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Abstract: Matrix metalloproteinases (MMPs) are a family of metalloendopeptidases that induce remodelling of 
extracellular matrix (ECM) and differentially cleave many soluble mediators that regulate cell physiology. 
Due to their matrix-degrading capabilities and elevated expression levels in both neoplastic and host cells in 
human cancer, MMPs have acquired considerable attention as targets for anti-cancer therapy. This chapter 
summarizes two decades of research examining MMP biochemistry and biology utilizing in vitro cell-based 
and biochemical analyses, more recent examination of their functional significance in de novo mouse models 
of human cancer development and results from human clinical trials where MMP inhibitors were evaluated 
for efficacy as anti-cancer therapeutics. 
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1. INTRODUCTION 

Cancers develop in a multistep manner and 
evolve through distinct histopathological stages 
characterized by significant changes in cellular and 
acellular organization and phenotype. While it is 
clear that initiating events involving activation of 
oncogenes and inactivation of tumour suppressor 
genes are essential for cancer development (1-3), 
extrinsic changes involving the neoplastic 
microenvironment fundamentally contribute to and 
aid progression to the tumour state. Thus, cancer 
development can be viewed as a collaboration 
between initiated neoplastic cells and 
activated/responding “host” cells (fibroblasts, 
inflammatory cells and cells composing the 
vasculature) and the dynamic microenvironment in 
which they live (4-10).  

Autocrine and paracrine interactions between 
cellular and acellular components within developing 
tumours enable enhanced proliferative capacity, 
activation and persistence of angiogenesis and 
lymphangiogenesis, evasion of cell death programs 
and ectopic tissue growth capabilities (4). Many of 
these cellular programs are modulated by the actions 
of a family of secreted and cell surface enzymes, 
e.g., matrix metalloproteinases (MMPs), a family of 
zinc-dependent proteinases originally identified for 
their ability to cleave extracellular matrix (ECM) 
components in vitro (11). Since their original 
identification as ECM-degrading enzymes, the 
known biological activities of MMPs has expanded 
and now encompasses liberation of ECM-
sequestered growth factors (12), activation of 
inflammatory chemoattractants (13) and ligands 
regulating apoptosis (14), and inactivation of ligand-

G. G. Meadows (ed.), Integration/Interaction of Oncologic Growth, 81-126.
© 2005 Springer. Printed in the Netherlands.  



82 Chapter 6

binding proteins modulating proliferation (15). 
Consistent with these multiple roles for MMPs 
during neoplastic progression, correlative studies on 
human cancers have revealed that elevated MMP 
mRNA levels are associated with higher tumour 
staging and worse clinical outcome (16, 17). 
Moreover, MMP loss-of-function and gain-of-
function studies utilizing mouse models of human 
cancer development have revealed that MMPs are 
functionally significant potentiators of 
carcinogenesis (12, 18-21). This chapter focuses on 
the complexity of interactions during cancer 
development involving MMPs and reviews recent 
findings where the functional significance of MMPs 
during neoplastic progression has been addressed 
experimentally. 

2. MMP STRUCTURE AND 

FUNCTION

MMPs belong to the super-family of metzincins 
metalloendopeptidases (11, 22, 23). To date, ~ 26 
human secreted or transmembrane MMPs have been 
identified (Figure 1) (24-26). Vertebrate MMPs each 
have distinct, but often overlapping, substrate 
specificities and collectively possess enzymatic 
activity against virtually all ECM components (24, 
26, 27). In addition to their dependence on zinc and 
calcium, MMPs share several other common 
features. Individual MMPs have been variously 
named, grouped and subdivided based on their 
substrate specificities and the presence or absence of 
specific functional protein domains (Figure 1). 

2.1 MMP Structure 

Like many other classes of proteolytic enzymes, 
MMPs are first synthesized as inactive proenzymes 
or zymogens. They are found as either secreted or 
cell surface enzymes sharing several highly 
conserved domains, including a pre- and pro-peptide 
domain, a catalytic domain containing a zinc atom 
binding site, as well as several other structural 
domains believed to facilitate specific interactions 
with substrates and/or other target molecules (11, 24, 
25, 28).

With the exception of MMP-7, -26 and the type 

II transmembrane MMP, MMP-23, all MMP family 
members contain the carboxyl-terminal 
hemopexin/vitronectin-like domain. Several 
functions have been ascribed to this domain 
depending upon the specific MMP family member. 
The hemopexin domain in proMMP-2 and -9 is 
thought to mediate interactions with specific 
proteinase inhibitors (28), while in MMP-1 and -8 
this domain is associated with inhibitor as well as 
substrate binding (28). With regards to substrate 
specificity, the hinge region that links the 
hemopexin and catalytic domains, may play a major 
role. Whereas the hinge region is variable in length 
and composition among family members, MMPs 
that are able to degrade fibrillar collagens (MMP -1, 
-8, -13, -14) contain a hinge region of distinct size 
and composition (25). Structure-function studies 
have confirmed the substrate specificity dictated by 
this region (29). The catalytic domain for all MMP 
family members contains three conserved histidines 
that coordinate the zinc ion in the active site (30). 
While MMP-2 and -9 contain these conserved 
histidine amino acid residues within their catalytic 
domains, they also contain a 182 amino acid 
insertion in this domain homologous to the collagen-
binding region of fibronectin. This region is required 
for gelatinolytic activity as well as the collagen 
binding properties of MMP-2 (31, 32). 

The seven different membrane type MMPs (MT-
MMPs) are anchored to the cell membrane either by 
a transmembrane type I domain, a 
glycosylphosphatidylinositol (GPI) domain or a type 
II N-terminal signal domain containing a unique C-
terminal cysteine array and an Ig-like domain (33). 
These distinct membrane-anchoring domains are 
thought to regulate location and activity of MT-
MMPs (34).  In addition, several MMPs contain 
small domain inserts that contribute to specific 
functions. For example, MMP-11, 14-17, 21-25 and 
–28 harbor furin-like inserts within propeptide 
domains that enable activation intracellularly by pro-
protein convertases, Ca2+-dependent serine proteases 
of the subtilisin group (furin/PACE) (35). In 
summary, although MMPs share functional domains, 
structural differences exist such that MMPs can be 
classified into eight categories (Figure 1). These 
differences are responsible in part for the variety of 
biological processes that MMPs are involved in. 
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Figure 1. MMPs can be classified into eight groups based on their domain organization.  Pre: signal sequence; Pro: zinc-
interacting sulfydryl (SH) group containing propeptide; Fu: furin-susceptible site; Vn: virtonectin-like insert; zinc-binding 
site (Zn) containing catalytic domain; F: collagen binding fibronectin type II insert; H: hinge region; Hemopexin-like 
domain with the first and last repeat linked by a disulfide bond; TM: transmembrane domain; C: cytoplasmic tail; GPI: 
glycophosphatidyl inositol-anchoring domain; C/P-rich IL-1R-like: cysteine/proline-rich interleukin-1 receptor domain. 
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2.2 Regulation of MMP activity 

The zymogen forms of MMPs are inactive.  
Crystallographic studies have confirmed that 
enzyme latency is due to coordinate bonding 
between the active site zinc atom with an unpaired 
cysteine thiol group located near the carboxyl end of 
MMP propeptides (36). Activation of zymogens is 
tightly controlled owing to cell-type specific 
expression characteristics, as well as post-
translational regulation at the levels of zymogen 
activation, interaction with endogenous inhibitors 
and spatial constraints in pericellular 
microenvironments (25, 28, 37).  

2.2.1 Transcriptional regulation of MMPs 

In quiescent tissue, MMPs are typically 
expressed at low levels or more commonly 
transcriptionally silent. However, upon induction of 
tissue remodelling, MMP expression is rapidly 
induced by cytokines and polypeptide growth 
factors, e.g. interleukin (IL)-1, tumour necrosis 
factor (TNF)-α, vascular endothelial growth factor 
(VEGF), transforming growth factor (TGF)-β,
epidermal growth factor (EGF), glucocorticoids, 
phorbol esters and collagen-induced signalling 
through receptor tyrosine kinases (discoidin domain 
receptors (DDR) 1 and 2) (38-42). A well-studied 
example of these processes is the induction of 
MMP-2 and -9 expression by TNF-α (43-46).  Upon 
binding to its receptor, TNF-R55, TNF-α activates 
protein kinase R (PKR) to induce transcription of 
MMP-2 and -9 via phosphorylation of NF-κB, c-jun, 
c-fos and AP-1 (43-46). The importance of this 
pathway in regulating MMP expression is 
highlighted by the significant reduction in skin 
tumours induced by TPA (12-O-
tetradecanoyolphorbol) in c-jun homozygous null (c-
jun-/-) mice (46). Alternatively, induction of MMP 
mRNA expression can be regulated as a result of 
varied interactions between ECM and pericellular 
collagens with plasma membrane spanning receptor 
tyrosine kinases, specifically discoidin domain 
receptor (DDR) 1 and 2 (47, 48).  DDR1 is activated 
by types I, IV or V collagens, is expressed primarily 
in epithelial tissues and has been implicated in 

neoplasms such as breast cancer and glioblastomas 
(49). DDR1 regulates chemokine production in 
tissue infiltrating macrophages via p38 mitogen-
activated protein kinase (50). In addition, studies 
using DDR1-/- transgenic mice indicate that DDR1 
activation is required for MMP-2 mRNA expression 
in both invading macrophages and leukocytes (41, 
51). DDR2 on the other hand is expressed in 
mesenchymal cells and in fibroblasts surrounding 
DDR1 positive tumour cells (52, 53). DDR2-/-

transgenic mice and real time PCR studies have 
shown that DDR2 regulates MMP-1 and -2 
expression in fibroblasts (42, 47). In summary, 
MMP mRNAs during neoplastic progression are 
regulated by diverse intracellular signalling 
pathways that reflect rapidly changing dynamic 
interactions between cells and their immediate 
microenvironments; thus, functionally linking MMP 
expression and tissue remodelling with the needs of 
expanding tumours.  

Expression levels of MMP mRNAs can also be 
effected by single-nucleotide polymorphisms (SNPs) 
present within MMP promoter regions (54). These 
polymorphisms contribute to individual differences 
in MMP transcription and are associated with 
increased susceptibility to cancer (54). For instance, 
insertion of an additional guanine residue in the 
MMP-1 promoter results in significantly higher 
levels of MMP-1 mRNA (55). Clinical studies have 
shown that a significantly higher proportion of 
ovarian and colorectal cancer patients carry this 
polymorphism suggesting it as a risk factor for poor 
prognosis (56). 

2.2.2 MMP activation by propeptide 

proteolysis

There are several distinct mechanisms by which 
MMP zymogens are activated.  The first involves an 
inter-molecular proteolytic reaction known as the 
“cysteine switch” (57, 58). The consensus 
PRCGXPDV motif in MMP propeptide domains 
contains a cysteine-sulphydryl group that binds to 
Zn2+ ions in the active site of the N-terminal 
catalytic domain, thus preventing proteolytic activity 
(25). When interactions between the Zn2+ ion and the 
cysteine-suphydrl group are destabilized, either by 
chemical or physical means, proteolytic cleavage 
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occurs at the carboxy terminal side of the 
PRCGXPDV consensus motif (11, 59) resulting in 
irreversible loss of the cysteine residue allowing 
further intra/intermolecular proteolysis generating a 
fully active enzyme (60). In cell-free systems, the 
cysteine-zinc atom interaction can be interrupted by 
organomercurials and chaotropic agents. 
Alternatively, limited proteolysis of the propeptide 
destabilizes the cysteine-zinc bond. Interruption of 
the cysteine-zinc bond by any means, results in 
conformational changes rendering the “switch” 
open. Following opening, autocatalytic or 
proteolytic cleavage of the remainder of the 
propeptide yields a truncated and catalytically 
competent enzyme. In contrast to MMPs activated 
via the cysteine switch, MMP-23, a type II 
transmembrane MMP, is activated by a single 
cleavage site at Arg79 within the signal anchor 
domain (34, 61). Sharing only two common features 
with other MMP family members, a catalytic 
domain and the basic motif, MMP-23 is unique 
among the MMPs in that cleavage in the signal 
peptide at residue Arg79 is responsible for both 
secretion and activation (34, 61).  

MMPs containing a furin-like recognition 
domain in their propeptides (MMP-11, -28 and MT-
MMPs) are activated intracellularly by a group of 
calcium-dependent transmembrane serine 
proteinases of the subtilisin group termed 
furin/PACE/kex 2-like proteinases (Figure 1). 
MMPs without this recognition sequence are 
secreted in latent form (37). Proteolytic activation of 
latent secreted MMPs involves propeptide cleavage 
by other MMPs (62-64) or by serine proteases, such 
as those within the urokinase-type plasminogen 
activator (uPA)-plasminogen system (65-67) or 
serine proteases expressed by inflammatory cells 
such as mast cell chymase (68-70) and neutrophil 
elastase (71-74). Serine proteinase mediated 
cleavage of secreted MMP propeptide domains 
induces autocatalytic activation of MMP-1, -3 and –
9, whereas proMMP-2 is resistant to activation by 
serine proteinases. Some activated MMPs can 
further activate other proMMPs. For example, 
MMP-3 activates proMMP-1 and proMMP-9; thus, 
serine and metalloproteinases also act as initiators 
for a complex array of proMMP activation cascades 
in vivo.

Cell-mediated activation mechanisms are also 
utilized as seen in the activation of proMMP-2 in 
complex with MMP-14 and TIMP-2. MMP-14 is 
associated with the plasma membrane where the N-
terminal domain of TIMP-2 binds to active site 
residues in MMP-14 resulting in a dimeric complex 
that then serves as a receptor for proMMP-2 via the 
C-terminal domain of TIMP-2 interacting with the 
C-terminal domain of proMMP-2 (75).  An adjacent 
free MMP-14 then cleaves proMMP-2 propeptides 
generating an intermediate MMP-2 species and the 
fully active MMP-2 is subsequently generated 
through an autocatalytic mechanism (67, 76). Recent 
data indicates that MMP-16 utilizes TIMP-2 and 
TIMP-3 to activate proMMP-2 by a similar process 
(77).

Several advantages for having proteolytic 
enzymes in a bound state at the cell surface have 
been proposed. First, bound proenzymes may be 
more readily activated, thus generating higher local 
levels of activity than what might be found in the 
soluble phase. Second, enzymes at the cell surface 
may be protected from activation by bound 
inhibitors. Third, the binding of an enzyme to the 
cell surface may provide a means of concentrating 
the components of a multistep pathway, thereby 
increasing the rate of reactions. Fourth, 
immobilizing enzymes on the surface of a cell or in 
the matrix may provide a means of restricting 
activity of the enzyme, so that only substrates in the 
vicinity of the cell or only adjacent matrix 
components are targeted. Hence, activation at the 
cell surface links MMP expression with proteolysis, 
and may actually provide the most significant 
control point in MMP activity. 

2.2.3 Regulation of MMP activity by 

endogenous inhibitors 

MMP activity is tightly regulated by several 
endogenous inhibitors including, tissue inhibitors of 
metalloproteinases (TIMPs), thrombospondins, α2-
macroglobulin and RECK (Reversion Inducing 
Cysteine rich protein with Kazal motifs (Table 1 
(78-82). The most thoroughly studied MMP 
inhibitors are the TIMPs. To date, four vertebrate 
TIMPS have been identified (TIMP-1 to -4). TIMPs 
are small proteins (21-28 kDa) that bind to MMPs in 
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a 1:1 stoichiometric ratio and reversibly block MMP 
activity (37). TIMP-1, -2 and –4 are secreted soluble 
proteins whereas TIMP-3 is matrix associated (83). 
TIMPs differ in both their expression patterns and 
affinities for MMPs. For example, TIMP-1 and 
TIMP-2 inhibit the activity of many MMPs.  TIMP–
3 on the other hand preferentially inhibits activity of 
MMP-1, -3, -7 and –13 (84), whereas TIMP-4 
primarily inhibits MMP-2 and –7 and to a lesser 
extent MMP-1, -3 and –9 (85). Thrombospondin-2 
binds MMP-2 and this complex results in scavenger 
receptor-mediated endocytosis and clearance of 
MMP-2 (86). Thrombospondin-1 on the other hand 
binds to proMMP-2 and –9 and thereby directly 
blocks their activation (79). The plasma protein α2-
macroglobulin also regulates MMP activity by 
forming a complex resulting in scavenger receptor-

mediated endocytosis (87); however, the inhibitory 
effect of α2-macroglobulin is more general in that it 
binds to the majority of MMPs (86). RECK is an 
endogenous inhibitor of MMP-2, -9 and -14 (82) and 
is abundant in adult tissues primarily found in 
vascular smooth muscle cells proximal to large 
blood vessels (82, 88). RECK is a secreted 
glycoprotein containing a serine-protease inhibitor-
like domain, two epidermal growth factor-like 
repeats and a modified C-terminal GPI domain 
anchoring it to plasma membranes. RECK also 
inhibits secretion of proMMP-9 and the final 
processing step of proMMP-2 (82).  The GPI anchor 
is thought to allow RECK access to regions of focal 
proteolysis along the cell surface thus enabling it to 
regulate proteolytic events during embryogenesis 
and angiogenesis (89). 

Table 1. Characteristics of MMP inhibitors. 
* Required for MMP-14 or MMP-16 mediated activation of MMP-2 

MMP inhibitor MMP-2 activation* MMPs inhibited (reference publication)

TIMP-1 No (365) MMP-1 (366), -2 (367), -3 (366), -7 (368), -8 (369),  -9 
(367), -10 (366), -11 (370), -12 (118), -13 (371), -17 
(372), -19 (373), -25 (374), -26 (375)

TIMP-2 Yes (67) MMP-1 (376), -2 (376), -3 (366), -7 (377), -8 (378), -9 
(376), -10 (366), -13 (371), -14 (379), -16 (380), -17 
(372), -19 (373), -24 (381), -25 (374), -26 (375. 382)

TIMP-3 Yes (382) MMP-1, (383), -2 (383), -9 (383), -13 (63), -14 (384), -
16 (380, 382), -17 (372), -19 (373), -25 (374)

TIMP-4 No (385) MMP-1 (386), -2 (374), -3 (374), -7 (374), -8 (385), -9 
(374), -14 (374), -19 (373), -26 (375, 382)

RECK No (82) MMP-2 (82), -9 (88), -14 (82).

Thrombospondin-1 No (79) MMP-2 (79), MMP-9 (79, 80)

Thrombospondin-2 No (86) MMP-2 (86)

α-Macroglobulin No (78) Universally inhibits MMPs via receptor mediated 
endocytosis (86, 87)

2.2.4 MMP Localization 

An increasing body of evidence suggests that 
cell surface localization of MMPs is critical for 
optimal MMP function (90). It has been shown that 
membrane bound MMPs and integrins are localized 
to invadopodia (91), whereas secreted MMPs 
transiently localize to cell surfaces by associating 
with cell surface proteoglycans, adhesion receptors 
or basement membrane components (92). Secreted 
MMPs like MMP-1 for example, associate with cell 

surfaces via integrin and EMMPRIN interactions 
(93-95). MMP-2 also associates with plasma 
membranes by interacting with αvβ3 integrin 
through its hemopexin-like domain (96), whereas 
MMP-7 binds to the hyaluronan receptor CD44 (97). 
MMP-9 associates with several plasma membrane 
spanning receptors (CD44, ICAM-1, integrins) as 
well as the basement membrane component type IV 
collagen (98-101).   

The significance of MMP localization in 
regulating their effects on cell function has been 
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examined by inhibiting cell surface localization of 
MMP-9 in a mouse mammary carcinoma cell line 
(102). This resulted in loss of both invasive and 
metastatic capacity, properties that were restored by 
constitutive cell surface expression of an MMP-9 
fusion protein (102), suggesting that for at least 
some cell types, migration through basement 
membrane structures may rely upon these 
interactions. Furthermore, disruption of CD44-
MMP-7 interactions in lactating mammary epithelia 
resulted in relocation of MMP-7 from apical to basal 
cell surfaces and was associated with increased 
epithelial cell death and tissue remodelling (97), 
suggesting that whereas cell surface localization of 
some MMPs may impart a migratory phenotype, 
similar association of other family members may 
regulate cell proliferation and/or cell death.  Taken 
together, MMP activity is regulated at four levels, 
e.g. transcriptional, post-translational propeptide 
cleavage, inhibition by endogenous inhibitors and 
differential cell surface localization. These processes 
are tightly regulated in normal homeostatic 
conditions; however, as will be discussed below, 
during neoplastic progression, MMP expression and 
activation is enhanced, a property that can stimulate 
and/or promote various aspects of neoplastic cell 
growth.  

2.3 MMP Function 

MMPs are thought to functionally contribute to 
physiological and pathological tissue remodelling, 
especially during embryonic and tumour 
development (17). It is believed that ECM 
remodelling is essential for maintaining tissue 
integrity and involves a tightly regulated balance 
between ECM synthesis and ECM degradation 
(103). During wound healing, MMPs secreted by 
epithelial cells, fibroblasts and inflammatory cells 
remodel pericellular ECM in the immediate area of 
tissue damage (104). In turn, fibroblasts and vascular 
cells synthesize appropriate amounts and 
composition of ECM components (type I collagen, 
fibronectin etc.) important for tissue repair (104). In 
contrast, in fibrotic environments (i.e. liver cirrhosis, 
lung fibrosis and scleroderma), the balance between 
ECM synthesis, accumulation and degradation is 
shifted favouring synthesis and accumulation 

resulting in the fibrotic phenotype, a phenotype that 
can also be caused by increased synthesis of ECM 
components independent of the degradative enzymes 
that remodel it (105, 106). In contrast, a shift in 
favour of ECM degradation is seen in degenerative 
pathologies such as arthritis (107) and tumour 
development (17, 108). During tissue remodelling, 
ECM components such as type I collagen and 
basement membrane components such as types IV, 
XV and XVIII collagen and laminin can be cleaved 
by various MMPs (17, 37). Cleavage of these larger 
macromolecules into smaller fragments can result in 
release of cryptic embedded bioactive fragments that 
regulate cell physiology in context-dependent 
manners, e.g., proliferation, angiogenesis, cell 
adhesion and migration (90, 109). The realization 
that ECM remodelling not only alters the 
organization and composition of physical barriers 
between tissue compartments potentially enabling 
migration, but also provides novel products that 
affect cell physiology, adds an additional level of 
functionality to MMP family members (110).  

Another major function of MMPs is thought to 
be in their ability to regulate presence of bioactive 
mediators such as other proteinases, proteinase 
inhibitors, clotting factors, chemokines, growth 
factors, growth factor binding proteins, cell surface 
receptors, and cell-cell and cell-matrix adhesion 
molecules (108, 111). These MMP substrate 
molecules are found sequestered in ECM or attached 
to cell surfaces, or represent ECM components 
themselves, e.g., type I, IV, XV and XVIII collagen 
and laminin (91, 110, 112-116). For example, MMP-
9 is known to target the proangiogenic growth factor 
vascular endothelial growth factor (VEGF) (12); 
however, VEGF itself is not believed to be a direct 
cleavage target of MMP-9 suggesting that an ECM 
molecule sequestering VEGF is the target.  Both 
MMP-2 and MMP-9 activate latent transforming 
grwoth factor beta (TGFβ) residing in the matrix 
(97) and numerous MMPs can activate components 
of the plasma clotting system such as fibrinogen and 
plasminogen (112, 117-119), while MMP-2, -3, -7, -
9 and 12 can cleave plasminogen generating the 
angiogenic inhibitor angiostatin (112, 118, 120).  It 
has also been shown that MMP-14 derived from 
macrophages regulates neovascularization in 
tumours by degrading fibrinogen networks that serve 



88 Chapter 6

as a temporary scaffold for endothelial cells (117). 
In addition, multiple MMPs can modulate immune 
responses by processing of chemokines (121, 122), a 
property important for resolution of acute 
inflammation and possibly also during tumour 
development.   

MMPs are also thought to promote tumour cell 
survival by conferring protection against apoptotic 
cell death.  For example, MMP-7 sheds membrane 
bound Fas ligand (FasL) resulting in production of 
soluble FasL that significantly lowers the ability to 
trigger apoptosis via the Fas receptor pathway (123).  
MMP-7 cleaves the heparin–binding EGF precursor 
(HB-EGF) from the cell surface resulting in 
generation of signals conferring protection from 
apoptosis by binding of mature active form of HB-
EGF to both the ErbB1 and ErbB2 tyrosine kinase 
cell spanning receptors (97). MMPs, besides 
promoting tumour progression via these diverse 
mechanisms, also exhibit anti-tumour functions.  For 
example, male homozygous null MMP-8 mice 
(MMP-8-/-) exhibit a significant increase in skin 
tumour incidence upon chemically induced 
carcinogenesis (124). Tumour susceptibility is sex 
hormone dependent since removal of ovaries in 
MMP-8-/- females also results in a similar enhanced 
susceptibility to chemically induced skin 
carcinogenesis (124). Moreover, treatment of MMP-
8-/- mice with tamoxifen, an estrogen receptor 
antagonist, also results in increased skin 
carcinogenesis in MMP-8-/- females (124), 
suggesting that loss of MMP-8 function, by either 
homozygous loss or MMP inhibition (natural or 
synthetic), enhances rather than reduces tumour 
susceptibility. Taken together, it is clear that MMP 
function extends well beyond ECM remodelling and, 
as a consequence of their diverse activities toward 
substrates, MMPs participate in many biological 
(e.g. embryogensis, angiogenesis, endometrial 
cycling and wound healing) and pathological (e.g. 
cancer, arthritis and cardiovascular disease) 
processes by both positive and negative 
mechanisms.  

3. CELL-TYPE SPECIFIC MMP 

EXPRESSION 

The association of MMP expression with 
neoplastic progression is well documented in vivo

and in vitro (17). MMPs have been associated with 
the malignant phenotype in a wide variety of human 
tissues, including breast, colon, lung, ovary, 
pancreas, prostate, stomach and squamous cell 
carcinomas of the head, neck and skin (Table 2; 
reviewed in: (17, 125-128). MMP-2, -3, -7, -9, -10, -
13, -14 and 17 were first cloned from tumour cells 
lines and MMP-11 was cloned as a metastasis-
specific gene from metatstatic tumours (reviewed in 
(17)). In fact, whether constitutively expressed or 
induced by oncogenes, growth factors or cytokines, 
expression of all members of the MMP family has 
been documented in cultured neoplastic cells derived 
from diverse developmental lineages (125). 
Although this characteristic led investigators to 
speculate that expression of MMPs by epithelial 
tumour cells was a critical step in the transformation 
and/or invasive process, it is not representative of 
MMP expression observed in in vivo situations (17). 
In situ hybridization and immunodetection studies 
have revealed that whereas neoplastic cells express a 
limited repertoire of MMPs, MMP expression more 
frequently originates from tumour-associated 
stromal cells, i.e. activated fibroblasts, macrophages, 
neutrophils, mast cells, endothelial cells and 
pericytes (Table 2). These expression patterns are 
indicative of distinct processes at a particular stage 
in neoplastic progression that either neoplastic or 
stromal cells are involved in. For example, during 
mammary carcinogenesis, mammary epithelial cells 
express MMP-3, -7, -9 and -13 (129-136), whereas 
epithelial cells undergoing an epithelial to 
mesenchymal transition express MMP-11 (137). 
Differential expression of MMPs is also observed in 
stromal fibroblasts.  An early step in neoplastic 
progression is marked by myofibroblast expression 
of MMP-13 (138). In contrast, at a later stage in 
neoplastic progression, myofibroblasts at the 
invasive front of a mammary carcinomas express 
MMP-1, -2, -11 and -14 (129, 130, 131).   

Cells of the immune system recruited to tumour 
sites also express a variety of MMPs. Macrophages 
express MMP-9 and -12 (131, 139), neutrophils 
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express MMP-8 and -9 and lymphocytes express 
MMP-3 and -9 (129, 140).  During angiogenesis, 
endothelial cells express MMP-2, -3 and -9 while 
pericytes express MMP-9 (131, 133).  Additional 
evidence that MMP expression is stage and cell 
type-dependent comes from studies showing that 
MMP-3 expression in squamous cell carcinomas 
switches from stromal fibroblast to neoplastic cells 
during epithelial to mesenchymal transitions (141). 
In addition, transgenic mouse models of human 
cancer have proven useful tools to examine 
expression characteristics of MMP mRNAs in 
various organs as well as for determining the role of 
particular MMPs during neoplastic development 
(21).  Excellent examples of this are represented by 
the Rip1-Tag2 model of pancreatic islet cell 
carcinogenesis and the K14-HPV16 model of 
squamous epithelial carcinogenesis (12, 20, 142).  

Data from both models have indicated that MMP-9 
regulates activation of the angiogenic switch and 
that the sources of MMP-9 are predominantly 
inflammatory cells recruited to the neoplastic site 
(12, 20, 142). Taken together, these studies have 
several implications. MMP-expression during 
neoplastic progression is stage and cell type-
dependent and the expression of MMPs observed in 
cultured cells may have to do with the fact that most 
culture environments fail to recapitulate the 
microenvironmental complexities present in vivo.

Most notably, spatial restrictions of MMP mRNA 
expression are maintained where they are either 
expressed by neoplastic epithelial cells or stromal 
cells but not typically both, implying that 
mechanisms regulating cell-type specificity, across 
tumour types, are maintained during neoplastic 
transformation.

Table 2. Expression of MMPs in most common human cancers* 
*Based on 2004 estimated US cancer cases (American Cancer Society). Adapted from (17, 125).  ISH: detection of mRNA 
expression as demonstrated by in situ hybridization; RT-PCR: detection of mRNA expression by RT-PCR; IHC: detection 
of protein expression by immunohistochemistry. 
Neoplasia MMP Localization in tumour

Lung MMP-1 Neoplastic cells (IHC)(387), Stromal cells (IHC) (387-390)
 MMP-2 Neoplastic cells (ISH) (387), Fibroblast (ISH) (391) (392-395), Endothelial cells 

(ISH: (393, 394)
 MMP-3 Neoplastic cells (IHC) (391, 393), Stromal cells (ISH) (393, 396), ECM near blood 

vessels (IHC) (396)
 MMP-7 Neoplastic cells (ISH) (396, 397), Endothelial cells (IHC) (397)
 MMP-9 Neoplastic cells (ISH) (391, 398-401), Stromal cells (ISH) (391, 393, 396, 402)
 MMP-10 Neoplastic cells (IHC) (403), ECM near blood vessels (IHC) (404)
 MMP-11 Neoplastic cells (IHC) (391, 398), Stromal cells (IHC) (391)
 MMP-13 Neoplastic cells (IHC) (391, 398), Stromal cells (IHC) (391)
 MMP-14 Neoplastic cells (ISH) (391, 393, 398), Fibroblast (ISH) (391, 393, 405), 

Endothelial cells (IHC) (393)
 MMP-26 Neoplastic cells (ISH) (406)
Breast MMP-1 Neoplastic cells (ISH) (129, 130), Stromal cells (ISH) (129-131)
 MMP-2 Neoplastic cells (ISH) (129, 133, 134, 407), Stromal cells (ISH) (129-131), 

Endothelial cells (ISH) (133)
 MMP-3 Neoplastic cells (ISH) (130, 131, 133, 408), Stromal cells (ISH) (130, 131, 133, 

408), Lymphocytes   (IHC) (129), Endothelial cells (IHC) (133), ECM near blood 
vessels (IHC) (409)

 MMP-7 Neoplastic cells (ISH) (131)
 MMP-9 Neoplastic cells (ISH) (129, 133, 134, 408), Stromal cells (ISH) (129), Fibroblast 

(IHC) (133, 134, 136) , Macrophages (ISH) (139), Neutrophils (IHC) (139) 
Endothelial cells (ISH) (131, 133), Pericytes (ISH) (139)

 MMP-10 ECM near blood vessels (IHC) (409)
 MMP-11 Neoplastic cells (ISH) (137), Stromal cells (ISH) (131, 137, 410)
 MMP-12 Macrophages  (IHC) (131)
 MMP-13 Neoplastic cells (IHC) (131), Myofibroblast (IHC) (138)
 MMP-14 Neoplastic cells (IHC) (134, 411), Myofibroblast (IHC) (412)
 MMP-19 Neoplastic cells (IHC) (413), Endothelial cells (IHC) (413)
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Neoplasia MMP Localization in tumour

 MMP-26 Neoplastic cells  (IHC) (382, 406)

Neoplasia MMP Localization in tumour
Prostate MMP-2 Neoplastic cells (ISH) (414-417), Stromal cells (ISH) (417)
 MMP-7 Neoplastic cells (ISH) (414, 417)
 MMP-9 Macrophages (ISH) (417)
 MMP-10 ECM near blood vessels (IHC) (418)
 MMP-14 Neoplastic cells (IHC) (416)
 MMP-26 Neoplastic cells (IHC) (406, 419)
Colon MMP-1 Neoplastic cells (ISH) (420), Stromal cells (ISH) (420, 421)
 MMP-2 Neoplastic cells (ISH) (422, 423), Fibroblast (ISH) (421-423), Endothelial cells 

(ISH) (424), Myofibroblast  (ISH) (424), ECM (IHC) (425)
 MMP-3 ECM near blood vessels (IHC) (425)
 MMP-7 Neoplastic cells (ISH) (397, 426, 427), Endothelial cells (ISH) (397)
 MMP-9 Macrophages (ISH) (140, 175, 428), Neutrophils (ISH) (140), ECM (IHC) (425)
 MMP-10 ECM near blood vessels (IHC) (425)
 MMP-11 Fibroblast (ISH) (429)
 MMP-12 Neoplastic cells (ISH) (430)
 MMP-14 Neoplastic cells (ISH) (423, 431), Stromal cells (ISH) (423, 431), Macrophages 

(ISH) (431)
 MMP-21 Neoplastic cells (IHC) (432)
Ovary MMP-1 Neoplastic cells (IHC) (433)
 MMP-2 Neoplastic cells (ISH) (433-436), Stromal cells (ISH) (433, 434, 436, 437), 

Fibroblast (ISH) (435) 
 MMP-7 Neoplastic cells (IHC) (438)
 MMP-9 Neoplastic cells (ISH) (434, 436, 439), Stromal cells (ISH) (436, 439, 440), 

Macrophages (ISH) (434, 437), Neutrophils (IHC) (434)
 MMP-11 Fibroblast (ISH) (441)
 MMP-14 Neoplastic cells (ISH) (436, 441)
 MMP-21 Neoplastic cells (ISH) (432)
Squamous
cell

MMP-1 Neoplastic cells (ISH) (442) Stromal cells (IHC) (442)

carcinoma  MMP-2 Fibroblast (ISH) (442-444)
of the skin MMP-3 Neoplastic cells (ISH) (443), Stromal cells (ISH) (443, 445)
 MMP-7 Neoplastic cells (ISH) (446), Macrophages (ISH) (444), Neutrophils (ISH) (447) , 

Eosinophils (ISH) (447)
 MMP-10 Neoplastic cells (IHC) (448)
 MMP-11 Fibroblast (IHC) (449)
 MMP-12 Neoplastic cells (ISH) (450), Macrophages  (ISH) (450)
 MMP-13 Neoplastic cells (ISH) (445), Stromal cells (ISH) (445)
 MMP-14 Neoplastic cells (IHC) (448), Fibroblast (IHC) (448)
 MMP-19 Neoplastic cells (RT-PCR) (451)
 MMP-21 Neoplastic cells  (RT-PCR) (432)

4. MMPS AND NEOPLASTIC 

PROGRESSION: PRO AND ANTI-

TUMOUR FUNCTIONS 

Various members of the MMP family are present 
and active in tumour microenvironments where they 
are thought to participate in many aspects of 
neoplastic progression including inflammation, 

angiogenesis, neoplastic cell proliferation, 
migration, invasion into ectopic compartments and 
metastasis formation (Figure 2). Our understanding 
of the molecular and cellular mechanisms regulated 
by MMPs that influence these processes in different 
tumour types has expanded greatly in recent years, 
however many outstanding questions remain. 
Understanding these mechanisms and elucidating 
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how MMPs exert pro- and/or anti-tumour affects, 
may reveal novel drug targets for development of 
rational anti-cancer therapeutics.

4.1 Inflammation and MMPs during 

tumour development 

Based on the characteristics of activation and the 
specificity of target recognition, the immune system 
can be divided into two subsets - innate and adaptive 
(143). The innate immune system, also called the 
first line of immune defence, comprises 
macrophages, neutrophils, granulocytes, mast cells, 
eosinophils, basophils and natural killer (NK) cells. 
The innate immune system is characterized by its 
ability to respond to foreign antigens in a non-
specific manner and is not intrinsically affected by 
prior contact with pathogens. The adaptive immune 
system on the other hand is composed of T and B 
lymphocytes and antibodies, is very specific in its 
capacity to recognize antigens and is characterized 
by immunological memory (143). In order to 
provide sufficient protection against all kinds of 
infectious agents, the innate and adaptive immune 
systems are closely linked by influencing each 
others recruitment and activation pathways (144).  

The immune system plays a dual role in tumour 
development and progression (145). Several studies 
have reported that the immune system, in particular 
the adaptive immune system, can suppress tumour 
development. Studies supporting this concept of 
immune-surveillance have shown that infiltration of 
tumours with T lymphocytes is beneficial for cancer 
patients (146-150). In addition, an increase in the 
incidence of spontaneous and chemically induced 
tumours has been observed in immune-deficient 
mouse models of tumour development (151).  Based 
on the idea that a ‘tumour’ can be a recognizable 
target for the immune system, many groups have 
attempted to activate the immune system in order to 
obtain successful anti-tumour immune responses 
(152).

In contrast to the immune-surveillance theory, 
accumulating clinical and experimental data suggest 
that the other arm of the immune system, the innate 
immune system, plays a promoting role during 
neoplastic progression (6, 153). Extensive analysis 
of human tumour samples has revealed abundance of 

innate immune cells, in particular mast cells and 
macrophages, that correlates with angiogenesis and 
poor prognosis (154-160). Another indication that 
inflammatory cells play a promoting role in 
carcinogenesis is the observation that chronic 
inflammation often predisposes patients to the 
development of cancer (161, 162). Well-known 
examples are the association of inflammatory bowel 
syndrome with development of colon cancer (163) 
and the increased risk to develop gastric cancer in 
patients with chronic helicobacter pylori infection 
(164). Consistent with these clinical observations are 
experimental findings that development of colon 
cancer in TGFβ1-deficient mice is eliminated by 
maintaining mice in germ-free environments, thus 
reducing risk of inflammation (165). In addition, 
long-term use of aspirin and non-steroidal anti-
inflammatory drugs has been shown to diminish 
cancers; colon cancer risk by ~ 50%, gastric and 
oesophageal cancer risk by ~ 40%, and breast cancer 
by ~ 20% (166-171). Thus, clinical data clearly 
suggest a promoting role of inflammatory cells 
during neoplastic progression; however, they do not 
provide any mechanisms by which inflammatory 
cells contribute to the tumour development process. 
Many investigators now believe that elucidating the 
mechanisms by which inflammatory cells participate 
in carcinogenesis will eventually facilitate 
development of novel therapeutic agents against 
human cancer (6, 153). As described above, 
inflammatory cells are important sources of MMPs 
in tissues engaged in either physiologic or 
pathologic remodelling. In the next paragraphs, we 
will focus on the role of inflammatory cell- and 
other host cell-derived MMPs in neoplastic 
progression.  

Expression of MMPs in human cancer often 
correlates with poor prognosis (154-158), suggesting 
that MMPs promote carcinogenesis via either direct 
and/or indirect pathways. In human carcinomas, the 
majority of MMPs present are not expressed by 
neoplastic cells, although exceptions do exist, but 
instead are predominantly expressed by activated 
stromal cells, e.g., fibroblasts, vascular cells and a 
diverse assortment of inflammatory cells (Table 2) 
(6, 172-175). Since inflammatory cells are often 
strongly associated with cancer progression, several 
studies have investigated whether MMPs are 
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involved as mediators linking inflammation with 
malignancy. 

Compelling evidence that inflammatory cells 
promote carcinogenesis via secretion of MMPs has 
been provided by experimental mouse models of de

novo carcinogenesis harboring homozygous null 
mutations in various MMPs (12, 18-20). The role of 
MMP-9 during tumorigenesis was addressed in a 
transgenic mouse model of squamous carcinogenesis 
of the skin (176) by studying the phenotypic 
consequences of genetic deletion of MMP-9 (20, 
177). In this tumour model, the appearance of 
activated MMP-9 in premalignant dysplastic lesions 
coincides with extensive mast cell infiltration of 
dermal stroma and when transgenic mice are 
rendered deficient for either mast cells (142) or 
MMP-9 (20), tumour-prone mice display 
significantly reduced epithelial proliferative indices, 
altered differentiation characteristics and attenuated 
angiogenesis. Importantly, MMP-9 deficiency 
results in 50% reduction in incidence of carcinomas
as compared to MMP-9 proficient controls (20). 
Importantly, the characteristics of neoplastic 
progression in this model were restored by 
reconstitution with wild type MMP-9 sufficient bone 
marrow-derived cells (20), thus providing 
compelling data suggesting that inflammatory cells 
contribute to neoplastic progression, in part, by their 
production of MMP-9 in the neoplastic 
microenvironment. In a different de novo mouse 
tumour model, e.g., pancreatic islet cell 
carcinogenesis, MMP-9 is also only detected in 
infiltrating inflammatory cells, not in neoplastic cells 
(12). In this mouse model, genetic ablation of MMP-
9 also results in suppression of angiogenesis and 
tumour growth (12). Likewise, growth and 
activation of angiogenesis in xenografted MMP-9-

expressing human ovarian carcinomas is 
significantly attenuated in MMP-9-
deficient/immune-deficient mice (178) that can be 
“rescued” by MMP-9 proficient splenocytes that 
induce MMP-9+ macrophage infiltration into the 
tumour microenvironment, resulting in increased 
vascularization and tumorigenicity (178).  These 
data provide compelling support for the contention 
that inflammatory cell-derived MMP-9 contributes 
to tumorigenesis in multiple organ environments. 
Recently it has also become clear that inflammatory 
cell-derived MMPs also play a contributing role 
during metastasis formation (179, 180). Utilizing a 
mouse model system of experimental lung 
metastasis, MMP-9 expression in macrophages and 
endothelial cells of lungs of tumor-bearing hosts 
positively regulated metastasis formation to the 
pulmonary site (179). Correlating with this, human 
cancer patients with metastatic pulmonary disease 
similarly exhibit significantly elevated MMP-9 
levels in diseased lung tissue as compared to those 
from tumour-free patients or disease-free lungs 
(179) suggesting that inflammatory cell-derived 
MMP-9 promotes metastatic tumour formation. 
What are the mechanisms by which activated 
stromal cells regulate MMP expression in neoplastic 
microenvironments and affect cancer development? 
MMPs are potent mediators with many different 
functional capacities and their biological activities 
greatly depend on the microenvironment in which 
they are deposited.  Consequently, MMPs participate 
in many aspects of neoplastic progression, including 
proliferation of neoplastic cells, extracellular matrix 
remodelling, angiogenesis, lymphangiogenesis and 
metastasis formation.  
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Figure 2. MMPs and tumor-host cell interactions: Cancer development results from the interplay of genetically altered 
neoplastic cells with activated stromal cells and the dynamic microenvironment in which they live.  The presence of 
genetically altered cells in otherwise healthy tissue activates a “host response”, in particular activation of fibroblasts and 
immune cells.  Both genetically altered cells and activated host cells present in early pre-malignant lesions secrete diverse 
factors, including MMPs.  MMPs can initiate remodeling of virtually all ECM components, resulting in release of mediators 
sequestered in the ECM and activation of latent growth factors.  Altered bioavailability of these mediators triggers 
proliferation of neoplastic cells and angiogenesis.  In addition, MMPs, produced by neoplastic and activated host cells, 
regulate various aspects of tumour development and facilitate many collaborative interactions between diverse cells types 
present in the neoplastic microenvironment.  Known regulatory mechanisms involving MMPs include: stimulating 
neoplastic cell hyperproliferation, activation of angiogenesis, stimulating inflammatory cell recruitment and function via 
modulation of chemotactic mediators, as well as inducing tissue remodelling resulting in both the synthesis as well as 
degradation of matrix components.  Following malignant conversion and development of bona fide invasive cancers, MMP 
activity can further influence the malignant phenotype of emerging tumours as well as the viability of metastatic cells in 
distant tissue compartments. 
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4.2 MMPs and neoplastic cell proliferation 

The balance between neoplastic cell proliferation 
and cell death is a critical determinant of tumour 
outgrowth. Multiple paracrine and autocrine growth 
factors have been identified that modulate the 
mitogenic activity and/or survival capacity of 
various cell types within tumours.  Since inhibition 
of growth factor-induced signalling cascades can 
block expansion of neoplastic cells in some contexts, 
and delay or inhibit growth in others, (181-187), 
there has been great interest in characterizing the 
mechanisms regulating growth factor bioavailability 
in neoplastic microenvironments.   

It has become clear that ECM remodelling by 
stromal- and/or neoplastic cell-derived MMPs 
results in release of a variety of growth factors 
sequestered in the ECM and in proteolytic shedding 
and activation of multiple latent ECM and 
membrane-anchored growth factors (108, 188-190). 
The increase in bio-available growth factors 
regulated by MMP-mediated proteolytic cleavage 
directly impacts proliferative capacity of diverse cell 
populations, including neoplastic cells (108). The 
role of MMPs in modulating the proliferative 
activity of neoplastic cells has been underscored by 
the observation that neoplastic keratinocytes in 
MMP-9 deficient/HPV16 transgenic mice exhibit a 
suppressed proliferative index (20). Likewise, 
collagenase expression in transgenic mouse skin 
promotes hyperproliferative changes in the 
epidermis (191) and transgenic overexpression of 
TIMP-1 inhibits SV40 T antigen-induced hepatocyte 
proliferation (192, 193). 

Several growth factors are produced as 
membrane anchored precursors requiring conversion 
to soluble forms for biological activity (97, 194-
196). Great effort has been placed in identification 
of enzymes responsible for proteolytic conversion of 
insoluble mitogenic precursors into diffusible active 
growth factors, as this is an important post-
translational event regulating growth location, 
activity and bioavailability. MMPs play a crucial 
role in proteolytic release of mitogenic precursors 
from the cell surface membrane, a process 
frequently referred to as ‘ectodomain shedding’ 
(197, 198).  For example, EGF family members, 
including EGF, heparin binding EGF-like growth 

factor (HB-EGF) and TGFα, are synthesized as 
latent membrane spanning proteins requiring 
cleavage and release by MMPs in order to obtain a 
conformation suitable for binding to their plasma 
membrane receptors (194-196). Soluble EGF family 
ligands stimulate many biological responses, in 
particular proliferation and migration in cells 
expressing EGF receptors, altered expression of 
which has been reported in various human cancers. 
MMP-3 releases HB-EGF from the cell surface 
whereas an MMP related proteinase ADAM17, 
releases soluble TGFα (195).  HB-EGF and MMP-7 
form a complex with CD44, a heparin sulphate 
proteoglycan found on the surface of normal and 
neoplastic cells (97, 199). Formation of this complex 
allows cleavage of HB-EGF by MMP-7, thus 
generating mature HB-EGF, which in turn enhances 
cell proliferation and cell survival (97). The 
importance of CD44 in neoplastic cell proliferation 
has been underscored by the observation that 
transgenic mice expressing antisense CD44 cDNA 
in skin keratinocytes display impaired keratinocyte 
proliferation and fail to undergo hyperproliferative 
growth in response to carcinogen exposure (200).  

Proteolytic release of membrane-anchored 
growth factor precursors can be inhibited by TIMPs 
(84, 196, 201) and by synthetic metalloprotease 
inhibitors (MPIs) (194, 202). For example, blocking 
proteolytic shedding of membrane-anchored EGF 
family member precursors by treatment with MPIs 
almost completely abolished proliferation of human 
mammary epithelial cells and colon cancer cell lines 
(194). Thus, proliferation of neoplastic cells can be 
manipulated by MMP-mediated regulation of 
ectodomain shedding suggesting that MPIs might be 
applied therapeutically to regulate bioavailability of 
growth factors in proliferating tissues. 

Other growth factors are maintained in a latent 
form by complex formation with soluble or cell-
surface bound proteins. For example, activity of 
insulin-like growth factors IGF-I and IGF-II is 
controlled by binding to various soluble IGF-binding 
proteins (IGF-BP) (203-205). Proteolytic cleavage 
of IGF-BP by several MPs, including MMP-1, -2, -
3, -9 and -11, releases IGF that subsequently exerts 
mitogenic effects (206-211). Expression of IGFs is 
often upregulated in hyperproliferative tissues, 
including cancer tissues where they correlate with 
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poor prognosis (204, 212-215).  The importance of 
MMPs in promoting neoplastic cell proliferation via 
increasing bioavailability of IGF has been 
demonstrated in a transgenic mouse model of 
hepatic carcinogenesis (211). Transgenic 
overexpression of TIMP-1 in SV40 T antigen-
induced hepatocytes inhibited proliferation (211) 
due to inhibition of MMP-mediated proteolysis of 
IGF-BP-3 resulting in reduced levels of bioavailable 
IGF-II (211). Similar to IGF, basic FGF (bFGF), a 
mitogenic growth factor linked to angiogenesis and 
fibroblast activation is sequestered in the ECM by 
specific binding to various proteins (216). Several 
heparin sulfates, including perlecan, regulate 
bioavailability of FGF by sequestering latent FGF at 
cell surfaces and within basement membranes (217). 
MMP-1 and -3 have been reported to degrade 
perlecan resulting in FGF release (216). However, 
MMP activity does not always result in enhancement 
of proliferation.  MMP-2 has been reported to cleave 
FGF receptor 1, which in turn prevents mitogenic 
signalling (218). Another protein regulating FGF 
activity is FGF-BP. In contrast to perlecan, FGF-BP 
does not limit bioavailability of FGF, but instead 
mobilizes and activates FGF (219). Whether MMPs 
also degrade FGF-BP and thus negatively modulate 
FGF bioavailability remains to be established.  
Likewise, bioavailability of TGFβ, a multi-potent 
polypeptide growth factor, is regulated by MMPs 
(220). The role of TGFβ during tumor progression 
and development is very complex and depends on 
the type and progression stage of neoplastic cells 
(221-224). In general, activated stromal and 
neoplastic cells in early tumour stages are sensitive 
to TGFβ-mediated growth inhibition (225, 226), 
whereas neoplastic cells in later stages often escape 
TGFβ-mediated growth inhibition (222, 223). TGFβ
is produced as a latent protein activated in part by 
proteolytic mechanisms (220, 227). The TGFβ
prodomain, also referred to as β-latency associated 
peptide (β-LAP), binds non-covalently to mature 
TGFβ thus forming an inactive latent complex 
(220). Latent TGFβ-binding proteins link to this 
complex stabilizing and maintaining TGFβ
sequestered within ECM in an inactive state (227-
230). TGFβ can be activated by proteolytic 
degradation of LAP by MMP-9 and MMP-2, 
resulting in release of active TGFβ (102). Likewise, 

several TGFβ binding proteins that sequester active 
TGFβ in ECM, including membrane-anchored 
proteoglycan betaglycan and the ECM proteoglycan 
decorin, are cleaved by various MMPs (231-234), 
where upon release from latent complexes, TGFβ
exerts its tumor suppressive and/or promoting 
functions (222). 

In conclusion, the function of stromal cell- and 
neoplastic cell- derived MMPs is not limited to 
degradation and remodelling of ECM.  An additional 
function, one that has implications for therapeutic 
anti-cancer strategies, is the shedding of various 
potent growth factors from cell surfaces and release 
of mitogens sequestered by ECM; thus, by 
regulating bioavailability of growth factors, MMPs 
deposited in tumor microenvironments can drive 
neoplastic progression and cancer development. 

4.3 MMP regulation of neoplastic cell 

adhesion, migration and invasion  

Tumours are characterized by their phenotype, 
cell of origin and whether they exhibit either benign 
or malignant characteristics, with malignancy 
directly inferring neoplastic cell invasion across 
basement membranes and ectopic tissue growth. In 
order for neoplastic cells to invade surrounding 
tissue, they must exit the primary tumour site, cross 
tissue boundaries and migrate into ectopic tissue. 
Based upon their collective ability to degrade 
structural components of basement membranes and 
ECM in vitro, MMPs have long been viewed as key 
regulators of neoplastic cell migration and invasion 
(17). However, examination of MMP functions in de

novo mouse models of tumour development have 
challenged these viewpoints and revealed new 
mechanisms for MMP action that functionally 
contribute to tumour development. 

Substrate targets for MMPs have been 
extensively studied in vitro (reviewed in (17, 111) 
which has generated a large body of literature 
describing ECM as well as non-ECM substrates for 
MMP family members, suggesting a role for MMPs 
in tissue remodelling and other physiological and 
pathological processes, including cancer. These 
studies have revealed tremendous overlap and 
functional redundancy among MMP family 
members (Table 3). 
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To date however, only a few MMP substrates 
have been verified as bone fide in vivo substrates 
(17), validation of which in appropriate in vivo

contexts is necessary to fully understand the 
multitude of molecular and cellular events regulated 
by MMPs. 

Cell surface expression of cell-cell and cell-
ECM adhesion molecules are tightly regulated (235) 
with expression varying to accommodate changes in 
pericellular microenvironments and differential 
regulation of stationary versus migratory growth 
characteristics. Besides impacting migration and 
invasive capacities of neoplastic cells by 
remodelling key ECM molecules, MMPs also act in 
concert with diverse cell surface molecules 
implicated in adhesion (236-238). One family of cell 
surface adhesion molecules differentially affected by 
MMPs are integrins. These consist of dimeric 
membrane spanning cell-ECM adhesion molecules 
containing one α and β subunits (239).  Integrins are 
important mediators of cell migration in part due to 
the diversity of complexes formed by α and β
subunits forming ~ 24 different cell-ECM receptors 
in humans (240). Integrins engage ECM molecules 
pericellularly, whereas intracellulary they interact 
with signalling molecules and cytoskeletal 
components and regulate cell shape, polarity, 
differentiation and various aspects of intracellular 
signal transduction (240).  When cells are at rest and 
tissues are homeostatic, integrin expression reflects 
cell-ECM interaction favouring structural integrity 
and polarized cell growth (241). In contrast, when 
tissues are engaged in either physiological or 
pathological remodelling, integrin expression and 
repertoires change in a manner consistent with a 
cells need to ‘move’ within the microenvironment 
(242). While MMPs are known to target components 
of ECM to facilitate migration, they also are known 
to associate with various integrin receptors on cell 
surfaces where pericellular proteolysis is 
concentrated (111, 189). Several MMPs have been 
reported to co-localize with integrins at attachment 
and detachment sites on migrating cells, specifically 
MMP-2 and MMP-14 co-localize with αvβ3
integrins on migrating epithelial cells (243, 244). 
Co-localization of MMP-2 with αvβ3 integrin, in 
combination with the observation that MMP-2 
triggers cell migration by cleaving laminin 5, a 

component of basement membranes, suggests a 
mechanism by which MMPs promote cell migration 
and invasion (91). Moreover, it has been reported 
that type I collagen binding to integrin α2β1 results 
in increased expression of MMP-1, suggesting that 
interaction of integrins with ECM ligands regulates 
MMP expression (245). However, all MMP-integrin 
interactions are not merely mechanisms favouring 
membrane co-localization. This fact is highlighted 
by the observation that MMP-7 cleaves (or sheds) 
the extracellular domain of β4 integrins on prostatic 
carcinoma cells resulting in downregulation of β4
integrin-ECM adhesion – a scenario that favours a 
more migratory phenotype (246). Taken together, 
these observations articulate the diversity of 
interactions MMPs are involved in that can either 
favour a migratory phenotype or differentially 
regulate cellular response by inducing gene 
expression of proteins that themselves regulate 
stationary versus migratory cell growth.  

Tissue transglutaminase (tTG) is a ubiquitous 
cell surface receptor that promotes attachment of 
fibronectin via its association with β1 and β2
integrins and thereby impacts cell migration (247).  
Membrane-bound MT-MMPs have been shown to 
cleave and inactivate tTG resulting in decreased 
adhesion and migration of cells on fibronectin in 

vitro suggesting that tumour cells can adjust their 
adhesion and locomotion dependening upon matrix 
substrates (248). 

The transmembrane cell adhesion molecule E-
cadherin regulates homotypic interactions between 
epithelial cells via pericellular ectodomain 
engagement on opposing cells and intracellular 
engagement with catenins and components of 
cytoskeleton (249). It is thought that homotypic E-
cadherin-mediated interactions are significant for 
epithelial cell migration based on the observation 
that E-cadherin expression is downregulated or lost 
in many carcinomas (249-253), suggesting that E-
cadherin acts, in part, as a tumour suppressor (254). 
Based on these observations, Christofori and
colleagues tested this hypothesis using a mouse 
model of pancreatic islet cell carcinogenesis, e.g., 
Rip1-Tag2 mice (254-256). To test whether loss of 
E-cadherin-mediated cell adhesion is a cause or a 
consequence of tumour cell migration, either full 
length E-cadherin or a dominant-negative E-



6. Matrix Metalloproteinases: Mediators of Tumour-Host Cell Interactions 101

cadherin mutant was overexpressed in Rip1-Tag2 
pancreatic β cells. Expression of E-cadherin arrested 
tumour development at an early stage, while 
expression of the dominant negative E-cadherin 
mutant induced early invasion and metastasis (254-
256). These results suggest that loss of E-cadherin 
mediated cell-cell adhesion is a rate-limiting step 
during carcinogenic progression. Ectodomain 
shedding of E-cadherin has been demonstrated 
downstream of MMP-3 and -7 in vitro, cleavage of 
which parallels onset of migration in some cell types 
(236, 257). In human carcinomas, elevated MMP-3 
expression correlates with late-stage tumour 
development and overall prognosis (141, 258), 
suggesting a possible cell-cell regulatory mechanism 
important for invasive growth capacity. The 
significance of MMP-3 in regulating cell-cell and 
cell-ECM interactions is underscored by the 
observation that transgenic mice expressing an 
autoactivated form of MMP-3 in mammary 
epithelial cells develop reactive stroma and 
mammary tumours independent of carcinogenic 
initiation (259-261), suggesting that active MMP-3 
exhibits strong tumor promoting effects. The 
overexpression of MMP-7 in the mouse mammary 
gland promotes mammary hyperplasia and 
accelerates the onset of mammary tumours (262), 
which is thought to be mediated by the selection for 
apoptosis resistant cells during this chronic exposure 
to MMP-7 (263) as well as by the shedding of FasL 
by MMP-7 (123).  In contrast, deletion of MMP-7 in 
the Min mouse model of colorectal cancer resulted 
in suppression of intestinal tumourigenesis (18). 
MMP-7 also mediates E-cadherin shedding in 
injured lung epithelium (264) suggesting that MMP-
7 regulates cell migration and invasion via 
differential regulation of E-cadherin.  

The hyaluronan receptor CD44 is a broadly 
distributed transmembrane glycoprotein expressed 
by many cell types and is involved in a variety of 
physiological cell functions such as adhesion, 
migration, invasion and survival (237, 265-267).  
CD44 mediates cell-cell and cell-matrix interactions 
mainly via its affinity for hyaluronan, a 
glycosaminoglycan constituent of the ECM, but also 
to a lesser extend via its affinity for other ligands 
such as osteopontin (268). Histochemical 
evaluations of human carcinomas suggest that 

expression levels of CD44 positively correlate with 
poor prognosis implying a role for CD44 in tumour 
progression (269). Stamenkovic and colleagues have 
shown that CD44 serves as a docking molecule for 
MMP-9, retaining MMP-9 proteolytic activity at the 
cell surface (98). In addition, CD44 was reported to 
complex MMP-7 as well as MMP-14 at the cell 
surface of neoplastic cells and localize them to 
lamellipodia where they might be involved in 
migratory processes (97, 270). Taken together, these 
data suggest that CD44 mediated tumor cell 
migration and invasion is mediated by the targeted 
retention of MMPs at the tumor cell surface, thus 
directing ECM degradation to facilitate tumour cell 
migration through ECM.  

Taken together, there is an overwhelming body 
of experimental evidence supporting the concept that 
MMPs play a critical role in the invasion and 
metastatic potential of neoplastic cells. However, 
transgenic mouse models of de novo tumour 
formation harbouring homozygous null mutations in 
individual MMP genes, while generally 
demonstrating a decreased incidence of malignant 
tumours, have not revealed a significant role for any 
one MMP in regulating cellular invasion in vivo (12, 
20, 262). Why this disparity? One possible 
explanation is that although the two- and three-
dimensional in vitro culture conditions mimic 
microenvironmental conditions in vivo, they are not 
an exact recapitulation and do not include the 
alterations seen in vivo; thus, in vitro experiments 
can only provide clues about MMP-mediated events 
such as invasion and metastasis of tumour cells.  

4.4 MMPs and Tumour-associated 

Angiogenesis  

When any tissue expands or a primary tumour 
develops, in order to grow beyond ~2-4 mm3, influx 
of oxygen and nutrition and efflux of waste products 
must be ensured (272). In order to meet these 
metabolic needs of a rapidly growing tumour mass, 
development of a new blood vasculature is required 
and accomplished by activation of pre-existing 
vascular beds, e.g., angiogenesis (273-277). During 
angiogenesis, a well-orchestrated series of events 
encompassing initiation of endothelial cell 
proliferation and directional migration of endothelial 
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cells through remodelled basement membrane and 
perivascular stroma towards angiogenic stimuli 
(developing neoplasms) occurs (8, 278, 279). Once 
endothelial cells are enticed into a proliferative and 
migratory state, recruitment of perivascular support 
cells enables stabilization of nascent vessels, 
functional lumen formation and appropriate blood 
flow; however, while all these regulatory programs 
(cellular and molecular) are common to physiologic 
angiogenesis, tumour-associated angiogenesis 
possess a distinctly tortuous and chaotic 
organization that is inherently leaky (reviewed in 
(37, 280-283). Activation of pro-angiogenic 
molecular and cellular programs in a neoplastic 
context are regulated at many levels and controlled 
by a diverse assortment of positive and negative-
acting soluble and insoluble mediators whose 
balanced equilibrium is kept tightly in check under 
homeostatic conditions; however, under conditions 
of tissue stress, such as occurs during 
premalignancy, their balance is rapidly upset 
favouring the pro-angiogenic phenotype (4, 8, 278, 
284).

MMPs have been functionally implicated as 
mediators of tumour angiogenesis at several discrete 
steps, based upon bioactivity of their effector 
substrates that regulate angiogenesis by both 
positive and negative mechanisms. For example, 
using a modified chick chorioallantoic angiogenesis 
assay (CAM) that quantifies new blood vessel 
development into fibrillar collagen implants, it was 
revealed that helical domain cleavage of fibrillar 
type I collagen is required for growth factor 
stimulated angiogenesis (285). New vessel growth 
was significantly reduced by TIMP-1, a synthetic 
MPI BB3103 or when collagen implants were 
composed of collagenase-resistant type I collagen 
(286) suggesting that MMP mediated cleavage of 
type I collagen is a rate limiting step in growth 
factor-stimulated angiogenesis in vivo. In addition to 
cleavage products of type I collagen, a cleavage 
product of type IV collagen has been shown to 
promote angiogenesis in vivo (287). Proteolytic 
cleavage of type IV collagen by MMP-2 results in 
exposure of a cryptic epitope, designated HUIV26, 
within the triple helical domain that is required for 
angiogenesis and tumour growth (287). Inhibition of 
interactions between endothelial cells and the 

HUIV26 site by a monoclonal antibody directed to 
this site (Mab HUVI 26) decreased basic fibroblast 
growth factor (bFGF) and/or VEGF-induced 
angiogenesis by 70% compared to controls in both a 
rat corneal micropocket assay (288) and chick CAM 
angiogenic assay (287).  Furthermore, Mab HUVI26 
inhibited tumour growth in nude mice injected with 
M21 human melanoma cells and chick embryos 
injected with HT1080 human fibrosarcoma cells by 
80% - 90% when compared to controls (287). 
Interestingly, the exposure of the HUVI26 epitope 
was associated with a loss of endothelial cell α1β1
integrin binding and a gain in αvβ3 binding 
suggesting that this shift in endothelial cell-integrin 
binding initiates a signaling cascade required for 
angiogenesis in vivo (287).

In contrast to the angiogenic promoting activity 
of ECM cleavage products, the C-terminal globular 
non-collagenous (NC1) domains of the basement 
membrane collagens types IV, XV and XVIII have 
been shown to be potent inhibitors of angiogenesis. 
One of the first angiogenic inhibitors discovered was 
endostatin, a 20-kDa NC1 fragment from type XVIII 
collagen (112).  Endostatin can be produced by 
cleavage of collagen type XVIII by MMP-3, -7, -9, -
12, -13 and –20 (289) and acts by reducing 
endothelial cell proliferation (112, 290).  In addition, 
restin, a 22-kDa NC1 fragment from type XV 
collagen inhibits migration, but not proliferation, of 
endothelial cells in vitro and suppresses tumour 
induced angiogenesis in a renal xenograft carcinoma 
model (116). All three chains of type IV collagen 
(α1, α2 and α3) are potent inhibitors of 
angiogenesis and tumour growth (110, 113, 114, 
291).  For instance, the 24-kDa NC1 fragment of the 
α1 chain of type IV collagen, termed arrestin, 
inhibits the growth of human xenograft tumours in 
nude mice by significantly inhibiting growth factor 
mediated angiogenesis (110). Furthermore, its anti-
angiogenic activity is mediated by binding to 
endothelial α1β1 integrins (110). Likewise, 
canstatin, the 24-kDa NC1 fragment of the α2 chain 
of type IV collagen, suppressed growth of human 
xenograft tumours in nude mice by inhibiting 
angiogenesis (113). In vitro studies indicate that 
canstatin specifically inhibits proliferation, 
migration and tube formation of endothelial cells 
(113).  Lastly, the 24-kDa NC1 fragment of the α3
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chain of type IV collagen, termed tumstatin, acts as 
an angiogenesis inhibitor, inhibiting both endothelial 
cell proliferation and blood vessel formation (114, 
115, 291, 292) Studies using transgenic mouse 
models indicate that tumstatin is generated by MMP-
9 and suppresses angiogenesis via αvβ3 integrin 
interactions (293). Other MMP substrates identified 
as possessing anti-angiogenic activities include 
angiostatin, a cleavage product of plasminogen, that 
is a potent inhibitor of endothelial cell proliferation 
(118, 294). Pozzi et al. demonstrated that treatment 
of mice with doxycycline, which preferentially 
inhibits MMP-9 activity (295) results in reduced 
MMP-9 plasma levels and consequently in reduced 
angiostatin generation, that in turn results in 
decreased angiogenesis (296). Taken together these 
studies indicate that MMP-generated cleavage 
products of ECM, basement membrane proteins and 
other soluble molecules act as suppressors or 
activators of pathological angiogenesis in tissue-
dependent and stage-dependent manners and 
implicate MMPs as important mediators of tumour-
associated angiogenesis by pro-tumour and anti-
tumour mechanisms. 

4.5 MMPs and metastasis  

Metastases arise upon the spread of malignant 
cells from primary tumour sites to distant organs and 
are commonly found in the first capillary bed 
encountered by metastasizing malignant cells (10, 
297, 298). Tumour cells spread via three routes, e.g., 
hematogenous spread, dissemination via lymphatic 
vessels and direct migration along facial planes (10, 
299-305). To spread via a hematogenous route, 
malignant cells must leave the primary tumour, 
intravasate into blood vasculature, survive and 
extravasate at a distal site where once present, 
reinitiate proliferation, induce local angiogenesis, 
resist local cell death programs and grow to form a 
secondary tumour – a multi-step process where 
tissue remodelling is a prerequisite and thus 
implicating MMPs.  

MMPs were first implicated in hematogenous 
spread of tumour metastasis based on clinical 
observations correlating increased MMP expression 
in primary tumours with metastasis at distant sites 
(17, 127). For example, MMP-1 expression in 

primary cervical carcinomas is associated with 
lymph node (306) and peritoneal gastric metastases 
(307), while increased expression of MMP-7 in 
gastric carcinomas correlates with liver and lymph 
node metastases (308).  It has also been observed 
that expression levels of MMP-2 and -9 are 
especially high in metastatic lung carcinomas and 
melanomas (309). In the case of MMP-2, high serum 
levels were reported to correlate with the presence of 
metastases in lung cancer patients (310). To address 
the significance of these clinical correlates, several 
groups variably altered MMP expression/activity in 
experimental immune-deficient models of metastasis 
(311-317). While results from these studies were 
compelling, and in part fuelled by use of MPIs in 
human clinical trials (128, 318-321), to date 
experimental evidence definitively demonstrating 
that MMPs regulate de novo metastasis formation in 

vivo is minimal. One study has however provided a 
functional role for MMP-9 as a regulator of 
metastatic growth (179). In this study, 3LL-LLC 
cells spontaneously metastasize to lung in a VEGF 
receptor 1 (VEGFR1)-dependent manner. Increased 
MMP-9 expression in lungs of tumour-bearing 
animals was demonstrated to be essential for distal 
tumour formation, suggesting that MMP-9 was not 
utilized for travel to the secondary site, but instead 
was essential for establishing vascular support 
and/or tissue remodelling in the metastatic 
microenvironment (179, 180). Taken together, these 
studies suggest that MMPs are involved in 
metastasis formation; however, it is not clear, which 
MMPs promote or prevent metastasis development 
and what the underlying mechanisms they regulate 
are.

Chemokines have also been identified as 
important protein substrates of MMPs in vivo and as 
a consequence variably regulate infiltration and 
migration of leukocytes into or out of tissue 
compartments (13, 322) and by similar mechanisms, 
variably regulate neoplastic cell movements.  For 
example, MMP-1, -3, -9, –13 and –14 target and 
inactivate CXCL12, the ligand for CXCR4 on 
leukocytes (121).  The observation that expression 
of CXCR4 on breast carcinoma cells and its binding 
to CXCL12 is implicated in metastasis development 
(323), in combination with CXCL12 being reported 
to be a MMP target, suggest that MMPs might be 
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involved in regulating CXCR4/CXCL12 mediated 
metastasis development.  A study by van den Steen
et al. suggested that MMP-9-targetted CXCL8 
increased chemokine activity tenfold (324).  Since 
signalling via the two CXCL8 receptors CXCR1 and 
CXCR2 is required for the invasive potential of 
melanoma cells in vitro (325, 326), MMP-9 might 
be involved in metastasis of melanoma by regulating 
the binding activity of CXCL8 to its receptors.  
These studies suggest that MMPs directly impact 
chemokines by cleavage resulting in either 
inactivation or activation of the respective 
chemokine.  These modifications change the binding 
capacities of chemokines to their receptors and thus 
impact metastasis of tumour cells.  

5. CLINICAL IMPLICATIONS  

The studies discussed above indicate that 
complex interactions between neoplastic cells and 
their surrounding microenvironment regulate MMP 
expression, localization, activation and biological 
effect. Furthermore, these studies indicate that 
MMPs play diverse roles in tissue remodelling 
essential for tumour growth and maintenance.  
Based on compelling data supporting a pro-tumour 
role for MMPs in cancer development, in 
combination with data suggesting anti-cancer roles 
for TIMPs (192, 211, 327-339), synthetic MPIs were 
developed (340) and evaluated in both in vitro and in 

vivo cancer models (318-321, 341-345).  To date, 
over 150 US patents have been issued for MPIs (16, 
346) that can be categorized into five groups, e.g., 
collagen peptidomimetics, collagen non-
peptidomimetics, tetracycline derivatives, small 
peptides and unconventional MPIs (16, 17, 344).  
Peptidomimetic MPIs were designed to mimic 
cleavage sites of MMP substrates where the zinc 
binding group is positioned at the cleavage site, 
resulting in blockage of the active site zinc upon 
binding to the target MMP and are exemplified by 
Batimastat and Marimastat (16, 17, 344).  Collagen 
non-peptidomimetics, also known as deep pocket 
MPIs, were designed based on the crystal structure 
of MMP catalytic sites (16, 17, 344) and includes 
Prinomastat/AG3340 and tanomastat/BAY 12-9566 
(344) among others.  Tetracycline derivatives, such 

as Metastat, act by inhibiting both the synthesis and 
activity of MMPs (342).  Finally, the small peptide 
class was generated by screening phage display 
peptide libraries where peptides demonstrating high 
specificity for individual MMPs were amplified 
(347). For example, a class of cyclin peptides 
containing a HWGF motif specifically inhibits 
MMP-2 and -9 activity and inhibits tumour growth 
in mouse models (347).  Finally, unconventional 
MPIs include an extract from shark cartilage 
(Neovastat/AE-941) and a component of green tea 
(348, 349).

Initial efficacy of a broad spectrum MPI (SC-
44463) was first reported in an experimental mouse 
model of metastasis formation (350).  Many studies 
followed testing individual MPIs in more complex 
and clinically relevant models (16, 321, 351-355). 
For example, treatment of immune-deficient mice 
with batimastat, a broad-spectrum hydroxamate 
inhibitor, following resection of human breast cancer 
xenografts reduced metastasis and inhibited local re-
growth of tumours (356). In addition, in the Min

mouse model of intestinal tumorigenesis, batimastat 
reduced tumour multiplicity by 48% when 
administered between 6 and 14 weeks of age (354) 
and A-177430, a broadspectrum MPI, reduced 
tumour multiplicity by 69% when administered 
between 5 and 12 weeks of age (357).  Furthermore, 
MMI-166, a selective MPI for MMP-2, -3 and -9, 
significantly decreased the number of metastases of 
TK-4 human colon cancer cells injected in nude 
mice (358). Similar results were observed when 
CT1746, a selective inhibitor for MMP-2, -3, -7 and 
-9 was administered to nude mice injected with the 
human colon cancer cell line CO-3 (359).  Taken 
together, MPI studies in tumour xenograft mouse 
models strongly supported MPIs as promising 
anticancer therapeutics. More compelling and 
biologically relevant studies with MPIs involved 
efficacy testing in mouse models of de novo tumour 
formation (354, 355). MPI treatment in these models 
indicated that efficacy was best achieved if the MPI 
was administered during premalignant progression 
and prior to overt tumour development (354, 355) 
suggesting that tumor stage is a critical determinant 
of MPI efficacy. 

In spite of encouraging results with MPI in 
numerous mouse models of cancer development, 
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human clinical trials with MPIs were discouraging 
(128, 318-321, 346, 360, 361). While some MPIs 
elicited adverse patient effects in early trials, others 
entered Phase III clinical trials either alone or in 
combination with conventional chemotherapy 
(gemcitabine) as compared to chemotherapy alone 
where no significant survival advantage was found 
(128, 321, 360, 362). In advanced gastric cancer, 
advanced glioblastoma, small lung cell carcinoma 
(SCLC), non-small cell carcinoma (NSCLC) and 
ovarian cancer Phase III trials, no significant 
increase in survival was observed in Marimastat 
treated cohorts when compared to patients receiving 
placebo (128, 362). However, a significant 
improvement in survival was observed in patients 
that either received chemotherapy prior to entering 
trial or did not have metastases at time of diagnosis 
when compared to placebo treated patients (128, 
362) implying that Marimastat, if administered at 
earlier stages of cancer development represented an 
efficacious therapy (128, 321). In trials evaluating 
Prinomastat in advanced SCLC, no significant 
survival benefits were observed in patients treated 
with conventional chemotherapy (either cisplatin + 
gemcitabine or cisplatin + paclitaxel) plus 
Prinomastat and similar results were observed in 
patients with metastatic hormone refractory prostate 
cancer treated with chemotherapy (mitoxantrone + 
prednisone) plus Prinomastat (128).  The studies 
involving Tanomastat were even more disappointing 
and were terminated prematurely when patients 
demonstrated significantly poorer survival rates than 
patients receiving placebo (363).

Given our current knowledge of MMP biology 
and retrospective analysis of their mechanisms of 
action in developing tumours, the failure of MPIs in 
human clinical trials was not surprising. While 
human clinical trials were conducted according to 
currently accepted criteria, they failed to consider 
many facets of MMP biology and largely did not 
consider MMP expression differences between 
tumour types.  Trials were conducted in patients 
harbouring large tumour burdens where efficacy 
would only have been possible if tumour regression 
or enhanced survival was achieved - unlikely 
endpoints for non-cytotoxic agents and improbable 
given results obtained with de novo models of 
tumour development where best efficacy was 

achieved when MPIs were administered during early 
tumour development.  Failure of MPIs in clinical 
trials was in part attributed to limited understanding 
and appreciation for the diversity of cellular and 
mechanisms regulated by MMPs in vivo as 
exemplified by the fact that spatial and temporal 
expression and activity differences between MMPs 
during neoplastic progression of diverse cancer 
types was not taken into consideration.  Use of broad 
spectrum MPIs that, amongst other MMPs, inhibit 
MMP-8 activity, results in a significant increase 
rather than a decrease in tumour incidence (124).  
Given the observation that MMP-8 homozygous null 
mice exhibit an increased tumour incidence 
following carcinogen exposure (124) suggest that a 
sophisticated understanding of MMP biology is 
crucial for effective targeting of MMPs during 
carcinogenesis.  

6. CONCLUDING REMARKS  

MMPs have been found to promote or inhibit 
neoplastic progression by a multitude of 
mechanisms that not only include remodelling of 
ECM components, but also by regulating 
bioavailability and/or activity of cell adhesion 
molecules, growth factors, other proteases, 
chemokines, cytokines and proteins involved in the 
clotting cascade.  A more thorough understanding of 
the underlying mechanisms of MMP mediated 
molecular and cellular pathways important during 
carcinogenesis, as well as elucidating what MMPs 
are active at which tumour stage and type, will be 
crucial to insure that future MPI anti-cancer 
therapies will be effective.  
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