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Role of Tumour Microenvironment in Chemoresistance 
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Abstract: Preclinical and clinical findings indicate multiple tumour micro-environmental factors, including growth 
factors, cytokines, cell-cell and cell-matrix adhesion molecules and hypoxia, protect solid tumours from 
therapeutic interventions. Experimental evidence have defined some of the resistance mechanisms, which 
have led to the development of innovative approaches aiming at specific targets. While some of these newer 
approaches have yielded therapeutic benefits in selected tumour types, considerable challenges remain in the 
management of the majority of patients with solid tumours. This chapter reviews the various tumour 
microenvironmental factors that contribute to drug resistance. These factors exert their effects through direct 
promoting resistance effectors and/or indirectly modulating other environmental factors. Furthermore, 
cooperative regulation, cross-talk and redundancy at different levels of signaling cascades affect the tumour 
progression and drug resistance, and can diminish the effectiveness of the single target therapeutic approach. 
A better understanding of the intersecting resistance pathways has the potential of leading to new therapeutic 
paradigms aiming at multiple targets, in order to overcome the microenvironment-conferred survival 
advantage to tumour cells.
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1. INTRODUCTION 

Since the first demonstration of antitumour 
activity of aminopterin (4-aminopteroyl-glutamic 
acid) in childhood acute leukaemia patients by 
Farber and colleagues in 1948 (1), considerable 
efforts have been spent on developing effective 
cancer chemotherapeutic agents. Curative or 
survival benefits have been achieved in a few 
selected tumour types (2). However, clinical drug 
resistance remains a major obstacle in most cancers, 
especially adult solid tumours (2). Studies using 
monolayer-cultured cells have defined several 
genetic mechanisms of drug resistance. Examples 
include (a) activation and/or overexpression of cell 

membrane drug efflux transporters (e.g., P-
glycoprotein and other ATP-binding cassette 
transporters such as multi-drug resistance-associated 
proteins), breast cancer resistance protein, and lung 
resistance-related protein (3-8), (b) altered 
expression or activation of detoxifying enzymes 
such as glutathione S-transferase (9, 10), 
quantitative or qualitative alterations of drug targets 
(11-15), and (c) defects in apoptosis regulatory 
proteins (16-18). In spite of the promising 
preclinical data indicating therapeutic advantages by 
reversing these genetic resistance mechanisms, the 
clinical results of these experimental approaches 
have been largely disappointing (19). On the other 
hand, there is growing evidence suggesting that 
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epigenetic factors or proteins present in the tumour 
microenvironment play important roles in clinical 
drug resistance. 

Teicher and colleagues (20) demonstrated that 
repeated administration of alkylating agents to mice 
bearing syngeneic mammary tumours yielded 
subclones which, when reimplanted in other 
recipient mice, showed cross-resistance to alkylating 
agents. They further showed that this acquired 
resistance was exhibited only in vivo but not in 
monolayer cultures of the disaggregated tumour 
cells. Hoffman and colleagues developed a surgical 
orthotropic implantation technique (OIT) (21), 
where patient or animal tumour fragments are 
implanted into the tumour-originating organs. These 
orthotropic implants maintain clinically relevant 
tumour properties including progression, metastasis 
and chemosensitivity. For example, the orthotropic 
human small cell lung cancer in mice showed a 
clinically relevant chemosensitivity profile (i.e., 
sensitive to cisplatin and resistant to mitomycin C), 
whereas the same tumour implanted in subcutaneous 
sites shows the opposite profile (22). Similar results 
were obtained for colorectal cancer (23, 24), 
fibrosarcoma (24) and renal cancer (25). Our 
laboratory similarly found that lung and lymph node 
metastases lost their chemoresistance when 
reimplanted in subcutaneous sites (26).  

Organ-specific chemosensitivity is also observed 
in patients. Table 1 outlines the various tumour types 
displaying different sensitivity to chemotherapy. For 
example, breast, colorectal, testicular and ovarian 
cancers usually are responsive to chemotherapy 
initially (2). In contrast, patients with renal, 
pancreatic and oesophageal cancers show very low 
initial response rate (2), even though the tumour cell 
lines derived from these cancers are equally 
sensitivity to chemotherapy as cell lines derived 
from the other more chemo-responsive tumour types 
(27).

These earlier studies suggest a critical role of 
tumour microenvironment on preclinical and clinical 
chemosensitivity or chemoresistance. In solid 
tumours, cancer cells are surrounded by vasculature 
and stromal tissues. The tumour-stromal interaction 
results in tumour-specific expression of soluble 
factors and extracellular matrix components, some 
of which promote tumour growth and invasiveness.

Dysregulated tumour progression promotes active 
but abnormal angiogenesis and higher hypoxia level 
in tumours, which also affect tumour progression 
and chemosensitivity.  

Table 1. Organ specific responses to chemotherapy. 
adapted from (2). 

This chapter focuses on the effects of tumour 
environmental factors on sensitivity to 
chemotherapy and/or radiotherapy, with special 
emphasis on growth factors, cytokines, cell adhesion 
molecules and hypoxia. The information on each 
factor is discussed in the following order, (a) general 
information, (b) distribution and/or expression status 

Curable by chemotherapy 

Acute leukaemia 
High grade non-Hodgkin’s lymphoma 
Hodgkin’s disease 
Choriocarcinoma 
Germ cell tumours 
Wilms’ tumour 
Ewing’s sarcoma 
Osteosarcoma 
Neuroblastoma 

Chemotherapy improves survival 

Breast cancer 
Ovarian cancer 
Small cell lung cancer 
Bladder cancer 
Colorectal cancer 
Gastric cancer 

Modest survival improvement: Tumour 

symptomatic response only 

Non-small cell lung cancer 
Metastatic cancer of unknown primary origin 
Endometrial cancer 
Soft tissue sarcoma 
Carcinoids 
Head and neck cancer 
Pancreatic cancer 
Brain tumours 
Mesothelioma 
Esophageal cancer 

Poorly sensitive to chemotherapy 

Prostate cancer 
Adrenocortical cancer 
Melanoma 
Renal cancer 
Thyroid cancer 
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in cancer patients, (c) association with disease 
progression and/or resistance in preclinical models 
and cancer patients, (d) resistance mechanisms, and 
(e) current status as a therapeutic target and 
development of modulators. 

2. CHEMORESISTANCE INDUCED 

BY SOLUBLE FACTORS 

Multiple growth factors and cytokines cause 
resistance to anti-cancer drugs in cell culture and 
animal tumour models. In keeping with the focus of 
clinically relevant resistance, we will discuss the 
soluble factors that satisfy the following criteria, (a) 
inducible by chemotherapy, (b) associated with 
chemotherapy outcome or patient prognosis, (c) 
affecting the efficacy of chemotherapy in vitro

and/or in vivo, and/or (d) useful targets for achieving 
chemosensitization. Table 2 shows the growth 
factors and cytokines that satisfy these criteria. The 
receptors for these growth factors and cytokines, 
which are integral components of the corresponding 
intracellular signalling pathways, are also discussed. 
Note that some of these factors may cause either 
chemoresistance or chemosensitization depending 
on the experimental systems. 

2.1 Growth factors 

2.1.1 Epidermal growth factors/ Epidermal 

growth factor receptors

Aberrant activation of epidermal growth factor 
receptor (EGFR) or human EGFR family members, 
e.g., EGFR and human EGF receptor 2 (HER2), 
either through overexpression of receptors and/or 
elevation of cognate ligands, e.g., EGF and 
transforming growth factor-α, promotes tumour cell 
proliferation, survival, invasion, metastasis, and 
angiogenesis, resulting in enhanced tumourigenesis 
and progression (28-30). Other mechanisms 
independent of EGFR/HER2 expression, e.g., 
constitutively active mutation of these receptors, 
transactivation by other receptors including G-
protein coupled receptors, interleukin receptors, 

estrogen receptors and cell adhesion molecules, can 
also cause aberrant activation of EGFRs (28-31).  

In patients, higher expression of EGFR family 
proteins and/or cognate ligands is associated with 
worse prognosis, shorter survival, and resistance to 
radiotherapy and chemotherapy in multiple solid 
tumour types (28, 29, 32-39).  

In vitro and in vivo preclinical studies have 
shown that activation of EGFR and HER2 leads to 
activation of the downstream Ras/Raf/ MAPK, 
STAT3/7 and PI3K/AKT pathways, resulting in 
modulations of apoptosis regulatory proteins and 
thereby protecting tumour cells from cell death and 
causing resistance to several classes of antitumour 
drugs (28, 29, 40, 41). The protective effect 
mediated by EGFR activation is more pronounced in 
anoikis, or apoptosis due to loss of cell attachment, 
suggesting a link between EGFR-mediated survival 
pathways and adhesion molecules (40, 42).  

Paradoxically, studies in several experimental 
tumour models have demonstrated that activation of 
EGFR and HER2 (a) reduces cell adhesion and 
thereby enhances apoptosis (43, 44), (b) inhibits 
DNA topisomerase II and thereby promotes DNA 
damage (45), and (c) accelerates the cell 
proliferation rate and thereby increases the 
sensitivity of tumour cells to chemotherapeutics (46-
49). In patients, several studies on node-negative and 
node-positive breast cancer patients show that the 
efficacy of doxorubicin-containing adjuvant therapy 
is dependent on HER2 status, with higher response 
rate and longer survival in patients with higher 
HER2 expression (50-54). Similarly, in patients with 
advanced urothelial carcinoma, patients with HER2-
positive tumours are more likely to respond to 
paclitaxel and show lower death rate (55, 56).  

Additional preclinical studies have demonstrated 
that EGFR-targeting approaches, by using either 
monoclonal antibody or small molecule tyrosine 
kinase inhibitors (TKIs), enhance the antitumour 
activity of chemotherapy and radiotherapy in vitro

and in vivo (28, 57). These encouraging preclinical 
results have led to significant efforts to develop and 
evaluate HER2 and EGFR modulators in patients, as 
monotherapy or in combination with standard 
radiotherapy or chemotherapy (28, 58-60).  
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In pivotal clinical trials, trastuzumab 
(Herceptin), a monoclonal anti-HER2 antibody, 
shows activity in HER2-positive metastatic breast 
cancer as single agent (61, 62) and in combination 
therapy with multiple standard chemotherapy 
regimens, e.g., anthyracycline plus 
cyclophosphomide, paclitaxel (63). The activity of 
trastuzumab is associated with the HER2 expression 
status. Trastuzumab is currently being evaluated as 
adjuvant therapy in patients with primary breast 
cancer (64-66). These studies have established the 
therapeutic value of trastuzumab and indirectly the 
HER2-targeting approach in breast cancer. The 
situation in other cancer types is less promising. In 
spite of strong preclinical data (67, 68), trastuzumab 
fails to show activity either as monotherapy or in 
combination with standard chemotherapy such as 
cisplatin plus gemcitabine or docetaxel in patients 
with HER2-positive advanced non-small cell lung 
cancer or prostate cancer (69-71). This failure is 
presumably, at least partly, due to compensation by 
coexpression of EGFR1 (72, 73).  

EGFR modulators, including tyeosine kinase 
inhibitors (TKIs) (i.e., gefitnib or Iressa, erlotinib or 
Tarceva) and monoclonal antibody (cetuximab or 
Erbitux), are well tolerated in patients. These agents 
show activity in patients with advanced 
chemotherapy-refractory squamous cell head and 
neck cancer, non-small cell lung cancer, pancreatic 
cancer and colorectal cancer, either as monotherapy 
(e.g., gefitinib as third line treatment of non-small 
cell lung cancer patients) or in combination with 
standard chemotherapy (e.g., cetuximab in 
combination with irinotecan in irinothecan-
refractory colorectal cancer patients) (28, 74-80). 
However, in large randomized phase III trials, all 
three modulators failed to show superior response 
rate and survival in chemotherapy-naïve, advanced 
non-small cell lung cancer (gefitnib and erlotinib) or 
colorectal cancer (cetuximab) compared to standard 
chemotherapy (28, 74-76, 79, 81, 82).

Unlike the association between HER2 expression 
and responsiveness to trastuzumab in breast cancer, 
patient response to EGFR modulators are not 
correlated with the EGFR expression. Two recent 
studies have identified mutations in the tyrosine 
kinase domain of EGFR in a subset of non-small cell 
lung cancer patients (less than 10% in American 

patients and ~30% in Japanese patients) as potential 
prognostic indicator of patient response. These 
mutations result in enhanced intensity and duration 
of EGFR activation by EGF and the corresponding 
survival signals as well as enhanced sensitivity to 
EGFR inhibition by gefitnib (83-85).  

There are several interesting aspects to the 
profiles of clinical activities of the various HER2 
and EGFR modulators. First, the finding that the 
EGFG/HER2-targeting approach results in 
therapeutic benefits in several major tumour types 
suggests an common role of EGFR in 
chemosensitivity/chemoresistance of solid tumours. 
Second, the success in chemotherapy-refractory 
patients together with the failure in chemotherapy-
naïve patients suggests an role of EGFR in the 
clinically acquired resistance to platinum-, 
irinotecan-, and taxane-based therapy. The selective 
benefits of EGFR modulators in the second/third-
line setting are also consistent with a scenario of 
selection of subclones carrying mutated EGFR 
receptors. Third, the failure of EGFR modulators as 
first-line treatment in lung and colorectal cancer, 
together with the opposite effects of trastuzumab in 
breast and lung cancer patients, suggest the presence 
of redundant, compensatory survival signalling from 
other HER2/EGFR family members or other growth 
factors.

2.1.2 Fibroblast growth factors and their 

receptors

FGFs constitute a large family of 22 growth 
factors with molecular weights ranging from 17 to 
34 kDa. FGFs are expressed in most, if not all, 
tissues. FGF1 and/or FGF2 (also called acidic and/or 
basic FGFs) are involved in the development and 
function of numerous organ systems, induce cell 
proliferation, migration, survival, and angiogenesis, 
and stimulate wound healing and repair, under in 

vivo and in vivo conditions (86-90).   
FGF2 has been extensively studied.  The FGF2 

gene encodes several different isoforms. The low 
molecular weight (18kD) isoform is present in 
extracellular compartment and the high molecular 
weight (22 and 24 KD) isoforms are localized in 
intracellular compartment. The following discussion 
focuses on the extracellular FGF2. Multiple studies 
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have implicated FGF2 in chemoresistance, whereas 
the role of FGF1 was demonstrated recently by our 
laboratory (26).   

The binding of FGFs to FGF receptors (FGFRs) 
in the presence of heparan sulfate proteoglycans 
results in FGFR dimerization. The FGFR family 
includes four members and, through various 
possibilities of alternative splicing, potentially 
consists of up to 100 isoforms (91). FGFR1, FGFR2, 
and FGFR3 are widely expressed in adult human 
tissues whereas the distribution of FGFR4 is more 
limited. The 7 major FGFR isoforms have different 
ligand-binding specificity, which is determined by 
the alternative splicing in Ig domain III (87, 92, 93). 
Activation of FGFRs results in activation of 
different signalling pathways leading to gene 
transcription and diverse responses (88, 94, 95). The 
signal transduction pathways of FGF2, including 
Ras-Raf-MEK-MAP kinase, PLC-DAG-PKC, and 
PLC-PI3K-Akt pathways; are implicated in cell 
survival (96-107).   

Depending on cell types and growth conditions, 
FGF2 can cause mitogenesis or inhibit cell growth 
(108-110) and can either induce resistance or 
sensitization to cytotoxic insults (111) under in vitro

conditions. On one hand, addition of exogenous 
FGF2 or over-expression of FGF2 confers resistance 
to chemotherapy (etoposide, cisplatin, fludarabine, 
doxorubicin, methotrexate, hydroxyurea, 5-
fluorouracil, paclitaxel, N-(phosphonacetyl)-L-
aspartic acid) in solid tumour cells (i.e., small lung 
cancer, prostate, bladder), chronic lymphocytic 
leukaemia cells, and fibroblasts (111-113). On the 
other hand, exogenous FGF2 or FGF2 
overexpression enhances the sensitivity of breast, 
prostate, ovarian and pancreatic tumour cells and 
fibroblasts to chemotherapeutic agents (i.e., 
cisplatin, etoposide, 5-fluorouracil, doxorubicin, 
carboplatin, and docetaxel), and to oxidative stress 
(111).

Consistent with the dual roles of FGF2 in 
chemoresistance and chemosensitization, FGF2 also 
shows opposite effects in prognosis of cancer 
patients. Some studies reported association between 
high FGF2 expression and higher tumour apoptotic 
indices or improved overall and disease free survival 
and association between lower FGF2 levels and 
increased tumour size or higher tumour stage in 

breast cancer (114-118), ovarian cancer (119) and 
pediatric high-grade gliomas (120). Conversely, 
other studies reported associations between 
increased local FGF2 expression and shorter 
survival in nodal-negative breast cancer (121), and 
between elevated systemic and/or local tissue FGF2 
levels and worse prognosis and shorter survival in 
leukaemia and lymphoma (122, 123), in solid 
tumours including non-small and small cell lung 
cancer (124-127), colorectal cancer (128), renal cell 
carcinoma (129), advanced carcinoma of head and 
neck (130), gastric cancer (131, 132), non-Hodgkin's 
lymphoma (133, 134), oesophageal carcinomas 
(135), thyroid carcinomas (136), malignant solitary 
fibrous tumour (137), mesothelioma (138), and 
Wilms' tumour (139). In pancreatic cancer, there is 
no relationship between FGF2 level and 
postoperative recurrence and survival, but increased 
FGF receptor expression is associated with shorter 
survival (140). A similar observation in non-small 
cell lung cancer patients has been reported (141).  
Mutation in the transmembrane domain of FGFR4 is 
associated with shorter disease-free survival in 
breast cancer (121, 142), colorectal cancer (142) and 
high-grade soft tissue sarcoma (143). Constitutively 
active FGFR3 mutation has been found in bladder 
and cervix carcinomas (144). Furthermore, elevated 
serum FGF2 levels are associated with poor 
response to chemotherapy in small cell lung cancer 
(145),  suggesting a direct contribution of FGF2 to 
resistance.

The mechanisms of FGF2-conferred survival 
appear to be context-dependent, differ in different 
cells and differ in response to different stress signals. 
The FGF2-induced chemoresistance in small cell 
lung cancer cells is mediated through activation of 
the MAP kinase pathway resulting in upregulation of 
anti-apoptotic proteins Bcl-2, Bcl-XL and IAPs 
(146, 147), and the resistance in fibroblasts is 
mediated through MDM2 induction and the 
subsequent inhibition of p53 pathways (148). The 
mechanism of chemosensitization in breast tumour 
cells is presumably due to Bcl-2 down-regulation 
(111, 149, 150).

In addition to inducing resistance in tumour 
cells, FGF2 also protects endothelial cell against 
radiation- or chemotherapy-induced cell death, 
which in turn results in chemoresistance. 
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Alternatively, FGF2 may regulate the expression and 
signalling of other environmental survival factors 
(151-153). For example, in multiple myeloma, FGF2 
secreted by tumour cells stimulates IL6 secretion 
from stromal cells, and IL6 in turn stimulates tumour 
cells to secrete more FGF2 (151). As discussed 
below, IL6, similar to FGF2, also protects tumour 
cells from cytotoxicity conferred by chemotherapy. 

The reasons of the dual effects of FGF2 on 
chemosensitivity or chemoresistance are not clear. 
As FGF2 functions are regulated by multiple 
environmental factors, e.g. heparan sulfate 
proteoglycans (154-157), cell-matrix adhesion (158), 
cell-cell interaction (159-161), it is tempting to 
postulate that the switch between induction of 
resistance or sensitization is governed by 
intersecting microenvironmental factors.. 

The earlier studies on FGF2-induced 
chemoresistance used exogenous FGF2 
concentrations that far exceed the concentrations in 
patient plasma and urine samples (10-50 vs <1 
ng/ml) (26, 111) , thus raising questions on the 
clinical relevance of this mechanism. Our laboratory 
recently demonstrated that a second FGF, i.e., FGF1, 
amplified the FGF2 effect such that combinations of 
FGF1 and FGF2, at clinically relevant 
concentrations, induce up to 10-fold resistance to 
several anticancer drugs (26).  We further showed 
that monoclonal FGF antibodies and/or a non-
specific inhibitor of FGF1 and FGF2, suramin, 
reversed the FGF-induced resistance and 
significantly improved the sensitivity of human 
xenograft tumours to multiple chemotherapeutic 
agents, i.e., paclitaxel, 5-fluorouracil, doxorubicin 
and irinotecan (26, 162, 163), under in vitro and in 

vivo conditions. The suramin chemosensitization 
was broad spectrum and applied to colorectal, renal 
cell, breast, pancreatic, and bladder cancer (164-
167), and was attained at dosing regimens yielding 
low, FGF-inhibitory but non-toxic suramin 
concentrations. These encouraging preclinical results 
have motivated several phase I/II clinical trials using 
non-toxic suramin regimens in lung, breast and 
kidney cancers. The first phase II trial in non-small 
cell lung cancer has been completed and the results 
suggest therapeutic efficacy using FGF-inhibitory 
suramin regimens (168).

2.1.3 Insulin-like growth factors and their 

receptors.

The insulin-like growth factor (IGF) family 
consists of two extracellular ligands, IGF-1 and IGF-
2. The two membrane IGF receptors are IGF1R and 
IGF2R. Binding of IGF1 and IGF2 to IGF1R 
initiates the signalling cascades. Six circulating IGF 
binding proteins (IGFBP1-6) compete with IGF1R 
for binding with IGFs. IGF2R is responsible for the 
hydrolysis of the IGF/IGFBP1-6 complex, thereby 
making IGFs available for binding to IGF1R (169, 
170).

The IGF signalling system regulates cell 
proliferation, apoptosis and differentiation and 
thereby plays critical roles in the development and 
physiological growth control of most if not all 
tissues. Aberrant activation of the IGF system 
contributes to carcinogenesis, tumour progression 
and metastasis in experimental tumour models (169-
172). In patients, elevated activation of the IGF 
system, resulting from either increased serum IGF 
level or decreased IGFBP level, is associated with 
increased risk of breast, colon, prostate and lung 
cancers (169, 173-178). Similarly, the overall IGF 
system activity, represented either by increased 
expression of IGF and/or IGF1R or decreased levels 
of IGFBPs and/or IGF2R, is associated with poor 
prognosis and/or shorter disease- free interval or 
overall survival time in patients with ovarian cancer 
(179, 180), colorectal cancer (181, 182), head and 
neck cancer (183), non-small cell lung cancer (184), 
multiple myeloma (185), breast cancer (172, 186-
190) and pulmonary adenocarcinoma (191).  

Interestingly, an inverse association between the 
activation level of the IGF system and the prognosis 
or survival of breast cancer patients was not 
observed in patients undergoing surgical 
intervention (188, 189), but was observed in patients 
receiving chemotherapy or radiotherapy (187, 190). 
This suggests that the poor prognosis associated with 
the high IGF system activity is not due to enhanced 
tumour progression but rather due to resistance to 
chemotherapy and/or radiotherapy.  

In tumour cells, activation of IGF1R stimulates 
cell proliferation and, through activation of MAPKs 
and PI3K/AKT pathways, also inhibits apoptosis 
induced by stress conditions such as treatments with 
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cytotoxic drugs or radiation, or deprivation of 
growth factors and/or nutrients (192-196).  These 
two effects result in tumour cell resistance to 
multiple anticancer drugs, including doxorubicin, 
cisplatin, 5-fluorouracil, camptothecin, mitomycin 
C, actinomycin D, lovastatin, Cox-2 inhibitors, and 
to cytokines, e.g., tumour necrosis factor and 
interferon-γ (192, 193, 197-208).

Approaches to target the IGF signaling system 
have been evaluated in in vitro and in vivo

preclinical tumour models (209, 210). IGF1R shows 
a high degree of similarity to insulin receptor (up to 
70% homology). This, together with the wide 
distribution and broad physiological functions in 
normal tissues of these receptors, raise the concern 
of host toxicity. Hence, approaches targeting the 
IGF1R-specific gene sequences, including antisense 
RNA, ribozymes, triplex and small interfering RNA, 
are favored over the more conventional approaches 
using small molecule tyrosine kinase inhibitors and 
monoclonal antibodies. Antisenses against IGF1R, 
either by vector-expressed or chemical synthesized 
oligonucleotides, effectively (a) downregulate 
IGF1R and consequently inhibit survival in cultured 
cells, (b) through inhibition of tumourigenicity and 
metastasis, exert in vivo antitumour activity in 
multiple tumour types, and (c) enhance the 
cytotoxicity of several drugs in cultured Ewing's 
sarcoma, bladder cancer and prostate cancer cells 
(209, 210). These studies further yielded the 
unexpected finding that IGF1R reduction stimulates 
the host immune response, which in turn enhances 
the antitumour efficacy of the IGF system targeting 
approach. This finding has resulted in a pilot clinical 
trial in patients with malignant astrocytomas, where 
autologous glioma cells are collected, treated ex 
vivo with IGF1R antisense oligodeoxynucleotide, 
and then placed in small diffusion chambers that are 
reimplanted in patients (210-212).   

2.1.4 Hepatocyte growth factor/scatter 

factor and receptor. 

Hepatocyte growth factor/scatter factor, 
HGF/SF, and its specific receptor c-Met are 
involved in tumourigenesis and tumour progression 
(213-217). HGF/SF are predominantly expressed by 
mesenchymal cells. Although the HGF/c-Met 

system in tumours is primarily activated through 
endocrine or paracrine mechanisms (217, 218), 
autocrine activation has also been reported in in 

vitro and in vivo tumour models (219-222). For 
example, HGF/SF is predominantly expressed in 
tumour but not stromal cells present in non-small 
cell lung tumours (222). 

Elevated serum and tissue HGF levels and 
aberrant c-met expression (constitutively active 
mutation and overexpression) are found in multiple 
tumours including the most common and most 
malignant types such as breast cancer, non-small cell 
lung cancer, multiple myeloma and pancreatic 
cancer (223-229).

In nearly all tumour types, enhanced activation 
of the HGF/c-Met system in patients is associated 
with resistance to radiotherapy and chemotherapy, 
and with worse prognosis and shorter survival (228-
236). It is noted, however, that HGF exhibits 
cytotoxicity and enhances apoptosis induced by 
paclitaxel and cisplatin in ovarian carcinoma cell 
lines (237). 

In experimental models, exogenous HGF 
protects human cancer cells (i.e., breast, 
leiomyosarcoma, gastric, prostate, glioblastoma and 
rhabdomyosarcoma) as well as endothelial cells 
from cell death induced by ion radiation or 
cytoxtoxic drugs including doxorubicin, cisplatin, 
etoposide, camptothecin, paclitaxel and tumour 
necrosis factor (238-248). The protective effects are 
derived from its anti-apoptotic (238-240, 242, 243 
,245 ,247) and/or enhanced DNA repair function 
(246, 248).

Several specific small molecular inhibitors of the 
HGF/SF/c-Met system or the biological agonist NK4 
(HGF N-terminal four Kringle domain variant), 
which is a proteolytic cleavage product of HGF that 
competitively inhibits the binding of HGF to its 
receptor (249), have shown antitumour activity as 
single agents, in in vitro and in vivo preclinical 
models. Whether these agents enhance the activity 
of the conventional cytotoxic agents is not known. 

2.2 Cytokines 

Cytokines, a large family of immune modulator 
proteins, have been used to activate the immune 
system in cancer biotherapy or immunotherapy. A 
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recent review discusses the roles of cytokines in 
tumour pathogenesis and immunotherapy (250). 
Among the cytokines, transforming growth factor-β
(TGFβ) and Th2 interleukins, secreted by T helper 
cells and tumour cells, contribute to tumour 
progression and protect tumour cells from cytotoxic 
chemotherapy, as follows.  

2.2.1 Transforming growth factor-β

TGFβ is a pleiotropic growth factor and 
regulates multiple cellular functions including 
proliferation, adhesion, migration, and 
differentiation (251-257). TGFβ also induces the 
expression of matrix metalloproteinases, matrix 
components and adhesion molecules. These various 
effects together enable the remodelling of the 
microenvironment to provide for the appropriate 
physiological functions (251-257).  

There are two types of TGFβ receptors, Type 1 
and Type II. These receptors are widely distributed 
and expressed in normal and tumour cells. Members 
of the TGFβ family of proteins (TGFβ1 through 
TGFβ3 in mammalian species) bind to specific 
TGFβ receptors, followed by heterodimerization of 
the lignad-bound Type I and Type II receptors, and 
activation of the corresponding serine/threonine 
kinases (258). The activated receptors initiate 
multiple intracellular signaling cascades; the best 
characterized of which is the Smads-mediated 
signaling and transcriptional regulation pathway 
(258-260). TGFβ also activates TAK1 (TGFβ-
activated kinase 1) (261)  and small G-proteins (i.e., 
Ras, RhoA and RhoB), resulting in the activation of 
different MAPKs pathways, including ERK, p38 and 
JNK (262-268). In addition, TGFβ inhibits the 
phosphatase 2A-mediated activation of p70S6K, 
which is a ribosomal protein that regulates protein 
synthesis (269, 270). TGFβ also activates the 
PI3k/AKT survival pathways after a lag time; the 
delayed nature of this effect suggests the 
involvement of other mediating factors (271, 272).  

TGFβ exhibits both tumour suppressing and 
tumour promoting functions (257, 273-275). TGFβ
suppresses early stage carcinogenesis by inhibiting 
the growth of neoplastic cells of epithelial lineage. 
The tumour promoting function is largely through its 
suppression of host immune responses, stimulation 

of angiogenesis and promotion of tumour cell 
invasion and metastasis.   

TGFβ overproduction is observed in most 
common tumour types, including prostate (276-285), 
breast (286-291), lung (292-300), hepatic (301-303), 
colorectal (304), gastric (305, 306) and brain cancer 
(307), and is associated with increased pathological 
stages, metastasis and/or poor prognosis. In most 
cases, TGFβ overproduction is associated with loss 
of responsiveness of tumour cells to TGFβ mediated 
growth inhibition, through alterations in various 
steps of the TGFβ signalling cascade, i.e., 
downregulation of TGFβ receptors, mutation of 
Smad, and upregulation of c-myc (282, 283, 285, 
294, 296, 298, 308-314).

Pretreatment serum TGFβ level is a predictor of 
the outcome of radiation therapy in cervical cancer; 
higher levels are associated with worse locoregional 
control and shorter survival (315). However, 
pretreatment serum TGFβ level is not associated 
with acute radiation morbidity (315). These data 
indicate the selective effect of TGFβ on the 
radiosensitivity of tumour cells and not normal 
tissues.

Teicher and colleagues have conducted a series 
of elegant studies demonstrating the role of TGFβ in 
chemoresistance (20, 316-328).  These investigators 
established an in vivo acquired drug resistance 
mouse mammary tumour model by repeated 
administration of alkylating agents to tumour-
bearing mice (20). The key findings are as follows. 
First, the resistance phenotype was lost in monolayer 
cultures of the disaggregated tumour cells, indicating 
the involvement of environmental factors (20). 
Second, the implantation of the resistant tumour on 
one side of a mouse reduced the sensitivity of bone 
marrow cells and of the sensitive parent tumour 
implanted in the opposite side of the same host, 
indicating the present of circulating soluble 
resistance factors (20, 324, 326-328).  Third, tumour 
morphological studies demonstrated the more 
fibrous nature, increased blood vessel density and 
increased metastatic potential of the resistant 
tumours, as compared to the parent, chemosensitive 
tumours (20, 324, 326-328). Based on these 
morphological changes that are typical of TGFβ
functions, the investigators evaluated and 
established the role of TGFβ in chemoresistance. 
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First, mice bearing the resistant subclone showed 
higher pretreatment serum and intratumoural TGFβ
levels compared to mice bearing the chemosensitive 
parent tumour (319, 321, 323). Second, blocking 
TGFβ by neutralizing antibodies (323) or the natural 
inhibitor decorin (319, 321) sensitizes the resistant 
tumours to chemotherapy. Third, over-expressing 
TGFβ by transfection in the parent chemosensitive 
cells resulted in chemoresistant tumours in vivo 

(319). This chemoresistance development was 
accompanied by several other changes observed in 
the acquired resistance tumour model developed by 
repeated challenges with chemotherapy, including 
elevation of serum TGFβ level and resistance of 
bone marrow cells. Furthermore, the 
chemoresistance due to TGFβ transfection was 
reversed by decorin (319). Finally, serum and 
intratumoural TGFβ levels are enhanced by 
chemotherapy, suggesting TGFβ as a mediator of 
chemoresistance acquired after therapy (316, 318). 
Similar findings have been reported in other tumour 
models including prostate, liver and gastric cancers, 
thus indicating the broad-spectrum nature of the 
TGFβ induced drug resistance (318, 320, 322).   

In spite of the abundant evidence suggesting an 
important role of TGFβ in the chemoresistance 
observed in tumour-bearing animals, exogenous 
TGFβ does not induce resistance in monolayer 
cultures. The differences of TGFβ effects under in 

vitro and in vivo conditions suggest the involvement 
of additional factors present in tumour 
microenvironment. For example, in hepatocellular 
carcinoma cells, TGFβ promotes survival pathways 
including PI3K/AKT and FAK, an effect that is 
dependent on integrin-mediated adhesion and is 
most likely due to activation of integrin-linked 
kinase (329). In addition, TGFβ, together with 
growth factor signalling (IGF, EGF), through 
activation of receptor tyrosine kinases and Ras, 
stimulate epithelial-to-mesenchymal transition (i.e., 
squamous carcinoma to spindle carcinoma)(257). 
Furthermore, both direct and indirect effects of 
TGFβ, including host immune suppression, 
increased vascular endothelial growth factor (VEGF) 
production, remodelling of extracellular matrix and 
modulation of cell-cell adhesion molecule 
expression and signalling, contribute to angiogenesis 
in tumours. These various findings suggest the in 

vivo TGFβ-mediated chemoresistance as a result of 
the effects of complex networking between TGFβ
and other environmental factors on the different 
compartments in a solid tumour, i.e., tumour cells, 
stroma, and blood vessel, as well as the host immune 
system.  

Due to the critical roles of TGFβ in tumour 
progression and resistance to chemo- and 
radiotherapy, TGFβ and the associated signalling 
pathways are attractive cancer therapy targets. 
However, the fact that TGFβ also suppresses early 
stage tumour development and promotes 
carcinogenesis introduces the uncertainty that 
inhibition of TGFβ may lead to undesirable 
outcome. A better understanding and differentiation 
of the molecular mechanisms of these various TGFβ
effects may provide more specific targeting 
approaches to blocking its tumour promoting and 
chemoresistance functions while retaining its tumour 
suppressive function. Furthermore, inhibitors of 
TGFβ signaling may have promise as enhancers of 
chemotherapy or radiotherapy, as suggested by 
tumor model studies where inhibition of TGFβ by 
neutrilization antibodies or the natural inhibitor 
decorin enhanced the efficacy of chemotherapy. 

2.2.2 Interleukins 

Various cytokines including interleukins (IL) are 
secreted by two types of T helper cells, i.e., types 1 
and 2 or Th1 and Th2.  Th1 cells express IL2, 
interferons and tumour necrosis factor β and mediate 
cellular immune response. Th2 cells express IL4, 5, 
6, 10, 13 and mediate humoral immune response 
(330). In tumour-bearing animals, TGFβ shifts the 
balance between Th1 and Th2 responses toward Th2 
response by inducing the overproduction of IL10, 
which initiates Th2 functions and inhibits Th1 
functions.  

Overproduction of Th2 cytokines and/or aberrant 
activation of the signalling pathways of Th2 
cytokines have been found in patients with multiple 
types of advanced cancer, and in most cases are 
indicators for poor prognosis or short survival. For 
example, elevated serum IL6 level is observed in 
advanced metastatic prostate cancer, hormone-
refractory metastatic breast cancer, glioblastoma 
multiforme, and renal cell carcinoma, and is 
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predictive of poor prognosis and shorter survival in 
these patients following chemotherapy and/or 
immunotherapy (331-338). Elevated serum IL10 
levels, in some cases accompanied by elevated IL6 
and/or IL8 levels, have been found in patients with 
gastric and colon cancer, aggressive Hodgkin's 
lymphoma, metastatic melanoma, advanced non-
small cell lung cancer, hepatocellular carcinoma, 
and are associated with recurrence and/or shorter 
survival following therapy (339-354). On the other 
hand, a lack of IL10 expression in the tumour tissue 
of stage 1 non-small cell lung cancer patients is 
associated with a poor prognosis and shorter 
survival, suggesting a tumour suppressive function 
of IL10 in early stage disease (355). These biphasic 
effects of IL10 mirror the biphasic effects of TGFβ
on tumour progression, and raise the interesting 
question whether the TGFβ effects are mediated 
through Th2 cytokines.  

IL4 is overexpressed in thyroid cancers and high 
IL4 levels are associated with the resistance of 
thyroid cancer to chemotherapy (356). However, IL4 
level is not associated with cancer progression, 
response to chemotherapy or immunotherapy, or 
prognosis in other tumour types. In fact, IL4 shows 
antitumour activity in breast and renal cell 
carcinoma. In the Japanese population, IL4 levels 
are no effects whereas genetic polymorphisms of 
IL4 receptor α gene result in heightened IL4 
signalling and Th2 immunity and are associated with 
higher incidence and poor prognosis in renal cell 
carcinoma (330). 

Since Th1-meidated immunity is the major 
antitumour immunity mechanism under in vivo

conditions, Th2-mediated immunity, by suppressing 
Th1 immunity, results in tumour promotion and/or 
resistance. However, multiple lines of evidence 
support the notion that Th2 cytokines, including IL4, 
IL6, and IL10, confer survival advantage to tumour 
cells directly. Primary cultures of disaggregated 
thyroid cancer cells from patients produce IL4 and 
IL10 and cause the over-expression of anti-apoptotic 
proteins Bcl-2 and Bcl-XL and thereby confer 
resistance to cytotoxic chemotherapy (356). These 
findings are in agreement with the clinical 
observation that high level of Bcl-2 and Bcl-XL in 
thyroid tumours is associated with high resistance to 
chemotherapy (356). Likewise, murine B16 

melanoma cells and primary cultures of human 
stomach adenocarcinoma and glioblastoma 
multiforme produce high levels of IL10, which 
protects tumour cells from cytotoxic chemotherapy 
(357). The IL10-induced chemoresistance was 
observed under in vitro and in vivo conditions, and is 
mediated by STAT3-dependent upregulation of anti-
apoptotic Bcl-2 family proteins (357). Similarly, 
autocrine or paracrine activation of IL6 signalling 
induces multidrug resistance in breast, prostate, 
pancreatic, cervical and oesophageal carcinoma 
cells. IL-6 induced resistance is mediated by 
activation of STAT3, MAPK and/or PI3K/AKT 
pathways, through upregulation of anti-apoptotic 
Mcl1 and Bcl-2 family proteins, mdr1 drug 
transporter and/or detoxification enzyme glutathione 
transferase.

IL6 and IL10 have been investigated as potential 
therapeutic targets. Blocking IL10 actions using an 
inhibitor AS101, an immunomodulator, inhibits 
STAT3 activation, downregulates anti-apoptotic 
Bcl-2 family protein and sensitizes aggressive 
human glioblastoma multiforme to paclitaxel 
treatment under in vitro and in vivo conditions in 
preclinical models. The chemosensitization effect of 
AS101 was achieved at nontoxic drug levels (357). 
A subsequent phase II trial using AS101 in 
combination with chemotherapy in unresectable or 
metastatic non-small cell lung cancer patients shows 
higher response rate and lower toxicity, partially 
validating the concept of using IL10 inhibition as a 
chemosensitizer in patients (358).  

Inhibition of IL6 or IL6 receptor using blocking 
antibodies sensitizes renal carcinoma and prostate 
cancer cells to anti-tumour drugs, e.g., etoposide, 
cisplatin and mitomycin C (359, 360). Sant7, a 
modified high affinity analog of IL6 that binds to 
IL6R without initiating downstream signaling, 
inhibits multiple myeloma and prostate cancer cell 
growth and sensitizes tumour cell to cytotoxic drugs 
(361, 362). 

3. CELL ADHESION MOLECULES 

Extensive studies have demonstrated the critical 
roles of cell adhesion to extracellular matrix and 
tumour/stromal cell interaction in tumourigenesis 
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and tumour progression (160, 363-374). The two 
major categories of adhesion/interaction molecules 
are (a) integrins which are the major mediators of 
cell-matrix adhesion, and (b) cadherins, selectins 
and members of the immunoglobulin superfamily 
cell adhesion molecules (CAM-Ig), which mainly 
mediate cell-cell interaction. Multiple lines of 
evidence support important roles for these 
compounds in mediating chemoresistance of solid 
tumours, as follows. 

First, the expression levels of adhesion 
molecules, including ICAM1(375-383), CD44 (384-
386), NCAM (387-390), LFA-3 (383), E-cadherin 
(391, 392), P-cadherin (393), integrin β1(394, 395), 
are correlated with poor prognosis, resistance to 
chemotherapy and radiotherapy, and shorter survival 
in multiple types of solid tumours and leukaemia, 
suggesting a potential role of cell adhesion mediated 
clinical drug resistance. 

Second, conventional cytotoxic chemotherapy 
upregulates the expression of adhesion molecules in 
solid tumours, suggesting alteration in cell adhesion 
as a response to chemotherapy. A comparison of the 
gene expression profiles in three lung cancer patients 
using the cDNA array technique shows significant 
increases in adhesion molecules, including matrix 
metalloproteinases, integrins, endonexin, collagens 
and FGFR3, in post-chemotherapy lung cancer 
tissues compared to normal lung tissues from other 
donors (396). Similarly, patients with Barrett's-
associated adenocarcinoma showed significantly 
elevated E-cadherin expression following 
chemotherapy or radiotherapy compared to patients 
who did not receive therapy (397). Higher E-
cadherin levels are also associated with a shorter 
survival in patients receiving chemotherapy or 
radiotherapy, but this association was not observed 
in patients that did not receive therapy (397),
demonstrating direct contribution of this responsive 
induction of E-cadherin to chemoresistance. The role 
of adhesion in chemoresistance was further 
demonstrated in series of studies on small cell lung 
xenograft tumours, the adhesion-dependent 
chemoresistance mimic the in vivo resistance in 
patients and involves altered extracellular matrix and 
cell adhesion molecules expression, constitutive 
activation of MAPK and AKT pathways and 
modulation of apoptosis molecules (398, 399).  

Third, preclinical studies have demonstrated that 
specific cell adhesion to either extracellular matrix 
or neighbouring stromal/cancer cell causes drug 
resistance in different experimental models. Altered 
expression of extracellular matrix components e.g., 
collagen IV and membrane integrins, is associated 
with acquired resistance in tumour cells398, 400, 
401. Adhesion to protein or non-protein extracellular 
matrix components, e.g., fibronectin, collagens, 
tenacin, laminin and hyaluronan, protects multiple 
types of tumour cells against apoptosis induced by 
cytotoxic drugs or radiation (399, 402-412). The 
protective action of the extracellular matrix (ECM) 
is mediated by integrin activation and signalling; 
several recent reviews summarize the integrins 
promoting drug resistance (e.g., integrin α4β1,
α5β1) and the corresponding experimental systems 
(408-411). Activation of these integrins leads to 
activation of the downstream PI3K/AKT, MAPK 
and PLCγ pathways, resistance by inhibiting cell 
death through regulation of apoptosis regulatory 
proteins (e.g., Bcl-XL and Bad), decreased cell 
proliferation through upregulation of the CDK 
inhibitor p27 protein, and decreased DNA damage 
by downregulation of DNA topisomerase II (408).  

Fourth, tumour-stromal contact and cell-cell 
contact (e.g., when tumour cells are cultured as 
multi-cellular spheroids) alter tumour cell sensitivity 
to cytotoxic treatment (410-414).  For the former, 
the contact between myeloma cells and bone marrow 
stroma in vitro resulted in protection of myeloma 
cells from the cytotoxicity of a topoisomerase II 
inhibitor mitoxantrone, as well as induction of yet-
unknown soluble factors that mediated partial 
inhibition of apoptosis and accelerated tumour cell 
proliferation (413). E-cadherin has been identified as 
an important player in the cell-cell contact 
dependent resistance, and its inhibition by a 
blocking antibody reversed the drug resistance in 
cultured colon cancer spheroids (415). The 
mechanisms for the resistance mediated by cell-cell 
contact are not known, but could be due to direct or 
indirect mechanisms. 
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4. HYPOXIA 

Dysregulated tumour growth and progression 
cause imbalance between oxygen supply and 
consumption. These, together with structural and 
functional dysfunction of intratumoural vasculature, 
induce higher level of hypoxia in solid tumours. The 
phenomenon and the mechanisms of hypoxia-
induced tumour cell resistance to radiation were 
discovered more than 70 years ago (416, 417). Since 
then, the availability and application of quantitative 
polarographic oxygen electrode technique (pO2 
histograph) and other techniques using antibodies 
for detecting hypoxic markers have enabled detailed 
studies on the characteristics, development, and 
clinical relevance of hypoxia in human tumours 
(418, 419).

Hypoxia is observed in almost all types of 
human solid tumours, with substantial inter- and 
intra-tumour heterogeneity (420). Hypoxia 
contributes to tumour progression and invasion, and 
affects the prognosis in patients with various types 
of solid tumours (419, 420). The extensive studies 
on uterine cervix and head and neck tumours have 
shown that hypoxia in patient tumours is 
independent of tumour size, stages/grade and 
pathological types (419, 420). However, a high level 
of hypoxia is correlated with the tumour grade in 
other tumours, e.g., brain tumour(421). Hypoxia is 
associated with worse prognosis in non-small cell 
lung (422-424), brain (421, 425-427), and head and 
neck cancer (419), presumably due to enhanced 
malignancy and resistance to radiotherapy or 
chemotherapy.  

Hypoxia directly or indirectly affects tumour 
sensitivity to radiation or chemotherapy drugs 
through chemical, biological and/or micro-
evolutional mechanisms (418-420, 428), as follows.  

Chemically, oxygen is required for enhancing 
the radiation-induced DNA damage and thereby 
enhancing cell kill. Hence, hypoxia causes resistance 
to radiotherapy. Typically, a 2.5-3 folds higher 
radiation is required to kill cells under fully hypoxia 
condition compared to aerobic conditions (428).  

Hypoxia induces multiple biological responses 
simultaneously, through transcriptional and post-
transcriptional mechanisms. Hypoxia-induced 
factor-1 (HIF1), mainly acts as a transcription factor, 

is the key element mediating the downstream 
transcriptional response in mammalian cells (418, 
429-433). HIF1 is a heterodimer of the oxygen-
regulated HIF1a and the constitutively expressed 
HIF1b. In the presence of oxygen and iron cofactors, 
proline hydroxylase hydroxylates HIF1a, resulting in 
its ubiqutin-mediated proteosome degradation 
initiated by the binding to VHL (von Hippel-Lindau 
tumour suppressor). This process, which serves to 
control the HIF1 level, is inhibited by hypoxia. 
Other oxygen sensing system may also be involved 
in HIF1 induction. Increases in HIF1 levels enable 
binding of HIF1 to hypoxia-response-elements in 
target genes and thereby regulates the transcription 
of these genes. Hypoxia also activates common 
stress-responsive transcription factors, e.g., p53, 
NFkb (434), AP-1 (Jun and c-fos heterodimer)(435, 
436).  Furthermore, APE-1/Ref1, a widely expressed 
dual-function protein, is activated under hypoxia 
and, through post-translational modifications, 
regulates transcriptional factors, leading to 
proteomic changes and subsequent biological 
responses to hypoxia and reoxygenation (435, 437-
440).

The oxygenation status affects tumour cell 
sensitivity, under in vitro and in vivo conditions, to 
DNA-active agents. The mechanisms include 
decreasing the free radical generation (e.g., 
belomycin, etoposide), by causing acidosis which 
decreases the activity of the weakly basic drugs 
(e.g., vinblastin, doxorubicin, bleomycin), by 
causing elevated levels of glutathione which 
competes for alkylation of DNA or proteins, e.g., 
melphalan, cyclophosphamide, 1-nitrosourea 
(BCNU), or indirectly by complex biological 
consequences (see below). Besides inducing these 
drug-specific resistance mechanisms, hypoxia also 
causes resistance through broad-based mechanisms, 
as follows.  

First, hypoxia induces G0/G1 phase cell cycle 
arrest through HIF-1 dependent upregulation of 
cyclin dependent kinase inhibitors p27/Kip1 and 
p21/Cip1 in tumour cells and fibroblasts (441-446). 
Downregulation of cyclin D, cyclin E and 
upregulation of 15/ink4a may also be involved in 
hypoxia-induced G0/G1 arrest. Because most 
chemotherapeutic drugs preferentially kill active 
dividing cells and/or target tumour cells at specific 
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cell cycle stages, slow down of cell proliferation by 
hypoxia protects tumour cells from drug toxicity. 
Furthermore, p27/kip1 protects tumour cells from 
hypoxia, nutrition depletion-induced cell death, and 
confers survival benefits in the presence of 
cyototoxic drugs.  

Second, hypoxia modulates the expression and 
the balance of pro- and anti-apoptotic proteins. 
Chronic/severe hypoxia causes cell death mainly via 
mitochondria permeation-mediated apoptotic and 
necrotic pathways. Hypoxia induces the expression 
of the pro-apoptotic protein NIP3 and its homologue 
NIX, in a wide range of cell lines, an effect that 
requires HIF1 (447, 448). The expression of NIP3 is 
found in the perinecrotic region in human tumours 
(447, 449); its induction causes cells to undergo 
caspase-independent necrosis-like cell death while 
its inhibition by antisense RNA abolishes hypoxia-
induced cell death (450-452). This data suggest that 
NIP3, and possibly NIX as well, mediate hypoxia-
induced necrosis. However, hypoxia, through both 
HIF1-dependent and HIF1-independent pathways, 
also transcriptionally and/or post-transcriptionally 
upregulates the anti-apoptotic proteins Bcl-2, Bcl-
XL and IAP family members (453), and 
downregulates the pro-apoptotic proteins Bid, Bad 
and Bax (454), and thereby protects tumour cells 
from hypoxia-induced cell death. 

 Third, the expression of ATP-binding cassette 
drug efflux protein P-glycoprotein (455, 456) is 
upregulated in human tumour and endothelia cells 
under hypoxic conditions, probably as a part of 
adaptative reactions to hypoxia (see also below). 
The induction requires prolonged chronic hypoxia, is 
dependent on HIF1, and is rapidly reversed by 
reoxygenation (456-458). Similarly, breast cancer 
resistance protein (BCRP or ABCG2) is upregulated 
by hypoxia via an HIF-dependent mechanism, and
thereby protects tumour cells from hypoxia-induced 
cell death (459). These drug efflux transporters, by 
decreasing the intracellular drug accumulation, 
confer drug resistance (4-6, 460-463). 

Fourth, hypoxia reorganizes and modulates the 
intra-tumour microenvironment, by upregulating 
vascular endothelial growth factor (464-468) and its 
receptors (469-471), FGF1 and/or FGF2 (468, 472), 
HGF/c-Met system (473, 474), IGFII (475, 476), 
IGFBP1 (477, 478), TGFβ1 and 3 (479),  TGFα

/EGFR system (480), IL1(481-483), IL6 (484-486) 
and IL8 (487-490). Many of these signalling 
pathways confer survival advantage to tumour cells 
as discussed in earlier sections.  

Fifth, tumour cells, unlike normal cells, can 
survive and even benefit from hypoxic conditions 
through genetic and epigenetic adaptive changes. As 
a persistent stress, hypoxia selects for cells more 
adaptive to adverse conditions, and causes cross-
resistance to therapy. Hypoxia and the associated 
acidosis, as well as nutrient deprivation, diminish 
DNA repair and cause genetic instability, 
accelerating the long-term micro-evolutionary 
process. The frequency of mutation and 
chromosome alteration increases 5-folds in tumour 
cells grown as solid tumours in mice or under 
hypoxic culture conditions, as compared to the same 
cells grown as monolayer cultures under aerobic 
conditions (491). Hypoxia induces genetic instability 
by downregulating the expression of the Mlh1 gene, 
a key component in DNA mismatch repair system 
(MMR), and thereby causes a deficiency in the 
MMR functionality (492), which in turn (a) 
increases genomic mutations and facilitates the 
selection of more aggressive and resistant tumours 
cells, and (b) activates adaptive responses to low 
oxygen level and/or nutrient depletion, including 
altered oxygen transport, iron metabolism, 
glycolysis and pH regulation and promoting 
angiogenesis. These changes affect the activity or 
delivery of chemotherapeutics and initiate micro-
environmental remodeling by modulating the 
expression of growth factors, cytokines, matrix 
metalloproteinases, adhesion molecules and 
extracellular matrix components, resulting in 
enhanced invasiveness, metastasis and drug 
resistance. Hypoxia also accelerates the selection of 
transformed epithelial cells that are apoptosis-
deficient (493, 494). 

Therapeutic approaches targeting hypoxia, either 
through HIF1 blocking or use hypoxia activated 
prodrug, have been developed (418, 428). Among 
them, tirapazamine, a prodrug preferentially 
activated under hypoxic condition, has been 
evaluated clinically; its ability to improve the 
activity chemotherapy in advanced non-small cell 
lung and breast cancer patients has been 
demonstrated in randomized trials (495, 496). 
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5. INTERACTION BETWEEN 

TUMOUR- AND 

MICROENVIRONMENT-DERIVED

FACTORS

Interactions between tumour- and 
microenvironment-derived factors affect 
chemosensitivity or chemoresistance in two ways. 
First, these factors can modulate each other and act 
cooperatively on several levels, e.g., regulation of 
expression of factors to induce environmental 
remodelling, cooperative activation between 
adhesion molecules and receptor tyrosine kinases, 
and cross-talk between downstream signalling 
pathways. In addition to the examples discussed in 
the above sections, growth factors or cytokines can 
activate changes in adhesion molecules, and cell-cell 
or cell-matrix adhesion can promote expression of 
survival-conferring soluble factors. Interactions 
between adhesion molecules (e.g., integrins, 
cadherins and adhesion molecules) and receptor 
tyrosine kinases on the cell membrane regulate the 
downstream signalling pathways and cell survival in 
multiple experimental models. In addition, N-
cadherin, which is upregulated to replace E-cadherin 
during tumour progression in solid tumours, a 
phenomenon called cadherin switch, is able to 
activate or augment the signalling of the FGF 
system. Simultaneous upregulation of adhesion 
molecules and FGFR3 in tumour tissues obtained 
from advanced lung cancer patients after 
chemotherapy further suggests a common response 
of tumour- and microenvironment-derived factors to 
cytotoxic insults. Individual factors may also have 
direct and indirect effects on multiple levels. For 
example, in addition to triggering the protective 
mechanisms on hypoxic cells, hypoxia initiates 
environment change by regulating the expression of 
certain growth factors, matrix components and 
adhesion molecules, and thereby protects hypoxic 
tumour cells as well as the neighbouring non-
hypoxic cells from stress. These various interactions 
often confer survival advantages to tumour cells. 

Second, there is a high degree of redundancy 
between the intracellular signalling pathways 
activated by receptors and adhesion molecules. 
Cross-talk between these pathways regulates the 

intensity and duration of the activation and plays 
critical role in signalling differentiation. An example 
is the redundant intracellular signalling pathways of 
integrins and growth factors. The effects of 
redundant signalling are two fold. On one hand, the 
activation of one factor can compensate for the 
blocking of the activation of the second factor, e.g., 
the EGF-mediated protection is attenuated when 
cells are adherent to extracellular matrix 
components. Furthermore, the redundant provides 
for a more reliable protection, and, hence, it is more 
difficult to overcome the survival advantage by 
blocking only a single target. 

6. CONCLUSIONS AND 

PERSPECTIVES

The recent advances of cancer biology and 
genetics provide unprecedented opportunities for 
innovative therapeutic paradigms. Abundant 
preclinical and clinical evidence indicates tumour 
resistance to therapy, either intrinsic or acquired, is 
determined by three major groups of tumour 
microenvironmental factors, i.e., soluble factors, 
adhesion molecules and hypoxia. The implications 
of the complex interplay between these factors and 
their redundant signalling pathways are two-fold. 
First, they highlight the importance of using 
appropriate experimental models. For example, the 
tumour-stromal interaction is not addressed by the 
monolayer culture system that is widely used in the 
experimental therapeutics field.  Future successes in 
therapy development depend on establishing 
experimental models that can capture the various 
components of the tumour microenvironment that 
contribute to the protection of tumour cells against 
chemotherapy or radiotherapy. The availability of 
such models is also critical to the elucidation of the 
survival mechanisms conferred by environmental 
factors. Experimental systems and techniques, such 
as, 3-dimensional cultures, tumour-stromal cell co-
cultures, and orthotropic tumours, especially the 
surgical orthotropic implantation of tumour cells 
from individual patients, include microenvironment 
compartments, and are more likely to yield clinically 
relevant information. Second, it is reasonable to 
postulate that approaches aiming at a single target 
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are not likely to yield significant and durable 
therapeutic successes. A logical approach is to aim 
at multiple targets, simultaneously eliminating the 
survival benefits conferred by multiple factors, 
present in either tumour and/or stromal 
compartments. Additional challenges include the 
chemotherapy-induced microenvironment 
remodelling, the kinetics of signalling initiated by 
tumour- and environment-derived factors and the 
interaction of these signalling pathways resulting in 
chemoresistance. 
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