
 175 
Kant and Berry (Eds.), Sustainability,Economics , and Natural Resources: Economics of 
Sustainable Forest Management, 175-189
© 2005 Springer. Printed in Netherlands 

CHAPTER 8

CAN STOCK-SPECIFIC SUSTAINABILITY 
CONSTRAINTS BE JUSTIFIED?

GEIR B. ASHEIM
Department of Economics, University of Oslo

  Blindern,  NO-0317 Oslo, Norway 
Email: g.b.asheim@econ.uio.no 

WOLFGANG BUCHHOLZ   
Department of Economics, University of Regensburg

D-93040 Regensburg, Germany 
Email:  wolfgang.buchholz@wiwi.uni-regensburg.de 

Abstract. We show that the Suppes-Sen grading principle leads to stock-specific sustainability 
constraints in a class of resource models, provided that the resource is renewable or utility is derived 
directly from the resource stock. Decreasing the resource stock is not compatible with Suppes-Sen 
maximality, unless a smaller stock leads to higher natural growth.  

1. INTRODUCTION

During the last decade sustainability has become one of the main issues in 
environmental economics and policy. Even though there exists a multitude of 
definitions of sustainability, they all boil down to the idea that living conditions on 
earth should not become worse in the course of time. Consequently, sustainability 
has in many instances been interpreted as a postulate to keep stocks of natural 
resources—as part of the whole vector of capital stocks—intact. This does not only 
conform to common sense but might also be justified from an economic perspective 
when the natural resource cannot be substituted by man-made capital. With respect 
to forests, this holds true from an instrumental as well as from a moral perspective. 
On the one hand, forests are indispensable as a source of biodiversity, and as sinks 
for carbon emissions—being important for climate protection—as well as a supplier 
of amenity value and raw material for the pulp and paper industry. On the other hand 
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people—feeling responsible for the preservation of the nature in itself—will also 
attribute to forests some kind of “existence value”.  

In economic theory, however, applying the usual discounting criteria to standard 
renewable resource models will in many cases have adverse effects on sustainability 
in a stock specific sense: Paths that are optimal w.r.t. to discounted utilitarianism 
will often lead to a deterioration of resource stocks—at least when the discount rate 
is sufficiently high.

Using different specific models Heal (1998, 2001) has analysed how such 
undesirable consequences can be avoided. In particular he has shown that two 
features are favorable for having non-decreasing resource stocks along optimal 
paths:

• Utility is not only derived from the flow of resource extraction, but also 
directly from the resource stock itself.  

• Intertemporal paths are evaluated by means of social preferences—like 
undiscounted utilitarianism (in the form of overtaking) and Rawlsian 
maximin—that entail equal treatment of all generations. Such equal 
treatment corresponds to what is referred to as the Weak Anonymity 
condition in the social choice literature.

In this chapter we extend Heal’s (2001) analysis by showing how stock-specific 
sustainability constraints can be obtained from rather weak ethical axioms. By 
combining Weak Anonymity with the uncontroversial Strong Pareto condition, the 
so-called Suppes-Sen grading principle is obtained (Sen, 1970; Suppes, 1966). We 
show that the Suppes-Sen grading principle leads to stock-specific sustainability 
constraints, provided that the resource is renewable or utility is derived directly from 
the resource stock. Under this provision, decreasing the resource stock contradicts 
Suppes-Sen maximality, unless a smaller stock leads to higher natural growth. 
Hence, there is an important class of models where extraction leading to a stock 
smaller than the one corresponding to maximal sustainable yield is incompatible 
with the Suppes-Sen grading principle. By starting from basic ethical axioms for 
intergenerational social preferences, the analysis of this chapter yields a new 
justification for stock-specific sustainability constraints in general, and—when 
applied to forests—for limits on deforestation in particular.  

Within the framework of social choice theory, we have in Asheim, Buchholz, 
and Tungodden (2001) justified sustainability by means of the Suppes-Sen grading 
principle. In models that satisfy a certain productivity condition, which we refer to 
as “Immediate Productivity”, the set of Suppes-Sen maximal utility paths is shown 
to equal the set of non-decreasing and efficient paths. This result cannot, however, 
be applied in the present setting, since none of these models considered in this 
chapter satisfies “Immediate Productivity”. Nevertheless, it turns out that the 
Suppes-Sen grading principle leads to stock-specific sustainability constraints.

By deriving normative conclusions concerning resource management from 
incomplete social preferences like the Suppes-Sen grading principle, the motivation 
for this chapter is similar to the previous chapter by Mitra (2005). While Mitra 
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(2004) weakens a criterion satisfying both Strong Pareto and Weak Anonymity—
namely undiscounted utilitarianism in the form of overtaking—by assuming that 
only paths coinciding beyond some finite point in time are comparable, we go a step 
further by analyzing social preferences satisfying nothing but Strong Pareto and 
Weak Anonymity.  

We recapitulate in Section 2 the analysis of Asheim et al. (2001), introduce in 
Section 3 the class of models considered, and show in Section 4 under what 
conditions the Suppes-Sen grading principle leads to stock-specific sustainability 
constraints in these models. Since the models abstract from important features of 
real-world economies, the significance of these results is discussed in the concluding 
Section 5. Proofs are contained in Section 6.

2. THE SUPPES-SEN GRADING PRINCIPLE AND SUSTAINABILITY

There is an infinite number of generations 1 2t …= , , . The utility level of generation 
t is given by tu , which should be interpreted as the utility level of a representative 
member of this generation. Assume that the utilities need not be more than ordinally 
measurable and level comparable.  

A binary relation R  over paths 1 1 2( )u u …= , ,u  starting in period 1 expresses 
social preferences over different intergenerational utility paths. Any such binary 
relation R is throughout assumed to be reflexive and transitive on the infinite 
Cartesian product ∞ℜ  of the set of real numbers ℜ , where ℵ=∞  and ℵ  is the set 
of natural numbers. The social preferences R  may be complete or incomplete, with 
I  denoting the symmetric part, i.e. indifference, and P  denoting the asymmetric 
part, i.e. (strict) preference.

In order to define sets of feasible paths, it suffices for the analysis of the present 
chapter to assume that the initial endowment of generation 1t ≥  is given by a stock 

tx . A generation t  acts by choosing a utility level tu  and a capital stock 1+tx  which 
is bequeathed to the next generation 1t + . For every t , the function tF  gives the 
maximum utility attainable for generation t  if tx  is inherited and 1+tx  is 
bequeathed; i.e., 1( )t t t tu F x x +≤ ,  has to hold for any feasible utility-bequest pair 
( 1t tu x +, ) of generation t . Furthermore, it is assumed that the utility level of each 
generation cannot fall below 0 . If 1( ) 0t t tF x x +, < , then the bequest 1tx +  is infeasible 
given the inheritance tx . Hence, generation t ’s utility-bequest pair 1( )t tu x +,  is said 
to be feasible at t  given tx  if 0 tu≤ ≤ 1( )t t tF x x +, . The sequence 1 1 2( )F F= , ,...F
characterizes the technology of the economy under consideration. Given the 
technology 1F , a utility path 1( )t t tu u …+= , ,u  is feasible at t  given tx  if there exists 
a path 1 1 2( )t t tx x …+ + += , ,x  such that, for all s t≥ , generation s ’s utility bequest pair 
( 1s su x +, ) is feasible at s  given sx .

A utility path 1 v  weakly Pareto-dominates another utility path 1u  if every 
generation is weakly better of in 1 v  than in 1u  and some generation is strictly better 
off. A feasible path 1 v  is said to be efficient if there is no other feasible path that 
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weakly Pareto-dominates this path. A feasible path 1 v  is said to be R -maximal, if 
there exists no feasible path 1u  such that 1 1Pu v .

Within this framework, the justification for sustainability in Asheim et al.  
(2001) rests on one technological assumption and two conditions on the social 
preferences.

First, we in Asheim et al. (2001) impose the following domain restriction on the 
technological framework.  

Assumption 1 (Immediate Productivity of 1F ).  If 1( )t t tu u …+= , ,u  is feasible at t
given tx  with 1t tu u +> , then 1 2( )t t tu u u …+ +, , ,  is feasible and inefficient at t  given 

tx .

This assumption means that if a generation has higher utility than the next, then its 
excess utility can be transferred at negative cost to its successor. It thus generalizes 
positive net capital productivity to a setting where utilities need not be more than 
ordinally measurable and level comparable.  

Second, we in Asheim et al. (2001) impose the following two conditions on the 
social preferences R  (with I  and P  as symmetric and asymmetric parts).  

Condition 1 (Strong Pareto). For any 1u  and 1 v , if t tv u≥  for all t  and s sv u>
for some s , then 1 1Pv u .

Condition 2 (Weak Anonymity). For any 1u  and 1 v , if for some finite permutation 
π , ( )t tv uπ =  for all t , then 1 1Iv u .

The term ‘permutation’, as used in Condition 2, signifies a bijective mapping of 
{1 2, , }…  onto itself, is finite whenever there is a T  such that ( )t tπ =  for any 
t T> . While Strong Pareto (sometimes referred to as ‘Efficiency’) ensures that the 
social preferences are sensitive to utility increases of any one generation, Weak 
Anonymity (also called ‘Equity’) can be considered a basic fairness norm as it 
ensures that everyone counts the same in social evaluation. In the intergenerational 
context the Weak Anonymity condition implies that it is not justifiable to 
discriminate against some generation only because it appears at a later stage on the 
time axis. It thereby rules out discounted utilitarianism.  

Define sustainability in the following standard way (cf. the discussion in Pezzey 
and Toman, 2002, Section 3.1).  
Definition 1 (Sustainability). Generation t  with inheritance tx  is said to behave in a 
sustainable manner if it chooses a feasible utility-bequest pair 1( )t tu x +,  so that the 
constant utility path ( )t tu u …, ,  is feasible at 1t +  given 1tx + . The utility path 
1 1 2( )u u …= , ,u  is called sustainable given 1x  if there exists 2 2 3( )x x= , ,...x  such that 
every generation behaves in a sustainable manner along 1 1 1 1 2( ) ( ( )x u x, = , , ,x u

2 3( ) )u x, ,... .

Hence, a generation behaves in sustainable manner if its utility level can also 
potentially be shared by all future generations. While any feasible non-decreasing 
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path is sustainable, it is not in conflict with sustainability that some generation 
makes a large sacrifice to the benefit of future generations, leading to its own utility 
being lower than that of its predecessor.

Our justification for sustainability can now be stated.

Proposition 1 (Asheim et al. 2001). If the social preferences R  satisfy Strong 
Pareto and Weak Anonymity, and the technology satisfies Immediate Productivity, 
then only sustainable utility paths are R -maximal.

As noted in the introduction, this result is not applicable to the models that we 
consider in this chapter since the assumption of Immediate Productivity will not be 
satisfied. Instead, we will directly consider the conditions of Strong Pareto and 
Weak Anonymity, which jointly generate the Suppes-Sen grading principle.

Definition 2 (Suppes-Sen grading principle). The Suppes-Sen grading principle SR
deems two paths to be indifferent if one is obtained from the other through a finite 
permutation, and one utility path to be preferred to another if a finite permutation of 
the former weakly Pareto-dominates the other.  

Strong Pareto and Weak Anonymity generate the Suppes-Sen grading principle 
SR  in the following sense: It holds that

• 1 1
sIv u  implies 1 1Iv u  and

• 1 1
sPv u  implies 1 1Pv u ,

if and only if the social preferences R  satisfy Strong Pareto and Weak Anonymity.  

3. A CLASS OF MODELS

Consider a class of models, where consumption is derived from resource extraction, 
where the resource may be renewable, and where, following Krautkraemer (1985), 
utility may be derived directly from the resource stock. In the framework of 
Section 2, we have that tF  is independent of time t  and given by:

1 1
1

( ( ) ) if 0 and ( ) 0
( )

0 otherwise
t t t t t t t t

t t

u x g x x x x x g x x
F x x + +

+

= + − , ≥ + ≥ ≥ ,
,

< ,

indicating that feasibility at time t  requires that xt  0 and xt+g(xt) xt+1  0, that ct

= xt+g(xt)-xt+1 is the consumption at time t , and that xt is the resource stock at time 
t .

Assume throughout that ℜ→ℜ+
2:u  is a continuously differentiable and quasi-

concave utility function that assigns utility ( )u c x,  to any non-negative consump-
tion-amenity pair and satisfies:  
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(0 0) 0 0 if 0 and 0 if 0c xu u c u x, = , > > , ≥ >

Moreover, assume throughout that :g [ x,0 ] +ℜ→  is a continuously differenti-
able natural growth function that assigns non-negative natural growth to any stock in 
[0 ]x,  and satisfies:

(0) 0 and ( ) 0g g x= = .

Four different models are obtained by considering combinations of the following 
four assumptions.  

Assumption 2 (No resource amenities). 0 0 0xc x u∀ ≥ , ∀ > , = .

Assumption 3 (Positive resource amenities). 0 0 0xc x u∀ ≥ , ∀ > , > .

Assumption 4 (No natural growth). [0 ] ( ) 0x x g x∀ ∈ , , = .

Assumption 5 (Positive natural growth). The natural growth function is continu-
ously differentiable and strictly concave and satisfies (0 ) 0 ( )x x g x x x∀ ∈ , , < ≤ − .

The restriction of Assumption 5, namely that ( )g x x x≤ − , means that the stock 
cannot grow beyond its natural biological equilibrium and is satisfied if g ′  is 
bounded below and the period length is small enough. We follow Heal (2001) by 
representing the renewable resource by means of a biomass model, realizing that 
such modelling is only in special cases adequate for forest management.  

Since Assumptions 2 and 3 are mutually exclusive, and so are Assumptions 4 
and 5, the following four models are obtained.  

Model 1 (Cake-eating) satisfies Assumptions 2 and 4.  

Model 2 (Renewable resource) satisfies Assumptions 2 and 5.  

Model 3 (Non-renewable resource yielding amenities) satisfies Assumptions 3 
and 4.

Model 4 (Renewable resource yielding amenities) satisfies Assumptions 3 and 5.  

These are the models that Heal (2001) investigates. In additional to considering 
the applicability of the Chichilnisky (1996) criterion, he applies discounted 
utilitarianism, undiscounted utilitarianism (in the form of overtaking), and Rawlsian 
maximin as social preferences over different intergenerational utility paths. 
Undiscounted utilitarianism and lexicographic versions of Rawlsian maximin satisfy 
both Conditions 1 (Strong Pareto) and 2 (Weak Anonymity), while discounted 
utilitarianism satisfies Strong Pareto, but not Weak Anonymity.  
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It does not come as a surprise that in Model 1 there is no way to have 
sustainability as a optimal solution, independently of the social preferences used. In 
Models 2–4, however, all social preferences considered by Heal (1998, 2001) may 
lead to optimal solutions in which stock specific sustainability constraints are 
obtained; i.e., in which part of the resource stock is forever kept intact. In the case of 
discounted utilitarianism, this result holds at least when the discount rate is 
sufficiently low (and marginal utility of consumption is bounded away from 
infinity). Therefore, Heal considers that there is no inherent conflict between 
‘optimality’ and ‘sustainability’.  

Instead of applying specific forms of intergenerational social preferences as Heal 
does, we here investigate the implications in these four models of imposing the 
Suppes-Sen grading principle (i.e., the conditions of Strong Pareto and Weak 
Anonymity), leading to consequences that are shared by undiscounted utilitarianism 
and Rawlsian maximin, but not necessarily by discounted utilitarianism.  

4. APPLYING THE SUPPES-SEN GRADING PRINCIPLE

Proposition 1 entails that the Suppes-Sen grading principle leads to sustainable paths 
in technologies satisfying the assumption of Immediate Productivity. This result 
cannot be applied to Models 1–4 since they do not satisfy this technological 
assumption.  

Proposition 2. Assumption 1 (Immediate Productivity) is not satisfied by Models 1–
4.

The proofs of this and the other results of this section are contained in Section 6.
Moreover, the direct application of the Suppes-Sen grading principle does not 

yield any restriction on the depletion policy in Model 1, except that the resource 
stock must be exhausted as time goes to infinity, so that the path is efficient. Hence, 
the following result is obtained.

Proposition 3. Consider Model 1 and social preference given by the Suppes-Sen 
grading principle SR . A utility path is SR -maximal if and only if it is efficient. 

Hence, in Model 1 and for any social preferences R  satisfying Conditions 1 (Strong 
Pareto) and 2 (Weak Anonymity), a utility path is R -maximal only if it is efficient.  

However, the direct application of the Suppes-Sen grading principle yields a 
restriction on the depletion policy in Models 2-4, leading to the following stock-
specific sustainability constraint.

Proposition 4. Consider Models 2–4 and social preferences given by the Suppes-
Sen grading principle SR . If the initial stock 1x  satisfies 1 1( ( )) 0g x g x′ + ≥ , then a 
utility path is SR -maximal only if 1 1( )c g x≤  (so that 1 2x x≤ ) and 1 2c c≤  (so that 

1 2u u≤ ). 
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In the case of Models 2 and 4, and for a “small” period length (so that the 
maximal per period growth 1( )g x  is “small” compared to 1x ), the condition that 

1 1( ( )) 0g x g x′ + ≥  can be identified with the condition that 1x  does not exceed the 
stock size corresponding to the maximal sustainable yield (MSY); i.e., the stock size 
maximizing ( )g x  over all [0 ]x x∈ , . Hence, Proposition 4 states, unless the stock 
exceeds the MSY size so that a smaller stock leads to higher natural growth, further 
depletion of the stock is incompatible with any social preferences R  satisfying 
Conditions 1 (Strong Pareto) and 2 (Weak Anonymity).  

In order to show that the results of Propositions 3 and 4 are not empty, we must 
establish that there exist SR -maximal utility paths in the case of Models 2–4. By the 
following result, such existence poses no problem.  

Proposition 5. Consider Models 2–4 and social preferences given by the Suppes-
Sen grading principle SR . For any initial stock 1x , there exists a SR -maximal
utility path.

Hence, imposing that the social preferences R  satisfy Strong Pareto and Weak 
Anonymity does not rule out the existence of R -maximal utility paths.  

While we through Proposition 4 provide conditions that are necessary for SR -
maximal paths in Models 2–4, and through the proof of Proposition 5 give a 
condition that is sufficient for SR -maximality in these models, we do not have 
available conditions that are both sufficient and necessary and thus characterize the 
set of SR -maximal paths in these settings.  

5. THE SIGNIFICANCE OF THE RESULTS

Although the results of the previous section indicate that the seemingly weak and 
uncontroversial axioms of Strong Pareto and Weak Anonymity entail that a resource 
stock should not be further reduced if smaller than the size corresponding to MSY,
one must keep in mind that the models abstract from factors that are important in the 
real world.

• The models of Section 3 do not have any production activities other than 
resource extraction. If production also depends on reproducible capital and 
the produced output can be split between consumption and accumulation of 
reproducible capital, then along any Pareto-efficient path there can be no 
profitable arbitrage possibilities between the two kinds of capital goods, i.e., 
in any period holding a stock of the natural resource must be as profitable as 
holding a stock of the reproducible capital. As along a Suppes-Sen maximal 
utility path the rate of productivity of reproducible capital may well be 
positive, it therefore follows that for, e.g., a renewable resource that does not 
yield amenities (cf. Model 2), the marginal rate of growth of the resource 
stock has to be positive, too. This will reduce the resource stock strictly 
below its msy size.  
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• In the real world, natural capital consists of many different types of 
resources. Since the simple models of Section 3 include only one resource, 
the results obtained in these models say nothing about how sustainability 
constraints should be imposed if there are multiple resources. Even though it 
is quite possible that models with multiple resources would imply 
sustainability constraints for some or all of these resources, this will 
naturally depend on how such models are formulated.  

• Finally, real world resource stocks are geographically distributed. Since the 
simple models of Section 3 has no geographical dimension, the results 
obtained in these models say nothing about how sustainability constraints 
should be applied to a setting where resource stocks are geographically 
distributed. Even though it is quite possible that models where resources are 
geographically distributed would imply sustainability constraints in some or 
all of the regions, this will also depend on how such models are formulated.  

Still, the models suggest that calls for resource conservation and sustainability 
based on ethical intuition may be provided with a more solid normative 
underpinning through basic axioms like Strong Pareto and Weak Anonymity.  

6. PROOFS

Proof of Proposition 2.  We must show that Assumption 1 is not satisfied in Models 
1–4.

Model 1: Assume 1( )t t tu u …+= , ,u  is feasible at t  given tx  with 1t tu u +> . Then 
1 2( )t t tu u u …+ +, , ,  is feasible at t  given tx , but is not inefficient, unless t u

inefficient.
Model 2: Assume 1( )t t tu u …+= , ,u  is feasible at t  given tx  with 1t tu u +>  and 

( ) 0tg x′ <  and 1( ) 0tg x +′ < . Then 1 2( )t t tu u u …+ +, , ,  is not even feasible at t  given 
tx , unless t u  inefficient.

Model 3: Consider the following explicit counterexample. The utility function 

1
263 127

4 16

2 if 8
( )

( ) if 8

c x c
u c x

c x c

+ ≤
, =

+ − + >

is continuously differentiable and satisfies Assumption 3. Let 1 20x = , 2 14x = , and 
3 6x = , and let 3 3 4( )u u …= , ,u  be efficient at time 3 given 3 6x = . We have that 
1 1 2 6c x x= − =  and 2 2 3 8c x x= − = , so that 1 2*6 20 32u = + =  and 
2 2*8 14 30u = + = . Decreasing utility at time 1 to 2u  entails decreasing con-

sumption at time 1 to 1 5=c so that 1 22*5 20 30v u= + = = and 2 15=x . Since 
3 3 4( )u u …= , ,u  is efficient at time 3 given 3 6x = , we can only increase con-
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sumption at time 2 to 1 2 3 15 6 9= − = − =xc x  to keep the remaining utility path 
unchanged. However, 

1 1
2 263 127 123 17

2 14 16 4 16(9 ) 15 ( ) 32v u= + − + = + < = .

Hence, the utility path 2 1 3( )u u u …, ,  is not feasible at time 1 given 1x .
Model 4: The result follows by combining the features of the proofs in the case 

of Models 2 and 3.

Proof of Proposition 3. Only if. Assume that 1 1 2( )u u …= , ,u  is not efficient. 
Then it follows, since SR  satisfies Strong Pareto, that there exists 1 1 2( )v v …= , ,v
such that 1 1

SPv u .
If. Write ( )u c  since, by Assumption 2, u  does not depend on x . Assume that 

1 1 2 1 2( ) ( ( ) ( ) )u u … u c u c …= , , = , ,u  is efficient, i.e., 

11 tt
c s∞

=
= .

Then any finite permutation of 1u  also satisfies 

( ) 11 tt
c sπ

∞

=
=

and is thus efficient. Hence, there is no 1 1 2( )v v …= , ,v  such that 1 1
SPv u .

The following result is helpful for the proof of Proposition 4.

Lemma 1. Consider Models 2–4. Let the feasible consumption path 1 1 2(c c= , ,c )…
be given with 1 1 2( )x x …= , ,x  as the accompanying path of resource stocks. If there 
exists some time t  such that ( ( )) 0t tg x g x′ + ≥  and 1t tc c +> , then there exists a 
feasible consumption path 1 21 ( )…c c= , ,c  satisfying

1

1

for 1 1 2 ...
for
for 1

s

s s

s

c s … t t
c s tc
c s t

+

−

= = , , − , + ,
= =
≥ = + ,

where the latter inequality can be made strict if Assumption 5 is satisfied. The 
accompanying path of resource stocks 1 21 ( )…x x= , ,x  satisfies 

for 1 2
for 1

= = , , , + ,
> = + .

s
s

s

x s … t t …
x x s t
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Proof. The path 1 21 ( )…x x= , ,x  coincides with 1 x  up to and including time t .
For time 1t + , it follows that 1 ( )t t t tx x g x c+ = + − , while 

1 1 1( ) ( ) ( )t tt t t t t t t t tx g x x g x c x g x c xx c+ + += + − = + − > + − =

since 1t t tc cc += < . As ( ( )) 0t tg x g x′ + ≥ ,

i. 11( ) ( )ttg x g x ++ <  if Assumption 5 is satisfied, since 0g ′ >  between 
1 ( )t t t tx x g x c+ = + −  and 1 1( )t t t tx g x cx + += + −  by the strict concavity of g .

ii. 11( ) ( )ttg x g x ++ =  if Assumption 4 is satisfied, since 0g ′ =  between 
1 ( )t t t tx x g x c+ = + −  and 1 1( )t t t tx g x cx + += + − .

Let 1 1 1( ) ( )t tt tc g g xc x+ + += + − , so that 1t tcc + ≥ , with strict inequality if 
Assumption 5 is satisfied. It follows that the resource stock at time 2t + , 2tx + , in 
the alternative path equals the resource stock at time 2t + , 2tx + , in the original path:

2 1 1

1 11 1

1 1 2

( ) ( )
( ) ( ) ( ( ) ( ))
( ) ( )

t t t tt t

t tt t t t t

t t t t t t

x g x gx c x c
x g x c g c g g xx x
x g x c g x c x

+ + +

+ ++ +

+ + +

= + − + −
= + − + − + −
= + − + − = .

Hence, it is feasible to keep consumption unchanged from time 1t + on.

Proof of Proposition 4.  Assume that the initial stock 1x  satisfies 
1 1( ( )) 0g x g x′ + ≥ , but 1 1( )c g x>  or 1 2c c> . We must show that 1 1( )u c x,  cannot 

constitute the initial period of a SR -maximal utility path.  
Model 2: If 1 2c c> , then clearly there exists 1t ≥  so that ( ( )) 0t tg x g x′ + ≥  and 

1t tc c +> . If 1 1( )c g x>  so that 1 2x x> , then 1 2( )x x …, ,  would be decreasing at an 
increasing pace as long as 1 2( )c c …, ,  is non-decreasing. Hence, there exists 1t ≥  so 
that ( ( )) 0t tg x g x′ + ≥  and 1t tc c +>  also in this case. Since Model 2 satisfies 
Assumption 5, it follows from Lemma 1 that there exists a utility path 

1 21 1 2( ) ( ( ) ( ) )v v … u u …c c= , , = , ,v  that Pareto-dominates and thus, by Strong Pareto, is 
preferred to 

1 1 1 2( ( ) ( ) ( ) ( ) ( ) )t t t tu c … u c u c u c u c …− + +, , , , , , ,

which, by Weak Anonymity, is equally good as 

1 1 1 2( ( ) ( ) ( ) ( ) ( ) )t t t tu c … u c u c u c u c …− + +, , , , , , ,

(where we write ( )u c  since, by Assumption 2, u  does not depend on x ). By 
transitivity, the latter utility path is not SR -maximal given 1x .

Models 3–4: The proof by contradiction consists of two cases.
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CASE 1: There exists 1t ≥  so that ( ( )) 0t tg x g x′ + ≥ , 1t tc c +> , and 1( )t tg x c +≥ .
By Lemma 1, there exists a feasible consumption path 1 21 ( )…c c= , ,c  derived from 
1 1 2( )c c …= , ,c  by permuting tc  and 1tc + , with an accompanying path of resource 
stocks 1 21 ( )…x x= , ,x  that coincides with 1 1 2( )x x …= , ,x , except that 1 1t txx + +> . The 
utility path 1 1 2 21 1 2( ) ( ( ) ( ) )v v … u u …c x c x= , , = , , , ,v  satisfies 

1 1 1 1 1

1 1 1 1

( ) for 1 1 2
( ) ( ) for since
( ) ( ) for 1

+ + + + +

− − − −

, = = , , − , + ,
= , > , = = > ,

, ≥ , = = + ,

s s s

s s s s s s t t

ss s s s

u c x u s … t t …
v u c x u c x u s t x x

u c u c x u s tx

where 1t txx + ≥ follows from 1 ( )t t tc g xc += ≤ . Hence, there exists a utility path 
1 1 2( )v v …= , ,v that Pareto-dominates and thus, by Strong Pareto, is preferred to 

,...),,,,...,( 2111 ++− tttt uuuuu ,

which, by Weak Anonymity, is equally good as 

1 1 1 2( )t t t tu … u u u u …− + +, , , , , , .

By transitivity, the latter utility path is not R S -maximal given 1x .
CASE 2: There does not exist 1t ≥ so that ( ( )) 0t tg x g x′ + ≥ , 1t tc c +> , and 

1( )t tg x c +≥ . This case clearly rules out 1 2( )tg x c c≥ > ; hence, 1 1( )c g x> . Suppose 
there exists 1t ≥  such that 1 1( )t tc g x+ +≤ , and let without loss of generality t  be the 
first time at which 1 1( )t tc g x+ +≤ , so that 1 1+ < ≤t tx x x . Then, ( ( )) 0t tg x g x′ + ≥ and

1 1( ) ( )t t t tc g x g x c+ +> > ≥ , by the assumption that 1 1( ( )) 0g x g x′ + ≥ and the 
concavity of g ( g is linear under Assumption 4 and strictly concave under 
Assumption 5). This is also ruled out.  

Hence, in this case there does not exist 1t ≥  such that 1 1( )t tc g x+ +≤ . Then, 
since the resource stock is strictly decreasing, but bounded by a non-negativity 
constraint, there is some * 0x ≥  such that lim *t tx x→∞ =  and lim ( *)t tc g x→∞ = .
Hence, since utility is increasing in c  and x , and ' 0g ≥  if x  does not exceed  

1 1( )x g x+ , there is some 1t >  such that 1 1( , ) ( ( ), )s su c x u g x x< for all s t≥ .
Consider the alternative feasible consumption path 1 21 ( )…c c= , ,c  satisfying

1

1

1 1 1

( ) for 1 1
for 2 2

( ) for 2 1
for 2 2 1

− +

− + − + +

= , , −
= , , −

=
+ − = −

= , + ,

s t
s

s t s t s

s

g x s … t
c s t … t

c x g x x s t
c s t t …

with the accompanying path of resource stocks 1 21 ( )…x x= , ,x  satisfying 
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1

1

for 1 1
for 2 1
for 2 2 1

− +

= , , −
= = , , −

= , +
s s t

s

x s … t
x s t … tx
x s t t

To confirm the feasibility of this path, we only have to consider time 2t 1− ,
where 2 1 2 2 1 2 1 2 2 1( ) ( ) 0t t t t t t t tx g x x x g x x cc − − − −= + − > + − = >  since 2 1t tx x −>  and 

2 1( ) ( )t tg x g x −≥ . The utility path 1 1 2 21 1 2( ) ( ( ) ( ) )v v … u u …c x c x= , , = , , , ,v  satisfies

+==
−=>

−==
−=>

+−

−+

,12,2for
12for

22,...,for
1,...,1for

1

1

ttsu
tsu

ttsu
tsu

v

s

s

ts

ts

s

Hence, there exists a utility path 1 1 2( )v v …= , ,v  that Pareto-dominates and thus, by 
Strong Pareto, is preferred to 

,...),,,...,,,...,( 2121122 ttttt uuuuuu −−− ,

which, by Weak Anonymity, is equally good as 

,...),,,...,,,...,( 2122211 ttttt uuuuuu −−− .

By transitivity, the latter utility path is not SR -maximal given 1x .

Proof of Proposition 5.  For given initial stock 1x , define x∗  as follows:

1[0 ]
arg max ( ( ) )

x x
x u g x x∗

∈ ,
:= , .

It follows by the properties of u  and g  under the assumptions of Models 2–4 that 
x∗  is unique. Since, by definition of x∗ , 1x x∗≥ , we have two cases to consider: 

1x x∗=  and 1x x∗> .
CASE 1: 1x x∗= . Consider the path

1 1 2 1 1 1 1( ) ( ( ( ) ) ( ( ) ) )u u … u g x x u g x x …= , , = , , , . .u

Since 1u  has constant utility, it is Suppes-Sen maximal if and only if it is efficient. 
Therefore, suppose there exists a path 1 1 2( )v v …= , ,v  (with 1 x  and 1c  as 
accompanying paths of consumption and resource stocks) that Pareto-dominates 1u .
Without loss of generality we can assume that 1 1v u> . This entails 1 1( )g xc >  so that 
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2 11 1 1( )x g x x xx c ∗= + − < = . By the definition of x∗  and the properties of u  and g
under the assumptions of Models 2–4, it now follows that if t tv u≥  for 2 3t …= , , ,
then the per time period depletion of the resource is positive and bounded away from 
zero (with 1 1( ) 0g xc − >  as a lower bound). Thus, since the resource stock must be 
non-negative, such a path is infeasible. Hence, 1u  is SR -maximal given 1x .

CASE 2: 1x x∗> . This case can only occur in Models 2 and 4, for which g
satisfies Assumption 5. Consider the path 1 1 2( )u u …= , ,u , where 

1 1 1( ( ) ) for 1

( ( ) ) for 1

∗

∗ ∗

+ − , =
=

, >t

u x g x x x t
u

u g x x t

By definition, 1u  is Suppes-Sen maximal if and only if it is efficient and there does 
not exist an alternative path Pareto-dominating a finite permutation of 1u .

To show that 1u  is efficient, suppose there exists a path 1 1 2( )v v …= , ,v  (with 1 x
and 1c  as accompanying paths of consumption and resource stocks) that Pareto-
dominates 1u . However, if s sv u=  for 1 1s … t= , , −  and t tv u> , then 1t xx ∗

+ < . In 
line with the proof of Case 1, it now follows that it is infeasible to keep s sv u≥  for 
all s t> .

To show that there does not exist an alternative path Pareto-dominating a finite 
permutation of 1u , it is sufficient to show that there exists no finite permutation of 
1u  (since then no path Pareto-dominating such a permutation is feasible either). By 
Assumption 5, g  is strictly concave and satisfies (0 ) 0 ( )x x g x x x∀ ∈ , , < ≤ − , and 
it follows that ( )x g x+  is a strictly increasing function of x . Since 1x x∗> , we 
therefore have that 1 1 1 1 2 3( ( ) ) ( ( ) )u u x g x x x u g x x u u∗ ∗ ∗= + − , > , = = = . Con-
sequently, any finite permutation amounts to a path 1 1 2( )v v …= , ,v  (with 1 x  and 1c
as accompanying paths of consumption and resource stocks) where  

1 1 1 1( ( ) ) for

( ( ) ) for

∗

∗ ∗

= + − , =
=

= , ≠s
t

u u x g x x x s t
v

u u g x x s t

and t  is some period after period 1. Since x∗  is the unique maximizer of 
( ( ) )u g x x, , so that in particular, 1 ( ( ) )v u g x x∗ ∗= , only if 1 1( )g xc > , it follows that 

1t xx < . By the properties of u  under the assumptions of Models 2 and 4, this 
implies that 1t cc ≥ . Since ( )x g x+  is a strictly increasing function of x , we have 
that 1 1( ) ( )t tg x g xx x+ < + . Hence, 1 1 1 1( ) ( )t t t tg x g x c xx x x c ∗

+ = + − < + − = . As we 
have argued above, it now follows that it is infeasible to keep s sv u= for all s t> .
We have thus shown that there exists no finite permutation of 1u , and consequently, 
no alternative path Pareto-dominating a finite permutation of 1u .

Hence, 1u  is SR -maximal given 1x .
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