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Foreword

Mathematical Morphology (MM) was born in 1964 through the collabo-
ration of Georges Matheron and Jean Serra, who established its basic con-
cepts and tools, coined the name in 1966, and set up in 1968 the “Centre de
Morphologie Mathématique” on the Fontainebleau site of the Paris School of
Mines.

MM gained a wide recognition after the publication of the three books “Ran-
dom Sets and Integral Geometry” by G. Matheron (1975), “Image Analysis
and Mathematical Morphology” by J. Serra (1982), and “Image Analysis and
Mathematical Morphology, Vol. 2: Theoretical Advances” edited by J. Serra
(1988). It has now spread worldwide, with active research teams in several
countries. This led to the organization of a specific international forum for pre-
senting the most recent advances in the field: the International Symposium on
Mathematical Morphology (ISMM). Its first six venues were held in Barcelona
(1993), Fontainebleau (1994), Atlanta (1996), Amsterdam (1998), Palo Alto
(2000) and Sydney (2002).

In May 2003, on the occasion of a MM day workshop of the GDR ISIS (a
French national action linking many laboratories and researchers in image pro-
cessing) of the CNRS, held in Paris, it was proposed to organize the 7th ISMM
in 2005 in Paris, and to make it a celebration of the 40 years of MM. We were
pleased by the warm welcome that this proposal met among our colleagues
from all countries, so we went ahead and planned the meeting to take place in
April 2005 in Paris, just after DGCI’05 (the 12th International Conference on
Discrete Geometry for Computer Imagery) in Poitiers. We were lucky to be
able to make use of the rooms in the historical buildings of the Paris School of
Mines.

We received 62 submissions, from which 41 were accepted for oral presen-
tation, after being reviewed by at least two independent referees. Accepted pa-
pers originate from 14 countries: Australia, Austria, Brazil, France, Germany,
Greece, Israel, Italy, Japan, Mexico, Netherlands, Portugal, Spain and United
Kingdom. Several came from “new” researchers or teams, that is, who had not
presented papers at previous ISMM’s. We are also honoured by the presence of
3 eminent guest speakers: Jean Serra himself, Jean-Marc Chassery, leader of
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the GDR ISIS of the CNRS, and member of the steering committee of DGCI,
and Olivier Faugeras, leading researcher on computer vision at INRIA, and
member of the French Academy of Sciences and of the French Academy of
Technologies.

The high quality of the papers, the variety of their topics, and the geograph-
ical diversity of their authors, show that MM is a lively research field.

This ISMM is held in honour of Jean Serra, on the occasion of his 65th
birthday in March 2005, and these Proceedings are dedicated to the memory
of Georges Matheron, who passed away in 2000 at the age of seventy.

Christian Ronse, Laurent Najman and Etienne Decencière



Preface

This 7th ISMM has brought a wide variety of papers, whose topics gener-
ally circle around “mainstream morphology”, namely considering images as
geometrical objects, which are analysed by their interactions with predefined
geometrical shapes. However, this circle is ever growing, and is extending
towards the frontiers of morphology with neighbouring specialities; we are
pleased to welcome a few papers at the interface with other aspects of imag-
ing and computer science. Theory, methodology and practical applications are
all represented. It has been difficult to sort the contributions into well-defined
categories, and any classification, like the one used to make this book, is some-
what artificial.

Operator design

The design of morphological operators remains an important topic of re-
search. Barrera and Hashimoto show how binary decision diagrams can be
used to obtain the decomposition of a local translation-invariant operator in
terms of erosions and dilations. Lerallut et al. describe the construction of mor-
phological operators with adaptive translation-varying structuring elements.
Beucher extends to grey-level images some set operators like the ultimate ero-
sion or the skeleton by openings. Appleton and Talbot present an efficient
algorithm for computing the opening or closing by “approximately straight”
segments. Laveau and Bernard combine morphological filters with motion
compensation, in order to process video sequences. Then Vidal et al. present
a morphological interpolation method for binary images, based on the concept
of median set.

Connected filters and reconstruction

About ten years ago emerged the idea that morphological operators can act
at the level of flat zones instead of individual pixels; the basic tool for this
purpose is the geodesical reconstruction. This led to the concept of connected
filters. Ouzounis and Wilkinson propose a tree structure adapted to the im-
plementation of attribute filters in the case where flat zones are based on clus-
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tering or contraction connectivity. Terol-Villalobos and Mendiola-Santibañez
introduce a modification of geodesic reconstruction, where the latter can be
stopped on the basis of size criteria; this is illustrated with applications in im-
age filtering and segmentation. Wilkinson generalizes connected filters thanks
to a space-attribute connectivity. Urbach et al. give a variant of attribute fil-
tering, where the attribute is not a scalar, but a vector; this leads to granu-
lometries. Géraud presents a form of Tarjan’s union-find algorithm dedicated
to connected operators. Buckley and Lagerstrom give an algorithm for recon-
structing the labelled branches of an object from its skeleton and the associ-
ated quench function. Then Braga-Neto introduces a multi-scale connectivity
on grey-level images, based on the connectivity of threshold sets for a vary-
ing threshold. Finally Keshet investigates morphological operators on trees of
shapes (corresponding to grains and pores), in order to obtain morphological
image operators acting in the same way on bright and dark image areas.

Segmentation

At the basis of the morphological approach to segmentation stands the wa-
tershed transformation. Since then much work has been done towards building
hierarchical groupings of segmentation classes, in particular to reduce overseg-
mentation. A very interesting paper by Serra investigates colour spaces suitable
for segmentation, and shows in particular how one can segment a colour im-
age by combining a luminance-based segmentation in unsaturated areas with
a chrominance-based one in saturated areas. Marcotegui and Beucher propose
a new kind of hierachical waterfall algorithm, and show how to implement it
on the basis of the minimum spanning tree of the neighbourhood graph. Na-
jman et al. investigate the divide set produced by watershed algorithms, and
show that they give a separation in the mosaic if and only if the watershed is
obtained via a topological thinning. Bertrand proposes a new definition for the
dynamics and studies its links with minimum spanning trees. Pratikakis et al.
apply hierarchical watershed segmentation for content-based image retrieval.
Then Beare gives an algorithm implementing the locally constrained watershed
transform.

Geometry and topology

By its concern with shapes, morphology has always been linked with geo-
metrical and topological approaches in image processing. Chassery and Coeur-
jolly propose new algorithms for the “convex skull”, also called “potato peeling
problem”, that is: construct a largest convex polygon inside a non-convex one.
Banon investigates metrics supporting some version of the concept of straight
line segment, and the relations between such metrics and morphological op-
erators. Hesselink et al. give an algorithm for constructing a digital skeleton
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through an Euclidean distance transform. Stelldinger shows how to discretize
shapes whose contours have bounded curvature, in such a way as to preserve
topology. Decencière and Bilodeau propose an adaptive discretization scheme,
suited to the preservation of significant geometrical and topological features of
the figure. Meyer studies lexicographic-type metrics that can be used in seg-
mentation, by allowing to partition an image from a set of markers. Finally
Bloch et al. apply morphology to the formalization of the spatial relation “X is
between Y and Z”, in a fuzzy framework.

PDEs and evolutionary models

Partial differential equations (PDEs) govern scale spaces corresponding to
the evolution of a filter when the size of its kernel increases. Welk and Weickert
provide a theory for such equations for shock filters on one-dimensional sig-
nals. Maragos gives a variational interpretation of PDEs for dilation, erosion
and levelling.

From the beginning, morphology has sought to relate its operations to prob-
abilistic models of shapes and images. Caciu et al. solve a constrained shape
optimisation problem by a combination of genetic algorithms and simulated
annealing methods. Spodarev and Schmidt use local connectivity numbers to
estimate the Minkowski functionals of realizations of a random closed set.

Texture, colour and multivalued images

Morphology has classically been applied on binary and grey-level images,
but it can also be extended to multivalued images, in particular colour ones,
and to the analysis of textures. Asano et al. introduce a new characterization of
texture based on intersize correlation of grain occurrences. Fletcher and Evans
give supervised and unsupervised texture segmentation algorithms, based on
the area pattern spectrum. Hanbury et al. investigate the use of the granulome-
try and the variogram for characterizing texture in colour and greyscale images,
and introduce a method for minimising the effect of varying illumination con-
ditions. Angulo proposes a unified framework for morphological processing
of colour images in a luminance/saturation/hue representation. Brunner and
Soille study the segmentation of multi-channel images by an iterative method
based on seeded region growing and quasi-flat zones. Burgeth et al. extend ba-
sic morphological operators to tensor-valued images by the use of the Loewner
ordering, illustrated on DT-MRI images.

Applications in imaging sciences

The success of an image processing theory is sooner of later verified through
its practical applications. Passat et al. segment brain arteries in MRA brain im-
ages by an interaction between watershed segmentations on MRI and MRA



xvi MATHEMATICAL MORPHOLOGY: 40 YEARS ON

images. Naegel et al. reconstruct the liver portal vein in CT scan images by
grey-level hit-or-miss operators and topological reconstruction. Tek et al. give
an algorithm for segmenting red blood cells in microscopic blood images, by
using an area granulometry, a minimum area watershed and a circle Radon
transformation. Domingo et al. show how to calculate the mean shape of foot-
print images by use of morphological means. Ramos and Pina analyse images
of Portuguese granites by a classification in feature space based on a genetic
algorithm and a nearest neighbour rule. Finally Faucon et al. investigate wa-
tershed based methods for the segmentation of horizons in seismic images.

This collection is a sample of current research topics in mathematical mor-
phology. It shows the vitality, diversity and maturity of this field, which attracts
an ever growing number of researchers and practitioners.

CHRISTIAN RONSE, LAURENT NAJMAN AND ETIENNE DECENCIÈRE
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BINARY DECISION DIAGRAMS
AS A NEW PARADIGM
FOR MORPHOLOGICAL MACHINES

Junior Barrera1 and Ronaldo Fumio Hashimoto 1
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Rua do Matao, 1010
05508-090 Cidade Universitaria - Sao Paulo - SP - Brasil
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Abstract Mathematical Morphology (MM) is a general framework for studying mappings
between complete lattices. In particular, mappings between binary images that
are translation invariant and locally defined within a window are of special in-
terest in MM. They are called W-operators. A key aspect of MM is the rep-
resentation of W-operators in terms of dilations, erosions, intersection, union,
complementation and composition. When W-operators are expressed in this
form, they are called morphological operators. An implementation of this de-
composition structure is called morphological machine (MMach). A remarkable
property of this decomposition structure is that it can be represented efficiently
by graphs called Binary Decision Diagrams (BDDs). In this paper, we propose a
new architecture for MMachs that is based on BDDs. We also show that reduced
and ordered BDDs (ROBDDs) are non-ambiguous schemes for representing W-
operators and we present a method to compute them. This procedure can be
applied for the automatic proof of equivalence between morphological opera-
tors, since the W-operator they represent are equal if and only if they have the
same ROBDD.

Keywords: Binary Decision Diagram, Morphological Machine, Morphological Language,
Morphological Operator.

1. Introduction

Mathematical Morphology (MM) is a theory that studies images and sig-
nals based on transformations of their shapes. These transformations can be
viewed as mappings between complete lattices [8, 13]. In particular, mappings
between binary images are of special interest in MM and they are called set
operators. A central paradigm in MM is the representation of set operators in

3

C. Ronse et al. (eds.), Mathematical Morphology: 40 Years On, 3–12.
©c 2005 Springer. Printed in the Netherlands.
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terms of dilations, erosions, union, intersection, complementation and compo-
sition. This decomposition structure can be described by a formal language
called morphological language [2, 3]. Sentences of the morphological lan-
guage are called morphological operators or morphological expressions. An
implementation of the morphological language is called morphological ma-
chine (MMach). The first known MMach was the Texture Analyzer, created in
the late sixties in Fontainebleau by Serra and Klein. Nowadays, a large number
of these machines are available.

The motivation of this work comes from the search for non-ambiguous and
compact representation for a large class of operators. It is also desired that
this representation leads to efficient algorithms for morphological image pro-
cessing and that it satisfactorily solves the issue of determining whether two
representations are equivalent. In this context, we propose a new architecture
for MMachs implemented as software for sequential machines. This new archi-
tecture is based on the representation of Boolean functions by Binary Decision
Diagrams (BDDs) and was first used in MM in a special algorithm to compute
the thinning operator [12].

An important class of set operators is that of W-operators, i.e., set operators
that share the properties of translation invariance and local definition within a
window. W-operators are extensively used in morphological image processing
and this family of operators is the focus of this paper. This paper extends the
use of BDD as a representation scheme for the whole class of W-operators.

The class of BDDs studied here (reduced and ordered BDDs) provides a
trivial algorithm for determining whether morphological operators are equiv-
alent. Algorithms to convert sentences of the morphological language to this
new form of representation are also presented in this work.

2. Binary Mathematical Morphology

In this section, we recall some basic concepts of binary MM. Let E be a
nonempty set and let P(E) denote the power set of E. Let ⊆ denote the usual
set inclusion relation. The pair (P(E),⊆) is a complete Boolean lattice [4].
A set operator is any mapping defined from P(E) into itself. The set Ψ of
all set operators inherits the complete lattice structure of (P(E),⊆) by setting
ψ1 ≤ ψ2 ⇔ ψ1(X) ⊆ ψ2(X), ∀ψ1, ψ2 ∈ Ψ, ∀X ∈ P(E). Let X, Y ∈ P(E).
The operations X ∪ Y , X ∩ Y and X\Y , Xc are the usual set operations of
union, intersection, difference and complementation, respectively.

Let (E, +) be an Abelian group with zero element o ∈ E, called origin. Let
h ∈ E and X, B ⊆ E. The set Xh, defined by Xh = {x + h : x ∈ X}, is
the translation of X by h. The set Xt = {−x : x ∈ X} is the transpose of
X . The set operations X ⊕ B = ∪b∈BXb and X 	 B = ∩b∈BX−b are the
Minkowski addition and Minkowski subtraction, respectively.
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A set operator ψ is called translation invariant (t.i.) if and only if, ∀h ∈
E,∀X ∈ P(E), ψ(Xh) = ψ(X)h.

Let W be a finite subset of E. A set operator ψ is called locally defined
(l.d.) within a window W if and only if, ∀h ∈ E, ∀X ∈ P(E), h ∈ ψ(X) ⇔
h ∈ ψ(X ∩WhWW ).

Let ΨW denote the collection of all t.i. operators that are also l.d. within a
window W . The elements of ΨW are called W-operators. The pair (ΨW ,≤)
constitutes a sub-lattice of the lattice (Ψ,≤) [3]. Furthermore, (ΨW ,≤) is
isomorphic to the complete Boolean lattice (P(P(E)),⊆), since the mapping
KW : ΨW → P(P(E)) defined by KW (ψ) = {X ∈ P(W ) : o ∈ ψ(X)}, is
bijective and preserves the partial order [3]. The set KW (ψ) is the Kernel of
the set operator ψ.

3. Morphological Language

In this section, we recall the main concepts of MM from the viewpoint of
a formal language. Let ψ1, ψ2 ∈ Ψ. The supremum ψ1 ∨ ψ2 and infimum
ψ1 ∧ ψ2 operations are defined by (ψ1 ∨ ψ2)(X) = ψ1(X) ∪ ψ2(X) and
(ψ1 ∧ ψ2)(X) = ψ1(X) ∩ ψ2(X), ∀X ∈ P(E). They can be generalized
as (∨i∈Iψi)(X) = ∪i∈Iψ(X) and (∧i∈Iψi)(X) = ∩i∈Iψ(X), where I is a
finite set of indices. The composition operator ψ2ψ1 is given by (ψ2ψ1)(X) =
ψ2(ψ1(X)),∀X ∈ P(E).

The set operators ı and ν defined by ı(X) = X and ν(X) = Xc, ∀X ∈
P(E), are called, respectively, the identity and negation operators. These oper-
ators are l.d. within the window {o}. The dual of an operator ψ ∈ Ψ, denoted
ψ∗, is defined by ψ∗(X) = (ψ(Xc))c,∀X ∈ P(E). Note that ψ∗ = νψν.

For any h ∈ E, the set operator τhττ defined by τhττ (X) = Xh,∀X ∈ P(E),
is called translation operator by h. This operator is l.d. within the window
{−h}. For a t.i. set operator ψ, τhττ ψ = ψτhττ .

Let B ∈ P(E) be finite. The t.i. set operators δB and εB defined by
δB(X) = X⊕B and ε(X) = X	B, ∀X ∈ P(E), are the dilation and erosion
by the structuring element B. These set operators are l.d. within the window
Bt and B, respectively. One can also write δB = ∨b∈Bτbττ and εB = ∧b∈Bτ−ττ b.

The following proposition, proved by Barrera and Salas [3], gives some
properties of W-operators.

Proposition 1 If ψ, ψ1 and ψ2 are set operators l.d. within windows W ,
W1WW and W2WW , respectively, then they have the following properties: (1) ψ is l.d.
within any window W ′ ⊇W ; (2) ψ1∧ψ2 and ψ1∨ψ2 are l.d. within W1WW ∪W2WW ;
(3) ψ2ψ1 is l.d. within W1WW ⊕W2WW .

The following corollary gives some properties of W-operators that are par-
ticular case of Property 3 of Proposition 1.
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Corollary 2 If ψ is a set operator l.d. within a window W , then we have
the following properties: (1) ∀h ∈ E, τhττ ψ is l.d. within W−WW h; (2) ∀B ⊆ W ,
δBψ and εBψ are l.d. within W ⊕ Bt and W ⊕ B, respectively. (3) ıψ, ψı,
νψ, ψν and ψ∗ are l.d. within W .

Morphological operators (i.e., sentences of the morphological language),
are built as strings of elementary operators (εB, δB, ı, ν) bound by the opera-
tions ∨,∧ and composition. As an example, let A, B ∈ P(W ) such that A ⊆
B. The collection [A, B] = {X ∈ P(W ) : A ⊆ X ⊆ B} is called an inter-
val. The t.i. sup-generating operator λW

A,B , defined by λW
A,B(X) = {x ∈ E :

(X−x) ∩W ∈ [A, B]},∀X ∈ P(E), can be described as λW
A,B = εA ∧ νδ

B
t ,

where B = W\B. Note that, λW
A,B is l.d. within A∪B, and, hence, within W .

Let X be a collection of intervals. An element [A, B] ∈ X is said to be
maximal if and only if (iff) no other element of X properly contains it, that is,
[A, B] is maximal iff ∀[A′, B′] ∈ X, [A, B] ⊆ [A′, B′]⇒ [A, B] = [A′, B′].

The set BW (ψ) of all maximal intervals contained in the kernel KW (ψ) of
a W-operator ψ is called basis of ψ [2]. Any W-operator ψ can be written by
their canonical sup-decompositions, that is, ψ = ∨{λW

A,B : [A, B] ⊆ KW (ψ)}
or ψ = ∨{λW

A,B : [A, B] ∈ BW (ψ)}.
As a conclusion of this section, morphological language is complete, in the

sense that, any W-operator can be represented by canonical forms, which are
valid sentences of morphological language [3]. It is also expressive, since
many useful operators can be described with short sentences.

4. Binary Decision Diagrams

A Boolean function (on n variables) is a function f : {0, 1}n → {0, 1}. This
section presents a representation method of Boolean functions called Binary
Decision Diagrams (BDDs). In Section 6, we extend the use of BDD as a
representation scheme for the whole class of W-operators.

A variety of representation methods for Boolean functions have been devel-
oped. In the classical ones, such as truth tables and canonical sum-of-products
form, the representation of a Boolean function with n variables has size O(2n).
Other approaches, such as the set of prime implicants (or equivalently, the set
of maximal intervals) or a subset of irrendundant ones, yield compact repre-
sentation for many Boolean functions. Here we describe a graph-based repre-
sentation method that is very useful for a large class of Boolean functions.

Boolean Functions Represented by BDDs

The representation of a Boolean function by a decision-based structure was
introduced by Lee [9] and further popularized by Akers [1] under the name
of BDD. Algorithms for BDD manipulation are described in [6]. Efficient
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implementation directions are found in [5]. Applications of BDDs in Digital
Image Processing have been recently developed [10–12].

A BDD of a Boolean function f : {0, 1}n → {0, 1} is a rooted, directed
acyclic graph (DAG) with two types of nodes: terminal and nonterminal. Each
terminal node v has as attribute a value value(v) ∈ {0, 1}. The nonterminal
nodes v have two children nodes, low(v) and high(v). Each nonterminal v is
labeled with an input variable index index(v) ∈ {1, 2, . . . , n}.

For a given assignment to the input variable vector x = (x1, . . . , xn), the
value of the function is determined by transversing the graph from the root to a
terminal node: at each nonterminal node v with index(v) = i, if xi = 0, then
the arc to low(v) is followed. Otherwise (i.e., xi = 1), the arc to high(v) is
followed. The value of the function is given by the value of the terminal node.

A node v in a BDD represents a Boolean function fvff such that: (i) if v is a
terminal node with value(v) = 0, then fvff = 0; (ii) if v is a terminal node with
value(v) = 1, then fvff = 1; (iii) if v is a nonterminal node and index(v) = i,
then fvff = xi ·flowff (v) +xi ·fhighff (v). The mathematical background of the BDD
construction is the well known Shannon expansion of Boolean functions: f =
xi · f |xi

+ xi · f |xi
. The restrictions f |xi

= f(x1, . . . , xi−1, 1, xi+1, . . . , xn)
and f |xi

= f(x1, . . . , xi−1, 0, xi+1, . . . , xn) are the cofactors of f with re-
spect to the literal xi and xi.

Reduced and Ordered BDDs

An ordered BDD (OBDD) is a BDD such that any path in the graph from
the root to a terminal node visits the variables in ascending order of their in-
dices, i.e., index(v) < index(low(v)) whenever v and low(v) are nonter-
minal nodes, and index(v) < index(high(v)) whenever v and high(v) are
nonterminal nodes. Since a variable appears at most once in each path, a func-
tion is evaluated in time O(n) in an OBDD.

If an OBDD contains no pair of nodes {u, v} such that the graph rooted
by u and v are isomorphic, and if it contains no node v such that low(v) =
high(v), it is called a reduced OBDD (ROBDD). An OBDD of N vertices
can be transformed into an equivalent ROBDD in time O(N · log N) by the
Reduce algorithm presented in [6]. The following theorem, proved in [6],
states the canonicity of the ROBDD representation.

Theorem 3 For any Boolean function f , there is a unique ROBDD repre-
senting f . Furthermore, any other OBDD representing f contains more ver-
tices.

The Lattice of ROBDDs and W-operators

Let FnFF denote the set of all functions f : {0, 1}n → {0, 1} and let ΦW de-
note the set of all functions ϕ : P(W )→ {0, 1}, such that W = {w1, . . . , wn}.
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We establish a one-to-one correspondence between elements ofFnFF and ΦW by
making f(x1, . . . , xn) = ϕ({wi ∈ W : xi = 1}). Let ≤ denote the usual or-
der in {0, 1}. This order induces a parcial order in FnFF , that is, f1, f2ff ∈ FnFF ,
f1 ≤ f2ff ⇔ f1(x) ≤ f2ff (x), ∀x ∈ {0, 1}n.

The partially ordered sets (FnFF ,≤) and (ΦW ,≤) are complete Boolean lat-
tices isomorphic to (P(P(W )),⊆). This is observed from the bijective map-
ping K : ΦW → P(P(W )) given by K(ϕ) = {X : ϕ(X) = 1}.

Let GW denote the set of all ROBDDs representing functions in FnFF . From
Theorem 3, ROBDDs are unique and non-ambiguous representations of Boolean
functions. Thus, there is a bijective mapping between GW and FnFF , and,
hence, between GW and ΦW . The ROBDD of a function ϕ ∈ ΦW is de-
noted by G(ϕ) and is simply called “the graph of ϕ”. The pair (GW ,�)
is a complete Boolean lattice isomorphic to the lattice (ΦW ,≤), where the
partial order � between two graphs G(ϕ1) and G(ϕ2) in GW is defined by
G(ϕ1) � G(ϕ2)⇔ ϕ1 ≤ ϕ2.

5. Algorithms for Operations on BDDs

In this section, we present some algorithms on BDDs. First, we show some
algorithms for logical operations between graphs and, then, we give an algo-
rithm for translations of BDDs.

Algorithms for Logical Operations between BDDs

Let ϕ, ϕ1, ϕ2 ∈ ΦW and let G, G1, G2 ∈ GW be their corresponding
graphs. The graph complement, infimum and supremum, respectively denoted
by · , � and �, are computed by the algorithm AppyOperation presented
in [6]. This algorithm takes as input two graphs with N1NN and N2NN nodes, respec-
tively, and a logical operation AND, OR, or XOR as parameters, and return the
resulting graph in time O(N1NN · N2NN ). The algorithm is based on the following
property of Boolean functions: f1⊗f2ff = xi·(f1|xi

⊗f2ff |xi
)+xi·(f1|xi

⊗f2ff |xi
),

where⊗ denotes one of the sixteen logical function of two variables [7]. Thus,

G = G(ϕ) = ApplyOperation(G, 1, XOR)
G1 �G2 = G(ϕ1 · ϕ2) = ApplyOperation(G1, G2, AND)
G1 �G2 = G(ϕ1 + ϕ2) = ApplyOperation(G1, G2, OR)

where 1 is the trivial leaf “1”. The graph of the complement of ϕ ∈ ΦW

can be alternatively computed by simply exchanging the values of all terminal
nodes. The dual graph of G ∈ GW , denoted by G∗, is defined as G∗(ϕ(X)) =
G(ϕ∗(X)) = G(ϕ(Xc)). It can be computed from G by swapping low(v)
with high(v) in each node of G and also by swapping the terminal nodes.
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Algorithm for Translation of BDDs

Let h ∈ E and ϕ ∈ ΦW . The translation of ϕ by h, denoted by ϕh is
defined by ϕh(X) = ϕ(Xh),∀X ∈ P(W−WW h). Thus ϕh ∈ ΦW−WW h

and the
Boolean expression of ϕh can be obtained from the Boolean expression of ϕ
by a changing of variables. The translation of a graph G(ϕ) ∈ GW by h,
denoted by G(ϕ)+h, is defined as G(ϕ)+h = G(ϕh). Note that G(ϕ)+h ∈
GW−WW h

. For a trivial implementation of G + h, the window W ∪W−WW h must be
consistently ordered, otherwise a reordering of the BDD may be mandatory.

6. Translating Morphological Operators into BDDs

In this section, we present a way to incrementally compute the ROBDD of
a W-operator described by a sentence of the morphological language.

We presented (Section 2) that (ΨW ,≤) is isomorphic to (P(P(E)),⊆), and
also (Section 4) that (ΦW ,≤) is isomorphic to (GW ,�) and to (P(P(E)),⊆).
This demonstrates, by transitivity of isomorphisms, that there is a one-to-one
correspondence between elements of GW and ΦW . This shows that a graph
non-ambiguously and uniquely represents a W-operator.

We denote by GW (ψ) the corresponding graph of the W-operator ψ. The
calligraphic G(·) is to stress that the argument is an operator, while G(·) has as
argument a function. The subscript W is used in both notations to emphasize
the window within which the graph is defined.

The following proposition establishes the algorithms that perform the basic
operations on graphs of morphological operators. The proof of this proposition
is based on the isomorphisms mentioned in the beginning of this section.

Proposition 4 Let h ∈ E and B ⊆ E. Let ψ, ψ1 and ψ2 be W-operators,
respectively, within the windows W , W1WW and W2WW . If GW (ψ), GW1WW (ψ1) and
GW2WW (ψ2) are the corresponding graphs to ψ, ψ1 and ψ2, respectively, then

a. GW (νψ) = GW (ψ);
b. GW1WW ∪W2WW (ψ1 ∧ ψ2) = GW1WW ∪W2WW (ψ1) � GW1WW ∪W2WW (ψ2);
c. GW1WW ∪W2WW (ψ1 ∨ ψ2) = GW1WW ∪W2WW (ψ1) � GW1WW ∪W2WW (ψ2);
d. GW (ψ∗) = G∗W (ψ);
e. GW−WW h

(τhττ ψ) = GW (ψ) + h;
f. GW⊕Bt(δBψ) = �b∈B(GW⊕Bt(ψ) + b);
g. GW⊕B(εBψ) = �b∈Bt(GW⊕B(ψ) + b).

From Proposition 4 and since λW
A,B = εA∧νδ

B
t , we have the following corol-

lary.

Corollary 5 Let ψ be a W-operator and A, B, W ′ ∈ P(E) such that A ⊆
B ⊆ W ′. If B = W\B and GW (ψ) is the graph corresponding to ψ, then
GW⊕W ′(λW ′

A,Bψ) = GW⊕W ′(εAψ) � GW⊕W ′(δ
B

tψ).
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Definition 6 Given a set of indices I , we say that a collection of intervals
{[Ai, Bi] : i ∈ I} is an exact cover of a W-operator ψ if ψ = ∨i∈Iλ

W
Ai ,Bi

.

For example, the basis of a W-operator ψ is an exact cover of ψ. And so is
the set {[A, A] : A ∈ KW (ψ)}.

Proposition 7 Let ψ1 and ψ2 be W-operators, respectively, within the win-
dows W1WW and W2WW . If GW1WW (ψ1) and GW2WW (ψ2) are the corresponding graphs to
ψ1 and ψ2, respectively, and {[Ai, Bi] : i ∈ I} is an exact cover of ψ2, then
GW1WW ⊕W2WW (ψ2ψ1) = �i∈IGW1WW ⊕W2WW (λW2WW

Ai ,Bi
ψ1).

It is possible to compute the graph of any W-operator, whenever its descrip-
tion in the morphological language is known. For the incremental computation
of the graph of a W-operator ψ described by a morphological expression, we
start with the graph of the identity operator and successively apply the algo-
rithms that corresponding to Propositions 4 and 7, according to the parsing of
the sentence that describes ψ. Each step is initiated by the modification of the
window by applying Proposition 1 and, eventually, Corollary 2.

In the following, we give an example illustrating how to compute the ROBDD
representation from a W-operator ψ l.d. within W = {w1, w2, w3}, where
w1 = (−1, 0), w2 = o = (0, 0) and w3 = (1, 0), that detects the vertical
borders. There are several ways of representing this operator such as: (i) the
standard decomposition ψ = λW

{w2},{w1,w2} ∨ λW
{w2},{w2,w3}; (ii) the morpho-

logical operator by means of erosion and dilations ψ = (ε{w2} ∧ νδ{w1}) ∨
(ε{w2} ∧ νδ{w3}); and (iii) the last graph (ROBDD) GW (ψ) of Fig. 1. Using
the representation by means of erosion and dilations, we have

GW (ψ) = G((ε{w2} ∧ νδ{w1}) ∨ (ε{w2} ∧ νδ{w3}))
= (G(ε{w2}) � G(

{
νδ{w1})) � (G(ε{w2}) � G(νδ{w3})).

Thus, we first have to compute G1 = G(ε{w2}), G2 = G(δ{w1}), G3 =
G(δ{w3}), G4 = G(νδ{w1}) and G5 = G(νδ{w3}); and then G = (G1 �G4) �
(G1 � G5). Let G0 be the BDD for the identity operator, that is, G0 = G(ı).
Applying the corresponding algorithm, we have

G1 = G(ε{w2}ı) = G0 + (−w2) = G0, by Proposition 4(g).
G2 = G(δ{w1}ı) = G0 + w1, by Proposition 4(f).
G3 = G(δ{w3}ı) = G0 + w3, by Proposition 4(f).
G4 = G(νδ{w1}ı) = G2 and G5 = G(νδ{w3}ı) = G3, by Proposition 4(a).
G6 = (G1 �G4) and G7 = (G1 �G5), by Proposition 4(b).
G = G6 �G7, by Proposition 4(c).

7. Automatic Proof of Equivalence

An important task in MM is to determine whether two morphological rep-
resentations correspond to the same operator. Determining the equivalence of
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G1 = G0 + (−w2)

w2

0 1

0 1

G2 = G0 + w1

w1

0 1

0 1

G3 = G0 + w3

w3

0 1

0 1

G4 = G2

w1

1 0

0 1

G5 = G3

w3

1 0

0 1

G6 = G1 � G4 w1

w2

0 1

1

0

1

G7 = G1 � G5 w2

w3

0 1

0

1

0

G = G6 � G7 w1

w2 w2

w3

0 1

0 1

1

Figure 1. Incrementally computed ROBDD of the vertical border detector.

two morphological operators ψ1 and ψ2 involves manipulation of their expres-
sions using the well known set-theoretic properties, and it is often a difficult
task. On the other hand, if we know the graphs G1 and G2 of two W-operators,
then the determination of their equivalence is trivial: since the graph repre-
sentation of a W-operator is unique, we simply compare if both graphs are
equal. Alternatively, one could verify it by calling ApplyOperation(G1,
G2, XOR), and test if the resulting graph if the trivial leaf “0”.

8. Computational Complexity Time

The analysis of several implementations of morphological operators (such
as median filters, four-homotopic thinnings, supremum of openings), presented
in [10], shows that the proposed architecture is the most efficient alternative to
implement MMachs with pixels represented by bytes. Furthermore, in general,
it is beneficial to compact parallel operators (i.e., built by union or intersection
of several operators). In complex hybrid morphological operators, it may be
beneficial to compact just pieces of the operator in BDDs.

9. Conclusion

In this work we showed that the ROBDD is a good alternative for the repre-
sentation of W-operators. Its efficient application time makes it a good candi-
date as the core representation scheme of nonlinear signal and image proces-
sors.

The main contribution of this work is the development of a well defined
procedure to convert any expression of the morphological language for a given
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W-operator in its corresponding ROBDD. The uniqueness of the ROBDD rep-
resentation allows a simple solution to the problem of checking the equivalence
between morphological operators.

Currently, we are working on an implementation of a BDD-based morpho-
logical machine.

Acknowledgments

This work was partially supported by grant 1 D43 TW07015- 01 from the
National Institutes of Health, USA.

References
[1] S. B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, C-27(6):509–

516, June 1978.

[2] G. J. F. Banon and J. Barrera. Minimal Representations for Translation-Invariant Set
Mappings by Mathematical Morphology. SIAM J. Appl. Math., 51(6):1782–1798, De-
cember 1991.

[3] J. Barrera and G. P. Salas. Set Operations on Closed Intervals and Their Applications to
the Automatic Programming of Morphological Machines. Electronic Imaging, 5(3):335–
352, July 1996.

[4] G. Birkhoff. Lattice Theory. American Mathematical Society Colloquium Publications,
Rhode Island, 1967.

[5] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a BDD Package.
In Proceedings of the ACM/IEEE Design Automation Conference (DAC), pages 40–45.
ACM/IEEE, 1990.

[6] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans-
actions on Computers, C-35(8):677–691, August 1986.

[7] G. de Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher
Education, 1994.

[8] H. J. A. M. Heijmans. Morphological Image Operators. Academic Press, Boston, 1994.

[9] C.Y. Lee. Representation of Switching Circuits by Binary-Decision Programs. Bell Sys-
tems Technical Journal, 38:985–999, July 1959.

[10] H. M. F. Madeira, J. Barrera, R. Hirata Jr., and N. S. T. Hirata. A New Paradigm for the
Architecture of Morphological Machines: Binary Decision Diagrams. In SIBGRAPI’99
- XII Brazilian Symposium of Computer Graphic and Image Processing, pages 283–292.
IEEE Computer Society, November 1999.

[11] H. M. F. Madeira and J. Barrera. Incremental Evaluation of BDD-Represented Set Oper-
ators. In SIBGRAPI 2000 - XIII Brazilian Symposium of Computer Graphic and Image
Processing, pages 308–315. IEEE Computer Society, 2000.

[12] L. Robert and G. Malandain. Fast Binary Image Processing Using Binary Decision Dia-
grams. Computer Vision and Image Understanding, 72(1):1–9, October 1998.

[13] J. Serra. Image Analysis and Mathematical Morphology. Volume 2: Theoretical Ad-
vances. Academic Press, 1988.



IMAGE FILTERING USING
MORPHOLOGICAL AMOEBAS

Romain Lerallut, Étienne Decencière and Fernand Meyer
Centre de Morphologie Mathématique, École des Mines de Paris
35 rue Saint-Honoré, 77305 Fontainebleau, France

lerallut@cmm.ensmp.fr

Abstract This paper presents morphological operators with non-fixed shape kernels, or
amoebas, which take into account the image contour variations to adapt their
shape. Experiments on grayscale and color images demonstrate that these novel
filters outperform classical morphological operations with a fixed, space-invariant
structuring element for noise reduction applications.

Keywords: Anisotropic filters, noise reduction, morphological filters, color filters

1. Introduction

Noise is possibly the most annoying problem in the field of image process-
ing. There are two ways to work around it: either design particularly robust
algorithms that can work in noisy environments, or try to eliminate the noise
in a first step while losing as little relevant information as possible and conse-
quently use a normally robust algorithm.

There are of course many algorithms that aim at reducing the amount of
noise in images. Most are quite effective but also often remove thin elements
such as canals or peninsulas. Even worse, they can displace the contours and
thus create additional problems in a segmentation application.

In mathematical morphology we often couple one of these noise-reduction
filters to a reconstruction filter that attempts to reconstruct only relevant infor-
mation, such as contours, and not noise. However, a faithful reconstruction
can be problematic when the contour itself is corrupted by noise. This can
cause great problems in some applications which rely heavily on clean contour
surfaces, such as 3D visualization, so a novel approach was proposed.
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2. Amoebas: dynamic structuring elements

Principle

Classic filter kernel. Formally at least, classic filters work on a fixed-size
sliding window, be they morphological operators (erosion, dilation) or convo-
lution filters, such as the diffusion by a Gaussian. If the shape of that window
does not adapt itself to the content of the image (see figure 1), the results de-
teriorate. For instance, an isotropic Gaussian diffusion smooths the contours
when its kernel steps over a strong gradient area.

Figure 1 Closing of an im-
age by a large structuring ele-
ment. The structuring element
does not adapt its shape and
merges two distinct objects.

Amoeba filter kernel. Having made this observation, Perona and Malik [1]
(and others after them) have developed anisotropic filters that inhibit diffusion
through strong gradients. We were inspired by these examples to define mor-
phological filters whose kernels adapt to the content of the image in order to
keep a certain homogeneousness inside each structuring element (see figure 2).
The coupling performed between the geometric distance between pixels and
the distance between their values has similarities with the work of Tomasi and
Manduchi described in [5].

The interest of this approach, compared to the analytical one pioneered by
Perona and Malik is that it does not depart greatly from what we use in math-
ematical morphology, and therefore most of our algorithms can be made to
use amoebas with little additional work. Most of the underlying theoretical
groundwork for the morphological approach has been described by Jean Serra
in his study [2] of structuring functions, although until now it has seen little
practical use.

Figure 2 Closing of an im-
age by an amoeba. The
amoeba does not cross the
contour and as such preserves
even the small canals.

The shape of the amoeba must be computed for each pixel around which it
is centered. Figure 3 shows the shape of an amoeba depending on the posi-
tion of its center. Note that in flat areas such as the center of the disc, or the
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Figure 3 Shape of an
amoeba at various positions
on an image.

background, the amoeba is maximally stretched, while it is reluctant to cross
contour lines.

When an amoeba has been defined, most morphological operators and many
other types of filters can be used on it: median, mean, rank filters, erosion, di-
lation, opening, closing, even more complex algorithms such as reconstruction
filters, levelings, floodings, etc.

Construction

Amoeba distance. In general, a filtering kernel of radius r is formally de-
fined on a square (or a hexagon) of that radius, that is to say on the ball of
radius r relative to the norm associated to the chosen connectivity. We will
keep this definition changing only the norm, using one that takes into account
the gradient of the image.

Definition 1 Let dpixeld be a distance defined on the values of the image, for
example a difference of gray-value, or a color distance.

Let σ = (x = x0, x1, . . . , xn = y) a path between points x and y. Let λ be
a real positive number. The length of the path σ is defined as

L(σ) =
n∑

i=0

1 + λ.dpixeld (xi, xi+1)

The “amoeba distance” with parameter λ is thus defined as:{
dλ(x, x) = 0
dλ(x, y) = minσ L(σ)

It it important to realize that dpixeld has no geometrical aspect, it is a distance
computed only on the values of the pixels of the image. Furthermore, if n is
the number of pixels of a path σ, then L(σ) ≥ n (since λ ≥ 0), which bounds
the maximal extension of the amoeba.
This distance also offers an interesting inclusion property:
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Property 1 At a radius r given the family of the balls Bλ,r relative to the
distance dλ is decreasing (for the inclusion),

0 ≤ λ1 ≤ λ2 ⇒ ∀(x, y), dλ1(x, y) ≤ dλ2(x, y)
⇒ ∀r ∈ R+,Bλ1,r ⊃ Bλ2,r

Which may be useful when building hierarchies of filters, such as a family
of alternate sequential filters with strong gradient-preserving properties.

The pilot image. We have found that the noise in the image can often distort
the shape of the amoeba. As such, we often compute the shape of the amoeba
on another image. Once the shape is computed, the values are sampled on
the original image and processed by the filter (mean, median, max, min, . . . ).
Usually, the other image is the result of a strong noise removal filtering of the
original image that dampens the noise while preserving as much as possible the
larger contours. A large Gaussian works fairly well, and can be applied very
quickly with advanced algorithms, however we will see below that iterating
amoeba filters yields even better results.

3. Amoebas in practice

Adjunction

Erosions and dilations can easily be defined on amoebas. However it is nec-
essary to use adjoint erosions and dilations when using them to define openings
and closings:

δ(X) =
⋃

x∈X Bλ,r(x)
ε(X) = {x/Bλ,r(x) ⊂ X}

These two operations are at the same time adjoint and relatively easy to com-
pute, contrary to the symmetrical ones that use the transposition, which is not
easy to compute for amoebas. See [2] for a discussion of the various forms of
adjunction and transposition of structuring functions.

Algorithms

The algorithms used for the erosion and dilation are quite similar to those
used with regular structuring elements, with the exception of the step of com-
puting the shape of the amoeba.

Erosion (gray-level):
for each pixel x:

compute the shape of the amoeba centered on x
compute the minimumM of the pixels in the amoeba
set the pixel of the output image at position x to value M
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Dilation (gray-level):
for each pixel x:

compute the shape of the amoeba centered on x
for each pixel y of the amoeba:

value(y)=max(value(y),value(x))

The opening using these algorithms can be seen as the gray-level extension
of the classic binary algorithm of first taking the centers of the circles that fit
inside the shape (erosion), and then returning the union of all those circles
(dilation).

Complexity

The theoretical complexity of a simple amoeba-based filter (erosion, dila-
tion, mean, median) can be asymptotically approximated by:

T (n, k, op) = O
[
n ∗

(
op(kd) + amoeba(k, d)

)]
Where n is the number of pixels in the image, d is the dimensionality of the
image (usually 2 or 3), k is the maximum radius of the amoeba, op(kd) is the
cost of the operation and amoeba(k, d) is the cost of computing the shape of
the amoeba for a given pixel.

The shape of the amoebas is computed by a common region-growing imple-
mentation using a priority queue. Depending on the priority queue used, the
complexity of this operation is in slightly more than O(kd) (see [3] and [4] for
advanced queueing data structures).

Therefore, for erosion, dilation or mean as operators, we have a complex-
ity of a little more than O(n ∗ kd) which is the complexity of a filter on a
fixed-shape kernel. It has indeed been verified in practice that, while being
quite slower than with fixed-shape kernels (especially optimized ones), filters
using amoebas tend to follow rather well the predicted complexity, and do not
explode (tests have been performed on 3D images, size 512x512x100, with
amoebas with sizes up to 21x21x21).

4. Results

Alternate sequential filters

The images of figure 4 compare the differences between alternate sequential
filters built on classic fixed shape kernels and ASFs on amoebas in the filtering
of the image of a retina.

Median and mean

In the context of image enhancement, we have found that a simple mean or
median coupled with an amoeba forms a very powerful noise-reduction filter.
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(a) Original (b) Normal ASF: first pass (c) Normal ASF: second
pass

(d) Amoeba ASF: first pass (e) Amoeba ASF: second
pass

(f) Amoeba ASF: fourth
pass

Figure 4. Alternate sequential filters on classic kernels and on amoebas. The amoeba pre-
serves extremely well the blood vessels while strongly flattening the other areas.

The images in figure 5 show median and the mean computed on amoebas
compared to those built on regular square kernels. The pilot image that drives
the shape of the amoeba is the result of a standard Gaussian filter of size 3 on
the original image, and the distance dpixeld is the absolute difference of gray-
levels.

For the filters using amoebas, the median filter preserves well the contour,
but the mean filter gives a more “aesthetically pleasing” image. In either case,
the results are clearly superior to filterings by fixed-shape kernels, as seen in
the figure 5.

Mean and median for color images

In the case of color images, the mean is replaced by the mean on each color
component of the RGB color space. For the “median”, the point closest to
the barycenter is chosen. Other distances or colorspaces can be used, such
as increasing the importance of the chrominance information with respect to
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(a) Original (b) Usual median (c) Amoeba median (d) Amoeba mean

Figure 5. Results of a “classic” median filtering and two amoeba-based filterings: a median
and a mean on Edouard Manet’s painting “Le fifre”.

luminance, or the other way around, depending on the application, the type of
noise and the quality of the color information.

Iteration

The quality of the filtering strongly depends on the image that determines
the shape of the amoeba. The previous examples have used the original image
filtered by a Gaussian, but this does not always yield good results (also see
[6]).

It is frequent indeed that a small detail of the image be excessively smoothed
in the pilot image, and thus disappears completely in the result image. On the
other hand, noisy pixels may be left untouched if the pilot image does not
eliminate them. A possible solution is to somewhat iterate the process, using
the first output image not as an input for filtering, as it would commonly be
done, but as a new pilot image instead.
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(a) Original (b) Usual median (c) Amoeba median (d) Amoeba mean

Figure 6. Color images: results of a “classic” median filtering, and two amoeba-based filter-
ings: a median and a mean. As a simple extension of the grayscale approach, each channel of
the pilot image has been independently smoothed by a Gaussian of size 3.

There are two steps at each iteration: the first one follows the scheme de-
scribed earlier, using the Gaussian-filtered original image as a pilot, with ag-
gressive parameters, and outputs a well-smoothed image in flat areas while
preserving as much as possible the most important contours. The second step
takes the original image as input and the filtered image as a pilot, with less de-
structive parameters, and preserves even more the finer details, while removing
a lot of the noise.

In practice, we have found that performing those two steps only once is
enough to reduce the noise dramatically (see figure 7), although further itera-
tions may be required, depending on the image and the noise.

This method is also very useful for color images, since the amoeba-based
pilot image provides better color coupling through the use of an appropriate
color distance than simply merging the results of a Gaussian filtering of each
channel independently.
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(a) Original (b) Pilot image: Gaussian filter (c) Pilot image: amoeba mean fil-
ter

(d) Result image: amoeba mean with Gaussian pilot (e) Result image: amoeba mean with amoeba pilot

Figure 7. Comparison between two pilot images: a Gaussian one, and one based on a strong
amoeba-based filtering. With the amoeba pilot image the hand is better preserved, and the
eyebrows do not begin to merge with the eyes, contrary to the Gaussian-based pilot image.
Having both less noise and stronger contours in the pilot image also enables the use of smaller
values on the lambda parameter so that the amoeba will stretch more in the flatter zones, and thus
have a stronger smoothing effect in those zones, while preserving the position and dynamics of
the contours
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5. Conclusion and future work

We have presented here a new type of structuring element that can be used in
many morphological algorithms. By taking advantage of outside information,
filters built upon those structuring elements can be made more robust on noisy
images and in general behave in a “more sensible” way than those based on
fixed-shape structuring elements. In addition, morphological amoebas are very
adaptable and can be used on color images as well as monospectral ones and,
like most morphological tools, they can be used on images of any dimension
(2D, 3D, . . . ). Depending on the application, alternate sequential filters are
very effective when looking for very flat zones, whereas median and mean
filters output smoother images that may be more pleasing to the eye but could
be harder to segment.

Work is currently in progress to integrate the filtered pilot image directly
in the basic formulation, instead of having it as a preprocessing step, with the
various drawbacks studied in [6].

It is possible to use amoebas to create reconstruction filters and floodings
that take advantage of the ability to parameterize the shape of the amoebas
based on the image content. However, the behaviors of the amoebas are much
more difficult to take into account when they are used in such complex al-
gorithms. In particular, amoebas often have a radius larger than one, so for
instance the identification made between conditional dilation and geodesic di-
lation is no longer valid.

The results show that simple extensions of the scalar algorithms to the RGB
space already yield excellent results, especially when iterating. The use of
more “perceptual” distances (HLS or LAB) would probably prevent most un-
wanted blending of features, although this is as yet conjectural and will be the
basis of further work.
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Abstract
Binary morphological transformations based on the residues (ultimate ero-

sion, skeleton by openings, etc.) are extended to functions by means of the trans-
formation definition and of its associated function based on the analysis of the
residue evolution in every point of the image. This definition allows to build not
only the transformed image itself but also its associated function, indicating the
value of the residue index for which this evolution is the most important. These
definitions are totally compatible with the existing definitions for sets. More-
over, they have the advantage of supplying effective tools for shape analysis on
one hand and, on the other hand , of allowing the definition of new residual trans-
forms together with their associated functions. Two of these numerical residues
will be introduced, called respectively ultimate opening and quasi-distance and,
through some applications, the interest and efficiency of these operators will be
illustrated.

1. Introduction

In binary morphology there are some operators based on the detection of
residues of parametric transformations. Among these operators, the ultimate
erosion or the skeleton by maximal balls can be quoted. They can more or less
easily be extended to greytone images. These extensions are however of little
use because it is difficult to exploit them. This paper explains the reasons of this
difficulty and proposes a means to obtain interesting information from these
transformations. It also introduces new residual transformations and illustrates
their use in applications.

2. Binary residues: reminder of their definition

Only operators corresponding to the residues of two primitive transforms
will be addressed here. A residual operator θ on a set X is defined by means
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of two families of transformations (the primitives) depending on a parameter
i, (i ∈ I), φi and ζiζζ , with φi ≥ ζiζζ . The residue of size i is the set: ri = φi/ζiζζ ,
the transformation θ is then defined as: θ = ∪i∈Iri

Usually, φi is an erosion εi. According to the choice of ζiζζ , we get the differ-
ent following operators:

The ultimate erosion [2]; the operator ζiζζ is then the elementary opening
by reconstruction of the erosion εi: ζiζζ = γrecγγ (εi)

The skeleton by maximal balls; in that case the operator ζiζζ is the ele-
mentary opening of the erosion of size i: ζiζζ = γ (εi)

Generally a function q, called residual or associated function is linked to
these transformations. The support of q is the transformed θ(X) itself. This
function takes in every point x, the value of index i of residue ri containing
point x (or more exactly the value i+1, so that this function is different from
zero for r0). Indeed, in the binary case, if the primitives are correctly chosen,
to every point x corresponds a unique residue. One has then:

q(x) = i + 1 : x ∈ ri

For the ultimate erosion, this function corresponds to the size of the ultimate
components. For the skeleton, it is called quench function and corresponds to
the size of the maximal ball centered in x.

3. Extension to greytone images

It is common to read or to hear that these operators can be extended without
any problem to the numerical case (greytone images). It is just as remarkable
to notice that there is practically no interesting application of these operators
in greytone image analysis. Two factors explain this established fact:

Extension is maybe not "as evident" as it appears to be, for the transfor-
mation θ itself but also and especially for the associated function q.
The amount of information is often too excessive and little relevant, a
fact which does not ease the use of these numerical transformations.

Definition of the operator θ in the numerical case

A "simple" definition of θ can be written:

θ = sup
i∈I

(ψi − ζiζζ )

by using the numerical equivalents of the set union and difference operators.
However by doing so, a first problem appears. The subtraction of functions

is not really equivalent to the set difference. In the binary case, we had, for a
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sensible choice of the primitive:

∀i, j i �=�� j : ri ∩ rj = ∅

In the numerical case, it is not true any more. The residues ri and rj may have
a common support, which entails that inf(ri, rj) �= 0�� .

It follows that, in the numerical case, the definition of function q associated
to transformation θ is not as evident as in the binary case where every ri has a
different support.

Definition of a simplified q function

Let us define a simplified q function by observing the construction of the
transformed function θ and the evolution of this construction in every point x
of the domain of definition of the initial function f. To do so, let us come back
to the design of the transformations in the binary case by replacing set X by its
indicator function kX and by observing how the indicator function kri (x) of
the residues at point x evolves for each transformation step.

In the case of an indicator function, this evolution is obvious: all krj (x) are
equal to zero except the indicator function of the residue ri containing x. It can
be written:

q (x) = i + 1 : kri (x) �= 0��

if we replace the indicator of X by a two-level function (with b<a),

f(x) = a if x ∈ X

f(x) = b if not

the phenomenon does not change (Figure 1).

Figure 1. Residue and its indicator function

Let us take now the case of a general function f. In that case, there are
several values of index i for which the difference ri (x) = ψi (x) − ζiζζ (x) at
point x is different from zero.
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Therefore, we define a residual function q with a value at point x equal to
index i for which ri(x) is positive and maximal.

q = arg max(ri) + 1 = arg max (ψi − ζiζζ ) + 1
{q(x) = i + 1 : ri(x) > 0 and maximal}

If this maximum appears for several values of i, only the highest value will
be retained:

q(x) = {max(i) + 1 : ri((x) > 0 and maximal}
The ultimate erosion obtained by applying these definitions is illustrated

below (Figure 2).

Initial image Ultimate erosion Associated function

Figure 2. Ultimate erosion for a greytone image

Notice that, when the original image is more or less a two-level one, the
result is not very different from the one obtained by using the binary versions
of these operators on a thresholded image. The advantage of the approach is
to avoid this thresholding step (which in this particular case could be problem-
atic).

Obviously, it is not possible any more to entirely reconstruct the initial im-
age from its skeleton and the associated function as it was in the binary case.
One can however define a partial reconstruction �(f) of the initial function f in
the following way:

ρ (f) = sup
x∈E

(
θ (x)⊕Bq(x)

)
At every point x a cylinder is implanted, its base being a disc with a radius

equal to the value of the associated function in this point and its height being
given by the value of the residue at the same point.

4. New operators

All previous residues are residues of differences of erosions and openings.
One can however define many other operators in binary as well as in numerical
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Initial image Ultimate opening Granulometric function

Figure 3. Ultimate opening and granulometric function

cases from different primitive transformations ψi and ζiζζ . Indeed it is enough
that they depend on a parameter i and that they verify the relation ψi ≥ ζiζζ
to be "eligible". However, many of these transformations seem to be of low
interest because the obtained results are either too simple, or available by sim-
pler means. Nevertheless, some operators are really interesting. Some, in-
deed, provide self-evident residues but are far from being uninteresting when
the associated function is considered. Others, while presenting low interest in
binary, become very useful for greytone images. To illustrate this, let us in-
troduce two new residual operators named respectively ultimate opening and
quasi-distance.

Ultimate opening

Let us consider the residual operator ν where the primitives ψi and ζiζζ are
respectively an opening by balls of size i and an opening by balls of size i+1:

ψi = γiγγ

ζiζζ = γiγγ +1

ν = sup
i∈I

(γiγγ − γiγγ +1)

The operator ν does not present any interest in the binary domain. Indeed,
in that case, it is easy to show that it is equal to the identity. In the numer-
ical domain, it replaces the initial image by an union of the most significant
cylinders included in the sub-graph of the initial function.

The associated function s, even in the binary case, presents a bigger interest.
In every point x, s(x) is equal to the size of the biggest disk covering this
point x (binary case) or to the radius of the biggest significant cylinder of the
partial reconstruction covering (numerical case)(Figure 3). Function s is called
granulometric function.



28 MATHEMATICAL MORPHOLOGY: 40 YEARS ON

Figure 4 Quasi-distance
(right) of the initial image
(left)

Quasi-distance

In the previous definition, openings can be replaced by erosions. A new
residual operator τ is then defined, which interest lies also in its associated
function.

ψi = εi

ζiζζ = εi+1

τ = sup
i∈I

(εi − εi+1)

In the binary case, this operator does not present any interest because it
is equal to the identity and its associated function d is nothing else than the
distance function.

In the numerical case, the physical interpretation of the residue itself is not
very explicit. The associated function d is more interesting: it is very close
to a distance function calculated on the significant flat or almost flat zones
of the initial function. By significant, one means a zone corresponding to an
important variation of the erosion.

Figure 4 shows this transformation applied to an almost two-level image.
Even on this relatively simple image, one notices in certain places the appear-
ance of rather high values of this quasi-distance. These values come from
the erosion of relatively flat zones which appear when zones above have been
eroded and have disappeared (Figure 5). They correspond to “hung up” dis-
tance functions. When the initial function is arranged in terraces (flat zones
which are not extrema), its quasi-distance is not symmetric on the flat zones
which do not correspond to maxima.

Figure 5 Multi-level func-
tion and its quasi distance
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Different strategies can be used to correct this phenomenon. One promising
technique consists in looking for the zones where the quasi-distance is not 1-
lipschitzian and to correct these zones by an iterative approach.

Corrected quasi-distance

A classical distance function d is 1-lipschitzian. It means that, given two
points x and y, the following relation holds:

|d (x)− d (y)| ≤ ‖x− y‖
In particular, when x and y are two adjacent digital points, their distance is at

the most equal to 1. It is obviously not the case for the quasi-distance due to the
"hung up" distances and to the non symmetric distances on some plateaus. It
is however possible to force this quasi-distance to be 1-lipschitzian by means
of an iterative procedure of "descent of hung-up distances ". It consists in
subtracting from the function d distances larger than 1 between a point and its
neighbours (Figure 6).

For any point x where [d− ε (d)] (x) > 1 , do d (x) = ε (d) (x) + 1
The procedure is iterated until idempotence.

Figure 6. Quasi-distance before and after correction.

Applications

In the same way as the residues were used in set segmentation, their numeri-
cal versions as well as the new residues described above constitute remarkable
tools of granulometric description and of markers generation for segmenta-
tion. To illustrate the potentialities of these transformations, let us present two
applications in greytone segmentation.

Size distribution and segmentation of blocks

An application of granulometric functions consists in defining real size dis-
tributions of objects in an image without the necessity of extracting them be-
forehand. Furthermore, this size distribution is certainly much closer to the
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real size distribution of the analyzed objects than the size distribution obtained
by successive openings of the image.

Figure 7a represents a heap of rocks. A granulometric function can be built,
associated to the ultimate opening (Figure 7b, openings are isotropic). As the
value of every pixel corresponds to the size of the biggest opening which con-
tains this pixel, the histogram of the granulometric function (Figure 8) pro-
duces a size distribution curve very close to the real size distribution of blocks
(at least in 2D).

(a) (b) (c)

Figure 7. Blocks of rocks (CGES/ENSMP): a) original image; b) Granulometric function c)
Blocks marking .

Figure 8 Size distribution of
blocks (histogram of the gran-
ulometric image)

Granulometric functions can also be used to mark blocks. Then, markers
can be counted or used to perform segmentations of the image by watersheds.
The generation of these markers is made by performing on every threshold of
the granulometric function an erosion of a size proportional to the threshold
value. Figure 7c illustrates this algorithm.

Image segmentation

The second application will use quasi-distances. This application is only a
sketch of the possibilities offered by this type of tool.

One saw previously that the quasi-distance allows to build a distance func-
tion for the relatively flat and relevant zones of a greytone image. This property
is used here to exhibit the markers of these regions. Then these markers can
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Figure 9 Use of quasi-
distances in image segmenta-
tion.

be used to control the watershed transformation of the quasi-distance in order
to segment the homogeneous regions of the image. The various steps of the
algorithm are the following (Figure 9):

Computation of the quasi-distance of the initial image f.
Image inversion and computation of the quasi-distance of fcff .
Supremum of the two quasi-distances.
A threshold of this new function at a given level i allows the extraction
of the homogeneous regions of the image of size larger than I.
Computation of the watershed transform of the supremum controlled by
the previous markers.

The calculation of the quasi-distance of the inverted image is compulsory to
exhibit the dark regions which can correspond to minima of the image. One
saw previously that, in that case, quasi-distances are either equal to zero or
“hung up”. The calculation of this quasi-distance after inversion allows to take
into account the real sizes of these structures. Notice also that this segmenta-
tion does not use the image gradient.

5. Conclusions

The definition of numerical transformations based on residues, not only pro-
vides the extensions of efficient tools in binary and numerical morphology but,
furthermore, allows to introduce new operators whose potentialities are enor-
mous. The importance of the doublet constituted by the transformation and by
its associated function has also been emphasized, this last one being sometimes
more interesting in numerical morphology than in binary one.

The extension of these notions and especially the definition of a simplified
associated function were possible by changing our point of view: rather than
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to focus on the neighborhood relationships between the image points, we point
out the modifications which occur vertically in a point as we "unwind" the
transformation, the most significant changes and especially the moment when
they occur constituting the core of information provided by these operators.

The applications presented as illustrations of the potentialities of the granu-
lometric functions and of the quasi-distances still deserve additional develop-
ments. However, the efficiency of these operators can already be verified and
a large number of tracks of future applications can be considered.

The granulometric function is a powerful segmentation and filtering tool. By
associating every point of the image to the size of the highest cylinder included
in the sub-graph, it allows ipso facto to adapt the size of the filters which are
applied in each of its thresholds. It is also possible to eliminate too deeply
covered components or, on the contrary, to extract non covered blocks. This
capability is interesting in numerous applications where objects appear in heap
and where random sets models (“dead leaves” models notably) are used. The
topology of every threshold of the granulometric function and in particular
the presence of holes is very important. These holes indicate generally the
presence of superimposed structures. This constitutes an important tool for
describing stacked structures.

The quasi-distance is the missing link between sets distance functions and
a tool allowing the direct extraction of dimensional information on the homo-
geneous regions in greytone images. The efficiency of the distance function
to generate segmentation markers is well known in the binary case. Quasi-
distance allows to extend this capability to greytone images. In fact, this op-
erator performs many tasks at the same time: it is a filter which equalizes the
homogeneous regions of the image; it quantifies the size of these homoge-
neous regions and finally, it enhances the most contrasted regions in the image,
in a similar way a waterfalls algorithm acts. It is not so surprising that seg-
mentations obtained with this operator are very close to those provided by the
hierarchical segmentation by waterfalls. However, while the waterfalls algo-
rithm proceeds by grouping regions, the use of quasi-distance leads directly
to a similar result. One can say that, whereas the approach by waterfalls is
a “bottom-up” approach, quasi-distance supplies at once a “top-down” hierar-
chical organization [2].
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Abstract Path openings and closings are algebraic morphological operators using fami-
lies of thin and oriented structuring elements that are not necessarily perfectly
straight. These operators are naturally translation invariant and can be used in
filtering applications instead of operators based on the more standard families of
straight line structuring elements. They give similar results to area or attribute-
based operators but with more flexibility in the constraints.

Trivial implementations of this idea using actual suprema or infima of mor-
phological operators with paths as structuring elements would imply exponential
complexity. Fortunately a linear complexity algorithm exists in the literature,
which has similar running times as an efficient implementation of algebraic op-
erators using straight lines as structuring elements.

However even this implementation is sometimes not fast enough, leading
practitioners to favour some attribute-based operators instead, which in some
applications is not optimal.

In this paper we propose an implementation of path-based morphological
operators which is shown experimentally to exhibit logarithmic complexity and
comparable computing times with those of attribute-based operators.

Keywords: Algebraic morphological operators, attributes, complexity.

Introduction

Many problems in image analysis involve oriented, thin, line-like objects,
for example fibres [22, 20], hair [19, 15], blood vessels [8], grid lines on
stamped metal pieces [21] and others.

For bright and elongated structures, a common approach for detecting these
features is to use to use an infimum of openings using lines as structuring el-
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ements oriented in many directions [10]. The result is an isotropic operator if
the line structuring element lengths are adjusted to be independent of orienta-
tion [11]. Recursive implementations of openings at arbitrary angles have been
proposed and yield linear-time algorithms [17] with respect to the length of the
structuring elements. If desired features are very thin, a translation-invariant
algorithm should be used [18].

Area and attributes openings [1, 12, 23] are also often used for the anal-
ysis of thin structures. An area opening of parameter λ is equivalent to the
supremum of all the openings by connected structuring elements of area λ.
Obviously this includes all the straight line structuring elements of this length.
Practitioners often note that using only straight line structuring elements re-
moves too much of the desired features, while using area operators does not
allow them to distinguish between long and narrow features on the one hand,
and short compact ones on the other. It is sometimes, but not always possible
to combine these operators, or to use morphological reconstruction to obtain
the desired outcome.

Recently efficient morphological operators equivalent to using families of
narrow, elongated but not necessarily perfectly straight structuring elements
were proposed in [3] and [6], together with an algorithm for computing the
operator with linear complexity with regards to the length of the structuring
elements. These path operators constitute a useful medium between operators
using only straight lines and those using area or other attributes.

In the remainder we propose a significantly faster algorithm for implement-
ing path operators, with observed logarithmic complexity with respect to the
length of the structuring elements.

1. Path-based morphological opening

The theory of path openings is explained in detail in [6] and in a shorter
fashion in [5]. We only summarize the main points here.

Adjacency and paths

Let E be a discrete 2-D image domain, a subset of Z
2. Then B = P(E) =

2E is the set of binary images and G = T E the space of grey-scale functions,
where T is the set of grey values. We assume E is endowed with an adjacency
relation x �→ y meaning that there is a directed edge going from x to y. Using
the adjacency relation we can define the dilation δ({x}) = {y ∈ E, x �→ y}.
The L-tuple a = (a1, a2, ..., aL) is called a δ-path of length- L if ak+1 ∈
δ({ak}) for k = 1, 2, ..., L − 1. Given a path a in E, we denote by σ(a) the
set of its elements, i.e: σ(a1, a2, ..., aL) = {a1, a2, ..., aL}. We denote the set
of all δ-paths of length L by ΠL, and the set of δ-paths of length L contained
in a subset X of E is denoted by ΠL(X).
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Figure 1. A set X ⊆ E (black points on the left) and its opening α6(X) (black points on the
right). Unfilled points on the right have been discarded. The underlying adjacency graph is in
light grey.

Path openings

We define the operator αL(X) as the union of all δ-paths of length L con-
tained in X:

αL(X) =
⋃
{σ(a),a ∈ ΠL(X)} (1)

It is easy to establish that αL has all the properties of an opening. Figure 1
offers an illustration. For an adjacency graph similar to that of this figure, and
for an unbounded image, there are 3L−1 distinct paths of length L starting from
any point. The path opening αL is in fact the supremum of the morphologi-
cal opening using these paths as structuring elements, which would suggest an
inefficient way to compute the operator. Fortunately [6] proposes a useful re-
cursive decomposition which allows the operator αL to be computed in linear
time with respect to L (not presented here).

Grey-level operator and practical considerations

The binary operator defined above extends to the grey-level domain in the
usual way by replacing the union with a supremum. The recursive decomposi-
tion in [6] also extends to the grey-level domain.

The current definition of a path opening with an adjacency graph such as
in Fig. 1 is not sufficiently useful in a context where features are distributed
isotropically : only paths generally oriented North – South will be preserved
by the opening. We need to take a supremum with openings using adja-
cency graphs oriented East – West, North-East – South-West and North-West
– South-East. More complex adjacency graphs can also be devised for more
constrained path operators, however in the remainder we assume this basic
scheme.
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2. Ordered algorithm

The grayscale path opening algorithm presented in this paper is based on a
few simple observations. Firstly, the principle of threshold decomposition al-
lows the construction of grayscale morphological operators from binary mor-
phological operators. Secondly, in the case of grayscale path openings it is
possible to efficiently compute the set of binary path openings for all thresh-
olds in sequence.

Threshold decomposition

Here we equivalently redefine binary images as functions of the form b :
E → {false, true} rather than subsets of the image domain E. Then, given a
grayscale image g ∈ G, a threshold operator TtTT : G → B with threshold t, and
a binary opening γB : B → B, there exists a grayscale opening γG : G → G
such that for all thresholds t we have TtTT ◦ γG = γB ◦ TtTT , where ◦ is the
composition operator.

This grayscale opening γG(g) may be constructed explicitly by ‘stacking’
the results of the binary opening applied to each threshold of the original im-
age. This stacking assigns to each pixel p the highest threshold t for which the
binary opening γB ◦ TtTT (g) remains true.

Updating binary path openings

The second observation is that the binary images produced in this construc-
tion tend to vary little between sequential thresholds. In the case of path open-
ings we will show how to efficiently update the result of the binary opening
γB ◦ TtTT (g) from the result of the binary opening at the previous threshold
γB ◦ TtTT −1(g).

For brevity we here describe only the case of North – South paths. In this
case, for a binary image b we store at each pixel p two values: the length λ−[p[[ ]
(not including p itself) of the longest path travelling upward from pixel p, and
the length λ+[p[[ ] of the longest path travelling downward from pixel p. Then
the length of the longest path passing through pixel p (where b[p[[ ] = true)
is λ[p[[ ] = λ−[p[[ ] + λ+[p[[ ] + 1. If b[p[[ ] = false then we define λ[p[[ ] = 0. The
recursive computation of λ− and λ+ is described in more detail in [6]. Here, in
short, we may state that in the North – South case, if we denote p = (p1, p2):

λ−[p[[ ] = 1 + max(λ−[(p1 − 1, p2 + 1)], λ−[(p1, p2 + 1)], λ−[(p1 + 1, p2 + 1)]) (2)

λ+[p[[ ] = 1 + max(λ+[(p1 − 1, p2 − 1)], λ+[(p1, p2 − 1)], λ+[(p1 + 1, p2 − 1)]) (3)

where b[p[[ ] = true and 0 otherwise. Note that this allows us to easily compute
the opening transform for a given threshold, i.e. the operator which at each
pixel associates the length of the longest path going through that pixel.

In order to update the binary opening γB ◦ TtTT (g) given the result from the
previous threshold γB ◦ TtTT −1(g), we must compute the new binary opening
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transform λ and hence λ− and λ+. Rather than recomputing these from the
image b = TtTT (g), we may compute the changes to λ− and λ+ due solely to
the pixels which made the transition from true to false between TtTT −1(g) and
TtTT (g). This is performed in the following steps:

Initialisation:

– Set all pixels with g[p[[ ] = t to active and enqueue

For each row from top to bottom:

– For all active pixels p in this row:

∗ Recompute λ−[p[[ ] according to Equation 2

∗ If λ−[p[[ ] changed, set as active and enqueue the dependent pixels (p1 −
1, p2 + 1), (p1, p2 + 1), (p1 + 1, p2 + 1)

For each row from bottom to top:

– For all active pixels p in this row:

∗ Recompute λ+[p[[ ] according to Equation 3

∗ If λ+[p[[ ] changed, set as active and enqueue the dependent pixels (p1 −
1, p2 − 1), (p1, p2 − 1), (p1 + 1, p2 − 1)

The queueing system for active pixels consists of a first-in-first-out (FIFO)
queue for each row as well as a queue of rows which contain active pixels. This
queueing system is necessary to comply with the dependencies in Equations 2
and 3 and also avoids inefficiently scanning the entire image.

Recursive ordered path opening

Here we present an algorithm to compute a grayscale path opening. L de-
notes the desired path length. Note that, as we are interested in the specific
path length L, path lengths λ−, λ+ greater than L− 1 may be treated as equal
to L − 1 in Algorithm 2. This limits the propagation of changes to the binary
opening transform and hence improves the efficiency of the grayscale path
opening.

Initialisation:

– Sort the pixels by their intensities

– Set b[p[[ ] = true for all pixels p

– Compute λ+, λ− from b.

For each threshold t in T :

– Using Algorithm 2, update λ−, λ+ for the new threshold

– For all active pixels p whose path length λ[p[[ ] consequently dropped below L, set
γG(g)[p[[ ] = t

Sorting the pixels by their intensities is a necessary preprocessing step in
order to efficiently locate the pixels whose threshold changes in the step t−1→
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t. For integer data a linear-time sorting algorithm such as the Radix sort is
recommended [9]. Alternatively a suitable priority queue data structure [2]
can be used.

A simple heuristic has been found to further improve the efficiency of this
algorithm in practice. When the maximal path length of a pixel p drops below
L, it cannot contribute to a path of length L or greater at any further thresh-
old. Therefore we may remove this pixel from further consideration by setting
b[p[[ ] = false. We refer to this as the length heuristic in the remainder of this pa-
per. We believe that the average running time of this algorithm is O(N log L)
on images containing N pixels. However the formal derivation of this average
running time would require the selection of an appropriate stochastic image
model and is not pursued in this paper.

3. Grayscale opening transform

The algorithm presented in Section 2 may be extended in a simple manner
to compute the grayscale path opening transform, i.e. the operator which at
each pixel associates the length of the longest path going through that pixel.

In the course of Algorithm 2, the path opening transforms for all binary
thresholds were computed in sequence. Instead of discarding these intermedi-
ate results we may store them in compressed form allowing them to be queried
at a later point. At each threshold, those active pixels whose maximal path
length λ[p[[ ] has decreased store a point (t, λ[p[[ ]) in a linked list. This linked list
is monotonically increasing in t and monotonically decreasing in λ[p[[ ]. Once
computed, we may query this structure with any desired path length to extract
the associated grayscale path opening.

Initialisation: As per Algorithm 2

For each threshold t in T :

– Using Algorithm 2, update λ−, λ+ for the new threshold.

– For all active pixels p whose path length λ[p[[ ] decreased, append the node (t, λ[p[[ ])
to the linked list at pixel p.

This algorithm requires the same order of computation as Algorithm 2, that
is O(N log L). The number of linked list nodes generated in Algorithm 3 must
be less than the number of operations in Algorithm 2, and therefore the average
memory required by Algorithm 3 is O(N log L).

4. Results

Figure 2 illustrates the usefulness of path operators. On this toy example we
wish to eliminate the compact round object and retain the line-like features.
An area opening is not sufficient in this case because the compact round noise
is too big and one feature is eliminated before the noise as the parameter in-
creases. Conversely the supremum of openings by lines suppresses features
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that are not perfectly straight. On the other hand the path opening delivers the
expected result. Note that path openings do not afford control over the thick-
ness of detected paths, both the thin wavy line and the thicker straight line are
detected. Path of various thickness be separated using standard top-hats for
example.

Input Area Lines Path

Figure 2. Toy example: On the input we wish to retain the line-like features while eliminating
compact noise. Only the path opening works in this case.

A more realistic example is shown in Fig. 3. We wish to detect the small thin
fibres in this electron micrograph present at the bottom of this image. The large
fibres are detected by a different method [20] which is of no interest here. The
thin fibres are present on a noisy background which requires some filtering. A
supremum of openings by lines is too crude here (result not shown). An area
opening does not eliminate enough of the noise, but a path opening works as
expected.

Discussion

Results obtained by path openings depend greatly on the adjacency graph. It
is for example possible to define narrower or wider cones for paths as discussed
in [6]. Using more narrower cones one can define paths that are increasingly
similar to lines, and obtain results similar to regular openings by line structur-
ing elements. Using fewer wider cones one can obtain results more similar to
area openings.

In the results above we used 90 degree angle cones which are easy to imple-
ment and seem to strike a good balance between area openings and line-based
openings.

Timings

Table 1 shows the running times of the proposed algorithm compared with
various alternatives. We observe that the proposed ordered path opening im-
plementation has a running time approximately logarithmic (plus a constant)
with respect to L, while both the recursive path opening and the supremum
of openings by lines have approximately linear running times. The individual
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Input Noisy top-hat

Area opening Path opening

Figure 3. Electron micrograph of glass fibres: to detect the small thin fibres in the bottom of
the image, a white top-hat is useful but noisy. When this top-hat image is filtered by an area
opening some compact noise remain while a path opening yields a better result.

openings by lines in the latter algorithm are all running in constant time irre-
spective of L, but for larger L more orientations need to be explored. Note also
that the presented algorithm for the supremum of opening by lines is not the
translation-invariant implementation, which would be slower still. The area
opening algorithm seems to converge to a constant-time algorithm with low
constant. The area parameter was simply L, although k × L with k small and
constant (e.g: 3) could have been chosen without significantly affecting the
result.

Memory demands for these algorithms are all low except the recursive path
opening implementation which requires an amount of memory proportional to
LN , with N the number of pixels in the image.

We observe that the area opening is the fastest algorithm, but that the pre-
sented path opening algorithm comes second and significantly faster than the
other two algorithms for most useful values of L.
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Table 1. Comparison of algorithm running times. From left to right the columns are the or-
dererd path opening presented in this paper, the recursive path opening of Heijmans et. al,
the supremum of openings by lines and the area opening. Timings are in seconds, image was
560×510×8-bit. Processor was a single Pentium IV 1.7GHz.

L Ordered PO Recursive PO Supremum Lines Area
1 0.56 0.08 0.14 0.13
5 0.69 0.54 0.65 0.17
10 0.73 1.16 1.38 0.17
50 0.90 14.24 3.29 0.21
100 0.93 30.74 11.43 0.22

5. Conclusion and future work

We have presented a new, ordered implementation of the path opening and
closing operators. This operator is identical to the supremum (resp. infimum)
of openings (resp. closing) by a family of structuring elements described as
oriented paths. The family of paths is of exponential size with respect to their
length L, but we have proposed a new implementation with experimental log-
arithmic complexity with respect to L, improving on a known recursive imple-
mentation except for very small L. The proposed method is also significantly
faster than the usual operator by unions/intersection of lines s tructuring ele-
ments used for the study of oriented structures.

Area operators are still faster than the proposed algorithm, by a nearly con-
stant factor of 4 to 5. However, the new algorithm is fast enough for many
applications and can be used in cases where using an area or attribute operator
is not appropriate, e.g. in the presence of sufficiently large compact noise.

The path operators are intuitive, translation-invariant methods useful for the
analysis of thin, elongated but not necessarily perfectly straight structures.

Future work will include incomplete path openings, i.e. paths which are not
necessarily connected, and work on a constant-time algorithm.
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Abstract This paper deals with the combination of classical morphological tools and mo-
tion compensation techniques. Morphological operators have proven to be ef-
ficient for filtering and segmenting still images. For video sequences however,
using motion information to modify the morphological processing is necessary.
In previous work, iterative frame by frame segmentation using motion informa-
tion has been developed in various forms. In this paper, motion is used at a very
low level, by locally modifying the shape of the structuring element in a video
sequence considered as a 3D data block. Motion adapted morphological tools
are described and their use is demonstrated on video sequences. Moreover, the
features of the motion model best suited to our purpose are also discussed.

Keywords: Mathematical Morphology, Motion compensation, Optical Flow, Structuring El-
ement

Introduction

Mathematical morphology provides very efficient tools for tasks like filter-
ing (alternate sequential filters, levelings, etc) and for segmenting still images.
These tools have been also used for 3-dimensional datasets like medical vol-
ume imaging where they perform equally well.

Segmentation tools have also been designed to segment video sequences,
and to extract video objects ([4], [3]). These segmentation tools mostly dis-
sociate computation performed along the time axis and along the space axes:
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segmentation is done frame by frame, and temporal correlation in the video
sequence is exploited by propagating segmentation results along time. For in-
stance, markers are computed from a segmentation of a frame t, and are used
to segment frame t + 1 ([7]). Alternatively, frames are segmented separately
beforehand, and the resulting segmentation graphs are matched in a second
step ([1], [5]). In these examples, the temporal correlation between the frames
is weakly enforced, and as a result the boundaries of the segmented video ob-
jects tend to flicker. Another approach is 3D filtering. This approach is more
promising because it enforces a stronger temporal correlation between frames.

However either method is limited by time aliasing: when large displace-
ments occur between frames, pixels belonging to the same object in time are
not connected together and segmentation can fail. For similar reasons, video
sequence filtering is also bound to be less efficient.

Our way around this limitation consists in introducing motion information
provided by a motion estimation method, and incorporating this motion infor-
mation to modifiy locally the grid connectivity of the 3D video volume, so that
pixels that belong to the same object stay connected together along the time
axis.

In a first part, we will detail the 3D morphological filtering, and why they are
not sufficiently efficient. In the second part, new structuring elements follow-
ing the optical flow will be defined that answer the issue of temporal aliasing,
and example and results will be given in a third part. Then we will discuss the
issue of the influence of the motion model on the quality of our new structuring
elements.

1. 3D morphology on video sequences

3D morphology as already applied for volumic data can be applied to video
sequences. In a standard setting, the grid is square and the neighbourhood
at (t, x, y) is (t, x, y)+{(0, 0, 0),(±1, 0, 0),(0,±1, 0),(0, 0,±1)} and is oc-
taedric. The corresponding structuring element is the set S = {(δt, δx, δy) :
|δx|+ |δy|+ |δt| ≤ 1}.

However, the contents of a video sequence does not behave the same way
along spatial axes and along the time axis. While the video sequence is at most
only slightly aliased along spatial axes, it can be very strongly aliased along
the time axis.

As a result, a moving object may not be considered with respect to the result-
ing connectivity as a single connected component. This is illustrated in fig. 2.
On both left and side parts, the grayed squares represent a moving object. On
the left figure, an unslanted structuring element is represented. According to
the resulting connectivity, the moving object is not a single connected compo-
nent. If the structuring element is slanted in order to take into account visual
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motion (right figure), the resulting connectivity then recognizes the object as a
single connected component along time.

Likewise, the ignorance of motion information can make a morphological
filtering of a video sequence perform badly. This illustrated in fig. 1 where a
single erosion of the video sequence with the above standard structuring ele-
ment results in foreman having 3 nostrils.

Figure 1. Erosion of the foreman sequence taken as a 3D-block by an octaedric structuring
element (frame 2).

x

t

x

t

Figure 2. Time aliasing and the effect of different structuring elements. On the left, a standard
structuring element, on the right, a structuring element slanted along optical flow.

It is thus necessary to incorporate the motion information into the definition
of the morphological operators in order to incorporate temporal redundancy
without introducing time aliasing problems and artifacts. Some kind of tempo-
ral morphological operators have been proposed (ex : [1]), but they often lack
the generality they have in the spatial domain, and they often assume that the
spatial segmentation has already been done. In this paper, we introduce mo-
tion information in a very early phase, in order to modify locally the structuring
elements and make any morphological operator “motion-aware”.
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2. 3D morphology slanted along optical flow

To construct a new class of morphological operators that take into account
the motion along time, it is sufficient to (1) define the shape of the basic dis-
crete structuring elements, and then (2) to define with this the basic operators
(erosion and dilation). Once this is done, we can unroll a wide set of morpho-
logical tools, including levelings and watershed.

We assume that at each time t, and for each pixel (x, y), we know a for-
ward and backward motion vector v+(t, x, y) and v−(t, x, y) that have been
measured by some optical flow technique. These vectors are supposed to have
integer coordinates. The interpretation of these motion vectors is that the pixel
at (x, y) at time t moves at time t + 1 to (x, y) + v+(t, x, y) and was at time
t−1 at (x, y)+v−(t, x, y). How these vectors are computed is explained with
more detail in Sect. 4. From this, we define forward and backward motion
operators:

M+(t, x, y) = (t + 1, x + v+
x (t, x, y), y + v+

y (t, x, y)) (1)

M−(t, x, y) = (t− 1, x + v−x (t, x, y), y + v−y (t, x, y)) (2)

where v+
x and v+

y are the coordinates of vector v+, and likewise for v−. We
define Mp as being the identity when p = 0, (M+)p if p > 0 and (M−)(−p)

else.
With this, a standard neighbourhood at location (t, x, y) which is assumed

to be:

N(t, x, y) = {(t + δt, x + δx, y + δy) : (δt, δx, δy) ∈ S} (3)

is replaced with a slanted neighbourhood:

N ′(t, x, y) = {M δt(t, x + δx, y + δy) : (δt, δx, δy) ∈ S} (4)

In practice, we also allow the motion field to take a special value “discon-
nected”, meaning that a pixel disappears at the next frame if v+ takes such
a value, or just appeared at frame t if v− takes such a value. We can then for
instance decide that whenever v+(t, x, y) takes such a value, M+(t, x, y) is de-
fined to be (t, x, y) instead of some (t + 1, x′, y′) (and likewise for M−). This
can result in the slanted structuring element having less pixels than a standard
structuring element.

Some extra care is then required to define dilations and erosions of a video
sequence f . The classical implementations

ε(f)(t, x, y) = min
S′(t,x,y)

f and δ(f)(t, x, y) = max
S′(t,x,y)

f

do not guarantee that the resulting operators are dual: the structuring element
are not necessarily translation-invariant. Instead, one of both is defined as
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above (say the erosion), and the other (the dilation) is defined as the explicit
dual of the first. The resulting erosion and dilation are computed in practice as
explicited below:

Erosion algorithm – minimum collect
for each (t, x, y) {

IoutII (t, x, y) := +∞
for each (t′, x′, y′) ∈ S′(t, x, y) {

IoutII (t, x, y) := min(IoutII (t, x, y), IinII (t′, x′, y′))
}

}
Dilation algorithm – maximum send

for each (t, x, y) {
IoutII (t, x, y) := −∞

}
for each (t, x, y) {

for each (t′, x′, y′) ∈ S′(t, x, y) {
IoutII (t′, x′, y′) := max(IoutII (t′, x′, y′), IinII (t, x, y))

}
}

Once these operators have been defined, all other morphological operators
can be deduced by applying again standard definitions in terms of dilations and
erosions.

3. Experiments

We have experimented the new structuring element design with some sim-
ple morphological tools, by modifying a classical octaedric structuring ele-
ment. They were applied on blocks made by the ten first frames of the foreman
sequence, and of the mobile and calendar sequence, in CIF resolution.

Comparison between erosion of size 1 on the Foreman sequence (Fig. 3 and
Fig. 4) show clearly the interest of the motion compensation in morphological
filtering, at least from a visual quality point of view. While in the classic case,
the erosion truly damages the pictures, in the motion-compensated case, the
quality is comparable with a 2D erosion, except that we have taken advantage
of the temporal structure of the sequence.

The same is true for openings and closings. Opening of size 3 on the Mobile
and Calendar sequence (Fig. 5), when applied as usual, would remove the
white points on the ball, that would not have been removed by a 2D opening,
and which are not removed by a motion-compensated opening (Fig. 6). On the
other hand, closing of size 3 (Fig. 7 and Fig. 8) shows a trail left by the white
points of the ball, which also degrades the visual quality of the pictures.
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Slightly more advanced test have been done by applying the same segmenta-
tion protocol to the Foreman sequence (Fig. 9 and Fig. 10). Results show that
the object boundaries are more stable in time using our new scheme, with less
variations of object size. Advantage over segmenting separately the different
pictures is that we also get the temporal connectivity.

Figure 3. Foreman (frames 3-4): Erosion of size 1 using the classic octaedric structuring
element.

Figure 4. Foreman (frames 3-4): Erosion of size 1 using the motion-compensated octaedric
structuring element.
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Figure 5. Mobile and Calendar (frames 3-4): Opening of size 3 using the classic octaedric
structuring element.

Figure 6. Mobile and Calendar (frames 3-4): Opening of size 3 using the motion-
compensated octaedric structuring element.

Figure 7. Mobile and Calendar (frames 3-4, detail): Closing of size 3 using the classic
octaedric structuring element.
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Figure 8. Mobile and Calendar (frames 3-4, detail): Closing of size 3 using the motion-
compensated octaedric structuring element.

Figure 9. Foreman (frames 3-4): Segmentation using the classic octaedric structuring ele-
ment.

Figure 10. Foreman (frames 3-4): Segmentation using the motion-compensated octaedric
structuring element.

4. Influence of the motion model

Obviously, the quality of the structuring elements defined is dependent on
the motion model, and on the quality of the motion analysis. One important
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feature of the motion measuring system is that it should not introduce disconti-
nuities in the flow that do not actually correspond to a true motion discontinuity
in the video sequence. Discontinuous flow fields introduce visible artifacts in
morphological filtering, by introducing discontinuities in the filtered sequence.
This thus disqualifies block-matching.

Region-based motion estimation sounds appealing, but since regions are to
be segmented with motion-based morphological tools, this becomes a chicken-
and-egg problem. We thus decided to use a motion model represented by the
warping of a lattice, such as TMC ([6],[2]) or CGI ([8]). With such models,
it is possible to obtain accurate flow fields, and the resulting flow field is al-
ways continuous. These flow models are typically bijective and easy to invert
(this might be untrue on the picture boundary). The flow vector coordinates
obtained with methods relying on such models are usually non-integer. They
are thus rounded at each pixel to the closest integer. The estimation is done by
a multi-scale resolution, minimizing the error prediction between filtered and
downsampled versions of the pictures. Between two resolutions, the motion
field is refined by spliting each tile of the lattice into four smaller tiles (Fig.
11).

Figure 11. Refining of the lattice warping. Left : lattice obtained at scale n. Middle : splitting
of the tiles. Right : refinement

5. Conclusion

In this paper, we have defined a whole new category of structuring elements,
which are built using the optical flow to find the temporal neighbours. The re-
sults of some experiments with basic morphological operations are promising.
However, several issues are to be further investigated. The motion model de-
scribed in Sect. 4 does not allow to describe discontinuous motion, as would be
necessary around object occlusions. Also, when using motion estimation, it is
natural to think about subpixel accuracy. Can it be implemented? does it pro-
vide additional accuracy in segmentation or filtering? if yes, does it mean that
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some of these findings might be used successfully for enhancing still image
segmentation tools?
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Abstract Interpolation is an important step in many applications of image processing.
This paper presents a morphological interpolation technique for binary images
based on the median set concept. A characteristic of our method is that it treats
recursively the connected components of input slices. This technique uses the
minimal skeleton by pruning (MSP) as reference points for translating connected
components; this fact guarantees the non-empty intersection between them.

Keywords: Mathematical Morphology, Image Processing, Image Analysis, Interpolation,
Median Set.

Introduction

In many applications of imaging, data are composed of different slices. In
particular, this situation occurs when we process volumetric images and video
data. In the first case, slices arise when the spatial dimension is sampled,
whereas in the second case slices correspond to different instants of time. Fre-
quently, the distance between adjacent elements within adjacent slices is much
larger (until 10 times) than the distance between adjacent image elements in
a slice. Thus, it is often useful to be able to interpolate data between adja-
cent slices, and many interpolation techniques have been developed [5] for this
purpose.
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The objective of interpolation techniques is normally to produce a set of in-
termediary slices between two known ones. Particularly, there exists a recent
category of interpolation techniques, called shape-based interpolation [13],
which attempt to incorporate knowledge about the image structures to the in-
terpolation process. In mathematical morphology [7][8][12][2], interpolation
is considered as a particular case of shape-based interpolation techniques [13]
[1][6][9][10][3][4].

This paper presents a morphological interpolation technique based on me-
dian sets [11][1][3][4]. Our algorithm is characterized by the recursive treat-
ment of the connected components (CCs) of input slices. Besides, due to the
fact that the CCs to be interpolated must overlap, our technique uses minimal
skeleton by pruning (MSP) as reference points for translating them and force
the overlapping of the CCs. MSP points are also used for matching purposes.

This paper is organized as follows. Section 1 provides some definitions and
concepts about median sets. In Sec. 2, we present our technique, including a
description of its main steps, and Sec. 3 discusses and compares some experi-
mental results.

1. Theoretical Background

In this section, we provide some definitions and the basic concepts about
median sets.

Binary images, Slices and Connected Components. As mentioned above,
our technique interpolate binary images, which are functions f : D→ {0, 1},
where D ⊂ Z2, 0 defines a background point, and 1 defines a foreground point.

The term slice refers to each bi-dimensional image used as input or gener-
ated as output by the interpolation method. Each slice can contain 0 or more
disjoint connected components of image pixels. We will see that our interpo-
lation technique processes both the CCs of the foreground (“grains”) and the
CCs of the background (“holes”). In this work, 8-connectivity is assumed.

Median Set. The notion of median set is an extension of the influence zone
(IZ) concept, which is defined in the following. Let us consider two sets X and
Y , where X ⊆ Y . The influence zone of X with respect to Y C (which is also
called the influence zone of X inside of Y ) is:

IZY (X) = {x : d′(x,X) ≤ d′(x, Y C)} (1)

where d′ is the distance between a point and a set. The distance d′(p, A) is
equal to min{d(p, a) : a ∈ A}, where d is the Euclidean distance between two
points.



Recursive Interpolation Technique For Binary Images 55

In the case of partially intersected CCs (i.e., X ∩ Y �=�� ∅, X �⊆ Y and
Y �⊆ X), it is possible to extend the notion of median set as the influence zone
of (X ∩ Y ) within (X ∪ Y ):

M(X, Y ) = IZ(X∪Y )(X ∩ Y ) (2)

Using morphological dilations and erosions, the median set can be defined as:

M(X, Y ) =
⋃
λ≥0

{δλ(X ∩ Y ) ∩ ελ(X ∪ Y )} (3)

where δλ and ελ represent, respectively, the dilation and the erosion using a
≥

disk of radius λ.

Interpolation sequence. Using the median set, the interpolation sequence
is obtained recursively. If we denote X and Y as the input sets, n as the level
of recursion (assume n is a power of 2) and KiKK as the output sets, the sequence
of interpolated sets can be defined as:

K0KK = X; KnKK = Y ; Kn
2

= M(K0KK , KnKK ); Kn
4

= M(K0KK , Kn
2
); ... (4)

2. Description of the Technique

In this section, we will present our binary image interpolation technique
based on the notion of median sets. This method is motivated by the following
idea. Suppose A1 and B1 are two sets of input slice 1, such as B1 ⊂ A1; and
suppose C2CC and D2 are two sets of input slice 2, such as D2 ⊂ C2CC . If there is
a correspondence between these two pairs (i.e., we want to interpolate A1 with
C2CC , and B1 with D2), then the following condition should be satisfied:

Inter[A1 \B1, C2CC \D2] = Inter[A1, C2CC ] \ Inter[B1, D2] (5)

where “Inter” denotes our interpolation technique, and “\” symbolizes the set
difference.

We consider Eq.(5) as fundamental in order to consider inclusion relation-
ships between interpolated structures. Our technique can be viewed as a gener-
alization of that expression, where the CCs of the slices are treated recursively.

The general algorithm pseudo-code is shown in Fig. 1. The algorithm is
divided in three main steps: (1) the separation of “outer” CCs within the input
slices, (2) the matching between the “filled” CCs of input slices, and (3) the
interpolation step.

As can be observed in Fig. 1, our algorithm uses “filled” CCs. If G is a
CC of an image, the filled CC of G, denoted by FG, will be the union of G
and the holes surrounded by G.

At the first step of the recursion, the “outer” CCs are extracted. These are
the filled grains that are adjacent to the background parts that touch the image
borders. The results of the separation step of the algorithm are two vectors of
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INTERPOLATOR (Current_S1: Slice ,Current_S2: Slice): Slice {
// (1) Separation of outer CCs
OS1 = Extract_Outer_CC(Current_S1); // Vector of CCs
OS2 = Extract_Outer_CC(Current_S2); // Vector of CCs
// (2) Matching
P = MATCHING (OS1,OS2);
// P is a vector of pairs of matched CCs and their MSPs
S = ∅; // initialize binary image result (set notation)
// (3) Interpolation
WHILE (P �=�� ∅) {

(FS1, MSP1, FS2, MSP2) = Extract_Pair_CCs (P);
// (FS1, FS2) is a pair of matched filled CCs
// Computation of median set MS
MS = MSF (FS1, MSP1, FS2, MSP2);
// MSF : median set function using MSPs
// Holes, if exists, are stored as CCs
HS1 = (FS1 ∩ Current_S1)

C \ (FS1)
C ;

HS2 = (FS2 ∩ Current_S2)
C \ (FS2)

C ;
// Resulting image is updated; inner structures
// (holes and grains), if exists, are treated recursively
IF ((HS1 = ∅) and (HS2 = ∅))

S = S ∪ MS;
ELSE

S = S ∪ (MS \ INTERPOLATOR(HS1, HS2)); // Recursive call
}
RETURN (S);

}

Figure 1. General interpolation algorithm.

images, OS1 and OS2, where each element of each vector contains one outer
CC of its corresponding slice.

The final statement of the while loop in the pseudo-code is, in fact, the
extension of expression (5) to consider recursively all the CCs of the input
images.

In successive iterations of recursions, the operations are confined to the
mask defined by the input parameters Current_S1 and Current_S2, and the
“outer” CCs are computed within these binary images (masks).

Matching CCs

This step allows to determine which pairs of outer CCs (one from input
slice 1 and the other one from input slice 2) are related to each other. The
CC matching is mainly achieved by using the next criterion: an outer CC i of
slice 1 (OSi

1) matches an outer CC j of slice 2 (OSj
2) if:

δλi(OSi
1) ∩OSj

2 �=�� ∅ or OSi
1 ∩ δλj (OSj

2) �=�� ∅ (6)
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where λi and λj represent the radius of OSi
1 and OSj

2, respectively. The λ
parameter is computed as follows: if G is an outer CC and x is its MSP point
(MSP will be commented below), the radius of G is calculated as:

λ =
∧
α

{α : G ⊆ δα(x)} (7)

It could be possible that an outer CC is not related to any outer CC of the
other slice. We will see later that the condition (6) must be supplemented.

We reduce each CC to a point using the Minimal Skeleton by Pruning
(MSP) [12], i.e., the original skeleton is reduced by pruning until a final point
is reached (in the case of a CC with no holes). This minimal reference point of
a set is better for our purposes than others (such as, for example the centroid),
because the MSP will always be part of the CC (necessary in general for the
computation of median set).

Figure 2. First matching criterion: (a) a slice with one CC X , indicating its MSP and its
radius λX ; (b) a second slice with CC Y ; and (c) the proximity zone of X . Since the proximity
zone of X touches Y , then X matches Y .

The algorithm of the matching process is showed in Fig.3, where three steps
can be distinguished. The computations of the so-called proximity tests (cor-
responding to Eq.(6)) and distances between CCs are performed first, as de-
scribed below. The other steps of the matching will be commented afterwards.

Figure 2 illustrates a simple example of the proximity test between two CCs,
X and Y . We define the proximity zone of X as the dilation of X by a disk-
shaped structuring element of radius λX , where λX is the radius of X as de-
fined in Eq.(7). If the proximity zone of X intersects Y or the proximity zone
of Y intersects X , then X matches Y (and Y matches X , since expression (6)
is symmetrical).

We have to supplement the previous criterion in cases where there are mul-
tiple possible matches. In Fig. 4(a), for example, both CCs at the upper left of
slice 1 (OS1

1 and OS2
1 ) match both CCs at the upper left of slice 2 (OS1

2 and
OS2

2 ), and viceversa. The proximity zones of OS1
1 and OS2

1 of slice 1 touch
both OS1

2 and OS2
2 of slice 2, and the proximity zones of OS1

2 and OS2
2 in

slide 2 touch both OS1
1 and OS2

1 of slice 1. Figure 4(b) shows this situation,
where the proximity zones appear in dark gray. Therefore, there exist multiple
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MATCHING (OS1: VSlice,OS2: VSlice): PSlice {
DN×M : Real; // N and M are the number of CCs of slices 1 and 2
P: PSlice;
FOR i:= 1 TO N

FOR j:= 1 TO M
// (1) The proximity test is applied
IF((δλ1(OSi

1) ∩ OSj
2) �=�� ∅ or (OSi

1 ∩ δλ2(OSj
2)) �=�� ∅)

// There is a possible match; the distance between MSPs is stored
D(i,j) = d(MSP(OSi

1), MSP(OSj
2));

ELSE D(i,j) = ∞;
// (2) Selection of matched CCs with minimal distance between them
IF (N ≥ M )

FOR i:=1 TO N
FOR j:=1 TO M

IF (D(i,j) �= min�� k∈[1,M ](D(i,k)))
D(i,j) = ∞;

ELSE
FOR j:=1 TO M

FOR i:=1 TO N
IF (D(i,j) �= min�� k∈[1,N ](D(k,j)))

D(i,j) = ∞;
// The pairs of CCs that match are stored as result
FOR i:=1 TO N

FOR j:=1 TO M
IF (D(i,j) �=�� ∞)

P = Store_Pair_CCs (OSi
1, MSP(OSi

1), OSj
2, MSP(OSj

2));
// (3) Treatment for isolated CCs
FOR i:=1 TO N

IF (D(i,j) = ∞)(∀j∀ = 1, M )
P = Store_Pair_CCs (OSi

1, MSP(OSi
1), MSP|(OSi

1), MSP(OSi
1));

FOR j:=1 TO M
IF (D(i,j) = ∞)(∀i = 1, N )

P = Store_Pair_CCs(MSP(OSj
2), OSj

2, MSP(OSj
2), MSP(OSj

2));
RETURN (P);

}

Figure 3. Matching algorithm.

possible matches in this example. We will use a second criterion, which is ex-
plained next, in order to deal with these multiplicities. In this example, what
we desire is that OS1

1 matches OS1
2 (and viceversa), and that OS2

1 matches
OS2

2 (and viceversa).
Note that step (2) is necessary; if not, the interpolation of OS1

1 and OS2
1

with OS1
2 and OS2

2 in the example of Fig. 4 would be a merged CC in the
interpolated image. Such a result would be normally undesirable.

We employ the Euclidean distance between the MSP points of both CCs to
select the “best” match. If the proximity test between two CCs is not satisfied,
we consider that their distance is∞. As we can see in the matching algorithm



Recursive Interpolation Technique For Binary Images 59

Figure 4. Multiple matching and isolated CCs.

pseudo-code in Fig. 3, these distances are stored in matrix D. Table 1 shows,
for the example of Fig. 4(a), the distances between the CCs of slice 1 and the
CCs of slice 2 (all combinations). From this table we can determine the best
matches between CCs: OS1

1 matches OS1
2 (because their distance, 13.53, is

smaller than the distance between OS1
1 and OS2

2 , which is 66.7875). Similarly,
OS2

1 matches OS2
1 . The loops in step (2) of the pseudo-code in Fig. 3 compute

this selection of the best matches by processing the matrix of distances D.

== OS1
2 OS2

2

OS1
1 13.5300 66.7875

OS2
1 47.6476 33.7567

OS3
1 ∞ ∞

Table 1. Distance table between CCs of Fig. 4.

In addition, the case of isolated CCs is also consider in the matching pro-
cess. In the example of Fig. 4, the CC at the bottom-right of slice 1 (OS3

1 )
is isolated, since it does not match any CC in slice 2. We can see this fact in
the last row of Table 1, where all values are ∞. The case of isolated CCs is
considered in step (3) of the pseudo-code in Fig. 3. In our technique, isolated
CCs are matched with “artificial” points in the other slice. Each artificial point
corresponds to the MSP point of the corresponding isolated CC.

The overall result of the matching process is a list of pairs (OSi
1, OSj

2),
where OSi

1 matches OSj
2, and their corresponding MSP points. As commented

previously, in some cases OSi
1 or OSj

2 (one of them) could be an “artificial”
point (where no CC matching occurs).

Median Set Computation of Matched CC Pairs

After the matching process we perform the computation of the median sets
of the resulting matched pairs of CCs (Si

1, S
j
2). The CCs of each pair must

have a non-empty intersection, condition which is achieved by using their MSP
points for translating them.
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Let us suppose that X and Y represent two CCs that match, and that their
MSP points are (xX , yX) and (xY , yY ), respectively. Then the distance com-
ponents between both CCs are: dX = |xX − xY | and dY = |yX − yY |. X
and Y are aligned in the middle point between them by translating X by vector
(dX

2 , dY
2 ) and by translating Y by vector (−dX

2 ,−dY
2 ) (see Fig. 5). Let us call

these translated CCs as X ′ and Y ′.

Figure 5. MSP points are used to calculate the point where the intersected set will be placed

Then, the median set between X ′ and Y ′ is computed by using the algo-
rithm proposed in [3], which implements Eq.(3). First, three auxiliary sets are
initialized: Z0ZZ = W0WW = (X ′ ∩ Y ′) and M0MM = (X ′ ∪ Y ′). Then, the following
three equations are defined:

ZiZZ = δB(ZiZZ −1)
WiWW = εB(WiWW −1) (8)

MiMM = (ZiZZ ∩WiWW ) ∪MiMM −1

where δB and εB are, respectively, a dilation and an erosion with the ele-
mentary disk-shaped structuring element B of radius one. The median set
M is obtained by iterating until idempotence the previous equations, i.e., until
MiMM = MiMM −1.

So far, the shapes of the pairs of outer CCs (as extracted in the first step of
our technique) have been interpolated. We need now to process and, ultimately,
to interpolate the structures that are inside the outer CCs. We achieve this
by applying recursively the three steps of our technique to the structures that
are located inside the outer CCs that have already been interpolated. These
inner structures are denoted as HS1 and HS2 in the pseudo-code in Fig. 1.
The recursive application is the purpose of the recursive call at the end of the
pseudo-code.

3. Experimental Results and Discussion

This section discusses some results of our technique in different situations.
Figure 6 displays asimplecase thatcorresponds toapairof matched CCs with

non-empty intersection. The shape in slice 1 is a circle, and the shape in slice 2
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is a square. Even though the input CCs intersection is non-empty, translations
are needed to perform adequately the interpolation of shapes.

Figure 6. Interpolation result 1.

The situation shown in Fig. 7 is more complex. We can see that there are
several CCs in both input slices. The CC matching problem that arises has
already been discussed in Section 2. The pairs of CCs at the upper-left parts
of the input slices are successfully matched (after resolving possible multiple
matches), and the isolated CC at the bottom-right part of the input slice 2 is
matched with an “artificial” point created in input slice 1.

Figure 7. Interpolation result 2.

Figure 8 compares the results of our technique with other previous methods
using input slices composed of a grain with a hole. Figures 8(a) and (b) display
the input slices. Fig. 8(c) shows the intersection between the CCs of the input
slices, and Fig. 8(d) visualizes their median set computed using Eq (3). Then,
Figs. 8(e) and (f) display the translated CCs, whose intersection is shown in
Fig. 8(g). Fig. 8(h) displays the interpolated slice computed according to [4].
Finally, Fig. 8(i) shows the interpolation result computed using our technique.
It can be said that the result in Fig. 8(i) compares favorably with the other
results. Further analysis and comparison with other methods can be found in
[14].
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Abstract The work presented in this paper introduces a novel method for second-order
connected attribute filtering using Max-Trees. The proposed scheme is generated
in a recursive manner from two images, the original and a modified copy by an
either extensive or an anti-extensive operator. The tree structure is shaped by
the component hierarchy of the modified image while the node attributes are
based on the connected components of the original image. Attribute filtering
of second-order connected sets proceeds as in conventional Max-Trees with no
further computational overhead.

Keywords: second-order connectivity, Max-Tree, attribute filters, clustering, partitioning

Introduction

The concept of second-order connectivity [6, 8] is a generalization of con-
ventional connectivity summarizing two perceptual conditions known as clus-
tering and partitioning. In brief, when clustering objects close enough to each
other in morphological terms, are considered as a single entity, while when
partitioning isolated object regions interconnected by thin elongated segments
are handled as independent objects. The theoretic framework developed to
formalize this [8, 1] defines the two cases by means of connected openings
that consider the intersection of the original image with the generalized con-
nectivity map. Extensions to a multi-scale approach employing a hierarchical
representation of connectivity have also been made. Two examples are con-
nectivity pyramids [2] and Connectivity Tree [9], which quantify how strongly
or loosely objects or object regions are connected.

Algorithmic realizations of this framework originally suggested the use of
generalized binary and gray-scale reconstruction operators [1] for recovering
the object clusters or partitions. This introduced a family of filters based on
topological object relations with width as the attribute criterion. Efficient al-
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gorithms for the more general class of gray-scale attribute filters using second-
order connectivity have not yet been proposed. In this paper we will present a
method based on Max-Trees [7].

Our method builds a hierarchical representation based on gray scale image
pairs comprising the original image and a modified copy by an increasing and
either extensive or anti-extensive operator. The algorithm, referred to as Dual
Input Max-Tree is inspired by [7, 10] and demonstrates an efficient way of
computation of generalized area openings . The results extend easily to other
attribute filters.

A presentation of our method is given in this paper which is organized as
follows: The first section gives a brief overview of the concept of connectivity
and attribute filters. A short description of second-order connectivities follows
in the second section where the two cases of clustering and partitioning are
described in a connected opening form. A review of the Max-Tree algorithm is
given in the third section complemented by a description of our implementation
while results and conclusions are discussed in the fourth section.

1. Connectivity and Connected Filters

This section briefly outlines the concept of connectivity from the classical
morphological prospective. For the purpose of this analysis we assume a uni-
versal (non-empty) set E and we denote by P(E) the collection of all subsets
of E. A set X representing a binary image such that X ⊆ E is said to be
connected if it cannot be partitioned into two non-empty closed or opened sets.
Expressing this using the notion of connectivity classes, Serra [8] derived the
following definition:

Definition 1 A family C ⊆ P(E) with E an arbitrary non-empty set, is
called a connectivity class if it satisfies:

1 ∅ ∈ C and {x} ∈ C for x ∈ E,

2 if CiCC ∈ C with i = 1, ...I and
⋂N

i=1 CiCC �=�� ∅, then
⋃

i∈I CiCC ∈ C

where {x} denotes a singleton.

The class C in this case defines the connectivity on E and any subset of C is
called a connected set or a connected component.

Given the connected sets CxCC ∈ C containing x ∈ X , the connected opening
connected, opening Γx can be expressed as the union of all CxCC :

Γx(X) =
⋃
{CxCC ∈ C|x ∈ CxCC and CxCC ⊆ X} (1)

With all sets CxCC containing at least one point of X in their intersection, i.e. x,
their union Γx(X) is also connected. Furthermore ∀x /∈// X , Γx(X) = ∅.
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Attribute Filters

Binary attribute openings attribute filter, opening [3] are a subclass of con-
nected filters incorporating an increasing criterion T . The increasingness of T
implies that if a set A satisfies T then any set B such that B ⊇ A satisfies T as
well. Using T to accept or reject a connected set C involves a trivial opening
ΓT which returns C if T is satisfied and ∅ otherwise. Furthermore, ΓT (∅) = ∅.
The binary attribute opening is defined as follows:

Definition 2 The binary attribute opening ΓT of a set X with increasing
criterion T is given by:

ΓT (X) =
⋃

x∈X

ΓT (Γx(X)) (2)

The binary attribute opening is equivalent to performing a trivial opening on
all connected components in the image. Note that if T is non-increasing we
have an attribute thinning rather that an attribute opening.

2. Second-Order Connectivity

The concept of second-order connectivity is briefly reviewed in this section
by visiting two characteristic cases. The clustering and partitioning operators
presented next, exploit the topological properties of image objects by modify-
ing the underlying connectivity while preserving the original shape.

Clustering Based Connected Openings

The first case concerns groups of image objects that can be perceived as
clusters of connected components if their relative distances are below a given
threshold. In morphological terms this is verified by means of an increas-
ing and extensive operator ψc which modifies the connectivity accordingly.
Merged objects in the resulting connectivity class Cψc define the morphology
of the clusters.

Definition 3 Let ψc be an increasing and extensive operator that modifies
the original connectivity from C to Cψc . The clustering based connected open-
ing Γψc

x associated with the generalized connectivity class Cψc is given by:

Γψc
x (X) =

{
Γx(ψc(X))

⋂
X if x ∈ X

∅ if x /∈// X
(3)

Thus Γψc
x extracts the connected components according to Γx in ψc(X), rather

than X , and then restricts the results to members of X [8, 1].



68 MATHEMATICAL MORPHOLOGY: 40 YEARS ON

Figure 1. First pair: original image and the clustered connectivity map ψc(X), Second pair:
the original image in front of a grid (background) and the partitioned connectivity map ψp(X).

Partitioning Based Connected Openings

Partitioning operators split wide object regions connected by narrow bridg-
ing segments which are often present due to image noise, background texture or
out of focus details. The corresponding generalized binary connected opening
extracts the intersection of the original image with the partitioned connectivity
map ψpψ (X), with ψpψ increasing and anti-extensive. To maintain the integrity
of the original shape, all object level regions discarded by ψpψ are preserved as
singletons in C:

Definition 4 Let ψpψ be an increasing and anti-extensive operator that mod-
ifies the original connectivity from C to Cψp . The partitioning based connected
opening Γψp

x associated with the generalized map Cψp is given by:

Γψp
x (X) =

⎧⎨⎧⎧⎩⎨⎨ Γx(ψpψ (X))
⋂

X if x ∈ ψpψ (X)
{x} if x ∈ X \ ψpψ (X)
∅ if x /∈// X

(4)

The problem that X \ψpψ (X) is fragmented into singletons is discussed in [11].

Second-Order Attribute Filters

Attribute filters as mentioned earlier apply a trivial opening ΓT on the out-
put of a binary connected opening Γx. Replacing Γx with a second-order con-
nected opening Γψ

x with ψ a generalizing operator (clustering or partitioning),
gives rise to the concept of second-order attribute filters which in the binary
case can be expressed as:

Definition 5 The binary second-order attribute opening of a generalized
set ψ(X) with increasing criterion T is given by:

ΓT
ψ(X) =

⋃
x∈X

ΓT (Γψ
x (X)) (5)

The increasingness of these operators makes it possible to extend them directly
to gray scale by threshold decomposition [4] of f , the mapping from the image
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domain M to R. Assuming that f can be decomposed to a set of binary images
ThTT (f) resulting from thresholding f at all levels h, given by:

ThTT (f) = {x ∈M|f(x) ≥ h} (6)

then superimposing them by taking their supremum leads to :

Definition 6 For a mapping f : M → R, the gray scale second-order at-
tribute opening γT

ψγγ (f) is given by:

(γT
ψγγ (f))(x) = sup{h|x ∈ ΓT

ψ(ThTT (f))} (7)

Thus, the second-order attribute opening of a gray scale image assigns each
point of the original image the highest threshold at which it still belongs to a
connected foreground component according to the second-order connectivity
class Cψ. Other types of gray scale generalizations can be found in [7, 10].

3. The Max-Tree Algorithm

The Max-Tree is a hierarchical image representation algorithm introduced
by Salembier [7] in the context of anti-extensive attribute filtering. The tree
structure reflects the connected component hierarchy obtained by threshold
decomposition of the given image with nodes and leaves corresponding to
peak components and regional maxima respectively. A peak component PhPP
at level h is a connected component of the thresholded image ThTT (f) while a
regional maximum MhMM at level h is a level component no members of which
have neighbors of intensity larger that h. A Max-Tree node Ck

hC (k is the node
index) corresponding to a certain peak component contains only those pixels in
P k

hPP which have gray-level h. In addition each node except for the root, points
towards its parent Ck′

hC ′ with h′ < h. The root node is defined at the minimum
level hmin and represents the set of pixels belonging to the background.

Node attributes are parameters stored in the tree structure and are computed
during the construction of the tree. In the case of the increasing attribute of
node area the connected component k at level h inherits the area of all the
peak components P k

hPP ′ connected to Ck
hC at levels h′ > h. Computing an area

opening reduces to removing all nodes with area smaller than the attribute
criterion λ from the tree. Note that the node filtering is a separate stage from
the computation of attributes and connected component analysis [7] therefore
consumes only a short fraction of the total computation time. Extensions to
other types of attributes are trivial [3, 5, 7, 10].

Construction Phase

Max-Trees are constructed in a recursive manner from data retrieved from
a set of hierarchical queues. The queues are allocated at initialization in the
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/* flood(h, thisAttribute) : Flooding function at level h */
attribute = thisAttribute /* accounts for child attributes */
while (not HQueue-empty(h)) /* First step: propagation */
{ p = HQueue-first(h) /* retrieve priority pixel */
STATUS[p] = NumberOfNodes[h] /* STATUS = the node index */
for (every neighbor q of p) /* process the neighbors */
{ if (STATUS[q] == "NotAnalyzed")

{ HQueue-add(ORI[q],q) /* add in the queue */
STATUS[q] = "InTheQueue"
NodeAtLevel[ORI[q]] = TRUE /* confirm node existance */
if (ORI[q] > ORI[p]) /* check for child nodes */
{ m = ORI[q]

child_attribute = 0
do{ /* recursive child flood */

m = flood(m,child_attribute)
} while (m != h)
attribute += child_attribute }}}}

NumberOfNodes = NumberOfNodes[h] + 1 /* update the node index */
m = h-1 /* 2nd step: defines father*/
while ((m >= 0) and (NodeAtLevel[m] = FALSE))

m = m-1
if (m >= 0){

i = NumberOfNodes[h] - 1; j = NumberOfNodes[m];
} else

The node C_i at level h has no father, i.e. its the root node
NodeAtLevel[h] = FALSE; node->Attribute = attribute;
node->Status = Finalized; thisAttribute = attribute;
return (m)

Figure 2. The flooding function of Salembier’s algorithm adopted for area openings. The
parameters h and m are the current and child node gray levels while attribute is a pixel count
at level h within the same connected component. The parameter thisAttribute is used to
pass child areas to parent nodes.

form of a static array called HQueue segmented to a number of entries equal
to the number of gray levels. Data are accessed and stored in a first in - first
out approach by the main routine (Fig. 2) which re-assigns priority pixels to
the Max-Tree structure and stores new pixels retrieved from the neighborhood
of the one under study, to the appropriate entries. The Max-Tree structure
consists of nodes corresponding to pixels of a given peak component P k

hPP at
level h. Each node is characterized by its level h and index k and contains
information about its parent node id, the node status and the attribute value.

The two structures are managed with the aid of three arrays; the STATUS[p],
the NumberOfNodes[h] and the NodeAtLevel[h]. STATUS is an array of im-
age size that keeps track of the pixel status. A pixel p can either be NotAna-
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lyzed, InTheQueue or already assigned to node k at level h. In this case STA-
TUS[p]=k. The NumberOfNodes is an array that stores the number of nodes
created until that moment at level h. Last, NodeAtLevel is a boolean array that
flags the presence of a node still being flooded at level h.

During initialization, the status of all image pixels is set to NotAnalyzed.
Similarly the NumberOfNodes is set to zero while NodeAtLevel is set to FALSE
for each gray level. After computing the image histogram, the HQueue and
Max-Tree structures are allocated accordingly while the first pixel at level hmin

is retrieved and placed in the appropriate queue. This pixel defines the root
node and is passed on to the main routine (flood) as the initial parameter.

The flooding routine is a recursive function involved in the construction
phase of the Max-Tree. It is initiated by accessing the first root pixel from the
queue at level hmin and proceeds with flooding nodes along the different root
paths that emerge during this process. The pseudo-code in Fig. 2 describes in
detail the steps involved. Note that ORI is an image-size array that stores the
pixel intensities. The construction phase terminates when all pixels have been
assigned to their corresponding nodes and the Max-Tree structure is complete.

Constructing the Dual Input Max-Tree

Our implementation of the construction phase requires two input images.
The first is the original image while the second is a copy modified by a clus-
tering or partitioning operator. The idea can be summarized as follows; image
data are loaded on the HQueue structure from the modified image to be mapped
on the Max-Tree which is shaped by the histogram of the original image.

Upon finalizing the initialization process with both histograms computed,
hmin is retrieved from the modified connectivity map ψ(X) and placed in the
corresponding queue while the three arrays are updated. The flooding function
proceeds as described earlier by inspecting the neighbors of the starting pixel
and distributes them to the appropriate queues. Within the while loop of Fig. 2
we add a test condition which checks for an intensity mismatch between the
same pixel in the two images (see Fig. 3). Denoting with P_ORIthe array
storing the pixel intensity in the modified image if ORI[p[ ] < P_ORI[p[ ] where p
is the pixel under study, the modified image is a result of an extensive operator
ψc while if the opposite is true it is due to an anti-extensive operator ψpψ (see
Fig. 3).

The first case involving clustering implies that p is a background pixel in
the original image therefore it is regarded as connected to the current active
node at level ORI[p[ ] through the connected component at level P_ORI[p[ ]; i.e.
it defines a peak component at level ORI[p[ ] to which p in the modified image
is connected. NodeAtLevel[ORI[p[ ]] is set and the status of p is updated to the
node id at level ORI[p[ ]. Additionally the node area is increased by a unit.
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/* flood(h, thisAttribute) : Flooding function at level h */
attribute = thisAttribute + node->Attribute /* node->Attribute is */
/* added to account for pixels found during other calls to flood */

while (not HQueue-empty(h)) /* First step: propagation */
{ p = HQueue-first(h) /* retrieve priority pixel */
STATUS[p] = NumberOfNodes[h] /* STATUS = the node index */
if(ORI[p]!=h){ /* Detect intensity mismatch */

NodeAtLevel[ORI[p]]=TRUE /* Same for both cases */
node = Tree + NodeOffsetAtLevel[ORI[p]] + NumberOfNodes[ORI[p]]
node->Attribute ++
if(ORI[p]>h){ /* Anti-extensive case */

node->Parent = NodeOffsetAtLevel[h] + NumberOfNodes[h]
node->Status = Finalized; node->Level = ORI[p]
NumberOfNodes[ORI[p]] += 1; NodeAtLevel[ORI[p]] = FALSE
attribute++ } /* Finalizing the singleton node */

} else
attribute++ /* If pixel intensity is the same in both images*/

/* The rest as in Figure 2 ... */
return (m)

Figure 3. The flooding function of the Dual Input Max-Tree algorithm.

In the case where partitioning is involved the detected mismatch between
the same pixel in the two images is of the form P_ORI[p[ ] < ORI[p[ ]. Pixel
p is therefore part of a discarded component according to Definition 4, and
consequently is treated as a singleton. Singletons define a node of unit area at
level ORI[p[ ] hence upon detection the node must be finalized before retrieving
the next priority pixel from the corresponding queue at level P_ORI[p[ ]. This
involves setting the node status to the node index at level ORI[p[ ] and detect-
ing the parent node id. The area is simply set to a unit and upon completion
NodeAtLevel[ORI[p[ ]] is set to FALSE indicating that this node is finalized.

The flooding function following this inspection proceeds with the neighbor-
ing pixels q updating the appropriate queues and setting the node flag for every
pixel at the current level P_ORI[p[ ]. If a neighbor with a higher level P_ORI[q]
is detected the process is halted at level P_ORI[p[ ] and a recursive call to the
flooding function initiates the same process at level P_ORI[q]. This is repeated
until reaching the regional maximum along the given root path. The Max-Tree
structure is completed when all nodes are finalized.

Filtering

Once the Max-Tree structure is computed, filtering which forms a separate
stage, is performed in a same way for both cases. Filtering the nodes based on
the attribute value λ involves visiting all nodes of the tree once. If the node
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Figure 4. Anabaena colony (left to right): original image; connectivity map using closing by
disc of radius 4; area opening (λ = 900) with Dual Input Max-Tree; area opening (same λ)
with conventional Max-Tree. Image size 459 × 400 pixels.

attribute is less than λ the output gray level is set to that of the parent node and
the comparison is repeated until the criterion is satisfied. The output image
Out is generated by visiting all pixels p, retrieving their node ids from ORI[p[ ]
and STATUS[p[ ] and assigning the output gray level of that node to Out[p[ ].

4. Discussion

The performance of the proposed algorithm was evaluated conducting a se-
ries of comparative experiments between the conventional and the dual input
Max-Tree on sets of TEM images of bacteria. To demonstrate our results we
chose two cases: one for clustering and one for partitioning. For a more exten-
sive discussion of the utility of these filters the reader is refered to [1].

The first case involving clustering is demonstrated in Fig. 4 where artifi-
cial objects were added on an Anabaena colony to verify the filter’s capability.
Using a conventional Max-Tree representation, the attribute filter aiming at
these additional objects, removes every connected component of area below
the chosen criterion λ (set to 900) which includes parts of the colony too. In
contrast to this, the same filter operated on the dual input Max-Tree consid-
ers the colony as a single object (as represented in the clustered connectivity
map) and therefore removes only the unwanted objects of area less than λ. The
second case considers partitioned objects and is demonstrated in Fig. 5. Es-
cherichia coli cells in the original image are linked by filaments. Attribute fil-
ters on the conventional Max-Tree representation simply lower the intensity of
these segments without eliminating the bridging effect. In the dual input Max-
Tree however, the same object regions removed in the partitioned connectivity
map (second from left), are converted to singletons in the original image hence
any area filter with λ greater than the unit area discards them. This means that
in the purely partitioning case, second-order connected attribute openings are
equivalent to attribute openings of the connectivity map, as proven in [11].

The computational efficiency of our implementation has minimal difference
from the conventional Max-Tree and this is due to loading two images and
computing two histograms instead of one. The major computation takes place
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Figure 5. E. coli (left to right): original image; connectivity map ontained by opening with
disc of radius 2; area opening using the dual input Max-Tree (λ = 100); area opening using
conventional Max-Tree (same λ). Image size 242 × 158 pixels.

within the flooding function which differs from the original implementation
in the two test conditions that verify the type of generalization. In both cases
the same number of input pixels have to mapped into the same size Max-Tree
structure therefore if the same image is used twice our algorithm performs as
a conventional Max-Tree. Our flooding function (Fig. 3) uses a single rou-
tine to handle both cases of generalization. This is primarily motivated by
our current investigation on increasing operators that are neither extensive nor
anti-extensive and the potential to manage image pairs in which the modified
connectivity map comprises sets of both clustered and partitioned objects. We
are studying the properties of such more general second-order connectivities.
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Abstract In this paper, a class of transformations with reconstruction criteria, derived from
the reconstruction transformations, is investigated. The idea to build these trans-
formations consists in stopping the reconstruction process according to a size
criterion. This class of transformations was initially proposed for obtaining in-
termediate results between the morphological opening and the opening by re-
construction. Here, the transformations are presented in the general case, as
in the reconstruction transformations case, by imposing some conditions on the
marker. We show that the set of markers for the transformations with reconstruc-
tion criteria is given by the set of dilated images. The interest of these transfor-
mations in image segmentation is shown. Also the notion of granulometry and
the alternating sequential filters are investigated.

Keywords: Opening and closing by reconstruction, opening and closing with reconstruction
criteria, filtering, segmentation

1. Introduction

In mathematical morphology (MM), the watershed-plus-markers approach
is the traditional image segmentation method. This technique requires to cor-
rectly know the different morphological tools for extracting the markers. Among
these tools, morphological filtering plays a fundamental role not only as a tool
for symplifying the input image, but also for detecting markers. The basic
morphological filters are the morphological opening and closing with a given
structuring element. However, even if this type of filters permits the removal
of undesirable regions, frequently, the remaining structures are modified. A
way of attenuating this inconvinience is the use of the well-known filters by
reconstruction. These filters that form a class of connected filters, process
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separately each connected component. Nevertheless, the main drawback of the
filters by reconstruction is that they reconstruct too much, the so-called leakage
problem, and sometimes it is not possible to extract the regions of interest. In
other words, there is no way of controlling the reconstruction process. Several
solutions have been proposed by Salembier and Oliveras [10], Tzafestas and
Maragos [8], Serra [3], Terol-Villalobos and Vargas-Vázquez [4, 5], Vargas-
Vázquez et al. [6] among others. In particular, Serra [3] characterizes the
concept of viscous propagations by means of the notion of viscous lattices. In
his work, Serra defines a connection on the viscous lattices which does not con-
nect too much allowing to separate arc-wise connected components into a set of
connected components in the viscous lattices sense. On the other hand, Terol-
Villalobos and Vargas-Vázquez [4, 5] , introduce the notion of reconstruction
criterion which allows the reconstruction to be stopped. In the present work,
the reconstruction criterion will be used to introduce the transformations with
reconstruction criteria. One shows that these transformations have a similar
behavior than a class of transformations introduced by Serra in [3]. Also, the
interest of building other transformations for segmenting and filtering images,
is shown.

2. Morphological Filtering

The basic morphological filters are the morphological opening γµBγ and the
morphological closing ϕµB with a given structuring element. In this work, B
is an elementary structuring element (3x3 pixels) containing its origin, B̌ is the
transposed set (B̌ = {−x : x ∈ B}) and µ is an homothetic parameter. The
morphological opening and closing are given, respectively, by:

γµBγ (f)(x) = δµB̌(εµB(f))(x) and ϕµB(f)(x) = εµB̌(δµB(f))(x) (1)

where εµB(f)(x) = ∧{f(y) : y ∈ µB̌x} and δµB(f)(x) = ∨{f(y) : y ∈
µB̌x} are the morphological erosion and dilation, respectively. ∧ is the inf
operator and ∨ is the sup operator. In the following, we will suppress the
set B. The expressions γµγ ,γµBγ are equivalent (i.e. γµγ = γµBγ ). When the
parameter µ is equal to one, all parameters are suppressed (i.e. δB = δ).

Openings and Closings by Reconstruction

An interesting class of filters, called the filters by reconstruction, are built
by means of the geodesic transformations [7]. In the binary case, the geodesic
dilation (resp. erosion) of size 1 of a set Y (the marker) inside the set X is
defined as δ1

X(Y ) = δ(Y ) ∩ X (resp. ε1
X(Y ) = ε(Y ) ∪ X), while in the

gray-level case is given by δ1
f (g) = f ∧ δB(g) (resp. ε1

f (g) = f ∨ εB(g)).
When filters by reconstruction are built, the geodesic transformations are iter-
ated until idempotence is reached. Consider two functions f and g, with f≥g
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(f(( ≤g). Reconstruction transformations of the marker function g in f, usingff
geodesic dilations and erosions, expressed by R(f,g) and R*(f,g), respectively,
are defined by:

R(f, g) = limn→∞ δn
f (g) R∗(f, g) = limn→∞ εn

f (g)
When the marker function g is equal to the erosion or the dilation of the

original function, the opening and the closing by reconstruction are obtained:

γ̃µγ (f) = lim
n→∞

δn
f (εµ(f)) ϕ̃µ(f) = lim

n→∞
εn
f (δµ(f)) (2)

Openings (Closings) with Reconstruction Criteria

It is well-known that the use of the opening by reconstruction does not en-
able the elimination of some structures of the image (this transformation re-
constructs all connected regions during the reconstruction process). To atten-
uate this inconvenience, the openings and closings with reconstruction criteria
were introduced in [4]. In [5], a modification in the criterion for building the
transformations proposed in [4] not only permitted a better control of the recon-
struction, but also generated connected transformations according to the notion
of connectivity class [9]. This last class of openings and closings ([5]), are in-
troduced in this section. Let us take the case of the opening with reconstruction
criteria obtained by iterating the expression ω1

λ,f (g) = f ∧ δγλ(g) using the
marker image g = γµγ (f). Observe that the only difference between this ex-
pression and the one for building the opening by reconstruction (f ∧ δ(g)) is
the opening γλ. The morphological opening γλ in the operator ω1

λ,f plays the
role of a reconstruction criterion by stopping the reconstruction of the regions
where the criterion is not verified. Let γµγ and ϕµ be the morphological opening
and closing of size µ, respectively. The transformations given by:

γ̂λ,µ(f) = lim
n→∞

ωn
λ,f (γµγ (f)) ϕ̂λ,µ(f) = lim

n→∞
αn

λ,f (ϕµ(f)) (3)

are an opening and a closing of size µ with λ ≤ µ, respectively, where ω1
λ,f (g) =

f∧δγλ(g) and α1
λ,f (g) = f∨εϕλ(g). The opening γ̂λ,µ (the closing ϕ̂λ,µ) per-

mits the obtention of intermediate results between the morphological opening
(closing) and the opening (closing) by reconstruction. One has:

γµγ (f) ≤ γ̂λ,µ(f) ≤ γ̃µγ (f) ϕµ(f) ≥ ϕ̂λ,µ(f) ≥ ϕ̃µ(f) ∀λ with λ ≤ µ

However, the extreme values are not well-defined. One has for λ = 0
γ̂0,µ(f) = γ̃µγ (f), but for λ = µ, γ̂µ,µγ (f) = δ1

fγµγ (f).

3. Transformations with Reconstruction Criteria

One of the main problems of the transformations with reconstruction criteria
above-described is that they are limited by the restriction of the use of only one
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type of marker function. In this section one studies the general condition that
a marker must verify to be a marker. The following property expresses that the
dilation permits the generation of invariants for the morphological opening [9].

Property 1 For all pairs of parameters λ1, λ2 with λ1 ≤ λ2, δλ2(g) =
γλ1(δλ2(g)).

The dilation of a function g′ (g = δλ2(g
′)), is an invariant of γλ1 (γλ1(g) = g).

This property is related to a new notion called viscous lattices, and recently
proposed by Serra. In [3], Serra replaces the usual space P (E) for the family
L(E) = {δλ(X), λ > 0, X ∈ P (E)} that is both the image P(E) under
dilation δλ and under the opening δλελ and proposes the viscous lattice:

Proposition 1 The set L(E) is a complete lattice regarding the inclusion
ordering. In this lattice, the supremum coincides the set union, whereas the
infimum ∧ is the opening according to γλ = δλελ of the intersection.

∧{XiXX , i ∈ I} = γλ(∩{XiXX , i ∈ I}) {XiXX , i ∈ I} ∈ L(E)

The extreme elements of L are E and ∅. L is the viscous lattice of dilation δλ.

Using the elements of the viscous lattices as the markers (g = δλ
′ (g′) with

λ
′ ≥ λ), the expression limn→∞ ωn

λ,f (g) can be described in terms of geodesic
dilations. Observe that at the first iteration of the operator ω1

λ,f , we have
ω1

λ,f (g) = f∧δγλ(g) = f∧δ(g) = δ1
f (g) which is the geodesic dilation of size

1. At the second iteration, ω2
λ,f (g) = f ∧ δγλ(ω1

λ,f (g)) = f ∧ δγλ(δ1
f (g)) =

δ1
fγλδ1

f (g). Thus, when stability is reached the transformation with reconstruc-
tion criteria can be established by:

Rλ,f (g) = lim
n→∞

ωn
λ,f (g) = δ1

fγλδ1
fγλ · · · δ1

fγλδ1
f︸ ︷︷︷ ︸︸

Until stability

(g) (4)

and its dual transformation is given by: R∗
λ,f (g) = limn→∞ αn

λ,f (g) =
ε1fϕλε1fϕλ · · · ε1fϕλε1f︸ ︷︷︷ ︸︸

Until stability

(g). Where the marker g can be computed by means of

the erosion; the erosion of a function g’, g = ελ2(g
′) with λ1 ≤ λ2 is an

invariant of the morphological closing size λ1 (ελ2(g
′) = ϕλ1ελ2(g

′)). Then,
the working space of the marker images for the eqn. (4) is given by the viscous
lattice {δλ(g′)}. However, the main problem of this transformation is that its
output image does not belong to this set. Let us apply to this last equation an
opening size λ,

R′
λ,f (g) = γλ lim

n→∞
ωn

λ,f (g) = γλδ1
fγλδ1

f · · · γλδ1
f︸ ︷︷︷ ︸︸

Until stability

(g) (5)
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Figure 1. a) and b) Original image and its threshold, c) Reconstruction function, d) and e)
Reconstructed binary image, f) Interpolation of images (d) and (e).

Now, the output image is an invariant for the morphological opening size λ
and it is also an element of the viscous lattice. Furthermore, one observes that
the reconstruction process is carried out inside the workspace of dilates images.
In fact, observe that the reconstruction process is made by applying a sequence
of a basic geodesic dilation followed by a morphological opening size λ. Thus,
the output image at the kth iteration (before stability) of the sequence is an
element of the viscous lattice. Now, this last reconstruction transformation and
its dual transformation can be used to generate new openings and closings as
defined by the update equations:

γλ,µ(f) = R′
λ,f (γµγ (f)) ϕλ,µ(f) = R′∗

λ,f (ϕµ(f)) (6)

where R′∗ is the dual transformation of R′ computed by iterating until stabil-
ity the sequence formed by a basic geodesic erosion followed by a morpholog-
ical closing size λ. Observe that γλ,µ(f) ≤ γ̂λ,µ(f) and ϕλ,µ(f) ≥ ϕ̂λ,µ(f).
Also, one can establish an order (γµγ (f) ≤ γλ,µ(f) ≤ γ̃µγ (f) and ϕµ(f) ≥
ϕλ,µ(f) ≥ ϕ̃µ(f) , but in this case, the extreme values of the reconstruction
criteria are strictly defined: for λ = µ; γµ,µγ (f) = γµγ (f) and ϕµ,µ(f) = ϕµ(f)
whereas for λ = 0; γ0,µ(f) = γ̃µγ (f) and ϕ0,µ(f) = ϕ̃µ(f).

4. Image Segmentation

The idea for automatically selecting the parameter λ comes from the work
of Serra [3]. Here, a procedure for selecting the parameter λ is proposed.
This procedure consists in choosing the minimum value of λ such that it only
permits the reconstruction of the region of interest. Consider the problem of
detecting a contour on the skull of the image shown in Fig. 1(a). Since the
highest gray-levels of the image are on the skull, thresholding the image be-
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tween 221 and 255 will give a set composed only by points on the skull (Fig.
1(b)). Observe that the contour is not closed. Below gray-level 221 regions
of the brain will appear. Now, the distance function is computed on this set.
Due to the form of the brain, it is clear that the distance function will have the
global maximum placed in this region. The dilation of the set formed by the
points of this maximum is used as the marker for the reconstruction process.
Let µ be the gray-level of the distance function in the global maximum. Then,
the greatest value of the reconstruction criterion will be λ = µ − 1. Now, in
order to have all images for each reconstruction criterion, we use a gray level
image Im. The image Im is called in this work reconstruction function image.
Initially, this image is set equal to zero. The reconstruction begins with the pa-
rameter value λ = µ − 1 on a binary image Is. All pixels x achieved by the
reconstruction (Is(x) = 1) are set at the gray-level value given by the λ param-
eter in the output image Im. When the reconstruction process of parameter λ
stops, a second reconstruction process begins with parameter λ−1. Each pixel
x achieved by the second reconstruction process is set at gray-level λ − 1 in
the output image Im. The procedure to build the reconstruction function im-
age stops when we find a value λ′, such that the reconstruction in Is touches
the field borders. Figure 1(c) illustrates the reconstruction function. Then, the
reconstruction criterion has the value λ′ + 1 and its associated reconstruction
image is computed by thresholding the gray-level image Im between λ′ + 1
and 255. In Fig. 1(d) the binary image obtained with an automatically de-
tected parameter is illustrated. Now, a second reconstruction is obtained from
the image in Fig. 1(b), using the field borders as markers to reconstruct the
image and the same value for the reconstruction criterion λ. An interpolation
between both images (Figs. 1(d) and (e)) enables the computation of a better
segmentation as illustrated in Fig. 1(f).

5. Granulometry {γλ,µ}
Let us study in this section the transformations with reconstruction criteria

using the important concepts of granulometry (Serra [9]).

Definition 1 A family of openings {γµγ i} (or respectively of closings {ϕµi}),
where µi ∈ {1, 2, . . . n}, is a granulometry (respectively antigranulometry)
if for all µi, µj ∈ {1, 2, . . . n} and for all function f , µi ≤ µj ⇒
γµγ i(f) ≥ γµγ j (f) (resp. ϕµi(f) ≤ ϕµj (f))

In practice, the granulometric curves can be computed from the granulo-
metric residues between two different scales; γµγ i(f) − γµγ j (f) with µi < µj .
Then, one says that γµγ i(f)− γµγ j (f) contains features of f that are larger than
the scale µj , but smaller than scale µi. However, this is not strictly true. The
image γµγ i(f) − γµγ j (f) is not an invariant of the morphological opening γµγ i .
On the contrary, the opening by reconstruction satisfies the following property.
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Property 2 Let γ̃µγ i and γ̃µγ j be two openings by reconstruction with µi <
µj . Then, for all image f the difference γ̃µγ i(f)− γ̃µγ j (f) is an invariant of γ̃µγ i ,
i.e., γ̃µγ i [γ̃µγ i(f)− γ̃µγ j (f)] = γ̃µγ i(f)− γ̃µγ j (f).

This condition ensures that no structure of size smaller than µi inside γ̃µγ i(f)−
γ̃µγ j (f) exists. Now, let us analyse the case of the opening with reconstruction
criteria. By fixing the µ value one has that:

γλi ,µ[γλi ,µ(f)− γλj ,µ(f)] �=�� γλi ,µ(f)− γλj ,µ(f) with λi < λj ≤ µ

Observe that for this case (µ is fixed), the difference is carried out between
the elements of the invariants set of γλi and those of γλj . The residues of the
opening behave as in the morphological opening case. Now, take for λ a fixed
value. It is clear that for λ = 0 property (2) is satisfied since γ0,µi = γ̃µγ i

For other values of λ this equality is not verified. However, when λ is small
the behavior of the residues practically verify this condition. The curves in
Figs. 2(c) and (d) illustrate the granulometric density functions computed from
the images in Figs. 2(a) and (b), using the residues of the openings γ̃µγ and γλ,µ,
respectively, with λ = 3. Observe that the curves in Fig. 2(c) , correponding
to γ̃µγ (gray color) and γλ,µ (dark color) are very similar. This is not the case
of granulometric functions computed from the image in Fig. 2(b). Let us
illustrate under which conditions property (2) is satisfied by γλ,µ. We know
that the opening by reconstruction verifies the property; for all µ1, µ2 such that
µ1 < µ2, and A a connected component; γ̃µγ 1(A) �=�� ∅ and γ̃µγ 2(A) �=�� ∅ implies
that γ̃µγ 1(A) = γ̃µγ 2(A) = A. Then, for two given parameters µ1 < µ2, the
difference γ̃µγ 1(X) − γ̃µγ 2(X) is composed of connected components removed
by γ̃µγ 2 from γ̃µγ 1(X) . In the binary case, a set X is arcwise connected if any
pair of points x, y of X is linked by a path, entirely included in X. Where a path
between two pixels of cardinal m is an m-tuple of pixels x0, x1, ..., xm such
that x = x0 and xm = y with xk, xk+1 neighbors for all k. Similarly, a path to
characterize some class of connected components A can be defined under some
conditions. That is, a path between two pixels x, y with a given "thickness",
formed by an m-tuple of pixels x = x0, x1, ..., xm = y with lambda Bxk

⊂ A
and xk, xk+1 neighbors for all k. Observe that the translates of λB, that hit the
boundaries of the set ωk

λ,X(γµγ (X)) (inside this set) (see [5]):

γλωk
λ,X(γµγ (X)) = γλδ1

fγλδ1
f · · · γλδ1

f︸ ︷︷︷ ︸︸
k times

(γµγ (X)),

enable us to decide which points are added to form the reconstructed set.
Then, for a class of connected components one has:

Property 3 Let A be an arcwise connected component such that ∀x, y ∈ A
with λBx ⊂ A and λBy ⊂ A, there exists a path x = x0, ..., xm = y, with
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xk, xk+1 neighbors ∀k, and with λBxk
⊂ A, ∀k. Then, ∀µ1, µ2 with λ ≤ µ1 ≤

µ2 such that γλ,µ1(A) �=�� ∅ and γλ,µ2(A) �=�� ∅ ⇒ γλ,µ1(A) = γλ,µ2(A) = A

An arcwise connected component of the dilates set that verifies property (3)
is removed by the opening γλ,µ if this component is completly removed by the
morphological opening γµγ , otherwise it remains intact.

6. Alternating sequential filters

When the structures to be removed from the image have a wide range of
scales, the use of a sequence of an opening (closing) followed by a closing
(opening) does not lead to acceptable results. A solution to this problem is the
use of the alternating sequential filters (ASF). Serra ([9]) defines and char-
acterizes four operators mµ(f) = γµγ ϕµ(f), nµ(f) = ϕµγµγ (f) rµ(f) =
ϕµγµγ ϕµ(f), sµ(f) = γµγ ϕµγµγ (f), where the size µ is indexed over a size
distribution with 1 ≤ µ ≤ ν. Let us take the operators defined by: mλ,µ(f) =
γλ,µϕλ,µ(f) and nλ,µ(f) = ϕλ,µγλ,µ(f). For the parameters λ, µ1, µ2 with
λ ≤ µ1 ≤ µ2, these filters not only verify the following relationships:

mλ,µ2mλ,µ1(f) ≤ mλ,µ2(f) ≤ mλ,µ1mλ,µ2(f)

nλ,µ1nλ,µ2(f) ≤ nλ,µ2(f) ≤ nλ,µ2nλ,µ1(f)

But also, for the parameters µ, λ1, λ2 with λ1 ≤ λ2 ≤ µ, one has that:
mλ2,µmλ1,µ(f) ≤ mλ2,µ(f) ≤ mλ1,µmλ2,µ(f)

nλ1,µnλ2,µ(f) ≤ nλ2,µ(f) ≤ nλ2,µnλ1,µ(f)

Let us use the µ parameter as the size of the structures of the image to
be preserved and the λ parameter the size of those structures linked to the
structures to be preserved. For a family {λi} with λj < λk if j < k one has:

MλM n ,µ(f) = mλn ,µ . . .mλ2,µmλ1,µ(f)

NλN n ,µ(f) = nλn ,µ . . . nλ2,µnλ1,µ(f), (7)

with the condition λn ≤ µ. The image in Fig. 3(b) shows the output image
computed from the image in Fig. 3(a) by the alternate filter using an open-
ing and a closing by reconstruction γ̃µγ ϕ̃µ(f) with µ = 25, while the image
in Fig. 3(c) was computed by an ASF γ4γγ ϕ4γ3ϕ3γ2ϕ2γ1ϕ1(f). Observe that
the alternating filter, using reconstruction filters, enables us to extract the main
structure of the image by removing all regions that are not connected to this
structure, while the ASF, using morphological openings and closings, permits
the removal of some structures linked to the main region (the cameraman). The
idea of using openings and closings with reconstruction criteria consists in tak-
ing into account both behaviors. Then, let us apply a sequence of openings and
closings with reconstruction criteria. The images in Figs. 3(d) to (f) illustrate
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(a)      (b)

(c)      (d)

Figure 2. (a) and (b) Original images, (c) and (d) Granulometry curves computed from images
2(a) and 2(b), respectively, using the γ̃µ and γλ,µ .

the use of ASF using openings and closings with reconstruction criteria. The
image in Fig. 3(d) was computed by using the filter γλ,µϕλ,µ(f) with µ = 25
and λ = 4, while the image in Fig. 3(e) was computed by means of the ASF
γ4γγ ,µϕ4,µγ3,µϕ3,µγ2,µϕ2,µγ1,µϕ1,µ(f) with µ = 25. Finally, the image in Fig.
3(f) was computed with the ASF, γ4γγ ,µϕ4,µγ2,µϕ2,µ(f) with µ = 25.

7. Conclusion

In this paper, a class of transformations with reconstruction criteria is in-
vestigated. In particular, the conditions required for selecting a marker for this
type of transformations are studied. It is shown that a convenient framework
for this type of transformations is the viscous lattice proposed by Serra [3]. The
use of these transformations in the image segmentation problem is illustrated
Also, the granulometry and the alternating sequential filters are analyzed.
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Abstract In this paper connected operators from mathematical morphology are extended
to a wider class of operators, which are based on connectivities in higher dimen-
sion spaces, similar to scale spaces which will be called attribute spaces. Though
some properties of connected filters are lost, granulometries can be defined un-
der certain conditions, and pattern spectra in most cases. The advantage of this
approach is that regions can be split into constituent parts before filtering more
naturally than by using partitioning connectivities.

Keywords: Mathematical morphology, multi-scale analysis, connected filters, perceptual
grouping.

1. Introduction

Semantic analysis of images always involves grouping of pixels in some
way. The simplest form of grouping is modelled in digital image processing by
connectivity [4], which allows us to group pixels into connected components
or flat-zones in the grey-scale case. In mathematical morphology, connected
operators have been developed which perform filtering based on these kinds of
groupings [7][8][9]. However, the human observer may either interpret a single
connected component of a binary image as multiple visual entities, or group
multiple connected components into a single visual entity. These properties
have to some extent been encoded in second-order connectivities, which can
be either partitioning or clustering [1] [3][12].

In this paper I will demonstrate a problem with partitioning connectivities
when used for second-order connected attribute filters, due to the large num-
bers of singletons they produce in the image. This over-segmentation effect
is shown in Fig. 1. It will be shown that these attribute filters reduce to per-
forming e.g. an opening with ball B followed by an application of the attribute
filter using the normal (4 or 8) connectivity. The approach presented here is
is different from second-order connectivities, in that it restates the connectiv-
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(a) (b) (c) (d) (e)

Figure 1. Attribute-space compared to regular attribute filtering: (a) original image X; (b) the
connected components of X according to Cψ , with ψ an opening by a 3×3 structuring element
(see Section 3); (d) partitioning of X by attribute space method of Section 4; (e) regular attribute
thinning ΨT

ψ(X) with T (C) = (I(C)/A2(C) < 0.5); (f) attribute-space connected attribute
thinning ΨT

A(X) with the same T . T is designed to remove elongated structures. Note that only
the attribute-space method removes the elongated bridge.

ity relationships in an image in terms of connectivity in higher-dimensional
spaces, which I will call attribute spaces . As can be seen in Fig. 1, this leads
to a more natural partitioning of the connected component into two squares and
a single bridge. This effect is also shown in a practical application in Fig. 7.

This paper is organized as follows. First connected filters are described
formally in Section 2, followed by second-order connectivities in Section 3.
Problems with attribute filters using partitioning connectivities are dealt with
in detail in this section. After this, attribute spaces are presented in section 4.

2. Connectivity and Connected Filters

As is common in mathematical morphology binary images X are subsets of
some universal set E (usually E = Z

n). Let P(E) be the set of all subsets of
E. Connectivity in E can be defined using connectivity classes [10].

Definition 1 A connectivity class C ⊆ P(E) is a set of sets with the follow-
ing three properties:

1 ∅ ∈ C

2 {x} ∈ C

3 for each family {CiCC } ⊂ C, ∩CiCC �=�� ∅ implies ∪CiCC ∈ C.

This means that both the empty set and singleton sets are connected, and any
union of connected sets which have a nonempty intersection is connected.

Any image X is composed of a number of connected components or grains
CiCC ∈ C, with i from some index set I . For each CiCC there is no set C ⊃ CiCC such
that C ⊆ X and C ∈ C. If a set C is a grain of X we denote this as C � X .

An alternative way to define connectivity is through connected openings,
sometimes referred to as connectivity openings [1].
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Figure 2. Binary attribute filters applied to an image of bacteria: (left) original; (middle) area
opening using area threshold λ = 150; (right) elongation thinning using attribute I/A2 > 0.5.

Definition 2 The binary connected opening Γx of X at point x ∈ M is
given by

Γx(X) =

{
CiCC : x ∈ CiCC ∧ CiCC � X if x ∈ X

∅ otherwise.
(1)

Thus Γx extracts the grain CiCC to which x belongs, discarding all others.

Attribute filters

Binary attribute openings are based on binary connected openings and triv-
ial openings. A trivial opening ΓT uses an increasing criterion T to accept or
reject connected sets. A criterion T is increasing if the fact that C satisfies T
implies that D satisfies T for all D ⊇ C. Usually T is of the form

T (C) = (Attr(C) ≥ λ), (2)

with Attr(C) some real-valued attribute of C, and λ the attribute threshold. A
trivial opening is defined as follows ΓT : C → C operating on C ∈ C yields C
if T (C) is true, and ∅ otherwise. Note that ΓT (∅) = ∅. Trivial thinnings differ
from trivial openings only in that the criterion T in non-increasing instead of
increasing. An example is the scale-invariant elongation criterion of the form
(2), in which Attr(C) = I(C)/A2(C), with I(C) the moment of inertia of C
and A(C) the area [13]. The binary attribute opening is defined as follows.

Definition 3 The binary attribute opening ΓT of set X with increasing cri-
terion T is given by

ΓT (X) =
⋃

x∈X

ΓT (Γx(X)) (3)

The attribute opening is equivalent to performing a trivial opening on all grains
in the image. Note that if the attribute T is non-increasing, we have an attribute
thinning rather than an attribute opening [2, 8]. The grey-scale case can be
derived through threshold decomposition [6]. An example in the binary case is
shown in Figure 2.
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3. Second-Order Connectivities

Second-order connectivities are usually defined using an operator ψ which
modifies X , and a base connectivity class C (4 or 8 connectivity)[1, 10]. The
resulting connectivity class is referred to as Cψ. If ψ is extensive Cψ is said
to be clustering, if ψ is anti-extensive Cψ is partitioning . In the general case,
for any x ∈ E three cases must be considered: (i) x ∈ X ∩ ψ(X), (ii) x ∈
X \ ψ(X), and (iii) x �∈ X . In the first case, the grain to which x belongs in
ψ(X) is computed according to C, after which the intersection with X is taken
to ensure that all grains CiCC ⊆ X . In the second case, the x is considered to be
a singleton grain. In the third case the connected opening returns ∅ as before.

Definition 4 The connected opening Γψ
x for a second-order connectivity

based on ψ of image X is

Γψ
x (X) =

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
Γx(ψ(X)) ∩X if x ∈ X ∩ ψ(X)
{x} if x ∈ X \ ψ(X)
∅ otherwise,

(4)

in which Γx is the connected opening based on C.

If X ⊂ ψ(X) the second case of (4) never occurs. Conversely, if ψ(X) ⊂
X we have ψ(X) ∩ X = ψ(X), simplifying the first condition in (4). An
extensive discussion is given in [1, 10].

Attribute operators

Attribute operators can readily be defined for second-order connectivities
by replacing the standard connected opening Γx by Γψ

x in Definition 3.

Definition 5 The binary attribute opening ΓT
ψ of set X with increasing

criterion T , and connectivity class Cψ is given by

ΓT
ψ(X) =

⋃
x∈X

ΓT (Γψ
x (X)) (5)

Though useful filters can be constructed in clustering case, and partition of
grains in soil samples for computation of area pattern spectra has been used
[12, 11], a problem emerges in the partitioning case.

Proposition 1 For partitioning connectivities based on ψ the attribute open-
ing ΓT

ψ with increasing, shift invariant criterion T is

ΓT
ψ(X) =

{
X if T ({x}) is true

ΓT (ψ(X)) otherwise
(6)

with ΓT the underlying attribute opening from Definition 3.
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Proof If T ({x}) is true for any x, all x ∈ X \ ψ(X) are preserved by ΓT
ψ ,

because Γψ
x (X) = {x} for those pixels. Because T is increasing we have that

T ({x})⇒ T (C) for any C ∈ C with C �=�� ∅. Thus, if T ({x}) is true for any x,
all x ∈ ψ(X) are also preserved, because Γx(ψ(X)) ∈ C and Γx(ψ(X)) �=�� ∅
for those x. In other words if T ({x}) is true,

ΓT
ψ(X) = X, (7)

which proves (6) in the case that T ({x}) is true.
Conversely, if T ({x}) is false for any x, all x ∈ X \ ψ(X) are rejected, i.e.

ΓT ({x}) = ∅. Therefore, if T ({x}) is false

ΓT
ψ(X) =

⋃
x∈ψ(X)

ΓT (Γψ
x (X)). (8)

Because all x ∈ X \ψ(X) are rejected, Γψ
x (X) can be rewritten as Γx(ψ(X)),

and we have

ΓT
ψ(X) =

⋃
x∈ψ(X)

ΓT (Γx(ψ(X))) = ΓT (ψ(X)). (9)

The right-hand equality derives from Definition 3. �
Proposition 1 means that an attribute opening using a partitioning connec-

tivity boils down to performing the standard attribute opening on ψ(X), unless
the criterion has been set such that ΓT is the identity operator. The reason for
this is the fact that the grains of X \ ψ(X) according to the original connec-
tivity are split up into singletons by Γψ

x . Even if non-increasing criteria are
used, singleton sets carry so little information that setting up meaningful filter
criteria is not readily done. In Section 4 a comparison with the attribute-space
alternative is given and illustrated in Figure 1.

4. Attribute Spaces and Attribute-Space Filters

As was seen above, connectivities based on partitioning operators yield
rather poor results in the attribute-filter case. To avoid this, I propose to trans-
form the binary image image X ⊂ E into a higher-dimensional attribute-space
E × A. Scale spaces are an examples of attribute spaces, but other attribute
spaces will be explored here. Thus we can devise an operator Ω : P(E) →
P(E × A). Thus Ω(X) is a binary image in E × A. Typically A ⊆ R or
Z, although the theory presented here extends to cases such as A ⊆ R

n. The
inverse operator Ω−1 : P(E × A) → P(E), projects Ω(X) back onto X , i.e.
Ω−1(Ω(X)) = X for all X ∈ P(E). Furthermore, Ω−1 must be increasing:
Y1YY ⊆ Y2YY ⇒ Ω−1(Y1YY ) ⊆ Ω−1(Y2YY ) for all Y1YY , Y2YY ∈ P(E × A). Attribute-space
connected filters can now be defined as follows.
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Definition 6 An attribute-space connected filter ΨA : P(E) → P(E) is
defined as

ΨA(X) = Ω−1(Ψ(Ω(X))) (10)

with X ∈ P(E) and Ψ : P(E ×A)→ P(E ×A) a connected filter.

Thus attribute-space connected filters work by first mapping the image to a
higher dimensional space, applying a connected filter and projecting the re-
sult back. Note that the connected filter Ψ may use second-order connectivity
rather the underlying connectivity in E×A (e.g. 26-connectivity in 3D). Note
that if Ψ is anti-extensive (or extensive), so is ΨA due to the increasingness
of Ω−1. However, if Ψ is increasing, this property does not necessarily hold
for ΨA, as will be shown on page 91 and following and Fig. 5. Similarly,
idempotence of Ψ does not imply idempotence of ΨA. However, if

Ψ(Ω(X)) = Ω(ΨA(X)) = Ω(Ω−1(Ψ(Ω(X)))), (11)

for all X ∈ P(E), idempotence of Ψ does imply idempotence of ΨA, because
Ω maps ΨA(X) exactly back onto Ψ(Ω(X)). Eqn. (11) obviously holds when
Ω(Ω−1(Y )) = Y for all Y ∈ P(E ×A), but (11) is slightly more general.

We can also define attribute-space shape or size granulometries and spectra
in analogy to connected shape or size granulometries [2, 13]. Let {αr} be a
granulometry, with each αr : P(E ×A)→ P(E ×A) a connected filter, with
r from some ordered set Λ. The set of attribute-space connected filters {αA

r }
defined as

αA
r = Ω−1(αr(Ω(X))), (12)

has the following properties

αA
r (X) ⊆ X, (13)

s ≤ r ⇒ αA
r (X) ⊆ αA

s (X) (14)

for all X ⊆ E. However, the stronger nesting property of granulometries, i.e.

αA
r (αA

s (X)) = αA
max(r,s)(X) (15)

only holds if the condition on idempotence in (11) is true for all αr in the
granulometry. However, property (14) does lead to a nesting of the resulting
images αA

r (X) as a function of r, so a pattern spectra fA
Xf based on these filters

can be defined as

fA
Xf (r) =

{
A(X \ αA

r (X)) if r = 1
A(αr−1(X) \ αA

r (X)) if r > 1
(16)

with A the Lebesgue measure in E (area in 2-D), and Λ = 1, 2, . . . , N , similar
to [5]. Finally, note that connected filters form a special case of attribute-space
connected filters, in which Ω = Ω−1 = I , with I the identity operator.
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(a) X (b) Y (c) ΩX (d) ΩY (e) (f)

Figure 3. Attribute-space partitioning of two binary sets: (a) and (b) binary images X and Y
each containing a single (classical) connected component (c) and (d) their respective opening
transforms; (e) and (f) partitioning of X and Y using edge strength threshold r = 1. X is
considered as one component due to the slow change in attribute value, whereas the abrupt
change in width causes a split in Y .

Width-based attribute spaces

In the following E = Z
2. As an example of mapping of a binary image

X ∈ P(E) to binary image Y ∈ P(E × A) we can use local width as an
attribute to be assigned to each pixel x ∈ X , using an opening transform
defined by granulometry {βrββ }, in which each operator βrββ : E → E is an
opening with a structuring elements Br. An opening transform is defined as

Definition 7 The opening transform ΩX of a binary image X for a granu-
lometry {βrββ } is ΩX(x) = max{r ∈ Λ|x ∈ βrββ (X)}. (17)

In the case that βrββ (X) = X ◦ Br with ◦ denoting structural openings and
Br ball-shaped structuring elements of radius r, an opening transform assigns
the radius of the largest ball such that x ∈ X ◦ Br. An example is shown
in Fig. 3. We can now devise a width-based attribute space by the mapping
Ωw : P(E)→ P(E × Z) as

Ωw(X) = {(x,ΩX(x))|x ∈ X} (18)

The inverse is simply

Ω−1
w (Y ) = {x ∈ E|(x, y) ∈ Y } (19)

with Y ∈ P(E × Z).
Let CiCC ⊂ E × R be the connected components of Ωw(X) with i from

some index set. Because a single attribute value is assigned to each pixel by
ΩX , it is obvious that the projections onto E of these sets Cw

iCC = Ω−1
w (CiCC )

are disjoint as well. Thus they form a partition of the image plane in much
the same way as classical connected components would do, as can be seen
in Fig. 3. In this example we can work in a 2-D grey-scale image, rather
than a 3-D binary image, for convenience. Connectivity in the attribute space
is now partly encoded in the grey-level differences of adjacent flat zones in
these images. In the simplest case, corresponding to 26-connectivity in the
3-D binary image, a grey-level difference of 1 means adjacent flat-zones are
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(a) X (b) X1 (c) X2 (d) (e)

Figure 4. Attribute-space connectivity is not connectivity: (a) binary image X c is the union
of two overlapping sets X1 (b) and X2 (c) each of which are considered connected in attribute
space; however, X is partitioned into two sets (d) by the same attribute-space connectivity; (e)
any partitioning connectivity which separates the square from the elongated part of X splits the
elongated part into 14 singletons.

(a) X (b) Y (c) (d) (e) ΨA(X) (f) ΨA(Y )

Figure 5. Non-increasingness of ΨA for increasing Ψ: (a) and (b) binary images X and Y ,
with X ⊆ Y ; (c) and (d) partitions of X and Y in attribute space projection of Ωw; (e) and
(f) PsiA(X) and PsiA(Y ), using for Psi an area opening with area threshold 10. Clearly
PsiA(X) �⊆ PsiA(Y ), even though Ψ is increasing

connected in attribute space. More generally, we can use some threshold r on
the grey level difference between adjacent flat zones. This corresponds to a
second-order connectivity Cψr with ψr a dilation in Z

3, with structuring ele-
ment {(0, 0,−r), (0, 0,−r+1), . . . , (0, 0, r)}. The effect of this can be seen in
Fig. 3(f), in which abrupt changes in width lead to splitting of a connected com-
ponent into two parts. Fig. 4 demonstrates that this splitting is different from
caused by a partitioning connectivity . Fig. 5 shows the non-increasingness of
an attribute-space area operator ΨA based on an area opening Ψ in E×A. This
effect occurs due to the fact that overlap of X1 and X2 in E does not imply
overlap of Ωw(X1) and Ωw(X2) in E ×A.

A slightly different partitioning is obtained if we change (18)

Ωlog w(X) = {(x, 1 + log(ΩX(x)))|x ∈ X} (20)

with Ω−1
log w = Ω−1

w . Note that one is added to the logarithm of the width
to separate bridges of unity width from the background. Though very simi-
lar in behaviour to the attribute-space connectivity using Ωw, attribute-space
connectivity based on Cψr is now scale-invariant, as is shown in Fig. 6. No
second-order connectivity in E can achieve this, because they are all based
on increasing operators [1][10], and scale-invariance and increasingness are
incompatible [13].
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(a) (b) (c)

Figure 6. Scale invariant partitioning using 26-connectivity in 3-D: (a) Binary image in which
the large and the bottom small connected component have identical shapes; (b) partitioning
using Ωw ; (c) scale-invariant partitioning using Ωlog w , which splits the top small connected
component, but regards the other two as single entities.

(a) X (b) X ◦ B3 (c) ΓT
ψ (X)

(d)Ωt
X (e) ΨA(X)

Figure 7. Elongation filtering of neurons: (a) binary image of neuron; (b) opening by B3

to separate cell body from dendrites; (c) second-order connected attribute thinning preserving
elongated features with I(C)/A2 > 0.5; (e) Classification of pixels by thresholding ΩX at the
same value of t = 3; attribute-space connected filter result using same attribute as ΓT

ψ .

Any nonlinear transformation on the attribute can be used to obtain differ-
ent results, depending on the application. A simple method is to threshold
the opening transform ΩX assigning foreground pixels to different classes, de-
noted by Ωt

X , allowing connectivity only within a class. A simple two-class
classification is shown in Fig. 7, in which a second-order connected attribute
filter is compared to the corresponding two-class pixel classification method.
Only the attribute-space method recovers dendrites.

The first two attribute-space connectivities have a scale parameter, or rather
a scale-difference or scale-ratio parameter. This means we can develop multi-
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scale or perhaps more properly multi-level visual groupings in analogy to the
well-defined multi-scale connectivities [1, 12]. Increasing r in the attribute-
space connectivities generated by Ωw or Ωlog w combined with Cψr yields a
hierarchy, in which the partitioning becomes coarser as r is increased.

5. Discussion

Attribute-space morphology solves the problems with attribute filters us-
ing partitioning connectivities as noted in Proposition 1. The fragmentation
caused by splitting parts of connected components into singletons is absent.
This means that attribute-space attribute filters are more than just applying a
standard attribute filter to a preprocessed image. The price we pay for this is
loss of the increasingness property, and increased computational complexity.
In return we may achieve scale invariance, combined with a more intuitive re-
sponse to, e.g., elongation-based attribute filters, as is seen in Fig. 1. Future
research will focus on grey-scale generalizations, efficient algorithms for these
operators, and on the possibilities of dealing with overlap in this framework.
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Abstract A variant of morphological attribute filters is developed, in which the attribute
on which filtering is based, is no longer a scalar, as is usual, but a vector. This
leads to new granulometries and associated pattern spectra. When the vector-
attribute used is a shape descriptor, the resulting granulometries filter an image
based on a shape or shape family instead of one or more scalar values.

Keywords: Mathematical morphology, connected filters, multi-scale analysis, granulome-
tries, pattern spectra, vector-attributes, shape filtering

Introduction

Attribute filters [2, 12], which preserve or remove components in an image
based on the corresponding attribute value, are a comparatively new addition to
the image processing toolbox of mathematical morphology. Besides binary and
gray-scale 2-D images [2, 12], these filters have also been extended to handle
vector images, like color images [5, 7] and tensor-valued data [3], and 3-D im-
ages. So far the attributes used in all of these cases have been scalars. Although
the set of scalar attributes used in multi-variate filters and granulometries [14]
can also be considered as a single vector-attribute, these multi-variate opera-
tors can always be written as a series of uni-variate scalar operators, which is
not the case for vector-attribute filters.

In this paper vector-attribute filters and granulometries will be introduced,
whose attributes consists of vectors instead of scalar values, followed by a
discussion on their use as filters and in granulometries where the parameter
is a single shape image or a family of shape images instead of a threshold
value.
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1. Theory

The theory of granulometries and attribute filters is presented only very
briefly here. For more detail the reader is referred to [2, 9, 12, 16]. In the
following discussion binary images X and Y are defined as subsets of the im-
age domain M ⊂ R

n (usually n = 2), and gray-scale images are mappings
from M to R.

Let us define a scaling Xλ of set X by a scalar factor λ ∈ R as

Xλ = {x ∈ R
n|λ−1x ∈ X}. (1)

An operator φ is said to be scale-invariant if

φ(Xλ) = (φ(X))λ (2)

for all λ > 0. A scale-invariant operator is therefore sensitive to shape rather
than to size. If an operator is scale, rotation and translation invariant, we call it
a shape operator. A shape filter is simply an idempotent shape operator. In the
digital case, pure scale invariance will be harder to achieve due to discretization
artefacts, but a good approximation may be achieved.

Attribute openings and thinnings

Attribute filters, as introduced by Breen and Jones [2], use a criterion to
remove or preserve connected components (or flat zones for the gray-scale
case) based on their attributes. The concept of trivial thinnings ΦT is used,
which accepts or rejects connected sets based on a non-increasing criterion
T . A criterion T is increasing if the fact that C satisfies T implies that D
satisfies T for all D ⊃ C. The binary connected opening Γx(X) of set X
at point x ∈ M yields the connected component of X containing x if x ∈
X , and ∅ otherwise. Thus Γx extracts the connected component to which x
belongs, discarding all others. The trivial thinning ΦT of a connected set C
with criterion T is just the set C if C satisfies T , and is empty otherwise.
Furthermore, ΦT (∅) = ∅.

Definition 1 The binary attribute thinning ΦT of set X with criterion T is
given by

ΦT (X) =
⋃

x∈X

ΦT (Γx(X)) (3)

It can be shown that this is a thinning because it is idempotent and anti-
extensive [2]. The attribute thinning is equivalent to performing a trivial thin-
ning on all connected components in the image, i.e., removing all connected
components which do not meet the criterion. It is trivial to show that if criterion
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T is scale-invariant:

T (C) = T (CλC ) ∀λ > 0 ∧ C ⊆M, (4)

so are ΦT and ΦT . Assume T (C) can be written as τ(C) ≥ r, r ∈ Λ, with
τ some scale-invariant attribute of the connected set C. Let the attribute thin-
nings formed by these T be denoted as Φτ

r . It can readily be shown that

Φτ
r (Φ

τ
s(X)) = Φτ

max(r,s)(X). (5)

Therefore, {Φτ
r} is a shape granulometry, since attribute thinnings are anti-

extensive, and scale invariance is provided by the scale invariance of τ(C). An
attribute thinning with an increasing criterion is an attribute opening.

Definition 2 A binary shape granulometry is a set of operators {βrββ } with
r from some totally ordered set Λ, with the following three properties

βrββ (X) ⊂X (6)

βrββ (Xλ) =(βrββ (X))λ (7)

βrββ (βs(X)) =βmax(r,s)(X), (8)

for all r, s ∈ Λ and λ > 0.

Thus, a shape granulometry consists of operators which are anti-extensive, and
idempotent, but not necessarily increasing. Therefore, the operators must be
thinnings, rather than openings. To exclude any sensitivity to size, we add
property (7), which is just scale invariance for all βrββ .

Size and shape pattern spectra

Size pattern spectra were introduced by Maragos [8]. Essentially they are a
histogram containing the number of pixels, or the amount of image detail over
a range of size classes. If r is the scale parameter of a size granulometry, the
size class of x ∈ X is the smallest value of r for which x �∈ αr(X). Shape
pattern spectra can be defined in a similar way [15]. The pattern spectra sα(X)
and sβ(X) obtained by applying size and shape granulometries {αr} and {βrββ }
to a binary image X are defined as

(sα(X))(u) = −dA(αr(X))
dr

∣∣∣∣∣∣∣∣∣∣
r=u

(9)

and

(sβ(X))(u) = −dA(βrββ (X))
dr

∣∣∣∣∣∣∣∣∣∣
r=u

(10)
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in which A(X) denotes the Lebesgue measure in R
n, which is just the area if

n = 2.
In the discrete case, a pattern spectrum can be computed by repeatedly fil-

tering an image by each βrββ , in ascending order of r. After each filter step,
the sum of gray levels SrSS of the resulting image βrββ (f) is computed. The pat-
tern spectrum value at r is computed by subtracting SrSS from SrSS − , with r−

the scale immediately preceding r. In practice, faster methods for computing
pattern spectra can be used [2, 10, 11]. These faster methods do not compute
pattern spectra by filtering an image by each βrββ . However, for methods using
structuring elements this is usually unavoidable [1].

2. Vector-attribute granulometries

Attribute filters as described by Breen and Jones [2] filter an image based
on a criterion. Much work has been done since: uni- and multi-variate gran-
ulometries [1, 14] and their use on different types of images, such as binary,
gray-scale, and vector images. Although the original definition of the attribute
filters was not limited to scalar attributes, the attributes used so far have always
been based on scalar values.

A multi-variate attribute thinning Φ{TiTT }(X) with scalar attributes {τiττ } and
their corresponding criteria {TiTT }, with 1 ≤ i ≤ N , can be defined such that
connected components are preserved if they satisfy at least one of the criteria
TiTT = τiττ (C) ≥ ri and are removed otherwise:

Φ{TiTT }(X) =
N⋃

i=1

ΦTiTT (X). (11)

The set of scalar attributes {τiττ } can also be considered as a single vector-
attribute �τ = {τ1ττ , τ2ττ , . . . , τNτ }, in which case a vector-attribute thinning is
needed with a criterion:

T �τ
�rTT = ∃i : τiττ (C) ≥ ri for 1 ≤ i ≤ N . (12)

Although a thinning using this definition of T �τ
�rTT and �τ can be considered as a

multi-variate thinning with scalar attributes, and thus be decomposed into a
series of uni-variate thinnings (see definition 11), this is not the case with the
vector-attributes and their corresponding filters for binary and gray-scale 2-D
images that will be discussed below.

A binary vector-attribute thinning Φ�τ
�r,ε(X), with d-dimensional vectors from

a space Υ ⊆ R
d, removes the connected components of a binary image X

whose vector-attributes differ more than a given quantity from a reference vec-
tor �r ∈ Υ. For this purpose we need to introduce some dissimilarity measure
d : Υ × Υ → R, which quantifies the difference between the attribute vec-
tor �τ(C) and �r. A connected component� C is preserved if its vector-attribute
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�τ(C) ∈ Υ satisfies criterion T �τ
�TTr,εTT (C) = d(�τ(C), �)�� ≥ ε and is removed other-

wise, with ε some threshold. Thus it satisfies T �τ
�TTr,εTT if the dissimilarity d(�τ(C), �)��

between vectors �τ(C) and �r is at least ε. The simplest choice for d is the Eu-
clidean distance: d(u,�� ) =� ||�v − �u||, and any other distance measure (such as
Mahalanobis ) could be used. However, d need not be a distance, because the
triangle inequality d(a, c) ≤ d(a, b) + d(b, c) is not required.

More formally, the vector-attribute thinning can be defined as:

Definition 3 The vector-attribute thinning Φ�τ
�r,ε of X with respect to a ref-

erence vector �r and using vector-attribute �τ and scalar value ε is given by

Φ�τ
�r,ε(X) = {x ∈ X| T �τ

�TTr,εTT (Γx(X))}. (13)

This equation can be derived from definition 1 of the binary attribute thinning
[2] by substituting T with T �τ

�TTr,εTT in the definition of the trivial thinning.

Although a multi-variate thinning Φ{TiTT } can be defined as a vector-attribute
thinning Φ�τ

�r,ε with T �τ
�TTr,εTT = T �τ

�rTT , equation 13 cannot be decomposed in a similar
way, unless d(�τ(C), �)�� is the L∞ norm.

It should be noted here that vector-attribute openings are vector-attribute
thinnings with an increasing criterion T �τ

�TTr,εTT . Although it is easy to define an
increasing criterion based on scalar attributes, this is much harder for vector-
attributes, i.e. a criterion using a vector-attribute consisting of only increasing
scalar attributes is not necessarily increasing. Furthermore, since all of these
scalar attributes are increasing, they will generally be strongly correlated. For
this reason we restrict our attention to thinnings.

The reference vector �r in the definition of vector-attribute thinnings can be
computed using a given shape S: �r = �τ(S). This way a binary vector-attribute
thinning with respect to a given shape S can be constructed:

Definition 4 The binary attribute thinning with respect to a shape S ∈ C
can be defined as:

Φ�τ
S,ε = Φ�τ

�τ(S),ε (14)

In Fig. 1 the effect of ε in the criterion T �τ
�TTr,εTT (C) = d(�τ(C), �)�� ≥ ε is demon-

strated, with d(�τ(C), �) =�� ||�r− �τ(C)||. The reference vector �r was computed
from an image of the letter A. Three values were (manually) chosen for ε:
the maximum (rounded) value that removes exactly one letter, one value that
removes nearly all letters, and one value in between.

The extension of binary attribute filters and granulometries to gray-scale has
been studied extensively [2, 10–12]. Extending our vector-attribute thinnings
and granulometries can be done in a similar fashion. Gray-scale thinning with
respect to a shape is demonstrated in Fig. 2.
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Original image X ε = 0.01 ε = 0.10 ε = 0.15

Figure 1. Filtering using a vector-attribute thinning Φ�τ
�r,ε(X) with increasing values of ε

X Φ�τ
SA ,ε(X) Φ�τ

SB ,ε(X) Φ�τ
SC ,ε(X)

Figure 2. Removal of letters using Φ�τ
Si ,ε(X) in gray-scale image (left) of letters A, B, C with

Si being respectively the shapes SA , SB , and SC

Definition 5 A granulometry with respect to reference vector �r ∈ Υ, using
scale, rotation and translation invariant vector-attribute �τ ∈ Υ is given by the
family of vector-attribute thinnings {Φ�τ

�r,ε} with ε from R.

It is obvious from (13) that Φ�τ
�r,ε is anti-extensive and idempotent, and more

importantly that

Φ�τ
�r,η(Φ

�τ
�r,ε(X)) = Φ�τ

�r,max(ε,η)(X) ε, η ∈ R (15)

Furthermore, if �τ is scale, rotation, and translation invariant, Φ�τ
�r,ε is a shape

filter and {Φ�τ
�r,ε} is a shape granulometry [15].

An example of a suitable vector-attribute for shape granulometries are mo-
ment invariants. Hu’s moment invariants [6] are invariant to rotation, scaling
and translation, and are therefore suitable as shape attribute. Recently, new sets
of moment invariants have been presented, such as the Krawtchouk moment in-
variants [17], which form a set of discrete and orthogonal moment invariants,
and a set of complete and independent moment invariants by Flusser and Suk
[4]. A problem that occurs with Krawtchouk moment invariants when the ref-
erence shape is not rotationally symmetric, like most letters, is that the angle
used in the definitions of these moment invariants is defined by the orientation
instead of the direction of the shape, which means that a 180 degrees rotated
version of a shape S will generate a different vector-attribute than S does. The
sensitivity of the moment invariants of Hu and Krawtchouk to rotation and
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Figure 3. Effect of orientation on the distance between the vector-attributes of a connected
component CiCC and a given reference image SjS for Hu (left) and Krawtchouk (middle and right)
moment invariants, where CiCC represents the letter A, double-sized A, half-sized A, and B for
i = 1, 2, 3, 4 respectively; SjS represents the letter A for j = 1, 2 at 0 and 180 degrees rotation
respectively
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Figure 4. Left to right: original image and letters A, B, and C removed

scaling is demonstrated in Fig. 3, where one would expect the distance d be-
tween different orientations and sizes of the same letter A to be smaller than
the distance between A and, according to the vector-attribute, the letter closest
the A: the B. As can be seen, this is in both cases true for scaling, but it is clear
that for Krawtchouk moment invariants rotation-invariance only holds for a
certain range of orientations. This problem can be solved by using a filter that
removes a connected component C if it matches any of the four orientations
of a given shape S. This is demonstrated in Fig. 3(right). Furthermore, the
Krawtchouk moments depend on the image size, which means that comparing
two vectors requires that the same image size is used for the computation of
both vectors and that some form of normalization is necessary. Considering
these drawbacks of the Krawtchouk moment invariants we decided to use the
well-known moment invariants of Hu for the other experiments described in
this paper.

In Fig. 4 an image X consisting of the letters A, B, C, D, and E at different
sizes and orientations is filtered with the goal of removing all instances of a
certain letter in the image. As can be seen, especially the smallest letters in the
image are not always removed when they should have been.
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3. Granulometries with respect to a shape family

Let Φ�τ
S,ε be defined as above, and let F = {S1, S2, ..., SnSS } be a shape family

with F ⊆ C. The vector-attribute thinning Φ�τ
F,ε with respect to shape family F

is defined as

Definition 6 The vector-attribute thinning Φ�τ
F,ε of X with respect to a set

F , with F ⊆ C and using vector-attribute thinning with respect to shape Φ�τ
S,ε

is given by
Φ�τ

F,ε(X) =
⋂

S∈F

Φ�τ
S,ε (16)

In other words, connected components are removed if they resemble any mem-
ber of the shape family F closer than a given amount ε and are preserved oth-
erwise. Again we have that Φ�τ

F,ε is anti-extensive and idempotent, and scale,
rotation, and translation invariance is inherited from �τ . Furthermore,

Φ�τ
F,ε(Φ

�τ
G,ε(X)) = Φ�τ

G,ε(Φ
�τ
F,ε(X)) = Φ�τ

F,ε(X) for G ⊆ F . (17)

Definition 7 Assume we have N shapes S1, S2, . . . , SN and let FnFF be a set
containing the n ≤ N shapes S1, . . . , SnSS . A granulometry {βnββ }with respect to
shape family FNF using vector-attribute thinning with respect to shape Φ�τ

Si ,ε
(X)

for SiSS ∈ FNF , is given by the family of vector-attribute thinnings with respect
to shape family {Φ�τ

FnFF ,ε} such that

βnββ = Φ�τ
FnFF ,ε (18)

It is easy to see that if all {Φ�τ
Si ,ε
} are a shape granulometry, then so is {βnββ }.

The use of granulometries with respect to a shape family F for the compu-
tation of pattern spectra is demonstrated in Fig. 5, where a pattern spectrum of
the input image in Fig. 4(left) is computed using a granulometry with respect
to a family FnFF = {S1, . . . , S5}, with S1, . . . , S5 representing the letters A till
E respectively. As a comparison, a histogram was also computed representing
the number of occurrences of each letter in the image.

4. Conclusions

A new class of attribute filters was presented, whose attributes are vector
instead of scalar values. These vector-attribute filtersvector-attribute filter are a
subclass of the attribute filters defined by Breen and Jones. Using Hu’s moment
invariants, it was shown how thinnings and granulometries could be defined
that filter images based on a given shape or a family of shapes.

For discrete images, the rotation- and scale-invariance of the moment invari-
ant attributes is only by approximation. Furthermore, the rotation-invariance
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Figure 5. Pattern spectrum and shape histogram computed using Φ�τ
FnFF ,ε(X) with n =

1, 2, . . . , 5, resulting in filtering with family FnFF , where FnFF is the family of the first n letters
in the alphabet. Each FnFF includes one more shape to remove (top row)

of the Krawtchouk moment invariants does not hold for all orientations for
shapes without rotational symmetry, due to the fact that the angle computed
here refers to the orientation instead of the direction of the component. Al-
though this problem can be solved by filtering using a few orientations of one
shape, vector-attributes that do not have this problem, like Hu’s moment in-
variants, are preferred. Future research will also investigate alternatives such
as the complex moment invariants of Flusser and Suk [4]. More research is
also needed to determine better ways for selecting the parameters like ε and
the order and the choice of shape classes.

The dissimilarity measure d is also a critical choice. Other dissimilarity
measures than the Euclidean distance should be investigated. If an adaptive
system like a genetic algorithm would be used for d, an adaptive shape filter
would be obtained. If multiple (reference) instances of the target class are
available, the Mahalanobis distance is an option. This would lend more weight
to directions in the attribute space Υ in which the class is compact, compared
to directions in which the class is extended. Because we only use examples of
the target class, the filtering problem resembles one-class classification [13].
This can be done with (kernel) density estimates to obtain a likelihood of class
membership. The inverse of this probability would also yield a dissimilarity
measure. Support-vector domain description could be used in a similar way
[13].

An interesting approach would be the use of pattern spectra consisting of
three dimensions: shape information from vector-attributes, size information
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such as the area, and the orientation of the components. This would be partic-
ularly useful in texture classification.
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Abstract This papers presents a comprehensive and general form of the Tarjan’s union-
find algorithm dedicated to connected operators. An interesting feature of this
form is to introduce the notion of separated domains. The properties of this form
and its flexibility are discussed and highlighted with examples. In particular, we
give clues to handle correctly the constraint of domain-disjointness preservation
and, as a consequence, we show how we can rely on “union-find” to obtain
algorithms for self-dual filters approaches and levelings with a marker function.

Keywords: Union-find algorithm, reconstructions, algebraic openings and closings, domain-
disjointness preservation, self-dual filters, levelings.

Introduction

Connected operators have the important property of simplifying images
while preserving contours. Several sub-classes of these operators have been
formalized having stronger properties [8] and numerous applications have been
derived from them, e.g., scale-space creation and feature analysis [17], video
compression [14], or segmentation [10]. The behavior of connected operators
is to merge most of the flat zones of an input image, thus delivering a partition
which is much coarser than the input one. In that context, a relevant approach
to implement such operators is to compute from an input image the resulting
partition. The Tarjan’s Union-Find Algorithm, union-find for short, computes
a forest of disjoint sets while representing a set by a tree [16]. A connected
component of points or a flat zone is thus encoded into a tree; a point becomes
a node and a partition is a forest. union-find has been used to implement some
connected operators; among them, connected component labeling [2], a wa-
tershed transform [6], algebraic closing and opening [19], and component tree
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computation [4, 11]. A tremendous advantage of union-find lies in its sim-
plicity. However, the descriptions of morphological operators relying on this
algorithm are usually spoiled by the presence of too many implementation de-
tails.

This paper intends to provide the image processing community with a sim-
ple and general form of union-find, which is highly adaptable to the large
class of connected operators. We show that the description of a given operator
with union-find is actually straightforward, comprehensive, and takes very few
code. We also present how union-find can be used for the connected opera-
tors θ which verify a domain disjointness preservation property. Consequently
we show that union-find is a simple way to get algorithms for folding induced
self-dual filters [5], the inf-semilattice approach to self-dual morphology [3],
and levelings defined on two functions [10].

In order to keep implementation details away from algorithmic considera-
tions, we do not address any single optimization issue. Moreover, we do not
enter into a comparison between union-find-based algorithms and other ap-
proaches; for those subjects, the reader can refer to [13, 7]. We claimed in [1]
that our generic C++ image processing library, Olena [12], has been designed
so that algorithms can easily be translated into programs while remaining very
readable. To sustain this claim, programs given in this paper rely on our library
and, thanks to it, they efficiently run on various image structures (signals, 2D
and 3D images, graphs) whatever their data types (Boolean, different integer
encodings, floating values, etc.)

In the present document we start from the simplest operator expressed with
union-find, namely a connected component labeling, in order to bring to the
fore the properties of union-find-based algorithms (Section 1). We stress on the
notions of domains and of disjointness-preservation and we present a general
formulation of union-find (Section 2). In the second part of this document
we give a commented catalogue of connected operators with the help of that
formulation (Section 3). Last we conclude (Section 4).

1. Practicing on Connected Component Labeling

In union-find, a connected component is described as a tree. At any time of
the algorithm computation, each existing component has a canonical element,
a root point at the top of the tree. A link between a couple of nodes within
a tree is expressed by a parent relationship. A convenient way to handle the
notion of “parent” is to consider that parent is an image whose pixel values are
points—given a point x, parent[x] is a point—and that a root point is its own
parent. Finding the root point of a component recursively goes, starting from a
point of this component, from parent to parent until reaching the root point.
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Let us practice first on connected component labeling. The union-find al-
gorithm is composed of an initialization followed by two passes. The first one
aims at computing the tree forest and the second one aims at labeling.

void init() {
is_processed = false; // that is, for all points
cur_label = 0;
O = false; // background is the default value

}

void first_pass() {
bkd_scan p(D); // R_D is the bkd scan
nbh_scan n(nbh);
for_all (p)

if ( is_in_I(p) ) { // "body 1.1"
make_set(p); // so {p} is a set
for_all_neighbors ( n, p )

if ( D.holds(n) ) // n belongs to D
if ( is_processed[n] )

do_union(n, p);
is_processed[p] = true;

}
}

void second_pass() {
fwd_scan p(I); // versus bkd in 1st pass
for_all (p)

if ( is_in_I(p) ) { // "body 2.1"
if ( is_root(p) )

set_O_value(p); // new label
else

O[p] = O[parent[p]]; // propagation
}

}

In the first pass, points of the input set I are browsed in a given order. In
the case of image processing, the domain D of the input image includes I .
Practically, I is represented by its membership function defined over D and is
encoded as a binary image. A convenient way to browse elements of I is thus
performed by a classical forward or backward scan of the points p of D and
testing if p is in I is required. Let us denote by RD the ordering of points
of D which corresponds to the way we browse D during the first pass. The
current point p is first turned into a set: {p}. Neighbors of p are then inspected
to eventually merge p with an existing tree. Let us denote by n a neighbor
of p such as n ∈ I (actually we have to ensure that n actually lies in the
image domain D to prevent problems when p happens to belong to the internal
boundary of D). If n has not been processed yet, it does not make sense to
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inspect n since it does not belong to a tree structure. In the other case, we
proceed to the union of {p} and of the set to which n belongs.

A key point of union-find lies in this task; performing the union of a couple
of trees is a single simple operation: linking their respective root points, say
r1 and r2 with r1RD r2, so that the parent of r1 is r2. This rule ensures a
very strong property: when processing p in the first loop, ∀p∀ ′ such as p′RD p,
we have p′RD parent(p′) and parent(p′)RD p. Adding the point p to the
connected component that contains n is then as simple as setting to p the parent
of r, where r is the root point of ΓI(n).

The second pass of union-find browses points of D in the reverse order,
R−1

D , as compared to the first pass. Thanks to parenthood construction, the
following two properties hold. 1) For any component (or flat zone) computed
during the first pass, the first point of this component visited during the second
pass is the root point. 2) In the second pass, a point is always visited after its
parent. So, for each point p ∈ I using R−1

D , we assign p a new label in the
output image O if p is root, otherwise we assign p the same label as its parent.

bool is_in_I(point p) { return I[p] == true; }

void make_set(point p) { parent[p] = p; }

bool is_root(point p) { return parent[p] == p; }

point find_root(point x) {
if ( is_root(x) ) return x;
else return ( parent[x] = find_root(parent[x]) );

}

void set_parent(point r, point p) { parent[r] = p; }

void do_union(point n, point p) {
point r = find_root(n);
if ( r != p )

set_parent(r, p);
}

L set_O_value(point p) { return ++cur_label; }

Both passes of connected component labeling using union-find are illus-
trated in Figure 1.

2. Introducing Domains and Disjointness-Preservation

The main characteristic of union-find appears to be in its overall structure.
First, let us take a partition of the image domain D into m + 1 disjoint sets
defined by: D = D′ ∪ D′′ with D′ = (∪m

i=1Di) . In this partition D′′ is the
set of points of D that are not subject to forest computation.
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Figure 1. Connected component (8-connectivity) labeling using union-find: arrows represent
parenthood and circles depict root points.

A requirement about D′′ is therefore that, ∀p∀ ∈ D′′, the value O[p[[ ] can be
directly computed from the operator input. So we compute O over D′′ as a
whole in the initialization part of union-find (set_default_O routine). Also note
that we will never have proper values for parenthood in D′′.

A sub-domain Di with i = 1..m can have its own definition of forest com-
putation, different from the ones of Dj with j �=�� i. Consider for instance the
simultaneous connected component labeling of both object and background
in a binary 2D image; obviously we have D′′ = ∅, D1 = I , and D2 = Ic.
Processing two forests then allows us to rely on two distinct neighborhoods
so that topological inconsistency is avoided. Keeping this idea in mind, the
description of union-find mutes into a more general form depicted in Figure 2.
Both first and second passes process in an independent way the domains Di

thanks to a test is_in_Di; that gives rise to the “body 1.i” and “body 2.i” sec-
tions. Furthermore, some variations between bodies in a same pass are now
conceivable.

Preserving domain disjointness. A strong assumption is implicitly man-
aged in the writing of “body 1.i” due to the tests “is_in_Di(n)”: we are preserving
disjointness over domains, that is, each connected component (or flat zone) Γ
created by such an algorithm cannot cross domains frontiers. We have:

∀Γ ∈ O, ∃i such as Γ ⊆ Di and ∀j∀ �=�� i, Γ ∩Dj = ∅.

Visiting domain boundaries. During the first pass, while processing a
neighbor n of p, if we do not enter component computation, that means that n
does not belong to Di. If m ≥ 2, that also means that n can have already been
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void init() {
is_processed = false;
set_default_O();

}

void first_pass() {
// declarations are removed
for_all (p)

if ( is_in_D1(p) ) // body 1.1
else if ( is_in_D2(p) ) // body 1.2
// other bodies 1.i ...

}

void second_pass() {
// declarations are removed
for_all (p)

if ( is_in_D1(p) ) // body 2.1
else if ( is_in_D2(p) ) // body 2.2
// other bodies 2.i ...

}

// with body 1.i being:
{

make_set(p);
for_all_neighbors(n, p)

if ( D.holds(n) )
if ( is_in_Di(n) and is_processed[n] )

do_union(n, p);
// optional:
else visit_extB_of_Di(n, p);

set_processed(p);
}

// with body 2.i being:
{

if ( is_root(p) ) set_O_value_in_Di(p);
else O[p] = O[parent[p]];

}

Figure 2. General form of union-find with domains.
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processed or not. Since p ∈ Di, n belongs to the external boundary Bext(Di)
of Di and, when the first pass is completed, we have visited all the points of
Bext(Di). This general version of union-find thus get us the ability of fetching
information from Bext(Di) (through the visit_extB_of_Di routine).

Attaching auxiliary data to components. A connected component en-
coded as a tree is represented by its root point. If one intends to implement
with union-find a particular operator which requires information on compo-
nents, some auxiliary data just have to be attached to every root points. Fur-
thermore, we have the ability to attach to components a distinct type of data
per domain. So we have to adapt the routines which deal with parenthood in
the first pass:

void make_set_in_Di(point p) {
parent[p] = p; // creation of {p}
init_data_in_Di(p); // so p has data

}
void set_parent_in_Di(point r, point p) {

parent[r] = p; // 2 components are now connected
merge_data_in_Di(r, p); // so p carries data

}

Last, please remark that updating data is possible while visiting boundaries
Bext(Di) (first pass) and that data are usually expected to influence the operator
output (second pass, routine set_O_value_in_Di, called when p is root).

Extension to morphology on functions. In the field of morphology on
grey-level functions, given a function f , two trivial orderings between points
of D can be derived from RD and from the one of the complete lattice frame-
work: pR↑p′ ⇔ f(p) < f(p′) or ( f(p) = f(p′) and pRD p′ ) and its
reverse ordering R↓. If we choose R↑ for the first pass of union-find, the evo-
lution of connected components during this pass mimics a flooding of f and
we get an extensive behavior of the connected operator. By duality, we ob-
tain an anti-extensive behavior with R↓. In the literature about implementing
connected operators with union-find, namely algebraic openings and closings
in [19, 7], the notion of domains is absent and the whole image domain is pro-
cessed. We actually have D = D′ (so D′′ = ∅) and at first glance that seems
relevant. A novelty here appears during the first pass: connected components
can grow even by merging flat zones of the input image. The expansion of a
component is stopped when a given increasing criterion is no more satisfied;
this component then turns “inactive”. That leads us to:
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void init_data_in_Di(point p) {
is_active[p] = true; // and handle other data...

}
void do_union_in_Di(point n, point p) {

point r = find_root(n);
if ( r != p )

if ( is_flat_in_Di(r, p) or equiv_in_Di(r, p) )
set_parent_in_Di(r, p);

}
bool equiv_in_Di(point r, point p) {

if ( not is_active[r] or not is_active[p] )
return false;

if ( not satisfies_criterion_in_Di(r, p) ) {
is_active[p] = false;
return false;

}
return true;

}

Connected operators relying on two functions. So far, just notice that,
changing the overall structure of union-find from the first way of browsing
points of D to the second one (see below) does not affect the result of the
algorithm thanks to the domain disjointness preservation property.

// first way of browsing points
for_all (p)

if ( is_in_D1(p) ) // body ∗.1
else if ( is_in_D2(p) ) // body ∗.2
// ...

// second way of browsing points
for_all (p_in_D1) // body ∗.1
for_all (p_in_D2) // body ∗.2
// ...

3. A Catalogue of Union-Find-Based Connected
Operators

In the previous section, we have presented a general form for union-find that
relies on a separation between domains. We then just have to fill the holes of
this form to get algorithms that implement some connected operators.

Morphology on Sets with Union-Find

Let us first take as an example the reconstruction by dilation operator, Rδ,
which applies on a two sets, a marker F and a mask G such as F ⊆ G. In the
following, given a set X and a point x ∈ X , we will denote by ΓX a connected
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component of X . Denoting O = Rδ
G(F ), we have the property O ⊂ G and,

since Rδ is a connected operator with respect to the mask, {ΓO} ⊆ {ΓG}.
A first obvious idea for using union-find is then to compute the connected
components of G and search for those that belong to O. So we have D′ = G
and ΓD′ are computed. However, we can consider the operator input as a
four-valuated function IF,GI defined on D, such as the value IF,GI (p) indicates
whether p ∈ D is included in F ∩G, F ∩Gc, F c ∩G, or F c ∩Gc. That leads
to different ways of using union-find to implement reconstructions depending
on the choice of a partition of D into D′ ∪D′′.

default init(p) border(n, p) merge(r, p)

Rδδ obvious version: D′ = G � ( ΓD′ ⊆ O ⇔ ∃p ∈ ΓD′ , p ∈ F )

O = false; O[p] = F[p]; O[p] = O[r] or O[p];

Rδδ alternative version: D′ = F c ∩ G � ( ΓD′ ⊆ O ⇔ ∃n ∈ Bext(ΓD′), n ∈ F )

O = F; O[p] = false; if (F[n]) O[p] = true; O[p] = O[r] or O[p];

Rε dual version of “Rδδ with D′ =G ”: D′ = Gc � ( ΓD′ ⊆ O ⇔ ∀p∀ ∈ ΓD′ , p ∈ F )

O = true; O[p] = F[p]; O[p] = O[r] and O[p];

Rε alternative version: D′ = F ∩ Gc � ( ΓD′ ⊆ O ⇔ ∀n ∈ Bext(ΓD′), n ∈ F )

O = G; O[p] = true; if (not F[n]) O[p] = false; O[p] = O[r] and O[p];

The table above presents for several operators the respective definitions of
the following routines (from left to right): set_O_default_in_Di, init_data_in_Di,
visit_extB_of_Di, and merge_data_in_Di. Last, when the only auxiliary data re-
quired to implement an operator represent the Boolean evaluation of [ΓD′ ⊆
O], the output image can store these data as an attachment to root points and
set_O_value has nothing left to perform. From our experiments, an appropri-
ate choice for D′—depending on a priori knowledge about F and G—makes
the union-find-based approach a serious competitor of the efficient hybrid al-
gorithm proposed in [18]. Last, the case of regional extrema identification is
summarized in the table below.

default init(p) border(n, p) merge(r, p)

Regional minima identification of a function f with D′ = D (with either R↓↓ or R↑↑)
O[p] = true; if (f[n] < f(p)) O[p] = false; O[p] = O[r] and O[p];

Regional minima identification with D′ = D which relies on R↓↓

O[p] = true; if ( is_processed[n] O[p] = O[r] and O[p];
and f[n] != f(p) ) O[p] = false;

Extension to Functions

For some connected operators on functions that deliver functions, the ta-
ble below recaps their corresponding definitions with union-find; the columns
crit and value respectively depict the result returned by satisfies_criterion and
the body of set_O_value. For reconstructions, f and g being the input marker
and mask functions, we compute flat zones from g, which is flattened by the
operator, is_flat(r,p) returns g[r] == g[p].



114 MATHEMATICAL MORPHOLOGY: 40 YEARS ON

init(p) merge(r, p) crit(r, p) value(p)

Rδδ (f marker and g mask such as f ≤ g); R↓↓ is mandatory since g is lowered
o[p] = f[p]; o[p] = max(o[r], o[p]); g[p] >= o[r] if (not is_active[p]) o[p] = g[p];

Rε (f marker and g mask such as f ≥ g); R↑↑ is mandatory since g is “upper-ed”
o[p] = f[p]; o[p] = min(o[r], o[p]); g[p] <= o[r] if (not is_active[p]) o[p] = g[p];

Area opening (resp. closing) of a function f ; R↓↓ (resp. R↑↑) is mandatory
area[p] = 1; area[p] = area[r] + area[p]; area[r] < λ o[p] = f[p];

Volume opening (resp. closing) of f ; R↓↓ (resp. R↑↑) is mandatory
area[p] = 1; vol[p] = vol[r] + vol[p] + (area[p] ∗ abs(f[r]−f[p]))
vol[p] = 1; area[p] = area[r] + area[p]; vol[r] < λ o[p] = f[p];

Operators Relying on Two Functions

Many morphological operators over two functions, f and g, have been de-
fined from a couple of connected operators, ϕ extensive and ψ anti-extensive,
following the general formulation [8, 5, 3]:

[θ(f, g)](p) =

⎧⎨⎧⎧⎩⎨⎨ [ϕ(f, g)](p) if p ∈ D↑(f, g)
[ψ(f, g)](p) if p ∈ D↓(f, g)
f(p) otherwise.

under the constraint of being disjointness-preservative regarding D↑(f, g) and
D↓(f, g), the domains of D where θ is expected to be respectively extensive
and anti-extensive. Let us denote by D◦(f, g) = (D↑(f, g) ∪ D↓(f, g))c the
domain where θ is expected to be constant. In the following we will elude in
domain names the dependence upon f and g since that does not lead to any
ambiguity. By extension, let us introduce D↓◦ = D↓ ∪D◦ and D↑◦ = D↑ ∪D◦.

Relying on union-find to get an algorithm starts with choosing domains such
as D = D′∪D′′ = (∪iDi)∪D′′ and ∀j∀ �=�� i, Dj ∩Di = ∅. As a constraint we
do not want to use the ability of union-find to visit domain boundaries. Since θ
is not disjointness-preservative with respect to D↑ and D◦, and to D↓ and D◦,
we cannot obtain a correct result with union-find when we consider setting the
domains Di with any combination of D↑, D◦, and D↓. So far we are in a dead
end.

Let us imagine that we relax the disjointness constraint of union-find (!) to
form D1 = D↑◦ and D2 = D↓◦. The only weird aspect of this idea is that points
of D◦ have to be processed twice during the first pass of union-find. For that,
we just have to add a “refresh” step for the points of D◦ just after handling
D↑◦ during the first pass, so that D↓◦ can be properly processed. This single
modification is handled as follows:
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for_all (p_in_D_upper_or_equal)
// body 1.1

for_all (p_in_Do)
is_processed[p] = false; // so p can be handled again

for_all (p_in_D_lower_or_equal)
// body 1.2

and the second pass as described in Figure 2 remains unchanged. Although we
have introduced a bond between domains (we have D1 ∩D2 �=�� ∅), we do not
have introduced any inconsistency in parenthood. Put differently, this modified
version of union-find does not compute irrelevant components or flat zones.

We can now reuse the descriptions given previously of union-find-based
operators to build levelings with markers as defined in [9], a domain-preserving
self-dual reconstruction, and partial self-dual operators defined with the inf-
semilattice approach in [3]. Results are summarized in the table below.

D↑◦↑ D↓◦↓

RD sub-domain sub-operator RD sub-domain sub-operator

some levelings g′ of g given a function f such as g′ ∈ Inter(g, f) (see [10])
R↓ on g f(p) ≤ g(p) γ, any R↑ on g f(p) ≥ g(p) φ, any

lower leveling upper leveling

domain-preserving self-dual reconstruction with f marker and g mask
R↓ on g f(p) ≤ g(p) Rδδ

g(f) R↑ on g f(p) ≥ g(p) Rε
g(f)

inf-semilattice approach (input function is f ) with any anti-extensive operator ψ

R↓↓ on −f f(p) ≤ 0 −ψ(−f) R↓↓ on f f(p) ≥ 0 ψ(f)

4. Conclusion

We have presented a general formulation of Tarjan’s union-find algorithm
so that many connected operators can be straightforwardly mapped into algo-
rithms; we definitely believe that this particular formulation can ease to express
new segmentation methods using connected operators relying on union-find.
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Abstract The quench function of a binary image is the distance transform of the image
sampled on its skeleton. In principle the original image can be reconstructed
from the quench function by drawing a disk at each point on the skeleton with
radius given by the corresponding quench function value. This reconstruction
process is of more than theoretical interest. One possible use is in coding of
binary images, but our interest is in an applied image analysis context where
the skeleton has been (1) reduced by, for example, deletion of barbs or other
segments, and/or (2) labelled so that segments, or indeed individual pixels, have
identifying labels. A useful reconstruction, or partial reconstruction, in such a
case would be a labelled image, with labels propagated from the skeleton in some
intuitive fashion, and the support of this labelled output would be the theoretical
union of disks.

An algorithm which directly draws disks would, in many situations, be very
inefficient. Moreover the label value for each pixel in the reconstruction is highly
ambiguous in most cases where disks are highly overlapping. We propose a vec-
tor propagation algorithm based on Ragnelmalm’s Euclidean distance transform
algorithm which is both efficient and provides a natural label value for each pixel
in the reconstruction. The algorithm is based on near-exact Euclidean distances
in the sense that the reconstruction from a single-pixel skeleton is, to a very good
approximation, a Euclidean digital disk. The method is illustrated using a bio-
logical example of neurite masks originating from images of neurons in culture.

Keywords: debarbing, Euclidean distance transform, object reconstruction, quench func-
tion, skeleton, vector propagation
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1. Introduction

This paper deals with the process of reconstruction of a binary image using
a sub-sample of the (Euclidean) distance transform of the image. Figure 1
shows part of a binary image representing neurites in an image of neurons in
culture, while Figure 2 shows the Euclidean distance transform (EDT) of this
image sampled on a skeleton of the image, with darker pixels corresponding to
higher values of the distance transform. When, as here, a distance transform is
sampled on a skeleton, the result is called a quench function [11, p. 159].

Figure 1. Neurite Mask. Figure 2. Quench Function.

The original mask, Figure 1, can be reconstructed from the quench function
provided the skeleton is, in some sense, sufficiently complete. This can, in
principle, be achieved by drawing a binary disk at each point on the skeleton
with radius given by the quench function value at that point. While this process
may be useful for coding and decoding of binary image data, it is of theoret-
ical interest only in a typical context of analysis of images where the original
mask is already known anyway. A more interesting case is shown in Figures 3
and 4. The reduced quench function in Figure 3 has been obtained from the
full quench function in Figure 2 by removing some of the smaller “barbs”.
The topology has slightly changed for complicated reasons in this particular
example; the details are not relevant to this discussion.

The binary image in Figure 4 is a partial reconstruction of the original im-
age produced by the new algorithm described in this paper using the reduced
quench function. It may be seen that most but not all of the original image has
been reconstructed. This is a first application of this kind of algorithm, namely
filtering of binary masks of linear features such as neurite networks. Such
networks can be complex and noisy. The process illustrated here cleans and
simplifies a network mask essentially by (1) computing the quench function
of the mask, (2) topologically simplifying (e.g. debarbing) the quench func-
tion, and finally (3) reconstructing a reduced mask from the reduced quench
function.

Figures 5 and 6 illustrate another important aspect of the new algorithm,
namely label propagation. Figure 5 shows a labelled skeleton corresponding
to the (reduced) quench function in Figure 3. That is, Figures 3 and 5 are two
positive valued functions defined on the same set of skeleton points, Figure 3



Labelled Reconstruction 119

Figure 3. Reduced Quench Function. Figure 4. Partial Reconstruction.

giving a distance value for each pixel and Figure 5 giving a label value. In this
case there are three label values, one for each of the three “branches” of the
skeleton. The result of the labelled reconstruction is shown in Figure 6. Here
each point in the reconstruction has been assigned one of the labels from the
labelled skeleton. In this application a skeletonised neurite mask had been not

Figure 5. Labelled Skeleton. Figure 6. Reconstruction with Labels.

only debarbed, but also each branch had been labelled as primary, secondary,
tertiary etc. by another process. For each branching level of each tree, various
measures such as width and brightness were needed, as well as masks for dis-
play purposes. Reduced and labelled masks such as that shown in Figure 6 fill
these needs.

The remainder of this paper is organised as follows. Section 2 covers funda-
mental definitions of distance transforms, quench functions and reconstruction
as a theoretical concept. Section 3 reviews the EDT algorithm of Ragnemalm
[9] upon which the new algorithm is based. Finally Section 4 describes and
discusses the new algorithm, and finally Section 5 shows some further exam-
ples.

2. Quench Functions and Reconstruction of Sets

The idea of a quench function is of both theoretical and practical interest in
image analysis. For a set X , the distance function, DX , is defined in terms of
a metric d as

DX(x) = inf
y/∈//X

d(x, y);

see, for example, [11, Section 2.7]. The skeleton, S, of X is a subset of
X which is defined in terms of the distance function. The quench function is
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defined simply as the restriction of the distance function to S. There are various
possible definitions both of distance functions DX and of skeletons S ⊆ X
(for example, see [5]), but given definitions of these the quench function may
simply be defined as the restriction of DX to S.

A closely related notion is that of reconstruction. If a quench function q has
been defined from a distance function DX and sets S ⊆ X , then the recon-
struction R(q) of q is

R(q) =
⋃
x∈S

(
x + Bq(x)

)
(1)

where Br is the zero-centred ball of radius r with respect to metric d:

Br = {y : d(y, 0) < r} .

It follows from the definitions that x + Bq(x) ⊆ X for all x ∈ X , and
therefore R(q) ⊆ X . If the skeleton S is sufficiently extensive then it may
be true that R(q) = X . In this case the skeleton is said to preserve shape
information [11, Section 5.5]. If this is true then X can be reconstructed from
q, and Equation (1) defines, theoretically at least, the reconstruction process.

The reconstruction process defined by Equation (1) is often used just as a
theoretical notion, in particular for analysing the properties of skeletons. How-
ever the actual computation of such a reconstruction is of practical interest in
at least two contexts:

coding of binary sets by their quench functions, and

reconstruction of only a part of a set after deletion of part of its skeleton
— for example, after pruning.

Here we are interested in the second of these two situations. If part of the
skeleton has been deleted we would not in general expect the reconstruction
via Equation (1) to produce all of X . In this paper we will in fact consider
the computation of the reconstruction (1) given an arbitrary positive-valued
function q defined on an arbitrary set S. That is, we will not assume that S is
the skeleton of the set X , or that the values of q(x) are actually sampled values
of the distance function DX for any set X .

In practice the quench function q will have the form of an image with non-
negative values, and we will take q(x) = 0 to mean that x is outside the domain
S of q, although strictly this is not necessary as Bq(x) = ∅ if q(x) = 0 and
therefore such points contribute nothing to the reconstruction Equation (1).

As discussed in the Introduction we will also make use of an input label
value for each point on the skeleton. This is an image of the same dimensions
as q whose values are assumed to be non-zero wherever the corresponding
value of q is non-zero. These label values on the skeleton are propagated in the
reconstruction process to give a label value for each pixel in the reconstruction.
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3. Euclidean Distance Transform (EDT) by Vector
Propagation

In this section we describe a version of the algorithm proposed by Inge-
mar Ragnemalm in 1992 [9] for computation of a near-exact EDT via vector
propagation with priority queues. The new algorithm described in this paper
is based on this algorithm. In fact, the new algorithm is a kind of inverse of
Ragnemalm’s method which is a vector propagation method derived from the
work of Danielsson [3].

Vector propagation methods for EDT’s vector propagation are not exact,
but when eight neighbours are considered at each propagation step, the great
majority of distance values are exactly correct. All distance values up to 13
pixel units are guranteed to be exactly correct, and for those larger values which
are not exactly correct, the maximum relative error is less than 0.3%; see [2,
Section 2.2.2]. We therefore describe these methods, and the new method
described in this paper, as “near-exact”.

Simple versions of propagating reconstruction algorithms were given in [1]
and [8]. These methods compute chamfer distances which, as is well-known,
are relatively poor approximations to Euclidean distances, their contours typi-
cally being diamonds, octagons or other polygons rather than circles. Also the
methods of [1] and [8] do not propagate labels.

Finally we note that several exact EDT methods have been developed, for
example, [10, 4, 12, 7]. These exploit the separability of the squared Euclidean
metric, but it does not seem easy to adapt these methods to reconstruction or
label propagation. For surveys of EDT algorithms, see [2, Chapter 1] and [11,
Section 2.7].

Our notation changes slightly here: whereas in the previous section X was a
set, now X is a binary image with X[j] = 1 if and only if j is in the set X . We
say j is a foreground pixel if X[j] = 1, and a background pixel if X[j] = 0.
The value for each pixel i in the output image is the Euclidean distance to the
nearest background pixel. This is the standard definition of the EDT.

As discussed in the Introduction above, the Ragnemalm method is not exact,
but very close to exact. We note also that, as the squared EDT is always an
integer for data on a rectangular grid, this form is sometimes more convenient.
This algorithm can trivially be modified to produce a squared EDT.

The algorithms discussed in this paper make use of a priority queue. This is
a data structure which allows an arbitrary number of elements to be added, in
turn, each with a priority. Unless the queue is empty, the first element can be
removed at any time, and this first element is guaranteed to have the smallest,
or equal-smallest, priority value of all current elements on the queue. Priority
queues usually support at least one identifier, or key, for each element. For
these algorithms we require two such keys which we use to represent
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the index i of a pixel, and

the index a of a candidate ancestor for pixel i – see below.

We use the word “index”, but effectively i and a are two-dimensional co-
ordinates of pixel locations.

The essential idea of the Ragnemalm EDT algorithm is to store index pairs,
(pixel, ancestor) = (i, a), on a priority queue, ordered by |i − a|. Pixel i is al-
ways a foreground pixel and pixel a is a background pixel which is a candidate
ancestor for i. The true ancestor of i is by definition the nearest background
pixel to i in terms of Euclidean distance. Note that the ancestor of a foreground
pixel i need not be unique, but the minimal distance |i− a| is unique.

Initially, the output image output is set to zero values. Then all pairs (i, a)
are placed on the queue where i and a are 8-neighbours, i is foreground and
a is background. When the first (i0, a0) pair is removed from the queue, it
is guaranteed that a0 is the a true ancestor of i0, and therefore we can as-
sign output[i0] = |i0 − a0|. This is because after the initialisation, while
a foreground pixel i0 may be, and usually is, enqueued with more than one
neighbouring background pixel a,

at least one of these is a true ancestor of i0, and

the nearest of these to i0 is foremost in the queue as distance |i − a| is
used as the queue priority.

In general other pairs (i0, a) will be removed from the queue later, but these
cannot be closer pairs. We say that pixel i0 has already been propagated, and
this is indicated by the fact that output[i0] �= 0�� . Therefore any pair (i, a)
coming from the queue with output[i] �= 0�� is ignored.

After such propagation of a pixel i0, the neighbours j of i0 are all processed.
Neighbours j are ignored unless

they are foreground pixels (X[j] = 1), and

they have not been propagated already (output[j] = 0).

For any such neighbours j the pair (j, a) is placed on the queue. That is, the
ancestor a of i0 is used as a candidate ancestor for its neighbour j.

Then the process repeats: pairs (i, a) are repeatedly taken from the front
of the queue and the distance values are propagated further and further from
the background — i.e. from the outside in — and the process continues until
the queue is empty. A nearly exact EDT is produced by this process because,
except in very few cases, the true ancestor of each foreground pixel is also the
true ancestor of one of its 8-neighbours with a smaller EDT value, and in the
few cases when this is not true, the error in the distance value is very small. If
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a 4-neighbourhood is used, a reasonable approximation only is obtained; see
[2].

Figure 7 shows pseudo-code for this algorithm. The add_to_queue(i, a)
procedure adds the pair of pixel locations (i, a) with priority |i − a|. In the
algorithm as shown here the queue is always longer than it needs to be, by a
factor of about three. This may be avoided by a process of assessment of each
(i, a) pair before queue insertion, but this is not shown here for the sake of
simplicity. The equivalent step in the reconstruction algorithm is described in
the next section, however.

1 output ≡ 0

2 For all neighbouring (foreground, background) pairs, (i, a)
3 add_to_queue(i, a)

4 while queue not empty
5 Remove first pair (i, a) from queue

6 if output[i] > 0 // Already propagated
7 continue // i.e. Go to Line 4

8 output[i] = |i− a| // Output the distance value for this pixel

9 for all neighbours j of i
10 if X[j] = 1 and output[j] = 0
11 add_to_queue(j, a)

Figure 7: Euclidean Distance Transform (EDT) Algorithm

4. Object Reconstruction Algorithm

Consider computing the EDT of the previous section for a binary image with
only one background pixel. The result is clearly a conical function. The cone
is downward-pointing, its point being at height zero at the single background
pixel. The slope of the cone is one. It has been observed that, more generally,
the EDT is the pointwise minimum of many such cones, one at each back-
ground point. In fact (see [10, 6]) the EDT is the morphological erosion, with
a conical structuring function, of an image which is +∞ at foreground pixels
and zero at background pixels. We note that in similar fashion the squared
EDT may be computed as an erosion with a paraboloid. The separability of
a simple paraboloid is useful in this process, and this idea underlies several
algorithms for exact EDT calculation [7].

With this in mind, the Ragnemalm algorithm of the previous section can be
seen as a process of competing cones. Upward-pointing cones are “grown”
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from the point upwards, beginning at each background point with at least one
foreground neighbour. At each point the lowest of any competing cones dom-
inates the others. It is the centre or source location a of the cone which domi-
nates at point i which is the “ancestor” of i. Note that in principle a cone should
be grown form all background points. However the cone at a background point
with no foreground neighbours will always dominate at that location giving
an EDT value of zero, and never dominate at any other location. Such cones
therefore can be, and are, neglected in the interests of efficiency.

This “competing cones” process can also be seen as a flooding process,
where the terrain, a minimum of cones, is computed as it is filled — from
the bottom (zero-level) upwards. The catchment basins are characterised by
the identity of the ancestor of each point.

The basic idea of the new reconstruction algorithm is the following. As for
the Ragnemalm EDT we perform an erosion by a conical structuring function,
but now with a different source function. The source function in the reconstruc-
tion algorithm is essentially the negative of the quench function. Specifically,
at points outside the skeleton the source function is +∞, and at points i on
the skeleton its value is −EDT[i]. The result, f , of the cone-erosion of this
source function has the property that f [i] ≤ 0 if and only if, for some a on the
skeleton, there exists a disk of radius EDT[a] centred at a which includes i. In
other words, the binary image f ≤ 0 is exactly the reconstruction of the given
skeleton with its corresponding EDT or quench function values.

Although there are advantages to using cones, and our algorithm uses cones,
a similar statement is true for erosion using the squared EDT with a paraboloid
structuring function. A reconstruction algorithm using this fact may be con-
structed using the separability of the paraboloid and the one-dimensional quad-
ratic erosion algorithms of, for example, [12].

The new reconstruction algorithm begins by initiating a cone at each point
on the skeleton. The source or ancestor point for each such point i is i itself,
and the height of the function is −quench[i]. This initialisation amounts to
placing pairs (i, i) on a priority queue with priorities P = −quench[i].

Queue processing then proceeds as for the Ragnemalm EDT algorithm us-
ing, for pair (i, a), the priority function

P [i, a] = |i− a| − quench[i].

This is the height at i of a downward-pointing, unit-slope cone with point at
(a,−quench[a]). The cone-erosion function f [i] is

f [i] = min
a

P [i, a].

Pairs (i, a) with P [i, a] > 0 are not put on the queue. This effectively stops
the flooding process at level zero – i.e. at f [i] = 0 – and ensures that the
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correct reconstruction is produced. An alternative would be to continue until
the whole image is processed, writing the priority values to the output – i.e.
output[i] = P [i, a]. This would produce the entire image f which could then
be thresholded at zero to give the reconstruction. However the time required
for this alternative procedure is proportional to the number of pixels in the
image whereas our proposed algorithm has cost proportional to the number of
pixels in the reconstructed set, and this set may be very much smaller than the
whole image.

If the stopping condition P [i, a] ≤ 0 is applied, then outputting the value
1 – i.e. output[i] = 1 – creates a binary mask of the reconstruction. We
prefer a more general output, however: at each point i output the label value
of the ancestor a of i – i.e. output[i] = label[a]. In this way each point
in the reconstruction is labelled by a label value taken from the location of its
ancestor. If the output is initially set to zero and all labels are strictly positive,
then a threshold of this output image at zero gives the binary reconstruction.

Figure 8 shows the reconstruction algorithm in pseudo-code. Figure 9 shows
the function add_to_queue which implements the priority function and the
stopping rule.

1 output ≡ 0

2 for all skeleton pixels i — i.e. with quench[i] > 0
3 add_to_queue(i, i)

4 while queue not empty
5 Remove first pair (i, a) from queue

6 if output[i] > 0 // Already propagated
7 continue // i.e. Go to Line 4

8 output[i] = labels[a] // Output the label value for this pixel

9 for all neighbours j of i
10 if output[j] ≤ 0 // Not already propagated
11 add_to_queue(j, a)

Figure 8: Reconstruction Algorithm

Figure 10 shows an extended version of add_to_queue. This version avoids
the unnecessary queue growth mentioned in Section 3 above. As each value of
output[i] is zero initially, the stopping condition, P < 0 is enforced at the first
visit to each pixel i, and the current priority value, which is always negative,
is written temporarily at output location i. Subsequently however, only pairs
(i, a) with strictly lower priority can be added to the queue. This saves space
and time, as any such pair would be ignored when dequeued.
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1 add_to_queue(i, a)
2 {
3 P = |i− a| − quench[i]
4 if P < 0
5 Put pair (i, a) on queue with priority P
6 }

Figure 9: Function add_to_queue: Simple version

1 add_to_queue(i, a)
2 {
3 P = |i− a| − quench[i]
4 if P < output[i]
5 output[i] = P
6 Put pair (i, a) on queue with priority P
7 }

Figure 10: Function add_to_queue: Extended version

5. Further Examples

Figures 11 and 12 are like Figures 5 and 6 but here skeleton points have
much more varied labels. The quench function values leading to Figure 12 are
the same as for Figure 6, namely those shown in Figure 3. This illustrates the
fact that the algorithm will propagate an arbitrary collection of label values.

Figure 11. Multi-Labelled Skeleton. Figure 12. Reconstruction with Labels.

Figures 13 and 14 illustrate the behavior of the reconstruction algorithm for
simple artificial input. This input is indicated by Figure 13 which consists of
four circles in different colours. This is purely illustrative of the data input
to the reconstruction. This actual data consists of two images, both of which
are zero-valued except at the four circle centres. The input “quench function”
image contains the radii of the four circles at these points, while the input label
image contains the corresponding four label values.

The result of the reconstruction with this input is shown in Figure 14. Firstly
we can see that the reconstruction appears to be correct: the union of the la-
belled regions in the reconstruction is equal to the union of the overlapping
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Figure 13. Artificial example. Figure 14. Reconstruction.

input disks. Secondly we see the way in which labels are assigned to pixels
which are in two or more of the input disks: region borders are at locations
where the corresponding cones intersect.

Finally note how the smallest of the four input disks affects the reconstruc-
tion: it is not represented at all, not even its centre. This disk contains no
unique points and is in this sense redundant. Moreover the quench function in
this case is impossible or illegal: it cannot be a subset of the EDT of any set.
This example illustrates that such anomalies are ignored by the reconstruction
algorithm.

6. Conclusion

We have described a new algorithm which produces a labelled reconstruc-
tion of a binary mask using sampled distance transform information and cor-
responding labels. The new algorithm inherits some of the key properties of
the existing algorithm it is based on, namely Ragnemalm’s vector propagating
EDT algorithm. These properties include “near-exactness” and high speed. We
have demonstrated useful behaviour of the algorithm for both artificial and real
inputs.
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Abstract In [5], a novel concept of connectivity for grayscale images was introduced,
which is called grayscale level connectivity. In that framework, a grayscale im-
age is connected if all its threshold sets below a given level are connected. It
was shown that grayscale level connectivity defines a connection, in the sense
introduced by Jean Serra in [10]. In the present paper, we extend grayscale
level connectivity to the case where different connectivities are used for different
threshold sets, a concept we call grayscale level multiconnectivity. In particular,
this leads to the definition of a new operator, called the multiconnected grayscale
reconstruction operator. We show that grayscale level multiconnectivity defines
a connection, provided that the connectivities used for the threshold sets obey
a nesting condition. Multiconnected grayscale reconstruction is illustrated with
an example of scale-space representation.

Introduction

In [5], we introduced the notion of grayscale level connectivity, in which
all threshold sets below a given level k are required to be connected according
to a given binary connection. It was shown that a grayscale k-level connected
image might have more than one regional maximum, but all regional maxima
are at or above level k. It was also shown that grayscale level connectivity
can be formulated as a connection [10] in an underlattice of the usual lattice
of grayscale images. Grayscale level connectivities were shown to lead to
effective tools for image segmentation, image filtering and multiscale image
representation.
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However, it may be desirable to assign connectivities of varying strictness
to different image levels. There may be details of interest at low levels of in-
tensity that can be preserved if one uses a larger connection for lower levels,
while at the same time employing a smaller connection at higher levels, in or-
der to prevent relevant regional maxima belonging to different objects from
fusing into a single grayscale connected component. In the present paper, we
extend the concept of grayscale level connectivity to the case where different
binary connections are assigned to different threshold sets of the image. In
this case, each threshold set below a given level k is required to be connected
according to the respective binary connection. The resulting connectivity is
referred to as a grayscale level multiconnectivity. We will show that the cru-
cial requirement to be made is that these binary connections be nested. We
show that grayscale level multiconnectivity can be formulated as a connection.
To compute grayscale level-k multiconnected components, we will employ a
novel morphological operator, which we call multiconnected grayscale recon-
struction; this is an extension of the usual grayscale reconstruction operator
[11]. We illustrate the application of multiconnected grayscale reconstruction
with an example of skyline scale-space [6].

1. Review of Connectivity

We assume that the reader is familiar with basic notions of Lattice Theory
and Mathematical Morphology [1, 7]. In this section, we review briefly the
theory of connectivity on complete lattices; for a more detailed exposition,
please see [10, 4, 2]. Consider a lattice L, with a sup-generating family S.
A family C ⊆ L is called a connection in L if (i) O ∈ C, (ii) S ⊆ C, and
(iii) if {CαCC } in C with

∧
CαCC �=�� O, then

∨
CαCC ∈ C. The family C generates

a connectivity on L, and the elements in C are said to be connected. We say
that C is a connected component of A ∈ L if C ∈ C, C ≤ A and there is no
C ′ ∈ C different from C such that C ≤ C ′ ≤ A. In other words, a connected
component of an object is a maximal connected part of the object. The set of
connected components of A is denoted by C(A).

We can define an operator γxγγ (A) on L that extracts connected components
from elements A ∈ L, by

γxγγ (A) =
∨
{C ∈ C | x ≤ C ≤ A}, x ∈ S, A ∈ L. (1)

It is easy to see that this operator is increasing, anti-extensive and idempotent,
i.e., an opening [7]; it is called the connectivity opening associated with C. It
can be verified that γxγγ (A) is the connected component C of A marked by x
(i.e., such that x ≤ C).
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For a marker M ∈ L, the reconstruction ρ(A | M) of a given A ∈ L from
M is defined by

ρ(A |M) =
∨

x∈S(M)

γxγγ (A) =
∨
{C ∈ C(A) | C ∧M �=�� O}. (2)

The second equality above can be easily verified [2]. Hence, the reconstruc-
tion operator ρ(A | M) extracts the connected components of A that “inter-
sect" marker M . It follows from the fact that the supremum of openings is
an opening [7] that the operator ρ(· | M) is an opening on L, for a fixed
marker M ∈ L [7].

Given a connection in P(E), and the associated reconstruction operator
ρ: P(E) × P(E) → P(E), we can define an operator ρ̃: Fun(E, T ) ×
Fun(E, T )→ Fun(E, T ) by

ρ̃ (f | g)(v) =
∨
{t ∈ T | v ∈ ρ(XtXX (f) | XtXX (g))}, v ∈ E, (3)

where g ≤ f . It can be shown that ρ̃ (· | g) is an opening on Fun(E, T ), for
a fixed marker g ∈ Fun(E, T ) [7]. If we assume that T is a chain, then the
operator ρ̃(̃f | g) in (3) is known as the grayscale reconstruction of f from
marker g, associated with the connection C. Furthermore, if the chain T is
finite, e.g., T = K = {0, 1, . . . ,K}, then Xk(ρ̃ (f | g)) = ρ(Xk(f) | Xk(g))
for k ∈ K. The grayscale reconstruction is a well-known operator, frequently
used in applications (e.g., see [11]).

2. Grayscale Level Multiconnectivity

We consider discrete grayscale images modeled as elements of the lattice
L = Fun(E,K), consisting of all functions from an arbitrary domain of defi-
nition E into the discrete chain K = {0, 1, . . . ,K} (the results presented here
can be extended to the case of continuous-valued images, modeled as upper
semi-continuous functions from a connected compact Hausdorff space E into
IR; e.g., see [6]).

Consider a family {Ck | k ∈ K} of connections in P(E), such that Ck

specifies the connectivity at level k. The only requirement made on the family
{Ck | k ∈ K} is that they satisfy the following nesting condition

Ck ⊆ Cl, for k ≥ l. (4)

The need to impose the nesting condition condition is made clear in the se-
quence. We remark that the family {Ck | k ∈ K} with the nesting condition
corresponds to a connectivity pyramid, in the terminology of [3].

For a particular example, let E = ZZd and take

Ck = {A ⊆ E | A⊕Bk ∈ C}, (5)
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where {Bk | k ∈ K} is a family of decreasing structuring elements, A ⊕
Bk denotes the dilation of A by Bk [7], and C is a connection in P(E). It
can be shown that each Ck is a connection that contains C, provided that each
structuring element Bk contains the origin and is connected according to C [9,
2]. From this and the fact that A ⊕ Bk ⊕ Bl = A ⊕ Bk+l it follows easily
that the nesting condition (4) is satisfied. For instance, Bk may be a digital
disk of radius rk centered at the origin, where {rk} is a decreasing sequence of
integers. As the radius rk varies, so does the number of connected sets in Ck,
which affords a varying degree of robustness against noise.

Given a function f ∈ Fun(E,K) and a value k ∈ K, the threshold set of f
at level k is the set XtXX (f) = {v ∈ E | f(v) ≥ t}. A set R ⊆ E is a regional
maximum of f ∈ Fun(E,K) at level k ∈ K if R is a connected component
of Xk(f), according to Ck, and R ∩ Xl(f) = ∅, for all l ≥ k + 1. It is easy
to see that a function f ∈ Fun(E,K) is constant over a regional maximum R;
we denote this constant value by f(R). In addition, we denote by R(f) the
set of all regional maxima of a function f , and byRk(f) the set of all regional
maxima of f that are at or above level k.

A function f ∈ Fun(E,K) always has at least one regional maximum,
which corresponds to the global maximum of f . We also have the following
result (due to space constraints, proofs are ommitted).

Proposition 2.1 A function f ∈ Fun(E,K) has a single regional maximum
if and only if Xk(f) ∈ Ck, for all k ∈ K.

The nesting condition (4) is essential in establishing this result. For an ex-
ample, let

Ck =
{
C′, for k < k0

C, for k ≥ k0
, (6)

where k0 ∈ K and C, C′ are two connections in P(E) such that C �⊆ C�� ′. See
Fig. 1, where C and C′ are chosen such that Xk0(f) = R ∈ C, but Xk(f) �∈ C�� ′,
for k < k0. Here, f has a single regional maximum R at level k0, even though
this is the only connected image level. Anomalous situations like this are ruled
out by the nesting condition.

We have the following definition.

Definition 2.1 For k ∈ K, a function f ∈ Fun(E,K) is level-k multicon-
nected if Xl(f) ∈ Cl \ {∅}, for all l ≤ k.

In other words, an image is level-k multiconnected if all its level sets at or
below level k are non-empty and connected according to the respective con-
nection. The parameter k reflects the “richness" of the connectivity. Smaller
values of k allow more functions to be considered as connected. Clearly, if
k ≥ l, level-k multiconnectivity implies level-l multiconnectivity. See Fig. 2
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Figure 1. A function f with a single regional maximum R at level k0, even though only the
top image level is assumed to be connected. This anomalous situation is ruled out by the nesting
condition.

Figure 2. The function f is level-k connected but not level-l connected.

for an illustration in the case where all binary connections correspond to the
ordinary connectivity on the real line.

A level-k multiconnected image is allowed to have more than one regional
maximum, however, all of them must be above level k, as given by the follow-
ing result.

Proposition 2.2 If f ∈ Fun(E,K) is level-k multiconnected thenRk(f) =
R(f).

The converse to the previous result is not true (for a counter-example, see [6]).
For k ∈ K, a function g ∈ Fun(E,K) is a level-k multiconnected com-

ponent of f ∈ Fun(E,K) if g is level-k multiconnected, g ≤ f , and there
is no other level-k multiconnected function g′ ∈ Fun(E,K) different from g
such that g ≤ g′ ≤ f . The set of all level-k multiconnected components of
f ∈ Fun(E,K) is denoted by NkNN (f).

Grayscale level-k connected components were computed in [6] using the
standard grayscale reconstruction operator (3). In the multiconnected case, a
new operator must be introduced to play the role of grayscale reconstruction.
First we need the following result. Here, ρk denotes the reconstruction operator
associated with Ck, for k ∈ K.

Proposition 2.3 The operators {ρk | k ∈ K} are ordered in a decreasing
fashion: if k ≥ l, then ρk(A) ⊆ ρl(A), for all A ⊆ E.
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Again, the nesting condition (4) is fundamental in establishing the property
in Proposition 2 (it can be shown that the nesting condition is actually equiv-
alent to it). This property allows us to define the multiconnected grayscale
reconstruction operator ρ̂: Fun(E,K)× Fun(E,K)→ Fun(E,K) by:

ρ̂ (f | g)(v) =
∨
{k ∈ K | v ∈ ρk(Xk(f) | Xk(g))}, v ∈ E, (7)

As a supremum of openings, ρ̂ (· | g) is an opening on Fun(E,K), for a fixed
marker g ∈ Fun(E,K). The operator ρ̂ (· | g) is the semi-flat operator gener-
ated by the family of operators {ρk(· | Xk(g)) | k ∈ K}, in the terminology
of [7]. As a consequence of the nesting condition (4), it is possible to verify
that Xk(ρ̂ (f | g)) = ρk(Xk(f) | Xk(g)), for k ∈ K.

We have the following result concerning level-k multiconnected compo-
nents (this is the extension of Prop. 4 in [6]).

Proposition 2.4 Let f ∈ Fun(E,K). For each C ∈ C(Xk(f)), there is an
associated gC ∈ NkNN (f), given by

gC =
∨
{ρ̂ (f | hR,f(R)) | R ∈ Rk(f) s.t. R ⊆ C}, (8)

with C = Xk(gC), where hA,r is the cylinder of base A ⊆ E and height r ∈ K.
Conversely, for each g ∈ NkNN (f), there is an associated CgC ∈ Ck(Xk(f)), given
by CgC = Xk(g), with g = gCg .

In other words, there is a bijection between NkNN (f) and Ck(Xk(f)); each
level-k multiconnected component of f is associated with a connected com-
ponent of Xk(f) according to Ck. Equation (8) provides a practical way to
compute the level-k multiconnected components of an image, provided that
one has available an implementation of the multiconnected grayscale recon-
struction operator (more on this later).

Consider the subset of Fun(E,K) given by Funk(E,K) = {f ∈ Fun(E,K) |
R(f) = Rk(f)}, for k ∈ K. In other words, Funk(E,K) consists of the func-
tions that have all regional maxima above level k.

Proposition 2.5 The set Funk(E,K) is a complete lattice under the point-
wise partial order, with supremum

∨k and infimum
∧k, given by∨k

fiff =
∨

fiff ,∧k
fiff = ψ̂k

(∧
fiff
)

where ψ̂k is an opening on Fun(E,K), given by

ψ̂k(f)=
∨
{ρ̂(̂f | hR,f(R)) | R ∈ Rk(f)}. (9)
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Note that Funk(E,K) is an underlattice of Fun(E,K); i.e., it is a com-
plete lattice under the partial of Fun(E,K) [7]. In addition, Funk(E,K) is
an infinite ∨-distributive lattice. In this framework,

∧kfiff = O if and only if∧
fiff has no regional maxima at level k or above, which happens if and only if⋂
i Xk(fiff ) = ∅.
It is easy to verify that the family

Sk = {δv,l | l ≥ k} ∪ {f ∈ Fun(E,K) | R(f) = {R}, f(R) = k} (10)

is sup-generating in Funk(E,K). Note that Sk consists of all pulses of height at
least k, along with the functions in Funk(E,K) that have exactly one regional
maximum at level k. This leads to the following fundamental result, which
shows that grayscale level multiconnected images define a connection.

Proposition 2.6 For k ∈ K, the family

Ĉk = {f ∈ Fun(E,K) | f is level-k multiconnected} (11)

is a connection in lattice Funk(E,K), with sup-generating family Sk.

We now return to the issue of the implementation of the multiconnected
grayscale reconstruction operator, which is required to compute grayscale level
multiconnected components, by means of (8). Fast algorithms exist for the
implementation of the standard grayscale reconstruction operator associated
with usual adjacency connectivities on the digital plane [11]. If the underlying
connectivity is instead given by the dilation-based connection Ck in (5), then
we show in [2] that the grayscale reconstruction operator ρ̃Bk

associated with
Ck is given by

ρ̃Bk
(f | g) = f ∧ ρ̃ (f ⊕Bk | f ∧ g), (12)

for f, g ∈ Fun(E,K), where ρ̃ is the grayscale reconstruction operator associ-
ated with the base connectivity C and f ⊕B denotes the flat grayscale dilation
of f by B [7]. Hence, the operators ρ̃Bk

can be easily implemented when C
corresponds to a usual adjacency connectivity.

We will show next that ρ̂ can be written as a supremum of the standard
component grayscale reconstruction operators. Given k ∈ K, let wk be the
operator on Fun(E,K) given by:

wk(f)(v) =
{

f(v), if f(v) ≤ k
k, otherwise

, v ∈ E, (13)

The operator wk “clamps” a function f at level k.
In the following, ρ̃k denotes the grayscale reconstruction operator associated

with Ck, for k ∈ K.
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Proposition 2.7 The multiconnected grayscale reconstruction operator can
be written as:

ρ̂(̂f | g) =
∨
k∈K

ρ̃k(wk(f) | g), (14)

for f, g ∈ Fun(E,K). Moreover, suppose that there are levels {ki | i =
0, . . . , L}, with 1 ≤ L ≤ K and kL = K, such that

Ck =
{
C∗0 , for 0 ≤ k ≤ k0

C∗i , for ki−1 < k ≤ ki
, (15)

where {C∗i | i = 0, . . . , L} is a decreasing family of connections in P(E).
Then (14) simplifies to

ρ̂(̂f | g) =
∨

0≤i≤L

ρ̃ ∗
i (wki(f) | g), (16)

for f, g ∈ Fun(E,K), where ρ̃ ∗
i : Fun(E,K) × Fun(E,K) → Fun(E,K) is

the grayscale reconstruction operator associated with C∗i , for 1 ≤ i ≤ L.

Hence, if one has available efficient implementations of the standard com-
ponent grayscale reconstruction operators, such as in (12), then the multicon-
nected grayscale reconstruction operator can be efficiently implemented by
means of (14) or (16).

Note that (16) realizes an economy with respect to (14), in the case where
there is repetition among the connections {Ck | k ∈ K}. If Ck = C, for
all k ∈ K, then (14) and (16) reduce to ρ̂ = ρ̃; i.e.,˜ ρ̂ reduces to the usual
grayscale reconstruction operator associated with C.

As an example of application of Proposition 2.7, let 0 ≤ k0 < K, let
B0, B1 ∈ P(E) with B1 ⊆ B0, and consider two dilation-based connections
C∗0 = {A ⊆ E | A⊕B0 ∈ C} and C∗1 = {A ⊆ E | A⊕B1 ∈ C}, where C is a
given connection in P(E), such that

Ck =
{
C∗0 , for 0 ≤ k ≤ k0

C∗1 , for k0 < k ≤ K
. (17)

The biconnected grayscale reconstruction operator in this case is given simply
by:

ρ̂(̂f | g) = ρ̃B0(wk0(f) | g) ∨ ρ̃B1(wK(f) | g)
= (f ∧ ρ̃ (wk0(f)⊕B0 | wk0(f) ∧ g) ∨ (f ∧ ρ̃ (f ⊕B1 | f ∧ g))
= f ∧ (ρ̃ (wk0(f)⊕B0 | wk0(f) ∧ g) ∨ ρ̃ (f ⊕B1 | f ∧ g)). (18)

One can easily implement (18), starting from an available efficient implemen-
tation of ρ̃.



Grayscale Level Multiconnectivity 137

Figure 3. Supremal skyline scale-space. Here, K = 255, and the frames of the scale-space
displayed correspond to k=168,188,208. The connectivity assumed at all levels is the usual
4-adjacency connectivity.

Figure 4. Supremal skyline scale-space in the multiconnected case, using the same image and
values of k as in Fig. 3. Here we use a large dilation-based connectivity for levels below 160,
and the usual 4-adjacency connectivity for levels above 160.

3. Scale-Space Representation

In this section, we illustrate the application of multiconnected reconstruction
in a skyline scale-space representation [6].

From (9), it is clear that ψ̂k ≤ ψ̂l, for k ≥ l. Since these operators are open-
ings, it follows that {ψ̂k | k ∈ K} is a granulometry [7]. Interpreting the value
k as the scale of observation, the sequence { ψ̂k(f) | k ∈ K} of approxima-
tions correspond to an “evolution” of f towards decreasing levels of “detail,”
in a scale-space representation [12, 8]. The evolution in this particular scale-
space is akin to the view of a city skyline as one drives away from it; near the
city, the shorter buildings can be seen, but far away, only the tallest buildings
can be discerned. For this reason, this is called a skyline scale-space [6].

Fig. 3 illustrates the supremal skyline scale-space, using a image of blood
sample containing filaria worms. The connectivity assumed at all levels is the
usual 4-adjacency connectivity, so that the reconstruction operator used here is
the standard one. Note that details are progressively removed as the value of k
increases.
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In the multiconnected case, as a general rule, the larger the level connectiv-
ities {Ck | k ∈ K} are, the fewer regional maxima there are to be flattened,
and vice-versa. As mentioned in the Introduction, this allows one to control
the amount of filtering of details that is introduced at different levels. In Fig. 4
we illustrate this with the same image used in Fig. 3, for the same values of k,
but now using the family of level connectivities {Ck | k ∈ K} given by (17).
Here, k0 = 160 in all three cases, C∗0 is a dilation-based connection, as in (5),
where B is a 7× 7 box and C corresponds to 4-adjacency connectivity, and C∗1
corresponds to 4-adjacency connectivity. Note that more details at low levels
of intensity are preserved than in the case of using 4-adjacency connectivity at
all levels.
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SHAPE-TREE SEMILATTICES

Variations and Implementation Schemes
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Abstract The shape-tree semilattice is a new framework for quasi-self-dual morphological
processing, where eroded images have all shapes shrunk in a contrast-invariant
way. This approach was recently introduced, and is further investigated here.
Apart of reviewing their original definition, different algorithms for computing
the shape-tree morphological operators are presented.

Keywords: Complete inf-semilattices, self-dual operators, tree of shapes, fillhole.

1. Introduction

We have very recently introduced a new quasi-self-dual morphological ap-
proach for image processing [1]. The resulting flat morphological erosion, for
instance, causes all shapes in an image to shrink, regardless their contrast (i.e.,
regardless to whether the are bright or dark). Motivation and connection to
other works are described in [1].

For discrete binary images, the approach yields a set of morphological op-
erators on the so-called adjacency complete lattice, which is defined by means
of the adjacency tree representation (see Section 2 below). The scheme is gen-
eralized to discrete grayscale images by means of the Tree of Shapes (ToS), a
recently-introduced grayscale image representation [7–10], which can be re-
garded as a grayscale generalization of the adjacency tree (see Section 3). In
the grayscale case, however, the underlying space structure is not that of a
complete lattice anymore, but of a complete inf-semilattice.

While the main motivation in the original article was on laying out the the-
oretical basis of the scheme, and investigating its mathematical soundness,
the current article focuses on implementations. Different algorithms for im-
plementing the desired basic operators are investigated; they slightly differ in
general, but produce identical results for typical structuring elements.
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2

1

(a) (b) (c)

Figure 1. (a) A binary image. Each letter corresponds to a connected component. O is the
background component, A and B correspond to the two white connected components, and C and
D correspond to the two dark connected components inside A. (b) The adjacency tree of (a). (c)
Its unfolding transform.

2. Binary Approach: Adjacency Lattice

The basic idea for our binary approach is to generate a quasi-self-dual com-
plete lattice by using the data in the adjacency tree. In [2, page 89, Figure
III.10], Serra describes the adjacency tree (which he called homotopy tree) as
follows. If X is a bounded input binary image in an Euclidean space E, then
the root of the adjacency tree is the infinite connected component of Xc. The
first level nodes of the tree are those connected components of X that are ad-
jacent to the root. The second level of nodes are the connected components of
Xc that are adjacent to the first level of nodes, and so on. See an example in
Fig. 1. The adjacency tree was thoroughly studied by Heijmans in [3].

Next, we review a characterization of the adjacency tree, which we pre-
sented in [1], and the subsequent derivation of the adjacency lattice. Let E be
the 2D grid ZZ2, and R be a bounded region in E. Consider the set P(R) of
all subsets of R (i.e., binary images within R). Define the fillhole φ(X) of a
bounded binary image X ∈ P(R) as the complement of the morphological re-
construction (according to a given connectivity; e.g., either of the well-known
4- or 8-connectivities) of E−X from the marker E−R. The fillhole operator
is extended to discrete grayscale images by applying it to each level set:

φ(f) = θ−1{φ[θn(f)]}, (1)

where θn(f)

= {x ∈ E|f(x) ≥ n} is the level set of f of height n, and

θ−1{TnTT } 
= sup{n ∈ IN |x ∈ TnTT } consolidates level sets back to a function.

The grayscale fillhole operator φ is essentially the same as the FILL(·) opera-
tion, described in [4, page 208].

If a set or a function is invariant to the fillhole operator, then it is said to be
filled.
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The union Dn(X) of all nodes of depth equal or larger than n on the adja-
cency tree of X can be calculated recursively according to

Dn+1(X) = φ(Dn(X) ∩ Cn(X)), n = 0, 1, 2, . . . (2)

where D0(X)

= E, and C(·) is the complement operator, e.g., C(X) = Xc

and C2(X) = X . The sequence of images {Dn(X)} is decreasing w.r.t. the
inclusion order, and Dn(X) is filled, for all n.

Let uX(x) be the level of the connected component that a pixel x ∈ E be-
longs to in the adjacency tree. We call the mapping U : X → uX the unfolding
transform. E.g., see Fig. 1(c), for the unfolding transform of Fig. 1(a). The rea-
son for this name is because U “unfolds" negative objects (those objects that
are darker than its surroundings, i.e., belong to the background), providing a
grayscale image where all objects are positive (brighter than the surroundings).

The unfolding transform can be calculated by:

uX(x)

= θ−1{Dn(X)}, (3)

whereas the inverse mapping U−1 : u→ X is given by

X = U−1{u} = {x ∈ E | u(x) is odd}. (4)

We define the following partial ordering of binary images in P(R):

X � Y ⇐⇒ uX(x) ≤ uY (x), ∀x ∈ R. (5)

In [1], we show that (P(R),�) is a complete lattice, the infimum and supre-
mum of which are given, respectively, by:

X � Y = U−1{uX ∧ uY }, and X � Y = U−1{φ (uX ∨ uY )}. (6)

We call (P(R),�) the adjacency lattice. The pair (εAB, δAB ) of operators, de-
fined by

εAB

= U−1{uX 	B} and δAB


= U−1{φ (uX ⊕B)}, (7)

for some structuring element B, is an adjunction in the adjacency lattice. This
erosion (resp. dilation) shrinks (resp. expands) all foreground and background
“objects" in a binary image (except for the background component connected
to the boundary). They are called adjacency erosion and dilation.

3. Shape-Tree Semilattice

The Tree of Shapes (ToS)

In order to generalize the above framework to grayscale images, we use the
concept of image shapes. Monasse and Guichard define the shapes of an image
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Figure 2. Shape decomposition. (a) Original grayscale image f and (c)-(f) its shapes. (b)
The tree of shapes associated to (a); the numbers in parenthesis are the shape graylevel.

f in [7, 8] as the collection T of sets given by:

φ [γxγγ (θt (f))] and φ [γxγγ (θt (f)c)] , (8)

for all x ∈ E, and t ∈ IR, where γxγγ (X) extracts the connected component
of X to which x belongs. Fig. 2 shows a simple grayscale image, and its
associated shapes.

The above researchers show that every two shapes either contain one another
or are disjoint. This provides T with a tree structure, where the parent of every
shape τ ∈ T is the smallest shape that contains τ . They call the resulting
tree the Tree of Shapes of f (whose details were investigated by Ballester,
Caselles, and Monasse in [10]), and they show that it is a contrast-invariant
representation. Fig. 2(b) depicts the tree of shapes corresponding to the above
example. In the sequel, we shall refer to the Tree of Shapes by the acronym
ToS.

The ToS can be seen as a generalization of the adjacency tree. Indeed, if f is
the indicator function of a given binary image X , then the ToS of f is identical
to the adjacency tree of X .

Monasse and Guichard’s work was developed for continuous 2D images
(E = IR2) and the usual topological connectivity, and extends naturally to the
discrete case. However, they stress that, in the discrete case, one connectivity
(8- or 4-connectivity) has to be used for the positive shapes, whereas the com-
plementary connectivity (respectively, 4- or 8-connectivity) has to be used for
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Figure 3. Alternative shape trees. (a) Replicated ToS (RToS), where the differences between
the graylevels of each shape and its parent is either +1 or −1. Notice how shape E was repli-
cated. The RToS is associated to Algorithm 1. (b) Threshold Adjacency Tree (TAT), associated
with Algorithm 2. (c) Fillhole Tree, associated with Algorithm 3.

the negative shapes (see, e.g., [7]). Otherwise, the shape-inclusion property
does not hold. These considerations are valid in our work as well.

The Semilattice

Now, we review the shape-tree semilattice, which we introduced in [1]. Let
f be a function in Fun(R, ZZZZ ), the set of integer functions over R. Given the
ToS of f , modify this tree by replicating each shape as many time as needed
until the differences in graylevels between each shape and its parent is either
+1 or −1. For example, if in the original ToS a shape τ has graylevel 7 and
its parent 10, then τ is replicated twice with graylevels 8 and 9. Let s(τ)
be the new difference in graylevel (either +1 or −1) between τ and its par-
ent. Fig. 3(a) depicts the replicated ToS (which we call RToS) of the image in
Fig. 2(a).

Now, for each pixel x, associate the binary sequence sf (x) of the differ-
ences s(τnττ (x)) for all the shapes τnττ (x) that contain x, ordered from the largest
to the smallest. E.g., regarding Fig. 2, for a pixel g in shape G, sf (g) =
{+1, +1,−1,−1}; a pixel d in shape D that is not in shapes F or G, sf (d) =
{+1, +1,−1}; and for e in E, sf (e) = {+1,−1, +1, +1}. The mapping
f �→ sf is called the grayscale unfolding transform, and denoted U as in the
binary case. The inverse mapping is given by

f(x) = U−1{sf (x)} =
∑

n

[sf (x)]n, (9)

where [sf (x)]n denotes the nth element of sf (x).
A partial ordering for grayscale images is defined as follows:

f � g ⇐⇒ sf (x) ≤4 sg(x), ∀x, (10)

where ≤4 means here “is a prefix of" (e.g., {+1, +1} ≤4 {+1, +1,−1, +1}).
In fact, ≤4 itself is a partial ordering. It provides the set of binary sequences
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with a complete inf-semilattice structure, where the null sequence {} is the
least element, and the infimum s  r is given by the greatest common pre-
fix. The trivial supremum ! is defined only when all operands are point-wise
comparable w.r.t. ≤4, in which case it returns the largest.

It is shown in [1] that� provides the set of discrete, bounded functions with
a complete inf-semilattice structure. Flat erosion and dilation operators can be
obtained on this inf-semilattice by:

εTB(f) = �{fbff | b ∈ B} = U−1 { b∈B(sf )b} , (11)

δTB(f) = �{f−b | b ∈ B} = U−1 {!b∈B(sf )−b} , (12)

where B is a given structuring element, and fbff and (sf )b denote the translation
of f and sf , respectively, by the vector b.

Because (Fun(R, ZZZZ ),�) is a complete inf-semilattice, the erosion εTB(f)
exists for all f in Fun(R, ZZZZ ), but the dilation δTB(f) does not. On the other
hand, according to the semilattice theory presented in [5, 6], the dilation al-
ways exists when f is the erosion εTB(h) of some function h ∈ Fun(R, ZZZZ ).

Therefore, the operator γT
B (·) 

= δTBεTB(·) is always well defined, and is indeed
the opening operation associated to the above erosion.

Figure 4 illustrates the result of applying the erosion, its adjoint dilation
(yielding the opening), and the corresponding top-hat transform to a complex
grayscale image.

4. Erosion Algorithms

Consider the three algorithms presented in Fig. 5. Algorithm 1 is the straight-
forward implementation of the shape-tree semilattice erosion εTB using (11),

where εSB(sf )

= U−1 { b∈B(sf )b}. Algorithm 2 decomposes the input image

into its threshold levels, erodes each threshold level with the (binary) adjacency
erosion εAB , and composes the result back into an image by summing up the (in-
dicator χ of) the resulting threshold levels. An alternating-connectivity version
of the (binary) unfolding transform should be used here, where the connectiv-
ity of φ is switched between 4 and 8 at each iteration of (2). One can show
that the adjacency erosion is increasing, and therefore the eroded levels are
still contained each in the one below. Algorithm 3 is slightly more complex.
It decomposes the input image f into the series of grayscale images {f (n)},
n = 1, 2, . . ., obtained recursively by f (n) = φ(zn), where zn = f (n−1)−zn−1

and z0 = f . The connectivities of the fillhole operation should also alternate
here. I.e., for each value of n, the connectivity is switched between 4 and 8.
The image f is obtained from its fillhole tree by: f(x) =

∑
n(−1)n−1f (n)(x).
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(a) (b)

(c) (d)

Figure 4. (a) Original grayscale image, (b) shape-tree erosion, (c) opening, and (d) top-hat.
A cross structuring element of size 3 was used in all cases.

// Algorithm 1

Let sf (x) = U{f}
Let sg = εSB(sf )
Let g = U−1{s}

// Algorithm 2

Let g(x) = 0, ∀x
For n = 1 : max{f(x)}

Let tn = εAB[θn(f)]
Let g = g + χ(tn)

// Algorithm 3

Let z(x) = f(x)
Let n = 1
Do while z �≡ 0

Let f (n) = φ(z)
Let z = f (n) − z
n = n + 1

Figure 5. Erosion algorithms.

Proposition 1 If B ⊇ {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)}, then all the
three algorithms in Fig. 5 produce the same output g for a given grayscale
image f .
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The remainder of this section is devoted to providing an overview of the
proof of Proposition 1, by analyzing the similarities and differences between
the three algorithms.

Let us take a closer look into Algorithm 1. It uses the grayscale unfolding
transform, which, as noted before, is an equivalent representation of the ToS. In
the grayscale-unfolding representation sf (x), two or more shapes of f may be
represented by the same binary sequence (e.g., all pixels in shapes F, and G in
Fig. 2(a) are both associated with the sequence {+1, +1,−1,−1} in sf ). Even
if these shapes are not connected one to the other in the 4-connectivity, they
may still be connected in the 8-connectivity. Therefore, if an arbitrary struc-
turing element (e.g., B = {(0, 0), (1, 1)}) is used, one cannot guarantee that
two different shapes of the tree of shapes do not interact during the shape-tree
semilattice erosion. However, when B contains the cross s.e., this interaction
is neutralized, and the erosion of union of shapes is identical to the union of
the erosion of these shapes.

In conclusion, when B contains the cross s.e., Algorithm 1 is equivalent to
eroding each and every shape in the ToS independently by B, and transforming
the resulting tree back to the image domain to obtain g.

Algorithm 2, on the other hand, can not be associated to the ToS, since it
works on each threshold level independently. However, it can be associated
to the various adjacency trees of the different threshold levels. If one links
together all the roots of the various adjacency trees, one obtains a single tree,
which, similarly to the ToS, represents the input image. Let us call it Threshold
Adjacency Tree (TAT). For instance, the TAT of the image in Fig. 2(a) is shown
in Fig. 3(b). The vertical dashed line separates the different adjacency trees,
one for each threshold level.

Notice that the TAT contains the same shapes as in the ToS; only that the
order in which these shapes are linked is different. In the ToS, each shape is
linked to the smallest shape that contains it; in the TAT, each shape is linked to
the smallest shape in the same grayscale level that contains it.

Since the adjacency tree is a particular case of ToS, we can say that, when
B contains the cross s.e., the adjacency erosion εAB is equivalent to eroding
all shapes in the adjacency tree. Therefore, for such s.e. B, Algorithm 2 is
equivalent to eroding all the shapes in the TAT, and reconstructing back the
image.

Algorithm 3 can be associated to yet another representation tree, which con-
tains the same shapes as in the ToS and TAT, but in a different configuration.
We call this tree the fillhole tree, and it can be obtained by applying the thresh-
old decomposition to each image f (n) of the fillhole decomposition. Each
shape in a threshold level t of the image f (n) shall be linked to the smallest
shape that contains it in the threshold level t − 1 of f (n). The fillhole tree of
Fig. 2(a) is shown in Fig. 3(c). One can verify that Algorithm 3 is equivalent
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to eroding each shape in the fillhole tree by B separately, and reconstructing
the image back.

Since the shapes in all the three trees (ToS, TAT, and fillhole) are the same,
and Algorithms 1 to 3 are all equivalent to eroding each of these shapes in these
trees separately, then we conclude that the three Algorithms yield identical
results (provided that B contains the cross s.e.).

5. Implementation Considerations

Even though Algorithm 2 provides insightful understanding of the geomet-
rical relationship between the binary and grayscale operators, it is nevertheless
significantly inefficient when the number of graylevels is high, which is the
case regarding typical 8-bit images.

Algorithm 3 is the conceptually simplest and the easiest to implement, if
one has a good implementation of the grayscale fillhole operator. For instance,
it is a great option for Matlab simulations.

The most complex, but also the fastest, implementation of the shape-tree
semilattice erosion can be obtained by Algorithm 1. In [7], a fast algorithm
for calculating the ToS is presented. It is fairly simple to modify this algo-
rithm to obtain the grayscale unfolding transform directly. One could con-
sider a drawback of Algorithm 1 the size of the transformed data, which typ-
ically consist of a lengthy binary sequence for each pixel in the image. Here
are a few ways to solve this problem. The first one is to consolidate the
binary sequences sf (x) into alternating sequences of positive and negative
numbers, representing the run-lengths of +1’s and −1’s, respectively. E.g.,
{−1,−1, +1, +1, +1, +1,−1,−1,−1} becomes {−2, 4,−3}. The infimum
operation can be calculated directly on the alternating sequences by keeping
their common prefix, followed by the weakest of the next elements, if they
have the same sign. For instance, the infimum between {−2, 4,−3, 6} and
{−2, 4,−1, 5} is {−2, 4,−1}, between {3,−6, 2, 7} and {3,−6} is the latter,
and between {1,−2} and {−3, 2,−9} is {} (empty sequence). A second ap-
proach to reduce data storage is to store a table that associates an index to each
existing binary sequence in the image, and associate the corresponding index
to each pixel. A third way is to associate to each pixel a pointer to one pixel in
the parent shape. One has to take the care of pointing all pixels in a shape to the
same parent pixel. Then, the infimum of two pixels is computed by following
the pointers of each pixel recursively until both paths reach a common pixel.

6. Conclusion

We have reviewed the definition of adjacency lattice, which is the proposed
framework for quasi-self-dual morphological processing of binary images. In
this approach, each shape of the image is operated upon (erosion, dilation, etc.)
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regardless to whether it belongs to the foreground or to the background. As a
consequence, all shapes in the image suffer the same morphological modifica-
tion in a contrast-invariant way.

The binary framework is generalized to grayscale images by means of the
shape-tree semilattice. Three different algorithm for implementing the result-
ing morphological operators (erosion and adjoint dilation) are investigated.
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Abstract Colour images are multivariable functions, and for segmenting them one must
go through a reducing step. It is classically obtained by calculating a gradient
module, which is then segmented as a gray tone image. An alternative solution
is proposed in the paper. It is based on separated segmentations, followed by
a final merging into a unique partition. Three problems are treated this way.
First, the search for alignments in the 2-D saturation/luminance histograms. It
yields partial, but instructive results which suggest a model for the distribution
of the light over the space. Second, the combination of luminance dominant and
hue dominant regions in images. Third, the synthesis between colour and shape
information in human bust tracking.

Keywords: colour, segmentation, saturation, norms, light propagation, connection, multi-
variate analysis

1. Introduction

The present paper aims to analyse the way information is reduced when we
go from multi-dimensional colour images to their segmentations, i.e. to final
unique optimal partitions [15]. The problem is the following: sooner or later,
the processing of such multi-dimensional data goes through a scalar reduction,
which in turn yields the final partition. Usually, the scalar reduction arises
rapidly, since in the most popular procedures it consists in replacing, from
the beginning, the bunch of images by a sole gradient module on which the
various minimizations hold (e.g. the watershed technique). When the scalar
reduction occurs too soon, it risks to ignore specific features of each band,
and to destroy them in the melting pot that generates the 1-D variable. The
alternative approach we propose here works in the exactly opposite way. We
will try and obtain first various intermediary partitions, and then make the final
segmentation hold on them.
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This idea is developed below through three studies. The first one extends
to colour images the simplest segmentation technique for numerical functions,
which consists in histogram thresholding. How to extend it to the 2-D or 3-D
histograms of the colour case? The question will be tackled in the framework
of the brightness-saturation-hue representations. Such polar coordinates have
to be defined in a suitable manner for image processing, as A. Hanbury and J.
Serra did in [8]. We have also to check the pertinence of these new represen-
tations. J. Angulo [2] did it by analysing their 2-D histograms, which exhibit
typical alignments. The physical interpretation of these structures leads to an
original model for light reception, which is proposed below, in section 3.

The second study relies on the intuition that human vision exploits the hue
for segmenting the highly saturated regions, and the luminance for the weakly
saturated ones. This way of thinking already appears in literature with C.-H.
Demarty and S. Beucher [6], and with P. Lambert and T. Carron [9]. But it is
developed here differently, as we seek for an optimal partition by combining
the three segmentations of the polar coordinates [1] (section 4).

The third variant enlarges the scope, and aims to synthesize segmentations
according to both colour and shape. When we look at a bust, for example,
the face of the person presents characteristic colours, whereas the shoulders
are better described by their shape. How to mix together such heterogeneous
sources? This sort of questions suggests a new model for multi-labelled con-
nections that we will construct on the way (section 5).

The first two studies need a detour, as we have to justify the creation of
new parameters (of saturation in particular). A brief remainder on the gamma
correction is necessary. An excellent presentation of the theme may be found
in Ch. Poynton’s book [11], see also [18]. As for the notation, we follow
Ch. Poynton, who differentiates by apostrophes the electronic colours (e.g. r′)
from the light intensities (e.g. r). Below, the rule is extended to the operations
themselves; for example the arithmetic mean is written m for intensities and
m′ for video variables. Also, we adopt the convention of the CIE, which desig-
nates the absolute quantities by upper letters (e.g. X, Z) and the relative ones
by lower case letters (e.g. x, z).

2. The 3-D polar representations of the colour

Light intensities and gamma correction

Consider a television receiver. It uses three different colour representations.
On the one side, the input Hertzian signal is coded as one grey image plus two
other ones, associated to green-red and blue-yellow contrasts (i.e. one lumi-
nance and two chrominances). On the other side, the image on the monitor
is obtained from three electrical signals, which excite three layers of green,
red and blue photo-receivers. These two representations are quite different,
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although technically sound for their respective purposes. However, the manu-
facturers take none of them for the user’s interface, and prefer human adjust-
ments based on light (luminance), contrast (saturation), and, in case of an old
receiver, from hue. Hence, this last triplet turns out to be the simplest one for
human vision.

What are the relationships between these various representations? Do the
technological steps modify the initial light that enters a device? Colour im-
age processing rests on a few basic operations (addition, comparison,...) and
properties (increasingness, distances...). Have these tools a physical meaning?
In colour imagery the basic notion is the spectral power distribution (SPD) of
the light radiating from or incident on a surface. This intensity has the dimen-
sion of an energy per unit area, such as watt per m2. When the light arrives at a
photo-receiver, this sensor filters the intensities of each frequency by weighting
them according to fixed values. The sum of the resulting intensities generates
a signal that exhibits a certain “colour”. The CIE (Commission Internationale
de l’Eclairage), in its Rec 709, has standardized the weights which yield the
triplet R709, G709,B709 [4]. As energies, the intensities are additive, so that
all colours accessible from an RGB basis are obtain by sums of the primary
colours R, G, and B and by multiplications by non negative constants.

The exploration of the spectrum is lower bounded by R = G = B = 0
(zero energy) higher bounded by a maximum red R0, green G0 and blue B0

that are given by the context (illumination, technological limits of the sensors,
or of the eye, etc.) in which we work. Generally, each technology fixes the
three bounds, which therefore define the reference white, and then introduces
the reduced variables

r =
R

R0
, g =

G

G0
, b =

B

B0
. (1)

The digital sensitive layers of cameras transform the light intensities into
voltages; conversely, the cathodic tubes (CRT) and the flat screens that display
images return photons from the electrical current. Now, their response is not
linear, but a power function of the input voltage whose exponent γ, (gamma),
varies around 2.5 according to the technologies. If we want the light intensities
of the CRT to be proportional to those of the scene itself, the gamma effect has
to be compensated. In video systems, this gamma correction is universally at
the camera. The Rec. 709 of CIE proposes the following correction function

r′ = 4.5r r ≤ 0.018
r′ = 1.099r0.45 − 0.099 r > 0.018

(2)

that we write here for the reduced red intensity r, and where1/γ = 0.45. The
same transfer function is applied to both green and blue bands.

Fig. 1, drawn from [11] depicts the graph of Rel.(2). The variation domain
[0, 1] is the same for the reduced intensities (r) as for the video colours (r′),
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Figure 1. Gamma correction function.

which implies that the white point R0 G0 B0 is left invariant. The linear be-
ginning in Rel.(2) minimizes the effect of the sensor noise. An ideal monitor
should invert the transform Rel.(2). Indeed, they generally have neither linear
segment, nor gamma exponent equal to 1/0, 45 [11].

Fig. 1 shows that for r closed to1, the graph looks like a straight line. More
precisely, the limited expansion

(1− u)1/γ = 1− u

γ
+ ε (u) (3)

for small u, leads us to replace the second equation (2) by

r
′∗ = (0.55 + 0.45r)1.099− 0.099 (4)

i.e., numerically

r 0.9 0.8 0.7 0.6 0.5
r′ 0.949 0.895 0.837 0.774 0.705
r′∗ 0.950 0.901 0.851 0.802 0.753

r′−r′∗
r′ 0.1% 0.6% 1.4% 2.8% 4.8%

In comparison with the noise of the video systems, we can consider the
approximation r′∗ is perfect for r ≥ 0.8 and excellent for 0.6 ≤ r ≤ 0.8.

Colour Vector Spaces

Their linearity provide the intensities r, g, b with the structure of a 3 dimen-
sions vector space, or rather of the part E which is limited to the unit cube
[0, 1] × [0, 1] × [0, 1] of R

3. For colour image processing purposes, it would
be wise to go back from the video bands (r′, g′, b′) to the reduced intensities
(r, g, b) by the inverse transform of Rel.(2). When starting from the usual 3×8
bits (r′, g′, b′) images, the best should probably be to code in 3 × 16 bits for
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Figure 2. Chromatic plane and a-chromatic axis.

computation (or in floating variables). But as a matter of fact, people keeps
the (r′, g′, b′) video space, which is implicitly modelled as a part of a vec-
tor space, from which one builds arithmetic means, projections, histograms,
Fourier transforms, etc... which often gives significant results.

What are the real consequences of the gamma correction Rel.(2) on the pro-
cessing of colour data? Formally speaking, one can always consider the unit
video cube (r′, g′, b′) as a part, E′ say, of a 3-dimensions vector space. This
allows us to formulate operations, but their physical interpretations demand we
come back to the intensities (r, g, b).

Fig. 2 depicts the unit cube E′. The vector �x′� , of coordinates (r′, g′, b′) can
also be decomposed into two orthogonal vectors�c′�� and �l′ of the chromatic plane
and the a-chromatic (or gray) axis respectively. The latter is the main diagonal
of the cube going through the origin O and the chromatic plane is perpendicular
to the gray axis in O. The two vectors �c′�� and �l′ have the following coordinates

3�c′�� = (2r′ − g′ − b′, 2g′ − b′ − r′, 2b′ − r′ − g′)
3�l′ = (r′ + g′ + b′, r′ + g′ + b′, r′ + g′ + b′)

(5)

Consider the red band r′(z) over a zone Z in a colour image. What meaning
can we give to the average red in Z? As we just saw, the only average that has
a physical meaning is the quantity r̄ = 1

Z

∫
(r′(z))γ dz, which needs to be cor-

rected into r̄1/γ for display purposes (for the moment we neglect the constants
1,099 and 0,099 in Rel.(2)). On the other hand, the usual segmentations aim to
split the space into regions Z where the colour is nearly constant. Then at each
point z ∈ Z, we can approximate r(z) by the limited expansion

r(z) = r′(z)γ = r′γ
[
1− r′ − r′(z)

r′

]γ

= r′γ
[
1− γ

(
r′ − r′(z)

r′

)
+ ε(r′)

]
where r̄′ = 1

Z

∫
Z

∫∫
r′(z)dz. Under averaging in Z, the coefficient of the γ term

in the right member becomes zero, so that

( )̄1/γ = r̄′ + ¯
(
r′
)

(6)
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Therefore, the arithmetic mean of the video red r′ equals, at the second or-
der, the mean of the red intensity r followed by the gamma correction. The
result remains true when the coefficients of Rel.(2) are added, when the the av-
erage is weighted, and also for the dark zones Z where the first Rel.(2) applies.
It extends to the greens and blues. Rel.(6) turns out to be a theoretical justifi-
cation of the “mosaic” based image segmentations (e.g. waterfall algorithm).

Brightness

From the point of view of physics, brightness is nothing but the integral
of the power spectrum, i.e., here, the sum of the three components r, g, and
b, that stand for this spectrum. For colorimetric purposes, this sum has to be
weighted relatively to the spectral sensitivity of the eye. The CIE Rec. 709
defines a white point and three weighting functions of the spectrum which lead
to the variables R709, G709 and B709, then to the luminance

Y709YY = 0.212R709 + 0.715G709 + 0.072B709 (7)

and to the luminance YWYY of the associated white point. The three coefficients
of Rel.(7) are related to the brightness sensitivity of the human vision and
have been estimated by colorimetric measurements on a comprehensive pop-
ulation. The luminance Y709YY , as a linear function of intensities, is an energy
(watts/m2).

Human vision responds to intensities in a logarithmic way, according to
laws of the type di/i = constant. Just as we took into account the spectral
sensitivity of the eye, we should not ignore its energetic sensitivity. Now, by
an amazing coincidence vision response to intensity is closed to the gamma
correction of Rel.(2): for example, when the luminance of a source is reduced
to 20%, the eye perceives an intensity reduction of 50% only. Therefore, fol-
lowing many authors, we can consider the transforms

r′ = r1/γ g′ = g1/γ b′ = b1/γ (8)

for γ " 2.2 as generating perceptual intensities . For example, the Rec. BT
601-E proposes the luma y′601 as a perceptual brightness measurement

y′601 = 0.299r′ + 0.587g′ + 0.144b′. (9)

However, this luma, as established from video values has not an energy di-
mension, and not any more the deriving additivity properties. The CIE follows
the same direction, but defines the lightness l∗ by taking a slightly different
exponent

l∗ = 116(
Y709YY

YWYY
)1/3 − 16 Y ≥ 0.0089YWYY .
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As regards the operations of segmentation in image processing, the situation
is different. They do not hold on a perceived brightness, but on that of the
object under study. In microscopy, the histological stainings usually range
from blue to violet; the spectrum of a sunset, or that of a human face have
nothing to do with the weights given to r, g, and b in Rel.(7) or (9). Thus in the
absence of a priori information on the spectra of the objects under study, the
purpose of segmentation leads us to take as brightness a symmetrical function
of primary colours.

As regards the perceived energies now, consider, in the intensity space E, a
vector x whose direction is given by xo = ro, go, bo but whose intensity varies,
i.e.

x = (λr0, λg0, λb0) λ ∈ [0, λmax]

The point x describes the segment S which begins in O, goes through
(ro, go, bo) and ends on the edge of cube E. In the video space E′ there corre-
sponds to x the point x′ :

x′ =
(
(λr0)

1/γ , (λg0)
1/γ , (λb0)

1/γ
)

= λ1/γx′
0 (10)

with x′
0 = r

1/γ
0 , g

1/γ
0 , b

1/γ
0 . Similarly, the point x′ describes a segment S′ in

E′. When x varies, if we want its perceptual brightness to seem additive, then
Rel.(10) implies that the corresponding brightness of x′ is a linear function of
the three primary components. Finally, since this "image processing bright-
ness" has to vary from 0 to 1, as r and r′ do, the only possibility is to take for
it the arithmetic mean m′ of the primary colours :

m′ =
1
3
(r′ + g′ + b′). (11)

Put λ′ = λ1/γ . The two expressions

|m(x1)−m(x2)| = |λ1 − λ2|m (x0)∣∣∣∣m′(x′
1)−m′(x′

2)
∣∣∣∣ =

∣∣∣∣∣∣∣λ1/γ
1 − λ

1/γ
2

∣∣∣∣∣∣∣m′ (x′
0

)
turn out to be different distances in segments S and S′ respectively. The expo-
nent 1/γ provides the second one with a meaning of perceptual homogeneity.
But image processing is more demanding, as we must be able to express that a
colour point E′ (or more generally a set of points) gets closer to another even
when these two points are not aligned with the origin. Now, the mean (11) is
nothing but the restriction to the cube E′ of the L1 norm, which is defined in
the whole space R

3 (i.e. for r′, g′, h′ ∈ [−∞, +∞]) by taking α = 1 in the
relation

n
(
x′) =

(∣∣∣∣r′ (x)
∣∣∣∣α +

∣∣∣∣g′ (x)
∣∣∣∣α +

∣∣∣∣b′ (x)
∣∣∣∣α)1/α

α ≥ 1 (12)
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(This Rel.(12) introduces indeed a family of norms as soon as α ≥ 1. For α =
2, we obtain the Euclidean norm L2, and for α = ∞, the “max” norm). In a
vector space V , any norm n generates a distance dn (see [5], section VII-1-4)
by the relation

dn

(
x′

1, x
′
2

)
= n

(
x′

1 − x′
2

)
x′

1, x
′
2 ∈ V (13)

Therefore L1 is a distance, as well, of course, as its restriction to the unit cube
E′.

For α = 1, both brightness m′(x′) and distance d (x′
1, x

′
2) = m′ (|x′

1 − x′
2|)

in E′ thus derive from a unique concept. This latter relation is important, as
in segmentation a number of algorithms which were established for numerical
functions extend to vector functions when a distance is provided (e.g. water-
shed).

Saturation

The CIE was more interested in various formulations of the brightness (lu-
minance, lightness ...) than in saturation, that it defines as "the colourfulness
of an area judged in proportion to its brightness". In other words, it is the con-
cern of the part of uniform spectrum (i.e. of gray) in a colour spectrum, so that
any maximal monochromatic colour has a unit saturation and so that any triplet
r = g = b has a zero saturation.

Intuitively, what the CIE means here is clear, but its definition of the satu-
ration lends itself to various interpretations. From a given point x ∈ E, one
can draw several paths along which the colour density varies in proportion to
brightness. For example, in Fig. 2, supposed to represent cube E, we can take
the perpendicular xc to the chromatic plane, or the perpendicular xl to the gray
axis, or again the axis Ox, etc.. Which path to choose?

Indeed, these ambiguities vanish as soon as we set the context in the chro-
matic plane. The cube E is projected according to Hexagon H centered in O.
Consider a point xo ∈ E, of projection c0 in H , and such that c0 �=�� O. Follow-
ing the CIE, we define as a saturation any non negative function along the axis
Oc0 that increases from O; in O, it equals zero (pure gray) and has its max-
imum value when the edge of Hexagon H is reached, in cmax say (saturated
colour). The hue remains constant along the segment [0, cmax], and the hue of
the opposite segment [0, c̄max] is said to be complementary of that of segment
[0, cmax]. For a point c ∈ [0, cmax], we have c = λc0, 0 ≤ λ ≤ 1. Thus, given
c0 ∈ H , the saturation s (c) = s (λc0) is a function of λ only, and this function
is increasing.

We have to go back to the 3-D cube E, as point c0, projection of x0, is just
an intermediary step (moreover c0 /∈// E).The saturation s (x0) of point x0 ∈ E
is then defined by

s (x0) = s (c0)
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Note that when a point x ∈ E moves away from the chromatic plane along the
perpendicular c0x0 to this plane, its gray proportion increases, but its saturation
s (x) does not change: it is indeed a matter of chromatism and not of energy of
the light intensity.

As point c describes the radius [0, c̄max] which is at the opposite of [0, cmax]
in the chromatic plane, we have

c ∈ [0, c̄max] ⇐⇒ c = λc0 λ(¯max) ≤ λ ≤ 0

where λ indicates the proportionality ratio, now negative, between c and c̄0.
This purely vector equivalence admits a physical interpretation if we extend
the definition of the saturation to all diameters D (c0) = [0, cmax] ∪ [0, c̄max] ,
c0 ∈ H , of the hexagon H (saturation was previously introduced for radii
only). This can be done by putting c ∈ D (c0), s (c) = s (λc0) = s (|λ| c0).
Two opposite points have the same saturation, and more generally if c1 ∈
[0, cmax] and c2 ∈ [0, c̄max], then c1 + c2 = (λ1 + λ2) c0, with λ1 ≥ 0 and
λ2 ≤ 0. As s is increasing we have

c1 ∈ [0, cmax] , c2 ∈ [0, c̄max] =⇒== s (c1 + c2) ≤ s (c1)+s (c2) .
(14)

When c1 = cmax and c2 = c̄max we find in particular Newton’s disc experi-
ment, reduced to two complementary colours.

When considering the saturation in the video cube E′, the conditions of
increasingness of s′ along the radii (now of H ′) and of its nullity on the gray
axis are still valid. They must be completed by the two requirements of image
processing, namely the symmetry w.r.t. r′, g′, b′ and the fact that s′(x′

1 − x′
2)

must be a distance in E′.
We saw that the mean m′, in Rel.(11), was the L1 norm expressed in the

unit cube E′, and that 3m′ (x′) was both the norm of x′ and of its projection l′

on the gray axis, i.e.

L1

(
x′) = L1

(
l′
)

= 3m′ (x′)
It is tempting to keep the same norm for the hexagon H ′ of the chromatic plane.
By using Rel.(5) we find

s′
(
x′) = L1

(
c′
)

=
1
3
[∣∣∣∣2r′ − g′ − b′

∣∣∣∣ +
∣∣∣∣2g′ − b′ − r′

∣∣∣∣ +
∣∣∣∣2b′ − r′ − g′

∣∣∣∣] .

(15)
By symmetry, s′ (x′) depends on the three functions max′ = max(r′, g′, b,′ ),
min′ = min(r′, g′, b,′ ), and med′ = mediane(r′, g′, b,′ ) only, which gives

s′ =

⎧⎨⎧⎧⎩⎨⎨
3
2 (max′ −m′) if m′ ≥ med′

3
2 (m′ −min′) if m′ ≤ med′

(16)
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On can find in [14] the derivation yielding s′, and that of the following expres-
sion h′ of the hue (which avoids to bring trigonometric terms into play),

h′ =
π

3

[
λ +

1
2
− (−1)λ max′ + min′ − 2med′

2s′

]
(17)

with λ equals

0 if r > g ≥ b, 1 if g ≥ r > b, 2 if g > b ≥ r,
3 if b ≥ g > r, 4 if b > r ≥ g, 5 if r ≥ b > g (18)

The hue h′, as a coordinate on the unit circle, is defined modulo 2π. The
value h′ = 0 in Eq.(17) corresponds to the red. For s′ = 0, colour point lies on
the gray axis, so that its hue is meaningless. The inverse formulae are given in
[8], and the detailed proofs may be found in [14].

The relations (15) and (13) entail that s′ (c′1 − c′2) = L1 (c′1 − c′2) is a dis-
tance in the chromatic plane, which therefore brings into play both saturation
and hue. On the other hand, as L1 is a norm, Rel.(14) becomes true for all
triplets c′1, c

′
2 and c′1 + c′2 that are on a same diameter of H ′. Remark that here

the L1 norm is the concern of the projections c′, the norm of the vectors x′

themselves being their arithmetic mean. Finally, the above comments apply
also to the Euclidean norm and to the max-min, which both induce distances
in the chromatic hexagon H ′.

When passing from the video variables to the intensities, a first result is
obtained by observing that the averaging of the saturation s′ follows the same
law than that of the brightness m′, namely Rel.(6), in the zones Z where the
colour varies weakly. Moreover, the mapping x′

0 = (r′0, g
′
0, b

′
0) → x0 =(

r′γ0 , g′γ0 , b′γ0
)

shows that c′ = λc′0 becomes c = λγc0, hence

s′(x′) = λL1

(
c′0
)

= λs′(x′
0)⇔ s(x) = λγL1 (c0) = λs(x0).

In other words, the L1 norm is increasing on the radii, and is zero for the grays,
on both chromatic hexagons H of the intensities and H ′ of the video variables.
Thus it represents a saturation in both spaces. It seems difficult to go further,
as two points x′

0, x
′
1 ∈ E′ whose projections c′0 and c′1 lie on a same radius of

H ′ may have homolog points x0 and x1 ∈ E whose projections are not always
aligned with O.

Two other norms

How to build polar representations which be not contradictory with the pre-
vious requirements? Besides the L1 norm, we can think of two ones. Firstly,
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the Euclidean norm L2. In practical image processing, it turns to be less con-
venient than the L1 norm, which suits particularly well to linear and morpho-
logical operations, and provides nice inverses. In addition, the associated 2-D
histograms are rather unclear [2].

Another possibility is to correct the classical HLS system, by replacing
its saturation by max(r, g, b)−min(r, g, b). In the whole space, the quantity
max −min is a semi-norm only: two distinct vectors c and c′, whose differ-
ence c - c′ is a gray have the same max−min [8]. However, in the chromatic
plane, max−min becomes a norm. It can be used for the saturation in parallel
with m′ for the brightness. This is what we will do below each time max−min
norm is introduced.

Finally, the norm and distance based approach presents the significant ad-
vantage that it separates the variables : two points x′

1 and x′
2 ∈ E′ which have

the same projection on the chromatic plane (resp. on the gray axis) have the
same saturation (resp. the same brightness). However, the last property, on
brightness, vanishes when the three bands are given different weights in the
means m or m′.

The classical polar representations

Even though the transformation from RGB to hue, saturation and brightness
coordinates is simply a transformation from a rectangular colour coordinate
system (RGB) to a three-dimensional polar (cylindrical) coordinate system,
one is faced with a bewildering array of such transformations described in the
literature (HSI, HSB,HSV, HLS, etc. ). Most of them date from the end of the
seventies [17], and were conceived neither for processing purposes, nor for the
current computing facilities. This results in a confusing choice between models
which essentially all offer the same representation. The most popular one is the
HLS triplet of System (19), which appears in many software packages. The
comments which follow hold on this particular model, but they apply to the
other ones. The HLS triplet derives from RGB by the following system

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

l′HLS = max(r′,g′,b′)+min(r′,g′,b′)
2

s′HLS =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
max(r′,g′,b′)−min(r′,g′,b′)
max(r′,g′,b′)+min(r′,g′,b′) if l′HLS ≤ 0.5

max(r′,g′,b′)−min(r′,g′,b′)
2−max(r′,g′,b′)−min(r′,g′,b′) if l′HLS ≥ 0.5

(19)

One easily checks that the HLS expressions do not preserve the above re-
quirements of linearity (for the brightness), of increasingness (for the satu-
ration) and of variables separation. The HLS luminance both RGB triplets
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Figure 3. Two test images.

(1/2, 1/2, 0) and (0, 1/2, 1/2) equals 1/4, whereas that of their mean equals
3/8, i.e. it is lighter than both terms of the mean. The HLS saturations of the
RGB triplets (4/6, 1/6, 1/6) and (2/6, 3/6, 3/6) equals 3/5 and 1/5 respec-
tively, whereas that of their sum is 1: it is just Newton’s experiment denial!
Finally the independence property is no more satisfied. Take the two RGB
triplets (1/2, 1/2, 0) and (3/4, 3/4, 1/4). One passes from the first to the sec-
ond by adding the gray r′ = g′ = b′ = 1/4. Hence both triplets have the same
projection on the chromatic plane. However, the HLS saturation of the first
one equals 1 and that of the second 1/2.

3. 2-D Histograms and linearly regionalized spectra

In practice, is it really worth deviating from beaten tracks, and lengthening
the polar triplets list? What for? We may answer the question by comparing
the luminance/saturation bi-dimensional histograms for HLS system and for
various norms. J. Angulo and J. Serra did so on a dozen images [2] [3]. Two
of them are depicted below, in Fig. 3.

Bi-dimensional histograms

In the first image, we observe strong reflections on the rubber ring, and vari-
ous types of shadows. The corresponding L1 and HLS histograms are reported
in Fig. 4, with luminance on the x axis and saturation on y axis. No informa-
tion can be drawn from HLS histogram, although alignments are visible on L1

norm.
By coming back to the images, we can localize the pixels which give align-

ments, as depicted in Fig. 5. They correspond to three types of areas:

shadows with steady hue,

graduated shading on a plane,

reflections with a partial saturation.
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Figure 4. Bi-dimensional histograms of the “rubber ring” image. The x-axis corresponds the
luminance and the y-axis to the saturation. a) L1 norm, b)HLS representation.

Figure 5. Zones of “Rubber ring” associated with alignments. The left image a) show the
supports of the alignments in Fig. 4 (in L1 norm), and the right image indicate the locations of
the aligned pixels in the space of the initial picture. The white (resp. gray) alignments of Fig.
a) correspond to the white (resp. gray) pixels of Fig.b).

Consider now the more complex image of “Ana Blanco”, in Fig.3b. It
includes various sources light (television monitor, alpha-numerical incrusta-
tions...), and the light diffused by the background is piecewise uniform over
the space. However, there are still alignments, which do not always go through
points (0, 0), or (1, 0), and are sometimes parallel. In the lum/hue plane of
the L1 norm representation, several horizontal lines (constant hue) are located
at different hue levels, and alternate with elongated clouds of points (Fig.6b).

All in all, we draw from the above histograms four main informations.

1 In the lum/sat histogram, there is no accumulation of pixels at point
(1,0). It means that the sensors we use are not physically saturated,
which make realistic the proposed linear approach;

2 Still in the lum/sat histogram, some well drawn alignments can be ex-
trapolated to point (0,0) or point (1,0). The others are parallels to the
first ones;
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Figure 6. (a) and (b) the two histograms of “Ana Blanco”, in the luminance/saturation and
the luminance/hue plane respectively, both in L1 norm.

3 However, most of the pixels form clouds in both lum/sat and lum/hue
histograms are not aligned at all, whether the model does not apply, or
the homogeneous zones are too small;

4 In the lum/hue histogram, most often the aligned pixels exhibit a (quasi)
constant hue, i.e. draw horizontal lines. But sometimes, these "lines"
turn out to be a narrow horizontal stripe.

Such characteristic structures, such distinct lines suggest we seek a physical
explanation of the phenomenon. This is what we will do now. But besides any
physical model, a first point is worth to be noticed: the only norm that enables
us the extraction of reflection areas, of shadows and gradations is L1. No other
polar model results in such an achievement.

Linearly regionalized spectra (LR model)

If we assume that the alignments are a property of the spectrum, and not an
artefact due to some particular representation, we have to express the spectrum
in such a way that the sequence

(spectrum)→ (r′g′b′)→ (m′s′h′)→ (m′ = αs′ + β)

be true (in the alignments) whatever the weights generating r, g and b are, and
also whatever the spectrum itself is. Consider a zone Z of the space whose
all pixels yield an alignment in the L1 histogram. Denote by sp (ν; z) the
spectrum of the light intensity at point z ∈ Z. We will say that this spectrum
is linearly regionalized in Z when for each point z ∈ Z one can decompose
sp (ν; z) into the sum of a first spectrum sp0 (ν), independent of point z, and
of a second one, ω(z)sp1(ν), which proportionally varies in Z from one point
to another. For all z ∈ Z, we have

sp (ν; z) = sp0 (ν) + ω(z)sp1(ν) (20)
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where ω (z) is a numerical function which depends on z only, and where sp0

and sp1 are two fixed spectra.
In the spectrum sp (ν; z), though sp0 usually corresponds to diffuse light

and sp1 to specular one, we do not need to distinguish between the emitted
and reflected components of the light. It can be the concern of the light trans-
mitted through a net curtain, for example, or of that of a TV monitor; but it
can also come from passive reflectance, such as those described by Shafer’s di-
chromatic model [16], or by Obein et Al.’s model of glossiness [10]. But unlike
these two models, the term ω(z)sp1 may also represent an absorption, when
it is negative. Similarly, we do not need to distinguish between diffuse and
specular lights. The term sp0 may describe a diffuse source over the zone Z,
as well as a constant specular reflection stemming from the same zone. But
above all, the emphasis is put here on the space variation of the spectrum. It
is introduced by the weight ω(z), that depends on point z, but not on spectrum
sp1. This weight may bring into play cosines, when the angle of the incident
beam varies, or the normal to a glossy surface, etc...

The three spectra sp, sp0 and sp1 are known only through the weighting
functions that generate a (R, G, B) triplet. We use here the notation (R, G, B)
in a canonical manner, i.e. it may designate the (X, Y, Z) coordinates of the
CIE, or the perceptual system (L, M, S) [18], as well as the (Y,U, V ) and
(Y, I,Q) TV standards. In all cases it is a matter of scalar products of the
spectra by such or such frequency weighting. In particular, the white colour
given by r = g = b = 1 can be obtained from a spectrum which is far from
being uniform. We write

r (z) =
∫

[sp0 (ν) + ω(z)sp1 (ν)] ξ (ν) dν = r0 + r1ω (z) (21)

g (z) =
∫

sp (ν; z)χ (ν) dν = g0 + g1ω (z) (22)

and

b (z) =
∫

s (ν; z)ψ (ν) dν = b0 + b1ω (z) (23)

where ξ, χ and ψ are the three weighting functions that generate the primary
colours r, g and b.

As sp0 and sp1 are power spectra, they induce intensities r, g, and b. Now,
in the above histograms, the L1 norm applies to the video variables r′ = r1/γ ,
g′ = g1/γ , and b′ = b1/γ (if we neglect the behaviour near the origin). Then
we draw from Rel.(21)

r′ (z) = [r (z)]1/γ = [r0 + ω (z) r1]
1/γ , (24)
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with similar derivations for the video green and blue bands.
Is the linearly regionalized model able to explain the alignments in video

histograms, despite the gamma correction? For the sake of simplicity, we will
tackle this question by fixing the order of the video bands as r′ ≥ g′ ≥ b′, and
m′ ≥ g′. Then we have

3m′(z) = r′(z) + g′(z) + b′(z)
2s′(z) = 2r′(z)− g′(z)− b′(z)

Alignments with the dark point In the luminance/saturation histograms
in L1 norm, several alignments are in the prolongation of the point (0, 0), of
zero luminance and saturation. The shadow regions of the “rubber ring” image
illustrate this situation.

Suppose that, in the relation (20) which defines the LR spectrum, the term
sp0(ν; z) is identically zero. Then r(z) reduces to ω(z)r1, which gives

r′(z) = r1/γ = ω1/γr
1/γ
1 = ω1/γ(z)r′1,

with similar derivations for two other bands. Therefore we have

3m′(z) = ω1/γ(z)
[
r
1/γ
1 + g

1/γ
1 + b

1/γ
1

]
= 3ω1/γ(z)m′

1

and
2s′(z) = 2r′(z)− g′(z)− b′(z) = ω1/γ(z)

[
2r′1 − g′1 − b′1

]
hence m′(z)s′1 = m′

1s
′(z). In the space E of the intensities, we find in the

same way that m(z)s1 = m1s(z). Therefore the nullity of the constant spec-
trum sp0(ν) entails that both m′ and s′ on the one hand, and m and s on the
other one, are proportional. Each video alignment indicates a zone where the
intensities spectrum varies proportionally from one point to another.

Alignments with the white point The “rubber ring” image generates also an
alignment along a line going through the point (1, 0), i.e. the point with max-
imum luminance and zero saturation. That suggests to suppose the spectrum
sp0(ν; z) constant and equal to 1, and in addition that the three colors r1, g1, b1

are not identical (if not, the saturation s′ should be zero). We have

r(z) = 1 + ω(z)r1 (25)

and the two sister relations for g(z) and b(z). Under gamma correction, r(z)
becomes

r′(z) = (1 + ω(z)r1)1/γ .

Now, to say that the alignment is closed to a point of maximum luminance
comes down to saying that r1, g1, and b1 are small with respect to 1, or again
that
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r′(z) = 1 +
ω(z)

γ
r1 + ε(r1), (26)

hence m′(z) = 1 + ω(z)
γ m1 and s′(z) = ω(z)

γ [2r1 − g1 − b1]. We observe
that the two conditions r1 ≥ 0 and r′(z) ≤ 1, jointly with Rel.(26) imply that
the coefficient ω(z) is negative. Moreover, as the three colours r1, g1, b1 are
distinct, the condition s′(z) ≥ 0 implies in turn that the quantity 2r1− g1− b1

is strictly negative. By putting σ1 = −(2r1 − g1 − b1) > 0 (σ1 is not the
saturation at point z1), we obtain the following linear relation with positive
coefficients

m′(z) = 1− m1

σ1
s′(z). (27)

As in the previous case, but without approximations, the mean m(z) and
the saturation s(z) of the intensities are linked by the same equation (27): it is
a direct consequence of Eq.(25). Again, both video and intensity histograms
carry the same information, and indicate the zones of almost white reflections.

Alignments with a gray point There appears in some images, as “Ana Blan-
co”, series of parallel alignments. Their supports go through points of (quasi)
zero saturation but their luminance is strictly comprised between 0 and 1. The
interpretation we just gave for the case of reflections extends to such a situation.
It is still assumed that r0 = g0 = b0, but with 0 < r0 ≤ 1, and that the terms
ω(z)r1, ω(z)g1, and ω(z)b1 are small with respect to r0. Then we have,

r′(z) = (r0 + ω(z)r1)1/γ = r
1/γ
0 + r

1/γ−1
0

ω(z)
γ

r1,

and the two sister relations for g′ and b′. Hence

m′(z) = r
1/γ
0 + r

1/γ−1
0

ω(z)
γ

m1,

s′(z) = −r
1/γ−1
0

ω(z)
γ

σ1,

so that, finally

m′(z) = r
1/γ
0 − m1

σ1
s′(z). (28)

When the colour component (r1, g1, b1) remains unchanged, but that the
gray component (r0, g0, b0) takes successively various values, then each of
them induces an alignment of the same slope m1

s1
. Rel.(28) extends, without

approximation, to the histograms of the intensities themselves.
Finally, we derive from Eq.(17) that, in the three cases, the hue remains

constant in each alignment zone.
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Figure 7. Initial image of parrots.

4. Saturation weighted segmentations

The most radical change between the classical HLS system and those based
on norms holds on the saturation equation. In system (19), when min(r, g, b) =
0, (with l ≤ 0.5), or when max(r, g, b) = 1, (with l ≥ 0.5), then the saturation
equals 1. Now for human vision, the most significant parameter is the hue in
high saturated areas, and it turns to luminance when saturation decreases. Any
person whose reaction to colours is normal can easily check it. In the darkness,
or, at the opposite, in white scenes (e.g. a landscape of snowy mountains),
the eye grasps the contours by scrutinizing all small grey variations, whereas
when the scene juxtaposes spots of saturated colours, then the eye localizes
the frontiers at the changes of the hue. But how to transcribe quantitatively
such a remark by a saturation function that takes its maxima precisely when
the colours loose their saturation, as the classical HLS system does?

The norms based representations correct this drawback, so that their satu-
rations may serve to split the space into hue-dominant versus grey-dominant
regions. This very convenient key to entering the segmentation of colour im-
ages was initially proposed by C.Demarty and S.Beucher [6]. They introduce
the function max−min on the image under study, and threshold it at a level s0

that depends on the context. Then they adopt the HSV representation, but they
replace its saturation by 1 in the regions above s0 and by 0 elsewhere. Their
downstream segmentations become easier and more robust.

However, they did not take the plunge of a new representation, and they
worked at the pixel level, which is not the most informative. In order to go
further in the same way of thinking, J. Angulo and J. Serra propose, in [1], the
following two steps segmentation procedure:

1 to separately segment the luminance, the saturation and the hue in a
correct Newtonian representation;

2 to combine the obtained partitions of the luminance and of the hue by
means of that of the saturation: the later is taken as a criterion for
choosing at each place either the luminance class, or the hue one.
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Figure 8. Representation of the "Parrots" image 7 in L1 norm: a) luminance, b) saturation, c)
hue.

Figure 9. Grey segmentations of the luminance (a) and the hue (b). Both are depicted in false
colour.

The three bands of the “parrots” image of Fig.7, in L1 representation, are
depicted in Fig.8(a-c). Each band is segmented by the jump connection algo-
rithm [15] (one groups in same classes all points x where f(x) differs by less
than k of an extremum in the same connected component, these classes are
then withdrawn from the image, and one iterates). The method depends only
on the jump positive value k.

As the parameter k increases, the over-segmentations reduce, but in com-
pensation heterogeneous regions appear. A satisfactory balance seems to be
reached for k = 20 (for 8-bits images), up to the filtering of a few very small
regions. We obtain the two segmentations depicted in Fig.9.

Synthetic partition

How to combine the two partitions of images 9a and 9b? The idea consists
in splitting the saturation image into two sets Xs and Xc

s of high and low
saturations respectively, and in assigning the hue partition to the first set, and
the luminance one to the second. A class of the synthetic partition is either
the intersection of a luminance class with the low saturation zone Xc

s , or the
intersection of a hue class with the high saturation zone Xs. If the classes of
the luminance, the hue, and the synthetic partition at point x are denoted by
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Figure 10. a) Segmentation of the saturation (presented in grey tones); b)optimal threshold
of a); c) final synthetic partition, superimposed to the initial image.

Am(x), Ah(x), and A(x) respectively, we have

A(x) = Am(x) ∩Xc
s when x ∈ Xc

s

A(x) = Ah(x) ∩Xs when x ∈ Xs.

The simplest way to generate the set Xs consists, of course, in thresholding
the saturation image. But this risks to result in an irregular set Xs, with holes,
small particles, etc. Preferably, one can start from the mosaic image of the
saturation provided by the same segmentation algorithm as for the the hue and
the luminance (Fig.10a). An optimal threshold on the saturation histogram
determines the value for the a-chromatic/chromatic separation (Fig.10b). We
finally obtain the composite partition depicted in Fig.10c, which is excellent.

5. Colour and mixed segmentations

Colour and shape

The discrimination we have just made between the zones of the space where
the hue is more significant than the luminance, and their complements, is a first
step towards the more precise discrimination between colour and shape that we
propose now. The video-image depicted in Fig. 11 illustrates the purpose. It
has been extracted from a test sequence for the image compression algorithm
proposed by C. Gomila in her Ph.D. Thesis [7] and described by steps a to f
below. The goal here consists in contouring the individual in the foreground,
in order to code him more finely than the background. This outline groups the
face and the bust. We observe that the former is better spotted by the colour of
the skin, which ranges in a specific domain, and the latter by the shape of the
shoulders, and by their location at the down part of the frame.

Beyond this example, the problem of combining two modes of description
into a merged segmentation is set. One may view to segment twice the image,
according to criteria associated with each mode separately, but then how to
manage the merging, and its overlapping? There is no referee, here, to play the
role given to the saturation in the “parrot” case. On the other hand, we cannot
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Figure 11. a) Initial image; b) final contouring.

afford just to take the supremum of the two partitions, as it is well known that
in the classes of this supremum, both criteria may be satisfied : they do not
generate an exclusive “or” (see for example [15], section 2). Nevertheless, if
we provide a priority between the two modes of description, then an optimal
bipartition of the space can be obtained, as shown below.

Quasi-connection

Definition 1 Let E be an arbitrary space. Any class C1 ⊆ P (E) such that
(i) Ø ∈ C1
(ii) for each family {CiCC i ∈ I} in C1, ∩ CiCC �=�� Ø implies ∪CiCC ∈ C1,
defines a quasi-connection on E .

Unlike a connection, a quasi-connection does not necessarily contain the
set S of all singletons of P (E). What are the consequences of this missing
axiom ? We still can associate a (quasi) connected opening γ1,x with each
point x ∈ E by putting for any A ⊆ E

γ1,x (A) = ∅ when the family {C1 ∈ C1, x ∈ C1 ⊆ A} is empty
γ1,x (A) = ∪{C1 ∈ C1, x ∈ C1 ⊆ A} when not

(29)

Operator γ1,x is obviously an opening since it coincides with that of the
connection C1 ∪ S when γ1,x (A) �=�� ∅. Moreover, for all A ⊆ E and all
x, y ∈ E, γ1,x (A) and γ1,y (A) are still equal or disjoint, i.e.

γ1,x (A) ∩ γ1,y (A) �=�� ∅ ⇒ γ1,x (A) = γ1,y (A) (30)

and for all A ⊆ E and all x ∈ E, we have x /∈// A ⇒ γ1,x (A) = ∅. The only
change with the connection case is that now γ1,x (A) may equal ∅, even when
x ∈ A. As a consequence, the supremum γ1 = ∨{γ1,x, x ∈ E} generates an
opening on P (E) whose residual ρ1 (A) = A \ γ1 (A), for a set A ⊆ E is
not necessarily empty. In other words, to say that x ∈ ρ1 (A) is equivalent to
saying that the family {C1 ∈ C1, x ∈ C1 ⊆ A} is empty. Remark that when C1
is a connection, then γ1 turns out to be the identity operator.
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Two levels mixed segmentations

Let C1 be a quasi-connection onP (E) of point openings {γ1,x, x ∈ E}, and
C2 be a connection on P (E) of point connected openings {γ2,x, x ∈ E}. We
introduce a hierarchy between them by restricting the classes according to C2
to the zones that are not reached by C1. This can be done via the operator

χ2,x (A) = γ2,x [ρ1 (A)] when x ∈ ρ1 (A) (31)

χ2,x (A) = ∅ when not

This operator χ2,x is not increasing, as it acts on set A ⊆ E via the residual of
γ1 (A) . Nevertheless, it satisfies a few nice other properties.

Proposition 2 The operator χ2,x defined by system (31) is anti-extensive,
idempotent and disjunctive, i.e.

χ2,x (A) ∩ χ2,y (A) �=�� ∅ ⇒ χ2,x (A) = χ2,y (A) ∀A ⊆ E ; ∀x, y ∈ E
(32)

Proof. The anti-extensivity of χ2,x is obvious. To prove its idempotence,
suppose first that χ2,x(A) �=�� ∅. Then,for all z∈χ2,x (A)A ,we haveγ1,z [χ2,x (A)]⊆
γ1,z[ρ1 (A)] = ∅, hence ρ1 [χ2,x (A)] = χ2,x (A) # x. As set χ2,x (A) is an
invariant of opening γ2,x, we have

χ2,x [χ2,x (A)] = γ2,x [ρ1 (χ2,x (A))] = γ2,x [χ2,x (A)] = χ2,x (A) .

Suppose now that χ2,x (A) = ∅. As γ1,x is an opening, we have γ1,x [χ2,x (A)] =
∅, so ρ1 [χ2,x (A)] = ∅ hence χ2,x [χ2,x (A)] = ∅.

The disjunction implication remains to be proved (30). If the intersection
χ2,x (A)∩χ2,y (A) is not empty, then it is equal to γ2,x [ρ1 (A)]∩γ2,y [ρ1 (A)] .
As γ2,x and γ2,y are two point openings of connection C2, we have χ2,x (A) =
χ2,y (A), which achieves the proof.

Consider now the supremum χx = γ1,x ∨χ2,x of the two operators γ1,x and
χ2,x. We will prove that as x ranges over E, the family {χx} partitions all
A ⊆ E in an optimal way. More precisely, we can state

Proposition 3 Let C1 be a quasi-connection and C2 be a connection, both
on P (E), where set E is arbitrary. Then,

1 the union of the two families {γ1,x} and {χ2,x}, x ∈ E, of operators par-
tition every set A ⊆ E into two families of classes {A1,i} and {A2,j};

2 this partition is the greatest one with classes of C1 on γ1(A) and classes
of C2 on A\γ1(A).

Proof. 1/Let A ⊆ E. If γ1 (A) �=�� ∅, then each point x ∈ γ1 (A) belongs to
the non empty A1 class γ1,x (A) and if A �=�� γ1 (A), each point y ∈ A\γ1 (A)
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belongs to the non empty A2 class γ2,y [A\γ1 (A)]. If γ1 (A) = ∅, then each
point y ∈ A belongs to class γ2,y (A) . Therefore, the various classes cover set
A. Moreover, Rel.(30) shows that the {A1,i} classes are disjunctive in the set
γ1 (A) and Prop.2 that the {A2,j} classes are disjunctive in A\γ1 (A) .

2/ Let
{
A′

1,r

}
and

{
A′

2,s

}
be another partition of A into C1 and C2 compo-

nents. Each point x ∈ A belongs to one class of each partition. Suppose first
that both classes are of type n◦1, i.e. x ∈ A1,i ∩ A′

1,s, with A1,i, A′
1,s ∈ C1,

for some i and some s. Therefore A1,i ∪ A′
1,s ∈ C1 and x ∈ A1,i ∪ A′

1,s ⊆
γ1,x (A) = A1,i hence A′

1,s ⊆ A1,i. If we suppose now that both classes A2,j

and A′
2,s going through x are of type n◦2, then the same proof, but for C2,

shows that A′
2,s ⊆ A2,j . Finally, the combination at point x of a C1-class of the

first partition with a C2-class of the second one is impossible. Indeed, we draw
from the previous paragraph of this proof that ∪

{
A′

1,r

}
⊆ ∪{A1,i} = γ1 (A)

and that ∪
{
A′

2,s

}
⊆ ∪{A2,j} = A\γ1 (A) ; as ∪

{
A′

1,r

}
∪
{
A′

2,s

}
= A we

have γ1 (A) = ∪
{
A′

1,r

}
and A\γ1 (A) = ∪

{
A′

2,s

}
, which achieves the proof.

Proposition 3 allows us to partition A into a hierarchy of successive mixed
segmentations. Clearly, it extends to three phases by replacing C2 by a pseudo-
connection and by adding a third connection C3, ... and so on for n phases.
The lack of increasingness entails that if A ⊆ B, then γ1,x (A) ⊆ γ1,x (B)
for all x ∈ E, but not χ2,x (A) ⊆ χ2,x (B) . Remark that when we look for
segmenting the whole space E, the possible comparison of E with another set
B becomes useless. An example of such an iteration based hierarchy is given
by the jump connection [13] [15]. Given a continuous bounded function f the
quasi one-jump criterion σ is defined by the following requirement: σ[f, A] =
1 iff for any point x ∈ A there exists a minimum m of f in A such that
0 ≤ f(x) −m < k. The class C1of the A such that σ[f, A] = 1 generates a
quasi-connection. Take C2 = C1 and iterate the process. The first step extracts
the connected components of the space in which the function is less than k
above the minima; the second step does the same on the function reduced to
the residual space, and so on, which results in the so called "jump connection"
from minima".

Before illustrating Prop. 3 by an example, we would like to comment on the
case when C2 = S ∪ ∅, i.e. when the second connection is the family of the
singletons plus the empty set. Then, by taking C = C1∪C2 = C1∪S, we obtain
the smallest connection that contains C1. However, the two phased approach
(C1, C2) is more informative than the only use of C. For example, given the
numerical function f : R

1 → R
1, the segment along which f (x) ≥ 1 forms a

connection C. In particular, if we take

f = |x| for x �= 0�� and f = 2 for x = 0
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Figure 12. a) Sector of the human skins in the (U, V ) plane; b) Threshold of Fig. 11a
according to the skins sector.

Figure 13. a) Previous segmentation of Fig. 11a; b) Head reconstruction (after symmetry).

then all points of ]−1, +1[ induce singleton classes, and there is no mean in
connection for C distinguishing between x = 0, where f is ≥ 1, and the other
points of ]−1, +1[ , where f is < 1. On the contrary, if we adopt the above
twofold approach, then {0} ∈ C1, and the other singletons belong to C2.

Return to the colour and shape example

The colour/shape segmentation algorithm proposed by Ch. Gomila illus-
trates very well our twofold approach [7]. It proceeds as follows :

a/ the image under study (Fig. 11a) is given in the standard colour video
representation Y UV

y = 0.299r + 0.587g + 0.114b

u = 0.492(b− y) (33)

v = 0.877(r − y)

b/ a previous segmentation resulted in the tesselation depicted in false colour
in Fig. 13a or Fig. 14a. For the further steps, this mosaic becomes the working
space E, whose ”points” are the polygons of the mosaic;
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Figure 14. a) Previous segmentation of Fig.11a; b) “shoulder/head” marker; c) bust recon-
struction.

c/ classical studies have demonstrated that, for all types of human skins, two
chrominances U and V practically lie in the sector region depicted in Fig. 12a.
By thresholding the initial image Fig. 11a by this sector, we obtain the set Fig
12b, whose a small filtering by size suppresses the small regions, yielding a
marker set;

d/ all “points” of E that contain at least a pixel of the marker set, or of its
symmetrical w.r.t. a vertical axis, are kept, and the others are removed : this
produces the opening γ1 (E), depicted in Fig. 13b;

e/ for the bust, an outside shape marker made of three superimposed rect-
angles is introduced. All their pixels that belong to a “point” of γ1 (E) are re-
moved from the bust marker, since this second marker must hold on E\γ1 (E)
only. That is depicted in Fig. 14b, where one can notice how much the upper
rectangle has been reduced; the associated opening γ2 [E\γ1 (E)] is depicted
in Fig. 14c;

f/ the union γ1 (E)∪ γ2 [E\γ1 (E)] defines the zone inside which the initial
image Fig.11a is kept, as depicted in Fig.11b.

The example may seem simple; it holds on a rather poor discrete space
and acts via two elementary quasi-connections and connections. However, it
proved to be robust and well adapted to its goal, and its robustness is a direct
consequence of the optimality of the involved segmentations.

6. Conclusion

The three studies which compose this paper follow a certain order. The
first two ones require imperatively a correct quantitative definition of the polar
representation and of the saturation. When colour and shape are treated jointly,
the physical meaning of the colour descriptors becomes less crucial, since the
latter match with shape parameters whose physical meaning is totally different.

The above studies illustrate also a certain approach to segmentation. We
have attempted to show that maximum partitions can be “added”, conditioned
by one another, can form hierarchies, etc... in order to express segmentations
in the sense of [15], whose the main theorems underlay all the above examples.
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Abstract The waterfall algorithm is a contrast-based hierarchical segmentation approach.
In this paper we propose an efficient implementation based on the minimum
spanning tree of the neighborhood graph. Furthermore, other hierarchies are
proposed and compared to the original version of the algorithm.

Keywords: Hierarchical image segmentation, watershed, waterfall, minimum spanning tree,
graphs.

Introduction

Segmentation, together with filtering is often the first step of image analysis
or image interpretation. The success of the whole chain of treatment relies on
the accuracy of the segmentation results. Important efforts have been devoted
to segmentation during the last years and it still remains a key topic of research.

The watershed transformation [3, 1] is the paradigm of segmentation of
Mathematical Morphology. It has proved to be a powerful tool used in the
solution of multiple applications. Its main drawback is the over-segmentation
produced. Two approaches are proposed in the literature to overcome this
drawback:

the selection of markers [9], which supposes that the characteristics of
the interesting objects are known;

hierarchical approaches, that are able to rank the importance of each
region.

We focus on hierarchical approaches because of their ability to segment
generic images.
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Several hierarchical approaches can be found in the literature. Grimaud [4]
introduced the dynamics of minima that assign to each minimum a measure
of its contrast. By thresholding this measure with increasing values, a hierar-
chy is obtained. Najman and Schmitt [10] showed that the same measure of
dynamics may be assigned to a contour and introduced the geodesic saliency
of watershed contours. Vachier and Meyer [11] generalized the concept of dy-
namics with the extinction values and proposed to assign to a minimum other
measure than contrast such as area or volume. Volume extinction values result
in a well adapted criterion for evaluating the visual significance of regions.

Meyer proposed a graph-based implementation of these hierarchies [7],[8].
Nodes correspond to the catchment basins of the topographic surface. If two
catchment basins are neighbors, their corresponding nodes are linked by an
edge. The valuation of this edge is the minimum pass point of the gradient
along their common frontier. In the following we will refer to this graph as the
neighborhood graph. Meyer found that all the information of a hierarchy may
be stored in a very condensed structure: the minimum spanning tree (MST).
This is due to the fact that the flooding always follows the path of minimum
height, the same that chooses the MST of the neighborhood graph. This con-
sideration leads to a very efficient algorithm of hierarchical segmentation [7]
and has also been used for interactive segmentation [12].

In [1, 2] Beucher proposed a very interesting hierarchical segmentation ap-
proach: the waterfall. Starting from the watershed result, it consists in an itera-
tive algorithm that at each step removes all the watershed contours completely
surrounded by higher ones. Typically, less than 10 hierarchical levels are pro-
duced by iterating the waterfall algorithm. In [2] each step is implemented by
a reconstruction process followed by a new flooding of the resulting image.
Another implementation based on graphs is also proposed in [1, 2].

The hierarchies based on extinction values produce a different level for each
merging of two regions. This is useful for interactive segmentation approaches
because it offers flexibility. The waterfall generates several steps of the hier-
archy with an autocalibrated number of regions. This autocalibration may be
interesting for segmenting generic images without imposing a given number of
regions, which can be a tricky parameter to fix.

In [5] an automatic track detection application is developed using the wa-
terfall algorithm in the initialization step. Several waterfall iterations may be
necessary until a region compatible with the track geometry is found. The ex-
isting implementation of the waterfall does not allow this application in real
time.

In this paper we propose an implementation of the waterfall algorithm based
on the MST. It allows to access to different levels of the hierarchy in a very ef-
ficient way. Furthermore it allows the possibility to obtain different hierarchies
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based on other criteria than the frontier height, used in the original version of
the waterfall algorithm.

Section 1 describes the waterfall algorithm introduced by Beucher. The
proposed efficient implementation based on graphs is presented in section 2.
Other hierarchies are easily introduced in the new framework, as shown in
section 3. Finally section 4 concludes.

1. Waterfall

Let’s consider a partition P. It can be the outcome of the watershed of the
gradient image (as proposed in [2]) or any other partition. The frontiers are
valuated with a distance between regions (e.g. the minimum pass point of the
gradient along the frontier, see figure 1(a)).

The waterfall algorithm removes from a partition all the frontiers completely
surrounded by higher frontiers (see figure 1(b)). Thus, the importance of a
frontier is measured with respect to its neighborhood. This process can be
seen as a watershed applied not to the pixels of an image but to the frontiers of
a partition. The iteration of the waterfall algorithm finishes with a partition of
only one region.

Figure 2 illustrates the result of the waterfall process applied to a real image.
Figure (a) shows the original image, (b) its gradient and (c) the watershed of
the gradient. Figure (d), (e) and (f) are the different hierarchy levels produced
by the iteration of the waterfall algorithm.

A first implementation of this algorithm based on graphs is proposed in [2].
The proposed graph contains a node for each arc frontier of the input partition
and an edge between every pair of arcs (frontiers) delimiting the same catch-
ment basin. (Note that this graph is different from the one we propose in the
next section). The algorithm is considered as complex by the author and an
image-based algorithm is proposed instead. The image-based algorithm con-
sists in a reconstruction of the image from the watershed lines followed by the
watershed transformation. Thus, a reconstruction and a new watershed com-
putation are required to obtain a new level of the hierarchy.

In this paper, we propose an implementation of the waterfall algorithm that
only requires a flooding of the image to obtain all levels of the hierarchy. The
rest of the process is performed on the MST, that is much more efficient.

2. Waterfall based on the Minimum Spanning Tree

Given that the flooding always follows the path of minimum height, the
MST obtained from the neighborhood graph, contains all the information re-
quired for the flooding process [6]. The MST is a very condensed way to store
the information. Thus, it leads to very efficient implementation of hierarchical
segmentation approaches.
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(a) (b)

Figure 1. (a) Partition with valuated frontiers and (b) example of frontier : as the value of
frontier f! is smaller than the values of its neighboring frontiers (f2 to f9) it will be removed by
the waterfall algorithm.

We propose an implementation of the waterfall algorithm based on the MST.
The algorithm is performed in two steps:

Minimum spanning tree (MST) generation

Waterfall from the MST

MST generation

We consider as input partition of the waterfall algorithm the result of the wa-
tershed. Thus, the gradient image is flooded to obtain the initial partition. The
MST is obtained simultaneously to the flooding process [7, 12]. The graph is
initialized with a node corresponding to each minimum of the image and with-
out any edge. A lake is associated to each minimum. During the flooding each
time that two regions of different lakes meet, an edge is added to the graph,
linking both regions and the corresponding lakes are merged. Its valuation is
the height of water when regions meet. At the end of the flooding process the
graph has become the MST because:

an edge is added only if regions that meet belong to different lakes (so
the graph does not contain cycles),

at the end of the flooding all the image belong to the same lake (it is an
spanning tree)

the flooding follows the path of minimum height (it is a minimum tree).

Note that the edges of the MST are valuated (not the nodes). We can define a
regional minimum of the MST as a connected component of the graph, such as
all the values of its edges are equal and it is surrounded by edges with strictly
higher values. This definition will be used in the following subsection.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Waterfall iteration; First row: (a) original image and its (b) gradient. Second row:
(c) Watershed segmentation and (d) first waterfall result Third row: (e),(f) Two more iterations
of the waterfall algorithm
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Figure 3 shows an example of partition (a) and its corresponding Minimum
Spanning Tree (b).

In the following step we address the waterfall algorithm based on the MST.

(a) (b)

Figure 3. Example of partition (a) and its associated Minimum Spanning Tree (b).

Waterfall from the MST

The waterfall algorithm removes from a partition the frontiers that are com-
pletely surrounded by higher frontiers, leading to a coarser partition. The wa-
terfall can be implemented on the MST. The first step consists in identifying
regional minima frontiers.

Let’s consider the partition of figure 3(a) and its corresponding MST 3(b). If
we take for example edge E linking regions V1VV and V2VV of figure 4(a) we should
compare its valuation with the valuation of frontiers surrounding catchment
basins V1VV

⋃
V2VV . These frontiers are drawn in bold line in figure 4(b) (E1, E2,

E3, F1, F2, F3 and F4). Edges named with an F do not belong to the MST, so
by construction their valuations are higher than valuations of at least one edge
named with Es. Therefore, in order to know if E is a regional minimum, it is
enough to compare it with E1, E2 and E3. Thus, the MST has all the informa-
tion required to identify regional minimum edges. In practice, we will compare
the valuation of an edge E between V1VV and V2VV with edges of the MST having
as one extremity V1VV or V2VV . More generally, we are looking for all edges that
belong to a regional minimum of the MST (defined in the previous subsection).

If E is a regional minimum edge, it corresponds to a frontier that should be
removed by the waterfall. This is implemented by assigning the same label to
both extremities (nodes) of the minimum edge. These labels identify regions
in the output partition. Thus, a different label is assigned to each minimum
edge. See figure 4(d). Regions in white (those that are not neighbors of a
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minimum edge) are not granted any label at this stage. Regions with a label
are considered as markers. In order to obtain the final partition, markers are
propagated following edges of the MST in increasing order of their valuation
(fig 5). This process is a segmentation from markers on the MST [6].

(a) (b)

(c) (d)

Figure 4. Waterfall on the MST. First row : (a) Edge E(V1VV ,V2VV ) and (b) comparison of E
with its neighboring edges. Second row: (c) regional minimum edges. (d) Vertex labelled from
minimal edges

If edges of the MST are valuated with the lowest pass point along frontiers,
this algorithm is equivalent to the algorithm presented in [2].

3. Hierarchies with other criteria

The original waterfall algorithm removes edges according to their height.
Thus it produces contrast-based hierarchies. The graph implementation of the
algorithm, presented in the previous section, allows to easily produce other
hierarchies, changing the edge valuation of the Minimum Spanning Tree. For
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Figure 5. Waterfall result (label propagation from 4(d)).

example, we can valuate the edges with the volume extinction values [11], a
trade-off between the contrast and the size of a region. This is equivalent to
applying the waterfall algorithm to an image of saliency of watershed contours,
valuated with volume extinction values.

Figure 6(a) shows a level of the contrast-based hierarchy with 36 regions
and 6(b) shows a partition with 24 regions obtained with the waterfall based
on volume. We can see that the volume produces a more significant partition
with less regions. For example, we can see that the waterfall does not get the
hat, because it has a low contrast. However, the volume preserves it because
even if the contrast is low it is big enough to be seen. The volume combines
size and contrast trying to obtain good perceptual results. This combination is
not optimal yet, because it segments regions in the background that are big but
not visible at all.

The volume criterion usually over-segments big homogeneous regions. A
last step may reduce this problem, just removing frontiers with contrast under
a given (and small) threshold. Doing that at the end of the process is much more
reliable because frontiers are longer and their contrast may be better estimated,
reducing the effect of noise in a small frontier. Figure shows 7 the result of
removing frontiers with contrast under 5 gray levels. The partition preserves
the important regions (18) removing the over-segmentation of the background.

4. Conclusion

In this paper we propose an efficient implementation of the waterfall algo-
rithm. It consists in obtaining a Minimum Spanning Tree simultaneously to the
flooding of the image. Then, all the process is performed on the graph. All the
information required to manipulate the hierarchy is stored in a very condensed
structure, leading to very efficient algorithms. Real-time applications such as
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(a) (b)

Figure 6. Comparison between different hierarchies. (a) Contrast-based Waterfall, 36 re-
gions. (b) Volume based Waterfall, 24 regions.

(a) (b)

Figure 7. Elimination of low contrasted frontiers. (a) volume based waterfall (24 regions).
(b) From (a) low contrasted frontiers (contrast lower than 5) are removed (18 regions remain)

the one described in [5] may be addressed thanks to this new implementation.
This implementation is based on the same data structure as the algorithms of
volume extinction values, the MST. Thus, it opens the door to a combination
of both approaches. For example, we have presented a waterfall based on vol-
ume extinction values and compared the results with the original version of the
algorithm.
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Abstract We investigate the effectiveness of the divide set produced by watershed algo-
rithms. We introduce the mosaic to retrieve the altitude of points along the divide
set. A desirable property is that, when two minima are separated by a crest in
the original image, they are still separated by a crest of the same altitude in the
mosaic. Our main result states that this is the case if and only if the mosaic is
obtained through a topological thinning.

Keywords: segmentation, graph, mosaic, (topological) watershed, separation

Introduction

The watershed transform, introduced by S. Beucher and C. Lantuéjoul [4]
for image segmentation, is now used as a fundamental step in many powerful
segmentation procedures [8]. Watershed algorithms build a partition of the
space by associating an influence zone to each minimum of the image, and
by producing (in their “dividing” variant) a divide set which separates those
influence zones; that is to say, they “extend” the minima.

In order to evaluate the effectiveness of the separation, we have to consider
the altitude of points along the divide set. We call the greyscale image thus
obtained a mosaic. The goal of this paper is to examine some properties of
mosaics related to image segmentation. We say informally that a watershed
algorithm produces a “separation” if the minima of the mosaic are of the same
altitude as the ones of the original image and if, when two minima are separated
by a crest in the original image, they are still separated by a crest of the same
altitude in the mosaic. The formal definition relies on the altitude of the lowest
pass which separates two minima, named pass value (see also [1, 9, 10]). Our
main result states that a mosaic is a separation if and only if it is obtained
through a topological thinning [5].
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1. Basic notions and notations

Many fundamental notions related to watersheds in discrete spaces can be
expressed in the framework of graphs. Let E be a finite set of vertices (or
points), and let P(E) denote the set of all subsets of E. Throughout this paper,
Γ denotes a binary relation on E, which is reflexive ((x, x) ∈ Γ) and symmetric
((x, y) ∈ Γ ⇔ (y, x) ∈ Γ). We say that the pair (E, Γ) is a graph. We also
denote by Γ the map from E to P(E) such that, for all x ∈ E, Γ(x) = {y ∈
E|(x, y) ∈ Γ}. For any point x, the set Γ(x) is called the neighborhood of x.
If y ∈ Γ(x) then we say that x and y are adjacent.

Let X ⊆ E. We denote by X the complement of X in E. Let x0, xn ∈ X .
A path from x0 to xn in X is a sequence π = (x0, x1, . . . , xn) of points of X
such that xi+1 ∈ Γ(xi), with i = 0 . . . n − 1. Let x, y ∈ X , we say that x
and y are linked for X if there exists a path from x to y in X . We say that X
is connected if any x and y in X are linked for X . We say that Y ⊆ E is a
connected component of X if Y ⊆ X , Y is connected, and Y is maximal for
these two properties (i.e., Y = Z whenever Y ⊆ Z ⊆ X and Z is connected).
In the following, we assume that the graph (E, Γ) is connected, that is, E is
made of exactly one connected component.

We denote by F(E) the set composed of all maps from E to Z. A map
F ∈ F(E) is also called an image, and if x ∈ E, F (x) is called the altitude
of x (for F ). Let F ∈ F(E). We write FkFF = {x ∈ E|F (x) ≥ k} with
k ∈ Z, FkFF is called an upper section of F , and FkFF is called a lower section
of F . A non-empty connected component of a lower section FkFF is called a
(level k) lower-component of F . A level k lower-component of F that does not
contain a level (k − 1) lower-component of F is called a (regional) minimum
of F . We denote byM(F ) the set of minima of F .

A subset X of E is flat for F if any two points x, y of X are such that
F (x) = F (y). If X is flat for F , we denote by F (X) the altitude of any point
of X for F .

2. Minima extensions and mosaics

The result of most of the watershed algorithms is to associate an influence
zone to each minimum of the image. We formalize this through the definition
of a minima extension (see figure 1).

Definition 1 Let X be a subset of E, and let F ∈ F(E). We say that X is
a minima extension of F if:
- each connected component of X contains one and only one minimum of F ,
and
- each regional minimum of F is included in a connected component of X .
The complement of a minima extension of F in E is called a divide set of F .
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Intuitively, for application to image analysis, the divide set represents the loca-
tion of points which best separate the dark objects (regional minima), in terms
of grey level difference (contrast). In order to evaluate the effectiveness of this
separation, we have to consider the values of points along the divide set. This
motivates the following definition.

Definition 2 Let F ∈ F(E) and let X be a minima extension of F . The
mosaic of F associated with X is the map FXF ∈ F(E) such that
- for any x /∈// X , FXF (x) = F (x); and
- for any x ∈ X , FXF (x) = min{F (y)|y ∈ CxCC }, where CxCC denotes the con-
nected component of X that contains x.

The term ‘mosaic’ for this kind of construction, was coined by S. Beucher [2].

0 1 2 3 2 1 1

1 2 3 4 3 2 1

2 3 5 4 3 2

3 4 5 6 5 4 3

2 3 4 5 4 3 2

2 2 3 3 2 1

2 2 2 3 2 1 0

1 1 1 0 1 1 1

1 1 1 0 1 1 1

1 1 1 0 1 1 1
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1 1 1 0 1 1 1

1 1 1 0 1 1 1

1 1 1 0 1 1 1

0 0 0 3 1 1 1

0 0 0 4 1 1 1

0 0 0 5 1 1 1

3 4 5 6 5 4 3

2 2 2 5 0 0 0

2 2 2 4 0 0 0

2 2 2 3 0 0 0

(a) (b) (c)

Figure 1. (a) An image, (b) a minima extension of (a), and (c) the associated mosaic

Figure 1 shows a simple example of a minima extension and its associated
mosaic. In all the examples of the paper, the graph (E, Γ) corresponds to the
4-adjacency relation on a subset E ⊂ Z

2, i.e., for all x = (x1, x2) ∈ E,
Γ(x) = {(x1, x2), (x1 + 1, x2), (x1 − 1, x2), (x1, x2 + 1), (x1, x2 − 1)} ∩E.

3. Mosaics and flooding extensions

A popular presentation of the watershed in the morphological community
is based on a flooding paradigm. Let us consider the greyscale image as a to-
pographical relief: the grey level of a pixel becomes the elevation of a point,
the basins and valleys of the relief correspond to the dark areas, whereas the
mountains and crest lines correspond to the light areas. Let us imagine the sur-
face being immersed in a lake, with holes pierced in local minima. Water fills
up basins starting at these local minima, and, at points where waters coming
from different basins would meet, dams are built. As a result, the surface is
partitioned into regions or basins separated by dams, called watershed divides.

Among the numerous algorithms [14, 12] that were developed following
this idea, F. Meyer’s algorithm [7] (called flooding algorithm in the sequel) is
probably the simplest to describe and understand. Starting from an image F ∈
F(E) and the set M composed of all points belonging to the regional minima
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of F , the flooding algorithm expands as much as possible the set M , while
preserving the connected components of M . It can be described as follows:

1 Attribute to each minimum a label, two distinct minima having distinct
labels; mark each point belonging to a minimum with the label of the
corresponding minimum. Initialize two sets Q and V to the empty set.

2 Insert every non-marked neighbor of every marked point in the set Q;

3 Extract from the set Q a point x which has the minimal altitude, that is,
a point x such that F (x) = min{F (y)|y ∈ Q}. Insert x in V . If all
marked points in Γ(x) have the same label, then

Mark x with this label; and
Insert in Q every y ∈ Γ(x) such that y /∈// Q ∪ V ;

4 Repeat step 3 until the set Q is empty.

Let F ∈ F(E), and let X be the set composed of all the points labeled by
the flooding algorithm applied on F . We call any such set X produced by
the flooding algorithm a flooding extension (of F ). Note that, in general, there
may exist several flooding extensions of a given map F . It is easy to prove the
following result: any flooding extension is indeed a minima extension of F .
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Figure 2. (a): Original image. (b-f): several steps of the extension algorithm. (g) The flooding
extension of (a), and (h) the associated mosaic. One can note that the contour at altitude 20 in
the original image (a) is not present in the mosaic (h).

The flooding algorithm, applied on figure 1.a, produces the minima exten-
sion 1.b, and the associated mosaic is the figure 1.c. Let us illustrate the be-
haviour of the algorithm on another example, the figure 2.a which presents an
image with three minima at altitudes 0, 1 and 2.
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- The minima at altitudes 2, 1, 0 are marked with the labels A, B, C respec-
tively (figure 2.b). All the non-marked neighbors of the marked points are put
into the set Q.
- The first point which is extracted from the set Q is the point x at altitude 10,
which has points marked B and C among its neighbors (figure 2.b). This point
cannot be marked.
- The next point to process is one of the points at altitude 20, for instance y
(figure 2.b). The only marked points in the neighborhood of such a point are
marked with the label A, and thus y is marked with the label A (figure 2.c),
and the point at altitude 10 which is neighbor of y is put into the set Q.
- The next points to process are points at altitude 10. A few steps later, all
points at altitude 10 but x are processed, and marked with the label A (fig-
ure 2.d).
- Then the other points at altitude 20 are processed. They are marked with the
label A (figure 2.e). The next points to process are those at altitude 30, and we
finally obtain the set of labeled points shown in figure 2.f.

Figure 2.g shows the flooding extension of figure 2.a, and figure 2.h is the
associated mosaic.
Remark 1: we observe that (informally speaking) the algorithm does not pre-
serve the “contrast” of the original image. In the original image, to go from,
e.g., the minimum at altitude 0 to the minimum at altitude 2, one has to climb
to at least an altitude of 20. We observe that such a “contour” is not present in
the mosaic produced by the algorithm. Similar configurations can be found for
other adjacency relations, and in particular for the 6- and the 8-adjacency rela-
tions. Let us emphasize that configurations similar to the examples presented
in this paper are found in real-world images.

4. Minima extensions and separations

This section introduces a formal framework that leads to a better under-
standing of the previous observation. In particular, two notions are pivotal in
the sequel: greyscale minima extension, and separation.

Let F be a map and let FXF be the mosaic of F associated with a minima
extension X of F . It is natural to try to associate any regional minimum of FXF
to a connected component of X and conversely, and to compare the altitude of
each minimum of FXF to the altitude of the corresponding minimum of F . We
will see with forthcoming properties and examples, that both problems are in
fact closely linked.

The following definition extends to greyscale maps the minima extension
previously defined for sets.

Definition 3 Let F and G in F(E) such that G ≤ F . We say that G is a
(greyscale) minima extension (of F ) if:
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i) the set composed by the union of all the minima of G is a minima extension
of F .
ii) for any X ∈ M(F ) and Y ∈ M(G) such that X ⊆ Y , we have F (X) =
G(Y ).

15 15 15 15 15 15 15

15 15 20 20 20 15 15

15 20 10 10 10 20 15

30 30 10 10 10 30 30

1 30 10 10 10 30 0

1 1 30 10 30 0 0

1 1 1 10 0 0 0
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1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 1 1 1 1 1 0

1 0 1 1 1 0 1

1 1 0 1 0 1 1

1 1 1 0 1 1 1

10 10 10 10 10 10 10

10 10 10 10 10 10 10

10 10 10 10 10 10 10

30 10 10 10 10 10

1 30 10 10 10 30 0

1 1 30 10 30 0 0

1 1 1 10 0 0 0

(a) (b) (c)

Figure 3. (a) An image, (b) the flooding extension of (a), and (c) the mosaic of (a) associated
to (b).

The image 2.h is an example of a mosaic that is a minima extension of the
image 2.a. On the other hand, figure 3.a shows an image F and figure 3.c shows
the mosaic FXF associated with the flooding extension X of F (figure 3.b). One
can notice that the connected component of X which corresponds to the min-
imum of altitude 15 for F has an altitude of 10 for FXF , and is not a minimum
of FXF . Thus, this mosaic FXF is not a minima extension of F .

We can now turn back to a more precise analysis of remark 1. To this aim,
we present the pass value and the separation. Intuitively, the pass value be-
tween two points corresponds to the lowest altitude to which one has to climb
to go from one of these points to the other one.

Definition 4 Let F ∈ F(E). Let π = (x0, . . . , xn) be a path in the graph
(E, Γ), we set F (π) = max{F (xi)|i = 0, . . . , n}.
Let x, y be two points of E, the pass value for F between x and y is F (x, y) =
min{F (π)|π ∈ Π(x, y)}, where Π(x, y) is the set of all paths from x to y.
Let X, Y be two subsets of E, the pass value for F between X and Y is defined
by F (X, Y ) = min{F (x, y), for any x ∈ X and any y ∈ Y }.

A notion equivalent to the pass value up to an inversion of F (that is, re-
placing F by −F ), has been introduced by A. Rosenfeld [13] under the name
of degree of connectivity for studying connectivity in the framework of fuzzy
sets. Figure 4 illustrates the pass value on the image F of figure 2.a.

Informally, a transformation “preserves the separation” if, when two points
are separated by a crest in the original map, they are still separated by a crest
of the same “height” in the transform.

Definition 5 ([1]) Let F ∈ F(E), let x, y ∈ E. We say that x and y are
separated (for F ) if F (x, y) > max{F (x), F (y)}.
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Figure 4. Illustration of paths and pass values on the image F of figure 2.a. (a) A path π1

from the point x to the point y such that F (π1) = 30. (b) A path π2 from the point x to
the point y such that F (π2) = 20. It is not possible to find a path from x to y with a lower
maximal altitude, hence F (x, y) = 20. (c) A path π3 from the point x to the point z such that
F (π3) = 10, and we can easily check that F (x, z) = 10.

We say that x and y are k−separated (for F ) if they are separated for F and if
k = F (x, y).
Let G ∈ F(E), with G ≤ F . We say that G is a separation of F if, for all x
and y in E, whenever x and y are k-separated for F , x and y are k-separated
for G.
We say that G is a strong separation of F is G is both a separation of F and a
minima extension of F .

Remark 2: we can now restate the remark 1 using the notions we have intro-
duced in this section. Figure 3 shows that a mosaic produced by the flooding
algorithm is not always a minima extension of the original map. Figure 2 shows
that a mosaic produced by the flooding algorithm, even in the case where it is
a minima extension, is not necessarily a separation of the original map.

5. Mosaics and topological watersheds

A different approach to the watershed was presented by M. Couprie and
G. Bertrand [5]. The idea is to transform the image F into an image G while
preserving some topological properties of F , namely the number of connected
components of the lower cross-sections of F . A minima extension of F can
then be obtained easily from G, by extracting the regional minima of G.

We begin by defining a “simple” point (in a graph), in a sense which is adap-
ted to the watershed, then we extend this notion to weighted graphs through the
use of lower sections [5].

Definition 6 Let X ⊆ E. The point x ∈ X is W-simple (for X) if x is
adjacent to one and only one connected component of X .

In other words, x is W-simple (for X) if the number of connected components
of X ∪ {x} equals the number of connected components of X .



194 MATHEMATICAL MORPHOLOGY: 40 YEARS ON

We can now define the notions of W-destructible point, W-thinning, and
topological watershed.

Definition 7 Let F ∈ F(E), x ∈ E, and k = F (x).
The point x is W-destructible (for F ) if x is W-simple for FkFF .
We say that G ∈ F(E) is a W-thinning of F if G = F or if G may be derived
from F by iteratively lowering W-destructible points by one.
We say that G ∈ F(E) is a topological watershed of F if G is a W-thinning
of F and if there is no W-destructible point for G.

As a consequence of the definition, a topological watershed G of a map F is
a map which has the same number of regional minima as F . Furthermore, the
number of connected components of any lower cross-section is preserved dur-
ing this transformation. Quasi-linear algorithms for computing the topological
watershed transform can be found in [6].

By the very definition of a W-destructible point, it may easily be proved
that, if G is a W-thinning of F , then the union of all minima of G is a minima
extension of F . This motivates the following definition.

Definition 8 Let F ∈ F(E) and let G be a W-thinning of F . The mosaic
of F associated with G is the mosaic of F associated with the union of all
minima of G.

We have the following property.

Property 9 Let F ∈ F(E), let G be a W-thinning of F , and let H be the
mosaic of F associated with G. Then H is a minima extension of F .

2 2 2 2 2 2 2

2 2 20 20 20 2 2

2 20 1 10 0 20 2

20 1 1 10 0 0

1 1 1 10 0 0 0

1 1 1 10 0 0 0

1 1 1 10 0 0 0

2 2 2 2 2 2 2

2 2 20 20 20 2 2

2 20 1 10 0 20 2

30 1 1 10 0 0

1 1 1 10 0 0 0

1 1 1 10 0 0 0

1 1 1 10 0 0 0

(a) (b)

Figure 5. Example of topological watershed. (a) A topological watershed of figure 2.a.
(b) The associated mosaic.

Notice that in general, there exist different topological watersheds for a
given map F . Figure 5.a presents one of the possible topological watersheds
of figure 2.a, and figure 5.b shows the associated mosaic. One can note that
both figure 5.a and figure 5.b are separations of figure 2.a.
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6. Mosaics and separations

Recently, G. Bertrand [1] showed that a mathematical key underlying the
topological watershed is the separation. The following theorem states the
equivalence between the notions of W-thinning and strong separation. The
“if” part implies in particular that a topological watershed of an image F pre-
serves the pass values between the minima of F . Furthermore, the “only if”
part of the theorem mainly states that if one needs a transformation which is
guaranteed to preserve the pass values between the minima of the original map,
then this transformation is necessarily a W-thinning.

Theorem 10 ([1]) Let F and G be two elements of F(E). The map G is a
W-thinning of F if and only if G is a strong separation of F .

We can prove that the mosaic associated with any W-thinning of a map F is
also a W-thinning of F (and thus, it is a separation of F ).

Property 11 Let F ∈ F(E), let G be a W-thinning of F , and H be the
mosaic of F associated with G. Then H is necessarily a W-thinning of F .

Furthermore, we prove that an arbitrary mosaic FXF of a map F is a separa-
tion of F if and only if FXF is a W-thinning of F . These strong results can be
obtained thanks to the following property (the proofs can be found in [10]).

Property 12 Let F ∈ F(E), let X ⊆ E be a minima extension of F , and
let FXF be the mosaic of F associated with X . Then, any regional minimum M
of FXF is a connected component of X; furthermore FXF (M) = F (m) where
m denotes the unique regional minimum of F such that m ⊆M .

Property 13 Let F ∈ F(E), let X ⊆ E be a minima extension of F , and
let FXF be the mosaic of F associated with X . If any connected component of
X is a minimum for FXF , then FXF is a minima extension of F .

Property 14 Let F ∈ F(E), let X ⊆ E be a minima extension of F , and
let FXF be the mosaic of F associated with X . If FXF is a separation of F , then
FXF is a minima extension of F .

The following theorem is a straightforward consequence of Th. 10 and Prop. 14.

Theorem 15 Let F ∈ F(E), let X ⊆ E be a minima extension of F , and
let FXF be the mosaic of F associated with X . Then FXF is a separation of F if
and only if FXF is a W-thinning of F .

7. Conclusion

The watershed transform is more and more used as a low-level operator in
complex segmentation chains. Among those segmentation procedures, we can
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cite hierarchical segmentation [3] (waterfall) and geodesic saliency of water-
shed contours [11]. Such approaches need to compare several divides, or
are based on neighborhood relationship between extended minima. It is thus
important to be able to characterize some properties of the divides produced
by watershed algorithms. This paper is a step in this direction. We introduced
several notions that helped us to understand the watershed: minima extension,
mosaic, and we also consider the pass values and separation. We show in par-
ticular that a mosaic is a separation if and only if it is a topological thinning.

Future work will build up on those results to revisit the contours saliency.
We also aim at exploring criteria to choose among the various possible topo-
logical watersheds of a given image.

References
[1] G. Bertrand. On topological watersheds. Journal of Mathematical Imaging and Vision,

22, pp. 217-230, 2005. Special issue on Mathematical Morphology.

[2] S. Beucher. Segmentation d’images et morphologie mathématique. PhD thesis, École des
Mines de Paris, France, 1990.

[3] S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In J. Serra
and P. Soille, editors, Proc. Mathematical Morphology and its Applications to Image
Processing, pages 69–76, Fontainebleau, France, 1994. Kluwer.

[4] S. Beucher and C. Lantuéjoul. Use of watersheds in contour detection. In Proc. Int. Work-
shop on Image Processing, Real-Time Edge and Motion Detection/Estimation, Rennes,
France, 1979.

[5] M. Couprie and G. Bertrand. Topological grayscale watershed transform. In SPIE Vision
Geometry V Proceedings, volume 3168, pages 136–146, 1997.

[6] M. Couprie, L. Najman, and G. Bertrand. Quasi-linear algorithms for topological water-
shed. Journal of Mathematical Imaging and Vision, 22, pp. 231-249, 2005. Special issue
on Mathematical Morphology.

[7] F. Meyer. Un algorithme optimal de ligne de partage des eaux. In Actes du 8ème Congrès
AFCET, pages 847–859, Lyon-Villeurbanne, France, 1991.TT

[8] F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communication
and Image Representation, 1(1):21–46, 1990.

[9] L. Najman and M. Couprie. DGCI’03, volume 2886 of LNCS, chapter Watershed algo-
rithms and contrast preservation, pages 62–71. Springer Verlag, 2003.

[10] L. Najman, M. Couprie, and G. Bertrand. Watersheds, mosaics, and the emergence
paradigm. Discrete Applied Mathematics, 2005. In press.

[11] L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierarchical
segmentation. IEEE Trans. on PAMI, 18(12):1163–1173, December 1996.

[12] J.B.T.M. Roerdink and A. Meijster. The watershed transform: Definitions, algorithms
and parallelization strategies. Fundamenta Informaticae, 41:187–228, 2000.

[13] A. Rosenfeld. On connectivity properties of grayscale pictures. Pattern Recognition,
16:47–50, 1983.

[14] L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based on
immersion simulations. IEEE Trans. on PAMI, 13(6):583–598, June 1991.



A NEW DEFINITION FOR THE DYNAMICS

Gilles Bertrand 1,2

1Laboratoire A2SI, ESIEE, B.P. 99, 93162 Noisy-Le-Grand Cedex France

2Institut Gaspard Monge, Unité Mixte de Recherche CNRS-UMLV-ESIEE UMR 8049

g.bertrand@esiee.fr

Abstract We investigate the new definition of the ordered dynamics proposed in [4]. We
show that this definition leads to several properties. In particular we give nec-
essary and sufficient conditions which indicate when a transformation preserves
the dynamics of the regional maxima. We also establish a link between the dy-
namics and minimum spanning trees.

Keywords: mathematical morphology, dynamics, graph, watershed, minimum spanning tree

Introduction

The dynamics, introduced by M. Grimaud [1, 2], allows to extract a measure
of a regional maximum (or a regional minimum) of a map. Such a measure may
be used for eliminating maxima which may be considered as “non significant”.
In this paper we investigate a new definition of the dynamics. In particular we
establish some equivalence between a transformation which preserves the dy-
namics and a transformation which preserves some connection values (a kind
of measure of contrast) between pairs of points (Th. 11). Such an equivalence
is also given with topological watersheds (Prop. 19) and extensions (Prop. 16).
Furthermore we establish a link between the dynamics and minimum spanning
trees of a graph linking regional maxima, the cost of each arc being precisely
the connection value between the corresponding maxima (Th. 14).

1. Basic definitions

Any function may be represented by its different threshold levels [5, 7, 8].
These levels constitute a “stack”. In fact, the datum of a function is equivalent
to the datum of a stack. In this section, we introduce definitions for stacks and
related notions, this set of definitions allows to handle both the threshold levels
of a discrete function and the complements of these levels.
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Discrete maps and stacks

Here and subsequently E stands for a non-empty finite set and K stands for
an element of Z, with K > 0. If X ⊆ E, we write X = {x ∈ E | x �∈ X}. If
k1 and k2 are elements of Z, we define [k1, k2] = {k ∈ Z | k1 ≤ k ≤ k2}. We
set K = [−K, +K], and K

◦ = [−K + 1, +K − 1] .
Let F = {F [k] ⊆ E | k ∈ K} be a family of subsets of E with index set

K, such a family is said to be a K-family (on E). Any subset F [k], k ∈ K, is a
section of F (at level k) or the k-section of F . We set:

F = {F [k] | F [k] = F [k], k ∈ K}, and
F−1 = {F−1[k] | F−1[k] = F [−k], k ∈ K},

which are, respectively, the complement of F and the symmetric of F .
We say that a K-family F is an upstack on E if:

F [−K] = E, F [K] = ∅, and F [j] ⊆ F [i] whenever i < j.
We say that a K-family F is a downstack on E if:

F [−K] = ∅, F [K] = E, and F [i] ⊆ F [j] whenever i < j.
A K-family is a stack if it is either an upstack or a downstack.
We denote by S+

E (resp. S−
E ) the family composed of all upstacks on E (resp.

downstacks on E). We also set SE = S+
E ∪ S

−
E .

Let F , G be both in S+
E or both in S−

E . We say that G is under F , written
G ⊆ F if, for all k ∈ K, G[k] ⊆ F [k].

Let F ∈ S+
E and let G ∈ S−

E . We define two maps from E on K, also
denoted by F and G, such that, for any x ∈ E,
F (x) = max{k ∈ K | x ∈ F [k]} and G(x) = min{k ∈ K | x ∈ G[k]},
which are, respectively, the functions induced by the upstack F and the down-
stack G, F (x) and G(x) are, respectively, the altitudes of x for F and G.
Let F ∈ SE and let x ∈ E. We set S(x, F ) = F [k], with k = F (x), S(x, F )
is the section of x for F (see illustration Fig. 1).

Graphs

Throughout this paper, Γ will denote a binary relation on E, which is reflex-
ive and symmetric. We say that the pair (E, Γ) is a graph, each element of E
is called a vertex or a point. We will also denote by Γ the map from E to 2E ,
such that, for all x ∈ E, Γ(x) = {y ∈ E | (x, y) ∈ Γ}. If y ∈ Γ(x), we say
that y is adjacent to x. If X ⊆ E and y ∈ Γ(x) for some x ∈ X , we say that
y is adjacent to X .
Let X ⊆ E, a path in X is a sequence π = 〈x0, ..., xk〉 such that xi ∈ X ,
i ∈ [0, k], and xi ∈ Γ(xi−1), i ∈ [1, k]. We also say that π is a path from x0

to xk in X . Let x, y ∈ X . We say that x and y are linked for X if there exists
a path from x to y in X . We say that X is connected if any x and y in X are
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Figure 1. representation of an upstack F (the 1’s, k on the left), the downstack F−1 (the 1’s,
k on the right), the downstack F (the 0’s, k on the left), and the upstack [F ]−1 = [F−1] (the 0’s,
k on the right). For example, we have F [1] = F−1[−1] = {b, d, e}, F [1] = {a, c, f, g, h, i},
F (c) = 0, F (c) = 1, S(c, F ) = {b, c, d, e, h}, S(c, F ) = {a, c, f, g, h, i}.

linked for X . We say that Y ⊆ E is a connected component of X ⊆ E, if
Y ⊆ X , Y is connected, and Y is maximal for these two properties.
Note: In the sequel of this paper, we assume that E is connected. All notions
and properties may be easily extended for non-connected graphs.

Stacks and graphs

Let F ∈ SES and let k ∈ K. A connected component of a non-empty k-
section of F is a component of F (at level k) or a k-component of F .
Let x ∈ E and let S(x, F ) be the section of x for F . We denote by C(x, F ) the
connected component of S(x, F ) which contains x, C(x, F ) is the component
of x for F .
We say that x ∈ E and y ∈ E are k-linked for F if x and y are linked for F [k],
i.e., if x and y belong to the same connected component of F [k].

Let F ∈ SE . A subset X ⊆ E is an extremum of F if X is a component
of F and if X is minimal for this property (i.e., no proper subset of X is a
component of F ). We denote by EFE the family composed of all extrema of F .
If F ∈ S+

ES , G ∈ S−
ES , we also say that an extremum of F is a maximum of F

and that an extremum of G is a minimum of G.
A subset X ⊆ E is flat for F if F (x) = F (y) for all x, y in X . If X is flat
for F , the altitude of X for F is the value F (X) such that F (X) = F (x) for
every x ∈ X .

Let F ∈ S+
E , G ∈ S−

ES , and let x, y be two vertices in E. We define:
F (x, y) = max{k | x and y are k-linked for F}, and
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G(x, y) = min{k | x and y are k-linked for G},
F (x, y) and G(x, y) are the connection values between x and y for F and G,
respectively.

If X and Y are two subsets of E, we set F (X, Y ) = max{F (x, y) | x ∈
X, y ∈ Y }, and G(X, Y ) = min{G(x, y) | x ∈ X, y ∈ Y }.

Let F ∈ S+
ES , G ∈ S−

E , and let π = 〈x0, ..., xk〉 be a path in E, we set:
F (π) = min{F (xi) | i ∈ [0, k]} and G(π) = max{G(xi) | i ∈ [0, k]}.
If Π(x, y) is the set composed of all paths from x to y in E, we have:
F (x, y) = max{F (π) | π ∈ Π(x, y)}, G(x, y) = min{G(π) | π ∈ Π(x, y)}.

2. Separation and ordered extrema

We introduce the notion of separation (see also [4]) which plays a key role
for the dynamics. Then, we show that, given an ordering on subsets of E, we
may define connection values between these ordered subsets (Def. 4).

Definition 1.
Let X ⊆ E and let x, y be in X . The points x and y are separated for X if x
and y are not linked for X , i.e., if there is no path from x to y in X .
Let X , Y be subsets of E such that X ⊆ Y . We say that Y is a separation of
X if any x and y in X which are separated for X , are separated for Y .
Let F and G be both in S+

E (or both in S−
E ) and such that F ⊆ G. We say that

G is a separation of F if, for any k ∈ K, G[k] is a separation of F [k].

Definition 2. Let F ∈ S+
E , G ∈ S−

E , and x, y ∈ E. The points x and y are
separated for F (resp. G) if F (x, y) < min{F (x), F (y)} (resp. G(x, y) >
max{G(x), G(y)}). The points x and y are k-separated for F (resp. G) if
they are separated and if F (x, y) = k (resp. G(x, y) = k).

Proposition 3. Let F , G be both in S+
ES (or both in S−

E ) and such that F ⊆ G.
The stack G is a separation of F if and only if any x and y in E which are
k-separated for F , are k-separated for G.

Definition 4. Let O be a family composed of non empty subsets of E and
let ≺ be an ordering on O, i.e., ≺ is a relation on O which is transitive and
trichotomous (for any X , Y in O, one and only one of X ≺ Y , Y ≺ X ,
X = Y is true). We denote by X≺

maxX the element of O such that, for all
Y ∈ O \ {X≺

maxX }, Y ≺ X≺
maxX . Let F ∈ S+

E , G ∈ S−
E , and let X ∈ O.

The connection value of X for (F,≺) is the number F (X,≺) such that:
- F (X≺

maxX ,≺) = −∞; and
- F (X,≺) = max{F (X, Y ) | Y ∈ O and X ≺ Y } if X �=�� X≺

maxX .
The connection value of X for (G,≺) is G(X,≺) = −G−1(X,≺).

Th. 5 shows that the connection values between ordered extrema are suffi-
cient to decide whether or not a stack G is a separation of a stack F (see [4]
for the proof).
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Theorem 5 (ordered extrema). Let F , G be both in S+
ES (or both in S−

E ) such
that F ⊆ G. Let ≺ be an ordering on EFE . The stack G is a separation of F if
and only if, for each X in EFE , we have F (X,≺) = G(X,≺).

3. Dynamics

We will show now the connection between the previous notions and the
notion of dynamics which was introduced as a measure of contrast of an ex-
tremum [1–3]. We first give a definition of the dynamics which may be proved
to be equivalent to the original definition of Grimaud [1, 2].

Definition 6. Let F ∈ S+
ES , and X ∈ EFE . We define the number F̃ (X) by:

- F̃ (X) = −∞ if F (X) = max{F (Y ) | Y ∈ EFE };
- F̃ (X) = max{F (X, Y ) | Y ∈ EFE and F (X) < F (Y )} otherwise.
The unordered dynamics of X for F is the number ∆F (X) = F (X)− F̃ (X).
If G ∈ S−

E and X ∈ EG, we set G̃(X) = −G̃−1(X), the unordered dynamics
of X for G is the number ∆G(X) = G̃(X)−G(X).

If a stack G is a separation of a stack F , it may be seen that an extremum of
G does not necessarily contain an extremum of F . In order to establish a link
between the notion of separation and the dynamics, we introduce the following
definition.

Definition 7. Let F , G be both in S+
ES (or both in S−

E ) such that F ⊆ G. We
say that G is an extrema extension or an e-extension of F if:
i) for each X ∈ EFE , there exists Y ∈ EG, such that X ⊆ Y ; and
ii) for each Y ∈ EG, there exists a unique X ∈ EFE , such that X ⊆ Y ; and
iii) for any X ∈ EFE , Y ∈ EG, such that X ⊆ Y , we have F (X) = G(Y ).

It may be easily seen that two distinct extrema X , Y of a stack F are al-
ways separated for F (i.e., any x in X and any y in Y are separated). In fact,
since an e-extension “preserves the extrema”, the following property is a direct
consequence of Def. 1, 2, 6, 7 and Prop. 3.

Proposition 8. Let G be an e-extension of F . If G is a separation of F , then
for any X ∈ EFE , Y ∈ EG, such that X ⊆ Y , we have ∆F (X) = ∆G(Y ).

We observe that the converse of Prop. 8 is not true: Fig. 2 (a) shows a
counter-example. The upstacks F and G have three maxima A, B, C. The
upstack G is an e-extension of F but not a separation of F . Nevertheless
∆F (A) = ∆G(A), ∆F (B) = ∆G(B) and ∆F (C) = ∆G(C) =∞.

Thus, separations (which are also e-extensions) “preserve the unordered dy-
namics of the extrema”, but a transformation which preserves the unordered
dynamics does not necessarily preserve k-separation between points and con-
nection values between extrema. In this sense, we may say that the notion
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Figure 2. (a) the unordered dynamics of two upstacks F and G, (b) the ordered dynamics for
the ordering B ≺ A ≺ C, (c) the ordered dynamics for the ordering B ≺ C ≺ A.

of separation conveys more information about the contrast of an image than
the unordered dynamics. The following Th. 11 shows that it is possible to
have a more powerful notion of dynamics if we introduce a definition based on
extrema ordering.

Beforehand, it should be noted that it is not possible to obtain such a result
by slightly changing the original definition of the dynamics. For example, if
we replace the strict inequality appearing in the definition of the unordered
dynamics by an inequality, some counter-examples for the converse of Prop. 8
may be easily found.

Definition 9. Let F ∈ S+
ES (resp. F ∈ S−

E ) and let ≺ be an ordering on EFE .
Let X be an extremum for F . The ordered dynamics of X for (F,≺) is the
value ∆F (X,≺) = F (X)− F (X,≺) (resp. F (X,≺)− F (X)).

Remark 10. Let F ∈ S+
ES (resp. F ∈ S−

E ) and let ≺ be an ordering on EFE . We
say that ≺ is an altitude ordering of EFE if X ≺ Y (resp. Y ≺ X) whenever
F (X) < F (Y ). We observe that, if ≺ is an altitude ordering of EFE and if all
extrema of F have distinct altitudes, then we have ∆F (X,≺) = ∆F (X).

In Fig. 2 (b) and (c) we can see that, with this new definition of the dynam-
ics, the map G does not longer preserve the dynamics of the maxima of F .
In fact, the following theorem, which is a direct consequence of Th. 5, shows
that the ordered dynamics “encodes all information of a separation”. The re-
sult holds whatever the choice of the ordering. Thus, an ordering which is not
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based on the altitudes of the extrema may be considered. For example, maxima
may be ordered according to their areas.

Let F ∈ SES and let ≺ be an ordering on EFE . Let G be an e-extension of F .
In the sequel of the paper, we will also denote by ≺ the ordering of EG such
that, for all X , Y in EG, X ≺ Y if and only if X ′ ≺ Y ′, X ′ and Y ′ being the
extrema of F such that X ′ ⊆ X and Y ′ ⊆ Y .

Theorem 11. Let G be an e-extension of F and let ≺ be an ordering of EFE .
The stack G is a separation of F if and only if, for any X ∈ EFE , Y ∈ EG, such
that X ⊆ Y , we have ∆F (X,≺) = ∆G(Y,≺).

4. Dynamics and maximum spanning tree

Theorem 11 invites us to try to recover, from the values F (X,≺), with
X ∈ EFE , the connection values between all extrema of a stack F . We will
show, with Prop. 13, that this may be done provided we also know, for each
extremum X of F (different from X≺

maxX ), an extremum Y of F such that X ≺
Y and F (X, Y ) = F (X,≺) (see Fig. 3 for illustrations of this section).

Definition 12. Let F ∈ SES and let ≺ be an ordering on EFE . Let Ψ be a map
from EFE \{X≺

maxX } on EFE . We say that Ψ is a connection map for≺ if, for each
X ∈ EFE \ {X≺

maxX }, we have X ≺ Ψ(X) and F [X, Ψ(X)] = F (X,≺).

Let S be a set, and let T ⊆ S. Let Ψ be a map from T on S, and let a, b, c
be elements of S.
We say that b is under a, or that a is over b (for Ψ), if there is some k ≥ 0 such
that a = Ψk(b). We say that c is a common ancestor of a and b (for Ψ) if a and
b are under c. We say that c is the least common ancestor of a and b (for Ψ) if
c is a common ancestor of a and b and no element under c distinct from c is a
common ancestor of a and b.

Let F ∈ SE , let ≺ be an ordering on E(F ), and let Ψ be a connection map
for ≺. We observe that any extremum of F is under X≺

maxX . Furthermore any
extrema X and Y of F admit a (unique) least common ancestor.

Proposition 13. Let F ∈ S+
ES (resp. G ∈ S−

ES ), let ≺ be an ordering on EFE
(resp. EG), and Ψ be a connection map for ≺. Let X , Y be distinct extrema of
F (resp. G) and let Z be the least common ancestor of X and Y for Ψ. Then:
- F (X, Y ) = min{F (S,≺) | for all S under Z and over X or Y, S �=�� Z};
- G(X, Y ) = max{G(S,≺) | for all S under Z and over X or Y, S �=�� Z}.

Now, we will show the link between connection maps and maximum span-
ning trees (see [13] for maximum spanning trees).

Let F ∈ SES , let ≺ be an ordering on EFE , and let Ψ be a connection map
for ≺. We define the graph induced by Ψ as the graph (EFE , Ψ̃) such that
Ψ̃ = {(X, Ψ(X)) | for all X ∈ EFE \ {X≺

maxX }}.
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Figure 3. (a) a graph (E, Γ) and an upstack F on E represented by its function, F has 5
maxima A, B, C, D, E, (b) a connection map for the ordering A ≺ B ≺ C ≺ D ≺ E, (c) a
connection map for the ordering E ≺ D ≺ C ≺ B ≺ A.

Theorem 14. Let F ∈ S+
ES (resp. F ∈ S−

E ), let≺ be an ordering on EFE and let
Ψ be a connection map for ≺. The graph induced by Ψ is a maximum (resp.
minimum) spanning tree of the graph (EFE , EFE × EFE ), the cost of an edge
(X, Y ) ∈ EFE × EFE being precisely the connection value between the extrema
X and Y .

5. Dynamics, extension, and watersheds

We conclude this paper by outlining the deep link which exists between the
ordered dynamics, the notion of topological watershed (see [9, 12, 4, 14]), and
the notion of extension ([4]). The two following properties are direct conse-
quences of two theorems presented in [4] (also in [10]).

Definition 15. Let X , Y be non-empty subsets of E such that X ⊆ Y . We say
that Y is an extension of X if each connected component of Y contains exactly
one connected component of X . We also say that Y is an extension of X if X
and Y are both 1empty.
Let F , G be both in S+

E (or both in S−
E ). We say that G is an extension of F if,

for any k ∈ K, G[k] is an extension of F [k].

Proposition 16. Let G be an e-extension of F and let ≺ be an ordering of EFE .
The stack G is an extension of F if and only if, for any X ∈ EFE , Y ∈ EG, such
that X ⊆ Y , we have ∆F (X,≺) = ∆G(Y,≺).

Definition 17. Let F ∈ SES and let x ∈ E such that F (x) ∈ K
◦. We say that

x is W-destructible for F if x is adjacent to exactly one connected component
of S(x, F ) (i.e., one connected component of F [k], with k = F (x)).

For example, in Fig. 4 (a), the point x is W-destructible, but y is not W-
destructible (y is adjacent to two connected components of F [4]).
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Figure 4. (a) An upstack F represented by its function, (b) an upstack G ⊆ F which “pre-
serves an ordered dynamics of the minima of F ”: by Prop. 8, the stack G is necessarily a
W-thinning of F , in fact G is a topological watershed of F .

The following operation on stacks is the extension of the removal of a point
from a set.

Let F ∈ SES and let x ∈ E such that F (x) ∈ K
◦. We denote by F \ x the

element of SE such that [F \x][k] = F [k]\{x} if k = F (x), and [F \x][k] =
F [k] otherwise.

Thus, if F is an upstack, then [F \x](x) = F (x)−1 and [F \x](y) = F (y)
whenever y �=�� x.

Definition 18. Let F, G be both in S+
E (or both in S−

E ). We say that G is a
W-thinning of F , written F ↘W↘↘ G, if:
i) G = F ; or if
ii) there exists a W-thinning H of F and there exists a W-destructible point x
for H , such that G = H \ x.
A W-thinning G of F is a (topological) watershed of F if G ↘W↘↘ H implies
H = G.

Proposition 19. Let F, G ∈ SES such that G is an e-extension of F and let ≺
be an ordering of EFE . The stack G is a W-thinning of F if and only if, for any
X ∈ EFE and Y ∈ EG such that X ⊆ Y , we have ∆F (X,≺) = ∆G(Y,≺).

Fig. 4 provides an illustration of Prop. 19. Two upstacks F and G are
represented. We have G ⊆ F , F and G have three minima A, B, C and A′,
B′, C ′, respectively. We have A ⊆ A′, B ⊆ B′, C ⊆ C ′. If F is an arbitrary
upstack, we have F (x) = F (x) + 1, for each x ∈ E (see the subsection
“Discrete maps and stacks”). Thus F (A) = G(A′) = 2+1, F (B) = G(B′) =
3+1, F (C) = G(C ′) = 1+1, it follows that G is an e-extension of F . Let us
consider the ordering ≺ such that A ≺ B ≺ C and A′ ≺ B′ ≺ C ′. We have
∆F (A,≺) = ∆G(A′,≺) = 4+1, ∆F (B,≺) = ∆G(B′,≺) = 6+1, ∆F (C,≺
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) = ∆G(C ′,≺) =∞. Thus, by Prop. 8, G is a W-thinning of F . It means that
we can obtain G from F by lowering iteratively W-destructible points. In fact,
since G has no W-destructible point, G is a topological watershed of F .

6. Conclusion

We introduced a new definition for the dynamics which allows to recover
strong properties for a transformation which “preserves the dynamics of the
minima”. In particular we give necessary and sufficient conditions which es-
tablish a deep link between the notions of dynamics, connection values, ex-
tension, and topological watersheds. Future work will show that this approach
also provides a more powerful operator for filtering.
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Abstract This paper presents a strategy for content-based image retrieval. It is based on
a meaningful segmentation procedure that can provide proper distributions for
matching via the Earth mover’s distance as a similarity metric. The segmen-
tation procedure is based on a hierarchical watershed-driven algorithm that ex-
tracts automatically meaningful regions. In this framework, the proposed robust
feature extraction plays a major role along with a novel region weighting for
enhancing feature discrimination. Experimental results demonstrate the perfor-
mance of the proposed strategy.

Keywords: content-based image retrieval, image segmentation, Earth Mover’s distance, Re-
gion weighting

Introduction

Increasing amounts of imagery due to advances in computer technologies
and the advent of World Wide Web (WWW) have made apparent the need for
effective and efficient imagery indexing and search of not only the metadata as-
sociated with it (eg. captions and annotations) but also retrieval directly on the
visual content. During the evolution period of Content-Based Image Retrieval
(CBIR) research the major bottleneck in any system is the gap between low
level features and high level semantic concepts. Therefore, the obvious effort
toward improving a CBIR system is to focus on methodologies that will enable
a reduction or even, in the best case, bridging of the aforementioned gap. Im-
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age segmentation always plays a key role toward the semantic description of
an image since it provides the delineation of the objects that are present in an
image. Although, contemporary algorithms can not provide a perfect segmen-
tation, some can produce a rich set of meaningful regions upon which robust
discriminant regional features can be computed. In this paper, we present a
strategy for content-based image retrieval. It is based on a meaningful seg-
mentation procedure that can provide proper distributions for matching via the
Earth mover’s distance as a similarity metric. In the underlying framework,
a major role plays the proposed robust feature extraction along with a novel
region weighting for enhancing feature discrimination. The segmentation pro-
cedure is based on a hierarchical watershed-driven algorithm that extracts auto-
matically meaningful regions. This paper is organized as follows: In Section 1,
we provide the state-of-the-art in the region-based CBIR approaches. Section 2
describes the proposed segmentation scheme that guides the image representa-
tion along with the proposed feature set which is extracted out of each region.
Section 3 is dedicated to the description of the selected similarity metric and a
novel region weighting factor while in Section 4 experimental results demon-
strate the performance of the proposed CBIR strategy.

1. Related work

The fundamental aspects that characterize a region-based image retrieval
system are the following : (i) the underlying segmentation scheme; (ii) the
selected features for region representation; (iii) the region matching method
and (iv) the user supervision.

In [8], the NeTra system is presented, where retrieval is based on segmented
image regions. The segmentation scheme requires user supervision for param-
eter tuning and segmentation corrections. Furthermore, a one-to-one region
matching is proposed after region selection by the user. In the same spirit,
Blobworld system [1] is proposed, where a user is required to select impor-
tant regions and features. As an extension to Blobworld, Greenspan et al. [4]
compute blobs by using Gaussian mixture modeling and use Earth mover’s
distance (EMD) [12] to compute both the dissimilarity of the images and the
flow-matrix of the blobs between the images. In [2], Fuh et al. use the idea
of combining a color segmentation with relationship trees and a corresponding
matching method. They use information concerning the hierarchical relation-
ship of the regions along with the region features for a robust retrieval. In [16],
an integrated matching algorithm is proposed that is based on region similar-
ities with respect to a combination of color, shape and texture information.
The proposed method enables one-to-many region matching. Hsieh and Grim-
son [5] propose a framework that supports a representation for a visual concept
using regions of multiple images. They support one-to-many regions match-
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ing on two stages. First, a similarity comparison occurs followed by a region
voting that leads to a final region matching. Finally, Jing et al. [6] propose
an image retrieval framework that integrates efficient region-based representa-
tion and effective on-line learning capability. This approach is based on user’s
relevance feedback that makes user supervision an obligatory requirement.

In this paper, unlike the above approaches, we propose a strategy that does
not require any supervision from the user rather than selecting an example
image to be used as a query and permit a many-to-many region matching im-
proving the robustness of the system. It is a region-based approach that takes
advantage of the robustness of each subsequent module that consists of. More
specifically, it is based on a watershed-driven hierarchical segmentation mod-
ule which produces meaningful regions, and a feature extraction module that
supports proper distributions for matching along with a robust similarity metric
which is enhanced by a novel weighting factor.

2. Image representation

Automatic Multiscale Watershed Segmentation

The proposed multiscale hierarchical watershed-driven segmentation scheme
for vector-valued images [15] [13], depicted in Fig.1, consists of three basic
modules.

The first module (Salient Measure Module) is dedicated to a saliency mea-
surement of the image partitions after a scale-space analysis which is supported
by watershed segmentation and nonlinear diffusion filtering. The main goal of
this module is to create a hierarchy among the gradient watersheds detected at
the finest scale: the localization scale. To accomodate this hierarchy, we cre-
ate a region adjacency graph (RAG), in which the nodes represent the detected
gradient watersheds and the arcs represent the contours between two watershed
segments, i.e. the adjacencies.

The entire process to retrieve the saliency measure for the gradient water-
sheds requires three basic steps: (i) nonlinear scale-space filtering; (ii) Linking
(deep image structure): At each scale the gradient magnitude of the trans-
formed image is estimated. At the localization scale, the watershed transfor-
mation is performed to identify the position of all the contours in the image.
At the higher scales, the duality between the regional minima of the gradient
and the catchment basins of the watershed is exploited to make a robust re-
gion based parent-child linking scheme. The linking process is applied using
the approach proposed in [11], where the linking of the minima in successive
scales is applied by using the proximity criterion. The linking process produces
a linkage list for all the regions detected at the localization scale. Inherently,
the latter yields also a linkage list for each adjacency (contour) in the localiza-
tion scale; (iii) Contour valuation by downward projection. To each contour,
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we attribute a saliency measure comprising the scale-space lifetime and the dy-
namics of contours in scale-space [11] [10]. The latter requires two types of in-
formation: (i) the dynamics of contours (DC) [9] at each scale, and (ii) the deep
image structure, which relates the contours and regions detected at the different
scales. The dynamics of contours in scale-space are used to valuate the con-
tours detected at the localization scale. Let L(ai) = {a(t0)

i , a
(t1)
i , . . . , a

(ta)
i }

be the linkage list for the contour ai, where to is the localization scale, and
the scale ta is last scale in which the contour was detected (annihilation scale).
Hence, the dynamics of contours in scale-space (DCS) are defined as:

DCS(ai) =
∑

b∈L(ai)

DC(b) (1)

The second module (Hierarchical Level Retrieval Module) identifies the dif-
ferent hierarchical levels through a hypothesis testing criterion. Starting from
the watershed segmentation at the localization scale, a successive merging op-
eration is performed until a stopping criterion which is based upon a color sim-
ilarity measure is satisfied. The merging sequence is given by the multiscale
saliency measure of the contours.

The last module (Segmentation Evaluation Module) concerns the extraction
of the most suitable hierarchical level for further processing. For this pur-
pose, we employ a criterion that is based on a measure that yields a global
evaluation of the contrast between the segments and the segment uniformity:
Contrast-Homogeneity criterion (CH) [14]. Additionally, we add a constraint
on the amount of required segments. This allows us to exclude over-and under-
segmented hierarchical levels.

Figure 1. Schematic diagram for the automatic multi-scale segmentation scheme for vector-
valued images.
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Region features

After the image segmentation, a set of regions have been obtained. For
each single segmented region we compute a set of features based mainly on
color and spatial characteristics. Although, texture features are not explicitly
part of the feature set, we have included texture information during region
weighting, as it will be explained in Section 3. Finally, we have not used
geometric properties since an image segmentation does not always provide a
single region for each object in the image, and therefore, it is meaningless to
compute representative shape features from such regions.

The color space that we use is the RGB color space. Although, it does not
provide the color compaction of YCrCb and YIQ color space, neither the per-
ceptual significance of Lab and YUV, our experimental results show a relative
very good performance for retrieving. Other researchers in the area have con-
firmed our conclusions [5] [3].

Let Ri be a region in the segmented set {R} with a set of adjacent regions
{N(Ri)}. In our feature set, we do not only characterize each single region
Ri but we also characterize its neighborhood by computing relational features.
More specifically, the features we compute are the following :
• mean Color component

µCkC (Ri) =

∑A(Ri)
j=1 CkC (xj , yjy )

A(Ri)
(2)

• Area-weighted adjacent Color component

µAdjCkC (Ri) =

∑Card(N(Ri))
j=1 A(RjR ) ∗ µCkC (RjR )∑Card(N(Ri))

j=1 A(RjR )
(3)

• Area-weighted adjacent region contrast

µCon(Ri) =

∑Card(N(Ri))
j=1 A(RjR ) ∗ (‖ µCkC (Ri)− µCkC (RjR ) ‖)∑Card(N(Ri))

j=1 A(RjR )
(4)

• Region geometric centroid

G(Ri; x, y) = (
∑A(Ri)

i=1 xi

A(Ri)
,

∑A(Ri)
i=1 yi

A(Ri)
) (5)

where CkC denotes the kth color component value with k ∈ {R, G, B}, A(Ri)
denotes the area of Region Ri, Card(N(Ri)) denotes cardinality of region’s
Ri neighborhood and (xj , yjy ) denotes the coordinates of a pixel that belongs
to region RjR
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3. Image retrieval

Image Similarity Measure

The Earth Mover’s Distance (EMD) [12] is originally introduced as a flex-
ible similarity measure between multidimensional distributions. Intuitively, it
measures the minimal cost that must be paid to transform one distribution into
another. The EMD is based on the transportation problem and can be solved
efficiently by linear optimization algorithms that take advantage of its special
structure. Considering that EMD matches perceptually similarity well and can
operate on variable-length representations of the distributions, it is suitable for
region-based image similarity measure. Further motivation to use this distance
as a similarity metric is based on the following properties of EMD : (i) It in-
corporates information from all segmented regions by allowing many-to-many
relationship of the regions, thus information about an image is fully utilised;
(ii) It is robust to inaccurate segmentation. For example, if a region is split into
smaller ones, EMD will consider them as similar in the case that their distance
is small and (iii) Concerning computational aspects, it is very efficient since
the computational burden depends on the number of significant clusters rather
than the dimension of the underlying feature space.

Formally, let Q = {(q1, wq1), (q2, wq2), . . . , (qm, wqm )} be the query im-
age with m regions and T = {(t1, wt1), (t2, wt2), . . . , (tn, wtn )} be another
image of the database with n regions, where qi,ti denote the region feature set
and wqi ,wti denote the corresponding weight of the region. Also, let d(qi, tj)
be the ground distance between qi and tj . The EMD between Q and T is then:

EMD(Q, T ) =

∑m
i=1

∑n
j=1 fijff d(qi, tj)∑m

i=1

∑n
j=1 fijff

(6)

where fijff is the optimal admissible flow from qi to tj that minimizes the nu-
merator of (6) subject to the following constraints:

n∑
j=1

fijff ≤ wqi ,
m∑

i=1

fijff ≤ wtj

m∑
i=1

n∑
j=1

fijff = min(
m∑

i=1

wqi ,
n∑

j=1

wtj )

In the proposed approach, we define the ground distance as follows:

d(qi, tj) = (
∑3

k=1(!µCkC )2 +
∑3

k=1(!µAdjCkC )2 + (!µCon)2+
β(!G(i;x))2 + β(!G(i; y))2)

1
2

(7)
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where β is a weighting parameter that enhances the importance of region’s
position relative to the remaining features.

Region weighting

We would like to identify and consequently, to attribute an importance in
the regions produced by the selected segmentation scheme. Formally, we have
to valuate the weighting factors wqi and wtj in Eq.(7). Most region-based ap-
proaches [16] [4] relate importance with the area size of a region. The larger
the area is, the most important becomes the region. In our approach, we define
an enhanced weighting factor which combines area with scale and global con-
trast in color/texture feature space, which can be all expressed by the valuation
of dynamics of contours in scale-space (Eq. 1). More precisely, the weighting
factor can be computed in the following way :

wqi =
wDCSi ∗A(Ri)∑Card(R)

j=1 wDCSi ∗A(Ri)
(8)

wDCSi =

∑Card(N(Ri))
j=1 (max DCS(ακ))

Card(N(Ri))
(9)

The term ακ in Eq. 9 denotes the common border of two adjacent regions at
the localization scale. One may observe that in Eq. 9, we compute the maxi-
mum value among the dynamics of contours in scale-space for each adjacency.
This occurs because our final partitioning corresponds to a hierarchical seg-
mentation level wherein a merging process has been applied. Due to merging,
any common contour at the final partitioning may contain either a single or a
set of contours which correspond to the localization scale.

4. Experimental results

The proposed strategy for content-based image retrieval has been evaluated
with a general-purpose image database of 600 images from the Corel photo
galleries that contain 6 categories (100 images per category). Evaluation is
performed using precision versus recall (P/R) curves. Precision is the ratio of
the number of relevant images to the number of retrieved images. Recall is the
ratio of the number of relevant images to the total number of relevant images
that exist in the database. They are defined as follows :

Precision(A) =
Ra

A
, Recall(A) =

Ra

S
(10)

where A denotes the number of images shown to the user (the answer set), S
denotes the number of images that belong to the class of the query and Ra de-
notes the number of relevant matches among A. To be objective, we have used
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10 different queries for each category and we have averaged the precision/re-
call values for each answer set. For comparison, we have tested our approach,
denoted as "EMD hWSH", with two other approaches. All three approaches
use as similarity metric the Earth Mover’s Distance (EMD) which is adapted to
the underlying feature set of each method. In Figure 2, we present representa-
tive segmentation results of the corresponding partitioning methods which are
discussed in our paper. The first approach is based on a k-means clustering [7]
in the RGB color space which feeds the EMD with the produced distributions.
In the presented (P/R) curves (Fig. 3), this approach appears as "EMD RGB".
The second approach for comparison, that appears as "EMD JSEG", produces
an image segmentation using the state-of-the-art JSEG algorithm [17]. The
JSEG algorithm has been used before at the NeTRA CBIR system [8]. For
each produced region we compute the feature set that is described in Section 1.
We would like to notify that for "EMD JSEG", we compute region weights by
taking into account the area of the region only. Furthermore, we have used
optimal parameters for JSEG algorithm after a testing on a training set. In
the produced P/R curves (Fig. 3), we can observe that both "EMD JSEG" and
"EMD hWSH" (the proposed scheme) outperform the "EMD RGB". Each of
methods, "EMD JSEG" and "EMD hWSH", has a very good performance after
a severe testing of using 10 different queries. Examining the absolute values
of the produced P/R curves for "EMD JSEG" and "EMD hWSH", we may
draw the conclusion that the proposed strategy provides hiqh quality image
retrievals. Furthermore, we may observe that although, JSEG provides worse
quality segmentations than the proposed segmentation approach (see Figure 2),
there is a sharing in marginal superiority of the one versus the other. At this
point, we may note that although the final results do not provide an absolute
superiority when using the proposed segmentation scheme, we have to seri-
ously take into account that our proposed segmentation scheme is completely
automatic while the JSEG algorithm is bound to parameter tuning for better
performance. The general conclusion drawn upon this research is that the pro-
posed CBIR strategy which does not require any user supervision can support
image retrieval in a robust way. An enhancement of the feature set with ex-
plicit texture information will further improve the current state of the proposed
scheme.
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(a) (b) (c)

Figure 2. Representative segmentation results using (a) k-means algorithm; (b) JSEG algo-
rithm ; (c) proposed segmentation scheme

Figure 3. Precision / recall curves
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Abstract The watershed transform and seeded region growing are well known tools for
image segmentation. They are members of a class of greedy region growing
algorithms that are simple, fast and largely parameter free. The main control over
these algorithms come from the selection of the marker image, which defines the
number of regions and a starting position for each region.

Recently a number of alternative region segmentation approaches have been
introduced that allow other types of constraints to be imposed on growing re-
gions, such as limitations on border curvature. Examples of this type of algo-
rithm include the geodesic active contour and classical PDEs.

This paper introduces an approach that allows similar sorts of border con-
straints to be applied to the watershed transform and seeded region growing.
These constraints are imposed at all stages of the growing process and can there-
fore be used to restrict region leakage.

Keywords: watershed transform, region growing, constrained regions.

Introduction
Image segmentation aims to partition images into a number of disjoint re-

gions according to some criterion, like color, edges or texture. The watershed
transform [5] is a popular tool for performing region based segmentation of
images. It is fast, flexible and parameter free. Seeded region growing [1] is
a closely related approach that is usually applied to the raw image rather than
the gradient image. Prior knowledge is usually provided to the watershed trans-
form and seeded region growing algorithms by using a marker image [9] which
defines the number of regions and the starting points for the growing process.
However it is sometimes desirable to be able to impose additional constraints.

This paper will introduce a mechanism that can easily be included in the
well known hill-climbing watershed transform implementation and the closely
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related seeded region growing implementation. The modification allows con-
straints to be applied to the curvature of region borders at all stages of the
growing process. This makes some of the useful properties of other region
segmentation approaches, like geodesic active contours and classical PDEs,
available in more traditional region based segmentation frameworks. The mod-
ified algorithms are called locally constrained watershed transform and locally
constrained seeded region growing.

Cost based frameworks for the modification have been developed elsewhere
[4]. This paper will develop the modification from the point of view of a phys-
ical model and an efficient implementation of the algorithm.

The paper is structured as follows. Sections 1 and 2 introduce the watershed
transform and previous work on constrained region growing. Sections 3 and
4 introduce the leakage problem that we are trying to correct and the physical
model we are using to address it. Implementation, results and performance are
discussed in Sections 5, 6 and 7.

1. Brief history of the watershed transform

A detailed description of the watershed transform’s heritage is given in [12,
7]. Only a brief summary will be given here.

The watershed transform was first proposed as a segmentation method that
modeled the progressive immersion of a topographical relief (an image) in a
fluid [5]. Each regional minimum 1 in the surface corresponds to a different
lake. Neighboring lakes meet at watershed lines as the level of flooding in-
creases. Flooding continues until the entire relief is immersed.

An algorithmic definition of this model that allowed an efficient implemen-
tation employing priority queues was proposed by Vincent and Soille [14]. The
algorithm defined a recursive relationship between gray levels of the image.

Meyer [8] defined the watershed in terms of a distance function called the
topographical distance. This distance was defined in terms of the lower slope
of lower complete images. images).

The catchment basin of a regional minimum is the set of pixels that are
closer (in terms of the sum of value of regional minimum and the topographical
distance) to that regional minimum than any other. The topographical distance
watershed is the complement of the union of catchment basins.

These definitions produce a cost of zero in flat zones of an image, leading to
a watershed that may be thicker than one pixel on a plateau. The usual solution
to this problem is to transform images so that they are lower complete. This
guarantees that there are no plateaus and that the watershed zones are thin.

More recent work by Nguyen, Worring and van den Boomgaard builds on
the topographical distance framework and establishes the relationship between
the watershed transform and energy-based minimization [11].
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2. Previous work on constrained region based
segmentation

A number of region segmentation techniques are able to include boundary
constraints. In some cases the boundary constraints are essential for the sensi-
ble operation of the algorithms in real images.

Energy minimization based methods of region segmentation, such as those
using classical PDEs [13], are able to constrain border curvature. This is done
via a viscosity term in the energy function that modifies the rate of curve evo-
lution. Careful selection of this term is often a critical factor in practical appli-
cations of these methods.

There has also been some recent work on other types of boundary con-
straints in traditional region growing contexts. One method modifies the image
topology of the image using a viscous closing and then applies a traditional wa-
tershed transform [10]. The viscous closing is based on a geophysical model
in which a fluid is subjected to a variety of pressures. Increasing the pressure
decreases the viscosity of the fluid which is modeled by decreasing the size
of the structuring element. A second method models the growing region as a
polygon with the maximum edge length as the controlling parameter [3]. This
algorithm is queue based, with polygon corners being placed on the queue.

A technique called watersnakes has also been described recently [11]. This
work demonstrates the energy minimization nature of the conventional wa-
tershed transform and includes border related terms explicitly in the form of
an approximation of local boundary length. This differs from the method de-
scribed in this paper in which border constraints are imposed implicitly by the
cost function.

3. Region leakage and segmentation stability

The aim of this work is to provide a mechanism for higher level knowledge
to be included in a conventional region growing framework. The particular
higher level knowledge we are interested in is the requirement that borders
of regions should be, in some sense, smooth at all times during the growing
process. This should make it possible to stabilize the growing process by pre-
venting region leaks.

Let us consider how leaks may occur in the context of watershed transform
from the point of view of the physical model from which it was derived. The
physical model views an image as a terrain being progressively flooded by a
fluid. Fluid enters through each marker and begins creating a lake. Adjacent
lakes will eventually touch along ridges in the terrain, to form watershed lines.
In the case of plateaus the lakes should meet halfway between the markers.
Figure 1 illustrates a typical watershed scenario. In this example we are trying
to segment a circular object (e.g. a cell). In the ideal case a pair of markers,
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one inside and one outside the object will result in the correct segmentation.
In less ideal circumstances there may be breaks in the circle. In such cases
the resulting segmentation will become strongly dependent on the placement
of markers. In this example the external marker is not near the break and the
watershed lines depart significantly from the circular contour.

Figure 1. Segmentation of a complete and incomplete circular object. The incomplete object
has a small break on the right hand side. The lower images show markers and watershed lines.

It is important to note that the leak of the interior region through the gap in
the circle is not “wrong” from the point of view of the definition of the water-
shed transform 2. However it is not usually the result that would be desired. In
this particular case we are actually aiming to create a closed object from one
that isn’t closed – i.e. part of the contour which we want the watershed to find
is perceptual.

Obviously there are a number of ways of attacking this particular problem –
we could use an approach designed to find closed contours [2] or could prefilter
the image to close the contour. Geodesic active contours would also perform
satisfactorily in this case.

The alternative we are examining in this paper is to impose a constraint on
the boundary of the region at all stages of the growing process. In this example
the nature of the boundary during the period in which it “escapes” from the
object is obviously different to the result we finally expect – it will be much
more highly curved at that time. Imposing a constraint that discourages high
curvature should therefore help prevent this kind of problem.
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4. Physical model

Classical PDEs include a viscosity term that imposes constraints that are
very similar to the sort of thing we are after. Similar constraints have been in-
troduced to the watershed transform [11], but these are not easily implemented
using some of the standard approaches.

In this work our model is of flooding by a fluid represented by overlapping
digital disks3. In the extreme case, where the disk diameter is a single pixel, the
model is equivalent to the standard watershed implementation. If the diameter
is greater than one the region will constrained to be a union of the selected
structuring element or, in morphological terms, to be a set that is opened by
the structuring element.

A region produced using this model will be a dilation of a sub region by the
structuring element. This concept is used in the implementation.

This model is easily able to support the a different sized structuring element
for each region. This can be useful in some circumstances.

We can think of solving the problem described in the previous section by
selecting a fluid that cannot easily fit through the gap in the circle.

5. Implementation

The algorithm used here to implement the watershed transform and seeded
region growing belongs to the hill-climbing class of algorithms. The imple-
mentation of both seeded region growing and watershed transform using the
hill-climbing approach is essentially the same. Both exploit a priority queue
and propagate labels. The main difference between them is the way the priori-
ties are calculated. The inputs to both are a marker image and a control image.
The priority queue contains pixel locations and label values. Pixels with the
same priority are served in FIFO order. The steps in the procedure are:

1 Initialize queue.

2 Exit if queue is empty.

3 Take the pixel from the head of the queue.

4 Label that location if it isn’t already labeled. Otherwise Goto step 2.

5 Compute the priority for each unlabeled neighbor and insert into the
queue.

6 Goto step 2.

Queue initialization involves adding all pixels that are neighbors of markers
in the marker image to the priority queue with the appropriate priority. A
number of additions to the steps above can be made in the name of efficiency,
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but they are omitted for brevity. Marking watershed lines also requires some
extra steps.

The way in which priority is calculated is the only difference between the
hill-climbing implementation of watershed transform and seeded region grow-
ing. In the watershed transform the priority is simply the pixel gray level while
in seeded region growing it is the difference between the color of the labeled re-
gion and the color of the candidate pixel 4. The more complex priority function
used by seeded region growing requires additional book keeping to implement
it. This complicates the main loop. Details will not be discussed here.

The extension to locally constrained versions of the algorithms also requires
modifications to the priority function. The priority function is now related to a
region. Implementation of this priority function requires careful book keeping
and is difficult to describe. The procedure will be illustrated using a walk
through of the algorithm on some artificial data.

Figures 2(a) to 2(c) illustrate the concept. A 3 × 3 structuring element is
being used in this example for clarity. In practice we tend to use a digital disk
structuring element.

The basic idea behind the implementation is to maintain a pair of label im-
ages. The first is called the center-map and the second is called the cover-map.
Label regions in each of these images grow concurrently. Regions in the cover-
map are dilations of the corresponding region in the center-map.

Figure 2(a) shows the center map. The region is growing upward and is
indicated by the cross patterned pixels. The black pixel has just been popped
from the queue and is being processed. Figure 2(b) is the dilation of the center
map by the 3 × 3 structuring element (including the black pixel - the top row
of pixels in Figure 2(b) are labeled after the black pixel is popped from the
queue). Pixels labeled A, B, C, D and E are neighbors of the black pixel and
are unlabeled in the center map. Priority values need to be computed for each
of these pixels so that they can be added to the priority queue. Figure 2(c)
shows some pixels with a scale pattern that are used to compute the priority of
pixel B. These pixels {P} are defined mathematically as

{P} = {B ⊕ S} \ L (1)

where S is the structuring element and L is the cover map region.
The set of pixels {P} can be used to define the priority in a number of

ways, which will be discussed in the next section. Once the priority has been
computed pixel B is placed on the queue and the process is repeated for the
other neighbors. The algorithm completes when the queue is empty.

This is the core of the algorithm. The cover map contains the final segmen-
tation result. There are a number of complexities relating to efficiency and
detection of borders between different regions in the cover map. Those details
would severely complicate the description.
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(a) Center-map im-
age – the black pixel
has just been popped
from the queue and
is being processed.

(b) Cover-map im-
age – the covered re-
gion is a dilation of
the center map.

A

B C

E

D

(c) Region used to
compute priority for
pixel B.

Figure 2. Processing steps using center map and cover map (continued).

Details of priority function

The priority function for the locally constrained watershed transform should
be an estimate of the gray level of the region defined by {P}. Obvious choices
are the mean and median gray level, both of which may have advantages in
different circumstances. Similar logic applies to the choice of priority function
for seeded region growing.

The critical point to notice is that the priority is being computed using a set
of pixels that belong to the border of the growing region, rather than a single
pixel, and that the border pixels belong to a user defined structuring element.

This mechanism allows us to include border constraints, that are similar
in character to those seen in geodesic active contour and classical PDE algo-
rithms, in traditional region growing frameworks.

6. Real examples

Confocal cell image

Figure 3 shows a cell image taken with a confocal microscope. The image
is a cross section through the cell and the wall of the cell is broken in many
places. The standard watershed can easily leak through the broken cell wall,
resulting in an undesirable segmentation. The locally constrained watershed,
using a structuring element radius 5 for the cell, produces a much more useful
segmentation that corresponds well to the cell outline.
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Figure 3. Segmentation of a confocal cell image. The markers are shown on the first im-
age. The second and third images show segmentation achieved using standard and locally con-
strained watersheds respectively.

(a) Lung X-ray with
automatically placed
markers

(b) Standard, uncon-
strained seeded region
growing

(c) Right lung con-
strained, diameter 10,
standard for the rest.

(d) All regions con-
strained, diameter 10.

Figure 4. Some segmentation results using seeded region growing.

Lung X-ray image

Figure 4 shows the result of a segmentation of a lung X-ray based on seeded
region growing (SRG). SRG operates on the raw image rather than the gra-
dient image and uses markers (shown in Figure 4(a)). These markers were
found using the automated procedure based on the converging squares algo-
rithm described in [1]. Figure 4(b) illustrates the results achieved by standard
SRG, including a significant leakage through the faint region at the top of the
right lung. Figure 4(c) shows the result that can be achieved when the lung
is constrained and the body isn’t. This is an example of the benefit of mixing
constrained and unconstrained regions. If all regions are constrained (Figure
4(d)) the leak still occurs because the body region is unable to grow through
the thin region near the top of the lung.
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7. Performance

Execution times (using a mean based priority function) are shown below in
Table 1. The times for the constrained watershed are slower than the standard
watershed by factors of between 5 and 10. The standard watershed is imple-
mented using the same framework and same queue structure (a splay queue
as described in [6]). The constrained watershed executed with a single pixel
structuring element produces the same result as the standard watershed, but
takes nearly twice as long to execute. This is because some of the overheads
associated with the use of constraints have an impact on performance even if
the constraints are not being applied. These overheads include the step of look-
ing up the constraint associated with the region currently being processed and
the cost of calling the priority evaluation function. Neither of these steps is
required by the standard watershed, leading to a much faster inner most loop.

Algorithm circle radius watershed line time(s) time ratio
standard watershed NA yes 0.44 1.0

constrained watershed 0 yes 0.7 1.59
constrained watershed 5 no 2.3 5.22
constrained watershed 5 yes 2.6 5.9
constrained watershed 10 no 2.8 6.36
constrained watershed 10 yes 3.15 7.15
constrained watershed 15 no 3.5 7.9
constrained watershed 15 yes 3.85 8.75

Table 1. Running times when applied to a 768×939 lung X-ray on a 1.7GHz Pentium 4 under
Redhat Linux 7.2. The “time ratio” provides a comparison to the execution time of the standard
watershed.

8. Conclusions

The report has introduced an efficient method of applying locally boundary
constraints in a well known region growing framework. This advance makes
some of the interesting properties of classical PDEs available to some greedy
region growing approaches. The approaches described here offer another tool
to stabilize some tricky segmentation problems.

Notes

1. A regional minimum is a connected set of pixels of equal value surrounded by pixels of higher value.

2. The final shape of the region illustrates artifacts of the non isotropic propagation across flat regions.
This is a result of the implementation that is especially obvious in synthetic images.

3. In theory any structuring element can be used.

4. The color may be a vector quantity, which means that difference can be defined in a number of ways.
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Abstract Access to the shape by its exterior is solved using convex hull. Many algorithms
have been proposed in that way. This contribution addresses the open problem
of the access of the shape by its interior also called convex skull. More precisely,
we present approaches in discrete case. Furthermore, a simple algorithm to ap-
proximate the maximum convex subset of star-shaped polygons is described.

Keywords: shape approximation, convex hull, convex skull, potato peeling.

Introduction

In digital image processing we are often concerned with developing spe-
cialized algorithms that are dealing with the manipulation of shapes. A very
classical and widely studied approach is the computation of the convex hull of
an object. However, most of these studies focus only on exterior approaches
for the computation of convexity, i.e., they are looking for the smallest convex
set of points including a given shape. This contribution addresses the problem
of the access of the shape by its interior. The computation of the best shape
according to a criterion included in a given one has been studied in many few
occasions in the continuous case involving convex skull and potato peeling.

In this article, we present successive configurations of fast approximation
of the maximal convex subset of a polygon. First a discrete approach will
illustrate an iterative process based on shrinking and convex hull. Second a
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region based approach will be proposed in specific case where the criterion
is maximal horizontal-vertical convexity. Third study will be focused to the
family of star-shaped polygons P . A simple algorithm extracts the maximal
convex subset in O(k · n) in the worst case if n is the size of P and k its
number of reflex points.

In section 1, we list classical problems of shape approximation. In section
2, we present the discrete approach followed by h-v convexity in section 3. In
section 4, we introduce the Chang and Yap’s optimal solution definitions that
will be used in the rest of the presentation. In section 5, we present the pro-
posed algorithm based on classical and simple geometric tools for star-shaped
polygons. Finally, experiments are given.

1. Shape approximations

In this paper shapes are delimited by polygonal boundary. We suppose that
polygons are simple in the sense that they are self-avoiding. Polygon inclu-
sion problems are defined as follows: given a non-convex polygon, how to
extract the maximum area subset included in that polygon ? In [7], Goodman
calls this problem the potato-peeling problem. More generally, Chang and Yap
[3] define the polygon inclusion problem class Inc(P,Q, µ): given a general
polygon P ∈ P , find the µ-largest Q ∈ Q contained in P , where P is a family
of polygons, Q the set of solutions and µ a real function on Q elements such
that

∀Q′ ∈ Q, Q′ ⊆ Q⇒ µ(Q′) ≤ µ(Q). (1)

The maximum area convex subset is an inclusion problem where Q is the
family of convex sets and µ gives the area of a solution Q in Q. The inclusion
problem arises in many applications where a quick internal approximation of
the shape is needed [2, 5].

In a dual concept, we can mention enclosure problem presented as fol-
lows: given a non-convex polygon, how to extract the minimum area subset
including that polygon ? We can define the polygon enclosure problem class
Enc(P,Q, µ): given a general polygon P ∈ P , find the µ-smallest Q ∈ Q
containing P , where P is a family of polygons, Q the set of solutions and µ a
real function on Q elements such that

∀Q′ ∈ Q, Q′ ⊇ Q⇒ µ(Q′) ≥ µ(Q). (2)

Examples

The following list corresponds to examples of various situations depending
on specifications of the P family, the Q family and the µ measure.

Example 1. P is a family of simple polygons,
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Q is the family of convex polygons,
µ is the area measure,
Enc(P,Q, µ) is the problem of convex hull

Example 2. P is a family of simple polygons,
Q is the family of convex polygons,
µ is the area measure,
Inc(P,Q, µ) is the problem of potatoe pealing [7, 3]

Example 3. P is a family of n-sided convex polygons,
Q is the family of triangles,
µ is the area measure,
Inc(P,Q, µ) has a solution with complexity in O(n)

Example 4. [9] P is a family of n-sided simple polygons,
Q is the family of triangles,
µ is the area measure,
Enc(P,Q, µ) has a solution with complexity in O(nlog2n) O(nlog2n)

Example 5. [8] P is a family of n-sided simple polygons,
Q is the family of rectangles,
µ is the area measure,
Enc(P,Q, µ) has a solution with complexity in O(n) in 2D, O(n3) in 3D.

Example 6. P is a family of n-sided orthogonal polygons,
Q is the family of convex orthogonal polygons,
µ is the area measure,
Inc(P,Q, µ) has a solution with complexity in O(n2) [12].
In the following we will focus on the problem 2.

2. Discrete approach

Let us consider a discrete shape defined as a connected set of pixels. The
objective is to find a maximal convex set included in that discrete shape [4] .

The proposed algorithm is iterative, starting from the initial shape. Each
iteration is composed of a shrinking and computation of the convex hull of
the shrinked shape. If the convex hull is not included in the initial shape,
we reiterate the shrinking process. Else we detect the side of the convex hull
which contains concavity vertex of the initial connected component. We cut
the initial component along this side and restart the algorithm with this new
shape for initialization. The algorithm stops when the modified initial shape is
convex. Figure 1 illustrates the different steps of this algorithm.

Figure 2 illustrates the result of this algorithm on various examples.
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!"# !$#

Figure 1. Iterative process by shrinking and convex hull computation: (a) initial shape, (b)
successive shrinking, (c) the convex hull of the shrinked object is included in the initial shape,
(d) cut of the initial shape for a second pass, (e) the convex hull of the shrinked object is included
in the initial shape, (f) maximal solution.

Figure 2. Illustration on different shapes: initial shape and result are superimposed.

In that case the µ measure is not the area but the Min-max distance between
the boundaries of the initial shape and the solution. This corresponds to the
Hausdorff distance between the two shapes P and Q.

µ(P, Q) = −max(supM∈P infN∈Q d(M, N), supM∈Q infN∈P d(M, N))
where d is the digital distance based on 4 or 8 connectivity.
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3. Limitation to h-v convexity

In that section we limit our study to the particular case of horizontal-vertical
convexity noted by h-v convexity and illustrated on figure 3.

The search of the maximum ortho-convex polygon included into a simple
orthogonal polygon has been solved in the continuous case by Wood and Yap
with complexity in O(n2) [12].

p q

p

q

Figure 3. h-v convexity: In left the shape is h-v convex, in right the shape is not h-v convex..

We will briefly present a method in the discrete case. This work is issued
from an Erasmus project and a detailed version is in the students’ report (see
http://www.suerge.de/s/about/shape/shape.ps.gz).

Let us consider a given shape as a set of 4-connected component . The
principle of this method is to assign a weight to all the pixels in the shape and
then to partition the shape into h-v convex regions according to these weights.

Basically, the entire process consists of four steps which are: - Horizon-
tal/Vertical Sweeping for weight assignement and - Labeling of the shape into
regions and - Construction of Adjacency and Incompatibility graphs between
the labeled regions and - Finding the solution(s).

Illustration of these steps is given on the following example.
The weight being attached to each shape pixel indicates the number of sec-

tions (h-section and v-section) that include this pixel. The minimum weight of
any shape pixel is equal to two. Figure 4 illustrates the weights assignation.

0  0  0  0  0  0  1  1  1
0  0  1  1  1  1  1  1  1
0  1  1  1  1  1  1  1  1
1  1  1  1  0  0  0  0  0
0  1  1  1  0  0  0  0  0
0  0  1  1  1  1  1  1  0
0  0  1  1  0  0  1  1  0

0  0  2  2  3  3  3  3  0
0  2  2  2  0  0  0  0  0

0  2  2  2  3  3  3  3  2
2  2  2  2  0  0  0  0  0

0  0  3  3  0  0  4  4  0

0  0  2  2  3  3  3  3  2
0  0  0  0  0  0  3  3  2

0  0  2  2  0  0  2  2  0
0  0  1  1  1  1  1  1  0
0  1  1  1  0  0  0  0  0
1  1  1  1  0  0  0  0  0
0  1  1  1  1  1  1  1  1
0  0  1  1  1  1  1  1  1
0  0  0  0  0  0  1  1  1

0  0  1  1  2  2  2  2  1
0  1  1  1  2  2  2  2  1

0  0  0  0  0  0  2  2  1

1  1  1  1  0  0  0  0  0 
0  1  1  1  0  0  0  0  0 
0  0  1  1  2  2  2  2  0
0  0  1  1  0  0  2  2  0

sweeping

sweeping

horizontal

vertical

Weight Table after Horizontal Sweep

Weight Table After Vertical SweepOriginal Binary Image

Summation Result

Figure 4. Examples that simulate how the weights are being assigned.
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A region is a maximal connected set of pixels having the same weight. The
labeling process provides a different label to each region. It needs two steps:

1. Extract all the pixels with a same weight and generate a weighted image.
2. Perform labeling on this weighted image.
These two steps will be performed iteratively until all the different weights

have been labeled (figure 5).

0  0  2  2  3  3  3  3  0
0  2  2  2  0  0  0  0  0 

0  2  2  2  3  3  3  3  2
2  2  2  2  0  0  0  0  0

0  0  3  3  0  0  4  4  0

0  0  2  2  3  3  3  3  2
0  0  0  0  0  0  3  3  2 2

2
22 2

2  2
2 2 2

2  2  2  2
2 2 2

2

2
22 2

2  2
2 2 2

2  2  2  2
2 2 2

0   0   0   0   0   0   1   1   20   0   0   0   0   0   1   1   2
0   0   3   3   1   1   1   1   20   3   3   1   1   1   1   2
0   3   3   3   1   1   1   1   2 3   3   3   1   1   1   1 
3   3   3   3   0   0   0   0   0 
0   3   3   3   0   0   0   0   0  3   3   3  
0   0   3   3   4   4   4   4   0  3   3   4   4   4   4 
0   0   5   5   0   0   6   6   0  5   5   0   0   6   6 

C

D

A B

FE

labelingextracting

weight

Weight Table

repeat iteratively

Figure 5. An example that illustrates the labeling process.

Next step will illustrate relationships between regions in term of coexistence
in a hv-convex set. Two graphs are introduce in which regions are vertices:
Adjacency Graph and Incompatibility Graph.

The Adjacency Graph defines the connectivity between the different re-
gions. It indicates that they can be merged to find the biggest hv-convex set.
Two regions are adjacent to each other and their respective nodes will be linked
if there is at least one pixel of each region neighbouring each other (figure 6).

The Incompatibility Graph defines the confliction between different regions.
It indicates that they cannot be combined at the same time to find the biggest
hv-convex set. Two regions are conflicting with each other and their respective
nodes will be linked if there is at least one pixel of each region separated from
each other by a h-section (or v-section) of background pixels (figure 6).

Before starting the graphs analysis we have to realise that every region is
a solution, since every region is hv-convex itself and is included in the shape.
However finding just a solution is not sufficient, since we are interested in the
maximum or even optimal solution. A maximum solution is a solution in which
no other region can be added without violating the hv-convexity constraint.
The optimum solution is the best possible maximum solution. It does not have
to be unique. To find the best solution we have to determine all the maximum
solutions issued from the following steps.
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0   0   0   0   0   0   1   1   20   0   0   0   0   0   1   1   2
0   0   3   3   1   1   1   1   20   3   3   1   1   1   1   2
0   3   3   3   1   1   1   1   2 3   3   3   1   1   1   1 
3   3   3   3   0   0   0   0   0 
0   3   3   3   0   0   0   0   0  3   3   3  
0   0   3   3   4   4   4   4   0  3   3   4   4   4   4 
0   0   5   5   0   0   6   6   0  5   5   0   0   6   6 

C

D

A A BB

C C
D

D

E EF FE

A B

FE

Figure 6. Adjacency (middle) and Incompatibility (right) graphs from the labeled shape (left).

1. Pick a region and put this in an initially empty set (let us call this set A).
2. Construct two lists, one called the adjacency list and the other one called

the incompatibility list. These lists contain the labels of the regions which are
respectively adjacent and conflicting with the regions in set A. If there is a
region, which is in the adjacency list (and not in the incompatibility list), then
add this to set A and update both lists. When this cannot be done anymore, we
have found a maximum solution, since we do not have anymore candidates on
the adjacency list.

3. Backtrack is needed to solve the problem of choice in the adjacency list.
A region, which has not been picked before, should be placed into set A.

4. At the moment that all possibilities have been tried, we can change the
initial region with which we started the search and go back to step 2 until every
region has been the initial region of the set A.

If at every step the current solution is compared with the best solution so far,
then at the end of the algorithm one of the optimal solutions is found.

The illustration in figure 7 shows the construction of maximal solutions by
traversing the graphs of adjacency an incompatibility.

4. Preliminaries and Exact Polynomial Solution

For the rest of the presentation,we consider a polygon P = (v0, v1, . . . , vn−1)
with n vertices. We denote by R = (r0, r1, . . . , rk−1) the k reflex vertices (or
concave vertices) of P (maybe empty). The potato-peeling problem can be
expressed as follows,

Problem 1 Find the maximum area convex subset (MACS for short) Q con-
tained in P .

In [7], Goodman proves that Q is a convex polygon.
He presents explicit solutions for n ≤ 5 and leaves the problem unsolved in

the general case.
In [3], Chang and Yap prove that the potato-peeling problem can be solved in

polynomial time in the general case. More precisely, they detail an O(n7) time
algorithm to extract Q from P . Since this algorithm uses complex geometric
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Figure 7. Table showing how to traverse the graphs of adjacency and incompatibility to get
maximal solutions. ABCE is the optimal solution.

concepts and dynamic programming in several key steps, it is not tractable in
practical applications.

Let us present some elements of the Chang and Yap’s algorithm. First of all,
we define a chord of P by a maximal segment fully contained in P . A chord
is said to be extremal if it contains two or more vertices of P . In particular,
an edge of P is always enclosed in an extremal chord. Let C1, C2CC , . . . , CmCC
be chords of P with m ≤ k such that each CiCC passing through reflex vertices
of P . We first consider the chords going through a unique reflex point. Let
us associate to each such a chord CiCC passing through u in R, the closed half-
plane C+

iC defined by CiCC and such that at least one or two adjacent vertices to
u does not belong to C+

iC . If CiCC passes through more than one reflex vertex,
the choice of the half-plane can be made in similar ways (see figure 8). They
prove that the maximum area convex polygon Q is given by the intersection of
P and a set of half-planes defined by a set of so-called optimal chords (see [3]).
Hence, to solve the potato-peeling problem, we have to find the appropriate set
of optimal chords associated to the reflex vertices.

If P has only one reflex vertex u, the optimal chord CuCC that leads to the
MACS Q can be easily found. First of all, Chang and Yap [3] define a butterfly
as a sequence of points [b′, a, u, b, a′] such that a, u and b are consecutive ver-
tices in P with a and b adjacent vertices of u in P , and such that both [a, u, a′]
and [b, u, b′] are extremal chords (see figure 9). Furthermore, the chord [c, u, c′]
is said to be balanced if we have |cu| = |uc′| (c and c′ belonging to P ). Based
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Figure 8. Notations and illustrations of chords and half-planes generated by these chords.

Figure 9. One reflex vertex case: an A-butterfly (left) and a V-butterfly (right). According to
lemma 2, the optimal chord of each polygon is one of the gray segments.

on these definitions, two kinds of butterflies exist according to the position of
the intersection O between the straight lines (b′a) and (ba′), and the polygon.
More precisely, a A-butterfly is such that the points b′, a and O (or O, b and a′)
appear in this order (see figure 9-(left)) in the straight line (ab) (resp. (a′b′)).
Otherwise, it is called a V-butterfly (see figure 9-(right)). In this one reflex
corner case, Chang and Yap prove the following lemma:

Lemma 2 (Butterfly lemma [3]) Given a butterfly B and its optimal
chord CuCC , if B is a V-butterfly then CuCC is an extremal chord. If B is a A-
butterfly, CuCC is either extremal or balanced.

We notice that in case of V-butterfly we have two possible chords, in case
of A-butterfly, three choices are possible. This lemma leads to a linear in time
solution to the potato-peeling problem if k = 1.

In a general case, Chang and Yap [3] define other geometric objects such
as series of A- and V-butterflies. Based on these definitions, they present an
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A-lemma and a V-lemma, similar to lemma 2, that state that the optimal chords
for a set of butterflies are extremal chords or a set of balanced chords. In the
general case, the definition of a balanced chain for a butterfly sequence is more
complex than in the previous case (see figure 10-(a)). Hence, the computation
of such a chain uses dynamic programming and complex geometric concepts.
Furthermore this step is the bottleneck of the algorithm and makes expensive
the O(n7) global time complexity.

Figure 10. Examples of balanced chains of A-butterflies series: (a) a balanced chain given
by single-pivot chords and (b) given by both single- and double-pivot chords.

To end with definitions, Chang and Yap divide the set of balanced chords
into two classes: a balanced chord is called single-pivot if it contains only one
reflex vertex (chord C1 in figure 8) and double-pivot if it contains two distinct
reflex points (chord C2CC in figure 8). Finally, the optimal set of chords that
defines the MACS of P contains extremal, balanced single-pivot and balanced
double-pivot chords. In figure 10-(a), the solution is composed by only single-
pivot chords, in figure 10-(b) both single- and double-pivot chords. Note that
for a reflex vertex ri, from the set of extremal chords associated to ri, we just
have to consider the two extremal chords induced by the two adjacent edges to
ri. In the following, we restrict the definition of an extremal chord to a chord
that contains an edge of P incident to a reflex vertex.

Our contribution starts here. In the next section, we present a fast algorithm
to approximate the maximum area convex subset star-shaped polygons that
uses Chang and Yap’s analysis.

5. Fast approximation algorithm

Kernel dilatation based heuristic

In this section, we assume that P is a star-shaped polygon. First of all, we
remind basic definitions of such a polygon. P is a star-shaped polygon if there
exist a point q in P such that ¯qvi lies inside P for all vertices vi of P . The set
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of points q satisfying this property is called the kernel of P [11]. Using our
definitions and [11], we have:

Proposition 3 The kernel of P is given by the intersection between P and
the half-planes C+

iC defined by all extremal chords CiCC associated to all reflex
vertices.

Figure 11. Illustration of the kernel computation of the example in figure 10-(a).

Figure 11 is an illustration of such proposition. We have the theorem.

Theorem 4 Let P be a star-shaped polygon, then its kernel is a subset of
the maximum area convex subset of P .

PROOF. Let CiCC be the optimal chord associated to a reflex point ri of P . We
consider the closed space K defined by the intersection between P and
the two extremal chords of ri. If CiCC is an extremal chord, it is clear that
K ⊆ (C+

iC ∩ P ). If CiCC is a single or double-pivot balanced chord, the
slope of CiCC is strictly bounded by the slopes of the two extremal chords.
Furthermore, since all the half-planes have the same orientation accord-
ing to P and ri, we also have K ⊆ (C+

iC ∩ P ) (see figure 9-(left) for
example). Finally, since the maximum area convex polygon is the inter-
section between P and the set of half-planes defined by optimal chords,
and since the two extremal chords always define a subset to the associ-
ated optimal chord, the intersection of all extremal chords is a subset of
the MACS of P . With proposition 3, the kernel of P is a convex subset
of the MACS. �

In other words, there exists a continuous deformation that transforms the
kernel to the MACS. In the following, the strategy we choose to approximate
the MACS is to consider the deformation as an Euclidean dilatation of the
kernel. Based on this heuristic, several observations can be made: the reflex
vertices must be taken into account in the order in which they are reached
by the dilatation wavefront. More formally, we consider the list O of reflex
vertices such that the points are sorted according to their minimum distance
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to the kernel polygon. When a reflex vertex is analyzed, we fix the possible
chords and introduce new definitions of chords as follows:

the chord may be an extremal one as defined by Chang and Yap;

the chord may be a single-pivot chord such that its slope is tangent to the
wavefront (this point will be detailed in the next section);

the chord may be a double-pivot chord. In that case, the second reflex
vertex that belongs to the chord is necessary. It must correspond to the
next reflex point in the order O.

Furthermore, when a reflex vertex is analyzed, we choose the chord from
this list that maximizes the area of the resulting polygon. If we denote by P ′

the polygon given by the intersection between P and the half-plane associated
to the chosen chord, the chord must maximize the area of P ′. In the algo-
rithm, it is equivalent to minimize the area of the removed parts P/P ′. Using
these heuristics, the approximated MACS algorithm can be easily designed in
a greedy process:

1: Compute the kernel of P
2: Compute the ordered list O of reflex vertices
3: Extract the first point r1 in O
4: while O is not empty do
5: Extract the first point r2 in O
6: Choose the best chord that maximizes the resulting polygon area

with the chords (r1, r2)
7: Modify the polygon P accordingly
8: Update the list O removing reflex points excluded by the chord
9: r1 ← r2

10: end while

Algorithms and complexity analysis

In this section, we detail the algorithms and their computational costs. Keep
in mind that n denotes the number of vertices of P and k the number of reflex
vertices.

Distance-to-kernel computation. First of all, the kernel of a polygon can
be constructed in O(n) time using the Preparata and Shamos’s algorithm [11].
Note that the number of edges of the kernel is O(k) (intersection of 2k half-
planes). The problem is now to compute the distances between the reflex ver-
tices and the kernel of P denoted Kern(P ). A first solution is given by the
Edelsbrunner’s algorithm that computes the extreme distances between two
convex polygons [6].
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However, we use another geometrical tool that will be reused in the next
section. Let us consider the generalized Voronoi diagram of Kern(P ) [11,
1]. More precisely, we are interested in the exterior part to Kern(P ) of the
diagram (see figure 12). As Kern(P ) is convex, such a diagram is defined
by exterior angular bisectors {bi}i=1..5 of the kernel vertices. For example in
figure 12, all exterior points to Kern(P ) located between the angular bisectors
b0 and b1, are closer to the edge e (extremities are included) than to all other
edges of Kern(P ). Hence, the minimum distance between such a point and
Kern(P ) is equal to the distance between the point and the edge e.

Figure 12. Euclidean growth of a convex polygon.

To efficiently compute the distance between all reflex vertices to the kernel,
we first detail some notations. Let Bm be the open space defined by Kern(P )
and the exterior angular bisectors bm and bm+1 (if m+1 is equal to |Kern(P )|
then b0 is considered). Hence, the distance to kernel computation step can be
viewed as a labelling of vertices of P according to the cell Bm they belong to.
To solve this labelling problem, we have the following proposition.

Proposition 5 The vertices of P that belong to the cell Bm form only one
connected piece of P .

PROOF. Let us consider an half-line starting at a point of Kern(P ). By
definition of Kern(P ), the intersection between such an half-line and P
is either a point or an edge of P . The special case when the intersection
is an edge of P only occurs when the starting point belongs to an edge
of Kern(P ) and when the half-line is parallel to this edge (and thus
parallel to an extremal chord of a reflex vertex of P ). Hence, using
the definition of the exterior angular bisectors and given a cell Bm, the
half-line bm (resp. bm+1) crosses P at a point pm (resp. pm+1) of P .
Furthermore, each vertex of P between pm and pm+1 belongs to Bm,
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otherwise the number of intersections between P and bm or bm+1 should
be greater than one. Finally, only one connected piece of P belongs to
Bm. �

Then the proposition implies the corollary:

Corollary 6 The order of the P vertex labels is given by the edges of
Kern(P ).

Hence, we can scan both the vertices of P and the edges of Kern(P ) to
compute the distance-to-kernel. We obtain the following simple algorithm1:

1: Find the closest edge ej of Kern(P ) to the point v0 ∈ P
2: for i from 1 to n do
3: while d(vi, ej ) > d(vi, ej+1 (mod |Kern(P )|)) do
4: j:=j + 1 (mod |Kern(P )|)
5: end while
6: Store the distance d(vi, ej ) to vi

7: end for

To detail the computational costs, the step 1 of this algorithm is done in
O(k) and the cost of the For loop is O(n). As the matter of fact, using Prop. 5
and excepted for the first edge ej ∈ Kern(P ) of step 1, when we go from an
edge ej′ to next one, the piece of P associated to the cell Bm defined by ej′ is
completely computed. Hence, each edge of Kern(P ) is visited once during all
the process. Note that the first edge ej of step 1 may be used twice to complete
the scan of P .

Finally, the minimum distances between the vertices of P and Kern(P ) are
computed in O(n). Note that since we are only interested in labelling reflex
vertices, the above algorithm can transformed to have a O(k) computational
cost. However, a O(n) scanning of P is still needed to identify reflex points.
Furthermore, the sorted list O of reflex points according to such distance is
computed in O(k · log k).

Single-pivot chords computation. Given a reflex point ri of P , we have
listed three possible classes of chord: extremal, single-pivot and double-pivot
chords. The figure 13 reminds the possibles chords. The extremal and double-
pivot chord computation is direct. However, we have to detail the single-pivot
chord extraction. According to our heuristic, the single-pivot chord associated
to ri must be tangent to the wavefront propagation of the kernel dilatation.

Using the exterior angular bisector structure we have introduced above, we
can efficiently compute the slopes of such chords. In figure 14-(a), let e1 and
e2 be two adjacent edges of Kern(P ) (e1 and e2 are incident to the vertex v).
Let p (resp. q) be a point in the plane that belongs to the cell generated by
e1 (resp. e2). We can distinguish two cases: p is closer to e1 than to one of
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Figure 13. All possible chords that can be associated to the reflex point r1 (the two extremal
chords, a single-pivot balanced chord and the double-pivot chord).

its extremities and q is closer to v than to e2 (without the extremities). Hence
the straight line going through p and tangent to the wave-front propagation is
parallel to e1. In the second case, the tangent to wavefront straight line going
through q is tangent to the circle of center v and radius ‖ �vq‖ (see figure 14).
Moreover, two particular cases can be identified (see figure 14-(b)): the first
one occurs when the distance between v and q is null, in that case the slope of
the chord is the mean of the slopes of edges e1 and e2. The second case occurs
when the single-pivot chord does not fulfill the maximal chord definition (see
the right figure in 14-(b)). In that case, we do not consider this single-pivot
chord in the optimal chord choice of line 6 in the main algorithm. Note that
this last particular case can also occur with double-pivot chords. In such cases,
the chord is not considered too.

(a) (b)

Figure 14. Computing a chord parallel to the kernel dilatation wavefront: (a) slope compu-
tation in the general case, (b) illustration of the two particular cases: the distance between the
reflex point and the kernel is null and the single-pivot chord is not a maximal chord.

Finally, if each reflex point ri of P is labelled according to the closest edge
ei of Kern(P ) (extremities included), we can directly compute the single-
pivot chord: if ri is closer to ej than one of its extremities, the chord is parallel
to ej , otherwise, the chord is tangent to a given circle.
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Note that this labelling can be obtained using the previous distance-to-kernel
algorithm. Finally, the computation of the k single-pivot chords is done in
O(k).

Polygon cut and area evaluation. Given a reflex point ri and a chord CiCC
either extremal, single-pivot of double-pivot, we have to compute the resulting
polygon of the intersection between P and C+

iC . We suppose that the vertices
of P are stored as a doubly-connected list.

The cutting algorithm is simple: starting from ri, the vertices of P are
scanned in the two directions until they belong to C+

iC (see figure 15).

Figure 15. Illustration of the vertex scan to compute the (P ∩ C+
iC ) polygon.

During the process, let m be the number of removed vertices. Hence, the
polygon cut according to CiCC is done in O(m). Furthermore, the resulting poly-
gon has got n −m vertices. Hence, given k reflex vertices and k chords, the
resulting polygon is computed in O(n): each vertex is visited a constant num-
ber of times.

Furthermore, the area of the removed parts can be computed without chang-
ing the computational cost. Indeed, let p be a point in the plane, the area of a
polygon P is given by

A(P ) =
1
2

n−1∑
i=0

A(p, vi, vi+1 (mod n)) , (3)

where A(p, vi, vj) denotes the signed area of the triangle (p, vi, vj) [10]. Hence,
the area can be computed in a greedy process during the vertex removal pro-
cess.

Overall computational analysis

Based on the previous analyses, we can detail the computational cost of the
global algorithm presented in the section 5. First of all, step 1 (kernel deter-
mination) requires O(n) computation using [11]. Then, we have presented a
simple O(n) algorithm to compute the distance-to-kernel of reflex vertices and
thus the cost of step 2 (reflex vertices sorting) is O(n + k · log k). The Step 3
and the step 5 in the while loop on reflex vertices requires O(1) computations.
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Given the two reflex points r1 and r2 of step 6, we have to decide which
chord should be associated to r1. We have two extremal chords, a single-
pivot chord whose slope is computed in O(1) and a double-pivot chord going
through r2. Using our heuristics, we choose the chord that minimizes the re-
moved part of P . Hence, we compare the removed part area using the double
chord and the 9 area measures of the 3 × 3 other possible choices for r1 and
r2. Hence, at each step of the while loop, we compute 10 polygon cuts and we
choose, for the r1 chord, the chord that maximizes the resulting polygon area.
Note that steps 7 and 8 are computed during the polygon cutting steps and do
not change the computational cost.

In the worst case, each polygon cut step is done in O(n). Hence, the overall
complexity of the while loop is O(k · n). Finally, the cost of the approximated
MACS extraction algorithm is O(k ·n) in the worst case. Let N be the number
of removed vertices while evaluating the optimal chord at r1 in step 6. If we
suppose that the reflex vertices of P are uniformly distributed in the sense
that each other tested chord only visits the same amount O(N) of vertices.
Then, at each step, O(N) vertices are visited and the modified polygon has got
O(n − N) vertices. Hence, the while loop complexity becomes O(n). This
leads to a global cost for the approximated MACS extraction in O(n+k·log k).
In practice, such uniformity has been observed in our examples.

To speed up the algorithm, several optimizations can be done without chang-
ing the worst case complexity. For example, when chords going through r2 are
tested, the obtained polygons are propagated to the next step of the while loop
in order to reduce the number of polygon cut steps. Furthermore, since the
area of the removed parts is computed during the vertex scan, the process can
be stopped if the area is greater than the current minimum area already com-
puted with other chords.

Experiments

In this section, we present some results of the proposed algorithm. First of
all, the figure 16 compares the results between the optimal Chang and Yap’s
algorithm [3] and the approximated MACS extraction process. In practical
experiments, the optimal O(n7) algorithm do not lead to a direct implemen-
tation. Indeed, many complex geometrical concepts are used and the overall
algorithm is not really tractable. Hence, we use a doubly-exponential process
to extract the optimal MACS. The main drawback of this implementation is
that we cannot extract the optimal MACS if the number of the polygon points
is important. In figure 16, the first column presents the polygon, its kernel
and the distance labelling of all vertices, the second row contains the optimal
MACS and the third one the approximated MACS. Note that the results of the
last row are identical.
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If we compute the area error between the optimal and the approximated
MACS on these examples, the error is less than one percent.
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Figure 16. Comparisons between the optimal MACS and the proposed algorithm: the first
column presents the input polygons, their kernels and the distance labelling, the second column
shows the results of the Chang and Yap’s algorithm. The last row present the result of the
proposed algorithm.
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Figure 17. Some intermediate steps of the approximated MACS algorithm.

The figure 17 illustrates the intermediate steps of the approximated MACS
algorithm and the figure 18 presents the result of the proposed algorithm on
different shapes.
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Figure 18. Results of the proposed approximated MACS algorithm on various shapes. The
first row illustrates the shapes, their kernels and the distance labelling, the second row presents
the obtained solutions.

6. Conclusion

In this article, we have proposed different approaches to extract a maximum
convex subset of a polygon. In discrete representation space, we extract the
maximum convex subset using the Hausdorff distance. A second illustration
in discrete case was for finding the maximum h-v convex subset. In continous
representation mode, for a star-shaped polygon, we propose a fast algorithm to
extract an approximation of the maximum convex subset. The maximality has
to be understand with the area measure. To do that, we have defined a kernel
dilatation based heuristic that use classical tools in computational geometry.
The computational worst case cost of the algorithm is O(k · n) where n is the
number of points of the polygon and k is the number of reflex vertices. How-
ever, under some hypotheses on the reflex vertex distribution, the complexity
can be bounded by O(n + k · log k). In our experiments, the computational
behavior of the algorithm is closer to the second complexity bound than to the
first one.

In future works, a first task consists in a formal comparison between the
proposed approximated solution and the optimal one, detailed by Chang and
Yap [3]. However, heuristics choices make this comparison non-trivial. More
generally, an optimization of the Chang and Yap’s optimal algorithm is still
an open problem. However, efforts should be made to extend this heuristic to
general polygons.

Notes

1. d(vi , ej ) denotes the Euclidean distance between the point vi and the segment ej
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Abstract We say that a metric space is regular if a straight-line (in the metric space sense)
passing through the center of a sphere has at least two diametrically opposite
points. The normed vector spaces have this property. Nevertheless, this property
might not be satisfied in some metric spaces. In this work, we give a charac-
terization of an integer-valued translation-invariant regular metric defined on the
discrete plane, in terms of a symmetric subset B that induces through a recursive
Minkowski sum, a chain of subsets that are morphologically closed with respect
to B.

Keywords: Mathematical Morphology, symmetric subset, ball, lower regularity, upper reg-
ularity, regular metric space, integer-valued metric, translation-invariant metric,
triangle inequality, recursive Minkowski sum, morphological closed subset, dis-
crete plane, computational geometry, discrete geometry, digital geometry

Introduction
The continuous plane or, more precisely, the two-dimensional Euclidean

vector space, has good geometrical properties. For example, in such space, a
closed ball is included in another one only if the radius of the latter is greater
than or equal to the sum of the distance between their centers and the radius of
the former. Furthermore, in such space, two closed balls intersect each other
if the sum of their radii is greater than or equal to the distance between their
centers. Nevertheless, not all metric spaces have these properties.

In the first part of this work, we clarify the concept of regular metric space
in which the above two geometrical properties are satisfied.

We say that a metric space is regular if its metric satisfies three regularity
axioms or equivalently if a straight-line (in the metric space sense) passing
through the center of a sphere has at least two diametrically opposite points.
The Minkowski spaces (i.e., finite dimensional normed vector spaces) have this
property.
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This regularity is generally lost when a metric on the continuous plane is
restricted to the discrete plane, as it is the case of the Euclidean metric.

In the second part of this work, we study the characterization of the integer-
valued translation-invariant regular metrics on the discrete plane in terms of
some appropriate symmetric subsets.

We show that every such metric can be characterized in terms of a symmetric
subset B that induces through a recursive Minkowski sum, a chain of subsets
that are morphologically closed with respect to B.

Our characterization shows how to construct an integer-valued translation-
invariant regular metric on the discrete plane.

This is an important issue in digital image analysis since the image domains
are then discrete. In the sixties, Rosenfeld and Pfaltz [7] have already intro-
duced a metric property and have used it to describe algorithms for computing
some distance functions by performing repeated local operations. It appears
that their property is precisely a necessary condition for a metric to be regular.

We came across the regularity property for a metric while we were trying to
prove the one-pixel width of the skeleton of the "expanded" subsets proposed
in [1]. Actually, what we needed at that time was just a "lower" regularity.

In one dimension, we observed that the (discrete) convexity is not a neces-
sary condition to have the morphological closure property, so it was useless to
solve our problem.

For the sake of simplicity of the presentation, in this work, we limit our-
selves to the class of integer-valued metrics. More precisely, we consider the
class of metrics that are mappings from the discrete plane onto the set of inte-
gers. This should not be a serious limitation because on the discrete plane the
metrics assume only a countable number of values.

In Section 1, we give an axiomatic definition of regular metric spaces and
we show that of the three axioms only two are sufficient to define the metric
regularity. In order to get the regular metric characterization in the last section,
we give in Section 2, independently of the metric definition, a definition of
balls based on the notions of set translation and set transposition. In the same
section, we recall the notions of recursive Minkowski sum, generated balls and
border. In Section 3, we study the properties of the balls of a regular metric
space. Conversely, in Section 4, we study the properties of the metric spaces
constructed from the symmetric balls having a morphological closure property.
Finally, in Section 5, we show the existence of a bijection between the set
of integer-valued translation-invariant regular metrics defined on the discrete
plane and the set of the symmetric balls satisfying the morphological closure
property.
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1. Regular Metric Space Definition

In a metric space we can define the concepts of straight-line and sphere.
Let (E, d) be a metric space [4, Definition 7.10]. For any x and y ∈ E, and
any i ∈ d({x} × E) (i.e., the image of {x} × E through d), let us define the
following subsets of E:

L1(x, y)

= {z ∈ E : d(x, z) = d(x, y) + d(y, z)},

L2(x, y)

= {z ∈ E : d(x, y) = d(x, z) + d(z, y)},

L3(x, y)

= {z ∈ E : d(z, y) = d(z, x) + d(x, y)}, and

S(x, i)

= {z ∈ E : d(x, z) = i}.

The subsets L(x, y) = L1(x, y)∪L2(x, y)∪L3(x, y) and S(x, i) are called,
respectively, the straight-line passing through the points x and y, and the sphere
of center x and of radius i. Figure 1 shows the three parts of L(x, y) in the
Euclidean case.

1

L3(x(( ,y) L2(x(( ,y) L1(x(( ,y)

x y

Figure 1. The three parts of the straight-line.

We must be aware that the above definition of straight-line is based on the
concept of metric and the resulting object is generally different from the usual
straight-line defined in the framework of linear vector space.

Because of the symmetry property of the distances, the straight-lines have
some kind of symmetry as well (a detailed proof of all the propositions in this
work can be found in [3]).

Proposition 1 (straight-line symmetry) - Let (E, d) be a metric space. For
any x and y ∈ E,
(i) L1(x, y) = L3(y, x);
(ii) L2(x, y) = L2(y, x);
(iii) L(x, y) = L(y, x).

Based on the concepts of straight-line and sphere, we can define what we
call regular metrics and regular metric spaces.

Definition 1 (regular metric spaces) - Let (E, d) be a metric space. The
metric d on E is
(i) lower regular of type 1 if S(x, i) ∩ L1(

11

x, y) �=�� ∅, for any x and y ∈ E, and
any i ∈ d({x} ×E), such that d(x, y) ≤ i;
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(ii) lower regular of type 2 if S(x, i)∩L2(x, y) �=�� ∅, for any x and y ∈ E, and
any i ∈ d({x} ×E), such that i ≤ d(x, y);
(iii) upper regular if S(x, i) ∩ L3(x, y) �=�� ∅, for any x and y ∈ E, and any
i ∈ d({x} ×E);
(iv) regular if it is lower regular (of type 1 and 2) and upper regular. A metric
space (E, d) is regular if its metric is regular.

Actually, because of Proposition 1, the three regularity axioms are not inde-
pendent each other as we show in the next proposition.

Proposition 2 (axiom dependence) - Let (E, d) be a metric space. The
metric d on E is lower regular of type 1 if and only if (iff) it is upper regular.

The axiom dependence (Proposition 2) allows us to make an equivalent def-
inition of regular metrics, but simpler with only two axioms, the lower regular-
ity of type 2 being called simply lower regularity.

Corollary 2 (first equivalent definition of regular metrics) - Let (E, d) be
a metric space. The metric d on E is
(i) lower regular if S(x, i) ∩ L2(x, y) �=�� ∅, for any x and y ∈ E, and any
i ∈ d({x} ×E), such that i ≤ d(x, y);
(ii) regular iff it is lower and upper regular.

In his lecture note [5], in order to compare balls with different centers, Kisel-
man has introduced for the translation-invariant metrics the properties of being
upper and lower regular for the triangle inequality. Actually, for the translation-
invariant metrics, his upper regular property is the same of our upper regular-
ity. His lower regular property is our lower regularity of type 1 which is, by the
above axiom dependence, equivalent to the upper regular property. Kiselman
doesn’t mention the independent axiom of lower regularity of type 2, which is
our lower regularity.

The next proposition is another equivalent definition, which is more geo-
metrical.

Proposition 3 (second equivalent definition of regular metrics) - A metric
d on E is regular iff for any x and y ∈ E, and any i ∈ d({x} × E), the
intersection between the straight-line L(x, y) and the sphere S(x, i) have at
least two diametrically opposite points in the sense that there exist u and v ∈
S(x, i) such that u ∈ (L1(x, y) ∪ L2(x, y)) and v ∈ L3(x, y).

The next proposition shows that the lower (resp. upper) regularity prop-
erty for a metric is a sufficient condition to have the usual ball intersection
(resp. inclusion) property of the Euclidean vector spaces. We denote by

Bd(x, i)

= {z ∈ E : d(x, z) ≤ i} the ball of center x and radius i in a metric

space (E, d).
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Proposition 4 (ball intersection and inclusion in a regular metric space) -
Let (E, d) be a metric space then, for any x and y ∈ E, any i ∈ d({x} × E)
and any j ∈ d(E × {y}),
(i) Bd(x, i) ∩Bd(y, j) �=�� ∅ ⇒ d(x, y) ≤ i + j;
(ii) if (E, d) is lower regular, then d(x, y) ≤ i+ j ⇒ Bd(x, i)∩Bd(y, j) �=�� ∅;
(iii) i + d(x, y) ≤ j ⇒ Bd(x, i) ⊂ Bd(y, j);
(iv) if (E, d) is upper regular, then Bd(x, i) ⊂ Bd(y, j)⇒ i + d(x, y) ≤ j.

2. Balls, Recursice Minkowski sum, Generated Balls and
Border

From the operations of translation and transposition, we can build the sub-
collection of symmetric subsets and their translated versions, that we call here
balls. The symmetry assumption is made in order to establish, in Sections 3
and 4, the relationship with the distances (which are symmetric mappings).

Because of our interest in digital image processing, the balls will be consid-
ered as subsets of the discrete plane (Z2, +) (the Cartesian product of the set
of integers by itself, provided with the usual integer pair addition).

We denote by XuXX the translated version of a subset X of Z2 by a point u in

Z2, that is, XuXX

= {y ∈ Z2 : y − u ∈ X}.

We denote by o the unit element of the addition on Z2 and we call it origin
of the discrete plane. A subset X of Z2 is symmetric (with respect to the origin
o) if it is equal to its transpose, that is, x ∈ X ⇔ −x ∈ X . Z2 is an example
of symmetric subset.

Definition 3 (balls) - A subset X of Z2 is a ball if ∃u ∈ Z2 such that XuXX is
a finite symmetric subset of Z2 or is Z2.

Let N be the set of natural numbers and let N+ be the set of extended natural
numbers (i.e., the natural numbers plus an element denoted∞) with the usual
addition extended in such a way that, for any j ∈ N+, j +∞ = ∞ + j = ∞
and with the usual order extended in such a way that, for any j ∈ N+, j ≤ ∞.

We denote by X⊕Y (resp. X	Y ) the Minkowski sum (resp. difference) of
the subsets X and Y of Z2 [2][4][6]. From the Minkowski sum we can define
a recursive Minkowski sum.

Definition 4 (recursive Minkowski sum) - Let B ∈ P(Z2) (all the parts of
Z2) such that B �=�� ∅, and let j ∈ N+, the recursive Minkowski sum of B times
j is the subset jB of Z2 given by

jB

=

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
{o}
B
((j − 1)B)⊕B
Z2

if
if
if
if

j = 0
j = 1
1 < j <∞
j =∞
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With a finite symmetric ball B we can associate, through the recursive

Minkowski sum, a sub-collection of balls BB

= {X ∈ P(Z2) : ∃j ∈ N+ and

∃u ∈ Z2, X = (jB)u}. We say that B induces or generates the sub-collection
BB . We call the elements of BB generated balls.

In order to be able to characterize the integer-valued translation-invariant
regular metrics later on, we need the concept of sub-collection of closed gen-
erated balls. For convenience, we say that B has the closure property if every
member of BB is morphologically B-closed, that is, for every X ∈ BB , X
satisfies the equation X = (X ⊕B)	B.

Based on the mix distributivity of the recursive Minkowski sum: for any i
and j ∈ N, (i+j)B = (iB)⊕(jB), we can establish the next two propositions.

Proposition 5 (generated balls versus intersection) - Let B be a finite sym-
metric ball, then for any x and y in Z2 and any i and j in N,

y ∈ ((i + j)B)x ⇔ (iB)x ∩ (jB)y �=�� ∅.

Proposition 6 (generated balls versus inclusion) - Let B be a finite sym-
metric ball, then for any x and y in Z2 and any i and j in N,
(i) x ∈ (jB)y ⇒ (iB)x ⊂ ((i + j)B)y;
(ii) if B has the closure property, then (iB)x ⊂ ((i + j)B)y ⇒ x ∈ (jB)y.

We now recall the definitions of an erosion by a structuring element and of
a B-border. We will use the latter definition in the study of the ball border.

Let B be a subset of Z2, the erosion by B is the mappings from P(Z2) to
P(Z2), εB : X �→ X	B; the B-border of a finite subset X of Z2 is the subset
∂B(X) = X \ εB(X).

We observe that the B-border is an inner border: ∂B(X) ⊂ X .
The following proposition about the erosion of a generated ball will be use-

ful for the study of the generated ball border properties in Proposition 8.

Proposition 7 (erosion of a generated ball) - Let B be a subset of Z2. For
any x ∈ Z2 and j ∈ N \ {0},
(i) εB((jB)x) ⊃ ((j − 1)B)x

(ii) if B has the closure property, then εB((jB)x) = ((j − 1)B)x.

Proof - Property (i) follows from the closing extensivity. Property (ii) follows
directly from the closure property of B. �

Proposition 8 (generated balls versus B-border) - Let B be a finite sym-
metric ball having more than one element and having the closure property.
Then for any x and y in Z2 and any i and j in N,
(i) x ∈ ∂B(((i + j)B)y)⇒ ∂B((iB)x) ∩ ∂B((jB)y) �=�� ∅;
(ii) x ∈ ∂B((jB)y)⇒ ∂B(((i + j)B)y) ∩ ∂B((iB)x) �=�� ∅.
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Proof - Property (i) follows from Proposition 5 (generated balls versus inter-
section) and Proposition 7 (erosion of a generated ball). Property (ii) follows
from Proposition 6 (generated balls versus inclusion) and again from Proposi-
tion 7. �

3. From Metric to Symmetric Ball

With a translation-invariant (t.i.) metric [3][5], we can associate a ball of
center at the origin.

Let (Z2, d) be a t.i. metric space such that d is a mapping onto N or N+, that
is, d(Z2 × Z2) = N or, in the case of a generalized metric, d(Z2 × Z2) = N+.

As usual the unit ball of (Z2, d), denoted by Bd, is the set of all the points
at a distance less than or equal to one from the origin o, that is,

Bd

= {u ∈ Z2 : d(u, o) ≤ 1}.

In the next proposition, we show a relationship between a t.i. lower regular
metric and the recursive Minkowski sum of its unit ball.

Proposition 9 (property of the generated balls in a lower regular metric
space) - Let (Z2, d) be a t.i. metric space such that d(Z2 × Z2) = N (resp.
N+), for any x and y ∈ Z2, and any j ∈ N (resp. N+),
(i) x− y ∈ jBd ⇒ d(x, y) ≤ j;
(ii) if d is lower regular, then d(x, y) ≤ j ⇒ x− y ∈ jBd.

Proof - We can prove recursively that Properties (i) and (ii) follow, respec-
tively, from Properties (i) and (ii) of Proposition 4 (ball intersection and inclu-
sion in a regular metric space) substituting i and j, by respectively, j − 1 and
1. �

The next proposition, which is a consequence of the previous one, will be
used in Section 5 to characterize the regular metrics. It shows that in a reg-
ular metric space the recursive Minkowski sum of the unit ball Bd generates
morphologically closed subsets with respect to Bd.

Proposition 10 (closure property of the unit ball of a regular metric space)
- Let (Z2, d) be a t.i. metric space such that d(Z2 × Z2) = N (or N+). If d is
regular, then Bd has the closure property.

Proof - By using Property (iv) of Proposition 4 (ball intersection and inclu-
sion in a regular metric space) and by applying Proposition 9 (property of the
generated balls in a lower regular metric space), we can prove that, for any
j ∈ N, (((jBd)⊕Bd)	Bd) ⊂ jBd. Furthermore, by the closing extensivity,
for any j ∈ N, jBd ⊂ (((jBd)⊕Bd)	Bd). That is, by the anti-reflexivity of
the inclusion, for any j ∈ N, jBd is Bd-closed. �
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4. From Symmetric Ball to Metric

By using the recursive Minkowski sum, with a symmetric ball not reduced
to but containing the origin, we can associate a t.i. metric.

Let B be a finite symmetric ball, such that o ∈ B and B �=�� {o} and let

BB(o)

= {jB : j ∈ N+}, that is, BB(o) is the sub-collection of BB consisting

of all the generated balls of center at the origin.
Let x ∈ Z2 and let Mx =

⋂
{X ∈ BB(o) : x ∈ X}. By a chain property

of the generated balls with same center, Mx belongs to BB(o) and it is the
smallest generated ball of center at the origin that contains the point x.

We denote by radiusB(X) the integer j such that for some u ∈ Z2, XuXX =
jB. Finally, we denote by fBff the mapping from Z2 to N+given by, for any

x ∈ Z2, fBff (x)

= radiusB(Mx), and by dB the mapping from Z2 × Z2 to

N+given by, for any x and y ∈ Z2,

dB(x, y)

= fBff (x− y).

We observe that for any x ∈ Z2, dB({x} × Z2) = N (resp. N+), that is dB

is onto N (resp. N+).
We now give the relationship between the border of a ball and its radius as

follows.

Proposition 11 (ball border versus ball radius) - Let B be a finite sym-
metric ball, such that o ∈ B and B �=�� {o}. For any x ∈ Z2 and any finite
X ∈ BB(o),
(i) x ∈ ∂B(X)⇒ fBff (x) = radiusB(X);
(ii) if B has the closure property, then fBff (x) = radiusB(X)⇒ x ∈ ∂B(X).

Proof - Properties (i) and (ii) follow, respectively, from Properties (i) and (ii)
of Proposition 7 (erosion of a generated ball). �

The following proposition, which is a consequence of the ball border prop-
erties of Proposition 11 applied to the generated balls, will be used in the next
section to characterize the regular metric.

Proposition 12 (regularity of a metric induced by a ball having the closure
property) - Let B be a finite symmetric ball, such that o ∈ B and B �=�� {o}. If
B has the closure property, then dB is a regular metric.

Proof - The lower regularity of dB follows from Property (i) of Proposition 8
(generated balls versus B-border) and Proposition 11 (ball border versus ball
radius). Its upper regularity follows from Property (ii) of Proposition 8 and
Proposition 11. �
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5. Regular Metrics Space Characterization

Let Bc be the sub-collection of finite symmetric balls having the closure
property and such that o ∈ B and B �=�� {o}, and letMr be the set of integer-
valued t.i. regular metrics onto N (or N+) (i.e., d(Z2 × Z2) = N (or N+).

Theorem 5 (characterization of integer-valued translation-invariant regu-
lar metrics) - The mapping d �→ Bd fromMr to Bc is a bijection. Its inverse
is the mapping B �→ dB .

Proof - Let us divide the proof in two parts.
(a) Let d be a regular metric such that d(Z2 × Z2) = N (or N+), by Proposi-
tion 10 (closure property of the unit ball of a regular metric space), B has the
closure property. Therefore, for any d ∈ Mr, Bd ∈ Bc. By using Proposition
9 (property of the generated balls in a lower regular metric space), we verify
that the mapping B �→ dB is a left inverse for d �→ Bd.
(b) Let B be a symmetric ball satisfying the closure property, by Proposition
12 (regularity of a metric induced by a ball having the closure property) dB

is regular. Therefore, for any B ∈ Bc, dB ∈ Mr. The sub-collection BB(o)
being a chain, we verify that B �→ dB is a right inverse for d �→ Bd. �

Hence, from (a) and (b), the mapping d �→ Bd fromMr to Bc is a bijection
and its inverse is the mapping B �→ dB .

The existence of a left inverse shows that every integer-valued t.i. regular
metric (and lower regular metric as well) onto N (or N+), can be reconstructed
from its unit ball by using the recursive Minkowski sum.

The city-block and chessboard distances on Z2 are examples of integer-
valued t.i. regular metric onto N. In [3] we give a detailed proof of the regu-
larity of the chessboard distance.

Conclusion

In the first part of this work we have introduced a definition of regular metric
spaces and commented its relation with the Kiselman’s upper and lower reg-
ularity for the triangle inequality. We have pointed out, in particular, that the
lower regularity of type 1 is a redundant axiom when the definition of regular
metrics is based on the upper regularity axiom.

In the second part, we have established a one-to-one relationship between
the set of integer-valued and translation-invariant regular metrics defined on
the discrete plane, and the set of symmetric balls satisfying a special closure
property.

From this result we now know how to construct a regular metric on the
discrete plane. For this purpose, we choose in the discrete plane a symmetric
ball B that has the closure property, i.e., that induces, through the recursive
Minkowski sum, a chain of generated balls that are morphologically closed
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with respect to B. Then the distance of a point x to the origin is given by the
radius (in the sense of the recursive Minkowski sum) of the smallest ball of the
chain, that contains x.

This construction shows that to preserve in the discrete plane the regularity
and isotropic properties of the Euclidean metric on the continuous plane, we
have to reach a compromise between a good approximation of a continuous
ball and thin contours. "Closer" B from an Euclidean continuous ball, bigger
B and thicker the borders in the discrete plane.

Actually it will be interesting in a future work to give a proof that if B is the
intersection of an Euclidean continuous ball with the discrete plane then the
generated balls are morphologically closed with respect to B.

The proof should be based on a closure property of the convex subsets of
the continuous plane ([4], Proposition 9.8).
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Abstract A general algorithm for computing Euclidean skeletons of 3D data sets in lin-
ear time is presented. These skeletons are defined in terms of a new concept,
called the integer medial axis (IMA) transform. The algorithm is based upon the
computation of 3D feature transforms, using a modification of an algorithm for
Euclidean distance transforms. The skeletonization algorithm has a time com-
plexity which is linear in the amount of voxels, and can be easily parallelized.
The relation of the IMA skeleton to the usual definition in terms of centers of
maximal disks is discussed.

Keywords: Feature transform, integer medial axis, 3-D Euclidean skeletonization.

1. Introduction

In computer vision, skeleton generation is often one of the first steps in im-
age description and analysis. Intuitively, a skeleton consists of the center lines
of an object, and therefore skeletons provide important structural information
about image objects by a relatively small number of pixels.

There are four main approaches to skeletonization: 1) thinning, i.e. iterative
removal of points from the boundary; 2) wave propagation from the boundary;
3) detection of crest points in the distance transformed image; 4) analytical
methods. A large number of skeletonization algorithms exist, see e.g. [15],
many of them based upon mathematical morphology [2, 10, 14, 17, 19, 20].
For a parallel 3D skeletonization algorithm based on thinning, see [9].

We note that in algorithms of type 3) one often restricts oneself to local
maxima of the distance transform [18], but the resulting skeleton is far from the
Euclidean one. The approach we present here is a variant of the third approach,
using a definition of skeletons based on Blum’s medial axis transform [3].

Often, one is satisfied with approximations to the Euclidean metric (e.g.,
using chamfer metrics). In 1980, Danielsson [6] gave two good approximating
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Euclidean distance transform algorithms, and applied them to obtain the cen-
ters of maximal (integer) disks (CMD), see below. He notes (p. 243) that appli-
cation of skeletons has been hampered by the lack of true Euclidean distance
maps. Especially in the 3D case where data size can be very large, many exist-
ing algorithms for computing 3D Euclidean skeletons are computationally too
expensive [4]. Ge and Fitzpatrick [7] clearly identified the problem to deter-
mine the CMD: “The problems with existing methods lie in the discrepancies
between continuous and discrete image maps”. The paper [7] also mentions
the goal of linking the centers of maximal disks into connected skeletons.

The main contribution of the present work is that we present a simple and
easily parallelizable linear time algorithm which computes a skeleton defined
in terms of a new concept, called the integer medial axis (IMA) transform. The
algorithm works in arbitrary dimensions, and is based upon the general lin-
ear time Euclidean distance transform (EDT) algorithm of Hirata [8], which
has been rediscovered several times, i.e., by ourselves, see Meijster et al. [13],
and later by Maurer et al. [11, 12]. The skeletonization algorithm has two
phases. First, a feature transform is computed, which uses essentially the same
algorithm as for the distance transform, the difference being that not only dis-
tances are computed, but also the boundary points which realize the closest
distance. The actual skeletonization is performed in a second pass through
the data, where the integer medial axis is computed by assigning points to the
skeleton depending on their feature transform.

Our method does not aim at a minimal skeleton useful for image compres-
sion with exact reconstruction, but at a computation of connected skeletons
directly from the Euclidean feature transform, thus avoiding the costly and
complicated phase of removing centers of not-quite-maximal disks by the tech-
niques of [16]. We establish a number of mathematical properties of the IMA
and point out some relations to Blum’s real medial axis (RMA) and to the CMD
skeleton. More work is needed to establish the topological characteristics of
the IMA skeleton.

Often, simplification or pruning of the skeleton is used as a postprocessing
step to remove unwanted points, which arise especially in noisy data [1]. In
our approach, skeleton pruning can be handled in the algorithm itself, by a
single adjustable parameter through which one can prune the skeleton during
the second pass of the algorithm.

In order to derive our algorithm, we first modify the EDT algorithm of
Meijster et al. to calculate 3D feature transforms, from which the IMA skele-
tons are derived. For all program parts, explicit and compact pseudocode is
given.
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2. Feature transform computation

We briefly describe extension of the Euclidean distance transform algorithm
to the computation of feature transforms, closely adhering to the notation and
approach given in [13]. The algorithm can deal with several types of distances
(Manhattan, chessboard, or chamfer distances), but we will limit ourselves to
the case of the Euclidean distance here, since we focus on Euclidean skeletons
in this paper.

The length of a vector r ∈ R
d is denoted by ||r|| =

√∑
i r2

i . We regard Z
d

as a grid embeddded in R
d. The elements of Z

d are called grid points.
Let B be the background, which is a given nonempty set of grid points. The

Euclidean distance transform dt of B is the function that assigns to every grid
point r the distance to the nearest background point, so dt(r, B) = min{||r −
y|| | y ∈ B}. The feature transform FT is defined as the set-valued function
that assigns to r the set of closest boundary points. So we have FT(r, B) =
{y ∈ B | ||r − y|| = dt(r, B)}. The parameter B is omitted from dt and FT
when it is clear from the context.

It is possible to compute FT , but it is computationally cheaper and sufficient
for our purposes to compute, for every point r, just a single feature transform
point ft(r). So, the function ft is incompletely specified by ft(r) ∈ FT(r). In
fact, we compute ft(r) as the first element of FT(r) with respect to a lexical
ordering.

The computation of ft proceeds in d phases. We specify the results of these
phases as follows. For 0 < i ≤ d, let Li be the i-dimensional subspace spanned
by the first i standard basis vectors of R

d. The i-th phase computes the i-
dimensional feature transform fti which is characterized by fti(r) ∈ FT(r, B ∩
(r + Li)). The result of the last phase is ft = ftd. Since the components of
fti(r) orthogonal to Li are always equal to the corresponding components of r,
we only compute and use the orthogonal projection of fti on Li.

In Figures 1 and 2, we present the computation for the case d = 3 in a box
of size (m, n, p). Since fti is a vector-valued function, the three components of
fti(r) are written fti[r].x, fti[r].y, and fti[r].z.

The first phase is the computation of ft1 given in Fig. 1. For every pair
(y, z), it consists of two scans over the line (0, y, z) + L1. The boundary B is
represented here by a 3D boolean array b. In the first scan, g[x] becomes the
distance to the next boundary point along the line. The second scan collects
ft1.

The second and third phases are given in Fig. 2. In the body of the outer
loop, the value of fti is computed from fti−1 for a given scan line, again by
two scans. The results of the forward scan are collected on stacks s and t,
with common stack pointer q. The backward scan reaps fti as harvest. The
auxiliary functions f and Sep are given by f(i, u) = (i − u)2 + g(u) and
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Sep(i, u) = (u2− i2 + g(u)− g(i)) div (2(u− i)), where the function g is the
squared Euclidean distance transform of the previous phase. So, g(i) = (x −
ft1[x, i, z].x)2 in phase 2, and g(i) = (x− ft2[x, y, i].x)2 + (y− ft2[x, y, i].y)2

in phase 3. Note that, in the body of the outer loop, we regard x and z as
constants for phase 2, and x and y as constants for phase 3.

Since the algorithm is completely analogous to our algorithm for the Eu-
clidean distance transform, we refer to paper [13] for further details.

forall y ∈ [0..n − 1], z ∈ [0..p − 1] do
(∗ scan 1 ∗)
if b[m − 1, y, z] then g[m − 1] := 0
else g[m − 1] := ∞
endif
for x := m − 2 downto 0 do

if b[x, y, z] then g[x] := 0
else g[x] := 1 + g[x + 1]
endif

end for
(∗ scan 2 ∗)
ft1[0, y, z].x := g[0]
for x := 1 to m − 1 do

if x − ft1[x − 1, y, z].x ≤ g[x] then
ft1[x, y, z].x := ft1[x − 1, y, z].x

else
ft1[x, y, z].x := x + g[x]

endif
end forall

Figure 1. Program fragment for the first phase - one dimensional feature transform in 3D.

3. Skeletonization

The feature transform of a data set can be used to compute its skeleton. We
first examine the definition of the medial axis [3], see also [5–7, 16]. Actually,
we present three possible formalizations: CMD, RMA, and IMA. Since RMA is
not restricted to grid points, whereas CMD and IMA are, the latter two are the
main contenders.

The real medial axis and CMD skeleton. For the moment we assume that
the boundary B is a closed subset of R

d. For every point x ∈ R
d, we can form

the largest open disk D(x, r) = {y ∈ R
d | ||x − y|| < r} that is disjoint

with B. This is called the inscribed disk of x. If an inscribed disk at point
p is not contained in any other inscribed disk of B, we call it a maximal disk
with center p. We define the real medial axis RMA to consist of the points
x ∈ R

d \B which are centers of maximal disks.
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forall x ∈ [0..m − 1], z ∈ [0..p − 1] do
q := 0; s[0] := 0; t[0] := 0
for u := 1 to n − 1 do (∗ scan 1 ∗)

while q ≥ 0 ∧ f(t[q], s[q]) > f(t[q], u) do
q := q − 1

if q < 0 then
q := 0; s[0] := u

else
w := 1 + Sep(s[q], u)
if w < n then
q := q + 1; s[q] := u; t[q] := w

endif
endif

end for
for u := n − 1 downto 0 do (∗ scan 2 ∗)

ft2[x, u, z].x:= ft1[x, s[q], z].x
ft2[x, u, z].y:= s[q]
if u = t[q] then q := q − 1 endif

end for
end forall

(a) Second phase

forall x ∈ [0..m − 1], y ∈ [0..n − 1] do
q := 0; s[0] := 0; t[0] := 0
for u := 1 to p − 1 do (∗ scan 1 ∗)

while q ≥ 0 ∧ f(t[q], s[q]) > f(t[q], u) do
q := q − 1

if q < 0 then
q := 0; s[0] := u

else
w := 1 + Sep(s[q], u)
if w < p then
q := q + 1; s[q] := u; t[q] := w

endif
endif

end for
for u := p − 1 downto 0 do (∗ scan 2 ∗)

ft3[x, y, u].x:= ft2[x, y, s[q]].x
ft3[x, y, u].y:= ft2[x, y, s[q]].y
ft3[x, y, u].z:= s[q]
if u = t[q] then q := q − 1 endif

end for
end forall

(b) Third phase

Figure 2. Program fragments for the second and third phase.

For x ∈ Z
d, the inscribed integer disk M(x) is the intersection D(x, r)∩Z

d,
where D(x, r) is its inscribed disk. The set CMD (centers of maximal disks)
consists of the points x ∈ Z

d for which M(x) is not contained in any M(y)
with y �=�� x, see also [7, 16]. As is presumably well known, it is not true that
CMD ⊆ RMA ∩ Z

d.

Example 1 Let B consist of the four points (0, 0), (3, 0), (0, 3), and (3, 3).
The intersection RMA∩Z

d is empty, but CMD contains the points (1, 1), (1, 2),
(2, 1), and (2, 2).

Our aim is to define a skeleton that looks like the real medial axis of a
smoothing of the boundary and tends to be connected when the complement of
the boundary is connected, while still being computable in linear time.

Recall that dt(x) = min{||x − y|| | y ∈ B} and FT(x) = {y ∈ B |
||x − y|| = dt(x)}. Clearly, dt(x) is the radius of the inscribed disk of x (for
x ∈ B, we regard the empty set as an open disk with radius 0). The function
ft : R

d → B is incompletely specified by ft(x) ∈ FT(x).
The next lemma may not be surprising, but it seems to be new.

Lemma 2 Assume B is a discrete (i.e., locally finite) subset of R
d. Let x ∈

R
d. Then x ∈ RMA if and only if FT(x) has more than one element.
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This lemma is not true when B is not discrete. For example, in the case of
an ellipse, the real medial axis is a segment of the long axis strictly inside of
the ellipse; the two extremal points of the segment belong to RMA and yet have
only one element in the feature transform set.

Henceforth, we assume that the boundary consists of grid points only, i.e.
that B ⊆ Z

d. It follows that B is discrete, so that Lemma 2 applies. The
following result is almost trivial to verify, but it is quite useful.

Lemma 3 Let x ∈ R
d and let y, z be two different elements of FT(x). Then

||y − z|| ≥ 1. If moreover x ∈ Z
d, then ||y − z|| > 1.

The integer medial axis. Since we assume the boundary now to consist
of grid points only, RMA contains many points that would disappear when the
boundary is smoothed to the curved (hyper)surface in R

d it is supposed to rep-
resent. For example, in the case of a boundary that consists of the grid points
of a horizontal line in R

2, the real medial axis consists of the vertical lines
with odd-half-integer x coordinates. The following definition avoids these un-
wanted points.

Definition 4 Let E = {e ∈ Z
d | ||e|| = 1}. The integer medial axis IMA

consists of the points p ∈ Z
d such that for some e ∈ E we have ||ft|| (p + e) −

ft(p)|| > 1 and ||m − ft(p + e)|| ≤ ||m − ft(p)|| where m = p + 1
2e is the

midpoint of the line segment from p to p + e.

The second condition on the pair (p, p+e) in the definition of IMA is introduced
to get one point, rather than two, and specifically the point that is closest to the
perpendicular bisector of the line segment from ft(p) to ft(p+e). If p and p+e
have equal claims, both are included. The reason to use ft rather than FT is
that ft is computationally cheaper, but also that the restriction of FT to Z

d may
well be everywhere single-valued, so that consideration of neighbouring points
is needed in any case.

We prefer IMA over CMD since it is easier to compute and seems to give
more image information when the boundary is a discretization of a continuous
boundary.

The following lemma is easy to prove.

Lemma 5 IMA ∩B = ∅.
The definition of IMA is primarily motivated by the next result that shows that
IMA has “enough” elements.

Theorem 6 Let p and q be points of the boundary B. Every Manhattan-
shortest path from p to q that is not contained in B, contains a point of IMA.

Proof: Let r(i), 0 ≤ i ≤ k be a Manhattan-shortest path from p to q that is
not contained in B. Since it is a Manhattan-shortest path from p to q, we have
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r(0) = p, r(k) = q, and ||r(i + 1) − r(i)|| = 1 for all 0 ≤ i < k. Since the
path is not contained in B, there is an index j with 0 < j < k and r(j) /∈// B.
Without loss of generality, we may assume r(1) /∈// B.

Let x(i) = ft(r(i)) for all i. Then x(0) = p and x(k) = q and x(1) �=�� r(1).
We have ||p − r(1)|| = 1 and hence dt(r(1)) = 1. By Lemma 3, this implies
that x(1) = x(0) or ||x(1)−x(0)|| > 1. It follows that function x represents a
path from p to q in k steps that is not a Manhattan-shortest path. This implies
that there is an index j with 0 ≤ j < k and ||x(j + 1) − x(j)|| > 1. Put
m = 1

2(r(j + 1) + r(j)). If ||m− x(j + 1)|| ≤ ||m−x(j)|| then r(j) ∈ IMA.
Otherwise r(j + 1) ∈ IMA. In that case j + 1 < k because of Lemma 5. �

While the previous result can be interpreted as saying that IMA has enough
elements, the next result shows that IMA has not too many elements, in the
sense that every one of them is close to RMA.

Theorem 7 For every p ∈ IMA, there is e ∈ E and t ∈ R with 0 ≤ t ≤ 1
2

and p + te ∈ RMA.

Proof: Let p ∈ IMA. Then there is e ∈ E with ||ft|| (p) − ft(p + e)|| > 1
and ||m − ft(p)|| ≥ ||m − ft(p + e)|| where m = p + 1

2e. First, assume that
ft(p) ∈ FT(m). Then ft(p) is a closest point on B to m. So ||m − ft(p)|| ≤
||m − ft(p + e)||. Since ||m − ft(p)|| ≥ ||m − ft(p + e)||, it follows that
||m− ft(p)|| = ||m− ft(p + e)|| and that both ft(p) and ft(p + e) are elements
of FT(m). In view of lemma 2, this implies that m ∈ RMA is a point as looked
for. It remains to treat the case with ft(p) /∈// FT(m). Let point z be the last
point of the line segment from p to m with ft(p) ∈ FT(z). By continuity, this
point exists. Since ft(p) /∈// FT(z′) for points z′ arbitrary close to z, the set
FT(z) consists of more than one element. So z ∈ RMA. �

As illustrated by Theorem 6, IMA has some good connectivity properties.
In that respect, it is better than CMD.

Example 8 Let B be the intersection of Z
2 with the union of the x-axis and

the y-axis. Then IMA consists of the points (x,±x) for all x ∈ Z \ {0}, and
CMD is a subset of IMA that contains (±3,±3) and (±4,±4) but misses at
least the points (±1,±1), (±2,±2), (±5,±5).

In general, it seems that, if the complement of B is bounded and connected,
then IMA is connected (with respect to 8-connectivity in Z

2, or more generally,
L∞-connectivity for Z

d).
A disadvantage of IMA is that it can (weakly) depend on the choice of func-

tion ft within FT .
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Implementation. The code for the skeletonization step is shown in Fig. 3.
One may work with squared distances instead of distances, which avoids the
computation of square roots and thus saves time.

When the medial axis is used for image analysis, it is often useful to prune
it of disturbing details in some postprocessing phase. Our construction of the
integer medial axis yields some information that is very useful for this purpose.
The easiest pruning is to strengthen the condition ||ft|| (p)− ft(p+e)|| > 1 in the
definition of IMA by replacing ‘> 1’ by ‘> γ’ for some pruning parameter γ.
This removes some points of IMA that are due to irregularities of the boundary.

With the tunable parameter γ, skeletons may be computed according to a
user’s need. Unwanted skeleton points which still remain can be removed in a
postprocessing step, if desired.

procedure IMA skeleton
for i := 0 to m − 1 do

for j := 0 to n − 1 do
for k := 0 to p − 1 do

if i > 0 then compare(i,j,k,i-1,j,k) endif
if j > 0 then compare(i,j,k,i,j-1,k) endif
if k > 0 then compare(i,j,k,i,j,k-1) endif

end for
end for

end for

procedure compare(i,j,k,p,q,r)
x := [i, j, k]; y := [p, q, r]
xf := ft3[x]; yf := ft3[y]
if ||xf − yf || > γ then

crit := inprod(xf − yf , xf + yf − x − y)
if crit ≥ 0 then skel [x]:= 1
endif
if crit ≤ 0 then skel [y]:= 1
endif

endif

Figure 3. Program fragment for computing the IMA skeleton from the feature transform.

Table 1. Timing results (in seconds) for several data sets.

Data Size Feature transform Skeleton Total

angio 256x256x128 3 4 7
engine 256x256x128 4 4 8
tooth 256x256x256 7 7 14
vessels 256x256x256 10 6 16
head 256x256x256 9 7 16

4. Results

We have run the skeletonization algorithm on several 3D data sets. Timing
results are given for three 3D data sets, i.e. CT scans of a head, a tooth and
a number of blood vessels. The size of these sets and their timing results
are given in Table 1. These results were obtained on an 1.7 GHz Pentium M
processor with 1024 Mb internal memory.
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Since the 3D skeletons form surfaces, they are somewhat hard to visualize.
Therefore, to get an idea of the quality of our skeletonization algorithm, we
first give a number of examples of 2D skeletons, see Fig. 4. For the 3D case,
some insight into the structure of the skeleton surfaces can be gained by using
volume rendering techniques. An example for the tooth data set is given in
Fig. 5. For a better impression a sequence of views from different viewpoints
is desired, which can be played as a movie.

γ = 1 γ = 5

γ = 1 γ = 12

Figure 4. 2D images with their skeletons. Left: original images. Middle: IMA skeleton.
Right: pruned IMA skeleton.

(a) top (b) side (c) front (d) slice

Figure 5. (a)-(c): Volume renderings of skeletons (white) inside the original data volumes.
(d): Slice of the original tooth data combined with the skeleton.
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Abstract Only the very restricted class of r-regular shapes is proven not to change topol-
ogy during digitization. Such shapes have a limited boundary curvature and can-
not have corners. In this paper it is shown, how a much wider class of shapes, for
which the morphological open-close and the close-open-operator with an r-disc
lead to the same result, can be digitized correctly in a topological sense by using
an additional repairing step. It is also shown that this class is very general and
includes several commonly used shape descriptions. The repairing step is easy
to compute and does not change as much pixels as a preprocessing regularization
step. The results are applicable for arbitrary, even irregular, sampling grids.

Keywords: shape, digitization, repairing, topology, reconstruction, irregular grid

Introduction

The processing of images by a computer requires their prior digitization.
But as Serra already stated in 1980 [5], “To digitize is not as easy as it looks.”
Shapes can be regarded as binary images and the simplest model for digitiza-
tion is to take the image information only at some sampling points and to set
the associated pixels to these values. Unfortunately even for this simple digiti-
zation model only a very restricted class of binary images is proven to preserve
topological characteristics during digitization: Serra proved that the homotopy
tree (i.e. the inclusion properties of foreground- and background components)
of r-regular images (see Definition 1) does not change under digitization with
a hexagonal grid of certain density [5]. Similarily Pavlidis showed that such
images can be digitized with square grids of certain density without changing
topology [4]. Latecki [3] also referred to this class of shapes. Recently the au-
thor proved together with Köthe that r-regular sets are not only sufficient but
also necessary to be digitized topologically correctly with any sampling grid
of a certain density [6]. But most shapes are not r-regular, e.g. have corners.
To solve this problem Pavlidis said “Indeed suppose that we have a class of
objects whose contours contain corners. We may choose a radius of curvature
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r and replace each corner by a circular arc with radius r” [4]. This approach to
make shapes r-regular has two problems: (1) Pavlidis gives no algorithm how
to do it exactly. He also does not say, for which shapes it is possible without
changing the topology of the set. (2) It is a preprocessing step and thus cannot
be computed by a computer, which only gets the digitized information. The
aim of this paper is to solve both problems. After a short introduction in the
definitions of r-regular images, sampling and reconstruction (section 1), the
class of r-halfregular sets is defined in section 2, whose elements can be con-
verted into r-regular sets by using a very simple morphological preprocessing
step. In order to solve the second problem, it is shown how these shapes can be
digitized topologically correctly by using a postprocessing algorithm instead of
the preprocessing. These results are applicable for digitization with any type
of sampling grid – only a certain density is needed. In section 3 it is shown
that the concept of r-halfregular shapes includes several other shape descrip-
tions. Finally in section 4 the postprocessing step is even more simplified in
case of certain sampling grids. For square grids it simply means to delete all
components and to fill all holes, which do not contain a 2x2 square of pixels.
This is remarkably similar to the results of Giraldo et al. [2], who proved that
finite polyhedra can be digitized with intersection digitization without chang-
ing their homotopy properties by filling all holes, which do not contain a 2x2
square. Unfortunately their approach was not applicable to other sets and was
restricted to another digitization model.

1. Regular Images, Sampling and Reconstruction

At first some basic notations are given: The Euclidean distance between two
points x and y is noted as d(x, y) and the Hausdorff distance between two sets
is the maximal distance between one point of one set and the nearest point of
the other. The Complement of a set A will be noted as Ac. The boundary
∂A is the set of all common accumulation points of A and Ac. A set A is
open, if it does not intersect its boundary and it is closed if it contains the
boundary, A0 := A \ ∂A, A := A ∪ ∂A. Br(c) := {x ∈ R

2|d(x, c) ≤ r}
and B0

r(c) := (Br(c))0 denote the closed and the open disc of radius r and
center c. If c = (0, 0), write Br and B0

r . The r-dilation A ⊕ B0
r of a set A is

the union of all open r-discs with center in A and the r-erosion A	 B0
r is the

union of all center points of open r-discs lying inside of A. The morphological
opening with an open r-disc is defined as A ◦ B0

r := (A 	 B0
r) ⊕ B0

r and the
respective closing as A • B0

r := (A ⊕ B0
r) 	 B0

r . The concept of r-regular
images was introduced independently by Serra [5] and Pavlidis [4]. These
sets are extremely well behaved – they are smooth, round and do not have
any cusps (e.g. see Fig. 2B). Furthermore r-regular sets are invariant under
morphological opening and closing, as already stated by Serra [5].
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Definition 1 A set A ⊂ R
2 is called r-regular if for each boundary point of

A it is possible to find two osculating open discs of radius r, one lying entirely
in A and the other lying entirely in Ac.

Each outside or inside osculating disc at some boundary point x of a set A
defines a tangent through x, which is unique if there exists both an outside and
an inside osculating disc. The definitions of r-erosion and r-dilation imply
that the boundary of a set does not change under opening or closing with an
r-disc iff it is r-regular. In order to compare analog with digital images, a
definition of the processes of sampling and reconstruction is needed. The most
obvious approach for sampling is to restrict the domain of the image function
to a set of sampling points, called sampling grid. In most approaches only
special grids like square or hexagonal ones are taken into account [3][4, 5]. A
more general approach only needs a grid to be a countable subset of R

2, with
the sampling points being not too sparse or too dense anywhere [6]. There
the pixel shapes are introduced as Voronoi regions. Together with Köthe the
author proved a sampling theorem, saying that a closed r-regular image is R

2-
homeomorphic to its reconstruction with an r′-grid if only r′ < r [6]. Two sets
being R

2-homeomorphic means that there exists a homeomorphism from R
2

to R
2, which maps the sets onto each other.

Definition 2 A countable set S ⊂ R
2 of sampling points, where the Eu-

clidean distance from each point x ∈ R
2 to the nearest sampling point is at

most r ∈ R, is called an r-grid if S ∩A is finite for any bounded set A ∈ R
2.

The pixel PixelS(s) of a sampling point s is its Voronoi region, i.e. the set of
all points lying at least as near to this point than to any other sampling point.
The union of the pixels with sampling points lying in A is the reconstruction of
A w.r.t. S: Â :=

⋃
s∈S∩A PixelS(s). Two pixels are adjacent if they share an

edge. Two pixels of Â are connected if there exists a chain of adjacent pixels
in Â between them. A component of Â is a maximal set of connected pixels.

2. Digitization of Halfregular Sets

Most shapes are not r-regular for any r. So if one wants to apply the above
mentioned sampling theorem one at first has to construct an r-regular version
of the shape before sampling, as suggested by Pavlidis. The question is how
to define such a preprocessing step. Obviously a set, which is the result of an
r-opening of another set, has an inside osculating open r-disc at any boundary
point. Equivalently the r-closing of any set has an outside osculating open r-
disc at any boundary point. So the straight forward idea is to combine these
two operators. Unfortunately the r-closing of an r-open set does not need to
be r-open anymore and as a consequence the open-close and the close-open
operator with the same structuring element can have totally different results.
The really interesting case is when this does not happen:
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Figure 1. The areas which change dur-
ing regularization can be classified info
three types: r-tips (left), r-waists (center)
and r-spots (right).

DC DCA BBBAA

Figure 2. From left to right: An r-
halfregular set A, its r-regularization B,
and the changes of the fore- and back-
ground due to regularization C and D.

Definition 3 A set A is called r-regularizable if the open-close and the
close-open-operator of radius r lead to the same (except of the boundary),
(A ◦ B0

r) • B0
r = (A • B0

r) ◦ B0
r . The r-regularization of A is (A ◦ B0

r) • B0
r .

Lemma 4 The r-regularization of an r-regularizable set A is r-regular.

Proof Since opening and closing are idempotent, (A • B0
r) ◦ B0

r is open and
(A ◦ B0

r) • B0
r) is closed w.r.t. B0

r . This implies r-regularity of A. �

Note, that a shape and its regularization do not need to be R
2-homeomorphic,

since the topology can be totally changed during the regularization step. The
changes can be classified into waists, tips and spots (see Fig. 1). The waists
cause the biggest problems, because even big and thus important components
can change their topology under regularization if they have waists. So if one
wants to regularize a set it should have no waists.

Definition 5 For some set A let A′ be a component of (A \ (A ◦ B0
r))

0.
Further let n be the number of open r-discs lying in A and touching A′. These
discs are called bounding discs of A′. If n is zero, A′ is called r-spot of A. If
n is equal to 1, A′ is called r-tip of A and if n is greater than 1, it is called
r-waist of A (see Fig. 1). A set A is called r-halfregular if for each boundary
point there exists an open inside or an open outside osculating disc of radius
r, completely lying inside, respectively outside of A, and if neither A nor Ac

has an s-waist for any s ≤ r.

Obviously an r-halfregular set is also s-halfregular for any s < r. For the
rest of this section let A be an r-halfregular set with r > 0. Further let B :=
(A◦B0

r)•B0
r be its r-regularization. C := A\ (A◦B0

r) shall be the difference
between A and its opening with B0

r and D := (A • B0
r) \ A the difference

between A and its closing with B0
r (see Fig. 2). The components of C and

D are the r-spots, r-tips and r-waists, which change during the preprocessing
regularization step.

Lemma 6 For each boundary point of C or of D there exists an outside os-
culating open r-disc and no component of C ⊕ B0

r or of D ⊕ B0
r contains an

open disc of radius 2r as subset.



Digitization of Non-regular Shapes 273

Proof C can have no open disc of radius r as subset, because due to the
definition of C the center of such a disc is not in C. Now let x be a boundary
point of C. Then x is either also boundary point of A or of A ◦ B0

r . In the
first case there exists an osculating open r-disc lying completely outside of C
since A is r-halfregular and C cannot include an inside osculating r-disc. In
the second case there also exists an outside osculating disc for C, since A ◦ B0

r

is open w.r.t. B0
r . Thus C is closed w.r.t. B0

r and C ⊕ B0
r does not contain any

open disc of radius 2r as subset. The proof for D is analog. �

Lemma 7 Let A be an r-halfregular set. Then every boundary point y ∈ ∂A
is also boundary point of A • B0

r or A ◦ B0
r and A is r-regularizable.

Proof Let y be some boundary point of A. If there exists an outside [inside]
osculating r-disc, then y remains boundary point after r-closing [r-opening].
Now suppose A is not r-regularizable. Then (A ◦ B0

r) • B0
r �=�� (A • B0

r) ◦ B0
r

and there either exists a point x ∈ (A◦B0
r)•B0

r , which is not in (A • B0
r) ◦ B0

r

or there exists a point x ∈ (A • B0
r) ◦ B0

r , which is not in (A ◦ B0
r) • B0

r . Such
an x cannot lie inside or on the boundary of an r-disc being subset of A, be-
cause then x would be element of A ◦ B0

r and thus x ∈ (A ◦ B0
r) • B0

r , and
– since closing is extensive and opening is increasing – x ∈ (A • B0

r) ◦ B0
r is

true. If x lies inside or on the boundary of an r-disc in Ac, it cannot be in
(A ◦ B0

r) • B0
r or (A • B0

r) ◦ B0
r for analog reasons. Now suppose, x is in A,

but not inside or on the boundary of some r-disc in A, thus x ∈ C0. C has an
outside osculating open r-disc at any boundary point y due to Lemma 6. Now
let y be the boundary point of C being nearest to x. Then any y tangent has
to be orthogonal to xy. Thus there exists a unique tangent and also a unique
outside osculating r-disc. Obviously the distance between x and y is smaller
than r. Since y remains boundary point after r-closing of C, x cannot be in
(A • B0

r) ◦ B0
r . x ⊕ B0

r can only intersect one outside osculating open r-disc
of C lying inside A ◦ B0

r , because there exists at most one such disc for each
component C ′ of C0 due to the absense of r-waists. The center point of this
disc is the only point of A 	 B0

r having a distance of at most r to some point
lying in C ′ or in ∂C ′. Thus x cannot be element of (A◦B0

r)•B0
r . Analogously

any x in D0 is element of both (A ◦ B0
r) • B0

r and (A • B0
r) ◦ B0

r . Thus any
x ∈ R

2 is element of (A ◦ B0
r) • B0

r iff it is element of (A • B0
r) ◦ B0

r . �

As a consequence of Lemma 7 A can be constructed (except of its boundary)
as A0 = (B ∪C)0	D. In the following the sampling theorem for halfregular
sets is developed. Therefore one lemma needs to be proved before.

Lemma 8 No background [foreground] component in the reconstruction of
B ∪ C [B \D] w.r.t. an r′-grid, r′ < r, is subset of C ⊕ B0

r [D ⊕ B0
r].
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Proof Let c ∈ Ac be a background sampling point in C⊕B0
r . Due to Lemma

6 there exists an open r-disc in Cc such that c lies in the disc. This disc can
be chosen such that it lies either completely in B or completely outside of B.
The center m of the disc is not in C ⊕ B0

r . The halfline starting at c and going
through m crosses ∂ Pixel(c) at exactly one point c′. If d(c,m) ≤ d(c, c′), m
lies in Pixel(c) and thus the pixel is connected to the area outside of C ⊕ B0

r ,
which implies that c cannot be part of a separate background component cov-
ered by C ⊕ B0

r . If d(c,m) > d(c, c′), let g be the line defined by the edge
of Pixel(c) going through c′. If there are two such lines (i.e. at a pixel cor-
ner), one is chosen arbitrarily.p he point c′′ constructed by mirroring c on g
is also a sampling point, and their pixels are adjacent. c′′ lies on the circle of
radius d(d′, c) = d(c′, c′′) with center c′. Among all points on this circle, c
has the largest distance to m, and in particular d(m, c′′) < d(m, c). Thus, c′′

lies outside of C ⊕ B0
r , and is closer to m than c. By repeating this construc-

tion iteratively we obtain a chain of adjacent pixels whose sampling points
successively get closer to m. Since C ⊕ B0

r contains only a finite number of
sampling points, one such pixel will eventually not be covered by C⊕B0

r . The
constructed chain consists of pixels whose sampling points lie in a common
r-disc outside of C. If this disc lies in B, they are not in the background, in
contradiction to the supposition. Otherwise the pixels cannot be part of a sep-
arate background component in C ⊕B0

r . Since the chain is not infected by any
sampling point lying in B they also cannot be part of a separate background
component in the reconstruction of B ∪ C which is subset of C ⊕ B0

r . Anal-
ogously there exists no foreground component in the reconstruction of B \D,
which is subset of D ⊕ B0

r . �

Theorem 9 Let A be a closed r-halfregular set with no 3r-spot in A or in
Ac, let Â be the reconstruction of A with an r′-grid, r′ < r, and let Â′ be the
result of filling [deleting] all components of Âc [Â], which do not contain an
open 2r-disc. Then Â′ is R

2-homeomorphic to A and the number of different
pixels from Â to Â′ is as most as high as from Â to the reconstruction of the
r-regularization B (see Fig. 3).

Proof Â is equal to the union of the reconstructions of B and C = A \ (A ◦
B0

r) minus the reconstruction of D = (A • B0
r) \ A. Due to Lemmas 4 and 7

is B r-regular and thus R
2-homeomorphic to its reconstruction (see [6]). The

components of Ĉ are either also separated components in Â or connected with
some component of B̂. Lemma 6 states that no component of C ⊕B0

r contains
an open disc of radius 2r. Due to r′ < r, Ĉ is a subset of C ⊕ B0

r . It follows
that no component of Ĉ can contain an open disc of radius 2r. Analogously
no component of D̂ can contain an open disc of radius 2r. Due to Lemma 8
there cannot exist any background component in the reconstruction of B ∪ C,
which is subset of C ⊕ B0

r , and there cannot exist any foreground component
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Figure 3. The straightforward digitization may cause topological errors at r-tips (left) in
contrast to the use of the regularization step (right) and the even better repairing step (center).

in the reconstruction of B \ D, which is subset of D ⊕ B0
r . This implies that

any separate component of Ĉ or of D̂ is surrounded by pixels belonging to
components which do not vanish under dilation or erosion with an open 3r-
disc. This also implies that the resulting image is independent of the order of
the filling and deleting of components, which are subsets of C ⊕B0

r or of D⊕
B0

r . So by filling all components of Âc and deleting all components of Â, which
do not contain an open disc of radius 2r, any component caused by C and D
is affected, which is not part of bigger components in Â and Âc, respectively.
Any component of B̂ [B̂c] is not deleted [filled], because it contains an open
disc of radius 2r due to the fact that the corresponding component in B [Bc]
contains a disc of radius 3r. It follows that the components of Â′ and B̂ differ
only in a way, which does not affect the topology or the neighborhood relations.
Thus Â′ is R

2-homeomorphic to B. Moreover they differ only in pixels lying
in C or D. Since Â and Â′ differ in all these pixels, the number of pixels,
which changes due to the postprocessing repairing step is at most as big as the
number of pixels, which changes due to the preprocessing regularization step.
Since B can be constructed from A by removing r-tips from A and Ac, which
is an R

2-homeomorphic operation, Â′ is also R
2-homeomorphic to A. �

3. Examples for r-halfregular sets

In the last section it was shown, that digitization with repairing is sufficient
to get a topologically correct digital version of some r-halfregular set, if each
of the components of the set and its complement has a certain size (no 3r-
spots). Note that this is only a restriction to the sampling density and not a
restriction to the class of correctly digitizable sets, since for each r-halfregular
set there exists an s ≤ r such that the set has no 3s-spots and is s-halfregular.
Surprisingly the concept of r-halfregular sets is very general and several com-
monly used shape descriptions imply halfregularity. One example are polygo-
nal shapes. The first part of Theorem 10 shows that any shape with polygonal
boundary description is r-halfregular for some r. This is in particular inter-
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esting since any shape bounded by simple curves can be approximated by a
polygonal shape, as shown by Bing[1]. Giraldo et al. already proved that such
polygonal shapes can be reconstructed topologically correctly by using a sim-
ple repairing step, which is very similar to the one of this paper [2]. But their
approach is restricted to polygonal shapes and square grids and uses intersec-
tion digitization. Intersection digitization can be simulated by the digitization
model of this paper on r-dilated shapes. The second part of Theorem 10 states
that any convex set is halfregular. Since convexity is stable under projection
from 3D to 2D the shape of any image of a convex object, like a ball, a cylinder
or a box, can be topologically correctly digitized by using the repairing step.
This implies that also sets whose complement is convex, are halfregular. Since
halfregularity bases only on local properties, sets are also halfregular, if they or
their complements are convex in each local area of certain size, as can be seen
in the third part of the theorem. These are only some examples for halfregular
shapes. Another example are shapes which are bounded by spline curves, i.e.
true type fonts. There it is not difficult to determine the minimal size of the
spots and waists and the maximal curvature at non-corner points, which can
be used to compute the minimal sampling density in order to digitize a text
printout, such that topology is preserved (see Fig. 3).

Theorem 10 (a) Let A be a set, where the boundary components are polyg-
onal Jordan curves. Further choose r > 0 such that the Hausdorff distance
from each line segment to each non-adjacent corner point is at least 4r and the
Hausdorff distance between each two non-adjacent line segments is at least 2r.
Then A is r-halfregular. (b) Each convex set is r-halfregular for any r ∈ R+.
(c) Each set A, where for each boundary point x ∈ ∂A either A ∩ B0

2r(x) or
Ac ∩ B0

2r(x) is convex, is r-halfregular.

Proof (a) Since any waist has to be bounded by at least two non-adjacent line
segments and since the distance between any two non-adjacent line segments
is at least 2r, there cannot exist any s-waist for s ≤ r. Let a be an arbitrary
boundary point of A and let B = B0

2r(a) be the disc of radius 2r centered in a.
a lies on some line segment L of the boundary, whose endpoints shall be called
l1 and l2. If a is a corner point, choose either of the two adjacent line segments.
Since the Hausdorff distance of non-adjacent line segments is at least 2r, only
line segments, which are adjacent to L can lie in B. W.l.o.g. let the distance
from a to l1 be at most as big as the distance from a to l2. Then the line segment
L′ being adjacent to L by meeting in l2 has a Hausdorff distance of at least 4r
to l1. If the angle between L and L′ is at least π/2, L′ cannot go through B.
Otherwise suppose the foot of the perpendicular of L′ going through a is in
L′. Then due to the theorem on intersecting lines the Hausdorff distance from
L′ to a is d(L′, a) = d(a, l2)/d(l1, l2) · d(L′, l1) ≥ 1

2 · 4r. If the foot of the
perpendicular is not in L′, L′ is shorter than L. Then L′ also cannot intersect
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B, because otherwise L would intersect such a disc B′ with radius 2r and
center in L′. Thus the only line segments of the boundary, which can intersect
B, are L and the adjacent line segment meeting L in l1. The straight line which
covers L cuts B into two open halfs such that L′ intersects at most one of these
halfs. The other half disc contains an open disc of radius r osculating a. This
disc does not intersect the boundary, which implies r-halfregularity. �

(b) A convex set can be described as the intersection of halfplanes. Any
outside osculating r-disc of some halfplane is completely outside of this inter-
section. Thus for any boundary point there exists an outside osculating r-disc.
Obviously convex sets cannot have waists, which implies r-halfregularity. �

(c) First suppose there exists an s-waist A′ of A with s ≤ r. Now let x be
a boundary point of A which is also boundary point of A′. If Ac ∩ B0

2r(x) is
convex, then it is subset of a half of the 2r-disc and the other half contains an
r-disc lying in A. Thus A ∩ B0

2r(x) has to be convex. Since this has to be true
for any such boundary point, A must be convex in the area A′ ⊕ B0

2r of radius
2r around the waist. This implies that the union of the waist and its bounding
discs also has to be convex. But this cannot be since the convex hull of this
union is morphologically open w.r.t. B0

s in contrast to the set itself. Thus there
cannot exist any s-waist in A and analogously in Ac. For each boundary point
x there exists an outside osculating r-disc if A∩B0

2r(x) is convex and an inside
osculating disc if Ac ∩ B0

2r(x) is convex. Thus A is r-halfregular. �

4. Discrete Repairing

Although the repairing process is very simple – you only have to find com-
ponents which do not contain a disc of a certain size – an implementation into a
discrete algorithm is not straightforward since subpixel positions of such discs
have to be considered. In this section it is shown that there are even better ways
to find such components. The idea is that for any regular r′-grid there are only
finitely many patterns which cover an r-disc (r = r′ + ε) such that each pixel
intersects the disc, and some patterns include others. So if one has a set of
patterns such that any possible pattern is superset of an element of the set, one
has only to look for components which do not include any of these elements.
The following theorem shows this in detail for square and hexagonal grids.

Theorem 11 Let A be a closed r-halfregular set with no 3r-spot in A or in
Ac, let Â be the reconstruction of A with a square grid [hexagonal grid] which
is an r′-grid, r′ < r, and let Â′ be the result of filling/deleting all components
of Âc and Â, which do not contain the highlighted configuration shown in Fig.
4(a) [which do not contain one of the highlighted configurations in Fig. 1(b)].
Then Â′ is R

2-homeomorphic to A and the number of different pixels between
Â and Â′ and Â is as most as high as between Â and the reconstruction of the
r-regularization B.
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(b)

Figure 4. There is only a finite number of pixel configurations which cover an r-disc when
using square (a) or hexagonal (b) grids and a minimal set of subconfigurations (highlighted).

Proof If a component of the reconstruction contains an r-disc, then it also
contains one of the configurations of Fig. 4(a) [4(b)]. The highlighted one [At
least one of the highlighted configurations in Fig. 1(b)] is subset of any of these
configurations. Otherwise if a component of the reconstruction contains such
a highlighted configuration, it also contains an (r′ + ε)-disc for a sufficiently
small ε. This is all to show since A is also (r′ + ε)-halfregular. �

5. Conclusions

The new class of r-halfregular shapes was firstly introduced and it was
shown that this class can be digitized topologically correctly by using a simple
postprocessing step. The main result simply says that the digitization of an r-
halfregular shape with an arbitrary sampling grid of sampling density r′ < r is
topologically undistinguishable from the original shape after applying a post-
processing step which simply removes all components, which do not exceed a
certain size. This is much more general than the restriction to r-regular shapes,
which was used in literature before. Is was also shown that the postprocess-
ing step leads to better results than a morphological preprocessing step, which
makes an r-halfregular shape r-regular. Further on it was proven that the class
of r-halfregular shapes subsumes other shape classes like polygonal or convex
shapes. Finally the postprocessing step was even more simplified in case of
using regular sampling grids like square or hexagonal ones.
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Abstract A downsampling method for binary images is presented, which aims at preserv-
ing the topology of the image. It uses a general reference sampling structure.
The reference image is computed through the analysis of the connected compo-
nents of the neighborhood of each pixel. The resulting downsampling operator is
auto-dual, which ensures that white and black structures are treated in the same
way. Experiments show that the image topology is indeed preserved, when there
is enough space, satisfactorily.

Keywords: Digital topology, binary downsampling, reference downsampling

1. Introduction

In this era of expanding mobile multimedia devices, small screens will soon
be in every pocket. Their relatively small resolutions (a PDA screen is typically
320 by 320 pixels) pose display problems, worsened by the fact that visual
digital documents are often thought for high resolution displays. For example,
how can a faxed document, or a tourist brochure, which has been scanned with
a 200 dpi resolution, be conveniently displayed on a PDA screen?

As it can be seen, we are confronted with a severe downsampling problem.
Moreover, these images often are binary or nearly so, like faxes, diagrams,
maps, etc. In these particular cases, classical downsampling methods work
very badly, because they aim at removing from the image those structures
which cannot be represented at the lower resolution level. For example, de-
pict a thin black line on a white background. If downsampled with a classical
linear method (i.e. high frequencies are filtered out before downsampling), this
line will be smoothed away. If we require that the resulting image is binary,
thin structures might be simply erased. In many application domains this is
a normal, and welcome, feature. However, when displaying graphical data on
small displays, the opposite might be more interesting, that is, preserving small
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structures when there is enough place in the image. In other words, we want,
if possible, to preserve the homotopy of the initial image.

In this paper, focus is on the problem of nice downsampling of binary im-
ages. After this introduction, we will define the problem, and review existing
methods. Then, in section 3 we will introduce a general adaptive downsam-
pling scheme which will be used as basis in the following section for a binary
downsampling method which aims at preserving homotopy. In the next section
results are presented and commented. Finally, conclusions are drawn.

Demonstrations, which are quite simple, are not given for lack of space.
They are included in a technical report [4].

2. Framework and objectives

Only binary images will be considered in this paper. They typically corre-
spond to text, diagrams, graphics, or maps.

Thin and small structures in binary images are often semantically very im-
portant. Therefore, we want to preserve them through the downsampling pro-
cedure as long as it is possible. In other words, and borrowing vocabulary
from the image compression world, we can say that we want to achieve grace-
ful degradation of the information.

Of course, the detection of what is important is not trivial, nor is easy to
know how long it is possible to preserve data which is considered meaningful.
On the other hand, we are not subject to one important constraint that most
downsampling methods try to satisfy : reversibility. Indeed, most downsam-
pling methods propose an up-sampling operator such that the reconstructed
image is as close as possible to the original one. The idea behind reversibility
is to limit the loss of data. In our case, we do not aim at this characteristic
because we pretend to preserve semantic information, and we suppose that the
image topology is directly related to this information.

We do not know beforehand if the important structures of a binary image
are black or white. Therefore, we will treat them in the same way. In other
words, the downsampling method should be auto-dual.

3. State of the art

The classical linear downsampling approach is based on the removal from
the original image of those frequencies which are too high to be represented at
the lower resolution level. This is clearly not adapted to our framework, where
high frequencies convey often important semantic information. For example,
a thin line would be blurred or erased by such methods.

Morphological downsampling methods are also based on the same idea [8,
9, 7] : first, they remove those structures which are considered too small to
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be represented at a lower resolution level, and then a point downsampling is
applied.

In a series of articles ([1, 3, 2]), Borgefors et al. propose a multiscale rep-
resentation of binary images. Their aim is to preserve the shape of the objects.
Even if these methods tend to preserve the topology of the image, this is not
their main objective. Futhermore, the proposed downsampling method is not
auto-dual, an essential property in our framework.

Adaptive downsampling methods analyse the image contents before down-
sampling in order to preserve meaningful details when possible. A method
based on the morphological tophat transformation was proposed for down-
sampling grey level and binary images [6, 5]. It takes into account the size of
the structures, by comparison with a structuring element (i.e. a reference set),
in order to favour those pixels which are considered more interesting. In this
paper, we will improve these results in the case of binary images, thanks to the
use of topology information.

4. Reference downsampling

A general reference downsampling method has been introduced by Decen-
cière et al. [6, 5]. We present below a version adapted to binary images.

We model a binary image I as binary function of ZZ2 :

I : ZZZZ 2 −→ {0, 1} (1)

(x, y) �−→�� I(x, y) . (2)

The set of binary images is denoted I. We will often identify I to the set
{P | I(P ) = 1}. For instance, when we say that a point M of ZZ2 belongs
to I , we mean : M ∈ {P | I(P ) = 1}. The complement image of I will be
denoted Ī : Ī = 1− I .

A grey level image R is a function of ZZ2 into {0, . . . , 255} :

R : ZZZZ 2 −→ {0, . . . , 255} (3)

(x, y) �−→�� R(x, y). (4)

The set of grey level images is denoted R. We partition ZZ2 into 2 × 2
blocks :

B(x, y) = {(2x, 2y), (2x + 1, 2y), (2x, 2y + 1), (2x + 1, 2y + 1)}, (5)

and we define index_max(R, B(x, y)) as the element of B(x, y) where R
takes its maximal value. If there were two or more elements of B(x, y) where
R takes its maximal value, then the first in lexicographic order is taken.

The binary reference downsampling operator Ω is defined as :

Ω : I ×R −→ I (6)

(I,R) �−→�� IRI = Ω(I,R) , (7)
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with
IRI (x, y) = I(index_max(R, B(x, y)). (8)

IRI is called the refence downsampling of I with reference R.

Theorem 1 Ω is auto-dual with respect to its second parameter :

Ω(R, I) = Ω(R, Ī). (9)

The simplest binary downsampling method, called point sampling, which
consists in taking the first pixel of each B(x, y), is equivalent to applying a
reference downsampling operator with a constant reference image. Needless
to say, this method gives very poor results.

The choice of R is essential to build interesting sampling operators. The
objective of this approach is to build R from I , in such a way that the value of
R(x, y) corresponds to the importance of pixel (x, y) in image I .

For example, we have presented in previous work a method to build the ref-
erence image using a tophat operator [6, 5]. If wthB and bthB are respectively
the white tophat and black tophat operators with structuring element B, then
the reference image, in the binary case, is built in the following way :

Rth = wthB(I)
∨

bthB(I) . (10)

The reference downsampling operator Ω(I,Rth) built from Rth will give
the priority to points belonging to thin structures. This downsampling operator
is auto-dual.

However, being thin is not a criterion discrimant enough. For example, fig-
ure 1(a) shows an example where three pixels a, b and c would be considered
equally important using the thinness criterion described above. In this case, the
value of pixel a would be kept instead of the value of pixel c, because it is first
in the lexicographic order. It is necessary to give to pixel c more importance.
Figure 1(b) shows the result obtained when doing a reference downsampling
using the tophat. Notice that this result is considerably better than the result
obtained with point sampling (which, in this case would produce a void im-
age). The tophat sampling gives an interesting result, but has introduced a
topological modification of the object. Such modifications are often annoying
when dealing with binary data. For example, in this case image (a) would be
interpreted as a letter “C”, whereas image (b) would be misunderstood as a
letter “O”. We would like to compute a reference image that would give the
third result shown by image (c) through reference downsampling.

5. Topological downsampling

We recall the main digital topology notions that will be used in the follow-
ing. For a complete introduction to digital topology, the reader may consult the
article by Kong and Rosenfeld [11].
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a

c

b

(a) (b) (c)

Figure 1. (a) Example of binary image containing three pixels (marked a, b, c) that would
be considered equally important by a tophat-based reference image. (b) Tophat sampling ; (c)
Aimed result.

Several approaches to characterize the importance of an image pixel from a
topological point of view have been proposed.

Let N be a neighbor relation on ZZ2, i.e. a binary relation on ZZ2 which
is symmetric. When points P and M of ZZ2 are in relation through N , we
say that they are neighbors and we write PNPP M . Moreover, we adopt the
following convention : we take N such that a point P is never in relation with
itself through N . We will denote N (P ) the set of neighbors of P . As PNPP P
is always false, P never belongs to N (P ).

Typical neighbor relations used in image processing are the 4-, 6- and 8-
neighborhoods, respectively denoted N4NN , N8NN and N6NN . Among these, N6NN has
the best topological properties, as it is the only one that verifies the digital
Jordan curve theorem. But, when the image has been digitized following a
square grid, 6-connectivity causes some unwelcome phenomena. For example,
some diagonal lines will not be connected.

In order to palliate the defects of 4- and 8- neighborhoods, neighborhood
relations which depend on the image have been proposed, and widely used.
For example, the (4,8)- neighborhood relation N I

(4NN ,8) is defined as :

PNPP I
(4NN ,8)M =

{
PNPP 4NN M if I(P ) = 1 or I(M) = 1
PNPP 8NN M otherwise.

(11)

The (8,4)- neighborhood relation, N I
(8NN ,4), is defined analogously. These

image-dependant neighborhoods verify the digital Jordan curve theorem (see
[11] for references to the various demonstrations).

Once equipped with a neighborhood relation, the points of an image can
be aggregated into larger structures. A subset D of I is a N -connected com-
ponent of I if for each pair (M, P ) of D, there is a sequence of points of D
(Qk)0≤k≤kmax such that Q0 = M , Qkmax = P and :

∀k, 0 ≤ k < kmax, QkNQk+1 (12)
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A connected component of I is said to be maximal if it is not strictly in-
cluded in another connected component of I . In the following, N -connected
component will stand for maximal N -connected component. The number of
N -connected components of a subset D of ZZ2 will be denoted #N (D).

The study of the number of connected components ofN (P ) has lead to sev-
eral notions, namely the Rutovitz crossing number [12], the Hilditch crossing
number [10], and the Yokoi connectivity number [13]. However, they are not
exactly what we are looking for, because they are not dual.

In fact, connectivities such as N I
(4NN ,8) are practically never invariant with re-

spect to image inversion : we may have, PNPP I
(4NN ,8)M but not PNPP Ī

(4NN ,8)M . There-
fore, we propose a new neighborhood, which is invariant with respect to image
inversion.

Consider a pixel P and a binary image I . In order to answer the question
“does P belong to the object”, we compute the number nI(P ) of 8-neighbors
of P where I takes the same value as P . This is given by :

nI(P ) = Card({M ∈ N8NN (P ) | I(M) = I(P )}) (13)

whose values are included between 0 (N8NN -isolated point) and 8 (N8NN -interior
point). If this value is equal or greater than 4, then we will consider P as a
background pixel, otherwise, as an object point.

Theorem 2 The operator nI is invariant with respect to image inversion :

∀I ∈ I,∀P ∈ ZZ2, nI(P ) = nĪ(P ). (14)

As we want a strong connectivity for object pixels, we choose an 8- neigh-
borhood for them. For background pixels, we take 4- neighborhood. The
resulting neighbor relation, N I

nNN is therefore :

PNPP I
nNN M =

{
PNPP 8NN M if nI(P ) < 4 or nI(M) < 4
PNPP 4NN M otherwise.

(15)

Inspired by the crossing and connectivity numbers, we now study the neigh-
borhood N I

nNN (P ) of P .
Let us consider a pixel P . It is either an object pixel of I , or a background

pixel of I .
If P is an object pixel of I (i.e. nI(P ) < 4), then it has 8 neighbours through

N I
nNN (see Figure 2 (a) ). On some of these 8 neighbours, I takes the same value

as on P . We call the number of N4NN -connected components of this subset the
adaptive crossing number of an object pixel.

Similarly, if P is a background pixel of I (i.e. nI(P ) ≥ 4), then it has 4
neighbours through N I

nNN (see Figure 2 (b) ). On some of these 4 neighbours, I
takes the same value as on P . We call the number ofN8NN -connected components
of this subset the adaptive crossing number of a background pixel.
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For example, in Figure 2 (a), the number of N4NN -connected components of
the set {M ∈ N I

nNN (a) | I(M) = I(a)} is 1, and in Figure 2 (b), the number of
N8NN -connected components of the set {M ∈ N I

nNN (b) | I(M) = I(b)} is 2.
Formally, we define the adaptive crossing number XI(P ) as :

XI(P ) =
{

#N4NN ({M ∈ N8NN (P ) | I(M) = I(P )} if nI(P ) < 4
#N8NN ({M ∈ N4NN (P ) | I(M) = I(P )} if nI(P ) ≥ 4 .

(16)

Theorem 3 XI is invariant with respect to image inversion :

∀I ∈ I,∀P ∈ ZZ2, XI(P ) = X Ī(P ). (17)

As a consequence, the reference image RI
n built from XI is also invariant

with respect to image inversion :

RI
n(P ) =

{
XI(P ) if XI(P ) > 0
5 otherwise.

(18)

The particular case for XI(P ) = 0, i.e. for isolated points, is necessary if
we want these pixels to be preserved. The value 5 is arbitrary ; it has to be
higher than the other values of XI(P ).

Finally, we obtain the following downsampling operator

Ωn(I) = Ω(RI
n, I), (19)

which has the property we were seeking for :

Theorem 4 Ωn is is auto-dual :

∀I ∈ I, Ωn(I) = Ωn(Ī) (20)

6. Results

First of all, in figure 2(c) we give the values of XI(P ) for some pixels of
the test image. Notice that the value associated to pixel c is now higher than
the values of its neighbors a and b. Thanks to this, the resulting downsampled
image with the reference image Rn we have just defined is the one given by
figure 1(c).

Figure 3 shows a more complex test image, containing geometric structures
and text. Its size is 512 x 512. Figure 4 shows some reference downsampling
results. In positions (a) and (b) we respectively find the results of tophat and
topological downsampling.

Notice that topological downsampling has done a better work in preserving
some important structures. For example, in many cases topological downsam-
pling has avoided the fusion between letters, whereas tophat sampling has not.
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Figure 2. (a) N I
nNN -neighbors of pixel a. Neighborhood relation on them, used to compute

XI (a), indicated by segments. (b) N I
nNN -neighbors of pixel c marked with dots. Neighborhood

relation on them, used to compute XI (c), indicated by segments. (c) Test image with some
values of the adaptive crossing number. Notice that the value associated to pixel c is higher than
those given to a and b.

Figure 3. Test image (512 x 512).

We have iterated the procedure. In position (c) (resp. (d)) we have the result of
downsampling image (a) (resp. (b)) again with tophat (resp. topological) sam-
pling. Notice again that topological sampling has better preserved the image
topology. However, tophat sampling has preserved some geometric details that
are also important (look for instance at letters “t”, “j” or “r”). In some other
cases (see for example letter “V” in image (d)) the topology of some structures
has not been preserved. The main reason for this behavior is the lack of space
(pixels per letter) in the resulting image. In some other cases, the local analysis
does not correctly evaluate the value of some pixels (letters “h” or “y” in image
(b)).
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(a) (b)

(c) (d)

Figure 4. (a) Tophat sampling. (b) Topological sampling. (c) Tophat sampling, iterated. (d)
Topological sampling, iterated.

7. Conclusion and future developments

A binary downsampling method which aims at preserving the image topol-
ogy has been presented. It does a good job preserving structures from a topol-
ogy point of view. However, it could be improved by incorporating into the ref-
erence image some geometric information, that could be computed by means
of a tophat, for example.

It should be noted that the operations involved in the computation of the
reference image are not computationally greedy. The implementation of this
method on mobile processors should not be a problem.

The next step in this work will be to extend this sampling method to grey
level images.
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Abstract Shortest distances, grey weighted distances and ultrametric distance are classi-
cally used in mathematical morphology. We introduce a lexicographic distance,
for which any segmentation with markers becomes a Voronoï tessellation.

Keywords: Grey-weighted distances, ultrametric distances, lexicographic distances, marker
segmentation, path algebra

1. Introduction

Mathematical morphology makes a great use of distances. The classical dis-
tance d(x, y) between two pixels x and y is defined as the length of the shortest
path linking these two pixels. If the family of admissible paths is constrained
to remain within a set Y or on the contrary to miss a set Z we obtain geodesic
distances. Grey weighted distances are obtained by assigning a weight to each
edge of a graph. The length of a path being the sum of the weights of all
its edges. Among them are the Chamfer distances [2], approximating the Eu-
clidean distances on a grid and topographic distances for the construction of
the watershed line [10, 7].

Ultrametric distances govern morphological segmentation. This is due to
the fact that watershed segmentation is linked to the flooding of topographic
surfaces: the minimal level of flooding for which two pixels belong to a same
lake precisely is an ultrametric distance. The key contribution of this paper
is the introduction of a lexicographic distance, for which a segmentation with
markers becomes a Voronoï tessellation of SKIZ of the markers.

The paper is organized as follows. Restricting ourselves to distances de-
fined on graphs, we present the various distances encountered in morphology.
We then analyze the segmentation with markers and show that the flooding
ultrametric distance is myopic: only a lexicographic distance has sufficient
discriminant power for correctly describing the segmentation with markers as
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a SKIZ of the markers. In the last part we introduce the ”path algebra”, which
unifies all shortest distance algorithms whatever their type.

2. Graphs and distances

Graphs encountered in morphology

Graphs are the good framework for dealing with distances. A non oriented
graph G = [X, E] is a collection of a set X whose elements are called vertices
or nodes and of a set E whose elements eij = (i, j) ∈ E are pairs of vertices
called edges. Two edges that share one or several nodes are said to be adjacent.
A path of length n is a sequence of n edges L = {e12, u23, . . . , en−1n}, such
that successive edges are adjacent. Any partition A for which a dissimilarity
between adjacent regions has been defined can be represented as a region ad-
jacency graph G = (X, E), where X is the set of nodes and E is the set of
edges. The nodes represent regions of the partition. Adjacent regions i and j
are linked by an edge eij = (i, j) with a weight sij expressing the dissimi-
larity between them. The adjacency matrix A = (aij) of the graph is defined
by aij = sij if (i, j) ∈ E and aij = ∞ if not. By convention aii = 0 as aii

represents the dissimilarity between i and i itself.
In the simplest case, A represents the pixels of the image, the edges linking

neighboring pixels. In case of a topographic surface, the watershed graph is
obtained by taking the catchment basins as nodes, the dissimilarity between
two adjacent basins being the altitude of the pass separating them.

Grey weighted distances

The ”weighted length”of a path is defined as the sum of the weights of its
edges. If the weight of an edge is equal to its length, we obtain the length of
the path. The distance d(x, y) between two nodes x and y is the minimal length
of all paths between x and y. If there is no path between them, the distance is
equal to∞. In fig.1A the shortest path between x and y is a bold line and has
a length of 4.

This classical distance is well known and allows to define the distance be-
tween a pixel and a set, the Hausdorff distance between sets, distance functions,
crest and saddle points, ultimate erosions, skeletons, Voronoï tesselations, ex-
tremities of particles etc. A recent review on the use of distance functions in
mathematical morphology may be found in [11]. Grey weighted distances [12]
have been used for finding the shortest paths in an image, the weight of the
edges being an increasing function of the grey tones of their extremities. This
allows doing virtual endoscopy [3] or detecting fibers on a noisy background
[13]. The watershed line itself is the skeleton of influence of the regional min-
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Figure 1. Different types of distance functions:
- A: shortest path : the length of a path is equal to the sum of the lengths of its edges
- B: flooding distance: each path is characterised by the highest weight assigned to one of
its edges. The easiest path between two nodes is the path for which this highest weight is the
lowest.

ima of the image for the topographic distance, where the weights equal the
modulus of the gradient [10, 7].

Ultrametric distances

Consider the case where the graph G represents a region adjacency graph.
For any λ ≥ 0, one defines a derived graph Gλ = [X, Eλ] with the same
nodes but only a subset of edges : Eλ = {(i, j) | αij ≤ λ} . The connected
components of this graph create a partition of the objects X into classes. Two
nodes x and y belong to the same connected component of Gλ if and only
if there exists a path L = (i, i2, ...ip, j) linking these two nodes and verify-
ing: max(αii1 , αi1i2 , ...αipj) ≤ λ. Such a path exists among all paths link-
ing x and y in G if and only if α∗

xy = min
L∈Cxy

(max(αxi1 , αi1i2 , ...αipy)) ≤ λ

where CxyCC is the set of all paths between x and y. In case of a watershed
graph, α∗

xy represents the lowest level of flooding for which x and y belong
to a same lake. In fig.1B, the shortest path between x and y is bold and has
a maximal altitude of 3. Obviously the level of the minimal lake contain-
ing x and y is below the level of the minimal lake containing not only x
and y but also an additional pixel z ; the level of the lake containing all
three pixels is max [flood(x, z), flood(z, y)] , hence the ultrametric inequality
: flood(x, y) ≤ max [flood(x, z), flood(z, y)] . The closed balls Ball(i, ρ) ={

j ∈ X | α∗
ij ≤ ρ

}
form the classes of the partition at level ρ. For increasing

levels of ρ one obtains coarser classes. This is the simplest type of segmenta-
tion associated to hierarchies : select a level of the hierarchy as the result of
the segmentation [8].
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A lexicographic distance for segmenting with markers

The watershed transform presents many advantages for segmenting images:
free of any parameter, it is contrast invariant and adjusts itself to the dynam-
ics of the image as it follows the crest lines of the gradient, whatever their
magnitude. It creates closed contours surrounding all minima of the image.
Its drawback is the sensitivity to noise: each regional minimum gives rise to
a catchment basin surrounded by a contour. For noisy, textured, or complex
images, this leads to a dramatic oversegmentation. The solution consists in in-
troducing markers in order to regularize the result [9, 1]. Using the markers as
sources, it is possible to flood the gradient image, finding the strongest contours
surrounding the markers and producing a closed contour for each marker.

Segmenting with markers is fast, as it requires only one flooding. How-
ever, in some situations of interactive segmentation one wishes to play with
the markers, adding, suppressing or modifying markers. The same operation
has to be repeated for each new set of markers, which is time consuming. In
such a situation it is interesting to use the "watershed graph" introduced earlier.
Some of the nodes will be markers. Segmenting with markers amounts to con-
struct a minimum spanning forest, where each tree is rooted within one marker
[6].

Consider now a flooding process organized on the watershed graph: a source
is placed at each marker ; as the level of the flooding increases, edges are
crossed and new nodes are flooded, if they were not already flooded earlier
from another source. Each flooded node is assigned to the source where the
flood comes from. The flooding distance seems to govern the flooding : if
m1 and m2 are markers and their flooding distances to a given node x verify
flood(x, m1) < flood(x, m2), then the flood coming from m1 will reach x
before the flood coming from m2. So it seems, at first sight, that the minimum
spanning forest can also be interpreted as the skeleton by zone of influence of
the markers for the flooding distance. But this is not so, as we will establish
now.

The competition between floodings. Consider the graph of fig.2, where the
nodes a, b, c and d are markers. If a flood starts from the markers, which flood
will attain the node x first ? In our case it is obviously the flood coming from the
source b ; hence x will be assigned to the marker b. Is there a distance function
for which the distance between x and b is shorter than the distance from x to
any other marker ? The flooding distances from x to the markers are ranked as
follows : (flood(x, d) = 7) > (flood(x, a) = flood(x, b) = flood(x, c) = 6).
From the first inequality we can discard the flood from d, as it has an edge
of altitude 7 to pass, whereas the highest edge for the other floods is only
6. The ultrametric distance is myopic and is unable to discriminate further
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Figure 2. Following the path from x towards the sources, one sees that :
(ult(x, d) = 7) > (ult(x, a) = ult(x, b) = ult(x, c) = 6)
(ult(y, a) = 5) > (ult(y, b) = ult(y, c) = 4)
(ult(z, c) = 3) > (ult(z, b) = 1)

between the markers a, b and c. The floods from a, b and c have all to pass
through the edge (y, x) of altitude 6 ; the first reaching the node y will be the
first crossing the edge (y, x), hence the first reaching x. Applying the same
reasoning to the node y, we can discard a as flood(y, a) = 5 > flood(y, b) =
flood(y, c) = 4. Among the remaining candidates b and c, the flood coming
from b reaches z and crosses the edge of altitude 4 before the flood coming
from c, as flood(z, b) = 1 < flood(z, c) = 3. Finally the flood coming from
b ultimately wins because it arrives first all along the unique path between b
and x. The distance which is minimal along the winning path of flooding is a
lexicographic distance. The lexicographic length Λ(A) of a path A between a
node x and a marker m1 is defined as a sequence (λ1, λ2, ...., λk) of decreasing
weights (λ1 ≥ λ2 ≥ .... ≥ λk): the largest weight λ1 on the path between x
and m1, then the largest weight λ2 on the remaining part of the path and so on
until one reaches the marker m1. Let π = {e12, u23, . . . , en−1n} be a path. We
define max(π) = max(aii+1 | 1 ≤ i ≤ n− 1). The lexicographic length of π
is the sequence Λ(π) such that Λ(π) = max(π) � Λ(eii+1, ....en−1n), where
� is the concatenation and i is the smallest index such that ai−1i = max(π).
The lexicographic distance Λ̂(x, y) between a node x and a node y is defined
as the lexicographic length of the shortest path from x to y. By convention
Λ̂(x, x) = 0. In our case we see that the lexicographic distance correctly ranks
the floodings reaching x : Λ̂(x, d) = 7 > Λ̂(x, a) = (6, 5) > Λ̂(x, c) =
(6, 4, 3) > Λ̂(x, b) = (6, 4, 1).

A node will be flooded by a marker a if and only if its lexicographic distance
to this marker is smaller than the lexicographic distances to all other markers.
In [5] Ch. Lenart proposes a more complex distance, made of the set of all
paths belonging to the minimum spanning trees of the graph. The minimum
spanning forests also are skeletons of influence for Lenart’s distance.
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Two operators for comparing and constructing lexicographic distances.
Let S be the set of decreasing sequences. We define on S the usual lexico-
graphic order relation, which we will note ≺, such that: (λ1, λ2, . . . , λk) ≺
(µ1, µ2, . . . , µk) if either λ1 < µ1 or λi = µi until rank s where λs+1 < µs+1.
We define a ( b as a ≺ b or a = b.

We now define two operators, � and � on S:

an operator � called “addition”

a�b = a if a ( b
b if b ( a

∀a, b ∈ S, i.e. the shortest lexicographic length.

The � operation is associative, commutative and has a neutral element
∞ called the zero element: a �∞ = a

an operator � called “multiplication” permits to compute the lexico-
graphic length Λ(A) of a path A = e12e23...en−1n obtained by concate-
nating two adjacent paths B = e12e23...ek−1k and C = ekk+1...en−1n.
The operator � is designed such that Λ(A) = Λ(B) � Λ(C). Let
a = (λ1, λ2, . . . , λk) and b = (µ1, µ2, . . . , µk); we will define a � b
by:

– if µ1 > λ1 then a � b = b

– if λk ≥ µ1 then a � b = a � b.

– else let j be the highest index verifying λj−1 ≥ µ1 ≥ λj then
a � b=(λ1, λ2, . . . , λj−1, µ1, µ2, . . . , µl)

This algorithm guarantees that a �∞ = ∞. We also define∞ � a = ∞,
so that the zero element is an absorbing element for �. The operator � is
associative, has a neutral element 0 called unit element: a�0 = 0�a = a. The
multiplication is distributive with respect to the addition both to the left and to
the right. The lexicographic length of the path A = e12e23...en−1n is equal to
the product by � of the weights of all its edges: Λ(A) = a12�a23�...�an−1n.
Remark that the lexicographic length of a path is generally not equal to the
length of this path in reverse order. Hence the lexicographic distance is not
symmetrical.

3. Paths algebra : unifying shortest distance algorithms

Three algebras for three distances

The (min, plus) algebra. Shortest-path algorithms on graphs can be ex-
pressed as linear algebra operations on dioids [4]. The three types of distances
presented above can be computed within the same formalism. In order to un-
derstand how, we illustrate the ground ideas on a simple example.



Distances in mathematical morphology 295

Figure 3. A weighted graph

Its incidence matrix is A = [aij ] =

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢
0 1 4 3 ∞
1 0 2 ∞ ∞
4 2 0 5 ∞
3 ∞ 5 0 6
∞ ∞ ∞ 6 0

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ . Consider

the ordinary matrix product A2 =
[
a2

ij

]
. If we replace in the formal expression

of a
(2)
ij = ai1 ∗ a1j + ai2 ∗ a2j + ... + ai5 ∗ a5j the operator ∗ by the operator

+ and simultaneously the operator + by the operator minimum ∧, then we get
a

(2)
ij = (ai1 + a1j) ∧ (ai2 + a2j) ∧ ... ∧ (ai5 + a5j) , the meaning of which

is the following: aik + akj is the length of the path (eikekj) ; this length is
infinite if the weight of one of the edges eik or ekj is infinite. On the other
hand aii + aij = 0 + aij and aij + ajj = aij + 0 represent the path (i, j)
restricted to one edge. Since k takes all values, a

(2)
ij represents the shortest

path comprising one or two edges between i and j.

Consider now A2A2 =
[
a

(4)
ij

]
. The element a

(4)
ij =

∧
k

(
a

(2)
ik + a

(2)
kj

)
where

a
(2)
ik is the shortest path of length 1 or 2 edges between i and k and a

(2)
kj is

the shortest path of length 1 or 2 edges between k and j. Hence a
(2)
ik + a

(2)
kj is

the shortest path of length 2, 3 or 4 passing through k between i and j. On the
other hand a

(2)
ii = 0 and a

(2)
ii +a

(2)
ij is the shortest path of length 1 or 2 between

i and j. Hence A2A2 =
[
a

(4)
ij

]
records the shortest paths of length 1,2,3 or 4

between any pair of nodes.
By successive multiplications, one finally gets an idempotent state where

AnAn = An represents the shortest path of any length between all pairs of
nodes, that is the shortest distance between any pair of nodes. We call the
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matrix obtained at idempotence A∗ = An. The triangular inequality is verified

as a∗ij =
∧
k

(
a∗ik + a∗kj

)
≤ a∗ik + a∗kj , that is d(i, j) ≤ d(i, k) + d(k, j).

We also remark that A∗ = A ∧A2 ∧ ...An, since Ak represents the shortest
paths of length up to k and An represents the shortest paths of any length.

The (min, max) algebra. Consider again the same graph represented in
fig.3 but we now replace the operator ∗ by the ∨ and the operator + by ∧. We
get a(2)

ij = (ai1 ∨ a1j)∧(ai2 ∨ a2j)∧...∧(ai5 ∨ a5j) , which may be interpreted
as follows: aik ∨ akj is the highest weight along the path (eikekj). Calling the

highest weight of the edges in a path the altitude of this path, a
(2)
ij can be

interpreted as the largest weight of the path of lowest altitude and of length
1 or 2 between the nodes i and j.. As previously it is possible to show that
there exists an m such that AmAm = Am = A∗. a∗ij can be interpreted as
the largest weight of the path of lowest altitude between the nodes i and j
; it is identical with the flooding distance defined previously. The triangular
inequality obtained in the algebra (min,+) becomes the ultrametric inequality

in this new algebra (min, max) : a
(n)
ij =

∧
k

(
a

(n)
ik ∨ a

(n)
kj

)
≤ a

(n)
ik ∨ a

(n)
kj .

The (�, �) algebra. Let S be the set of all lexicographic distances, that is
decreasing n-tuples (λ1, λ2, . . . , λk) defined earlier.

Consider again the same graph represented in fig.3 but with a last interpreta-
tion to + and ∗ in the expression of a

(2)
ij = ai1∗a1j +ai2∗a2j +...+ai5∗a5j . If

we replace the operator ∗ by the � and the operator + by �, then we get a
(2)
ij =

(ai1 � a1j)� (ai2 � a2j)� ...� (ai5 � a5j) , which may be interpreted as fol-
lows: aik � akj is the lexicographic length of the path (eikekj). We get A2 =⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

0 1 2 3 6
1 0 2 3 ∞

2, 1 2 0 4, 3 6
3 3, 1 4 0 6

6, 3 ∞ 6, 5 6 0

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ and A4 =

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢
0 1 2 3 6
1 0 2 3 6

2, 1 2 0 3 6
3 3, 1 3, 2 0 6

6, 3 6, 3, 1 6, 3, 2 6 0

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
Ak

ij the length of the shortest path with at most k + 1 nodes between i and
j. There exists an index for which AnAn = An = A∗, which represents then
the shortest lexicographic distance between all pairs of nodes. The triangular

inequality is replaced by a∗ij = �
(
a∗ik � a∗kj

)
≤ a∗ik � a∗kj .

Segmenting with markers: We have established earlier that a node will be
flooded by a marker a if and only if its lexicographic distance to this marker
is smaller than the lexicographic distances to all other markers. It is now im-
mediate to construct a segmentation with markers, by comparing the columns
of the markers. For instance if the nodes 1 and 2 are markers, one assigns to 1
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all nodes for which the weight in column 1 is smaller than the corresponding
weights in column 2. In our case, nodes 1,4 and 5 are assigned to the node 1
and node 2 and 3 assigned to node 2.

Algebraic solutions of a linear system

The algebraic treatment presented now applies to all three algebras met
above: (∧,+) for the ordinary distance, (∧,∨) for the flooding distance, (�,�)
for the lexicographic distance. We will now introduce it for (�,�), knowing
that it is also valid for (∧,+) and (∧,∨). All elements of the identity matrix are
equal to∞ except the diagonal elements equal to 0. The matrix multiplication
is denoted A � B or AB. As we have seen above, there exists an n such that
An becomes idempotent and An = A∗ verifies A∗ = E�A2�A3�...�An =
E � AA∗.

Multiplying by a matrix B yields A∗B = B � AA∗B. Defining Y = A∗B,
one sees that A∗B is solution to the equation Y = B � AY. Moreover it is the
smallest solution.

With the right choice for B, various problems may be solved:

For finding A∗ one may solve Y = E � AY yielding A∗E = A∗ as
solution

with B = ∞ ... 0 ... ∞ T
, one obtains A∗B, the i-th column of

the matrix A∗, that is the distance of all nodes to node i.

For finding the solution to such linear systems, the classical linear algebra
algorithms are still valid, such as the Jacobi, Gauss-Seidel or Jordan algorithm.
We give here two others.

The step algorithm. The step algorithm for inverting a matrix is interesting
in the case where A∗ is already known for a graph G with N nodes, to which
a new node has to be added.

Are estimated first the lengths of the paths between a node i ≤ N and the
node N + 1:

a∗iN+1 =
�∑

j∈Γ−1(N+1)

a∗ij ∗ ajN+1 and a∗N+1,i =
�∑

j∈Γ(N+1)

a∗N+1j ∗ aji

One then considers the possibility for a shortest path between i and i to pass
through the node N + 1: a∗ij = aij � a∗iN+1 ∗ a∗N+1,j

The greedy algorithm (Dijkstra). The greedy algorithm [4] is the algebraic
counterpart of the Dijkstra algorithm of shortest path. If Y = A∗B is the
solution of Y = AY � B, for a column vector B then there exists and index

i0 such that yi0 =
�∑

bi. Hence the smallest b is solution : yi0 = bi0 . Each
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element of Y = AY � B can then be written yk =
�∑

j �=�� k

akj ∗ yjy � bk =

�∑
j �=�� k,i0

akj ∗ yjy � aki0yi0 � bk. Suppressing the line and the column of rank i0

and taking for B the vector b
(1)
k = aki0yi0 � bk, one obtains a new system of

size N − 1 to solve.

4. Conclusion

Segmenting with markers being equivalent to constructing the skeleton of
influence of the marker for a particular lexicographic distance, segmenting be-
comes equivalent to solving a linear system. According the particular situation,
one then choses the best adapted linear algebra algorithm.
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Abstract The spatial relationship “between” is a notion which is intrinsically both fuzzy
and contextual, and depends in particular on the shape of the objects. The few
existing definitions do not take into account these aspects. We propose here
definitions which are based on morphological operators and a fuzzy notion of
visibility in order to model the main intuitive acceptions of the relation. We dis-
tinguish between cases where objects have similar spatial extensions and cases
where one object is much more extended than the other. These definitions are
illustrated on real data from brain images.

Keywords: Relationship “between”, spatial reasoning, fuzzy dilation, visibility.

Introduction

Spatial reasoning and structural object recognition in images rely on charac-
teristics or features of objects, but also on spatial relationships between these
objects, which are often more stable and less prone to variability. Several of
these relationships (like set theoretical ones, adjacency, distances) are mathe-
matically well defined. Other ones are intrinsically vague and imprecise. Their
modeling in the framework of fuzzy sets proved to be well adapted. This is
the case for instance for directional relative direction, which can be adequately
defined using fuzzy directional dilations [2]. Interestingly enough, these basic
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relationships can be expressed in terms of mathematical morphology, which
endows this framework with a unifying feature [3]. More complex relation-
ships have received very little attention until now. In this paper, we deal with
the “between” relation, and propose to model it based on simple morphological
operators.

Definitions of “between” in dictionaries involve the notion of separation (“in
the space that separates”). From a cognitive point of view, two factors appear
to play a role: the convex hull of the union of both objects and the notion of vis-
ibility. Several difficulties arise when trying to model this relationship. First, it
is intrinsically vague and imprecise, even if objects are precise. For instance,
in Figure 1 (a), we would like to consider that B is not completely between A1

and A2 but that it is between them to some degree. Moreover, the relation has
several meanings and may vary depending on shape. The definitions should
therefore be contextual rather than absolute. For instance, the between relation
cannot be defined in the same way whether the objects have similar spatial ex-
tensions or not (Figure 1 (b)), hence the necessary dependence on the context
of the definitions. The semantics of “between” change depending on whether
we consider a person between two buildings, a fountain between a house and
a road, or a road passing between two houses. These differences have been
exhibited in cognitive and linguistic studies [13].

B

A1

A2
2

1

A

A

(a) (b)

Figure 1. (a) Is the object B between A1 and A2 and to which degree? (b) An example of
objects with different spatial extension where a contextual definition is appropriate [13].

The primary aim of this paper is to propose some definitions of the rela-
tionship “between”, modeling mathematically these intuitive ideas. More pre-
cisely, we try to answer the following question: Which is the region of space,
denoted by β(A1, A2), located between two objects A1 and A2? From the an-
swer, we can then assess the degree to which an object B is between A1 and
A2 by defining an appropriate measure of comparison between β(A1, A2) and
B [4].

Although this problem received very little attention, it was addressed by
different communities. Approaches found in the domain of spatial logics and
qualitative spatial reasoning rely on colinearity between points [1] or between
centers of spheres [11]. They do not take into account the shape of objects
nor the fuzziness of the “between” relationship. To our knowledge, only two
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approaches take the fuzziness into account. One applies on one-dimensional
fuzzy sets [6] and relies on the definition of fuzzy ordering which makes its
extension to higher dimensions an uneasy task. The only one which is close to
our aim is the definition of [9]. The degree to which an object B is between two
objects A1 and A2 in the 2D space is defined as a function of the average angle
between segments linking points of B to points of A1 and A2. This approach
has a major drawback, even in quite simple situations, due to the averaging and
may lead to counter-intuitive results. Some linguistic and cognitive researches
link the “between” relation to the mathematical definition of convex hull. In
[10], the area between two objects is cognitively understood as “the minimal
space bounded by the pair of reference objects”. In [13], the region between
A1 and A2 is defined as the strict interior of the convex hull CH(A1 ∪ A2) of
A1 ∪ A2 from which A1 and A2 are suppressed. Obviously this applies only
in simple situations. For more complex objects, the connected components
of CH(A1 ∪ A2) \ (A1 ∪ A2) which are not adjacent to both A1 and A2

should be suppressed [4], but this does not solve all problems. In [13] an
idea is also briefly mentioned, to deal with objects having different spatial
extensions. In that case, the definition using the convex hull is not meaningful
and more contextual definitions can be proposed, such as the area issued from
the projection of the small object on the large one (Figure 1 (b)). It should be
noted that, to our knowledge, no definition deals appropriately with such cases.

In this paper, we assume that, in continuous space, the considered objects
are compact sets (enabling an easy link with the digital case), and that they
have only one connected component. Extensions to objects having several
connected components will be proposed based on a distributivity property. We
also assume that objects A1 and A2 are not connected to each other.

The paper is organized as follows. Definitions based on morphological op-
erators, in particular dilations and separation tools, are presented in Section
1; definitions based on the notion of visibility and fuzzy dilation are then pro-
posed, in Section 2. In order to illustrate our work, in Section 3, we apply some
of the proposed definitions on real objects, namely brain structures, and show
that the results correspond to what is intuitively expected.

1. Morphological dilations and directional dilations

We now try to implement the notion of separation that is found in standard
dictionary definitions. Morphological dilation provides a good basis to this
aim. If both objects are dilated until they meet, the ultimate intersection can be
considered as being between both objects, and therefore constitutes a “seed”
for constructing β(A1, A2). Formally, we define:

β(A1, A2) = Dn[Dn(A1) ∩Dn(A2)] ∩AC
1 ∩AC

2 (1)
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where Dn denotes the dilation by a disk of radius n, and where n is defined as:
n = min{k/Dk(A1) ∩ Dk(A2) �=�� ∅} i.e. n is the half of the minimum dis-
tance between both sets. This definition applies for convex sets, but is clearly
not adapted to non convex sets. Even for convex sets, this definition can be
considered as too restricted, since it may exclude some parts of the convex hull
of the union of both sets, as illustrated in Figure 2 (a). This effect can be even
stronger in case of non convex sets, as shown in Figure 2 (b). But the result can
also be too extended, typically if the distance between objects is much larger
than their size.

1
A

2A
β

2A

(a) (b) (c)

Figure 2. (a) Dilation of the intersection of the dilations of A1 and A2 by a size equal to
their half minimum distance. (b) Definition based on watershed or SKIZ (thick line), in a case
where the definition based on simple dilation leads only to the disk limited by the dashed line.
(c) Definition based on watershed, applied on the white objects and providing the grey area.

A line that “best” separates the two sets can also be considered as a seed of
β(A1, A2). This line can be implemented in mathematical morphology as the
watersheds of the distance function to A1 ∪ A2 (see Figure 2), or equivalently
(with the assumptions made on the objects) the SKIZ (skeleton by influence
zones). From this seed, the space that separates both sets can be defined as the
geodesic dilation until convergence (reconstruction) of the watershed lines (or
the SKIZ) in CH ′(A1 ∪ A2), where CH ′(A1 ∪ A2) denotes CH(A1 ∪ A2) \
(A1 ∪A2) from which the connected components not adjacent to both sets are
suppressed. Actually, in the cases we consider (A1 and A2 compact sets, not
connected to each other, and each having only one connected component), the
reconstruction provides CH ′(A1 ∪A2). Another way to implement the notion
of separation is to use the definition of [12], where a compact set is said to
separate two compact sets A1 and A2 if any segment with extremities in A1

and A2 respectively hits this set. Unfortunately this definition does not solve
the problem of non visible concavities and does not prevent the separating set
to intersect A1 or A2.

Note that cases like in Figure 2 (c) could be handled in a satisfactory way
by considering CH(A1 ∪A2) \ (CH(A1)∪CH(A2)), i.e. by working on the
convex hull of both objects, but this approach is not general enough and cannot
deal with imbricated objects for instance.
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In order to improve the dilation based approach, we develop an idea similar
to the one proposed in 1D in [6], by replacing the ordering by the directional
relative position of both objects. Directional dilation is then performed, us-
ing directional fuzzy structuring elements, with a similar approach as in [2].
The main direction between two objects can be determined from the angle
histogram [14]. Given an axis of reference, say the x axis, denoted �ux, the
histogram of angles h(A1,A2) is defined as: h(A1,A2)(θ) = |{(a1, a2), a1 ∈
A1, a2 ∈ A2, ∠( �a1a2, �x) = θ}|. The maximum or the average value α of this
histogram can be chosen as the main direction between A1 and A2. Let Dα

denote the dilation in direction α. The structuring element can be either a crisp
segment in the direction α, or a fuzzy structuring element where the member-
ship function at a point (r, θ) (in polar coordinates) is a decreasing function of
|θ−α| [2]. From this dilation, we define βα = Dα(A1)∩Dπ+α(A2)∩AC

1 ∩AC
2 .

Since it can be difficult to find only one main direction (from histogram of an-
gles for instance) we can use several values for α and define β as: β = ∪αβα

or β = ∪α(βα ∪ βα+π). We can also use the histogram of angles directly as
a fuzzy structuring element. For instance, let us define two fuzzy structuring
elements ν1 and ν2 from the angle histogram h(A1,A2)(θ) (Figure 5 (a)) as:
ν1(r, θ) = h(A1,A2)(θ) (see Figure 5 (b)), and ν2(r, θ) = h(A1,A2)(θ + π) =
ν1(r, θ + π). Several definitions of the between region can be envisaged, the
simplest being:

β(A1, A2) = Dν2(A1) ∩Dν1(A2) ∩AC
1 ∩AC

2 , (2)

which is illustrated in Figure 5 (c). Another definition, inspired by [6], allows
to remove the concavities which are not “facing each other”:

β(A1, A2) = Dν2(A1) ∩Dν1(A2) ∩AC
1 ∩AC

2 ∩
[Dν1(A1) ∩Dν1(A2)]C ∩ [Dν2(A1) ∩Dν2(A2)]C , (3)

which is illustrated in Figure 5 (d). For instance, if A2 is approximately to
the right of A1, this definition suppresses the concavities which are to the left
(respectively right) of both objects.

2. Visibility, fuzzy visibility and myopic vision

Let us consider again the situation in Figure 2 (c). If we assume that the
two objects are buildings and that someone is supposed to meet another person
between these buildings, then he would probably expect the person to wait in an
area where he can surely be seen, not in the concavity. Another interpretation
would be that B hides to A1 a part of A2. The notion of visibility has to
play an important role: although CH(A1 ∪ A2) \ (A1 ∪ A2) has only one
connected component, which is adjacent to both A1 and A2, object A2 has a
concavity which is not visible from A1 and should probably not be included
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in the between area (Figure 2 (c)). To take such situations into account, we
propose to base the notion of visibility on admissible segments as introduced
in [15]. A segment ]x1, x2[, with x1 in A1 and x2 in A2 (A1 and A2 are still
supposed to be compact sets), is said admissible if it is included in AC

1 ∩ AC
2 .

Note that x1 and x2 then necessarily belong to the boundary of A1 and A2,
respectively (A1 and A2 are compact). This has interesting consequences from
an algorithmic point of view, since it considerably reduces the size of the set of
points to be explored. The visible points are those which belong to admissible
segments. The region between A1 and A2 can then be defined as the union of
admissible segments. It corresponds to the set CH(A1∪A2)\ (A1∪A2) from
which all points not belonging to admissible segments are suppressed.

However, the definition of admissible segments can be too strict in some
cases. In order to get more flexibility, we introduce the notion of approx-
imate (or fuzzy) visibility. It extends both the crisp definition of visibility
and the definition proposed in [9] in the sense that the information is not re-
duced to an average angle. This is achieved by relaxing the admissibility to
semi-admissibility by introducing an intermediary point P on the segments. A
segment ]a1, P ] with a1 ∈ A1 (respectively [P, a2[ with a2 ∈ A2) is said semi-
admissible if it is included in AC

1 ∩AC
2 . At each point P of space, we compute

the angle the closest to π between two semi-admissible segments from P to
A1 and A2 respectively. This is formally defined as:

θmin(P ) = min{|π − θ|, θ = ∠([a1, P ], [P, a2]),
a1 ∈ A1, a2 ∈ A2, ]a1, P ] and [P, a2[ semi-admissible}. (4)

The region between A1 and A2 is then defined as the fuzzy region of space
with membership function β(P ) = f(θmin(P )), where f is a function from
[0, π] to [0, 1] such that f(0) = 1, f is decreasing, and becomes 0 at the largest
acceptable distance to π (this value can be tuned according to the context).
This idea is illustrated in Figure 3.

Now, we assume that one of the objects, say A2, can be considered to have
infinite size with respect to the other (we assume this to be known in advance).
This is the case for instance when one says that a fountain is between the house
and the road, or that the sport area is between the city hall and the beach. None
of the previous definitions applies in such cases, since they consider objects
globally. Intuitively, the between area should be considered between A1 and
the only part of A2 which is the closest to A1, instead of considering A2 glob-
ally. Hence the idea of projecting A1 onto A2 in some sense, and to consider
the “umbra” of A1. Here we make an additional assumption, largely verified
in most situations, by approximating by a segment the part the closest to A1 (if
this appear to be too restrictive, the part the closest to A1 can be approximated
by several segments, of different directions, and the orthogonal direction is
then locally defined). Let us denote the segment direction by �u. The between
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< π

π

1

2P

P 21
AA

Figure 3. Left: Illustration of the fuzzy visibility concept. For point P1PP , we have θmin(P1PP ) =
0 and therefore β(P1PP ) = 1, while for point P2PP , it is not possible to find two colinear semi-
admissible segments from A1 (respectively A2) to P2PP , thus θmin(P2PP ) > 0 and β(P2PP ) < 1,
expressing that P2PP is not completely between A1 and A2. Right: Illustration of the definition
of region β in case on an extended object (myopic vision). In the areas indicated by β > 0, the
relation is satisfied to some degree between 0 and 1. They can be more or less spread depending
on the structuring element, i.e. on the semantics of the relation.

region can then be defined by dilating A1 by a structuring element defined as a
segment orthogonal to �u and limiting this dilation to the half plane defined by
the segment of direction �u and containing A1. However this may appear as too
restrictive and a fuzzy dilation [5] by a structuring element having decreasing
membership degrees when going away from the direction orthogonal to �u [2]
is more flexible and better matches the intuitive idea. The projection segment
can be defined by dilating the part of A2 the closest to A1 (obtained by a dis-
tance map computation) conditionally to A2 and computing the axis of inertia
of the result. This approach is illustrated in Figure 3. In terms of visibility, it
corresponds to a “myopic” vision, in which the parts of A2 which are too far
from A1 are not seen.

Further work in this direction aims at achieving a continuity from the case
where the objects have similar spatial extensions to the one where one becomes
much more elongated.

3. Illustrations

In this Section, we illustrate some of the proposed definitions on brain struc-
tures. Figure 4 presents a few brain structures, on a 2D slice. Usual anatomical
descriptions make intensive use of spatial relations to describe these objects
(see e.g. http://www.chups.jussieu.fr/ext/neuranat) and such descriptions are
very useful for recognizing these structures in medical images [7]. The be-
tween relation is involved in several of these descriptions: (i) the internal cap-
sule (IC) is between the caudate nucleus (CN) and the lenticular nucleus (LN);
(ii) the corpus callosum (CC) is between the lateral ventricles (LV) and the cin-
gulate gyrus (CG) ; (iii) the medial frontal gyrus (MFG) is between the inferior
frontal gyrus (IFG) and the superior frontal gyrus (SFG).

A2

A

β = 0
β = 0
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Superior Frontal Gyrus (SFG)

Median Frontal Gyrus (MFG)

Inferior Frontal Gyrus (IFG)

Lenticular Nucleus (LN)

Internal Capsule (IC)

Caudate Nucleus (CN)

Corpus Callosum (CC)

Cingulate Gyrus (CG)

Lateral Ventricles (LV)

Figure 4. A few brain structures (a 2D slice extracted from a 3D atlas).
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Figure 5. (a) Angle histogram of objects A1 and A2 (superior and inferior frontal gyri). (b)
Corresponding structuring element ν1 (ν2 is its symmetrical with respect to the origin). (c)
Definition based on fuzzy dilation (Equation 2). Membership values to β(A1, A2) vary from 0
(white) to 1 (black). The contours of the median frontal gyrus are superimposed. (d) Definition
based on fuzzy dilation, with Equation 3. (e) Convex hull approach. (f) Definition using the
admissible segments. (g) Fuzzy visibility approach.

Our definitions were applied to define the region between the aforemen-
tioned brain structures. Figure 5 shows (for one example only due to lack of
space) the “between” region using the directional dilation (a-d), the convex
hull approach (e), the admissible segments (f) and the fuzzy visibility (g). It
is clear that the convex hull definition does not deal appropriately with con-
cavities. This problem is solved by the directional dilation and visibility ap-
proaches. In (c) and (e), non visible concavities are included in the result,
while they have been adequately suppressed in (d), (f) and (g). Also, it should
be noted that fuzzy methods (directional dilation and fuzzy visibility) are more
appropriate than crisp ones (convex hull and admissible segments): the median
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frontal gyrus is partly outside the β region defined by crisp approaches while
remaining in areas with high membership degrees when using the fuzzy ones.
Note that the region where β = 1 is the same in (f) and (g) and almost the
same in (d), therefore these approaches are equivalent for objects completely
included in this region.

To evaluate the relation “B is between A1 and A2”, we computed the nor-
malized intersection of B and β: |β∩B|

|B| . A few results are shown in Table 1.
They correspond to what is intuitively expected. Higher degrees are obtained
with fuzzy methods which again indicates that they deal more appropriately
with objects that would not be completely included in the crisp β region. The
measures are however quite similar for all approaches, since none of the ob-
jects B is located in a concavity.

A1 A2 B ||β∩B||
|B| (1) ||β∩B||

|B| (2) ||β∩B||
|B| (3) ||β∩B||

|B| (4)

CN LN IC 0.85 0.84 0.84 0.94
LV CG CC 1.00 0.93 1.00 1.00
IFG SFG MFG 0.78 0.92 0.76 0.95
CG CN CC 0.88 0.90 0.88 0.97
CG CN LV 0.47 0.63 0.47 0.79
IFG SFG IC 0.00 0.02 0.00 0.16
IFG SFG LN 0.00 0.00 0.00 0.04

Table 1. A few results obtained with the method of convex hull (1), fuzzy directional dilation
(2), admissible segments (3) and with the fuzzy visibility approach (4). The fifth line corre-
sponds to a case where only a part of B is between A1 and A2, the relation being thus satisfied
with a lower degree than in the previous cases. The last two lines correspond to cases where
the relation is not satisfied. Low but non-zero values are obtained with the fuzzy approaches,
because of the tolerance on the angles.

4. Conclusion

We have shown in this paper how a complex spatial relation, “between”,
can be modeled using simple tools of mathematical morphology and fuzzy
mathematical morphology, and addressed the modeling of this relation in cases
where objects have similar spatial extensions or very different ones. The pro-
posed definitions of β(A1, A2) have the following properties: symmetry (by
construction); invariance with respect to geometrical operations (translation,
rotation). In case the objects have several connected components, the defini-
tions can be easily extended by applying a distributivity principle. For instance
if A1 can be decomposed into connected components as ∪iA

i
1, then we define

β(A1, A2) = β(∪iA
i
1, A2) = ∪iβ(Ai

1, A2). Properties of these definitions
could be further studied, as well as possible links or transitions from one defi-
nition to the other. Future work aims also at defining other measures to assess
the degree to which an object B is between A1 and A2, in different types of
contexts, and at introducing the between relation in structural pattern recogni-



308 MATHEMATICAL MORPHOLOGY: 40 YEARS ON

tion and spatial reasoning schemes, as done previously for other relationships
[7, 8].
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SEMIDISCRETE AND DISCRETE
WELL-POSEDNESS OF SHOCK FILTERING
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Abstract While shock filters are popular morphological image enhancement methods, no
well-posedness theory is available for their corresponding partial differential
equations (PDEs). By analysing the dynamical system of ordinary differential
equations that results from a space discretisation of a PDE for 1-D shock fil-
tering, we derive an analytical solution and prove well-posedness. Finally we
show that the results carry over to the fully discrete case when an explicit time
discretisation is applied.
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1. Introduction

Shock filters are morphological image enhancement methods where dilation
is performed around maxima and erosion around minima. Iterating this pro-
cess leads to a segmentation with piecewise constant segments that are sepa-
rated by discontinuities, so-called shocks. This makes shock filtering attractive
for a number of applications where edge sharpening and a piecewise constant
segmentation is desired.

In 1975 the first shock filters have been formulated by Kramer and Bruckner
in a fully discrete manner [6], while first continuous formulations by means of
partial differential equations (PDEs) have been developed in 1990 by Osher
and Rudin [8]. The relation of these methods to the discrete Kramer–Bruckner
filter became clear several years later [4, 12]. PDE-based shock filters have
been investigated in a number of papers. Many of them proposed modifica-
tions with higher robustness under noise [1, 3, 5, 7, 12], but also coherence-
enhancing shock filters [14] and numerical schemes have been studied [11].

Let us consider some continuous d-dimensional initial image f : IRd → IR.
In the simplest case of a PDE-based shock filter [8], one obtains a filtered
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Figure 1. Left: Original image. Right: After applying the Osher–Rudin shock filter.

version u(x, t) of f(x) by solving the evolution equation

∂t∂∂ u = −sgn(∆u) |∇u| (t ≥ 0)

with f as initial condition, i. e. u(0, x) = f(x). Experimentally one observes
that within finite “evolution time” t, a piecewise constant, segmentation-like
result is obtained (see Fig. 1).

Specialising to the one-dimensional case, we obtain

∂t∂∂ u = −sgn(∂xx∂ u) |∂x∂ u| =

⎧⎨⎧⎧⎩⎨⎨ |∂x∂ u| , ∂xx∂ u < 0,
− |∂x∂ u| , ∂xx∂ u > 0,

0, ∂xx∂ u = 0.
(1)

It is clearly visible that this filter performs dilation ∂t∂∂ u = |∂x∂ u| in concave
segments of u, while in convex parts the erosion process ∂t∂∂ u = −|∂x∂ u| takes
place. The time t specifies the radius of the interval (a 1-D disk) [−t, t] as
structuring element. For a derivation of these PDE formulations for classical
morphological operations, see e.g. [2].

While there is clear experimental evidence that shock filtering is a useful
operation, no analytical solutions and well-posedness results are available for
PDE-based shock filters. In general this problem is considered to be too diffi-
cult, since shock filters have some connections to classical ill-posed problems
such as backward diffusion [8, 7].

The goal of the present paper is to we show that it is possible to establish
analytical solutions and well-posedness as soon as we study the semidiscrete
case with a spatial discretisation and a continuous time parameter t. This case
is of great practical relevance, since digital images already induce a natural
space discretisation. For the sake of simplicity we restrict ourselves to the 1-D
case. We also show that these results carry over to the fully discrete case with
an explicit (Euler forward) time discretisation.
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Our paper is organised as follows: In Section 2 we present an analytical
solution and a well-posedness proof for the semidiscrete case, whereas cor-
responding fully discrete results are given in Section 3. Conclusions are pre-
sented in Section 4.

2. The Semidiscrete Model

Throughout this paper, we are concerned with a spatial discretisation of (1)
which we will describe now.

Problem. Let (. . . , u0(t), u1(t), u2(t), . . .) be a time-dependent real-valued
signal which evolves according to

u̇i =

⎧⎨⎧⎧⎩⎨⎨ max(ui+1 − ui, ui−1 − ui, 0), 2ui > ui+1 + ui−1,
min(ui+1 − ui, ui−1 − ui, 0), 2ui < ui+1 + ui−1,
0, 2ui = ui+1 + ui−1

(2)

with the initial conditions
ui(0) = fiff . (3)

Assume further that the signal is either of infinite length or finite with reflecting
boundary conditions.

Like (1), this filter switches between dilation and erosion depending on the
local convexity or concavity of the signal. Dilation and erosion themselves are
modeled by upwind-type discretisations [9], and u̇i denotes the time derivative
of ui(t).

It should be noted that in case 2ui > ui+1 + ui−1 the two neighbour dif-
ferences ui+1 − ui and ui−1 − ui cannot be simultaneously positive; with
the opposite inequality they can’t be simultaneously negative. In fact, always
when the maximum or minimum in (2) does not select its third argument, zero,
it returns the absolutely smaller of the neighbour differences.

No modification of (2) is needed for finite-length signals with reflecting
boundary conditions. In this case, each boundary pixel has one vanishing
neighbour difference.

In order to study the solution behaviour of this system, we have to spec-
ify the possible solutions, taking into account that the right-hand side of (2)
may involve discontinuities. We say that a time-dependent signal u(t) =
(. . . , u1(t), u2(t), u3(t) . . .) is a solution of (2) if

(I) each ui is a piecewise differentiable function of t,

(II) each ui satisfies (2) for all times t for which u̇i(t) exists,

(III) for t = 0, the right-sided derivative u̇+
i (0) equals the right-hand side of

(2) if 2ui(0) �=�� ui+1(0) + ui−1(0).
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We state now our main result.

Theorem 1 (Well-Posedness) For our Problem, assume that the equal-
ity fkff +1 − 2fkff + fkff −1 = 0 does not hold for any pixel fkff which is not a local
maximum or minimum of f . Then the following are true:

(i) Existence and uniqueness: The Problem has a unique solution for all
t ≥ 0.

(ii) Maximum–minimum principle: If there are real bounds a, b such that
a < fkff < b holds for all k, then a < uk(t) < b holds for all k and all
t ≥ 0.

(iii) l∞-stability: There exists a δ > 0 such that for any initial signal f̃ with
‖f̃ − f‖∞ < δ the corresponding solution ũ satisfies the estimate

‖ũ(t)− u(t)‖∞ < ‖f̃ − f‖∞
for all t > 0. The solution therefore depends l∞-continuously on the
initial conditions within a neighbourhood of f .

(iv) Total variation preservation: If the total variation of f is finite, then the
total variation of u at any time t ≥ 0 equals that of f .

(v) Steady state: For t → ∞, the signal u converges to a piecewise con-
stant signal. The jumps in this signal are located at the steepest slope
positions of the original signal.

All statements of this theorem follow from an explicit analytical solution of
the Problem that will be described in the following proposition.

Proposition 2 (Analytical solution) For our standard problem, let
the segment (f1, . . . , fmff ) be strictly decreasing and concave in all pixels. As-
sume that the leading pixel f1 is either a local maximum or a neighbour to a
convex pixel f0ff > f1. Then the following hold for all t ≥ 0:

(i) If f1 is a local maximum of f , u1(t) is a local maximum of u(t).

(ii) If f1 is neighbour to a convex pixel f0ff > f1, then u1(t) also has a convex
neighbour pixel u0(t) > u1(t).

(iii) The segment (u1, . . . , um) remains strictly decreasing and concave in
all pixels. The grey values of all pixels at time t are given by

uk(t) = C ·

⎛⎝⎛⎛1 + (−1)ke−2t − e−t
k−2∑
j=0

tj

j!
(1 + (−1)k−j)

⎞⎠⎞⎞

+ e−t
k−2∑
j=0

tj

j!
fkff −j − (−1)kf1e−t

⎛⎝⎛⎛e−t −
k−2∑
j=0

(−t)j

j!

⎞⎠⎞⎞ (4)
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for k = 1, . . . , m, where C = f1(0) if f1 is a local maximum of f , and
C = 1

2(f0ff (0) + f1(0)) otherwise.

(iv) At no time t ≥ 0, the equation 2ui(t) = ui+1(t) + ui−1(t) becomes true
for any i ∈ {1, . . . , m}.

Analogous statements hold for increasing concave and for convex signal
segments.

In a signal that contains no locally flat pixels (such with 2fiff = fiff +1 +
fiff −1), each pixel belongs to a chain of either concave or convex pixels led
by an extremal pixel or an “inflection pair” of a convex and a concave pixel.
Therefore Proposition 2 completely describes the dynamics of such a signal.
Let us prove this proposition.

Proof. We show in steps (i)–(iii) that the claimed evolution equations hold as
long as the initial monotonicity and convexity properties of the signal segment
prevail. Step (iv) then completes the proof by demonstrating that the evolution
equations preserve exactly these monotonicity and convexity requirements.

(i) From (2) it is clear that any pixel ui which is extremal at time t has
u̇i(t) = 0 and therefore does not move. Particularly, if f1 is a local maximum
of f , then u1(t) remains constant as long as it continues to be a maximum.

(ii) If u0 > u1, u0 is convex and u1 concave for t ∈ [0, T ). Then we have
for these pixels

u̇0 = u1 − u0 ,
u̇1 = u0 − u1

(5)

which by the substitutions y := 1
2(u0 + u1) and v := u1 − u0 becomes

ẏ = 0 ,
v̇ = −2v .

This system of linear ordinary differential equations (ODEs) has the solution
y(t) = y(0) = C and v(t) = v(0) exp(−2t). Backsubstitution gives

u0(t) = C · (1− e−2t) + f0ff e−2t ,
u1(t) = C · (1− e−2t) + f1e−2t .

(6)

This explicit solution is valid as long as the convexity and monotonicity prop-
erties of u0 and u1 do not change.

(iii) Assume the monotonicity and convexity conditions required by the
proposition for the initial signal hold for u(t) for all t ∈ [0, T ). Then we
have in all cases, defining C as in the proposition, the system of ODEs

u̇1 = −2(u1 − C) ,
u̇k = uk−1 − uk , k = 2, . . . , m

(7)



316 MATHEMATICAL MORPHOLOGY: 40 YEARS ON

for t ∈ [0, T ). We substitute further vk := uk −C for k = 1, . . . ,m as well as
w1 := v1 and wk := vk + (−1)kv1 for k = 2, . . . ,m. This leads to the system

ẇ1 = −2w1 ,
ẇ2 = −w2 ,
ẇk = wk−1 − wk , k = 3, . . . , m .

(8)

This system of linear ODEs has the unique solution

w1(t) = w1(0)e−2t ,

wk(t) = e−t
k−2∑
j=0

tj

j!
wk−j(0) , k = 2, . . . ,m

which after reverse substitution yields (4) for all t ∈ [0, T ].
(iv) Note that (5) and (7) are systems of linear ODEs which have the unique

explicit solutions (6) and (4) for all t > 0. As long as the initial monotonicity
and convexity conditions are satisfied, the solutions of (2) coincide with those
of the linear ODE systems.

We prove therefore that the solution (4) fulfils the monotonicity condition

uk(t)− uk−1(t) < 0 , k = 2, . . . , m

and the concavity conditions

uk+1(t)− 2uk(t) + uk−1(t) < 0 k = 1, . . . ,m

for all t > 0 if they are valid for t = 0. To see this, we calculate first

uk(t)− uk−1(t) = e−t
k−2∑
j=0

tj

j!
(fkff −j − fkff −1−j)

+ 2e−t(−1)k−1

⎛⎝⎛⎛e−t −
k−2∑
j=0

(−t)j

j!

⎞⎠⎞⎞ (f1 − C) .

By hypothesis, fkff −j − fkff −1−j and f1 − C are negative. Further, exp(−t) −∑k−2
j=0(−t)j/j! is the error of the (alternating) Taylor series of exp(−t), thus

having the same sign (−1)k−1 as the first neglected member. Consequently,
the monotonicity is preserved by (4) for all t > 0.

Second, we have for k = 2, . . . , m− 1

uk+1(t)− 2uk(t) + uk−1(t) = e−t
k−1∑
j=0

tj

j!
(fkff +1−j − 2fkff −j + fkff −j−1)

+ 4e−t(−t)k

⎛⎝⎛⎛k−1∑
j=0

(−t)j

j!

⎞⎠⎞⎞ (f1 − C)
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which is seen to be negative by similar reasoning as above.
Concavity at um(t) follows in nearly the same way. By extending (4) to

k = m + 1, one obtains not necessarily the true evolution of um+1 since that
pixel is not assumed to be included in the concave segment. However, the true
trajectory of um+1 can only lie below or on that predicted by (4).

Third, if f1 is a maximum of f , then u1(t) remains one for all t > 0 which
also ensures concavity at u1. If f1 has a convex neighbour pixel f0ff > f1, we
have instead

u2(t)− 2u1(t) + u0(t) = e−t(f2ff − 2f1 + f0ff ) + 4e−t(1− e−t)(f1 − C) < 0

which is again negative for all t > 0.
Finally, we remark that the solution (6) ensures u0(t) > u1(t) for all t > 0

if it holds for t = 0. That convexity at u0 is preserved can be established by
analogous reasoning as for the concavity at u1.

Since the solutions from the linear systems guarantee preservation of all
monotonicity and convexity properties which initially hold for the considered
segment, these solutions are the solutions of (2) for all t > 0.

We remark that uniqueness fails if the initial signal contains non-extremal
locally flat pixels. More details for this case are given in a preprint [15].

3. Explicit Time Discretisation

In the following we discuss an explicit time discretisation of our time-
continuous system. We denote the time step by τ > 0. The time discretisation
of our Problem then reads as follows:

Time-Discrete Problem. Let (. . . , ul
0, u

l
1, u

l
2, . . .), l = 0, 1, 2, . . . be a

series of real-valued signals which satisfy the equations

ul+1
i − ul

i

τ
=

⎧⎨⎧⎧⎩⎨⎨ max(ui+1 − ui, ui−1 − ui, 0), 2ui > ui+1 + ui−1,
min(ui+1 − ui, ui−1 − ui, 0), 2ui < ui+1 + ui−1,
0, 2ui = ui+1 + ui−1

(9)

with the initial conditions
u0

i = fiff ; (10)

assume further that the signal is either of infinite length or finite with reflecting
boundary conditions.

Theorem 3 (Time-Discrete Well-Posedness) Assume that in the
Time-Discrete Problem the equality fkff +1 − 2fkff + fkff −1 = 0 does not hold
for any pixel fkff which is not a local maximum or minimum of f . Assume fur-
ther that τ < 1/2. Then the statements of Theorem 1 are valid for the solution
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of the Time-Discrete Problem if only uk(t) for t > 0 is replaced everywhere by
ul

k with l = 0, 1, 2, . . .

The existence and uniqueness of the solution of the Time-Discrete Problem
for l = 0, 1, 2, . . . is obvious. Maximum–minimum principle, l∞-stability,
total variation preservation and the steady state property are immediate conse-
quences of the following proposition. It states that for τ < 1/2 all qualitative
properties of the time-continuous solution transfer to the time-discrete case.

Proposition 4 (Time-discrete solution) Let ul
i be the value of pixel

i in time step l of the solution of our Time-Discrete Problem with time step size
τ < 1/2. Then the following hold for all l = 0, 1, 2, . . .:

(i) If ul
1 is a local maximum of ul, then ul+1

1 is a local maximum of ul+1.

(ii) If ul
1 is a concave pixel neighbouring to a convex pixel ul

0 > ul
1, then

ul+1
1 is again concave and has a convex neighbour pixel ul+1

0 > ul+1
1 .

(iii) If the segment (ul
1, . . . , u

l
m) is strictly decreasing and concave in all

pixels, and ul
1 is either a local maximum of ul or neighbours to a convex

pixel ul
0 > ul

1, then the segment (ul+1
1 , . . . , ul+1

m ) is strictly decreasing.

(iv) Under the same assumptions as in (iii), the segment (ul+1
1 , . . . , ul+1

m ) is
strictly concave in all pixels.

(v) If 2ul
i = ul

i+1 + ul
i−1 holds for no pixel i, then 2ul+1

i = ul+1
i+1 + ul+1

i−1
also holds for no pixel i.

(vi) Under the assumptions of (iii), all pixels in the range i ∈ {1, . . . ,m}
have the same limit lim

l→∞
ul

i = C with C := ul
1 if ul

1 is a local maximum,

or C := 1
2(ul

0 + ul
1) if it neighbours to the convex pixel ul

0.

Analogous statements hold for increasing concave and for convex signal
segments.

Proof. Assume first that ul
1 is a local maximum of ul. From the evolution

equation (9) it is clear that ul+1
j ≤ ul

j + τ(ul
1 − ul

j) for j = 0, 2. For τ < 1
this entails ul+1

j < ul
1 = ul+1

1 , thus (i).

If instead ul
i is a concave neighbour of a convex pixel ul

0 > ul
1, then we have

ul+1
1 = ul

1 +τ(ul
0−ul

1) and ul+1
0 = ul

0 +τ(ul
1−ul

0). Obviously, ul+1
0 > ul+1

1

holds if and only if τ < 1/2. For concavity, note that ul+1
2 ≤ ul

2 + τ(ul
1 − ul

2)
and therefore ul+1

0 − 2ul+1
1 + ul+1

2 ≤ (1− τ)(ul
0 − 2ul

1 + ul
2) + 2τ(ul

1 − ul
0).

The right-hand side is certainly negative for τ ≤ 1/2. An analogous argument
secures convexity at pixel 0 which completes the proof of (ii).
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In both cases we have ul+1
1 ≥ ul

1. Under the assumptions of (iii), (iv) we
then have ul+1

k = ul
k + τ(ul

k−1 − ul
k) for k = 2, . . . , m. If τ < 1, it follows

that ul
k < ul+1

k ≤ ul
k−1 for k = 2, . . . , m which together with ul+1

1 ≥ ul
1

implies that ul+1
k−1 > ul

k for k = 2, . . . , m and therefore (iii).
For the concavity condition we compute

ul+1
k−1−2ul+1

k +ul+1
k+1 = (1− τ)(ul

k−1−2ul
k +ul

k+1)+ τ(ul
k−2−2ul

k−1 +ul
k)

for k = 3, . . . , m − 1. The right-hand side is certainly negative for τ ≤ 1
which secures concavity in the pixels k = 3, . . . ,m− 1. Concavity in pixel m
for τ ≤ 1 follows from essentially the same argument; however, the equation is
now replaced by an inequality since for pixel m+1 we know only that ul+1

m+1 ≤
ul

m+1 +τ(ul
m−ul

m+1). If ul
1 is a local maximum and therefore ul+1

1 = ul
1, we

find for pixel 2 that ul+1
1 −2ul+1

2 +ul+1
3 = (1−τ)(ul

1−2ul
2+ul

3)+τ(ul
2−ul

1)
which again secures concavity for τ ≤ 1. As was proven above, concavity in
pixel 1 is preserved for τ ≤ 1/2 such that (iv) is proven.

Under the hypothesis of (v), the evolution of all pixels in the signal is de-
scribed by statements (i)–(iv) or their obvious analoga for increasing and con-
vex segments. The claim of (v) then is obvious.

Finally, addition of the equalities C−ul+1
1 = (1−2τ)(C−ul

1) and ul+1
i−1−

ul+1
i = (1− τ)(ul

i−1 − ul
i) for i = 2, . . . , m implies that

C − ul+1
k = (1− τ)(C − ul

k)− τ(C − ul
1) < (1− τ)(C − ul

k)

for all k = 1, . . . , m. By induction, we have

C − ul+l′
k ≤ (1− τ)l′(C − ul

k)

where the right-hand side tends to zero for l′ → ∞. Together with the mono-
tonicity preservation for τ < 1/2, statement (vi) follows.

4. Conclusions

Theoretical foundations for PDE-based shock filtering has long been con-
sidered to be a hopelessly difficult problem. In this paper we have shown that it
is possible to obtain both an analytical solution and well-posedness by consid-
ering the space-discrete case where the partial differential equation becomes a
dynamical system of ordinary differential equations (ODEs). Moreover, cor-
responding results can also be established in the fully discrete case when an
explicit time discretisation is applied to this ODE system.

We are convinced that this basic idea to establish well-posedness results
for difficult PDEs in image analysis by considering the semidiscrete case is
also useful in a number of other important PDEs. While this has already
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been demonstrated for nonlinear diffusion filtering [13, 10], we plan to in-
vestigate a number of other PDEs in this manner, both in the one- and the
higher-dimensional case. This should give important theoretical insights into
the dynamics of these experimentally well-performing nonlinear processes.
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A VARIATIONAL FORMULATION OF
PDE’S FOR DILATIONS AND LEVELINGS
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Abstract Partial differential equations (PDEs) have become very useful modeling and
computational tools for many problems in image processing and computer vi-
sion related to multiscale analysis and optimization using variational calculus. In
previous works, the basic continuous-scale morphological operators have been
modeled by nonlinear geometric evolution PDEs. However, these lacked a vari-
ational interpretation. In this paper we contribute such a variational formulation
and show that the PDEs generating multiscale dilations and erosions can be de-
rived as gradient flows of variational problems with nonlinear constraints. We
also extend the variational approach to more advanced object-oriented morpho-
logical filters by showing that levelings and the PDE that generates them result
from minimizing a mean absolute error functional with local sup-inf constraints.

Keywords: scale-spaces, PDEs, variational methods, morphology.

1. Introduction

Partial differential equations have a become a powerful set of tools in image
processing and computer vision for modeling numerous problems that are re-
lated to multiscale analysis. They need continuous mahematics such as differ-
ential geometry and variational calculus and can benefit from concepts inspired
by mathematical physics. The most investigated partial differential equation
(PDE) in imaging and vision is the linear isotropic heat diffusion PDE because
it can model the Gaussian scale-space, i.e. its solution holds all multiscale lin-
ear convolutions of an initial image with Gaussians whose scale parameter is
proportional to their variance. In addition, to its scale-space interpretation, the
linear heat PDE can also be derived from a variational problem. Specifically,
if we attempt to evolve an initial image into a smoother version by minimizing
the L2 norm of the gradient magnitude, then the PDE that results as the gradi-
ent descent flow to reach the minimizer is identical to the linear heat PDE. All
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the above ideas are well-known and can be found in numerous books dealing
with classic aspects of PDEs and variational calculus both from the viewpoint
of mathematical physics, e.g. [5], as well as from the viewpoint of image anal-
ysis, e.g. [12, 6, 14].

In the early 1990s, inspired by the modeling of the Gaussian scale-space via
the linear heat diffusion PDE, three teams of researchers (Alvarez, Guichard,
Lions & Morel [1], Brockett & Maragos [3, 4], and Boomgaard & Smeulders
[19]) independently published nonlinear PDEs that model various morpholog-
ical scale-spaces. Refinements of the above works for PDEs modeling multi-
scale morphology followed in [8, 7, 6]. However, in none of the previous works
the PDEs modeling morphological scale-spaces were also given a direct vari-
ational interpretation. There have been only two indirect exceptions: i) Heij-
mans & Maragos [7] unified the morphological PDEs using Legendre-Fenchel
‘slope’ transforms, which are related to Hamilton-Jacobi theory and this in turn
is related to variational calculus. ii) Inspired by the level sets methodology
[13], it has been shown in [2, 15] that binary image dilations or erosions can
be modeled as curve evolution with constant (±1) normal speed. The PDE of
this curve evolution results as the gradient flow for evolving the curve by max-
imizing or minimizing the rate of change of the enclosed area; e.g. see [17]
where volumetric extensions of this idea are also derived. Our work herein is
closer to [17].

In this paper we contribute a new formulation and interpretation of the PDEs
modeling multiscale dilations and erosions by showing that they result as gra-
dient flows of optimization problems where the volume under the graph of
the image is maximized or minimized subject to some nonlinear constraints.
Further, we extend this new variational interpretation to more complex mor-
phological filters that are based on global constraints, such as the levelings
[10, 11, 9].

2. Background

Variational Calculus and Scale-Spaces

A standard variational problem is to find a function u = u(x, y) that mini-
mizes the ‘energy’ functional

J [u] =
∫ ∫

F (x, y, u, ux, uy)dxdy (1)

usually subject to natural boundary conditions, where F is a second-order con-
tinuously differentiable function. A necessary condition satisfied by an ex-
tremal function u is the Euler-Langange PDE [F ]u = 0, where [F ]u is the
Euler (variational) derivative of F w.r.t. u. In general, to reach the extremal
function that minimizes J , we can set up a gradient steepest descent proce-
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dure starting from an initial function u0(x, y) and evolving it into a function
u(x, y, t), where t is an artificial marching parameter, that satisfies the evolu-
tion PDE

∂u

∂t
= −[F ]u, [F ]u = FuFF − ∂FuFF x

∂x
−

∂FuFF y

∂y
(2)

This PDE is called the gradient flow corresponding to the original variational
problem. In some cases, as t → ∞ the gradient flow will reach the minimizer
of J . If we wish to maximize J , the corresponding gradient flow is ut = [F ]u.
(Short notation for PDEs: ut = ∂u/∂t, ux = ∂u/∂x, uy = ∂u/∂y, ∇u =
(ux, uy), ∇2u = uxx + uyy.)

In the gradient flow formulation the evolving function u = u(x, y, t) is a
family of functions depending on the time parameter t and hence J [u] = J(t).
Then [5]

d

dt
J [u] =

∫ ∫
ut[F ]udxdy (3)

Thus, we can also view the Euler derivative [F ]u as the gradient of the func-
tional J [u] in function space. This implies that, in getting from an arbitrary u0

to the extremal, the PDE (2) of the gradient flow provides us with the fastest
possible rate of decreasing J .

In scale-space analysis, we also start from an initial image uo(x, y) and
evolve it into a function u(x, y, t) with u(x, y, 0) = u0(x, y). The mapping
u0 �→ u is generated by some multiscale filtering at scale t ≥ 0 or by some
PDE. The PDEs of several known scale-spaces (e.g. the Gaussian) have a vari-
ational interpretation since they can be derived as gradient flows of functional
minimization problems where the marching time t coincides with the scale pa-
rameter. For example, if F = (1/2)||∇u||2, the gradient flow corresponding
to minimizing J =

∫ ∫
F is the isotropic heat diffusion PDE ut = ∇2u.

PDEs for Dilation/Erosion Scale-Spaces

Let k : R
m → R, m = 1, 2, ..., be a unit-scale upper-semicontinuous

concave structuring function. Let kt(x) = tk(x/t) be its multiscale version,
where both its values and its support have been scaled by a parameter t ≥ 0.
The multiscale Minkowski dilation ⊕ and erosion 	 of f : R

m → R by kt

are defined as the scale-space functions δ(x, t) = (f ⊕ kt)(x) and ε(x, t) =
(f 	 kt)(x):

δ(x, t) =
∨

y∈Rm

f(y) + kt(x− y), ε(x, t) =
∧

y∈Rm

f(y)− kt(y − x),

where
∨

and
∧

denote supremum and infimum, δ(x, 0) = ε(x, 0) = f(x). If
k(x, y) is flat, i.e. equal to 0 at points (x, y) ∈ B and −∞ else, where B is a
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unit disk, the PDEs generating the multiscale flat dilations and erosions of 2D
images f(x, y) by a disk B are [1, 4, 19]

δt = ||∇δ|| =
√

(δx)2 + (δy)2, εt = −||∇ε|| (4)

For 1D signals f(x), B becomes the interval [−1, 1] and the above PDEs be-
come [4]

δt = |δx|, εt = −|εx| (5)

If k is the compact-support spherical function, i.e. k(x, y) = (1− x2 − y2)1/2

for x2 + y2 ≤ 1 and −∞ else, the PDE generating these spherical dilations is
[4]

δt =
√

1 + (δx)2 + (δy)2. (6)

3. Variational Approach for Dilation PDEs

Let u0(x, y) be some smooth initial image over a rectangular image domain
R with zero values outside R. Without loss of generality, we can assume that
u0(x, y) ≥ 0 over R; otherwise, we consider as initial image the function u0−∧

u0. Let u(x, y, t) be some scale-space analysis with u(x, y, 0) = u0(x, y)
that results from growing u0 via dilation of the hypograph (umbra) of u0 by
some 3D structuring element tB = {tb : b ∈ B} of radius t ≥ 0, where
B ⊆ R

3 is a unit-radius compact symmetric convex set. From mathematical
morphology we know that this 3D propagation of the graph of u0 corresponds
to a function dilation,

u(x, y, t) = u0(x, y)⊕ kt(x, y), kt(x, y) = sup{v : (x, y, v) ∈ tB}, (7)

of u0 by a structuring function kt that is the upper envelope of tB. We shall
study three special cases of B: 1) a vertical line segment Bv, 2) a horizontal
disk Bh, and 3) a sphere Bn. From (7), the three corresponding dilation scale-
spaces are:

B = v.line: u(x, y, t) = u0(x, y) + t
B = disk: u(x, y, t) =

∨
||(a,b)||≤t u0(x− a, y − b)

B = sphere: u(x, y, t) =
∨

||(a,b)||≤t u0(x− a, y − b) + t
√

1− (a
t )

2 − ( b
t )

2

(8)
While we know the gererating PDEs for the above scale-spaces (see [4]), in

this paper our goal is to provide a variational interpretation for these PDEs and
their solutions in (7). Define the multiscale volume functional

V (t) =
∫ ∫

u(x, y, t)dxdy =
∫ ∫

R

∫∫
(t)

u(x, y, t)dxdy (9)
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where R(t) is the Minkowski dilation of the initial rectangular domain R with
the projection of tB onto the plane. We wish to find the PDE generating u
by creating a gradient flow that maximizes the rate of growth of V (t). The
classic approach [5] is to consider the time derivative V̇ (t) = dV/dt as in
(3). However, this is valid only when u is allowed to vary by remaining a
function, e.g. u → u + ∆tg where g is a perturbation function. Thus, u is
allowed to vary in function space along a ray in the ‘direction’ of g. However,
in our problem we have such a case only when B = Bv. In the other two
cases u evolves as a graph by dilating its surface with a 3D set ∆tB. To
proceed, we convert the problem to a more usual variational formulation (i) by
modeling the propagation of the graph of u as the evolution of a multiscale
parameterized closed surface �S(q1, q2, t), and (ii) by expressing the volume
V as a surface integral around this closed surface. A similar approach as in
step (i) has also been used in [18] for geometric flows of images embedded as
surfaces in higher-dimensional spaces.

We start our discussion from a simpler (but conceptually the same as above)
case where u0 = u0(x) is a 1D nonnegative image with nonzero values over
an interval R. Let u(x, t) = u0(x)⊕ kt(x) be the multiscale dilation of u0 by
a structuring function kt that is the upper envelope of a 2D set tB where B is
a 2D version of the previous 3D unit-radius symmetric convex set; i.e., B is
either 1) a vertical line segment Bv, or 2) a horizontal line segment Bh, or 3) a
disk Bn. First, we model the propagation of the graph of u as the evolution of
a multiscale parameterized curve �C(q, t) = (x(q, t), y(q, t)), whose top part
is the graph of u traced when q ∈ R(t)s and whose bottom part is the interval
R(t) traced when q ∈ R(t) [where Rs = {−q : q ∈ R}]. This implies

y(q, t) = u(x, t), xq = −1, yq = −ux, q ∈ R(t)s

y(q, t) = 0, xq = 1, q ∈ R(t) (10)

where subscripts denote partial derivatives. Then, we consider the area A(t)
under u and express it (using Green’s theorem) as a line integral around this
closed curve:

A(t) =
∫

u(x, t)dx =
1
2

∫
C

∫∫
(t)

(xyq − yxq)dq =
1
2

∫ Lc(t)

0

∫∫
< �C, �N > ds

(11)
where s is arclength, < · > denotes inner product, �N is the outward unit
normal vector of the curve, Lc(t) = L(t) + Len(R(t)) is the length of the
closed curve C(t), and L(t) =

∫
R

∫∫
(t)

√
1 + u2

xdx is the length of the graph of
u. Next follows our first main result.

Theorem 1 Maximization of the area functional A(t) when the graph of
u(x, t) is dilated by tB with unit curve speed, where B is any of the follow-
ing unit-radius 2D summetric convex sets, has a gradient flow governed by the
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following corresponding PDEs:

B = vert.line =⇒== ut = 1 (12)

B = horiz.line =⇒== ut = |ux| (13)

B = disk =⇒== ut =
√

1 + |ux|2 (14)

with u(x, 0) = u0(x).

Proof: Since we evolve u toward increasing A(t), the graph curve speed
�CtCC (q, t) must point outward for all q ∈ R(t)s, i.e. < �CtCC , �N >≥ 0. By (10),
we can write the area functional as

A(t) =
∫

R

∫∫
(t)

udx =
1
2

∫ L(t)

0

∫∫
< �C, �N > ds + Len[R(t)] (15)

Differentiating (15) w.r.t. t yields

d

dt
A(t) =

∫ L(t)

0

∫∫
< �CtCC , �N > ds + const (16)

where const = dLen[R(t)]/dt. When B is the disk, the velocity �CtCC is allowed
any direction and hence selecting �CtCC = �N guarantees that Ȧ(t) assumes a
maximum value (i.e. the flow has a direction in function space in which A(t)
is increasing most rapidly). When B is the vertical line, �CtCC must have only a
constant vertical component. When B is the horizontal line, �CtCC must have only
a horizontal component with value ±1 according to the sign of ux. Thus, the
three choices for structuring element B induce the following curve velocities:

B = vert.line =⇒== �CtCC = (xt, yt) = (0, 1)
B = horiz.line =⇒== �CtCC = (xt, yt) = (sgn(−ux), 0)
B = disk =⇒== �CtCC = (xt, yt) = �N = (−ux ,1)√

1+u2
x

(17)

In all three cases we shall use the relation

ut = yt − uxxt (18)

which follows from y(q, t) = u(x, t). When B is the vertical line, we have
xt = 0 and yt = 1. Hence, ut = 1 which proves (12). When B is the
horizontal line, yt = 0 and xt = sgn(−ux) which yields ut = |ux| and proves
(13). When B is the disk, we have xt = −ux/v and yt = 1/v where v =√

1 + u2
x. This and (18) yield ut = 1/v + u2

x/v = v, which proves (14). �
The volumetric extension of the above ideas to the case of a 2D nonnegative

image u0(x, y) whose graph surface is dilated by 3D sets tB to give the graph
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of a scale-space function u(x, y, t) is conceptually straightforward. First, we
model the boundary of the ordinate set of u (i.e. the part of the umbra of u
lying above the planar domain R) as a multiscale parameterized closed surface
�S(q1, q2, t), where (q1, q2) parameterize the surface as the two local coordi-
nates and are related to (x, y). The top part of this closed surface is the graph
of u and the bottom part is the planar domain R(t) of u. Second, we express
the volume V (t) and its derivative as a surface integral around this closed pa-
rameterized surface:

V (t) =
1
3

∫
< �S, �N > d�S,

d

dt
V (t) =

∫
< �StSS , �N > d�S (19)

For arbitrary 3D shapes enclosed by a surface, the above formulas were used
in [17] to derive volume minimizing flows for shape segmentation.

Theorem 2 Maximization of the volume functional V (t) when the graph sur-
face of u(x, y, t) is dilated by tB with unit surface speed, where B is any of the
following unit-radius 3D summetric convex sets, has a gradient flow governed
by the following corresponding PDEs:

B = vert.line =⇒== ut = 1 (20)

B = horiz.disk =⇒== ut = ||∇u|| =
√

u2
x + u2

y (21)

B = sphere =⇒== ut =
√

1 + ||∇u||2 (22)

with u(x, y, 0) = u0(x, y).

Proof: Due to lack of space we sketch the main ideas. Write (19) as

V (t) =
1
3

∫
S

∫∫
top

�S · �Nd�S+Area(R(t)), V̇ (t) =
∫

S

∫∫
top

�StSS · �Nd�S+const (23)

where StopSS is the top part of the surface. Over this part we select the optimum
surface velocity vector �StSS = (xt, yt, zt) that maximizes the volume rate of
change. Then we exploit the relationships among x, y and the local surface
coordinates q1, q2 as well as the relation z(q1, q2, t) = u(x, y, t) to express ut

as a function of ux, uy, which yields the PDE for u. �
So far, we have found a variational interpretation of some well-known multi-

scale morphological dilations and their corresponding PDEs as area or volume
maximization problems. It is straightforward to derive the corresponding mul-
tiscale erosions and their PDEs by considering the dual problem of area or
volume minimization. We omit the proofs.

Among the three cases for B, only when B is a vertical line we can also de-
rive the corresponding PDE by using standard variational calculus, as follows.
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Proposition 1 Maximizing the functional J [u] =
∫ ∫

R

∫∫
u(x, y, t)dxdy has a

gradient flow governed by the PDE ut = 1.

Proof: By writing J =
∫

F with F (u) = u, the gradient flow will have the
general form of (2), i.e. ut = [F ]u. This yields ut = 1, which is the PDE (20).
�

In Theorems 1 and 2 we derived the morphological PDEs by maximizing
area or volume functionals, either unconstrained if we move in the space of
functions (as was the case when B is the vertical line and as explained in
Prop.1) or with some geometrical constraints if we move in the space of graphs.
Next we interpret our variational results for the multiscale flat dilations and
erosions as a maximization and minimization, respectively, of the area or vol-
ume of the image u but under the constraint that all evolutions u have the same
global sup or inf as u0. This constrained optimization will prove useful for the
levelings too.

Theorem 3 (a) Maximizing the volume functional by keeping invariant the
global supremum

max
∫ ∫

R

∫∫
u dxdy s.t.

∨
u =

∨
u0 (24)

has a gradient flow governed by the PDE generating flat dilation by disks:

ut = ||∇u||, u(x, y, 0) = u0(x, y) (25)

Similarly, the dual problem of minimizing the volume functional by keeping
invariant the global infimum

min
∫ ∫

R

∫∫
u dxdy s.t.

∧
u =

∧
u0 (26)

has a gradient flow governed by the isotropic flat erosion PDE:

ut = −||∇u||, u(x, y, 0) = u0(x, y) (27)

(b) For 1D signals u(x), maximizing (or minimizing) the area functional by
keeping invariant the global supremum (or infimum) has a gradient flow gov-
erned by the PDE generating flat dilations (or erosions) by intervals [−t, t]:

max
∫
R

∫∫
u dx s.t.

∨
u =

∨
u0 =⇒== ut = |ux|

min
∫
R

∫∫
u dx s.t.

∧
u =

∧
u0 =⇒== ut = −|ux|

(28)

with initial condition u(x, 0) = u0(x).

Proof: Under the sup constraint, the velocity vector for the propagation of the
graph of u must have a zero vertical component. Hence, the only directions



Variational Morphology 329

allowed to propagate the graph of u must be parallel to the image plane. This
expansion is done at maximum speed if it corresponds to dilations of the graph
(and equivalently of the level sets) of u by horizontal disks in the 2D case
and by horizontal line segments in the 1D case. Thus, we have the case of
multiscale dilations of the graph of u by horizontal disks or lines for which we
use the results of Theorems 1 and 2. Similarly for the erosions. �

4. Variational Approach for Levelings

Here we consider morphological smoothing filters of the reconstruction
type. Imagine creating a type of image simplification like a ‘cartoon’ by start-
ing from a reference image r(x, y) consisting of several parts and a marker
image u0(x, y) (initial seed) intersecting some of these parts and by evolving
u0 toward r in a monotone way such that all evolutions u(x, y, t), t ≥ 0, satisfy
the following partial ordering, ∀x, y ∈ R

t1 < t2 =⇒== r(x, y) (r u(x, y, t2) (r u(x, y, t1) (r u0(x, y) (29)

The partial order u (r f means that r ∧ f ≤ r ∧ u and r ∨ f ≥ r ∨ u. Further,
if we partition the following regions R− and R+ formed by the zero-crossings
of r − u0

R− = {(x, y) : r(x, y) ≥ u0(x, y)} =
⊔

i R
−
i

R+ = {(x, y) : r(x, y) < u0(x, y)} =
⊔

i R
+
i

(30)

into connected subregions, then the evolution of u is done by maintaining all
local maxima and local minima of u0 inside these subregions R−

i and R+
i ,

respectively:∨
R−

i

u =
∨
R−

i

u0 and
∧
R+

i

u =
∧
R+

i

u0, R = (
⊔
i

R−
i ) � (

⊔
i

R+
i ) (31)

where
⊔

denotes disjoint union. Since the order constraint r (r u (r u0

implies that |r−u| ≤ |r−u0|, the above problem is equivalent to the following
constrained minimization

min
∫ ∫

R

∫∫
|u− r|dxdy s.t.

∨
R−

i

u =
∨
R−

i

u0,
∧
R+

i

u =
∧
R+

i

u0 (32)

Theorem 4 A gradient flow for the optimization problem (32) is given by the
following PDE

∂u(x, y, t)/∂t = −sgn(u− r)||∇u||
u(x, y, 0) = u0(x, y) (33)
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Proof: By writing the integral
∫∫
|u− r| as∫ ∫

R

∫∫
|u− r| =

∑
R−

i

∫ ∫
R

∫∫
−
i

(r − u) +
∑
R+

i

∫ ∫
R

∫∫
+
i

(u− r) (34)

we can decompose the global problem (32) into local constraint maximization
and minimization problems over the regions R−

i and R+
i respectively. Apply-

ing Theorem 3 to these local problems yields local evolutions that act as flat
dilations when u < r and as erosions when u > r. The PDE (33) has a switch
that joins these two actions into a single expression. �

The PDE (33) was introduced in [11] and then studied systematically in [9].
For each t, at pixels (x, y) where u(x, y, t) < r(x, y) it acts as a dilation PDE
and hence shifts outwards the surface of u(x, y, t) but does not introduce new
local maxima. Wherever u(x, y, t) > r(x, y) the PDE acts as a flat erosion
PDE and reverses the direction of propagation. In [9] it was proved that this
PDE has a steady-state u∞(x) = limt→∞ u(x, t) which is a leveling of r with
respect to u0, denoted by u∞ = Λ(u0|r).

Levelings are nonlinear filters with many interesting scale-space properties
[11] and have been used for image pre-segmentation [11, 16]. They were de-
fined geometrically in [10, 11] via the property that if p, q are any two close
neighbor pixels then the variation of the leveling between these pixels is brack-
eted by a larger same-sign variation in the reference image r; i.e., if g is a
leveling of r, then

g(p) > g(q) =⇒== r(p) ≥ g(p) > g(q) ≥ r(q) (35)

In [9] they were defined algebraically as fixed points of triphase operators
λ(f |r) that switch among three phases, an expansion, a contraction, and the
reference r. Further, the leveling of r w.r.t. f = u0 can be obtained as the limit
of iterations of λ:

u∞ = Λ(u0|r) � lim
n→∞

λn(u0|r) (r · · ·λ(u0|r) (r u0 (36)

The simplest choise for λ is λ(f |r) = [r ∧ δ(f)] ∨ ε(f), where δ and ε are
dilations and erosions by a small disk, but there are many more sophisticated
choises [11, 9]. A numerical scheme proposed in [9] to solve the PDE (33)
also involves iterating a discrete algorithm that is essentially a discrete triphase
operator whose iteration limit yields a discrete leveling.

Levelings have many interesting scale-space properties [11]. Due to (29)
and (35), they preserve the coupling and sense of variation in neighbor image
values, which is good for edge preservation. Further, due to (31) the levelings
do not create any new regional maxima or minima. In practice, they can re-
construct whole image objects with exact preservation of their boundaries and
edges. The reference image plays the role of a global constraint.
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5. Conclusions

We have developed a new formulation based on functional extremization to
derive the PDEs generating well-known multiscale morphological operators,
both of the basic type acting locally on the image like dilations and erosions
by compact kernels, as well as of the reconstruction type like the levelings
which depend on global constraints. The functionals used were the image vol-
ume/area for dilations and the L1 norm of residuals between the simplified
image and the reference for the levelings. Maximization or minimization of
these functionals was done subject to some nonlinear constraints. This varia-
tional approach to multiscale morphology gives a new insightful interpretation
to morphological operators and offers useful links with optimization problems.
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Abstract We present a constrained shape optimisation problem solved via metaheuristic
stochastic techniques. Genetic Algorithms are briefly reviewed and their adap-
tation to surface topography optimisation is studied. An application to flow op-
timisation issues is presented.

Keywords: Shape, Topography, Stochastic Optimisation, Genetic Algorithms

Introduction

Geometrical shape or surface topography optimisations are quite numerous
among the optimisation problems, since they are encountered and play often an
important role in most technical domains. Traditionally, deterministic models
or expensive experimental tests are employed to solve these issues.

Computing power has grown considerably in the past years, dramatically
promoting the interest in numerical techniques. Numerical simulations and
models become issues for problems in many domains. They opened the path,
serving as objective functions, to a large number of stochastic optimisation
techniques working on discretised search spaces.

We will focus here on Genetic Algorithms (GA) [1, 4]. The main advantage
of this numerical optimisation approach, compared to deterministic ones, is
its extended search space and its robustness. In return, it requires complex
and onerous computations, and its convergence rate is particulary slow, which
represents its main weakness.

We will first describe (Section 1) the precise problem that led us to this
study. Section 2 gives a tutorial introduction to stochastic optimisation and in
Section 3 we describe the GAs’ adaptation to our specific problem. Section 4
exposes the results of GAs’ application for a particular fitness function. A
summary and the conclusion are presented in Section 5.
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1. Problem

Let us assume we have to optimise a shape S representing an opened volume
(Figure 1) in a smooth surface P . The optimisation is controlled by a fitness
function f and restricted by several constraints C:

S is a connected shape.

S has a constant volume V and a constant opened surface Ss.

the depth in any point of S may vary between dmin and dmax.

Figure 1. 3D shape to optimise

To build a model as general as possible, the fitness function f may be any
measure on S respecting C.

For the problem above, the implementation of a deterministic optimisation
is not an option. The shape S may take complex forms, impossible to define
analytically; likewise, the fitness function f may be also difficult to estimate
analytically; moreover, in many situations, the complexity of the employed fit-
ness function may lead to unpredictable deterministic relations between S and
f , impossible to pursuit. In consequence, in order to escape these difficulties
and to preserve a wide space in search for improvement, we have to work with
discretised shapes and numerical fitness functions, and employ appropriate sto-
chastic optimisation methods.

A coarse discretisation of a random surface shape S is presented in Fig-
ure 2(a). In this 2D image representation the depth of the opening is coded by
the grey levels of pixels (8 bits), the white background being assigned to P and
the grey pixels to the various depths of S. A three-dimensional representation
of the previous image is illustrated in Figure 2(b).
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(a) 2D coarse image representation (b) 3D coarse image representation

Figure 2. Image representation

2. Stochastic techniques and Genetic Algorithms

Stochastic optimisation refers to the minimisation (or maximisation) of a
function in the presence of randomness in the optimisation process. The ran-
domness may be present either in the search procedure, or as noise in measure-
ments.

The fundamental idea behind stochastic programming is the concept of re-
course. Recourse is the ability to take corrective action after a random event
has taken place. Common methods of stochastic optimisation include Genetic
Algorithms (GA) and Simulated Annealing (SA) [2], well-fitted to our prob-
lem; we will pursuit our study here with GAs, the adaptation of SA methods
to this case would be rather similar.

A Genetic Algorithm is an implementation of an adaptive plan, employing
specific structural modifiers (operators) in the search for optimally performing
structures in a particular environment. They are computationally simple, yet
very powerful in their search for improvement.

A population of individuals is successively modified from one generation
to another. Individuals in the population are known as chromosomes and are
coded by strings of genes. Each gene can have several different forms, known
as alleles, producing differences in the set of characteristics associated with
that gene.

Genetic Algorithms are based on evolution. In evolution, the problem which
each species faces is one of searching for beneficial adaptations to a compli-
cated and changing environment. The knowledge that each species has gained
is embodied in the makeup of the chromosomes of it members. Future popu-
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lations can only develop via reproduction of individuals in the current popula-
tion.

There exists an apparent dilemma. On the one hand, if the offspring are
simple duplicates of fit members of the population, fitness is preserved, but
there is no provision for improvement. On the other hand, letting the offspring
be produced by simple random variation, yields the maximum of new variants,
but makes no provision for the retention of advances already made. The solu-
tion of the dilemma lies in the combined action of genetic operators, the most
commonly used being mutation and crossover. Figure 3 presents an overview
of the components of a simple GA.

Figure 3. Schematic GA

Crossover is the key to GAs’ power and consists basically in the exchange of
genetic material between parents’ chromosomes, allowing beneficial material
to be combined in their offspring. With crossover, beneficial mutations on two
parents can be combined immediately when they reproduce and this is more
probable when most successful parents reproduce more often.

Mutation is a process wherein one allele of a gene is randomly replaced
by another one, to yield a new structure. Though mutation is one of the most
familiar of genetic operators, its role in adaptation is frequently misinterpreted.
Mutation’s primary role is generally associated to generating new structures
for trial. Nevertheless, this is a role very efficiently filled by crossover, with
one condition: the crossover operator must dispose of the full range of alleles.
Once an allele is lost from population, the crossover operator has no way of
reintroducing it. To sum up, mutation is a background operator, assuring that
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the crossover operator has full range of alleles, so that the adaptive plan is not
trapped on local optima.

For a genetic algorithm to perform its adaptive task, there has to be some
means of assigning an observable performance to each individual. A fitness
function is employed, which attributes some objective measure of how well an
individual performs an environment. This fitness function will play the role of
selection criterion for the population’s individuals.

3. Constrained GA

As shown in Section 1, we deal with a constrained optimisation problem,
i.e. the search space is restricted to some subspace of the defining space of the
shape to optimise. The constraints are equalities and inequalities (C) the solu-
tion is required to satisfy. There have been many attempts to solve constrained
GA optimisation problems [3, 5]. There are two different approaches, either
based on introducing a penalty function for constraint violation or building
specific domain dependent algorithms.

Penalty function GA

The most widely used method to treat constraints [3] is to incorporate them
in the objective function, and to use standard methods for unconstrained opti-
misation.

In order to use standard GAs to our optimisation problem, the individuals
in the genetic search space like the one in Figure 2(a) have to be mapped to
a finite length string, over some alphabet. As a rule, when coding a problem
for genetic search, one should select the smallest possible alphabet which per-
mits a natural expression of the problem, this being known as the principle of
minimal alphabets [1]. This leads automatically to code each grey-level pixel
of the individual using 8 binary digits, like illustrated in Figure 4. Choosing
an order to scan the image, coding is done by simply mapping the pixel bi-
nary code to its appropriate position in the portion of the chromosome. It is
an approach quite similar to morphological filters coding, an example which is
clearly treated in [6, 7].

Once the coding process is finished, the fitness function is modified and
becomes some weighted sum of the original and some penalty for every con-
straint violation. The GA is ready for use. There is no general solution for the
choice of the weight coefficients, this being rather problem-dependent.
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Figure 4. Standard coding

Domain specific GA

The best results obtained by GAs on constrained problems use however
domain-dependent methods, where the genetic operators, the fitness function
and the search space itself are tailored to take the constraints into account.
When possible, this approach, which uses as much domain-specific knowledge
as possible, is probably the best way to tackle constraints [5].

The GA employed to solve our problem will keep the generic form pre-
sented in Section 2. Nevertheless, important modifications will be brought
to the coding and the genetic operators. Considering the severe constraints
C (Section 1) the optimum must satisfy, the most appropriate coding for the
individuals (Figure 1) will be that of Figure 2(a) and not the one using the
smallest possible alphabet; indeed, working with individuals represented by
strings of binaries would induce laborious constraint verifications. Hence, for
complexity and computation time reasons, the grey-level image representation
is chosen to code the individuals, being the most suited to use for the con-
trol of the connectivity, volume and surface constraints; an image represents a
chromosome and the genes correspond to the pixels of the image.

The constraints’ integration into the algorithm is done at the random indi-
vidual generation level. Each time new individuals are introduced in the popu-
lation, the random generation process is controlled by the constraints. In con-
sequence, every new individual satisfies the constraints. Since the population
is made of (before applying the genetic reproducing operators) new randomly
generated individuals and also of old performing individuals selected by the
fitness function, the genetic operators automatically preserve the constraints’
verification.
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From a practical point of view, a crossover under constraints operator work-
ing on the defined individuals is difficult to realise. For complexity and com-
putation time reasons again, this operator will be substituted. Instead, we will
define three mutation operators that will serve, from a functional point of view,
as mutation and crossover at the same time (Figure 5).

The first one (M1MM ) occurs with the probability mp1 and consists in swapping
genes corresponding to two different positions in S as shows Figure 5(a).

(a) mutation M1 (b) mutation M2MM (c) mutation M3MM

Figure 5. Mutation operators

M2MM is the second mutation operator which modifies the shape of the surface
opened by S, moving a border pixel to a different near-border position. It
occurs with the mp2 probability and is illustrated in Figure 5(b).

The third mutation operator (M3MM ) is represented in Figure 5(c). It consists in
subtracting a small volume at a random position in S and adding it at another
position, or genetically speaking, substituting one allele of a gene with another
one, chosen randomly, and also modifying a second different gene in order to
keep the constraints satisfied. From a genetic functional point of view this is
a pure mutation operator as it permits to introduce new or lost alleles in the
population.

Despite the fact that there is no conventional crossover operator, the role of
the beneficial mutations (Section 2) will be played by M1MM and M2MM , which will
hence fulfill the crossover functionality, while M3MM and the percentage of ran-
domly generated new individuals in each population will ensure the availability
of a full range of alleles, i.e. the mutation functionality.
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4. Application

In order to prove whether or not stochastic methods are fitted to solve the
shape optimisation problem described in Section 1, the domain specific GA
(Section 3) was tested.

The fitness function used for optimisation is a numerical model simulating a
hydrodynamic contact between a smooth surface and S; the model outputs an
estimation of the hydrodynamic contact friction. For more details an exhaus-
tive description of the model is available in [8]. To sum up, the fitness function
gives the friction performance of S in a hydrodynamic contact, under specific
conditions.

In the performed test, for computation time reasons, the GA works with 2D
image individuals (Section 3) obtained using a rather coarse discretisation. To
simplify, we also decided to work with a constant depth, i.e. the pixels have
the same value, the shape to optimise being only the pattern of the opened sur-
face. This can be done by simply setting the constraint dmin = dmax = d.
These two simplifications reduce considerably the search space and makes it
possible to perform an exhaustive non-heuristic search, i.e. to modify step by
step the individual’s shape, apply the fitness function and find the optimum.
In this way, the GAs performance can be compared to a successful optimisa-
tion. Figure 6 contains the tests’ results. From left to right are present the
best individuals of the population at different optimisation stages given by the
iteration number. In Figure 6(a) is illustrated the non-heuristic optimisation.
The first individual is a thin stripe and the last one contains the optimal shape.
Figures 6(b) and 6(c) present two different genetic evolutions of the same al-
gorithm, the first reaching near-optimal configuration after 1506 iterations and
the second after 663 iterations. The starting population is randomly generated.

Although the computation time required for convergence is generally es-
sential for GAs, it is a parameter highly related to the complexity of the fit-
ness function and is hence problem-dependent; therefore, the computation time
needed by our application would be rather irrelevant for further convergence
investigations. The algorithm’s parameters are:

the individuals are coded on 2D images of size 32× 32.

Ss = 32 pixels, d = 60 grey levels and V = Ss · d.

mp1 = mp2 = mp3 = 1/3 and the population size is 128.

percentage of selected performing individuals: 50%.

It is interesting to note that the algorithm has correct evolutions reaching near-
optimal configurations relatively quickly considering the complexity of the fit-
ness function used; it should be noticed also that the second GA evolution is
only one mutation far from optimum.
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(a) non-heuristic optimisation

(b) GA evolution 1

(c) GA evolution 2

Figure 6. GA application

5. Conclusion

In this paper, a generic approach has been presented for stochastic shape
optimisation, using Genetic Algorithms. An application of GAs to a real el-
ementary topography optimisation, in fluid dynamics domain, was presented;
the tests’ results were encouraging, illustrating the algorithm’s ability to find
simple optimal shapes. As an extension to the present work, another area of
investigation for future research may be the use of the algorithms developed to
perform texture or more complex shape optimisation.
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Abstract Random closed sets (RACS) in the d–dimensional Euclidean space are consid-
ered, whose realizations belong to the extended convex ring. A family of non-
parametric estimators is investigated for the simultaneous estimation of the vec-
tor of all specific Minkowski functionals (or, equivalently, the specific intrinsic
volumes) of stationary RACS. The construction of these estimators is based on
a representation formula for the expected local connectivity number of station-
ary RACS intersected with spheres, whose radii are small in comparison with
the size of the whole sampling window. Asymptotic properties of the estimators
are given for unboundedly increasing sampling windows. Numerical results are
provided as well.

Keywords: Mathematical morphology; random closed sets; stationarity; Minkowski func-
tionals; intrinsic volumes; nonparametric estimation; local Euler–Poincaré char-
acteristic; principal kinematic formula; Boolean model

Introduction

The theory of random closed sets (RACS) and its morphological aspects
with emphasis on applications to image analysis have been developed in the
second half of the 20th century. This scientific process has been signif-
icantly influenced by the pioneering monographs of G. Matheron [6] and
J. Serra [15, 16]. It turned out that Minkowski functionals or, equivalently,
intrinsic volumes are important characteristics in order to describe binary im-
ages, since they provide useful information about the morphological structure
of the underlying RACS. In particular, the so–called specific intrinsic volumes
of stationary RACS have been intensively studied for various models from
stochastic geometry.

There exist several approaches to the construction of statistical estimators
for particular specific intrinsic volumes of stationary RACS in two and three
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dimensions. However, in many cases, only little is known about goodness
properties of these estimators, like unbiasedness, consistency, or distributional
properties. Furthermore, an extra algorithm has to be designed for the estima-
tion of each specific intrinsic volume separately.

In contrast to this situation, the method of moments proposed in the present
paper provides a unified theoretical and algorithmic framework for simultane-
ous nonparametric estimation of all specific intrinsic volumes, in an arbitrary
dimension d � 2. The construction principle of these estimators, which is sim-
ilar to the approach considered in [11], is based on a representation formula for
the (expected) local connectivity number of stationary RACS intersected with
spheres, whose radii are small in comparison with the size of the whole sam-
pling window. It can be considered as a statistical counterpart to a method
for the simultaneous computation of all intrinsic volumes of a deterministic
polyconvex set based on the principal kinematic formula.

Our estimators are unbiased by definition. Moreover, under suitable inte-
grability and mixing conditions, they are mean–square consistent and asymp-
totically normal distributed. This can be used in order to establish asymptotic
tests for the vector of specific intrinsic volumes.

Notice that the method of moments (which is also called the method of
intensities by some authors) has been used in the analysis of various further
statistical aspects of models from stochastic geometry, for example, in order to
estimate the intensity of germs and other characteristics of the Boolean model;
see e.g. [7], and Sections 5.3–5.4 in [13].

The present paper is organized as follows. Some necessary preliminaries on
Minkowski functionals and intrinsic volumes, respectively, are given in Sec-
tion 1. In Section 2, the computation of intrinsic volumes of deterministic
polyconvex sets is briefly discussed. The above–mentioned representation for-
mula for the (expected) local connectivity number of stationary RACS is stated
in Section 3; see Proposition 3.1. We give an alternative proof of this represen-
tation formula which makes use of an explicit extension of Steiner’s formula
for convex bodies to the convex ring. The result of Proposition 3.1 is then used
in Section 4 in order to construct a family of nonparametric estimators for all
d + 1 specific intrinsic volumes simultaneously. The construction principle
of these estimators is described and their asymptotic properties are discussed.
A related family of least–squares estimators is also provided in Section 4. In
Section 5, some aspects of variance reduction using kriging of the mean are
touched upon. Finally, in Section 6 numerical results are given for the planar
Boolean model with spherical primary grains. They are compared with those
obtained by another method described in [10] for the computation of specific
intrinsic volumes.



Local connectivity number of stationary RACS 345

1. Minkowski functionals and intrinsic volumes

Let d � 2 be an arbitrary fixed integer and let K be the family of all convex
bodies, i.e., compact convex sets in R

d. The convex ringR in R
d is the family

of all finite unions
⋃m

i=1 KiKK of convex bodies K1, . . . , KmKK ∈ K. The elements
of R are called polyconvex sets. Furthermore, the extended convex ring § is
the family of all subsets A ⊂ R

d such that A ∩ K ∈ R for any K ∈ K.
For A, B ⊂ R

d, the Minkowski sum A ⊕ B and the Minkowski difference
A 	 B are defined by A ⊕ B = {x + y : x ∈ A, y ∈ B} and A 	 B =
{x ∈ R

d : B + x ⊂ A}, respectively. For any Borel set B ⊂ R
d, denote

by VdVV (B) its Lebesgue measure. It is well known that there exist nonnegative
functionals VjVV : K → [0,∞), j = 0, . . . , d such that for each r > 0 the volume
VdVV (K ⊕ Br(o)) of the so–called parallel body K ⊕ Br(o) of any K ∈ K is
given by Steiner’s formula

VdVV (K ⊕Br(o)) =
d∑

j=0

rd−jκd−jVjVV (K) , (1)

where o ∈ R
d denotes the origin, Br(x) = {y ∈ R

d : |y−x| 	 r} is the closed
ball with midpoint x ∈ R

d and radius r, and κj is the volume of the unit ball in
R

j . The functionals VjVV are called intrinsic volumes. They are closely related
to the widely known quermassintegrals or Minkowski functionals WjWW given by
WjWW (K) = VdVV −j(K)κj

/(
d
j

)
, K ∈ K. There exists a unique additive extension

of the functionals VjVV to the convex ring R given by the inclusion–exclusion
formula

VjVV (K1 ∪ . . . ∪KmKK ) =
m∑

k=1

(−1)k−1
∑

i1<...<ik

VjVV (KiKK 1 ∩ . . . ∩KiKK
k
) (2)

for any K1, . . . , KmKK ∈ K. The intrinsic volumes VjVV (K), j = 0, . . . , d provide
information about the morphological structure of the polyconvex set K ∈ R.
For example, VdVV (K) is the usual volume, 2VdVV −1(K) is the surface area, and
the Euler–Poincaré characteristic V0VV (K) reflects the connectivity properties
of K. Notice that in the planar case, that is d = 2, V0VV (K) is equal to the
number of ”clumps“ minus the number of ”holes“ of K ∈ R, i.e., the number
of connected outer boundary components of K minus the number of its inner
boundary components. In particular, V0VV (K) = 1 for any convex body K �=�� ∅.
Furthermore, for any K ∈ R and q, x ∈ R

d, q �=�� x, the so–called index
J(K, q, x) of K is given by

J(K, q, x) = 1− lim
δ→+0

lim
ε→+0

V0VV
(
K ∩B|x−q|−ε(x) ∩Bδ(q)

)
(3)

for q ∈ K. For all q �∈ K, we put J(K, q, x) = 0. In particular, J(∅, q, x) = 0
for arbitrary q, x ∈ R

d.
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2. Computation of intrinsic volumes of a polyconvex set

Given a polyconvex set K ⊂ R
d, apply the principal kinematic formula of

integral geometry (cf. formula (4.5.3) in [12]) to the Euler–Poincaré charac-
teristic of the intersection of K with an arbitrary translation of the ball Br(o).
This yields ∫

K

∫∫
⊕Br(o)

V0VV (K ∩Br(x)) dx =
d∑

j=0

rd−jκd−jVjVV (K) , (4)

where the integration domain is K ⊕ Br(o) since V0VV (K ∩ Br(x)) = 0 for
x �∈ K ⊕Br(o). Introduce the notation Rr =

∫
K

∫∫
⊕Br(o) V0VV (K ∩Br(x)) dx.

Writing equation (4) for d + 1 pairwise different radii r0, . . . , rd yields the
following system of d + 1 linear equations:

Ar0...rd
V = R , (5)

where V =
(
V0VV (K), . . . , VdVV (K)

)�
, R = (Rr0 , . . . , Rrd

)� and

Ar0...rd
=

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
rd
0κd rd−1

0 κd−1 . . . r2
0κ2 r0κ1 1

rd
1κd rd−1

1 κd−1 . . . r2
1κ2 r1κ1 1

. . . . . . . . . . . . . . . . . .

rd
dκd rd−1

d κd−1 . . . r2
dκ2 rdκ1 1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ (6)

is a regular matrix. Then, V = A−1
r0...rd

R is the unique solution of (5). The
integrals Rri can be approximated by

R̂ri = ∆d
m∑

k=1

V0VV (K ∩Br(xk)) , (7)

where the points x1, . . . , xm belong to a d–dimensional cubic lattice with mesh
size ∆. Thus, the vector V can be computed numerically as

V ≈ A−1
r0...rd

R̂ , (8)

where R̂ is the vector (R̂r0 , . . . , R̂rd
)� of approximations given in (7). This

numerical solution heavily depends on the choice of radii r0, . . . , rd. To reduce
this dependence, a least–squares method can be used; see also [5]. Instead of
(5), consider the (overdetermined) system of linear equations R̂ = Ar0...rk−1

x

for k > d+1 pairwise different radii r0, . . . , rk−1 where x = (x0, . . . , xd)� ∈
R

d+1. It is well known that the vector

v∗ =
(
A�

r0...rk−1
Ar0...rk−1

)−1
A�

r0...rk−1
R̂ (9)
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is the unique solution of the least–squares minimization problem

| R̂−Ar0...rk−1
v∗ | = min

x∈Rd+1
| R̂−Ar0...rk−1

x |

and, therefore, can be regarded as an approximation to the vector V of intrinsic
volumes of K. For a discussion of the practical choice of radii r0, . . . , rk−1,
see [4, 5].

In general, the numerical solutions (8) and (9) of (5) do not necessarily
preserve the positivity property of the volume VdVV (K) and the surface area
2VdVV −1(K). Practically one can cope with this problem by changing the values
and the number of radii ri as well as distances between them. For a detailed
discussion, see [4].

3. Stationary random closed sets

Let Ξ be a stationary random closed set (RACS) in R
d whose realizations

belong to the extended convex ring §with probability 1. Recall that stationarity
of Ξ means the invariance of its distribution with respect to arbitrary transla-
tions in R

d. More details on stationary RACS can be found in many books; see
e.g. [6, 7, 13, 15, 16, 18].

Specific intrinsic volumes

For any K ∈ R, let N(K) = min{m ∈ N : K =
⋃m

i=1 KiKK , KiKK ∈ K}
denote the minimal number of convex components of the set K, where we put
N(K) = 0 if K = ∅. Assume that

E 2N(Ξ∩[0,1]d) <∞ . (10)

Then, for any sequence {WnWW } of compact and convex observation windows
WnWW = nW with W ∈ K such that VdVV (W ) > 0 and o ∈ int(W ), the limit
V j(Ξ) = limn→∞ E VjVV (Ξ ∩WnWW )

/
VdVV (WnWW ) exists for each j = 0, . . . , d (see

[13], Theorem 5.1.3) and is called the jth specific intrinsic volume of Ξ.

Local Euler–Poincaré characteristic

The expectation E V0VV (Ξ ∩Br(x)) is called local Euler–Poincaré charac-
teristic or, equivalently, local connectivity number of Ξ, where r > 0 is an
arbitrary fixed number. For r = 1, the following representation formula for
E V0VV (Ξ ∩B1(x)) can be found e.g. in [13], Corollary 5.3.2, where its proof
is based on the principal kinematic formula. In the present paper, we give an
alternative proof for any r > 0, which makes use of an explicit extension of
Steiner’s formula (1) to the convex ring; see [12].
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Proposition 3.1 For any r � 0 and x ∈ R
d, it holds

E V0VV (Ξ ∩Br(x)) =
d∑

j=0

rd−jκd−jV j(Ξ) . (11)

Proof. Consider the stationary random field {ZrZZ (x), x ∈ R
d}, where

ZrZZ (x) =
∑

q∈∂Ξ∩Br(x), q �=�� x

J(Ξ ∩Br(x), q, x) .

and J
(
Ξ ∩ Br(x), q, x

)
is given by (3). In [11], we showed that E ZrZZ (x) =∑d−1

j=0 rd−jκd−jV j(Ξ) holds for any x ∈ R
d. Thus, it suffices to prove that

E V0VV (Ξ ∩Br(x)) = E ZrZZ (x) + V d(Ξ). Notice that the function f(r) =
E ZrZZ (x) is continuously differentiable as a polynomial in r, where f(r) =∫ r
0

∫∫
f (1)(s) ds since f(0) = 0. Furthermore, for any s > 0, we have

f (1)(s) =
d

ds
E V0VV (Ξ ∩Bs(x)) , (12)

where the derivative on the right–hand side does not depend on x by the sta-
tionarity of Ξ. In order to show (12), let Ao be a sufficiently small open cube
with diagonals crossing at the origin o such that Ao ⊂ int(Bs(o)). Then, for
any ∆s > 0, we have

ZsZ +∆s(o)− ZsZ (o) =
∑

q∈∂Ξ∩(Bs+∆s(o)\Bs(o))

J
(
Ξ ∩Bs+∆s(o), q, o

)
=

∑
q∈∂Ξ∩(Bs+∆s(o)\Bs(o))

J
(
(Ξ \Ao) ∩Bs+∆s(o), q, o

)
= V0VV ((Ξ \Ao) ∩Bs+∆s(o))− V0VV ((Ξ \Ao) ∩Bs(o))

= V0VV (Ξ ∩Bs+∆s(o))− V0VV (Ξ ∩Bs(o)) ,

where the third equality follows from the fact that∑
q∈∂A∩Br(o)

J((A \Ao) ∩Br(o), q, o) = V0VV ((A \Ao) ∩Br(o))

for each A ∈ § and for any r > 0 such that Ao ⊂ int(Br(o)). This gives

f (1)(s) = lim
∆s↓0

E
ZsZ +∆s(o)− ZsZ (o)

∆s

= lim
∆s↓0

E
V0VV (Ξ ∩Bs+∆s(o))− V0VV (Ξ ∩Bs(o))

∆s
=

d

ds
E V0VV (Ξ ∩Bs(o)) .



Local connectivity number of stationary RACS 349

Now, using (12), f(r) can be rewritten as

f(r) =
∫ r
0

∫∫
d
dsE V0VV (Ξ ∩Bs(o)) ds = E V0VV (Ξ ∩Br(o))− E V0VV (Ξ ∩ {o})

= E V0VV (Ξ ∩Br(o))− E 1Ξ(o) = E V0VV (Ξ ∩Br(o))− V d(Ξ) ,

where 1Ξ denotes the indicator of Ξ. �
It is well known that the Minkowski functionals of polyconvex sets can be

defined through the Euler–Poincaré characteristics of their lower dimensional
sections by means of Crofton’s formula; see e.g. [13, 18]. Proposition 3.1
immediately implies that

V j(Ξ) =
1

(d− j)! κd−j
· d

(d−j)E V0VV (Ξ ∩Br(x))
dr(d−j)

∣∣∣∣∣∣∣
r=0

for any j = 0, . . . , d−1 and x ∈ R
d. Thus, similarly to Crofton’s formula, the

specific intrinsic volumes of stationary RACS can be expressed by their local
Euler–Poincaré characteristics.

4. Estimation of specific intrinsic volumes

In this section, similar to the approach considered in [11], the method of
moments is used to construct joint nonparametric estimators for the specific
intrinsic volumes V j(Ξ), j = 0, . . . , d.

Indirect estimation via local Euler–Poincaré characteristics

For any d + 1 positive pairwise different radii rj , Proposition 3.1 yields the
following system of d+1 linear equations with respect to the variables V j(Ξ),
j = 0, . . . , d:

Ar0...rd
v = c, (13)

where Ar0...rd
is the matrix introduced in (6), v = (V 0(Ξ), . . . , V d(Ξ))� and

c = (E V0VV (Ξ ∩ Br0(o)), . . . , E V0VV (Ξ ∩ Brd
(o)))�. Similar to the determin-

istic case of Section 2, choose an appropriate estimator ĉ for c and define the
estimator v̂ for v by

v̂ = A−1
r0...rd

ĉ (14)

in order to estimate the vector v of specific intrinsic volumes from a single re-
alization of Ξ observed in a certain window W ∈ K. For any r > 0 such that
VdVV (W 	 Br(o)) > 0, consider the stationary random field {YrYY (x), x ∈ R

d}
with YrYY (x) = V0VV (Ξ ∩Br(x)). An unbiased estimator for yr = E YrYY (o) is
given by ŷr =

∫
W

∫∫
�Br(o) YrYY (x)µ(dx), where µ is an arbitrary probability mea-

sure concentrated on W 	Br(o) ⊂ R
d. For instance, µ can be the normalized

Lebesgue measure µ(·) = VdVV (· ∩W 	Br(o))/VdVV (W 	Br(o)) on W 	Br(o),
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or a discrete measure µ(·) =
∑m

i=1 wiδxi(·) with measurements at locations
x1, . . . , xm ∈ W 	 Br(o) and weights wi > 0 such that w1 + . . . + wm = 1.
Notice that integration is performed over the reduced window W 	 Br(o) to
avoid edge effects, since the computation of V0VV (Ξ ∩Br(x)) for x ∈ W re-
quires the knowledge of Ξ in the r–neighborhood of x while Ξ is observed only
within W . Thus, assuming that VdVV (W 	 Brj (o)) > 0 for each j = 0, . . . , d,
an unbiased estimator ĉ for c is given by

ĉ =
(∫

W

∫∫
�Br0 (o)

YrYY 0(x)µ(dx) , . . . ,

∫
W

∫∫
�Brd

(o)
YrYY

d
(x)µ(dx)

)�
.

Mean–square consistency and asymptotic normality

For µ(·) = VdVV (· ∩W 	Br(o))/VdVV (W 	Br(o)), the integral

ŷr =
∫

W

∫∫
�Br(o)

YrYY (x)µ(dx)

is the least–squares estimator for yr, which is mean–square consistent as W ↑
R

d provided that some integrability conditions are satisfied; see e.g. [3], p. 131.
This means that for a sequence {WnWW } of unboundedly increasing sampling
windows with WnWW = nW , we have E (ŷr,n − yr)2 → 0 as n → ∞, where
ŷr,n =

∫
W

∫∫
nWW �Br (o) YrYY (x)µn(dx) and

µn(·) = VdVV (· ∩WnWW 	Br(o))/VdVV (WnWW 	Br(o)) ;

see also [11]. Assuming that E 4N(Ξ∩[0,1]d) < ∞, it can be shown that the
covariance functions CrCC irj (x) = E (YrYY i(o)YrYY j (x)) − yriyrj are well defined;
i, j = 0, . . . , d. Furthermore, under suitable mixing conditions on Ξ and as-
suming that

∫
R

∫∫
d |CrCC irj (x)| dx <∞, the random vector√

VdVV (WnWW 	Br(o))
(
ŷr0,n − yr0 , . . . , ŷrd ,n − yrd

)
is asymptotically normal distributed, where the asymptotic covariance matrix
is given by (

∫
R

∫∫
d CrCC irj (x) dx)d

i,j=0 and can be consistently estimated; see [3],
Section 3.1, and [11]. Notice that the integrability and mixing conditions men-
tioned above are fulfilled, for example, for rapidly mixing germ–grain models
including the well–known Boolean model; see e.g. [6, 7, 14]. We also re-
mark that the estimator v̂n = A−1

r0...rd
(ŷr0,n, . . . , ŷrd ,n)� for v is mean–square

consistent and asymptotically normal distributed, provided that the estimator
(ŷr0,n, . . . , ŷrd ,n)� for c possesses these properties.

Least–squares estimator

The least-squares approach of Section 2 also applies (with minor changes)
to the case of stationary RACS. For k > d + 1 pairwise different radii
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r0, . . . , rk−1 such that VdVV (W 	 Brj (o)) > 0, j = 0, . . . , k, the cor-
responding solution of the least squares minimization problem is v∗ =
(A�

r0...rk−1
Ar0...rk−1

)−1A�
r0...rk−1

ŷ, where ŷ = (ŷr0 , . . . , ŷrk−1
)� with ŷrj =∫

W

∫∫
�Brj (o) YrYY j (x)µ(dx). Notice that the estimator v∗ = (v∗0, . . . , v

∗
d)

� for the

vector v = (V 0(Ξ), . . . , V d(Ξ))� of specific intrinsic volumes of Ξ is much
more robust with respect to the choice of radii r0, . . . , rk−1 than the estimator
v̂ given in (14).

5. Estimation variance and spatial sampling designs

Besides unbiasedness, another important criterion for goodness of the es-
timator v̂ given in (14) is related to its variance properties, where the radii
r0, . . . , rd and the averaging probability measure µ should be chosen in such a
way that the estimation variance σ2 = V ar(v̂) = E |v̂− v|2 is possibly small.

Bound on the estimation variance

Unfortunately, it seems to be impossible to determine the estimation vari-
ance σ2 = V ar(v̂) = E |A−1

r0...rd
(ĉ− c)|2 explicitly. However, it is easy to get

an upper bound for σ2. Namely, (14) implies that

σ2 	 ‖A−1
r0...rd

‖2E |ĉ− c|2 = ‖A−1
r0...rd

‖2
d∑

j=0

V ar(ŷrj ) , (15)

where

‖A−1
r0...rd

‖2 = max
i=0,...,d

λi

(
(Ar0...rd

A�
r0...rd

)−1
)

=
1

min
i=0,...,d

λi(Ar0...rd
A�

r0...rd
)

is the squared matrix norm of A−1
r0...rd

and λi(A) is the ith eigenvalue of the
matrix A. Notice that ‖A−1

r0...rd
‖ is finite. Thus, it is reasonable to choose

r0, . . . , rd and µ such that the bound in (15) becomes small. Consider the
variance V ar(ŷrj ) = E(ŷrj − yrj )

2 appearing in (15). For any fixed r > 0,
let P denote the family of all probability measures on W 	 Br(o) and let the
function L : P → (0,∞) be defined by L(µ) = E(ŷr − yr)2 for each µ ∈ P .
By Fubini’s theorem, we can write

E(ŷr − yr)2 =
∫

W

∫∫
�Br(o)

∫
W

∫∫
�Br(o)

CrrCC (x− x′)µ(dx)µ(dx′) . (16)

Suppose that L(µ0) = minµ∈P L(µ) holds for some µ0 ∈ P . Then, using the
methods of variational analysis developed e.g. in [8] (see also [17]), it can be
shown that the function g(x) =

∫
W

∫∫
�Br(o) CrrCC (x − h)µ0(dh) necessarily has

the following properties:

g(x) = L(µ0) µ0–a.e. and g(x) � L(µ0) for all x ∈ R
d .
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Discrete sampling designs

Suppose now that L(µ0) = minµ∈P L(µ) holds for some discrete probabil-
ity measure µ0 ∈ P such that µ0(·) =

∑m
i=1 wiδxi(·) for some integer m � 1,

where x1, . . . , xm ∈W	Br(o) and w1, . . . , wm > 0 with w1+. . .+wm = 1.
Then, it can be shown that L(µ0) = (e�Q−1

r e)−1 =
(∑n

i,j=1 q−1
ij

)−1
holds

provided that the number of atoms m and the atoms x1, . . . , xm themselves
satisfy the condition

q�r (x)Q−1
r e � 1 for all x ∈ R

d (17)

and the covariance matrix Qr = (CrrCC (xi − xj))
m
i,j=1 is regular, where e =

(1, . . . , 1)�, Q−1
r =

(
q−1
ij

)m

i,j=1
denotes the inverse matrix of Qr and qr(x) =

(CrrCC (x− x1), . . . , CrrCC (x− xn))� for any x ∈ R
d. Moreover, in this case, the

vector of weights w = (w1, . . . , wm)� is given by

w = L(µ0)Q−1
r e . (18)

Notice that, for fixed sampling points x1, . . . , xm, formula (18) coincides with
the kriging of the mean; see [19]. In this case, the estimator ŷr with weights
given by (18) is also known as the generalized least–squares estimator of the
trend; see [9], p. 11. On the other hand, the locations x1, . . . , xn can be chosen
iteratively using gradient algorithms described e.g. in [9].

Anyhow, the choice of an appropriate number m of sampling points, loca-
tions x1, . . . , xm and weights w1, . . . , wm depends on the covariance function
CrrCC : R

d → R which is unknown in general. Therefore, CrrCC (h), h ∈ R
d

has to be estimated from data. Sometimes it is preferable to consider the va-
riogram function γrγγ : R

d → R with γrγγ (h) = 1
2 E (YrYY (x) − YrYY (x + h))2,

h, x ∈ R
d, instead of CrrCC since it can be estimated more easily. For cor-

responding estimation techniques and algorithms, see e.g. [1, 2, 19]. Since
γrγγ (h) = CrrCC (o)−CrrCC (h) holds for any h ∈ R

d, (17) and (18) can be rewritten
as

p�r (x)Γ−1
r e 	 1 for all x ∈ R

d (19)

and
w = γ0Γ−1

r e , (20)

respectively, where Γr = (γrγγ (xi − xj))
m
i,j=1, γ0 = (e�Γ−1

r e)−1 and pr(x) =
(γrγγ (x− x1), . . . , γrγγ (x− xm))�.

6. Numerical results

To test the performance of the above estimation method, 200 realizations of
a planar Boolean model Ξ (d = 2) with circular grains were generated in the
observation window W = [0, 1000]2. Let λ be the intensity of the stationary
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Poisson point process X = {XiXX } of germs and let the grains Ξi be independent
circles with radii that are uniformly distributed on [20, 40]. Then, Ξ is given
by Ξ =

⋃∞
i=1(Ξi +XiXX ). The intensity λ was chosen to fit the volume fractions

V 2(Ξ) = 0.2, 0.5, 0.8, respectively. For each realization, the vector v of
specific intrinsic volumes of Ξ was estimated using the radii r0 = 10, ri+1 =
ri+1.3, i = 0, . . . , 49 in the least–squares method. In the estimation, sampling
was performed on the regular square lattice of points x1, . . . , xm with mesh
size ∆ = 5. Finally, vector v∗ = (v∗0, v

∗
1, v

∗
2) was built being the arithmetic

mean over the results of 200 realizations. Its values are compared with the
theoretical counterparts v = (V 0(Ξ), V 1(Ξ), V 2(Ξ)) in Table 1. Additionally,
the specific intrinsic volumes were estimated by the method described in [10]
from the same 200 realizations of Ξ. The resulting arithmetic means ṽ0, ṽ1, ṽ2

are also presented in Table 1. To compare the precision of both algorithms, the
relative error δA,B = B−A

A · 100% of an estimated quantity B with respect to
the theoretical value A is given. It is clear from Table 1 that the performance of

Table 1. Theoretical and estimated values of specific intrinsic volumes

V 2(Ξ) 0.2 0.5 0.8

v∗
2 0.194299 0.490611 0.793328

ṽ2 0.199362 0.498217 0.798085
δV 2,v∗

2
, % −2.85 −1.88 −0.83

δV 2,ṽ2
,% −0.32 −0.36 −0.24

2V 1(Ξ) 0.011476 0.02228 0.020693

2v∗
1 0.012123 0.023402 0.021547

2ṽ1 0.011361 0.021947 0.02022
δV 1,v∗

1
, % 5.64 5.04 4.13

δV 1,ṽ1
, % −1.0 −1.5 −2.29

V 0(Ξ) × 104 0.4778163 0.3919529 −0.6059316

v∗
0 × 104 0.4348681 0.1555031 −0.10798772

ṽ0 × 104 0.4312496 0.1595565 −0.10672334
δV 0,v∗

0
, % −8.99 −60.33 78.22

δV 0,ṽ0
, % −9.75 −59.29 76.13

our algorithm is comparable to that of the method described in [10]. Hovewer,
the above results can be improved by taking e.g. ∆ = 1. In fact, the precision
of our computations can be controlled by changing the sampling design as
well as the number and values of dilation radii. The increase of the numbers of
radii and sampling points results in a higher precision. This implies longer run
times. Hence, the parameters of the algorithm should be tuned in accordance
with the needs of specific applications; see [4] for an extensive discussion.
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Abstract A novel method of texture characterization, called intersize correlation of grain
occurrences, is proposed. This idea is based on a model of texture description,
called “Primitive, Grain and Point Configuration (PGPC)” texture model. This
model assumes that a texture is composed by arranging grains, which are lo-
cally extended objects appearing actually in a texture. The grains in the PGPC
model are regarded to be derived from one primitive by the homothetic mag-
nification, and the size of grain is defined as the degree of magnification. The
intersize correlation is the correlation between the occurrences of grains of dif-
ferent sizes located closely to each other. This is introduced since homothetic
grains of different sizes often appear repetitively and the appearance of smaller
grains depends on that of larger grains. Estimation methods of the primitive and
grain arrangement of a texture are presented. A method of estimating the in-
tersize correlation and its application to texture regeneration are presented with
experimental results. The regenerated texture has the same intersize correlation
as the original while the global arrangement of large-size grains are completely
different. Although the appearance of the resultant texture is globally different
from the original, the semi-local appearance in the neighborhood of each large-
size grain is preserved.

Keywords: texture, granulometry, skeleton, size distribution
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1. Introduction

Texture in the context of image processing is an image structure whose char-
acteristics are given by the size, shape, and arrangement of its parts. Various
methods of texture analysis, for example the cooccurrence matrix method and
the spatial frequency method, have been proposed [1, 2]. These methods mea-
sure global or statistical characteristics of a texture based on its randomness.

Our aim of texture analysis is description, rather than measurement. Texture
description assumes a model of texture generation, and estimates the model
parameters of a texture and regenerates a new texture whose visual impression
is related to the original [3–7]. These methods are based on the random nature
of textures.

We have proposed a model of texture description, called “Primitive, Grain
and Point Configuration (PGPC)” texture model, and parameter estimation
methods based on this model [8]. The PGPC texture model is based on the
following observation of the texture suggested by Gestalt psychology: A repet-
itive appearance of similar objects of a moderate size is organized to be a mean-
ingful structure by the human cognitive process. This observation suggests that
a texture is neither completely deterministic nor completely random, but is of-
ten locally deterministic and globally random or regular, and that an appropri-
ate texture description model has to be locally deterministic as well as globally
deterministic or stochastic. Our model assumes that a texture is composed by
arranging grains regularly or randomly on an image, and a grain is defined
as a locally extended object actually appearing in a texture. The grains in
the PGPC model are regarded to be derived from one primitive by some shape
modifications, since the texture is regarded to be composed by the arrangement
of similar small object, as explained in the above observation. The primitive
is a model parameter estimated from a texture, and its shape determines local
deterministic characteristics of the texture. The grain arrangement determines
global, and often stochastic, characteristics of the texture. The primitive and
grain arrangement can be estimated using an optimization process based on the
granulometry [9, 10] and skeletonization [9, 11].

We propose a novel texture characterization based on the PGPC texture
model, called intersize correlation of grain occurrences, in this paper. If the
modification on the primitive is limited to a homothetic magnification, the size
of grain is defined as the degree of magnifications. The intersize correlation
is the correlation between the occurrences of grains of different sizes located
closely to each other. The motivation of introducing the intersize correlation
is the observation that the appearance of smaller grains depends on that of
larger grains; For example, a large grain is surrounded anisotropically by sev-
eral smaller grains and the group of these grains appears repetitively. This
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kind of characteristics is suitable to be expressed by the PGPC model, since it
assumes a primitive and the derivation of homothetic grains.

In this paper, we show an estimation method of the primitive and grain ar-
rangements of a texture, and we present an experimental estimation method of
the intersize correlation of a texture. We also present an application of the inter-
size correlation to texture regeneration with experimental results. We generate
a new texture where its intersize correlation is the same as that of the original
and the global arrangement of large-size grains are completely different from
that of the original. This is achieved by generating a different arrangement of
locations for large-size grains, generating a random arrangement of small-size
grains around each location of the large-size grain following the same intersize
correlation as the original texture, and locating the grains at corresponding
locations. Although the appearance of the resultant texture is globally different
from the original, the visual impression of the semi-local appearance, which is
the appearance of small-size grains around a large-size grain, for example the
anisotropy of the locations of small-size grains, is preserved.

A similar idea of image modification is found in [12], which derives the
skeleton of the target image and regenerates another image by locating a dif-
ferent structuring element on the skeleton, for an application to the modifica-
tion of the impression of calligraphic characters. This method employs another
structuring element that is not related to the original image, although our tex-
ture regeneration method employs the primitive and the intersize correlation
estimated from the original texture.

The PGPC model is closely related to the well-known Boolean set model
[13]. It describes a random figure by a germ process generating grains to be
arranged and the Poisson point process determining where to locate the grains.
The Boolean set model, however, restricts the point process of grain arrange-
ment to the Poisson point process, and does not introduce the concept of grain
size. Thus the intersize correlation cannot be considered by the Boolean set
model, and this is an advantage of the PGPC model.

2. Granulometry and skeleton

Granulometry and size distribution function

Opening of an image X with respect to a structuring element B means the
residue of X obtained by removing smaller structures than B. It indicates that
the opening works as a filter to distinguish object structures by their sizes. Let
2B, 3B, . . . , be homothetic magnifications of the basic structuring element B.
The r-times magnification of B, denoted rB, is usually defined in the context
of mathematical morphology as follows:

rB =
{

B ⊕B ⊕ · · · ⊕B ((r − 1) times of⊕) r > 0,
{0} r = 0,

(1)
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where {0} denotes a single dot at the origin and ⊕ denotes the Minkowski set
addition. In the case of gray scale images and structuring elements, the umbra
of the result is derived by the above operation applied for their umbrae.

However, the difference between the extent of r-times magnification and
that of (r + 1)-times magnification is often too large in the definition of Eq.
(1). Thus we redefine the magnification as follows:

rB =
{

B ⊕ C ⊕ · · · ⊕ C ((r − 1) times of⊕) r > 0,
{0} r = 0,

(2)

where C is another small structuring element.
We then perform opening of X with respect to the homothetic structuring

elements, and obtain the image sequence XB , X2B , X3B , . . . . In this sequence,
XB is obtained by removing the regions smaller than B, X2B is obtained by
removing the regions smaller than X2B , X3B is obtained by removing the
regions smaller than 3B, . . . . If it holds that X ⊆ XB ⊆ X2B ⊆ X3B ⊆ . . . ,
this sequence of openings is called granulometry [9].

We then calculate the ratio of the area (for binary case) or the sum of pixel
values (for gray scale case) of XrBXX to that of the original X at each r. The area
of an image is defined by the area occupied by an image object, i. e. the num-
ber of pixels composing an image object in the case of discrete images. The
function from a size r to the corresponding ratio is monotonically decreasing,
and unity when the size is zero. This function is called size distribution func-
tion. The size distribution function of size r indicates the area ratio of the
regions whose sizes are greater than or equal to r.

Skeleton

The morphological skeleton SK(X, B) is characterized as follows [14, 15]:

SK(X, B) =
⋃
r

SKrKK (X, B), (3)

SKrKK (X, B) = (X 	 rB̌)− (X 	 rB̌)B, (4)

for each r such that SKrKK (X, B) �=�� ∅. SKrKK (X, B) is often referred as medial
axis transform. In the above equation, 	 denotes the Minkowski set subtrac-
tion, B̌ denotes the reflection of B with respect to the origin. We mainly
employ the medial axis transform in this paper, and this is similarly obtained
for gray scale images by applying gray scale morphological operations.

3. PGPC texture model

The Primitive, Grain and Point Configuration (PGPC) texture model repre-
sents a texture image X as follows:
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X =
⋃
r

Br ⊕ Φr (5)

for nonempty Φr, where Br denotes a grain, and Φr is a set indicating pixel
positions to locate the grain rB. In the case of binary image, Φr is a subset
of Z

2. In the case of gray scale image, Φr is a subset of Z
3 if we employ the

umbra expression to the grains rB.
The PGPC texture model regards a texture as an image composed by a reg-

ular or irregular arrangement of objects that are much smaller than the image
itself and resemble each other. The objects arranged in a texture are called
grains, and the grains are regarded to be derived from one or a few typical
objects called primitives.

We assume here that {0B, 1B, . . . , rB, . . . } are homothetic magnifications
of a small object B as defined in Eq. (2), and that Br in Eq. (5) is equivalent to
rB for each r. In this case, B is regarded as the primitive and r is referred as
size of the magnification, and XrBXX is regarded as the texture image composed
by the arrangement of rB only. It follows that rB − (r + 1)B indicates the
region included in the arrangement of rB but not included in that of (r +
1)B. Consequently, XrBXX − X(r+1)B is the region where r-size grains are
arranged if X is expressed by employing an arrangement of grains which are
preferably large magnifications of the primitive. The sequence X−XB , XB−
X2B , . . . , XrBXX −X(r+1)B , . . . is the decomposition of the target texture to the
arrangement of the grains of each size.

Estimation of primitive and grain arrangement

The sequence of the texture decomposition, mentioned in the previous sub-
section, can be derived using any structuring element. Thus it is necessary to
estimate the appropriate primitive that is a really typical representative of the
grains. We employ an idea that the structuring element yielding the simplest
grain arrangement is the best estimate of the primitive, similarly to the prin-
ciple of minimum description length (MDL). The simple arrangement locates
a few number of large magnifications for the expression of a large part of the
texture image, contrarily to the arrangement of a large number of small-size
magnifications. We derive the estimate by finding the structuring element min-
imizing the integral of 1 − F (r), where F (r) is the size distribution function
with respect to size r. The function 1 − F (r) is 0 for r = 0 and monotoni-
cally increasing, and 1 for the maximum size required to compose the texture
by the magnification of this size. Consequently, if the integral of 1 − F (r)
is minimized, the sizes of employed magnifications concentrate to relatively
large sizes, and the structuring element in this case expresses the texture us-
ing preferably large magnifications. We regard this structuring element as the
estimate of primitive.
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We estimate the gray scale structuring element in two steps: the shape of
structuring element is estimated by the above method in the first step, and the
gray scale value at each pixel in the primitive estimated in the first step is then
estimated. However, if the above method is applied to the gray scale estima-
tion, the estimate often has a small number of high-value pixel and other pixels
whose values are almost zero. This is because the umbra of any object can be
composed by arranging a one-pixel structuring element. This is absolutely not
a desired estimate. Thus we minimize 1− F (1), i. e. the residual area of XB

instead of the method in the first step. Since the residual region cannot be com-
posed of even the smallest magnification, the composition by this structuring
element and its magnification is the most admissible when the residual area is
the minimum. The exploration of the structuring element can be performed by
the simulated annealing, which iterates a modification of the structuring ele-
ment and finds the best estimate minimizing the evaluation function described
in the above [8].

Once the primitive B is estimated, an estimate of Φr is obtained by the
morphological skeletonization employing B as the structuring element. This
is because the grains Bi are assumed to be homothetic magnifications of the
primitive B, and the skeleton is defined as the locus of the origin of homo-
thetically magnified structuring elements exactly covering the original image
objects with preferably large magnifications at each position on the locus.

Note that the arrangement derived by the skeletonization is redundant. This
is the reason why we do not employ the estimation of the primitive by finding
the simplest grain arrangement, i .e. minimizing the numbers of points in Φr,
although such minimization is a direct application of the MDL principle.

4. Intersize correlation of grain occurrences

Once the primitives and grain arrangements are estimated using the PGPC
model, it is observed in the grain arrangements of textures that a large-size
grain is often surrounded by smaller-size grains. This indicates that there exists
a correlation between the occurrences of the grain locations corresponding to
size r and those to size r − 1, and it expresses visual impressions of semi-
local grain appearances. We call it intersize correlation of grain occurrences
between size r and r − 1.

Let x1 and x2 be grain location points. The probability that a grain of size
r is located at x1 is denoted as Pr{x1 ∈ Φr}. The conditional probability that
a grain of size (r − 1) is located at x2 under the condition that x1 ∈ Φr is
denoted as Pr{x2 ∈ Φr−1|x1 ∈ Φr}. We assume that

Pr{x2 ∈ Φr−1|x1 ∈ Φr} = f(x2 − x1) (6)
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for all x1, where f is a function of the relative position of x2 to x1 only, i. e.
translation-invariant. This is because a texture often has a globally repetitive
structure. We suppose that the function f decreases when the distance |x2 −
x1| increases, and depends on the direction of x2 − x1. We consider that the
function f characterizes the intersize correlation.

Estimation of intersize correlation and application to texture
regeneration

We consider a random rearrangement of grain locations while preserving
the intersize correlation of the original texture, and regenerate a modified tex-
ture having a different global grain arrangement while the visual impression of
semi-local grain appearances in the original textures are preserved.

We estimate the intersize correlation of the original texture for characteriz-
ing mainly its anisotropy of the occurrence of small-size grains around each
large-size grain in our experiment. It is assumed that an 11×11-pixel window
is centered at each point in Φr, as illustrated in Fig. 1(a). The window is di-
vided into four subwindows as shown in Fig. 1(b), and the number of points in
Φr−1 in each subwindow is counted. If the windows overlap and share a point
in Φr−1 at several points in Φr, the point is counted as if the number of the
point were not unity but α

m + ε, where m is the number of overlapping win-
dows at this point and α and ε are tuning parameters. This value indicates the
dependency of occurrences of points in Φr−1 around closely located points in
Φr. If these points occur independently, α = m and ε = 0, i. e. the number of
points in Φr−1 are evaluated as it is. Although we have introduced the above
idea in our experiments, the proper estimate of these parameters is still an open
problem. The ratio of the sum of the number of points in Φr−1 in the subwin-
dow of a direction over the whole image to the total number of points in Φr−1

in the windows over the whole image is calculated. The ratio corresponding
to each subwindow is regarded as the estimated occurrence probability of the
points corresponding to size r− 1 around the pixel to size r in the direction of
this subwindow.

In the case of gray scale textures, the pixel value range from 0 to 255 is di-
vided into several subranges of the same width, and the same calculation as the
above is carried out for each subrange. The estimated occurrence probability
for each direction is obtained for each subrange of pixel values.

Texture generation by random rearrangement of large-size
grains

We generate a new texture from the original by distributing randomly the
grain location points corresponding to size r, and generating the points corre-
sponding to size (i− 1) randomly independently at each position in the above
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Figure 1. Schematic illustration of the evaluation of intersize correlation. (a) An example of
grain location. Each ellipse indicates a grain and the dot in each ellipse indicates the located
point. The gray square indicates the window centered at a point in Φr . (b) the number of points
in Φr−1 is counted in each subwindow.

(a) (b) (e) (f)(c) (d)

Figure 2. An example of binary texture regeneration preserving the intersize correlation. (a)
Original texture. (b) Estimated primitive. (c) Restored texture by locating the grains on the
original Φ2 and Φ1 without any modifications. (d) Regenerated texture based on a random
arrangement of the grains of size 2 and the arrangement of the grains of size 1 following the
estimate intersize correlation. (e) Skeleton Φ1. (f) Skeleton Φ2.

four subwindows around the points corresponding to size r with the occur-
rence probabilities estimated as the above. Figure 2 shows an experimental
example of a binary texture. Figure 2(a) shows the original binary texture, and
(b) shows the estimated primitive. Each small square in (b) corresponds to one
pixel in the primitive, and the shape is expressed by the arrangement of white
squares. The primitive is explored from figures of nine connected pixels within
5× 5-pixel square. The small structuring element C employed for magnifica-
tion in Eq. (2) is the 2× 2-pixel square. Figure 2(c) shows the restored texture
by locating the grains on the original Φ2 and Φ1 without any modifications. It
indicates that the estimated primitive and grain arrangements express the orig-
inal texture properly. Figure 2(d) shows the result of texture regeneration by
locating the grains of size 2 randomly by a Poisson point process and arranging
the grains of size 1 following the estimated occurrence probability in each di-
rection. Figures 2(e) and (f) show Φ1 and Φ2, i. e. the skeletons, respectively,
estimated from the original image (a).
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Figure 3. An example of gray scale texture regeneration. (a) – (d) are similar to Fig. 2.

Figures 3(a)–(d) are the results in the case of a gray scale image. The gray
scale value in the estimated primitive (b) is explored by setting the initial pi-
xel value to 50 and modifying the value in the range of 0 to 100. The small
structuring element C for magnification in Eq. (2) is defined as the 2× 2-pixel
square with pixel value 1 for all the four pixels.

These results show that the regenerated textures preserve local characteris-
tics of the original texture by the primitive as well as semi-local characteris-
tics around the large-size grains by the preservation of intersize correlation,
although they look globally different from the original.

5. Conclusions

We have proposed a novel method of texture characterization, called inter-
size correlation of grain occurrences. This idea is based on a model of texture
description, called “Primitive, Grain and Point Configuration (PGPC) texture
model.” This model assumes that a texture is composed by arranging grains
derived from one primitive by the homothetic magnification, and defines the
size of grain. The intersize correlation is the occurrence correlation between
grains of different sizes located closely to each other.

We have presented estimation methods of the primitive, grain arrangements,
and the intersize correlation of a texture. We have also shown an application of
the intersize correlation to texture regeneration, which generates a globally dif-
ferent texture preserving the visual impression of semi-local grain appearances
in the original texture, by experiments for both binary and gray scale textures.

The granulometry used in this paper is based on openings, which suggests
that a texture composed of brighter grains on the darker background is as-
sumed. Although the brighter grains are extracted in our experiment for the
gray scale image, the extraction of the darker grains by the granulometry based
on closings may be useful for more precise characterizations. The correlation
estimation method employed in this paper is just an experimental, and its char-
acterizations by theoretical investigations and comparison with other methods
are also our future problem.
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Abstract Texture segmentation based on local morphological pattern spectra provides an
attractive alternative to linear scale spaces as the latter suffer from blurring and
do not preserve the shape of image features. However, for successful segmen-
tation, pattern spectra derived using a number of structuring elements, often at
different orientations, are required. This paper addresses this problem by us-
ing area morphology to generate a single pattern spectrum, consisting of a local
granulometry and anti-granulometry, at each pixel position. As only one spec-
trum is produced, segmentation is performed by directly using the spectrum as
the feature vector instead of taking pattern spectrum moments. Segmentation
results for a simulated image of Brodatz textures and test images from the Outex
texture database show the potential of the new approach.

Keywords: Texture analysis, granulometries, area morphology

Introduction

Automated texture classification and segmentation remains a challenging
task for computer vision algorithms. Texture refers to the variation of intensity
in a local neighbourhood and therefore cannot be defined by a single pixel [8].
In supervised texture classification schemes a feature vector, consisting of a
number of textural features, is evaluated against a selected library of feature
vectors for particular textures. Alternatively, if an a priori library is not avail-
able clustering techniques can be used to classify the feature vectors into an
appropriate number of classes [10]. As texture can be said to consist of a
distribution of image features at different scales, multiscale texture analysis
schemes are an attractive alternative to the traditional fixed scale approach. In
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practice, multiscale feature vectors can be found by decomposing the signal
into elements of different resolutions with a linear filterbank and then extract-
ing the structural information in each sub-band. Popular methods include Ga-
bor filtering [9] and, more recently, wavelet analysis [17]. However, despite its
popularity, linear image analysis suffers from a number of drawbacks includ-
ing the shifting and blurring of image features, a scale parameter that is not
related to a size-based definition of scale and the fact that it produces filtered
images that do not correspond to the shape of image features [11].

An alternative method of decomposition uses mathematical morphology op-
erators to produce an improved representation both in terms of scale and the
position of sharp edged objects. In practice, this can be achieved by differenc-
ing a series of openings and closings by increasing scale structuring elements
to produce a granulometric size distribution for greyscale images, termed a
pattern spectrum [11], that has its roots in the binary granulometries of Math-
eron and Serra [12, 16]. Feature vectors are formed by taking moments of the
local pattern spectra produced by a number of different structuring elements,
where the term “local” refers to a window centred on the pixel of interest [7]. In
terms of texture classification, morphological scale spaces obtained using stan-
dard open and close filters suffer from two disadvantages. Firstly, the shape of
the structuring element produces edge movement such as corner rounding and,
secondly, a large number of structuring elements may be required to capture
textual features. The latter problem is further exacerbated when linear features
are present in the texture at different orientations. Consequently, many pattern
spectra are required at each image point and this explains in part why only
moments of the spectra are used to form the feature vectors.

Area morphology operators [18, 15] address both these problems. The scale
spaces resulting from increasing area open-close (AOC) and area close-open
(ACO) operations exhibit the property of strong causality thus guaranteeing
the preservation of edge positions through scale [1]. In addition, as area oper-
ations can be considered as the maximum (resp. minimum) of openings (resp.
closings) with all possible connected structuring elements with a given number
of elements [5], the need for a set of differently orientated structuring elements
is removed. An area morphology scale space classification scheme using a fea-
ture vector whose elements are the intensities of a particular pixel at a given
set of scales is described in [1]. Here, a new local granulometric texture anal-
ysis technique is proposed that combines the advantageous properties of area
morphology scale spaces with a local pattern spectrum approach.

This paper is arranged as follows. Section 1 discusses local granulometric
texture analysis in more detail and the new area morphology local granulo-
metric method is described in section 2. Experimental results for a compound
image consisting of a number of Brodatz textures and images from the Outex
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texture database are presented in section 3. Finally, discussion and conclusions
are given in section 4.

1. Morphological Texture Analysis

The granulometric size distributions first proposed by Matheron [12] pro-
vide a morphological description of the granularity or texture in an image (see
also chapter 8 of [6]). Granulometries are obtained by the repeated application
of multiscale non-linear filters. For example, consider the opening of a binary
image image I with a set of structuring elements {Bi}. As the opening op-
erator is increasing, when Bi is a subimage of Bi+1 and Bi+1 ◦ Bi = Bi+1,
then I ◦ Bi+1 is a subimage of I ◦ Bi. Therefore as B1, B2, B3, . . . Bk is an
increasing sequence of structuring elements, the filtered images will form the
decreasing sequence

I ◦B1 ⊃ I ◦B2 ⊃ I ◦B3 ⊃ . . . ⊃ I ◦Bk. (1)

The total number of pixels remaining after each successive opening results in
the decreasing function Ψ(k) where, for a given value of K, Ψ(k) = 0 for
k ≥ K. Various textural information can be extracted from Ψ(k) depending
on the shape of the structuring element. The sequence of images IkI given by

IkI = {X ◦Bk : 0 ≤ k ≤ K − 1} (2)

defines the granulometry and the resulting function Ψ(k) is known as the size
distribution [7]. Since Ψ(k) is a decreasing size distribution function its nor-
malisation yields the distribution function

Φ(k) = 1− Ψ(k)
Ψ(1)

. (3)

The discrete derivative of (3) produces the discrete density function

δΦ(k) = {Φ(k)− Φ(k − 1) : 1 ≤ k ≤ K − 1} (4)

that defines the discrete pattern spectrum. The pattern spectrum for greyscale
images, PS I , can be described by the decreasing sequence

PSI(B+k) = A[I ◦Bk − I ◦Bk+1], (5)

where ◦ is now a greyscale opening, k is the size parameter, the structuring
element B defines the shape parameter and A[I] =

∑
xy I(x, y) [11]. Keeping

the shape of B fixed produces a decreasing sequence of greyscale openings
reminiscent of (1) and the result is a size histogram of I relative to B. The
pattern spectrum can be extended to contain negative values by replacing the
greyscale opening in (5) with a greyscale closing giving

PSI(B−k) = A[I •Bk − I •Bk−1]. (6)
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Normalising the local pattern spectra of (5) and (6) by the total energy in
the original image defines the size density [11],

sI(k) =
1

A[I]

{
A[I ◦Bk − I ◦Bk+1], for k ≥ 0
A[I •Bk − I •Bk−1], for k ≤ −1.

(7)

This density is equivalent to the pattern spectrum for binary images of (4)
with the discrete differentiation being replaced by a point-wise difference of
functions.

To obtain the full shape-size classification for I(x, y) using either the binary
or the greyscale approach an appropriate set of the structuring elements is re-
quired and, for each, the size parameter k is varied over its range, producing a
discrete pattern spectrum for each structuring element.

Ganulometric-Based Texture Segmentation

Granulometric size distributions can be used as features for texture-based
classification schemes. However, if the overall aim is the segmentation of im-
ages containing more than one texture, the classification needs to be performed
at pixel-level and the features should reflect the local size distribution. This is
the notion behind the local pattern spectrum methods of [7, 6] that compute
local size distributions centred on a pixel of interest.

For binary images, local granulometric size distributions can be generated
by placing a window WxWW at each image pixel position x and, after each opening
operation, counting the number of remaining pixels within WxWW . This results in
a local size distribution, Ψx, that can be normalised in the same manner as the
global granulometry to give the local distribution Φx(k). Differentiating gives
the density δΦx that yields the local pattern spectrum at pixel x, providing
a probability density which contains textural information local to each pixel
position.

As acknowledged in [7], the reason for calculating local pattern spectra on
binary images is computational complexity. The analysis of grey-scale images
is preferable as more image information is available for the classification algo-
rithm. This can be achieved by replacing the density δΦx with a local greyscale
size density calculated by applying (7) within a local window WxWW . Textural
feature extraction can be achieved by employing several structuring elements
to generate a number of local granulometries, each providing different texture
qualities, to produce a more robust segmentation.

Supervised classification schemes compare the observed pattern spectra mo-
ments at each pixel position to a database of texture moments [7]. For every
pixel the distance between the local size density and every entry in the database
of codevectors is calculated. The texture class with the minimum distance is
then assigned to the pixel position, resulting in a texture class map.
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Feature vectors that possess common attributes will form clusters in the fea-
ture space. The distances between points inside a cluster are smaller than those
between points which are members of different clusters and therefore the clus-
ters can be regarded as texture classes. In this manner, popular clustering algo-
rithms such as the k-means [10] can be employed to provide an unsupervised
texture segmentation scheme. This was the approach used to cluster granulo-
metric moments for segmenting grey-scale mammogram images [2].

2. Area Morphology Local Granulometries

Morphological area openings and closings [18, 15] remove connected com-
ponents smaller than a given area and can be used to generate a scale space in
which area provides a scale parameter equivalent to structuring element size in
standard morphology. Area openings and closings can be defined by operations
on a threshold decomposition or, alternatively, by

γa
λ(I) =

∨
B∈Aλ

(I ◦B) (8)

and

ϕa
λ(I) =

∧
B∈Aλ

(I •B) (9)

respectively, where Aλ is the set of connected subsets with area ≥ λ [5]. This
alternative definition illustrates the fact that area operators select the most ap-
propriately shaped structuring at each pixel, the only constraint being its area.
Therefore, the operations adapt to the underlying image structure and eliminate
any shape bias and artificial patterns associated with fixed structuring elements.

In terms of texture classification, area morphology scale spaces are attrac-
tive as they can capture all the structures contained in an image. This is ad-
vantageous as textured images generally contain far more structures that can
be described by a family of fixed structuring elements. In addition, area scale
spaces have the property of strong causality which ensures that edge positions
are preserved through scale [1, 3]. Computational complexity issues have also
been greatly reduced with the development of fast area opening and pattern
spectra algorithms [13].

Successful feature classification was demonstrated by Acton and Mukherjee
using a scale space vector containing the intensity of each pixel at a selected
set of scales [1]. To extend the use of area morphology operators to texture
segmentation a new approach based on local area morphology granulometries
is proposed. The area operators are applied to the image and then local pattern
spectra, containing information of all shapes at each scale, are calculated over
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Figure 1 Brodatz test image.

a square window WxWW by

sI(λ) =
1

Ax[I]

{
Ax[γa

λ(I)− γa
λ+1(I)], for λ ≥ 1

Ax[ϕa
−λ(I)− ϕa

−λ+1(I)], for λ ≤ −1.
(10)

The size of the local window is kept relatively small to ensure it captures the
texture at a particular pixel. However, the scale space vector for each window
can, in theory, have as many elements as there are pixels. To reduce the size
of the vector the granulometry can be truncated at an area above which there
is considered to be no textural information. This approach is computationally
simpler than the scale space sampling of [1]. In addition, as the resulting pat-
tern spectrum contains a limited number of elements it can be used directly
to provide a feature vector for classification purposes, instead of indirectly
through pattern spectra moments [7].

3. Experimental Results

A simulated image created from five natural textures from the Brodatz al-
bum [4] (see figure 1) was used to quantify the performance of the new local
area granulometry texture segmentation technique. To provide a set of com-
parative results the test image was first segmented using binary and greyscale
versions of the local granulometry segmentation scheme described in [7, 6].
The binary test image was created by thresholding figure 1 so that equal num-
bers of pixels were assigned to each value. For both the binary and greyscale
methods five structuring elements, four linear (vertical, horizontal, positive di-
agonal and negative diagonal) and one circular, were used to create local size
distributions using a 33 × 33 window. The first 3 central moments of the lo-
cal pattern spectra were used as textural features, augmented by two additional
features, MaxLin and Linearity, giving a 17 element feature vector. The
MaxLin feature finds the maximum linear dimension regardless of direction
while the Linearity feature differentiates between regions of large linear com-
ponents and circular components with similar diameters.

The database of codevectors used for the supervised classifier were obtained
by generating the 17 feature images for homogeneous texture and then calcu-
lating the mean value of each feature image. The supervised segmentation
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True Classified as:
class: D77 D84 D55 D17 D24
D77 61.91% 24.73% 0.13% 5.34% 7.90%
D84 0.00% 97.44% 1.20% 0.00% 1.36%
D55 0.00% 18.86% 80.74% 0.00% 0.40%
D17 0.00% 26.18% 1.40% 59.30% 13.12%
D24 0.00% 2.67% 10.83% 0.00% 86.50%

Figure 2. Supervised segmentation result for Brodatz image using binary pattern spectra.

results achieved by the binary and greyscale schemes using a minimum dis-
tance classifier are shown in figures 2 and 3 respectively. Comparison of these
results shows the improved performance of greyscale spectra. The overall cor-
rect classification, given by the mean value of the diagonal for each confusion
matrix, rises from 77.18% (binary) to 83.15% (greyscale). However, many
intra-region classification errors are still present resulting, in part, from the
introduction of new features with increasing scale [1].

The classification result for the supervised area morphology local granu-
lometry scheme is given in figure 4. Here, the maximum area size was set
to 78 pixels, a value equal to the area of the largest structuring element in
the previous results, and the local window size was 33 × 33 as before. The
granulometry and anti-granulometry were found using (10) resulting in a 144
element local size density. The results are an improvement on the greyscale
structuring element approach with an average correct classification of 89.95%.

In texture segmentation, adjacent pixels are highly probable to belong to the
same texture class and the incorporation of spatial information in the feature
space has been shown to reduce misclassifications in regions of homogeneous
texture and at texture boundaries [9]. In practice, this can be achieved by in-
cluding the spatial co-ordinates of each pixel as two extra features. As no a
priori information about the co-ordinates of each texture class is available this
approach is incompatible with a supervised segmentation scheme. Instead,

True Classified as:
class: D77 D84 D55 D17 D24
D77 82.98% 3.94% 1.25% 11.26% 0.56%
D84 0.00% 92.06% 0.04% 6.25% 1.64%
D55 0.24% 37.66% 60.27% 1.32% 0.51%
D17 0.00% 12.12% 0.01% 87.27% 0.61%
D24 0.00% 5.07% 1.59% 0.17% 93.17%

Figure 3. Supervised segmentation result for Brodatz image using greyscale pattern spectra.
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True Classified as:
class: D77 D84 D55 D17 D24
D77 96.56% 0.65% 0.00% 0.79% 2.00%
D84 0.32% 92.37% 3.37% 0.99% 2.95%
D55 0.69% 9.03% 79.05% 6.77% 4.46%
D17 6.84% 3.62% 2.18% 86.15% 1.20%
D24 1.10% 0.50% 2.79% 0.00% 95.62%

Figure 4. Supervised segmentation result for Brodatz image using local area pattern spectra.

a k-means clustering algorithm can be used to provide an unsupervised seg-
mentation. The result achieved by this approach is presented in figure 5 and
achieves an overall correct classification of 93.26%. Inspection of the figure
shows that intra-region classification errors are virtually eliminated with the
only misclassifications occurring at region boundaries.

To provide a more rigourous test the local area morphology granulometry
segmentation method was applied to a number of images from the Outex tex-
tural database [14]. Each entry in the database is a 512× 512 image of 5 com-
pound textures. An example of one such image and the ground truth class map
used by all images in the database are shown in figure 6. As these test images
possess irregular texture boundaries they provide a challenging segmentation
problem. Figure 7 shows a typical segmentation for one of the Outex images
and an averaged confusion matrix from 3 segmentation results, which has an
overall classification accuracy of 93.78%. Further examination of the confu-
sion matrix reveals that the majority of errors occur from the misclassification
of pixels in the central texture. For comparison, an unsupervised greyscale
segmentation scheme employing structuring elements only classified 69.34%
of pixels correctly, while the unsupervised Gabor filterbank technique of [9]
achieved an average classification accuracy of 95.82%.

True Classified as:
class: D77 D84 D55 D17 D24
D77 99.94% 0.06% 0.00% 0.00% 0.00%
D84 5.45% 88.34% 0.00% 2.49% 3.73%
D55 5.81% 0.00% 89.35% 3.20% 1.64%
D17 0.00% 0.03% 2.03% 97.94% 0.00%
D24 4.97% 0.71% 1.38% 2.20% 90.74%

Figure 5. Unsupervised segmentation result for Brodatz image using local area pattern spec-
tra.
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Figure 6. Outex test image and ground truth of 5 classes shown with increasing greyscale.

4. Discussion and Conclusions

A new approach to morphological texture segmentation using area morphol-
ogy local granulometries has been presented that combines the advantages of
area morphology with a local granulometry approach. Pixel-wise classification
is achieved using a feature vector consisting of a local area morphology size
density. Segmentation results on a simulated image of Brodatz textures show
the supervised scheme to out-perform supervised segmentation schemes based
on fixed structuring elements.

An unsupervised area granulometry texture segmentation scheme has also
been presented that produces improved results by virtue of incorporating the
spatial co-ordinates as additional feature vector elements. Results show that
this unsupervised technique produces a better performance than the other mor-
phological segmentation methods in terms of overall correct classifications and
also eliminates the training stage required by supervised schemes.

Application of the unsupervised scheme to images from the Outex texture
database produced an overall classification performance that significantly im-
proves on equivalent schemes employing structuring elements and is compara-
bly with that of a Gabor segmentation scheme. One difference between the
local area granulometries approach and those based on Gabor filtering and
wavelets [17] is that the former currently calculates its distributions within

True Classified as class:
class: 1 2 3 4 5

1 98.57% 0.65% 0.72% 0.00% 0.05%
2 1.58% 98.09% 0.00% 0.23% 0.10%
3 2.83% 0.00% 95.21% 1.50% 0.45%
4 0.00% 3.10% 3.55% 93.01% 0.35%
5 4.91% 3.73% 4.15% 3.19% 84.02%

Figure 7. Unsupervised segmentation result for Outex images using local area pattern spectra.
Example segmentation (left) and average confusion matrix for 3 images (right).
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a fixed-sized local window, while the others increase their window size with
scale. This may explain why the results achieved are only comparable with
existing linear methods despite the advantages of the morphological approach.
The incorporation of variable window size within our scheme is an area on
ongoing research, as is the automatic selection of scales for the feature vector.
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Abstract We investigate the use of the standard morphological texture characterisation
methods, the granulometry and the variogram, in the task of texture classifica-
tion. These methods are applied to both colour and greyscale texture images.
We also introduce a method for minimising the effect of different illumination
conditions and show that its use leads to improved classification. The classifi-
cation experiments are performed on the publically available Outex 14 texture
database. We show that using the illumination invariant variogram features leads
to a significant improvement in classification performance compared to the best
results reported for this database.

Keywords: Mathematical morphology, texture, variogram, granulometry, illumination in-
variance

1. Introduction

The principal tools in the morphological texture analysis toolbox are the
variogram, which is a generalisation of the covariance, and the granulometry
[19, 20]. These have been used successfully in a number of applications [20].
It is nevertheless desirable to place these tools in the context of current research
on texture analysis methods. To this end, we first discuss how they fit into the
framework of structural and perceptual properties of texture. Then we com-
pare their performance to that of the best reported method using a standard
benchmark. Additionally, an approach to solving the problem of computing
illumination-invariant texture features is presented. By illumination invariance
we mean that the feature vector describing a texture should be independent of
the illumination conditions in which the texture image is captured.
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There has recently been much effort at comparing the performance of tex-
ture feature calculation methods on standard publically-available databases,
such as the Outex databases [13]. This is done for tasks such as texture classi-
fication and texture segmentation. Classification results exist, for example, for
the Local Binary Pattern (LBP) [14] and the Gabor filter approaches [12]. In
this paper, we compare the performance of the standard morphological texture
description methods for the task of texture classification.

Texture analysis tools have mostly been applied to greyscale images. Colour
textures have however received much attention recently, with many greyscale
texture analysis methods being extended to colour images. There are three
main approaches to the analysis of a colour texture [15]:

Parallel approach: Colour and texture information is processed separately.
The global colour is characterised, usually by means of a colour his-
togram. The intensity is used with greyscale texture descriptors to char-
acterise the texture.

Sequential approach: Colour information is processed first to create an im-
age labelled by scalars. Greyscale texture algorithms are then applied to
this labelled image.

Integrative approach: This can be divided into single- and multi-channel
strategies. Single-channel strategies apply greyscale texture analysis al-
gorithms to each colour channel separately, while multi-channel strate-
gies handle two or more channels simultaneously.

Many greyscale texture description techniques have been recast in the inte-
grative framework: cooccurrence matrices [1, 15], run length [5] and Gabor
filtering [16]. There is however no agreement yet as to whether the integrative
approach functions better [15] or worse [12] than the parallel approach.

We begin with a brief overview of the morphological texture description
methods (Section 2), and relate these to the perceptual properties of texture in
Section 3. Our proposed transformation allowing illumination invariant classi-
fication of textures is presented in Section 4. The experimental setup, texture
features used and results are presented in Sections 5, 6 and 7 respectively.

2. Morphological texture processing

We briefly summarise the variogram and granulometry as well as their ex-
tensions to colour textures.

Variogram

The variogram is a notion which generalises the covariance [19]. We make
use of it here as it is easier to generalise to colour images than the covariance.
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To calculate a variogram of an image f (x), a direction α and a unit displace-
ment vector ĥ in this direction must be chosen. For various multiples of vector
ĥ, written qĥ, the following value

V (q, α) =
1
2
E
[
f (x)− fαff

(
x + qĥ

)]2
(1)

is plotted against q, where fαff
(
x + qĥ

)
is the displacement of image f in

direction α by distance q. The expectation value E of the greyscale differences
squared is calculated only in the region in which the original and displaced
images overlap.

The generalisation of the variogram to colour images was suggested by La-
fon et al. [10]. It is an integrative multi-channel strategy in which the dif-
ference in Equation 1 is replaced by the Euclidean distance in the CIELAB
colour space. The CIELAB space was designed such that this distance corre-
sponds to the perceptual difference between two colours expressed in CIELAB
coordinates. We also use the Euclidean distance in the RGB space.

Granulometry

The granulometry in materials science, which is used to characterise gran-
ular materials by passing them through sieves of increasing mesh size while
measuring the mass retained by each sieve, is transposed to image data by
opening the image with a family of openings γλ of increasing size λ [20]. The
mass is replaced by the image volume Vol, i.e. the sum of the pixel values. The
normalised granulometric curve of an image f is a plot of Vol [γλ (f)] /Vol (f)
versus λ. The most useful structuring elements are discs and lines. Negative
values of λ are interpreted as a closing with a structuring element of size λ.

Due to the extremely large number of ways of applying an opening to a
colour image [7], we decided to use an integrative single-channel strategy and
apply the granulometry to each channel of the image in the RGB and CIELAB
spaces.

3. Structural properties of texture

Texture has been characterised in terms of two sets of properties: spatial re-
lation properties and perceptual properties. Rao [17] developed a taxonomy of
textures based on their spatial relations. He defined the following four texture
classes, examples of which are shown in Figure 1:

Strongly ordered: Textures made up of a specific placement of primitive ele-
ments, or of a distribution of a class of elements.

Weakly ordered: Textures exhibiting a certain level of specificity of orienta-
tion at each position.
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(a) d20 (b) d15 (c) d92 (d) d61

Figure 1. Examples of the four texture classes defined by Rao: (a) Strongly ordered.
(b) Weakly ordered. (c) Disordered. (d) Compositional. The reference number of each tex-
ture in the Brodatz album [2] is shown below each image.

Disordered: These textures are not oriented or repetitive, and could be de-
scribed based on their roughness.

Compositional: Textures which do not fit completely into one of the above
three texture classes, but can be described as a combination of them.

Perceptual properties are those which humans take into account when look-
ing at texture. Rao and Lohse [18] performed an experiment designed to find
the high-level texture characteristics which are important in the perception of
texture by humans. They asked 20 people to each classify 30 greyscale tex-
tures from the Brodatz album [2] into an unspecified number of classes, and
then to group similar classes so as to create a tree of texture similarity. Us-
ing an analysis by multidimensional scaling, the authors determined that the
most important characteristic is regularity, followed by the degree of orien-
tation specificity and lastly descriptional complexity. Mojsilović et al. [11]´
did a similar experiment in which 28 people were asked to specify numeri-
cally the similarity between every combination of 20 colour textures obtained
from a textile catalogue. Using multidimensional scaling, they identified five
important perceptual characteristics, of which two are specific to colour tex-
tures and three correspond to those of Rao and Lohse. They are, in order of
decreasing importance: overall colour, directionality and orientation, regular-
ity and placement, colour purity and complexity and heaviness. Chetverikov
[3] relates orientation specificity to anisotropy and points out that regularity
and anisotropy are hierarchical — a periodic texture is always anisotropic as
characteristic orientations are defined by the directions of the periodicity.

The morphological texture descriptors described above are both well
adapted to describing regularity and orientation specificity. The variogram of a
regular texture should have a visible periodicity. An orientation specificity will
be characterised by different variograms for different directions. The granu-
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lometry by discs is well suited to identifying regularity — regular structures
should have the same size and/or be separated by structures having the same
size. Orientation specificity can be detected by computing granulometries us-
ing linear structuring elements in a number of directions. The granulometry
should also be able to extract useful information from textures which are not
periodic and not orientation specific, such as those made up of a random dis-
tribution of differently sized grains.

4. Illumination invariance

Even though colour is the most appealing feature [11], it is also the most
vulnerable image indexing feature when the illumination under which image
content is captured is varied. The problem of illumination variance has been
addressed for the last few years, but there is no solid model for textures that
provides illumination invariant features. It is obvious that a change in illumi-
nation does not change the texture content and hence should not change the
texture features. However, the majority of texture analysing algorithms are
sensitive to illumination changes. Even in conjunction with popular colour
constancy normalization schemes (such as those proposed by Funt, Chatterjee
and Finlayson [4]), colour histogram based classification methods and inte-
grative single channel texture analyzing strategies fail to perform well for the
Outex 14 database [13]. Overall, the average classification score under illu-
mination varying conditions drops by 25% compared to constant illumination
conditions [12].

In this work we propose to use Minvariance Model [9], in which the change
in the pixel values is modelled as a function of relative change in two inter-
dependent variables. In general using Lambert’s Law, one can determine the
resultant colour coefficients using the following equation:

�ρ =
∫

w

∫∫
S(λ)E(λ)F(λ)dλ (2)

where λ is wavelength, �ρ is the sensor responses (the resultant RGB pixel val-
ues), F is the visual apparatus response function, E is the incident illumination
and S is the surface reflectance at location x on the texture surface. Under the
assumption that local surface reflectance is a constant at location x, the RGB
pixel values can be expressed as a product function of sensor response func-
tion and illumination. We rewrite Equation 2 as a continuous function Ψ of
two functions Ω and χ that are implicitly connected by the third variable λ,

�ρ = Ψ(Ω, χ) (3)

Ω = F(λ), χ = E(λ) (4)
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Figure 2. An example of each of the 68 Outex 14 textures (from [12]).

Using the chain rule of differentiation, we can write the total differential
coefficient of �ρ as

d�ρ =
∂�ρ

∂Ω
· dΩ +

∂�ρ

∂χ
· dχ (5)

given the condition !λ→ 0, !Ω→ 0, and !χ→ 0, where ! indicates the
change in the corresponding parameter. We obtain the following condition for
illumination invariant pixel values by equating the above equation to zero. That
is

dΩ = T (�ρ)�� −1 · dχ (6)

where T denotes the ratio between partial derivaties, i.e. the ratio between
the partial change in pixel values due to a change in illumination and the par-
tial change in pixel values due to a change in sensor sensitivity. In practice, a
histogram stretching technique [6] is used to achieve the above condition on
colour textures. A detailed description of the Minvariance Model can be found
in [9]. A similar approach to illumination invariance using histogram equalisa-
tion has been suggested in [8]. We have derived a similar technique, but using
a different theoretical model.

5. Experimental setup

Classification experiments were performed on the Outex 14 texture database
[13], which contains 68 textures. An example of each texture is shown in
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Figure 2. The training set was obtained by acquiring a 100dpi image of
size 746 × 538 pixels of each texture illuminated by a 2856K incandescent
CIE A light source. Each image was then divided into 20 non-overlapping
sub-images, each of size 128 × 128 pixels, producing 1360 training images.
The test set is made up of differently illuminated samples of the same textures,
once again with 20 sub-images per texture. The illumination sources used are a
2300K horizon sunlight and a 4000K fluorescent TL84. For each illumination
source, 1360 images are available, making a total of 2720 test images. The
textures have the same rotations under the three light sources.

6. Texture features and classification

Granulometry and Variogram texture feature vectors were calculated on
three images: colour images represented in the RGB (RGB) and CIELAB
(Lab) colour spaces, and a greyscale image containing luminance values (L),
the latter being the L∗ values in the CIELAB space. To transform the RGB
images into the CIELAB space, the first step was done using the RGB to XYZ
transformation matrix calibrated to the CIE A white point given in [12].

Four variograms are calculated for each image in directions α =
0◦, 45◦, 90◦ and 135◦ for values of q = 1, 2, 3, . . . , 50 using Equation 1. These
four variograms are then concatenated to form the variogram feature vector.
For the greyscale image L, Equation 1 is used directly. For the colour im-
ages RGB and Lab, the subtraction in Equation 1 is replaced by the Euclidean
distance. The feature vectors for both greyscale and colour images therefore
contain 200 features.

The granulometry feature vector is the granulometry curve using linear
structuring elements in four directions, as for the variograms. We use the con-
vention that a linear structuring element of size � has a length of 2� + 1 pixels.
For a granulometric curve in a single direction, the structuring elements range
in size from −25 (i.e. a closing with a linear structuring element of length 49
pixels) to size 25 in steps of size 2. For the greyscale image L, the feature
vector therefore contains 104 features. For the colour images RGB and Lab,
the granulometry curves for each channel were concatenated to form a feature
vector containing 312 features.

Computing a variogram feature vector on a 128 × 128 image requires on
average 0.68 seconds for a greyscale image and 1.16 seconds for a colour im-
age. A granulometry feature vector requires on average 10.7438 seconds for
a colour image. The experiments were done in a MATLAB 6.1 environment,
using a personal computer with an AMD Athlon[TM ] MP 1800+ 1.5GHz pro-
cessor and 1GB RAM.

Textures were classified using a kNN classifier, in which the distance be-
tween feature vectors was calculated using the Kullback-Leibler distance,
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Table 1. Classification scores for Outex 14. The methods are the granulometry G and Vari-
ogram V . The subscript indicates the colour space used.

No minvariance With minvariance
Methods TL84 horizon Average TL84 horizon Average
GRGB 41.54 47.13 44.34 60.44 65.59 63.02
GLab 37.43 56.10 46.77 69.04 72.13 70.56
GL 16.40 22.72 19.56 24.41 19.41 21.91

VRGB 73.46 65.66 69.56 65.59 60.44 63.02
VLab 65.76 73.75 69.76 74.12 55.22 64.67
VL 70.07 73.01 71.54 77.35 78.82 78.09

Best result from [12] 69.5

which is well suited to comparing probability distributions. The Kullback-
Leibler distance between two vectors p and q having components pk and qk

is:

d =
∑

k

pk log2

pk

qk
(7)

We used a value of k = 3. For the results in [12], with which we are com-
paring our results, a value of k = 1 was used. However, for the experiments
in [12], the classifier was trained and tested using only half of the images in
the benchmark database. As we are using the full database, we use k = 3 to
make the comparison more fair. The classification performance is measured as
the percentage of test set images classified into the correct texture class.

7. Results

The results of the texture classification experiments are shown in Table 1.
The left part of the table shows the results without illumination invariance and
the right part with illumination invariance. For each feature extraction method,
the classification performance on the two halves of the test database corre-
sponding to different illuminants (TL84 and horizon) are shown. Finally, the
average of these two values is shown in bold. For comparison, the best result of
classification on the Outex 14 database, reported in [12], is given. This value
of 69.5% was obtained using the Local Binary Pattern (LBP) texture features.

The granulometry features for the colour images gave consistently better
classification rates than those for the greyscale images. Furthermore, the use
of the illumination invariant features with the granulometry improved the clas-
sification significantly for the colour images, but little for the greyscale images.

The variogram applied to the non-illumination invariant images produced
superior results to the granulometry. These results all have the same magni-
tude as the best result by the LBP method [12]. The use of the illumination
invariant features had the undesired effect of lowering the classification rate
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for the colour images, but raising it significantly for the greyscale images. It
can be assumed that the transformation used to produce the illumination in-
variance distorts the distances in the RGB or CIELAB spaces which are used
in the colour version of the variogram, thereby leading to lower classification
rates, but this remains to be investigated further. The use of illumination invari-
ant features for the greyscale images leads to a significant improvement. The
best result of 78.09% is obtained by applying the variogram to the illumination
invariant luminance images. This is an improvement of 8.6% with respect to
the best LBP result.

8. Conclusion

We have discussed the standard morphological texture characterisation
tools, the variogram and granulometry, in terms of the structural and percep-
tual properties of texture, and compared their performance for texture classi-
fication. In general, it is can be seen that classification using feature vectors
based on the variogram performs better than that using granulometric curves.
On average, the use of our proposed illumination invariant features improves
the classification for all features except for the colour variogram features. The
illumination invariant variogram features applied to the luminance image re-
sults in a significant improvement in classification performance compared to
the best performance reported in the literature.

Due to the theme of the conference, we have concentrated on comparing
classification results using the standard morphological approaches, and have
shown that the use of illumination invariant features can lead to a significant
improvement in classification. It still remains, of course, to investigate the im-
provement in the classification results when using the LBP with our proposed
illumination invariant features.

The fact that the best classification performance is obtained for greyscale
images supports the assertion of Mäenpää et al. [12] that colour information
usually only improves texture classification marginally. However, the perfor-
mance of the texture classification using the colour granulometry features is
better than that using the greyscale features, which counters this assertion. We
therefore also plan to investigate if the application of the variogram in an in-
tegrative single-channel way (i.e. concatenating the variogram of each colour
channel to produce the feature vector, as done for the granulometry features)
leads to an improvement over the integrative multi-channel strategy used.
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Abstract The extension of lattice based operators to color images is still a challenging
task in mathematical morphology. The first choice of a well-defined color space
is crucial and we propose to work on a lum/sat/hue representation in norm L1.
We then introduce an unified framework to consider different ways of defining
morphological color operators either using the classical formulation with total
orderings by means of lexicographic cascades or developing new transforma-
tions which takes advantage of an adaptive combination of the chromatic and
the achromatic (or the spectral and the spatio-geometric) components. More
precisely, we prove that the presented saturation-controlled operators cope sat-
isfactorily with the complexity of color images. Experimental results illustrate
the performance and the potential applications of the new algorithms.

Keywords: color mathematical morphology, luminance/saturation/hue, lexicographic orde-
rings, reconstruction, gradient, top-hat, leveling, segmentation

1. Introduction

Mathematical morphology is the application of lattice theory to spatial struc-
tures [16] (i.e. the definition of morphological operators needs a totally ordered
complete lattice structure). Therefore the extension of mathematical morphol-
ogy to color images is difficult due to the vectorial nature of the color data.
Fundamental references to works which have formalized the vector morphol-
ogy theory are [17] and [8].

Here we propose here a unified framework to consider different ways of
defining morphological color operators in a luminance, saturation and hue
color representation. This paper is a summary of the Ph. D. Thesis of the
author [1] done under the supervision of Prof. Jean Serra (full details of the
algorithms and many other examples can be found in [1]).
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2. Luminance/Saturation/Hue color in norm L1

The primary question to deal with color images involves choosing a suit-
able color space representation for morphological processing. The RGB color
representation has some drawbacks: components are strongly correlated, lack
of human interpretation, non uniformity, etc. A polar representation with the
variables luminance, saturation et hue (lum/sat/hue) allows us to solve these
problems. The HLS system is the most popular lum/sat/hue triplet. In spite
of its popularity, the HLS representation often yields unsatisfactory results, for
quantitative processing at least, because its luminance and saturation expres-
sions are not norms, so average values, or distances, are falsified. In addi-
tion, these two components are not independent, which is not appropriate for
a vector decomposition. The reader can find a comprehensive analysis of this
question by Serra [20]. The drawbacks of the HLS system can be overcome
by various alternative representations, according to different norms used to de-
fine the luminance and the saturation. The L1 norm system has already been
introduced in [18] as follows:⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪

l = 1
3 (max + med + min)

s =
{

3
2 (max− l) if l ≥ med
3
22

2 (l −min) if l ≤ med

h = k
[
λ + 1

2 − (−1)λ
(

max+min−2med
2s

)] (1)

where max, med and min refer the maximum, the median and the mini-
mum of the RGB color point (r, g, b), k is the angle unit (π/3 for radians
and 42 to work on 256 grey levels) and λ = 0, if r > g ≥ b; 1, if g ≥ r > b;
2, if g > b ≥ r; 3, if b ≥ g > r; 4, if b > r ≥ g; 5, if r ≥ b > b allows to chan-
ge to the color sector. In all processing that follows, the l, s and h components
are always those of the system (1), named LSH representation.

3. Morphological color operators from LSH

For detailed exposition on complete lattice theory refer to [7]. Let E, T
be nonempty set. We denote by F(E, T ) the power set T E , i.e., the func-
tions from E onto T . If T is a complete lattice, then F(E, T ) is a com-
plete lattice too. Let f be a grey level image, f : E → T , in this case
T = {tmin, tmin + 1, · · · , tmax} is an ordered set of grey-levels. Given the
three sets T l, T s, T h, we denote by F(E, [T l ⊗ T s ⊗ T h]) or F(E, T lsh) all
color images in a LSH representation (T lsh is the product of T l, T s, T h, i.e.,
ci ∈ T lsh ⇔ ci = {(li, si, hi); li ∈ T l, si ∈ T s, hi ∈ T h}). We denote the
elements of F(E, T lsh) by f , where f = (fLff , fSff , fHff ) are the color component
functions. Using this representation, the value of f at a point x ∈ E, which
lies in T lsh, is denoted by f(x) = (fLff (x), fSff (x), fHff (x)). Note that the sets
T l, T s corresponding to the luminance and the saturation are complete totally
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ordered lattices. The hue component is an angular function defined on the unit
circle, T h = C, which has no partial ordering. Let a : E → C be an angular
function, the angular difference [15, 9] is defined as ai ÷ aj =| ai − aj | if
| ai − aj |≤ 180o or ai ÷ aj = 360o− | ai − aj | if | ai − aj |> 180o.
It is possible to fix an origin on C, denoted by h0. We can now define a h0-
centered hue function by computing fHff (x)÷ h0. The function (fHff ÷ h0)(x)
is an ordered set and therefore leads to a total complete ordered lattice de-
noted by T h÷h0 . We propose to distinguish two main classes of morpholog-
ical color operators, the vector-to-vector operators or VV-operators and the
vector-to-scalar operators or VS-operators. Let f ,g ∈ F(E, T lsh) be two
color images in LSH color space and h ∈ F(E, T ) a grey level image. An
operator Ψ is called a VV-operator if Ψ : T lsh → T lsh; g = Ψ(f). An
operator Φ is called a VS-operator if Φ : T lsh → T ; h = Φ(f). In ad-
dition, a connective criterion σ : F ⊗ P(E) → [0, 1] can be applied to a
color image f for segmenting and obtaining a partition Dσ (see Serra’s seg-
mentation theory [19]). For the sake of simplicity, we consider that a seg-
mentation operator based on a connective criterion is a VS-operator. Different
ordering relationships between vectors have been studied [5]. The marginal
ordering or M-ordering is a partial ordering, based on the usual pointwise or-
dering (i.e., component by component). Another more interesting ordering is
called conditional ordering or C-ordering, where the vectors are ordered by
means of some marginal components sequentially selected according to dif-
ferent conditions. This is commonly named as lexicographic ordering which
is a total ordering. Using a M-ordering for the elements of F(E, T lsh) we
can introduce color vector values in the transformed image that are not present
in the input image (the problem of “false colors”). The application of a C-
ordering in F(E, T lsh) preserves the input color vectors. When dealing with
operators for color images F(E, T lsh) C-orderings are indicated to build VV-
operators (g = Ψ(f)), introducing no new colors [21], but can be also used
for VS-operators (h = Φ(f)). An inconvenient of the C-orderings (vecto-
rial approach) is the computational complexity of the algorithms which leads
to slow implementations. However, in practice, for many applications (e.g.
segmentation and feature extraction) involving VS-operators, total orderings
are not required as well as increment based operators (e.g. gradients and top-
hats) can be defined in the unit circle T without fixing an origin on the hue
component [9]. We consider therefore that M-orderings can be interesting for
developing color operators. Let ψi be the mapping ψi : T → T an operator
for grey level images (marginal operator). In general, a separable marginal
operator is formalized by h = Ξ(Ψ1(fLff ), Ψ2(fSff ), Ψ3(fHff )), where Ξ is a
merging function (linear or non-linear) to combine the components. Obvi-
ously, although less useful, M-operators can be also applied to VV-operators
(i.e., g = (Ψ1(fLff ), Ψ2(fSff ), Ψ3(fHff ))).
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4. Total orderings using lexicographical cascades

Let ci = (ui, vi, wi) and cj = (uj , vj , wj) be two arbitrary color points, i.e.,
ci, cj ∈ T lsh, where the generic components (uk, vk, wk) are fLff (x), fLff (x) the
and negative of the h0-centered hue (fHff (x)÷h0) (the closest value fHff (x) to h0

must be the supremum) of the color image f at point x. The Ω-lexicographical
ordering or <Ω is defined as

ci <Ω cj if

⎧⎨⎧⎧⎩⎨⎨ ui < uj or
ui = uj and vi < vj or
ui = uj and vi = vj and wi < wj

We denote the lexicographical cascade by Ωuvw. In this case the priority is
given to the component u, then to v and finally to w. Obviously, it is possible
to define other orderings for imposing a dominant role to any other of the
vector components. The drawback of this kind of orderings is that most of
vector pairs are sorted by the chosen first component. There is a simple way in
order to make Ω-ordering more flexible which involves the linear reduction of
the dynamic margin of the first component, applying a division by a constant
and rounding off, i.e., changing u by -u/α.. It is named an α−modulus Ω-
lexicographical ordering. The value for α controls the influence degree of the
first component with regard to the others (above all the second one, since the
cascade almost never reaches the third row).

We then define three main families of lexicographical orderings from
the representation LSH: luminance-based Ωl|αs(h÷h0), saturation-based
Ωs|α l(h÷h0) and hue-based Ω(h÷h0)sl. The value of h0 yields an important
degree of freedom which allows us to act on a specific hue. A disadvantage
of the hue-based ordering is its instability for the low saturation points (dif-
ferent solutions can be used which are based on a weighting of the hue by the
saturation [1]). The C-ordering color morphology has been widely studied in
the framework of lum/sat/hue representations such as we propose here (e.g.
by Hanbury and Serra [10], by Ortiz et al. [14]), but most of works are very
preliminary studies, being limited to the basic operators

Once these orders have been defined, the morphological color VV-operators
are defined in the standard way. We limit our developments to the flat opera-
tors. The color erosion of an image f at pixel x by the structuring element B
of size n is εΩ,nB(f)(x) = {f(y) : f(y) = infΩ[f(z)], z ∈ n(Bx)}, where
infΩ is the infimum according to the lexicographical ordering Ω. The corre-
sponding color dilation δΩ,nB is obtained by replacing the infΩ by the supΩ.
A color opening γΩ,nB is an erosion followed by a dilation, and a color closing
ϕΩ,nB is a dilation followed by an erosion. Once the color opening and clos-
ing are defined it is obvious how to extend other classical operators like the
alternate sequential filters or the granulometries. Moreover, using a vectorial
distance to calculate the difference point-by-point of two images d(f ,g)(x),
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f ϕrec
Ω1,n1B (f) γrec

Ω1,n2B (f) ϕrec
Ω2,n1B (f) ϕrec

Ω3,n2B (f)

Figure 1. Detection of inclusions in erythrocytes (malaria diagnosis) using color open-
ings/closings by reconstruction. The LSH lexicographical orderings are Ω1 = Ωls(h÷h0),
Ω2 = Ω(h÷h0)sl with h0 = 90 (green-yellow, opposite to blue-purple), Ω3 = Ω(h÷h0)sl

with h0 = 270 (blue-purple) ; and where n1 = 15, n2 = 200, B is an unit square SE.

d : T lsh × T lsh → T , x ∈ E, we can easily define the two most classical VS-
operators: the morphological gradient, i.e., �Ω(f) = d(δΩ,B(f), εΩ,B(f)), and
the top-hat transformation, i.e., ρ+

Ω,nB(f) = d(f , γΩ,nB(f)). In addition, we
propose also the extension of the operators “by reconstruction” implemented
using the color geodesic dilation which is based on restricting the iterative
dilation of a function marker m by B to a function reference f [22], i.e.,
δn
Ω(m, f) = δ1

Ωδn−1
Ω (m, f), where δ1

Ω(m, f) = δΩ,B(m) ∧Ω f . The color
reconstruction by dilation is defined by γrec

Ω (m, f) = δi
Ω(m, f), such that

δi
Ω(m, f) = δi+1

Ω (m, f) (idempotence). In a similar way the color leveling
λΩ(m, f) is computed by means of an iterative algorithm with geodesic dila-
tions and geodesic erosions until idempotence [12].

In figure 1 an example of application for the detection of inclusions in red
blood cells (parasites of the malaria Plasmodium Vivax) is given. The inclu-
sions are two types of dark structures: blue-purple ones and brown others,
which can be detected separately. Using openings/closings by reconstruction
on Ωls(h÷h0) ordering, all inclusions are removed/enhanced together whereas
choosing the adequate h0 angle, the hue-based ordering allows a more specific
selection of the blue-purples ones. Note also that working on the hue-based
Ω(h÷h0)sl ordering, it is possible to use a color closing to remove or to en-
hance the structures according to the hue origin (h0 is the color of the structure
or h0 is the opposite on C). Another example of color filtering is shown in
figure 4: a color leveling using a luminance-based α-modulus ordering to sim-
plify the texture/contours of the image [2] (the value of α = 10 has shown to
achieve robust and pleasant levelings) where the marker is a median filter of
size 11× 11.
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f ρC
B (f) ρ↓

B (f) ρA−
B (f)

Figure 2. Color top-hat’s for detail extraction in cartographic image.

5. Marginal orderings and merging by
saturation-controlled operators

The saturation s is associated to the intensity of the hue h and has the in-
trinsic role of discrimination of the color points as chromatic (high s value) or
achromatic (low s value). In this section, we discuss how to define marginal
separable saturation-controlled VS-operators which cope satisfactorily with
the complexity of color images. We propose also a hybrid VS- and VV-
operator to filter adaptively color images. We suppose here fSff is normalized
between 0 and 1.

Color top-hats for feature extraction

In the sense of Meyer [11], there are two versions of the top-hat for numer-
ical functions (f : E → T ). The white top-hat is the residue of the initial
image f and an opening γB(f), i.e. ρ+

B(f) = f − γB(f) (extracting bright
structures) and the black top-hat is the residue of a closing ϕB(f) and f , i.e.
ρ−B(f) = ϕB(f) − f (extracting dark structures). This numerical residue in-
volves increments and hence can be defined to circular functions as the hue
component. The circular centered top-hat [9] of an angular function is defined
by ρ◦B(a(x)) = − sup{inf[a(y) ÷ a(x), y ∈ B(x)]} (extracting fast angular
variations). Starting from these grey-level transformations, let us propose a se-
ries of definitions for the top-hat of a color image f from a LSH representation.
The chromatic top-hat is given by ρC

B(f) = [fSff × ρ◦B(fHff )] ∨ ρ+
B(fSff ). This

operator extracts the fast variations of color regions on a saturated color back-
ground (i.e. saturated color peaks on uniform color regions) and the fast vari-
ations of saturated color regions on an achromatic (unsaturated) background
(i.e. saturated color peaks on achromatic regions). The white-achromatic
top-hat is the difference between the chromatic top-hat and the global bright
top-hat, ρA+

B = ρC
B − ρ↑B , where the global bright top-hat is calculated by

ρ↑B(f) = ρ+
B(fLff )∨ρ−B(fSff ). It characterises the fast variations of bright regions

(i.e. positive peaks of luminance) and the fast variations of achromatic regions
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f �(fLff ) �◦(fHff ) �∗S(f)

σWaterfalls
Level3 (�(fLff )) σWaterfalls

Level3 (�◦(fHff )) σWaterfalls
Level3 (�∗S(f))

σWshed−V ol
50 (�(fLff )) σWshed−V ol

50 (�◦(fHff )) σWshed−V ol
50 (�∗S(f))

Figure 3. Color gradients and segmentation by watershed transformation.

on a saturated background (i.e. unsaturated peaks: black, white and grey on
color regions). The black-achromatic top-hat is the difference ρA−

B = ρC
B−ρ↓B ,

where the global dark top-hat is obtained by ρ↓B(f) = ρ−B(fLff ) ∨ ρ−B(fSff ). Du-
ally, it copes with the fast variations of dark regions (i.e. negative peaks of
luminance) and the fast variations of achromatic regions on a saturated back-
ground. The term ρ−B(fSff ) appears in both ρ↑B and ρ↓B to achieve symmetrical
definitions. Figure 2 shows the color top-hats of a cartographic image [4]. The
extracted objects are different and certain kinds of details are better defined on
one top-hat than on the other. Their contributions are consequently comple-
mentary.

Color gradient for segmentation

The morphological gradient by Beucher [6] is the numerical residue of a
dilation and an erosion, i.e., �(f) = δB(f) − εB(f) (where B is an unitary
disk). In a similar way as for the top-hat, a version has been defined for the
angular functions. The circular centered gradient is given by [9] �◦(a(x)) =
∨[a(x)÷ a(y), y ∈ B(x)]− ∧[a(x)÷ a(y), y ∈ B(x)].

We introduce the color gradient from a LSH representation by means of
the following barycentric merging function: �∗S(f) = fSff × �◦(fHff ) + (1 −
fSff ) × �(fLff ). The watershed transformation, a pathwise connection, is one
of the most powerful tools for segmenting images. Typically, the function to
flood is a gradient function which yields the transitions between the regions.
The color gradient �∗S(f) may therefore be used for segmenting color images.
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Figure 3 depicts a comparative example of the partitions obtained by water-
shed algorithms using different gradients. The approach σWaterfalls

Level3 is the
level 3 of a non-parametric pyramid of watershed (waterfalls algorithm [6])
and the σWshed−V ol

50 is a marker-based watershed by selecting the 50 minima
of highest volume extinction value [13]. Using either of the methods, the re-
sults obtained by means of the saturation weighting-based color gradient are
better than working only on the luminance or on the hue gradient and even
better than taking as color gradient the supremum of the three marginal gradi-
ents [3]. Based on a similar paradigm, the saturation, considered as a binary
key, can be also used for merging the partitions associated to the hue and the
luminance (see also [3]).

Regional-based color leveling for simplification

Finally, we shall introduce a regional-based color leveling algorithm. The
rationale behind this technique is to work on two steps. First, to obtain a par-
tition of the image Dσ(f) = {Ri}ni=1 using the precedent color segmentation
algorithm. Now, according the mean value of the saturation in each region
Ri, the region is classified as chromatic or achromatic, and then, in the second
step, each color image region Ri(f) is independently leveled with λΩ(h÷h0)sl

or
λΩls(h÷h0)

respectively (the marker is the median color of Ri(f)). In fact, this
technique is an example of combination of a M-ordering operator (color gra-
dient) followed by a C-ordering (leveling) adapted to the nature of the region.
The results obtained by this filtering approach (see example in figure 4) yields
very strong simplifications (in terms of color flat zones reduction) but keeping
enough visual information. Consequently, it can be useful for region-based
coding applications.

f λΩ(V MFnFF (f), f) λDσ (f)

Figure 4 Morphological
simplification of a color
image. Comparison of a color
levelling and a regional-based
color levelling.

6. Conclusions and perspectives

The extension of mathematical morphology operators to multi-valued func-
tions is neither direct nor general, above all if the aim is to obtain useful trans-
formations. We have focused on color images in order to develop specific
well-adapted morphological color operators. To achieve that, we have pro-
ceeded in three steps. �1 Use of a color representation (system LSH in norm
L1) which yields: (i) a correct formalization from a mathematical viewpoint,
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(ii) an intuitive interpretation of effects (as it is usual in mathematical mor-
phology); �2 Explore the direct extension of morphological operators by using
lexicographic orderings on the LSH system, proving the improvement for fil-
tering applications when compared to the use of luminance only; �3 Introduce
new marginal operators which take advantage of an adaptive combination of
the chromatic and the achromatic (or the spectral and the spatio-geometric)
components. Moreover, these separable mechanisms allow the application of
classical grey level implementations with simple complexity elements to be
added.

We can conclude that the dichotomy C-ordering vs. M-ordering for color
operators can be integrated in an unified framework providing a wide range
of operators. We have demonstrated by means of different applications on
real images (biomedical microscopy, cartography, segmentation and coding in
multimedia, etc.) the advantages of our new algorithms. We believe that the
proposed methodology opens new possibilities for the application of mathe-
matical morphology to color. Especially, we are working on three issues: (i)
geodesic color reconstruction for specific object extraction, (ii) skeletons and
thinnings of color objects, (iii) color granulometries.
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Abstract Motivated by the unsuitability of the image extrema paradigm for processing
multiphase or multichannel images, we propose a solution in the context of im-
age simplification based on a combination of the flat zone and seeded region
growing paradigms. Concepts and results are illustrated on satellite images.
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Introduction

While the image extrema paradigm is a valid assumption for numerous ap-
plications, it does not apply to images containing more than two phases such as
satellite images with various crop fields. In this situation, objects correspond
to regions of homogeneous grey tone rather than simply maxima and minima.
It follows that filters acting solely on the image extrema may not produce the
desired filtering effect. For example, Fig. 1 displays the flat zones of a satellite
image processed by the self-dual alternating filter based on 8-connected area
opening and closing up to an area of 25 pixels. Although this filter ensures that
all extrema of the filtered image are larger or equal to the size of the filter, flat
zones belonging to non-extrema regions can be arbitrarily small in the filtered
image. Indeed, transition regions and non-extrema plateaus may be preserved
by this filter even if their extent is smaller than the selected area parameter [8].
Likewise, the extrema paradigm does not apply to multichannel images owing
to the lack of total ordering between vectors of more than one dimension. It
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Figure 1. Left: Subset of the 3rd channel of a Landsat image with Fontainebleau at the upper
left, 481 × 641 pixels (25 m resolution). Middle: Self-dual alternating sequential 8-connected
area opening and closing up to 25 pixels applied to the left image. Right: Partition of the middle
image (labelled 8-connected flat zones). Note the presence of many flat zones with an area less
than 25 pixels. In this example, the number of 8-connected flat regions drops from 151,715 to
83,808.

follows that objects of multichannel images are often considered as regions
whose pixels have similar vector values.

In this paper, we propose to tackle these problems in the context of multi-
channel images by combining the flat zone [7] with the seeded region growing
[1] paradigms while considering an iterative scheme. The proposed methodol-
ogy is developed in Sec. 1. Related works are briefly discussed in Sec. 2. We
then conclude and present some ideas for future research in Sec. 3.

1. Methodology

The proposed methodology proceeds iteratively until a given area threshold
value is reached. Denoting the current area value by i, which is initialised to 2
pixels, it can be summarised as follows: (i) select all flat zones whose area is
greater than or equal to i, (ii) grow the selected flat zones so as to obtain a new
partition of the image definition domain into flat zones, and (iii) stop if i has
reached the threshold value, otherwise increment i by 1 and go to (i). The two
main steps of our procedure are detailed hereafter as well as post processing
steps to further improve the simplification results with the aim to vectorise the
output image.

Quasi-flat zone filtering

We extend the definition of quasi-flat zones [5] to multichannel images
as follows. Two pixels x and y belong to the same quasi-flat zone of
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a multichannel image f = (f1, . . . , fnff ) if and only if for there exists a
discrete path P = (p1, . . . , pm) such that x = p1 and y = pm and, for all
i ∈ {1, . . . , m−1}, pi and pi+1 satisfy the following symmetrical relationship:
|fjf (pi) − fjf (pi+1)| ≤ λj , for all j ∈ {1, . . . , n}. The maximum differences
in each channel can be combined in a difference vector λ = (λ1, . . . , λn). In
the sequel, we call the resulting flat zones, the λ-flat zones. Note that lambda
flat zone an alternative definition based on a multidimensional distance
measurement is proposed in [10]. The fast breadth first stack algorithm
described in [9, p. 38] for grey level flat zones can be extended to λ-flat zones
as follows:

1. for all pixel p of the image f

2. if lbl(p) = NOTLABELLED

3. offset ← p;

4. lval ← lval + 1;

5. lbl(p) ← lval;

6. for all neighbours p’ of p

7. hasSameValue ← true;

8. for all channels c of image f

9. if fcff (p′) is not in

[fcff (offset) − λc , fcff (offset) + λc ]

10. hasSameValue ← false;

11. if hasSameValue = true

12. push(p’);

13. lbl(p′) ← lval;

14. while (isStackEmpty()=false)

15. q ← pop();

16. offset ← q;

17. for all neighbours q’ of q

18. hasSameValue ← true;

19. for all channels c of image f

20. if fcff (q′) is not in

[fcff (offset)−λc , fcff (offset)+ λc ]

21. hasSameValue ← false;

22. if hasSameValue = true

23. push(q’);

24. lbl(q′) ← lval;

Those labelled regions whose area are equal to or exceed the current thresh-
old value are then selected as seeds. Similarly to alternating sequential filters, it
is essential to consider an iterative procedure, starting with the smallest possi-
ble size. Indeed, the number of flat regions versus the area of these flat regions
is a monotonically decreasing function with usually only few regions remain-
ing for sizes larger than 2 pixels, even when increasing the value of λ (in all
experiments of this paper we use the same λ value for all channels). This is il-
lustrated in Fig. 2. When processing multichannel images, a sufficient number
of seeds can only be obtained by considering λ-flat zones because the proba-
bility to find neighbour pixels with the same vector values decreases with the
number of channels.

Iterative seeded region growing

The iterative seeded region growing is based on the seeded region growing
(SRG) algorithm described in [1] and enhanced in [4] to achieve order indepen-
dence (ISRG). We propose to extend the ISRG algorithm to multicomponent
images and call it the MCISRG algorithm. The mean value r of a region R can
be seen as a point in an n-dimensional space, i.e. r ∈ R

n, with its coordinates
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Figure 2. Number of λ-flat zones (log scale)
versus region area and λ value where λ =
(λ, λ, λ). The input image is a subset of the
6 channel Landsat scene whose third band is
shown in Fig. 1.

at x1, . . . , xn. Each coordinate xi of this point is defined as follows:

xi =
∑
x∈R

fiff (x)/card(R), (1)

where card(R) is the number of pixels in this region R and fiff (x) is the value
of the pixel x in the ith channel. The values of a pixel p, which is a neighbour
of R, is also a point in the n-dimensional space. It follows that the new priority
∆(p, r) of p for the region R can be defined by the Euclidean distance between
p and r:

∆(p, r) =
( n∑

i=1

[fiff (p)− fiff (r)]2
)0.5

. (2)

Alternatively, the distances can be measured from the initial seeds rather
than the grown seed regions. The MCISRG algorithm can be implemented
using an ascending priority queue (PQ), which orders its elements from the
smallest to the largest one according to the priority value. This value is
in this case the distance ∆(p, r) from the point p to the mean value of the
region R. A new element can be inserted unrestricted, but only the element
with the smallest ∆ value can be removed [2]. An element of the PQ is
a pqDatum storing the position, the priority of the pixel, and the region to
which the distance of the pixel was calculated which is equal to the region to
which the pixel would be assigned to if the ∆ value is smallest. The function
pqInsert(pqDatum) inserts one element in the PQ, pqRemove() returns
the pqDatum with the smallest ∆ value and deletes it from the queue, while
isPQEmpty() returns false if there are still elements in the queue and true
otherwise. The function setValuesOfPQDatum(pqDatum, distance,
regionLabel, pixel) stores the attributes distance, regionLabel
and pixel in the pqDatum, while getPQDatumDistance(pqDatum)
returns the distance, getPQDatumPixel(pqDatum) the pixel, and
getPQDatumRegion(pqDatum) the region of the attribute pqDatum.
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The data structure meanDatum is needed in order to handle the mean values
of the regions (one per channel). The variable allMeans holds for each region,
which is represented by the information of the pixels in the seed image seedIm,
one meanDatum. The function getMean(allMeans, regionLabel) re-
turns the meanDatum of the corresponding region that is specified with the
regionLabel attribute. The method addValueToMean(meanDatum, f, p)
is used to add the values of the pixel p in the multispectral image f to
the meanDatum, while getDistanceToMean(meanDatum, f, p) returns the
Euclidean distance ∆, which is calculated with the equation 2, from the pi-
xel p of the image f to the mean value of the region represented with the
meanDatum. Finally, the function getChannelMean(meanDatum, c) returns
the mean value of the channel c of the meanDatum.

The stacks neighbour holding queue nq and holding queue hq are used
to store the pixels, which are neighbours of seeds and the pixels which
were processed and need some postprocessing. For the stacks, the methods
isStackEmpty(queue), push(queue,pixel), and pop(queue) are used
for storing pixels, loading pixels, and checking whether the stack is empty or
not. Several labels represent the different states of a pixel: FIRSTSEED is the
smallest region label in the seed image, NOSEED means that the pixel does not
belong to a region yet, IN_PQ indicates that the pixel is already in the priority
queue, and IN_NHQ expresses that the pixel is in the neighbour holding queue.
The constant MAXDISTANCE sets the minDistance variable to its maximum
value so that the first comparison between the current distance value and the
minDistance is always true. The pseudo code for the MCISRG algorithm is:
1. for all pixel p of the image seedIm

2. if seedIm(p) >= FIRSTSEED

3. meanDatum ← getMean(allMeans, seedIm(p));

4. addValueToMean(meanDatum, f, p);

5. else if seedIm(p) = NOSEED

6. for all p’ which are neighbours from p

7. if seedIm(p′) >= FIRSTSEED

8. push(nhq, p);

9. seedIm(p) ← IN_NHQ;

10. break;

11. while (isStackEmpty(nhq) = false) AND (isPQEmpty() = false)

12. while (isStackEmpty(nhq))

13. minDistance ← MAXDISTANCE;

14. q ← pop(nhq);

15. for all q’ which are neighbours from q

16. if seedIm(q′) >= FIRSTSEED

17. meanDatum ← getMean(allMeans, seedIm(q′));

18. distance ← getDistanceToMean(meanDatum, f, q);
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19. if distance < minDistance

20. minDistance ← distance;

21. regionLabel ← seedIm(q′);

22. setValuesOfPQDatum(pddatum, mindistance, regionLabel, q);

23. pqInsert(pqdatum);

24. seedIm(q) ← IN_PQ;

25. if isPQEmpty() = false

26. pqDatum ← pqRemove();

27. distance ← getPQDatumDistance(pqDatum);

28. p ← getPQDatumPixel(pqdatum);

29. if seedIm(p) = IN_PQ

30. seedIm(p) ← getPQDatumRegion(pqDatum);

31. push(hq, p);

32. while (isPQDatum = false)

33. pqdatum ← pqRemove();

34. if distance != getPQDatumDistance(pqDatum)

35. pqInsert(pqDatum);

36. break;

37. p ← getPQDatumPixel(pqDatum);

38. if seedIm(p) = IN_PQ

39. seedIm(p) ← getPQDatumRegion(pqDatum);

40. push(hq, p);

41. while isStackEmpty(hq) = false

42. p ← pop(hq);

43. meanDatum ← getMean(allMeans, seedIm(p));

44. addValueToMean(meanDatum, f, p);

45. for all p’ which are neighbours from p

46. if seedIm(p′) = NOSEED OR seedIm(p′) = IN_PQ

47. push(nhq, p’);

48. seedIm(p’) ← IN_NHQ;

49. for all pixel p of the image seedIm

50. for all channels c of the image f

51. meanDatum ← getMean(allMeans, seedIm(p));

52. fcff (p) ← getChannelMean(meanDatum, c);

For example, Fig. 3a shows the output of the proposed filtering by iterating
it up to an area threshold of 25 and 100 pixels while using 8-connectivity.
Contrary to the partition produced by the self-dual alternating sequential area
opening/closing filter, each flat zone of the iterative area filter of the flat zones
up to an area of n pixels contains at least n pixels (compare right image of
Fig. 3 with that of Fig. 1). Furthermore, the number of λ-flat zones decreases
drastically: from 103,973 3-flat zones to 2,972.
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Figure 3. Iterative area seeded region growing of 6 channels of a satellite image subset whose
third channel is shown in Fig. 1a. The left image shows the output of the third channel for area
of 25 pixels (2,972 regions), the middle one for an area of 100 pixels (829 regions), while the
the right image displays the flat zones of the left image (i.e., threshold value of 25 pixels). Note
that contrary to the right image of Fig. 1, each flat zone contains at least 25 pixels. In addition,
the resulting partition is the same for all channels.

Merging of regions with similar contrast

The proposed iterative seeded region growing requires the selection of a
minimum area as input parameter. Therefore, an object of a given area (e.g., a
field) may consist of more than one region in the output image if the selected
minimum area is smaller than or equal to half the area of this object. However,
half this area may already be too large if there is a need to preserve objects
(e.g., houses) having such an area. To get around this problem, we initially
choose a size parameter leading to a detailed enough image for the considered
application. Then, a contrast coefficient measuring the dissimilarity between
each region and its neighbouring pixels is calculated. We propose to define this
coefficient as follows:

κR =
∑

p∈ρ+(R)

∆(p, r)/card(ρ+(R)), (3)

where ρ+(R) denotes the external boundary of the region R.
The merging of regions whose contrast coefficient is smaller than the thresh-

old value is a complex issue especially if we want to achieve order indepen-
dence. We propose therefore an alternative and simpler approach based on the
MCISRG algorithm. The segmented image is first labelled, the contrast coef-
ficient using the equation 3 is then calculated for each region, and finally each
region in the label image which has a smaller contrast value than the threshold
value is deleted. The remaining regions are then used as seeds for MCISRG
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algorithm. The sole difference with the area based filtering lies therefore in the
way seeds are selected for the MCISRG algorithm.

Calculating optimal contrast value

The optimal threshold value depends on the image content. It follows that
the optimal value must be determined for each image. One possibility is the
specification of the value by the user. This is time consuming for the user, be-
cause he/she has to try different threshold values, compare the results by hand,
and decide which image is best. In practice, this is not feasible and there-
fore we developed a process to determine automatically the optimal threshold
value. It is based on the analysis of the evolution of the number of regions
remaining when increasing the contrast threshold value. For example, the left
diagram of Fig. 4 shows this relationship for the whole Landsat image subset
shown in Fig. 1a. The optimal value is then simply defined as the contrast value
corresponding to the inflection point of this curve, i.e., maximum derivative,
see right diagram of Fig. 4. Tests performed on a series of images have shown

Figure 4. The graph on the left side plots the number of regions versus the contrast threshold
value for the 6-channel input image whose 3rd channel is shown in Fig. 1a. The graph on the
right side displays the corresponding gradient magnitude. The vertical line in the right graph
highlights the maximum of the gradient which is selected as optimal contrast threshold value.

that the automatically selected values are in accordance with values determined
manually. The contrast values at the maximum points of the graphs are within
the range of threshold values, which were identified manually. In consequence,
this value can be seen as the optimal contrast threshold value. Figure 5 il-
lustrates the output of the MCISRG merging process using the automatically
derived optimal contrast threshold value for the panchromatic channel of the
Landsat scene of Fontainebleau. When the input image is getting smaller, the
derivative of the curve may display numerous local maxima with two or more
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Figure 5. Left: Landsat panchromatic image of Fontainebleau (12.5m resolution), 481 × 481
pixels (122,582 0-flat regions). Middle: Output of iterative seeded region growing up to a size
of 25 pixels (4,071 0-flat regions). Right: After MCISRG merging using the optimum contrast
threshold value of 4 grey levels (2,399 0-flat regions).

maxima having a magnitude close or even equal to that of the absolute max-
imum. In this situation, we consider the contrast value corresponding to the
first maximum rather than the absolute maximum (conservative approach).

2. Link with other approaches

Salembier et al. [6] also propose a filter suppressing all flat regions whose
area is less than a given threshold. It is based on the processing of the region
adjacency graph of the flat zones using an area merging criterion and setting
the grey level of the merged region to the median value of the largest region
(or the arithmetic mean of the two merged regions if they have both the same
size) while considering an ad hoc merging order. Note that contrary to our
approach, this type of process defines a connected operator. That is, when a
flat zone is below the threshold level, it cannot be shared by two different flat
zones. The same comment applies to the method proposed by Crespo et al. [3].
Furthermore, we advocate the use of an iterative procedure to ensure a smooth
degradation whatever the targeted minimum area value.

3. Concluding remarks and perspectives

The proposed algorithm is useful not only for simplifying an image but also
for contrast enhancement when using just a size of two pixels (no iteration).
Indeed, the largest loss of regions occur at the first step. For example, for the
sample image used in this paper, we go from 430,150 to 1,840 0-flat regions
when considering an area of 2 pixels. Similarly to the distances which can
be measured either from the seed or the grown seed regions, the values allo-
cated to the latter regions could be set to those of the seeds rather than to the
mean values of both regions. By doing so, the result image should be even
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more contrasted. For simplification purposes, we have shown that larger sizes
and an iterative process is required, similarly to that introduced for alternat-
ing sequential filters. Note that although it is essential to consider an iterative
procedure, once the smallest size (i.e, 2 pixels) has been performed, similar
results may be obtained by incrementing the size by more than just one pixel.
This does not improve the quality of the final result (decreasing quality with
increasing step size) but speeds up the processing (trade-off between quality
and speed). Note also that the proposed MCISRG algorithm can be adapted
so as to produce a connected operator. This will be detailed in a subsequent
paper.

Before vectorising the simplified image as required by vector based Geo-
graphical Information systems (GIS), there is still a need to further simplify
the boundary of the resulting partition. To achieve this goal, we are currently
investigating the use of morphological operators taking into account the shape
rather than just the area of the segments.
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Abstract The operators of greyscale morphology rely on the notions of maximum and
minimum which regrettably are not directly available for tensor-valued data
since the straightforward component-wise approach fails.
This paper aims at the extension of the maximum and minimum operations to
the tensor-valued setting by employing the Loewner ordering for symmetric ma-
trices. This prepares the ground for matrix-valued analogs of the basic morpho-
logical operations. The novel definitions of maximal/minimal matrices are rota-
tionally invariant and preserve positive semidefiniteness of matrix fields as they
are encountered in DT-MRI data. Furthermore, they depend continuously on the
input data which makes them viable for the design of morphological derivatives
such as the Beucher gradient or a morphological Laplacian. Experiments on
DT-MRI images illustrate the properties and performance of our morphological
operators.

Keywords: Mathematical morphology, dilation, erosion, matrix-valued images, diffusion
tensor MRI, Loewner ordering

Introduction

A fruitful and extensive development of morphological operators has been
started with the path-breaking work of Serra and Matheron [11, 12] almost four
decades ago. It is well documented in monographs [8, 13–15] and conference
proceedings [7, 16] that morphological techniques have been successfully used
to perform shape analysis, edge detection and noise suppression in numerous
applications. Nowadays the notion of image also encompasses tensor-valued
data, and as in the scalar case one has to detect shapes, edges and eliminate
noise. This creates a need for morphological tools for matrix-valued data.
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Matrix-valued concepts, that truly take advantage of the interaction of the
different matrix-channels have been developed for median filtering [20], for
active contour models and mean curvature motion [5], and for nonlinear reg-
ularisation methods and related diffusion filters [17, 19]. In [4] the basic op-
erations dilation and erosion as well as opening and closing are transfered to
the matrix-valued setting at least for 2 × 2 matrices. However, the proposed
approaches lack the continuous dependence on the input matrices which poses
an insurmountable obstacle for the design of morphological derivatives.

The goal of this article is to present an alternative and more general approach
to morphological operators for tensor-valued images based on the Loewner
ordering. The morphological operations to be defined should work on the set
Sym(n) of symmetric n× n matrices and have to satisfy conditions such as:

(i) Continuous dependence of the basic morphological operations on the
matrices used as input for the aforementioned reasons,

(iii) preservation of the positive semidefiniteness of the matrix field since
DT-MRI data sets posses this property,

(iii) rotational invariance.

It is shown in [4] that the requirement of rotational invariance already rules out
the straightforward component-wise approach. In this paper we will introduce
a novel notion of the minimum/maximum of a finite set of symmetric matrices
which will exhibit the above mentioned properties.

The article has the following structure: The subsequent section gives a brief
account of the morphological operations we aim to extend to the matrix-valued
setting. In section 3 we present the crucial maximum and minimum operations
for matrix-valued data based on the Loewner ordering. We report the results of
our experiments with various morphological operators applied to real DT-MRI
images in section 4. The last section 5 provides concluding remarks .

1. Morphological Operators

Standard morphological operations utilise the so-called structuring element
to work on images represented by scalar functions f(x, y) with (x, y) ∈ IR2.
Greyscale dilation ⊕, resp., erosion 	 w.r.t. B is defined by

(f ⊕B) (x, y) := sup {f(x−x′, y−y′) | (x′, y′)∈B},
(f 	B) (x, y) := inf {f(x−x′, y−y′) | (x′, y′)∈B}.

The combination of dilation and erosion gives rise to various other morpholog-
ical operators such as opening and closing,

f ◦B := (f 	B)⊕B , f •B := (f ⊕B)	B ,
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the white top-hat and its dual, the black top-hat

WTH(f) := f − (f ◦B) , BTH(f) := (f •B)− f ,

finally, the self-dual top-hat, SDTH(f) := (f •B)− (f ◦B) .
The boundaries of objects are the loci of high greyvalue variations in an image
which can be detected by gradient operators. The so-called Beucher gradient

�B(f) := (f ⊕B)− (f 	B) ,

as well as the internal and external gradient,

�−B(f) := f − (f 	B) , �+
B(f) := (f ⊕B)− f

are analogs to the norm of the gradient ‖∇f‖ if the image f is considered as a
differentiable function.

The application of shock filtering to matrix-valued data calls for an equiv-
alent of the Laplace operator ∆f = ∂xx∂ f + ∂yy∂∂ f appropriate for this type of
data. A morphological Laplacian has been introduced in [18]. However, we
use a variant given by

∆mf := �+
B(f)− �−B(f) = (f ⊕B)− 2 · f + (f 	B) .

This form of a Laplacian acts as the second derivative ∂ηη∂∂ f where η stands
for the direction of the steepest slope. Therefore it allows us to distinguish
between influence zones of minima and maxima of the image f , a property
essential for the design of shock filters.

The idea underlying shock filtering is applying either a dilation or an erosion
to an image, depending on whether the pixel is located within the influence
zone of a minimum or a maximum [10]:

δB(f) :=
{

f ⊕B if trace(∆mf) ≤ 0 ,
f 	B otherwise.

2. Maximal and Minimal Matrices with Respect to
Loewner Ordering

In this section we describe how to obtain the suitable maximal (minimal)
matrix that majorises (minorises) a given finite set of symmetric matrices. We
start with a very brief account of some notions from convex analysis necessary
for the following.

A subset C of a vector space V is named cone, if it is stable under addition
and multiplication with a positive scalar. A subset B of a cone C is called base
if every y ∈ C, y �= 0�� admits a unique representation as y = r · x with x ∈ B
and r > 0. We will only consider a cone with a convex and compact base.
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The most important points of a closed convex set are its extreme points char-
acterised as follows: A point x is an extreme point of a convex subset S ⊂ V
of a vector space V if and only if S \ {x} is still convex. The set of all extreme
points of S is denoted ext(S). All extreme points are necessarily boundary
points, ext(S) ⊂ bd(S). Each convex compact set S in a space of finite dimen-
sion can be reconstructed as the set of all convex combinations of its extreme
points [1, 9]: S = convexhull(ext(S)).

The Cone of the Loewner Ordering

Let Sym(n) denote the vector space of symmetric n × n-matrices with real
entries. It is endowed with the scalar product 〈A, B〉 :=

√
trace

√√
(A�B). The

corresponding norm is the Frobenius norm for matrices: ‖A‖ =
n∑

i,j=1
aij .

There is also a natural partial ordering on Sym(n), the so-called Loewner or-
dering defined via the cone of positive semidefinite matrices Sym+(n) by

A, B ∈ Sym(n) : A ≥ B :⇔ A−B ∈ Sym+(n),

i.e. if and only if A−B is positive semidefinite.
This partial ordering is not a lattice ordering, that is to say, the notion of
a unique supremum and infimum with respect to this ordering does not ex-
ist [3]. The (topological) interior of Sym+(n) is the cone of positive def-
inite matrices, while its boundary consists of all matrices in Sym(n) with
a rank strictly smaller than n. It is easy to see that, for example, the set
{M ∈ Sym+(n) : trace(M) = 1} is a convex and compact base of the cone
Sym+(n). It is known [1] that the matrices v v� with unit vectors v ∈ IRn,
‖v‖ = 1 are the extreme points of the set {M ∈ Sym+(n) : trace(M) = 1}
[1]. They have by construction rank 1 and for any unit vector v we find
v v�v = v · ‖v‖2 = v which implies that 1 is the only non-zero eigenvalue.
Hence trace(v v�)= 1 . Because of this extremal property the matrices v v�

with ‖v‖ = 1 carry the complete information about the base of Loewner order-
ing cone: convexhull({v v� : v ∈ IRn, ‖v‖ = 1}) is a base for the Loewner
ordering cone.

The penumbra P (M) of a matrix M ∈ Sym(n) is the set of matrices N that
are smaller than M w.r.t. the Loewner ordering:

P0PP (M) := {N ∈ Sym(n) : N ≤M} = M − Sym+(n) ,

where we used the customary notation a + r S := {a + r · s : s ∈ S} for a
point a ∈ V , a scalar r and a subset S ⊂ V .

Using this geometric description the problem of finding the maximum of
a set of matrices {A1, . . . , Am} amounts to determining the minimal penum-
bra covering their penumbras P0PP (A1), . . . , P0PP (Am). Its vertex represents the
wanted maximal matrix A that dominates all Ai w.r.t the Loewner ordering.
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However, the cone itself is too complicated a structure to be handled directly.
Instead we associate with each matrix M ∈ Sym(n) a ball in the subspace
{A : trace(A) = 0} of all matrices with zero trace as a completely descriptive
set. We will assume for the sake of simplicity that trace(M )≥ 0. This ball
is constructed in two steps: First, from the statements above we infer that
the set

{
M − trace(M) · convexhull{v v� : v ∈ IR,II ‖v‖ = 1}

}
is a base

for P0PP (M) contained in the subspace {A : trace(A) = 0}. We observe that
the identity matrix E is perpendicular to the matrices A from this subspace,
〈A, E〉 =

√
trace

√√
(A) = 0, and hence the orthogonal projection of M onto

{A : trace(A) = 0} is given by

m := M − trace(M)
n

E .

Second, the extreme points of the base of P0PP (M) are lying on a sphere with
center m and radius

r := ‖M − trace(M)v v� −m‖ = trace(M)

√
1− 1

n
.

Consequently, if the center m and radius r of a sphere in {A ∈ Sym(n) :
trace(A) = 0} are given the vertex M of the associated penumbra P0PP (M) is
obtained by

M = m +
r

n

1√
1− 1

n

E .

With this information at our disposal, we can reformulate the task of finding a
suitable maximal matrix A dominating the matrices {A1, . . . , Am}: The small-
est sphere enclosing the spheres associated with {A1, . . . , Am} determines the
matrix A that dominates the Ai. It is minimal in the sense, that there is no
smaller one w.r.t. the Loewner ordering which has this “covering property” of
its penumbra.

This is a non trivial problem of computational geometry and we tackle it by
using a sophisticated algorithm implemented by B. Gaertner [6]. Given a set
of points in IRd it is capable of finding the smallest ball enclosing these points.
Hence for each i = 1, . . . , m we sample within the set of extreme points
{Ai − trace(Ai)v v�} of the base of P0PP (Ai) by expressing v in 3d-spherical
coordinates, v = (sin φ cos ψ, sin φ sinψ, cos φ) with φ ∈ [0, 2π[, ψ ∈ [0, π[.

The case n = 2 can be visualised by embedding Sym(2) in IR3 via A =
(aij)i,j=1,2 ←→ (a11, a22, a12) as it is indicated in Figure 1. The penumbras
of the matrices {A1, . . . , Am} are covered with the minimal penumbral cone
whose vertex is the desired maximal matrix A. For presentational purposes an
additional orthogonal transformation has been applied such that the x-y-plane
coincides with {A ∈ Sym(2) : trace(A) = 0}. The minimal element A is
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yx

Figure 1. (a) Left: Image of the Loewner cone Sym+(2). (b) Right: Cone covering four
penumbras of other matrices. The tip of each cone represents a symmetric 2 × 2 matrix in IR3.
Each of the cones (and hence its generating matrix) is uniquely determined by its circular base.
The minimal disc covering the smaller discs belongs to the selected maximal matrix A

obtained through the formula

A =
(
max(A−1

1 , . . . , A−1
m )

)−1

inspired by its well-known counterpart for real numbers. The construction of
maximal and minimal elements ensures their rotational invariance, their pos-
itive semidefiniteness and continuity. These properties are passed on to the
above mentioned morphological operations.

3. Experimental Results

In our numerical experiments we use positive definite data. A 128 × 128
layer of 3-D tensors which has been extracted from a 3-D DT-MRI data set of
a human head. For detailed information about the acquisition of this data type
the reader is referred to [2] and the literature cited there. The data are repre-
sented as ellipsoids via the level sets of the quadratic form {x�Ax : x ∈ IR3}
associated with a matrix A ∈ Sym+(3). The color coding of the ellipses re-
flects the direction of their principle axes.
Due to quantisation effects and measurement imprecisions our DT-MRI data
set of a human head contains not only positive definite matrices but also singu-
lar matrices and even matrices with negative eigenvalues, though the negative
values are of very small absolute value. While such values do not constitute
a problem in the dilation process, the erosion, relying on inverses of positive
definite matrices, has to be regularised. Instead of the exact inverse A−1 of a
given matrix A we use (A + εI)−1 with a small positive ε.

Due to the complexity of the not yet fully optimised procedures the running
time to obtain dilation and erosion is about two orders of magnitude longer
than in the case of comparable calculations with grey value data.

Figure 2 displays the original head image and the effect of dilation and ero-
sion with a ball-shaped structuring element of radius

√
5. For the sake of

brevity we will denote in the sequel this element by BSE(
√

5). As it is ex-
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Figure 2. (a) Top left: 2-D tensor field extracted from a DT-MRI data set of a human head.
(b) Top right: enlarged section of left image. (c) Bottom left: dilation with BSE(

√
5). (d)

Bottom right: erosion with BSE(
√

5).

Figure 3. (a) Left: closing with BSE(
√

5). (b) Right: opening with BSE(
√

5).

pected from scalar-valued morphology, the shape of details in the dilated and
eroded images mirrors the shape of the structuring element. In Figure 3 the
results of opening and closing operations are shown. In good analogy to their
scalar-valued counterparts, both operations restitute the coarse shape and size
of structures. The output of top hat filters can be seen in Figure 4. As in the
scalar-valued case, the white top hat is sensitive for small-scale details formed
by matrices with large eigenvalues, while the black top hat responds with high
values to small-scale details stemming from matrices with small eigenvalues.
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Figure 4. (a) Left: white top hat with BSE(
√

5). (b) Middle: black top hat with BSE(
√

5).
(c) Right: self-dual top hat with BSE(

√
5).

Figure 5. (a) Left: external gradient with BSE(
√

5). (b) Middle: internal gradient with
BSE(

√
5). (c) Right: Beucher gradient with BSE(

√
5).

Very long ellipses also seen in the yellow spot in Figure 3, are partially arte-
facts caused by the tool for graphical representation. The self-dual top hat as
the sum of white and black top hat results in homogeneously extreme matrices
rather evenly distributed in the image.

Figure 5 depicts the effects of internal and external morphological gradients
and their sum, the Beucher gradient for our sample matrix field. The action of
the Laplacian ∆m and its use for steering a shock filter can be seen in Figure 6:
While applying dilation in pixels where the trace of the Laplacian is negative,
the shock filter acts as an erosion wherever the trace of the Laplacian is posi-
tive. The output is an image where regions with larger and smaller eigenvalues
are separated more clearly than in the original image.

4. Conclusion

In this paper we determined suitable maximal and minimal elements A, A
in the space of symmetric matrices Sym(3) with respect to the Loewner order-
ing. Thus we have been able to transfer fundamental concepts of mathematical
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Figure 6. (a) Left: morphological Laplacian with BSE(
√

5). (b) Right: result of shock
filtering with BSE(

√
5).

morphology to matrix-valued data. The technique developed for this purpose is
considerably more general and sustainable than former approaches for the case
of 2×2-matrices. The present approach has potential to cope successfully even
with 5× 5-matrix fields. We obtained appropriate analogs with desirable con-
tinuity properties for the notion of maximum and minimum, the corner stones
of mathematical morphology. Therefore we succeeded in designing morpho-
logical derivatives and shock filters for tensor fields, aside from the standard
morphological operations. The practicability of various morphological oper-
ations on positive definite matrix-fields is confirmed by several experiments.
Future work will focus on faster performance and the development of more
sophisticated morphological operators for matrix-valued data.
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N. Passat1,2, C. Ronse1, J. Baruthio2, J.-P. Armspach2 and J. Foucher3

1LSIIT, UMR 7005 CNRS-ULP, Strasbourg I University, France

2IPB, UMR 7004 CNRS-ULP, Strasbourg I University, France

3U405 INSERM Strasbourg I University, France

Abstract Magnetic resonance angiography (MRA) provides 3-dimensional data of vascu-
lar structures by finding the flowing blood signal. Classically, algorithms dedi-
cated to vessel segmentation detect the cerebral vascular tree by only seeking the
high intensity blood signal in MRA. We propose here to use both cerebral MRA
and MRI and to integrate a priori anatomical knowledge to guide the segmenta-
tion process. The algorithm presented here uses mathematical morphology tools
(watershed segmentation and grey-level operators) to carry out a simultaneous
segmentation of both blood signal in MRA and blood and wall signal in MRI.
It is dedicated to the superior sagittal sinus segmentation but similar strategies
could be considered for segmentation of other vascular structures. The method
has been performed on 6 cases composed of both MRA and MRI. The results
have been validated and compared to other results obtained with a region grow-
ing algorithm. They tend to prove that this method is reliable even when the
vascular signal is inhomogeneous or contains artefacts.

Keywords: vessel segmentation, watershed segmentation, a priori knowledge, MRA, MRI

1. Introduction

Magnetic resonance angiography (MRA) is a technique [5] frequently used
to provide 3D images of cerebral vascular structures. The availability of pre-
cise information about brain vascular networks is fundamental for planning
and performing neurosurgical procedures, but also for detecting pathologies
such as aneurysms and stenoses. Since all classical image processing tools
have been applied more or less successfully to the case of vessel segmenta-
tion, it might be interesting to explore new kinds of algorithms involving a
priori knowledge. In a previous paper [8] we proposed a first attempt to use
anatomical knowledge as a way to guide a segmentation algorithm. A major
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breakthrough of this work was the creation of an atlas dividing the head into
different areas presenting homogeneous vessel properties. The use of this atlas
enables to store a priori knowledge concerning the vessels located in each area
and then to propose ad hoc segmentation algorithms. In this paper, we propose
an algorithm dedicated to one of these areas, containing a main vessel of the
venous tree: the superior sagittal sinus (SSS). This algorithm is based on math-
ematical morphology tools (watershed segmentation and grey-level operators).
It also integrates a priori anatomical knowledge and uses both MRA and MRI
data in order to take advantage of both acquisition techniques. It uses a multi-
resolution slice by slice process, simultaneously segmenting the flowing blood
signal in MRA and the blood and vessel wall in MRI. This paper is organized
as follows. In Section 2, we review previous approaches concerning vessel
segmentation. In Section 3, we describe the way to use anatomical knowlege.
In Section 4, the proposed algorithm is described. In Section 5, technical de-
tails concerning the method and the database used for validation are provided.
In Section 6, the method is tested and compared to a region growing algorithm.
Discussion and projects are presented in Section 7.

2. Related work

The vessel segmentation methods can be divided into several categories,
corresponding to the main strategies used to carry out the segmentation. The
first proposed strategies were based on filtering [4]. Method based on math-
ematical morphology (hysteresis thresholding in [7], grey level erosions and
dilations in [3] or grey-scale skeletonization in [10]) and region growing [11]
have also been proposed. More recently, methods based on vessel tracking [6],
and crest line detection [1] have also been proposed.

It has to be noticed that very few vessel segmentation methods have been
designed to process multimodal data. A method proposed in [9] for cerebral
vascular structures visualization, uses both 3D MRA and 2D X-ray images. A
method has been proposed by us in [8], where angiographic and non angio-
graphic data are involved in an atlas-based region growing algorithm. Nev-
ertheless, the simultaneous use of images from different modalities is quite
unusual. The algorithm presented here, based on watershed [2] segmentation
and mathematical morphology operators, proposes to uses both MRA and MRI
to take advantage of anatomical knowledge concerning the brain superficial ve-
nous structures.

3. A priori knowledge integration

The SSS presents many invariant properties (i.e. properties being identical
for every subjects) which can be useful for guiding a segmentation process.
These properties and a way to use them are described as follows.
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Trajectory properties: A way to guide normal planes computation. The
regular trajectory of the SSS and its position relatively to the cerebral median
plane and the surface of the head theoretically enable to compute successive
planes being perpendicular to the sinus axis. Indeed, if the surface of the head
and the sagittal median plane of the brain can be found, then their intersection
provides a curve. A normal plane computation using the points of that curve
finally gives planes being normal to the sinus axis too. Using that strategy, it
becomes possible to perform a segmentation of the sinus slice by slice.

Structures intensity and relative positions: A way to guide watershed seg-
mentation. Observing MRA slices (Figure 1, right lower pictures), one can
see that only the flowing blood is generally quite visible as it presents the high-
est intensity. In MRI, more structures can be observed in an easier way (Figure
1, right upper pictures). Although the flowing blood does not present a very
high intensity, it can be observed surrounded by the dura mater. The brain
hemispheres present a nearly identical intensity, such as a part of the skull.
These four structures are separated by areas of low intensity and their relative
positions are globally invariant.

MRA and MRI intensity properties can then be used to perform watershed
segmentation on slices of the sinus region. Indeed, a gradient computation on
the MRA should correctly delineate the blood from the remaining structures. A
watershed segmentation could also be directly used on the MRI images to seg-
ment the different structures (considering low intensity regions as the frontier
between them). Since the main problem of watershed segmentation remains
oversegmentation, it is important to choose correct markers to initialize it. This
could be done here by sharing information between MRA and MRI segmenta-
tion (the segmentation of blood in MRA could be used to find a marker for the
dura mater in MRI, and vice versa) or by sharing information between succes-
sive MRI or MRA segmentations.

Structure homogeneity along the sinus trajectory: Justifying an iterative
slice by slice strategy. The sinus and its neighboring structures present quite
invariant position properties. By observing slices at different points on the SSS
trajectory, we can also observe that their size and distance from each other are
different (Figure 1 right pictures) but vary smoothly. This property could be
efficiently used to start from one slice and successively generate markers to
initialize segmentation of the neighboring slices. This is generally done in
vessel tracking algorithms. A weakness of the vessel tracking approach is that
a segmentation error in one slice will generally have consequences on all the
following ones. In order to avoid such problems, an alternative could be to
propose an iterative approach. For each slice, it consists in starting, from an
average image of the current slice and its neighbors. A segmentation of this
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Figure 1. Left: T1 MRI sagittal slice of the whole head. Middle: MRA sagittal slice of the
top of the head. Right: slices of MRA and MRI data at various positions on the SSS.

average slice can then be used to generate markers for a new segmentation of
a new average slice, closer from the current slice. This process can then be
iterated until segmenting the real slice.

4. Method

Input and output. The method takes as input a classical MRI and a MRA
of the same patient. They must contain at least the top of head and have to be
correctly superimposed. If they are not, they can be superimposed by perform-
ing a rigid registration (using translations and rotations). Figure 1 illustrates an
example of such data. The method provides two resulting images: a segmenta-
tion of the flowing blood detected in the MRA and a segmentation of the dura
mater surrounding the blood and then forming the sinus wall, from the MRI.

Preprocessing. The segmentation process is not carried out on the global
images but on slices that must be normal to the sinus axis. A first step then
consists in computing these slices. The sinus axis is parallel to a curve obtained
by intersecting the cerebral sagittal median plane and the head surface. The
surface of the head can be easily found by thresholding, while the sagittal
median plane of the brain can be found by an histogram analysis of the MRA
image. The intersection of that plane and the surface of the head then provides
a discrete curve. A normal vectors computation on the points of the curve
finally enables to compute planes being normal to the curve and also to the
sinus axis.

That step then provides two sets of slices of the SSS. The first set is com-
posed of MRI slices while the second contains MRA slices, the n-th slice of the
first set corresponding to the n-th slice of the second. It has been experimen-
tally observed that sets of 256 slices were sufficient to carry out the segmenta-
tion. Moreover, we sample the slices to keep 23 × 26 voxel-slices located 11
mm away from the head surface, assuming that small slices centered on the si-
nus and containing neighboring structures enable to obtain correct results with
a lower computation time.
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Definitions and notations. In the following, a slice s of n×m voxels will
be considered as a function [0, n − 1] × [0, m − 1] → N. We will always
assume that α ∈ {mra, mri}. Let {smra

i }ti=0 and {smri
i }ti=0 be sequences of

MRA and MRI slices. It has to be noticed that for any a, b, c ∈ [0, t] such that
a < b < c the slice sα

b is physically located between sα
a and sα

c . For each
i ∈ [0, t] let {Ii

kI }ωk=0 (in our case ω = 50) be a sequence of intervals around i,
decreasing from [0, t] to {i}:

Ii
0II = [0, t],

∀x, y ∈ [0, ω], x < y ⇒ Ii
yII ⊂ Ii

xII ,

Ii
ωII = [i, i].

The lenght of an interval I will be denoted by |I|. For each i ∈ [0, t] let
{smra

i,k }ωk=0 and {smri
i,k }ωk=0 be the averaged sequences over Ii

kI :

sα
i,k =

1
|Ii

kI |
∑

m∈Ii
k

sα
m,

In the following, for i ∈ [0, t] the result of the segmentation of sα
i will be de-

noted bα
i . Similarly, for i ∈ [0, t] and k ∈ [0, ω], the result of the segmentation

of sα
i,k will be denoted bα

i,k. Then we will obtain:

bα
i,ω = bα

i .

General description. For each slice smra
i , we have defined two sequences

{smra
i,k }ωk=0 and {smri

i,k }ωi=0. These sequences start respectively from an aver-
age image of all the MRA and MRI slices and finally come respectively to the
i-th MRA and MRI slice. Assuming that both sequences will smoothly con-
verge from an average image to the current slice, we propose the following
segmentation strategy based on an iterative process:

1 initial segmentation of smra
i,0 and smri

i,0 ;

2 for k = 1 to ω:

(a) segmentation of smri
i,k , using bmra

i,k−1 and bmri
i,k−1;

(b) segmentation of smra
i,k , using bmra

i,k−1 and bmri
i,k .

The process starts from average images and iteratively uses previous segmen-
tations of both modalities to carry out the current segmentation. This current
segmentation is carried out by using a watershed algorithm while previous seg-
mentations are used for creation of markers dedicated to watershed initializa-
tion. In the following paragraphs, the segmentation process is more precisely
described. The gradient computation and template creation steps are explained
in specific paragraphs.
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Figure 2. Initialization process. From left to right: MRI average slice (smri
i,0 ); MRI with four

markers; first segmentation; MRI gradient; MRI gradient with five markers; final MRI segmen-
tation (bmri

i,0 ); MRA average slice (smra
i,0 ); MRA gradient; MRA gradient with two markers;

MRA segmentation (bmra
i,0 ).

Initialization. The first step consists in performing the segmentation of
smra
i,0 and smri

i,0 for i ∈ [0, ω]. By definition, for all i, j ∈ [0, ω], sα
i,0 = sα

j,0.
Thus the initialization step only requires to segment two average slices, one for
the MRA and the MRI. The initialization is organized as follows (Figure 2):

1 grey-level opening of the MRA slice with a flat structuring element (3×3
cross): the points of maximum value become the markers for the flowing
blood in the MRA and MRI slices;

2 successive grey-level openings of the MRI slice with three flat structur-
ing elements (a one voxel width line and two 5 × 5 circular elements):
the points of maximum value become the markers for the brain and the
bone in the MRI slices;

3 watershed segmentation of the MRI slice using the four markers;

4 gradient computation of the MRI slice and watershed segmentation of
the gradient MRI slice using the four markers plus a new marker pro-
vided by the frontier between the four regions of the previous segmenta-
tion;

5 gradient computation of the MRA slice and watershed segmentation of
the gradient MRA slice using one marker plus a new marker provided
by the frontier between the four regions of the first MRI segmentation.

Standard shape and size of the different structuring elements have been chosen
in order to fit the different structures to find. That step finally provides bmri

i,0
and bmra

i,0 then enabling to initialize the iterative process for each i ∈ [0, t].

Iterative process. For each i ∈ [0, t], at the step k, the iterative process
consists in first segmenting the current MRI slice (smri

i,k ) by using the MRA and
MRI segmentation of the previous step (bmra

i,k−1 and bmri
i,k−1). Then the current

MRA slice can be segmented using the current MRI segmentation (bmri
i,k ) and

the previous MRA segmentation (bmra
i,k−1). A step calculating bmra

i,k and bmri
i,k can

be decomposed as follows (Figure 3):
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Figure 3. A step of the iterative process for one slice. From left to right: MRI average
slice (smri

i,k ); MRI with four markers; first segmentation; MRI gradient; MRI gradient with five
markers; final MRI segmentation (bmri

i,k ); MRA average slice (smra
i,k ); MRA gradient; MRA

gradient with two markers; MRA segmentation (bmra
i,k ).

1 creation of four markers to initialize smri
i,k segmentation;

2 watershed segmentation of smri
i,k , using the four markers;

3 gradient computation of smri
i,k and watershed segmentation of smri

i,k gra-
dient, using the four markers plus one marker provided by the frontier
between the four regions found by the previous watershed segmentation;

4 creation of one marker to initialize smra
i,k segmentation;

5 gradient computation of smra
i,k and watershed segmentation of smra

i,k gra-
dient, using the marker plus one marker provided by the frontier between
the four regions found by the first watershed segmentation of smri

i,k ;

Gradient computation. For each step, the segmentation of both MRA and
MRI slices requires the computation of gradient images. Concerning the MRI
slices, the gradient is computed by choosing the maximum intensity variation
in the four principal directions, then correctly delineating the four main struc-
tures from the low intensity regions. This gradient calculation gives correct re-
sults as the four regions of interest have homogeneous intensity levels. This is
not the case of the flowing blood in the MRA slices. Indeed, the blood present
a very high but heterogeneous level. Since computing a simple gradient does
not allow to obtain well defined frontiers, a solution consists in dividing the
gradient value calculated at a pixel by the pixel value. This normalized gra-
dient will present low values in homogeneous high intensity regions and high
values for the background points located at the frontier with the flowing blood.

Markers generation. At each step of the iterative process and for each slice,
it is necessary to generate markers to initialize the watershed segmentations.
The segmentation of the MRI slice requires four markers: one for the dura
mater, one for both hemispheres and one for the skull. For any MRI slice smri

i,k ,
the markers are generated as follows. First, three templates, for hemispheres
and skull are created from smri

i,k−1. They are obtained by performing a grey-
level erosion with a flat structuring element (3× 3 square) on smri

i,k−1. For each



426 MATHEMATICAL MORPHOLOGY: 40 YEARS ON

template, bmri
i,k−1 is used as a mask to indicate what are the regions where the

erosion has to be performed. A fourth template, for the dura mater, is obtained
by performing a grey-level erosion with a flat structuring element (3× 3 cross)
on smri

i,k−1. Both bmri
i,k−1 and bmra

i,k−1 are used as masks to indicate what are the
regions where the erosion has to be performed. Then, for each template a
grey-level erosion of smri

i,k using the current template as a grey-level structuring
element is performed. After the erosion, a dilation using the template as a
binary element is carried out at the maximum point of the eroded image, then
providing a marker for watershed initialization.

The segmentation of the MRA slice requires one marker indicating the po-
sition of the flowing blood. For any MRA slice smra

i,k , the marker is choosen
as being the pixel of maximal intensity in the region of smra

i,k delimited by the
vascular region segmented in bmra

i,k−1.

Postprocessing. The segmentation provides two sets of slices. The first
gives the segmentation of the flowing blood in the MRA set while the second
gives the segmentation of the sinus blood and wall in the MRI set. Then,
these slices have to be put back to their correct position in the initial images.
During this step, it might happen that small gaps appear between successives
slices. Since these gaps are quite small (their thickness is never larger than one
voxel), they can then be filled by using a binary closing with a linear structuring
element composed of 3 voxels and oriented according to the direction of the
axis. As a very last step, the user can also choose to apply a binary opening to
smooth the image (we propose here to use a 3× 3× 3 cross).

5. Experimental section

Data acquisition. A database of 6 patients has been used to validate the
efficiency of the proposed algorithm. For each patient, two MR data have been
provided (Figure 1): a T1 MRI of the whole head (280 × 240 × 256 voxels)
and a MRA of the top of the head (192 × 70 × 256 voxels). Voxels are cubes
of 1 mm edge.

Complexity and computation time. The proposed algorithm has a com-
plexity of O(ω.t.x.y.m), where ω is the number of iterations, t is the number
of slices, x and y are the slice dimensions and m is the maximum area of all
the used structuring elements (m 0 x.y). The images have been segmented
with a computer using a 2.4 GHz Pentium IV processor with 2 GB of memory.
The average computation time is then 6 minutes. It has to be noticed that the
proposed algorithm runs in an entirely automatic fashion.
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Figure 4. Left: flowing blood surrounded by the SSS wall. Right: results provided by the
proposed method and a region growing method. First column: MRA data. Second column:
region growing segmentation. Third column: proposed segmentation.

6. Results and discussion

The results obtained with the proposed method have been compared to those
provided by a region growing algorithm proposed in [8]. All the validations
have been carried out by a human specialist who qualitatively tested both al-
gorithms on each case of the previously described database.

During the validation, it has been observed that the method could segment
the flowing blood even when MRA signal was heterogeneous or low. The
right pictures of Figure 4 illustrate the main observations of the validations.
For highly homogeneous intensity regions, it has been observed that both al-
gorithms provide correct segmentations. Nevertheless, the region growing al-
gorithm is sensitive to aliasing artefacts while the proposed algorithm is more
robust, also segmenting the low intensity flowing blood in the middle of the
vessel. The proposed algorithm is also able to segment only the sinus while
the region growing algorithm also segments connected veins.

7. Conclusion

This paper presents a novel method, based on watershed segmentation and
mathematical morphology operators guided by anatomical knowledge. This
method is dedicated to SSS segmentation from brain multimodal MR data. It
has been tested on 6 cases, providing more precise results than a previously
proposed region growing algorithm, even in case of strong inhomogeneity of
signal in MRA data. The main originality of this work consists in integrating
high level anatomical knowledge, and using both MRA and MRI data in order
to guide mathematical morphology tools. A first attempt to integrate anatom-



428 MATHEMATICAL MORPHOLOGY: 40 YEARS ON

ical knowledge in a vessel segmentation process had already been proposed
in [8], where an atlas was used to divide the brain into areas having homo-
geneous vascular properties. The method proposed here can be considered as
being dedicated to one of these areas (the SSS area), then proposing a reliable
strategy for the vessels it contains. This work makes part of a new kind of
segmentation strategy consisting in processing each part of a vascular tree in a
adapted fashion, instead of processing all the vessels in a global way. Further
work will now consist in using this method as a first step for segmentation and
topology recovery of the whole cerebral superficial venous tree.
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Abstract In this paper we propose an original method of segmentation of the portal net-
work in the liver. For this, we combine two applications of the grey scale hit-or-
miss transform. The automatic segmentation is performed in two steps. In the
first step, we detect the shape of the entrance of the portal vein in the liver by
application of a grey scale hit-or-miss transform. This gives the seed or starting
point of the region-growing algorithm. In a second step, we apply a region-
growing algorithm by using a criterion still based on a hit-or-miss. Our method
performs better than a previous method based on region-growing algorithm with
a single threshold criterion.

Keywords: Vessel segmentation, grey scale hit-or-miss transform, shape detection, CT-scan.

1. Introduction

In liver surgery, non-healthy segments are removed to prevent tumoral pro-
liferation. The liver, indeed, is an organ composed of eight functional seg-
ments. Liver’s functional segmentation is based on one of its vessel systems:
the portal network. Hence, precise segmentation of this network is highly de-
sirable since it improves the preoperative planning.

In this work, we propose to detect the portal network from 3D CT-scan
images of the abdomen. For this, we use a priori knowledge about the intensity
and the shape of the starting point of the portal network: the extra-hepatic part
of the portal vein. In a first step, we achieve a shape detection of this structure
by using a definition of the grey scale hit-or-miss transform operator. In a
second step, we use a region-growing algorithm with a hit-or-miss criterion to
detect the points belonging to the portal network.
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A method for the segmentation of the portal network has been given by Selle
et al. in [15–17] and Zahlten et al. in [26, 27]. A seed voxel of the portal vein
close to its entrance into the liver is selected interactively. Then the algorithm
iteratively accumulates all 26-connected neighbors whose grey values exceed
a given threshold, by using a classical region-growing algorithm. In order
to reconstruct the greater part of the portal network without including other
structures, the authors compute an optimal threshold for the region-growing
algorithm.

In [5, 6], Dokládal proposes two approaches to preserve the topology of the
structure: one which adds only simple points during a region growing pro-
cess and one which homotopically reduces a simply connected superset of the
object to segment.

A method based on histogram thresholding and topological refinement is
described by Soler in [22].

We can also cite the work of Krissian et al. [8] which describes a template-
based approach to detect tubular structures in 3D images.

It should be mentioned that some of the previous methods perform only on
the liver mask, which reduces greatly the problem.

The method proposed in this paper tries to combine the advantages of pre-
vious methods. Our method performs the segmentation of the portal network
from a whole CT-scan image. Moreover, it is fully automatic: it does not re-
quire user interaction.

2. Shape detection: the hit-or-miss transform

A morphological operator that can be used to perform shape detection is
the hit-or-miss transform. The binary hit-or-miss transform is widely used, for
example in document analysis [2, 3]. Hardware implementations with optical
correlators have been studied in [7, 9, 10, 14, 24, 25].

Binary definition

Definition of hit-or-miss transform in the binary case is very common:

X ⊗ (A, B) = {x | Ax ⊆ X, Bx ⊆ Xc} (1)

where A and B are two structuring elements. Of course, A and B must be
disjoint sets: A ∩B = ∅.

Grey scale hit-or-miss transform

Few works address the grey scale hit-or-miss transform. Principal defini-
tions are the following:
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1 Ronse’s definition appears in [12]. Given two structuring functions A,
B and a function F , the grey scale hit-or-miss transform is defined on a
point by:

[F ⊗1 (A, B)](p) =
{

(F 	A)(p) if (F 	A)(p) ≥ (F ⊕B∗)(p)
⊥ otherwise

where B∗(p) = −B(−p) and ⊥ is the minimum value of function F .

2 Soille’s definition appears in [19] and is also described in [21]. In fact
two definitions are described: the unconstrained hit-or-miss transform
(UHMT) and the constrained hit-or-miss transform (CHMT). UHMT
leads to the following definition, applied on a function F , given two
structuring sets A and B:

[F ⊗2 (A, B)](p) =

⎧⎨⎧⎧⎩⎨⎨ (F 	A)(p)− (F ⊕ B̌)(p) if (F 	A)(p) >
(F ⊕ B̌)(p)

0 otherwise

where B̌ = {−b | b ∈ B}. Obviously this definition can be extended
with structuring functions.

Discussion

Grey scale hit-or-miss transform is very interesting since it permits the de-
tection of a structure of a given shape directly in a grey scale image. The
two definitions above are useful; however for our application we would like to
keep the intensity of the points belonging to the hit-or-miss transform in order
to threshold image afterwards.

For our application, we propose to use a slightly modified definition of ⊗1:

[F ⊗3 (A, B)](p) =
{

F (p) if (F 	A)(p) > (F ⊕B∗)(p)
⊥ otherwise

where A and B are structuring functions.
The three definitions of the grey scale hit-or-miss are illustrated on Figure 1.

3. Method

Data

We are working on 3D CT-scans of the abdomen. The protocol includes an
injection of a contrast medium in order to enhance the healthy parts of the liver.
Image is acquired at portal time, the time needed for the contrast medium to
reach the portal vein. Thus the portal network is highlighted: its intensity is
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Figure 1. Grey scale hit-or-miss transform. Up: Ronse’s definition. Middle: Soille’s defini-
tion. Down: proposed definition. Dashed: original function. In grey: result of the hit-or-miss
transform with structuring elements A and B (A and B are functions in the first and third figure,
and sets in the second).
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greater than the liver’s one. Typical size of such 3D images is 512×512×100,
but the number of slices can vary. Images are anisotropic: the size of the
voxels, which is not constant between images, is typically 0.5mm× 0.5mm×
2mm.

Preprocessing of source image. First, images are reduced to make them
isotropic, with a voxel size of two millimeters in all directions. This permits
the use of structuring elements of identical shapes in all images. Moreover,
the computation of morphological operators is greatly accelerated. Original
CT-scan images contain usually random noise. We use a median filter, which
is efficient to remove such noise. The neighborhood used is a sphere of 6 mil-
limeter radius. In the sequel, we call I the function defining the preprocessed
original image.

First step: detection of the starting point

The entrance of the portal vein in the liver can be considered as the root of
the vascular portal network of the liver. The first step of our method consists in
the automatic detection of this point. In order to do this, we use robust a priori
knowledge of this structure.

A priori knowledge.

Photometric attributes: due to the acquisition protocol, the portal vein
has a greater intensity than the one of the liver. Since the peak of the
liver is highly visible on the image histogram, we use this information
to retain only the points having a higher intensity than the liver. We use
also the fact that the portal vein intensity is lower than the bone intensity.

Shape attributes: the extra-hepatic part of the portal vein (the starting
point of the portal network) has a very characteristic shape. Its origin is
constituted by the ending of the superior mesenteric vein (in brief SMV);
it makes a change of direction before entering the liver (see Figure 2).
Anatomically, it has been observed that the extra-hepatic part of the por-
tal vein presents very few variations between patients.

Principle of the method. The method used to detect the entrance of the
portal vein in the liver is based on the fact that portal vein is connected to
the SMV which is a vertical cylinder. We perform two grey scale hit-or-miss
transforms (by using the third definition): one to detect the quasi horizontal
part of the entrance of the portal vein (in brief EPV) in the liver and one for
the detection of the SMV. We threshold each image by the upper bound of the
intensity of the liver and the lower bound of the intensity of the bones. Then we
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SMV

SMV

EPV

EPV

Figure 2. SMV: superior mesenteric vein. EPV: entrance of the portal vein in the liver (extra-
hepatic part of the portal vein). Upper and lower left: Frontal view. Upper and lower right:
Axial view. (Original images)

keep only the structures of the first image that are connected to the structures
of the second image.

Detection of the superior mesenteric vein (SMV). A stable referential
used in anatomy is the vertebral column. We use the hypothesis that the SMV
is located in front of the vertebral column to compute a region of interest (ROI)
(see Figure 3, left). Since the SMV is a vertical cylindrical trunk, we perform
in this ROI a grey scale hit-or-miss transform with two structuring elements: a
discrete vertical cylinder C orthogonal to the axial plane of 12mm length and
2mm radius, and a discrete hollow cylinder H parallel to the latter of 2mm
length, 12mm radius and 4mm thickness. By using this operator, we keep
only vertical cylindrical structures surrounded by a darker neighborhood. We
threshold this result with the highest intensity of the liver liverhigh and the
lowest intensity of the bones boneslow. After these steps, we obtain an image
constituted of the SMV, and other structures. Typically, we also obtain aorta
and inferior veina cava.

We call I1 the resulting image:

I1 = TH(I ⊗3 (C,H), liverhigh, boneslow)
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Figure 3. Left: 3D region of interest for the detection of the SMV. We keep only the region
located in front of the vertebral column and delimited by its left and right edges. Right: 3D
region of interest for the detection of the EPV. Example on one slice (axial view).

Figure 4. Mean shape of the EPV on 18 cases. Left: Sagittal view. Middle: Frontal view.
Right: Axial view.

where TH(I, s1, s2)(p) =
{

I(p) if s1 ≤ I(p) ≤ s2

⊥ otherwise

Detection of the entrance of the portal vein in the liver (EPV). We use
another region of interest for the detection of EPV: since the portal vein makes
a change of direction before entering the liver, the ROI should be slightly larger
than for the SMV. We add to the region of interest of the SMV another zone
of same width in the liver direction (see Figure 3, right). The entrance of the
portal vein (EPV) in the liver can be described as a quasi horizontal cylinder.
This structure has very few variations between patients. We can see on Figure 4
the mean shape of EPV on 18 cases. However, size of EPV can vary between
patients.

We perform multiple grey scale hit-or-miss transforms to detect EPV. To
deal with the size variability, we use a set of structuring elements of differ-
ent sizes. The first structuring element C remains constant, while the second
structuring elements H (hollow cylinders) have a variable radius. Structuring
elements used are: SE = {(C, H1), (C, H2HH ), (C, H3H )}, where C is an elemen-
tary discrete horizontal cylinder orthogonal to the sagittal plane, of 6mm length
and 2mm radius; the HiHH ’s are hollow discrete cylinders parallel to C, of same
length, with radius of 4+2∗i mm, and 4mm thickness. We compute the image
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I2II , which is the pointwise maximum between the three images resulting from
the three hit-or-miss transforms:

I2II = TH(I ⊗3 (C,H1) ∨ I ⊗3 (C, H2HH ) ∨ I ⊗3 (C, H3H ), liverhigh, boneslow)

Combination of both results. We now have two images: an image I1 con-
stituted by the superior mesenteric vein and other structures, and an image I2II
containing the entrance of the portal vein in the liver and some false positives.
Since the EPV is connected to the SMV, we combine both images to retain
only the searched structure. In order to do this, we compute the intersection
image of I1 and I2II : INTER = I1 ∧ I2II . To keep only the entrance of the portal
vein in the liver, we perform a geodesical reconstruction by dilation of INTER
in I2II : I3II = Rec⊕(I2II , INTER). Finally, image I3II contains the EPV. Some false
positives can also exist, but the combination of images I1 and I2II has drastically
reduced their number. To keep only the EPV, we keep the biggest connected
component of the image.

Second step: propagation using a hit-or-miss criterion

We have now detected the starting point of the portal network. To segment
the vascular network, we use these assumptions:

1 Portal network is connected and can be seen as a tree having as root the
EPV.

2 Branches of the portal network are bright tubular structures surrounded
by dark areas.

According to the first assumption, we use a region-growing algorithm hav-
ing for seed the EPV. According to the second assumption, we propose to use a
criterion of propagation based on a local grey scale hit-or-miss transform. The
criterion, that can also be seen as a contrast criterion, is the following:

C(p) =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
true if at least one of

[I ⊗3 (o,R1)](p), [I ⊗3 (o,R2)](p), [I ⊗3 (o,R3)](p)
is >⊥

false otherwise

where o is a structuring element composed of the origin. The Ri’s are struc-
turing elements used to constrain the point p to belong to a tubular structure.
Formally, structuring elements Ri are three orthogonal discrete rings parallel
to the three planes XY, XZ, Y Z.

They are defined by a radius and a thickness (see Figure 5). These parame-
ters must be chosen according to the thickness and the density of the vascular
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r
t

Figure 5. Discrete ring (dashed) superimposed on a continuous ring of radius r and thick-
ness t

network. In order to detect branches of radius rbranch, we should use rings
which have a minimal radius r = rbranch. However, if the network is dense,
r should not be too high. For our application, these parameters are chosen
empirically.

To perform the region-growing, we use only the C criterion. Starting from
the seed point (the EPV), we accumulate iteratively all 26-connected neighbors
for which the criterion is true.

Discussion. This step of region-growing is based on a hit-or-miss criterion,
which permits the detection of bright tubular structures. We use only three
structuring elements (the three orthogonal rings) in order not to be too con-
straining in the detection. This permits, for example, the detection of forks
which are essential components of a network.

4. Results

We can see on Figure 6 (left) the result of our method obtained with rings
of radius 10mm and 2mm thickness. This result is compared to the method
of Selle et al. (Figure 6, center and right), which use also a region-growing
algorithm but with a single threshold criterion. The optimal threshold is com-
puted by analyzing the histogram of the propagation, i.e. for each threshold the
number of segmented voxels is computed. The drawback of a region-growing
algorithm based only on a threshold is that for a low threshold, the propaga-
tion extends outwards of the vascular network (Figure 6, right). With a higher
threshold (optimal threshold on Figure 6, center), few branches are included.

Actually, a true optimal threshold, i.e. a threshold that makes a correct sepa-
ration between the voxels belonging to the vascular network and those belong-
ing to other structures (in our application, the liver’s voxels) does not exist in
our case.
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Figure 6. Comparison between our method (upper left) and Selle’s and al. method (upper
right: with the optimal threshold; down: with a low threshold).

Visually, our method includes more branches than the Selle’s algorithm,
without the drawback of segmenting non-vessel structures. This is due to the
fact that we include in the segmentation only points for which local neighbor-
hood indicates that the point is likely included in a tubular structure.

It should be noted that, using both methods, not only the portal network is
segmented. We can see on the right the splenic vein and part of the spleen
network. This is not an issue since we can afterwards keep only the network
located on the left of the seed point (the EPV).

We have successfully tested this method on 16 cases. The first step of auto-
matic detection of the extra-hepatic segment of the portal vein performs well
in all cases. The second step permits to obtain a segmentation of the portal net-
work of the liver. The number of branches that are segmented and the global
quality of the segmentation is variable between the cases, depending on the
quality of the CT-scan acquisition.

5. Conclusion

In this paper we have described an original method for the segmentation
of the portal network of the liver. This method is based on robust a priori
knowledge and shape detection. The second step is based on a region-growing
algorithm with a modified criterion that uses a hit-or-miss transform.
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This algorithm performs better than the Selle’s et al. algorithm, since more
branches are included in the segmentation while it does not extend outwards
of the vascular network.

However our method should be evaluated quantitatively, but in the field of
vessel segmentation ground-truth is seldom available. Moreover manual seg-
mentation by an expert is very time consuming and prone to errors due to the
high inter-slice distance.

Future works will include a quantitative validation of our results by com-
parison with manually delineated networks. There is still a lot of research to
be done towards using the full potential of the grey scale hit-or-miss transform
in pattern recognition. One of the subject that should be investigated further
concerns the choice of the structuring elements.
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Abstract In this study, a segmentation method is presented for the images of microscopic
peripheral blood which mainly contain red blood cells, some of which contain
parasites, and some white blood cells. The method uses several operators based
on mathematical morphology. The cell area information which is estimated us-
ing the area granulometry (area pattern spectrum) is used for several steps in
the method. A modified version of the original watershed algorithm [31] called
minimum area watershed transform is developed and employed as an initial seg-
mentation operator. The circle Radon transform is applied to the labelled regions
to locate the cell centers (markers). The final result is produced by applying the
original marker controlled watershed transform to the Radon transform output
with its markers obtained from the regional maxima. The proposed method can
be applied to similar blob object segmentation problems by adapting red blood
cell characteristics for the new blob objects. The method has been tested on a
benchmark set and scored a successful correct segmentation rate of 95.40%.

Keywords: Blood cell, watershed, area granulometry, minimum area watershed transform
(MAWT), circle Radon Transform (CRT)

Introduction

The first step in a computerized microscopic blood cell image analysis sys-
tem is segmentation. The blood cells have to be segmented into separate re-
gions for further analysis. The term “blood cell segmentation” has been used
to refer to different notions in the literature. In white blood cell (WBC) seg-
mentation papers [32], [15], [21], “blood cell segmentation” tends to refer to
the localization of white blood cells and segmentation of the white blood cell
body into the structures such as cytoplasm and nucleus. As opposed to this,
here “the blood cell segmentation” refers to the segmentation of an image of
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mainly red blood cells (RBC) into separate labelled regions each representing
an individual blood cell for further analysis.

Some methods exist which are directly related to the red blood cell seg-
mentation as described in this paper [7], [6], [24], [22], [4], [2]. Several tech-
niques have been proposed for segmentation and preventing under-segmen-
tation: granulometries and regional extrema analysis [7], [6] distance trans-
form and area tophats [24], [22], Bayesian colour segmentation and water-
shed segmentation improved by discrete chamfer distance [4]. However, most
of the studies do not provide evaluation of the segmentation performance nor
do they solve the under-segmentation problem completely. Hence, the under-
segmentation remains a problem in blood cell segmentation. In blob segmen-
tation, a common technique to reduce under-segmented regions is to utilize
the distance transform on the binary image [24]. However, we observed that
this approach also produces over-segmented regions when dividing the under-
segmented regions.

Here, we develop a blood cell segmentation method using the watershed
transformation [31] and the Radon transformation [28]. The method employs
the watershed transformation in two different stages. First, we introduce the
minimum area watershed transform (MAWT) to obtain an initial segmenta-
tion. After extracting markers from this segmentation using the circle Radon
transformation, a marker-controlled watershed transformation [26] is applied
to the Radon transformed image to obtain a new final segmentation. Most of
the steps in the proposed method use blood cell radius (or area) as an attribute.
The radius and the area are estimated using area granulometry (area pattern
spectrum) [23]. Furthermore, a benchmark set has been prepared manually for
evaluating segmentation performance. The proposed algorithm and an earlier
algorithm proposed by Rao et.al. [24], [22] are compared by testing on the
same benchmark set.

In section 2 the method will be explained in details. In section 3 the experi-
mental method will be explained and a comparison table given for the evaluated
segmentation performances. Concluding remarks and discussions are given in
the last section.

1. Method

The proposed method will be explained in three major steps. The first step
is the estimation of the cell area and radius. Next, the input image will be
roughly segmented by applying a constrained watershed transform on the mor-
phological gradient [25] using this area information. The output of this rough
segmentation does not eliminate background regions which do not contain cells
and includes under-segmented regions which contain more than one cell. The
background regions will be eliminated by a morphological thresholding tech-
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Figure 1. (a) Input image (I), (b) area granulometry (Ag) and peak radii r1, r2.

nique using the image histogram information. The final step utilizes the circle
Radon transform to obtain a circularity map which is used for locating the cell
centers (markers) and reapplying segmentation.

Area and Radius Estimation

The granulometry is a useful tool to obtain a priori information about the
size of the objects in the image before processing.[30], [16]. In [3], Breen
and Jones give generalized definitions of granulometry in relation to the at-
tribute openings and also present an efficient algorithm to implement attribute
granulometries. A fast implementation for the area granulometry (area pattern
spectrum) is presented in [18]. Area granulometry was used in [23] to estimate
blood cell radius.

The blood cells appear in the image (I) as darker, curved and convex re-
gions (Figure1(a)). Calculating area granulometry (area pattern spectrum) on
the negative of I gives a good estimate of the blood cell area (A) and the

pseudo-radius (r =
√

A
π ) [23]. Figure 1(b) shows size (area) distribution of

the negative of the image in Figure 1(a). It can be seen that the differential
volume plotted against r shows a peak at a particular radius index. We empir-
ically observed that this radius index r1 (and area A1) is due to RBCs. This
is because most of the image area is covered by the RBCs and the areas of
these cells are very close to each other. There is also a larger radius r2 where
a smaller peak is caused by the white blood cells, enlarged RBCs due to the
parasites, touching RBCs with very weak boundaries. These two radii will be
used in the succeeding steps.
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Initial Segmentation Using Minimum Area Watershed
Transformation

The watershed transformation is a powerful morphological image segmen-
tation tool initially introduced by [19]. In the watershed transformation the
image is seen as a topographical surface. In the output, watershed lines divide
the image plane into regions associated with regional minima. There are sev-
eral watershed algorithms in the literature [19], [31], [20] which differ in the
flooding realization and computation. However, common to all is that every
regional minimum will be associated with a unique region (label) in the out-
put. Applying a watershed transform on the image directly is generally useless
unless the objects are flat (grey level) regions. Hence, a marker controlled
transform is proposed which basically replaces the regional minima with the
externally supplied markers. This technique transforms the watershed segmen-
tation problem to marker extraction [19]. Some marker extraction techniques
can be found in [26], [14], [27].

Our discussion on the minimum area watershed transformation is based on
the watershed algorithm presented in [26], [31]. The minimum area water-
shed transformation (MAWT) is a modification to the original watershed trans-
formation, which ensures the area of the labelled regions are above a given
threshold. Same concept is studied in [1] with a progressive merging strategy
called an “attribute-based absorptions” (ABA) method. In [21] an area con-
strained watershed is briefly mentioned as a modification for overcoming the
over-segmentation problem. Here we will detail the modification, introduce
the algorithm and explain the relation with the morphological area closing op-
erator.

Definition. It is easy to represent the minimum area watershed by the wa-
tershed definition in terms of flooding simulations as presented in [26]. Here,
it is necessary to include Soille’s definition:

Xhmin = RMINhNN min (f)
∀h ∈ [hmin, hmax − 1] ,
Xh+1 = RMINhNN +1(f) ∪ IZTZZ

tTT ≤h+1(f )
(Xh)

(1)

where f is a grey scale image, h is the grey level value, the ThTT is threshold oper-
ator at level h, Xh is the set of the catchment basins up to level h, RMINhNN (f)
is the set of all regional minima at the level h, and IZTZZ

tTT ≤h+1(f )
(Xh) denotes the

geodesic influence zones of Xh at the new threshold level h + 1. The set of all
catchment basins Xhmax are formulated recursively. Beginning from the min-
imum grey level hmin, in successive threshold levels, catchment basins Xh+1

are updated according to the union of the geodesic influence zones of basins
and newly emerged minima. The minimum area modification substitutes every
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regional minimum (rmin) belonging to minima at level h (RMINhNN (f)) with
the rmina:

rmina =
{

rmin if AREA(rmin) ≥ a
{} else

}
(2)

Algorithm. The implementation is realized from Soille’s watershed trans-
formation algorithm [26] by modifying the last section about the new minima.

fi: (input image),fo: (output image), A˙th: (area threshold)
h: (grey level value), A˙counter: (area counter)
fifo˙add: (add pixel to top of fifo queue), fifo˙empty: (return 1 if
fifo empty),
fifo˙retrieve: (retrieve last pixel and delete from queue)
AQ˙clean: (empty auxiliary queue), AQ˙add: (add pixel to auxiliary
queue), AQ˙remask: (relabel all pixels in auxiliary queue as MASK)

. . .
{check for new minima}
∀ pixel p such that fiff (p) = h {

if foff (p) = MASK {
current_label+ = 1;
fifo_add(p); foff (p)←current_label;

A_counter←1; AQ_clean();

while fifo_empty() = false {
p
′←fifo_retrieve();

∀ pixel p
′′∈NGNN (p

′
) {

if foff (p
′′
) = MASK {

fifo_add(p
′′
); foff (p

′′
)←current_label;

AQ_add(p
′′
); A_counter+ = 1;

}}}}
{now checking for area}

if A_counter < A_th AQ_remask()

}

Algorithm 1: MAWT algorithm in pseudocode

The three boxed lines in Algorithm 1 show the modification for the mini-
mum area watersheds. In the first line a simple counter (A_counter) is ini-
tialized for measuring area and an auxiliary queue is initialized by cleaning
previous entries (AQ_clean). In the second boxed line, the pixel added to the
FIFO is also added to the auxiliary queue for later use and the area counter is
increased. When the process reaches the third boxed line, the pixels belong-
ing to the current label are all registered in the auxiliary queue and the area is
stored in the counter. Comparing the counter with the threshold (A_th), the
algorithm resets the labels to the MASK if the area is not sufficient. Reseting
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pixel labels to the MASK passes pixels to the next grey level (h + 1). These
pixels will be regarded as being the same as pixels of level h + 1. This process
is iteratively repeated at successive grey levels until A_th is met.

To summarize, we have added an area measuring step and control statement
to the Soille’s algorithm. If the area of the newly emerged minimum is greater
than the specified threshold we label it, else we leave it unlabelled and test
again at the next grey level. The output of the original watershed algorithm will
be the same if the threshold is chosen as 1. The process reduces the number of
calculated regions as the threshold is increased.

Relation to Area Closing. As proved in [29], the relation between area
opening and regional maxima can be stated as:
γa

λ(f) → AREA(RMAX(f))≥λ
and by duality the relation between area closing and regional minimum is such:
φa

λ(f) → AREA(RMIN(f))≥λ
The area closing (φa

λ) operation on a grey level image (f ) ensures the area
of every regional minimum in RMIN(f) is greater than or equal the closing
parameter λ. Therefore every regional minimum rmin will be equal to rmina

in 2. This suggests φa
λ followed by the watershed transform is equivalent to

the MAWT with area threshold (A_th) equal to λ. This is valid for all values
including λ = 1.

As stated earlier, MAWT checks the area of every regional minimum against
the parameter λ and passes them to next grey level (h+1) if the area is smaller.
Passing to next grey level means this pixel values will be processed as they are
h + 1. Which shows that the MAWT algorithm performs as an embedded area
closing φa

λ operation in the watershed transformation.
The connection between the area closing and the MAWT leads us to think

about more attributes which are already used in attribute closings or openings
[3]. The attributes such as depth, volume or moments can be useful [1], and
can be implemented by applying small modifications to the Algorithm 1.

Application. An initial segmentation (S1) is going to be calculated on the
morphological image gradient using the MAWT algorithm. Since we have
calculated the area A1 from the area granulometry already, it is possible to
use it as a threshold for the regional minima area. However, the blood cells
are not flat, detached regions. Instead of using A1, using a fraction (A1

2 ) of it
can be sufficient for the initial segmentation. In Figure 2(a) the morphological
gradient of the input image is shown. The labelled output image is presented in
Figure 2(b), 2(c), and 2(d), respectively for the original, MAWT with A_th =
10, and A_th = A1

2 . Figure 2(d) represents the labelled initial segmentation
image (S1) which we will be used in next steps of the method. The S1 is not a
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(a) (b) (c) (d)

Figure 2. (a) Image gradient (b) watershed labels with the original algorithm and (c)watershed
labels with the MAWT algorithm A_th = 10 applied to gradient, (d) watershed labels (S1) with
the MAWT algorithm A_th = A1

2
applied to gradient. Note both foreground and background

regions are labelled.

binary or a grey level image: all pixels on the watershed lines have label zero
and all other regions have unique labels greater than zero.

Although MAWT reduces the number of regions and calculates useful bo-
undaries, it is not sufficient to complete RBC segmentation. The output also
contains background regions and under-segmented regions. These problems
have to be solved with further processing.

Cleaning Background. The initial segmentation (S1) obtained from the
MAWT contains background and under-segmented regions as shown in Figure
2(d). We eliminate the background regions by employing the double threshold
method (DBLT) described in [26]. In this method, the input image is thresh-
olded twice to produce two binary images (wide and narrow threshold images).
Then the wide threshold binary image is reconstructed from the narrow image
used as a marker image.

DBLT [t1≤t2≤t3≤t4 ](I) = Rδ
T [t1,t4](I)

[
T [t2,t3](I)

]
, (3)

where T is the threshold, Rδ is the morphological reconstruction operator, and
[t1, t4], [t2, t3] are the wide and narrow threshold intervals respectively.

In our application, both lower bound t1, t2 values are set to 1, and t3, t4
lower bound values are obtained from the gray level histogram peaks. To ob-
tain two peaks, the image histogram is iteratively smoothed by an averaging
filter until only two global peaks remain (Figure 3(a)). The smaller and larger
indices of these peaks are taken to be p1 and p2, respectively. The t3 and t4 are
calculated using these levels and their middle level (Figure 3(a)). Narrow and
wide threshold images are obtained using t3 and t4 threshold levels (Figures
3(b) and 3(c)) respectively.

The binary foreground mask is shown in Figure 3(b). The S1 is then mul-
tiplied by this mask and relabelled (Figure 3(c)) after closing small holes by
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Figure 3. (a) Original and smoothed histogram of the image showing peaks and calculation
of threshold levels,(b) The foreground mask, (c) masked and relabelled S1 after closing holes

reconstruction. Now, as the background labels (segments) have been removed,
the remaining problem is the under-segmented regions.

Marker Extraction Using Radon Transform

Definition. Generally, parameterized shape detection studies utilize the
mathematical formalism of the Hough transform instead of the Radon trans-
form. However, a recent study has shown that the two methods are equivalent
[28]. The difference is in computational interpretations. When data which is
to be transformed is not sparse, the Hough transform is computationally more
expensive than the Radon transform. However, there are several applications
and realizations of the Hough transformation, in the literature [17], [5], [9],
[12], [8] while far fewer for Radon [13],[10],[11]. We have preferred to use
the contour integral description that exists in the Radon transformation which
enables the implementation via convolution and can be realized even faster
when implemented in Fourier domain [28]:

Rc(p) {I} (p) =
∫

c(p)

I(x) dx =
∫
�D

δ(C(x; p)) I(x)dx, (4)

where Rc(p) {I} (p) : Radon transform, x : spatial coordinates, p : N -dimen-
sional shape parameter vector, c(p):contour of the shape having parameter p,
I(x) : D dimensional image, C(x;p) : parameterized shape, δ: delta-dirac
function.

The C(x;p) can be any generalized function with parameter set p. In case
of a circle p can be written in ((x0, y0), r) form, where (x0, y0) is the centre
and the r is the radius of the circular contour (i.e. 1 on circle 0 off circle). Thus
for circle and an image of I(x, y),
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Rc((x0,y0),r) {I} =
∫
�2

δ((x− x0)2 + (y − y0)2, r2) I(x, y)dx dy (5)

If the transform is going to produce a response on every pixel (every possible
(x0, y0)), the above continuous integral can be transformed to a convolution
with a shift-invariant circle kernel having radius r. Excluding (x0, y0) from
our parameter vector, p reduces to variable r. Thus, we can write our transform
formula as:

R(r) {I} = I ∗ KrKK , (6)

where KrKK = δ(x2 + y2, r2).
Generally the image I in 6 is an edge representation of the original image.

The edge image (EI ) can be extracted by calculating the difference between
S1 and the erosion of S1 with structuring element B (i.e the erosion gradient).

EI = S1 − εB(S1) (7)

Since S1 is labelled, the edge image EI will provide the region contours
with unique labels. Label information will be useful if we incorporate it into
our formula. However, there is no simple substitution between EI and I for
equation 6 such that: R(r) {I} = EI ∗ KrKK , Instead, each labels’ own R
should be calculated separately or by a label control operation embedded into
the convolution:

L = {l1, l2, l3, ..., lN} , RL(r) =
N⋃

l=1

{
E

(l)
I ∗KrKK

}
(8)

where li denotes the ith label and E
(l)
I connected edge pixels belonging to the

ith label in the edge image.

Application. To summarize, we utilized a labelled circle Radon transforma-
tion on the S1 boundary lines (EI ). Instead of searching for resolvable circles
and detecting the correct radius, we are interested in finding centroids of cir-
cles with radii closer to values r1, r2. Hence, we can calculate a cumulative
circularity map in labels by summing RL calculations among two radii r1, r2,
then find peaks by searching for the regional maxima.

RL
r1,r2

=
∑

r=r1,r2

RL(r)

Because of the summation along the radius above, the circularity map calcu-
lation (RL

r1,r2
) reduces different r calculations to a cumulative concern. Since
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(a) (b) (c) (d)

Figure 4. (a) The labelled edge image (EI ) for S1 in Figure 3(c) (b) Labelled cumulative
Radon transform RL

r1,r2 on EI , (c) Unlabelled Radon Transform R for thresholded EI (i.e
EI > 0) for r1, r2, (d) Markers extracted from RL

r1,r2 shown on gray level image.

we calculated the radii r1 and r2 from the area granulometry, with the sum-
mation the transform provides a 2-dimensional mapping RL

r1,r2
of the (x, y)

coordinates resulting in peaks at the possible centroids.
Figure 4(a) shows the labelled edge image EI computed according to equa-

tion 7. The circularity map (RL
r1,r2

) calculated for r1, r2 (equation 3) on the
EI in Figure 4(b). An unlabelled calculation of the transformation (R) (by di-
rect convolution with thresholded EI>0) is presented for comparison 4(c). The
latter is more noisy due to the effect of the adjacent region boundaries.

After RL
r1,r2

is calculated, markers (M ) can be extracted by searching for the
regional maxima. Regional maxima are calculated with a structuring element
defined as a disk of radius r1

4 , then dilated to unite very close points (Figure
4(d)). The radius of the disk is set big enough to reduce the number over-
segmentations (too many markers) while allowing some under-segmentations,
which will be solved on a second pass described in the next section.

Finalizing Segmentation. To finalize segmentation, we apply the marker
controlled watershed transformation using the markers calculated in the previ-
ous step M . For the input, we employed the RL

r1,r2
negative obtained in the

previous section.
In Figure 5(a) the markers and the watershed lines corresponding to these

markers are shown. However, the marker finding algorithm in the marker ex-
traction step depends on the regional maxima, and the size of the structuring
element used in calculation. Hence, it can still result in under-segmented or
over-segmented regions. To detect under-segmentations we apply area opening
by size 1.5∗πr2

1. To separate these regions, another regional maximum extrac-
tion process is applied by a disk structuring element of r = 0.7 ∗ r1. Then the
marker controlled watershed is employed again to find the correct regions. In
a similar way, the over-segmented regions are detected by area opening by size
A1
2 , and recovered by dilation. Figure 5(b) shows the under-segmented and
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(a) (b)

Figure 5. (a) Watershed lines corresponding to markers, (b) over- and under-segmented re-
gions

(a) (b)

Figure 6. (a) Final segmentation, (b)evaluation marks: correct (pink ‘C’), under (green ‘U’),
missed(red ‘M’), over and redundant(blue ‘R’) segmentations.

over-segmented regions. Finally, there are some cells connected to the edges
of the image frame. These are reduced by the reconstruction method described
in [26]. The final result can be seen in Figure 6(a).

2. Experimental Results

The proposed method has been tested on images containing RBCs, malaria
parasites, and some WBCs. The results were found to be satisfactory in most
of the cases. Furthermore, the algorithm is compared with our previous best
algorithm employing marker (area top hats) controlled watersheds and dis-
tance transform in combination [24], [22]. A benchmark image set was pre-
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Table 1. Comparison of the segmentation algorithms

Method correct % missed % under % over&redundant %
Proposed Method 95.40 1.46 3.12 8.14

Rao et.al. [22] 91.27 3.12 5.60 4.22

pared with 20 microscopic blood cell images containing 2177 cells including
RBCs, WBCs and infected RBCs by malaria parasites. The cells were man-
ually marked to provide the ground truth data. The comparison was done by
only evaluating the “locating” and the “counting” performances. The perfor-
mance evaluation algorithm is based on heuristics. The missed and under-
segmentation rates were calculated directly by comparing labelled cell loca-
tions to manual markers. The over and redundant segmentation rates were
calculated from all labelled regions which did not coincide with a manually
marked cell (Figure 6(b))

Table 1 shows evaluated results in four categories. The proposed method
is better than the earlier method according to the rates detailed in Table 1 due
to the lower rates for missed and under-segmentations. However, the over and
redundant segmentation rates are higher. This is due to the redundant seg-
mentation regions close to the edges, and the benchmark image set does not
include any edge touching cells. This can be adjusted by modifying the final
step according to the application needs. However, the proposed algorithm di-
vides WBCs which are usually bigger than the RBCs causing over-segmented
WBCs. This is common to both algorithms because the detection methods of
under-segmentations are based on the RBC area. By using color properties
(because of the staining process in microscopic slides, WBCs and parasites
are highlighted) and area attributes from the area granulometry, WBCs can be
detected early and excluded from this processing.

3. Conclusion and Discussions

We have introduced and explained a novel morphological blob segmentation
algorithm comprised of area granulometry, minimum area watershed transfor-
mation, and circle Radon transformation. The proposed algorithm is tailored
to and tested on microscopic images which mainly contain red blood cells. It
gives better results than the algorithm that uses the distance transform and area
tophats.

We have introduced the minimum area watershed transformation (MAWT)
which embeds an area attribute in the original watershed algorithm. If em-
ployed with area granulometry, the MAWT becomes a powerful segmentation
tool. However, depending on the nature of the problem, the transform is not
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completely capable of detecting or preventing under or over-segmentation in
the objects. However, the MAWT algorithm only uses area, but it can be ex-
tended to use different attributes separately or in combination if needed.

We have proposed the labelled circle Radon transformation for marker ex-
traction. We applied the Radon transformation to the labelled edge (contour)
image which produces more efficient responses than the commonly used binary
edge image representation. Although the blood cells are not perfect circular
objects, the Radon transform with the help of the labeled edge representation,
was quite successful in locating cell centers.
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Abstract This paper1 presents an application of several definitions of a mean set for use
in footwear design. For a given size, footprint pressure images corresponding to
different individuals constitute our raw data. Appropriate footwear design needs
to have knowledge of some kind of typical footprint. Former methods based on
contour relevant points are highly sensitive to contour noise; moreover, they lack
repeatability because of the need for the intervention of human designers. The
method proposed in this paper is based on using mean sets on the thresholded
images of the pressure footprints. Three definitions are used, two of them from
Vorob’ev and Baddeley-Molchanov and one morphological mean proposed by
the authors. Results show that the use of mean sets improves previous method-
ologies in terms of robustness and repeatability.

Keywords: Mean set, morphological mean, footprint, footwear design

Introduction

Footprints have been used as a source of data for many different applica-
tions such as medical diagnosis, anthropometric studies and footwear design.
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Although foot printing techniques may be inadequate to determine the maxi-
mum values for many length and breadth foot dimensions [21], they allow the
calculation of a variety of parameters of interest for orthotic applications such
as the footprint angle, the foot contact area and the arch index [3]. On the other
hand, footprint and foot outline shape analysis has been used in anthropomet-
ric studies to establish foot-type classifications [2], to obtain average plantar
curves [7] and to detect sex or ethnic morphological differences [8]. Finally, a
systematic analysis of plantar foot-shape variation is necessary to identify the
critical parameters of the insole design, in order to ensure an adequate fitting
between insole and plantar foot shapes [20].

Detailed knowledge of footprint shape and dimensions implies the analysis
of averaged values and forms as well as the quantification of size and shape
variability. Both aspects of the quantitative description of footprint form, mean
values and variability, are crucial in design applications. Two main approaches
have been used for this purpose.

The easiest and most-used method is based on the measurement of metric
distances, areas, angles or ratios and the calculation of descriptive statistical
parameters such as mean, standard deviation or coefficient of variation. This
approach provides good information about the distribution of the univariate an-
thropometric but it has several limitations. Firstly, it needs the selection of a
set of landmarks and the use of a particular measurement protocol. The unsuit-
ability of landmark set selection or differences between measurement protocols
can generate results which are not comparable ([12], [13]). Moreover, this ap-
proach does not reflect the multivariate nature of strongly correlated variables
such as foot length, foot width and contact area, for instance [20]. An ade-
quate description of the whole footprint shape variability cannot be made by
quantifying the variability of a discrete set of variables, because distorted per-
centiles are obtained when they are estimated from each individual component
([4], [15]). In short, traditional methods originating from classical descriptive
statistics neither allow an efficient way to make shape analysis nor provide a
comprehensible description of human foot variability.

An alternative strategy is based on the mathematical analysis and quantifi-
cation of the whole footprint shape, although these methods are insufficient for
extracting and quantifying shape characteristics.

A first approach is based on dimensions or foot outline coordinates using
multivariate analysis techniques. The use of multivariate analysis techniques
in anthropometric foot description includes factor analysis and principal com-
ponent analysis [9],[5], multivariate discriminant analysis [16] or clustering
techniques [2]. A completely different approach uses Fourier descriptors to
represent outlines [10]. This technique allows a quantitative description of
footprint shape and its classification independently of size [17]. Finally, some
attempts to define averaged plantagram curves or foot outlines have been de-



Quantifying mean shape and variability of footprints using mean sets 457

veloped [6]. Despite the interest of these methods they are mainly focused on
grouping homogeneous clusters of population and on describing some aver-
aged characteristics, but no attempts to make a multivariate quantification of
human variability have been reported.

Thus, alternative techniques for providing realistic statistical shapes are
needed for footprint application in many fields like footwear design. In this
paper a method is presented that uses techniques from image analysis, and
particularly from mathematical morphology, that provide a coherent statistical
analysis framework including the determination of mean shapes and, in the
future, the identification of extreme shapes and confidence regions.

1. Mean shapes

Different definitions of the mean set of a random compact set can be found
in the literature, some of which are particularly important: the Aumann mean,
the Vorob’ev mean, the Baddeley-Molchanov mean and morphological means.
In this section, a brief review of their definitions is given. However, a more
detailed explanation appears in [19] for the Aumann and Vorob’ev means, [1]
for the Baddeley-Molchanov mean and [18] for morphological means.

Let Φ be a random compact set on 2n i.e. a random closed set taking values
in the space K of all compact subsets of 2n. In the first place let us introduce
Aumann’s definition of a mean set, based on the concept of support function.
Given a fixed set X , their support function is defined as

h(X, u) = sup{u ∗ x : x ∈ X} (1)

where u ∗ x denotes the inner product of u with x and u runs over the unit
circumference centred at the origin. The Aumann mean of Φ, EaΦ is defined
as the convex set with support function given by the expected value of the
random variable h(Φ, u) i.e.

h(EaΦ, u) = Eh(Φ, u). (2)

The Vorob’ev mean set is based on the thresholding of the coverage function
of Φ. The coverage function at the point x is defined as the probability of this
point belonging to the random set Φ, P (x ∈ Φ). Let

SpSS = {x ∈ Φ : P (x ∈ Φ) ≥ p}. (3)

The Vorob’ev mean set EvEE Φ is defined as SpSS 0 where p0 is chosen in such a
way that the area of SpSS 0 is equal to the mean area of Φ.

Baddeley and Molchanov proposed a new concept of mean set based on
their distance function representation. A good and detailed presentation with
many examples can be found in the original reference [1]. We have used the
modified version proposed in [11]. Let F ′ be the space of nonempty closed
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sets with hit-miss topology (see [14]) and let d : 2n × F ′ → 2 defined as
d(x, F ) = min {‖ x− y ‖: y ∈ F} where ‖ x− y ‖ is the Euclidean distance

between x and y. Let mW (F1FF , F2FF ) =
(∫

W

∫∫
(d(x, F1FF )− d(x, F2FF ))2dx

) 1
2 , where

W is a certain compact set (window). Suppose that d(x,Φ) is integrable for all
x and define the mean distance function d∗(x) = Ed(x,Φ). Let Φ(ε) = {x ∈
W : d∗(x) ≤ ε} with ε ∈ 2. The Baddeley-Molchanov mean of Φ, EbmΦ, is
the set Φ(ε∗) where ε∗ is chosen such that ν(Φ(ε∗)) = Eν(Φ).

Finally, morphological mean sets are defined by using basic set transfor-
mations taken from Mathematical Morphology (erosion, dilation, opening and
closing) to associate a stochastic process to Φ.

Let Φ be a random compact set and let W (the window) be a compact set
such that Φ ⊂ W . Let T be a compact structuring element containing the
origin. From this set, the family of homothetic sets to T will be considered.
A complete description of W can be obtained from all the erosions of W with
the family of λT ’s. A similar comment applies when erosion is replaced by
dilation, opening or closing.

Different random processes will be associated to W , corresponding to each
transformation. The first example will be based on erosion. Let Λe

Φ be
Λe

Φ(x) ≡ − sup{λ : x ∈ ελT (Φ) i.e., at each point x of W , the maximum
λ such that x belongs to the smaller (and smaller) ελT (Φ). An analogous
function is defined by using the dilation as Λd

Φ(x) ≡ inf{λ : x ∈ δλT (Φ).
By replacing erosion and dilation by opening and closing respectively, the
next two functions will be defined: Λo

Φ(x) ≡ − sup{λ : x ∈ γλT (Φ), and
Λcl

Φ(x) ≡ inf{λ : x ∈ ψλT (Φ).
Let ΛΦ(x) be any of the previous random processes, from now on simply

Λ-function. It will be assumed that ΛΦ(x) is integrable for all x ∈W and let

Λ∗
Φ(x) = EΛΦ(x). (4)

From the function Λ∗
Φ(x), we can define

Φε = {x : Λ∗
Φ(x) ≤ ε}. (5)

Let Φ be a random compact set and ΛΦ a random process associated to Φ.
Let E1(Φ) be the set Φε (Equation 5) where ε is chosen in such a way that

ε = min{ε′ > 0 : ν(Φε′) = Eν(Φ)} (6)

where ν(X) stands for the area of a set X . The set E1(Φ) will be called the
mean set associated with ΛΦ.

In the next section these definitions of means sets will be applied to the
binary images resulting from the thresholding of the pedigraphies of several
individuals with the same footwear size so as to summarise each size as a
typical shape that can be used for footwear design.
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Figure 1. Original grey images

The estimation of the Aumann and Vorob’ev means is simple from the def-
inition. For the other means we need to estimate Eν(Φ). From a sample
φq, . . . , φn, we take ˆEν(Φ) =

∑n
i=1

ν(φi)
n and the threshold level is estimated

iteratively.

2. Mean sets as summarised descriptions of footprints

A pedigraphy is a real function whose value at each point represents the
pressure exerted by the plantar area on that point when an individual stands on
his/her two feet. It is delivered by the capture device as a digital image with
a resolution of 450 × 200 and 256 pressure levels. Two typical images are
shown in Figure 1. For representation purposes, gray levels are chosen so that
brighter represents more pressure. These gray level images clearly have two
different elements of interest: the lightest represents the foot part which puts
the higher pressures the floor, and the other, of a medium grey level, represents
the external shape of the foot. An important difference between these two
typical images is worth noting: the inner part of the right-hand image is divided
into two unconnected shapes whereas the right-hand one is not divided. All the
images in our database are similar to one of these two types of footprints.

A procedure for the automatic extraction of the inner and outer shapes of
the footprint using image processing techniques has been devised and pro-
grammed, whose brief description follows.

Three main intervals for gray levels appear in the image: the darker one
(background), a brighter one (inner shape) and the brightest (outer shape)
which appear as peaks in the gray level histograms. A clear three-mode his-
togram suggests that two thresholds can be found to separate the regions; these
thresholds are taken as the gray levels which are the deepest minimum between
each pair of maxima, after the histogram has been convolved with a uniform
mask of size 10. A consistency check is done to ensure that the thresholds
are within the expected gray level range. Thresholding returns two binary im-
ages with the inner and outer shape. To smooth small irregularities that still
appear in the contour of both shapes due to noise, and to eliminate small inner
holes, two morphological operations are applied: first an opening with a binary
square of 3 × 3 pixel structuring element and then a hole closing. Results for
a typical case are shown in Figure 2. Visual inspection suggests that the ex-
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Figure 2. Segmented images obtained from those in figure 1 : outer (left) and inner (right)
shapes

Figure 3. Vorob’ev mean of footprints: outer (left) and inner (right) shape

tracted shapes match the real shapes quite well, but apart from the validation of
this procedure by a human expert, its value lies in its repeatability and unifor-
mity for many images, since no free parameters are used, which is a desirable
characteristic to assure a consistent comparison.

Once the binary images have been extracted the shape comparison can only
be made with aligned images. The alignment process is simply done by moving
and rotating the outer shape so that its centre coincides with a given point
(the centre of the image) and its main symmetry axes (calculated as the main
inertia axes) are respectively parallel to the image borders. Although simple,
this alignment procedure has proved to be sufficient for our purposes; a more
complicated method based on the detection and matching of relevant points in
the contour is being studied for future evaluation.

As we have explained earlier, different definitions of mean set have been
proposed in the literature. Among these different definitions we have se-
lected the Vorob’ev mean, the Baddeley-Molchanov mean and the one based
on morphological operators to be applied to our samples. The computed mean
Vorob’ev sets (outer and inner shape) for the group of images in our database
appear in Figure 3. The accuracy of the results of the outer mean set con-
trasts with the noisy characteristic of the inner mean set. The second definition
of mean set applied is the Baddeley-Molchanov mean. The computed mean
shapes are shown in Figure 4. If these results are compared with the previous
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Figure 4. Baddeley-Molchanov mean of footprints: outer (left) and inner (right) shapes

Figure 5. Comparison between mean sets: Vorob’ev (binary shape) and Baddeley-Molchanov
(red overlapped contour)

ones, it seems that the outer contours are very similar to each other. However,
the inner ones are quite different. The Baddeley-Molchanov mean set is made
up of two connected components whereas the Vorob’ev is made of just one.
Besides, the Baddeley-Molchanov mean set is much smoother, as can be seen
in Figure 5. Finally, we have applied the mean set definition based on mor-
phological operations. In particular, the erosion and opening operations have
been chosen for this experiment. The mean sets obtained with this definition
are shown in Figure 6. All these results, the inner and the outer mean sets, are
quite smooth, in contrast to the Vorob’ev mean set which seems a noisy version
of the inner contour. In order to compare the morphological mean sets when
different basic operations are used, the results have been overlapped over the
same image (see the third row of figure 6). Figure 7 shows all the computed
mean sets overlapped over one of the original images. As this figure illus-
trates, these shapes are an accurate representation of the set of shapes we are
dealing with, mainly of the outer contour, even though there are slight differ-
ences among the distinct mean sets. With respect to the inner shapes: some of
them have a smoother contour (Baddeley-Molchanov and Morphological mean
set), most of them have just one connected component whereas the Baddeley-
Molchanov mean set has two connected components. Small contour details are
not captured by any of the mean sets, as expected.

A numerical evaluation of these results is difficult, since there is no real or
correct result with which the means can be compared, and nor can it be gen-
erated from synthetic examples. Nevertheless, it is sensible to enquire which
of the three means is most similar to the shapes from which it has been ob-
tained. By analogy with the coefficient of variation in classical statistics (ratio
between standard deviation and mean) a parameter σ has been calculated as
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Figure 6. Morphological means using the erosion and opening operations respectively for
inner and outer shapes and overlapped contour (third row)

Vorob’ev Baddeley-Molchanov Morf-erosion Morf-opening
σ for outer shape 0.0269 0.0271 0.0288 0.0259
σ for inner shape 0.1318 0.1292 0.1393 0.1165

follows: first the symmetric difference between the mean shape and each sam-
ple has been taken, whose area will be called ai. The parameter σ given in
Table 6 is the ratio between the mean of the ai and the area of the mean of the
samples. Notice that for all the mean definitions we have used the area of the
mean shape is equal to the mean of the areas of the samples.

As can be seen from the table, the results are quite similar, which shows that
no definition of mean is clearly superior in terms of closeness to the original
samples. Therefore, subjective evaluations have had to be made by experts in
the area, who found the provided means much better than former numerical
procedures in terms of repeatability and adequacy for the purpose of footwear
design. In particular, it overcomes the unresolved issue of how to go from
numerical descriptors (mean area, mean perimeter and so on) to a real shape
that can be used as a footwear footprint. From amongst all the means, special-
ists gave the highest rank to the morphological mean by erosion for the outer
contour and to the same, but with dilation, for the inner contour.

Future work includes the comparison of numerical descriptors obtained
from the mean shapes with those obtained by doing classical statistics on the
values obtained from each individual using a large database of pedigraphies
that is currently being acquired.
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Vorob’ev mean set

Baddeley-Molchanov mean set

Morphological Mean set (erode)

Morphological mean set (opening)

Figure 7. Morphological means using the erode and opening operation respectively for the
internal shape

Notes
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Abstract A multidisciplinary methodology that goes from the extraction of features till the
classification of a set of different granites is presented in this paper. The set of
tools to extract the features that characterise the polished surfaces of granites is
mainly based on mathematical morphology. The classification methodology is
based on a genetic algorithm capable of searching for the input feature space
used by the nearest neighbour rule classifier. Results show that is adequate
to perform feature reduction and simultaneously improve the recognition rate.
Moreover, the present methodology represents a robust strategy to understand
the proper nature of the textures studied and their discriminant features.

Keywords: Granite textures, feature extraction, size-intensity diagram, feature reduction,
genetic algorithms, nearest neighbour rule classifiers.

1. Introduction

Natural ornamental stones are quantitatively characterised in many ways,
mostly physical, namely through geological-petrographical and mineralogical
composition, or by mechanical strength. However, the properties of such prod-
ucts differ not only in terms of type but also in terms of origin, and their vari-
ability can also be significant within a same deposit or quarry. Though useful,
these methods do not fully solve the problem of classifying a product whose
end-use makes appearance so critically important. Traditionally, the industrial
selection process is based on visual inspection, giving a subjective character-
isation of the appearance of the materials. Thus, one suitable tool to charac-
terise the appearance of these natural stones is digital image analysis. If the
identification of the features (colour, size/shape, texture) that characterise a
type of material may seem easier to list, the definition of a set of parameters to
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quantify those features becomes less evident. Those parameters have to clearly
characterise each feature for each type of material and should not be redundant.

Mathematical morphology disposes of a set of operators that can handle, in
an individual or in a combined mode, with the extraction of the textural fea-
tures of images in general [3, 12, 16], but also with ornamental stones in partic-
ular, namely related to their size/shape, dispersion/orientation and connectivi-
ty/neighbourhood. In the present case study, several morphological operators
were tested, but there is one that provides significant discrimination between
the different textures: it consists of the size-intensity diagram introduced by
Lotufo and Trettel [6], that combines both size and intensity information into
a single parameter.

In what concerns classification, if the features are significant and synthesize
correctly the real texture, a simple approach can be used. Thus, the nearest
neighbour rule (k-NNR) was considered to be used, since it is a simple but
powerful classification technique [4], even for a small number of training pro-
totypes. In that context, a method was envisaged to perform nearest neighbour
optimisation by genetic algorithms (GA) (i.e. via feature reduction). In the
basic nearest neighbour rule classifier, each sample (described by their fea-
tures) is used as a prototype and a test sample is assigned to the class of the
closest prototype [2]. It has been shown that in some cases a small number
of optimised prototypes can even provide a higher classification rate than all
training samples used as prototypes. Another approach consists in using ge-
netic algorithms based methods for searching the feature space to apply in
nearest neighbour rule prototypes, which is the case presented in this paper.
For instance, Brill et al. [1] used a k-NNR classifier to evaluate feature sets
for counter propagation networks training. Some other authors used the same
approach [14, 15] for another kind of classifiers.

2. Textures studied: Feature selection and extraction

A collection of 14 Portuguese grey granites with several samples per type
was constituted [10]. Although this commercial label includes the real grey
types, it also includes other similar colourless types (bluish, whitish and yel-
lowish, for instance). The samples of these types of granites used for the devel-
opment and testing of our research are 30 cm x 30 cm polished tiles. The digital
images were acquired (total set of 237 images) using a colour scanner with a
predefined regulation set for the brightness and the contrast parameters [10]
having a spatial resolution of 150 dpi and a spectral resolution of 2563 colours.
Sample images of each granite texture and respective description are presented
in figure 1 and table 1.

The extraction of features was initially envisaged to be implemented in a
two-stage approach: globally and locally. It consisted on the extraction of
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Figure 1. Collection of Portuguese granites (each image corresponds to a 4 cm x 4 cm region
of the original polished surface)

Table 1. Types of granites and number of samples available.

Code Acronym Name total training test
1 ALM Branco Almeida 20 16 4
2 ANT Cinzento de Antas 20 16 4
3 ARI Branco Ariz 8 6 2
4 ARIC Cinza Ariz 4 3 1
5 AZU Azulália 20 16 4
6 CAR Branco Caravela 20 16 4
7 COR Branco Coral 20 16 4
8 EUL Cinzento Sta Eulália 20 16 4
9 EVO Cinzento de Évora 20 16 4
10 FAV Favaco 15 11 4
11 JAN Jané 20 16 4
12 SAL Pedras Salgadas 10 7 3
13 SPI SPI 20 16 4
14 VIM Branco Vimieiro 20 16 4

TOTAL 237 187 50

features before and after the mineral phase segmentation, which corresponds
to global and local analysis, respectively.

The global analysis stage consists on the first attempt to characterise the
textures, and it is applied to the colour images before the segmentation or phase
classification procedure. The main idea, which was also the main expectation,
was that the features extracted could be sufficient to discriminate several types
of materials, being not needed to proceed to a local analysis stage. In fact, that
is what happened, since the classification rates obtained were excellent using
only these global features, like is shown in the following sections.
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Anyhow, at the local analysis stage, the segmentation of the mineral phases
(quartz, feldspars and biotite are the main occurrences) was also performed [9]
but the related parameters were not necessary to incorporate in the current
classification procedure.

Colour features

Consists of computing the Red (R), Green (G) and Blue (B) individual his-
tograms of the images. Due to the fact that this set of 14 types of granites is
of the colourless type (the colour histograms are mainly frequented around the
main diagonal of the RGB cube), a conversion to the Hue (H), Intensity (I)
and Saturation (S) colour system was performed in order to enhance unnoticed
details. These individual histograms (H, I, S) are this way the colour features
to be used. Since the total number of features may pose some computational
problems a reduction of the number of features was envisaged without filter-
ing their global characteristics. This way, the initial 256 classes per band were
reduced to 8 classes of equal frequency (8 octils), i.e., the number of observa-
tions that occur in each interval or class is the same, but their length is variable.
The minimum value of each band was also retained. Thus, the colour features
consist of 27 values: 3*(8+1).

Size features

In what concerns the size of the mineralogical components of the gran-
ites, a size distribution can be directly achieved through the grey level images.
The size distribution by grey level granulometry is computed through morpho-
logical openings or closings of increasing size acting simultaneously over all
phases present in the image. The opening and the closing have granulomet-
ric properties [7] once are increasing, extensive (closing) and anti-extensive
(opening) and idempotent [12] and reflect the size distributions of the lighter
and darker minerals, respectively, present in the samples.

Besides the information related to size given by the classical grey level gran-
ulometry (measure of the volume), another measure can be achieved by asso-
ciating it to the distribution of the grey levels. This measure was originally
introduced by Lotufo and Trettel [6] and consists on the computation of the
grey level distribution for opened or closed images of increasing size. The re-
sulting diagram is of bidimensional type and incorporates this way both size
and intensity or grey level information. This diagram is built using a fam-
ily of openings or closings of increasing size using the cylindrical structuring
element B(r, k) of radius r and height k.

The size-intensity diagram by openings γ of a function f , SIγ
fI (r, k), is de-

fined as [6]:

SIγ
fI (r, k) = A(γB(r,k)(f)) (1)
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where A(f) is a measuring function of the number of non-zero pixels of f :

A(f) = Meas{x ∈ Z2 : f(x) �= 0�� } (2)

Similarly, this diagram is also defined for closings ϕ of increasing size [6]:

SIϕ
fI (r, k) = A(ϕB(r,k)(f)) (3)

The size-intensity diagram has granulometrical properties because it satisfies
Matheron axioms extended to two parameters. For the opening/closing of r =
0, the column SIfI (0, k) of the size-intensity diagram corresponds to the grey
level distribution of the initial image. It can also be shown that each row (fixed
k, varying r) of the size-intensity diagram gives the granulometry of the binary
image thresholded at level k [6].

The different evolution of each granite texture by application of openings
or closings of increasing size is clearly marked and results in distinct size-
intensity diagrams. The evolution of the image textures by application of open-
ings and closings is illustrated on the Intensity channel (I) of three granite types
(ALM, EVO and FAV) in figure 2. The respective diagrams are plotted in fig-
ures 3 (for openings) and 4 (for closings) and show distinct behaviours.

The initial features selected were again reduced. For each opened or closed
image of the Intensity channel, we considered only 8 octils (8 classes of equal
frequency) and the respective minimum value. This way, it were considered 5
opened and 5 closed images per sample using structuring elements of sizes 3,
6, 9, 12 and 15. Thus the number of features in this case is 90: 2*5*(8+1).

To sum up, the total number of features per image to be used by the classifier
is 117: 27 are related to colour and 90 are related to size.

In the following, from the features extracted in each granite image, one
training and one testing sets were build, whose exact number of samples per
type is presented in table 1. On the overall, the test set is composed by 50
random chosen and independent images representing the 14 different types of
granites while the training set is constituted by the remaining 187 samples.
This way, the training set is represented by a matrix of 187 lines (187 images
representing 14 different types of granites) and 117 columns (117 features).

3. Classification with the k-Nearest Neighbour Rule

Nearest neighbour rule (NNR) methods are among the most popular for
classification. They represent the earliest general (non-parametric) methods
proposed for this problem and were deeply investigated in the fields of statis-
tics and pattern recognition. Recently renewed interest on them emerged in
the connectionist literature ("memory" methods) and also in machine learn-
ing ("instance-based" methods). Despite their basic simplicity and the fact
that many more sophisticated alternative techniques have been developed since
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Figure 2. Application of openings/closings of increasing size.

Figure 3. Size-intensity by openings for granites ALM (left), EVO (centre) and FAV (right).

Figure 4. Size-intensity by closings for granites ALM (left), EVO (centre) and FAV (right).

their introduction, nearest neighbour methods still remain among the most suc-
cessful for many classification problems.

The k-NNR assigns an object of unknown class to the plurality class among
the k labelled "training" objects that are closer to it. Closeness is usually de-
fined in terms of a metric distance on the Euclidean space with the input mea-
surement variables as axes. Nearest neighbour methods can easily be expressed
mathematically. Let x be the feature vector for the unknown input, and let m1,
m2, ..., mc, be the templates (i.e., perfect, noise-free feature vectors) for the
c classes. Then the error in matching x against mi, is given by the Euclidean
norm ‖ x−mi ‖. A minimum-error classifier computes the norm for i = 1, c
and chooses the class for which this error is minimum. Since ‖ x − mi ‖ is
also the distance from x to mi, this a minimum-distance classifier. Naturally,
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the n dimension Euclidean distance d of x (n dimensional feature vector) to a
training sample m, is:

d =

√√√√√√√√√√ N∑
i=1

(xi −m)2 (4)

The previous approach may be extended to the k-nearest neighbour rule (k-
NNR), where we examine the labels on the k-nearest samples in the input
space and then classify them by using a voting scheme. Often in c = 2 class
problems, k is chosen to be an odd number, to avoid ties. Other significant
concerns and possible extensions include the use of a rejection option in in-
stances where there is no clear winner, and the finite sample size performance
of the NNR. Given a vector x and a training set H , whose cardinality may be
large, the computational expense of finding the nearest neighbour of x may be
significant. For this reason, frequent attention has been given to efficient al-
gorithms. The computational savings are typically achieved by a pre-ordering
of samples in H , combined with efficient (often hierarchical) search strategies
(for extended analysis see [17]).

In order to compare results of our case study, 1-NNR and 3-NNR were im-
plemented using the constructed training set for granite classification (i.e., with
all 117 features). The best results in terms of successful recognition were of
98% and gives respect to 1-NNR. In global terms, recognition errors occur
between VIM and SAL samples.

4. Feature space reduction via genetic algorithms

In order to reduce the input feature space, and hypothetically improve the
recognition rate, Genetic Algorithms (GA) were implemented. The idea is to
reduce the number of features necessary to obtain at least the same recogni-
tion rates. GA [5, 8] are search procedures based on the mechanics of natural
selection and natural genetics. The GA were developed by J. Holland in the
1960’s to allow computers to evolve solutions to difficult search and combi-
natorial problems, such as function optimisation and machine learning. The
basic operation of a GA is conceptually simple (canonical GA): (i) To main-
tain a population of solutions to a problem: (ii) To select the better solutions
for recombination with each other and (iii) To use their offspring to replace
poorer solutions.

The combination of selection pressure and innovation (through crossover
and mutation - genetic operators) generally leads to improved solutions, often
the best found to date by any method [5, 8]. For further details on the genetic
operators, GA codification and GA implementation, the reader should report
to Sethi [13]. Usually, each individual (chromosome; pseudo-solution) in the
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population (say 50 individuals) is represented by a binary string of 0’s and 1’s,
coding the problem which we aim to solve.

In our case study, the aim is to analyse the combinatorial feature space im-
pact on the recognition rate of nearest neighbour classifiers. In other words,
the GA will explore the N < 117 features of the training set and their combi-
nations. An efficient genetic coding for a feature sub-space is then represented
by each GA individual, i.e. an hypothetical classification solution, via a re-
duced group of features. The GA fitness function is then given by the 1-NNR
classifier recognition rate and by the number of features used on that specific
NNR. In that way, for each GA generation and for each individual (pseudo-
solution) is then performed the nearest neighbour classification. The results
are then used on the GA again. The algorithm proceeds their search until a
stopping criterion is achieved. After convergence, the final solution points out
which features among 117 can maximise the fitness function. The overall GA
search space is given by the set of all combinations of 116 features in 117, plus
the 115 features in 117, plus all combinations of 2 features in 117. For the i
individual the fitness function can be expressed as:

fit(i) = αhits(i)− βnf(i) (5)

where α and β are real valued constants (α+β = 1), and hits(i) represents the
number of images well recognised among the testing set, and nf(i) the number
of features used in the NNR classification. The representation (GA coding) for
each solution is then achieved by means of a 117 bit long binary string, i.e., if
the nth bit is 1, then the nth feature is used on the NNR classification; if not (=
0), that specific feature is not used on the classification.

The results obtained are excellent. In fact, not only the overall recognition
rate was improved, but also the number of features necessary for increasing that
value was substantially reduced. It was possible to improve the recognition rate
by 2%, achieving this way the maximum of 100% (all the samples of all types
of granites were correctly classified) and simultaneously reduce the number
of important features from 117 to 3 (representing a reduction of 97%). The
three features selected by the GA to reach the maximum rate correspond to
feature #70 (6th octil of the opening of size 5), feature #101 (1st octil of the
opening of size 9) and feature #112 (3rd octil of the opening of size 10). The
corresponding pairs of scatterplots resuming the 3D mapping are presented in
figure 5.

In addition, we have tested our approach by studying two types of non-
Portuguese granites. The additional samples (4 of each type) were submitted
to the same previous procedure and the same features were used to plot the
samples in the same feature space. Like is graphically demonstrated (see fig-
ure 6) the location of all of those samples of non-Portuguese granites is far
enough from any of the previous clusters which prevents any misclassification.
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Figure 5. 2D scatterplots resuming the 3D mapping by pairs of features: #101 vs. #70 (left),
#112 vs. #70 (centre) and #112 vs. #101 (right).

Figure 6. Zoom of feature space (features #70 vs. #101) with the location of the non-
Portuguese granites in relation to the closest portuguese types.

5. Conclusions

Size-intensity diagram revealed to be appropriate to describe granite tex-
tures due its isotropic textural characteristics. On this context, this methodol-
ogy points out the sub-features that are really important for successful discrim-
ination. This way, it is possible to understand rigorously and to improve the
knowledge on the proper nature of the structures we are working with.

Results show that this hybrid strategy is highly promising. Moreover, com-
putation can still be reduced using new types of algorithms, strictly involved
on the computation of nearest neighbours (as said before, typically achieved
by a preordering of samples in the input space). However, this time is spent
only once, i.e., on the training phase. After that, its possible to classify images
based on a reduced number of features, improving real time computer calculus
on nearest neighbour relations, since the dimension of the feature space was
significantly reduced.

Finally, the study of the visual aspect of the samples may also have a practi-
cal and direct industrial application for controlling counterfacting actions as it
may be a useful tool to prevent products of different origins to be confounded.
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Abstract Mathematical morphology tools have already been applied to a large range of
application domains: from 2d grey-level image processing to colour movies and
3D medical image processing. However, they seem to have been seldom used
to process 3D seismic images. The specific layer structure of these data makes
them very interesting to study. This paper presents the first results we have ob-
tained by carrying out two kinds of hierarchal segmentation tests of 3D seismic
data. First, we have performed a marker based segmentation of a seismic ampli-
tude cube constrained by a picked surface called seismic horizon. The second
test has consisted in applying a hierarchical segmentation to the same seismic
amplitude cube, but this time with no a priori information about the image struc-
ture.

Keywords: 3D seismic data, mathematical morphology, hierarchical segmentation

Introduction

The application of image processing techniques to seismic 3D data has al-
ways been impaired by the huge volume of these data. However, recent algo-
rithms and hardware performance improvements can partly solve this problem
and seismic imaging is a domain that is expanding at present.

To our knowledge, morphological tools have been very rarely applied to 3D
seismic data. This paper describes the first promising results of the application
of morphological segmentation to seismic data.

The first section of the paper is devoted to the presentation of some generic
information about seismic acquisition and processing techniques. In the second
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section, we briefly describe the morphological tools we have used to achieve
our tests. The applications of these tools to seismic data and their results are
also presented in this section.

1. Seismic imaging

Seismic reflection

Seismic images result from acoustic propagation techniques. A surface
source generates an acoustic signal into the subsurface of the earth. The signal
propagates in the subsurface and is partly reflected by interfaces between rock
layers of different acoustic impedance. The intensity of the reflected signal is
proportional to the intensity of the impedance contrast. The residual part of
the signal that is not reflected is transmitted and continues to propagate in the
subsurface until it is reflected and transmitted by a new impedance contrast
interface, and so on. The reflected part of the signal is recorded by several
sensors located on the surface. This recorded information is processed, lead-
ing to an intensity - called amplitude - image of the subsurface. An interesting
"echography" is then available thanks to this acquisition and processing tech-
nique. More information on seismic reflection techniques can be found in [8].

For years seismic data processing has been connected with image and signal
processing. Among the techniques applied to seismic images, we find, for
example, region growing and wavelet analysis [2, 7] which have been tested
only on 2d data sets. On the contrary, mathematical morphology seems to have
been rarely used to process seismic images.

3D seismic images

Common seismic 3D images are 16 bits amplitude images. They often con-
tain several hundred millions of samples. A seismic image is defined by three
main axes. The two horizontal ones are called inline and crossline. They cor-
respond respectively to the acquisition direction and to the direction perpen-
dicular to the acquisition direction. The vertical axis represents time (more or
less equivalent to the recorded time of the reflected signal) or depth (after time
to depth conversion).
As these images typically correspond to sedimentary underground, they are
composed by a sequence of high intensity and low intensity surfaces roughly
horizontal, called seismic horizons, which can be cut by faults (see figure1(a)).

Seismic Horizon

For the first test, we have chosen to work more specifically on a seismic
interpretation context: horizon picking. Considering seismic amplitude im-
ages as grey level images, horizon picking consists in extracting continuous
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extreme grey surfaces corresponding to impedance contrast interfaces. These
continuous surfaces are called seismic horizons.

Data

The data we have used for the tests are on the one hand a 500 megabytes
seismic amplitude cube (16 bits coding) (figure 1(a)(( ), on the other hand a seis-
mic horizon (figure 1(b)(( ). We will see in the next section how it has been
generated. We must add that, as the seismic amplitude cube is very noisy, we
expected some doubtful results from the first segmentation test.

(a) Amplitude data set (b) Horizon

Figure 1. Data

2. Segmentation with markers applied to seismic images

Markers based segmentation

Normally, the flooding used to produce a watershed starts from the image
minima. The use of markers allows to impose the flooding sources. The re-
sulting watershed separates the markers. This segmentation method was intro-
duced by Beucher [1].

Tests and results

This first test consists in segmenting the seismic data cube into two regions
using the seismic horizon segmented by an expert, called the reference horizon.
We compare the limit separating the two regions of the segmentation with the
reference horizon.
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Justification. The watershed algorithm can provide the brighter and more
continuous surfaces of an image. As previously mentioned, energy and con-
tinuity are the criteria chosen by interpreters to pick horizons from a seismic
amplitude image. The objective of this test is to compare the precision of the
horizon picked by a specialist with the result of the watershed. It justifies the
use of the watershed algorithm for a horizon picking context.

Horizon picking technique. Main horizon picking techniques are semi-
automatic. Interpreters control their interpretation by picking by hand some
points of a targeted horizon. Being performed in 3D, one of the interpreter
challenges is to ensure the spatial coherency of the interpretation. Manually
picked points are considered as input seeds for an automatic horizon picking
algorithm that fills the areas between points according to energetic and conti-
nuity criteria, sometimes under geometrical constraints. Generally, automatic
picking algorithms are propagation algorithms. The horizon is built step by
step, growing from the seeds, by searching in the image for the path of maxi-
mum energy and continuity - more or less the best spatial correlation way. The
seismic horizon we used for our test is the result of the application of such a
semi-automatic picking algorithm applied to our seismic amplitude cube. We
call it the reference horizon.

Markers computation. Our first test consisted in segmenting the seismic
amplitude image into two regions using a marker based segmentation. We
wanted the limit separating the two regions to correspond to the interpreted
horizon. For that purpose, we needed two markers. We obtained them from
the reference horizon. First, we dilated the reference horizon to define the work
area. Then we inversed the image to create the complementary region of the
work area, only the minima being labelled. Figure 2 explains the different
steps of this markers computation.

Results and comments. The marker based segmentation is performed us-
ing the watershed algorithm. Results are very encouraging. In figure 3 we
compare the reference horizon and what we call the watershed horizon. The
coordinates of the pictures are the inline and the crossline and the grey level
gives the altitude of the horizon at the considered point. A first quick look
does not reveal major differences between the reference horizon and the wa-
tershed horizon (figure 3(a) and (b)(( ). But the difference map (figure 3(c)(( ) is
very instructive. It shows two main areas. The first one is a triangle observed
in the northern part of the map. The second one is located in the south-western
part of the map with differences higher than 20 mstwt (milliseconds two ways
time). Several other small size differences are observed over the map.
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(a) Initial image (b) dilated image (c) inverse image (d) labeled image

Figure 2. Marker obtention (illustrated in 2d; performed in 3D)

(a) Reference horizon (b) Watershed horizon (c) Difference map

Figure 3. Horizons comparison

In figure 4(a) a section (inline 500) from the triangle region is shown. The
watershed horizon appears in white and the reference horizon in black. It
shows that the picking strategy is different in the triangle area from the rest
of the map. The reference picking is focused on the maximum of amplitude
everywhere except in the triangle area where it seems to be 4 mstwt above that
maximum.

Figure 4(b) shows a section (crossline 360) which crosses the main horizon
difference area in the south-western part of the field. It is obvious that these
differences are due to a phase shift of the reference horizon. While the water-
shed horizon follows the continuous maximum of the amplitudes, the reference
horizon jumps to an above maximum phase.
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(a) Inline500

(b) Crossline360

Figure 4. Example of horizon differences

Given the vertical resolution of the seismic amplitudes, a small horizon pick-
ing difference can have a non negligible impact on the extracted amplitudes
map. The extracted amplitude maps corresponding to the two horizons seem
to be the same from a simple eye analysis. The difference map (figure 5(b)(( )
is more instructive. It reveals high amplitudes differences in the triangle area.
The normalized map (figure 5(c)(( ), corresponding to the ratio difference abso-
lute value / reference amplitude absolute value, shows mean differences higher
than 20% and locally higher than 50%. Amplitude differences in the south-
western zone are not relevant as they do not correspond to the same seismic
event for the reference horizon and the watershed horizon.

This first test has allowed to highlight some interesting differences between
a picked reference horizon and the segmentation horizon associated with it.
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(a) (b) Difference map (c) Normalized map (d)

Figure 5. Analysis

Phase jump and small deviation of the reference horizon are observed. The seg-
mentation approach seems to be very powerful to localise and quantify these
kind of anomalies.

3. Hierarchical segmentation applied to seismic images

For the second test we have applied the hierarchical segmentation using the
watershed algorithm to the seismic amplitude cube. And we have played with
the different levels of the hierarchy.

Hierarchical segmentation enables the control of the segmentation process.
Regions defined by the hierarchical segmentation are classified according to a
given criterion. The number of displayed regions is freely chosen. A series
of tests has shown that the volume of catchment basins criterion gives the best
results, therefore we have adopted it.

Morphological hierarchical segmentation

The hierarchical segmentation we have adopted was proposed in [3], [6],
[9]. Its principle is to provide, in addition to the segmentation itself, a hierar-
chy between the catchment basins. To perform a hierarchical segmentation, we
start with the minima of our grey-level image. These minima are considered as
the flooding sources of the image. Each minimum represents one leaf of a tree
and all minima are labelled with a different value. Then the image is flooded
from the minima and each time two basins merge, the corresponding nodes



482 MATHEMATICAL MORPHOLOGY: 40 YEARS ON

are linked by a valued edge. The value of the edge corresponds to the merging
criterion chosen (the smallest depth, surface or volume of the merging basins,
for example). At the end of the flooding, we have a complete tree and we can
choose the level of segmentation we want (the number of regions we search
for). The resulting image comes from the progressive cutting out of the edges
of the tree which have the highest value. It results in a number of subtrees
equivalent to the aimed number of regions.

Application

Global segmentation . We have applied the hierarchical segmentation using
the watershed algorithm to the seismic amplitudes image with several hierar-
chy levels. With a low hierarchy level, the majority of the bright horizons is
detected. With a higher hierarchy level, only the brightest horizons appear (see
figure 6(a)). We can notice that the interface between layers is sometimes not
continuous. This is due to the presence of "leaks" during the segmentation
flooding step. Most of the time, these "leaks" are due to the presence of faults
which introduce discontinuity into seismic layers. Then, the catchment basins
related to the layers merge at a lower level in the hierarchy. The watershed
between the two areas appears only at a lower hierarchy level. However these
results may be difficult to interpret because no operational context has been
defined for that test.

Cylinder segmentation . To avoid "leak" problems during the watershed
flooding in a horizon extraction context in a seismic cube image, we have de-
cided to divide the initial image into vertical square based cylinders and seg-
ment each cylinder separately. Since these cylinders are perpendicular to the
seismic layers, most of these layers are continuous across each cylinder except
in the ones containing "leaks". The watershed flooding is then not problematic
anymore in the "leak" free cylinders and the layers are well segmented. As
a consequence, the resulting well defined horizons are well detected and the
problem due to the "leaks" are restricted to certain cylinders. When all the
cylinders are segmented, we obtain many horizon pieces which are not neces-
sarily connected. It remains to connect them.

The natural solution to connect the cylinders is the use of overlapping cylin-
ders: instead of computing a watershed on adjacent cylinders, we compute it
on cylinders shifted at each step of less than one cylinder size. The resulting
horizon pieces increment an accumulator. At the end, a simple threshold on
this accumulator gives the connected horizons. An example of cylinder over-
lapping result is presented in figure 6(b).
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(a) 50 regions (b) Picked horizons by means of a segmentation
with overlapping cylinders

Figure 6. Segmentation with cylinders (image size 400 * 500)

Algorithm Performance

The algorithm we use for the watershed is based on hierarchical queues [4].
This fast algorithm makes the segmentation of several hundred megabytes seis-
mic cubes operational. The hierarchy is described with a minimum spanning
tree [5], which allows real time interaction with the hierarchy. The cylinder
strategy improves the computation times and reduces memory management
difficulties induced by one block seismic cube processing. We give two exam-
ples of hierarchical segmentation computation time of a 500 megabytes seismic
cube (coding 16 bits) on a 3GHz PC :

1 divided in 4 cylinders : 45 minutes;

2 divided in 12 cylinders with an overlapping rate of half cylinder size : 1
hour.

4. Conclusion

The application of mathematical morphology tools to seismic images leads
to very encouraging results. These results show that morphological tools are
relevant for seismic image processing. Segmentation appears to work well on



484 MATHEMATICAL MORPHOLOGY: 40 YEARS ON

such images thanks to the layer structure that makes the processing simpler
and more effective with the help of cylinders dividing the image. On another
side, not only hierarchical segmentation makes it possible to extract the well
defined objects from the image but it provides a control on the precision of
the segmentation. This interaction is still at the beginning of its development
but further work should lead to a real interactivity concerning the manipula-
tion of the hierarchy. Finally, the running time criterion – which is important
when processing large size images – appears to be good in comparison to other
techniques of seismic images processing.
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