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Abstract Colour images are multivariable functions, and for segmenting them one must
go through a reducing step. It is classically obtained by calculating a gradient
module, which is then segmented as a gray tone image. An alternative solution
is proposed in the paper. It is based on separated segmentations, followed by
a final merging into a unique partition. Three problems are treated this way.
First, the search for alignments in the 2-D saturation/luminance histograms. It
yields partial, but instructive results which suggest a model for the distribution
of the light over the space. Second, the combination of luminance dominant and
hue dominant regions in images. Third, the synthesis between colour and shape
information in human bust tracking.
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1. Introduction

The present paper aims to analyse the way information is reduced when we
go from multi-dimensional colour images to their segmentations, i.e. to final
unique optimal partitions [15]. The problem is the following: sooner or later,
the processing of such multi-dimensional data goes through a scalar reduction,
which in turn yields the final partition. Usually, the scalar reduction arises
rapidly, since in the most popular procedures it consists in replacing, from
the beginning, the bunch of images by a sole gradient module on which the
various minimizations hold (e.g. the watershed technique). When the scalar
reduction occurs too soon, it risks to ignore specific features of each band,
and to destroy them in the melting pot that generates the 1-D variable. The
alternative approach we propose here works in the exactly opposite way. We
will try and obtain first various intermediary partitions, and then make the final
segmentation hold on them.
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This idea is developed below through three studies. The first one extends
to colour images the simplest segmentation technique for numerical functions,
which consists in histogram thresholding. How to extend it to the 2-D or 3-D
histograms of the colour case? The question will be tackled in the framework
of the brightness-saturation-hue representations. Such polar coordinates have
to be defined in a suitable manner for image processing, as A. Hanbury and J.
Serra did in [8]. We have also to check the pertinence of these new represen-
tations. J. Angulo [2] did it by analysing their 2-D histograms, which exhibit
typical alignments. The physical interpretation of these structures leads to an
original model for light reception, which is proposed below, in section 3.

The second study relies on the intuition that human vision exploits the hue
for segmenting the highly saturated regions, and the luminance for the weakly
saturated ones. This way of thinking already appears in literature with C.-H.
Demarty and S. Beucher [6], and with P. Lambert and T. Carron [9]. But it is
developed here differently, as we seek for an optimal partition by combining
the three segmentations of the polar coordinates [1] (section 4).

The third variant enlarges the scope, and aims to synthesize segmentations
according to both colour and shape. When we look at a bust, for example,
the face of the person presents characteristic colours, whereas the shoulders
are better described by their shape. How to mix together such heterogeneous
sources? This sort of questions suggests a new model for multi-labelled con-
nections that we will construct on the way (section 5).

The first two studies need a detour, as we have to justify the creation of
new parameters (of saturation in particular). A brief remainder on the gamma
correction is necessary. An excellent presentation of the theme may be found
in Ch. Poynton’s book [11], see also [18]. As for the notation, we follow
Ch. Poynton, who differentiates by apostrophes the electronic colours (e.g. r′)
from the light intensities (e.g. r). Below, the rule is extended to the operations
themselves; for example the arithmetic mean is written m for intensities and
m′ for video variables. Also, we adopt the convention of the CIE, which desig-
nates the absolute quantities by upper letters (e.g. X, Z) and the relative ones
by lower case letters (e.g. x, z).

2. The 3-D polar representations of the colour

Light intensities and gamma correction

Consider a television receiver. It uses three different colour representations.
On the one side, the input Hertzian signal is coded as one grey image plus two
other ones, associated to green-red and blue-yellow contrasts (i.e. one lumi-
nance and two chrominances). On the other side, the image on the monitor
is obtained from three electrical signals, which excite three layers of green,
red and blue photo-receivers. These two representations are quite different,
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although technically sound for their respective purposes. However, the manu-
facturers take none of them for the user’s interface, and prefer human adjust-
ments based on light (luminance), contrast (saturation), and, in case of an old
receiver, from hue. Hence, this last triplet turns out to be the simplest one for
human vision.

What are the relationships between these various representations? Do the
technological steps modify the initial light that enters a device? Colour im-
age processing rests on a few basic operations (addition, comparison,...) and
properties (increasingness, distances...). Have these tools a physical meaning?
In colour imagery the basic notion is the spectral power distribution (SPD) of
the light radiating from or incident on a surface. This intensity has the dimen-
sion of an energy per unit area, such as watt per m2. When the light arrives at a
photo-receiver, this sensor filters the intensities of each frequency by weighting
them according to fixed values. The sum of the resulting intensities generates
a signal that exhibits a certain “colour”. The CIE (Commission Internationale
de l’Eclairage), in its Rec 709, has standardized the weights which yield the
triplet R709, G709,B709 [4]. As energies, the intensities are additive, so that
all colours accessible from an RGB basis are obtain by sums of the primary
colours R, G, and B and by multiplications by non negative constants.

The exploration of the spectrum is lower bounded by R = G = B = 0
(zero energy) higher bounded by a maximum red R0, green G0 and blue B0

that are given by the context (illumination, technological limits of the sensors,
or of the eye, etc.) in which we work. Generally, each technology fixes the
three bounds, which therefore define the reference white, and then introduces
the reduced variables

r =
R

R0
, g =

G

G0
, b =

B

B0
. (1)

The digital sensitive layers of cameras transform the light intensities into
voltages; conversely, the cathodic tubes (CRT) and the flat screens that display
images return photons from the electrical current. Now, their response is not
linear, but a power function of the input voltage whose exponent γ, (gamma),
varies around 2.5 according to the technologies. If we want the light intensities
of the CRT to be proportional to those of the scene itself, the gamma effect has
to be compensated. In video systems, this gamma correction is universally at
the camera. The Rec. 709 of CIE proposes the following correction function

r′ = 4.5r r ≤ 0.018
r′ = 1.099r0.45 − 0.099 r > 0.018

(2)

that we write here for the reduced red intensity r, and where1/γ = 0.45. The
same transfer function is applied to both green and blue bands.

Fig. 1, drawn from [11] depicts the graph of Rel.(2). The variation domain
[0, 1] is the same for the reduced intensities (r) as for the video colours (r′),
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Figure 1. Gamma correction function.

which implies that the white point R0 G0 B0 is left invariant. The linear be-
ginning in Rel.(2) minimizes the effect of the sensor noise. An ideal monitor
should invert the transform Rel.(2). Indeed, they generally have neither linear
segment, nor gamma exponent equal to 1/0, 45 [11].

Fig. 1 shows that for r closed to1, the graph looks like a straight line. More
precisely, the limited expansion

(1− u)1/γ = 1− u

γ
+ ε (u) (3)

for small u, leads us to replace the second equation (2) by

r
′∗ = (0.55 + 0.45r)1.099− 0.099 (4)

i.e., numerically

r 0.9 0.8 0.7 0.6 0.5
r′ 0.949 0.895 0.837 0.774 0.705
r′∗ 0.950 0.901 0.851 0.802 0.753

r′−r′∗
r′ 0.1% 0.6% 1.4% 2.8% 4.8%

In comparison with the noise of the video systems, we can consider the
approximation r′∗ is perfect for r ≥ 0.8 and excellent for 0.6 ≤ r ≤ 0.8.

Colour Vector Spaces

Their linearity provide the intensities r, g, b with the structure of a 3 dimen-
sions vector space, or rather of the part E which is limited to the unit cube
[0, 1] × [0, 1] × [0, 1] of R

3. For colour image processing purposes, it would
be wise to go back from the video bands (r′, g′, b′) to the reduced intensities
(r, g, b) by the inverse transform of Rel.(2). When starting from the usual 3×8
bits (r′, g′, b′) images, the best should probably be to code in 3 × 16 bits for



Morphological Segmentations of Colour Images 155

Figure 2. Chromatic plane and a-chromatic axis.

computation (or in floating variables). But as a matter of fact, people keeps
the (r′, g′, b′) video space, which is implicitly modelled as a part of a vec-
tor space, from which one builds arithmetic means, projections, histograms,
Fourier transforms, etc... which often gives significant results.

What are the real consequences of the gamma correction Rel.(2) on the pro-
cessing of colour data? Formally speaking, one can always consider the unit
video cube (r′, g′, b′) as a part, E′ say, of a 3-dimensions vector space. This
allows us to formulate operations, but their physical interpretations demand we
come back to the intensities (r, g, b).

Fig. 2 depicts the unit cube E′. The vector �x′� , of coordinates (r′, g′, b′) can
also be decomposed into two orthogonal vectors�c′�� and �l′ of the chromatic plane
and the a-chromatic (or gray) axis respectively. The latter is the main diagonal
of the cube going through the origin O and the chromatic plane is perpendicular
to the gray axis in O. The two vectors �c′�� and �l′ have the following coordinates

3�c′�� = (2r′ − g′ − b′, 2g′ − b′ − r′, 2b′ − r′ − g′)
3�l′ = (r′ + g′ + b′, r′ + g′ + b′, r′ + g′ + b′)

(5)

Consider the red band r′(z) over a zone Z in a colour image. What meaning
can we give to the average red in Z? As we just saw, the only average that has
a physical meaning is the quantity r̄ = 1

Z

∫
(r′(z))γ dz, which needs to be cor-

rected into r̄1/γ for display purposes (for the moment we neglect the constants
1,099 and 0,099 in Rel.(2)). On the other hand, the usual segmentations aim to
split the space into regions Z where the colour is nearly constant. Then at each
point z ∈ Z, we can approximate r(z) by the limited expansion

r(z) = r′(z)γ = r′γ
[
1− r′ − r′(z)

r′

]γ

= r′γ
[
1− γ

(
r′ − r′(z)

r′

)
+ ε(r′)

]
where r̄′ = 1

Z

∫
Z

∫∫
r′(z)dz. Under averaging in Z, the coefficient of the γ term

in the right member becomes zero, so that

( )̄1/γ = r̄′ + ¯
(
r′
)

(6)
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Therefore, the arithmetic mean of the video red r′ equals, at the second or-
der, the mean of the red intensity r followed by the gamma correction. The
result remains true when the coefficients of Rel.(2) are added, when the the av-
erage is weighted, and also for the dark zones Z where the first Rel.(2) applies.
It extends to the greens and blues. Rel.(6) turns out to be a theoretical justifi-
cation of the “mosaic” based image segmentations (e.g. waterfall algorithm).

Brightness

From the point of view of physics, brightness is nothing but the integral
of the power spectrum, i.e., here, the sum of the three components r, g, and
b, that stand for this spectrum. For colorimetric purposes, this sum has to be
weighted relatively to the spectral sensitivity of the eye. The CIE Rec. 709
defines a white point and three weighting functions of the spectrum which lead
to the variables R709, G709 and B709, then to the luminance

Y709YY = 0.212R709 + 0.715G709 + 0.072B709 (7)

and to the luminance YWYY of the associated white point. The three coefficients
of Rel.(7) are related to the brightness sensitivity of the human vision and
have been estimated by colorimetric measurements on a comprehensive pop-
ulation. The luminance Y709YY , as a linear function of intensities, is an energy
(watts/m2).

Human vision responds to intensities in a logarithmic way, according to
laws of the type di/i = constant. Just as we took into account the spectral
sensitivity of the eye, we should not ignore its energetic sensitivity. Now, by
an amazing coincidence vision response to intensity is closed to the gamma
correction of Rel.(2): for example, when the luminance of a source is reduced
to 20%, the eye perceives an intensity reduction of 50% only. Therefore, fol-
lowing many authors, we can consider the transforms

r′ = r1/γ g′ = g1/γ b′ = b1/γ (8)

for γ " 2.2 as generating perceptual intensities . For example, the Rec. BT
601-E proposes the luma y′601 as a perceptual brightness measurement

y′601 = 0.299r′ + 0.587g′ + 0.144b′. (9)

However, this luma, as established from video values has not an energy di-
mension, and not any more the deriving additivity properties. The CIE follows
the same direction, but defines the lightness l∗ by taking a slightly different
exponent

l∗ = 116(
Y709YY

YWYY
)1/3 − 16 Y ≥ 0.0089YWYY .
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As regards the operations of segmentation in image processing, the situation
is different. They do not hold on a perceived brightness, but on that of the
object under study. In microscopy, the histological stainings usually range
from blue to violet; the spectrum of a sunset, or that of a human face have
nothing to do with the weights given to r, g, and b in Rel.(7) or (9). Thus in the
absence of a priori information on the spectra of the objects under study, the
purpose of segmentation leads us to take as brightness a symmetrical function
of primary colours.

As regards the perceived energies now, consider, in the intensity space E, a
vector x whose direction is given by xo = ro, go, bo but whose intensity varies,
i.e.

x = (λr0, λg0, λb0) λ ∈ [0, λmax]

The point x describes the segment S which begins in O, goes through
(ro, go, bo) and ends on the edge of cube E. In the video space E′ there corre-
sponds to x the point x′ :

x′ =
(
(λr0)

1/γ , (λg0)
1/γ , (λb0)

1/γ
)

= λ1/γx′
0 (10)

with x′
0 = r

1/γ
0 , g

1/γ
0 , b

1/γ
0 . Similarly, the point x′ describes a segment S′ in

E′. When x varies, if we want its perceptual brightness to seem additive, then
Rel.(10) implies that the corresponding brightness of x′ is a linear function of
the three primary components. Finally, since this "image processing bright-
ness" has to vary from 0 to 1, as r and r′ do, the only possibility is to take for
it the arithmetic mean m′ of the primary colours :

m′ =
1
3
(r′ + g′ + b′). (11)

Put λ′ = λ1/γ . The two expressions

|m(x1)−m(x2)| = |λ1 − λ2|m (x0)∣∣∣∣m′(x′
1)−m′(x′

2)
∣∣∣∣ =

∣∣∣∣∣∣∣λ1/γ
1 − λ

1/γ
2

∣∣∣∣∣∣∣m′ (x′
0

)
turn out to be different distances in segments S and S′ respectively. The expo-
nent 1/γ provides the second one with a meaning of perceptual homogeneity.
But image processing is more demanding, as we must be able to express that a
colour point E′ (or more generally a set of points) gets closer to another even
when these two points are not aligned with the origin. Now, the mean (11) is
nothing but the restriction to the cube E′ of the L1 norm, which is defined in
the whole space R

3 (i.e. for r′, g′, h′ ∈ [−∞, +∞]) by taking α = 1 in the
relation

n
(
x′) =

(∣∣∣∣r′ (x)
∣∣∣∣α +

∣∣∣∣g′ (x)
∣∣∣∣α +

∣∣∣∣b′ (x)
∣∣∣∣α)1/α

α ≥ 1 (12)
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(This Rel.(12) introduces indeed a family of norms as soon as α ≥ 1. For α =
2, we obtain the Euclidean norm L2, and for α = ∞, the “max” norm). In a
vector space V , any norm n generates a distance dn (see [5], section VII-1-4)
by the relation

dn

(
x′

1, x
′
2

)
= n

(
x′

1 − x′
2

)
x′

1, x
′
2 ∈ V (13)

Therefore L1 is a distance, as well, of course, as its restriction to the unit cube
E′.

For α = 1, both brightness m′(x′) and distance d (x′
1, x

′
2) = m′ (|x′

1 − x′
2|)

in E′ thus derive from a unique concept. This latter relation is important, as
in segmentation a number of algorithms which were established for numerical
functions extend to vector functions when a distance is provided (e.g. water-
shed).

Saturation

The CIE was more interested in various formulations of the brightness (lu-
minance, lightness ...) than in saturation, that it defines as "the colourfulness
of an area judged in proportion to its brightness". In other words, it is the con-
cern of the part of uniform spectrum (i.e. of gray) in a colour spectrum, so that
any maximal monochromatic colour has a unit saturation and so that any triplet
r = g = b has a zero saturation.

Intuitively, what the CIE means here is clear, but its definition of the satu-
ration lends itself to various interpretations. From a given point x ∈ E, one
can draw several paths along which the colour density varies in proportion to
brightness. For example, in Fig. 2, supposed to represent cube E, we can take
the perpendicular xc to the chromatic plane, or the perpendicular xl to the gray
axis, or again the axis Ox, etc.. Which path to choose?

Indeed, these ambiguities vanish as soon as we set the context in the chro-
matic plane. The cube E is projected according to Hexagon H centered in O.
Consider a point xo ∈ E, of projection c0 in H , and such that c0 �=�� O. Follow-
ing the CIE, we define as a saturation any non negative function along the axis
Oc0 that increases from O; in O, it equals zero (pure gray) and has its max-
imum value when the edge of Hexagon H is reached, in cmax say (saturated
colour). The hue remains constant along the segment [0, cmax], and the hue of
the opposite segment [0, c̄max] is said to be complementary of that of segment
[0, cmax]. For a point c ∈ [0, cmax], we have c = λc0, 0 ≤ λ ≤ 1. Thus, given
c0 ∈ H , the saturation s (c) = s (λc0) is a function of λ only, and this function
is increasing.

We have to go back to the 3-D cube E, as point c0, projection of x0, is just
an intermediary step (moreover c0 /∈// E).The saturation s (x0) of point x0 ∈ E
is then defined by

s (x0) = s (c0)
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Note that when a point x ∈ E moves away from the chromatic plane along the
perpendicular c0x0 to this plane, its gray proportion increases, but its saturation
s (x) does not change: it is indeed a matter of chromatism and not of energy of
the light intensity.

As point c describes the radius [0, c̄max] which is at the opposite of [0, cmax]
in the chromatic plane, we have

c ∈ [0, c̄max] ⇐⇒ c = λc0 λ(¯max) ≤ λ ≤ 0

where λ indicates the proportionality ratio, now negative, between c and c̄0.
This purely vector equivalence admits a physical interpretation if we extend
the definition of the saturation to all diameters D (c0) = [0, cmax] ∪ [0, c̄max] ,
c0 ∈ H , of the hexagon H (saturation was previously introduced for radii
only). This can be done by putting c ∈ D (c0), s (c) = s (λc0) = s (|λ| c0).
Two opposite points have the same saturation, and more generally if c1 ∈
[0, cmax] and c2 ∈ [0, c̄max], then c1 + c2 = (λ1 + λ2) c0, with λ1 ≥ 0 and
λ2 ≤ 0. As s is increasing we have

c1 ∈ [0, cmax] , c2 ∈ [0, c̄max] =⇒== s (c1 + c2) ≤ s (c1)+s (c2) .
(14)

When c1 = cmax and c2 = c̄max we find in particular Newton’s disc experi-
ment, reduced to two complementary colours.

When considering the saturation in the video cube E′, the conditions of
increasingness of s′ along the radii (now of H ′) and of its nullity on the gray
axis are still valid. They must be completed by the two requirements of image
processing, namely the symmetry w.r.t. r′, g′, b′ and the fact that s′(x′

1 − x′
2)

must be a distance in E′.
We saw that the mean m′, in Rel.(11), was the L1 norm expressed in the

unit cube E′, and that 3m′ (x′) was both the norm of x′ and of its projection l′

on the gray axis, i.e.

L1

(
x′) = L1

(
l′
)

= 3m′ (x′)
It is tempting to keep the same norm for the hexagon H ′ of the chromatic plane.
By using Rel.(5) we find

s′
(
x′) = L1

(
c′
)

=
1
3
[∣∣∣∣2r′ − g′ − b′

∣∣∣∣ +
∣∣∣∣2g′ − b′ − r′

∣∣∣∣ +
∣∣∣∣2b′ − r′ − g′

∣∣∣∣] .

(15)
By symmetry, s′ (x′) depends on the three functions max′ = max(r′, g′, b,′ ),
min′ = min(r′, g′, b,′ ), and med′ = mediane(r′, g′, b,′ ) only, which gives

s′ =

⎧⎨⎧⎧⎩⎨⎨
3
2 (max′ −m′) if m′ ≥ med′

3
2 (m′ −min′) if m′ ≤ med′

(16)
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On can find in [14] the derivation yielding s′, and that of the following expres-
sion h′ of the hue (which avoids to bring trigonometric terms into play),

h′ =
π

3

[
λ +

1
2
− (−1)λ max′ + min′ − 2med′

2s′

]
(17)

with λ equals

0 if r > g ≥ b, 1 if g ≥ r > b, 2 if g > b ≥ r,
3 if b ≥ g > r, 4 if b > r ≥ g, 5 if r ≥ b > g (18)

The hue h′, as a coordinate on the unit circle, is defined modulo 2π. The
value h′ = 0 in Eq.(17) corresponds to the red. For s′ = 0, colour point lies on
the gray axis, so that its hue is meaningless. The inverse formulae are given in
[8], and the detailed proofs may be found in [14].

The relations (15) and (13) entail that s′ (c′1 − c′2) = L1 (c′1 − c′2) is a dis-
tance in the chromatic plane, which therefore brings into play both saturation
and hue. On the other hand, as L1 is a norm, Rel.(14) becomes true for all
triplets c′1, c

′
2 and c′1 + c′2 that are on a same diameter of H ′. Remark that here

the L1 norm is the concern of the projections c′, the norm of the vectors x′

themselves being their arithmetic mean. Finally, the above comments apply
also to the Euclidean norm and to the max-min, which both induce distances
in the chromatic hexagon H ′.

When passing from the video variables to the intensities, a first result is
obtained by observing that the averaging of the saturation s′ follows the same
law than that of the brightness m′, namely Rel.(6), in the zones Z where the
colour varies weakly. Moreover, the mapping x′

0 = (r′0, g
′
0, b

′
0) → x0 =(

r′γ0 , g′γ0 , b′γ0
)

shows that c′ = λc′0 becomes c = λγc0, hence

s′(x′) = λL1

(
c′0
)

= λs′(x′
0)⇔ s(x) = λγL1 (c0) = λs(x0).

In other words, the L1 norm is increasing on the radii, and is zero for the grays,
on both chromatic hexagons H of the intensities and H ′ of the video variables.
Thus it represents a saturation in both spaces. It seems difficult to go further,
as two points x′

0, x
′
1 ∈ E′ whose projections c′0 and c′1 lie on a same radius of

H ′ may have homolog points x0 and x1 ∈ E whose projections are not always
aligned with O.

Two other norms

How to build polar representations which be not contradictory with the pre-
vious requirements? Besides the L1 norm, we can think of two ones. Firstly,
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the Euclidean norm L2. In practical image processing, it turns to be less con-
venient than the L1 norm, which suits particularly well to linear and morpho-
logical operations, and provides nice inverses. In addition, the associated 2-D
histograms are rather unclear [2].

Another possibility is to correct the classical HLS system, by replacing
its saturation by max(r, g, b)−min(r, g, b). In the whole space, the quantity
max −min is a semi-norm only: two distinct vectors c and c′, whose differ-
ence c - c′ is a gray have the same max−min [8]. However, in the chromatic
plane, max−min becomes a norm. It can be used for the saturation in parallel
with m′ for the brightness. This is what we will do below each time max−min
norm is introduced.

Finally, the norm and distance based approach presents the significant ad-
vantage that it separates the variables : two points x′

1 and x′
2 ∈ E′ which have

the same projection on the chromatic plane (resp. on the gray axis) have the
same saturation (resp. the same brightness). However, the last property, on
brightness, vanishes when the three bands are given different weights in the
means m or m′.

The classical polar representations

Even though the transformation from RGB to hue, saturation and brightness
coordinates is simply a transformation from a rectangular colour coordinate
system (RGB) to a three-dimensional polar (cylindrical) coordinate system,
one is faced with a bewildering array of such transformations described in the
literature (HSI, HSB,HSV, HLS, etc. ). Most of them date from the end of the
seventies [17], and were conceived neither for processing purposes, nor for the
current computing facilities. This results in a confusing choice between models
which essentially all offer the same representation. The most popular one is the
HLS triplet of System (19), which appears in many software packages. The
comments which follow hold on this particular model, but they apply to the
other ones. The HLS triplet derives from RGB by the following system

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

l′HLS = max(r′,g′,b′)+min(r′,g′,b′)
2

s′HLS =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
max(r′,g′,b′)−min(r′,g′,b′)
max(r′,g′,b′)+min(r′,g′,b′) if l′HLS ≤ 0.5

max(r′,g′,b′)−min(r′,g′,b′)
2−max(r′,g′,b′)−min(r′,g′,b′) if l′HLS ≥ 0.5

(19)

One easily checks that the HLS expressions do not preserve the above re-
quirements of linearity (for the brightness), of increasingness (for the satu-
ration) and of variables separation. The HLS luminance both RGB triplets
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Figure 3. Two test images.

(1/2, 1/2, 0) and (0, 1/2, 1/2) equals 1/4, whereas that of their mean equals
3/8, i.e. it is lighter than both terms of the mean. The HLS saturations of the
RGB triplets (4/6, 1/6, 1/6) and (2/6, 3/6, 3/6) equals 3/5 and 1/5 respec-
tively, whereas that of their sum is 1: it is just Newton’s experiment denial!
Finally the independence property is no more satisfied. Take the two RGB
triplets (1/2, 1/2, 0) and (3/4, 3/4, 1/4). One passes from the first to the sec-
ond by adding the gray r′ = g′ = b′ = 1/4. Hence both triplets have the same
projection on the chromatic plane. However, the HLS saturation of the first
one equals 1 and that of the second 1/2.

3. 2-D Histograms and linearly regionalized spectra

In practice, is it really worth deviating from beaten tracks, and lengthening
the polar triplets list? What for? We may answer the question by comparing
the luminance/saturation bi-dimensional histograms for HLS system and for
various norms. J. Angulo and J. Serra did so on a dozen images [2] [3]. Two
of them are depicted below, in Fig. 3.

Bi-dimensional histograms

In the first image, we observe strong reflections on the rubber ring, and vari-
ous types of shadows. The corresponding L1 and HLS histograms are reported
in Fig. 4, with luminance on the x axis and saturation on y axis. No informa-
tion can be drawn from HLS histogram, although alignments are visible on L1

norm.
By coming back to the images, we can localize the pixels which give align-

ments, as depicted in Fig. 5. They correspond to three types of areas:

shadows with steady hue,

graduated shading on a plane,

reflections with a partial saturation.
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Figure 4. Bi-dimensional histograms of the “rubber ring” image. The x-axis corresponds the
luminance and the y-axis to the saturation. a) L1 norm, b)HLS representation.

Figure 5. Zones of “Rubber ring” associated with alignments. The left image a) show the
supports of the alignments in Fig. 4 (in L1 norm), and the right image indicate the locations of
the aligned pixels in the space of the initial picture. The white (resp. gray) alignments of Fig.
a) correspond to the white (resp. gray) pixels of Fig.b).

Consider now the more complex image of “Ana Blanco”, in Fig.3b. It
includes various sources light (television monitor, alpha-numerical incrusta-
tions...), and the light diffused by the background is piecewise uniform over
the space. However, there are still alignments, which do not always go through
points (0, 0), or (1, 0), and are sometimes parallel. In the lum/hue plane of
the L1 norm representation, several horizontal lines (constant hue) are located
at different hue levels, and alternate with elongated clouds of points (Fig.6b).

All in all, we draw from the above histograms four main informations.

1 In the lum/sat histogram, there is no accumulation of pixels at point
(1,0). It means that the sensors we use are not physically saturated,
which make realistic the proposed linear approach;

2 Still in the lum/sat histogram, some well drawn alignments can be ex-
trapolated to point (0,0) or point (1,0). The others are parallels to the
first ones;
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Figure 6. (a) and (b) the two histograms of “Ana Blanco”, in the luminance/saturation and
the luminance/hue plane respectively, both in L1 norm.

3 However, most of the pixels form clouds in both lum/sat and lum/hue
histograms are not aligned at all, whether the model does not apply, or
the homogeneous zones are too small;

4 In the lum/hue histogram, most often the aligned pixels exhibit a (quasi)
constant hue, i.e. draw horizontal lines. But sometimes, these "lines"
turn out to be a narrow horizontal stripe.

Such characteristic structures, such distinct lines suggest we seek a physical
explanation of the phenomenon. This is what we will do now. But besides any
physical model, a first point is worth to be noticed: the only norm that enables
us the extraction of reflection areas, of shadows and gradations is L1. No other
polar model results in such an achievement.

Linearly regionalized spectra (LR model)

If we assume that the alignments are a property of the spectrum, and not an
artefact due to some particular representation, we have to express the spectrum
in such a way that the sequence

(spectrum)→ (r′g′b′)→ (m′s′h′)→ (m′ = αs′ + β)

be true (in the alignments) whatever the weights generating r, g and b are, and
also whatever the spectrum itself is. Consider a zone Z of the space whose
all pixels yield an alignment in the L1 histogram. Denote by sp (ν; z) the
spectrum of the light intensity at point z ∈ Z. We will say that this spectrum
is linearly regionalized in Z when for each point z ∈ Z one can decompose
sp (ν; z) into the sum of a first spectrum sp0 (ν), independent of point z, and
of a second one, ω(z)sp1(ν), which proportionally varies in Z from one point
to another. For all z ∈ Z, we have

sp (ν; z) = sp0 (ν) + ω(z)sp1(ν) (20)
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where ω (z) is a numerical function which depends on z only, and where sp0

and sp1 are two fixed spectra.
In the spectrum sp (ν; z), though sp0 usually corresponds to diffuse light

and sp1 to specular one, we do not need to distinguish between the emitted
and reflected components of the light. It can be the concern of the light trans-
mitted through a net curtain, for example, or of that of a TV monitor; but it
can also come from passive reflectance, such as those described by Shafer’s di-
chromatic model [16], or by Obein et Al.’s model of glossiness [10]. But unlike
these two models, the term ω(z)sp1 may also represent an absorption, when
it is negative. Similarly, we do not need to distinguish between diffuse and
specular lights. The term sp0 may describe a diffuse source over the zone Z,
as well as a constant specular reflection stemming from the same zone. But
above all, the emphasis is put here on the space variation of the spectrum. It
is introduced by the weight ω(z), that depends on point z, but not on spectrum
sp1. This weight may bring into play cosines, when the angle of the incident
beam varies, or the normal to a glossy surface, etc...

The three spectra sp, sp0 and sp1 are known only through the weighting
functions that generate a (R, G, B) triplet. We use here the notation (R, G, B)
in a canonical manner, i.e. it may designate the (X, Y, Z) coordinates of the
CIE, or the perceptual system (L, M, S) [18], as well as the (Y,U, V ) and
(Y, I,Q) TV standards. In all cases it is a matter of scalar products of the
spectra by such or such frequency weighting. In particular, the white colour
given by r = g = b = 1 can be obtained from a spectrum which is far from
being uniform. We write

r (z) =
∫

[sp0 (ν) + ω(z)sp1 (ν)] ξ (ν) dν = r0 + r1ω (z) (21)

g (z) =
∫

sp (ν; z)χ (ν) dν = g0 + g1ω (z) (22)

and

b (z) =
∫

s (ν; z)ψ (ν) dν = b0 + b1ω (z) (23)

where ξ, χ and ψ are the three weighting functions that generate the primary
colours r, g and b.

As sp0 and sp1 are power spectra, they induce intensities r, g, and b. Now,
in the above histograms, the L1 norm applies to the video variables r′ = r1/γ ,
g′ = g1/γ , and b′ = b1/γ (if we neglect the behaviour near the origin). Then
we draw from Rel.(21)

r′ (z) = [r (z)]1/γ = [r0 + ω (z) r1]
1/γ , (24)
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with similar derivations for the video green and blue bands.
Is the linearly regionalized model able to explain the alignments in video

histograms, despite the gamma correction? For the sake of simplicity, we will
tackle this question by fixing the order of the video bands as r′ ≥ g′ ≥ b′, and
m′ ≥ g′. Then we have

3m′(z) = r′(z) + g′(z) + b′(z)
2s′(z) = 2r′(z)− g′(z)− b′(z)

Alignments with the dark point In the luminance/saturation histograms
in L1 norm, several alignments are in the prolongation of the point (0, 0), of
zero luminance and saturation. The shadow regions of the “rubber ring” image
illustrate this situation.

Suppose that, in the relation (20) which defines the LR spectrum, the term
sp0(ν; z) is identically zero. Then r(z) reduces to ω(z)r1, which gives

r′(z) = r1/γ = ω1/γr
1/γ
1 = ω1/γ(z)r′1,

with similar derivations for two other bands. Therefore we have

3m′(z) = ω1/γ(z)
[
r
1/γ
1 + g

1/γ
1 + b

1/γ
1

]
= 3ω1/γ(z)m′

1

and
2s′(z) = 2r′(z)− g′(z)− b′(z) = ω1/γ(z)

[
2r′1 − g′1 − b′1

]
hence m′(z)s′1 = m′

1s
′(z). In the space E of the intensities, we find in the

same way that m(z)s1 = m1s(z). Therefore the nullity of the constant spec-
trum sp0(ν) entails that both m′ and s′ on the one hand, and m and s on the
other one, are proportional. Each video alignment indicates a zone where the
intensities spectrum varies proportionally from one point to another.

Alignments with the white point The “rubber ring” image generates also an
alignment along a line going through the point (1, 0), i.e. the point with max-
imum luminance and zero saturation. That suggests to suppose the spectrum
sp0(ν; z) constant and equal to 1, and in addition that the three colors r1, g1, b1

are not identical (if not, the saturation s′ should be zero). We have

r(z) = 1 + ω(z)r1 (25)

and the two sister relations for g(z) and b(z). Under gamma correction, r(z)
becomes

r′(z) = (1 + ω(z)r1)1/γ .

Now, to say that the alignment is closed to a point of maximum luminance
comes down to saying that r1, g1, and b1 are small with respect to 1, or again
that
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r′(z) = 1 +
ω(z)

γ
r1 + ε(r1), (26)

hence m′(z) = 1 + ω(z)
γ m1 and s′(z) = ω(z)

γ [2r1 − g1 − b1]. We observe
that the two conditions r1 ≥ 0 and r′(z) ≤ 1, jointly with Rel.(26) imply that
the coefficient ω(z) is negative. Moreover, as the three colours r1, g1, b1 are
distinct, the condition s′(z) ≥ 0 implies in turn that the quantity 2r1− g1− b1

is strictly negative. By putting σ1 = −(2r1 − g1 − b1) > 0 (σ1 is not the
saturation at point z1), we obtain the following linear relation with positive
coefficients

m′(z) = 1− m1

σ1
s′(z). (27)

As in the previous case, but without approximations, the mean m(z) and
the saturation s(z) of the intensities are linked by the same equation (27): it is
a direct consequence of Eq.(25). Again, both video and intensity histograms
carry the same information, and indicate the zones of almost white reflections.

Alignments with a gray point There appears in some images, as “Ana Blan-
co”, series of parallel alignments. Their supports go through points of (quasi)
zero saturation but their luminance is strictly comprised between 0 and 1. The
interpretation we just gave for the case of reflections extends to such a situation.
It is still assumed that r0 = g0 = b0, but with 0 < r0 ≤ 1, and that the terms
ω(z)r1, ω(z)g1, and ω(z)b1 are small with respect to r0. Then we have,

r′(z) = (r0 + ω(z)r1)1/γ = r
1/γ
0 + r

1/γ−1
0

ω(z)
γ

r1,

and the two sister relations for g′ and b′. Hence

m′(z) = r
1/γ
0 + r

1/γ−1
0

ω(z)
γ

m1,

s′(z) = −r
1/γ−1
0

ω(z)
γ

σ1,

so that, finally

m′(z) = r
1/γ
0 − m1

σ1
s′(z). (28)

When the colour component (r1, g1, b1) remains unchanged, but that the
gray component (r0, g0, b0) takes successively various values, then each of
them induces an alignment of the same slope m1

s1
. Rel.(28) extends, without

approximation, to the histograms of the intensities themselves.
Finally, we derive from Eq.(17) that, in the three cases, the hue remains

constant in each alignment zone.
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Figure 7. Initial image of parrots.

4. Saturation weighted segmentations

The most radical change between the classical HLS system and those based
on norms holds on the saturation equation. In system (19), when min(r, g, b) =
0, (with l ≤ 0.5), or when max(r, g, b) = 1, (with l ≥ 0.5), then the saturation
equals 1. Now for human vision, the most significant parameter is the hue in
high saturated areas, and it turns to luminance when saturation decreases. Any
person whose reaction to colours is normal can easily check it. In the darkness,
or, at the opposite, in white scenes (e.g. a landscape of snowy mountains),
the eye grasps the contours by scrutinizing all small grey variations, whereas
when the scene juxtaposes spots of saturated colours, then the eye localizes
the frontiers at the changes of the hue. But how to transcribe quantitatively
such a remark by a saturation function that takes its maxima precisely when
the colours loose their saturation, as the classical HLS system does?

The norms based representations correct this drawback, so that their satu-
rations may serve to split the space into hue-dominant versus grey-dominant
regions. This very convenient key to entering the segmentation of colour im-
ages was initially proposed by C.Demarty and S.Beucher [6]. They introduce
the function max−min on the image under study, and threshold it at a level s0

that depends on the context. Then they adopt the HSV representation, but they
replace its saturation by 1 in the regions above s0 and by 0 elsewhere. Their
downstream segmentations become easier and more robust.

However, they did not take the plunge of a new representation, and they
worked at the pixel level, which is not the most informative. In order to go
further in the same way of thinking, J. Angulo and J. Serra propose, in [1], the
following two steps segmentation procedure:

1 to separately segment the luminance, the saturation and the hue in a
correct Newtonian representation;

2 to combine the obtained partitions of the luminance and of the hue by
means of that of the saturation: the later is taken as a criterion for
choosing at each place either the luminance class, or the hue one.
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Figure 8. Representation of the "Parrots" image 7 in L1 norm: a) luminance, b) saturation, c)
hue.

Figure 9. Grey segmentations of the luminance (a) and the hue (b). Both are depicted in false
colour.

The three bands of the “parrots” image of Fig.7, in L1 representation, are
depicted in Fig.8(a-c). Each band is segmented by the jump connection algo-
rithm [15] (one groups in same classes all points x where f(x) differs by less
than k of an extremum in the same connected component, these classes are
then withdrawn from the image, and one iterates). The method depends only
on the jump positive value k.

As the parameter k increases, the over-segmentations reduce, but in com-
pensation heterogeneous regions appear. A satisfactory balance seems to be
reached for k = 20 (for 8-bits images), up to the filtering of a few very small
regions. We obtain the two segmentations depicted in Fig.9.

Synthetic partition

How to combine the two partitions of images 9a and 9b? The idea consists
in splitting the saturation image into two sets Xs and Xc

s of high and low
saturations respectively, and in assigning the hue partition to the first set, and
the luminance one to the second. A class of the synthetic partition is either
the intersection of a luminance class with the low saturation zone Xc

s , or the
intersection of a hue class with the high saturation zone Xs. If the classes of
the luminance, the hue, and the synthetic partition at point x are denoted by
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Figure 10. a) Segmentation of the saturation (presented in grey tones); b)optimal threshold
of a); c) final synthetic partition, superimposed to the initial image.

Am(x), Ah(x), and A(x) respectively, we have

A(x) = Am(x) ∩Xc
s when x ∈ Xc

s

A(x) = Ah(x) ∩Xs when x ∈ Xs.

The simplest way to generate the set Xs consists, of course, in thresholding
the saturation image. But this risks to result in an irregular set Xs, with holes,
small particles, etc. Preferably, one can start from the mosaic image of the
saturation provided by the same segmentation algorithm as for the the hue and
the luminance (Fig.10a). An optimal threshold on the saturation histogram
determines the value for the a-chromatic/chromatic separation (Fig.10b). We
finally obtain the composite partition depicted in Fig.10c, which is excellent.

5. Colour and mixed segmentations

Colour and shape

The discrimination we have just made between the zones of the space where
the hue is more significant than the luminance, and their complements, is a first
step towards the more precise discrimination between colour and shape that we
propose now. The video-image depicted in Fig. 11 illustrates the purpose. It
has been extracted from a test sequence for the image compression algorithm
proposed by C. Gomila in her Ph.D. Thesis [7] and described by steps a to f
below. The goal here consists in contouring the individual in the foreground,
in order to code him more finely than the background. This outline groups the
face and the bust. We observe that the former is better spotted by the colour of
the skin, which ranges in a specific domain, and the latter by the shape of the
shoulders, and by their location at the down part of the frame.

Beyond this example, the problem of combining two modes of description
into a merged segmentation is set. One may view to segment twice the image,
according to criteria associated with each mode separately, but then how to
manage the merging, and its overlapping? There is no referee, here, to play the
role given to the saturation in the “parrot” case. On the other hand, we cannot
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Figure 11. a) Initial image; b) final contouring.

afford just to take the supremum of the two partitions, as it is well known that
in the classes of this supremum, both criteria may be satisfied : they do not
generate an exclusive “or” (see for example [15], section 2). Nevertheless, if
we provide a priority between the two modes of description, then an optimal
bipartition of the space can be obtained, as shown below.

Quasi-connection

Definition 1 Let E be an arbitrary space. Any class C1 ⊆ P (E) such that
(i) Ø ∈ C1
(ii) for each family {CiCC i ∈ I} in C1, ∩ CiCC �=�� Ø implies ∪CiCC ∈ C1,
defines a quasi-connection on E .

Unlike a connection, a quasi-connection does not necessarily contain the
set S of all singletons of P (E). What are the consequences of this missing
axiom ? We still can associate a (quasi) connected opening γ1,x with each
point x ∈ E by putting for any A ⊆ E

γ1,x (A) = ∅ when the family {C1 ∈ C1, x ∈ C1 ⊆ A} is empty
γ1,x (A) = ∪{C1 ∈ C1, x ∈ C1 ⊆ A} when not

(29)

Operator γ1,x is obviously an opening since it coincides with that of the
connection C1 ∪ S when γ1,x (A) �=�� ∅. Moreover, for all A ⊆ E and all
x, y ∈ E, γ1,x (A) and γ1,y (A) are still equal or disjoint, i.e.

γ1,x (A) ∩ γ1,y (A) �=�� ∅ ⇒ γ1,x (A) = γ1,y (A) (30)

and for all A ⊆ E and all x ∈ E, we have x /∈// A ⇒ γ1,x (A) = ∅. The only
change with the connection case is that now γ1,x (A) may equal ∅, even when
x ∈ A. As a consequence, the supremum γ1 = ∨{γ1,x, x ∈ E} generates an
opening on P (E) whose residual ρ1 (A) = A \ γ1 (A), for a set A ⊆ E is
not necessarily empty. In other words, to say that x ∈ ρ1 (A) is equivalent to
saying that the family {C1 ∈ C1, x ∈ C1 ⊆ A} is empty. Remark that when C1
is a connection, then γ1 turns out to be the identity operator.
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Two levels mixed segmentations

Let C1 be a quasi-connection onP (E) of point openings {γ1,x, x ∈ E}, and
C2 be a connection on P (E) of point connected openings {γ2,x, x ∈ E}. We
introduce a hierarchy between them by restricting the classes according to C2
to the zones that are not reached by C1. This can be done via the operator

χ2,x (A) = γ2,x [ρ1 (A)] when x ∈ ρ1 (A) (31)

χ2,x (A) = ∅ when not

This operator χ2,x is not increasing, as it acts on set A ⊆ E via the residual of
γ1 (A) . Nevertheless, it satisfies a few nice other properties.

Proposition 2 The operator χ2,x defined by system (31) is anti-extensive,
idempotent and disjunctive, i.e.

χ2,x (A) ∩ χ2,y (A) �=�� ∅ ⇒ χ2,x (A) = χ2,y (A) ∀A ⊆ E ; ∀x, y ∈ E
(32)

Proof. The anti-extensivity of χ2,x is obvious. To prove its idempotence,
suppose first that χ2,x(A) �=�� ∅. Then,for all z∈χ2,x (A)A ,we haveγ1,z [χ2,x (A)]⊆
γ1,z[ρ1 (A)] = ∅, hence ρ1 [χ2,x (A)] = χ2,x (A) # x. As set χ2,x (A) is an
invariant of opening γ2,x, we have

χ2,x [χ2,x (A)] = γ2,x [ρ1 (χ2,x (A))] = γ2,x [χ2,x (A)] = χ2,x (A) .

Suppose now that χ2,x (A) = ∅. As γ1,x is an opening, we have γ1,x [χ2,x (A)] =
∅, so ρ1 [χ2,x (A)] = ∅ hence χ2,x [χ2,x (A)] = ∅.

The disjunction implication remains to be proved (30). If the intersection
χ2,x (A)∩χ2,y (A) is not empty, then it is equal to γ2,x [ρ1 (A)]∩γ2,y [ρ1 (A)] .
As γ2,x and γ2,y are two point openings of connection C2, we have χ2,x (A) =
χ2,y (A), which achieves the proof.

Consider now the supremum χx = γ1,x ∨χ2,x of the two operators γ1,x and
χ2,x. We will prove that as x ranges over E, the family {χx} partitions all
A ⊆ E in an optimal way. More precisely, we can state

Proposition 3 Let C1 be a quasi-connection and C2 be a connection, both
on P (E), where set E is arbitrary. Then,

1 the union of the two families {γ1,x} and {χ2,x}, x ∈ E, of operators par-
tition every set A ⊆ E into two families of classes {A1,i} and {A2,j};

2 this partition is the greatest one with classes of C1 on γ1(A) and classes
of C2 on A\γ1(A).

Proof. 1/Let A ⊆ E. If γ1 (A) �=�� ∅, then each point x ∈ γ1 (A) belongs to
the non empty A1 class γ1,x (A) and if A �=�� γ1 (A), each point y ∈ A\γ1 (A)
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belongs to the non empty A2 class γ2,y [A\γ1 (A)]. If γ1 (A) = ∅, then each
point y ∈ A belongs to class γ2,y (A) . Therefore, the various classes cover set
A. Moreover, Rel.(30) shows that the {A1,i} classes are disjunctive in the set
γ1 (A) and Prop.2 that the {A2,j} classes are disjunctive in A\γ1 (A) .

2/ Let
{
A′

1,r

}
and

{
A′

2,s

}
be another partition of A into C1 and C2 compo-

nents. Each point x ∈ A belongs to one class of each partition. Suppose first
that both classes are of type n◦1, i.e. x ∈ A1,i ∩ A′

1,s, with A1,i, A′
1,s ∈ C1,

for some i and some s. Therefore A1,i ∪ A′
1,s ∈ C1 and x ∈ A1,i ∪ A′

1,s ⊆
γ1,x (A) = A1,i hence A′

1,s ⊆ A1,i. If we suppose now that both classes A2,j

and A′
2,s going through x are of type n◦2, then the same proof, but for C2,

shows that A′
2,s ⊆ A2,j . Finally, the combination at point x of a C1-class of the

first partition with a C2-class of the second one is impossible. Indeed, we draw
from the previous paragraph of this proof that ∪

{
A′

1,r

}
⊆ ∪{A1,i} = γ1 (A)

and that ∪
{
A′

2,s

}
⊆ ∪{A2,j} = A\γ1 (A) ; as ∪

{
A′

1,r

}
∪
{
A′

2,s

}
= A we

have γ1 (A) = ∪
{
A′

1,r

}
and A\γ1 (A) = ∪

{
A′

2,s

}
, which achieves the proof.

Proposition 3 allows us to partition A into a hierarchy of successive mixed
segmentations. Clearly, it extends to three phases by replacing C2 by a pseudo-
connection and by adding a third connection C3, ... and so on for n phases.
The lack of increasingness entails that if A ⊆ B, then γ1,x (A) ⊆ γ1,x (B)
for all x ∈ E, but not χ2,x (A) ⊆ χ2,x (B) . Remark that when we look for
segmenting the whole space E, the possible comparison of E with another set
B becomes useless. An example of such an iteration based hierarchy is given
by the jump connection [13] [15]. Given a continuous bounded function f the
quasi one-jump criterion σ is defined by the following requirement: σ[f, A] =
1 iff for any point x ∈ A there exists a minimum m of f in A such that
0 ≤ f(x) −m < k. The class C1of the A such that σ[f, A] = 1 generates a
quasi-connection. Take C2 = C1 and iterate the process. The first step extracts
the connected components of the space in which the function is less than k
above the minima; the second step does the same on the function reduced to
the residual space, and so on, which results in the so called "jump connection"
from minima".

Before illustrating Prop. 3 by an example, we would like to comment on the
case when C2 = S ∪ ∅, i.e. when the second connection is the family of the
singletons plus the empty set. Then, by taking C = C1∪C2 = C1∪S, we obtain
the smallest connection that contains C1. However, the two phased approach
(C1, C2) is more informative than the only use of C. For example, given the
numerical function f : R

1 → R
1, the segment along which f (x) ≥ 1 forms a

connection C. In particular, if we take

f = |x| for x �= 0�� and f = 2 for x = 0
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Figure 12. a) Sector of the human skins in the (U, V ) plane; b) Threshold of Fig. 11a
according to the skins sector.

Figure 13. a) Previous segmentation of Fig. 11a; b) Head reconstruction (after symmetry).

then all points of ]−1, +1[ induce singleton classes, and there is no mean in
connection for C distinguishing between x = 0, where f is ≥ 1, and the other
points of ]−1, +1[ , where f is < 1. On the contrary, if we adopt the above
twofold approach, then {0} ∈ C1, and the other singletons belong to C2.

Return to the colour and shape example

The colour/shape segmentation algorithm proposed by Ch. Gomila illus-
trates very well our twofold approach [7]. It proceeds as follows :

a/ the image under study (Fig. 11a) is given in the standard colour video
representation Y UV

y = 0.299r + 0.587g + 0.114b

u = 0.492(b− y) (33)

v = 0.877(r − y)

b/ a previous segmentation resulted in the tesselation depicted in false colour
in Fig. 13a or Fig. 14a. For the further steps, this mosaic becomes the working
space E, whose ”points” are the polygons of the mosaic;
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Figure 14. a) Previous segmentation of Fig.11a; b) “shoulder/head” marker; c) bust recon-
struction.

c/ classical studies have demonstrated that, for all types of human skins, two
chrominances U and V practically lie in the sector region depicted in Fig. 12a.
By thresholding the initial image Fig. 11a by this sector, we obtain the set Fig
12b, whose a small filtering by size suppresses the small regions, yielding a
marker set;

d/ all “points” of E that contain at least a pixel of the marker set, or of its
symmetrical w.r.t. a vertical axis, are kept, and the others are removed : this
produces the opening γ1 (E), depicted in Fig. 13b;

e/ for the bust, an outside shape marker made of three superimposed rect-
angles is introduced. All their pixels that belong to a “point” of γ1 (E) are re-
moved from the bust marker, since this second marker must hold on E\γ1 (E)
only. That is depicted in Fig. 14b, where one can notice how much the upper
rectangle has been reduced; the associated opening γ2 [E\γ1 (E)] is depicted
in Fig. 14c;

f/ the union γ1 (E)∪ γ2 [E\γ1 (E)] defines the zone inside which the initial
image Fig.11a is kept, as depicted in Fig.11b.

The example may seem simple; it holds on a rather poor discrete space
and acts via two elementary quasi-connections and connections. However, it
proved to be robust and well adapted to its goal, and its robustness is a direct
consequence of the optimality of the involved segmentations.

6. Conclusion

The three studies which compose this paper follow a certain order. The
first two ones require imperatively a correct quantitative definition of the polar
representation and of the saturation. When colour and shape are treated jointly,
the physical meaning of the colour descriptors becomes less crucial, since the
latter match with shape parameters whose physical meaning is totally different.

The above studies illustrate also a certain approach to segmentation. We
have attempted to show that maximum partitions can be “added”, conditioned
by one another, can form hierarchies, etc... in order to express segmentations
in the sense of [15], whose the main theorems underlay all the above examples.
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