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Summary

Mycorrhizal fungi form symbiotic and often mutually beneficial relationships with the roots of most terrestrial
plants. In this chapter we review current literature concerned with plant respiratory requirements for supporting
this important plant-fungal association, and its effect on the overall plant carbon economy. Controlled studies
indicate that mycorrhizal respiratory costs are considerable, consuming between 2 to 17% of the photosynthate
fixed daily, varying depending on the host and fungal species involved, the stage of colonization, and the en-
vironmental conditions. Respiratory energy is required by the mycobiont for construction of new intraradical
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and extraradical fungal tissue (including reproductive structures), for maintenance and repair of existing fungal
tissue, and for cellular processes in the fungal tissue associated with the absorption, translocation and transfer
of nutrients from the soil to the host. Additional respiration is also required by the host plant for stimulated root
cellular processes, and potentially for increased production of root biomass. Field studies of these important
processes will eventually lead us to better understand how significant mycorrhizal fungi are to the total carbon

budgets of natural and managed plant communities.

l. Introduction

It is difficult to estimate the actual costs of root res-
piration in natural soils without considering the role
of mycorrhizal fungi. These fungi are an integral part
of nearly all plant communities (Van der Heijden et
al., 1998). They are ubiquitous in most natural and
agricultural soils, and are capable of forming close
symbiotic associations with the roots of nearly 90%
of the terrestrial plant species investigated thus far
(Newman and Reddell, 1987; Trappe, 1987). Like
many pathogenic soil fungi, mycorrhizal fungi pen-
etrate living roots of plants to acquire energy-rich
carbohydrates needed for their growth, maintenance,
and function. However, unlike the pathogens, external
hyphae produced by mycorrhizas absorb soil nutrients
and translocate them to the fungal-plant interface
where they are transferred to root epidermal and
cortical cells. In effect, these fungi act as extensions
of the plant’s root system, increasing uptake of many
soil-derived nutrients, and in some cases, even water,
thereby improving the host plant’s productivity (Smith
and Read, 1997) and reproductive fitness (Koide and
Dickie, 2002). Thus, mycorrhizal fungi incur both
costs and benefits to the overall carbon economy of
the host plant (Koide and Elliott, 1989; Tinker et al.,
1994; Douds et al., 2000).

In this chapter, we focus on the respiratory costs
of mycorrhizal associations, particularly with regard
to growth, maintenance, and ion uptake by both the
fungus and the host root system colonized by the
fungus. While mycorrhizal fungi may be beneficial
during at least some stage of a plant’s development,
studies indicate that below-ground carbohydrate costs
are often higher when plants are associated with these
fungi than when plants are not. In fact, under condi-
tions where soil resources are non-limiting and the
fungi are providing little or no benefit to the plant,
carbon consumption by mycorrhizal fungi can actu-
ally reduce plant growth (Buwalda and Goh, 1982;

Abbreviations: PPFD — photosynthetic photon flux density;
Q,, — temperature coefficient of respiration

Molina and Chamard, 1983; Koide, 1985; Ingestad
etal, 1986; Modjo and Hendrix, 1986; Rousseau and
Reid, 1991; Peng et al., 1993; Taylor and Harrier,
2000). The total amount of carbon required by the
association is the sum of several component costs,
including direct export of carbon from the host to
the fungus (for growth and metabolism), as well as
additional carbon use such as increased plant respi-
ratory and non-respiratory (exudation, cell death,
etc.) requirements (Finlay and Séderstrom, 1992).
Controlled studies using whole-plant “C-labeling
techniques suggest that the total cost of the associa-
tion ranges from 3 to 36% of the carbon fixed daily
by photosynthesis, with the largest proportion of the
carbon allocated to respiration (Table 1).

The two most common and well studied types of
mycorrhizal associations, categorized according to
symbiont morphology and host-taxon relationships,
are arbuscular (previously called vesicular-arbuscu-
lar) mycorrhizas and ectomycorrhizas. Arbuscular
mycorrhizal fungi occur on many different species
of herbaceous and woody plants including most
crop plants and tropical trees. They are obligatorily
dependent on the host plant for their source of car-
bohydrate energy, and form, within the root cortical
cells of the host, characteristic branched haustorical
structures known as arbuscules, which are likely sites
for significant transfer of carbohydrate and nutrients
between the host and fungus. Other distinguishing
features sometimes found, depending on the fungal
species, include large hyphal coils (also likely sites
for carbohydrate and nutrient transfer), usually lo-
cated within the epidermal cells, and terminal and
intercalary swellings known as vesicles (likely storage
organs containing abundant lipids) formed within and
between the cortical cells. Arbuscular mycorrhizas
are most noted for their ability to enhance plant
uptake of diffusion-limited inorganic ions such as
phosphate, copper and zinc. Ectomycorrhizal fungi,
on the other hand, occur mainly on forest trees of
temperate and boreal regions. They are character-
ized by a dense sheath or mantle of fungal tissue
that encloses the colonized root, and by a plexus of
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Table 1. Amount of carbon required by arbuscular and ectomycorrhizal fungi associated with various host plants. Values were estimated

using whole-plant '“C pulse-chase labeling techniques.

Host species Fungal species Percentage of C fixed by photosynthesis Reference
Fungal Fungal Total to
Biomass respiration fungus
Arbuscular mycorrhizas
Allium porrum Glomus mosseae 2 5 7 Snellgrove et al. (1982)
Citrus aurantium G. intraradices n.d. n.d. 6 Koch and Johnson (1984)
Cucumis sativus G. caledonium 2 7 9 Pearson and Jakobsen (1993)
C. sativus G. fasciculatum 5 15 20 Jakobsen and Rosendahl (1990)
C. sativus G. sp. 9 8 17 Pearson and Jakobsen (1993)
C. sativus Scutellospora calospora 2 17 19 Pearson and Jakobsen (1993)
Glycine max G. fasciculatum 3 5-14 8-17 Harris et al. (1985)
Poncirus trifoliate x G. intraradices n.d. n.d. 6-8 Douds et al. (1988)
C. aurantium
P, trifoliate x G. intraradices n.d. n.d. 11 Koch and Johnson (1984)
C. aurantium
Vicia faba G. mosseae n.d. n.d. 10 Pang and Paul (1980)
V. faba G. mosseae 1 3 4 Paul and Kucey (1981); Kucey and
Paul (1982)
Ectomycorrhizas
Pinus ponderosa Hebeloma crustuliniforme 2-3 5-8 7-11 Anderson and Rygiewicz (1995)
P, ponderosa H. crustuliniforme 3 4 7 Rygiewicz and Anderson (1994)
Pinus taeda Pisolithus tinctorius n.d. n.d. 6-36 Reid et al. (1983)
Salix viminalis Thelephora terrestris 1-8 2-4 3-12 Durall et al. (1994)

n.d. — not determined.

hyphae known as the Hartig net, which penetrates
the root intercellularly and surrounds the epidermal
and cortical cells. Most ectomycorrhizal fungi are
also obligate symbionts, but some may be able to
act as saprotrophs (Haselwandter et al., 1990). They
can hydrolyze proteins and organic phosphates, and
increase plant uptake of both organic and inorganic
forms of nitrogen and phosphorus (Tinker and Nye,
2000). Other distinctive groups of mycorrhizas that
are less common and not as well studied include
ericoid and ectendomycorrhizas, which are formed in
association with ericaceous plant families, and orchid
mycorrhizas (Wilcox, 1996). Thus far, only the car-
bohydrate requirements of arbuscular and ectomycor-
rhizas have been examined in detail, which restricts
our discussion to these two groups of fungi.

Il. Total Respiratory Costs

The total respiratory costs of mycorrhizal associa-
tions are a considerable component of the overall
carbon economy of the host plant. Of those studies
listed in Table 1, where respiration attributed to the
fungus was separated from other fungal carbohydrate

requirements, 47 to 89% of the carbon allocated to the
mycorrhizal association was consumed by respiration.
Respiration in these studies varied depending on the
host plant and fungal species, the stage of mycorrhizal
development, and the environmental conditions under
which the host plant and fungus were grown.

A. Variation among Plant and Fungal Species

Root respiration varies among plant species (Lam-
bers et al., 2002). Respiration also appears to vary
among mycorrhizal fungal species associated with a
particular host. In cucumber (Cucumis sativus), for
example, the proportion of assimilated '*C allocated
to below-ground respiration in plants colonized by the
arbuscular mycorrhizal fungus Scutellospora calos-
pora was 16.5% higher than that in non-colonized
plants, but only 6.5 or 7.6% higher when plants were
colonized by two other arbuscular species, Glomus
caledonium or an unclassified Glomus sp., respec-
tively (Pearson and Jakobsen, 1993). Bidartondo
et al. (2001) observed that of four ectomycorrhizal
fungi they examined, Paxillus involutus produced the
fewest mycorrhizal connections to its host plant and
respired less carbohydrates per unit biomass than
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did the other fungi. Variability in respiration among
species may be due to differences in 1) the amount
and quality (e.g., number of arbuscules and vesicles)
of fungal biomass produced and maintained by the
mycobiont both within the host’s root system and in
the surrounding rhizosphere (Graham et al., 1982b;
Giovannetti and Hepper, 1985; Estatn et al., 1987;
Lioi and Giovannetti, 1987; Wong et al., 1989; 1990;
Jakobsen et al., 1992; Burgess et al., 1994; Lerat et
al., 2003), 2) the metabolic activity of the fungus
(Lewis and Harley, 1965a,b,c; S6derstrom and Read,
1987; Bago et al., 2002), 3) the level of stimulation
of cellular activities (e.g., cell wall and cytoplasmic
invertases) and changes in carbohydrate metabolism
(e.g., sucrose synthase) in the epidermal and cortex
regions of the colonized roots (Wright et al., 1998,
1999), and/or 4) the extent of growth promotion (or
depression) of the root system (Krishna et al., 1985;
Bryla and Koide, 1990).

B. Changes with Mycorrhizal Development
and Plant Age

Respiratory costs are expected to be especially high
during early stages of colonization when most of the
new fungal tissue is being produced, but decrease as
the association matures, much in the same way that
root respiratory costs decline with root age (Bouma
et al., 2000, 2001). Carbohydrate substrates and re-
spiratory energy are required during this period for
construction of new intra- and extraradical fungal
components, and for modifications in the cellular
structures of the host (Graham and Eissenstat, 1994).
Table 2 shows that although intraradical fungal bio-
mass in soybean (Glycine max) roots colonized by
Glomus fasciculatum increased from 115 mg per plant
at 6 weeks to 266 mg per plant at 9 weeks, the specific
rate of '“C incorporation into fungal biomass was, in
fact, lower at 9 weeks than at 6 weeks. The distribu-
tion of assimilated carbon to fungal respiration also
decreased during this 3-week period from 18.2 mg *C
plant™ to 9.7 mg "C plant™!, consequently lowering
the plant’s cost of supporting the association.
Further evidence that mycorrhizal cost decreases
with age can be found in the ectomycorrhizal lit-
erature. Cairney et al. (1989) found in Eucalyptus
pilularis roots colonized by Pisolithus tinctorius
that young mycorrhizas accumulated more '“C than
older mycorrhizas, with much of the carbon transfer
occurring during the first few weeks after inoculation.
By 90 days after inoculation, all '*C translocation to
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mycorrhizas had stopped. This information led them
to hypothesize that in mature root systems only a small
portion of the roots would require significant amounts
of photosynthate to support mycorrhizal associations
at any one time, which appeared to be the case when
Cairney and Alexander (1992) compared allocation of
'“C with younger and older mycorrhizas of Tylospora

fibrillose on Picea sitchensis. In this later study, they

measured the ratio of activity in young to older mycor-
rhizas, and found that the ratio progressively increased
from 2:1, when newly colonized seedlings were first
transferred to a peat substrate, to 54:1 by 38 weeks
after transfer. Similarly, Durall et al. (1994) examined
carbon allocation in Salix viminalis inoculated with
Thelephora terrestris, and found that the proportion
of “C allocated to mycorrhizal respiration decreased
as the plants aged from 50 to 98 days.

C. Impact of Environmental Conditions

Respiration associated with mycorrhizas is usually
influenced by a combination of environmental factors
that either directly affect the symbiosis by altering
fungal growth and metabolism, or indirectly affect it
by influencing photosynthesis and supply of carbohy-
drates provided by the host. Factors that have received
some attention in the literature and will be discussed
here include soil nutrient availability, soil temperature
and moisture, light intensity, elevated atmospheric
CO, concentrations, and ozone pollution.

1. Soil Nutrient Availability

Mycorrhizal respiration in many plant-fungal com-
binations is likely very dependent on soil nutrient
availability, as this can affect the total amount of
fungal biomass produced by the symbiosis, and also
the proportion of biomass allocated to various fungal
structures (some of which may have higher or lower
respiratory requirements than others). Typically,
mycorrhizas develop more readily under nutrient-
poor conditions than under nutrient-rich or heavily
fertilized conditions (Hayman, 1970; Chambers etal.,
1980; Amijee et al., 1989; de Miranda et al., 1989;
Jonesetal., 1990; Koide and Li, 1990; Wallander and
Nylund, 1991; 1992; Henry and Kosola, 1999, Nilsson
and Wallander, 2003), and should therefore require
proportionally more photosynthates for growth and
metabolism when soil nutrients are limited. This was
the case in a study by Baas and Lambers (1988) that
examined the effect of increasing soil phosphorus on
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Table 2. Dry weights, mycorrhizal colonization, distribution of assimilated '*C,
and specific rate of "*C incorporation in Glycine max — Rhizobium japonicum
— Glomus fasciculatum associations at six and nine weeks after emergence

(from Harris et al., 1985).

Component Six weeks Nine weeks
Dry weights (g)
Shoot 4.90 11.28
Roots 1.75 3.37
Nodules 0.14 0.41
Mycorrhiza
Intraradicle 0.12 0.27
Extraradicle 0.16 0.24
Mycorrhizal colonization (%)
Root length 68 76
Root mass 6.6 7.9
Distribution of assimilated “C (%)
Biomass
Shoot 51.0 61.2
Roots 9.7 9.4
Nodules 2.0 1.7
Mycorrhiza 2.7 2.8
Respiration
Shoot 6.3 39
Roots + soil 5.2 6.5
Nodules 9.4 9.8
Mycorrhiza 13.7 4.7
Specific rate of '“C incorporation (mg “C g d. wt. day™")
Shoot 13.9 11.4
Roots 5.4 53
Nodules 18.8 8.7
Mycorrhiza 15.6 10.9

root respiration of Plantago major spp. pleiosperma
grown with or without G. fasciculatum. At 38 days
after transplanting, although plant growth was mostly
unresponsive to colonization at any level of phospho-
rus, both colonized root length and root respiration of
plants grown with the fungus decreased with increas-
ing soil phosphorus availability, while root respiration
of uncolonized plants remained unchanged (Fig. 1).
Likewise, Lu et al. (1998) speculated that depression
of'soil respiration after the addition of nitrogen fertil-
izers to ectomycorrhizal Douglas-fir (Pseudotsuga
menziesii) seedlings, grown in relatively fertile soil,
was probably due to reduced root and mycorrhizal
mycelial growth. Soil nutrient status will especially
reduce mycorrhizal colonization and its correspond-
ing respiration when conditions, such as irradiance
or temperature, limit carbohydrate assimilation and
transport below ground (Graham et al. 1982a; Son
and Smith, 1988).

Soil nutrient status also affects the rate of nutri-
ent acquisition by both the fungus and the host, the
nutritional status of the host, and the responsiveness
of the host to colonization, all of which will impact
respiration associated with the symbiosis. Plants
that are deficient in a particular nutrient tend to use
less of the nutrient to produce a unit of biomass than
plants with adequate levels of the nutrient in their
tissues (Eissenstat et al., 1993). As mentioned previ-
ously, mycorrhizal fungi are most commonly found
to increase plant uptake of phosphorus. However,
improved plant phosphorus status tends to reduce
plant allocation to roots and reduce mycorrhizal
colonization (Smith and Read, 1997). Specific rates
of mycorrhizal root respiration likely diminish with
an increase in plant phosphorus concentration. For
example, root respiration in mycorrhizal Citrus vol-
kameriana seedlings grown in high-phosphorus soil
was only 72% of'that in mycorrhizal seedlings grown
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Fig. 1. (A) Total plant dry weight, (B) colonized root length,
and (C) root respiration rate of mycorrhizal (@) and non-mycor-
rhizal (O) Plantago major spp. pleiosperma grown at four soil
phosphorus levels. Vertical bars are SE. Data from Baas and
Lambers (1988).

in low-phosphorus soil (Peng et al., 1993). Reduced
respiration was primarily due to fewer lipid-rich
vesicles of Glomus intraradices in high-phosphorus
seedlings, and to lower maintenance requirements.
It should be noted that some of the faster respiration
rates in low-phosphorus mycorrhizal plants may also
be a result of lower phosphorus nutrition, and not
increased colonization and activity of the mycor-
rhizal fungus.
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Fig. 2. Root respiration of mycorrhizal (@, A) and non-mycor-
rhizal (O, A) Picea abies seedlings exposed to various soil
temperatures. Seedlings were grown in semi-hydroponic sand
culture supplied with (NH,),SO, (@, O) or KNO, (A, A) nutrient
solution. Vertical bars are SE. Data from Eltrop and Marschner
(1996).

2. Soil Temperature and Moisture

The respiratory response of mycorrhizas to changes
in soil temperature was investigated by Eltrop and
Marschner (1996). Picea abies seedlings were grown
with or without P tinctorius, and fertilized with
either ammonium sulfate or potassium nitrate. They
found that root respiration was significantly faster
in mycorrhizal than in non-mycorrhizal plants when
supplied withammonium, but not when supplied with
nitrate (Fig. 2). However, regardless of the treatment
effects, the response to soil temperature was similar.
Whether plants were mycorrhizal or not, or fertilized
with NH,-N or NO,-N, the temperature coefficients
of respiration, Q,,, from 10 to 30 °C were similar,
ranging from 1.58 to 1.64. Burton et al. (2002)
further demonstrated that the average Q,, for roots
of arbuscular and ectomycorrhizal tree species were
nearly identical. These few results suggest that the
respiratory response of plant roots and mycorrhizal
fungi to soil temperature is alike, although more
research is required before any generalizations can
be made.

One might also expect mycorrhizas to have little
effect on the change in respiration with soil moisture;
exposure to dry soil leads to a gradual decline in root
respiration in many plant species (Palta and Nobel,
1989a,b; Bryla et al., 1997; Burton et al., 1998;
Bouma and Bryla, 2000). In isolated fine roots of
mature C. volkamerianatrees, Espeleta and Eissenstat
(1998) observed that respiration was similar between
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mycorrhizal and non-mycorrhizal roots exposed to
8 weeks of localized drought. After 15 weeks of
drought, however, mycorrhizal roots exhibited 34%
slower respiration and 21% less mortality than non-
mycorrhizal roots did. Citrus is apparently capable
of suppressing mycorrhizal root respiration after
prolonged exposure to dry soil, thereby preventing
excessive carbon expenditure in maintenance respira-
tion. Thus, the ability of mycorrhizal associations to
reduce root respiration under drought may delay root
shedding, and serve as a way by which the fungus
guarantees survival under hostile environmental
conditions.

3. Light Conditions

On an absolute basis, low light availability reduces
root respiration (Lambers et al., 2002) and also limits
mycorrhizal respiration if photoassimilation is ap-
preciably reduced (Biicking and Heyser, 2003). In
addition, low light can reduce the percentage of root
length colonized by mycorrhizal fungi (Tester et al.,
1986), especially under high phosphorus conditions
(Son and Smith, 1988), which would also tend to
reduce mycorrhizal root respiration.

Compared with plants grown under high-light
conditions, shaded plants have proportionally less
root biomass which indicates that shaded plants
have proportionally less total below-ground carbon
expenditure than plants exposed to full light. This
observation has been used to support theories of
optimality in shoot and root growth, where shading
leads to greater allocation of photosynthate to leaf
production so that light is less limiting to overall plant
growth (Brouwer, 1983; Bloometal., 1985). However,
evidence in support of this preferential allocation to
shoots for shaded plants often involves comparisons
between small, shaded plants and larger, non-shaded
plants (Reich, 2002). Proportional allocation to roots
and shoot changes continuously with plant size, mak-
ing such comparisons misleading. When ontogenetic
effects of plant size are taken into account using an
allometric approach, most studies found no evidence
of an allocation shift towards leaf production at low
light (reviewed by Reich, 2002).

While biomass allocation may not be affected by
light regime, there is some evidence that proportion-
ally more photosynthate is typically allocated to
maintain the metabolism of mycorrhizal root tissues
when plants are grown under lower light conditions.
Gansert (1994) used a PC-controlled cuvette system

to measure respiration in situ of individual fine roots
on 10-year-old beech saplings growing in the shaded
understory and in a natural light gap of a mature beech
forest. Roots were colonized by the hyphae of several
ectomycorrhizas including Xerocomus chrysenteron,
Lactarius subdulcis and Russula ochroleuca, and the
rate of root respiration was correlated with coloniza-
tion (expressed as percent dry weight of the total root
biomass) at both sites. Although net CO, assimilation
and mycorrhizal root respiration throughout the sea-
son was much faster in saplings growing in the light
gap than in those growing in the understory, the ratio
of respiration to net CO, assimilation, both measured
on aunit dry weight basis, was substantially higher in
the understory saplings (Table 3), indicating a higher
relative cost of below-ground respiration when light
conditions were low.

Low light may also increase the relative cost of
mycorrhizal associations. At 990 umol m2 s™!, my-
corrhizal colonization with P tinctorius increased
the proportion of assimilated carbon allocated to
root respiration in Picea abies by only 0.6 to 3.4%
at soil temperatures ranging from 10 to 30°C, while
at a PPFD of 290 wumol m™ s', the proportion was
increased by 1.8 to 7.4% (Fig. 3). This indicates that,
regardless of soil temperature, proportionally more
carbon was required to support the symbiosis when
plants were grown under low-light conditions than
when they were grown under higher-light condi-
tions.

4. Elevated Atmospheric CO, and Ozone Pol-
lution

Rising atmospheric CO, concentrations and increas-
ing levels of air pollutants, such as ozone, are expected
to impact considerably the respiration associated with
roots, mycorrhizas and other soil microorganisms
over this century (Andrews et al., 1999; Ball and
Drake, 1998; Hungate et al., 1997).

Elevated [CO,] can increase mycorrhizal develop-
ment and associated respiration by stimulating host
photosynthesis, and thereby enhancing carbon allo-
cation to the fungus (Ineichen et al., 1995; Sanders,
1996; Jifon et al., 2002). Photosynthesis of Plantago
lanceolata was stimulated by elevated [CO,] (600 ul
I!) far more than plant growth, especially when plants
were associated with Glomus mosseae (Staddon etal.,
1999). Based on plant dry mass measurements, most
of'the extra carbon fixed by photosynthesis at elevated
CO, appeared to be respired by the mycorrhizal fun-
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Fig. 3. Root respiration:net CO, assimilation ratio of mycorrhizal
(@) and non-mycorrhizal (O) Picea abies seedlings exposed to
various soil temperatures. Seedlings were grown in semi-hydro-
ponic sand culture at a PPFD of 290 umol m? s™' (- - - -) or at
990 umol m2 s™! (——). Vertical bars are SE. Data from Eltrop
and Marschner (1996).

gus and the roots, which suggests that mycorrhizal
fungi may increase carbon transfer through the system
at elevated [CO,] in addition to altering soil carbon
pools, as shown by others (Rillig et al., 1998; Rouhier
and Read, 1998; Sanders et al., 1998).

Ozone pollution, on the other hand, often reduces
the formation of mycorrhizas (Ho and Trappe, 1981;
Reich et al., 1986; Stroo et al., 1988; Simons and
Kelly, 1989; Meier et al., 1990), and can affect the
respiratory activity of the association (McCool and
Menge, 1983; Gorissen et al., 1991; Scagel and An-
derson, 1997; Anderson, 2003). Anderson and Rygie-
wicz (1995) studied the allocation and metabolism
of carbon in Pinus ponderosa seedlings inoculated
with Hebeloma crustuliniforme under ozone stress.
Seedlings were grown in root ‘mycocosms’ that
enabled them to measure carbon fluxes through the
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root system as well as through a portion of intact
extramatrical hyphae, while maintaining symbiotic
integrity (Rygiewicz and Anderson, 1994). Ozone
reduced hyphal respiration and carbon accumula-
tion by the fungus in mycorrhizal plants, although
mycorrhizal seedlings exhibited greater biomass-
weighted respiration rates than non-mycorrhizal
controls (Table 4). Ozone tended to shift allocation
patterns in mycorrhizal seedlings, making them more
similar to non-mycorrhizal seedlings grown without
ozone. Reductions in carbon allocation to mycorrhi-
zas caused by increasing levels of air contaminants
may eventually reduce vigor of the association, thus
affecting any plant-derived benefits associated with
forming the symbiosis.

lll. Components of Mycorrhizal Respiration

As mentioned in previous chapters, root respiration
depends on three major energy-requiring processes:
root growth, maintenance of root biomass, and uptake
of mineral nutrients. Respiration of roots associated
with mycorrhizas has additional processes specifically
related to the symbiosis. These include growth and
maintenance of the fungal tissue, and ion uptake by
the fungus (as well as transport and transfer of the
ions to the host plant).

A. Construction Costs and Growth Respiration

Mycorrhizal growth respiration depends both on
the amount of root and fungal tissue produced, and
on the chemical composition of each tissue. Tissue
containing high quantities of lipids and proteins,
for example, will have higher respiratory costs of
construction than tissue with more carbohydrates.

Table 3. Net CO, assimilation rate (C,,) and fine root respiration rate (C_,) measured on 10-year-old Fagus sylvatica saplings growing
in the understory and in a natural gap of a mature beech forest (from Gansert, 1994).

Understory Gap

Net CO, Root C,:C, Net CO, Root C.: Cou

assimilation respiration assimilation respiration

(mg Cplant” day™')  (mg C plant™ day™) (mg C plant™ day™") (mg C plant™ day™')
May 56+15 5+1 10 548 £95 20+5 28
June 111£19 7+1 17 560+ 113 30+3 19
July 55+21 9+1 6 740 £+ 141 48 +£2 15
August 51+£22 7+1 8 494 £ 113 54+4 9
September 0£17 6+1 0 262 + 100 39+4 7
October 2+18 6+0 0 241 + 140 33+£2 7
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Table 4. Biomass-weighted retention and respiratory loss of "*C in mycorrhizal and non-mycorrhizal Pinus ponderosa seedlings exposed
to two levels of ozone (from Anderson and Rygiewicz, 1995).

Ozone Mycorrhizal ~_ Retained Respired

exposure status

(umol mol™" h™") Needle Stem  Coarse Fine  Fungus Shoot  Root Fungus Root+  Total

roots roots fungus

0 Mycorrhizal ~ 39.5 27.9 20.9 25.1 18.7 45.8 15.1 525 20.3 314
SE 4.0 2.4 2.8 2.8 2.0 11.0 24 154 2.5 3.8

0 Non-myco. 342 19.2 12.8 15.8 0.0 30.4 9.5 0.0 9.5 20.4
SE 4.8 2.1 2.8 49 0.0 7.3 1.7 0.0 1.7 4.2

39.3 Mycorrhizal ~ 39.8 24.6 17.2 242 112 529 16.8 312 18.6 32.6
SE 6.7 1.4 1.5 7.9 2.3 11.3 2.7 5.1 2.1 5.7

39.3 Non-myco. 322 19.8 10.5 18.7 0.0 25.5 8.7 0.0 8.7 17.6
SE 7.2 3.7 1.8 2.9 0.0 44 0.6 0.0 0.6 2.1

Allocation values were biomass-weighted to normalize for differences in plant component fraction size. Units are percent allocated

divided by tissue component dry weight.

By using daily construction costs and subtracting the
carbonretained in new root growth, Peng etal. (1993)
estimated that daily growth respiration accounted for
16% of the total root and soil respiration associated
with mycorrhizal colonization in C. volkameriana
(Fig. 4; Table 5). Respiratory energy is required
during colonization for growth of new internal and
external fungal structures, as well as for any cellular
modifications and changes in carbon allocation to
the host root.

1. The Host Root

Mycorrhizas tend to increase root:shoot partition-
ing in some species (Bryla and Koide, 1990, Eis-
senstat et al., 1993), but not in others (Fredeen and
Terry, 1988; Thomson et al., 1986; Berta et al. 1991,
1996). Increased root biomass and root growth rate
accounted for one-third of the difference in growth
respiration between mycorrhizal and non-mycorrhizal
C. volkameriana plants (Fig. 4); the other two-thirds
was attributed to building more expensive roots and
fungal structures (see below). Baas et al. (1989)
suggested that mycorrhizal plants might have higher
relative root growth rates than uncolonized plants of
equal size, because of a shift in the carbon balance
during the development of the symbiosis. For the
most part, plants colonized by mycorrhizas do not
necessarily allocate biomass to roots and shoots in
the same proportion as nutritionally equivalent un-
colonized plants. This altered pattern of allocation
will profoundly influence plant productivity, and,
consequently, any respiratory costs associated with
the symbiosis. Thus, the possibility exists that faster
instantaneous relative growth rates of the host root

Daily growth
respiration

Growth respiration
coeffici

Specific

maintenance

Root dry weight fes?érg)tlon

(45)

Daily maintenance
respiration

Fig. 4. Differences in total root and soil respiration between mycor-
rhizal and non-mycorrhizal Citrus volkameriana seedlings grown
in high-phosphorus soil. Data from Peng et al. (1993).

system result in faster rates of respiration for growth
by mycorrhizal plants.
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Fig. 5. Relationship between construction cost and relative total fatty acid content of fibrous roots from mycorrhizal and non-mycorrhizal
Citrus volkameriana seedlings grown in low- and high-phosphorus soil. Data from Peng et al. (1993).

2. Intraradical Hyphae and Fungal Organelles

Carbon demand for the development of mycorrhizal
hyphae and other fungal structures appears to be
quite considerable in the few species examined so
far (Table 1). Jakobsen and Rosendahl (1990) esti-
mated that 16% of the photosynthetic carbon fixed
daily was allocated to intraradical hyphae, arbuscules
and vesicles in 22-day-old cucumber seedlings heav-
ily colonized by G. fasciculatum. Histological and
chemical analyses of arbuscular mycorrhizas reveal
abundant amounts of lipids in the fungal tissue, par-
ticularly in the vesicles (Cox et al., 1975; Nagy and
Nordby, 1980; Pacovsky & Fuller, 1988; Graham et
al., 1995; Olsson and Johansen, 2000). Mycorrhizal
colonization in C. volkameriana increased root lipid
content by 227% in high-phosphorus soil and by
307% in low-phosphorus soil (Fig. 5), and may have
accounted for up to 60% of the growth respiration
(Fig. 4).

In comparison, ectomycorrhizas also contain abun-
dant lipids (Olsson, 1999) as well as considerable
amounts of sterols (Antibus and Sinsabaugh, 1993)
and insoluble polysaccharides (Ling-Leeetal., 1977,
Piché et al., 1981) in the fungal tissue, but produce
considerably more fungal biomass than arbuscular

mycorrhizas. While arbuscular mycorrhizal fungi
usually represent less than 10% of the colonized
root mass (but see Hepper, 1977), values represent-
ing 20 to 40% of the root mass are more common in
ectomycorrhizas due to the large amount of hyphae
associated with the mantle and the Hartig net (Vogt et
al., 1982; 1991). Thus, construction costs and growth
respiration associated with ectomycorrhizas are ex-
pected to represent a substantial host expense.

3. Extraradical Hyphae

Growth of the extraradical hyphae begins soon after
root penetration, and can total more than 10 m of hy-
phae cm™ of soil in arbuscular mycorrhizas (Sanders
et al., 1977, Tisdall and Oades, 1979; Jakobsen and
Rosendahl, 1990; Jakobsen et al., 1992), with hyphal
diameters ranging from 2-30 um (Read, 1992). In one
case, Miller et al. (1995) calculated arbuscular hyphal
lengths and dry weights as high as 81 m ¢cm™ and
339 ug cm?, respectively, in a pasture soil, and 111
m cm™ and 457 ug cm=, respectively, in a tall grass
prairie soil located in mid-western U.S. If we assume a
mean hyphal radius of 5 um, then about 0.08% of the
soil volume is occupied by hyphae in soil containing
10 m cm™ of hyphae. In contrast, root length density is
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Table 5. Below-ground respiratory components in mycorrhizal and non-mycorrhizal Citrus volkameriana seedlings grown in low- or

high-phosphorus soil (from Peng et al., 1993).

Low-phosphorus

High-phosphorus

Mycorrhizal Non-mycorrhizal Mycorrhizal Non-mycorrhizal

Root dry weight (mg) 134 78 273 230
Root growth (mg day™") 9.62 3.90 14.8 13.4
Daily cost (wmol CO, day™)

Construction cost 468 174 671 563

Root growth (carbon)*® 356 135 518 446

Total respiration® 555 234 820 600

Growth respiration ¢ 114 40 153 117

Maintenance respiration ¢ 330 138 558 372

Ion uptake respiration ® 111 56 109 111
Cost per unit root dry weight [mmol CO, (g new root)™']

Construction cost 48.7 44.7 45.3 42.0

Growth respiration coefficient 11.8 10.1 10.3 8.7
Specific respiration rates [mmol CO, (g whole-root system)™ d”']

Total respiration 4.14 3.00 3.00 2.61

Maintenance + ion uptake respiration 3.33 2.51 2.44 2.10

2 Calculated based on ash content, N content, and heat of combustion. " Measured by gas exchange. © Construction cost — root growth.
4 Total respiration — (growth + ion uptake respiration). ¢ Estimated based on the change in whole-plant N content.

typically about 0.1 m cm of soil near the soil surface
(Marschner, 1995), although in pastures root length
density can exceed 1 m cm™ of soil (Newman et al.,
1989). If we assume an average root radius of 0.2 mm,
then roots with a root length density of 0.1 m cm™ of
soil would occupy about 1.3% of the soil volume, or
16 times more soil volume than external hyphae. If
we further assume similar tissue densities of fungal
biomass and plant biomass, then fine root biomass
is about 16-fold greater than hyphal biomass outside
the root. Extraradical hyphae produced by arbuscular
mycorrhizas would therefore have considerably less
carbon costs associated with their construction than
the same length of fine roots produced by the host.
Theoretical explorations have emphasized the ef-
ficiency of mycorrhizal hyphae based on their very
small diameter (Yanai et al., 1995).

Mean hyphal length produced by ectomycorrhizal
fungi associated with seedlings of Pinus sylvestris,
Pinus taeda, and S. viminalis can reach 3-80 m cm™
of root (Read and Boyd, 1986; Jones et al., 1990;
Rousseauetal., 1994), and in P sylvestris, extraradical
hyphae accounted for 15% of root dry weight with
Laccaria laccata and 123% of root dry weight with
Paxillus involutus (Colpaert et al., 1992). Likewise,
in ectomycorrhizal Pinus pinaster with Hebeloma

cylindrosporum, extraradical hyphae accounted for
up to 20% of root dry weight (Plassard et al., 1994).
Under field conditions, the total amount of hyphal
biomass produced in forest soils by ectomycorrhizal
fungi (i.e. 1.25 to 2.0 kg m?) was nearly equiva-
lent to the fine root biomass production (Hogberg
et al., 2001; Wallander et al., 2001; Hogberg and
Hogberg, 2002). Thus, extraradical hyphal biomass
in ectomycorrhizal plants can greatly exceed that
found in arbuscular mycorrhizal plants, and should
consequently have even faster rates of respiration for
growth than the arbuscular fungi.

B. Maintenance Respiration

Mycorrhizal associations require respiratory energy
to maintain existing fungal structures and activities,
as well as any host cellular activities linked to the
presence of the symbiont. Eighty-four percent of
the difference in daily total root and soil respiration
between mycorrhizal and non-mycorrhizal C. vol-
kameriana seedlings was considered maintenance
respiration (Fig. 4; Table 5). Higher maintenance
respiration in the mycorrhizal seedlings was attributed
to both a larger root system and to apparently greater
specific rates of maintenance respiration (which, in
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this case, also included respiration associated with ion
uptake, microbial respiration, and growth respiration
of the extraradical hyphae). Increased maintenance
respiration also appeared to account for most of the
respiration associated with mycorrhizal colonization
in common bean (Phaselous vulgaris) (Nielsen et
al., 1998).

Assuming maintenance respiration represents most
of the respiratory costs associated with mycorrhizal
fungi, maintenance respiration of mycorrhizal tissue
appears to be considerable. Per unit biomass, mycelial
respiration by mycorrhizal fungi is several orders of
magnitude faster than host root respiration (Martin
et al., 1987; Rygiewicz and Anderson, 1994; Eltrop
and Marschner, 1996). Per unit length, however, the
fungi cost considerably less to maintain than roots.
Coupled with lower construction costs, mycorrhizal
associations enable the host plant to explore more soil
volume per unit of carbon invested, and increase the
efficiency of nutrient capture when soil resources are
limited (Eissenstat and Volder, in press).

C. lon Uptake Respiration

Mycorrhizal fungi often increase the ability of
many plants to acquire soil nutrients, and therefore,
may increase the energy demand required for ion
uptake. Baas et al. (1989) attributed 13% of the
increased respiration associated with mycorrhizal
colonization in Plantago major to increased nutri-
ent uptake. However, in many cases, mycorrhizas
do not tend to appreciably enhance plant uptake of
mobile soil ions including nitrate (Tinker and Nye,
2000), which quantitatively is the most important
ion associated with uptake respiration (Veen, 1981).
Thus, the importance of mycorrhizas on ion uptake
respiration may be somewhat limited. Hawkins et
al. (1999), for example, found no increase in ion
uptake respiration due to colonization by G. mosseae
in wheat when plants were grown hydroponically
under non-limiting nutrient conditions. Colonization
by G. intraradices also had no effect on ion uptake
respiration in C. volkameriana seedlings grown under
high-phosphorus soil conditions, but did increase ion
uptake respiration when plants were grown under
low-phosphorus conditions (Table 5). This was likely
due to the fact that under low-phosphorus conditions,
seedlings colonized by the fungi were larger and had
faster rates of ion uptake by roots and hyphae than
uncolonized seedlings.

Ectomycorrhizal fungi can also utilize organic
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forms of nitrogen by producing extracellular protein-
ases (Abuzinadah and Read, 1986; Zhu et al., 1990;
Maijalaetal., 1991), thereby providing the host plant
access to nitrogen sources that would otherwise be
unavailable. Respiratory costs associated with nitro-
gen uptake by this process are unknown.

IV. Other Respiratory Costs

There are other respiratory costs associated with
mycorrhizal fungi that are potentially important
to the carbon economy of the host plant, but these
costs have received relatively little attention in the
literature. They include respiration associated with
fungal reproduction, respiration of microorganisms
residing in the region of soil surrounding the extra-
radical hyphae, termed the mycorrhizosphere, and
respiration associated with forming hyphal links with
neighboring plants.

A. Fungal Reproduction

Most mycorrhizal studies have been done with young
plants under laboratory or glasshouse conditions,
and therefore provide no information on the carbon
requirements of the mycorrhizal fruiting bodies or
spores typically associated with mature vegetation
in the field. The development of spores and sporo-
carps by mycorrhizal fungi represents significant
production of fungal biomass in a relatively short
time, capable of exceeding several kg m yr' (e.g.,
Sieverding et al., 1989; Johnson, 1994), and depends
on current assimilate from the host (Last etal., 1979;
Lamhamedi et al., 1994; Hogberg et al., 2001). My-
corrhizal spores are especially rich in lipids and fatty
acids which comprise more than 45 to 95% of their
carbon pool (Jabaji-Hare, 1988; Bago et al., 1999;
Olsson and Johansen, 2000). Reproduction by the
fungi thus will require large amounts of carbon for
respiration and structural build-up, particularly when
conditions are most favorable for sporulation such as
late in the growing season (Menge, 1984; An et al.,
1993; Smith and Read, 1997).

B. Microorganisms Associated with the My-
corrhizosphere

Mycorrhizas strongly influence rhizosphere micro-
bial populations by altering the nutrient and carbon
physiology of the host plant, and by changing the
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chemical and physical properties of the soil environ-
ment (Azcon-Aguilar and Barea, 1992; Linderman,
1992). Several microorganisms also influence the
establishment of mycorrhizal fungi (Garbaye, 1994;
Perotto and Bonfante, 1997), and facilitate the re-
lease of soil nutrients prior to mycorrhizal uptake
(Toro et al., 1997). It is expected that most or even
all of the energy required by these microorganisms,
which may include both beneficial and non-beneficial
species, is derived from host assimilates. However,
their greatest impact on respiratory costs is probably
through their direct and indirect effects on mycor-
rhizal associations.

C. Hyphal Links between Plants

Many mycorrhizas have low host specificity and are
capable of forming inter- and intraspecific hyphal
connections between neighboring plants. A number
of studies have reported a net transfer of carbon
between plants linked by these connections (e.g.,
Francis and Read, 1984; Grime et al., 1987; Simard
et al., 1997), although the quantitative significance
of this transfer to the carbon status of the host and
recipient plants remains questionable (Fitter et al.,
1998; Robinson and Fitter, 1999). Using imaging
plate autoradiography, Wu et al. (2001) recorded
continual movement of “C-labeled photosynthetic
products between Pinus densiflora seedlings linked
by extraradical hyphae of Pisolithus tinctorius or by
an unidentified ectomycorrhizal fungus. Regardless
ofthe mycorrhizal species, within 3 days of labeling,
4C was detected in the extraradical hyphae and the
colonized roots of the unlabeled ‘receiver’ seedling.
Reverse-labeling demonstrated that carbon also
moved from the ‘receiver’ seedling to the extraradi-
cal hyphae. However, carbon movement between the
plants themselves by way of interlinking hyphae
was not detected. Therefore, although evidence for
carbon transfer between plants (for tissue growth
and maintenance) was lacking in this study, the data
do illustrate that hyphal links between plants may
help reduce the costs associated with supporting the
mycorrhiza. In fact, two other reports indicate that as
much as 10% of the carbon of an arbuscular mycor-
rhizal root can be derived from another plant when
linked by fungal hyphae (Watkins etal., 1996; Graves
etal., 1997). Hyphal links might also reduce respira-
tory costs associated with ion uptake if nitrogen and
other nutrients are transferred between plants (e.g.,
Frey and Schiiepp, 1992).

V. Conclusions

Ever since mechanistic evidence for the dependence
of mycorrhizal fungi on host carbon was first pre-
sented 30 years ago (Ho and Trappe, 1973), a fair
amount of research has been devoted to elucidating
the host energy demands for supporting mycorrhizal
associations. We now know from laboratory and
greenhouse studies that a considerable amount of
photosynthate is required by mycorrhizas, and at least
half of it is used for respiratory processes. However,
there are still many questions about mycorrhizal res-
piration that remain unanswered. Respiratory costs of
ericaceous and orchid mycorrhizas, for example, are
entirely unknown, despite the growing realization of
their importance in many ecosystems. We also have
very little understanding of mycorrhizal respiratory
costs on mature plants. Only recently have studies
shown the significance of mycorrhizal fungi as im-
portant pathways of carbon flux from plants to soil
to atmosphere under field conditions (Johnson et al.,
2002a, b). New techniques need to be developed to
measure respiration of mycorrhizal roots under field
conditions (e.g., Espeleta et al., 1998; Bryla et al.,
2001; Kutsch et al., 2001; Johnson et al., 2002a,b),
and provide answers to the relevance of this symbiosis
to overall carbon economy of associated plants.
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