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Abstract We use a repeated dichotomous choice contingent valuation survey to elicit
households’ willingness to pay to avoid unannounced interruptions in electricity
service. The data pose multiple econometric challenges including: correlated
responses for a given household, heteroskedastic errors, and a willingness to
pay distribution with large mass near zero. We address these issues by combin-
ing a gamma distribution for outage costs with a lognormally distributed scale
parameter defined as a function of household characteristics, outage attributes,
outage history, and random coefficients. The model is estimated through simu-
lated maximum likelihood. We demonstrate that cost estimates are sensitive to
the interaction of attributes of previously experienced and hypothetical interrup-
tions.
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1. Introduction

Sudden power outages can greatly disrupt social and economic activities
of residents and firms in affected areas. Historically, the vast majority of in-
terruptions in electricity supply in the U.S. occurred due to damages to the
distribution network of a utility, usually during inclement weather conditions.
Outages related to generation or transmission failures have been less common,
as regulators required vertically integrated utilities to maintain a generating
margin in electricity production and reliability reserves in their transmission
system. However, with the advent of deregulation of the electric power sector
in many states during the last decade, service interruptions caused by dispari-
ties between supply and demand for electricity have become more frequent. As
became evident during the 2000/2001 power crisis in California, newly imple-
mented deregulation schemes may lack the right incentive structure for gener-
ators to maintain or expand capacity reserves. This shortcoming, in combina-
tion with congested transmission grids and rigidities in retail pricing can result
in market failures, supply shortages, and—ultimately—widespread blackouts
(Faruqui et al., 2001; Joskow, 2001; Borenstein, 2001). Since most existing
deregulation frameworks are still in their infancy and thus may be suscepti-
ble to similar design problems, the risk of generation and transmission type
outages is likely to remain higher in deregulated states compared to regulated
markets in the near future.

Regardless of the specific cause of a service interruption and the regulation
status of the utilities involved, the development of efficient policies to reduce
the risk of blackouts requires knowledge of the economic costs they cause to
customers. In a traditional power market regulators can induce utilities to step
up reliability efforts (for example by replacing distribution lines with under-
ground connections) by allowing them to recoup their increased cost of service
through higher electricity rates. Such rate changes will only be acceptable
to end-users if they are proportionate to their value of improved service re-
liability. In restructured markets, power distributors (retailers) are separate
entities and generally remain under some degree of regulation. Many states
are considering incentive frameworks that link retailers’ rate of return to ac-
tual service performance (Energy Information Administration, 1998). Outage
prevention and service restoration times are commonly used yardsticks in such
performance-based contracts (Warwick, 2000). Naturally, an understanding of
costs incurred by customers during service interruptions will be vital to set per-
formance criteria and design economically efficient incentive structures in this
context. Markets for generation and transmission in process of deregulation
generally rely on an independent system operator (ISO) to ensure acceptable
reliability levels. These control units usually apply a mix of economic and
administrative tools to maintain adequate generation and transmission levels,
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such as transmission tariffs, defaulting fines, and regulations governing ca-
pacity markets. Again, economic efficiency dictates that the costs of system
failure, i.e. service interruptions, ought to enter into the design of these instru-
ments.

The focus of this study is on outage costs to residential customers. This
segment comprises over 85% of retail customers in the U.S. and contributes
more to retail sales and revenues than any other user group (35% and 43%,
respectively; Energy Information Administration, 1998). Also, households are
subjected to the highest risk of interruptions, as they rely on a more extensive
infrastructure of distribution lines, substations, and transformers than larger
commercial and industrial users (Warwick, 2000). We propose an innovative
survey and estimation framework to elicit costs to households associated with
specific power outages. Our model allows for the inclusion of both household
characteristics and outage features, while capturing unobserved heterogene-
ity in household preferences for service reliability. In addition, we extend the
existing outage cost literature by explicitly analyzing the joint effect of expe-
rienced and hypothetical interruptions on welfare losses. Due to the presence
of high-dimensional integrals, the estimation of this model requires the appli-
cation of simulated maximum likelihood techniques.

In the next section we provide a brief discussion of previously used ap-
proaches to estimating residential outage costs and motivate our new approach
based on repeated dichotomous choice valuation questions. In section we de-
velop an econometric model designed for the repeated dichotomous choice
data. In section we discusses the data, estimation results, and policy implica-
tions. Section concludes the paper.

2. Approaches to Estimating Residential Outage Costs

Despite the importance of this topic in a time of continued growth in elec-
tricity reliance (Energy Information Administration, 2001), there exist only a
few studies on outage costs to residential customers in the published literature.
Three general methodologies to derive cost estimates have been proposed in
existing work. In the first approach households are asked directly their will-
ingness to pay (WTP) to avoid a specific outage type (Woo et al., 1991; Been-
stock et al., 1998). The second method, as applied in Wacker et al. (1985)
and Doane et al. (1988a) is based on households’ direct estimates of itemized
costs associated with a given menu of mitigating actions during a service in-
terruption. The third methodology is anchored in a discrete choice framework
where households are asked to select one or rank all of several outage sce-
nario/payment options. Examples are Goett et al. (1988), Doane et al. (1988b)
and Beenstock et al. (1998).
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The first two methods lead to regression models with continuous dependent
variables (cost or WTP in dollars) that are either estimated through simple OLS
(Wacker et al., 1985, Woo et al., 1991), Tobit (Beenstock et al., 1998), or
a 2-Stage Heckman model (Doane et al., 1988b). The latter two estimation
techniques take account of the fact that some residents report zero costs or
WTP for a given power interruption. Studies following the third elicitation
approach apply variants of the conditional logit model (McFadden, 1974) to
generate cost estimates.

Each approach has its benefits and drawbacks. Models based on open-ended
WTP reports, while computationally convenient, are susceptible to strategic re-
sponse and non-response bias (Arrow et al., 1993; McFadden, 1994; Beenstock
et al., 1998). Asking respondents to itemize costs may mitigate these problems
to some extent. However, as such cost menus only capture outlays for a limited
number of actual market transactions (purchase of candles and batteries, din-
ing out, etc.), there is a risk of missing non-market welfare losses associated
with blackouts, such as health and safety concerns, disruption of work or study,
and interference with social events and past-time. Thus, cost estimates from
such lists can only be interpreted as lower bounds for actual welfare losses,
assuming truthful responses to each line item.

Discrete choice elicitation methods based on conditional logit analysis, in
turn, have the theoretical ability to capture both market and non-market values
associated with specific outage types. In the residential outage costs literature
there is some evidence that such multi-choice models may trigger ’status quo’
bias (i.e. a household’s inherent resistance to any changes in service provision)
and asymmetry effects (i.e. the value of service deteriorations categorically
exceeds the value of service improvements), as shown in Doane et al. (1988b),
Hartman et al. (1991), and Beenstock et al. (1998).1

In this study, we promote the use of repeated dichotomous choice questions
to elicit the cost of power outages to residential customers. The dichotomous
choice, or referendum-style, format has been found to provide a more familiar
decision making context to respondents, and to largely avoid creating strategic
response incentives (Arrow et al., 1993; Hanemann, 1994). In our application,
each respondent is presented with a series of hypothetical outage scenarios,
differing in length and time of occurrence. For each scenario, households have
to decide if they would be willing to pay a given amount to avoid a specific
interruption, or tolerate the outage with no change in electricity costs. This
format collects a large amount of information from each respondent and allows

1Furthermore, unlike in most of the studies that have used multi-choice conjoint experiment-designs for
their valuation questions, the policy objective for this study was NOT an examination of the potential for
price-differentiated service packages. Thus there was no need to present more than two relevant “choices”.
In addition, as the power interruptions we model in this study are by definition unannounced random events,
it would appear counterintuitive to ask a given respondent to “choose” from a set of different outages.
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for the valuation of attributes that describe outages. As the econometric model
provides household-level estimates of willingness-to-pay-to-avoid outages, or,
equivalently, outage cost, as a function of outage and household characteristics,
it allows for forecasts of costs to residential customers of new types of outages
not explicitly included in the experimental design.

There are a number of econometric challenges associated with the repeated
dichotomous choice approach. In the next section we develop an econometric
model appropriate for using repeated dichotomous choice data for estimating
the costs of residential power outages.

3. The Econometric Model

The econometric model is designed to handle four important features in the
data. First, many households may have a near-zero cost attributable to a power
outage, especially outages of short or momentary length. Second, it can rea-
sonably be assumed that no household obtains positive value from a power
outage. Considering these two points together suggests a distribution of WTP
that is non-negative but can allow for substantial mass near zero.2 Third, the
survey data consists of up to four responses per respondent, and so we antici-
pate that intra-respondent WTP responses will exhibit correlation due to com-
mon unobservables for a given household. Fourth, the interaction of household
unobservables with outage attributes will likely lead to heteroskedastic errors.
As is well known, ignoring such heteroskedasticity in a discrete choice context
will lead to inconsistent parameter estimates, especially if elements of the error
variance are correlated with regressors (e.g. Hanemann and Kanninen, 1999).

The model we develop incorporates these four features. We follow Cameron
(1988) and specify directly a probability density function (pdf) for latent indi-
vidual WTP. Specifically, we choose a gamma kernel for the distribution of
WTP. The gamma distribution for dichotomous choice data has been previ-
ously considered by McFadden (1994) and Werner (1999). It constrains WTP
to be non-negative, but is also flexible enough to allow for exponential or nor-
mal like behavior, with much of the mass near or far away from zero as implied
by the data.3 As in McFadden (1994) and Werner (1999) we express the scale

2See Haab and McConnell (1998) for a detailed discussion of willingness to pay distributions.
3McFadden (1994) and Werner (1999) estimate models with a discrete-continuous distribution for WTP.
The population is modeled as having two components, those with a zero WTP, and those with a positive
WTP. There is a discrete probability of a respondent having a zero WTP. The positive component of the
WTP distribution is modeled using a continuous distribution. This model has come to be called a “spike”
model, given the discrete spike at zero in the WTP distribution modeled with an extra parameter. See
Hanemann and Kanninen (1999) for a more detailed discussion. This approach has not been applied to
repeated dichotomous choice valuation with multiple scenarios. The spike model is difficult to generalize
to multiple response valuation for a number of reasons. First, the spikes for each scenario are unlikely
to be equal requiring additional parameters, or need to be modelled as functions of the attributes of the
scenario, along with the continuous portion of the WTP distribution which may make identification in
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parameter of the gamma distribution as an exponential function of explana-
tory variables. We then extend this specification by modeling some of the
coefficients associated with the regressors as random parameters. In addition
to introducing the desired intra-household correlation across choice occasions
and heteroskedasticity, this specification allows for an explicit analysis of the
interactive effect of various outage attributes on WTP. We describe below the
econometric model and its estimation via simulated maximum likelihood.

First we consider the WTP model without unobserved preference hetero-
geneity. Respondents are presented with a question that asks whether they
would be willing to pay $B (B stands for bid) to prevent a power outage. Each
power outage is described by a set of characteristics, as is each respondent. De-
noting the vector of power outage and household characteristics by x, we model
each respondent i’s WTP for a given outage, j , as a function WTPijPP (xij , θ)
where θ is a set of parameters. Bids can vary across outage types and respon-
dents, and respondents will answer that they will pay Bij if Bij is less than
their WTPijPP . Formally, we follow standard practice, (see Cameron and James
1987) and denote a “yes” response by YijYY = 1, and a “no” response by YijYY = 0.
Then:

YijYY =

{
1, if Bij < WTPijPP (xij , θ)
0, if Bij > WTPijPP (xij , θ)

(3.1)

We take a fully parametric approach. To ensure a positive WTP, one can
either formulate the model in terms of a transformed Bid variable, usually by
taking logs, and assuming that an additive error term is from a normal or logis-
tic distribution (for example, Cameron and James, 1987). The alternative ap-
proach we follow is similar to the suggestions outlined in Haab and McConnell
(1998). Specifically, we consider equation (3.1) as written with the bid, Bij ,
in levels, but utilize a distribution for WTPijPP that takes only non-negative
values. We begin by assuming that the WTPijPP are independently distributed
across households and outages as Gamma(bij , c), so that the density function
f(WTPijPP ) is:

practice difficult. Second, one would expect substantial correlation across scenarios as those who have
a zero WTP for one scenario are far more likely to have a zero WTP in another scenario. This would
necessitate the use of a multivariate distribution over the “spikes” which is difficult to implement. On an
intuitive level, it is not unreasonable in our context to assume that every household experiences at least
incremental costs or disutility from even the shortest outage. In both studies mentioned above, the item
to be valued are wilderness areas or wildlife sanctuaries. In those applications, it seems more likely that
some respondents’ WTP is truly nonpositive, and that this subpopulation is distinctly different from other
stakeholders.
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f(WTPijPP ) =

(
WTPijPP b−1

ij

)c−1 [
exp

(
−WTPijPP b−1

ij

)]
bij × Γ(c)

(3.2)

for 0 ≤ WTPijPP < ∞, with bij , c > 0, and Γ(c) is the gamma function
evaluated at c (e.g. Evans et al., 2000). Following McFadden (1994) and
Werner (1999) we model the scale parameter, bij , as an exponential function
of a linear combination of explanatory variables xij and associated coefficient
vector θi, i.e. bij = exp(x′

ijθi). This ensures that bij > 0, as required. As
indicated above, to capture household heterogeneity and to introduce correla-
tion across intra-household responses we model these coefficients as stochas-
tic terms. Specifically, we let θi follow a multivariate normal distribution with
mean vector µ and variance-covariance matrix Ω, i.e. θi ∼ mvn(µ, Ω). This
specification allows the elements of θi to – a priori – have unrestricted sign and
magnitude. As illustrated in Moeltner and Layton (2002) the estimated covari-
ance terms of Ω can provide additional information on joint effects of different
regressors on the dependent variable.

The assumption of multivariate normality for θi implies a lognormal-gamma
mixture distribution for WTPijPP . Note that in contrast to bij we treat the shape
parameter c as common to all respondent-scenario combinations. The mean
for this distribution can be conveniently expressed as cbij (Evans et al., 2000).
Note that expressing the scale parameter, bij , as an exponential of a linear
function of covariates and outage attributes will make expected outage costs
for a given respondent a non-linear function of all of the covariates and outage
attributes interacted together. We will graphically illustrate the rich results this
feature of the model yields when we discuss our application.

Since each household responded to up to four outage scenario/bid combi-
nations, computation of the joint probability of observing a specific choice
sequence for a given respondent requires computing a multi-dimensional inte-
gral. We approximate these probabilities using the random parameter simulator
as described in Revelt and Train (1998), McFadden and Train (2000), and Lay-
ton and Brown (2000). To simulate the probability of each respondent’s set of
responses, we first compute the gamma probability conditional on the θi, then
we simulate the unconditional probability using draws from θi’s multivariate
normal distribution. Considering (3.1), conditional on θi, the probability that a
respondent says “yes” to a particular valuation question is 1−F (Bij), and the
probability of a “no” is F (Bij) where:

F (Bij) =

Bij∫
0

f(WTPijPP )dWTPijPP ,

and f(.) is the gamma pdf shown in (3.2). F (.) is not closed form, but is read-
ily computed in standard statistical packages. Denote the appropriate “yes”
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or “no” conditional probability for a particular valuation scenario by PijPP |θi.
Under our assumptions, the PijPP |θi are statistically independent for person i,
across all j. Thus the probability, PiPP |θi, of a series of responses conditional on
θi is

PiPP |θi =
j=m∏
j=1

PijPP |θi, (3.3)

where m indexes the number of WTP questions. The unconditional probability
for person i, is:

PiPP =

∞∫
−∞

⎛
⎝
⎛⎛

j=m∏
j=1

PijPP |θi

⎞
⎠
⎞⎞

f(θi)dθi, (3.4)

where the dimension of the integration is equal to the number of random pa-
rameters in θi. Simulation of PiPP is straightforward following Brownstone and
Train (1999) and McFadden and Train (2000). At each iteration of the max-
imum likelihood routine we draw R sets of θi as MV N(µ,Ω), and compute
the simulated PiPP , P̃iPP , as the average over the R draws:

P̃iPP =
1
R

r=R∑
r=1

⎛
⎝
⎛⎛

j=m∏
j=1

PijPP |θir

⎞
⎠
⎞⎞

. (3.5)

The elements of µ and Ω are updated throughout the optimization process.

4. Empirical Analysis

4.1 Data

The data are from a fall 1998 survey of residential customers implemented
by a U.S. utility. The main objective of the survey was to identify priority
neighborhoods for reliability improvements in power distribution based on the
WTP to avoid an outage. Each household was presented with four outage sce-
narios. For each scenario, households could avoid the outage by use of a pre-
installed backup generator for which they would pay a specific fee every time
the generator was activated by a power interruption. The selection of scenarios
was based on Sullivan et al. (1996) and was subjected to further pre-testing
using focus groups. Each scenario differed in terms of season (summer ver-
sus winter), outage timing and duration, and corresponding bid amounts. The
timing and duration were chosen in consultation with the utility. Given the
duration of the outages, bid amounts were based on the open-ended WTP data
from Sullivan et al. (1996) in conjunction with results of the focus groups.
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The following additional considerations guided the experimental design.
First, the bids are such that for a given respondent a one hour outage never
costs less than a momentary outage, a four hour outage never costs less than
a one hour outage, and so on. Given that the open-ended data previously col-
lected by Sullivan et al. (1996) for another utility revealed a fairly long right
tail in the distribution of WTP, we allowed for a number of fairly high bid lev-
els to be able to adequately model the skewed distribution. A wide range of
bids was used to account for the fact that the location (mean, median) of the
WTP distribution for the consumers in question might be significantly higher
or lower than in the previously available data from another utility. Finally, the
survey versions were carefully designed to avoid any implicit ordering of the
bids through the four scenarios.

The mail survey yielded a 63% response rate. After elimination of protest
responses and observations with missing household characteristics, 4,528 ob-
servations from 1,421 households were retained for this analysis. Seven of the
eight administered scenarios were for winter time outages which is our focus
here. Table 3.1 summarizes the seven scenarios we utilize, bid ranges, and
sample counts. Household characteristics were collected as part of the survey
and are supplemented with information available from customer accounts. Ta-
ble describes a set of variables that relate to the types of electricity needs a
household may have, which we utilize in our model estimation.

Table 3.1. Scenario and bid design

Scenario Duration (hrs) Time Bid Levels No. of Obs.

lowest highest

1 1 7 pm 0.5 30 652
2 4 7 pm 1.0 50 642
3 1 8 am 0.5 40 656
4 Moment (1-2 sec.) 7 pm 0.5 30 654
5 1 midnight 0.5 40 665
6 12 7 pm 15.0 100 623
7 1 3 pm 0.5 40 636

Total: 4,528

Note: All outages occur on a winter weekday and are unannounced.

4.2 Model Estimation

Our model specification includes a dummy variable for evening outages
(evening), the log of the duration of a given outage scenario in minutes (
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ln dur), and the household attributes listed in Table 3.2. In various combi-
nations, most of these variables have been considered as determinants of res-
idential outage costs in existing studies (e.g. Doane et al., 1988a; Beenstock
et al., 1998). We add to this traditional set of regressors a dummy variable
for mobile home residences and a dummy variable taking the value of one if
a given household has access to non-electric power sources for heating. The
last two variables in Table 3.2, the number and log of total duration of outages
during the preceding 12 months, are included in the model to measure the ef-
fect of outage history on WTP (or cost) estimates. While other studies have
captured the impact of past outage occurrences on households’ WTP to avoid
future interruptions (Doane et al., 1988b; Hartman et al., 1991; Beenstock et
al., 1998) the separate inclusion of historic outage counts and combined dura-
tion appears to be novel. As we will show, these two indicators have significant
and offsetting effects on cost estimates.

Table 3.2. Household Characteristics

Variable Description Mean Std. Dev.

generate 1 = home has generator 0.17 0.37
business 1 = business at home 0.13 0.34
medical 1 = medical need at home 0.03 0.17
home 1 = someone at home most of the time 0.60 0.49
hh size household size (persons) 2.60 1.45
over64 number of persons over 64 0.36 0.70
inc000 annual income, $1000 53.02 27.83
mobile 1 = mobile home 0.10 0.29
other heat 1 = secondary heating source available 0.49 0.50
ln cons log of avg. monthly electricity consumption in kwh 6.75 0.71
num out number of outages in past 12 months 5.58 8.36
out past log of total duration of outages in past 12 months (hours) 1.17 1.87

We model the outages in the dichotomous choice scenarios as consisting of
two components: A short momentary component of less than a minute, and
then any additional duration beyond one minute. Momentary outages that last
for less than a minute have a particular suite of impacts on some households
but not on others. Sensitive electrical equipment such as medical devices and
home office systems may fail, but most other home electricity uses will not
be greatly affected. Longer outages share this initial effect and as duration
increases other costs begin to mount. The literature suggests that the impact of
outage duration increases, but at a decreasing rate, so we model the effect of
duration beyond the first minute in log form. Following Moeltner and Layton
(2002) we include an intercept term in our model while setting the value of log
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duration for a momentary (1 minute or less) outage scenario to zero. Thus the
intercept term is the effect of a momentary outage on WTP (moment), and the
coefficient on log duration (ln dur) measures the impact of a duration length
longer than a minute.

Specifying all k =15 elements of θi as correlated random coefficients would
require estimation of k elements of µ plus k(k+1)/2 elements of Ω for a to-
tal of 135 parameters. Such a large number of parameters are not likely to
be identified without a prohibitively large data set. Further, estimation is not
computationally feasible given the need to simulate the response probability
at each function evaluation (Keane, 1997). We thus restrict randomness to
variables of primary interest with likely heterogeneity in preferences. These
are past outage duration (out pastp ) and occurrence (num out), as well as the
two main attributes of the hypothetical outage scenarios, ln dur and moment.4

Adding the resulting ten variance-covariance terms in Ω and the gamma shape
parameter c to the 15 elements of θi yields a total number of 26 model param-
eters. We estimate this model through simulated maximum likelihood using
R =1,000 repetitions for the simulated probabilities described in (3.5).

Table 3.3 summarizes the estimation results from the mixed Gamma-Log-
normal model. Generally, the model exhibits a reasonably good fit with the
underlying data with a pseudo-R2 of 0.25. The majority of the coefficient esti-
mates are significant at the 5% level or higher. Specifically, the gamma shape
parameter, c, is estimated with high precision. A value of c less than one in-
dicates a high probability mass near zero (Evans et al., 2000). This result is
compatible with similar findings by Doane et al., (1988a) and Beenstock et al.
(1998), who report a preponderance of zeros in their open-ended WTP elicita-
tions even after purging their data of potential strategic and protest responses.
Evidently, a large share of residential customers in our sample does not con-
sider the bulk of the power outages described as especially bothersome. We
discuss in turn the results for the outage attributes, household characteristics,
and past outage history before elaborating on the covariance estimates. We
conclude this section with a comparison of our results to those available in the
literature.

4.3 Outage Attributes

The effect of evening outages emerges as insignificant compared to a com-
bined baseline of afternoon and morning interruptions. A possible explanation
for this finding may be that the period of daylight during winter is relatively
short in the survey region. Accordingly, electricity needs for lighting are re-

4The evening dummy is specified as a fixed coefficient in part on the basis of preliminary work, which
suggested it had little impact in our data set.
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Table 3.3. Estimation Results

Parameters Coeff. Stand. err.

c 0.232 (0.023) ***
evening –0.015 (0.132)
generate –0.494 (0.174) ***
business 0.338 (0.200) *
medical 0.304 (0.407)
home 0.658 (0.148) ***
hh size –0.124 (0.048) **
over64 –0.215 (0.109) **
inc000 0.026 (0.003) ***
mobile 0.457 (0.222) **
other heat –0.467 (0.134) ***
ln cons 0.133 (0.101)
ln dur 0.455 (0.056) ***
num out –0.033 (0.011) ***
out past 0.260 (0.066) ***
moment –0.933 (0.808)

Variance and Covariance Terms

ln dur 0.077 (0.062)
ln dur / num out 0.001 (0.006)
num out 0.000 (0.000) a
ln dur / out past 0.138 (0.069) **
num out / out past 0.002 (0.010)
out past 0.257 (0.154) *
ln dur / moment –0.899 (0.514) *
num out / moment –0.015 (0.065)
out past / moment –1.647 (0.651) **
moment 10.648 (4.075) ***

Log-likelihood 2,356.100
Pseudo-R2 = 1-[–2,356.1/ln(0.5)] 0.250

Note: Standard Errors in parentheses. a = rounded to zero;
*significant at 10% level; ** significant at 5% level;
*** significant at 1% level.

quired for much of the day. In addition, many businesses in the particular
metropolitan area that generated this sample offer staggered work shifts, which
distributes electricity needs more evenly over a 24 hour time period. An alter-
native explanation is that the limited number of outage scenarios that could
be valued in the survey did not permit sufficient contrast between duration
and time of day. For instance a 12 hour evening outage would cover evening,
late night, and morning, thus mitigating much of the time of day effect. This
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suggests that when time of day is a variable of important policy interest in con-
junction with outages of long duration, many survey versions will be required
– perhaps prohibitively many.

Figure 3.1. Outage Costs Versus Duration (mean and 95% confidence intervals averaged over
all households). Outage costs increase at a decreasing rate with outage duration.

As reflected by the insignificant coefficient for moment, a purely instanta-
neous interruption does not cause any sizeable costs to the average household.
This is consistent with findings reported in Caves et al. (1990). Outage costs
and associated WTP values do, however, increase with the duration of an in-
terruption as indicated by the positive sign and high level of significance for
ln dur. Figure 3.1 depicts the resulting duration-cost function for a prototyp-
ical household and an interruption starting at 7pm. The 95% confidence in-
tervals are based on the empirical distribution of household-specific estimated
WTP averaged over all respondents. Given the distributional assumptions in
our model, the expectation of WTPijPP is itself a random variable following a

lognormal distribution with mean E(bijc) = c × exp
(
x′

ijµ + 0.5x′
ijΩxij

)
.

Due to some outliers, this expression generates excessively high values for
some households. We therefore use the median, c× exp(x′

ijµ), as the basis for
our point and interval estimates of WTPijPP .
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Figure 3.1 depicts how median costs change over outage duration. Con-
sistent with results reported by Doane et al. (1988a), outage costs increase
at a decreasing rate with increasing duration. This is intuitively sound as
longer outages give households more time to take countervailing measures.
At the same time, the variability of outage damages to individual households
increases with duration as indicated by the widening spread of the confidence
interval. For example, for a one-hour evening interruption our point estimate
is $13 with a 95% confidence interval of $9 to $18. At a duration of 12 hours
the point estimate is $42, with a 95% confidence interval of $29 to $56.

4.4 Household Characteristics

Turning to the effect of household characteristics, we note from Table 3.3
that the presence of medical needs and annual electricity consumption do not
significantly affect WTP values. As expected, the presence of business activi-
ties run from home, the presence of residents at home during most of the day,
and income have a positive and significant effect on cost estimates. Similarly,
households residing in mobile homes have a significantly higher sensitivity to
power interruptions. This is an anticipated result given the reduced insulation
of such dwellings and the corresponding higher reliance of their occupants on
uninterrupted heating. As expected, the availability of non-electric heating sig-
nificantly reduces the WTP to avoid a specified interruption. The negative and
significant coefficients for household size and the number of persons over age
64 are probably indicative of reduced disposable income for such families.

4.5 Past Outage History

One of the key insights provided by this analysis flows from our specifica-
tion of a rich structure for past outage history. By using two components of
past outage history, log duration and number of occurrences, we show that past
outage history is not a uni-dimensional concept, but instead illustrate that dif-
ferent components of outage history have contrasting effects on WTP. These
contrasting effects derive from the significant and opposite signs for the num-
ber of past outages during the preceding 12 months (num out) and the log of
combined duration of such outages in hours (out pastp ). This implies that an
increase in historic outage frequency, ceteris paribus, decreases a household’s
WTP to avoid further interruptions. This could be indicative of a learning-to-
cope, or preparedness effect induced by frequent outage events. In stark con-
trast, however, estimated WTP increases with the combined duration of recent
interruptions. Evidently, one or more longer blackouts in the recent past stir
up decidedly unpleasant memories in affected respondents and seem to induce
substantially higher costs than they generate learning gains.
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These results may explain the contradicting findings in the existing outage
cost literature on the role of outage history on cost estimates for a specified fu-
ture interruption. Specifically, Doane, Hartman et al. (1988b) find that house-
holds that traditionally experience a larger number of outages have a decreased
WTP to avoid additional blackouts, while Doane et al. (1988a) and Beenstock
et al. (1998) reach the exact opposite conclusion. This apparent discrepancy
could be a result of different average length of past outages in each of these
cases. None of these studies incorporate measures of historic outage duration
in their estimation models.

Figure 3.2. WTP for a One-Hour Outage: Past Duration vs. Past Events. The iso-WTP lines
show that WTP to avoid this particular outage is the same for households that have experienced
one long outage or several shorter interruptions. Alternatively, WTP is lower if a given past
duration is distributed over several outage occurrences. This may be indicative of two counter-
vailing forces: a cost-awareness factor versus a learning-to-cope effect.

Figure 3.2 illustrates these offsetting effects. The surface plane of figure
3.2 connects simulated cost estimates for a hypothesized evening outage of
one-hour duration at different combinations of number and duration of past
interruptions. In each case, cost estimates were first generated for each respon-
dent and then averaged over households. For example, a prototypical house-
hold that experienced one 20-hour outage in the past would be willing to pay
approximately $22 to avoid the stipulated interruption (point A). If the com-
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bined duration of 20 hours is distributed over, say, 10 individual events, WTP
decreases to approximately $16 (point B). The darker lines crossing the cost
surface represent iso-WTP curves for several dollar amounts. For instance, a
WTP value of $15 could be reached with one 6-hour interruption (point C), ten
outages with a combined duration of 16 hours (point D) or any of the frequency
/ duration pairs along the line C-D.

Figure 3.3. Outage Costs by Scenario Duration and Past Duration. The WTP to avoid future
outages of a given duration increases with the combined duration of past outages. This effect is
relatively stronger for longer hypothetical future outages.

Figure 3.3 shows the importance of capturing historic duration effects when
analyzing the value of electric reliability to residential customers from a dif-
ferent perspective. The figure depicts cost estimates associated with a new
unannounced future outage as a function of combined duration of past inter-
ruptions. For ease of interpretation, cost estimates for one, four, and 12-hour
duration are highlighted through cross-section planes. For example, a four-
hour evening interruption causes costs of approximately $7 to a household that
has not experienced any blackouts over the preceding 12 months (point A).
In contrast, WTP to avoid a four-hour outage is about five times higher for a
household with a combined past duration of 20 hours (point B). Comparing
the vertical height of the cross-sections at any historic duration value, one can
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also note that combined past duration affects WTP estimates relatively more
for longer proposed interruptions.

The recognition of these interactive effects of frequency and duration of past
blackouts may offer additional guidance to utilities in identifying residential
neighborhoods with relatively high sensitivity to power interruptions. Clearly,
a sole focus on the number of past outage events in this context may lead to
sub-optimal allocation of reliability efforts.

4.6 Covariance Parameters

The bottom half of Table 3.3 shows estimation results for the random ele-
ments of Ω. Based on a likelihood ratio test, we strongly reject the null hypoth-
esis that all elements of Ω are zero, i.e. that outage features and outage history
have an equal effect on WTP for all customers. The variance term for moment
is relatively large and highly significant. This indicates strong heterogene-
ity in costs from an instantaneous interruption across individual households.
Thus, even though the costs caused by momentary outages are negligible for
the average household, there are some families that experience considerable
damage even from a very short blackout. This mirrors the results for costs
of momentary outages to commercial/industrial firms in Moeltner and Layton
(2002). The remaining elements of Ω that emerge as significant at the 5% level
or higher are the covariance terms for out pastp with ln dur and moment, re-
spectively. The first term is positive and lends itself to an intuitively sound
interpretation: households that are relatively more affected by combined past
duration are also more sensitive to duration as specified in the hypothetical sce-
narios. The negative sign on the second term suggests that households whose
WTP values depend more strongly on the combined duration of experienced
outages are relatively less sensitive to instantaneous interruptions. Conversely,
households whose WTP is affected less strongly by the duration of past in-
terruptions are relatively more concerned about instantaneous blackouts. Pre-
sumably, such residents experience the bulk of outage costs during the initial
period of a blackout and are relatively more capable to cope with prolonged
duration. The negative sign for the covariance term between moment and sce-
nario duration (ln dur) supports this hypothesis even though this term is only
significant at the 10% level.

4.7 Comparison with Previous Estimates

Our results are compared to those stated in other studies in Table 3.4. As
recommended by Caves et al. (1990) and Woo and Pupp (1992) we report out-
age costs in both absolute dollars and in terms of dollars per kwh unserved,
using additional information provided by the Utility on energy consumption
by a prototypical household for the season and time period of consideration.
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Table 3.4. Cross-study Comparison of Cost Estimates

This Study Doane et al. (1988) Doane et al. (1988b) Woo et al. (1991)

Data Year: 1998 1986 1986 1989
Timing: winter winter evening / winter winter

evening morning eve./ mor.
Method: 2-stage Heckman Self-stated OLS

Duration Cost (1998 $)

1 hr 13.45 16.33 13.66 9.83
4 hrs 25.17 29.16 26.79 13.10
8 hrs 34.49 N/A N/A 19.65
12 hrs 41.51 49.39 58.11 30.13

Cost ($/kwh unserved)

1 hr 5.34 14.61 N/A 12.71
4 hrs 2.66 5.29 N/A 7.34
8 hrs 2.29 N/A N/A 4.98
12 hrs 2.06 3.38 N/A 3.28

As can be seen from the table, our cost estimates in absolute dollars are rea-
sonably close to those found in Doane et al. (1988a), and the results based on
self-stated costs in Doane et al. (1988b). The estimates by Woo et al. (1991)
are clearly lower than those produced by this analysis and the other two com-
parison studies for all listed outage durations. To some extent, this may be
related to the fact that Woo et al. (1991) use OLS regression to generate these
cost estimates. This is likely to place the mean of the resulting underlying
cost distribution closer to zero than would be the case in models that impose
non-negativity constraints on outage costs, as applied in the other three stud-
ies. At the same time, these lower estimates may simply indicate a relatively
lower reliance on electric power of the particular population captured in that
analysis. When expressed in terms of dollars per kwh unserved Woo et al.
(1991)’s cost estimates are close to the ones reported in Doane et al. (1988a),
which would lend support to the latter hypothesis. While following the same
general decrease-with-duration pattern, our cost estimates in dollars per kwh
unserved are about 50% smaller in magnitude than those generated by the two
comparison sources. This suggests that cumulative energy consumption by a
representative household from our population during the listed outage periods
is about twice as high as underlying consumption for the sample considered in
Doane et al. (1988a), and approximately three to four times higher than for
households in Woo et al. (1991). This relatively pronounced difference may
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be attributable to the different geographic location, differing sample charac-
teristics, and changes in electricity consumption during the intervening time
periods that separate the three studies.

5. Discussion and Conclusion

We have developed an econometric model that captures the essential fea-
tures of repeated dichotomous choice non-market valuation data. By using a
gamma distribution for the kernel of WTP, the model allows for the distribu-
tion of WTP to have large amount of mass near zero while still constraining
WTP to be non-negative. This is crucial for estimating WTP for goods that
may not be worth much to many households such as preventing a momentary
electricity outage. Our model allows for heterogeneity in WTP by specifying
the scale parameter of the gamma distribution to be lognormally distributed
in the population. The lognormal distribution for the scale parameter captures
both heteroskedasticity and within-subject correlation in responses to the mul-
tiple dichotomous choice valuation questions. This models important features
of the data. For example, as shown by the small mean but large variance for
a momentary outage, a momentary outage imposes little cost on average but it
imposes large costs on some households.

It appears that whether deregulation of the retail electricity market contin-
ues or not, with higher electricity usage and insufficient construction of new
generating capacity in some areas of the country, rational management of the
risks of power outages will become more, not less important in the coming
years. Rational management requires an understanding of whether the benefits
of reliability improving actions outweigh the costs. Given the complexities of
managing a transmission and distribution network, it is crucial that utilities or
regulators be able to disaggregate their costs and benefits as much as possible
so that they can effectively target projects to those that would most benefit.
This is critical as in real world applications available budgets are likely to be
exhausted before all beneficial projects have been implemented. Understand-
ing how marginal WTP behaves as a function of the attributes of an unan-
nounced outage and past outage history are crucial determinants of the relative
benefits of mitigating outages.

Our model provides a rich analysis by using a number of covariates that are
typically observable by utilities, such as the availability of non-electric heating,
or whether the customer lives in a mobile home. The specification of the co-
variates in exponential form allows for non-linear surfaces describing the WTP
to avoid different types of outages. Overall, the results conform to expectations
based on the outage costs literature and experience. These factors can be used
by a utility or a regulatory authority to better target reliability improvements
to neighborhoods (or even at the circuit level) that would most benefit. For
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example, by conditioning WTP on both the number of previous outages the
household has experienced and the duration of previous outages we can show
that they have differential effects on welfare losses. As illustrated in figure 3.2,
ceteris paribus, households that experience one long outage are willing to pay
more to prevent any kind of future outage than households that have experi-
enced a number of shorter outages. This illustrates another margin on which
we can compare the relative benefits of different reliability improvements.




