
CHAPTER TWENTY ONE

5f‐ELECTRON PHENOMENA
IN THE METALLIC STATE

A. J. Arko, John J. Joyce, and Ladia Havela

21.1 INTRODUCTION

In this chapter, the properties of actinides in the metallic state will be reviewed

with an emphasis on those properties which are unique or predominantly found

in the metallic solid state. Such properties include magnetism, supercon-

ductivity, enhanced mass, spin and charge‐density waves, as well as quantum

critical points. An introduction to fundamental condensed matter principles is

included to focus the discussion on the properties in the metallic state. System-

atics of the actinide 5f electronic structure will be presented for elements, alloys,

metallic, and semi‐metallic compounds so as to elucidate the unique character-

istics that arise from the properties of actinides and 5f electrons in a periodic

potential.

There are two defining characteristics to materials in the metallic state: first,

the material exhibits a periodic potential which controls much of the electronic

structure, and second, there is a finite density of electronic states at the chemical

potential which influences, among other properties, the thermodynamic and
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transport characteristics. For the early actinide metals, these two characteristics

are often manifested as narrow bands containing a substantial 5f electron

component. Complexity in material properties often arises when competing or

overlapping energy scales are available. In the metallic state, with a continuum

of electron energy levels available, there is the possibility for interaction of

charge with spin and lattice degrees of freedom. Because the actinides have an

open 5f electron shell which, in the metallic state, often straddles the boundary

between localized and itinerant character, the interplay between spin, charge,

and lattice degrees of freedom leads to varied and interesting properties. In

order to better understand the controlling role of the 5f electrons in the metallic

state, one should look beyond the elements and beyond standard temperature

and pressure. To elucidate the fundamental properties of 5f electrons in the

metallic state, we consider the actinide elements at low temperature and high

pressure. An additional dimension to the understanding of the 5f metals can

be attained by considering the actinide elements in a metallic host matrix,

e.g. alloys and compounds.

Atoms in a closely spaced periodic environment (crystalline condensed mat-

ter) experience an overlapping of outer electron shells with neighboring atoms.

If the outer shells are open, then these electrons are shared between neighboring

atoms and can travel from atom to atom through the periodic array. This

sharing of electrons, a form of bonding, becomes the glue that holds the

atoms together. In the crudest sense, this is the metallic state. Here attention

is given to those atoms (materials) whose outer shell comprises an unfilled 5f

shell, namely, actinide materials. A thorough treatment of the subject covers

volumes (Kittel, 1963, 1971; Ziman, 1972; Ashcroft and Mermin, 1976;

Harrison, 1980, 1999), so the overview presented here is cursory. The intent is

primarily to cover those aspects of the metallic state that differentiate 5f electron

systems from simpler metals containing only s, p, or d electrons, since many

properties of 5f systems appear anomalous by comparison.

In the atomic and molecular configurations of f‐electron materials, the highly

directional nature of the f‐orbitals plays a central role in the unique properties

of the lanthanides and actinides. In the metallic state, however, it is widely

accepted that it is the very limited radial extent of the 5f wave functions relative

to the s, p, or d wave functions of the valence band that is at the heart of the

exotic phenomena (consequently the 5f electrons are nearly localized), though

the understanding of the actinides and their compounds is still incomplete.

These metals and their compounds are among the most complex in the periodic

table, displaying some of the most unusual behaviors relative to non‐f systems,

such as very low melting temperatures, large anisotropic thermal expansion

coefficients, very low‐symmetry crystal structures, many solid‐to‐solid phase

transitions, exotic magnetic states, incommensurate charge‐density waves, etc.

Some insights can be gained by using the 4f series as a guide, but the comparison

is limited since the radial extent of the 4f electrons is even smaller than that of

the 5f electrons.
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A comprehensive picture of actinides in the metallic state is slowly emerging.

Many of the very unusual properties appear to be a direct consequence of the

formation of extremely narrow 5f bands in which the electrons are not

completely free. Rather, their motion is affected by the presence of neighboring

5f electrons. This differs from the lanthanide metals whose 4f electrons tend to

be localized in atomic states except perhaps for Ce and Yb (Gschneidner and

Eyring, 1993).

In recent years, there have been many advances in the theoretical capability to

calculate the electronic structure of materials that form narrow bands. In

particular, extensions to density functional theory (DFT) now allow the inclu-

sion of some of the electron–electron interactions that previously were the

exclusive domain of many‐body physics. Yet even this approach often proves

insufficient.

The problem of narrow bands or localization of electrons in an unfilled shell

is strongly related to magnetic properties as well. However, there is a funda-

mental difference between band magnetism and localized magnetism. Although

the electronic and magnetic properties of a material are related, the pervasive-

ness and sheer volume of unusual magnetic behavior observed in the 5f series

suggest that they be treated separately.

21.2. OVERVIEW OF ACTINIDE METALS

The anomalous nature of the electronic properties of the 5f series of metals is

apparent when considering the electrical resistivity, atomic volume (or equiva-

lently the Wigner–Seitz radius), and a composite crystallographic phase dia-

gram of the actinide metals through Cm. These physical properties are shown in

Figs. 21.1–21.3. While these data have been presented on numerous occasions,

they remain most illuminating, clearly showing a transition from itinerant

(participating in bonding) behavior of the 5f electrons in the light actinides to

localized (limited to an atomic site) behavior beyond Pu. It is the transition

region that is least understood and where much of the anomalous behavior is

centered.

Fig. 21.1 shows the electrical resistivity, r, as a function of temperature for

the actinides through Cm (the last element obtained in sufficient bulk to allow

such measurements). One immediately sees that the overall resistivity increases

dramatically up to a‐Pu (the low‐temperature stable phase of Pu) and then

begins to drop for Am. The a‐Pu value of 150 mOhm cm (mO cm) is much higher

than that of Cu (as a material with conventional metallic properties) where the

room temperature value is of the order of 1 mO cm. The resistivity is intimately

tied to the electronic structure of the material and several models ranging in

complexity detail the relationship between resistivity and electronic structure.

Within the free‐electron model, r is related to the relaxation time t of electrons
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and mean free path defined as l¼ vFt, where vF is the velocity of electrons at the
Fermi surface, called Fermi velocity, by the relationship

r ¼ m�=Ne2t ð21:1Þ
where m� is the effective mass of electrons of charge e whose density is N.

Clearly the mean free path of conduction electrons in 5f metals is very short

and t is the time between two scattering events compared to normal metals. It is

shortest for a‐Pu and begins to increase again with Am. Indeed, for a‐Pu the

mean free path of the conduction electrons is no more than the interatomic

spacing. One can hardly call these free electrons.

Additionally, the a‐Pu resistivity increases with decreasing temperature, an

effect contrary to normal metals like Cu, while it appears relatively normal for

Th through U. Such a negative temperature dependence is often associated with

magnetic scattering of electrons (thus decreasing their mean free path) although

experimental evidence indicates a lack of magnetism in Pu metal.

The Wigner–Seitz radius (Wigner and Seitz, 1933), or the equilibrium atomic

volume of an atom in a metallic lattice, is likewise instructive, especially when

compared to the volumes occupied by atoms in metals with an open 5d or 4f

shell. Fig. 21.2 compares the Wigner–Seitz radius of the lanthanides and acti-

nides with those of the 5d transition metals. It was shown by Friedel (1969) that

the atomic volume should display a parabolic dependence with increasing

atomic number Z as one fills an open shell of electrons involved in bonding

Fig. 21.1 Electrical resistivity as a function of temperature between 0 and 300 K for the
actinides metals Th through Cm (after Hecker, 2001).
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and conduction (i.e. the 5d electrons in Fig. 21.2). This is attributed to an

increasing nuclear charge with its increasing Coulomb attraction, which is not

completely screened by outer electrons shared by their neighbors, thus resulting

in a volume contraction. But then, as the shell fills, the screening is again

effective and the atom relaxes.

If, on the other hand, the outer electrons are instead localized as is the case of

the 4f electrons in lanthanides, then the nuclear charge for each value of Z is

effectively screened by the localized electrons, and the atomic volume remains

unaffected as Z increases. This is clearly evident for the lanthanides in Fig. 21.2,

except for Eu and Yb, exhibiting valency irregularities (the metals are divalent,

not trivalent as the other lanthanides). The atomic volumes of early actinides

appear to follow a parabolic curve up to the metal Np, suggesting 5f participa-

tion in bonding, but then begin to strongly deviate, behaving more like the

Fig. 21.2 The Wigner–Seitz radius (RWS) for the lanthanides, actinides and the 5d
transition metal series. The transition metals show a parabolic dependence with bonding
d‐orbitals in accordance with the predictions of Friedel. The lanthanides display a nominally
constant volume with non‐bonding 4f states. The actinides show mixed character with
Th through a‐Pu on the bonding Friedel curve while Am–Cf look lanthanide‐like with a
non‐bonding f‐character (courtesy of Los Alamos Science).
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localized 4f electrons beyond Pu (i.e. the atomic volumes remain relatively

constant with increasing Z ). It is as if there were two distinct 5f series: the

first ending with Np and the second beginning with Am. In the intermediate

region, the various phases of Pu are found, and also much of the correlated

electron behavior of interest in this chapter.

The abrupt ending of the parabolic dependence of the equilibrium volumes of

the actinides between plutonium and americium differentiates them from the

lanthanides and the transition metals. But in addition, the transition metals and

actinides also differ in their low‐temperature crystal structures. The transition

metals form close‐packed, high‐symmetry structures, such as hexagonal close‐
packed (hcp), face‐centered cubic (fcc), and body‐centered cubic (bcc), whereas

the light actinides form at low temperatures low‐symmetry, open‐packed struc-

tures. For instance, protactinium forms a body‐centered tetragonal (bct)

structure, and uranium and neptunium form orthorhombic structures with

two and eight atoms per cell, respectively. These data suggest that anomalous

behavior already starts in the light actinides where many compounds of the light

actinides display strongly correlated electron behavior (Ott and Fisk, 1987;

Stewart, 2001).

The crystal structures, along with alloying information, are summed up in

the composite phase diagram of Fig. 21.3 (Smith and Kmetko, 1983).

Fig. 21.3 The binary phase diagram for the actinides Am through Cm showing the
reduction in melting point and increase in complexity of the crystal structure and phases
as the series moves from bonding (Ac–U) through localized (Am, Cm) with Pu having the
lowest symmetry a‐phase as well as the lowest melting point and six solid state allotropes
(after Smith and Kmetko, 1983).

2312 5f‐electron phenomena in the metallic state



This phase diagram is composed of a series of binary phase diagrams of adjacent

actinide metals from Ac to Cm plotted side by side (the x‐axis between any two

adjacent metals varies from 0 to 100% of the content of the heavier metal). The

shaded areas having no crystal structure label represent areas of uncertainty.

In the early part of the series (between Ac and Th) structures are obtained

somewhat similar to transition metals while beyond Am, typical structures of

the rare earth metals are found. Indeed, it appears that beyond Am the antici-

pated ‘second rare earth series’ is obtained. In the region of Np and Pu,

however, striking deviations from normal behavior are observed. The most

obvious is the large drop in the melting temperature, reaching a value as low

as 600�C near Np and Pu. Equally anomalous in this region, however, are the

large number of allotropes, or solid‐state crystalline phases. In fact, the acti-

nides have the largest number of allotropes of any series in the periodic table.

Also in this region one obtains the highest number of bonding f‐electrons.
Many of these relevant parameters to actinide metals are captured in

Table 21.1. Note the appearance of magnetism in the second rare earth series

above Am, as well as the absence of many‐body ordering phenomena in Pu and

Np and the superconductivity in the light actinides (Am would nominally be

magnetic if not for a fortuitous J¼ 0 ground state allowing for superconductivi-

ty). The occurrence of interesting electronic properties increases enormously as

one changes from the pure actinide elements to actinide alloys and compounds.

Figs. 21.1–21.3 are entirely consistent with each other. The metallic radii are

smallest at the crossover to localization, and as shown in Fig. 21.2, the low‐
temperature phases of the heavier actinides (beginning with americium)

form dhcp structures. As in most metals, it is the bcc phase that forms

prior to melting. However, the temperature range over which this phase is

formed in the actinides is very small compared to transition metals and appears

to be another signature of narrow bands, as described below (Wills and

Eriksson, 2000).

A detailed description of the properties for Pu metal is presented in Chapter

7. Here the emphasis is on overall 5f electronic properties and their differences

from simpler metals. To recognize these differences, a short discussion of free

electron and condensed‐matter behavior is presented. The papers by Boring and

Smith (2000), and Wills and Eriksson (2000) serve as more detailed references

and the main sources for this material.

21.3 BASIC PROPERTIES OF METALS (FREE‐ELECTRON MODEL)

21.3.1 Formation of energy bands in simple metals

In general, most materials (metal or non‐metal), when condensed in the solid

state, form a crystalline array of repeating unit cells. Indeed, it is this repetition

in space that allows for the mathematical determination of the electron wave

Basic properties of metals ( free‐electron model) 2313
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(Å

)
b
o
(Å
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functions to within a phase factor. These cyclic wave functions are called Bloch

states after Felix Bloch, who first introduced them (Bloch, 1928). The simplest

elements, with a single outer electron, such as lithium or sodium, typically form

cubic crystal structures at room temperature. The outer electrons from their

atomic valence shells become conduction electrons traveling almost freely

through the lattice. That is, these valence electrons occupy one‐electron Bloch

states, and they are therefore responsible for bonding in the solid.

A logical progression can be followed for band formation starting from the

isolated atom, to molecules and finally, band formation and the formation of

Bloch states in a metal. In the isolated atom, the electrons exist in a potential

well with well‐defined energy levels or states. The levels representing the outer-

most, or valence states, are responsible for bonding. Considering first the case of

only two isolated atoms (i.e. molecular case), when two atoms are brought

together, their outer electron wave functions (orbitals) overlap, and the valence

electrons feel a strong electrostatic pull from both nuclei (typically depicted as a

double‐well electrostatic potential). The atomic orbitals combine to form mo-

lecular orbitals that may bind the two atoms into a diatomic molecule. The

single atomic energy level splits into two allowed states: one lower in energy, or

bonding, and the other higher in energy, or antibonding. The energy difference

between these two levels is proportional to the amount of overlap of the two‐
electron atomic orbitals, and the molecular orbitals (wave functions)

corresponding to the bonding and antibonding energy levels are the sum and

difference, respectively, of the atomic orbitals.

If one generalizes to the case of N atoms brought close together to form a

perfect crystal, the single valence electron now sees the periodic electrostatic

potential due to all N atoms (where N is a number of order 1023). The wave

function (Bloch state) is now a combination of overlapping wave functions from

all the atoms and extends over the entire volume occupied by those atoms. As in

the molecular case, that wave function can be a bonding state or an antibonding

state. The original atomic valence levels generalize to a band of very closely

spaced energy levels, half of them bonding and half of them antibonding, and

the width of the energy band is approximately equal to the energy splitting

between the bonding and antibonding energy levels in the diatomic molecule.

This broad band forms whether the crystal is an insulator, a metal, or a

semiconductor, the metal being the case where the uppermost band is not

completely occupied by the available electrons.

Because in a macroscopic sample the number of energy levels in the energy

band is large (approximately 1023, corresponding to the number of valence

electrons in the crystal) and the spacing between these energy levels is small,

the electron energies may be considered to be a continuous variable. The

number of electron energy levels per unit energy is then described in terms of

a density of states (DOS) that varies with energy. Because each electron must

have a slightly different energy (the Pauli exclusion principle), electrons fill up

2316 5f‐electron phenomena in the metallic state



the energy levels one by one, in the order of increasing energy (in accordance

with the Fermi–Dirac statistics). This concept will be detailed below.

21.3.2 Brillouin zones

A Bloch state, or the three‐dimensional extended wave function of a valence

electron in a solid, may be represented in one dimension by the valence electron

wave function appearing at every atomic site along a line of atoms, but its

amplitude is modulated by the plane wave eik·r where k is the momentum of the

allowed state and r is the position vector. As mentioned before, this general

form for a Bloch state in a solid emerges from the requirement of translational

invariance. That is, the electron wave function in a given unit cell must obey the

Bloch condition

ukðrþ TnÞ ¼ ukðrÞ; ð21:2Þ
where Tn is a set of vectors connecting equivalent points of the repeating unit

cells of the solid and uk is the one‐electron potential. The wave function must

therefore be of the form

CkðrÞ ¼ eik�rukðrÞ; ð21:3Þ
where a plane wave with wave vector kmodulates the atomic wave function in a

solid. The wave vector k, or the corresponding crystal momentum p ¼ hk, is the

quantum number characterizing that Bloch state, and the allowed magnitudes

and directions of k reflect the periodic structure of the lattice. Indeed, the

momentum vectors k are related to the vectors of the unit cell in an inverse

fashion. For example, if Tn is the vector in a unit cell in real space (e.g. along the

[100] direction) which connects equivalent points, then the corresponding crys-

tal momentum vector is 2p/Tn which connects equivalent points in momentum

space (i.e. a reciprocal lattice vector). The most basic periodic crystal unit is not

necessarily the unit cell. Often a unit cell can be further reduced to a primitive

cell, or a Bravais lattice, which defines the most basic repetitive unit. One can

then derive a set of real space vectors that define a Bravais lattice. The inverse of

these vectors defines the most basic repetitive unit in momentum space – the

Brillouin zone. Energy bands are defined within this three‐dimensional recipro-

cal, or momentum space having axes of kx, ky, and kz. For a simple cubic unit

cell, both the primitive cell in real space and its associated Brillouin zone are

likewise simple cubic. Allowed energy band states, of course, can have a contin-

uously varying set of momentum states, with the reciprocal lattice vectors being

only a special set of crystal momenta defining the Brillouin zone boundaries

along various high‐symmetry directions. Within a solid, the periodic, crystalline

symmetries replace the more common localized potentials of atoms and

molecules. Also, the crystal momentum quantum numbers replace the usual

orbital angular‐momentum components. Within this framework, the metallic,
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condensed matter properties of magnetism, superconductivity, enhanced mass,

spin, and charge‐density waves are quantified.

21.3.3 Complex and hybridized bands

The electronic structure gets more complicated in metals containing more than

one type of valence electrons. A typical band structure for uranium metal

(Wills and Eriksson, 2000) is shown in Fig. 21.4. Here the multiple overlapping

bands are created when the conduction electrons in a solid originate from

various s, p, d, and f valence orbitals of an atom. In general, the width of each

band increases as the interatomic distance decreases and the overlap of the wave

functions increases. Also, the s and p bands are always wider (span a wider

energy range) than the d band, which in turn is always wider than the f band,

reflecting the larger radial extent of the non‐f wave functions. The overlapping
bands in Fig. 21.4 portray a case where at a given value of k (a position vector in

momentum space) one has wave functions of more than one orbital symmetry

(angular momentum) but having nearly the same energy. This implies that the

Bloch functions with a given quantum number (wave vector) k could be repre-

sented as a linear combinations of states originating from the s, p, d, and f

atomic orbitals. In other words, the Bloch states could be ‘hybridized’ states

containing many angular‐momentum components, in contrast to atomic

Fig. 21.4 An electronic structure calculation for a‐Umetal including energy bands and the
density of states. The DFT predictions for the energy bands E(k) are plotted along several
different directions in the unit cell of the reciprocal lattice. The labels on the k‐axis denote
different high‐symmetry points in reciprocal space: G ¼ (000), Y ¼ (100), T ¼ (111). The
narrow bands close to the Fermi level are dominated by the 5f levels. Some of the bands cross
the Fermi level making a‐uranium a metal. The shaded area for the density of states curve
represents the 5f orbital contribution (courtesy of Los Alamos Science).
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orbitals that contain only one angular‐momentum component. The angular‐
momentum mixture for a given band can vary from point to point in momen-

tum space. Near k‐values where several bands are nearly degenerate one obtains
a strong admixture, while for regions in k‐space where bands do not cross each

other, the orbital symmetry of a band may contain only a single component.

The dashed line in Fig. 21.4 is the Fermi energy (EF) and separates the occupied

from unoccupied energy levels.

The 5f states dominate the bonding primarily because there are three 5f

electrons per atom and only one d‐electron per atom occupying the Bloch states

and participating in bonding. The narrow 5f band is referred to as the dominant

band. Because narrow bands correspond to small overlaps of wave functions,

these 5f band electrons may be easily pushed toward localization by various

effects, in which case they do not contribute to bonding. Compared with the

band widths of non‐f metals, the actinide 5f bands are narrow and reflect the

limited wave function overlap between f‐orbitals on adjacent sites. The narrow-

ness of the 5f bands and the proximity to the Fermi energy make the 5f bands

central to understanding the actinide metallic state.

21.3.4 Density of states

A very useful concept to consider is the concept of the density of allowed energy

states per unit energy interval. Recall that the allowed states in a band are not

actually continuous, but are very closely spaced. Since each band of allowed

states may contain two electrons from each atom (spin up and spin down), one

can see that bands that disperse rapidly with energy will have fewer allowed

states per unit energy interval than slowly dispersing or ‘flat’ bands. The right

frame of Fig. 21.4 shows the DOSs resulting from the multiband structure on

the left panel of Fig. 21.4. Note that the 5f states outnumber all the others at the

Fermi energy EF (see below for description). If an energy sub‐band is filled (two

electrons of opposite spin occupy all its energy levels), there will be no electron

density at EF and the solid is an insulator. If a band is only partially filled, the

solid is a metal.

21.3.5 The Fermi energy and effective mass

Electrons, being spin‐½ particles, obey Fermi statistics with the occupation of

states occurring in order of increasing energy. The mathematical expression for

Fermi–Dirac statistics is

f ¼ 1=½expfðE � EFÞ=kBTg þ 1	: ð21:4Þ
where kB is the Boltzmann factor. The probability, f, for occupation of states at

T ¼ 0 is unity up to the Fermi energy, EF, and zero above this energy. EF is

defined as the highest occupied energy state in a metal after all the electrons in a

crystal (or in a box in the case of true free electrons) have been accounted for at
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T ¼ 0. As the atomic levels are filled up and the band states (i.e. the valence

states involved in bonding) become occupied, the energy or momentum of a

band electron from a particular atom is not precisely known. One only knows

that it occupies one of the near continuum of allowed energies in a band and

that the lowest states in a band must be occupied first.

In many elements (e.g. the alkali metals), the atom has only one electron to

contribute to the uppermost or valence band. In that case, the uppermost band

is unfilled (half filled for the alkali metals). More importantly, in the case of

complex systems as shown in Fig. 21.4, the complexities introduced by the

crystal structure and the subsequent hybridization result in an overlapping of

valence bands, such that some states from a higher band actually lie below a

lower one. This is clearly shown in Fig. 21.4 where the s–d bands cross the

f‐bands. In this case, the upper band begins to be filled before the lower one is

fully occupied, so that, when all the electrons are exhausted, neither band is

filled, and empty states exist just above EF. The highest occupied energy (at

T ¼ 0 K) is EF and the material is a metal because the electrons occupying the

highest energy state have many empty allowed states in their vicinity into which

they can scatter in order to travel throughout the crystal. By contrast, in the case

of insulators where the uppermost band is fully occupied and there is an energy

gap before the next band that is unoccupied, the Pauli exclusion principle

prevents the occupation of states that already contain two electrons. Thus the

electrons are not free to change states and move throughout the crystal unless

they obtain sufficient energy to access an empty state beyond the energy gap

between filled and empty states.

At finite temperature T, some electrons within kBT below EF can occupy

empty states within kBT above EF. This is shown in Fig. 21.5 where the Fermi–

Dirac distribution function has been convoluted with a model DOS. The

probability of occupation of states below EF is unity except within a few kBT

of EF where some electrons can scatter into empty states within a few kBT above

EF. Fig. 21.5 shows that electrons with binding energies higher than (EF – kBT )

contribute to the bonding, and only the narrow stripe just above EF is responsi-

ble for the metallic behavior. Most of the properties of a metal (excluding

magnetism) are determined by the band states within a few kBT of EF. The

sudden drop in occupation is referred to as the Fermi edge. One immediately

begins to see that densities of states whose width is of the order of kBT will be

dramatically affected by temperature. Of course, in complex systems electrons

from more than one band and angular momentum are allowed to scatter into

empty states. The substantive effects of the Fermi function are generally con-

sidered to occur within �2.2kBT of the Fermi level. These values represent the

90% (below EF) and 10% (above EF) occupancy values for electron states at a

finite temperature T.

Within the free‐electron model (i.e. free‐electron gas in a box) the energy is

measured from the bottom of the free‐electron band parabola. The electron

energy dispersion is
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E ¼ ðpÞ2=2m�; ð21:5Þ
where p is the momentum and m� is effective mass of the electron. The upper-

most filled level is at the Fermi energy and is given by EF ¼ (pF)
2/2m�, where pF

is the momentum of this uppermost level. Here EF essentially corresponds to the

bandwidth of the occupied states. If one then takes a repetitive box (i.e. a crystal

lattice) one fulfills the requirement of periodicity, so that a free‐electron parab-

ola exists in each box – or Brillouin zone. The parabola from each Brillouin zone

may extend through many other adjacent zones so that the resulting band

(reduced or folded back into the first zone by virtue of periodicity) can be

very complex. Nonetheless, in the case of alkali metals and other simple

metals the bandwidth definition of the Fermi energy is still often used. The

crystal momentum is zero at the center of the reciprocal lattice where k ¼ 0. In

a complex band system such as shown in Fig. 21.4, this definition loses some of

its meaning. Nonetheless, if one adheres to this definition, one may define the

Fermi temperature, TF ¼ EF/kB, as well as the Fermi velocity, vF ¼ [2EF/m
�]1/2.

The use of m* rather than mo is appropriate in the formula because even the

periodic crystal potential has some effect on the effective mass. Indeed many of

Fig. 21.5 The solid line is the density of states for a free‐electron gas plotted as a function
of one‐electron energy. At T ¼ 0, electrons occupy all the states up to the Fermi energy EF.
The dashed curve shows the density of filled states at a finite temperature T. Only electrons
within kBT of the Fermi level can be thermally excited from states below the Fermi energy
(region B) to states above that level (region A) (courtesy of Los Alamos Science).
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the properties of the free‐electron model can be transferred to real material

systems by substituting m� for mo.

The effective mass is essentially a measure of the interactions (correlations)

that slow down (sometimes even speed up) the electron motion. Because of

electron–electron interactions vF can be smaller for a given p, sometimes much

smaller, than predicted by free‐electron theory. It is as if the electron were much

heavier than a free electron. Formally,

m� ¼ �h=ðd2EðkÞ=dk2Þ; ð21:6Þ
where E(k) is a band that crosses the Fermi level and the derivative is evaluated

at the Fermi level. It is easy to see that a very slowly dispersing or nearly flat

band (this is obviously no longer a free‐electron parabola) will have a much

larger m� than a rapidly varying band such as is found for s‐ and p‐electrons
where the wave function overlap is large. Correlations can be viewed as

effectively resulting in a flattening of the bands at the Fermi edge.

21.3.6 Fermi surface

If one draws the energy band states in three dimensions defined by the crystal

momentum �hk (in Fig. 21.4 they are shown in one dimension along a major

symmetry axis) and connects all the points where each band crosses EF, then

these points trace out a surface in momentum space (or k‐space) known as the

Fermi surface. In the free‐electron model, each state on the Fermi surface

corresponds to an electron having a constant absolute value of Fermi momen-

tum jpFj with kinetic energy given by the free particle formula above. In the case

of a free‐electron parabolic band, the Fermi surface is essentially a sphere,

provided that the Fermi momentum pF exists within the first Brillouin zone. If

it extends into the next zone, one may still simply reconstruct the Fermi surface

from a lattice of overlapping spheres. Again, in complex systems where several

bands of differing angular momentum and bandwidth cross the Fermi energy,

the topology of the Fermi surface can become extremely complex, one cannot

use the simple bandwith definition of the Fermi energy, and pF must be defined

for each band.

The topology of the Fermi surface can be experimentally determined by

means of de Haas–van Alphen (dHvA) oscillations. While a complete de-

scription of this effect is far beyond the scope of this chapter, qualitatively

this is a measurement of the oscillatory diamagnetic susceptibility. For metal

single crystals at low temperatures in the presence of a changing magnetic

field, B, the diamagnetic susceptibility is influenced by B because the presence

of B imposes an additional quantum condition on the free‐electron orbits. The

energy states of the electrons in the allowed orbits are called Landau levels, and

these change with changing B. Without going into detail, the changing Landau

levels (as B is varied) induce oscillations in the susceptibility, the frequency of

2322 5f‐electron phenomena in the metallic state



which (proportional to 1/B) is directly related to the cross‐sectional area of

the Fermi surface in momentum space. By measuring the oscillations for

differing directions of B, one can reconstruct the topology of the Fermi

surface. Furthermore, by measuring the amplitude of the oscillations as a

function of temperature, it is possible to determine the m� of the orbiting

electrons.

21.3.7 Electronic heat capacity

For a gas of free particles heated from absolute zero to a temperature T,

classical statistical mechanics would predict that, on the average, the kinetic

energy of each particle would increase by an amount kBT. But because of the

Pauli exclusion principle, the electrons obey Fermi–Dirac statistics and only

those conduction electrons occupying states within kBT of the Fermi level EF

can be heated (by phonon scattering) because only they can access states not

occupied by other electrons (see Fig. 21.5). The number of electrons that

participate in properties such as electrical conduction and electronic heat

capacity decreases to a fraction T/TF of the total number of conduction elec-

trons in the metal. At room temperature, T/TF is about 1/200 in most metals.

Thus, replacing the classical Maxwell–Boltzmann statistics with the Fermi–

Dirac quantum statistics implied by the exclusion principle has a profound

impact on the electronic properties of metals.

The factor T/TF shows up explicitly in the low‐temperature specific heat of

a metal. In general, the specific heat is the sum of a lattice‐vibration term

(proportional to T 3) and an electronic term gT, which is due to the thermal

excitation of the electrons. The classical coefficient of the electronic term is

g ¼ NkB (where N is the number of conduction electrons) but because of the

exclusion principle, it becomes

g ¼ 2NkBT=TF; ð21:7Þ
and only electrons near the Fermi energy can be excited. Thus, in simple metals

obeying the free‐electron model, g is inversely proportional to TF, or equiva-

lently, EF, and therefore proportional to m� (see above), or to the density of

electronic states at the Fermi level, N(EF). The prefactor 2 represents two

possible spin directions.

A common unit of g is (mJ mol�1 K�2) and the value is about 1 for a typical

free‐electron metal like Cu. In strongly correlated actinide materials, values as

large as 1000 have been observed. Here electrons behave more like strongly

interacting particles of a liquid, e.g. more like a Fermi liquid. Because of

interactions, m� increases and shows an increase in the value of g over that

predicted by the free‐electron model. Thus, low‐temperature specific heat mea-

surements reveal the strength of the electron–electron correlations in a metal

and therefore provide a major tool for identifying unusual metals.
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21.3.8 Electrical resistivity

For free electrons the resistivity r is given by equation (21.1). In a perfect

crystal, electrical resistance would be zero near the classical T ¼ 0 limit because

the non‐interacting conduction electrons, acting as waves, would move through

the perfect lattice unimpeded. Above T ¼ 0, the thermal excitations of lattice

vibrations (phonons) affect the lattice periodicity and thus scatter the Bloch

waves which depend on periodicity. Near T ¼ 0, in the absence of strong

electron–electron (e–e) interactions and impurities, r(T ) increases as T5, while

at higher temperatures r(T ) ¼ AT, where A is a constant. In general, anything

that destroys the perfect translational invariance of the crystal lattice will scatter

electrons. This is reflected in the mean free path of electrons, l, the distance

traveled by electrons between scattering events (see equation (21.1)). Foreign

atoms, lattice vacancies, more complicated defects such as stacking faults, and

finally, magnetic moments in an array without the full symmetry of the lattice

can scatter electrons since they destroy the periodicity. Many of these imperfec-

tions are temperature‐independent and lead to a finite limiting resistance as

T¼ 0 is approached, called the residual resistance or r0. Hence, this limit is used

as a measure of the quality of metal samples, for which the lowest r0 signifies the
most perfect sample. It has been shown that correlated electron materials (and

actinide metals in particular, see Fig. 21.1) often have anomalously high r(T )

and r0 despite very small or zero magnetic moments at low temperatures. For

systems with a high N(EF), strong electron–electron scattering gives rise to a

term aT 2, where the prefactor a reflects the e–e correlations so that a/g2 is

approximately constant for various materials.

21.3.9 One‐electron band model

It has been shown that even a free‐electron model for a periodic system yields a

relatively complex band structure. The periodic potential actually introduces

gaps at the Brillouin zone boundaries, and, depending on pF relative to the zone

boundaries, the Fermi surface can be very complicated. To obtain the band

structure in materials with several valence electrons having more than one type

of angular momentum requires substantial calculations. However, the problem

of dealing with 1023 electrons can be reduced to a one‐electron problem by

assuming that an electron sees only an averaged potential between the ions and

the remaining electrons, and that this periodic electrostatic potential can be

modeled in a self‐consistent fashion.
Slater first proposed calculating the electronic states, the energy bands in

Fig. 21.4, of solids by the same self‐consistent method that had been applied so

successfully to describe the electronic states of atoms and molecules (Slater,

1937). In this method, one treats electrons as independent particles and

calculates the average Coulomb forces on a single electron. The equation for

the one‐electron states is essentially the time‐independent Schrödinger equation,
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ðT þ VeffÞciðrÞ ¼ EiciðrÞ ð21:8Þ
where T is a kinetic energy operator (e.g. –�h2▽2/2m in a non‐relativistic approx-
imation and ▽ is the derivative with respect to position, Veff is the average

effective potential, and Ei are the eigenstates. The other electrons and all the

ions in the solid are the source of these Coulomb forces on one electron and give

rise to the Veff. This calculation, repeated for all the electrons in the unit cell,

leads to a charge distribution

nðrÞ ¼ S cij ðrÞ 2
�� ð21:9Þ

from which a new electrostatic potential seen by the electrons can be obtained as

a solution of the Poisson equation. Using the new electrostatic potential, one

then repeats the calculations for each electron until the charge density (distribu-

tion of electrons) and the crystal potential (forces on the electrons) have con-

verged to self‐consistent values. Slater’s approach led to all the modern

electronic band structure calculations commonly labeled one‐electron methods.

These one‐electron band‐structure methods are adaptations of the familiar

Hartree–Fock methods that work so well for atoms and molecules. They were

put on a more rigorous footing through Kohn’s development of DFT. Unlike

the genuine Hartree–Fock method, the non‐local part of electron–electron

interaction is treated less formally, but it includes the long‐range screening,

unimportant for simple molecules but prominent in the electron gas.

Once a metal is formed, its conduction electrons (approximately 1023 per

cubic centimeter) can act collectively, in a correlated manner, giving rise to what

is called quasiparticle behavior (not determined by averaged electrostatic forces)

and to collective phenomena such as superconductivity and magnetism. These

phenomena are outside the scope of the independent electron model, which

cannot accommodate all the electron–electron interactions found in the actinide

series. Many‐body interactions do not readily lend themselves to reduction to an

average potential. Nevertheless, great strides have been made toward including

correlations into the one‐electron picture. In particular, DFT described below

can incorporate the concept of exchange as well as Coulomb correlation. These

electron correlations are described in the next section.

21.3.10 Electron–electron correlations

Electrons in a crystal are simultaneously attracted to the ions and repelled

from each other via Coulomb repulsion. To minimize the total energy of the

system, the electrons must minimize the electron–electron repulsion while

maximizing the electron–ion attraction, and the way to minimize the Coulomb

repulsion is for them to stay as far from each other as possible. In calculations

on the helium atom it was found that: first, the two He electrons are indistin-

guishable – that is, electron 1 can be in orbital A or B, and so can electron 2;

second, the electrons have to obey the Pauli exclusion principle, which means
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that the total wave function for the two electrons has to be antisymmetric, and

that antisymmetry implies that the Hamiltonian must contain an exchange

term. This exchange term determines the probability that two electrons of the

same spin can exist near each other. It is what separates the Hartree–Fock

calculations of many‐electron atoms from the original Hartree calculations of

those atoms.

When the exchange term was included in the calculation of an electron gas, it

was found that around each electron, there is a ‘hole’, or depression in the

probability of finding another electron close by. Indeed, this probability was

found to be one‐half the value it would have without the exchange term. This

exchange hole demonstrates that the electron motion of the two electrons is

correlated with each other, in the sense that electrons with the same spin cannot

get close to each other.

In the 1930’s, Wigner performed similar calculations for electrons of opposite

spins, which led to a ‘correlation’ hole (very similar to the exchange hole) for the

probability of finding an electron of opposite spin near a given electron (Wigner,

1934). The picture of an exchange hole and a correlation hole around

each electron is a great visual image of electron correlations in solids. Modern

one‐electron calculations include these correlations in an average way because

these terms can be calculated from the average electron density around a given

electron. The cost in energy of putting two electrons on the same site is referred

to as the Coulomb correlation energy.

Several theories will be considered in this chapter that include interactions

beyond the one‐electron method, these approaches are termed correlated‐
electron theory. Likewise, any solid (metal, insulator, and so on) that exhibits

behavior not explained by either the free‐electron model or the one‐electron
band model is considered a correlated‐electron system. If the properties of a

solid deviate strongly from the predictions of free‐electron or band models (e.g.

heavy fermions), that solid is called a strongly correlated system. While many

actinide metals and compounds fall within this group, still many others can

be described as weakly correlated systems that are quite tractable within the

one‐electron approach.

21.3.11 Density functional theory

This section concludes with a brief description of DFT, a one‐electron
band structure approach which includes both exchange and correlation, and

which has been very successful in describing weakly correlated systems. Two

common variants are used: the local density approximation (LDA), which

expresses the exchange and correlation potential, Exc(n(r)), as a function of

local electron density, while the generalized gradient approximation (GGA)

includes, in addition to these terms, the gradient of n(r) as well. Formally,

as in the Slater approach, the starting point for DFT calculations is the

time‐independent Schrödinger equation (similar to equation (21.8) above).
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One would, in principle, calculate the ground‐state (lowest‐energy configura-

tion) total electronic energy from

Hcðr1; r2; . . . rnÞ ¼ Ecðr1; r2; . . . rnÞ ; ð21:10Þ
where H is the Hamiltonian containing the kinetic energy and all the interac-

tions of the system (i.e. electron–electron correlation and exchange and elec-

tron–nuclei interactions) and r1,r2,. . . rn are the n position vectors. However, in

the most generalized form c(r1,r2,. . . rn) is now a many‐electron wave function

of the n‐electron system, and E is the total electron energy of the entire system in

the ground state. The input parameters in equation (21.10) are the atomic

numbers of the atoms and the geometry of the crystal (the lattice constant, the

crystal structure, and the atomic positions). From the solution of this equation,

one should, in principle, be able to calculate the equilibrium crystal structure,

the cohesive energy, as well as the band structure. Unfortunately, there is no

practical way to solve equation (21.10) for a solid.

To get around this problem, Hohenberg and Kohn (1964), Kohn and Sham

(1965), and Dreitzler and Gross (1990) pointed out that the total energy of a

solid (or atom) may be expressed uniquely as a functional of the electron density

(equation (21.9) (i.e. E ¼ E[n(r)] just as Exc above). This function can be

minimized in order to determine the ground‐state energy. Therefore, instead

of working with a many‐electron wave function, c(r1,r2,. . . rn), one can express

the ground‐state energy in terms of the electron density at a single point (as in

equation (21.9)), where that density is due to all the electrons in the solid.

In addition, Hohenberg and Kohn (1964), Kohn and Sham (1965), and

Dreitzler and Gross (1990) demonstrated that, instead of calculating the elec-

tron density from the many‐electron wave function, one may work with the

solutions to an effective one‐electron problem (equation (21.8)). The method

uses the form of the total‐energy functional to identify an effective potential

Veff (r) as described above for one‐electron states, and then to solve for the one‐
electron states to produce a density equal to the many‐electron density. To

account for the relativistic effects in actinides, it is necessary to replace the

non‐relativistic Schrödinger‐like one‐electron equation (equation (21.8)) by

the relativistic Dirac equation. By finding the correct form for the effective

potential, the electron density in equation (21.9) will be the same as that

required by DFT.

The one‐electron problem defined by equation (21.8) has the same form as the

equations solved by band theorists before DFT was invented, and the eigenva-

lues of those equations as a function of crystal momentum are precisely

the energy bands. The contribution of DFT is to provide a rigorous prescription

for determining the new effective potential and for calculating the total

ground‐state energy, E[n(r)].
The total energy functional within DFT is given by

E½nðrÞ	 ¼ T ½nðrÞ	 þ EH½nðrÞ	 þ Exc½nðrÞ	 þ EeN½nðrÞ	 þ ENN; ð21:11Þ
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where T is the effective kinetic energy of the one‐electron states obtained from

equation (21.9), EH is the usual classical Hartree interaction between an electron

and a charge cloud, EeN is the interaction between an electron and nuclei, and

ENN is the inter‐nuclear Coulomb interaction. The important term is Exc, which

is the one part of equation (21.11) that goes beyond the classical Hartree term

obtained from the expression

Exc½nðrÞ	 ¼
ð
nðrÞexcðnðrÞÞdr: ð21:12Þ

This term represents the difference between the true energy of the eigenstates

and the one‐electron eigenstates. The operator of exchange-correlation exc[n(r)]
represents the sum of the exchange term ex(r) plus the correlation term ec(r).

The new (and presumably more correct) effective potential can now be

obtained from the relationship

VeffðrÞ ¼ d=dnðrÞ½EHðnðrÞÞ þ ExcðnðrÞÞ þ EeNðnðrÞÞ	: ð21:13Þ
With this new potential, the problem again reduces to a one‐electron problem

by substituting this potential into equation (21.8). From these definitions, it is

clear that the effective potential in which the electron moves has contributions

from the electron’s interaction with the nuclei and the other electrons in the

solid both by the classical Hartree term and by the quantum mechanical

exchange and correlation terms.

Because all electron–electron interactions that go beyond the classical Har-

tree term are found in Exc[n(r)], it is crucial to have a good approximation for

this term. Unfortunately, there is no exact form of this term for a real solid.

However, if one assumes the functional to be local, a numerical form may be

obtained from many‐body calculations (quantum Monte Carlo or perturbation

series expansion), and very good values may be obtained for the ground‐state
energy for different values of the electron density. If the electron density of a real

system varies smoothly in space, one expects that a form of Exc taken from a

uniform electron gas should be applicable to the real system as well. This

approximation is none other than the LDA. The good agreement, for many

solids, on cohesive energy, equilibrium volume, and structural properties be-

tween this approximate theoretical approach and experimental values suggests

that the LDA form of Exc works even if the electron density varies rapidly in

space.

Thus, the total ground‐state energy can be obtained by solving an effective

one‐electron equation. This tremendous simplification of replacing interacting

electrons with effective one‐electron states will work only if one can find

the correct, effective one‐electron potential. Good approximations can be

obtained for ex(r) and ec(r) as determined by comparisons between the thus

calculated band structures and experimental band structures measured by

optical properties and photoelectron spectroscopy (PES).
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21.4 GENERAL OBSERVATIONS OF 5f BANDS IN ACTINIDES

21.4.1 Narrow 5f bands

It is correct to say that the short radial extent of the 5f wave function yields only

a small overlap between electrons from neighboring atoms and that this in turn

results in very narrow 5f bands. Nevertheless, if the atomic spacing were

sufficiently small, the overlap would be significant, as it is for 5f metals up to

a‐Pu. Why then does one not get a continuation of the actinide contraction (see

Fig. 21.2) if the 5f electrons are involved in bonding?

Boring and Smith (2000) in their review argue that it is the presence of non‐f
bands at EF (i.e. the 6p, 7s and to some extent the 6d bands), which contributes a

repulsive force to the interatomic bonding forces (i.e. the s, p, d electrons with

their larger radial extent, begin to repel each other at much larger distances).

This is shown in Fig. 21.6 where the atomic‐sphere approximation is used to

calculate the contributions to bonding from individual bands for Pu (for

Fig. 21.6 The force per atom as a function of interatomic spacing. DFT predictions
for the bonding curves of d‐Pu in the fcc structure are plotted vs the interatomic spacing
x¼ ln(a/a0). Included are the curve for the total cohesive energy per atom, and the individual
contributions from the s, p, d, and f states. The f band is narrow at this larger volume
(courtesy of Los Alamos Science).
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simplicity, in the fcc phase) as a function of interatomic spacing. For any single

band, the calculated equilibrium spacing is that at which the interatomic forces

on the atom are zero – i.e. where the calculated curve crosses the horizontal zero

line.

From Fig. 21.6, one can see that if plutonium had only an f‐band contribu-

tion, its equilibrium lattice constant would be smaller than that found. The

f‐band would be wider, and Pu would stabilize in a high‐symmetry crystal

structure. In reality, the contribution from the s–p band (a repulsive term at

true equilibrium) helps to stabilize plutonium at a larger volume; the f‐band is

narrow at that larger volume, and the narrowness leads to the low‐symmetry

crystal structure. This argument is universal for multiband metals. In the

transition metals, the s–p band is repulsive at equilibrium and leads to slightly

larger volumes than would be the case if these metals had only d bands. For

metals above Pu the repulsive force of the s–p bands is sufficient to prevent

additional lattice contraction. The additional f‐electron is no longer involved in

bonding and it becomes energetically favorable for the entire f‐subshell to

localize. Another factor to the total energy balance is the correlation energy

of electrons localized in atomic 5f states. The system gains the 5f bonding energy

by the 5f delocalization, but as the electrons in atomic states can be better

correlated than in band states, part of the correlation energy is lost.

In actinide compounds the whole range of narrow band behavior is observed,

from transition‐metal‐like to localized. The existence of non‐actinide atoms in

compounds immediately yields a larger An–An separation so that a greater

tendency toward localization is expected even in uranium compounds. This is in

fact the case.

21.4.2 Low‐symmetry structures from 5f bands

Fig. 21.3 shows a large number of low‐symmetry crystal structures among the

actinide metals. Actinide compounds, especially the more strongly correlated

materials, show the same tendencies. It has long been assumed (at least for the

pure metals) that it is the directional nature of the 5f bonds which leads to the

low‐symmetry structures. In recent years, the charge density for several acti-

nides using the full‐potential DFT method has been calculated. For elemental

actinides up to Pu, no dominant directional 5f bonds have been found and, most

importantly, no charge buildup between atoms (Söderlind et al., 1995). What,

then, is the driving force for the numerous transitions and low‐symmetry

allotropic phases? A general reason can be seen in the narrow 5f bands them-

selves. There exists a high density of 5f states at or near EF so that a lowering of

the electronic energy can occur through a Peierls‐like distortion (Merrifield,

1966). The original Peierls distortion model was demonstrated in a one‐
dimensional lattice. It was shown that a row of perfectly spaced atoms can

lower the total energy by forming pairs (or dimers). The lower symmetry causes

the otherwise degenerate electronic energy levels to split, some becoming lower
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and others becoming higher in energy. The lowered levels are occupied by

electrons, and therefore the distortion increases the bonding and lowers the

total energy of the system. In the one‐dimensional system, the distortion opens

an energy gap at the Fermi level and makes the system an insulator. However, in

the higher dimensional systems, the material can remain a metal in spite of the

distortion because there are Bloch states from other bands that fill this gap.

In real three‐dimensional lattices, the energy levels are degenerate along high‐
symmetry directions. If those levels lie close to EF, a Peierls‐like distortion of the

crystal (i.e. a lowering of the symmetry) would increase the one‐electron contri-

bution to bonding, just as in the one‐dimensional case described above. The

Peierls mechanism is particularly effective if there are many degenerate levels

near EF, that is, if the energy bands are narrow, the DOS is large, and a large

energy gain results from the distortion and filling of the lowered bands. Materi-

als with broad bands (wider than 4 eV), gain less energy from level splitting

because there are fewer levels near EF. Indeed, symmetry‐lowering distortions

are rare in these materials. This is the dominant mechanism in cases where the

energy is not lowered by other mechanisms removing part of the high‐density
states from the vicinity of EF (magnetic ordering, superconductivity). In

Table 21.2, a list of interaction energy ranges is given which highlights the

types of interactions that are relevant in the actinides as well as the lanthanides

and transition metals. The table shows Coulomb, spin–orbit, crystal field,

exchange and bandwidth parameters. In the actinides, the large values and

overlapping energy ranges for the interactions make the electronic structure

calculations (and understanding) challenging.

21.4.3 The Hill plot

A very informative look at the effect of An–An spacing, and hence the effect of

bandwidth, is provided in Fig. 21.7. This figure shows the transition tempera-

tures for various uranium compounds, both magnetic and superconducting,

plotted as a function of An–An spacing. Superconducting or magnetic‐transi-
tion temperatures are plotted vertically, and the spacing between the f‐electron
elements is plotted horizontally. Hill first presented these results in the early

Table 21.2 Typical energies of the various interactions characterizing the localized picture
of magnetism for ions with 3d, 5f or 4f unfilled shells.

Interaction 3d (meV) 5f (meV) 4f (meV)

coulomb (U) 1000–10000 1000–10000 1000–10000
spin–orbit (DS–O) 10–100 300 100
crystal field (CF) 1000 100 10
exchange 100 10 1
bandwidth (W) 4000–10 000 700–5000 <500–2000
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1970s (Hill, 1970) and found similar results for many different actinides and

lanthanides. However, the presentation of data for uranium compounds yields

much of the necessary information. Although some of this discussion pertains

to magnetism, it is nevertheless presented here owing to its association with

narrow 5f bands.

Fig. 21.7 shows that the crossover from itinerant to localized electrons can

clearly be achieved if the actinide atoms are spread out. The most important

aspect of Fig. 21.7 is the observation that a very limited number of magnetic

uranium compounds are found with actinide spacing (in this case U–U) of less

than about 3.4 Å. Inasmuch as magnetism is generally associated with more

localized electrons, one may surmise that the 5f bandwidths for An–An separa-

tions smaller than 3.4 Å become too broad to support magnetism. Indeed, at

these separations one may obtain direct f–f overlap. In Hill’s initial plot, the

known behaviors fell into only two of the four quadrants – large spacing

correlated with magnetism and short spacing with superconductivity. Hill orig-

inally conjectured that the f‐electrons could hybridize only with f‐electrons at

Fig. 21.7 The ‘Hill’ plot for uranium compounds shows the interactinide spacing against a
transition temperature (magnetic or superconducting). It is a general observation that
magnetism is favored with the U–U spacing greater than 3.4Å while non‐magnetic ground
states are common below the separation. For uranium compounds, this distance roughly
defines the localized/itinerant boundary for 5f states (after Hill, 1970).
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other sites and that the intervening non‐f‐electron atoms were just spacers to

change the degree of overlap between the f‐electron wave functions. Hill’s plot

became a major step toward understanding the light actinides, but it is now clear

that the situation is more complex.

Fig. 21.7 depicts many more materials than were plotted in Hill’s initial

version. A large number of materials with large separations are now known

to be non‐magnetic. The existence of superconducting compounds is also found

which, based on the relatively large distance between two f‐electron atoms,

should be magnetic. Two such compounds, namely, UPt3 and UBe13, are

plotted in Fig. 21.7. They belong to a class of materials known as heavy‐fermion

superconductors first discovered in CeCu2Si2 (Steglich et al., 1979) and

later discovered in UBe13 (Ott et al., 1983) and UPt3 (Stewart et al., 1984)

setting off a period of intense research in heavy fermion and unconventional

superconductivity research.

To understand the existence of non‐magnetic compounds despite the large

An–An separation, the concept of hybridization described in Section 21.3.3

above is utilized. It is not necessary to have direct f–f overlap of wave functions

to produce relatively broad f‐bands. Hybridization produces relatively wide

f‐bands that are broadened by the admixture of other symmetry components

(the spd bands). It was shown by Koelling et al. (1985) that the lobes of the

f‐wave function allow the AuCu3 simple cubic structure to be particularly

amenable to hybridization with p‐ or d‐bands along certain high‐symmetry

directions. Most materials having this structure are non‐magnetic. Another

observation is that for compounds in which the ligand atom contributes

a high d‐density at EF, one generally obtains a strong f–d hybridization and a

suppression of magnetism.

However, it is not true that the 5f‐electrons are necessarily localized in com-

pounds that are magnetic. Only one binary intermetallic compound (UPd3)

has been shown to exhibit true localized behavior of the 5f electrons. In nearly

all other compounds, the hybridization with ligand sp bands is weak and

leads to narrow band magnetism. In the case of extremely weak hybridization,

one obtains the heavy‐fermion compounds, among which those that have a

superconducting transition (e.g. UPt3 and UBe13 in Fig. 21.7) are very likely

unconventional superconductors (Ott and Fisk, 1987).

21.5 STRONGLY HYBRIDIZED 5f BANDS

From the above Hill plot (Fig. 21.7), it is evident that many uranium com-

pounds (and other actinide compounds also, particularly with Th and Pa, that

are not shown in Fig. 21.7) have the characteristics of simple transition metals.

This is true for the pure metals Th, Pa, and U as well (Np and a‐Pu are

questionable owing to a dearth of microscopic measurements). This class of

materials is considered first. Because the pure metals are difficult to obtain in
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single‐crystal form, the compound UIr3 will be considered as representative for

this class of materials.

21.5.1 Fermi surface measurements in UIr3

The AuCu3‐type compounds were perhaps the most extensively studied within

the actinide group in the early years. They form readily (the phase often forms

congruently from the melt and thus allows for very pure single crystals) which is

just one more indication of strong bonding. UIr3, like many of its isostructural

materials, displays a large but temperature‐independent paramagnetic suscepti-

bility (of the order of 10–8 m3/mol), thus indicating no localized magnetic

moments. Its resistivity (linear with T at high temperatures) is of the order 20

mO cm at 300 K, which is again large but not when compared to Pu. It does,

however, indicate that even in these relatively simple metals, one obtains some

correlated electron behavior, not explained by the free‐electron model.

In the 1970s, Koelling and coworkers calculated the electronic structure of

UIr3 as well as other U compounds using DFT, and found excellent agreement

with experiment (see Arko et al., 1985). Fig. 21.8 shows the measured de Haas–

van Alphen frequencies (proportional to the extremal cross‐sectional areas of
the various pockets of the Fermi surface) for various directions of the magnetic

field along symmetry lines. These are superimposed on dHvA frequencies

calculated from the DFT band structure (solid lines) along the same symmetry

directions. The agreement is phenomenal, especially when one considers that

many of the refinements of DFT were not yet available in the early 1970s. Both

the calculated Fermi surface volume and the topology are experimentally

reproduced (Arko et al., 1985).

It has been assumed that the Fermi surface remains unaltered in the presence

of electron–electron correlations from what it would be in the absence of such

interactions (Luttinger theorem; Luttinger, 1960). Thus, under this supposition,

calculating the Fermi surface correctly is no proof of the validity of DFT.

However, the Luttinger theorem states that only the Fermi surface volume is

preserved, since the number of quasiparticle (defined below) states corresponds

to the number of free‐electron states. The topology, on the other hand, might be

allowed to change if bands at the Fermi energy are altered by the interactions.

Calculating the correct topology from DFT would suggest that the correlations

are relatively weak and their effects have been included. In the case of UIr3, this

appears to be the case. This conclusion is reinforced by the observation that the

measured m* values do not exceed five times m0. Recall that m* is a rough

measure of the electron–electron correlation strength.

21.5.2 Background on photoemission measurements

Since the dHvA effect only probes the states near EF it is useful to consider other

measurements that probe the electronic structure at higher binding energies.

Perhaps the most direct such measurement is PES. In its simplest form this
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measurement assumes that when an electron in quantum state k and energy

eigenvalue Ek absorbs a photon and is ejected from the solid, the measured

binding energy, EB, is

EB ¼ EB;k ¼ �Ek ð21:14Þ
and the spectral function is a delta function at E ¼ –Ekv (i.e. absorption occurs

at EB and not elsewhere). This is referred to as Koopmans’ theorem or the

sudden approximation. For a non‐interacting free‐electron gas, this approxima-

tion seems reasonable. Even in the presence of small interactions, the above rule

holds to a good approximation. However, in an interacting system, there occurs

Fig. 21.8 de Haas–van Alphen results indicating extremal areas for the Fermi surface of
Uir3. The open circles are the experimental data and the solid line is the DFT calculation.
The agreement between experiment and theory is quite good over a large portion of the
crystal structure (after Arko et al., 1985).
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a relaxation in the (N–1) electron solid and the relationship no longer holds. It

becomes necessary to renormalize Ek by adding a correcting self‐energy term

S(k,E) (Louie, 1992).
Assuming small corrections by measuring both the kinetic energy in vacuum,

EKin, and angle y of the outgoing electron (y is measured relative to the surface

normal), it is possible to determine both the energy and the momentum of the

electron prior to the absorption of the photon; i.e. its energy state in the metal.

The relationship is given by EKin ¼ hn–EB–f, where EKin is as above, hn is the
photon energy, EB is the binding energy (or Ek) of the electron, and f is

the work function, or the energy lost in exiting the surface of the sample. The

momentum components parallel and perpendicular to the sample surface are

given by:

kjj ¼ ð
p
2mEKinÞ sinðyÞ; and k? ¼ ðp2mEKinÞ cosðyÞ: ð21:15Þ

Since a photon does not change the direction of electron motion, the momentum

information is preserved on photon absorption (so‐called direct transitions).

Indeed, as the electron exits through the sample surface, k|| is preserved. An

excellent reference for photoemission is the volume edited by Kevan (1992).

It is possible to determine electron momentum, k, and map out the E(k) vs k

dispersion – i.e. the band structure by selectively sampling only electrons

emitted in a narrow range of angles y and measuring their energy. This is the

so‐called angle‐resolved photoemission spectroscopy (ARPES). On the other

hand, if the measurement accepts all electrons with a wide range of y into the

spectrometer, this will integrate over all momenta and yield, to a first approxi-

mation, the DOS. This is referred to as angle‐integrated photoemission, or PES.

An important variation of PES is the so‐called resonant photoemission.

In simplified form, the data are taken at two photon energies: at the Fano

resonance and at the Fano anti‐resonance (Fano, 1961). The resonant energy

roughly corresponds to a core level binding energy (in the case of U, hn ¼98 eV,
which is nearly the binding energy of the 5d5/2 core level). At this photon

energy, the 5f photoemission cross section is greatly enhanced, while at the

anti‐resonance (hn ¼ 92 eV for U), the 5f emission is strongly suppressed. By

subtracting a PES spectrum taken at hn ¼ 92 eV from one taken at hn ¼ 98 eV

one obtains the PES emission due to 5f electrons only. To a first approximation,

this allows the measurement of the 5f DOS. Clearly this is a powerful tool. A fine

reference for actinide photoemission is the chapter by Naegele et al., (1985).

21.5.3 Photoemission in UIr3

The ARPES measurements on UIr3 is shown in Fig. 21.9 (Arko et al., 1983).

Most of the experimental data points (EB,k) fall on top of the calculated bands,

the notable exception being the experimental band labeled ‘e’ (see below). Since

this data was obtained on a first generation synchrotron at 300 K with
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Fig. 21.9 ARPES measurements and comparison to DFT calculations for Uir3. The
experimental data are the symbols and the calculation is represented by the solid lines.
The agreement between experiment and theory is again quite good. The synergy between
ARPES and DFT calculations is obvious in this comparison between the experimental and
computational E(k) diagrams (after Arko et al., 1983).



resolution no better than 200 meV, the agreement between experiment and

theory is quite good. High‐resolution low‐temperature data would clear up

the details at EF, but from the data above the calculated bands at EF are correct.

The 5f DOS is obtained by the resonance photoemission measurement

described above (Arko et al., 1983). Fig. 21.10 shows the calculated 5f DOS

in UIr3 as well as the measured result labeled 5f PES (dashed line). Although

there appears to be a problem with intensity, it is necessary to consider that the

5f photoemission cross section varies with binding energy. If the 5f photoemis-

sion cross section is convoluted with the calculated 5f DOS, nearly perfect

agreement with experiment is obtained. Thus UIr3 (and the analogous

compound URh3) are simple band‐like materials.

A vexing problem is band ‘e’ in Fig. 21.9, which has all the characteristics

of a satellite. It is situated in a large gap in the calculated bands so that it is

unlikely to be reproduced by DFT even with today’s refinements. It was initially

Fig. 21.10 The calculated density of electronic states for UIr3 compared against resonance
photoemission. The resonance PES strongly enhances the 5f character in the spectrum. By
separating the 5f component of the density of states in the DFT calculation, a direct
comparison is made between experiment and theory. When the theoretical 5f DOS is
modulated by the 5f cross section as a function of binding energy before comparison
to the resonance photoemission, the results again show very good agreement between
experiment and theory.
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attributed to Umklapp processes (translations by a reciprocal lattice vector,

Arko et al., 1985). While this may yet prove to be the case there is a possibility

that it is due to correlations that are not contained within the DFT calculation.

Band ‘e’ suggests that despite the general agreement with DFT, there is more to

the story. It suggests electron correlation effects that are not strong enough to

result in a renormalization of the band structure. While satellites are common in

core level and atomic spectra, DFT is unable to account for such essentially

final‐state effects. By contrast, Fermi liquid theory, because of its different

approach to weak correlations, yields a satellite as a natural consequence of

the incoherent part of quasiparticle (see below) spectral weight (Kevan, 1992).

Although band ‘e’ is not assigned to the incoherent part of the 5f spectral weight

(it appears to be at a very high binding energy), this point is considered because

of its applicability to more strongly correlated systems considered later.

21.6 WEAK CORRELATIONS – LANDAU FERMI LIQUID

Prior to the development of DFT, Landau (1957) argued that electrons in the

conduction band act as if they were nearly free even though the individual

electrons are subject to strong Coulomb forces. Landau’s idea was based on

the effect of the electrons’ correlated motions from mutual interactions in the

solid. The electrons tend to ‘clothe’ themselves, so as to screen their charge (the

details are complex and involve the entire system). These ‘clothed’ electrons

were called ‘quasiparticles’. Based on properties of strongly interacting

electrons at the Fermi level, Landau showed that the system of strongly inter-

acting electrons can be remapped onto a system of weakly interacting quasi-

particles, which preserve some characteristics of electrons such as spin,

momentum, and charge, while other quantities like the mass are renormalized.

The consequence is that expressions known from weakly interacting electrons

and describing temperature dependences of magnetic susceptibility, electrical

resistivity, and specific heat preserve the same analytical form, while only

prefactors are renormalized by the interactions. In mathematical terms, Ek is

renormalized, as above, so that E1
k ¼ E0

k þ Sðk;EÞ, where E0
k is the free particle

eigenvalue, and S(k,E) is the self‐energy term with real and imaginary compo-

nents. For the weakly interacting Fermi liquid, S(k,E) can be parameterized in

the form

Sðk;EÞ ¼ aE þ ibE2 ð21:16Þ
The general effect of S(k,E) on photoemission (see Kevan, 1992 for a complete

derivation) is to yield a spectral function (for E1
k) consisting of a coherent

part called the quasiparticle peak, and an incoherent part which can, in a

loose fashion, be associated with a satellite resulting from a relaxation of

the (N–1) particle system. A schematic of such a spectral function is shown in
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Fig. 21.11. In atomic spectra such satellites are referred to a shake‐up satellites.

The strength of the incoherent peak increases with increasing interaction

strength. For the weakly interacting Fermi liquid it can be shown that the

coherent part of E1
k (the position of the quasiparticle peak) is given by

E1
k ¼ E0

kð1� aÞ�1: ð21:17Þ

The resolution at EF in Fig. 21.9 is insufficient to draw conclusions regarding

E1
k, but it is possible that the very weak band ‘‘e” can be associated with the

incoherent part of E1
k.

It is useful to look at the signature that a Fermi liquid has on electrical

resistivity. The net effect of the correlations is to contribute a quadratic temper-

ature term to the resistivity at low temperatures; i.e., r(T) ¼ aT2 where a is a

constant. If the interaction is sufficiently strong, this term, due to electron–

electron interactions, will dominate over the weak T5 term at very low tem-

peratures. At higher temperatures, of course, the usual linear term may be

expected. Fig. 21.12 shows plots of resistivity vs temperature for several actinide

Fig. 21.11 A schematic representation of a photoemission spectrum within a correlated
electron description of the system. The coherent portion of the spectrum would represent the
well‐defined quasiparticle character described by Landau’s Fermi liquid theory, and the
incoherent portion would represent emission not consistent with such well‐defined quasipar-
ticles. The self‐energy which contains all of the interactions beyond the one‐electron picture
may represent both a shift in energy and a broadening from the one‐electron states.
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systems where clearly the T2 term is dominant. The T2 term persists in strongly

correlated systems so that all compounds are considered Fermi liquids if they

display a T2 rise in resistivity at low temperatures.

21.7 STRONG CORRELATIONS

21.7.1 Heavy fermions

Perhaps the most interesting compounds in the actinide series are the so‐called
heavy‐fermion compounds. In general, these are very narrow band materials on

the verge of localization whose conduction 5f electrons behave as if they had an

extremely heavy effective mass. Indeed they blur the distinction between itiner-

ant and localized states, making it seem as if there was a continuous transition.

Fully localized electrons, with their definite energy levels, can be thought of as

belonging to an infinitely narrow band and having an infinite effective mass

Fig. 21.12 Resistivity for Np, Pu, PuAl2, and UAl2 as a function of temperature. The T2

dependence of the resistivity clearly places these materials in the Fermi liquid category of
metals. At higher temperatures, additional effects beyond the electronic contributions begin
to have a substantial role in the resistivity (after Arko et al., 1972).
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since they are unable to travel beyond the bounds of their atomic site. The

effective masses of heavy‐fermion materials, by contrast, range from tens to

hundreds of times the mass of a typical itinerant electron in normal metals,

indicating a very low but finite velocity through the crystal.

The unusual collective ground states of heavy fermions arise from very strong

electron correlations involving the electrons in their narrow bands, and their

low‐energy excitations are associated with the spin and charge fluctuations

in that narrow band. Of the light‐actinide metals, only d‐Pu might be associated

with heavy‐fermion behavior, and even here there is room for debate. It is

the large An–An separation in compounds that results in the narrow bands,

particularly when hybridization is weak. Recent experiments on the phonon

dispersions by inelastic X-ray scattering for delta phase Pu (Wong et al., 2003)

demonstrate the unique nature of Pu and the complex interactions involving

electron-phonon coupling in this material.

Heavy‐fermion behavior was first discovered in Ce compounds having one 4f

electron; in particular, CeCu2Si2. Despite their magnetic susceptibility that at

high temperatures suggested magnetic behavior, the susceptibility became tem-

perature‐independent at the low‐T end and the material exhibited a supercon-

ducting transition with an extremely large specific heat anomaly. Subsequently

similar behavior was observed in materials having 5f electrons, initially UPt3
and UBe13. This was most unusual since it was assumed that nearly localized

electrons cannot even conduct electricity, much less support superconductivity.

It slowly became clear that a new ground state of matter existed, one in which

electron interactions were so highly correlated that only an extreme quasiparti-

cle picture could cause that behavior. More specialized information on heavy

fermion (both actinide and anomalous lanthanide) systems can be found in

reviews of Grewe and Steglich (1991) and Nieuwenhuys (1995).

The unusual bulk properties of UBe13 are displayed in Fig. 21.13. The

behavior of specific heat CP at low temperatures, particularly the extremely

largeCP/T ratio (in normal metals it is of the order 1 mJ mol�1 K�2) points to an

m* perhaps on the order of 1000 and is also reflected in the large superconduct-

ing anomaly. Note that the low‐temperature state of heavy fermions can be

superconducting, antiferromagnetic, or simply paramagnetic. In all cases, how-

ever, as shown for UBe13 in Fig. 21.13, the magnetic susceptibility (plotted as

1/w in Fig. 21.13) exhibits Curie–Weiss behavior at high temperatures, but then

levels off or even decreases at low temperatures. The upper critical field is

extremely high, reaching a value of 6 T at 0.4 K. A most unusual property is

the electrical resistivity, r, which has a negative temperature dependence down

to about 10 K, and then drops precipitously.

Although there remains disagreement as to the nature of this ground state,

the most widely accepted model is the so‐called single impurity model (SIM).

The origins of the SIM stem from the theory used for transition metal impurities

in a noble metal matrix, a true impurity scenario. The model was extended to

f‐electron systems and later to situations where the ‘impurity’ nature of the
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problem was far exceeded. This model presumably strictly applies to Ce com-

pounds having only one f‐electron, but the similarities of properties in all heavy

fermions suggest that one model might qualitatively apply to all. Attempts to

compensate for the SIM shortcomings in the area of periodicity have given rise

to extensions of the original idea in a periodic array with the Kondo lattice and

Anderson lattice being two such models. A more detailed description of these

models and predictions may be found inArko et al. (1999). The description given

here is for completeness and due to the lack of a more comprehensive model.

Within the SIM picture, the 4f or 5f electrons behave at high temperatures as

if they were localized magnetic impurities at binding energy ef (sometimes called

the bare f‐level), having no interaction with each other or non‐f electrons. As the

temperature is lowered, however, they do hybridize slightly with the remain-

ing non‐f conduction electrons via a Kondo‐like interaction whereby

the conduction electrons align antiparallel to the f spin in order to screen the

magnetic moment. The hybridization strength D is generally small. When

the moment is fully screened, the susceptibility becomes independent of T. At

still lower temperatures, this cloud of conduction electrons, which through

hybridization has acquired a small amount of f‐character, forms a coherent

Fig. 21.13 The thermodynamic properties (magnetic susceptibility, specific heat, and
magnetic field dependence of TC) of the heavy‐fermion–superconductor UBe13 are plotted
against temperature. The superconducting transition just below 1 K is clear from the
specific heat while the anomalous resistivity and susceptibility for a metal are plotted
on a much larger temperature scale showing the heavy‐fermion nature of UBe13 (after
Fisk et al., 1985).
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ordered array (Kondo and Anderson lattice models) and a very narrow f‐band
at the Fermi energy. The amount of f‐character at the Fermi energy is (1�nf)
where nf is nearly unity and represents the f‐character remaining in the localized

f‐state at ef – the bare f‐level. Essentially, D(1�nf) is the probability that

a conduction electron will occupy an already occupied f‐level. A very loosely

defined characteristic temperature, the Kondo temperature or TK¼ D(1�nf)/kB,
approximates the onset of coherence. Indeed, most properties of heavy fermions

in principle scale with TK.

The SIM more or less successfully explains the bulk properties shown in

Fig. 21.13. The heavy mass arises from the screening cloud and associated

spin fluctuations, the negative r(T) from the scattering from localized impurity

moments, and the precipitous drop in r is due to coherence. However, there are

numerous unresolved problems even for Ce compounds, among which is the

fact that the approximations of SIM are only valid for nf near unity (Arko et al.,

1999), whereas nf values as low as 0.5 have been erroneously ascribed to heavy

fermions.

Since the bare 5f‐level, essential to SIM, has never been clearly observed in

actinide compounds, Fig. 21.14 portrays instead photoelectron spectra of

CeBe13, having a TK of 400 K in order to elucidate some of the problems. The

near‐EF peak in the figure has been associated with the f‐density acquired by the

conduction electrons (the Kondo resonance), while the feature near�2.5 eV has

been associated with the bare f peak. Despite its crucial importance to the

validity of SIM, an unconventional temperature dependence has never been

established for the near‐EF peak. The problem remains unresolved in large

part due to the difficulty of the measurement and is outside the scope of this

chapter. Instead the focus is on only one of the many discrepancies with SIM,

namely the k‐dependence of the bare f‐peak evident in the figure between the

(100) and the (110) directions. This is totally inconsistent with the concept of a

localized state.

While the SIM appears to capture some of the physics associated with bulk

properties, its failure to incorporate periodicity causes it to fail the test of

microscopic measurements. Newer models such as the periodic Anderson

model (PAM) or the dynamical mean‐field theory (DMFT) (Savrasov et al.,

2001) do incorporate the f‐electron periodicity and show some promise, though

the calculations are extremely difficult. It is useful to also point out that in the

mid‐1990s, Bedell and his coworkers developed very simplified one‐ and two‐
band Fermi liquid models of heavy‐fermion compounds such as UPt3 (Sanchez‐
Castro and Bedell, 1993). The surprise was that these simplified models yielded

quantitative results in agreement with the low‐energy and low‐temperature

physics of these materials. This is presented here because the dispersing bare‐f
level of Fig. 21.14, while totally inconsistent with SIM, is consistent with Land-

au’s incoherent state. It would appear that Landau’s principle of one‐to‐one cor-
respondence between electron and quasiparticle states continues to have validity

and yields profound insights into systems of strongly interacting particles.
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21.7.2 Special case of plutonium systems

Plutonium and its compounds appear to present ground states different from

heavy fermions or predictions from DFT‐derived band structure calculations.

Even a‐Pu, which has been considered a relatively ordinary transition‐metal‐
like system based on the ability to correctly calculate its atomic volume,

does not yield PES results consistent with DFT calculations. All phases in the

ordered state, however, conform to the requirements of a Fermi liquid as shown

in Fig. 21.12. While the resistivities of both a‐Pu and d‐Pu closely resemble

resistivities of heavy fermions (see Fig. 21.15), the magnetic susceptibilities are

Fig. 21.14 Resonance photoemission data for the enhanced mass compound CeBe13 with a
characteristic temperature of 400 K. The PES data show two crystallographic orientations
which demonstrate major variations in the electronic structure of the material, particularly
the 5f levels, as a function of position in reciprocal space. The dotted vertical line at the zero
of binding energy is the Fermi level. The peaks centered between 2 and 2.5 eV below the
Fermi energy are attributed to the ‘bare’ f 0 peak in Kondo‐type description of the system.
The data are presented for freshly cleaned samples and three hour old samples in order to
assess the role of surface features in the electronic structure (after Arko et al., 1999).
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temperature‐independent, albeit large (of the order of 10�9 m3 mol�1). The
specific heat g‐values are 17 and � 64 mJ/mol. K2 for a‐ and d‐Pu, respectively,
which places them near the bottom of the range for heavy fermions (Lashley

et al., 2003). Eriksson et al. (1999) took a novel approach to the Pu problem and

explored the localization of an integral fraction of the 5f electrons in d‐Pu in

their DFT calculation (actually, the generalized gradient approximation or

GGA, which extends LDA), while allowing other 5f electrons to be itinerant

and involved in bonding. This is the mixed‐level model (Eriksson et al., 1999;

Wills et al., 2004). Using this technique, they were able to correctly calculate

the atomic volume of d‐Pu, as well as obtain agreement with PES spectra

(Joyce et al., 2004). Indeed, the same approach appears to work for several

other Pu compounds as well (Joyce et al., 2003). This computational scheme

provides an understanding of the 5f electronic structure as consisting of

5f electrons both in a localized as well as in an itinerant configuration for Pu,

which is the cross‐over point in the actinide series between localized and

itinerant f‐electron characteristics. The concept of the 5f electrons having a

dual nature is not unique to Pu metal or its intermetallic compounds. This

approach of separating the 5f character into localized and itinerant can also be

found in insulating Pu oxides and other actinide systems (Petit et al., 2003), the

magnetically mediated, heavy‐fermion superconductor UPd2Al3 (Sato et al.,

2001) and for the original actinide heavy‐fermion superconductor UPt3 (Zwick-

nagl and Fulde, 2003). For the d‐phase of Pu metal, the dual nature of the

5f electrons was initially proposed by Joyce et al. (1998). In Fig. 21.16

the energies are calculated for localized and itinerant 5f electrons for U, Pu,

and Am. Clearly, an itinerant 5f framework is appropriate for U and just as

clearly, a localized model is the choice for Am. In the boundary region of Pu, the

energy level for localized and itinerant 5f character are nearly degenerate, and

thus this mixed level character in Pu and Pu‐based compounds would not be

surprising.

An alternative interpretation for Pu PES results was considered (Gouder

et al., 2000; Havela et al., 2002, 2003). The fact that a number of Pu‐based
systems show similar characteristic narrow features in the range 0–1 eV below

EF led to a conjecture that details of particular band structure are not dominant

in this energy range. Instead final‐state effects, either a fingerprint of atomic‐
state multiplet (whose high‐energy lying states can be seen due to the excitation

at the photoemission process) in analogy to 4f systems, or a general structure

originating from many‐electron process, are responsible for the observed struc-

tures (Fig. 21.17). It is interesting that the 5f states tend to localize in ultra‐thin
layers, as the reduced mean number of nearest neighbors leads to a preference

for nonbonding 5f states. Calculations based on a DMFT may yield better

agreement in the future, but these calculations at this point are in the early

stages (see Savrasov et al., 2001).
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21.7.3 Non‐Fermi liquid effects and the quantum critical point

Actinide metals and most of their associated compounds typically follow the

Fermi liquid scaling of electrical resistivity and electronic specific heat. Their

respective coefficients reach the strongly renormalized (enhanced) values for

narrow 5f‐band systems. This contrasts with the systems with broad 5f‐bands on
one side and magnetic materials with sizeable moments on the other side, where

the respective coefficients reach smaller values. The latter case deals with

correlations of non‐f electrons only. But some compounds persistently fail to

meet the Fermi liquid rules at all. While the Fermi liquid concept requires

resistivity to increase from zero temperature with a T2 dependence, in such

anomalous cases the value of the exponent can be lower. Instead of the normal

constant value for C/T, logarithmically increasing C/T values with decreasing

T are found. Such behavior can be encountered in the vicinity of the onset

of magnetic ordering, in particular, if the parameters of the system are tuned so

that its critical temperature for magnetic ordering reaches the T ¼ 0 K limit. In

such a situation, thermal fluctuations are suppressed and quantum fluctuations

start to dominate.

Fig. 21.16 Total energy vs metallic radius (volume) for uranium, plutonium, and americi-
um treating the 5f electrons as either localized or itinerant. For uranium, the calculation
strongly favors an itinerant character to the 5f levels while for americium the localized 5f
character is favored. Plutonium sits at the boundary between localized and itinerant.
The boundary position of Pu supports the mixed‐level approach to treating Pu 5f electrons
(after Wills and Eriksson, 2000).
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Unfortunately, efforts to bring a system to this so‐called quantum critical

point by the proper doping of impurities into the system also results in a

randomness in the structure due to the statistical occupation of atomic posi-

tions. In most instances of non‐Fermi liquid (NFL) behavior, the explanation

has been one of disorder. Fig. 21.15a shows the resistivities of PuAl2 and other

materials whose low‐temperature resistivity has been shown to vary as T2 in Fig.

21.12. Upon disorder (via self‐damage by a‐particles), the resistivity of PuAl2 in

Fig. 21.15b no longer drops at low temperatures, but rather seems to level off.

Only about 1% of the sample is estimated to sustain disorder caused by damage

from a‐particle bombardment during 1 month of shelf time, assuming that no

room temperature annealing occurred. This shows how little disorder it takes

Fig. 21.17 Examples of UPS valence‐band spectra (hn ¼ 40.8 eV) of selected Pu systems
and Am demonstrate the effect of the 5f localization (in Am and PuSb), which reduces the
spectral intensity at the Fermi level (E ¼ 0). More itinerant Pu systems (PuN, d‐Pu, PuSe)
exhibit a high spectral intensity at EF, while a variable fraction of the localized 5f states is
observed 1–3 eV below EF. The latter dominates also for one monolayer of Pu on Mg. The
dotted lines indicate positions of rather generally occurring features, which do not belong to
particular DFT electronic states. (Reprinted with permission from Havela et al., 2003.)
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to destroy coherence in very narrow bands. The resistivity of Fig. 21.15a can

be entirely reproduced by annealing the specimen at 1000�C for 12 h (Arko

et al., 1973).

One of the microscopic models accounting for the NFL behavior in such

inhomogeneous systems is based on a distribution of Kondo temperatures

TK due to the atomic disorder. Numerous such systems include (U,Y)Pd3,

U(Cu,Pd)5, or (U,Th)Ru2Si2. A summary of NFL features in actinides and

lanthanides can be found in Stewart (2001). Sometimes NFL scaling is observed

even in undoped systems. Undoubtedly in such a case the sample has the real

characteristics of strongly correlated systems. Approximate theories indicate

several fundamental classes of NFL behavior (instead of one class of FL

scaling) which depend on the character of magnetic interactions (ferro‐ or

antiferromagnetic) and on dimensionality (for example f‐sites may form weakly

interacting sheets or chains, thus reducing the effective dimensionality). These

parameters determine the degrees of freedom of the quantum fluctuations,

which affect the type of analytical behavior describing basic quantities. For

example, in the proximity of three‐dimensional ferromagnetism, the character-

istics r  Tn, n ¼ 5/3 and C/T  �ln(T/T0) are expected. For antiferromagnetic

coupling, the n value is reduced to 3/2 and further reduction takes place for

lower dimensionality. In the two‐dimensional case, n ¼ 4/3 and 1 for the

ferromagnetic and antiferromagnetic coupling, respectively. Although the ma-

jority of undoped NFL systems are found among Ce or Yb intermetallics, there

are also a few U‐based intermetallics. For example, at ambient pressure, NFL

features are observed in UCoAl, U2Co2Sn, or U2Pt2In. The review article by

Stewart (2001) describes these and other examples.

21.8 CONVENTIONAL AND UNCONVENTIONAL SUPERCONDUCTIVITY

Superconductivity, with its basic characteristic of the complete disappearance of

electrical resistivity at low temperatures, has been traditionally considered as a

contradiction to magnetic ordering. The reason is related to the Cooper pairs,

consisting of two electrons with opposite momentum and spin, which are the

basic ingredient of the superconducting state (Bardeen et al., 1957). Indeed, a

very small admixture of magnetic ions into a normal superconductor rapidly

suppresses the superconductivity, and this phenomenon has to be attributed to

the breaking of such electron pairs by exchange interactions, which prefer a

parallel orientation of electron spins.

This conventional superconductivity is commonly found in actinides that are

only weakly magnetic, although the critical temperatures Tc are very low. For

example, Tc ¼ 1.37 K for Th (Gordon et al., 1966), 1.4 K for Pa (Fowler et al.,

1965), and 0.68 K for a‐U (Hein et al., 1957). For heavier actinides, super-

conductivity was found for Am (Tc ¼ 0.79 K) (Smith and Haire, 1978).

Similarly, intermetallic compounds with high actinide content also tend toward
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superconductivity. The highest Tc values are found in compounds of the form

U6T, where T ¼Mn, Fe, Co, Ni, reaching the highest Tc ¼ 3.7 K for U6Fe, and

U3Ir (Tc ¼ 1.24). Several others, U3Si, U3Os, U2Ti, all have Tc below 1 K (see

Sechovsky and Havela, 1988 and references therein). The same is true for

amorphous U‐rich systems (metallic glasses) (Poon et al., 1985), while similar

Th‐based systems (e.g. Th80Co20) reach Tc at nearly 4 K. For lower U content, a

tendency to magnetic ordering appears and superconductivity ceases. But this is

not universally the case. A strange island of superconductivity was discovered

for some compounds with a high inter‐uranium spacing, which have character-

istics close to a normal magnetic ordering (UBe13, UPt3, see above). (Ott and

Fisk, 1987). Some variations of these compounds even order antiferromagneti-

cally and the magnetic order and superconductivity coexist. In this case of so‐
called unconventional superconductivity, the pairing mechanism of the Cooper

pairs is related to magnetic interactions instead of the electron–phonon cou-

pling of normal Cooper pairs (Bardeen et al., 1957) in the BCSmechanism. Here

the superconducting state may be based on electrons with parallel spins (as

opposed to antiparallel) with the total wave function therefore having a differ-

ent symmetry. This phenomenon is called d‐wave or p‐wave symmetry in

contrast to the s‐wave symmetry in conventional BCS superconductivity. Such

superconductors can be strongly anisotropic, including the anisotropy of the

superconducting gap, and the superconducting state also can be much more

resistant against a magnetic field (Ott and Fisk, 1987). The intimate connection

of the superconductivity and the heavy‐fermion character of the electronic

structure is manifest in the huge jump of the specific heat C, scaling with gTc.

This scaling strongly suggests that the heavy‐fermion character and the

superconductivity are related to the same set of 5f electrons.

The most prominent materials among unconventional superconductors were

already mentioned in the Heavy Fermion section. In the first of these, UBe13, Tc

can reach 0.85–0.90 K, and is very dependent on the actual purity of the sample

(Ott and Fisk, 1987). This compound is of particular interest by virtue of its

enormous g (g ¼ 1100 mJ mol–1K–2 and it is one of the U compounds with the

most ‘heavy’ electrons) and its strongly anomalous resistivity in the normal

state, increasing with decreasing T towards a sharp maximum at T ¼ 2.5 K. It

was first assumed to be non‐magnetic, but very small static magnetic moments

of 0.001mB were deduced from muon spin‐relaxation studies (Heffner et al.,

1990). The very high upper critical field Bc2¼ 9 T (considering the low Tc value)

is consistent with the unconventional nature of the superconductivity.

UPt3 with g ¼ 420 mJ mol–1 K–2 can be also classified as a heavy‐fermion

superconductor. The superconducting transition temperature again depends

strongly on the sample quality. A Tc of 0.53 K can be obtained in well‐annealed
samples (Franse et al., 1984). Unlike UBe13, UPt3 displays well‐documented

antiferromagnetic correlations, shown by neutron scattering experiments. An

unusual static magnetic order with very low magnetic moments develops below

about 5 K (Aeppli et al., 1988).
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Superconductivity (Tc ¼ 0.8 K) and antiferromagnetism (TN ¼ 17.5 K)

coexist also in URu2Si2, which has only a moderate g value (75 mJ mol–1 K–2)

(Maple et al., 1986). Although ordered magnetic moments do not exceed

0.04mB/U where mB is the Bohr magneton, the specific heat anomaly at TN and

the total entropy related to magnetic ordering is so large that there appeared

numerous speculations about other type of ordering (e.g. quadrupolar), invisi-

ble to the neutron diffraction, which could induce a secondary weak magnetic

ordering. The search for this so‐called hidden order is still in progress (see for

example Chandra et al., 2002). An alternative approach, based on dynamic

long‐range correlations carrying a large magnetic entropy, has been proposed

(Bernhoeft et al., 2003).

Even larger ordered moments and higher superconducting transition tem-

peratures are found in the superconducting antiferromagnets UPd2Al3 and

UNi2Al3. UPd2Al3 has a higher ordered moment (0.85 � 0.03)mB/U and order-

ing temperature of 14.4 K (Krimmel et al., 1993). Unlike the Néel temperature,

the superconducting critical temperature is strongly sample dependent, varying

with a slight off‐stoichiometry and/or heat treatment of single crystalline sam-

ples between 1.5 and 2.0 K. An interplay of superconductivity and magnetic

fluctuations revealed by inelastic neutron scattering (Bernhoeft et al., 1998)

indicates importance of magnetic interactions in the unconventional supercon-

ductivity mechanism. UNi2Al3 orders antiferromagnetically below TN ¼ 4.5 K

and the magnetic order coexists with superconductivity below Tc � 1 K (Geibel

et al., 1991), g reaches 140 and 120 mJ mol–1 K–2 for the Pd and Ni compounds,

respectively.

All these compounds are very exotic, but even more surprising was the recent

discovery of the ferromagnetic superconductors UGe2 and URhGe. The super-

conductivity in UGe2 appears only in a state induced by high pressure. Al-

though high pressure finally led to the suppression of magnetism, at pressures

around 12 GPa, where the superconducting temperature reaches its maximum

(about 0.7 K), the magnetization still corresponded to about 0.8mB/U with the

Curie temperature at about 30 K. The superconductivity disappeared in fields of

several tesla, where a high‐magnetization state was induced in a first‐order
magnetic phase transition. An overview of the data on this compound as well

as on URhGe is given in Flouquet et al. (2003). On the other hand, URhGe is

already superconducting at ambient pressure. Its critical temperature reaches

only 0.3 K (Tc ¼ 9.5 K), with U moments around 0.4mB/U.

The most recent breakthrough in the superconductivity of actinides was the

discovery of Pu‐based nearly magnetic systems with superconductivity in the

temperature range exceeding 18 K (Sarrao et al., 2002). The fact is surprising

because PuCoGa5 is the first known Pu superconductor. The Ce‐based isostruc-

tural compounds CeCoIn5, and CeIrIn5 are superconducting also, but only in

the 1 K range, and for CeRhIn5 only under pressure. The high g value of

PuCoGa5, 77 mJ mol–1 K–2 points to strong electron–electron correlations.

This value, and the high estimated upper critical field 74 T, is indicative of
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an unconventional superconductivity. The Tc of PuCoGa5 can be further en-

hanced to about 22 K by applying pressure (Griveau et al., 2004). PuRhGa5 is

superconducting, as well, with Tc ¼ 8.6 K (Bauer et al., 2004).

21.9 MAGNETISM IN ACTINIDES

The peculiar character of the electronic structure of actinides, with the 5f states

ranging between localized and itinerant, implies an extreme variability of mag-

netic features of elemental actinides as well as actinide‐based alloys and inter-

metallic compounds. The gradual filling of the 5f shell in the sequence of

actinide elements does not dominate the development of the magnetic proper-

ties of the pure elements in the way expected on the basis of parallel lanthanide

series. This is especially true for the early actinides, in which a 5f band is formed,

as described in Sections 21.3 and 21.4. Therefore more similarity is found with

the d transition metals, exhibiting broad s and p bands and narrow d bands. As

a consequence, the density of electronic states at the Fermi level, N(EF), is a

more important parameter than the filling of the 5f band itself. The inter‐
actinide spacing has a crucial role. For pure elements, it is too small, and

substantial 5f–5f overlap leads to a rather broad 5f band and weak magnetic

behavior.

For heavier actinides (from Am onwards) the 5f localization was documented

for the pure elements, and atomic correlations in analogy to rare earths leads to

the formation of local moments and their ordering. At closer inspection, specific

features of band magnetism appear in systems based on elements up to Pu. The

main characteristics of the 5f band magnetism comprise strong spin–orbit

interaction, leading to large orbital moments formed even in the case of band‐
like states, exchange interactions mediated or assisted by the hybridization of

the 5f states with the ligand states, and enormous magnetic anisotropy arising

from the anisotropy of the hybridization (bonding anisotropy). Another char-

acteristic is a high sensitivity of magnetic properties to external variables, like

pressure, magnetic field, and to fine details of composition. More detailed

information can be found in review chapters (Sechovský and Havela, 1988,

1998). Electronic structure calculations based on the density functional ap-

proach are discussed by Johansson and Brooks (1993) and by Norman and

Koelling (1993). The impact of magnetism on transport properties for actinides

and lanthanides are compared by Fournier and Gratz (1993).

21.9.1 General features of magnetism of light‐actinide systems

The fundamental difference between the character of the 4f electron states in

lanthanides and the 5f states in light actinides can be attributed to a much larger

spatial extent of the 5f wave functions, and thus a much stronger interaction

with their metallic environment, compared to the 4f case. The 5f electrons are, as
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a rule, delocalized due to their participation in bonding, which leads to a

considerable hybridization of the 5f states with the valence states of neighboring

atoms (5f‐ligand hybridization). The delocalization of the 5f electrons has

serious consequences, such as the formation of a more or less narrow 5f band

intersected by the Fermi energy EF (the bandwidthW5f is of the order of several

eV) rather than discrete energy levels. Consequently, the magnetic moments due

to the itinerant 5f electrons are much smaller than expected for a free ion

(irrespective whether the L–S or j–j coupling schemes are used – ground state

magnetic moments are similar), and magnetic moments can disappear in a

broadband limit leading to weak temperature‐independent (Pauli) paramagne-

tism. This situation resembles to a certain extent the 3d transition metals. The

strength of magnetic coupling in cases of existing 5f moments is typically much

larger than for the 4f moments interacting via the Ruderman–Kittel–Kasuya–

Yosida (RKKY) interaction, which is reflected by higher ordering temperatures

compared to isostructural rare earth systems. The impact on magnetic excita-

tions is even more dramatic, no crystal‐field excitations can be observed by

inelastic neutron scattering in the vast majority of systems studied so far, but a

rather broad quasielastic response reflecting the 5f‐moments instability in anal-

ogy to, for example, cerium mixed valence materials is observed (Holland‐
Moritz and Lander, 1994).

21.9.2 Magnetism in pure An elements

A small separation between the ions of the pure elements leads to large overlap

of the 5f wave functions of nearest neighbors, amounting to the formation of a

broad 5f band and weakly paramagnetic behavior. With increasing 5f occupa-

tion, the value of the Pauli‐type susceptibility increases due to the increase of N

(EF), the DOSs at the Fermi level, which is corroborated by a similar increase in

the low‐temperature electronic specific heat coefficient g (see Table 21.1). This

tendency is interrupted between Pu and Am, where the 5f states localize, and do

not contribute to bonding for heavier actinides. The reason for the localization

(and loss of the 5f bonding energy) can be found qualitatively in the gain of

electron correlation energy for atomic‐like 5f states (which is partly lost in the 5f

band case). For details, see Johansson and Brooks (1993).

Quantitatively, the lack of magnetic ordering can be deduced from the Stoner

criterion, which specifies conditions for magnetic ordering in band systems. If

the Stoner productU*N(EF), which contains besides the DOS at the Fermi level

the intra‐atomic Coulomb interaction parameter U, is larger than 1, the spin‐up
and spin‐down sub‐bands are not occupied equally and net magnetization

arises. For light‐actinide metals, this criterion is not fulfilled and the sub‐
bands are not split. Light‐actinide metals can lower their electron energies by

forming different open crystal structures, sometimes of a very low symmetry

(in analogy to Jahn–Teller effect). The best example of this phenomenon is

Pu having six allotropes, with the ground‐state allotrope, a‐Pu, showing a
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complicated monoclinic structure. A similar situation is found in a‐U, the

structure of which is orthorhombic, but an incommensurate charge‐density
wave is formed below T ¼ 43 K (Lander et al., 1994). Due to the weakly

magnetic character, superconductivity can appear at the beginning of the

actinide series, as mentioned earlier.

Plutonium, the element on the verge of localization, exhibits the most com-

plex behavior. Its room temperature phase, a‐Pu, is monoclinic with 16 atoms

per unit cell. At T ¼ 388 K, it undergoes a phase transition to an even more

complicated monoclinic b‐phase with 34 atoms per unit cell. For remaining

phases, most of data exists on the fcc d‐phase with four atoms per unit cell,

which has atomic volume expanded by 26% compared to the a‐phase, and which

can be stabilized by several percent doping with Al, Ce, Ga, or other trivalent

elements. Comparing the fcc d‐phase to the data for a‐Pu given in Table 21.1,

g is strongly enhanced to (64 � 3) mJ mol�1 K�2 (Lashley et al., 2003). It is an

interesting fact that all the Pu phases have only a small difference in magnetic

susceptibility (see Table 21.1). The highest value was recorded for the b‐phase,
which also exhibits a noticeable temperature dependence in the narrow temper-

ature range of its existence (Olsen et al., 1992). The most surprising is the lack of

magnetic order in the d‐phase with the largest atomic volume. LDA or GGA

calculations invariably lead to a magnetic state, with spin and orbital moments

only partially canceling each other (Söderlind and Sadigh, 2004). Méot‐
Reymond and Fournier (1996) discussed the properties of d‐Pu in terms of a

Kondo effect (i.e. many‐electron effect based on dynamical screening of a local

atomic spin by spins of conduction electrons) with the characteristic Kondo

temperature TK higher than room temperature. Also Savrasov et al. (2001)

suspect dynamic phenomena, described by a DMFT, to wash out magnetism.

Another conjecture trying to solve the d‐Pu puzzle is the idea that there are

magnetic moments in d‐Pu, but they are disordered, not leading to a long‐range
order (Niklasson et al., 2003). But as the low d‐Pu susceptibility is quite robust

with respect to various dopings or even lattice expansion (Hecker et al., 2004

and references therein), it seems that it is fundamentally non‐magnetic. Such

non‐magnetic character (S ¼ 0, L ¼ 0) could be obtained using an LDAþU
method, where U denotes an explicit involvement of intra‐atomic coulomb

correlations going beyond LDA (Shick et al., 2005) but this approach needs

to be reconciled with the photoemission and the enhanced mass results. Such

calculations suggest that the 5f count in d‐Pu is about 5.5, and is not only much

higher than typically 5.0 in a‐Pu, but relatively close to the non‐magnetic 5f6

configuration.

The elements beyond Pu behave rather similarly to the lanthanide series. The

analogy starts with the crystal structures. Am, Cm, Bk, and Cf all have

dhcp structures, but the structures change and the 5f states delocalize under

external pressure, yielding low‐symmetry structures of the light‐actinides type
(Lindbaum et al., 2003). The non‐magnetic ground state of Am (exhibiting a

low value of g and quite high Van Vleck susceptibility) can be understood in the
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framework of either L–S or j–j coupling for the 5f6 configuration. Most of

information on curium (Cm) was obtained on the 244Cm isotope (half‐life 18

years), which is available in large amounts (milligrams) but displays high self‐
heating and radiation damage. A maximum in the magnetic susceptibility

indicating antiferromagnetic (AF) ordering was observed at T ¼ 52 K for this

isotope, and a simple antiferromagnetic order was indeed confirmed by neutron

diffraction. For 248Cm, which has a longer half‐life of 340,000 years, but is

available only in small amounts, the antiferromagnetic ordering occurred at

T ¼ 64 K. Values of effective moment are compatible with meff ¼ 7.55mB
expected for the intermediate coupling model. Besides the ground‐state dhcp

crystal structure, a high‐temperature fcc phase can occur in a low‐temperature

metastable state. Its magnetic ordering temperature is enhanced to T ¼ 205 K.

Berkelium (Bk) and californium (Cf) can be studied only in sub‐milligram

quantities. For Bk, antiferromagnetic ordering was deduced below T ¼ 34 K.

Cf is probably ferromagnetic below approximately 51 K. Both materials display

meff values compatible with free‐ion theoretical values in the paramagnetic state.

Einsteinium, which can be studied in sub‐microgram quantities only, yields a

moment of 11.3mB, which is even somewhat higher than the theoretical value.

For more detailed information on magnetism of transplutonium actinides, see

the review of Huray and Nave (1987) and references therein.

21.9.3 Magnetic properties of actinide intermetallic compounds

Similar to pure actinide elements, the magnetic properties of intermetallic

compounds reflect the gradual filling of the incomplete 5f‐shell. In Th com-

pounds, the very small filling of the 5f states cannot give rise to the 5f magnetic

moments, and compounds are typically Pauli paramagnets with susceptibility

w0 of the order of 10
�9 to 10�8 m3 mol�1 for intermetallic compounds, indicating

a low DOS at EF. The ground state is frequently superconducting (Sechovsky

and Havela, 1988). Exceptions are compounds such as Th2Fe17 (TC ¼ 295 K)

and Th2Co17 (TC ¼ 1035 K), in which the magnetism is dominated by transi-

tion‐metal components (Buschow, 1971).

In the compounds of U, Np, and Pu magnetic ordering can appear when the

actinide–actinide spacing is enhanced to such an extent that the 5f‐band nar-

rowing and consequent increase of the DOS at EF leads to the fulfillment of the

Stoner criterion. The proximity of these elements to the boundary between the

localized and itinerant character of the 5f‐electronic states makes them very

sensitive to variations of the environment. In the first approximation, the width

of the 5f band can be taken as a function of the overlap of the 5f atomic wave

functions centered on nearest neighbors, and the increase of the overlap can be

taken as the principal delocalizing mechanism of the 5f electrons. The promi-

nence of the Hill limit, introduced earlier (see Fig. 21.7), is evident. The situation

is best documented for U compounds, where the Hill distance dU–U¼ 3.4–3.6 Å

is an approximate boundary value of the spacing, corresponding to the critical
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5f–5f overlap. For smaller spacing values, most of the compounds are non‐
magnetic (often superconducting), for dU–U larger than the Hill limit, the

compounds usually show a magnetically ordered ground state. The value of

the Hill limit should be taken as very approximative, the width of the 5f band is

naturally affected also by the coordination number.

For compounds with dU–U larger than the Hill limit, the principal control

parameter is not the U–U spacing, but the hybridization of the 5f states with

electronic states of other components. In particular, in compounds with transi-

tion metals, it is mainly the overlap of the 5f states with the d‐states of the

transition metal that affects the strength of the hybridization. The 5f states

remain pinned at the Fermi level in most cases, whereas the late transition

metals (as well as noble metals) being much more electronegative have their

particular d states shifted towards higher binding energies thus leaving the 5f–d

overlap small on the energy scale. The reduced 5f–d hybridization leads to the

onset of the 5f magnetism, whereas the d‐states are occupied more than in the

pure d‐element. Even if the d‐element itself is magnetically ordered (Co, Ni, Fe),

in the compound with U, it behaves as essentially non‐magnetic (a similar

effect appears in Th compounds). Exceptions are compounds with very high

content of the transition metal component, in which case the d‐magnetism can

prevail. In compounds with the earlier d‐metals like Fe or Ru, the d‐states
appear closer to the Fermi energy and the 5f–d overlap increases, leading

typically to a non‐magnetic ground state (as in UFeAl). But in some cases,

magnetic moments appear both on the U and transition‐metal ions. Prominent

examples are Laves phases with Fe, all ordering ferromagnetically. Relatively

high TC values (UFe2, 162 K; NpFe2, 492 K; PuFe2, 564 K;, AmFe2, 613 K)

point to the dominance of Fe–sublattice exchange interactions, but actinide

magnetic moments are non‐negligible, reaching 1.1mB/Np or 0.45mB/Pu. The
tiny total moment in the case of U is caused by the orbital (0.23mB) and spin

(0.22mB) components nearly canceling each other (Sechovsky and Havela, 1988

and references therein).

In compounds with non‐transition metals, it is mainly the size of ligand atoms

that affects the hybridization. Compounds with larger ligands are typically

magnetic (e.g. UIn3), whereas those with smaller ligands and greater hybridiza-

tion form broad bands with low N(EF) and are weakly paramagnetic (USi3).

Several characteristic groups of U compounds can be thus distinguished.

(a) Compounds with very high U content

The stoichiometry leads to a small U spacing, dU–U. The consequence is a broad

5f band similar to U metal. These compounds are weakly paramagnetic and

superconducting. The examples, U6Fe, U6Co, U6Ni, U3Ir, U3Si, U3Os, and

U2Ti were mentioned in the section on superconductivity. The lower U concen-

tration compound, which can be classified as a regular superconductor with

moderate dU–U ¼ 3.2 Å, UCo has TC ¼ 1.22 K (Chen et al., 1985).
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(b) Lower U content, small dU—U much below the Hill limit

This stoichiometry leads to a weakly paramagnetic behavior, possibly with an

influence of spin fluctuations, and the ground state is not superconducting. As

examples, one may give U3Si2, UAl2, or UCo2. The last two compounds belong

to an extended group of so‐called Laves phases, which combine atoms of two

different sizes into a very closely packed cubic or hexagonal structure. Therefore

although the U content is relatively low, the packing leads to dU–U much below

the Hill limit. Some of these compounds do not undergo magnetic ordering, also

partly due to the strong hybridization of the 5f states with the d‐state of

transition metal constituents (UMn2, UCo2, URe2). But the Laves phases

with Fe and Ni are ferromagnets, and belong therefore to the next group

(Sechovsky and Havela, 1988 and references therein).

(c) Itinerant ferromagnets with dU—U around or below the Hill limit, 3.4 Å

When proceeding from the most U‐rich compounds and decreasing the U

concentration, one observes magnetic order (ferromagnetism) at the 1:1 stoichi-

ometry. Typical examples have very small ordered moments and relatively high

ordering temperatures (UIr: TC ¼ 46 K, spontaneous magnetic moment

ms ¼ 0.45mB). For UNi2, the very small spontaneous moment 0.08mB/U led to

the conjecture that the magnetism was due to a small fraction of Ni atoms

occupying wrong crystallographic positions (Franse et al., 1981). But neutron

diffraction proved finally that magnetism was not carried by Ni, but by U, and

what is observed in the magnetization is a small difference between the

orbital and spin moments with antiparallel orientation (Fournier et al., 1986).

UFe2, the first U compound for which magnetic ordering was reported

(Gordon, 1949), is a somewhat different case. Fe atoms carry magnetic

moments (although much reduced by the hybridization compared to Fe

metal) and lead to a high Curie temperature TC ¼ 162 K. The nearly complete

mutual cancellation of spin and orbital moments reduces the contribution of U

to the total magnetization to practically zero, but polarized neutron diffraction

can accurately detect both components (for details, see Sechovsky and

Havela, 1988).

Focusing thus on the sequence of the U‐3d Laves phases, an interesting

non‐monotonic development of magnetism is observed. UMn2 is non‐magnetic

and strongly hybridized, as the 5f and 3d bands have a strong energy overlap,

and this situation does not allow the formation of Mn or U moments. In UFe2,

the 3d states shift towards somewhat higher binding energies, but the hybridiza-

tion with the 5f states, given by the energy overlap, remains strong. The Fe

sublattice orders ferromagnetically, allowing for the formation of the U

moments. In UCo2, the 3d band shifts even deeper and is close to filling. The

Fermi level is in a minimum between the 3d and 5f states, therefore magnetism is

lost again. For UNi2, the 3d band is filled, the Fermi level is on the ascending
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edge of the 5f band, and the Stoner criterion leads to magnetism of purely 5f

origin (Eriksson et al., 1989).

(d) Low U concentration, large dU—U, ferromagnetic ground state

Ferromagnetism appears typically for uranium compounds with a moderate

U–U spacing. For higher spacing, ferromagnetism changes to antiferromagnet-

ism due to a more indirect exchange interaction. The ferromagnet with the

highest dU–U (among known binaries) is UGa2 (shortest dU–U in UGa2 is 4.01

Å). It exhibits a sizeable spontaneous moment of 2.7mB/U and a rather high

TC ¼ 126 K (Andreev et al., 1979). As g is only about 5 mJ mol�1 K�2 (Ballou,
1983), it was often assumed to form 5f localized states, but both the decreasing

magnetization under pressure and microscopic (PES) data point to the itinerant

character (Reihl et al., 1985; Gouder et al., 2001). Another prominent represen-

tative of this group is UGe2 (TC ¼ 52 K, ms ¼ 1.43mB/U), mentioned in the

context of unconventional superconductivity, which was observed under

pressure (Saxena et al., 2000).

(e) Compounds with a very low U concentration

Within this group, the U—U spacing is significantly over the Hill limit, and

consequently the direct 5f–5f overlap becomes insignificant. The strength of the

5f–ligand hybridization determines whether the ground state is magnetic or

non‐magnetic. This can be well demonstrated for the series UT3 where T is a

transition metal and UX3 with X a p‐metal, all sharing the AuCu3 cubic

structure type. For UX3, the relation of the hybridization and the radius of

the p metal can be found. For large X‐radii, the falloff of the wave functions of
the X‐ligand at the U atom is generally small, and the hybridization is weak. For

small X ligands, the spatial variations of their wave functions are larger and the

hybridization is stronger (Koelling et al., 1985). The crossover from weak Pauli

paramagnetism to magnetic ordering occurs as X gets heavier, where X repre-

sents elements from the columns of the periodic table with p1 and p2 states. Thus

USi3, UGe3, and UAl3 are weak paramagnets, USn3 still shows non‐magnetic

spin fluctuations, whereas UGa3, UPb3, UIn3 and UTl3 are antiferromagnets.

The highest ordering temperature TN¼ 95 K was found in UIn3. In the group of

UT3 compounds, magnetic ordering depends mainly on the strength of the 5f–d

hybridization, modulated by the overlap of the two types of states determined

by the energy scale (Koelling et al., 1985). It is generally reduced for T at the end

of transition‐metal series, as the d band shifts below the Fermi level, whereas the

5f states stay pinned at EF. The development is similar to that in the Laves

phases, but no d‐originating magnetism is found in this group. UCo3, URu3,

URh3, and UIr3 are weak paramagnets, nearly magnetic UPt3 (heavy‐fermion

superconductor) and UPd3 with localized 5f2 states and a quadrupolar ordering

have a different structure type. UPd3 is thus an interesting reference case; no
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other binary compound exhibits the f‐states shifted from the Fermi level (shown

by PES; see Baer, 1984). Also neutron scattering experiments reveal well‐defined
crystal‐field (CF) excitations (Buyers and Holden, 1985; McEwen et al., 1993),

normally absent in the spectra of uranium intermetallics, and g reaches only

5 mJ mol�1 K�2 (Andres et al., 1978). Compounds with high concentrations of a

transition element can exhibit also high‐temperature magnetic ordering. For

example, ferromagnetic order with a high Curie temperature (360 K) in UCo5.3,

studied by Deryagin and Andreev (1978), is undoubtedly related to Co.

(f) Heavy‐fermion materials

The last group comprises those having a substantially enhanced g‐coefficient of
the specific heat and show a coexistence of magnetic ordering and superconduc-

tivity of an unconventional type. If these materials undergo a magnetic ordering,

the critical temperatures are very low. Typical examples are UCu5 (TN ¼ 15 K),

U2Zn17 (TN¼ 9.7 K), UCd11 (TN¼ 5 K), and the heavy‐fermion superconductor

UBe13. For details, see Ott and Fisk (1987) and references therein.

(g) Other compounds

Besides binary compounds, there exist large groups of ternary compounds,

often including a transition metal T and a non‐transition metal X (UTX,

U2T2X, UT2X2), which follow the tendencies of the 5f‐ligand hybridization

mentioned above. The advantage of studies of the 5f magnetism in such com-

pounds is that both the transition and non‐transition metal components can be

varied, while the structure type, i.e. the symmetry of environment of actinide

atoms, is preserved. Thus the crossover from a non‐magnetic to a magnetic

ground state can be studied in more detail.

Materials, which are in the boundary region (i.e. nearly or weakly magnetic),

show a variety of so‐called spin‐fluctuation features. Those with a non‐magnetic

ground state exhibit Curie–Weiss behavior of the magnetic susceptibility at high

temperatures, but at low temperatures, a broad maximum in w(T) appears (e.g.
URuAl, UCoAl), other types of spin fluctuations are characterized by a plateau

in w(T) below a characteristic temperature, and then a low‐temperature upturn

as found in URuGa (Sechovsky and Havela, 1998). High ordering temperatures

can be achieved with ternary compounds, for example, in compounds of the

UT10Si2‐type (ThMn12 structure type), in which both the U and transition metal

T (Fe, Co) carry magnetic moments. The highest TC ¼ 750 K was recorded for

U(Fe0.5Co0.5)10Si2 (Berlureau et al., 1991).

The occurrence of magnetic ordering in Np‐based compounds is dominated

by mechanisms analogous to their U‐counterparts. Important information is

obtained using the 237Np Mössbauer spectroscopy, which can determine micro-

scopic parameters of the Np magnetism such as the magnetic hyperfine field Bhf

on the Np nucleus. Values were found approximately proportional to the local
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Np magnetic moment mNp (Dunlap and Kalvius, 1985; Potzel et al., 1993):

Bhf /mNp ¼ 215 (T/mB). The boundary between the magnetic and non‐magnetic

behavior for different Npmaterials is not much different than for their U‐isotypes
and demonstrates that for Np compounds, the mechanisms of the 5f‐delocaliza-
tion play a comparable role. Thus the non‐magnetic behavior ofNp inNpGe3 and

NpRh3 has to be attributed to the 5f–p and 5f–d hybridization in analogy to

UGe3 and URh3 (Sechovsky and Havela, 1988 and references therein). On the

other hand, differences also exist. For example, NpSn3 is an itinerant antiferro-

magnet, whereas USn3 shows spin‐fluctuations not undergoing magnetic order-

ing. Such a difference can be generally attributed to a higher 5f count or weaker

5f delocalization. On the other hand, Np2Rh2Sn is a non‐magnetic spin fluc-

tuator, whereas U2Rh2Sn undergoes antiferromagnetic order (TN ¼ 24 K)

(Sechovsky and Havela, 1998). Moreover, 237Np Mössbauer spectroscopy

under high pressure has been a convenient tool to distinguish different types

of magnetically ordered compounds. For those with more stable5f moments,

the Np moment does not decrease with pressure in the GPa range while the

ordering temperature increases (e.g. NpCo2Si2), whereas a pronounced decrease

of both parameters points to a stronger 5f‐moment instability, e.g. as in Np

Laves phases NpOs2 or NpAl2 (Potzel et al., 1993 and references therein).

For intermetallic compounds of Pu, two tendencies cross each other. One is a

stronger tendency to 5f localization due to the proximity of the Pu–Am border-

line. On the other hand, the tendency to magnetism is diminished by small

free‐ion magnetic moments of the 5f5 state in both L–S and j–j coupling

schemes. For 5f 6, the moment is zero. For example, PuMn2 is a weak paramag-

net (although NpMn2 is a ferromagnet), and a similar situation is found for

the couples NpCo2–PuCo2 and NpNi2–PuNi2, and NpRe2–PuRe2. The Pu

compounds that order magnetically include PuRh2 (TN ¼ 10 K), PuFe2
(TC ¼ 564 K, due to the ferromagnetism of the iron sublattice), PuPt3
(TN ¼ 40 K), PuPd3 (TN ¼ 24 K), PuRh3 (TN ¼ 6.6 K). The knowledge of

magnetism of Am intermetallics is fragmentary. The ferromagnetism of AmFe2
(TC ¼ 613 K) is explained by the properties of the Fe sublattice. AmRh2 is a

paramagnet. For details, see Sechovsky and Havela (1988).

21.9.4 Magnetic properties of other actinide compounds

A large majority of actinide compounds even with non‐metallic elements have

metallic character. The magnetic behavior is dominated by the f–p hybridi-

zation, which has a dual role. It leads both to a delocalization of the 5f states

and mediates the exchange interaction. The metallic character appears in most

of the rocksalt‐type of compounds, monopnictides AnX (An ¼ U, Np, Pu,

X ¼ P, As, Sb, Bi) and monochalcogenides AnY (An ¼ U, Np, Y ¼ S, Se, Te),

which are magnetically ordered and reach appreciable temperatures for the

magnetic phase transition, as, for example, TN ¼ 213 K in USb or 285 K

in UBi. On the other hand, Pu monochalcogenides are semimetallic and
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non‐magnetic (for details, see Vogt and Mattenberger, 1993). Carbides, which

are of slightly under‐stoichiometric ratios (AnC1–x) are weakly magnetic for An

¼Th, Pa, U. NpC1–x is ferromagnetic below T ¼ 225 K, whereas

antiferromagnetic ordering is found up to about 300 K, depending on the x

values. PuC1–x undergoes antiferromagnetic ordering with TN ranging between

100 and 30 K, depending on the stoichiometry (Fournier and Troc, 1985). A

large data set exists for nitrides AnN. Whereas ThN and AmN are weakly

magnetic, magnetic ordering appears for UN (TN ¼ 53 K), NpN (TC � 90 K),

presumably also in PuN (TN¼ 13 K), in CmN (TC¼ 109 K), and data exist even

for BkN (TC ¼ 88 K). For other compounds, high‐temperature magnetic

ordering can be found, for example, in U3As4 (TC ¼ 196 K), U3Sb4 (TC ¼ 146

K), or even 400 K for antiferromagnetic ordering in U2N2As. USb2 and UAs2
are antiferromagnets with TN ¼ 205 and 273 K, respectively (Fournier and

Troc, 1985). The magnetism of actinide dioxides is covered in Chapter 18.

U forms a trihydride with hydrogen known to be a ferromagnet (TC¼ 180 K).

antiferromagnetic order was found in PuH2 (TN ¼ 30 K), whereas PuH3 is

ferromagnetic (TC ¼ 101 K) (Aldred et al., 1979) Np hydrides are weakly

paramagnetic, which can be understood as due to crystal field effects for the

5f4 ionic state (Aldred et al., 1979). For a review covering hydrides, see

Wiesinger and Hilscher (1991). Hydrogen can be absorbed also by a number

of binary and ternary intermetallic compounds. Similar to elemental light

actinides, it strongly supports the tendency to form local 5f magnetic moments

and order magnetically, which can be at least be partly attributed to the 5f‐band
narrowing due to enhanced inter‐actinide spacing. Actinide compounds with

non‐metallic components are, togetherwith discussions of general aspects of acti-

nide compounds, covered in the review of Fournier and Troc (1985). Properties

of systems containing boron are covered by Rogl (1991).

21.9.5 Orbital moments in light actinides

Although the majority of light actinides and their intermetallic compounds are

characterized by itinerant 5f‐states, an important difference with 3d magnetics is

in the energy of the spin–orbit coupling DS–O and the width of the 3d (5f) band

W3d (W5f). Whereas DS–O<< W3d, their respective values in light actinides

become comparable because DS–O(5f) is of the order of eV. The relevant energy

scales are indicated in Table 21.2. Due to the strong spin–orbit interaction,

typically a large orbital magnetic moment mL is induced. It is antiparallel to the

spin moment for U, in analogy with light lanthanides and the third Hund’s rule

stating that the total angular momentum is given by J¼ L–S for the first half of

the series. The existence of such orbital moments for the 5f‐band systems was

revealed first from band structure calculations involving a spin–orbit interac-

tion term coupling the spin and orbital moment densities. Experimentally it was

confirmed by the studies of the neutron form‐factor, which adopts a very

specific shape with a maximum, especially if the spin and orbital moments are

2362 5f‐electron phenomena in the metallic state



of the same size. Such a case, where the total moment is close to zero, but the

spatial extent of spin and orbital moment densities is different, was observed for

example in UNi2 or UFe2. In the latter case, the U‐moment consists of the

orbital part mL ¼ 0.23mB and mS ¼ –0.22mB. Recently, orbital moments became

accessible also in X‐ray scattering studies using synchrotron radiation. The

strong spin–orbit interaction leads to a characteristic shape for the 5f band

consisting of two features, the lower states classified as j ¼ 5/2 (containing six

states per atom), and the upper states classified as j ¼ 7/2 (with eight states per

atom). The magnitude of the splitting (up to 3 eV) leads to the formation of a

minimum between these features. The weaker tendency to magnetic ordering in

Pu systems comparing to Np can be understood as due to the lower sub‐band
being nearly filled.

A different sensitivity of the spin or orbital moments to external variables led

to the assumption that the ratio of orbital and spin moments should reflect the

degree of the 5f‐delocalization. Indeed, as seen from Fig. 21.18, the compounds

showing the least delocalized nature of the 5f states (UO2, USb, NpAs2, PuSb)

Fig. 21.18 Ratio of the orbital mL and spin mS moments in a number of magnetically
ordered materials plotted as a function of the number of the 5f‐electrons. The triangles,
which are connected by a dashed line, are the values derived from single‐ion theory including
intermediate coupling. Experimental results are shown by open circles. Results of band
structure calculations are shown by solid circles. (Reprinted from Sechovsky and Havela,
1998, with permission from Elsevier.)
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are located on the line representing values of –mL/mS of a free 5f
n ion. On the other

hand, magnetically orderedmaterials with presumably the most itinerant 5f states

(UFe2, UNi2, NpCo2, PuFe2) have this ratio close to 1 (Lander et al., 1991).

Relatively large orbital moments induced by the magnetic field exist probably

even in weakly paramagnetic materials like U metal. Surprisingly, in an external

magnetic field, the spin and orbital magnetic moments orient parallel to each

other, as shown by a simple balance of the Zeeman and spin–orbit energy in the

case of weak susceptibility (Hjelm et al., 1993).

21.9.6 Exchange interactions and magnetic anisotropy

Exchange interactions in materials with localized 5f states can be seen as

analogous to the lanthanides, for which the indirect exchange of the RKKY‐
type (oscillatory) is a good approximation. The other limit, systems with

strongly itinerant 5f states can be understood in terms of the Stoner–

Edwards–Wohlfarth theory for itinerant magnets (one band model), in which

the ordering temperature is proportional to the ordered moment. For interme-

diate delocalization, when the direct 5f–5f overlap is negligible, two types of

states have to be considered. 5f states are dominant for the moment formation,

but their interaction is mediated by the hybridization with broadband states.

Thus a dual role of the 5f–ligand hybridization has to be considered. It desta-

bilizes the 5f magnetic moments, but because the spin information is conserved

in the hybridization process, it leads to an indirect exchange coupling. The

maximum ordering temperatures consequently can be expected for a moderate

strength of hybridization, because a strong hybridization completely suppresses

magnetic moments, whereas a weak one leaves moments intact, but their

coupling is weak. Cooper and coworkers, on the basis of the Coqblin–Schrieffer

approach, have given a model leading to realistic results (Cooper et al.,

1985). The mixing term in the Hamiltonian of the Anderson‐type is treated

as a perturbation, and the hybridization interaction is replaced by an effective

f‐electron–band‐electron resonant exchange scattering. If the ion–ion interac-

tion is considered to be mediated by different covalent‐bonding channels, each

for a particular magnetic quantum number ml, then the strongest interaction

is for those orbitals, which point along the ion–ion bonding axis, and which

represents the quantization axis of the system. The two 5f ions maximize their

interaction by compression of the 5f charge towards the direction of the nearest

5f ion. This has serious impacts on magnetic anisotropy, because it means a

population of the 5f states with orbital moments perpendicular to the bonding

axis. This interaction results in a strong ferromagnetic coupling of actinide

atoms along the bonding direction. There is no special general tendency to

ferro‐ or antiferromagnetism in the perpendicular direction, where the interac-

tion is much weaker, and can be comparable to the ‘background’ isotropic

exchange interaction of the standard RKKY‐type. Unlike such two‐ion hybri-

dization‐mediated anisotropy, crystal field (single‐ion) effects control the type
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and strength of magnetic anisotropy for materials with the localized 5f states, in

analogy to lanthanide systems.

The two‐ion anisotropy, for which orbital moments are a necessary pre-

requisite, has been observed in numerous U compounds especially when sin-

gle‐crystal magnetization data exist. The tendency for moments to orient

perpendicular to the U—U bonding links leads to a uniaxial anisotropy

in crystal structures with U atoms organized in planes with a short in‐plane
U–U spacing and larger inter‐plane spacing, whereas the case of U linear chains

leads to a planar type of anisotropy (see Fig. 21.19). The strength of anisotropy,

which is observable both in magnetically ordered and paramagnetic phases, can

be estimated in some cases from the difference between paramagnetic Curie

temperatures when the susceptibility is measured with the magnetic field along

different crystallographic directions. Other estimates can be obtained from the

extrapolated magnetic field at which magnetization curves along different direc-

tions would intersect each other. Typically values of 102–103 K or 102–103 Tesla

(assuming the anisotropy is energy expressed in kBT and mBH, respectively,

where kB is the Boltzmann constant and mB the Bohr magneton) are obtained

in this way; see Figs. 21.20 and 21.21).

For large groups of isostructural compounds, the same type of anisotropy is,

as a rule, found irrespective of the non‐actinide components. The strong

generally uniaxial anisotropy of compounds UTX (with the hexagonal structure

of the ZrNiAl‐type) or tetragonal UT2X2, both with strong U bonding within

Fig. 21.19 Schematic view illustrating how the bonding and easy‐magnetization directions
are related in light actinides. Left part shows the easy‐axis anisotropy for planar bonding,
right part the easy‐plane anisotropy for columnar bonding. (Reprinted from Sechovsky and
Havela, 1998, with permission from Elsevier.)
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planes perpendicular to the hexagonal (tetragonal) axis, and U‐moments (or

higher susceptibility) along this axis are examples (Sechovsky andHavela, 1998).

21.9.7 Magnetic structures

The specific mechanisms of magnetic anisotropy and exchange interactions

both affect the types of magnetic structures in light‐actinide materials. Strong

anisotropy leads frequently to collinear modulated structures (spin‐density

Fig. 21.20 Temperature dependence of inverse magnetic susceptibility for URuAl and
URhAl. (Reprinted from Sechovsky and Havela, 1998, with permission from Elsevier.)

Fig. 21.21 Temperature dependence of electrical resistivity measured on a single‐crystal
UNiGa for two current directions and several magnetic field applied along the c‐axis.
(Reprinted from Sechovsky and Havela, 1998, with permission from Elsevier.)
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waves), which are preferred over non‐collinear equal‐moment structures. The

reason is that the anisotropy energy is typically stronger than the exchange

coupling energies. Non‐collinear magnetic structures are stable if the easy‐
magnetization directions on different sites are non‐collinear, as in U2Pd2Sn,

where they are orthogonal. Also for those cases in which the lattice symmetry

imposes no special requirements on the directions of the moments (see San-

dratskii, 1998) do non‐collinear equal‐moment structures appear (e.g. UPtGe).

The types of magnetic structures are also affected by the strong ferromagnetic

coupling along strong bonding directions (see the hybridization‐induced ex-

change model in Section 21.9.6). For example, the UTX compounds with the

hexagonal structure of the ZrNiAl‐type tend to magnetic structures consisting

of ferromagnetic basal‐plane sheets, whereas the inter‐sheet exchange interac-

tion is weaker and can be of the ferromagnetic or antiferromagnetic type,

leading to a variety of stacking sequences along the hexagonal axis. In this

case, ferromagnetic‐like alignment can be obtained in moderate magnetic fields

applied along the antiferromagnetic stacking direction.

21.9.8 Relation of electronic transport and magnetism – giant

magnetoresistance phenomena

The situation in which magnetic moments are strongly coupled to the crystal

lattice due to the strong spin–orbit coupling and large orbital moments, and the

5f states are strongly hybridized with other conduction‐electron states, is espe-

cially favorable to observe any variations of magnetism projected onto electrical

resistivity and other transport properties.

The frequently observed anisotropy of exchange coupling (see subsection

21.9.7) often leads to a striking anisotropy in the resistivity. In single crystals

of tetragonal, hexagonal, or orthorhombic materials not only the magnitude of

resistivity is dependent on the direction of electrical current, but often different

directions yield different types of temperature‐dependent behavior. In certain

directions, antiferromagnetic correlations can be broken by an external mag-

netic field and a giant magnetoresistance effect can be observed at the critical

field. The residual resistivity r0 typically reaches smaller values in ferromagnets.

The much larger r0 values observed in antiferromagnets can be understood as

due to a gapping of part of the Fermi surface due to an additional periodicity. If,

for example, the magnetic structure consists of two sublattices with antiparallel

sublattice magnetization, the magnetic unit cell is doubled compared to the

crystallographic unit cell (assuming a simple case with one actinide atom in the

unit cell). The size of the Brillouin zone is therefore reduced by a factor of 2. As

quantum states of electrons must have a gap at every Brillouin zone boundary, a

gapping of the Fermi surface will occur if it is cut by the new, inserted, Brillouin

zone boundary. This does not bring an extra scattering mechanism, but the

effective number of electrons available for the charge transport is reduced, and

resistivity therefore increases. This effect is parametrized by the expression:

Magnetism in actinides 2367



r ¼ ðr0 þ re�ph þ re�e . . . :Þ=½1� g mðTÞ	; ð21:18Þ
wherem(T) is the temperature dependence of sublattice magnetization and g is a

truncation factor modifying the Fermi surface. r0, re–ph, re–e represent individ-
ual resistivity terms due to impurity, electron–phonon, and electron–electron

scattering, respectively.

The situation can be illustrated by the example of UNiGa (see Fig.21.21),

which has an antiferromagnetic ground state. It crystallizes in a layered hexag-

onal structure (ZrNiAl‐type), in which U–Ni and Ni–Al layers alternate along

the c‐axis. Strong ferromagnetic exchange is found within the U–Ni basal

planes, where the U‐atoms are close together. Magnetic moments are locked

along the c‐axis. The exchange along c is weak and antiferromagnetic, and

ferromagnetic alignment can be achieved by a magnetic field below 1 T if

applied along c. The resistivity for current along the ab‐plane has the character
of a ferromagnet, as mostly electrons with the wave vector along ab contribute

to the conduction. Residual resistivity is low. For current along c electrons

respond to the antiferromagnetic coupling, and the resistivity is very high. The

magnetic unit cell is six times larger than the crystallographic cell along c,

because the stacking of layers can be described as (þþ––þ–). Fig. 21.21

shows how the high resistivity is suppressed in the metamagnetic state in

UNiGa. r0 drops by about 90%. The minimum in r(T) for i//c is due to

antiferromagnetic correlations above TN, which can be suppressed by the

magnetic field (Sechovsky and Havela, 1998).

21.10 COHESION PROPERTIES – INFLUENCE OF HIGH PRESSURE

The variable nature of the 5f electronic states in actinide metals is reflected in

cohesion properties. Crystal structures of elemental actinide metals are complex

and of low symmetry for the earlier actinides (up to Pu), and they show also

relatively higher bulk moduli and few (if any) phase transitions under pressure.

In contrast, the transplutonium metals do not have the 5f electrons involved

in bonding, their atomic volumes are much higher, and they are softer, i.e.

with lower bulk moduli. Application of pressure induces a sequence of

structural phase transitions, eventually reaching states with itinerant 5f states

with corresponding low atomic volumes and low‐symmetry structures. In

Fig. 21.22, the phase diagram for Ac through Cf as a function of pressure is

shown from a more detailed discussion by Lindbaum et al. (2003). The reason

why the 5f bonding leads to smaller atomic volumes can be seen from two points

of view. One is the smaller spatial extent of the 5f states even in bonding

situations, when compared to the other bonding states (6d, 7s), as described in

section 21.4.1. The bonding energy minimum evaluated for the separate 5f states

appears at much smaller inter‐atomic spacing than for the 6d–7s states. The real

equilibrium volume, obtained by summing both contributions, corresponds
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then to a compromise between the smaller 5f and larger 6d–7s bonding distance.

Releasing the 5f states from bonding leads to the 6d–7s bonding only, with its

larger bonding length. The second reason for the volume expansion is the

different screening of the ionic potential, attracting the outer (6d–7s) electrons

to the ion core. When withdrawn from bonding, the 5f charge density redis-

tributes more towards the ion core, which screens more effectively the attractive

potential, and the less attracted 6d and 7s states expand.

The existence of the low‐symmetry structures for itinerant 5f electronic states

can be caused by an electronic Jahn–Teller effect. In this situation, when the

density of electronic states in the vicinity of the Fermi level reaches appreciable

values, the total energy can be minimized by redistributing some of the 5f band

states towards lower energies, using the degrees of freedom offered by all

possible exotic crystal structures. For these high densities of states, such distor-

tions can compensate the loss of the Madelung energy, which favors high‐
symmetry structures. One can compare this situation with e.g. the late 3d

transition metals, similarly characterized by high N(EF) values. In such a case,

the Stoner criterion U.N(EF) > 1 is fulfilled, which leads to magnetic order.

Thus the ground state for high N(EF) values can be either magnetic (in case of

sufficient high U ) or a low‐symmetry crystal structure, if U is not large enough.

Fig. 21.22 Phase diagram of the actinides (Ac through Cf ) vs pressure. The complexity of
the pressure phase diagram depends in large part on the role of the 5f electrons in bonding
and variations in bonding as the interatomic distances are decreased under pressure (after
Lindbaum et al., 2003).
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The latter case holds in the early actinide metals and in the late actinides in the

high‐pressure phases. An interesting insight is provided by ab initio electronic

structure calculations in different structure types (see for example, Wills and

Eriksson, 1992 or 2000).

Although specialized review chapters exist covering the structural aspects of

actinides at high pressures (Benedict, 1987; Benedict and Holzapfel, 1993), the

enormous progress in the last decade has brought numerous new data (extended

pressure ranges led to discovery of new phases, improved hydrostatic conditions

yield much more precise values of bulk moduli), so that it is worthwhile to

provide a more detailed overview for the individual metals. Thorium crystallizes

in the fcc structure, but at very high pressure (between 75 and 100 GPa), it

undergoes a transition to a body‐centered tetragonal structure (Vohra and

Akella, 1991). Calculations show that the high‐pressure structure can be asso-

ciated with a population of the 5f band of about 0.6 electrons (Rao et al., 1992).

This structure is the same as adopted by protactinium at ambient pressure. Pa

bulk modulus value, 118(2) GPa obtained from a recent experiment (Le Bihan

et al., 2003), is much closer to the value of 100 GPa predicted by calculations

(Söderlind and Eriksson, 1997) than previous data (Benedict et al., 1982). The

new experiment also revealed a structural phase transition at 77(5) GPa identi-

fied as the a‐U structure (Haire et al., 2003). The reason for this structure change

can be seen in somewhat varying (increasing) 5f occupancy at lower volume.

The same argument, i.e. higher 5f occupancy, is why the orthorhombic a‐U
structure (Cmcm space group) stabilizes in uranium. Its bulkmodulus 104(2) GPa

(Le Bihan et al., 2003) is similar to the value for Pa. Some authors, though, give

higher values. For a review of older data, see Benedict (1987) and Benedict and

Holzapfel (1993). The a‐U structure is stable to at least 100 GPa, in agreement

with theory (Le Bihan et al., 2003). The ground state structure of neptunium

(orthorhombic, space groupPmcn) was found to be similarly stable to at least 52

GPa (Dabos et al., 1987). The bulk modulus of 118(2) GPa is comparable with

the value of 110 GPa obtained from calculations (Johansson and Skriver, 1982).

The qualitative difference of cohesion properties in transplutonium materials

is well illustrated by the case of americium (Heathman et al., 2000; Lindbaum

et al., 2001). The initial bulk modulus of 30 GPa leads to a rapid decrease of the

volume with applied pressure. A sequence of structural phase transitions starts

at 6.1 GPa, at which pressure the dhcp ground‐state structure (the same as for

Cm, Bf, and Cf) transforms into a fcc structure. The next transition at 11 GPa,

accompanied by a volume collapse of 2%, leads to an orthorhombic structure,

which is identical with the g‐Pu structure. It has been proposed that this

structure already shows 5f bonding. An even larger volume collapse of 7%

appears at 16 GPa, and brings Am into an orthorhombic structure with a low

compressibility, similar to the a‐U‐type, and thus confirming the itinerant

nature of the 5f states. The volume collapse and 5f bonding was predicted also

by theory, although one type of calculation preferred the a‐Pu structure as the

high‐pressure phase (Söderlind et al., 2000). On the other hand, calculations of
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Pénicaud (2002) are not only consistent with the real orthorhombic structure,

but suggest that this so‐called Am(IV) structure is also one of the high‐pressure
structures of Pu. Although Pu has been studied thoroughly, information is

lacking in the open literature for the high‐pressure range, clearly due to nuclear

non‐proliferation concerns. But the data available confirm the stability of the a‐
Pu phase up to 40 GPa (Benedict and Holzapfel, 1993 and Dabos-Seignon et al.,

1993). On the other hand, the expanded‐volume d‐phase collapses again under a

pressure of several few kbar (1 kbar ¼ 0.1 GPa). The opposite experiment, i.e.

imposing a negative pressure by doping larger Am atoms, shows that the d‐Pu
phase is stabilized over a large concentration range and corresponds actually to

the Am(II) fcc structure. Recent results for Cm indicate a lattice structure

stabilized by magnetism (Heathman et al., 2005). The interplay between pres-

sure and alloy substitution is shown very nicely in Fig. 21.23 for the Np, Pu, Am

solid solution series. The inset in the upper left corner of Fig. 21.23 shows

elemental Pu as a function of pressure. There is a strong resemblance to the

phases obtained from alloys of Pu with Np, which effectively increases the

pressure in the Pu lattice (Hecker, 2000).

Fig. 21.23 The binary phase diagram for Np through Am as a function of temperature.
The inset in the upper left shows the temperature vs pressure phase diagram for Pu metal.
The similarity between the Pu pressure diagram and the Np–Pu binary gives clear
indication of how atomic substitution may create effective pressure in metallic solids
(after Hecker, 2000).
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21.11 CONCLUDING REMARKS

There remains a great deal of uncertainty regarding the understanding of the

actinides in the metallic state. For the late actinide metals, much of the uncer-

tainty arises from sample size and purity limitations. For the early actinides

(through Pu), the uncertainty is centered on the understanding of the 5f elec-

trons and the nature of the narrow bands in actinide metals. The literature

presents many models for treating the 5f electrons from Th through Pu with no

clear consensus model for the electronic structure, which is universally applica-

ble. In many cases, it appears that the 5f electrons form narrow bands, which

hybridize with the conduction electrons to some extent and give rise to many of

the interesting properties of actinides in the metallic state. By expanding the

phase space of investigation to include alloys, compounds, and pressure one

finds some systematics in the properties of actinide metals. Indeed, Fig. 21.23

demonstrates how pressure and alloying may be considered equivalent knobs to

adjust in tuning the properties of metallic actinides. The propensity for rich

electronic structure in the metallic actinides is highlighted by the frequent

occurrence of correlated electron ground states including magnetism (both

local moment and band magnetism), enhanced mass, superconductivity, and

charge‐density waves. The rich electronic structure is indicative of nearly degen-

erate energy scales and competing processes to lower the free energy. In the

most complex systems, one finds competing ordered ground states such as

enhanced mass and superconductivity in UPt3 and UBe13 with truly exceptional

characteristics in materials like UPd2Al3, which exhibits enhanced mass, mag-

netism, and superconductivity. The discovery of superconductivity at 18 K in

PuCoGa5 in 2002 (Sarrao et al., 2002) ushers in a new era for actinide super-

conductivity spanning the gap between low-temperature spin-fluctuators and

the high temperature oxides exhibiting charge fluctuations. While an uncontest-

ed explanation for the electronic properties of metallic actinides is still in the

future, the broader understanding of actinide alloys and compounds, along with

increased range in pressure and temperature phase space, gives us a better

understanding of the intricacies of the elemental actinides in the metallic state

such as the charge‐density waves in uranium metal as well as the multiple

phases, crystal structures, and volumes of plutonium metal.

ABBREVIATIONS

Å Angström

AF anti‐ferromagnetic

An actinide

ARPES angle resolved photoemission

bcc body‐centered cubic

bct body‐centered‐tetragonal
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Tc critical temperature

TC Curie temperature

DFT density functional theory

dhcp double hexagonal close‐packed
dHvA de Haas–van Alpen

DOS density of states

DMFT Dynamical Mean Field Theory

m* Effective mass

fcc face‐centered cubic

EF Fermi Energy

FL Fermi Liquid

FM Ferromagnetic

g low temperature specific heat coefficient

GGA generalized gradient approximation

hcp hexagonal close‐packed
LDA local density approximation

w magnetic susceptibility

mono monoclinic

TN Néel temperature

NFL Non‐Fermi‐Liquid
orth Orthorhombic

PAM Periodic Anderson Model

PES photoelectron spectroscopy

RKKY Ruderman‐Kittel‐Kasuya‐Yosida

SC Superconducting

SIM single impurity model
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