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Abstract Environmental economists have advocated the use of choice modelling in envi-
ronmental valuation. Standard approaches employ choice sets including one al-
ternative depicting the status-quo, yet the effects of explicitly accounting for sys-
tematic differences in preferences for non status-quo alternatives in the econo-
metric models are not well understood. We explore three different ways of
addressing such systematic differences using data from two choice modelling
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studies designed to value the provision of environmental goods. Preferences
for change versus status-quo are explored with standard conditional logit with
alternative-specific constant for status-quo, nested logit and a less usual mixed
logit error component specification (kernel logit). Our empirical results are con-
sistent with the hypothesis that alternatives offering changes from status-quo do
not share the same preference structure as status-quo alternatives, as found by
others in the marketing literature, in the environmental economic literature and
in food preference studies. To further explore the empirical consequences of
such mis-specification we report on a series of Monte Carlo experiments. Evi-
dence from the experiments indicates that the expected bias in estimates ignoring
the status-quo effect is substantial, and—more interestingly—that error compo-
nent specifications with status-quo alternative specific-constant are efficient even
when biased. These findings have significant implications for practitioners and
their stance towards the strategies for the econometric analysis of choice mod-
elling data for the purpose of valuation.

Keywords: choice-modelling, stated-preference, environmental valuation, status-quo bias,
Monte Carlo simulations, water resources.

1. Introduction

Since their early appearance in the environmental economics literature in the
middle-to-late nineties (Roe et al. 1996; Boxall et al., 1996; Garrod and Willis,
1997; Adamowicz et al., 1998) “choice experiments”1 have enriched and fur-
ther diversified the non-market valuation applications based on stated prefer-
ences. The number of studies on this methodology has been rapidly growing
(Layton 2000; Morrison et al., 2002; Foster and Mourato, 2002; Garrod et al.
2002) with applications covering many non-market valuation contexts. Over-
all, the role of this approach in diversifying the field of non-market valuation
has been eloquently praised (Randall, 1998).

The basic method requires respondents to indicate a preference ordering —
by ranking, rating or identifying a preferred choice — over a set of experimen-
tally designed alternatives. Although the inclusion or exclusion of the status-
quo (henceforth abbreviated in SQ) in the choice-set depends on the objective
of the survey (see Breffle and Rowe, 2002 for a discussion), to increase realism
(Ortuzar and Willumsen, 2001) most studies in transportation and environmen-´
tal economics are based on survey designs that include a SQ alternative. This is
often described to respondents in terms of the attribute values that are experi-
enced and associated with the SQ. An issue that remains little explored to date
is whether or not respondents “perceive”—and as a consequence evaluate—the
alternatives associated with change from the SQ somewhat differently from the
SQ alternative. This asymmetry would be consistent with reference-dependent

1Or “choice modelling”, or “conjoint choice analysis” or more generally multi-attribute stated preferences.
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utility theories (Kahneman and Tversky, 1979; Hartman et al. 1991; Samuel-
son and Zeckhauser, 1988; Bateman et al. 1997). This is a key issue because
if such a difference exists, then it raises, amongst others, three problems rele-
vant for choice experiments. First, how should one explicitly account for this
effect in the analysis? Second, what are the consequences of accounting for it
in an incorrect fashion, that is, the consequences of mis-specification? Third,
what difference should one expect when using different sample sizes within
the conventional range?

We find that these issues have yet to be satisfactorily addressed in the multi-
attribute stated preference literature, and so, the main objective of this chapter
is to explore such problems focusing on the finite sample properties of welfare
estimates using experiments based on empirical results.

We compare three different ways of modelling diversity in perception of SQ
versus alternatives involving change. All three are based on the conventional
random utility framework.

In principle, one can argue that there are two kind of effects when a SQ
alternative is present in all choice-sets. The first is a systematic effect which
can be easily estimated by means of an alternative-specific SQ constant in the
utility function. The second is an effect on the stochastic error structure pos-
tulated by the researcher. For example, designed alternatives involving change
from the SQ one can share an error structure with a stochastic behaviour that
is more similar to each other than it is to the error associated with the SQ alter-
native. In other words, designed alternatives involving change are correlated,
and their error component is hence not independent. Such correlation can be
accommodated within a nested logit framework.

In the literature SQ effects are typically dealt with by two specifications: the
conditional logit with alternative-specific SQ constants and the nested logit.
The first addresses systematic SQ effects, the second the correlation across
utilities of designed alternatives. Both have been tested and found statistically
significant. In this paper we propose a third specification, which flexibly and
simultaneously addresses both types of effects by means of an error compo-
nent mixed logit specification with alternative-specific SQ constant. This flex-
ible model induces a correlation pattern in the utility of alternatives involving
change, as well as capturing a systematic effect due to the SQ in the indirect
utility.2. In one of the two datasets employed here is found to be a significant
improvement over its competitors.

As a backdrop to such an investigation we report on findings from a large-
scale survey designed to value the public good provision associated with water
supply to the residents of the counties of Yorkshire, in the U.K. The analysis

2We are grateful to Joseph Herriges for suggesting this last specification during the 2004 EAERE meeting
in Budapest, where a previous version of this paper was presented.
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of these data provide evidence in support of the hypothesis of a systematic
difference in customers’ evaluations of SQ and non-SQ alternatives across the
three specifications.

The finite sample properties of each of these three estimators are then an-
alyzed using Monte Carlo experiments. These are conducted at three sample
sizes that cover the range most commonly employed in the literature. The re-
sults of these experiments provide valuable information on the potential size
of the bias in the estimates in the presence of SQ effects. They also pro-
vide suggestions on the relative efficiency of various estimators under mis-
specification.

The remainder of the paper is organized as follows. The next section briefly
outlines the motivations for the investigation. Section 3 defines a common
notation for the various models. In section 4 we describe the studies from
which we draw inspiration for the Monte Carlo experiment. The results of the
studies are presented in section 5, while the evidence from the Monte Carlo
experiments is discussed in section 6. In section 7 we conclude.

2. Motivation for the study

2.1 The nature of SQ effects

For the purpose of this paper we define “SQ effects” as the systematic in-
clination of respondents to display a different attitude towards SQ alternatives
from those reserved to alternatives involving some change, over and beyond
what can be captured by the variation of attributes’ levels across alternatives.

In the context of public economics, of which environmental economics is a
sub-discipline, we are often concerned with a SQ resulting from previous pol-
icy outcomes, and incorporating public views on property rights, institutional
arrangements etc. This extends to endowment of passive use and non-use val-
ues, which overall represent a bundle of issues conceptually quite different
from those embedded in the SQ alternative employed in transportation and
market research choice experiments, where the emphasis is on use values.3

However, regardless of its prevailing nature in environmental economics,
this effect seems quite general. In their much quoted paper on consumer ratio-
nality and SQ effects (or “bias”) Hartman et al. (1991) write:

This analysis suggests, for example, that consumers attach “undue” importance
to their current commodity bundle, demonstrating “apparently irrational” reluc-
tance to alternative bundles. (Page 141)

The explanatory nature of such a general phenomenon is quite complex. For
example, in a previous contribution on the topic Samuelson and Zeckhauser

3In transportation the tendency to systematically prefer the SQ alternative is termed “attrition”, e.g. Bradley
and Daly, 1997; Cantillo and Ortúzar, 2004.´



Performance of error component models for status-quo effects 251

(1988) identified and validated with evidence three major categories of expla-
nations for this type of behaviour:

1 rational decision making in the presence of transition costs and/or un-
certainty;

2 cognitive mis-perceptions (e.g. loss aversion and prospect theory as pro-
posed by Kahneman and Tversky (1979))

3 psychological commitment stemming from misperceived sunk costs, re-
gret avoidance, or a drive for consistency.

In their conclusions from the study Samuelson and Zeckhauser write:

In choosing among alternatives individuals display a bias toward sticking with
the status quo.[...] Assuming the status quo bias proves important, rational mod-
els will present excessively radical conclusions, exaggerating individual’s re-
sponses to changing economic variables and predicting greater probability than
observed in the world.

In our experience with SQ effects in choice experiments such effects can show
both, a predilection for the SQ or a reluctance to stick with it.4

Because of this multiple causes of SQ bias, we do not find fruitful to elab-
orate on a conceptual model, which inevitably will leave some explanations
unaccounted for. Hence, in what follows we maintain the conceptual definition
quite general, yet we specifically focus on the analysis of multinomial discrete
choices for environmental valuation under a random utility framework.

2.2 SQ effects in choice experiments

Above we have referred to some evidence from psychology and experimen-
tal economics suggestive that people evaluate what they know, and are familiar
with (i.e. the SQ), in a systematically different fashion from how they evaluate
hypothetical alternative scenarios. This has a direct bearing in the applica-
tion of choice experiments to non-market valuation of public goods. Whether
the technique is used to expand the set of modelling approaches existing in
practice (as is often argued in support of mixing stated and revealed prefer-
ence data (e.g. Hensher et al., 1999), the so called “data fusion” approach),
or is employed as a way to elicit trade-offs that will eventually lead to a richer
description of people’s preference for environmental goods (e.g. when respon-
dents are asked to evaluate SQ scenarios against hypothetical changes), a check
for what we loosely call “SQ effects” should be performed. The specification
that best addresses such an effect will depend on circumstances.

4For further reference to status quo effects in power outages discrete choice elicitation studies see section 2
in this volume.
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If a “generic” SQ effect exists in the evaluation of alternatives of choice-
experiments for non-market goods, then an adequate practical understanding
of the various econometric approaches accounting for such bias needs to be
developed. By investigating the finite sample properties of common estima-
tors we contribute to the on-going research on the understanding of the im-
plications of modelling choices for the derivation of welfare estimates from
choice-experiments investigating non-market goods.5

In particular, a systematic investigation of standard RUM-based modelling
approaches to SQ effects in non-market valuation seems to be missing, and this
is what we set out to provide here.

Some work on this issue is to be found in market research (Haaijer 1999;
Haaijer et al. 2001), but this is limited to comparing Nested logit and con-
ditional (or multinomial)6 logit with alternative-specific constant for the SQ.
Furthermore, the study is prevalently concerned with technical aspects proper
of market research (coding effects, brand effects, market shares etc.). Their
results suggest that the violation of the independence of irrelevant alternative
makes the use of models not reliant on such restriction appealing, an argument
that is often used in promoting the use of random parameter specifications for
the indirect utility (Layton, 2000; Garrod et al., 2002; Kontoleon and Yobe,
2003). This is a suggestion that we explore in more detail here by using more
flexible models, but focussing on a basic error components specification, rather
than on one with random parameters.

In practice we report the results of an investigation comparing multinomial
logit with an alternative specific constant for the SQ (MNL-Asc), nested logit
(NL), and an error component mixed logit (MXL-ε) which also includes an
an alternative specific constant for the SQ. These encompass those models to
which most practitioners would turn to, at least in the first instance, when trying
to account for SQ effects in econometric specifications. In general our results
show that the conventional practice of using simply a MNL-Asc may often be
unsound. In particular, the proposed error component model with alternative-
specific constant for the SQ, that would appear to be novel in this literature,
seems to perform better than others in most of the circumstances examined
here.

In the following we focus on the case in which the choice set contains only
three alternatives: the SQ and two other alternatives, all of which are described

5For example, an original avenue of investigation based on hurdle models and more broadly centred on
non-participation is to be found in von Haefen and Adamovicz (2004). Their results, like ours, show the
sensitivity of welfare estimates to the treatment of SQ and non-participation choices.
6Somewhat loosely, the terms conditional and multinomial logit are used as synonymous in this chapter.
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on the basis of attribute levels, and from which respondents are asked to select
the one they prefer.7

Although there are many variations on the theme, the prevalent set-up for
choice experiments in environmental economics tends to present respondents
with a choice task that involves the identification of a preferred alternative
from a choice set including the SQ and often two (e.g. Boxall et al., 1996;
Hanley et al., 1998; Rolfe et al., 2000; Foster and Mourato, 2003; Scarpa et
al., 2003; Lehtonen et al., 2003) or sometimes few more (e.g. Kontoleon and
Yabe, 2003) experimentally designed alternatives. This set-up is often argued
on the basis of a lower cognitive burden on respondents than that associated
with other choice contexts in which the complexity of choice task is higher. In
experiments involving ranking – for example – especially with many experi-
mentally designed alternatives, it has long been noticed that the hypothesis of
identical preference across decisions at different ranks is empirically violated
(Hausman and Ruud 1987; Ben-Akiva et al. 1992).

3. Econometric specifications accounting for SQ and their
rationale

3.1 Common notation

It is useful to start by defining a common notation for the various models,
referring as much as one can to convention. The reference structure is the case
where the analytical objective is to obtain maximum likelihood estimates of
a 1 × k row vector of utility weights β for a column vector x of k × 1 at-
tributes for the individual linear indirect utility function VjVV . The available data
are choices from choice tasks including a SQ (indexed as sq) and a minimum
of two experimentally designed alternatives (indexed with subscripts c1, c2).
This basic implementation is often encountered in the published literature, but
it can be extended without loss of generality. For the purpose of valuation,
welfare estimates can be obtained as (non-linear) functions of the estimates,
using the usual difference between the logsums weighted by the inverse of the
cost coefficient.

3.2 Conditional logits with and without SQ-Asc

The basic random utility consistent model for analyzing choice experiment
data is the conditional logit, which we consider here as a baseline.

When unj , the stochastic component of utility for respondent n and alterna-
tive j, is identically and independently Gumbel distributed across all alterna-

7The main results of our study can, however, be generalised to many other contexts in which respondents
are asked to rank any set of alternatives including the one depicting the SQ.
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tives, then the choice probability is expressed by the well-known formula:

PnPP (i) =
exp(λViVV )∑
j exp(λVjVV )

, j = sq, c1, c2 (3.1)

where λ is the scale parameter of the unobserved stochastic component. This
is the conventional conditional logit model, which we refer to as MNL. Here
any diversity in preference for the alternatives different from the SQ may be
explicitly made part of the non-stochastic component of utility, for example in
the form of an alternative specific constant (Asc) which takes the form of an
indicator function Asc = 1 iff j = sq.

For a simple example of a positive value on the SQ Asc consider the ten-
dency for respondents who perceive the cognitive task of assessing all the al-
ternatives as too daunting, to fall back on the familiar SQ, rather than engaging
into a costly and unrewarded cognitive task.

In practice, significance of Asc parameter represents the most immediate
SQ test. Although often the ASCs are associated with the designed alternatives,
and the SQ is left as a baseline (Hanley and Wright 2003), we prefer here to
use a dummy variable for the alternative describing the SQ, rather than one
for each of the alternatives involving change, as advocated in Adamovicz et
al. (1998). This specification allows the analyst to account for diversity in the
probability of choice between hypothetical alternatives and experienced SQ.
Notice, however, that this solution does not change the stochastic structure of
the model as it only enters the deterministic component of utility, leaving the
stochastic error structure unchanged. As such it does not allow for a varying
correlation structure across alternatives, which instead we find to be quite a
plausible hypothesis in behavioural terms.

Under linear indirect utility VjVV = β′xj our parsimonious specification is
therefore:

P (c1) =
eβxc1

e(Asc+βxsq) + eβxc1 + eβxc2
(3.2)

P (c2) =
eβxc2

e(Asc+βxsq) + eβxc1 + eβxc2
(3.3)

P (sq) =
e(Asc+βxsq)

e(Asc+βxsq) + eβxc1 + eβxc2
(3.4)

where—for convenience—the subscript n denoting individuals is ignored, and
the scale parameter λ is standardized to 1 and hence it is omitted.

Note that if hypothetical changes are expected to increase utility, then the
sign of Asc will be negative, and positive if the effect has the opposite direc-
tion. This is the alternative specific constant conditional logit model, which we
refer to as MNL-Asc.
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3.3 Nested logit

The different nature of the SQ alternative vis-a-vis the two experimentally`
designed ones may translate into a difference in the substitution patterns, and
hence in a different correlation structure of the unobserved components of
the individual utilities. One assumption consistent with this case is when the
stochastic component of utility is distributed according to a generalized ex-
treme value (GEV) distribution, then different patterns of correlation across the
utility of alternatives can be generated, although these are subject to consider-
able restrictions (Train, 2003). In fact, correlations are imposed to be similar
within nests, but for alternatives in different nests the unobserved components
are uncorrelated, and indeed independent. This is the case of the nested logit
in which the unobserved components of utility have the GEV cumulative dis-
tribution:

exp

⎡
⎣
⎡⎡
−

G∑
g=1

⎛
⎝
⎛⎛∑

j∈J

exp(−uig/ηg)

⎞
⎠
⎞⎞ηg

⎤
⎦
⎤

(3.5)

where g denotes nests. In the set-up we consider here, with one SQ alterna-
tive and two experimentally designed ones, the assumption that the correlation
amongst unobserved stochastic components differs between the two sets of al-
ternatives generates two nests. The first is a degenerate one associated with the
SQ alternative. The second is associated with changes from the SQ and con-
tains both the experimentally designed ones. This gives rise to the following
probability structure for the first decision stage:

P (change) =
eηV I

eηV I + eβ′xsq
and P (sq) = 1 − P (change)

While for the second decision stage, which is given the decision of embracing
some change, is:

P (c1|change) =
eβxc1

eβxc1 + eβxc2
and P (c2|change) =

eβxc2

eβxc1 + eβxc2
(3.6)

P (cjc ) = P (change)P (cjc |change) =
eηV I

eηV I + eβxsq
× eβxcj

eβxcj + eβxc�=�� j
(3.7)

where V I = ln [exp (βxc1) + exp (βxc2)] and can be interpreted as a measure
of the expected utility of accessing the nest with the alternatives associated
with change. The reader is reminded that the coefficient η is a measure of
dissimilarity between alternatives in the various nests, while the value 1 − η
is a proxy for correlation for alternatives within the same nest. In this context
a higher value of η can be intuitively interpreted as higher utility weight of
moving away from the SQ.
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A number of recent choice experiment studies in environmental economics
have used nested logit models to account for SQ effects and found them supe-
rior in terms of fit to their MNL counterparts (Blamey et al. 2002; Hanley and
Wright, 2003; Lehtonen et al., 2003; Li et al., 2004).

It is noteworthy that although this model maintains the independence of
irrelevant alternatives (IIA) property across alternatives belonging to the same
nest, it allows for differences in cross-elasticities across nests.

3.4 Error components via mixed logit

Notice that neither the MNL-Asc nor the NL specifications simultaneously
identify both the systematic and stochastic components of the SQ effect, nor
do they allow for taste-heterogeneity, or break completely8 away from the IIA
assumption. A specification that may overcome all these limitations is the
mixed logit with error components. It does so by allowing flexible patterns of
substitution via an induced correlation structure across utilities.

This is, of course, a special case of the large family of mixed logit, which—
as described in McFadden and Train (2002)—with adequate data quality, may
in principle be used to approximate any type of RUM.

The richness and flexibility of mixed logit models have been shown to gen-
erate a large variety of correlation patterns (Brownstone and Train, 1999; Train,
2003; Munizaga and Alvarez, 2001; Herriges and Phaneuf, 2002). Train (2003,
page 156) discusses eloquently how mixed logit can give rise to two quite dif-
ferent interpretations, the random parameter and, under some restrictions, the
error component one (or kernel logit (Ben-Akiva et al. 2001)). Further consid-
erations, more specific to transportation applications, can be found in Cherchi
and Ortuzar (2004), and some potential drawbacks are discussed in Hensher´
and Greene (2003).

Specifications using random utility parameters are well-known and often
employed in choice experiments designed for the valuation of environmen-
tal goods in their panel form, so as to account for repeated choices, break
away from the IIA assumption and address unobserved heterogeneity. How-
ever, in our study we wish to maintain comparability across the underlying
assumptions of the MNL-Asc and NL specifications, which do not allow taste-
heterogeneity. We hence focus on the decomposition of the unobservable com-
ponent of utility, rather than on random effects in the indirect utility, and adopt
only an error component interpretation, something that is less frequently seen
in this kind of literature. We exploit the fact that the inclusion of additional
zero-mean error components in the structure of utility of each nest induces cor-
relation patterns (Herriges and Phaneuf, 2002). In the presence of SQ effects

8The nested logit maintains it within each nest.



Performance of error component models for status-quo effects 257

different correlation patterns exists between the unobservable components of
utility of the SQ alternative, and those in alternatives involving change.

For example, in our choice experiment the error component approach takes
the following basic utility form9:

U(c1) = βxc1 + ũc1 = βxc1 + εc1 + uc1 ,

U(c2) = βxc2 + ũc2 = βxc2 + εc2 + uc2 ,

U(sq) = Asc + βxsq + usq

(3.8)

where, in our case, εc1 εc2 ∼ N(0, σ2) are additional error components to
uc1 and uc2 , which are Gumbel-distributed with variance π2/6, thereby leading
to the following error covariance structure :

Cov(ũc1 , ũc2) = σ2, V ar(ũc1 , ũc2) = σ2 + π2/6, (3.9)

Cov(ũcj , ũsq) = 0, V ar(ũcj , ũsq) = π2/6, j = 1, 2; (3.10)

where ũcj = εcj + ucj . Note that this is an analog of the nested logit model
in the sense that it allows for correlation of utilities across alternatives in the
same nest, but different correlation for those across nests. However, there is
no IIA restriction, and the Asc captures any remaining systematic effect on the
SQ alternative.

Conditional on the presence of the error component εj the choice probability
is logit, and the assumption above leads to the following expression for each
marginal choice probability:

P (i) =
∫

ε

∫∫
P (i|ε)f(ε|θ)dε

P (i) =
∫ +∞

−∞

∫∫
eβxi+εi∑
j eβxj+εj

φ(0, σ2)dε, j = c1, c2, sq

(3.11)

where φ(·) is the normal density, and εj = 0 when j = sq.
Notice, however, that the additional error component can be either indepen-

dent across choices (for example in a non-panel structure) or it can be the same
for all choices made by the same individual (in a panel implementation). This
is relevant in choice experiments as it breaks away from assumption of inde-
pendence in the error structure across choices by the same respondent, which is
implicit in both conditional and nested logit assumptions. While in random pa-
rameter specifications it is more plausible to assume fixity of parameter across
choices by the same respondent by means of panel estimators, it is less clear

9In fact, as expanded upon by Brownstone and Train (1999) and Herriges and Panheuf (2002), more general
forms than this may be empirically appealing.

=
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that this is the case for error components. Ultimately this remains an empiri-
cal issue to be assessed case-by-case, and within the same category of model
and estimation procedure it can be assessed on the basis of log-likelihood val-
ues. In this paper we focus on a non-panel application and hence dwell on
the conventional assumption of independence of error across choices by the
same respondent. This assumption ensures comparability of the error compo-
nent results with those from the other two specifications which also implies
independence across choices.

In what follows, we refer to this error component mixed logit model with
Asc as MXL-ε.

It is important to note that such model nests the other three, in the sense that
a restriction of σ = 0 is consistent with the MNL-Asc model, a restriction of
Asc = 0 is consistent with an analog of the NL model. Both restrictions return
the MNL model.

3.5 Estimation issues

All models are estimated in GAUSS 3.6 by maximum likelihood methods,
except for equation (3.11), which is estimated by maximum simulated likeli-
hood (MSL) with Halton draws10 (Train, 2000, 2003). The choice probability
for alternative i is approximated by:

P (i) ≈ P̃ (i) =
1
S

S∑
s=1

eβxi+εs
i∑

j eβxj+εs
j

(3.12)

where εs
j = 0 when j = sq, and s denotes simulation draws.

4. The Yorkshire Water choice modelling studies

In spring and summer 2002, as a part of a large-scale investigation into the
preference structure of its customers, Yorkshire Water (YW) conducted a set
of choice experiments. The aim was to characterize the preference for fif-
teen different attributes related to water provision, called here service factors
(SFs). As a result of focus-group activities and discussion with the manage-
ment, these SFs were separated into five groups, giving rise to five separate
choice experiments. The first three were mostly concerned with SFs of a pri-
vate good nature, and are ignored here.11 In this chapter we are concerned with

10Model estimates were found to be stable at 50 Halton draws and obtained by using the GAUSS code
made available by Kenneth Train. However, error component models can be estimates also in Nlogit by
formulating adequate dummy variables and using the subcommand “dummy(n,*,0)” which restricts the
mean of normally distributed parameter to be equal to zero.
11For a more extensive report the interested reader is referred to Willis and Scarpa, 2002 or Willis et al.
2004.
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the two choice experiments that addressed attributes of the service that can be
commonly interpreted as ‘public goods’.

4.1 Study 1

The first choice experiment, defined here as ‘study 1’, looked at four ser-
vice factors as attributes: area flooding by sewage (AF); river quality (RQ);
nuisance from odour and flies (OF); and cost of service (change in water bill
payment). There were eight levels of payment expressed as either increases or
decreases on the current bill, while all other attributes were expressed at four
levels as reported in Table 13.1. The design chosen was an orthogonal main
effect factorial with a total of 32 profiles, which were split into sequences of
four choices for each respondent. The design was obtained using SAS (for a
survey of experimental designs for logit models using SAS see Kuhfeld, 2004).

The expected signs for the coefficient estimates were as follows. The per-
cent of areas protected from sewage escape is indicated as AF (area flooding)
and it is expected to show a positive sign. The percent of river length capa-
ble of supporting healthy fisheries is indicated as RQ (river quality) and it is
also expected to show a positive sign. Finally, the number of households and
business affected by odour and flies (OF) is expected to show a negative sign.
Notice that this is more a club good than a public good, but it certainly has
public good characteristics.

4.2 Study 2

The second choice experiment looked at three service factors as attributes:
water amenities for recreation (AM) expected to be positive, quality of bathing
water (BB) also expected to be positive, and cost of service obviously expected
to be negative. There were seven levels of payment always expressed as in-
creases on the current bill, while all other attributes were expressed at three
levels (Table 13.1). The orthogonal main effect factorial design was obtained
with SAS and gave a total of 27 cards, which were also split in sequences of
four choices for each respondent.

4.3 Sampling method

The survey instrument was tested in a pilot study and further refined as a
consequence. It was administered in person, by enumerators experienced with
stated-preference questionnaires through a computer-assisted survey instru-
ment. A representative sample of 767 Yorkshire Water residential customers
completed the sequence of choices in study 1, for a total of 2,921 choices. A
representative sample of 777 residential customers completed the sequence for
study 2 experiment with a total of 3,108 choices. More detailed information
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on the sampling methodology and the samples employed is available from the
report to the water company (Willis and Scarpa, 2002).

5. Results and discussion

5.1 Estimates for study 1

The estimates for study 1 are reported in Table 13.2. Notice that the utility
weights all have the anticipated signs for the attributes of the alternatives, and
are statistically significant in all models. The inclusive value estimate in the
nested logit model is in the (0-1] interval, and hence is consistent with utility
maximization. The estimated spread of the error component (σ) is virtually
zero in the MXL-ε model, which basically is equivalent to the MNL-Asc and
NL models.

Table 13.2. Estimates for study 1, SFs: AF, RQ, OF. N = 2,921.

Coefficient MNL MNL-Asc NL MXL-ε

AF
0.011 0.017 0.018 0.017
(10.1) (13.5) (13.3) (13.5)

RQ
0.057 0.070 0.075 0.07
(17.5) (19.0) (19.3) (19.0)

OF
–0.125 –0.130 –0.137 –0.130

(–19.91) (–18.8) (–18.4) (–18.8)

Cost
–0.159 –0.135 –0.142 –0.135
(–25.7) (–20.5) (–20.7) (–20.5)

σε
0.040

(0.121)

η
0.899

(112.9)

SQ-Asc
0.604 0.604
(10.7) (10.7)

MRSAF
0.07 0.13 0.13 0.13

(0.06,0.08) (0.10,0.15) (–0.16,0.36) (0.10,0.15)

MRSRQ
0.36 0.52 0.53 0.52

(0.32,0.39) (0.46,0.59) (0.06,0.08) (0.46,0.59)

MRSOF
–0.79 –0.96 –0.96 –0.96

(–0.87,–0.71) (–1.10 ,–0.85) (–1.17,–0.09) (–1.10,–0.085)

ln-L or ln-SimL –2,245 –2,185 –2,185 –2,185
AIC 4,498 4,500 4,500 4,502

Confidence intervals around marginal rates of substitution obtained with Krinsky and Robb (1986) method.
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We observe that all three models accounting for SQ achieve a very similar fit
according to the Akaike Information Criteria (AIC=-2lnL+2p2 ).12 The lowest
log-likelihood is fitted by the conventional conditional logit.

The evidence is consistent with the hypothesis that there is a systematic and
significant difference in perception and substitutability between experimentally
designed alternatives and experienced SQ.

From the viewpoint of policy evaluation it is clear that customers of YW,
feel strongly for the public goods associated with various water provision
strategies. For example, the implicit WTP for a one percent increase in the
area protected from sewage escape is valued by the average household between
0.07 and 0.13 pence.

Relatively more valuable is the percent increase in the length of river capable
of supporting long-term fisheries, which gives a value ranging from 0.36 to
0.53 pence. A reduction of one hundred properties suffering nuisance from
odour and flies is valued between 0.79 and 0.96 pence if we consider the point
estimates across specifications.

In this sample, it is evident that choosing estimates that account for SQ
bias in some form, does make a substantial difference, as the MNL model
provides lower estimates than the other three models. However, within those
accounting for SQ effects, the welfare estimates are of similar magnitude, with
the exception of the NL estimates for AF.

5.2 Estimates for study 2

A similar pattern of considerations can be made for study 2 in which the
experimentally designed alternatives never allowed for a decrease in public
good provision, something that – instead – was allowed for in study 1, and that
undoubtedly may increase the likelihood of violation of the IIA property.

Again, the estimates are consistent with the hypothesis that respondents per-
ceived experimentally designed alternatives and SQ differently. Neglecting this
fact would lead the analyst to infer lower WTP estimates for the public goods
examined and to select models that were significantly worse in terms of AIC
value. In study 2 (Table 13.3), however, there seems to be support for the
hypothesis that the difference in perception between SQ and change should be
incorporated in the stochastic component of utility, rather than in the system-
atic one. In fact, allowing for different correlation patterns (NL) improves the
AIC by a much larger amount than allowing only for a systematic SQ effect in
the deterministic component of utility (MNL-Asc).

12This criterion can be used to discriminate between un-nested models by placing a penalty on the number
of parameters p, since NL is nested neither in the MNL nor in the MXL-ε. The model associated with the
minimum value is to be considered the best (Akaike, 1973).
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Table 13.3. Estimates for study 2, SFs: AM, BB. N = 3,180.

Coefficient MNL MNL-Asc NL MXL-ε

AM
0.067 0.079 0.095 0.114
(13.0) (13.4) (13.8) (14.2)

BB
0.132 0.148 0.170 0.210
(21.0) (20.0) (19.9) (19.3)

Cost
–0.161 –0.158 –0.167 –0.196
(–22.2) (–21.5) (–21.2) (–19.9)

σε
3.702
(7.5)

η
0.833
(44.9)

SQ-Asc
0.290 –1.024
(4.3) (3.1)

MRSAM
0.42 0.50 0.57 0.58

(0.36,0.47) (0.43,0.57) (0.49,0.64) (0.51,0.65)

MRSBB
0.82 0.94 1.02 1.07

(0.6,1.01) (0.8,1.03) (0.8,1.14) (0.8,1.26)

ln-L or ln-SimL –2,776 –2,766 –2,748 –2,719
AIC 5,558 5,540 5,504 5,450

Confidence intervals around marginal rates of substitution obtained with Krinsky and Robb (1986) method.

When the IIA property is not imposed (MXL-ε) the model fits the data best,
and its estimates identify substantial positive correlation (0.9) amongst non SQ
alternatives: the estimated total variance for non SQ utilities is 15.335, much
larger than the Gumbel error variance of π2/6 � 1.645. This large variance is
only in part surprising, as the public goods components in the attributes under
valuation are of much more pervasive interest to the population of customers
in study 2 than in study 1. Public goods are known to be subject to much larger
variation in individual valuations than private goods. A negative Asc reveals
that respondents are in fact more inclined to support change from the SQ. This
attitude would be consistent with a perception of under-provision of the public
goods under valuation. A similar finding is reported in Lehtonen et al. 2003.

In terms of the policy implications for amenity provision and quality of
bathing waters the estimates imply the following. An average WTP per house-
hold between 0.42 and 0.57 pence for an increase in one unit in the number of
areas with waste water discharges designed to allow recreational activities on
rivers; and 0.81 and 1.07 pence per household for a one percent increase in the
current government standards for bathing waters.
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WTP estimates do not vary much in magnitude across models, with the no-
table exception of the obviously mis-specified MNL model, which provides
lower point estimates. Considering the confidence intervals — obtained using
the Krinsky and Robb method (1986) — a significant difference is observed
only for the value estimates of AM.

6. Monte Carlo experiments

6.1 Monte Carlo Design

The analyses of the two data-sets lead to results with contrasting interpre-
tations. The first set of results indicates that the three SQ specifications are
statistically equivalent. The second highlights that differences across SQ spec-
ifications can be statistically significant, although—at this sample size—they
are not so for the implied WTP estimates. This issue raises the question of eval-
uating the relative finite-sample performance of the three SQ specifications.

To explore such an issue we focussed on the effects of reciprocal mis-
specifications in these models, and their sensitivity to sample size, by means
of Monte Carlo (MC) experiments.

We ran a series of systematic experiments with GAUSS (routines are avail-
able from the authors) aimed at describing selected features of the finite sam-
ple properties of each of these specifications. The experiments were run using
sample sizes (number of choices) that reflect those frequently encountered in
the literature (N = 700, 1,400 and 2,900) so as to provide practitioners with
some guidance about the expected efficiency gains achievable by increasing
the sample size under different specifications and data generating processes.

Without loss of generality, we employ the data matrix of study 1 because it
includes decreases of some valuable attribute levels. We use as data generating
processes (DGPs) the set of estimates from this sample (Table 13.2), the only
exception being the variance for the error component in MXL-ε. In this case
the estimated σε was not significant, so we choose to use a larger, yet realistic
value (the estimated value from study 2, in Table 13.3). The steps involved are:
1) Compute the deterministic part of the utility for each alternative by using the
maximum-likelihood (ML) or simulated-ML estimates reported in Table 13.2
and the original matrix of attribute levels X.
2) Generate the unobserved stochastic component of the utility of each alter-
native by using pseudo-random draws (with seed) from the inverse cumulative
distribution function suitable for each model.13

3) Derive an indicator of choice yr from the alternative associated with the
highest computed utility.

13Gumbel errors for models MNL, MNL-Asc and for the uj of equation (3.8) the MXL-ε; GEV for the NL
as for equation (3.5); and a re-scaled standard Normal for the εc1 and εc2 of equation (3.8) for MXL-ε.
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4) Proceed to the estimation of the parameters of all models based on the simu-
lated choice responses yr and matrix of attribute levels X, and save the relevant
results of estimation (parameter estimates, t-values, log-likelihood at conver-
gence etc.).
5) Repeat the previous steps for R=550 times.

Given the results in chapter 16 in this volume by G. Baiocchi, we report
results of the MC experiment by using pseudo-random draws obtained with R
and loaded into GAUSS. Overall the results were qualitatively similar to those
previously obtained in GAUSS. The results presented here are from draws ob-
tained from the free software R (those obtained in GAUSS are available from
the authors upon request).

As a criterion to evaluate the performance of the various estimators we focus
our attention on the expected difference between squared errors:

∆SE = E
(
(γ̂ − γ0)2 − (γ̃ − γ0)2

)
(6.1)

where γ̂ is the estimator under mis-specification, γ̃ is the estimator correctly
specified, and γ0 is the true value from the DGP. The larger this value the worse
is the consequence of mis-specification.

We prefer ∆SE to the more frequently employed difference between mean
squared errors:

E(γ̂ − γ0)2 − E(γ̃ − γ0)2 (6.2)

because of the lower variance associated with its estimator, which we estimate
by:14

∆̄SE =
1
R

R∑
r=1

(
(γ̂rγγ − γ0)2 − (γ̃rγγ − γ0)2

)
(6.3)

Since only relative values matter in the coefficient estimates in random util-
ity models, we focus on the marginal rates of substitution (γ = MRS), which
are computed relative to the money coefficient. These measures—under cer-
tain conditions—can be interpreted as marginal WTP values, and hence are
meaningful per se. Further, parameter estimates are asymptotically normally
distributed, but MRS are non-linear functions and as such they do not have a
well-defined sampling distribution.

14As Davidson and MacKinnon (1993) point out (page 740), the variance of equation (6.2) is: R−1V (γ̂)+
R−1V (γ̃)− 2R−1Cov(γ̂, γ̃) and for a positive covariance this variance is inferior to the variance associ-
ated with the difference of the mean squared errors. A positive covariance across estimates is very likely in
our implementation because the estimates are obtained using the same pseudo-random draws.
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Four types of concise measures are reported from the Monte Carlo experi-
ments.15

First, we report the mean of the differences of the squared errors as from
equation (6.2). Mis-specified models associated with large values of these are
troublesome. Negative values indicate that the mis-specification is on aver-
age less biased than the correct estimator at that sample size, which can be
explained by a compensating higher efficiency. To give a more readily inter-
pretable measure of efficiency we also report the values of the inter-quartiles
of these differences. The smaller these intervals the more efficient the mis-
specification.

Secondly, we report the percent of cases in which the mis-specified esti-
mator produces an estimate which is closer to the true value than the correct
estimator. We report this in two forms, one for each MRS, I(AF ), I(RQ),
and I(OF ) and one reporting the percent of cases in which this happens for
all three attributes I(AF, RQ, OF ).

Thirdly, we report the mean of the relative absolute error:

RAE = 1
R

R∑
r

∣∣∣∣∣∣∣∣∣∣ γ̂rγγ − γ0

γ0

∣∣∣∣∣∣∣∣∣∣. (6.4)

This measure gives an idea of the relative magnitude of the bias of the estimate.
Finally, we report the fraction of MC experiments in which the estimated

MRS is placed within a 5% interval around the true value, as a measure of
efficiency computed as:

Γ0.05 = 1
R

R∑
r

1(γ̂rγγ ∈ γ0 ± γ0 × 0.05). (6.5)

Where 1(·) is an indicator function. This count gives an idea of how clustered
estimates are around the true values.

In addition, select points are illustrated using plots of the kernel smoothing
of the obtained distributions of estimates, using the normal kernel with optimal
bandwidth [4].

6.2 Monte Carlo Results

The results reported in tables 13.4-13.6 indicate that the values for ∆̄SE
16

and their dispersion—as described by the size of the inter-quartile intervals in

15We omit to report the simulation performance of the AIC as a selection criterion for the correct specifica-
tion. In brief, the simulation results showed that AIC was a stable indicator of performance and performed
extremely well at all sample sizes and across all models.
16These values are scaled up by 1,000.
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brackets —decrease as the sample size increases. Notice that in some cases—
as evidenced by non-positive values of ∆̄SE—the mis-specified model outper-
forms the true model in terms of the size of the expected squared-bias. This
happens at all sample sizes and for all attributes when the true DGP is MNL-
Asc and the specification is MXL-ε (Table 13.4). Under this DGP the specifi-
cation MXL-ε seems to perform at least as well as the NL one, except at small
sample sizes, and limited to Γ0.05 and to individual I(·) values.

In terms of expected squared bias, when the DGP is NL the MXL-ε (Table
13.5) performs either as well (AF), or better than the correct specification at
small sample sizes, but not at medium to high. Interestingly, at this sample size
the MNL-Asc specification outperforms the true one for one attribute (OF).
However, for this attribute the mis-specification MXL-ε gives more accurate
estimates than the true specification 16% of the times, versus a 4 and 11% for
the MNL and MNL-Asc, respectively. In terms of cases within the 5% interval
around the true values, MXL-ε performs very similarly to the true specification
at all sample sizes.

Notice, though, that the results in Table 13.6 show that when the true DGP is
MXL-ε the mis-specifications never outperform the true specification in all the
criteria, across all sample sizes. When, instead, MXL-ε was not the true DGP
the mis-specifications never substantially outperform it. This is suggestive that,
in the absence of a strong a-priori information on the true specification, the
MXL-ε is preferable across the board.

In figure 13.1 we present a kernel plot of the distributions of the RAE for the
WTP for Area Flooding when the true model is a nested logit, with N=2,900.
From this figure it is evident how the real choice is between MNL, and the
group MNL-Asc, NL and MXL-ε. Similar patterns emerge when the DGP is
MNL-Asc, suggesting that these three models are effectively interchangeable.
A stronger difference across specifications accounting for SQ emerges when
the DGP is MXL-ε, as shown in figure 13.2. Here the true specification (dot-
dashed line) shows a distribution of RAE values that outperforms the other
two (dotted and continuous line) in that it is much more tightly concentrated
on zero, while the MNL (dashed line) remains strongly biased.

7. Conclusions

Our empirical results from the analysis of the preferences of customers of
Yorkshire Water are consistent with the fact that they are willing to pay for
environmental improvements via an increase on their water bill. The estimated
amount of WTP for quasi-public goods and pure public goods is plausible, and
it is quite stable across the specifications used.

The models providing best statistical fit are found amongst those accounting
for SQ effects, that was loosely defined as a systematic effect to choose the
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Figure 13.1. Plot of kernel-smoothed distribution of the Relative Absolute Error of WTP esti-
mates for Area Flooding. True data generating process (Continuous line NL): MXL-ε dashed-
dotted line; Dashed line MNL; Dotted line MNL-Asc.

SQ or the alternatives different from the SQ beyond what can be explained
on the basis of the attributes values alone. We found that in our samples the
conditional logit model, that ignores any source of SQ effect, produces the
lowest estimates of benefits from provision of externalities. While from the
societal viewpoint such a conservative estimate would guide investments in
a cautious way, it would still represent a sub-optimal resource allocation, as
many potentially beneficial proposals would fail the Pareto efficiency test by
providing too low a benefit estimate.

Following other authors (Haaijer, 1999; Kontoleon and Yabe 2003), we have
argued that there are very good reasons for investigating the existence of SQ
effects in the application of choice-experiments, and that these reasons might
be particularly compelling in non-market valuation of environmental goods.
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Figure 13.2. Plot of kernel-smoothed distribution of the Relative Absolute Error of WTP esti-
mates for Area Flooding. True data generating process: MXL-ε (dashed-dotted line). Continu-
ous line NL; Dashed line MNL; Dotted line MNL-Asc.

We examined three specifications that can be used to account for these effects:
the conventional logit model with alternative-specific constant, the nested logit
model and and the less conventional mixed logit with error components and
alternative specific constant.

Secondly, we reported how we observed different forms of statistical ev-
idence of SQ effects in two separate studies on preferences for water man-
agement attributes, which include important public goods, such as number of
areas protected by flooding and number of households protected from odour
and flies. While in a study we observe that all three specifications account-
ing for SQ afford similar statistical performance and WTP estimates, in the
other application we observe that the mixed logit with error component and
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alternative-specific constant statistically dominates the nested logit and MNL-
Asc, but this dominance does not implies statistically different estimates.

Finally, we investigated the effects of mis-specification using in turn the
three SQ data generating processes by means of Monte Carlo experiments over
a plausible range of sample sizes. The results of the experiments suggest a
number of points.

First, when SQ effects are a concern, the use of simple conditional logit
specifications may produce strongly biased estimates for the taste parameters.
These will also produce biased welfare measures.

Secondly, when the true DGP is mis-specified, the MXL-ε specification gen-
erally provides a good performance in our Monte Carlo experiments. Such per-
formance is not matched neither by the NL model nor by the MNL-Asc model
when the true DGP is MXL-ε.

In conclusion, our empirical results confirm the existence of a systematic ef-
fect of the status-quo alternative on choice selection. This was previously dis-
cussed and evidenced in general terms by Samuelson and Zeckhauser (1988)
and Hartman et al. (1991). Such effect was examined more specifically in the
context of choice-experiment in market research by Haaijer (1999) and Haaijer
et al. (2001) and addressed in environmental economics by Hanley and Wright
(2003), and Li et al. (2004) by means of nested logit models.

We find that a less usual specification, namely the MXL-ε consistently
achieves better results than MNL with an alternative-specific constant for the
SQ and NL specifications. The MXL-ε model is parsimonious, yet, it cap-
tures SQ effects in both the systematic component of preference via alternative-
specific constant, and the unobserved heterogeneity associated with hypothet-
ical changes described by unfamiliar attribute levels. It also breaks away from
the restrictive independence of irrelevant alternatives.

Of course the usual caveats pertaining to Monte Carlo results apply here.
Namely, these results might be not very general and perhaps they are due to
the particular data employed in this study. Nevertheless we find quite plausi-
ble that a specification that accommodates status-quo effects simultaneously in
both the stochastic and deterministic component of utility outperforms specifi-
cations that only address one at the time.

Further research should investigate how general these preliminary results
are, and how status-quo effects can be related to the various features of the
experimental design, investigating — for example — the relationship between
choice-complexity and degree of familiarity with attributes levels defining the
status-quo vis-a-vis the proposed changes.`




