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18.1 INTRODUCTION

Much of our knowledge of the electronic properties of actinides in solutions and

solids is obtained from optical spectroscopy. One of the features that sets

actinide spectra apart from those of other elements in the periodic table, aside

from the lanthanide series, is that their f‐orbitals can be considered both as

containing optically active electrons and as belonging to the core of inner shells.

As a result of this dominant characteristic, the spectra of these elements,

particularly of the lower valence states, are moderately insensitive to changes

in the ionic environment. Although ion–ligand interactions shift and split the

energy levels of the f‐orbitals, the scale of this crystal‐field splitting is generally

smaller than the intra‐ionic Coulomb interaction and spin–orbit coupling. The

relative insensitivity of these f‐electrons to external forces also means that for

these elements there is a close connection between energy levels in compounds

and those in gaseous free atoms and ions. Table 18.1 lists the scales of various

mechanisms of electronic interactions that will be discussed in this chapter

through analysis and modeling of the optical spectra of the various valence

states of actinide ions in solutions and compounds.
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For the actinide valence states of most interest to chemists, 1þ through 7þ,

very few gaseous free‐ion spectra have been sufficiently analyzed to provide a

basis for guiding theoretical interpretations. From an experimental point of

view, optical spectroscopy usually probes energy levels with photon sources in

the infrared, visible, and ultraviolet (UV) region with energies below 45 000

cm�1. This situation is responsible for the fact that most of our structural

information for the fN states comes from observation of forced electric dipole

absorption and luminescence transitions in optically clear crystals. The latter

analysis is much simplified by the fact that only transitions between nominal fN

levels are involved. Electric dipole transitions normally are forbidden by the

parity selection rule, but in crystals such as LaCl3 that have no center of

symmetry, enough of the character of opposite‐parity configurations can be

mixed in to induce such transitions. At the same time, the admixture (of the

order 0.1%) is small enough for the actinide ions in low‐lying states of a 5fN

configuration that the f‐character of the levels is preserved and level calculations

can be made on the assumption of a pure 5fN configuration.

The stability of f‐orbitals against changes in the ionic environment results in

energy levels of various compounds being closely correlated among themselves

as well as with those of the free ion, where known. In consequence, ab initio free‐
ion calculations have proven to be very useful for interpreting spectra of the

same ion in a solid, and a parametric model based on these calculations has been

developed for systematic analyses of the 4fN (lanthanides) (Crosswhite, 1977;

Carnall et al., 1989) and 5fN (actinides) (Carnall, 1992; Liu et al., 1994b) optical

spectra. This model can be applied in a consistent way to ions of both the

actinide and lanthanide series (Crosswhite and Crosswhite, 1984; Görller‐
Walrand and Binnemans, 1996; Liu, 2000). The free‐ion energy levels for

trivalent actinide ions in 5fN (N ¼ 2 through 13) configurations may be calculat-

ed using the parametric model as shown in Fig. 18.1 by the horizontal lines.

Table 18.1 Energy level scales of actinide ions in crystals.

Interaction mechanism Energy (cm�1)a Optical probe

configuration splitting
(5fN�5fN�16d)

105 visible and UV spectroscopy

splitting within a 5fN

configuration
noncentral electrostatic
field

104 absorption, fluorescence,
and laser excitation spectroscopy

spin–orbit interaction 103

crystal‐field interaction 10�102

9>>>>>>=
>>>>>>;

hyperfine splitting 10�3�10�1 selective and nonlinear laser
spectroscopy

a 1 eV ¼ 8065.7 cm�1.
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The method of parametric modeling is discussed here to help systematize

the overall view of actinide spectra. This chapter is based primarily on Chap-

ter 16 by Carnall and Crosswhite in the second edition of this series. In this

review advances in actinide spectroscopy are updated, and in particular,

recent progress in the optical spectroscopy of trivalent and tetravalent actinide

ions in crystals are included. Our emphasis is on the fundamental understand-

ing of actinide spectra that are interpreted by a parametric model in terms

of free‐ion and crystal‐field interactions (Wybourne, 1965a; Hüfner, 1978;

Judd, 1988).

With the experimental techniques used, highly excited states belonging to

many different configurations may be produced simultaneously, making inter-

pretation difficult. The estimated energy ranges of the 5fN�16d, 5fN�17s, and

5fN�17p configurations are plotted in Fig. 18.1 as gray bars for comparison with

the calculated energy levels of the free‐ion states of the 5fN configurations of

trivalent actinide ions (Brewer, 1971a). It is obvious that large portions of the

upper states of 5fN configurations overlap with the low‐lying states of 5fN�16d,

5fN�17s, and 5fN�17p configurations. Therefore, a major complicating factor in

the theoretical interpretation of 5fN spectra is the extensive inter‐configurational
mixing, often termed as configurational interaction (Wybourne, 1965a; Dieke,

1968; Goldschmidt, 1978; Hüfner, 1978; Crosswhite and Crosswhite, 1984).

Fig. 18.1 Calculated free‐ion energy levels (horizontal lines) for the trivalent ions in
the 5fNconfigurations and the energy range (shaded vertical bars) for the excited
configurations.

Introduction 2015



These effects of mixing other configurations into the 5fN states involve not only

competing configurations with large overlaps but also cumulative interactions

with infinitely many distant electronic configurations. That this is a serious

problem is demonstrated by analysis of isotope shifts and hyperfine structure

in actinide free‐ion spectra (Fred, 1967). The parameters that describe the

energy level structure for a configuration would show less variation if the

independent‐particle model provided a fully accurate description of actinide

free‐ion spectra. In the parametric model for f‐element spectral analysis, the

effects of configuration interaction are partially compensated by the use of

effective operators in the atomic Hamiltonian for fN shells (Wybourne, 1965a;

Judd, 1966, 1968a,b; Crosswhite et al., 1968; Goldschmidt, 1978; Poon and

Newman, 1983; Judd and Crosswhite, 1984; Judd and Suskin, 1984).

Qualitatively, the spectroscopic properties of lanthanides and actinides are

very similar because both f‐shell electron densities are primarily within already

filled s‐ and p‐shells of one higher principal quantum number, which partially

shield the f‐shells from external influences. A comparison of the Nd3þ and U3þ

analogs is shown in Fig. 18.2, where the squares of the f‐electron radial

functions are multiplied by an arbitrary factor for emphasis. The same theoreti-

cal framework has been used successfully in modeling solid‐state spectra of

trivalent (Edelstein et al., 1967; Carnall, 1989) and tetravalent actinides

(Edelstein, 1987; Krupa, 1987; Liu et al., 1994b; Liu, 2000), as well as for the

lanthanide series (Crosswhite, 1977; Carnall et al., 1989; Görller‐Walrand and

Binnemans, 1996).

Notice that in Fig. 18.2 for U3þ (relative to Nd3þ 4f3) the 5f3 peak is

considerably displaced toward greater r values with respect to the shielding of

s‐ and p‐shells, and the relative magnitude of the 5f electron tail at large r with

respect to the rest of the core function is larger and more exposed. Because of

the greater extension of the 5f orbitals with respect to those of the shielding 6s

and 6p shells, they are more sensitive to changes in the valence electron situation

than is the case for the corresponding lanthanide ions. As a result, actinides in

solution and in solids, particularly in the first half of the 5fN series, appear in

different valence states from 3þ to 6þ, making 5f spectroscopy extremely rich

and complicated.

18.2 RELATIVE ENERGIES OF ACTINIDE ELECTRONIC

CONFIGURATIONS

In order to emphasize the systematic correlations found in the energy level

structure of actinide ions both as a function of atomic number Z and for

configurations with the same number of f‐electrons but different charge states,
we begin by considering the types of interactions that have been used success-

fully to account for observed energy level structures. In the discussion of atomic

spectra, attention is focused on identification of the ground (lowest‐energy) and
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excited electronic configurations of neutral as well as ionized species. The

relative energies of the various electronic configurations thus established

provide the basis for extending the interpretation of spectra (and thus

electronic structure) to condensed media. In gaseous atomic or ionic species,

the energy level structure is attributed primarily to the interactions between elec-

trons in unfilled shells. In condensed media, the additional effect of the ligand

field is superimposed. Several summaries of the atomic spectra of the acti-

nides have been published (Kanellakopulos and Fischer, 1973; Peterson, 1976;

Fig. 18.2 Comparison of the overlap of 4f 3�5s,p configurations and those of 5f 3�6s,p
configurations for Nd3þ and U3þ, respectively.
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Crosswhite, 1982; Blaise et al., 1983; Crosswhite and Crosswhite, 1984; Worden

et al., 2005).

The progenitor of the actinide (5f) series is actinium. The electronic structure

of zero‐valent actinium Ac I
1 is represented as three electrons (6d7s2) outside the

radon core. This can be written [Rn] (6d7s2), but in the subsequent discussion the

core symbol [Rn] will be omitted from the notation. All of the actinide atomic

and ionic species are built on the radon core, but the properties of the electronic

structure beyond the core depend on the energy with respect to the ground state,

atomic number Z, and the state of ionization (Brewer, 1971a,b, 1983). Thus,

within the energy range indicated in Fig. 18.3, in addition to configurations

involving 6d and 7s electrons, there are those containing 7p and 5f electrons.

Fig. 18.3 is to be interpreted in the following manner. In Ac I the lowest‐
energy electron states result from the coupling of two 7s electrons and one 6d

electron. Further, an energy equivalent to about 9000 cm�1 is sufficient to

promote a ground‐state 7s electron to the 6d shell, thus forming the lowest

level of the excited configuration (6d27s). Essentially the same energy is required

to promote a ground‐state 6d electron to the 7p shell, giving the excited

configuration (7s27p). Only the lowest‐energy state (relative to the ground

state) for each configuration is indicated in the figure. In most cases large

numbers of excited states exist within each of the configurations, so that the

density of levels from overlapping configurations increases appreciably with

Fig. 18.3 Three‐electron configurations beyond the radon core.

1 In atomic spectroscopy, Roman letters I, II, III, IV,...refer to ionic oxidation states 0, 1+, 2+, 3+,...
respectively, while in some chemistry literature, notations such as An(I) refers to An+.
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excitation energy. However, since the coupling of two 7s electrons result in a

filled subshell, the ground configuration in Ac I (6d7s2) is simple in structure,

involving only the states of a single 6d electron, 2D3/2 and 2D5/2. Such states,

written in terms of the quantum numbers S, L, and J, are subsequently referred

to as free‐ion states.

In Th II, the ground state belongs to 6d27s, but as Fig. 18.3 indicates, the

spectrum at lower energies is very complex due to a number of electronic

configurations with nearly the same energy relative to the ground state. In

Pa III, the three electrons beyond the Rn core in the ground state belong to

the 5f26d configuration. In U IV, further stabilization of the 5f orbital has taken

place and excited configurations occur at much higher energies relative to the

ground state than was the case in Pa III, Th II, and Ac I. Thus in U IV, the only

electronic transitions observed in absorption in the range up to ~30 000 cm�1

are those within the 5f3 configuration.

Experimentally, free‐ion spectra (for both neutral and ionic species) usually

have been observed in emission, and the underlying energy level structures are

deduced from coincidences of energy differences of pairs of spectral lines,

subject to verification by isotope shift, hyperfine structure, and magnetic

g‐factor tests. In condensed phases, spectra are more commonly measured in

absorption. Since the application of tunable lasers, laser‐induced fluorescence

spectra and excitation spectra also have been used in condensed phases to probe

energy levels of actinide ions that possess a metastable emitting state. Relative

intensities associated with ‘parity‐allowed’ and ‘forbidden’ transitions are

reflected in the nature of two processes: transitions in which the initial and

final states belong to electronic configurations of different parity (parity‐
allowed transitions, e.g. 5f3 ! 5f26d) and those in which both states belong to

the same configuration (parity‐forbidden transitions, e.g. 5f3 ! 5f3). The latter

are weak and sharp. The former are much more intense and are associated with

broader absorption bands.

The primary purpose of this chapter is to elucidate the electronic energy level

structure of the 5fN configurations of actinide ions in condensed phases. The

energy levels of trivalent and tetravalent actinide ions in 5fN configurations

spread up to �100 000 cm�1 for 4 � N 	 10, and even extend higher than

150 000 cm�1 for N ¼ 6, 7, 8. However, as shown in Fig. 18.3, the energy levels

of the excited state configurations, specifically, 5fN�16d, 5fN�17s, and 5fN�17p

are present below 100 000 cm�1 and thus overlap the energy levels of the 5fN

states. This overlap induces complexity in modeling the energy level structures,

since the commonly used theory treats the inter‐configurational coupling as a

perturbation, an approximation that is valid only when the respective config-

urations are well separated. In this section, a systematic comparison of the

energies between the ground states of 5fN configurations and the higher‐lying
energy configurations that are accessible via optical excitation is given. The

energy required to promote an electron froma5f to a 6dorbital varies rapidly in an

irregular manner as the nuclear charge is increased, but a large portion of the
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variation andmost of the irregularity can be attributed to the pairing energywithin

the 5fN configuration (Jørgensen, 1975, 1980). Amethodofusing thermodynamic

and spectroscopic data for calculating energies of various electronic configurations

of lanthanide and actinide ions was developed by Brewer (1971a,b).

For the case of electrons in a 6d orbital, ion–lattice coupling is much stronger

than for a 5f orbital. As a result, the energy levels of the 5fN�16d configuration

exhibits much stronger host dependence than that of the 5fN configurations.

Systematic variation of the 5fN�16d energy level structures for trivalent lantha-

nide ions in CaF2 was measured in ultraviolet absorption spectra (Loh, 1966).

(van Peterson et al., 2002) conducted further experimental measurements and

theoretical modeling of the inter‐configuration 4fN to 4fN�15d transitions of rare

earth (RE) ions in LiYF4 and YPO4. For actinide ions, extensive studies of 5f
N

to 5fN�16d transitions are limited to the 5f1 and 5f2 configurations. The 6d states

of Pa4þ in several crystalline hosts were measured based on observed 5f�6d

electronic transitions (Piehler et al., 1991; Edelstein et al., 1992). The lowest‐
energy level of the 6d state is only�20 000 cm�1 above the ground state of Pa4þ.
In the series of 5f1 ions, the differences between the lowest 6d energy level and

the ground 5f1 level for U5þ and Np6þ increase as do the total splittings of the 5f

energy levels with atomic number (Carnall and Crosswhite, 1985).

18.3 MODELING OF FREE‐ION INTERACTIONS

The well‐developed theoretical framework for modeling the electronic interac-

tions and analyzing the optical spectra of lanthanide ions has been adopted to

modeling the actinides because of the similarities in the electronic properties of

actinides in the 5fN configurations and the lanthanides in the 4fN configurations

(Crosswhite, 1977; Edelstein, 1979, 1995; Carnall and Crosswhite, 1985; Carnall

et al., 1991; Liu et al., 1994b; Liu, 2000). In this section a brief review of the free‐
ion part of the model theory and its applications to actinide spectroscopy

is given.

18.3.1 Central field approximation

Interpretation of optical spectra of actinides in condensed phases follows the

general approach in atomic spectroscopy that utilizes the central field approxi-

mation and Hartree–Fock method (Hartree, 1957; Slater, 1960; Weissbluth,

1978). In the central field approximation, each electron is assumed to move

independently in the field of the nucleus and a central field made up of the

spherically averaged potential fields of each of the other electrons. The non-

spherical part of the electronic interactions is treated as a perturbation to a

spherically symmetric potential, so that the basis of the hydrogen atom wave

functions can be used to construct the eigenstates of an N‐electron atom (ion).

The same method has been used to classify electronic states and evaluate energy

levels of lanthanide and actinide ions (Judd, 1963b; Wybourne, 1965a).
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The primary terms of the Hamiltonian for anN‐electron ion in the absence of

external fields are commonly expressed as

H ¼ H 0 þ H C þ H S�O; ð18:1Þ
where

H 0 ¼ �
XN
i¼1

�h2

2m
=2

i �
XN
i¼1

Ze2

ri
; ð18:2Þ

H C ¼
XN
i<j

e2

rij
; ð18:3Þ

H S�O ¼
XN
i

x rið Þl i � si: ð18:4Þ

In equation (18.2), the first term is the kinetic energy and the second term is the

potential energy of the electrons in the field of the nucleus. All levels that belong

to a particular configuration are shifted equally by this term, which is purely

radial, without affecting the energy level structure of the configuration. The

term H C in equation (18.3) represents the inter‐electron Coulombic repulsion

between a pair of electrons at a distance of rij, which varies for different states of

the same configuration. The term H S�O describes the spin–orbit interactions,

which can be understood as magnetic dipole–dipole interactions between the

spin and angular momenta of the electrons. In equation (18.4), the spin–orbit

coupling constant x(ri) is defined as solely a function of ri.

Exact solutions of Schrödinger’s equation are not possible for systems with

more than one electron. In the framework of the central field approximation, one

assumes that it is possible to construct a potential energy functionU(ri), which is

a spherically symmetric, one‐electron operator, and is a good approximation to

the actual potential energy of the electron i in the field of the nucleus and the

other N�1 electrons. Therefore, H 0 can be replaced by (Weissbluth, 1978)

H
0
0 ¼

XN
i¼1

� �h2

2m
f=2

i þU rið Þ
" #

; ð18:5Þ

with

XN
i¼1

U rið Þ ¼ �
XN
i¼1

Ze2

ri
þ

XN
i< j

e2

rij

* +
: ð18:6Þ

The second term in equation (18.6) is an average over a sphere of the electron

repulsion. This term is therefore independent of the angular coordinates. Since

H 0
0 contains the kinetic energy, the potential energy of N‐electrons, and most

of the inter‐electron repulsion, it is called the Hamiltonian of the central
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field. Since most of the inter‐electron repulsion is included in the central

field Hamiltonian equation (18.5), the second term in equation (18.1) can be

rewritten as

H
0
C
¼

XN
i<j

e2

rij
�

XN
i<j

e2

rij

* +
; ð18:7Þ

which is small enough to be treated, along with the spin–orbit Hamiltonian

(equation (18.4)), as a perturbation to the central field potential.

The eigenfunctions of H 0
0 for a N‐electron ion are obtained as a linear

combination of one‐electron wave functions that satisfy the Pauli exclusion

principle and are subject to the orthonormality condition. This method,

known as the Hartree–Fock approach, is generally used for seeking an ap-

proximate solution to the N‐electron Schrödinger equation (Hartree, 1957;

Weissbluth, 1978). All effects of noncentral field interactions including

spin–orbit coupling and many‐body collective electronic interactions are con-

sidered by introducing additional effective operators and diagonalizing the

Hamiltonian with parameters determined in comparison with experiments.

In the Hartree–Fock method, the wave function of each electron is expressed

as a product of radial functions and angular functions of the spherical

harmonics multiplied by a spin function

Cnlmlms
r;msð Þ ¼ 1

r
Rnl rð ÞYlml

y; ’ð Þs msð Þ; ð18:8Þ
where the radial function Rnl(r) depends on the central field potential, which

determines the radial charge distribution functions such as that plotted in

Fig. 18.2 for U3þ. The spherical harmonic function Ylml
y; ’ð Þ in equation

(18.8) is characterized by the four conventional quantum numbers n, l, ml,

and ms, which define a unique state of an electron in an atom. For electrons in

a 5fN configuration,

n ¼ 5;

l ¼ 3;ml ¼ �l;�l;þ1; :::; l;

ms ¼ 1

2

ð18:9Þ

The central field wave function for N‐electrons thus may be written in the form

of a determinant as

Cðl1;l2; :::; lNÞ ¼ 1ffiffiffiffiffiffi
N!

p
C1ðl1Þ C2ðl1Þ � � � CNðl1Þ
C1ðl2Þ C2ðl2Þ � � � CNðl2Þ
..
.

C1ðlNÞ C2ðlNÞ � � � CNðlNÞ






















; ð18:10Þ

in which Ci lj
� �

are spin orbital wave functions in the form of equation (18.8).

The subscript i identifies a particular choice of the four quantum numbers n, l,
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ml, andms, where lj represents the space and spin coordinates of the jth electron.

The primary purpose of the central field approximation is to use the N‐electron
wave functions defined by equation (18.10) as the basis functions for the

perturbation terms of a Hamiltonian that includes inter‐electron Coulomb

(18.3) and spin–orbit interactions (18.4).

18.3.2 LS coupling and intermediate coupling

To construct wave functions for a multielectron atom on the basis of the central

field approximation, one needs to choose a coupling scheme for angular mo-

mentum summation to determine the wave functions of the N‐independent
electrons defined by equation (18.10). There are two coupling schemes that

are commonly used for two extreme cases in atomic spectroscopy (Judd,

1963b; Cowan, 1981). In lighter atoms, where spin–orbit interactions (equation

(18.4)) tend to be small compared with the electrostatic interactions between

electrons (equation (18.3)), the so‐called Russell–Saunders coupling scheme, or

LS coupling scheme is a good choice, since L and S are approximately good

quantum numbers. With increasing Z, electrostatic interactions decrease and

spin–orbit interactions become more important, and in the heavier atoms, spin–

orbit interactions become much stronger than the Coulomb interactions. Thus,

one should consider the j–j coupling scheme. For f‐elements, the Coulomb

electrostatic interactions and spin–orbit interactions have the same order of

magnitude. Therefore, neither coupling scheme is really appropriate. Calcula-

tions of energy levels of actinide ions involve a mathematically more compli-

cated scheme that is called intermediate coupling, which is usually developed

from the LS scheme.

In the LS coupling scheme, orbital momentum (l) and spin momentum (s) of

individual electrons are summed separately (Weissbluth, 1978; Cowan, 1981).

Thus

L ¼
XN
i¼1

l i; S ¼
XN
i¼1

si; ð18:11Þ

where L and S are the total orbital and total spin momentum operators,

respectively. J defined as

J ¼ Lþ S; ð18:12Þ
is the total angular momentum operator which has 2Jþ1 eigenstates represented

by the magnetic quantum number M ¼ �J;�J þ 1; . . . ; J:
In the LS coupling scheme, the electronic states of an actinide ion may be

specified completely by writing the basis states as

C ¼ nltLSJMj i, ð18:13Þ
where nl, which is 5f or 6d for actinide ions, represents the radial part of the

basis states. Usually, the symbol 2Sþ1LJ is used to label a free‐ion state that is
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called a multiplet. Whereas S and J are specified with numbers ð0; 1
2
; 1; :::Þ, L is

traditionally specified with letters S, P, D, F, G, H, ... respectively, for L = 0, 1,

2, 3, 4, 5, ... . Table 18.2 lists the electronic configurations and ground states

identified by 2Sþ1LJ for divalent, trivalent, and tetravalent ions in the actinide

series. All tetravalent ions (An4þ) have the lowest spectroscopic energies in 5fN

configurations, however, this is not true for the lighter divalent ions. For Th3þ,
the ground state in known compounds is 6d1, 2D3/2 instead of the calculated 5f1,
2F5/2 (Brewer, 1971a,b).

An additional quantum number t, the seniority number, is needed for distin-

guishing the states that have the same L and S quantum numbers. In fact, two

more quantum numbers are needed to completely define the states of an fN

configuration. One such classification number is W ¼ (w1w2w3), with three

integers for characterizing the irreducible representations of the seven‐
dimensional rotational group R7. The other classification number is U ¼
(u1u2) for characterizing the irreducible representations of the group G2. Details

as to classification of the fN states are given by Judd (1963b) and Wybourne

(1965a). Table 18.3 lists the classification of the states for the fN configurations

with N � 7. Columns 5 and 11 list the LS terms with the same S, and columns 6

and 12 list the number of 2Sþ1LJ multiplets in the classification. The LS terms of

the 5f14�N configuration are identical for those of the 5fN configuration (N� 7),

although the seniority of the states is different.

Inclusion of spin–orbit coupling breaks the symmetry of the LS coupling

scheme. In this case,

H S�O;L
� � 6¼ 0; H S�O;S

� � 6¼ 0;

H S�O;J
2

� � ¼ H S�O;JZ

� � ¼ 0;
ð18:14Þ

Table 18.2 Electronic configurations and ground states of divalent (An2þ), trivalent
(An3þ), and tetravalent (An4þ) actinide ions.

Atomic number Element An2þ An3þ An4þ

89 Ac actinium 7s1, 2S1/2 5f 0, 1S0
90 Th thorium 6d2, 3F2 6d1, 2D3/2 5f 0, 1S0
91 Pa protactinium 5f26d1, 4I11/2 5f2, 3H4 5f1, 2F5/2

92 U uranium 5f36d1, 5L6 5f3, 4I9/2 5f2, 3H4

93 Np neptunium 5f5, 6H5/2 5f 4, 5I4 5f3, 4I9/2
94 Pu plutonium 5f6, 7F0 5f5, 6H5/2 5f 4, 5I4
95 Am americium 5f7, 8S7/2 5f 6, 7F0 5f5, 6H5/2

96 Cm curium 5f8, 7F6 5f7, 8S7/2 5f 6, 7F0

97 Bk berkelium 5f9, 6H15/2 5f 8, 7F6 5f7, 8S7/2
98 Cf californium 5f10, 5I8 5f 9, 6H15/2 5f 8, 7F6

99 Es einsteinium 5f11, 4I15/2 5f11, 5I8 5f 9, 6H15/2

100 Fm fermium 5f12, 3H6 5f11, 4I15/2 5f11, 5I8
101 Md mendelevium 5f13, 2F7/2 5f12, 3H6 5f11, 4I15/2
102 No nobelium 5f14, 1S0 5f13, 2F7/2 5f12, 3H6
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Table 18.3 Classification of the free‐ion states of the fN configurations (Wybourne,
1965a).

N t W U 2Sþ1L NJ N t W U 2Sþ1L NJ

1 1 (100) (10) 2F 2 (20) 5DGI 15
2 2 (110) (10) 3F 3 6 (221) (10) 3F 3

(11) 3PH 6 (11) 3PH 6
2 (200) (20) 1DGI 3 (20) 3DGI 9
0 (000) (00) 1S 1 (21) 3DFGHKL 18

3 3 (111) (00) 4S 1 (30) 3PFGHIKM 21
(10) 4F 4 (31) 3PDFFGHHIIK-

KLMNO
45

(20) 4DGI 12 4 (211) (10) 3F 3
3 (210) (11) 2PH 4 (11) 3PH 6

(20) 2DGI 6 (20) 3DGI 9
(21) 2DFGHKL 12 (21) 3DFGHKL 18

1 (100) (10) 2F 2 (30) 3PFGHIKM 21
4 4 (111) (00) 5S 1 2 (110) (10) 3F 3

(10) 5F 5 (11) 3PH 6
(20) 5DGI 15 6 (222) (00) 1S 1

4 (211) (10) 3F 3 (20) 1DGL 3
(11) 3PH 6 (30) 1PFGHIKM 7
(20) 3DGI 9 (40) 1SDFGGHIIK-

LLMNQ
14

(21) 3DFGHKL 18 4 (220) (20) 1DGI 3
(30) 3PFGHIKM 21 (21) 1DFGHKL 6

2 (110) (10) 3F 3 (22) 1SDGHILN 7
(11) 3PH 6 2 (200) (20) 1DGI 3

4 (220) (20) 1DGI 3 0 (000) (00) 1S 1
(21) 1DFGHKL 6 7 7 (000) (00) 8S 1
(22) 1SDGHILN 7 7 (200) (20) 6DGI 17

2 (200) (20) 1DGI 3 5 (110) (10) 6F 6
0 (000) (00) 1S 1 (11) 6PH 9

5 5 (110) (10) 6F 6 7 (220) (20) 4DGI 12
(11) 6PH 9 (21) 4DFGHKL 24

5 (211) (10) 4F 4 (22) 4SDGHILN 25
(11) 4PH 7 5 (211) (10) 4F 4
(20) 4DGI 12 (11) 4PH 7
(21) 4DFGHKL 24 (20) 4DGI 12
(30) 4PFGHIKM 27 (21) 4DFGHKI 24

3 (111) (00) 4S 1 (30) 4PFGHIKM 27
(10) 4F 4 3 (111) (00) 4S 1
(20) 4DGI 12 (10) 4F 4

5 (221) (10) 2F 2 (20) 4DGI 12
(11) 2PH 4 7 (222) (00) 2S 1
(20) 2DGI 6 (10) 2F 2
(21) 2DFGHKL 12 (20) 2DGI 6
(30) 2PFGHIKM 14 (30) 2PFGHIKM 14
(31) 2PDFFGHH-

IIKKLMNO
30 (40) 2SDFGGHII-

KLLMNQ
27

3 (210) (11) 2PH 4 5 (221) (10) 2F 2
(20) 2DGI 6 (11) 2PH 4



namely, J2 andM still commute, but L and S do not. Thus L and S are no longer

good quantum numbers, but J and M are still good; therefore, the wave

functions nltLSJMj i are not eigenfunctions of the Hamiltonian shown in

equation (18.1). One may obtain a new set of eigenfunctions by diagonalizing

the primary terms of the Hamiltonian defined by equations (18.4) and (18.7)

with the basis set in terms of nltLSJMj i based on perturbation theory and the

concept of the central field approximation. As a result, the new eigenfunctions

are linear combinations of the LS basis sets, and are known as the free‐ion wave

functions in the intermediate coupling scheme. If we do not include inter‐
configurational coupling, the eigenfunctions in the intermediate coupling

scheme are expressed as

C nlJð Þ ¼
X
tLS

atLSJ nltLSJj i; ð18:15Þ

where the coefficients atLSJ are determined by the matrix elements

atLSJ ¼
X
t0L0S0

nltLSJ H C þ H S�Oj jnlt0L0S0J 0h idJJ 0 : ð18:16Þ

The energy levels of the free‐ion states are independent ofM, so they are (2Jþ1)‐
fold degenerate. The new basis set (equation (18.15)) in the intermediate

coupling scheme describes the energy states of a Hamiltonian that includes

Coulomb and spin–orbit interactions and is obtained from the mixing of all

LS terms with the same J in a given 5fN configuration. The transformation

coefficients of atSLJ are the components of the eigenvector pertaining to the

basis state in the LS coupling (Judd, 1963b).

18.3.3 Effective‐operator Hamiltonian

In spectroscopy, a powerful method for evaluating atomic energy level structure

is to define and diagonalize an effective‐operator Hamiltonian with the wave

functions of the central field Hamiltonian. Racah (1949) used this method for

(21) 2DFGHKL 12 (20) 2DGI 6
1 (100) (10) 2F 2 (21) 2DFGHKL 12

6 6 (100) (10) 7F 7 (30) 2PFGHIKM 14
6 (210) (11) 5PH 8 (31) 2PDFFGHHII-

KKLMNO
30

(20) 5DGI 15 3 (210) (11) 2PH 4
(21) 5DFGHKL 30 (20) 2DGI 6

4 (111) (00) 5S 1 (21) 2DFGHKL 12
(10) 5F 5 1 (100) (10) 2F 2

Table 18.3 (Contd.)

N t W U 2Sþ1L NJ N t W U 2Sþ1L NJ
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calculating the matrix elements of tensor operators of the electronic angular

momentum (Racah, 1949). Since then, many developments have been made,

particularly for applications of the effective‐operator method to rare earth

spectroscopy (Judd, 1963b; Wybourne, 1965a). An essential part of the

effective‐operator method is to determine the matrix elements of irreducible

tensor operators using the Wigner–Eckart theorem. According to the Wigner–

Eckart theorem, for a tensor operator T(k) of rank k with 2kþ1 components

T
ðkÞ
q q ¼ �k;�kþ 1; . . . ; kð Þ that acts on a set of basis functions tLSJMj i, each

of which is an eigenfunction of the operators J2 and Jz, the matrix elements of

T
ðkÞ
q can be reduced as

tLSJM T ðkÞ
q




 


t0
L

0
S

0
J

0
M

0
D E

¼ ð�1ÞJ�M J k J
0

�M q M
0

� �
tLSJ TðkÞ

 

t0

L
0
S

0
J

0
D E

;

ð18:17Þ
where the 3�j symbols involve only geometrical properties of the tensor opera-

tor (Rotenberg et al., 1959). The physical nature of the operator is contained

entirely in the reduced matrix elements tLSJ T ðkÞ

 

t0L0S0J 0� �
. Information on

the use of tensor operators in atomic spectroscopy is provided in several text-

books (Judd, 1963b, 1975; Weissbluth, 1978).

In central field approximation, the orbital electronic wave functions of an

actinide ion are represented by products of radial and angular parts as shown in

equation (18.8). The effective operator for Coulomb electrostatic intra‐ion
interaction may be expressed by expanding 1/rij into scalar products of tensor

operators of spherical harmonics. Therefore, for N‐equivalent electrons in

orbital nl, the matrix elements of the effective‐operator Hamiltonian for the

Coulomb electrostatic interaction may be expressed as:

lNtLS
XN
i>j

e2

rij












lNt

0
L

0
S

0
* +

¼
X
k

fkðl; lÞF ðkÞðnl; nlÞ; ð18:18Þ

where F k(nl, nl), with k ¼ 0, 2, 4, 6, are the Slater radial integrals for the radial

part of the electrostatic interaction, which is defined as:

Fk nl; nlð Þ ¼ e2
Z 1

0

Z 1

0

rk<

rkþ1
>

Rnl rið Þ½ 
2 Rnl rj
� �� �2

dridrj ð18:19Þ

The value of Fk may be calculated using the Hartree–Fock method, but in

analyses of actinide‐ion spectra, Fk is considered as an experimentally deter-

mined parameter.

The angular part of the matrix element in equation (18.18) is defined as

fkðl; lÞ ¼ lNtLS
X
i>j

CðkÞðiÞ � CðkÞðjÞ












lNt0L0S0
* +

: ð18:20Þ
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Using the Wigner–Eckart theorem, the matrix elements in equation (18.20) are

best handled by introducing the tensor operator U(k). In combination with the

symmetry properties of angular momentum, fk can be expressed in terms of

the reduced matrix elements of U(k) as:

fkðl; lÞ ¼ 1

2
ð2l þ 1Þ2 l k l

0 0 0

� 	2

1

2Lþ 1

X
t0L0

lNtLS UðkÞ

 

lNt0
L

0
S

D E


 


2� N

2l þ 1

( )
:

ð18:21Þ

In the particular case of k ¼ 0, it is easy to find that

f0ðl; lÞ ¼ NðN � 1Þ=2: ð18:22Þ
For the dN and fN configurations, the values for the reduced matrix elements of

tensor operator U(k) have been tabulated (Nielson and Koster, 1963). Because

of the symmetry properties of the 3�j symbol, fk(l,l) has nonzero values only

if lþl	 k 	 |l�l|; and k is even. For f‐electrons, l¼ 3, thus fk vanishes except for

k ¼ 0, 2, 4, 6.

As defined in equation (18.4), the Hamiltonian for spin–orbit coupling for

N‐electrons in an actinide ion is a linear summation of the independent

spin–orbit interaction for a single electron. In LS coupling, the N‐equivalent
electronic matrix element of the spin–orbit interaction is expressible in terms of

the tensor operator V(11). Hence the matrix element of spin–orbit interaction for

N‐equivalent electrons can be expressed as

nlNtLSJ
� 

XN

i¼1

x rið Þl i � si nlNt0L0S0J 0

 � ¼ znlAnl lsð Þ; ð18:23Þ

where znl is the spin–orbit interaction parameter defined as a radial integral

znl ¼
Z 1

0

½RnlðrÞ
2x rð Þdr: ð18:24Þ

where Rnl(r) is the radial wave function.

The spin–orbit parameter can be evaluated numerically using the Hartree–

Fock central field potential, but it is usually adjusted to obtain the experimen-

tally observed energies. The matrix element in equation (18.23) can be expressed

as (Sobelman, 1972)

AnlðlsÞ ¼ ð�1ÞLþS
0þJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l þ 1Þðl þ 1Þl

p
d
JJ

0dMM
0

L S J

S
0

L
0

1

� �
tLS Vð11Þ

 

t0

L
0
S

0
D E

;
ð18:25Þ
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where . . .f g is a 6�j symbol, and the values for the reduced matrix elements of

the tensor operators V(11) have been tabulated by Slater (1960), Sobelman

(1972), and Nielson and Koster (1963).

The electrostatic and spin–orbit interactions usually give the right order for

the energy level splitting of the fN configurations. However, these primary terms

of the free‐ion Hamiltonian do not accurately reproduce the experimentally

measured energy level structures. The reason is the parameters Fk and znf, which
are associated with interactions within a fN configuration, cannot absorb all the

effects of additional mechanisms such as relativistic effects and configuration

interactions. Introduction of new terms in the effective‐operator Hamiltonian is

required to better interpret the experimental data. It was demonstrated (Judd

and Crosswhite, 1984) that, in fitting the experimental free‐ion energy levels of

Pr3þ ( f2 configuration), the standard deviation between observed and calculated

f‐state energies could be reduced from 733 to 24 cm�1 by adding nine more

parameterized effective operators into the Hamiltonian.

Among several corrective terms included in the effective‐operator
Hamiltonian, a significant contribution to the fN energy level structure is from

configuration interactions between configurations of the same parity. This

contribution can be taken into account by a set of three two‐electron operators

(Wybourne, 1965a):

H c1 ¼ aLðLþ 1Þ þ bGðG2Þ þ gGðR7Þ ð18:26Þ
where a, b, and g are the parameters associated with the continuous groups

G(G2) and G(R7) (Rajnak and Wybourne, 1963, 1964) the latter being eigenva-

lues of Casimir operators for the groups G2 and R7 (Judd, 1963a).

For fN configurations ofN	 3, three‐body interaction terms were introduced

by Judd (1966) and Crosswhite et al. (1968) as

H c2 ¼
X

i¼2;3;4;6;7;8

Titi ð18:27Þ

where Ti are parameters associated with three‐particle operators ti. This set of
effective operators scaled with respect to the total spin S and total orbital

angular momentum L are needed in the Hamiltonian to represent the coupling

of the fN states to those in the higher energy configurations (d, p, s) via inter‐
electron Coulombic interactions. It is common to include six three‐electron
operators ti i ¼ 2; 3; 4; 6; 7; 8ð Þ. When perturbation theory is carried beyond

the second order, an additional eight three‐electron operators ti (11 � i � 19,

with i ¼ 13 excluded) are required (Judd and Lo, 1996). A complete table of

matrix elements of the 14 three‐electron operators for the f‐shell have been

published (Hansen et al., 1996).

In addition to the magnetic spin–orbit interaction parameterized by znf,
relativistic effects including spin–spin and spin–other–orbit, both being
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parameterized by the Marvin integrals M0, M2, and M4 (Marvin, 1947), are

included as the third corrective term of the effective‐operator Hamiltonian

(Judd et al., 1968).

H c3 ¼
X

i¼0;2;4

Mimi; ð18:28Þ

wheremi is the effective operator andMi is the radial parameter associated with

mi.

As demonstrated (Judd et al., 1968; Carnall et al., 1983), for improving the

parametric fitting of the f‐element spectra, two‐body effective operators can be

introduced to account for configuration interaction through electrostatically

correlated magnetic interactions. This effect can be characterized by introdu-

cing three more effective operators as

H c4 ¼
X

i¼2;4;6

Pipi; ð18:29Þ

where pi is the operator and Pi is the radial parameter.

In summary, 20 effective operators are utilized for fitting spectra, including

those for two‐ and three‐electron interactions. The total effective‐operator
Hamiltonian for free‐ion interactions is

H FI ¼
X

k¼0;2;4;6

Fkfk þ znlAnl þ aLðLþ 1Þ þ bGðG2Þ þ gGðR7Þ

þ
X

i¼2;3;4;6;7;8

Titi þ
X

i¼0;2;4

Mimi þ
X

i¼2;4;6

piP
i:

ð18:30Þ

This effective‐operator Hamiltonian has been used as the most comprehensive

free‐ion Hamiltonian in previous spectroscopic analyses of f‐element ions in

solids (Crosswhite, 1977; Crosswhite and Crosswhite, 1984; Carnall et al., 1989;

Liu, 2000). The 20 parameters associated with the free‐ion operators are

adjusted in the fitting of experimental energy levels.

18.3.4 Reduced matrices and free‐ion state representation

In equation (18.30), all effective operators for the free‐ion interactions have

well‐defined group‐theoretical properties (Judd, 1963b; Wybourne, 1965a).

Within the intermediate coupling scheme, all matrix elements can be reduced,

using the Wigner–Eckart theorem, to new forms that are independent of J, viz.

tSLJ H ij jt0S0L0J 0h i ¼ PidJJ 0c SLS0L0Jð Þ tSL Oik kt0S0L0h i; ð18:31Þ
where Pi is the parameter, c SLS0L0Jð Þ is a numerical coefficient, and

tSL Oik kt0S0L0h i is the reduced matrix element of the effective‐operator Oi.

Once the reduced matrix elements are calculated, it is not difficult to diagonalize

the entire free‐ion Hamiltonian with the wave functions in the LS basis set. The

free‐ion eigenfunctions are thus obtained in the form of the intermediate
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coupling representation. All matrix elements of the effective‐operator
Hamiltonian are evaluated in terms of the parameters of the effective operators.

Because the reduced matrix elements are independent of J, the matrix of the

free‐ion Hamiltonian thus can be reduced into a maximum of 13 independent

submatrices for J ¼ 0; 1; 2; . . . ; 12 for even N and J ¼ 1
2
; 3
2
; 5
2
; . . . ; 25

2
for odd N in

an fN configuration. The number of submatrices and their size can be deter-

mined from the values of NJ (the number of J levels for a given SL multiplet)

given in Table 18.3. Separation of the free‐ion matrix into submatrices greatly

facilitates the evaluation of free‐ion energy levels. However, evaluation of

matrix elements is still a considerable effort, particularly with inclusion of the

corrective terms in the Hamiltonian. For an fN configuration with 3 < N < 11,

there are more than 104 free‐ion matrix elements and each of them may have as

many as 20 terms to be evaluated on the basis of angular momentum operations.

Fortunately, several groups have calculated the matrix elements that are avail-

able on web sites (http://chemistry.anl.gov) from which one may download a

MS‐Windows based computer program named SPECTRA to calculate the

eigenvalues and eigenfunctions of the free‐ion Hamiltonian defined in equation

(18.30). As discussed in the following sections, SPECTRA can also be used for

nonlinear least‐squares fitting of observed levels to determine values of the

Hamiltonian parameters.

Due to the SL�S0L0 mixing in the intermediate coupling scheme, labeling a

multiplet as 2Sþ1LJ is incomplete. In most cases, the nominal labeling of a free‐
ion state as 2Sþ1LJ only indicates that this multiplet has a leading component

from the pure LS basis LSJj i. Diagonalization of each of the submatrices

produces free‐ion eigenfunctions in the form of equation (18.15). As an exam-

ple, the leading LS terms for the free‐ion wave functions of the nominal 4I9/2
ground state of the 4f3 ion Nd3þ and the 5f3 ion U3þare:

Cð4f 3; 4I9=2Þ ¼ 0:984 4I � 0:174 2H � 0:0172Gþ etc:

Cð5f 3; 2I9=2Þ ¼ 0:912 4I � 0:391 2H � 0:081 2Gþ 0:048 4Gþ 0:032 4F þ etc:

In general, SL�S0L0 mixing becomes more significant in the excited multiplets.

18.3.5 Parameterization of the free‐ion Hamiltonian

In an empirical approach to interpretation of the experimentally observed

energy level structure of an f‐element ion in solids, establishing accurate para-

meters for the model Hamiltonian essentially relies on systematic analyses that

encompass theoretical calculations for incorporating trends of parameter vari-

ation across the f‐element series. In the previous work that led to the establish-

ment of the free‐ion parameters for the trivalent actinide ions (Carnall, 1992)

and the tetravalent actinide ions (Carnall et al., 1991; Liu et al., 1994b), the

results of analyses of simpler spectra were carried over to more complex ones

through consideration of their systematic trends and symmetry properties.
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Table 18.4 lists values of the free‐ion interaction parameters obtained from

analyses of the spectra of An3þ:LaCl3.
In early attempts to develop a systematic interpretation of trivalent actinide

and lanthanide spectra, initial sets of Fk and znf for some members of the series

had to be estimated. This was done by a linear extrapolation based on the fitted

parameters that were available from the analyses of other individual spectra. As

more extensive data and improved modeling yielded better determined and

more consistent Fk and znf values for the 3þ actinides (and lanthanides), it

became apparent that the variation in the parameters was nonlinear, as indi-

cated for F2(5f,5f) in Fig. 18.4. This nonlinearity could also be observed in the

values of parameters of the ab initio calculations. The difference between the ab

initio and fitted values of parameters (DF) appears to exhibit a much more linear

variation with Z than do the parameter values. Consequently, DF has been

adopted as the basis for a useful predictive model.

For the trivalent actinides, the values of DF are not constant over the series,

but use of a single average value over a group of four or five elements is not an

unreasonable approximation. Thus, in developing a predictive model for the Fk

and znf parameters, an attempt is made to establish average values of DF for a

particular valence state and type of crystal‐field interaction. The energy level

structure computation based on the predicted parameters can be compared to

that observed, and then appropriate modifications sought by a fitting procedure

where necessary.

Detailed results of Hartree–Fock calculations on f‐electrons were previously
analyzed (Carnall et al., 1983; Crosswhite and Crosswhite, 1984). The most

important trends are those of the electrostatic‐interaction parameters Fk and

spin–orbit parameters znf which increase with the number of f‐electrons, N. The

experimentally determined values of Fk and znf for trivalent actinides in LaCl3
are shown as a function of N in Figs. 18.4 and 18.5, respectively. These

values were obtained from the systematic analyses of experimental spectra

(Carnall, 1992). Fig. 18.5 also shows the systematic trends for znf for the

trivalent actinide ions that were obtained from Hartree–Fock calculations.

Although the Hartree–Fock calculations predict the same trends across the

series, the Hartree–Fock values for Fk and znf are always larger than the

empirical parameters obtained by allowing them to vary in fitting experimental

data. The relativistic Hartree–Fock (HFR) values of znf agree remarkably

well with empirical values, whereas the Fk values remain considerably larger

than the empirical values. Presumably, this is because, in addition to relativistic

effects, f‐electron coupling with orbitals of higher‐lying energies reduces the

radial integrals assumed in the HFR approximation. Moreover, the experi-

mental results are obtained for ions in condensed phases, not in a gaseous

phase, which leads on average to an ~5% change (Crosswhite, 1977). Because

of the absence of mechanisms that absorb these effects in the HFR model, HFR

values of Fks cannot be used directly as initial parameters for the least‐squares
fitting process. Scaling of HFR values to the experimentally determined ones is
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Fig. 18.4 Variation of the parameters F2, F4, F6, DF2, DF4, DF6 where DFN ¼ FN

(HFR) �F4 (expt) in cm�1 for An3þ:LaCl3 as a function of atomic number. (Reprinted
with permission from Carnall, 1992. Copyright 1992, American Institute of Physics.)

Fig. 18.5 Variation of the parameter z(expt), z(expt), and Dz(expt) in cm�1 for An3þ:
LaCl3 as a function of atomic number. (Reprinted with permission from Carnall, 1992.
Copyright 1992, American Institute of Physics.)
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necessary to establish a systematic trend for a specific parameter. With

this procedure, linear extrapolations of model parameters from one ion to

another lead to values consistent with those obtained in the actual fitting

process.

In addition to HFR calculations of Fks and znf, estimated values for

Mk k ¼ 0; 2; 4ð Þ can also be computed using the HFR method (Judd et al.,

1968). These parameters do not vary dramatically across the f‐series. In prac-

tice, experience has shown that they can be taken as given or varied as a single

parameter while maintaining the HFR ratios M2/M0 ¼ 0.56 and M4/M0 ¼ 0.31

(Carnall, 1989). For actinide ions, the ratio M4/M0 may be maintained at

0.38�0.4 (see Table 18.4).

For the rest of the free‐ion effective operators introduced above, no direct

Hartree–Fock calculated values can be derived. Only a term‐by‐term HFR

calculation is possible to give additional guidance for parameter estimates.

For example, the HFR values of Pks for Pr2þ and Pr3þ have been determined

by Copland et al. (1971). In establishing systematic trends of parameters for

An3þ:LaCl3, Carnall (1989) constrained the Pk parameters by the ratios P4 ¼
0.5P2 and P6 ¼ 0.1P2 whereas P2 was varied freely along with other parameters.

These ratios are consistent with the HFR estimation. The variation of these

parameters across the series is not significant, and no obvious systematic trends

have been established.

Once the systematic trends of free‐ion parameters are established, constraints

can be imposed on other parameters that are relatively insensitive to the avail-

able experimental data. Some parameters such as Ti, Mk, and Pk do not vary

significantly across the series and as a good approximation can be fixed at the

same values for neighboring ions in the same series. In fact, most of the free‐ion
parameters are not host sensitive. Typically, there are changes of ~1% in the

values of the free‐ion parameters between different lattice environments. The

free‐ion parameters given in Table 18.4 can be used as initial inputs for least‐
squares fitting of the energy level structure of a trivalent f‐element ion in any

crystalline lattice. If there is a limited number of experimentally determined

levels, one may allow only the Fk and znf parameters to vary freely along with

the crystal field parameters and keep the other free‐ion parameters fixed. For

further improvement of the fits, a, b, and g can be released. For a final refine-

ment, M0 and P2 may be varied freely with M2,4 and P4,6 varied following M0

and P2, respectively, at fixed ratios.

Multiconfiguration calculations have shown that similar values of these

effective‐operator parameters are to be expected at both ends of the lanthanide

sequence (Morrison, 1972), and empirical evaluations are in agreement with this

for both the lanthanides and actinides. For three (or 11) electrons, similar

arguments show the need for additional (three‐body) operators to parameterize

the electrostatic interactions completely. If consideration is limited to the inter-

actions arising from second‐order perturbation theory, only six new operators

are needed (Judd et al., 1968; Judd and Suskin, 1984), and their experimental
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evaluation is consistent with results expected from first‐principles calculations
(Poon and Newman, 1983).

Similar arguments hold for corrections to the spin–orbit interaction, as well

as additional terms of relativistic origin such as the spin–other–orbit and spin–

spin interactions. Hartree–Fock calculations give good estimates of the

Marvin radial integrals Mk k ¼ 0; 2; 4ð Þ associated with spin–other‐orbit and

spin–spin interactions (Judd et al., 1968). Experimental investigations are need-

ed for evaluation of the magnetic corrections associated with configuration

interactions, but experience has shown that a single set of parameters

Pk k ¼ 2; 4; 6 with P4 ¼ 0:75P2 and P6 ¼ 0:50P2
� �

accounts for a large part of

this class of corrections (Judd et al., 1968). Use of sets of all of the foregoing

parameters has been explored in detail for all of the trivalent ions from U3þ

through Es3þ, and values are shown in Table 18.4 for An3þ: LaCl3.

18.4 MODELING OF CRYSTAL‐FIELD INTERACTION

When an actinide or lanthanide ion occurs in a condensed‐phase medium, the

spherical symmetry of its electronic structure is destroyed, and ionic energy

levels shift and split under the influence of the electric field produced by the

crystalline environment. The energy level shifts and splittings depend on the

nature and strength of the interaction with the environment. Some of this

interaction can be absorbed by the nominal ‘free‐ion’ parameters themselves

and a measure of this contribution would give clues as to the nature of the

interactions. Unfortunately, mainly because of the different methods by which

the free‐ion and condensed‐phase levels are determined, there are very few

cases in which both sets of parameters are known well enough for meaningful

comparisons to be drawn.

In addition to modifications of the atomic parameters, there are medium‐
related effects that must be taken into account explicitly. The broken spherical

symmetry that normally results when an isolated free gaseous ion is placed in a

ligand field gives rise to a splitting of the free‐ion level into a maximum of

(2Jþ1) components. A single‐particle crystal field model has had remarkable

success for lanthanide ions and a somewhat qualified, but nevertheless satisfac-

tory, success for the trivalent actinide ions in providing an interpretation of

experimental data (Dieke, 1968; Hüfner, 1978; Carnall, 1992; Liu, 2000). The

degree to which the 2Jþ1 fold degeneracy of a free‐ion state is removed depends

only on the point symmetry about the ion. The magnitude of crystal‐field
splittings is determined primarily by the crystal field strength that is expressed

in terms of the crystal field parameters of the effective‐operator Hamiltonian.

The 5f electrons of actinide ions, which participate primarily in ionic bonding

with surrounding ligands, have localized states that are conventionally de-

scribed in the framework of crystal field theory (Stevens, 1952; Wybourne,

1965a). Using effective‐operator techniques and the parameterization method,
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the framework of crystal field theory has been developed with the same basis

set of eigenfunctions of the effective‐operator Hamiltonian for the free‐ion
interactions discussed in Section 18.3.5.

Because electronic interactions in solids are complex, various interaction

mechanisms that influence the electronic states of an actinide ion in a solid

environment may not be accurately calculated in the framework of current

crystal field theory. Evaluation of the crystal field parameters, however, is

theoretically much more difficult than predicting the number of energy levels

for each free‐ion state. To date, an empirical approach has been the most

effective method for evaluation of the crystal field parameters of f‐states of

actinide ions (Krupa, 1987; Carnall, 1992; Liu et al., 1994b). Phenomenological

modeling and ab initio calculations of ion–ligand interactions are able to pro-

vide theoretical guidance for the analysis of crystal field spectra. From theoreti-

cal approaches, analytical expressions of crystal field parameters using

phenomenological models are available for calculating the crystal field para-

meters of actinide and lanthanide ions in a specific crystalline lattice. The

exchange charge model (Malkin et al., 1970; Malkin, 1987) and the superposi-

tion model (Newman, 1971; Newman and Ng, 1989a) are two crystal field

models that have achieved significant success and are useful for guiding spectral

analyses. In addition, ab initio calculations of the solid‐state electronic energy

level structure have advanced significantly along with the rapid development of

computer technology and are likely to be increasingly important in future

studies (Matsika et al., 2001; Seijo and Barandiaran, 2001).

18.4.1 Correlation of free‐ion and condensed‐phase energy
level structures

It was pointed out earlier that, because of the different techniques used in

studying condensed‐phase and free‐ion spectra, the configurations available

for direct comparison in the two cases have very little overlap. When crystals

or solutions are cooled to near 4 K so that only the lowest (ground) electronic

state is populated, the resultant absorption spectrum is directly interpretable in

terms of energy levels, and, except for complications of superimposed vibronic

bands and the added perturbations of crystal field effects themselves, the

analysis can proceed to energy level assignments and parametric fitting. In

free‐ion emission studies, on the other hand, many overlapping transition arrays

between the multiple configurations displayed in Fig. 18.1 are obtained simul-

taneously, and one must first analyze this complex structure. This can only be

done with the aid of additional tags on the energy levels such as isotope shift,

hyperfine structure, or Landé g‐factor information, which requires that multiple

experiments be performed. Of the many configurations that finally result, most

are too heavily involved with s‐, p‐, and d‐orbitals for easy comparison with the

f‐shell cases discussed here. See Chapter 16 for a detailed discussion of free‐
atom and free‐ion spectra. Nevertheless, with some assistance from theory,
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cases are available from which to begin constructing a useful interpretative

and predictive model.

Considering the analogous lanthanide situation, nearly all the 4f2 atomic

levels are known for Pr3þ as a free‐ion (Pr IV; Crosswhite et al., 1965) and as

an ion in LaCl3 (Crosswhite et al., 1965; Rana et al., 1984) and LaF3 (Carnall

et al., 1969, 1989) hosts. The corresponding parametric results are given in

Table 18.5. This is the only example now available in either the lanthanide or

actinide series for which this direct comparison can be made. For this reason,

this case will be examined more closely. Columns 2 (free‐ion) and 3 (LaCl3
crystal) in the upper part of Table 18.5 give the results found for the parametric

model. Comparing the two cases line‐by‐line, significant differences can be seen

for the major parameters F k and z4f, and lesser ones for a and b. Any possible

differences in the Mk and Pk values are masked by the statistical uncertainties.

The parameter shifts attributed to the Pr3þ environment are given in column 4

and the relative change of the crystal values, compared to those of the free ion,

in column 5. Note that the most important change, nearly 5%, occurs for F2, and

about half of this for F 4, F 6, and z4f. Also a is in the same range, but with a large

uncertainty. The most striking change seems to be for b, which shows an

increase in magnitude of some 10�15%.

The 5f2 free‐ion configurations are completely known for both Th III (deBruin

et al., 1941) and U V (Wyart et al., 1980; Van Deurzen et al., 1984), but the Th2þ

condensed‐phase analog is not known, and analyzed data for U4þ are limited in

scope. The 4f3 Pr III configuration is nearly completely known (Suger, 1963), but

Table 18.5 Medium shift of free‐ion parameters for selected f‐element ions.

Pr IV

(cm�1)
Pr3þ:LaCl3
(cm�1)

Medium
shift (cm�1)

Relative
change (%)

F2 71 822(41) 68 498(20) –3324 –4.63 � 0.08
F 4 51 829(112) 50 317(50) –1512 –2.92 � 0.33
F 6 33 889(72) 33 127(38) –762 –2.25 � 0.32
a 23 939(322) 22 866(173) –1073 –4.5 � 2.1
b –599(19) –678(9) –79 þ13 � 5
z 766(3) 749(1) –17 –2.0 � 0.5
M0 2.0(0.4) 1.7(0.2) 0
P2 168(58) 248(32) 0

Pu II 5f57s2

(exp.) (cm�1)
Pu IV 5f5

(est.) (cm�1)
Pu3þ:LaCl3
(exp.) (cm–1) Medium shift (cm–1)

Relative
change (%)

F2 49 066(770) 50 015 48 670(154) –1345(924) –2.7 � 1.8
F 4 39 640(719) 40 322 39 188(294) –1134(1 013) –2.8 � 2.5
F6 26 946(785) 27 466 27 493(153) þ27(938) þ0.1 � 3.4
z 2275(27) 2305 2241(2) –64(29) –2.8 � 1.3
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there is no corresponding divalent crystal case for comparison. On the

other hand, both the Nd3þ:LaCl3 (Crosswhite et al., 1976) and U3þ:LaCl3
(Crosswhite et al., 1980) spectra are very well documented, but experimental

work for both Nd IV and U IV are incomplete. In fact, except for thorium, no

doubly or triply ionized actinide free‐ion analyses are known.

Although the parametric analyses are incomplete, enough free‐ion data are

available in a few cases to permit a determination of one or both of the major

parameters Fk and znf. For the actinides, these are all neutral atomic and singly

ionized cases, for which, again, no condensed‐phase analogs are available.

These are U I 5f47s2, U II 5f37s2, Pu I 5f67s2, Pu II 5f57s2, and Cf I 5f107s2, all

of which contain the closed shell 7s2. Using Hartree–Fock (Cowan and Griffin,

1976) results to make corrections for the removal of the 7s2 shells, parametric

values for the divalent U III, Pu III, and Cf III, and trivalent U IV and Pu IV cases

can be inferred. The best example is for Pu IV. A comparison of estimated free‐
ion parameters with the Pu3þ:LaCl3 results is given in Table 18.5. Although the

statistical uncertainties are large, the relative changes are consistent with those

for Pr3þ in the same host.

Because the shifts due to the crystalline environment and those due to the

addition of the 7s2 shell are nearly the same, it has turned out that, for initial

identification, the crystal absorption lines can be related directly to the free‐ion
spectral lines, at least in those cases for which the crystal field can be treated in

the weak‐field approximation.

18.4.2 Crystal‐field Hamiltonian and matrix element evaluation

Based on the concept that the crystal‐field interaction can be treated approxi-

mately as a point‐charge perturbation on the free‐ion energy states, which have

their eigenfunctions constructed with the basis of spherical harmonic functions,

the effective operators of crystal‐field interaction may be defined with the tensor

operators of the spherical harmonics C(k). Following Wybourne’s formalism

(Wybourne, 1965a,b), the crystal field potential may be defined by:

H CF ¼
X
k;q;i

Bk
qC

ðkÞ
q ðiÞ; ð18:32Þ

where the summation involving i is over all the equivalent electrons of the open

shell of the ion of interest; where the Bk
q are crystal field parameters and the C

ðkÞ
q

are components of the tensor operators CðkÞ that transform like spherical

harmonics.

In addition to Wybourne’s formalism for crystal field parameters, the

Stevens’ notation of crystal field parameters A
q

k rk
� �

are often found in the

literature. The crystal‐field interaction is often characterized by quantitative

comparison of the crystal field strength defined as (Wybourne, 1965a; Auzel and

Malta, 1983):
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Nv ¼ 1

4p

X
q;k

Bk
q

� �2

2kþ 1

2
64

3
75
1=2

; ð18:33Þ

With tensor operators, evaluation of the crystal field matrix elements can be

performed with the same methods used for the free‐ion matrix elements. Upon

application of the Wigner–Eckart theorem, the matrix elements of the crystal‐
field interaction can be expressed with the reduced matrix elements of a unit

tensor U(k) (Wybourne, 1965a; Weissbluth, 1978):

ltSLJM
X
i

Ck
q ðiÞ












lt0L0J 0M0

* +
¼ ð�1ÞJ�M J k J 0

�M q M0

� 	

ltSLJ U ðkÞ

 

l0t0S0L0J 0
D E

l C ðkÞ



 


lD E

:

ð18:34Þ

In LS coupling, the matrix elements of the unit tensor can be further reduced to

ltLSJ UðkÞ

 

lt0L0S0J 0
D E

¼ ð�1ÞSþL0þJþk ð2J þ 1Þð2J 0 þ 1Þ½ 
1=2

J J 0 k

L0 L S

� �
ltLS U ðkÞ

 

lt0L0S0

D E ð18:35Þ

With equations (18.34) and (18.35), the reduced matrix elements of the crystal‐
field Hamiltonian can be written as:

ltSLJM H CFj jlt0S0L0J 0M0h i ¼
X
k;q

Bk
q �1ð ÞJ�M J k J 0

�M q M0

� 	
Dk

J ; ð18:36Þ

where

Dk
J ¼ ð�1ÞSþL0þJþk½ð2J þ 1Þð2J 0 þ 1Þ
1=2 J J 0 k

L0 L S

� �

ltSL UðkÞ

 

lt0S0L0
D E

ð�1Þlð2l þ 1Þ l k l

0 0 0

� 	 ð18:37Þ

where l ¼ 3 for fN configurations. Since all the coefficients, including the values

of the 3�j and 6�j symbols and the doubly reduced matrix elements of the

unit tensor, are known for a given free‐ion multiplet, it is obvious that evalua-

tion of crystal‐field splittings can be performed by fitting the crystal field

parameters Bk
q.

The doubly reduced matrix elements of U(k) may be obtained directly from

Nielson and Koster (1963) or from the SPECTRA program. The values of the

3�j ( ) and 6�j { } symbols can be obtained from the compilation of Rotenberg

et al. (1959) or by direct computer evaluation. The values of k and q for which

the matrix elements are nonzero are determined by the symmetry of the crystal
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field and the f‐electron angular momentum. For fN configurations (l ¼ 3), the

3�j symbols in equation (18.37) require that k ¼ 0, 2, 4, 6, and qj j � k. The

values of q are also restricted by the point group of the f‐ion site, because the

crystal‐field Hamiltonian has to be invariant under all symmetry operations of

the point group. Restrictions due to point group symmetry properties on the

nonzero matrix elements of the crystal‐field Hamiltonian are discussed later in

this section.

For the matrix element of k¼ q¼ 0, the zero‐order of crystal‐field interaction

is spherically symmetric and does not split the free‐ion energy levels, but induces

a shift to all energy levels in the same fN configuration. In general, B0
0 is not

included in evaluation of the crystal‐field splitting. Therefore, its contribution to

energy level shift is combined with the spherically symmetric component of

the free‐ion electrostatic interactions. One parameter, namely F 0, absorbs con-

tributions from spherically symmetric components of free‐ion and crystal‐field
interactions.

Once the matrix elements in equation (18.36) are evaluated, the Hamiltonian

of the crystal‐field interaction may be diagonalized together with the free‐ion
Hamiltonian to obtain the crystal‐field splittings as a function of crystal field

parameters. For spectral analysis, the free‐ion parameters may also be consid-

ered as variables for fitting an experimental spectrum. As a result of the

crystal‐field interactions, each of the 2Sþ1LJ multiplets splits into crystal field

levels. Because the off‐diagonal matrix elements of the crystal field between

different J‐multiplets may not be zero, crystal field operators induce J‐mixing.

In consequence, for actinide ions in crystals, both J and M are no longer good

quantum numbers.

As a result of J‐mixing, the eigenfunction of a crystal field level is expressed

as

mj i ¼
X
J;M

aJM JMj i; ð18:38Þ

where, in principle, the summation is over all JM terms of a given fN configura-

tion. However, inclusion of all J‐multiplets results in extremely large matrices,

particularly, for the configurations with 4 � N � 10. Diagonalization of the

effective‐operator Hamiltonian on the entire LSJM basis could be very time‐
consuming in an analysis of an experimental spectrum from optical spectrosco-

py. Such spectra usually cover energy levels that are less than 40 000 cm�1 above

the ground state (Carnall, 1992; Liu et al., 1994b). Off‐diagonal matrix elements

between free‐ion states separated by a large energy gap are small. As an

approximation, crystal field calculations without including J‐mixing is appro-

priate only for the isolated multiplets, such as the first 5D1 excited state of Am3þ

or the 8S7/2 ground state of Cm3þ. In practice, the crystal field energy level

structure of a 5fN configuration is usually calculated over the restricted energy

region in which experimental data are available. Free‐ion multiplets with energy
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levels far from this region usually are not be included in the calculation.

Namely, the free‐ion eigenfunction basis may be truncated before diagonalizing

the matrix of crystal‐field Hamiltonian. Theoretically, this truncation of

free‐ion states is justified because crystal‐field coupling diminishes between

two free‐ion multiplets as their energy gap increases. From the perturbation

point of view, the leading contribution of J‐mixing to the energy level splitting

of the J‐multiplets is proportional to 1/DEJJ0. Given that the crystal‐field
splitting of a free‐ion multiplet is about 100�1000 cm�1, multiplets that are

separated by 104 cm�1 should have no significant influence on each other.

In computational analyses of experimental spectra, one may truncate the free‐
ion states whose energy levels are far from the region of interest. This is readily

accomplished after diagonalization of the free‐ion matrix to produce a calculated

free‐ion energy level structure. These levels are considered to be the centers of

gravity for the crystal‐field splitting (Carnall et al., 1983; Carnall, 1992). One

chooses the numbers of J‐multiplets to be included in the crystal‐field matrices

for each J‐value. Therefore, the chosen J‐multiplets are still complete sets of

free‐ion eigenfunctions that contain all SL components of the given J. This way

of free‐ion state truncation ensures that no contribution from the free‐ion
interactions is lost when constructing the free‐ion wave functions for each

J‐multiplet.

One example is the 8S7/2 ground state of ions in a 5f7 configuration for Am2þ,
Cm3þ, or Bk4þ in which both diagonal and off‐diagonal matrix elements of the

crystal field operators vanish (Wybourne, 1966; Newman, 1970; Liu et al., 1993;

Newman and Ng, 2000). The observed crystal‐field splittings must be attributed

to the contributions of the mixture of other LS terms in the ground state free‐
ion wave function and nonzero off‐diagonal matrix elements between different

J values (Liu et al., 1993, 1998; Murdoch et al., 1996, 1998). Because of large

energy gaps from the ground state to the excited multiplets (�16 000 cm�1),

J‐mixing is negligible in this case. It has been shown that for the 8S7/2 ground

state splitting, the leading contributions are from the fourth and higher orders

of the coupled matrix elements between the spin–orbit (V(11)) and crystal field

(U(k)) operators (Liu et al., 1993; Brito and Liu, 2000). Without inclusion of

J‐mixing, the leading contributions to the crystal‐field splitting of the 8S7/2 multi-

plet of an f7 configuration are from the mixed matrix elements such as

8S V 11ð Þ

 

6PD E
6P Uð2Þ

 

6DD E

6D Uð2Þ

 

6PD E
6P Vð11Þ

 

8SD E

8S V 11ð Þ

 

6PD E
6P Uð11Þ

 

6ID E

6I Uð6Þ

 

6PD E
6P Vð11Þ

 

8SD E

:
ð18:39Þ

It is obvious that truncation of LS terms in the J ¼ 7/2 multiplets should

affect the scale of the coupled matrix elements, and thus affect the calculated

crystal‐field splitting. The same situation occurs for the off‐diagonal matrix

elements between different J‐levels, but is less important because of the large

energy gap between the ground state and the first excited state.
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18.4.3 Symmetry rules

The geometric properties of the crystal field operators will now be discussed in

more detail. In addition to the angular momentum of the f‐ions that restricts k
and q for a set of nonvanishing crystal field operators, the site symmetry in a

crystalline lattice also imposes limits on crystal field operators. The tensor

operators for the crystal‐field interaction must be invariant under the point

group symmetry operations imposed by the site symmetry of the ion in question.

Here the interest is to identify the nonvanishing components of crystal field

operators and their matrix elements. First, for states of the same parity, namely

l ¼ l0, k must be even. It is also required that Bk
q must be real in any symmetry

group that contains a rotation operation about the y‐axis by p or a reflection

through the x�z plane; otherwise Bk
q (q 6¼ 0) is complex. In the latter case, one of

the Bk
q can be made real by a rotation of the coordinate system about the z‐axis.

The Bk
q for q < 0 are related to those of q > 0 by

Bk
�q ¼ ð�1ÞqBk�

q : ð18:40Þ
Also under the invariant conditions of the point group theory, the crystallo-

graphic axis of the lowest symmetry determines the values of q for the nonvan-

ishing crystal field operators. For example, at a site of C3v symmetry, there is a

three‐fold axis of rotational symmetry with a reflection plane that contains the

C3 axis (Tinkham, 1964; Hüfner, 1978). The ligand field must exhibit this

symmetry. Hence, if a 2p/3 rotation is performed on the crystal field potential

followed by a reflection with regard to the plane, the potential is invariant only

if q ¼ 0, �3, and �6. Thus, within an fN configuration, the crystal‐field Hamil-

tonian may be written as

H ðC3vÞ ¼
X
i

½B2
0C

ð2Þ
0 ðiÞ þ B4

0C
ð4Þ
0 ðiÞ þ B4

3ðCð4Þ
�3ðiÞ � C

ð4Þ
3 ðiÞÞ

þ B6
0C

ð6Þ
0 ðiÞ þ B6

3ðCð6Þ
�3ðiÞ � C

ð6Þ
3 ðiÞÞ þ B6

6ðCð6Þ
�6ðiÞ þ C

ð6Þ
6 ðiÞÞ
:

ð18:41Þ
If the reflection plane is perpendicular to the C3 axis, the site symmetry

becomes C3h, which occurs for doped fN impurity ions in lanthanum ethylsul-

fate, LaCl3, and LaBr3 (Morosin, 1968). This potential invariant property

requires q = 0, �6 only, but, since there is no rotation symmetry about the

y‐axis by p or a reflection through the x–z plane for the C3h site, there is an

imaginary noncylindrical term in the Hamiltonian:

H ðC3hÞ ¼
X
j

½B2
0C

ð2Þ
0 ðjÞ þ B4

0C
ð4Þ
0 ðjÞ þ B6

0C
ð6Þ
0 ðjÞ þ B6

6ðCð6Þ
�6ðjÞ

þ C
ð6Þ
6 ðjÞÞ þ iB

06
6 ðCð6Þ

6 ðjÞ � C
ð6Þ
�6ðjÞÞ
:

ð18:42Þ

D3h is a symmetry group that includes all rotation and reflection operations

of C3h (Tinkham, 1964; Hüfner, 1978). The crystal field operators for ions at a
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D3h site are the real terms for C3h without the imaginary term iB06
6 ðCð6Þ

6 � C
ð6Þ
�6Þ.

The nonvanishing terms of crystal field operators for various lattice sites of

f‐ions in crystals are listed in Table 18.6.

The free‐ion degeneracy in M may be partially or completely removed by

the crystal‐field interaction. In the crystal‐field energy matrix using the JM

basis set, the terms for which M�M0 ¼ q for the operator C
ðkÞ
q are nonzero.

Otherwise the crystal‐field matrix elements are zero. Based on this property, the

crystal‐field matrix may be reduced into several independent submatrices, each

of which is characterized by a crystal quantum number m (or g). Each m represents

a group of M, such thatM�M0 ¼ q(0, 2, 3, 4, 6) belongs to the same submatrix

(Hüfner, 1978). All matrix elements between the submatrices are zero. The

crystal field quantum number may be used to classify the crystal field energy

levels even when J andM are not good quantum numbers. Considering C3h (and

D3h) as an example, the JM and J0M 0 (J may be equal to J0) with M�M0 ¼ 6

belong to the same crystal field submatrix. For an evennumberof f‐electrons, there
are four independent submatrices, and for an odd number of f‐electrons,
there are three independent submatrices. The parameters of nonvanishing

crystal field terms for symmetries of common crystal hosts of f‐element ions

are given in Table 18.6 along with the numbers of reduced crystal‐field matrices.

Without a magnetic field, the electrostatic crystal field alone does not

completely remove the free‐ion degeneracy for the odd‐numbered electronic

configurations. Known as Kramers’ degeneracy (Kramers, 1930; Hüfner,

1978), all crystal field levels are at least doubly degenerate. The crystal quantum

number and JM classification schemes are given for D3h symmetry in Table 18.7.

In calculation of energy level structure for degenerate doublets, one may cut off

half of the submatrix elements. In many cases, calculations of crystal field

energy levels have been carried out usefully by assuming a higher site symme-

try than the real one so that fewer parameters are required. In some cases, this

approach was used because actinide ions in many solids occupy a low‐
symmetry site and the limited number of observed energy levels could not

accurately determine a large number of crystal field parameters (Carnall et al.,

1991). In other cases, a crystal lattice that does not have mirror symmetries in its

coordinates requires complex crystal field parameters for the q 6¼ 0 terms (Table

18.6). If one uses as an approximation only the real part of the crystal field

operators, energy level calculation becomes much easier. Because the use of high

symmetry as an approximation is equivalent to upgrading a lower‐symmetry

site to a higher one within the same crystal symmetry group, this approach has

been called the descent‐of‐symmetry method (Görller‐Walrand and Binnemans,

1996). This method may be applied to the groups of monoclinic, trigonal, and

tetragonal structures listed in Table 18.6. For example, the C3h symmetry of

LaCl3 was replaced by D3h (Morrison and Leavitt, 1982); the S4 site symmetry

of trivalent lanthanide ions in LiYF4 is often treated as D2d (Esterowitz et al.,

1979; Görller‐Walrand et al., 1985; Liu et al., 1994a). Similarly, the actual C2

symmetry of LaF3 was replaced by C2v (Carnall et al., 1989).
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In general, use of the descent‐of‐symmetry method may have more compli-

cated consequences than that of the above examples. For a specific symmetry

modification, one may estimate the changes in crystal field parameters based on

the rotational symmetry of point charges in polar coordinates (y,f) and assum-

ing that the ligand ions in each coordination shell are at the same distance from

the f‐element ion. For an arbitrary rotation, the Bk
0 parameters should only

depend on the y‐coordinates, whereas the Bk
q parameters (q 6¼ 0) depend on both

y‐ and f‐coordinates. Changes in the f‐coordinates have no influence on Bk
0 and

jBk
qj ¼ ½ðReBk

qÞ2 þ ðImBk
qÞ2
1=2. Descent‐of‐symmetry operations that have this

property are Cnh ! Dnh, S4 ! D2d, and Cn ! Cnv. The symmetry changes that

incorporate a change in y‐coordinates will change all parameters, such as Dnh!
Cnv and Dnh ! Cn. If the symmetry of the f‐element site is lowered, not only are

additional parameters required, but there are also changes in the crystal field

parameters found in the higher symmetry. In consequence, there is far less

rationale for using Dn has an approximation for Cn and Cnv.

Table 18.7 Classification of crystal field energy levels for D3h symmetry.

(a) Even number of electrons

m ¼ 0 (1G1, 2) m ¼ � 1 (2G5) m ¼ � 2 (2G6) m ¼ 3 (1G3, 4) No. levels

J M M M M

0 0 1
1 0 �1 2
2 0 �1 �2 3
3 0 �1 �2 3, �3 5
4 0 �1 �2;�4 3, �3 6
5 0 �1;�5 �2;�4 3, �3 7
6 �6, 0, 6 �1;�5 �2;�4 3, �3 9
7 �6, 0, 6 �7;�1;�5 �2;�4 3, �3 10
8 �6, 0, 6 �7;�1;�5 �8;�2;�4 3, �3 11

(b) Odd number of electrons

m ¼ � 1/2 (2G7) m ¼ � 3/2 (2G8) m ¼ � 5/2 (2G9) No. levels

J M M M

1/2 �1/2 1
3/2 �1/2 �3/2 2
5/2 �1/2 �3/2 �5/2 3
7/2 �1/2 �3/2 �5/2, �7/2 4
9/2 �1/2 �3/2, �9/2 �5/2, �7/2 5
11/2 �1/2, � l1/2 �3/2, �9/2 �5/2, �7/2 6
13/2 �13/2, �1/2, �l1/2 �3/2, �9/2 �5/2, �7/2 7
15/2 �13/2, �1/2, �l1/2 �15/2, �3/2, �9/2 �5/2, �7/2 8
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Site distortion is a common phenomenon when f‐element ions are doped into

crystals. A dopant ion may have site symmetry lower than that of the host ion it

replaces. This is especially true if the charge on the dopant ion and/or its ionic

radius is different from that of the host ion. Accordingly, both the sign and

magnitude of crystal field parameters are subject to change. As discussed above,

different crystal structures may undergo different types of distortion that reflect

the properties of the specific coordination polyhedron in a given crystal.

Görller‐Walrand and Binnemans (1996) give a detailed description of the effects

of structural distortion in terms of changes in the y‐ and f‐coordinates. How-

ever, changes in radial distances may occur as well. For ions at a distorted site

that further reduces the degeneracy of electronic states, analyses of crystal field

spectra must be conducted using a lower symmetry.

18.4.4 Empirical evaluation of crystal field parameters

Extensive mixing of SL‐basis states, brought about by the spin–orbit and

crystal‐field interactions for each J‐multiplet, can result in the least‐squares
method for empirical evaluation of crystal field parameters converging to a

false solution. A false solution can be recognized if there is sufficient characteri-

zation of the states from supplementary data, such as Zeeman splitting factors

or polarized spectra. However, this in itself may not produce the true solution.

The latter can only be found if sufficiently accurate initial parameters are

available for the least‐squares fitting process to be effective. Therefore, estab-

lishing accurate parameters for the model Hamiltonian essentially relies on

systematic analyses that encompass theoretical calculations for incorporating

trends of parameter variation across the f‐element series (Carnall, 1989; Liu

et al., 1994b; Liu, 2000). The results of analyses of simpler spectra are carried

over to more complex ones through consideration of their symmetry properties.

For f‐element ions in crystals of well‐defined site symmetry, crystal field theory

is widely used along with group theory for predicting the number of energy levels

and determining selection rules for electronic transitions between crystal field

levels. Whereas the number of nonvanishing crystal field parameters can be

determined by the symmetry arguments, their values are usually determined by

analyzing the experimentally observed crystal‐field splittings. Experimental data

that carry supplementary spectroscopic information, such as polarized transi-

tions allowed by electric or magnetic dipolar selection rules, ensure the accuracy

of the experimentally fitted crystal field parameters (Liu et al., 1992, 1994a,

1998). In addition, the temperature dependence of observed crystal‐field split-

tings may be analyzed to distinguish pure electronic lines from vibronic features.

Properties such as magnetic susceptibility as a function of temperature may be

calculated from the empirical wave functions as a further check on the accuracy

of the crystal field parameters. If multiple sites exist, site‐resolved spectra are

required to distinguish energy levels of ions at different sites (Tissue andWright,

1987; Liu et al., 1994b; Murdoch et al., 1996). Accordingly, as a procedure of
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parametric modeling, correct assignment of observed energy levels is crucial to

avoid a false solution. For spectra that lack sufficient experimental information

to achieve unambiguous assignment, this procedure may involve several itera-

tions of trial calculations and analyses that require a firm understanding of the

basics of crystal‐field splitting of free‐ion states (Carnall, 1989, 1992).

For setting initial parameters of the crystal‐field Hamiltonian to be fit by

observed energy levels, one may simply use the previously established para-

meters for different f‐element ions in the same or similar host materials. For the

series of trivalent actinide ions in LaCl3, one of the most extensively studied host

crystals, the parameters of free‐ion and crystal‐field interactions are listed in

Table 18.4. Comprehensive summaries of previously studied lanthanide systems

are given (Morrison and Leavitt, 1982; Görller‐Walrand and Binnemans, 1996).

Alternatively, the signs and magnitudes of crystal field parameters can be

predicted according to the coordination of the f‐element ion using the point

charge model of the electrostatic crystal field potential. For this purpose, only

the nearest ligand (NL) atoms need to be considered. As a function of the radial

and angular coordinates, the expressions for the Bk
q parameters are given in the

following section. The signs of the crystal field parameters are determined by the

angular part of the electrostatic potential and may be obtained by symmetry

analysis. The predicted signs are important for checking the signs of the para-

meters obtained by the fitting procedure. Some sign combinations may corre-

spond to a coordination that is physically impossible. Generally, determination

of the magnitudes requires more quantitative calculations of the overlap inte-

grals between the f‐electrons and the electrons of the ligands. The electrostatic

interactions beyond the nearest ligands may bring about significant contribu-

tions to the parameters with k ¼ 2. For these parameters, the total contribution

from the long‐range interactions may exceed that of the NL so that a change in

the sign of B2
q determined by the NL atoms is possible (Zhorin and Liu, 1998).

Moreover, the electrostatic point charge model is not realistic in describing the

short‐range interactions between the f‐element ion and its nearest ligands.

Charge exchange interactions including covalency may dominate the crystal

field parameters with k¼ 4 and 6. For these reasons, an empirical approach with

theoretical guidance is necessary to ensure that the parameterization is within

the limitations of physical interactions.

In a nonlinear least‐squares fitting process, the magnitudes and signs of

crystal field parameters are varied to best reproduce the observed energy level

structure. This is actually a process of optimizing crystalline structure within a

given restriction through variation of the crystal field parameters. The para-

meters that have higher weight are better determined than the parameters that

have less influence on the observed energy levels. Adding an imaginary parame-

ter may only change the real part of the term that has the same q and k but does

not have much influence on other parameters. If the values of the crystal field

parameters for a system of higher symmetry are used as initial values of

the parameters for a different system of lower symmetry, the fitting may either
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fall into a false solution or leave the added parameters less accurately deter-

mined. In this case, one should assign the unambiguously observed energy

levels, most likely the isolated multiplets, and only allow the most significant

crystal field parameters to vary freely. Once these weighted parameters con-

verge, further fitting should be performed on the entire set of crystal field

parameters, along with the variation of the free‐ion parameters.

18.4.5 Theoretical evaluation of crystal field parameters

Quantum mechanical calculations of crystal field energies and corresponding

crystal field parameters for f‐element ions in compounds with different chemical

characteristics were carried out by several groups in the framework of the

cluster approximation. For an f‐ion and its nearest ligands (chlorine, fluorine,

or oxygen ions), the fully antisymmetric and orthonormalized wave functions of

zero‐order are constructed as linear combinations of products of individual ion

wave functions, and the energy matrix is built with the complete Hamiltonian

that contains one‐ and two‐electron operators including the interaction with the

electrostatic field created by the rest of the crystal. The first‐order contributions
to the energy matrix include integrals over one‐electron wave functions of the

occupied states of the cluster. Higher‐order contributions correspond to config-

uration mixing. The procedure and details of calculations have been described

in several original and review papers (Newman, 1971; Eremin, 1989; Garcia and

Faucher, 1995; Shen and Bray, 1998; Zhorin and Liu, 1998; Newman and Ng,

2000). Here we present only a brief description of the results of ab initio

simulations that are important for modeling of the main physical mechanisms

responsible for crystal‐field splittings.

The first‐order terms in the energy matrix include Coulombic, exchange, and

overlap integrals over 5f orbitals of the actinide ion and outer orbitals of ligand

ions. From these terms, the 5f‐electron energy in the electrostatic field of the

ligand point multipole moments and the charge penetration contribution may

be singled out. The second‐order terms may be classified according to inter-

mediate (virtual) excited states of the cluster. In this regard, the following

electronic excitations should be considered:

(1) Intra‐ion excitations from the filled electronic shell of the actinide ion to the

empty excited shell (in particular, 6p6 ! 6p56d1). These processes shield the

inner valence 5fN shell and may be accounted for, at least partly, by

introducing shielding (or antishielding) factors into the multipole moments

of the valence electron 5f rk


 

5f� � ! 1� skð Þ 5f rk



 

5f� �� �
(Rajnak and

Wybourne, 1964).

(2) Intra‐ion excitations from the valence shell into empty shells and from the

filled shells into the valence shell (in particular, 5fN ! 5fN�16d1 or 6p6 !
6p55fNþ1). These processes contribute to the linear shielding and cause

additional corrections to parameters of the effective Hamiltonian bilinear

in parameters of the electrostatic field.
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(3) Inter‐ion excitations, mainly into the charge‐transfer states of the actinide

ion with the extra electron in the valence shell promoted from the

outer‐filled shell of the ligand. Actually, mixing of the ground configuration

with the charge‐transfer states corresponds to a partially covalent character

in the chemical bonding between an actinide ion and its ligands.

It should be noted that the effective‐operator Hamiltonian (equation (18.32))

with a single set of crystal field parameters, operating within the total space of

wave functions of 5fN configuration, can be introduced if all excited configura-

tions of the cluster under consideration are separated from the ground configu-

ration by an energy gap that is much larger than the width of the energy

spectrum of the ground configuration. Otherwise the crystal field parameters

become term (LSJ) dependent. In particular, a crystal field analysis carried out

on an extended basis containing the ground 4f2 and excited 4f5d, 4f6p config-

urations of Pr3þ in YPO4 (Moune et al., 2002) greatly improved the agreement

between the experimental data and the calculated energy levels. For the 5fN

configurations, the inter‐configuration coupling is anticipated to bemuch stronger

because of smaller gaps between the ground and excited state configurations,

particularly, for the lighter actinides in the first half of the 5fN series.

A general conclusion about the dominant role of overlap and covalent

contributions to the crystal field parameters B 4
q and B 6

q follows from all ab

initio calculations carried out up to the present time. When Hartree–Fock one‐
electron wave functions of free ions are used in simulations, relative differences

between the theoretical and experimental values of these parameters do not exceed

50%. However, for the quadrupole component of the crystal field parameters B2
q,

contributions from the long‐range interactions of valence electrons with point

charges, dipole, and quadrupole moments of ions in the crystal lattice are

comparable to contributions from the interactions with the nearest ligand ions,

and the theoretical estimations differ substantially from the experimental data.

Whereas the free‐ion parameters vary smoothly across the 5f series, trends in

crystal field parameters, particularly B 4
q and B 6

q , usually break at the f7 configu-

ration. Experimental evidence for this effect is evident in the systematic analysis

of the spectra of trivalent actinides doped into single‐crystal LaCl3 (Carnall,

1992) and trivalent lanthanides in LaF3 (Carnall et al., 1989). An abrupt change

in the magnitude of parameters with k ¼ 4 and 6 occurs at the center of the

series. Judd (1979) has interpreted this effect as a problem of the one‐electron
operators of the crystal‐field Hamiltonian. One‐electron operators, Uk,

change sign at the center of the series. Inclusion of two‐electron operators in

the crystal‐field Hamiltonian would likely remove this discontinuity.

Although extensive Hartree–Fock calculations have been utilized for estab-

lishing systematic trends of free‐ion interactions that lead to the determination

of the parameters of the effective‐operator Hamiltonian, most analyses of

crystal‐field interactions are carried out with the crystal field parameters deter-

mined by the fitting of experimental data. Attempts to calculate the crystal field
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parameters from first principles may not be realistic. Given the complexity of

electronic interactions in solids, ab initio calculations of electronic structure

of heavy element ions in solids currently are not capable of achieving accuracy

that is comparable to experimental results. Therefore, theoretical models, more

or less phenomenological on the basis of the point‐charge approximation, are

essential in providing a clear theoretical understanding of electronic interactions

of the f‐element ions in solids. Model calculations do not only generate the

phenomenological crystal field parameters that provide guidance to parametric

modeling of the crystal field spectra of f‐element ions in solids, but also reveal

more fundamental aspects of the ion–ligand interactions that are poorly char-

acterized by the point‐charge approximation itself. Among the crystal field

models introduced in the literature, the angular overlap model (Jørgensen

et al., 1963), the exchange charge model (Malkin et al., 1970; Malkin, 1987),

and the superposition model (Newman, 1971; Newman and Ng, 1989b, 2000)

have been used for calculations of crystal field parameters for both 4f elements

and 5f elements in various crystals.

Detailed discussions of the superposition model of the crystal field and its

application to analysis of experimental spectra were provided byNewman andNg

(1989b, 2000). The superposition model neglects the ligand–ligand overlap effects

and reflects the total crystal‐field interaction as a linear ‘superposition’ of local

ion–ligand pair‐wise electrostatic interactions. The crystal field parameters are

expressed as a sum of individual contributions from ions in the host crystal lattice,

Bk
q ¼

X
L

�BkðRLÞgk;qðyL; ’LÞ; ð18:43Þ

where gk,q are normalized spherical harmonic functions, and RL, yL, ’L locate

the position of ligand L in the lattice coordination environment. The distance‐
dependent parameters �BkðRLÞ are referred to as intrinsic crystal field para-

meters, which by definition are dependent only on the radial distance between

the f‐ion and the ligand L. Based on the assumption of the point charge model

that the ion–ligand electrostatic interaction has a specific power law depen-

dence, the intrinsic parameters can be defined as

�BkðRÞ ¼ �BkðR0ÞðR0=RÞtk ; ð18:44Þ
where R0 is the distance between the f‐ion and a reference ligand located on the

z‐axis of the crystalline lattice, and tk are power law exponents that reflect the

distance dependence of the ion–ligand interaction (Newman and Ng, 2000).
�BkðR0Þand tk can be empirically determined as phenomenological parameters.

It should be noted that the parameters tk are not generally in agreement with the

electrostatic power law components t2 ¼ 3, t4 ¼ 5, t6 ¼ 7. For chloride ligands,

in particular, t4 ¼ 12 � 16, t6 ¼ 5 � 7 for different RE ions (Reid and

Richardson, 1985). Values of the rank 4 and 6 parameters quickly decrease

with R, and the corresponding sums (equation (18.43)) are limited to the nearest

neighbors of the f‐ion. Because of their long‐range effect, values of the rank 2
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parameters are often difficult to determine. One may break the rank 2 operator

into two terms, labeled as p and s (Levin and Cherpanov, 1983):

�B2ðRLÞ ¼ �Bp
2
ðR0ÞðR0=RLÞ3 þ �Bs

2
ðR0ÞðR0=RLÞ10 ð18:45Þ

to represent, respectively, the ligand point charge contribution and the short‐
range contribution.

Apparently, model calculations of crystal field parameters result in less dis-

crepancies for some systems than for others. This is mainly due to uncertainties

in structure information to which crystal field calculations, particularly of the

rank 4 and 6 parameters, are extremely sensitive. Crystal lattice constants

determined from X‐ray diffraction or neutron scattering may be of very high

resolution only for intrinsic sites. For impurity f‐element ions doped into host

materials, an unknown structural distortion is induced in most cases. The

doping‐induced site distortion depends in part on the ionic radius difference

between the host ion and the doped f‐element ion. If a model calculation is

conducted based on the structure of the host, the calculated crystal field para-

meters are expected to be more or less different from those determined by fitting

experimental data for the system.

The exchange charge model (ECM) (Malkin et al., 1970; Larionov and

Malkin, 1975; Malkin, 1987) is an extension of the angular overlap model

(Jørgensen, 1962). It considers both long‐range and short‐range interactions

between the actinide or lanthanide ion and lattice ions. The effective crystal‐field
Hamiltonian is assumed to be a sum

H CF ¼ H pm þ H ec ð18:46Þ
where the first term corresponds to the electrostatic interaction of valence elec-

trons localized on the f‐element ion with point multipole moments of the lattice

ions. The second term approximates all contributions due to the spatial distribu-

tion of electron density. Both terms have the form of equation (18.44) with

parametersB
ðpmÞk
q and B

ðecÞk
q . Matrix elements of the effective‐operator Hamilto-

nian H ec in the basis of one‐electron wave functions of the metal ion interacting

with spherical ligand ions may be calculated (Malkin et al., 1970; Malkin, 1987).

To gain a greater insight into the energy level calculations, it is instructive to

compare contributions to the electrostatic crystal field parameters with those

from overlap and covalency effects. The ECM introduces the renormalization

of the parameters of the electrostatic crystal field only and does not change the

structure of the Hamiltonian H pm. This renormalization may be considered to

be a result of the ‘nonlocal’ interaction of the valence electron with the exchange

charges localized at the bonds connecting the metal ion with its nearest neighbor

ions. The concept of exchange charge, for which the crystal field model under

consideration was named, and was first introduced by Dick and Overhauser

(1958) in the theory of dielectric properties of solids. Values of exchange charges

are proportional to the linear combinations of the overlap integrals and depend

on the rank k of the corresponding tensor B(k) of crystal field parameters. It is
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important that the ECM allows for consideration of both even and odd com-

ponents of the crystal field. In particular, integral intensities of spectral lines in

the intra‐configurational 5fN�5fN spectra and their frequencies may be fitted in

the framework of a single model.

As an example of ECM calculation, Table 18.8 lists the values of crystal field

parameters calculated by using the ECM in comparison with the experimentally

determined ones. It is evident that the dominant contributions to B2
q are from

electrostatic interactions, whereas those to B 4
q and B 6

q are from short‐range
interactions. It is generally realized that the second‐order parameters Bk

q with

k = 2 are less accurately determined by the model calculation, particularly for a

disordered lattice. This is because the second‐order parameters characterize the

long‐range electrostatic interactions that are difficult to calculate accurately. It

should be noted that the contradiction between the calculated and experimental

values of the B2
0 parameter in Nd3þ:LaCl3 (in particular, different signs) may be

removed when taking into account large contributions due to point dipole and

quadrupole moments of chlorine ions (Eremin, 1989).

18.4.6 Corrections to the crystal‐field Hamiltonian

As described in earlier sections, the parameterization approach is able to

reproduce the crystal field energy level structures of actinide or lanthanide

ions in satisfactory agreement with high‐resolution absorption and lumines-

cence spectra. The standard deviation in a nonlinear least‐squares fit to experi-

mental spectra in the low‐lying energy levels (40 000 cm�1) can be less than

10 cm�1 for lanthanide ions (Liu et al., 1994a). However, crystal field modeling

of energy levels for some particular states in the 4f configurations is invariably

poor as, for instance, in the cases of the 2H11/2 multiplet of Nd3þ and 3K8 of

Ho3þ. The discrepancies are much larger for the actinides in 5fN configurations

Table 18.8 Crystal field parameters from ECM calculation and experimental fit (cm�1).a

Nd 3þ:LaCl3 (C3h symmetry) Cm3þ:LuPO4 (D2d symmetry)

Calculated b
Experimental b

( fit to D3h) Calculated c Experimental c

B2
0 �78(39) 81 450(180) 399

B 4
0 �78(�57) �42 370(230) 363

B 6
0 �44(�41) �44 �2500(�2050) �2470

ReB 4
4 2400(1200) 2261

ReB 6
4 200(185) 167

ReB 6
6 299(279) 439

ImB 6
6 �239(�226)

a The values in parentheses are the contribution from exchange‐charge interactions.
b Zhorin and Liu (1998).
c Liu et al. (1998).
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(Edelstein, 1979; Carnall, 1992; Liu et al., 1994b; Murdoch et al., 1997; Liu,

2000). Faucher et al. (1996) reported in energy level analysis of U4þ in the

octahedral sites of Cs2UBr6 and Cs2ZrBr6 evidence of strong interaction be-

tween the 5f2 and 5f17p1 configurations. Adjustment of the parameters in the

free‐ion Hamiltonian does not result in much improvement. This problem is

primarily due to the exclusion of the electron correlation effect in the one‐
electron crystal field model. The effects of electron–electron interaction cannot

be completely absorbed into the effective‐operator Hamiltonian of the one‐
electron crystal field model. Reid and coworkers (Reid, 2000) have reviewed

progress in the modification of the one‐electron crystal field theory with

inclusion of correlation crystal field operators in the Hamiltonian.

There are various physical mechanisms that contribute to multiplet‐depen-
dent crystal‐field splittings that can be described generally as correlation effects.

The two obvious mechanisms, namely, the spin‐correlated crystal field potential

(Newman, 1971; Judd, 1977b) and the anisotropic ligand polarization effect,

also known as nephelauxetic effect (Jørgensen, 1962; Gerloch and Slade, 1973),

have been identified as large contributors, although, it is not clear what physical

mechanisms produce the dominant contribution to shift the f‐electron energy

levels. To correct the discrepancy that appears in analyses of optical spectra

with the one‐electron crystal field model, it becomes necessary to introduce a full

parameterization of the anisotropic two‐electron interaction. To facilitate cal-

culations of the matrix elements with the same basis for the one‐electron
operator Hamiltonian, Judd’s g

ðkÞ
iq operators (Judd, 1977a), which are orthogo-

nal over the complete fN basis sets, are used to define the correlation crystal field

(CCF) Hamiltonian (Reid, 1987):

H CCF ¼
X
ikq

Gk
iqg

ðkÞ
iq ; ð18:47Þ

where Gk
iq are parameters of CCF. The index k runs through the even integers

from 0 to 12 (4l, for fN configurations). The parameter q is restricted by

symmetry, and the number of operators varies with k. The operators g
ðkÞ
i with

k ¼ 0 correspond to Coulomb interactions and those with i ¼ 1 to one‐electron
operators, in fact g

ðkÞ
1 � UðkÞ.

The main problem in the application of the CCF Hamiltonian is the very

large number of parameters that are necessary to account for electron–electron

correlation. However, the successful parameterization of f‐ion crystal field

energy level structure is largely dependent on the accuracy and the number of

observed and properly assigned energy levels. In general, nonlinear least‐square
fitting requires that the number of assigned energy levels should be much larger

than the total number of freely varied parameters. Expansion of the effective‐
operator Hamiltonian by including the operators for the correlation crystal‐
field interaction is effective only if there are sufficient experimental data and

correctly determined parameters for the free‐ion and one‐electron crystal‐field
Hamiltonian for initial input. Otherwise, fits may fall into false minima and
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produce inconsistent parameters. To correct the one‐electron crystal field dis-

crepancy by adding more terms to the crystal‐field interaction, one should

always consider restrictions on operators and introduce constraints based on

physical relationships to reduce the number of freely varied parameters.

As discussed in Section 18.3, the effective‐operator Hamiltonian for the free‐
ion interaction includes a corrective term (equation (18.26)) due to configura-

tion interaction. In crystal field theory, the effect of configuration interaction

was also considered (Rajnak and Wybourne, 1964). For a configuration of

equivalent electrons lN, most mechanisms of configuration interaction lead to

a simple scaling of the crystal field parameters Bk
q. However, a one‐electron

excitation, either from the lN shell to unfilled orbitals or from closed shells into

the lN shell, also results in effects that cannot be accommodated by a scaling of

the Bk
q parameters alone. As a result, the crystal field parameters are expected to

vary from one multiplet to another.

For the weak crystal‐field interaction of the f‐element ions in crystals, the

usual method of a second‐order perturbation theory can be used to characterize

the configuration interaction (Judd, 1963a; Rajnak andWybourne, 1963, 1964).

The single particle operator C
ðkÞ
q in equation (18.32) can only couple configura-

tions that differ by the excitation of a single electron. Thus, for an nlN‐type
configuration, only three types of configurations are coupled:

ð1Þ nlNn0l 04l0þ1 with nlNn0l
04l0þ1n0l00;

ð2Þ nlN with nlN�1n0l0;
ð3Þ nlNn0l 04l0þ2 with nlNþ1n0l

04l0þ2.

As a result of the interaction between these configurations, each matrix

element of equation (18.32) must be replaced by

ð1þ DÞ lNtSLJM Bk
qC

ðkÞ
q




 


lNt0S0L0J;M0
D E

ð18:48Þ

where D is known as the configuration interaction correction factor. This factor

is the sum of two terms D1 and D2, where

D1 ¼ �1

E

X
m

nlNc H CFj jm� �
m H CFj jnlNc0� �

nlNc H CFj jnlNc0h i ; ð18:49Þ

and

D2 ¼ �2

E

X
m

nlNc H CFj jm� �
m H Cj jnlNc0� �

nlNc H CFj jnlNc0h i ð18:50Þ

and E is the mean excitation energy of the excited electron, m is a state of the

perturbing configuration, H CF is the crystal‐field Hamiltonian, and H C is the

Coulomb interaction in the free‐ion Hamiltonian.

The first correction factor D1 corresponds to configuration mixing purely by

the crystal field, whereas the second factor D2 represents an electrostatically

correlated crystal‐field interaction between the configurations. Methods for
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evaluating the matrix elements have been discussed in detail in previous work

(Judd, 1963a; Rajnak andWybourne, 1964). It has been shown that the primary

effect of configuration interaction is simply to scale the crystal field parameters

Bk
q. The individual parameters are shielded (or antishielded) by different

amounts depending on the perturbing configuration. This overall scaling effect

is absorbed into the crystal field parameters determined from the experimental

data. However, it has been shown that the second factor D2 may be different for

different SL states. This means that the crystal field parameters are no longer

independent of free‐ion states. If this mechanism is important, the crystal field

parameters determined in fitting observed states in the narrow energy range of

the low‐lying multiplets give an inadequate description of the crystal‐field split-

tings of the multiplets at higher energies.

18.5 INTERPRETATION OF THE OBSERVED SPECTRA OF

TRIVALENT ACTINIDE IONS

Most of the actinide elements may be easily stabilized as trivalent ions in solids.

Accordingly, a majority of the spectroscopic studies of actinides has been

performed on the trivalent ions in 5fN configurations. Whereas higher oxidation

states can be stabilized for the lighter members in the first half of the actinide

series, the 3þ oxidation state is most stable for the spectroscopically studied

heavier actinides in condensed phases. Spectroscopic analyses and empirical

modeling of the free‐ion and crystal‐field Hamiltonian were successfully con-

ducted first on the trivalent ions using the model Hamiltonian reviewed in

Section 18.4.6. Similarities are found between the series of trivalent actinide

and lanthanide ions in terms of free‐ion interactions and crystal‐field splittings

of the energy levels of the f‐electrons.
When the results of a Hartree–Fock calculation are compared to those of a

parametric analysis of experimentally identified levels for a given element, the

magnitude of the computed energies, particularly those for Fk, are generally

found to be too high. For a more realistic Hamiltonian, using parametric

approach, one can apply subtractive corrections to the estimates derived from

ab initio calculations. These corrections turn out to be essentially constant over

the series and almost identical for both 4fN and 5fN shells (Crosswhite, 1977;

Liu, 2000). The significance of this is that mixing with high configurations

can be taken as essentially a fixed contribution to a global parametric model

(Crosswhite and Crosswhite, 1984; Carnall, 1992; Liu et al., 1994b).

Many of the early spectroscopic studies of actinides in solids were conducted

on actinide chlorides or trivalent actinide ions doped into crystals of LaCl3
(Carnall, 1992), which can incorporate the actinide series from U3þ through

Es3þ as impurities that substitute at the La3þ lattice site (C3h symmetry). These

studies, supplemented by Zeeman‐effect studies of the influence of applied

magnetic fields on the energy levels, provided the basis for experimental
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characterization of the observed transitions in terms of the free‐ion SLJ and

crystal field quantum numbers. The available data for the 5fN energy levels of

trivalent actinide ions in LaCl3 and actinide chlorides have enabled a systematic

analysis and modeling of the 5fN energy level structure (Carnall, 1992). The

significance of such a systematic analysis and theoretical modeling, like that for

the lanthanide series in LaCl3 and LaF3, is to provide a fundamental under-

standing of the electronic properties of actinides in solids along with values of

free‐ion interaction parameters that can be used for analyzing the spectra of the

actinide ions in other compounds and solutions.

The relative energies of some of the low‐lying states in U3þ:LaCl3 are shown
in Fig. 18.6 (Crosswhite et al., 1980). As indicated, each free‐ion state is split by

the crystal field. When measured at the temperature of liquid He (�4 K), only

transitions from the lowest state (taken as the zero of energy and having a

Fig. 18.6 Absorption spectrum of the crystal‐field splittings of U3þ:LaCl3 in the range
11 000–11 800 cm�1at 4 K. (Reprinted with permission from Crosswhite et al., 1980.
Copyright 1980, American Institute of Physics.)
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crystal field quantum number m ¼ 5/2 in this case) are observed. Most of the

experimental results that have been reported were photographed using

high‐resolution grating spectrographs. Transitions to only three levels 4I11/

2 were readily observed in absorption; that to a m ¼ 1/2 state (found by other

techniques near 4580 cm�1) were too weak to be apparent. Fig. 18.6 shows the

absorption spectrum of U3þ:LaCl3 in the range of 11 000 cm�1. Lines in this

spectrum are attributed the multiplets of 4G5/2,
4I15/2,

4S3/2, and
4F7/2 (Carnall,

1992). Electric dipole selection rules between the ground (m=5/2) and excited

(m=5/2) states show that absorption transitions are forbidden, so the levels that

would have corresponded to absorption transitions at 4556 and 4608 cm�1 had

to be established by fluorescence methods. Assigning energies corresponding to

the centers of these components, thus defining the ‘free‐ion’ levels for the ion in

a particular medium yields the energy level scheme indicated at the left in

Fig. 18.7. Although the levels are shifted to somewhat lower energies than

those of the true gaseous free‐ion states, the basic structure appears to be

preserved and is usually only moderately changed from medium to medium

for trivalent lanthanides and actinides. For example, the center of gravity of the
4I11/2 state in U3þ:LaCl3 in Fig. 18.7 is 4544 cm�1.

As the energies of the components of various groups are established experimen-

tally, the model free‐ion and crystal field parameters that reproduce the splittings

can be computed by a suitable (nonlinear least‐squares) fitting procedure. The

computed values are then used to predict the splitting patterns in other groups

where not all of the allowed components can be observed. Thus in the analysis of

such spectral data there is a continual interplay between theory and experiment.

When large numbers of levels have been experimentally confirmed, most (in some

cases, all) of the parameters of themodel can be varied simultaneously to establish

the final values (Table 18.4). Fig. 18.8 shows the calculated energy levels that

result from crystal‐field splitting for An3þ in LaCl3 (Carnall, 1992).

In typical analyses of actinide and lanthanide spectra in condensed phases,

the range of observation may extend well into the near‐ultraviolet region. The
number of assignments made to different multiplets and states is usually suffi-

cient to determine most of the energy level parameters. However, in Fig. 18.8

some of the observations on which this diagram is based were limited to less

than 50% of the total extent of the fN configurations. The accuracy of predicted

energy level in the ultraviolet range clearly remains to be thoroughly tested. The

Slater parameters in An3þ are typically only two‐thirds as large as those for the
Ln3þ, but z5f is a factor of 2 larger than z4f ; so while the total energy range of the

5fN configuration is reduced, the states are significantly more mixed in character

because of the increased spin–orbit interaction.

The lanthanide orthophosphates, such as LuPO4 and YPO4, are good hosts

for the incorporation of dilute fN impurities. A wide variety of lanthanide and

actinide ions, diluted in these materials, have been produced to carry out

fundamental spectroscopic investigations (Morrison and Leavitt, 1982;

Görller‐Walrand and Binnemans, 1996). For the actinide series, Cm3þ doped
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into LuPO4 and YPO4, has been the most extensively studied system (Murdoch

et al., 1996, 1997; Liu et al., 1998). The greater spatial extent of the 5f electron

shell results in a smaller electrostatic interaction between equivalent electrons in

the 5f shell than in the 4f shell. Thus for Cm3þ, the energy level of the first

excited multiplet (J ¼ 7/2) is at �16 000 cm�1. Utilizing this metastable emitting

state, excited state absorption studies allowed the collection of data to

Fig. 18.7 Energy level structure for U3þ:LaCl3.
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40 000 cm�1 using two visible lasers (Murdoch et al., 1997). The ground term

multiplet splitting is small, because the largest component of the ground multi-

plet has zero angular momentum. Early detailed studies of the Cm3þ optical

spectra were performed with the 244Cm isotope. During the past decade or so,

multimilligram quantities of 248Cm have become available. Several single crys-

tals were doped with the 248Cm isotope and optical studies of these samples

Fig. 18.8 Energy level structure of An3þ:LaCl3 based on computed crystal field energies in
the range 0–40 000 cm�1. (Reprinted with permission from Carnall, 1992. Copyright 1992,
American Institute of Physics.)
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were performed using laser‐selective excitation and fluorescence techniques.

Edelstein (2002) has recently published a review of the spectroscopic studies

of Cm3þ in various hosts.

The free‐ion model based on studies of the 3þ actinide ions in LaCl3 has been

used in analysis of the optical spectra of Cm3þ in LuPO4. For the crystal‐field
splitting, because the metal ion site is D2d in the phosphates instead of C3h in

LaCl3, a different set of crystal field parameters must be established. Fig. 18.9

shows the excitation spectra of Cm3þ in LuPO4 (Fig. 18.9a) and YPO4

Fig. 18.9 Excitation spectra of transitions from the 8S7/2 ground state multiplets to the
6D7/2 excited state of the Cm3þ ion in (a) LuPO4 and (b) YPO4 at 4 K. (Reprinted with
permission from Liu et al., 1998. Copyright 1998, American Institute of Physics.) The
emission was monitored at 16 563.0 cm–1 for Cm3þ:YPO4 and 16 519.5 cm–1 for Cm3þ:
LuPO4. The insert shows the crystal‐field splitting of the ground state of Cm3þ in YPO4.
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(Fig. 18.9b) in which the crystal field energy levels for the first excited multiplet

(nominal 6D7/2) were observed to extend from 16 560 to 17 200 cm�1. In addi-

tion to the zero‐phonon lines (ZPL) indicated by the vertical arrows, vibronic

sidebands have intensities comparable to those of the upper ZPLs. The insert in

Fig. 18.9b shows the crystal‐field splitting in the ground state which also is a

J ¼ 7/2 (nominal 8S7/2). Whereas the excited state crystal‐field splitting is more

than 800 cm�1, the ground state splitting is only 12 cm�1. As pointed out in

Section 18.4.2, the crystal‐field interaction vanishes in the ground state of an f7

configuration unless a fourth‐order coupling to the excited states is considered

(Liu et al., 1993). Although the excited 6D7/2 also has no first‐order crystal‐field
splitting, the more significant mixture of LS terms in its wave functions results

in much larger crystal‐field splitting. Many experimental results of the ground

state splitting of actinide ions in the 5f7 configuration, which include Am2þ,
Cm3þ, and Bk4þ in different crystalline hosts, have been reported (Edelstein and

Easley, 1968; Liu et al., 1996; Murdoch et al., 1996; Brito and Liu, 2000).

In different hosts, the values for the An3þ free‐ion parameters listed in Table

18.4 may vary 1% or less. In fitting the Cm3þ:LuPO4 (or YPO4) data, the

parameters of three‐body coupling operators, Tk, were kept fixed at the values

for Cm3þ in LaCl3 (Murdoch et al., 1996, 1997). The energy levels of Cm3þ in

LuPO4 up to 35 000 cm�1 were probed by high‐resolution techniques using two‐
step excited state absorption and one color two‐phonon absorption methods

(Murdoch et al., 1997). The modeling of the Cm3þ:LuPO4 energy level structure

with the experimental data up to 35 000 cm�1 did not result in significant

changes in the free‐ion parameters determined in the systematic analysis of the

5fN ions in LaCl3. This consistency leads to two important conclusions as

regards the applications of the free‐ion and crystal field model: (a) the free‐ion
interaction parameters are relatively insensitive to host lattice; and (b) the

parameters determined by analysis of the low‐lying energy states can reproduce

energy levels of high‐lying states with satisfactory accuracy.

In appropriate hosts, the 5D1 state of Am3þ (5f 6 configuration) is a metasta-

ble emitting state as is the 6D7/2 state of Cm3þ (5f7 configuration) (Carnall,

1992). In such cases, both ions emit visible luminescence so they are very

suitable for laser‐induced fluorescence excitation studies. In addition to LaCl3
and LuPO4, these two ions in other crystalline hosts such as Cs2NaYCl6
(Murdoch et al., 1998), ThO2 (Hubert et al., 1993; Thouvenot et al., 1993a,

1994), and CaWO4 (Liu et al., 1997a,b) have been investigated using laser

spectroscopic methods. These studies showed that Am3þ and Cm3þ exhibit

spectroscopic properties that are similar to those found in studies in LaCl3,

although the strength of the crystal‐field interaction may be significantly differ-

ent. Table 18.9 provides a comparison between the free‐ion and crystal‐field
interactions of Eu3þ and Am3þ both of which have the f 6 configuration.

The ratios of free‐ion interactions and crystal field strength for the 4f and 5f

ions listed in Table 18.9 indicate that the electrostatic interaction is reduced

approximately to 60% and the spin–orbit coupling is increased by 190%
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(Edelstein and Easley, 1968) for the values of the lanthanide analogs in the same

fN configuration. These changes are attributed to the more extended 5f orbitals

of Am3þ in comparison with the 4f orbitals of Eu3þ. In addition, the strength

of the crystal‐field interaction is doubled for the actinide ion. This trend of

Table 18.9 Comparison of interaction parameters of Am3þ (5f 6) and Eu3þ(4f 6) (cm�1).

LaCl3
a ThO2

b

F 2(Eu3þ) 84 400 80 335
F 2(Am3þ) 51 900 48 038
F2(Am3þ)/F2(Eu3þ) 0.62 0.60
z4f (Eu

3þ) 1 328 1 337
z5f (Am3þ) 2 564 2 511
z5f (Am

3þ)/z4f (Eu
3þ) 1.93 1.88

Nn(Eu3þ) 329 1 231
Nn(Am3þ) 628 2 953
Nn(Am3þ)/Nn(Eu3þ) 1.9 2.4

a Carnall (1992) and Crosswhite (1977).
b Hubert et al. (1993).

Fig. 18.10 Comparison of the parameter ratios for trivalent lanthanide and actinide ions in
LaCl3 (Data from Crosswhite, 1977 and Carnall, 1992).
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variations is shown systematically in Fig. 18.10 for the two series of ions in the

LaCl3 crystal lattice (Liu, 2000).

Edelstein and Easley (1968) observed the trivalent state for 243Am and 244Cm

doped into CaF2 when the crystals were initially grown. However, due to the

high level of radioactivity caused mainly by the alpha decay of 244Cm (t1/2 ¼
18.1 years) part of the Am3þ was reduced to Am2þ and part of the Cm3þ was

oxidized to Cm4þ. It was observed that the ratio of Am2þ to Am3þ in the cubic

sites of CaF2 was approximately 10:1. The energy level structures of Am2þ

and Cm3þ in CaF2 were probed and analyzed based on the crystal field model

for 5f7 configuration (Edelstein et al., 1966; Edelstein and Easley, 1968). A

recent study (Beitz et al., 1998) reported that Es3þ (5f10) can be stabilized in

LaF3 and its spectroscopic properties in terms of free‐ion interactions are very

similar to Es3þ in LaCl3, although a crystal field strength approximately twice of

that for Ho3þ (4f10) in LaF3 is expected. Although the spectra of several

organometallic 3þ actinides, such as plutonium tricyclopentadienide, have

been measured, the analysis of data is still quite incomplete (Carnall, 1979b).

Nevertheless, it seems apparent that now the energy level parameters for such

systems can be approximated by those characteristics of the trivalent actinide in

the LaCl3 host.

There have been several recent laser spectroscopic studies on U3þ ions in

various ternary chloride and bromide crystalline systems. Because of relatively

low‐phonon energies of lattice vibration, strong luminescence from U3þ can be

observed in these crystals. Using effective‐operator Hamiltonian and parame-

terization method, Karbowiak and colleagues have analyzed the absorption and

emission spectra of U3þ in Ba2YCl7, CsCdBr3, and Cs2NaYBr6, respectively.

Both U3þ and U4þ were observed in the Ba2YCl7 system, which possesses

monoclinic symmetry. For uranium ions at a C1 site, a total of 27 crystal field

parameters are required to calculate the energy levels (Karbowiak et al., 1997,

2003). Using time‐resolved and site‐selected laser excitation methods, this group

has investigated the spectroscopic and excited state dynamics of U3þ in

RbY2Cl7. The strength of the free‐ion and crystal‐field interaction in these

systems is generally consistent with that for the U3þ:LaCl3 systems. A general

correlation between the magnitudes of crystal field parameters and the U3þ

luminescence decay rate has been realized in the analyses of the site‐selected
spectra and luminescence dynamics.

18.6 INTERPRETATION OF THE OBSERVED SPECTRA OF

TETRAVALENT ACTINIDE IONS

It is well known that a major difference between the lanthanide and actinide

series is the greater stability of 4þ and higher valance states of the actinides,

particularly in the first half of the respective series. There have been numerous

analyses of the spectra of tetravalent uranium compounds, whereas the number
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of published spectroscopic analyses rapidly decreases as heavier members of the

actinide series in the 4þ valence states are considered. The reasons are, first of

all, differences in stability of the tetravalent state for actinide compounds are

such that reducing and then oxidizing conditions become necessary as the

actinide atomic number increases. Secondly, the low specific radioactivity of

uranium of natural isotopic abundance makes the doped crystalline materials

easy to handle and limits radiolytic degradation. Moreover, the f2 configuration

of U4þ provides experimental features that are suitable for theoretical analyses

and constitute a useful basis for extending the interpretation of spectra of other

An4þ ions in condensed media. There is a series of crystalline hosts, notably

ThX4 and Cs2MX6 (M ¼ Zr, Th; X ¼ Cl, Br), ThSiO4, and ZrSiO4, in which

Pa4þ(5f) and U4þ(5f2) can be doped for spectroscopic studies (Krupa, 1987). In

addition, Np4þ, Pu4þ, and Am4þ have been successfully doped into ThSiO4

(Krupa et al., 1983; Krupa and Carnall, 1993). However, in contrast to most

other binary compounds, the tetravalent actinides as fluorides are sufficiently

stable and PaF4 through CfF4 can be prepared and are isostructural to UF4 and

CeF4 (Brown, 1968; Morss, 2005).

Since 1986, significant progress in analyses of the crystal field spectra of

tetravalent actinide ions in solids has been reported. The structural characteris-

tic of f!f transitions has been observed and analyzed using the theoretical

model of free‐ion and crystal‐field interactions that was discussed in Sections

18.3 and 18.4. The observations are consistent with trends indicated in Fig. 18.1,

which suggest that transitions to the fN�1d configurations in An V will lie even

higher in energy relative to the lowest‐energy fN state than in the corresponding

transitions for An IV. The lowest f!d transition in the atomic spectrum of U V

was assigned at 59 183 cm�1 (Van Deurzen et al., 1984). Consequently, broad

and intense band structure in the spectra of An4þ compounds beginning near

40 000–45 000 cm�1 would be consistent with the onset of f!d transitions.

The energy level structure of the free‐ion U4þ (5f2) configuration has provided

a valuable basis for comparison in developing the analysis of An4þ spectra

in solids.

Krupa (1987) reviewed spectroscopic properties of Pa4þ(5f1), U4þ(5f2), and
Np4þ(5f3) in crystalline host ThBr4, ThCl4, and ThSiO4. For Pa

4þ in Cs2ZrCl6,

electron paramagnetic resonance and near‐infrared absorption spectra were

measured and the data analyzed by Axe et al. (1961) in terms of the crystal‐
field and spin–orbit interactions for a 5f1 electron. Additional optical studies

have been reported for pure Pa4þ hexahalo compounds and Pa4þ diluted into

Cs2ZrCl6 (Brown et al., 1974, 1976; Edelstein et al., 1974, 1992; Piehler et al.,

1991). For this one‐electron system, there are no electrostatic terms for the free‐
ion interactions, thus the splitting of the free‐ion energy states, which consist of

the 2F5/2 ground state and the 2F7/2 excited state, is solely due to spin–orbit

coupling. Crystal‐field splittings in the tetravalent ions are much larger than

those of the trivalent ions. Table 18.10 lists the spectroscopic parameters of

Pa4þ in ThCl4 and ThBr4 in D2d symmetry (Malek and Krupa, 1986; Krupa,

Interpretation of the observed spectra of tetravalent actinide ions 2065



1987). The data for Pa4þ in Cs2ZrCl6 are considerably better than for the ThX4

systems. Also some data are given for the excited 6d system.

Analysis of the spectra of U4þ in both high‐symmetry (Oh) and relatively low‐
symmetry (D2d and D2) sites have been published. Somewhat in contrast to

observations made with trivalent ions, the magnitude of the crystal‐field
splitting in the two cases differs significantly. An example of the high‐symmetry

case is that of U4þ in Cs2UCl6 (Johnston et al., 1966a,b). The low‐symmetry

(D2d) case is illustrated in the analysis of U4þ:ThBr4 (Delamoye et al., 1983).

Recently, spectroscopic analyses were reported by Karbowiak et al. (2003) for

U4þ in Ba2YCl7. In this work, values of the 27 crystal field parameters of the

Hamiltonian were determined in fitting a total of 60 observed crystal field

energy levels to the model Hamiltonian. The crystal‐field splitting in the

Cs2UCl6 is over twice as large as that in U4þ:ThBr4. As a result, much more

complex structure caused by the mixing of states of different J in close proximity

occurs within a given energy range in Cs2UCl6 compared to the U4þ:ThBr4 case.
In the analyses of the crystal field spectrum of U4þ on the octahedral sites of

Cs2UBr6 and Cs2ZrBr6, Faucher et al. (1996) reported that there is a strong

coupling between the 5f2 and 5f17p1 configurations. Therefore, additional effec-

tive operators for the configuration interaction are necessary to better interpret

the observed energy level structure.

The extensive analysis of the data for U4þ:ThBr4 and the similar crystal field

parameters deduced for Pa4þ:ThCl4 (Krupa et al., 1983) have provided a new

Table 18.10 Energy parameters of Pa4þ and U4þ in ThCl4, ThBr4, and ThSiO4 in D2d

symmetry (cm�1).a

Pa4þ U 4þ

ThCl4 ThBr4 ThCl4 ThBr4 ThSiO4

F2 42 752(162) 42 253(127) 43 110(245)
F4 39 925(502) 40 458(489) 40 929(199)
F6 24 519(479) 25 881(383) 23 834(639)
z 1524.4(5) 1532.8(5) 1808(8) 1783(7) 1840(2)
a 30.4(2) 31(1) 32.3(0.4)
b �492(84) �644(75) �663(144)
g [1200] [1200] [1200]
B2
0 �1405(50) �1047(52) �1054(117) �1096(80) �1003(127)

B 4
0 1749(94) 1366(138) 1146(200) 1316(146) 1147(281)

B 4
4 �2440(98) �1990(102) �2767(147) �2230(85) �2698(251)

B 6
0 �2404(607) �1162(541) �2315(404) �3170(379) �2889(557)

B 6
4 �195(267) 623(174) �312(227) 686(246) �208(333)

nb 7 7 25 26 25
sb 23.6 19.4 46 36 71

a Krupa (1987).
b Number of assigned levels (n) and deviation (s), see Table 18.4, footnote c.
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basis for examining other An4þ spectra. As Auzel and coworkers have shown

(Auzel et al., 1982), band intensities in the spectrum of aquated U4þ can be

assigned in terms of crystal‐field split SLJ levels similar to those deduced for

U4þ:ThBr4. Using the method of extrapolation discussed in Sections 18.3 and

18.4, energy level parameters that are consistent with those for Pa4þ:ThCl4 and
U4þ:ThBr4 can be extrapolated to obtain a set for Np4þ, and a good correlation

is found between this energy level structure and the band structure observed for

aquated Np4þ. That the apparent correlation between band structure observed

for the iso‐f‐electron configurations of aquated An4þ and aquated An3þ ions

continues along the series is evident when comparing the spectra of aquated

Pu4þ and aquated Np3þ. Jørgensen called attention to this apparent correlation

in the band structure observed for the iso‐f‐electron configurations An3þ and

An4þ spectra at a time when little was known about the extent of the ligand

fields involved (Jørgensen, 1959). Concern that the data for aquated An4þ

should be interpreted in terms of large ligand‐field splitting characteristic of

Cs2UCl6, instead of a weaker‐field case may have been partially responsible for

the slow pace in exploration of Jørgensen’s insight. Of course, development of

this An3þ/An4þ spectral correlation also required an understanding of the

energy level structures in An3þ, which was not well understood in 1959. Adopt-

ing the electrostatic and spin–orbit parameters for U4þ:ThBr4 as a basis for

estimating parameters for the An4þ ions, the general character of the spectra of

the An4þ ions can be interpreted (Conway, 1964).

In solid compounds such as Cs2UCl6, where the 4þ ions occupy sites of

inversion symmetry, the observed structure is almost exclusively vibronic in

character, as contrasted with the electronic transitions characteristic of 3þ
compounds. The electronic origins were deduced from progressions in the

vibronic structure, because the electronic transitions themselves were symme-

try‐forbidden. An analysis of the intensities of vibronic bands has been reported

(Satten et al., 1983; Reid and Richardson, 1984). Other extensive analyses of the

spectra of U4þ in crystalline hosts include those for U4þ:ZrSiO4 (Richman et al.,

1967; Mackey et al., 1975).

Because of much stronger ion–lattice coupling for the 6d orbitals, in contrast

to the 5f�5f transitions in which vibronic coupling is relatively weak, the spectra

of 5f$6d transitions, however, are often dominated by the vibronic bands

associated with the f�d electronic transitions in both absorption and emission

spectra even when there is no inversion symmetry. The assignment and analyses

of the crystal field spectra become difficult, because the pure electronic transi-

tions (ZPL) may be obscured by the broad and intense vibronic sidebands.

Fig. 18.11 shows the emission spectrum of the 6d2D3/2 (G8g) !5f2F5/2 (G8u)

electronic transition of Pa4þ:Cs2ZrCl6, with the zero‐phonon line at 17 847 cm�1

accompanied by various vibronic sidebands (Piehler et al., 1991). From the

optical spectra, the vibrational frequencies of different modes can be measured

and assigned to the local and lattice modes that couple to the electronic transi-

tions. In the 5f�6d spectra (see Fig. 18.11), and also in charge‐transfer spectra
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(discussed later), certain vibrational progression frequencies have harmonics up

to fifth order, whereas others appears only to first order. Liu et al. (2002)

demonstrated recently that the progressions of multiple vibrational frequencies

can be simulated using a modified model of the Huang–Rhys theory of electron–

phonon interaction (Huang and Rhys, 1950). The dashed line in Fig. 18.11 is a

model fit to the experimental spectrum.

A systematic analysis of crystal field spectra has been reported for tetravalent

actinide ions from U4þ through Bk4þ in AnF4 and An4þ:CeF4 (Carnall et al.,

1991; Liu et al., 1994b). The tetravalent fluorides were chosen because An4þ

(An ¼ U to Cf) can be stabilized and they all, including CeF4, which has no

f‐electron in the lowest‐energy configuration, are isostructural. The absorption

spectrum of UF4 is plotted in Fig. 18.12 in comparison with that of U4þ ion in

aqueous solution, and the liquid helium temperature absorption spectra of

NpF4 and PuF4 are shown in Fig. 18.13 (Carnall et al., 1991). Crystal structure

data for UF4 established that there are two different low‐symmetry sites, C1 and

C2, for the An4þ ion. Both sites have eight nearest neighbor fluorine ions

arranged in a slightly distorted antiprismatic configuration; however, there are

twice as many C1 as C2 sites in the unit cell which aids in identifying sites in the

site‐resolved spectra. The site‐selective excitation spectra of the 7F0�5L6 transi-

tions are shown in Fig. 18.14 for a 0.1% Cm4þ:CeF4 sample at 4.3 K. Crystal

field modeling was conducted based on an approximate C2 site symmetry.

The spectra have similar characteristics as those of An3þ ions in crystals

Fig. 18.11 The emission spectrum of the 6d2D3=2ðG8gÞ ! 5f 2F5=2ðG8uÞelectronic vibronic
transitions for Pa4þ in Cs2ZrCl6 at 4.2 K (experimental data from Piehler et al., 1991). The
energy of the zero‐phonon line of the electronic transition is 17 847 cm�1. The vibrational
frequencies obtained from fitting the spectrum are n1(A1g) ¼ 310 cm�1, n5 (T2g) ¼ 123
cm�1, nL1 (T1g ) ¼ 35 cm�1, and nL2 (T2g ) ¼ 55 cm�1.

2068 Optical spectra and electronic structure



(see Fig. 18.9 for Cm3þ:LuPO4). Sharp ZPL are resolved in the low‐energy
region and broad vibronic transitions that span �800 cm�1 with the strongest

features�400 cm�1 above the first ZPL are also found. The vibronic lines in the

An4þ spectra are relatively stronger than those in An3þ spectra. This suggests a

stronger ion–ligand coupling for tetravalent ions, which is consistent with the

larger crystal‐field splittings in the An4þ systems.

Optical spectroscopic data, including low‐temperature absorption (see Figs.

18.12 and 18.13) and laser excitation and luminescence spectra of tetravalent

actinides in fluoride compounds, have provided adequate experimental infor-

mation for a systematic analysis and parameterization of the free‐ion and

crystal‐field interactions. The Hamiltonian of the free‐ion and crystal‐field
interactions has been established through the same parameterization method

used for the trivalent ions that was discussed in Section 18.5. The Hamiltonian

parameters for An4þ in CeF4 are listed in Table 18.11. The parameterization

method ensures a consistent set of free‐ion and crystal field parameters from one

ion to the next. Given the limited number of energy levels that could be assigned

Fig. 18.12 Absorption spectra of (a) UF4 in a KBr pellet at �4 K; (b) aquated U4þ at
298 K both in the near‐infrared to visible range. (Reprinted with permission from Carnall
et al., 1991. Copyright 1991, American Institute of Physics.)
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without ambiguity, the observed spectra of AnF4 were modeled based on the

standard model crystal field with constrained parameters. For instance, the

three‐body parameters Ti were fixed at average values determined in the analy-

sis of An3þ:LaCl3 spectra (Carnall, 1992). The Mh values were assigned in each

case based on ab initio calculations and were not varied. Although P2 was

varied, in all cases P4 and P6 were constrained by the ratios P4 ¼ 0.5P2 and

P6 ¼ 0.1P2. In fitting experimental data, the modeling, therefore, relied on the

systematic variations of Fk and z5f. In UF4, it was pointed out that the magni-

tude of the crystal‐field interaction was relatively large, and J‐mixing was very

significant in higher energy states, the ground crystal field state remained more

than 95% pure in terms of J‐character. Although the excited states above 50 000

cm�1 were truncated in the construction of the free‐ion wave functions for Pu4þ,
Am4þ, Cm4þ, and Bk4þ, the ground state eigenfunctions had relatively pure

J‐character, fully consistent with the results for U4þ and Np4þ. The nominal
6H5/2 ground state in Am4þ is more than 96% J ¼ 5/2, whereas the 7F0 ground

state in Cm4þ is more than 98% J¼ 0 character. Thus the experimental problem

of interpreting magnetic susceptibility measurements in CmF4 where tempera-

ture‐dependent results are not consistent with a J ¼ 0 ground state (Nave

Fig. 18.13 Absorption spectra of (a)NpF4 in a KBr pellet at�4 K; (b) PuF4 in KBr pellet
at �4 K in the range 4000–30 000 cm�1. (Reprinted with permission from Carnall et al.,
1991. Copyright 1991, American Institute of Physics.)
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et al., 1983) seems unlikely to be rationalized by assuming appreciable J‐mixing.

For Bk4þ, the J¼ 0 character is more than 99.5%, but the contribution from the

pure 8S7/2 is reduced to 75.5% (Brito and Liu, 2000).

Systematic analysis of the free‐ion and crystal‐field interactions in AnF4

(An ¼ U–Bk) provides a useful comparison of the trends in free‐ion parameter

values between those that would have been expected based on parameters

computed using ab initio methods and those obtained from fitting the experi-

mental data. As shown in Fig. 18.15, when plotted as a function of atomic

number, the model free‐ion parameters for An4þ exhibit similar increasing

trends as those predicted by Hartree–Fock calculations. However, the normal-

ized Hartree–Fock‐based values of Fk were typically found to show a steeper

slope than those obtained in fitting the experimental data.

Fig. 18.14 Site‐elective excitation spectra of the 7F0�5L0 transitions in 0.1% Cm4þ:CeF4

at 4.3 K. (a) The spectrum of Cm4þ ions on site A recorded with emission at 16 603 cm�1;
(b) the spectrum of Cm4þ on site B recorded with emission at 16 584 cm�1; and (c) the
excitation spectrum without emission selection. The broad features in the high‐energy range
are due to vibronic transitions. (Reprinted with permission from Liu et al., 1994b.Copyright
1994, American Institute of Physics.)
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It has been shown that a significant change in the ratios of F 4/F 2 and F 6/F 2

from U4þ to Np4þ is required to fit the experimental data (Carnall et al., 1991;

Liu et al., 1994b). However, in the analysis of the transneptunium ions, the

ratios of F 4/F 2 and F 6/F 2 could be held constant. In this context, values of F2

Table 18.11 Energy‐level parameters for tetravalent actinide ions in actinide tetrafluor-
ides (in cm–1) (Liu et al., 1994a,b).a

U 4þ Np4þ Pu4þ Am4þ Cm4þ Bk4þ

F 2 44 784 47 630 50 000 51 824(47) 53 051(38) 55 300
F 4 43 107 42 702

(0.896F 2)
44 500
(0.89F 2)

0.89F 2 0.893F 2 0.88F 2

F 6 25 654 29 623
(0.622F 2)

30 500
(0.61F 2)

0.61F 2 0.619F 2 0.60F 2

z 1761(3) 2021(4) 2315(7) 2604(6) 3017(5) 3244
a 34.74 34.89 35 35 35 34
b �767.3 �743.2 �740 �740 �740 �740
g 913.9 890.7 900 900 900 1000
T 2 200 200 200 200 200
T 3 50 50 50 50 50
T 4 50 50 50 50 50
T 6 �360 �360 �360 �360 �360
T 7 425 425 425 425 425
T 8 340 340 340 340 340
M 0,b 0.775 0.877 0.984 1.094 1.204 1.314
M 2 0.434 0.489 0.546 0.608 0.671 0.733
M 4 0.294 0.340 0.381 0.424 0.468 0.512
P 2,c 2715(94) 2700 2200 1623(71) 633(96) 1064
B2
0 1183(28) 1127(92) 1127 1302(59) 1209(75) 1150

B 2
2 29(27) 45 45 45 45 45

B 4
0 �2714(99) �2818

(193)
�2818 �2822 �2820 �2720

B 4
2 3024(71) 3090

(171)
3090 3219(135) 3304(99) 3000

B 4
4 �3791(53) �3584

(170)
�3584 �3337(101) �3243(90) �3275

B6
0 �1433(148) �1427

(382)
�1427 �1500 �1500 �1700

B 6
2 1267(101) 1267 1267 1400 1400 1500

B 6
4 �1391(93) �1147

(181)
�1147 �1147 �1142 �1200

B 6
6 1755(82) 1819

(129)
1819 1819 1820 1800

sd 31 41 30 31 28 27
nd 69 57 23 61 38 25

a The values in parentheses are errors in the indicated parameters.
b The Mk values were assigned in each case based on ab initio calculation and were not varied.
c P 2 was varied freely, P 4 and P 6 were constrained by ratios P 4 ¼ 0.5P 2, P6 ¼ 0.1P 2.
d Deviation (s) and number of assigned levels (n), see Table 18.4, footnote c.
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for all the ions studied exhibited a functional (but not linear) increase with

atomic number. It is important to note that the values of F2 for all transneptu-

nium members of the AnF4 series would be poorly estimated based solely on

linear projections from U4þ or Np4þ. Similar to the An3þ series, a regular

behavior appears to be characteristic of the transneptunium actinide tetrafluor-

ides. The computed values of z5f from fitting the experimental data are generally

quite consistent with ab initio values normalized to agree with the empirical

value for NpF4. In comparison to the An3þ series, the slope found for the

variation of Fk for An4þ as a function of atomic number is reduced. This is

particularly evident for F2 in Fig. 18.15 and provides the rationale for increas-

ingly similar energies found in the lower energy free‐ion states of iso‐f‐electron
An3þ and An4þ spectra as a function of increasing atomic number.

The parametric free‐ion electrostatic interaction parameters Fk for UF4 and

NpF4 are a few percent larger than those that have been determined by fitting

spectroscopic data for the tetravalent chlorides and bromides listed in Table

18.10, and those for UF4 are smaller than the gaseous free‐ion values for UV

Fig. 18.15 Systematic trends in free‐ion parameters of the effective‐operator Hamiltonian
for AnF4 (An ¼ U through Bk). The dots (�) connected by the dashed lines are calculated
using Hartree–Fork methods, and the squares (□) connected by solid lines are from fitting
experimental data. All values are normalized to those for NpF4. (Reprinted with permission
from Liu et al., 1994a,b. Copyright 1994, American Institute of Physics.)
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(Van Deurzen et al., 1984), as expected. Indeed all the free‐ion parameter values

used in the analysis of AnF4 spectra are fully consistent with those available

from other analysis of An4þ spectra in a variety of crystal environments (Krupa,

1987).

For tetravalent actinide ions, it is useful to emphasize that the crystal field is

no longer a small interaction relative to that of the free ion, but is capable of

radically transforming the energy level scheme without any change in magni-

tude in the free‐ion interaction parameters. This is readily evident in comparing

the parameters and energy level schemes for UCl4 and Cs2UCl6. One of the

consequences of this change in the hierarchy of interactions that comprise the

theoretical model is that there is a decreased sensitivity in energy level structure

calculations to the values of the Fk integrals in the analysis of An4þ compared to

An3þ and Ln3þ spectra. This is a direct result of the stronger crystal‐field and

spin–orbit interactions. Recognition of this fact is important because it explains

the relatively uncertain Fk values obtained from fitting experimental data. In

most cases, very few free‐ion states are actually included in the calculation.

Indeed, those states that are included tend to be the lowest‐energy states in the

configuration and to exhibit the smallest J‐mixing that would aid in defining

the parameters.

Most of the experimental data from absorption spectra include contribu-

tions from An4þ ions on two crystallographic sites. One of the basic aspects

of modeling the AnF4 crystal field spectra is the reliance, not only on the

results of a model calculation of the crystal field parameters in the actual

C2 symmetry, but also the assumption that for purposes of interpreting the

observed energy level structure, it is possible to use an approximate C2v symme-

try. It was shown that the predictions that were made as a result of this

approximation could be directly related to the observed structure and were

consistent with the few available measurements that had been obtained inde-

pendently. In fact, as shown in Table 18.11, very little change in crystal field

parameter values over the series was required. This again confirms the argu-

ments in Section 18.4.3 on using the descent‐of‐symmetry method to simplify

the analysis of crystal field spectra of lanthanide and actinide ions in crystals of

low symmetry.

In the history of f‐element spectroscopy, theoretical interpretations of the

crystal‐field splitting of the 8S7/2 ground state in a half‐filled shell of the f7

configuration have been contradictory. The lanthanides in such a configuration

are Eu2þ, Gd3þ, and Tb4þ; and the actinide ions include Am2þ, Cm3þ, and
Bk4þ. Early arguments were focused on the Gd3þ ion because the ground state

crystal‐field splitting observed in EPR experiments was less than 0.5 cm�1

(Hubert et al., 1985) and could not be interpreted by the crystal field theory.

A series of mechanisms were considered but failed to provide a consistent

interpretation (Wybourne, 1966; Newman, 1970, 1975). However, the 8S7/2
ground‐state splittings in the actinide ions is much larger than that of the

Gd3þ. For Am2þ and Cm3þ, the observed splitting varies from 2 to 20 cm�1
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(Edelstein and Easley, 1968; Liu et al., 1993; Murdoch et al., 1996; Edelstein,

2002), while for Bk4þ it is on the order of 60 cm�1 (Liu et al., 1994b; Brito and

Liu, 2000).

As a summary of previous work on the 5f7 ion, a comparison of the crystal‐
field splittings of Gd3þ, Cm3þ, and Bk4þ ions including the ground‐state
splitting is shown in Fig. 18.16. For the 5f7 systems, no additional mechanisms

other than the crystal‐field interaction are needed to provide a satisfactory

interpretation to the observed splitting in the 8S7/2 ground state of actinide

ions (Liu et al., 1993; Brito and Liu, 2000). As indicated in Section 18.4.2, the

observed crystal‐field splittings must be attributed to the contributions of the

mixture of other LS terms into the ground state free‐ion wave function (see

equation (18.39)) and nonzero off‐diagonal matrix elements between different

J‐multiplets. Because of the large energy gaps from the ground state to the

excited multiplets of Gd3þ, the excited state LS components in the ground state

is small, and J‐mixing is also negligible in this case. However, for the actinide

ions in 5fN configurations, as discussed in Section 18.3, the ground‐state wave

Fig. 18.16 Partial energy level diagrams of Gd3þ,Cm3þ, and Bk4þ based on computed and
experimental crystal field energies. (Reprinted with permission from Brito and Liu, 2000.
Copyright 2000, American Institute of Physics.)
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functions contains considerable LS components of the excited states, and thus

lead to much larger splittings that should not occur for a pure S‐state.

18.7 SPECTRA AND ELECTRONIC STRUCTURE OF DIVALENT ACTINIDE

IONS AND ACTINIDES IN VALENCE STATES HIGHER THAN 4þ

Although spectra of actinide compounds and solutions exhibiting other than the

3þ and 4þ valence states are well known, systematic analyses of the electronic

structure in other valence states are very tentative now. Extensive analysis is

limited to a few isolated cases. However, tabulations of electrostatic (Varga

et al., 1970) and spin–orbit integrals (Lewis et al., 1970), computed using

ab initio methods, have been published, and the relative energies of electronic

configurations occurring within the usual spectral range of interest to chemists

have been estimated from free‐ion spectra (Brewer, 1971a,b).

The electrostatic and spin–orbit interactions in any given valence state are

expected to vary systematically across the series. However, in the trivalent and

tetravalent series it was necessary to introduce effective operators to explicitly

screen the effects of configuration interaction to obtain good correlation with

the experiment. In the absence of these correction terms, the values of the Slater

integrals obtained in fitting the data exhibited a much more erratic behavior

when plotted as a function of Z. In the discussion of 2þ and high valent

actinides, it should be noted that the role of second‐order correction terms has

not been studied in detail for these oxidation states. What is clear is that the

importance of both spin–orbit coupling and crystal‐field interactions relative to

the electrostatic interaction increases with increasing valence.

One of the reasons for introducing the theoretical interpretation of trivalent

and tetravalent spectra in some detail was to provide the basis for discussing

models appropriate to other valence states. Although detailed models have yet

to be constructed, and may lead to revision of some of the values given here, it is

advantageous to introduce a generalizing element into the discussion and relate

available spectra to this central theme rather than approach each different

actinide ion as a unique entity.

It has been realized for An2þ that the interactions appear to be of the same

relative magnitude as for An3þ; however for An4þ and An5þ the crystal‐field
interaction becomes, relatively, much more important, and extraction of well‐
defined parameters for the free‐ion and crystal‐field interactions becomes more

difficult. In An3þ spectra, the correction terms Hcorr act mainly on the electro-

static part of the free‐ion Hamiltonian, although some provision for second‐
order magnetic effects are included. In this discussion it is assumed that it is not

necessary to modify the magnitudes of the terms associated with Hcorr in

treating other valence states. Since the crystal‐field splitting is computed using

a single‐particle model, corrections to Ecf may be required as the relative

magnitude of the crystal field increases.
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In early attempts to develop a systematic interpretation of trivalent actinide

and lanthanide spectra, initial sets of F k and znf for some members of the series

had to be estimated. This was done by linear extrapolation based on the fitted

parameters that were available from the analyses of other individual spectra. As

more extensive data and improved modeling yielded better determined and

more consistent Fk and znf values for the 3þ actinides (and lanthanides), it

became apparent that the variation in the parameters was nonlinear, as indi-

cated for F2 (5f,5f) in Fig. 18.4. This nonlinearity could also be observed in the

values of parameters obtained from the ab initio calculations. The difference

between the ab initio and fitted values of parameters (DP) appears to exhibit a

much more linear variation with Z than do the parameter values. Consequently,

DP has been adopted as the basis for a useful predictive model (Carnall et al.,

1966; Crosswhite, 1977; Crosswhite and Crosswhite, 1984).

For the trivalent actinides the values of DP are not constant over the series,

but use of a single average value over a group of four or five elements is not an

unreasonable approximation. Thus, in developing a predictive model for the Fk

and znf parameters, an attempt is made to establish average values of DP for a

particular valence state and type of crystal‐field interaction. The energy level

structure computation based on the predicted parameters can be compared to

that observed, and then appropriate modifications sought by a fitting procedure

where necessary.

18.7.1 Divalent actinide‐ion spectra

Efforts to prepare divalent actinide compounds and analyze their spectra have

been less successful than was the case for lanthanides, where the divalent ion for

each member of the series could be stabilized in CaF2 (McClure and Kiss, 1963).

In both Am2þ:CaF2 and Es2þ:CaF2 (Edelstein et al., 1966, 1967, 1970; Baybarz

et al., 1972), intense absorption bands were observed. These bands could be

attributed to either f!d or charge‐transfer transitions. The presence of divalent
actinide ions in these cases was established by measurements of the electron

paramagnetic resonance spectra, not on the basis of the observed optical

spectra. In contrast to the more intense absorption bands reported for Es2þ:
CaF2, weak absorption bands consistent with the intensities expected for f!f

transitions were identified in the 10 000–20 000 cm�1 region in both EsCl2 and

Es2þ:LaCl3 (Fellows et al., 1978). The relatively narrow band structure exhib-

ited by the Es2þ halides was also found to be characteristic of the Cf2þ halides

(Peterson et al., 1977; Wild et al., 1978).

Although it was not possible to stabilize Cm2þ in CaF2 under the same

conditions that yielded for Am2þ:CaF2, evidence for the formation of both

Am2þ and Cm2þ has been obtained in solution in pulse radiolysis studies;

however, as in the spectrum of Am2þ:CaF2, the absorption bands were broad

and intense. The nature of the absorption process is therefore not clear. A

charge‐transfer process cannot be excluded (Sullivan et al., 1976).
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Because the available spectroscopic results for divalent actinides are fragmen-

tary, a consistent interpretation that accounts for all observations and predicts

the energies of other bands that might be accessible to observation will be

adopted. The basic aspects of this tentative model can be deduced in part

from available data for divalent lanthanide spectra.

The free‐ion spectra of Ce III and Pr IV are known. Initial estimates of Fk and

z4f values appropriate to Ln2þ in condensed phases can be made by assuming

that the change observed in these parameters for iso‐f‐electron couples such as

Ce III/Pr IV (both 4f2) will also be characteristic of the couple Ce2þ/Pr3þ in

condensed phases. This suggests a reduction of 20–30% in comparing values

of Fk and z4f for divalent compared to isoelectronic trivalent‐ion cases. Com-

paring the results for Eu2þ:CaF2 (Downer et al., 1983) with those for Gd3þ:
LaF3 (Carnall et al., 1971), the parameters for Eu2þ (4f7) are 82–86% of those

for Gd3þ (4f7). The little information available on divalent lanthanide ion

crystal‐field splitting (Dieke, 1968) suggests that the crystal‐field interaction is

even smaller than for the trivalent case. This also was suggested in an analysis of

Eu2þ in strontium fluoride (Downer et al., 1983).

Based on the small crystal‐field splitting indicated for the divalent lantha-

nides, it is reasonable to assume as a first‐order approximation that the

corresponding actinide crystal‐field splitting will be small. Although fragmen-

tary, available spectroscopic data for An2þ appear to be consistent with this

estimate. The initial model can consequently be limited to free‐ion considera-

tions. The initial Fk and z5f parameters for An2þmay be estimated to be 85–90%

of those for the iso‐f‐electronic An3þ:LaCl3 ion. The effects of configuration

interaction for An2þ can be taken to approximate those for An3þ. The resulting
model energy level schemes for An2þ are plotted in Fig. 18.17 where the overlap

of the 5fN�16d and 5fN configurations is also indicated (Brewer, 1971a,b).

Examining the range of energies in which f!f transitions might be observed,

it is seen from the figure that the largest ‘optical windows’ are expected in Am2þ,
Cf2þ, and Es2þ. In Np2þ, Pu2þ, Cm2þ, and Bk2þ, it is probable that f!f

transitions will only be observed in the infrared range. This of course assumes

that the 5fN is consistently the ground state configuration. Transitions resulting

from the promotion of f!d would be expected to result in intense (allowed)

absorption bands such as those observed in Ln2þ spectra (McClure and Kiss,

1963). The much weaker f!f transitions occurring in the same energy range as

the allowed transitions would be masked, so the optical window corresponding

to the pure f!f energy spectrum will be somewhat smaller than that for the

gaseous free‐ion f!d transition energies indicated in Fig. 18.17 (Brewer,

1971a,b). The computed level structure for Cf2þ and Es2þ agree with the

experimental results, but indicate the existence of bands not yet reported.

Systematic energy level calculations are of considerable importance in pre-

dicting the energies at which luminescence might be observed. In general, the

longest‐lived luminescence will originate from the state with the largest energy

gap between it and the next lower‐energy state. Based on the computed large
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energy gap between the ground (8S7/2) and first excited (6P7/2) states in Am2þ

(5f7), isolated Am2þ sites would be expected to exhibit luminescence near 14 000

cm�1 (Edelstein et al., 1966; Edelstein and Easley, 1968; Edelstein, 1991).

18.7.2 Spectra of actinide ions in the pentavalent and hexavalent states

The actinide ions with well‐defined valence states greater than VI are confined to

the light half of the 5f series. A large number of stable compounds are known,

and spectra have been recorded in solution, in solids, and in gas phase. How-

ever, there have been relatively few attempts to develop detailed energy level

analyses. Although Hartree–Fock type calculations of Fk and znf can be carried

out for any arbitrary state of ionization of an actinide ion, the relative impor-

tance of the ligand (or crystal) field must also be established to develop a

correlation for experimentally observed transition energies. Ab initio models

of the ligand field are characteristically very crude. The spectra of penta‐ and
higher‐valent actinides are strong crystal field cases and the development of

correction terms for first‐order crystal field model may well be essential to any

detailed analysis.

Two types of ionic structure are normally encountered in the higher‐valent
species: the actinyl ions AnOþ

2 and AnO2þ
2 (Denning, 1992; Matsika and Pitzer,

Fig. 18.17 Estimated ranges of energies in which 5f–5f transitions in An2þ may be
experimentally observed.
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2001; Denning et al., 2002), and halides such as UCl5, CsUF6, and PuF6. Mixed

oxohalide complexes are also known. In the actinyl ions (An ¼U, Np, Pu, Am)

the axial field imposed by the two nearest‐neighbor (�y1) oxygen atoms plays a

dominant role in determining the observed energy level structure (Eisenstein

and Pryce, 1966; Bell, 1969). The analysis of spectra of higher‐valent actinide
halides is also based on a strong ligand‐field interaction, but the symmetry is

frequently found to be octahedral or distorted octahedral (Goodman and Fred,

1959; Eisenstein and Pryce, 1960; Kugel et al., 1976; Eichberger and Lux, 1980).

Typical iso‐f‐electronic penta‐ and higher‐valent actinide species are shown in

Table 18.12, where X is a halide ion.

Aqueous solution spectra characteristic of the NpOþ
2 and PuO2þ

2 ions, both

having the 5f2 electronic structure, are shown in Fig. 18.18. Some qualitative

similarities in band patterns for these iso‐f‐electronic ions appear to exist, but

detailed analysis of the observed structure in terms of a predictive model is

tentative. Charge‐transfer bands for NpO2þ
2 (20 800 cm�1), PuO2þ

2 (19 000

cm�1), and AmO2þ
2 (�18 000 cm�1) have been identified (Jørgensen, 1970).

Spectra of the actinyl ions and the molar absorptivities of the more intense

bands in aqueous solution have been tabulated (Carnall, 1973, 1982). The

charge‐transfer transitions in crystalline CsNpO2Cl4 and CsNpO2(NO3) as

reported by Denning et al. (1982) are apparently much lower than that predicted

for NpO2þ
2 (20 800 cm�1). In their analysis, Denning et al. (1982) assigned five

charge‐transfer bands of CsNpO2Cl4 and CsNpO2(NO3) between 13 000 and

20 000 cm�1.

Attempts to interpret the spectra of the penta‐ and hexahalides of the acti-

nides have used the effective‐operator Hamiltonian discussed in Sections 18.3

and 18.4. However, the results are limited primarily to U5þ and Np6þ, both
having the 5f1 configuration and Np5þ and Pu6þ with the 5f2 configuration. The

magnitude of the spin–orbit interaction is known for U V. Its free‐ion spectrum

has been interpreted in terms of a coupling constant, z5f ¼ 2173.9 cm�1, based

on a 2F5/2! 2F7/2 energy difference of 7608.6 cm�1 (Kaufman and Radziemski,

1976). The optical properties of Np and Pu ions and compounds were analyzed

by Edelstein (1992). The spectra of several complex pentavalent uranium halide

Table 18.12 Some iso‐f‐electron penta‐ and higher‐valent actinide species.a

Number of 5f electrons ¼ 0 1 2 3 4

UO2þ
2 UOþ

2 PuO2þ
2 AmO2þ

2 AmOþ
2

Np VIII NpO2þ
2 NpOþ

2 PuOþ
2

UF6 Pu VIII PuF6 PuX�
6

UCl6 NpF6 NpX�
6

UX�
6

UF5

a X, halide ion.
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compounds appear in the literature and, based on representative crystallo-

graphic determinations, the site symmetry usually is close to octahedral. The

combined effect of the spin–orbit and octahedral ligand‐field interactions is to

split the parent 2F state into five components whose irreducible double group

labels are indicated in Fig. 18.19.

The energy level structures of several actinide 4þ, 5þ, and 6þ compounds

with the 5f1 ion at a site of octahedral (or approximated as octahedral) symme-

try are compared in Table 18.13. As indicated in Table 18.13, there has been

considerable variation in the ligand field parameters deduced by different

investigators from absorption spectra in which the energies of observed features

are surprisingly consistent. The case of UCl5, which has a dimeric structure that

gives rise to approximately octahedral U5þ sites, is particularly interesting

because the spectra of solutions (UCl5 in SOCl2) (Karraker, 1964), of a single

crystal (Leung and Poon, 1977), and of the vapor phase, (UCl5)2 or UCl5 · AlCl3
(Gruen and McBeth, 1969), all give absorption features that are similar to both

the relative intensities of the transitions and their energies. The importance of

the nearest‐neighbor coordination sphere in determining the spectra, essential

Fig. 18.18 Aqueous solution absorption spectra of PuO2þ
2 (Pu6þ) and NpOþ

2 (Np5þ).
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to the exclusion of the effects of long‐range order, is consistent with the behav-

ior expected for strong octahedral bonding. However, more evidence is needed

to justify the assignments and to establish uniquely the limits over which the

ligand field parameters may vary.

The spectra of CsUF6 (Reisfeld and Crosby, 1965) and CsNpF6 (Hecht et al.,

1979) have been reported and analyzed, and that of CsPuF6 has been measured

(Morss et al., 1983). However, the treatment of CsUF6, which has been consid-

ered to be a model for other cases of distorted octahedral symmetry, has been

questioned both experimentally (Ryan, 1971) and on theoretical grounds. Both

Leung (1977) and Soulie (1978) have pointed out that there is actually a very

significant distortion of the Oh symmetry originally assumed for CsUF6

(Reisfeld and Crosby, 1965), with D3d symmetry providing the basis for a

much improved interpretation. If electrostatic interaction parameters of the

same order of magnitude as those suggested by Poon and Newman (1982) are

utilized for CsNpF6, together with the D3d ligand field parameters for CsUF6,

and further extrapolation of these results is carried out to provide values for the

CsPuF6 case, the resulting energy level structure is that indicated in Fig. 18.20.

The general aspects of this predicted structure appear to be consistent with

available experimental data. Aside from the structure of the ground state, a

relatively isolated 3F2 state in CsNpF6 should be observed. However, with the

Fig. 18.19 Comparison of crystal‐field splittings of the 5f 1 states of actinide ions in
various hosts.
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exception of this 3F2 state, neither the spectrum of CsNpF6 nor that of CsPuF6

is expected to exhibit any extensive, easily recognizable band structure. A

relatively high density of excited states is predicted and detailed analysis will

be difficult.

The actinide hexafluorides, UF6, NpF6, and PuF6, form a unique group of

volatile actinide molecular species. They are not regarded as strongly bonded

since the metal–fluorine distances tend to be rather large (�1.98 Å) (Claassen,

1959). The combination of well‐characterized spectroscopic and magnetic

(Goodman and Fred, 1959; Hutchison and Weinstock, 1960; Edelstein, 1992)

results for NpF6 and PuF6 has served to establish a reasonable basis for the

energy level analysis in octahedral symmetry summarized in Table 18.13. A

consistent set of Fk and z5f parameters can be combined with the crystal field for

NpF6 to yield an estimate of the parameters set for PuF6 and AmF6. However,

in terms of the free‐ion interaction parameters, no consistent results have been

Table 18.13 Energy parameters for An4þ, 5þ, 6þ compounds (in cm�1).a

(5f1) Pa4þ:
Cs2ZrCl6

b (5f 1) UCl5
c

(5f 1)
CsUF6

d
(5f 1)
NpF6

e
(5f 2)
CsNpF6

f
(5f 2)
PuF6

g
(5f 3)
CsPuF6

f

F 2 48 920 36 026
(2 472)

51 760

F 4 42 300 72 458
(3 054)

44 200

F 6 27 700 40 535
(3 877)

29 120

z 1539.6 1559
(115)

1910.2
(13)

2448.4
(33)

2200 2551
(46)

2510

a 30 000 [35 500] 30 000
b �660 [�664] �660
g 700 [744] 700
B2
0 534.2

(139)
534.2 543.2

B 4
0 6945.3 13 479

(1 125)
–14 866
(66)

44 553
(211)

–14 866 48 377(803) �14 866

B6
0 –162.7 –158.6

(745)
3305
(78)

7992
(105)

3305 8690(180) 3305

sh 370 33 73 54.2

a Values in parentheses are errors in the indicated parameters. Values in brackets were not allowed
to vary in the parameter fitting.
b Piehler et al. (1991).
c Leung and Poon (1977).
d Ryan (1971).
e Goodman and Fred (1959).
f Estimated parameter values shown. In addition to those parameters tabulated, the following were
included: P 2¼ 500, P 4¼ P 6¼ 0 (for both CsNpF6 and CsPuF6); T

2¼ 200, T 3¼ 50, T 4¼ 100, T 6¼
–300, T 7 ¼ 400, T 8 ¼ 350 (for CsPuF6 only).
g Edelstein (1992). M 0 ¼ 0.987, M 2 ¼ 0.55, M 4 ¼ 0.384, P 2 ¼ 573, P 4 ¼ 524, P 6 ¼ 1173.
h Deviation as defined in footnote c of Table 18.4.
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achieved when the parameters are varied in fitting of the observed energy levels

of PuF6 (Edelstein, 1992). As listed in Table 18.13, the value of F2 for PuF6 is

reduced by greater than 50% from its Hartree–Fock value and F 4 is greater than

the calculated Hartree–Fock value (Wadt, 1987). In comparison with Hartree–

Fock values and the parameters for NpF6, the empirical values for F 6 and z
seem to be of reasonable magnitude. The energies of some of the lower‐lying
states in NpF6 and PuF6 are shown in Fig. 18.21. The two upper levels of NpF6

at 23 500 and 28 000 cm�1 were not well resolved in absorption spectra

(Steindler and Gerding, 1966) and the uncertainty in assigning these two levels

could result in uncertainties in the spin–orbit and crystal field parameters. The

indicated structure is consistent with the principal features in the absorption

spectrum of PuF6 (Kugel et al., 1976) as shown in Fig. 18.22. Detection of

luminescence in the selective excitation of NpF6 and PuF6 and at energies in

Fig. 18.20 Computed energy levels schemes for CsUF6, CsNpF6, and CsPuF6. The cross‐
hatched areas indicate that a relative dense energy structure is predicted.
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agreement with the energy gaps between the predicted ground and first excited

states in both spectra has been reported (Beitz et al., 1982).

18.7.3 Charge‐transfer transitions and structure of actinyl ions

In addition to electronic transitions from 5fN to excited configurations, an

electron may be excited from a ligand to a 5f orbital, creating a charge‐transfer
state, with a configuration consisting of 5fNþ1 plus a ligand ‘hole’. The spectra

of UO2þ
2 , UF6, and Np7þ shows typical charge‐transfer transitions for the

actinide series since, in contrast to the transitions between states within the

5fN configuration which characterize most of the actinide spectra discussed in

previous sections; the above species contain no f‐electrons in open shells. The

energies of these states are highly ligand‐dependent and, especially in organic

systems, they can be at a lower energy than the 5fN�16d states. For lighter

actinide ions in oxygen environments, actinyl ions are formed through charge‐
transfer bonding (Jørgensen, 1957). The most extensive studies of ion‐to‐ligand
charge transfer have been conducted on uranyl ðUO

2þ
2 Þ ion in various solutions

and compounds (Denning et al., 1982, 2002; Denning, 1992). Fig. 18.23 shows

Fig. 18.21 Comparison of observed and computed energy level schemes for NpF6 (data
from Goodman and Fred, 1959) and PuF6 (data from Edelstein, 1992). Analysis of near‐
infrared spectra of matrix‐isolated NpF6 was also reported (Mulford et al., 1991)
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the energy level structure of UO2þ
2 charge‐transfer states in comparison with

that of the U6þ and O2� ions. The lowest‐energy level of the excited charge‐
transfer states starts at (20 000 cm�1 for uranyl ion and at (14 000 cm�1 for

neptunyl ion (NpO2þ
2 ), which is below the energy levels of several 5f states of the

Np6þ core (Denning et al., 1982, 2002). In the neptunyl case, energy levels of

different origins, namely 5fN, 5fN�16d, and ion–ligand charge transfer, may

overlap in the same energy region, and thus make spectrum analysis difficult.

Emission from charge‐transfer states of actinide ions in condensed phase is

relatively rare except for the case of uranyl ðUO
2þ
2 Þ ions, which often exhibit a

strong luminescence in solution. This is because of the large energy gap between

its ground and excited charge‐transfer states that suppresses quenching due to

nonradiative phonon relaxation (Riseberg and Moos, 1968).

The spectra of UO2þ
2 compounds with a characteristic structure in the visible–

ultraviolet range below 400 nm are commonly observed charge‐transfer

Fig. 18.22 The absorption spectrum of PuF6. Arrows indicate regions reported to show
vibrational structure. Bars indicate regions examined by intra‐cavity laser absorption:
I, 455–470; II, 550–574; III, 697–729; IV, 786–845; V, 918–971 nm. At the top is a
densitometer trace of the high‐resolution absorption spectrum of PuF6 in the 781–830 nm
region obtained in multipass experiments. Data from Kugel et al. (1976).
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transitions in the actinide series. Analyses of crystal spectra such as that for

Cs2UO2Cl4 are now available (Denning et al., 1980, 1982; Denning, 1992).

Because of the energy gap between the emitting and ground states as shown in

Fig. 18.23 is much larger than the vibration energies, in many cases including

uranyl species in solutions, fluorescence emission is often the dominant channel

of relaxation from the lowest level of the excited charge‐transfer states. Fig.

18.24(a) shows the fluorescence spectrum of UO2Cl
2�
4 :Cs2ZrCl6 single crystal at

20 K (Metcalf et al., 1995). The ZPL is accompanied by a progression of

vibronic lines due to the O–U–O stretching and bending modes, which charac-

terize the uranyl structure and are relatively insensitive to the environment

of the uranyl ion in the equatorial plane. Usually, the linear dioxo cation

O–U–O is coordinated by an additional four to six ligand ions in its equatorial

plane. The vibrational frequencies of different modes of the complexed ion

can be determined directly from the spectrum. They are typically 820, 900,

and 240 cm�1 for the symmetric, asymmetric, and bending modes of the

UO2þ
2 ion, respectively. As to the nature of the uranyl bonding, variation of

the vibrational frequencies is correlated with the energy levels of the charge‐
transfer states (Denning, 1992). The spectrum of the uranyl ion in single

crystals of UO2Cl
2�
4 :Cs2ZrCl6 exhibits extremely sharp line widths, indicating

that the uranyl ions in the crystal have highly identical local structure so that

Fig. 18.23 Illustration of electronic energy level scheme of uranyl ion UO2þ
2 .
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inhomogeneous line broadening induced by structure defects is not significant.

If structure variation and impurity phases exist, inhomogeneous line broaden-

ing would obscure the features due to different vibrational modes. Fig. 18.24(b)

shows the emission spectra of uranyl in B2O3 glass matrix at 4 and 295 K. In

comparison with Fig. 18.24(a), the lines become much broader, whereas the

changes in the overall spectral profile and line locations are insignificant. Given

the nature of charge‐transfer states, it is apparent that the energy levels of

charge‐transfer states are more sensitive to local structure disordering than

that of the 5f�5f transitions. Therefore, in structurally disordered environments

such as glasses and solutions, inhomogeneous line broadening obscures

Fig. 18.24 Spectra of uranyl charge‐transfer vibronic transitions: (a) fluorescence spec-
trum of UO2þ

2 in Cs2ZrCl6 at 20 K (data from Metcalf et al., 1995) and (b) fluorescence
spectra of UO2þ

2 in B2O3 glass at 4 and 295 K.
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observation of separated lines of the asymmetric and bending modes. Only the

progression of the symmetric mode, up to five quanta of phonon sidebands, is

often observed. Based on the theory of ion–phonon interaction (Huang and

Rhys, 1950), the spectra of charge‐transfer vibronic transitions of uranyl species
may be theoretically simulated using a model proposed by Liu et al. (2002). The

Huang–Rhys parameter of the uranyl vibronic coupling is typically in the range

of 1.0–1.5.

For the closely related case of NpO2þ
2 ion doped into single‐crystal

Cs2UO2Cl4, detailed spectroscopic studies have identified a single electronic

transition belonging to the 5f1 configuration, but the other structure observed

is similar in origin to that reported for UO2þ
2 , i.e. transitions to molecular‐

orbital states (Stafsudd et al., 1969; Jørgensen, 1982; DeKock et al., 1985).

Extensive analyses of the absorption and fluorescence spectra of UF6 have

been published, and are covered in a review (Carnall, 1982). In the visible to

near‐ultraviolet range, the character of the spectrum is similar to that of UO2þ
2 .

18.8 RADIATIVE AND NONRADIATIVE ELECTRONIC TRANSITIONS

18.8.1 Intensity of 5f–5f transitions

A systematic understanding of the energy level structure for An3þ serves as a

foundation upon which to base the interpretation of other physical measure-

ments. Considerable success has now been achieved in developing a parameter-

ized model of f ! f transition intensities.

The intensity of an absorption band can be defined in terms of the area under

the band envelope normalized for the concentration of the absorbing ion and

the path length of light in the absorbing medium. A proportional quantity, the

oscillator strength P, has been tabulated for trivalent actinide‐ion absorption

bands in aqueous solution. The experimentally determined oscillator strengths

of transitions can in turn be related to the mechanisms by which light is

absorbed (Condon and Shortley, 1963; Reid, 2000):

P ¼ 8p2mcs
3he2ð2J þ 1Þ wF

2 þ nM
2

� �
ð18:51Þ

where Fand M are, respectively, the matrix elements of the electric dipole and

magnetic dipole operators joining the initial state J to a final state J0, w ¼
(n2þ2)2/9n and n is the refractive index of the medium, s is the energy of the

transition (cm�1), and the other symbols have their usual meanings.

Only a few transitions observed for the 3þ actinide ions have any significant

magnetic dipole character; however, the matrix elements of �M2 can be evaluated

directly from the knowledge of the eigenvectors of the initial (CJ) and final

(C0J0) states. Following the results of Condon and Shortley (1963), the magnetic

dipole operator is given as
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M ¼ � e

2mc

X
i

li þ 2sið Þ: ð18:52Þ

The matrix elements of the operator in equation (18.51) can then be written as

M
2 ¼ e2

4m2c2
CJ Lþ 2Sk kC0J 0h i2: ð18:53Þ

The nonzero matrix elements, which should be calculated in the intermediate

coupling scheme, will be those diagonal in the quantum numbers t, S, and L.

The selection rule on J is D J ¼ 0, �1.

The Judd–Ofelt theory (Judd, 1962; Ofelt, 1962) has successfully addressed

the problem of computing the matrix elements ofF
2
, and can be written in the

form:

F
2 ¼ e2

X
k¼2;4;6

Ok CJ U kð Þ

 

C0J 0
D E2

ð18:54Þ

where Ok are three parameters which in practice are evaluated from measured

band intensities. These parameters involve the radial parts of the fN wave

functions, the wave functions of perturbing configurations such as 5fN�16d,

and the interaction between the central ion and the immediate environment.

Since theOk parameters contain many contributions, model calculations are not

possible. Nevertheless, the relative simplicity of the intensity calculations using

equation (18.51) have resulted in extremely useful analyses of experimental

data. The matrix elements in equation (18.54) may be calculated using the

SPECTRA program. For the trivalent actinide ions, the matrix elements of

U(k) have been tabulated (Carnall, 1989) for states of 5f3 to 5f12 configurations

with energies up to 40 000 cm�1. It should be noted that the intensity theory

presented here is applied only to the free‐ion multiplets, and the empirical values

for the intensities of these multiplets are obtained by integrating over the band

intensities in solution.

Judd (1962) showed that the theory could successfully reproduce the observed

intensities of bands of Nd3þ and Er3þ in aqueous solution (RE(H2O)xwhere x is

8 or 9) throughout the optical range, and that the intensity parameters Ok

computed from first principles were consistent with those derived from fitting

experimental data. Later systematic treatments of the intensities observed in the

spectra of all aquated Ln3þ ions have confirmed and extended the original

correlation (Carnall et al., 1968; Carnall, 1979a) and, more recently, it was

found that a similar systematic treatment of band intensities for aquated

An3þ‐ion spectra could be successfully carried out with only O4 and O6 treated

as variables (Carnall et al., 1984). The emphasis on aquated fN‐ion spectra

comes from the ability to identify many relatively isolated bands with single

or very limited numbers of SLJ states, the corresponding unambiguous quanti-

tative nature of the oscillator‐strength calculation, and the wide range of data
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available, i.e. most members of the 4f and 5f series can be readily obtained as

trivalent aquated ions in dilute acid solution. Intensity correlations for Ln3þ ion

in many different host crystals, as well as in vapor complexes, have been

developed (Beitz, 1994b; Reid, 2000). For the actinides, systematic and quanti-

tative examination of transition intensities is presently restricted to aquated

An3þ.
Examination of Fig. 18.8 shows that, particularly for U3þ, Np3þ, and Pu3þ,

the density of states is high and few of the observed bands can be uniquely

identified. Both the relative intensities of observed transitions and the density of

states decrease in magnitude with increasing atomic number. Starting with

aquated Cm3þ, the heavy‐actinide aquated‐ion spectra are all amenable to

intensity analyses with excellent correlation found between observed oscillator

strengths and intensities computed using the Judd parameterization (Carnall

et al., 1983). The oscillator strengths of aquated An3þ bands tend to be a factor

of 10�100 greater than those observed for the lanthanides, Starting with aqua-

ted Bk3þ, there is an apparent transition to a heavy‐lanthanide‐like character in
the spectra, with no bands being disproportionately intense. Analysis reveals

that the trends in the intensity parameter values over the series can be correlated

with the extent to which higher‐lying opposite‐parity configurations like fN�1d

are mixed into the fN configuration. There is much less mixing of fN�1d states

into 5f8(Bk3þ) than in 5f3(U3þ) which it is consistent with the energy level

structures of the fN�1d and fN configurations of the two ions. An example of

the type of correlation obtained between experiment and theory for aquated

An3þ was previously discussed for aquated Cm3þ (Carnall and Rajnak, 1975).

Figs. 18.25 and 18.26 compare the observed absorption spectra of U3þ and Cf3þ

in dilute perchloric acid, respectively. These spectra are from the work of

Carnall (1992) and have been published, along with those of other An3þ ions,

with split abscissa scales to highlight weakly absorbing transitions (Beitz,

1994b). Also shown in Figs. 18.25 and 18.26 as vertical bars are the centers of

gravity expected for the actinide ion’s 5f electron states based on the free‐ion
parameters established for trivalent actinide ions in single crystals of lanthanum

trichloride. It is evident in Fig. 18.26 that the free‐ion states provide an excellent

basis for interpretation and assignment of the parity‐forbidden f–f absorption

bands of Cf3þ. The very strong absorption bands that occur in the blue and

ultraviolet spectral ranges of the U3þ spectrum can be assigned as arising from

parity‐allowed transitions. In addition, it is evident that the f–f absorption

bands of U3þ at longer wavelengths are significantly more intense than those

of the comparatively heavy actinide ion Cf3þ. Qualitatively, the high intensity of

U3þ f–f transitions can be attributed to interaction with the low‐lying opposite‐
parity states of U3þ. Put another way, the f‐electron states of light actinide ions

contain a larger contribution from opposite‐parity states than is the case for

heavier actinide ions.

BandintensitiesofspectrasuchasthoseshowninFigs.18.25 and 18.26 have been

analyzed systematically (Carnall and Crosswhite, 1985; Carnall et al., 1985;
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Fig. 18.25 Optical absorption spectrum of U3þ in dilute acid solution (shaded curve)
compared to the 5f electron free‐ion state energies from studies on U3þ in LaCl3 (vertical
bars). Data from Carnall (1992).

Fig. 18.26 Optical absorption spectrum of Cf 3þ in dilute acid solution (shaded curve)
compared to the 5f electron free‐ion state energies from studies on Cf 3þ in LaCl3 (vertical
bars). Data from Carnall (1992).
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Beitz, 1994b) from the f–f transition intensities using the Judd–Ofelt formalism

(see equation (18.54)). The results of these analyses for aquated U3þ through

aquated Es3þ, based on a fixed value of the Judd–Ofelt parameter O2 at

1 � 10�20 cm2, are shown in Fig. 18.27. The difficulty in uniquely determining

band areas for the strongly overlapping bands of light actinide ions results in

large error estimates for these ions. The Judd–Ofelt parameters for aquated

trivalent lanthanide ions become nearly constant in value beginning at neodym-

ium and continuing across the series of lanthanide elements (Carnall, 1979a). A

similar trend is evident in Fig, 18.27 beginning at Bk3þ for aquated trivalent

actinide ions. Few opportunities exist for experimentally establishing O2 values

for trivalent actinide ions. One such case is found in the branching ratios for

emission from the 5D1 state of aquated Am3þ. Partial measurement of those

ratios led Beitz (1994a) to conclude that an O2 value of 7 � 10�20 cm2 was

consistent with theO4 and O6 values shown in Fig. 18.27 (Beitz, 1994a). Görller‐
Walrand and Binnemans (1998) have reviewed the application of Judd–Ofelt

theory to lanthanide and actinide f–f transitions.

18.8.2 Florescence lifetimes

One reason of interest for determining absorption intensity correlations is that,

once the parameters of the Judd–Ofelt theory are evaluated, they can be used to

compute the radiative lifetime of any excited state of interest via the Einstein

expression

Fig. 18.27 Trends in the values of the Judd–Ofelt theory O4 and O6 parameters across the
trivalent actinide ion series. (Data from Carnall and Crosswhite, 1985; Carnall et al., 1985;
Beitz, 1994b).
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A CJ;C0J 0ð Þ ¼ 64p2s3

3h 2J þ 1ð Þ w0F2 þ n3M
2

� �
ð18:55Þ

where CJj i and C0J 0j i are the initial and final states, A is the rate of relaxation

of CJ by radiative processes, and F
2
and M

2
are the terms defined in equations

(18.52) and (18.54). The observed fluorescent lifetime of a particular excited

state, tT, is determined by the sum of the inverse of the radiative and non-

radiative lifetimes. Usually the nonradiative relaxation mechanisms are

dominant. Thus

tTð Þ�1¼ AT CJð Þ þW CJð Þ ð18:56Þ
where AT (CJ) is the total radiative relaxation rate from state CJj i, that is, the
sum of the rates of radiative decay to all states with energy less than that of

CJj i. If tR (calc) is the (computed) total radiative lifetime of CJj i, then tR (calc)

¼ [A (CJ)]–1. Similarly, WT(CJ) is a total rate summed over all nonradiative

relaxation processes. The magnitude of the energy gap between a fluorescing

state and the next lower‐energy state appears to play a major role in determining

the nonradiative lifetime of that state; shorter empirical fluorescent lifetimes are

correlated with narrower gaps for the same fluorescing level in different systems.

On the basis of the existence of relatively large energy gaps in the spectra of

some of the heavier actinides (Fig. 18.8), experiments were initiated and lumi-

nescence lifetimes were successfully measured in solution for some of the excited

states of aquated Bk3þ and Es3þ (Beitz et al., 1981), as well as aquated Cm3þ

(Beitz and Hessler, 1980) and aquated Am3þ (Beitz et al., 1987). As indicated in

Fig. 18.28, which shows the lower energy level structure for the heavier aquated

Fig. 18.28 Energy level schemes and selected branching ratios for radiative relaxation for
Cm3þ through Es3þ.
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An3þ ions, only in aquated Cm3þ does the observed lifetime of 1.2 ms in D2O

(Kimura et al., 2001) compare well with the computed radiative lifetime,

tR ¼ 1.3 ms. With smaller energy gaps, the nonradiative relaxation rate clearly

becomes rate‐determining. Inability to observe a luminescing state for aqua-

ted Cf3þ in preliminary experiments suggests that lifetimes may be in the

nanosecond time range (Beitz et al., 1981; Carnall et al., 1983).

In addition to computing radiative lifetimes, it is instructive to establish the

most probable pathway for fluorescence from a given state. Thus the branching

ration, bR, from a given relaxing state to a particular final state is

bR CJ;C0J 0ð Þ ¼ A CJ;C0J 0ð Þ
AT CJð Þ : ð18:57Þ

As indicated in Fig. 18.28 for Cf3þ, bR ¼ 0.47 for emission from an excited

(J ¼ 5/2) state to a lower‐lying (J ¼ 11/2) state, whereas bR ¼ 0.14 for emission

to the ground state. In the case of J ¼ 5/2 state, it would be appropriate to

monitor for luminescence near 13 000 cm�1 as well as near 20 000 cm�1.

18.8.3 Nonradiative phonon relaxation

The identification of the mechanisms of nonradiative relaxation of actinide ions

in solution as well as in solids remains an important area for research (Hessler

et al., 1980; Liu and Beitz, 1990a,b). The nonradiative relaxation rate between

crystal field energy levels belonging to different multiplets is predominantly

determined by temperature, the energy gap, and the lattice phonon modes of

the particular host crystal (Riseberg and Moos, 1968; Miyakawa and Dexter,

1970). With the assumption that the phonons involved are of equal energy, a

commonly used expression for the temperature‐dependent multiphonon relaxa-

tion rate is (Riseberg and Moos, 1968)

W Tð Þ ¼ W 0ð Þ exp �hom=kTð Þ
exp �hom=kTð Þ � 1

� �DE=�hom

; ð18:58Þ

where �hom is the maximum phonon energy the lattice vibrations that couples to

the electronic transition of the metal ion, DE is the energy gap between the

populated state and the next low‐lying state, and W(0) is the spontaneous

transition rate at T ¼ 0 when the phonon modes are all initially in their ground

state. At low temperatures where �hom 
 kT , nonradiative relaxation rate is

dominated by W(0), which can be expressed as a simple exponential function

depending on the energy gap, DE

W 0ð Þ ¼ C exp �aDE=�homð Þ; ð18:59Þ
where C and a are empirical parameters which are characteristic of the particu-

lar crystal. Known as the energy gap law, this exponential dependence of the

transition rate on the energy gap has been used to describe quite generally the
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energy gap dependence of multiphonon transitions rates for the 4f and 5f states

(Riseberg and Moos, 1967, 1968).

Extensive experimental results for lanthanide systems are available for com-

parison with those obtained for actinide ions. It should be possible to explore

bonding differences between selected actinides and lanthanides by examining

their excited state relaxation behavior. Because of smaller electrostatic interac-

tion and larger spin–orbit coupling and crystal‐field splittings, the energy gaps

between different J‐multiplets of actinide ions are much smaller than that of

the isoelectronic lanthanide ions. Therefore, phonon‐induced nonradiative re-

laxation in actinide systems is more efficient than in the lanthanide systems.

Except for a few cases, such as the 6D7/2 state of Cm3þ and Bk4þ, that have a

large energy gap to the low‐lying states, the lifetime of most 5f–5f electronic

transitions of actinide ions in solids and solutions are predominantly deter-

mined by nonradiative relaxation. A direct comparison of the use of the energy

gap law for Cm3þ in LaCl3 and the trivalent rare earth ions in LaCl3 has been

reported (Illemassene et al., 1997). A comparison of the emitting state lifetimes

of Cm3þ in various crystals is given in Fig. 18.16. A summary of spectroscopic

studies of Cm3þ in crystals LaCl3, LuPO4, ThO2, Cs2NaYCl6, and CsCdBr3
was given in a review paper (Edelstein, 2002). The lifetimes of the actinide

ions with the 5f7 configuration (Cm3þ, Bk4þ) are roughly consistent with the

energy gap law in that for the hosts LuPO4, ThO2, and in CeF4, only one or at

most two levels luminesce. For the heavier halide hosts, the vibrational spread is

small and the crystal field strength is relatively small so many more levels

luminesce.

Early studies on multiphonon relaxation of 5f states of aquated trivalent

actinide ions have been reviewed (Yusov, 1993; Beitz, 1994a) and compared to

similar work on 4f states of aquated trivalent lanthanide ions (Beitz, 1994b).

Aquated ions are those whose inner coordination sphere consists only of water

molecules. Systematic studies of the 5f state luminescence lifetimes of aquated

trivalent actinide ions began in 1980 with the work of Beitz and Hessler (1980)

who reported the luminescence emission spectra of 248Cm3þ in dilute perchloric

or hydrochloric acid as well as luminescence lifetimes in H2O and D2O

solutions. They assigned the emission as arising from the electronically excited
6D7/2 state of Cm3þ based on a study of the solution absorption spectrum of

Cm3þ in perchloric acid (Carnall and Rajnak, 1975). A subsequent study by

Beitz and coworkers on the luminescence of 244Cm3þ in dilute acid solution

showed that speciation studies on ultratrace levels of Cm3þ could be carried out

using elementary laser‐induced fluorescence techniques (Beitz et al., 1988).

Laser‐induced luminescence studies also have been reported on Am3þ (Beitz

et al., 1987; Yusov, 1990; Thouvenot et al., 1993b; Kimura and Kato, 1998),

Bk3þ (Carnall et al., 1984) and Es3þ (Beitz et al., 1983) in dilute acid solutions

and as well as additional studies on aquated Cm3þ (Yusov, 1987; Kimura and

Choppin, 1994; Kimura et al., 1996, 1997). In all cases, the observed lumines-

cence bands were assigned as arising from a 5f state lying at or below the energy
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of the exciting photons and that, among all such states, in addition possessed the

largest DE value. The reported 5f state emission spectra of aquated trivalent

actinide ions are in good agreement with the calculated free‐ion states of

trivalent actinide ions doped into lanthanum trichloride (Carnall, 1992).

Aquated actinide ions are prototypical species for the investigation of coor-

dination complexes that form as ligands other than water become associated

with an actinide ion. It should be appreciated that the coordination sphere of

trivalent actinide ions is dynamic unless there is an exceptionally strong ligand

bonding. For example, using nanosecond laser excitation, there are no reports

of emission from aquated actinide ions that differ as to the number of coordi-

nated water molecules, which suggests that the coordination environment of

aquated actinide ions reaches equilibrium on the submicrosecond timescale. In

the case of aquated actinide ions, interest naturally exists as to the number of

inner‐sphere coordinated water molecules, and luminescence studies have been

reported that provide a measure of that number.

Kimura and Choppin (1994) doped Cm3þ into a series of solid‐hydrated
lanthanum compounds and determined the influence of the number of inner‐
sphere coordinated water molecules on the observed Cm3þ luminescence life-

times. Their data are plotted in Fig. 18.29 where the solid line expresses the

resulting correlation as

nH2O ¼ 0:65kobs � 0:88 ð18:60Þ

Fig. 18.29 Observed 248Cm3þ luminescence decay rate, kobs, from Cm3þ doped into a
series of solid‐hydrated lanthanum compounds at Cm:La = 1:6.9 � 103 as a function of
the number of inner‐sphere coordinated water molecules, nH2O. Data from Kimura and
Choppin (1994).
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where nH2O is the number of inner‐sphere coordinated water molecules and kobs
is the measured luminescence lifetime in units of ms�1. Analysis of the data in

Fig. 18.29 using equation (18.60) results in a calculated 95% confidence limit of

� 0.74 for nH2O values, if one assumes that there is no error as to the number of

inner‐sphere coordinated water molecules in a given compound. The correlation

embodied in equation (18.60) should be valid as long as there is no contribution

from ligands other than H2O or HDO to de‐excitation of the emitting state and

the purely radiative decay rate of the emitting state remains essentially un-

changed across the series of compounds. The value of nH2O for aquated Cm3þ

reported by Kimura and Choppin was 9.2 � 0.5 water molecules.

Subsequently, Kimura and Kato (1998) studied aquated and complexed
241Am3þ luminescence via its 5D1 ! 7F1 transition. They reported kobs ¼ 24.6

� 0.6 ns for aquated Am3þ in H2O and 162 � 4 ns for Am3þ in 99.9% D2O.

They adopted a different analysis procedure based on the assumption that the

number of inner‐sphere water molecules is 9 for aquated Am3þ and aquated

Cm3þ. With that assumption and from the linear correlation they observed

between the observed luminescence decay rate, kobs, and the deuterium mole

fraction in H2O–D2O mixtures, they determined

nH2O ¼ 2:56� 10�4kobs � 1:43 ð18:61Þ
for the case of aquated Am3þ and

nH2O ¼ 0:612 kobs � 0:48 ð18:62Þ
for the case of aquated Cm3þ. Subsequently, Kimura and coworkers studied the

luminescence lifetimes of Am3þ and Cm3þ of unstated actinide isotopic compo-

sition at 25�C (Kimura et al., 2001). They reported lifetime values for aquated

Am3þ in H2O of 25 � 0.75 and 160 � 5 ns for aquated Am3þ in 99.95% D2O

along with the values of 65 � 2 ms for aquated Cm3þ in H2O and 1200 � 36

ms for aquated Cm3þ in 99.95% D2O. These values together with equations

(18.61) and (18.62) give nH2O ¼ 8:9 for aquated Cm3þ and nH2O ¼ 8:8 for

aquated Am3þ. On the basis of preferential solvation in the nonaqueous solu-

tions, an estimate of the Gibbs free energy of transfer of Am3þ and Cm3þ ions

from aqueous to nonaqueous solutions also was obtained using the observed

luminescence lifetimes in mixtures of water and organic solvents.

Due to its spectroscopy and photophysics, Cm3þ is the trivalent actinide ion

most commonly studied in solution using luminescence techniques. As noted

earlier, luminescence from three other aquated trivalent actinide ions has been

reported. Selected lifetime values from these studies are shown in Table 18.14.

In nearly all cases where the stated measurement errors were 5% or less of the

observed value and the lifetime was at least a factor of 10 longer than the

excitation pulse width, the reported lifetime values are concordant at the 95%

confidence level. The seeming exception occurs for Cm3þ in D2O solution. Beitz

and Hessler (1980) reported that the luminescence lifetime of Cm3þ in 1 M

DClO4 solution was 940 � 40 ms, whereas Kimura and coworkers reported
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that the lifetime of aquated Cm3þ in 0.01 M DClO4 was 1200 � 36 ms (Kimura

et al., 2001). Both studies reported that the lifetime of Cm3þ in H2O was 65 ms.
Beitz and Hessler used triply distilled D2O that was 99% D2O by near‐infrared
absorption spectroscopy to make up their solutions whereas Kimura and co-

workers used as‐received 99.95% D2O. The work of Kimura and coworkers

provides evidence that the observed luminescence lifetime of Cm3þ in a mixture

of H2O and D2O is given by the expression

kobs ¼ ð1� wÞ kH2O þ w kD2O þ C; ð18:63Þ
where kobs is the observed Cm3þ luminescence lifetime in a mixture of H2O and

D2O in which w is the deuterium mole fraction of the solution, C is a constant,

and kH2O and kD2O are the luminescence decay rates of Cm3þ in 100% H2O and

100% D2O solutions, respectively. Taking into account the stated errors in the

measured luminescence lifetimes and equation (18.63), the reported 940 � 40

and 1200 � 36 ms Cm3þ lifetime values in heavy water solutions agree with

each other at the 95% confidence level given the differing degree of solvent

deuteration in the two studies.

Reported lifetimes for the 5D1 state of aquated Am3þ in H2O are more

discordant which can be attributed primarily to the use of excitation pulses

whose width was not insignificant compared to the luminescence decay time of

aquated Am3þ. The value reported by Beitz (1994a) is selected for inclusion in

Table 18.14 because a deconvolution procedure was used to correct for the finite

excitation pulse width. The lifetimes reported by Kimura and coworkers for

Cm3þ and Am3þ (Kimura et al., 2001) in D2O were selected for inclusion in

Table 18.14 because of the higher level of solution deuteration in their studies in

comparison with earlier studies by others.

A limit for the luminescence lifetime of the 1S0 state of U
4þ in 1 M perchloric

acid has been reported (Kiarshima et al., 2003) and is included in Table 18.14.

Based on their excitation and emission spectra, the energy gap between the U4þ

emitting state and its next lower 5f state is comparable to the Cm3þ energy

gap. In consequence, one might have expected that nonradiative decay would

Table 18.14 Selected 5f state luminescence lifetimes, t, for actinide ions in dilute acid
solution at ambient temperature.a

Actinide ion Emitting stateb t in H2O t in D2O

U4þ 1S0 <20 ns
Am3þ 5D1 22 � 3 ns 160 � 5 ns
Cm3þ 6D7/2 65 � 3 ms 1200 � 36 ms
Bk3þ 7F6 100 � 20 ns
Es3þ 5F5 1.05 � 0.05 ms 2.87 � 0.09 ms

a See text for selection basis and literature references.
b Term symbols for emitting states from the work of Carnall and coworkers (Carnall et al., 1991;
Carnall, 1992).
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only moderately diminish the observed lifetime of the 1S0 state. However,

Kiarshima and coworkers report that the luminescence lifetime of the
1S0 state of aquated U4þ is <20 ns. Evidently the 1S0 state is primarily

quenched by processes other than those that are responsible for the nonradia-

tive decay of the observed 5f emitting states of aquated trivalent actinide ions.

Candidate processes for U4þ include intersystem crossing to a lower‐lying
opposite‐parity state of U4þ and electron transfer to or from neighboring

ligands.

Insight into the factors influencing the nonradiative decay of emitting 5f

states of aquated trivalent actinide ions can be obtained by plotting the data

of Table 18.14 for such ions semilogarithmically as shown in Fig. 18.30. The

solid and dashed lines are fits of the data for ions in H2O and D2O, respectively,

to equation (18.59). Use of this equation is justified �hom 
 kTð Þ if energy is

transferred to a stretching or bending vibrational modes of water at ambient

temperature. The resulting fit values for a=�homð Þ are 6.23 � 10�4 cm for H2O

solutions and 7.52 � 10�4 cm for D2O solutions. Based on equation (18.59),

nonradiative decay occurs primarily to stretching vibrational modes of water

for Es3þ and Cm3þ. However, the currently available data for aquated trivalent

actinide ions in H2O are too less to determine if energy transfer to bending

vibrational modes of water makes a significant contribution to the overall

nonradiative decay rate at low values of DE as might be expected from recent

studies on multiphonon‐induced nonradiative decay in single crystals

(Ermeneux et al., 2000).

Fig. 18.30 Energy gap law plot of the luminescence decay rates from Table 18.14
of aquated trivalent actinide ions in H2O (�) and D2O (~) solutions. The solid and
dashed lines are fits of equation (18.59) to the observed data for H2O and D2O solutions,
respectively.
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18.8.4 Ion–ion interaction and energy transfer

The success of the single‐particle model for interpretation of the solid‐state
actinide spectra is largely due to the localized nature of the 5f electrons. In the

modeling of 5fN electronic energy level structure, the coupling between neigh-

boring f‐element ions is neglected even for actinides in stoichiometric com-

pounds, although ion–ion interaction induced band structure and cooperative

pair transitions have been observed in lanthanide compounds (Cone and

Meltzer, 1987) and are expected to be more significant in the actinide com-

pounds because of more extended 5f orbitals (Fig. 18.3). However, the effects of

ion–ion interactions on the excited state dynamics such as luminescence decay

are very significant even in dilute crystals with actinide doping level below 1%

(Liu and Beitz, 1990a). As a result of ion–ion interactions, luminescence emis-

sion from a 5fN state is usually observed only in dilute crystals. The excited state

lifetime and the luminescence decay dynamics are strongly dependent on the

actinide ion concentration as well as on sample temperature. Fig. 18.31 shows

the 5D1 luminescence decay of 0.1 at% Cm4þ (a) and 5 at% Cm4þ (b) in

crystalline CeF4 at 4 K. There is an obvious deviation from a single exponential

decay for the 0.1 at% Cm4þ:CeF4 sample and the decay rate in the long time

range is approximately 5� 103 s�1. In the 5 at% Cm4þ:CeF4 sample, most Cm4þ

ions relaxed from the excited state within 15 ms. At long times, behavior similar

Fig. 18.31 Nonexponential fluorescence decays of Cm3þ ions in CeF4 induced by interion-
ic excitation energy transfer. (a) the 5D1 fluorescence decay of 0.1% (atom) Cm4þ:CeF4 at
4 K; and (b) the 5D1 fluorescence decay of 5% (atom) Cm4þ:CeF4 at 4 K. (Reprinted with
permission from Liu and Beitz, 1990b. Copyright 1990, Elsevier.)
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to that of the 0.1 at% Cm4þ:CeF4 sample is due to the contribution from Cm4þ

ions at isolated sites where energy transfer is improbable.

The theory of energy transfer of luminescent ions in solids has been developed

for interpretation of sensitized luminescence (Förster, 1948; Dexter, 1953). This

theory is based on the assumption that the rate of excitation energy transfer

(Wda) from a donor, d, to an acceptor, a, depends on the distance between d and

a, Rda, as

Wda ¼ a
R0

Rda

� 	s

; ð18:64Þ

where the parameter a contains the matrix elements of the interaction between d

and a, and R0 is the distance between the nearest neighbors. These matrix

elements depend on the transition probabilities as well as the energy mismatches

if d and a do not have identical excitation energy levels. In equation (18.64),

s takes an integer value of 6, 8, or 10 for electric dipole–dipole, dipole–quadru-

pole, or quadrupole–quadrupole interactions, respectively. For the simple case

where energy‐transfer processes are irreversible, the luminescence decay rate

may be evaluated using

dPd

dt
¼ �kPd �

X
a

WdaPd; ð18:65Þ

where Pd is the probability of excitation of the donor, k is for the intrinsic decay

rate, and the summation is over all possible acceptors. In f‐element ions in

dielectric crystals, the donors and acceptors are the same. It is often difficult,

especially for the doped crystals or structurally disordered solids, to perform the

lattice summation over the occupied acceptor sites in equation (18.65). Inokuti

and Hirayama (1965) first obtained a general approximate solution for ion

concentration c � 1:

ln
P 0ð Þ
P tð Þ ¼ ktþ cG 1� 3=sð Þ atð Þ3=s; ð18:66Þ

where G(1 � 3/s) is the gamma function and other quantities are the same as

defined in equations (18.64) and (18.65). The solid line in Fig. 18.31 are fitted

results using the Inokuti and Hirayama model.

Although nonexponential luminescence decay is the direct consequence of

ion–ion interactions that are easy to measure by experiment, there are different

microscopic mechanisms that may not be revealed in detail in the analysis of the

decay dynamics alone. Analysis of energy level structure is often critical in

understanding the energy‐transfer processes. For actinide and lanthanide ions

in insulating crystals, resonant migration excitation of excitation among the

identical ions is common, and if there is inhomogeneous line broadening, pho-

non‐assisted (phonon absorption from or emission to the lattice) energy‐transfer
results in temperature‐dependent spectral diffusion as well as nonexponential

luminescence decay (Yen, 1987). In many cases, energy transfer occurs in such

a way that the donor gives the acceptor a part of its excitation energy and
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nonradiatively relaxes to an intermediate state, whereas with this amount of

energy the acceptor is excited into the same or a different intermediate state.

This type of energy transfer is called cross‐relaxation. As shown in Fig. 18.31,

the nonexponential decay of Cm4þ in the 5D1 level is dependent on the Cm4þ

doping level. The mechanism for the nonexponential decay is mainly due to the

cross‐relaxation into the low‐lying excited states of 7F3,4 states (Liu and Beitz,

1990a). A special type of cross‐relaxation is up‐conversion energy transfer. In

this process, the donor and acceptor are both in metastable states while the

donor relaxes into a low‐lying state and the acceptor is further excited into a

high‐lying state. This energy‐transfer process enables emission of a photon with

energy higher than the initial excitation energy. Instead of emission of a higher

energy photon, this type of energy transfer may end up with energy lost to the

lattice or lead to ionization, a process called annihilation.

Extensive studies of the microscopic mechanisms of ion–ion interactions and

various consequences of energy‐transfer processes have been done for lantha-

nide ions and detailed reviews of the previous work have been published (Cone

and Meltzer, 1987; Yen, 1987). Much less work has been conducted on actinide

systems. Many experimental results from the actinide systems may be inter-

preted using the same framework developed from modeling the lanthanide

systems, such as those of Cm4þ:CeF4 (Liu and Beitz, 1990a,b). The excited

state dynamics of both U3þ and U4þ ion in a host crystal of Ba2YCl7
was recently reported. It is shown that energy transfer induced up‐conversion
of U4þ excitation leads to strong luminescence from the 1I6 state at 19 600 cm

�1

(Karbowiak et al., 2003). Consistent with the observations in analyses of

crystal‐field splittings and ion–phonon coupling, ion–ion interactions in the

actinide systems with the same level of ion concentration are much stronger

than that in the lanthanide systems. This explains in general the more significant

nonexponential decay and quenching of actinide luminescence emission.
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