the reversing signal less quantitative and mean
higher heating rates can be used – thus making the total signal more reli-
able. Where accurate values for the heat capacities are needed (rather than
differences between the total and the reversing) there is, in reality, no simple
answer to suit all cases. Experimenters are encouraged to gain experience
with their particular materials. Making accurate heat capacity measurements
in non-transition temperature regions using long periods (typically 100 s)
can do this. Although there is evidence that MTDSC can be used to obtain
more accurate heat capacity measurements than conventional methods (see
Chapter 4), the benefits of MTDSC are mostly achieved through the addi-
tional signals it provides through the reversing and non-reversing signals.

3.7.2 Comments on Methods of Phase Lag Correction
In much of the practical section on MTDSC it is assumed that the calorime-
ter behaves ideally. In other words, the sample and sensor can respond
instantaneously and there are no significant thermal lags in any part of the
system including the sample. In reality, this is clearly not true and there is a
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Figure 1.30. Constructions showing baseline correction of phase angle during glass transition
(PET).

discussion of this in the advanced section. The signal that is, in some ways,
most affected by non-ideality is the phase signal. In an ideal calorimeter,
it would be zero except in a transition region. However, this is never the
case in practice. The first and simplest solution to this was first proposed
by Reading who used a simple interpolation between the start and end of
a transition region to provide the baseline that is subtracted from the phase
angle to provide the ‘true’ phase angle [16].

In modelling the non-ideal calorimeter, the simplest non-ideality that we
might consider is the thermal resistance that exists between the sensor and
the sample pan. It has been shown that when this resistance is significant,
the phase angle is affected by heat capacity changes in the sample. Thus, not
only is the phase non-zero, it changes with changing sample heat capacity
[12]. This poses a problem that can most clearly be seen in the glass-rubber
transition. The baseline phase lag before and after the transition are not the
same. After the transition, the phase can be greater because the heat capacity
is greater. See Figure 1.30. One solution is to construct a baseline that takes
its shape from the reversing heat capacity [39] using the idea that it tracks the
phase shift due purely to changes in heat capacity rather than the kinetics
of the transition. It is these kinetics which, as discussed below, are what
dictates the ‘true’ value of the phase angle during a transition under ideal
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conditions. This method of baseline construction is well founded except that
in ‘real’ samples other things are often changing during the course of the
transitions. For example, changing contact resistance between the sample
and the pan. Consequently it is often observed that the change in the phase
angle between the start and end of the transition goes the opposite way to
that dictated by this simple model [16].

By extension of the original method proposed by Reading, the construc-
tion of an interpolated sigmoidal baseline, using the well-established inte-
gral tangential method normally adopted for constructing baselines under
peaks in DSC experiments [40], can also be applied to the phase angle. This
has been found to give reliable results even in cases where the phase shift
‘goes the wrong way’. The two different approaches to deriving a baseline
are shown in Figure 1.30 for the case of a ‘well behaved’ glass transition. In
this case, the shift in-phase lag baseline follows the expected trend. The two
baselines are almost identical. Consequently, either approach can be used.
The interpolation method has the advantage that it is more robust to non-
ideal behaviour. Both methods are, in fact, equivalent if it is considered that
the fractional area under the phase angle peak is a measure of the extent to
which the transition is complete. In some cases, the phase angle correction
is applied over a large temperature range, as, for example in Figure 1.2. In
such circumstances, a simple linear interpolation is advisable.

The simplest approach, and one that in practice is often justified, is to not
carry out the phase lag correction and make the approximation as has already
been mentioned above, i.e. C ∗ = CpR. In many practical cases, knowing CpK

or C (= CpKβ) is not of any value. Thus, it can simply be neglected.

3.8 OVERVIEW

The results of the deconvolution process shown in Figure 1.4 can now be
discussed in terms of the simple theory offered above. Outside of transition
regions, the total signal and the reversing signal should be the same and the
kinetic heat capacity should be zero. At the cold crystallisation, the revers-
ing signal is not greatly affected, thus the non-reversing peak contains the
enthalpy of crystallisation and one observes a negative peak in the kinetic
heat capacity. This is in accordance with the simple theory outlined above.
At the glass transition, the reversing signal shows the step change in heat
capacity expected at Tg. The non-reversing signal shows a peak. This is, at
first glance, in accordance with the simple theory because the enthalpy loss
on annealing is recovered during the transition, but not quickly lost again.
Thus, this aspect of the glass transition is non-reversing. However, this in-
terpretation must be made within the context of the frequency dependence
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of the glass transition as would be expected from dynamic mechanical and
dielectric measurements. Over the melt region there is a complex behaviour
that cannot be accounted for by a simple theory for melting. However, a qual-
itative description allows one to identify crystalline rearrangement when it
occurs in the reversing signal, even when it is not easily discerned in the total
signal (equivalent to conventional DSC). One can also exploit the additional
information provided by the modulation to enable a more accurate measure
of initial crystallinity to be made in complex samples. In all cases, whether
studying kinetic processes like cure or crystallisation, investigating blends
by looking at their glass transitions or measuring polymer crystallinity, the
modulation offers significant advantages. The remaining chapters of this
book illustrate this point very well.

4 Detailed Discussion of the Theory of MTDSC

4.1 INTRODUCTION

Under the heading of this more detailed discussion of the theory of MTDSC,
we will again consider the following types of transitions and phenomena.
� Chemical reactions and related processes.
� Frequency-dependent heat capacity and glass transitions.
� First-order phase transitions.

In each case, the full derivations of the expressions used in the more
practical exposition above will be given. The discussion will also look more
closely at some of the simplifying assumptions and the problems that arise
when these no longer apply. Before this some comments are made on alter-
native modulations and deconvolution methods.

4.2 MODULATION AND DECONVOLUTION

It is possible to use multiple sine waves [10] and so extract as a Fourier series
(or other deconvolution procedure) the response to several frequencies
simultaneously, as illustrated in Chapter 4. An extension of this is the use of
saw-tooth temperature modulations [20]. These can be considered to be a
combination of an infinite series of sine waves (though only a limited range
will be available in practice). A symmetric saw-tooth (same heating and
cooling rate) only has odd harmonics, but an asymmetric saw-tooth (differ-
ent heating and cooling rates) is equivalent to a broad range of frequencies.

The use of averaging combined with a Fourier transform is by no means
the only possible deconvolution procedure [17]. Details of a linear fitting
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approach have been published that could easily be adapted to deal with
some forms of non-linear behaviour [10]. Other multi-parameter fitting ap-
proaches are possible. However, overwhelmingly, the current practice is to
use a single sinusoidal modulation and a Fourier transform so this will be
the focus of this Chapter and this book.

4.3 CHEMICAL REACTIONS AND RELATED
PROCESSES

For a zero-order chemical reaction (including a term for the contribution to
the heat flow from heat capacity), the rate of the reaction is dependent only
on temperature. Thus, it produces heat at a rate given by some function of
temperature h(T ). Taking the heating programme given in Eq. (6)

dQ/dt = Cp(β + ωB cos ωt) − h(T0 + βt + b sin ωt) (63)

For an exactly linear case, h(T ) = h1 + h2T

dQ

dt
= (C pβ −h1 −h2T0 −h2βt)+ B(C pω cos ωt −h2 sin ωt). (64)

More generally, h(T0 + βt + B sin ωt) can be expanded as a power series

h(T0 + βt) + Bh′(T0 + βt) sin ωt + B2

2
h′′(T0 + βt) sin2 ωt + · · ·

So,

dQ

dt
= (Cpβ − h(T0 + βt)) + B(Cpω cos ωt − h′(T0 + βt) sin ωt)

− 1

2
B2h′′(T0 + βt) sin2 ωt + · · · (65)

Should β be small enough for terms in B2, B3, to be negligible in com-
parison with B, the response of the heat flow is effectively linear, and
dQ/dt agrees with that for the exactly linear case. In the event that the
amplitude of the temperature modulation B is not so small, the terms in
B2 sin2 ωt, B3 sin3 ωt are significant and the higher harmonics cos 2ωt,
sin 3ωt, . . . appear in the modulation and the heat flow dQ/dt . These can,
in principle, give information about the kinetic law h through its derivatives
h′, h′′ . . .
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Returning to the linear case

〈dQ/dt〉 = C pβ − h1 − h2T0 − h2βt (66)

Modulation of the heat flow = B(C pω cos ωt − h2 sin ωt) = AHF

cos(ωt − φ)

where AHF = BCpω

√
1 + h2

2/C2
pω

2, φ = − tan−1(h2/Cpω) and

AHF = ωB

In the absence of the kinetic process (h = 0) a measurement of the heat
capacity is

Cp = AHF/AHR. (67)

This indicates that

AHF/AHR = C ∗

C ∗ cos φ = CpR

C ∗ sin φ = CpK

could all be useful measured quantities as indicated above. For the general

zero-order linear reaction, C ∗ = Cp

√
1 + h2

2/C2
pω

2 differs from the true

heat capacity, although not significantly if the frequency is high enough. The
phase-corrected reversing heat capacity, however, is given by the following
relation.

CpPCR = C∗ cos φ = Cp. (68)

At the same time, the non-reversing heat flow is simply

〈
dQ

dt

〉
− βC ∗ cos φ = Average heat flow − βCpPCR = h(T ) (69)

Thus, it is possible to separate the contribution in the total heat flow from
the heat capacity and that which arises from the zero order reaction.

Considering a more general process that gives rise to a heat flow, and is
governed by a kinetic function that is dependent on temperature and time,
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viz for some process;

dQ/dt = f (t, T ) (70)

By analogy with the simpler case considered above

dQ/dt = βCp + BCpω cos ωt + f (t, T )


 (Cpβ − f (t, T0 +βt))

+ B

(
Cpω cos ωt − ∂ f

∂T
(t, T0 +βt) sin ωt

)
(71)

neglecting the non-linear (higher order) terms. Following the above proce-
dure leads to an average heat flow

〈dQ/dt〉 = Cpβ + f (t, T0 + βt) + O(B2)

= Cpβ + f (t, T ) + O(B2) (72)

an amplitude of the heat flow modulation

AHF = BCpω

√
1 +

(
∂ f

∂T

/
Cpω

)2

+ O(B2) (73)

and a phase lag

φ = tan−1

(
∂ f

∂T

/
Cpω

)
+ O(B) (74)

Neglecting the higher order terms

CpPCR = Cp, CpK = ∂ f

∂T

/
ω and C ∗ = Cp

√
1 +

(
∂ f

∂T

/
Cpω

)2

(75)

where ∂ f/∂T means (∂ f/∂T )(t, T0 + βt). So, it is the average value.
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Also, using the complex notation, the heat flow modulation is just

BωRe

{(
Cp − i

∂ f

∂t

/
ω

)
eiωt

}
= BωRe

{
Ĉeiωt

}
(76)

where Ĉ = Cp − i
∂ f

∂T
/ω.

Thus,

CpPCR = Cp and CpK = (∂ f/∂T ) /ω. (77)

Considering the Arrhenius equation, viz

dQ

dt
= βCp + H f (x)Ae−E/RT + Cp Bω cos ωt, (78)

where

HAe−E/RT = HAe−E/(RT0+βt) +
(

d

dT

(
HAe−E/RT

))∣∣
T =T0+βt B sin ωt

+ higher order terms

and the reaction extent satisfies Eq. (79)

dx

dt

/
f (x) = Ae−E/R(T0+βt+B sin ωt) (79)

This last equation, because the temperature variation is taken to be suf-
ficiently small, leads to

x = 〈x〉 + oscillatory term

where 〈x〉 is the same as the reaction extent during conventional DSC and
the oscillatory term takes the form

xc(t)B

ω
cos ωt + higher order terms and terms in

B

ω

the coefficient xc being independent of the modulation.
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The combination of all of these eventually results in a total heat flow
signal

dQ

dt
= Cpβ + 〈

H f (x)Ae−E/RT
〉

. . . the underlying signal

+ B

(
(ωCp cos ωt + f (〈x〉)

(
d

dT

(
HAe−E/RT

))
T =T0+βt

sin ωt

+ d f

dx
(〈x〉)HAe−E/R(T0+βt) xc

ω
cos ωt

)
+ higher order terms . . . the

response to the modulation

= Cpβ+ H f (〈x〉)Ae−E/R〈T 〉+higher order terms . . . the underlying signal

+ B

(
ωCp cos ωt + ωCpK sin ωt + D

ω
cos ωt

)
. . . the response to

the modulation

+ higher harmonics and other higher order terms. (80)

The higher order terms are those in B2, B3, etc. which appear because
of the non-linearity of the kinetic process.

Under usual operation, the temperature variation should be small enough
and the frequency high enough for terms involving B2 or 1/ω to be negligi-
ble. The various signals can then be related to the heat capacity and kinetics
according to

Average heat capacity = Cp + H f (〈x〉)e−E/R〈T 〉/β (81)

Phase-corrected reversing heat capacity = CpPCR = Cp (82)

Non-reversing heat capacity = 〈dQ/dt〉/β−CpR

= H f (〈x〉)e−E/R〈T 〉/β (83)

Kinetic heat capacity = CpK = f (〈x〉)
ω

d
(
H Ae−E/RT

)
T =〈T 〉

dT
(84)

Of course, with ω large, the last is small compared with the reversing heat
capacity and the response of the sample is dominated by the heat capacity
of the sample.
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The above analysis of MTDSC data in terms if kinetics has been pro-
posed and developed by Lacey and Reading and co-workers [2,5,9,12,14]
and also by Toda and co-workers [42,43]. It is essentially a kinetic ap-
proach to MTDSC theory and this is the basis of the theory throughout this
chapter.

4.4 FREQUENCY DEPENDENT HEAT CAPACITY AND
THE GLASS TRANSITION

Heat content stored in molecular motions, such as vibration, is assumed to
be rapid when compared with the modulation of the temperature; kinetic
effects influence heat flow, but only through reaction rates. This contrasts
with cases where the heat in molecular vibrations itself is not rapid and
some sort of kinetics plays a role in the heat capacity, or at least in some
of the heat taken up and released. A relaxation time appears in the rate of
change of enthalpy.

Perhaps the simplest example of how a time-scale can be involved in
heat flow to and from a sample, and thereby give an (apparent) dependence
of heat capacity upon frequency, is where the thermal conductivity of the
sample is in some sense poor (or, equivalently, the sample’s specific heat
is very large). For simplicity, we may look at the case of a homogeneous
spherical sample inside a locally uniform part of the calorimeter. More
realistic cases are less easy to analyse, but the qualitative effects are much the
same.

Using complex notation, the cyclic part of the temperature can be written
as

T̃ = Re
{
T̂ (r )eiωt

}
(85)

where r = distance from the centre of the sample and T̂ (R) = T̂s on the
sample’s surface r = R. By Ts we now must be quite precise and here we
mean the temperature on this surface. From consideration of heat flow inside
the sample

d2T̂

dr2
+ 2

r

dT̂

dr
= iωρc

κ
T̂ (86)

where ρ = density
c = specific heat
κ = thermal conductivity
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(All assumed constant here.) This complex temperature T̂ can then be found
to be

T̂ = T̂s R sinh

(√
ωρc

2κ
(1 + i)r

)/
r sinh

(√
ωρc

2κ
(1 + i)R

)
(87)

and the total power flow into the sample is

dQ

dt
= Re

{
4π R2 × κ

∂ T̃

∂r

}
(area × heat flow/unit area)

= Re

{
4π Rκ

(√
ωρc

2κ
(1+i)R coth

(√
ωρc

2κ
(1+i)R

)
−1

)
T̂se

iωt

}
(88)

This gives rise to a complex heat capacity of

Ĉ = −4iπ
Rκ

ω

(√
ωρc

2κ
(1 + i)R coth

(√
ωρc

2κ
(1 + i)R

)
−1

)
(89)

For sufficiently small samples, R
√

ωρc
κ

� 1, this expression simplifies
to the true specific heat

Ĉ 
 Cp = 4πR3

3
ρc (90)

If the frequency is insufficiently small, Ĉ will deviate significantly from
Cp, as indicated. Estimates on how large the frequency may be taken for
specific sizes of samples, still with desired accuracy, can be found in papers
by Hatta [24] and Toda [25]. These effects can be used to measure the
specimen’s thermal conductivity.

In the rest of the discussions on transitions throughout this chapter, such
size-dependent effects are taken to be negligible. Interpretation of results is
easiest if the sample is small enough for its temperature to be uniform,Ts(t).

A more interesting case of where heat capacities, cyclic, phase-corrected
reversing, etc., vary with frequency ω is of a material undergoing a phase
transition. This time, the size of sample is not so important – the phenomenon
is an intrinsic property of the material – and the underlying temperature
〈T 〉 = T0 + βt plays a key role.
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With a relaxation time that decreases rapidly as temperature increases,
heat is gained and lost more easily at higher temperatures. In particular, for
temperature T > Tg, the glass transition temperature, dQ/dt = CpldT/dt,
where Cpl is the liquid heat capacity. For lower temperatures, relaxation is
slow and the heat capacity is Cpg, the heat capacity of the glass, which is
smaller than Cpl. This observed heat capacity depends on how the relaxation
time compares with the time-scale of the changing temperature. Roughly
speaking, time-scale > relaxation time (Tg < T ) leads to Cpl, while time-
scale < relaxation time (Tg > T ), gives Cpg. As a consequence, even for
standard DSC, Tg depends on the temperature ramp β. More specifically
the glass transition temperature increases with β.

This carries over to the cyclic measurements. Provided that the re-
laxation time is small enough compared with the period of oscillation,
2π/ωC∗ 
 Cpl, while if the period of oscillation is too short, C∗ 
 Cpg.

The change occurs at a glass transition temperature dependent on the fre-
quency of modulation, ω. By the same reasoning as for standard DSC, and
consequently the total signal in MTDSC, this cyclic-glass transition tem-
perature increases with ω. Moreover, because the oscillations must in some
sense be fast as noted above, in MTDSC the cyclic Tg is higher than the
underlying Tg [32].

How this Tg varies with ramp β and frequency ω depends upon the nature
of the relaxation process. A specific model with the enthalpy of a specimen
changing according to a single ordinary differential equation and affected
by both temperature and its rate of change is given in Eq. (42). Such models
lead to predictions of not just the glass transition temperatures, but also
the profiles of C∗, CpPCR and CPK in the transition regimes. MTDSC offers
a way of determining key physical parameters related to the material, not
just Cpl and Cpg, from comparing the variation of Tgs with β and ω and
transition profiles with those predicted by such models.

A more general approach to materials exhibiting frequency-dependent
heat capacities is that of Schawe and co-workers [18]. For some linear (or at
least, for temperature not varying too much, approximated linear) process,
the rate of heat intake and rate of change of temperature can be related
through a convolution.

dQ

dt
=

t∫
−∞

ψ(t − t ′)
dT

dt
(t ′)dt ′ =

∞∫
−∞

ψ(t − t ′)
dT

dt
(t ′)dt ′ (91)

taking ψ(t ′) ≡ 0 for t ′ < 0, for some kernel ψ which is fixed by the
underlying physical process. For a simple material with Q = CpT and
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Cp = constant, ψ(t ′) = Cpδ(t ′), where δ(t ′) is the ‘Dirac delta function’
(δ(t ′) = 0, for t ′ �= 0,

∫ a
−a δ(t ′)dt ′ = 1 for a > 0.)

Taking the Fourier transform of this convolution leads to

F

(
dQ

dt

)
(ω′) = F(ψ)(ω′)F

(
dT

dt

)
(ω′) (92)

where F( f )(ω′) = ∫ ∞
−∞ f (t)eiω′t dt .

Writing ω = −ω′ leads to

F

(
dQ

dt

)
(−ω)

/
F

(
dT

dt

)
(−ω) = Ĉ(ω) = F(ψ)(−ω) (93)

The Fourier transform of the rates of change of enthalpy and temperature
are related through that of the kernel function, which can be identified with
the complex heat capacity. By carrying out a succession of experiments to
determine Ĉ(ω) and then doing a Fourier inversion it is then possible, in
principle, to recover the function ψ , and hence gain information about the
physical kinetics. However, to be useful this approach must refer to more
specific models of realistic behaviour, which then brings us back to the kinds
of results discussed in this chapter.

The basic model used for the glass transition is that of Hutchinson and
Kovacs [41] (see also [31]).

dδ

dt
= −�Cp

dT

dt
− δ

τ0
e−�h∗/RT (94)

Here, δ = enthalpy − equilibrium enthalpy = enthalpy − CplT . This
equation can be rewritten in terms of the difference between the enthalpy
and that for the glass.

η = enthalpy − CpgT = δ + T �Cp (95)

Near the average glass transition, the Arrhenius term can be approximated
as

e−�h∗/RT = e−�h∗/RTgβ · e�h∗(T −Tgβ )/RT 2
gβ (96)
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and the equation for η becomes, on making use of this ‘large activation
energy’ approximation (�h∗ � RTgβ , so terms in RTgβ/�h∗ can be ne-
glected)

dη

dt
=

(
1

τ0
exp

(−�h∗

RTgβ

))
exp

(
�h∗(T − Tgβ)

RT 2
gβ

) (
Tgβ�Cp − η

)
(97)

This equation indicates that η is the size of Tgβ�Cp, while T changes by
an amount of size RT 2

gβ/�h∗ and does so, for the averaged measurements,
at rate β. Balancing the terms in this equation leads to an expression for the
glass transition temperature

β�h∗

RT 2
gβ

= 1

τ0
exp

(−�h∗

RTgβ

)
(98)

The solution of the approximate equation for η leads, eventually, to an
ageing term as well as an integral term which is independent of ageing.
In section 3.5, an ad hoc model is used for the average signal in order to
illustrate points more directly with regard to the phenomenology of this
measurement.

Looking at the cyclic parts of η, Re{η̂eiωt} and of temperature, Re{T̂ eiωt}
it is seen that

iωη̂ =
(

1

τ0
exp

(
− �h∗

RTgω

))
exp

(
�h∗(T − Tgω)

RT 2
gω

)(
�h∗�CpT T̂

RT 2
gω

+ T̂ �Cp − η̄�h∗T̂

RT 2
gω

− η̂

)
(99)

where the averaged temperature, written at T is within the order of magni-
tude RT2

gω/�h* of the cyclic transition temperature Tgω. For high frequen-
cies, so that the cyclic transition temperature is significantly greater that the
averaged one, the averaged enthalpy difference η̄ is exponentially close to
T . Thus,

(
1 + iωτ0 exp

(
�h∗

RTgω

)
· exp

(
−�h∗(T − Tgω)

RT 2
gω

))
η̂ = T̂ �Cp (100)
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The location of the glass transition is then fixed by

ωτ0 exp

(
�h∗

RTgω

)
= 1 (101)

while the response to the modulation is

η̂

T̂
= �Cp

1 + i exp
(−�h∗(T − Tgω)

/
RT 2

gω

)
Taking the real and imaginary part predicts according to this model

�CpPCR = �Cp

1 + exp
(−2�h∗(T − Tgω)

/
RT 2

gω

) (102)

and

CpK = �Cp exp
(−�h∗(T − Tgω)

/
RT 2

gω

)
1 + exp

(−2�h∗(T − Tgω)
/

RT 2
gω

) , (103)

respectively. To fix real behaviour (multiple relaxation times) it is necessary
to include ‘shape factors’. See equations 41 and 42.

A slightly more general formulation of this Hutchinson–Kovacs model
[41] is given in Chapter 4. In that model, for Cpg and Cpl assumed constant,
the equilibrium enthalpy is given by CplT = CpgT + εh N ∗ with N ∗(T ) the
equilibrium number of configurations of energy εh. More generally, the
enthalpy is Q = CplT + δ = CpgT + εh N , with N (t) the instantaneous
number of configurations. Using the relation between N ∗ and T , the re-
laxation law dN/dt = (N ∗ − N )/τ (see Chapter 4) gives, on eliminating
N in favour of δ, the above equation for excess enthalpy δ.

4.5 MELTING

One simple model for melting, which has shown good agreement with ex-
perimental results, is to represent it in the same way as an irreversible, en-
dothermic chemical reaction (see above). For a polymer consisting (partly)
of crystals with a range of melting temperatures, Tm, at any time t the crys-
talline mass distribution can be given in terms of a density function m(t, Tm)
(so the total mass fraction of crystals is x(t) = ∫

m(t, Tm)dTm). During
melting (and ignoring possible recrystallisation), the crystalline density
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reduces according to a rate law of the form

∂m

∂t
= F(T, Tm)m (104)

Cf. eqns (38) and (39) [23]. As in the above consideration of Arrhenius
kinetics, the cyclic signal then takes the approximate form shown in Eq.
(105).

Cyclic signal = ωB(Cp cos ωt + CPK sin ωt) (105)

Thus, the reversing heat capacity gives a good estimate of Cp. The kinetic
heat capacity, which decreases as the reciprocal of modulation frequency,
is determined by how the melting rate depends upon temperature.

CPK = L

ω

∫ (
m(t, Tm)

∂ F(T, Tm)

∂T

)
dTm (106)

where L is the latent heat for the transition × mass of sample.

A more accurate consideration of the reversing heat capacity (still fol-
lowing the Arrhenius analysis, or again see Toda et al. [23,25]) will give its
variation with frequency (the difference CpPCR − C decreases as 1/ω2 for
‘large’ frequency ω).

A very different approach to polymer melting stems from the detailed
description by Wunderlich [31,44]. In this, for the time-scales involved
in the calorimetry, melting is considered as instantaneous. The fraction
m(t, Tm) drops to zero as T (t) increases through Tm. (Melting is not ki-
netically hindered; or if it is, its time-scale is very short compared with
that of the MTDSC.) Nucleation of crystals (which take the form of lamel-
lae) is still taken to be negligible (the time-scale for this is long compared
with an experiment), but now existing crystals (with Tm > T ) grow when
either there is available melt or melt is being made available through the
melting of smaller lamellae (with lower values of Tm). In this model, a
simple version of which has been formulated and discussed in Lacey and
Nikolopoulos [45], the number densities n(t, Tm) of lamellae stays fixed
until T exceeds Tm, while initially the mass fraction m(t, Tm) increases in a
well-determined way, again until T exceeds Tm, when both n and m fall to
zero.

In the particular model considered by Lacey and Nikolopoulos [45],
there were three distinct phases:
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1) the small initial rate of melting of crystals allows instant recrys-
tallisation of the melted polymer, so there is no net melting. Both the
average and the phase-corrected reversing heat capacities remain equal
to Cp;

2) there is now sufficient crystalline material being melted for net melting
to occur for part of each cycle, but insufficient for recrystallisation not to take
up the excess melt before the cycle is complete. Thus, there is no melting on
average. So, the average signal only manifests the heat capacity while the
cyclic heat capacity is now increased due to the melting and crystallisation
in each cycle;

3) an increased crystalline fraction (and reduced number of surviv-
ing lamellae for melt to recrystallise onto) means that net melting occurs
throughout each cycle and both average and phase-corrected heat capacities
exceed Cp.

A more quantitative analysis of the model for this third phase shows that,
if the amplitude of modulation is sufficiently small for the temperature to
be always increasing:

Average heat capacity = Cp + latent heat × mass × (m(t, T0 + βt)
− fractional recrystallization rate/β)

Phase-corrected heat capacity = cyclic heat capacity
= Cp + latent heat × mass × m(T0βt, T0 + βt)

(to leading order). So, the average heat capacity is less than the phase-
corrected heat capacity. (With a larger amplitude, with temperature de-
creasing for a part of each cycle, the expression for the phase-corrected
heat capacity is rather more complicated due to the melting rate not be-
ing sinusoidal – it is zero whenever the temperature falls. In this case, the
phase-corrected heat capacity can drop below the average heat capacity to-
wards the end of the phase.) The above relation for small amplitude agrees
with the observation that the phase-corrected reversing heat capacity is
higher than the average heat capacity. The model, as currently constituted,
does not allow for the fact that real polymers almost never achieve 100%
crystallinity. Thus, there is always a substantial amorphous fraction that,
in effect, cannot crystallise. This could be accounted for by describing a
‘background’ amorphous fraction that participates to a lesser extent than
the fraction closer to the lamellae and thus is more able to crystallise. The
apparent frequency dependence of the melting and rearrangement peak in,
for example, PET shown in Figure 1.21 has its origins, in our view, in ther-
mal transport difficulties within the sample. This could be accounted for by
allowing for either the sample temperature dropping below the programme
T0 + βt + B sin ωt when melting occurs or for the sample to have an inter-
nal temperature that varies significantly during the phase change. Each of
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these effects will act to hinder the melting and produce the crossing of the
underlying and phase-corrected heat capacities. Toda’s concept of kinetic
hindering of melting [23,25] can also be interpreted in the same way (i.e.
as arising from temperature differences rather than true kinetics of melt-
ing), and so this approach might be combined with that of [45] particularly
near the end of melting where the phase-corrected reversing heat capacity
is below that of the average signal.

4.6 CALIBRATION

About the simplest model for an ideal calorimeter, i.e. one which is unbi-
ased and has perfect measurements of both sample and reference (but which
nevertheless allows for direct heat transfer between sample and reference),
is due to Wunderlich et al. [46]. Heat flow to the sample is given by the tem-
perature difference between the reference and the sample and that between
block and sample.

(CR + Cp)
dTs

dt
= K1(TR − Ts) + K2(TF − Ts) (107)

where CR is the heat capacity of the actual pan and its environs. Similarly,

CR
dTR

dt
= K1(Ts − TR) + K2(TF − TR) (108)

The similarity between these two equations is associated with the lack of
bias. This sort of ordinary differential equation model relies on the calorime-
ter being adequately represented by a finite number of parts (here two) each
of which has a uniform temperature. The heat transfer coefficients will be
independent of temperature for a truly linear system (but the device can be
regarded satisfactorily as linear as long as their values do not change sig-
nificantly over the temperature range inside the calorimeter at any instant
or from the minimum to the maximum of a modulation). Eliminating TF,

the model reduces to

CR
d�T

dt
+ K�T = Cp

dTs

dt
(109)

where �T = TR − Ts and K = 2K1 + K2.
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For Ts = T0 + βt + Bsin ωt = T0 + βt + Re{−iBeiωt},

�T = βCp/K + Re
{
ωBCpeiωt/(K + iωCR)

}
= βCp/K + ωBCp

K 2 + ω2C2
R

(K cos ωt + ωCR sin ωt)

= βCp

K
+ ωBCp√(

K 2 + ω2C2
R

) cos(ωt − ϕ) (110)

where ‘phase lag’ ϕ = tan−1(CR/K ).

A single calibrating run with a specimen of known heat capacity in a
sample pan then suffices to find:

the value of K used in the average signal, underlying heat capacity =
K 〈�T 〉/β;

the value of CR used, for instance, in obtaining the cyclic heat capacity =√(
K 2 + ω2C2

R

) × amplitude of �T/ωB.

It is apparent that there are three pieces of data available for finding just

two device unknowns, K and CR. The calibrating factor
√(

K 2 + ω2C2
R

)
and phase lag ϕ are fixed by K , CR and the frequency ω. So, even if the
calorimeter is to be used with different modulation periods further calibra-
tion is unnecessary—according to this model.

More sophisticated models, with a greater number of calorimeter parts,
their temperatures and interconnections lead to similar relationships be-
tween �T and Cp but involve more internal device parameters. It follows
that if a more complicated model of the calorimeter is required, a greater
number of calibrating runs are needed to fix the calorimeter constants before
the calibrating factor for the cyclic heat capacity, and the phase lag will be
known for any frequency.

Allowances for bias or for imperfect temperature measurement can be
made with simple variations of the Wunderlich model [46].

Considering first imperfect measurements, the temperatures registered
by the thermocouples are

TsM = (1 − η)Ts + ηTF = T0 + βt + B sin ωt (111)

TRM = (1 − η)TR + ηTF (112)

where Ts and TR are the true sample and reference temperatures.
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The parameter η, 0 < η < 1, gives a measure of the imperfection of the
device. Manipulations similar to those by the basic model lead, taking a
very simple case of

K1 = 0, K = K2

to

〈�T 〉 = β(1 − η)Cp/K (113)

and

�T̃ = cyclic part of �T

= ωK (1 − η)CpRe

{
Beiωt

(K + iωCR)(K + iωη(CR + Cp))

}
(114)

where now �T = TRM − TSM.

Writing �T̃ = Re{�T̂ eiωt},

�T̂ = K (1 − η)ωBCp

(K + iωCR)(K + iωη(CR + Cp))
(115)

This indicates a non-linear relation between the modulation of the tem-
perature difference and the heat capacity. However, a single calibration can
again be sufficient. The average measurement fixes k ≡ K/(1 − η). Use
of the in-phase and the out-of-phase parts of the modulated measurements
determines the real and imaginary parts of

ωBCp

(K/(1 − η))�T̂
≡ a1 + ia2 = (1 + ib1)(1 + ib2) (116)

where b1 = ωCR/K and b2 = ωη(CR + Cp)/K

Then, this means that it is possible to find b1 (hence CR/K ) by solving
a quadratic equation and b2. This leads to a second quadratic equation this
time, for η.

All this determines η, K and CR from the single calibration provided it
is clear, e.g. from past experience, which roots of the quadratic equations
are appropriate. If this were not the case, a second run would be necessary.
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Although the relationship between Cp and �T̂ is more awkward than
the simpler, ideal case, the evaluation of the (complex) cyclic heat capacity
is not a particular problem (once η, K and CR are known):

Cp = Ĉ = (K + iωCR)(K + iωηCR)(�T̂ /B)

ω[K (1 − η) − (K + iωCR)(iωη�T̂ /B)]
(117)

Bias can result either from an asymmetric distribution of heat capacity
or from asymmetric thermal conductivities. The simple case of no direct
thermal connection between sample and reference, symmetric heat capacity,
but uneven heat transfer can be modelled by

(CR + Cp)
dTs

dt
= λK (TF − Ts), CR

dTr

dt
= K (TK − TR) (118)

where λ �= 1. (Good temperature measurement is assumed in this model.)

In the present case

〈�T̂ 〉 = β

Kλ
(Cp + (1 − λ)CR) (119)

�T̂ = Bω

λ

(Cp + (1 − λ)CR)

K + iωCR
(120)

The bias is apparent from the offset term (1 − λ)CR, so that �T �= 0
even when Cp = 0. Now two calibrating runs are needed. For instance, with
an empty sample pan, a first run fixes (1 − λ)CR/Kλ from the average
signal. In a second run, with Cp > 0, the average signal gives Kλ and the
cyclic signal determines CR/K . In a subsequent experiment, the (complex)
cyclic heat capacity measurement is then

Cp = λ(K + iωCR)�T̂

Bω
− (1 − λ)CR (121)

Although these two departures from ideality are themselves somewhat
specialised, much more general models lead to rather similar results as will
be seen below.

The models based on ordinary differential equations, such as those above,
vary in simplicity and accuracy. Some allow for bias and/or temperature
measurements differing from true temperatures. All are linear. This is the
key fact which can be exploited to get general results relating temperature
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measurements to heat capacities, without making detailed assumptions on
heat transfer within the calorimeter. Once linearity holds, calibration, of
some type, can be done. (The only drawback in such a general considera-
tion is that how calibration factors depend on frequency is no longer clear.
Calibration should be done at the particular frequency ω of the experiment
or at least at similar frequencies so interpolation can be employed.)

The calorimeter (and its contents) can be considered as a body which
contains heat (specific heat of its parts and heat capacity of the pans and
sample) and which is capable of transferring heat, through forced convec-
tion and conduction, in some linear way. Flow of heat is proportional to
temperature or temperature gradient. Significant non-linear heat transport,
for instance due to natural convection or through thermal properties of the
calorimeter varying noticeably over the range of temperatures found within
the device during a few oscillations, would have a major effect on the ease
of use of the method and interpretation of experimental results.

Assuming that the calorimeter does behave linearly, the temperature
T (x, t) satisfies some linear heat equation. The underlying part T̄ (or the
actual temperature if conventional DSC is being done) then takes the form
T̄ = S(x) + βt for a linear ramp β, provided that the heating of the calorime-
ter is controlled through its external underlying temperature being some
T̄f = Sf + βt . The same goes for the underlying forcing temperature being
position dependent, of the form T̄f = Sf(x) + βt on part of the calorimeter
surface, with the remaining part being perfectly insulated. If the tempera-
ture on part of the surface were ambient, say T̄f = T̄ 0 = constant for some
points x, the temperature ramp in the calorimeter would be position depen-
dent, T̄ = S (x) + b(x)t , and the following discussion of calibration would
need to be modified. Should this be the case, there would tend to be a steady
linear drift between the temperatures at two points in the calorimeter, for
example, the sample and reference temperatures.

Because of the linear equation satisfied by temperature inside the
calorimeter and outside the sample and its pan, the temperature at any point,
in the case of the steady rise, can be given as a linear combination of T̄f and
the sample’s temperature T̄s . In particular, the underlying temperatures as
measured for the sample and the reference pan are given by:

T̄m = JmsT̄s + JmfT̄f (122)

T̄r = JrsT̄s + JrfT̄f, (123)

respectively. All the coefficients J are independent of the ramp β (but might
be weakly dependent on temperature so the characteristics of a calorimeter
might be rather different at the finish of a run from what they are at start). The
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J s also satisfy Jms + Jmf = Jrs + Jrf = 1 (if T̄ (x) = S(x) + βt is a possible
temperature distribution then so is S(x) + βt + S0 for any constant S0).
Solving these, T̄s and T̄f can instead be determined in terms of T̄m and T̄r.

T̄s = JsmT̄m + JsrT̄r (124)

T̄f = JfmT̄m + JfrT̄r (125)

where, again, Jsm + Jsr = Jfm + Jfr = 1 and, what is more, T̄f =
(Jsm − Jfm)�T̄ + T̄s, where �T̄ = T̄r − T̄m is the underlying measured
temperature difference.

The underlying rate of heating of the sample and its pan (and possibly
of its environs) β(CR + Cp) is of course proportional to the temperature
difference T̄f − T̄s , so

β(CR + Cp) = K (T̄f − T̄s) (126)

and

βCp =
〈

dQ

dt

〉
= J1�T̄ + J2β (127)

for some constants (or weakly temperature-dependent functions) J1 and J2.
(Equivalently, solving a (linear) heat equation throughout the interior of the
calorimeter with the sample absent, Cp = 0, gives �T̄ ∝ β. Now including
the sample gives the same heat equation, but with a heat sink βCp and so an
extra contribution to the temperature difference, one proportional to βCp,
must be included. This again gives:

βCp = 〈dQ/dt〉 = J1�T̄ + J2β.)

The calorimeter can now be calibrated by doing an empty run to find
J2/J1, and then a run with a sample of known heat capacity, for example
some sapphire, which will determine J1 and hence J2.

The cyclic signal can be looked at in a very similar way. Taking the cyclic
parts of the temperature, for a purely sinusoidal modulation (or any harmonic
for a less simple wave form) to be of the form T̃ (x, t) = T̃ 1(x) cos ωt +
T̃2(x) sin ωt = Re

{
T̂ (x)eiwt

}
for

T̂ = T1 − iT2 (128)
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The measured temperatures and those of the sample and in the exterior
are related via

T̂m = amsT̂s + amfT̂f (129)

T̂r = arsT̂s + arfT̂f (130)

or equivalently

T̂s = asmT̂m + asrT̂r (131)

T̂f = afmT̂m + afrT̂r (132)

(For the modulation, it is not too important that no part of the calorimeter’s
surface be fixed at ambient.) As with the J s, the as should be at most weakly
dependent upon temperature, but they will depend upon frequency and no
simple relation between pairs should be expected. (For very high frequency,
ars and arf, for example, will both be small).

The rate of intake of heat by the sample and its surroundings,
dQ̃
dt = Re{Q̂Teiωt} = Re{ d

dt (CR + Cp)T̂seiωt} = Re{iω(CR + Cp)T̂seiωt}, is
again going to be proportional to the complex cyclic temperature difference
T̂f − T̂s, but now with a factor of proportionality which varies with angular
frequency:

Q̂T = Q̂ + iωCrT̂s = iω(Cp + Cr)T̂s = k(ω)(T̂f − T̂s) (133)

Here, Q̂ = iωCpT̂s gives the rate of heat intake by the sample and
iωCrT̂s by its environs.

Because the as do not satisfy the same identities as the J s and because
the different temperatures have rather different rates of change (amplitude
and phase vary with position) the expression relating to Q̂ to T̂m and T̂r is
not quite as simple as the formula for 〈dQ/dt〉:

Q̂ = iωCpT̂s = iωCp
(
asmT̂m + asrT̂r

)
= k

(
(afm − asm)T̂m + (afr − asr)T̂r

) − iωCr
(
asmT̂f + asrT̂s

)
(134)
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This leads, after a little manipulation, to:

�T̂ = K1 + K2Cp

1 + K3Cp
T̂m (135)

where the K s vary with angular frequency ω (and possibly depend weakly
upon temperature).

To do the calibration for a required frequency in finding the three K s,
it is now necessary to carry out three runs: one with an empty sample pan
to fix K1, and then two more with different heat capacities for the sample
to determine K2 and K3. Once these have been established, the calorimeter
can be used to determine the Cp (or rather the complex heat capacity Ĉ) for
a sample by:

Ĉ = Q̂

T̂s

= K1T̂m − �T̂

K3�T̂ − K2T̂m

= K1 − (�T̂ /T̂m)

K3(�T̂ /T̂m) − K2

(136)

(Note that K1, K2 and K3 are complex quantities, and therefore this relation
contains information about the phase lag φ as well as the cyclic heat capacity
C ∗.)

For a standard modulation T̃m = B sin ωt . So T̂m = −iB, and

Ĉ = i(�T̂ /B) − K1

K2 − i K3(�T̂ /B)
(137)

With a biased calorimeter, one which indicates non-zero �T even with-
out a sample, both K1 and J2 are non-zero. Without bias, only the calibrations
with known samples need to be done. Rather more of a problem with de-
vices deviating from the ideal is the inaccuracy of the measurement of the
sample’s temperature: Tm �= Ts. For the ideal case, Tm = Ts, in the above
Jms = Jsm = ams = asm = 1 and Jmf = Jsr = amf = asr = 0. The form of
the underlying measurement remains unchanged:

Ca = average heat capacity = J1(�T̄ /β) + J2 (138)

but the cyclic measurement simplifies to

Ĉ = complex heat capacity = B1(T̂ /B) + B2 (139)

That is, K3 = 0, B1 = i /K2 and B2 = −K1/K2. Regarding calibration, in
such a case, one of the runs for the cyclic calibration could be dispensed
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with. (For a truly ideal calorimeter, it will also be unbiased, so J2 = B2 = 0.

Then, only a single run with known Cp �= 0 is needed to find J1 and B1.)
The lack of accuracy for the measurement of the temperature of the

sample has three possible drawbacks.
� The cyclic heat flow, i.e. Q̂, is given by Ĉ T̂s(= CpT̂s for the standard inert

case) and is then only known if T̂s is known. This is a minor difficulty
as it tends to be Ĉ = Q̂/T̂s which is of interest, as this gives informa-
tion about heat capacities and temperature dependencies of kinetic pro-
cesses.

The relation between Ĉ and �T̂ is non-linear, because it can be ex-
pected that K3 is non-zero. Again, this should cause no real problems
because K3 is determined through the extra calibration run and a cyclic
measurement such as

Ĉ = (�T̂ /B) + (i K1)

(−i K2) − K3(�T̂ /B)
(140)

can then be used.
� For measurements of temperature-dependent properties of a sample, it is

how things vary with Ts 
 T̄s, not with Tm or T̄m, which are really im-
portant. It can generally be expected that the difference is small enough
for events that occur when Tm = T ∗ to be interpreted as happening when
Ts = T ∗ but in the case of a phase transition this is not so clear. (In these
more extreme processes, it is obviously important that no significant vari-
ation of the thermal properties of the calorimeter occur over the range of
temperatures during the events.) To allow for this, how the actual underly-
ing temperature of the sample relates to T̄m = T0 + βt and the measure-
ment �T̄ needs to be found. With T̄s = T̄m + J3�T̄ , some form of cali-
bration is needed to determine J3. One possibility is to use a sample with
known transition, for instance a glass transition: J3 = (Tg − Tgm)/�T̄ if
a glass transition, which is known to occur at Tg appears to take place
at Tgm. A variant of this might be to use a sample which, although free
of transition, does have significant but known variation of heat capac-
ity with temperature (the properties of the calorimeter should vary less
significantly). Now,

βCp(T̄s) = J1�T̄ + J2β with T̄s = T̄m + J3�T̄ (141)

(neglecting any modulation) and for a ‘slow’ ramp (so temperature varia-
tions in the device are small enough for Cp to be assumed to have locally
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linear dependence upon temperature),

βCp(T̄m) + β
dC

dT
(T̄m)J3T̄ ∼= J1�T̄ + J2β (142)

The bias J2/J1 can be found, as before, by an empty run, and then from
two further runs, with different sized samples, J1 and J3 may be determined.
It might be noted that should the first derivative, dCp/dT , be noticeable,
improved accuracy in a cyclic calibration should be given by replacing Cp

by Ĉ = Cp − (iβ/ω)(dCp/dT ), since

dQ

dt
= (β + Bω cos ωt)Cp(T0 + βt + B sin ωt) 
 βCp

+ B

(
ωCp cos ωt + β

dCp

dT
sin ωt

)
(143)

All the as appearing in the relationships between heat flows and temper-
atures depend, as noted earlier, upon frequency in some generally unknown
way which means that ideally calibrations should be done at the frequency
of an experiment. One thing, however, is clear, as ω is reduced towards zero
(so the modulation gets more like a ramp), the coefficients in the equations
for T̂ approach those in the earlier equations involving T̂ (scaled by an ap-
propriate power of ω). This means that the calibration factors and constants
tend to limiting values as ω is reduced to zero: extrapolation of uncorrected
results can lead to measurements for Cp improved over the basic (uncor-
rected) values.

One further difficulty is the variation in thermal contract between
calorimeter and pan (and/or between pan and sample) from run to run. Hatta
and co-workers [21,22] produced a method to account for varying thermal
resistance taking an inert sample (Cp real and positive) and a simple model
for a calorimeter. The same method can be extended and combined with the
above general model to account for an uncertain heat transfer coefficient
between the sample and its pan, but assuming good thermal contact between
the pan and the calorimeter. (If heat transfer coefficients between the pan and
its contents and between the pan and its environs are both unknown—and
finite—correction will be significantly harder.)

Replacing Ts by the pan’s temperature Tp, the above procedure using
cyclic temperature measurements can be used to obtain an overall heat
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capacity measurement for the sample and its pan:

Cps = (�T̂ /B) + iK1

(−iK2) − K3(�T̂ /B)
(144)

Now focusing on the pan and sample,

Cp
dTs

dt
= KI(Tp − Ts), Q̇ = Csp

dTp

dt
+ Cp

dTs

dt
, (145)

where Q̇ is the heat flow into the pan from the calorimeter, Csp is the heat
capacity of the pan and KI is the heat transfer coefficient between sample
and pan. The modulated parts are then related through:

(KI + iωCp)T̂s = KIT̂ p, iωCpsT̂ p = iωCspT̂ p + iωCpT̂s

So,

1

Cps − Csp
= 1

Cp
+ iω

KI
(146)

where the sample is inert (before, after and between transitions), Cp is real
and positive, as is Csp, the heat capacity of the actual pan (also assumed
known). The real and imaginary parts can then be used to determine Cp and
KI. During a transition Cp is no longer real, but could still be found if KI

were known. One approach is then to interpolate for KI between its values
before and after the transition.

Of course, during calibration the KI might again vary (and be finite).
This complicates the initial determination of K1, K2, K3. It seems likely
that now 6 runs could be needed: giving a total of 12 (real) pieces of data
(from the real and imaginary parts) to fix the three complex constants K1,
K2 and K3 (6 real bits of information) and 6 different KIs, all real—although
these are not really wanted.

The above discussion outlines how it is possible, in principle, to deal
with almost all of the non-idealities of real world DSC cells with sufficient
ingenuity and effort. It is probable that commercial instruments will gradu-
ally implement these procedures so that they will become available to many
scientists. However, not considered above are the problems that arise from
poor thermal conductivity within the sample. Once calibrated, the different
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thermal resistances within the calorimeter should behave in a predictable
way. Of course, this is not true of the sample. We are not talking about
measuring the thermal conductivity of the sample while no transition is oc-
curring, which has already been done [47] by MTDSC, but doing so while
a transition is occurring and, preferably, also measuring the reversing and
non-reversing signals as well. This remains a challenge for the future. For
the present, most workers are best advised to use relatively long periods, of
the order of 60 s, as this reduces the effects of thermal resistances.
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