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Preface

The area of Multibody Dynamics is a part of the Computational Mechanics scien-
tific field associated to solid mechanics. It can be argued that among all the areas 
in solid mechanics the methodologies and applications associated to multibody 
dynamics are those that provide a better framework to aggregate different disci-
plines. This idea is clearly reflected in the multidisciplinary applications in biome-
chanics that use multibody dynamics to described the motion of the biological en-
tities, in finite elements where multibody dynamics provide powerful tools to 
describe large motion and kinematic restrictions between system components, in 
system control where the methodologies used in multibody dynamics are the 
prime form of describing the systems under analysis, or even in many applications 
that involve fluid-structures interaction or aeroelasticity. 

The ECCOMAS thematic conference Multibody Dynamics 2003 that took 
place in Lisbon, Portugal was organized in turn of special sessions dedicated to 
multibody dynamics in Biomechanics, Vehicle Dynamics, Contact and Impact, 
Optimization and Design Sensitivity, Flexible Multibody Systems, Education of 
Computational Kinematics, Dynamics and Multibody Systems, Multidisciplinary 
Applications and Real-Time Applications. These sessions were organized by rec-
ognized experts in each of these areas and gathered together 127 participants from 
22 countries, including Japan, Korea, India, USA, Mexico, Canada and many of 
the European nations, who delivered 90 communications during the 4 days of the 
conference.

This book contains the contributions of the special session organizers, or of par-
ticipants selected by the organizers, that reflect the State-of-Art in the application 
of Multibody Dynamics to different areas of engineering. The chapters of this 
book are enlarged and revised versions of the communications, delivered at the 
conference, which were enhanced in terms of self-containment and tutorial quality 
by the authors. The result is a comprehensive text that constitutes a valuable refer-
ence for researchers and design engineers which helps to appraise the potential for 
the application of multibody dynamics methodologies to a wide range of areas of 
scientific and engineering relevance. 

Lisbon, Portugal 
Jorge Alberto Cadete Ambrósio 

Chairman



A Fast and Simple Semi-Recursive Formulation for 

Multi-Rigid-Body Systems 

J. García de Jalón1, E. Álvarez1, F.A. de Ribera1, I. Rodríguez2 and F.J. Funes3

1 Escuela Técnica Sup. de Ingenieros Industriales, Univ. Poli. de Madrid, Spain 
2 STT Engineering and Systems, S.L, San Sebastián, Spain 
3 Telefónica de España, Madrid, Spain 

This work describes a topological semi-recursive formulation for multibody dy-
namics that is very simple and efficient. This formulation is called “semi-
recursive” because it uses recursivity, but at the end it needs to solve a system of n
linear equations, with n the numbers of degrees of freedom. With relative coordi-
nates the formulation shall include the closure-of-the-loop constraint equations. 
These constraint equations are more complicated to take into account with fully 
recursive O(n) formulations, which are the fastest for long, open-chain systems. 
For this reason, several semi-recursive formulations simpler and easier to imple-
ment have been developed in the last few years. In this paper, some semi-recursive 
formulations are reviewed and a new variant, that is simpler and more general, is 
described in detail. A simple way to introduce the topology of the spanning tree is 
presented. Special attention is paid to closed-loop multibody systems with rods, 
and the benefits of opening the loops by removing these rods • while keeping its 
inertia forces exactly•  are explained. Some examples and numerical results illus-
trate the aforesaid theoretical developments. 

1 Introduction 

Complex multibody systems arise in many areas of engineering: automobiles, 
machinery, robotics, aerospace, biomechanics, etc. Although the motion differen-
tial equations that govern their dynamic behavior have been known since the times 
of Newton, Euler and Lagrange, their practical application started 40 years ago 
when space and robotics problems demanded more precise mathematical models, 
and digital computers provided the means to numerically integrate these differen-
tial equations in an acceptable elapsed time. 

The first practical systems studied (spacecraft and robots) were open-chain sys-
tems, so relative coordinates were more appropriate than Cartesian coordinates. In 
addition to this, relative coordinates had fewer storage requirements. In the seven-
ties and eighties the main emphasis switched to automobile applications, which 
are inherently closed-chain systems. So, software packages that used highly con-
strained Cartesian coordinates, such as ADAMS and DADS, were developed.  
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These programs are based on global formulations, in the sense that they consider 
all mechanisms –open-chain and closed-chain; loosely or severely constrained– in 
exactly the same way. As a consequence, the efficiency was low. In contrast with 
the global formulations are the topological formulations, which try to take advan-
tage of the system topology to improve the efficiency of the dynamic simulations. 
The topological formulations tend to use relative coordinates or special sparse 
matrix techniques. 

In this paper, after a review of some of the improvements published in the last 
few years for global formulations, a simple semi-recursive formulation based on a 
double velocity transformation will be described. It is known that the presence of 
rods (slender elements with two spherical joints) present some difficulties when 
relative coordinates are used. So, a very interesting option is to open the closed 
chains by eliminating these rods (and perhaps also some joints in the system). For 
kinematics, a rod element can be replaced by a single constraint equation, in fact a 
constant distance condition, but for dynamics its inertia forces should be kept in an 
exact way. Later on, the procedure followed to take into account the rod inertia 
will be explained in detail. 

In the descriptor form, using Cartesian dependent coordinates, the motion dif-
ferential equations take the form, 

,
T

qM q q Q q q  (1) 

where q is the vector of Cartesian coordinates that defines the system position, q

and q  are its first and second order time derivatives, M is the inertia or mass ma-
trix, Q is a vector that includes the external and velocity dependent inertia forces, 

q is the Jacobian matrix of the kinematic constraint equations and  the vector of 
Lagrange multipliers. The position, velocity and acceleration vectors in Equation 
(1) must satisfy the corresponding constraint equations, 

q 0  (2) 

tq
q q 0 (3)

tq qq q q 0  (4) 

Equations (1) and (4) constitute a system of index 3 DAEs. If only Equations 
(1) and (4) are considered, the following index 1 DAE system –equivalent to an 
ODE system– is obtained: 

,
T

t

q

qq

Q q qM q q

q0
(5)

The matrix in this system of linear equations is known as the augmented matrix
[26] or a matrix with optimization structure [26,33]. The system of differential 
equations (5) presents a constraint stabilization problem. As only the acceleration 
constraint equations have been imposed, the positions and velocities provided by 
the integrator suffer from the “drift” phenomenon. Two popular solutions to this 
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problem are the Baumgarte stabilization method [5,14] and the mass-orthogonal 
projections of position and velocity vectors [25]. 

Another way to solve the constraint stabilization problem is to use velocity
transformations, which map the dependent Cartesian velocities q  on a minimal 
set z  of truly independent velocities. Let matrix R be the orthogonal complement 
of the Jacobian matrix q, that is an n×f matrix whose columns are a basis of the 
nullspace of q. The dependent velocities q  can be expressed as a linear combi-
nation of the columns of matrix R. The coefficients of this linear combination are 
the independent velocities z ,

1 1 2 2
... f fz z zq R R R Rz  (6) 

Matrix R can be computed very easily by a coordinate partition of vector q  on 
dependent and independent velocities. The dependent velocities are those veloci-
ties related with the columns of the pivots in the Gauss factorization of matrix q.
The independent velocities z  can be expressed as the projections of the dependent 
ones on the rows of a full rank (f×n) constant matrix B in the form, 

z Bq  (7) 

The rows of matrix B shall be linearly independent of the rows of the Jacobian 
matrix q. Equations (3) and (7) can be expressed together in the form, 

,        t

q
b

q b
B z

(8)

Because of the conditions established for matrix B, the matrix in this system of 
linear equations can be inverted. Consider this inverse matrix in partitioned form, 

1

m m f

f m f

q q q
I 0

S R
0 IB B B

(9)

This expression is used to define matrices S and R, which are part of the referred 
inverse matrix. By introducing the result of Equation (9) in Equation (8), the fol-
lowing result is obtained for the velocity transformation, 

1

t

q b b
q S R Sb Rz b

B z z
(10)

Matrix S in Equations (9) and (10) is never computed explicitly: only the prod-
uct (Sb) need to be computed. According to Equation (10), this product is given 
by the dependent velocities q  computed with null independent velocities ( z 0 ).

The constant matrix B can be computed in several ways. It can be computed by 
the QR factorization (or the SVD) as the orthogonal complement of the Jacobian 
matrix in a previous position. The matrix B so computed is valid as far as the 
inverse matrix in Equation (9) exists and is well conditioned. However, there is a 
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simpler and cheaper procedure based on the Gaussian elimination with full pivot-
ing, that is stable enough for most applications. This method coincides with the 
coordinate partitioning method introduced by Wehage and Haug [34], and with the 
velocity transformation method used by Serna et al. [30]. In these methods matrix 
B is chosen as a Boolean matrix that defines the independent velocities z  as a 
subset of velocities q . In partitioned form, 

d i d

i
f m f

q qq
0q

q
0 IB zq

(11)

Matrix q
d is non-singular because its columns contain the pivots of q. So, the 

full matrix in Equation (11) is invertible. Considering this inverse in partitioned 
form,

1 d i d d
m m f

i i
f m ff m f

q qq q q
I 0S R

S R
0 I0 IB B B S R

(12)

By identification of terms on the left and on the right-hand sides, it is concluded 
that matrices S and R and its partitions are given by, 

1 1

,       

d d id d

i i

f m f

q q qS R
S R

S R0 I
(13)

For accelerations it is possible to express together the acceleration Equations 
(4) and the time derivative of Equation (7). The following is obtained, 

1

,

t

q q

q

c c c
q q S R Sc Rz

B z B z z

c q

(14)

where the product (Sc) can be computed as the part of the dependent accelerations 
that depends on the velocities q  and on the rheonomic constraints, i. e., computed 
with null independent accelerations ( z 0 ).

Substituting this result in the equations of motion (1), pre-multiplying by ma-
trix RT and taking into account that qR=0, the following expression is obtained 
for the dynamic equations in independent coordinates, 

,
T T

R MRz R Q q q MSc  (15) 

This is an ODE system that does not suffer from the difficulties of the DAEs in 
Equation (5). Observe that the Lagrange multipliers no longer appear. Equations 
(1) to (15) are classical in MBS formulations and they are the basis of the im-
proved formulations that will be described next. 

This improved formulations, in one way or another, try to take advantage of 
the particular characteristics of the descriptor form, Equation (5) or the state space 
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(projected) form, Equation (15). In the last few years some authors have described 
ways to improve the efficiency of global formulations in descriptor form. For 
instance, von Schwerin [33] proposed a formulation that uses recursivity and a 
O(n) Adams-Bashforth-Moulton integrator. Cuadrado et al. [15] have obtained 
high efficiency by using Cartesian Natural coordinates [19,20] combined with an 
index 3 penalty method. Although both formulations are global, the ideas behind 
their improvements can be used to enhance the topological formulations where 
they are applied to close-loop multibody systems. 

2 Topological semi-recursive formulations 

Open-chain systems, when formulated using relative coordinates, avoid constraint 
equations. For these systems there are several fully recursive formulations able to 
solve the direct and inverse dynamic problems with O(n) arithmetic operations 
[2,4,6,18]. Fully recursive formulations are the most efficient ones for chains with 
large number of bodies. A careful analysis carried out by Stelzle, Kecskeméthy 
and Hiller [32] demonstrated that these methods are the most efficient for a num-
ber of bodies n>7.

If the system has closed loops the relative coordinates are not independent. The 
usual way to deal with these systems is to open the loops by cutting some joints 
and to carry out the dynamic analysis by applying the constraint forces and impos-
ing the corresponding constraint equations. In this case the O(n) dynamic formula-
tion becomes much more involved [1,3,8,29], and many authors prefer to keep it 
simpler with a partial application of recursivity, leading to semi-recursive formu-
lations. At the end, all semi-recursive formulations arrive at systems of linear or 
nonlinear equations, depending on the kind of numerical integrators they use, 
explicit or implicit. Solving these equations is an O(n3) arithmetic operations proc-
ess, assuming that no provision is taken to take advantage of the zeroes or sparsity 
pattern of the system matrix. 

Most semi-recursive formulations use Cartesian coordinates in the first stage of 
the analysis. The closed loops are opened by removing some joints (or bodies). 
The dynamic equations of the spanning tree and the closure of the loop constraint 
equations are formulated in Cartesian coordinates, and then they switch to relative 
coordinates using a velocity transformation. A difference between the formula-
tions is the reference point they use to define the Cartesian velocities and accelera-
tions of each body. An obvious choice can be the center of gravity, that simplifies 
the setting of the Newton-Euler dynamic equations; another possibility is the ori-
gin of the reference frame attached to the moving body. A third possibility is to 
use the point pertaining to the moving body that instantaneously coincides with 
the origin of the global or inertial reference frame; as the position of this point is 
the same for all bodies, some recursive expressions become very simple.

Among the semi-recursive formulations reported in the bibliography it is neces-
sary to mention the method of Bae et al [11,13] This formulation is very different 
from the others, because it is closely tied to the stiff numerical integrator described
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by Yen [35]. Bae uses as reference point the origin of the moving reference frame. 
To perform a time step, Bae sets a system of nonlinear equations whose unknowns 
are the new relative positions, velocities, accelerations and Lagrange multipliers. 
These equations come from the dynamic equations, the kinematic constraints for 
positions, velocities and accelerations, and from the backward differentiation 
formula used by the numerical integrator. These nonlinear equations are solved by 
a Newton-Raphson method whose tangent or Jacobian matrix is computed exactly 
using forward and backward recursive formulae for kinematic and force terms, 
respectively. This method is relatively simple and seems to be very robust and 
efficient, particularly when the system of linear equations has a small or moderate 
size. Because of the BDF formula used by the integrator, it is able to deal with 
both stiff and non-stiff problems. 

The first semi-recursive formulation based on a velocity transformation be-
tween Cartesian and relative velocities was due to Jerkovsky [24]. These ideas 
were subsequently extended by other authors, such as Kim and Vanderploeg [23], 
Nikravesh and Gim [27], García de Jalón et al. [21], and Bae and Won [9]. More 
recently, other recursive and semi-recursive formulations have been developed by 
Negrut, Serban and Potra [26], Saha and Schiehlen [29], Saha [28] and Kim [22]. 
In the following sections a new variant that is very simple and general will be 
described in detail. 

2.1 Semi-recursive formulation for open-chain systems 

As many authors do, this method starts with the dynamic equations set in Carte-
sian coordinates and then applies two velocity transformations that lead to the 
motion differential equations using a set of independent relative coordinates.

This method is able to deal with any kind of multibody systems. It adapts well 
both to explicit and implicit integrators. If the system has closed loops, it is first 
converted to an open-chain system by the cut-joint method or –in some cases– by 
removing some bodies with a particular geometry and mass distribution (rods). 
The motion equations are first formulated in Cartesian coordinates. Also the clo-
sure of the loop constraints are formulated in Cartesian coordinates; the corre-
sponding constraint forces are introduced through Lagrange multipliers.

Then, a first velocity transformation switches from the Cartesian velocities to 
the relative velocities corresponding to the open-chain system. After this trans-
formation only the closure of the loop constraints remain; they are transformed to 
the relative velocity space. In order to get a system of ordinary differential equa-
tions, a second velocity transformation that keeps only a subset of independent 
relative velocities is applied.

In the formulation that is described here, the geometry of each moving body is 
defined in a reference frame attached to the moving body by using natural coordi-
nates, i. e., by defining a set of points and unit vectors that describe the geometry 
of the body and its joints, as can be seen in Figure 1. In this way, the geometry is 
simpler and clearer than using multiple “markers” or additional reference frames 
attached to the moving bodies [13,22]. When needed, this geometric information  
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is easily transformed to the global reference frame using the body position vari-
ables, that are the position vector of the origin of the moving reference frame ri

and the transformation matrix Ai.

ri

gi

y

x

z

Fig. 1. Body geometry defined with points and unit vectors 

For reasons that will become apparent later, the Cartesian velocities Zi include 
the velocity 

is  of the point attached to body i that instantaneously coincides with 
the origin of the inertial reference frame. These Cartesian velocities and accelera-
tions are also used by Negrut et al. [26] and Kim [22]. The Cartesian velocities and 
accelerations are defined by the vectors, 

,
i i

i i

i i

s s
Z Z (16)

Vectors Z and Z  are respectively the vectors that contains the Cartesian velocities 
and accelerations of all the bodies: 

1 2 1 2
,      

T T T T T T T T

n nZ Z Z Z Z Z Z Z  (17) 

Using points and unit vectors, joints between contiguous bodies are modeled 
very easily. For instance, in a revolute joint between bodies i-1 and i (see Fig-
ure 2), an output point and a unit vector of element i-1 coincide respectively with 
the input point and unit vector of element i. For a prismatic joint both elements 
share a unit vector, and the input point of element i is located on the line defined 
by the output point and unit vector of element i-1 (see Figure 3); in this case both 
elements share the same transformation matrix.

For dynamics, it is useful to have expressions for the Cartesian velocities Y and 
accelerations Y  based on the center of gravity, that are defined in the form: 

3

3

i i i

i i i

i i

g I g s
Y D Z

0 I
(18)

3

3

i i i i i i

i i i i

i i

g I g s g
Y D Z e

0 I 0
(19)
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X
Y

Z

1iX

i–1 

i

1iY

1iZ

iY

iX

iZ

1ir

ir

1ip

iu

Fig. 2. Revolute joint

Equations (18) and (19) constitute the definition of matrix Di and vector ei. In 
these expressions, 

ig  and  are the skew-symmetric matrices associated with 
vectors gi and i.

X
Y

Z

1iX

i–1

i

1iY

1iZ
iY

iX

iZ

1ir

ir

1ip

iu

1i i
d

Fig. 3. Prismatic joint 

For open-chain systems (and for closed-loop systems, after removing some 
joints or bodies) the Cartesian positions, velocities and accelerations can be com-
puted recursively upwards from the relative coordinates, velocities and accelera-
tions. The recursive calculations for positions are straightforward and are not 
included here because they are not important for the first velocity transformation. 

The recursive expressions for velocities and accelerations are, 

1i i i izZ Z b  (20) 

1i i i i izZ Z b d  (21) 

where zi are the relative coordinates, and vectors bi and di have simple expressions 
that depend on the kind of joint i. Note that if different reference points are used 
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for bodies i and i-1, the Equations (20) and (21) should include a transformation 
matrix Bi [28,29], 

1i i i i izY B Y b  (22) 

1i i i i i izY B Y b d  (23) 

The simpler form of Equations (20) and (21), as compared with Equations (22) 
and (23), has important advantages in some accumulation expressions that will 
appear later. For open-chain systems the velocity transformation defined by Equa-
tion (6) can be set directly. It is possible to consider only revolute and prismatic 
joints, because other joints can be decomposed on a combination of revolute and 
prismatic joints with massless intermediate bodies. In this case, the column j of 
matrix R can be computed directly, because its elements are the Cartesian veloci-
ties of the bodies that are upwards in the tree, originated by a unit relative velocity 
in the joint j and null relative velocities in other joints. As all bodies share the 
same reference point, all have the same velocity bi given by Equation (20).

This velocity transformation and the way the system topology is taken into ac-
count is better explained with an example. Figure 4 shows an open-chain, tree 
configured multibody system. As suggested by Negrut et al. [26] the bodies have 
been numbered from the leaves to the root, in such a way that each body has a 
number lower than its parent. 

This numbering avoids the later filling-in in the Gauss elimination process. 
Each joint has the same number as the body that is upwards when the tree is trav-
ersed from the root to the leaves. For this example, the velocity transformation 
matrix corresponding to Equation (6) has the following form: 

1 2 5 1

2 5 2

3 4 5 3

4 5 4

5 5

0 0 0 0 0 00 0

0 0 0 0 0 0 00 0 0

0 0 0 0 0 00 0

0 0 0 0 0 0 00 0 0

0 0 0 0 0 0 0 00 0 0 0

d

b b b bI I I

b b bI I

R b b b b TRI I I

b b bI I

b bI

(24)

where I is the identity matrix of size 6×6, T is the path matrix that defines the 
connectivity of the mechanism and Rd is a diagonal matrix whose elements are the 
vectors bi defined in Equation (20). Remember that vector bi represents the veloc-
ity of the point that coincides with the inertial frame origin, induced by a unit 
relative velocity in joint i.

The introduction of the path matrix T is a key point of this formulation. This al-
lows the topology of the spanning tree to be taken into account in a straightfor-
ward way. Other authors, as Negrut el al. [26], need to introduce complicated 
expressions to explain the recursive processes on different branches that start from 
a common junction body. Observe that the k row of the path matrix T gives the 
joints or relative coordinates that are below body k, while the k column gives the 
bodies that are upwards of joint k.
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1
z

3
z

2
z

4
z

5
z

1

2

3

4

5

Fig. 4. An example of an open-chain system

Taking into account Equations (18) and (19), the virtual power of the inertia 
and external forces acting on the whole system can be expressed as, 

1 1

1

0

n n
T T T

i i i i i i i i i i i i

i i

n
T

i i i i

i

Y M Y Q Z D M D Z M e Q

Z M Z Q

(25)

where the virtual velocities have been denoted with an asterisk (*). The matrices 
appearing in Equation (25) are, 

,
i i i iT

i i i i i

i i i i i i i

T

i i i i i

m m m

m m

3 3I 0 I g
M M = D M D =

0 J g J g g

Q D M e Q

(26)

where mi is the mass of body i and Ji is its inertia tensor; matrix Di and vector ei

are defined in Equation (19). In Equations (25) and (26) the inertia matrices and 
vector forces denoted with an upper bar refer to the origin of the global reference 
frame. The advantage of referring everything to the origin of the global frame is 
that vectors and matrices from different bodies can be added directly, without any 
further transformation.

By defining the system inertia matrix M , the force vector Q  and the accelera-
tion vector Z  in the form, 

1 2

1 2

1 2

diag , ,...,

, ,...,

, ,..,

n

T T T T

n

T T T T

n

M M M M

Q Q Q Q

Z Z Z Z

(27)

the dynamic Equations (25) can be written as: 

0
T

Z MZ Q (28)
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Using Equation (24), the velocity transformation and its time derivative, can be 
written for the whole system in the form: 

dZ Rz TR z (29)

d dZ TR z TR z (30)

These expressions are very similar to the expressions obtained by Saha [28] in 
his DeNOC (Decoupled Natural Orthogonal Complement) method. The Saha Nl

matrix is triangular when serial manipulators are considered, and is a function of 
the Bi matrices in Equation (22) because of the reference point he uses. Matrix Rd

is analogous to the Saha Nd matrix.
Substituting Equations (29) and (30) in Equation (28) and taking into account 

that the relative virtual velocities are independent, a new set of equations is ob-
tained,

T T T T

d d d dR T MT R z R T Q MTR z (31)

That are analogous to Equations (15). It is interesting to visualize the pattern of 
the inertia matrix in Equation (31), for the open-chain example in Figure 4, 

1 1 1 1 1 2 1 1 5

2 1 1 2 2 2 2 2 5

3 3 3 3 3 4 3 3 5

4 3 3 4 4 4 4 4 5

5 1 1 5 2 2 5 3 3 5 4 4 5 5 5

T T T

d d d d

T T T

T T T

T T T

T T T

T T T T T

R T MTR R M R

b M b b M b 0 0 b M b

b M b b M b 0 0 b M b

0 0 b M b b M b b M b

0 0 b M b b M b b M b

b M b b M b b M b b M b b M b

(32)

where,

1 1 2 2 1 3 3

4 4 3 5 5 2 4

,        ,        

,        

M M M M M M M

M M M M M M M
(33)

Matrices Mi  are the composite inertia matrices described by many authors. They 
represent the accumulation of the inertia matrices of all the elements that are up-
wards of joint i. This is a result of the introduction of the path matrix T in the 
formulation.

In an analogous way, the accumulated external forces Q  and velocity depend-
ent accumulated inertia forces P  can be computed from the right-hand side of 
Equation (31), 

1 2 3 4 5

1 2 3 4 5

, , , ,

, , , ,

T
T T T T T T

T
T T T T T T

d

Q Q Q Q Q Q T Q

P P P P P P T MTR z
(34)
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where,

1 1 2 2 1 3 3

4 4 3 5 5 2 4

1 1 2 2 1 3 3
1 2 3

4 4 3 5 5 2 4
4 5

; ;

;

; ;

,       

d d d

d d

Q Q Q Q Q Q Q

Q Q Q Q Q Q Q

P M TR z P M TR z P P M TR z

P M TR z P P M TR z P P

(35)

The meaning of the accumulation of external forces is clear. With respect to the 
velocity dependent inertia forces, Equation (35) shall be related with Equa-
tion (30). The term (

dTR z ) represents the velocity dependent Cartesian accelera-

tions, i.e., the Cartesian accelerations computed with the true velocities z  and null 
relative accelerations ( z 0 ). This vector is the forward accumulation of vectors 
dj in Equation (21), from the fixed base body to the joint considered. 

The matrix in Equation (32) shows the advantages of numbering the bodies and 
joints from the leaves to the root: the Gaussian elimination or the LU factorization 
keeps the pattern of zeros in the matrix, i. e., it maintains the skyline or the spar-
sity of this matrix, avoiding some arithmetic operations. For instance, for a tree 
model of the human body, with 42 bodies and 41 joints, up to a 13% reduction of 
the total CPU time has been obtained, using Matlab. The advantages of this nu-
meration method were pointed out by Negrut et al. [26]. The Equations (31) con-
stitute a system of ordinary differential equations whose coefficient matrix and 
right-hand side vector can be computed recursively in a very efficient way.

2.2 Semi-recursive formulation for closed-loop systems 

The dynamics of closed-loop multibody systems can be formulated by adding the 
constraint equations to the dynamic equations corresponding to the open-chain 
system obtained by opening the closed loops. Here the methods quoted previously 
to improve the global methods that use the descriptor form can be applied with 
analogous advantages, although the problem size is much lower with relative 
coordinates. There are three main possibilities:

1. To introduce the constraints by the Lagrange multiplier method and to use the 
most appropriate solution method for the augmented matrix: the RSM or the 
NSM.

2. To follow the methodology of Cuadrado et al. [17] and to introduce the con-
straints by the penalty method with augmented Lagrangian. The integration is 
carried out with the trapezoidal rule and the velocities and accelerations are 
corrected with mass orthogonal projections. This procedure has been explored 
quite recently by Cuadrado and Dopico [16]. 

3. It is also possible to select an independent subset of relative coordinates, in 
such a way that a set of ordinary differential equations will be obtained again. 
This is carried out by a new velocity transformation similar to the one intro-
duced to arrive at Equation (15). In this case the transformation matrix R will  
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be obtained numerically. This is the method that will be explained in the rest of 
this paper. It is faster than method 1), it is free from constraint stabilization 
problems, and it is not tied to a particular integrator as method 2). 

The closing-loop constraint equations are first formulated in Cartesian coor-
dinates and then transformed to relative coordinates. In this paper two ways to 
set the closed-loop constraint equations will be considered. The first one is the
cutting joint method, that is very common in the literature. The second method 
to open the loops consists of the elimination of one or more rods (slender bodies 
with two spherical joints and a negligible moment of inertia around the direction 
of the axis). This second procedure has not been found in the bibliography and it 
is very interesting in applications, as car suspension systems, where rods are 
very common. Rods are rigid bodies difficult to analyze: sometimes they are 
considered as distance constraints, neglecting their inertia forces [26]; many 
commercial computer programs do not allow the introduction of bodies with two 
spherical joints and oblige the replacement of a spherical joint by a universal 
joint. To open the loops by removing a rod introduces one constraint equation, 
but keeping the rod and opening the loop by cutting a spherical joint introduces 
three constraint equations and keeps the two relative coordinates of the universal 
joint. On the other hand, a rod can be eliminated easily, but to consider exactly 
its inertia properties is more involved. 

Figure 5 shows a revolute joint that is defined with natural coordinates as the 
sharing of a point and a unit vector. To take into account the constraints of such a 
joint, two points and two unit vectors, belonging to different bodies, must be com-
pelled to coincide. 

To set the closed-loop condition for the system shown in Figure 6 the following 
equations must be established: 

    3 independent equationsj kr r 0  (36) 

    only 2 independent equationsj ku u 0  (37) 

For the rod element in Figure 6 only a constant distance condition is necessary: 
2

0
T

j k j k jklr r r r  (38) 

The constraint equations (36-38) shall be expressed in terms of the relative coor-
dinates z. This is not difficult, because points ri and rk, and unit vectors ui and uk

can be expressed as functions of the relative coordinates of the joints in their re-
spective branches of the open-chain system.

It is also necessary to compute the Jacobian matrix of constraints (36-38) with 
respect to relative coordinates z. As the aforesaid constraints are expressed as a 
function of Cartesian coordinates, the chain derivative rule shall be used. For 
instance, for the constant distance constraint, given by Equation (38), 

j jk k

j k j k
z r r r r

r rr r

z z z z
(39)
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Fig. 5. Chain closed with a  revolute joint 

The derivatives with respect to the coordinates ri and rk in Equation (38) are 
easy to find: 

2 ,          2
T T T T

j k j k
j k

r r
r r r r  (40) 

The derivatives of the position vectors ri and rk with respect to the relative co-
ordinates z can be computed from the velocities of these points induced by unit 
relative velocities in the joints between the fixed body and bodies j and k, respec-
tively. For instance, if the joint i is a revolute joint determined by a point ri and a 
unit vector ri, located between the base body and point ri, the velocity of point j
originated by a unit velocity in joint i can be set as, 

j

i j i i j i

iz

r
u r r u r r (41)

So, it can be assumed that the closure of the loop constraint equations (z)=0

and their Jacobian matrix z are known or easy to compute. Using the coordinate 
partitioning method based on Gaussian elimination with full pivoting as in Equa-
tion (11), it is possible to arrive at the following partitioned velocity equation,

1

,       

d

d i d d i i

iz z z z

z
0 z z

z
(42)

where it is assumed that matrix d
z is invertible. Equation (42) allows an easy 

calculation of the transformation matrix Rz that relates dependent and independent 
relative velocities, 

1 1

,     ,

d d i d i
i i

i

z z z z

z z

z
z R z z R

z I I
(43)

The differentiation of this equation with respect to time leads to

i i

z z
z R z R z (44)
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Fig. 6. Chain closed with a rod element 

The velocity transformation defined by Equations (43) and (44) can be intro-
duced in the motion differential equations (31). By pre-multiplication by matrix 
RT

z the following is obtained, 
T T i T T T T i

d d d d d dz z z z z
R R M R R z R R Q R R M R z R R z  (45) 

All the terms in this equation are known, except the parenthesis that contains 
the derivatives of the transformation matrices. It is simpler to compute the two 
terms jointly. Considering Equation (43), the parenthesis in Equation (45) is, 

i i i

d d d d

di i

d d

d

dt

z z z

z

z z

R z R R z R R z R R z

R R
R R R R z z

(46)

This derivative can be computed from the product of velocity transformations that 
relates Cartesian and independent relative velocities, 

i

d d z
Z Rz TR z TR R z  (47) 

Taking the time derivative of this equation, 

di i

d

d

dt

z

z

R R
Z TR R z T z (48)

In this equation, it can be seen that the product of the path matrix T times the 
derivative looked for, can be computed as the Cartesian accelerations Z  that 
would be produced by the true velocities z  and null relative independent accelera-
tions ( i

z 0 ). The dynamic equations (45) can be written in the form, 

dT T i T T T i

d d d

d

dt

z

z z z

TR R
R R M R R z R R Q T M z (49)
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To compute the derivative in this expression as explained before, the dependent 
relative accelerations corresponding with null i

z  must be computed. Taking time 
derivatives of Equation (42): 

1

,

d d d

d i d i d d d i

i i iz z z z z z z

z z z
0 z

z z z
(50)

where the product (
z
z ) can be computed as, 

j j k k

j j k k
z r r r r

r r r r
z z z z z

z z z z
(51)

2
T T

j k
j

r
r r 2

T T

j k
j

r
r r (52)

So, a way to compute all the terms in the ODEs set described by Equation (49) has 
been completed. Two velocity transformations have been introduced. The first 
one, from Cartesian to open-chain relative velocities, can be applied directly and 
leads to an accumulation of forces and inertias. The second one is applied in a 
fully numerical way to a system of –usually– a much smaller size. 

It remains to explain how the inertia of the removed rods is taken into account 
in the motion differential Equations (49). For this, Figure 2 shall be considered 
again. Assuming a uniform mass distribution, the rod's inertia matrix is, 

3 3 3 3

3 3 3 3

2
       ,  

26 3 6

r m m mI I I I
M

I I I I
(53)

The dynamic equilibrium of the rod allows the computation of the forces 
transmitted by the rod to the neighbor elements as a function of its inertia and 
external forces, 

r r
jr j j

r r
k k k

r Q f
M

r Q f
(54)

where Qi

r and Qk

r are the forces applied by the rod to the neighbor bodies on 
points j and k, and fi

r and fk

r are the external forces applied to the rod transmitted to 
points j and k. The forces acting on elements j and k shall be translated to the ref-
erence point –the origin of the global frame– by adding the corresponding torque. 
So, the forces transmitted to bodies j and k, at their reference points, are: 

3 3 3

3 3

3 3 3 3 3

r

j

r r
j j j j jj j j j

r r
k kk k k

r
k k k k k

I 0 I I f

r 0 I I r r r rQ f r f

0 I I I r I I rQ f f

0 r r r r f

(55)
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The acceleration of points j and k can be expressed in terms of the respective 
bodies’ accelerations 

jZ  and 
kZ ,

3j j j j j j j j j j j jr s r r I r Z r  (56) 

3k k k k k k k k k k k kr s r r I r Z r  (57) 

Substituting these expressions in Equation (55) the following equation is obtained, 

3

3

r

j
j j j k k kr r r

jjj jkj j j j

r r r
kj kkk k k

rj j j k k k

k kk

I f
r r

rM MQ Z r f

M MQ Z fI
r r

r fr

(58)

where,

3 3

3

,

T T
jr r k

jj kkT T
j j j k k k

T

kr rT

jk kj T

j j k

I r I r
M M

r r r r r r

I r
M M

r r r

(59)

The three terms on the right-hand side of Equation (58) represent, respectively, 
the acceleration dependent inertia forces, the velocity dependent inertia forces and 
the contribution of external forces (such as the weight) acting on the rod. These 
forces shall be added at the element level in the motion differential Equations (49). 
The external forces and the velocity dependent inertia forces are directly added to 
the corresponding forces of bodies j and k.

The acceleration dependent inertia forces are a little more involved because of 
the coupling terms r

jkM  and r

kjM  in Equation (58). The diagonal blocks r

jjM  and 
r

kkM  are directly added to the inertia matrices of bodies j and k, according to the 
expressions,

r

j j jjM M M
r

k k kkM M M  (60) 

In Figure 6 the coupling inertia forces are represented in the respective centers 
of gravity. The force 

13 3

r
M Y  acts on body j=1, but it depends on the acceleration of 

body k=3; it will be propagated backwards on the branch of body 1, but it depends 
on the relative accelerations in the branch of body 3. To see this with more detail, 
the modified inertia matrix for the whole system in Figure 6 is written as, 
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1 13

2

31

4

5

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

r

r

3

M M

M

M M M

M

M

(61)

When this inertia matrix is transformed with the path matrix T the following re-
sult is obtained (in italics the matrix elements modified by the coupling terms), 

1 13

2

31

4

5

1 11 13 13 1 13

11 2 13 13 2 13

31

0 0 0 00 0 0

0 0 0 0 0 00 0 0 0

0 0 0 00 0 0

0 0 0 0 0 00 0 0 0

0 0 0 0 0 0 0 00 0 0 0

T r

T r

r r r

r r r

r

M

M

M M M

M M M

M M

3

I I I I I IM

I I I IM

T MT I I I I I IM

I I I IM

I IM

M M M

M M M

31 3 3 3 31

31 31 3 4 4 31

1 31 2 31 3 13 4 13 5 13 31

r r

r r r

r r r r r r

M

M M M

M M M M M M

M M M

M M M

M M M M M

(62)

After the first velocity transformation, the following open-chain inertia matrix is 
obtained,

1 1 1 1 1 2 1 13 3 1 13 4 1 1 13 5

2 1 1 2 2 2 2 13 3 2 13 4 2 2 13 5

3 31 1 3 31 2 3 3 3 3 3 4 3 3 31 5

4 31 1 4 31 2 4 3 3 4 4 4 4 4 31 5

T T

d d

T T T r T r T r

T T T r T r T r

T r T r T T T r

T r T r T T T r

M M M

M M M

M M M

M M M

R T MTR

b M b b M b b b b b b M b

b M b b M b b b b b b M b

b b b b b M b b M b b M b

b b b b b M b b M b b M b

5 1 31 1 5 2 31 2 5 3 13 3 5 4 13 4 5 5 31 13 5

T r T r T r T r T r rM M M M M Mb M b b M b b M b b M b b M b

(63)

The inertia matrices in Equations (62) and (63) clearly show the accumulation 
pattern for matrices 

13

r
M  and 

31

r
M . Matrix 

13

r
M  appears in rows {1, 2, 5} and in 

columns {3, 4, 5}. Remembering that in the dynamic equations (31) the rows of 
the inertia matrix are related to forces and the columns to relative accelerations, it 
can be seen that this coupling matrix appears in the rows corresponding to the 
joints that are located backwards in the branch of body 1 (the elements and joints 
that receive the accumulated inertia forces), and in the columns of the joints that 
are located backwards of body 3, i. e., the joints whose relative acceleration de-
termine the Cartesian acceleration of body 3. This topological information, the 
bodies or joints that are behind bodies 1 and 3 in the open-chain system, can be 
found from rows 1 and 3 of the path matrix T introduced in Equation (24). 
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3 Numerical examples 

In this section two numerical examples solved with the semi-recursive formulation 
described in this paper will be presented. This formulation has been implemented 
in Matlab and Fortran. The Matlab implementation is available in the address 
http://mec21.etsii.upm.es/mbs.

In both implementations only revolute and prismatic joints are allowed. Other 
joints, as the cylindrical, spherical, universal, etc., are modeled as a series of revo-
lute and prismatic joints with intermediate fictitious massless bodies. For multi-
body systems that do not have joints with the ground or fixed body, a floating 
joint with six degrees of freedom is defined between the ground and the body that 
is chosen as the base body. This floating joint is decomposed in three revolute and 
three prismatic joints. 

3.1 Five-point rear suspension 

The five-point rear suspension of a car (see Figure 7) has been considered as a test 
by many authors, von Schwerin [33] among them. It has nine rigid bodies: the 
fixed body, the frame, the carrier, the wheel and five rods.

According to von Schwerin, without including the frame, this two degrees of 
freedom system was modeled with 19 relative coordinates by Hiller and Frik, and 
with 14 coordinates by Grupp and Simeon. von Schwerin used 45 natural coordi-
nates and 43 constraint equations. In this paper the closed loops have been opened 
by eliminating the five rods. The resulting open-chain system –that includes the 
frame– has eight degrees of freedom and can be modeled with only eight relative 
coordinates. The closed-chain system has five constraint equations that correspond 
to the five constant distance conditions of the rods.

Table 1 shows the results of CPU time obtained with the Compaq Fortran 90 
and Matlab implementations. The programs have been run on a AMD K7 Athlon 
1200 computer with 256 Mbytes. The maneuver simulated is an echelon and its 
duration is 2 seconds. The numerical integrators have been the Shampine and 
Gordon DE routine (written in Fortran) and the ode113 Matlab integrator. Both 
are based on the Adams-Bashforth-Moulton method. It must be remarked that 
Matlab is a very good environment to develop the program, but not to execute it. 
Once the Matlab version runs correctly, the Fortran version can be developed and 
debugged very easily. The results of exporting C/C++ code from Matlab using the 
Matlab Compiler have been in this case very poor, from the point of view of the 
numerical efficiency. 

Table 1. CPU times for the five-point rear suspension in an AMD K7 1200 Mhz computer 

 Fortran 90 Matlab 6.5 
Total simulation time (s) 0.12 23.874 
Number of function calls 1165 624 
Time per function call (ms) 0.1013 38.42 
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Fig. 7. Five point rear suspension

If instead of opening the closed loops by removing the five rods, the conven-
tional method of cutting five spherical joints were used, this model would have 18 
relative coordinates and 15 constraint equations because the five spherical joints 
removed. With this conventional modeling the Matlab code needs 26.5% more 
CPU time than by eliminating the rods. 

3.2 Complete car model 

Figure 8 shows the model of a car with McPherson suspension in the front and a 
five point suspension in the rear. This system has 26 rigid bodies (12 rods), 36 
joints (6 revolute, 2 prismatic and 28 spherical) and 14 degrees of freedom. This 
system can be converted into an open-chain system by removing the 12 rods and 
two spherical joints in the front suspension. The open-chain system has three 
floating joints, one for the chassis and two for the two carriers in the rear suspen-
sions.

Table 2. shows the CPU time and number of function evaluations achieved with 
the Fortran and the Matlab implementations. The computer used has been the 
same as in the previous example. The results obtained show that real-time simula-
tions are possible with rather old PCs. 

Table 2. CPU times and No. of function evaluations for the complete car model 

 Fortran 90 (RK4) Fortran 90 (DE) Matlab 6.5 
(ode113)

No of steps 100  100 
No of function evaluations 400 600 400 
Ms/function evaluation 0.625 0.6414 169,37 
Total CPU time 0.25 0.39 67,75 
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4. Conclusions 

Global formulations or formulations based on Cartesian coordinates allow simple 
and general ways to deal with complex multibody systems. However, its effi-
ciency can be low. On the other hand, topological formulations based on velocity 
transformations can share the simplicity and generality of global formulations with 
the higher efficiency that results from the use of relative coordinates and some 
recursive processes. These formulations are called semi-recursive because they 
don't eliminate the need to solve systems of linear equations. 

If the system is open-chain the velocity transformation from Cartesian to rela-
tive coordinates is straightforward. The introduction of the path matrix allows an 
easy way to take into account the topology for tree configured systems. If the 
systems have closed loops they can be opened by cutting some joints and/or re-
moving some rigid bodies (rods). The closure of the loop constraints are formu-
lated in Cartesian coordinates and then transformed to relative coordinates to be 
added to the open-chain dynamic equations. At this point, the improved methods 
for the descriptor form in Cartesian coordinates published in the last few years can 
be used to enforce the closure of the loop constraints. The result is a family of 
methods which are fast, simple and robust. Some benefits in the simplicity can be 
obtained by defining the geometry of the moving bodies using natural coordinates. 
The appropriate selection of the reference point for the Cartesian velocities and 
accelerations also contribute to the simplification of the recursive expressions for 
kinematic variables and for the inertia matrices. With these simplified expressions, 
the path matrix can be easily defined to introduce the system topology in the 
analysis. Finally, if rods are present in the model, its elimination to open the 
closed loops reduces the number of relative coordinates and constraint equations. 
A method to take into account its inertia properties exactly has been described in 
detail.

Fig. 8. Complete model of a car with 26 rigid bodies and 36 joints 
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1 Introduction 

During the last few years vehicle safety has been improved significantly by intro-
ducing active and passive automotive safety systems, which are typical examples 
of mechatronic systems. Passive safety systems are developed for crashworthi-
ness, whereby active safety systems are developed to reduce the number of severe 
accidents. Whereas complexity, interdependency and demands concerning safety 
systems continuously increase, a trend to shorter development cycles with consis-
tent quality occurs. Subject of the considered development process is the vehicle 
dynamics control system Electronic Stability Program (ESP, Robert Bosch 
GmbH), which increases the vehicle handling during critical situations by influ-
encing the brake system and drive train of a vehicle. The ESP is relevant to secu-
rity of the occupants because of its active interventions on the vehicle dynamics. 
Thus, the development of the monitoring software as a part of the ESP self-
diagnosis is an important element and has to be verified systematically by tests for 
quality assurance in all development phases. 

The combination of vehicle dynamics simulations and road tests is considered 
as the optimal solution for the monitoring software verification. Software tests on 
the Electronic Control Unit (ECU) under reproducible boundary conditions are 
possible using a vehicle model in a Hardware-in-the-Loop (HIL) simulation envi-
ronment and especially in early development phases the availability of vehicle 
prototypes is limited. But even the best simulation environment cannot exactly 
represent reality and results are only as good as the vehicle model, whereby road 
tests are still indispensable A generic real-time vehicle model with one parameter 
set for a class of vehicles is used to test the ESP monitoring software by HIL 
simulations, whereby the generic model can be improved by both varying the 
model structure and parameter adaptation. 

In section 2, the development process of mechatronic systems based on the V-
shaped model and spiral model is explained. The considered active automotive 
safety system ESP and its mode of operation is demonstrated in section 3. Fur-
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thermore, an overview in the field of the monitoring software as a part of the ESP 
self-diagnosis is given and the monitoring software verification is mentioned. In 
section 4, a three-dimensional, complex and validated vehicle model is introduced, 
which is used as a reference. The HIL simulation environment and its generic real-
time vehicle model are shortly described in section 5. In section 6, the real-time 
vehicle model is analyzed using the reference model. Alternatives to improve the 
model and enhance its field of application are discussed. 

2 Development Process of Mechatronic Systems 

In this section, the development process of mechatronic systems is presented. 
Firstly, the development process is described on the basis of an adapted V-shaped 
model. During the process the V-shaped model is cycled completely or partially in 
dependency of the requirements. This cyclical procedure is similar to the spiral 
model (section 2.2). 

2.1. Development Process Based on the V-shaped Model 

The V-shaped model has its seeds in the software development and can be adapted 
to the requirements of a mechatronic development process [1], [2]. Fig. 1 gener-
ally describes the development procedure of mechatronic systems from the re-
quirements of a product up to the system in use or serial production. The devel-
opment project starts with a development request on the left part of the V-shaped 
model. The conceptual formulation has to be specified and the components of the 
mechatronic project have to be defined within the system specification. Thus, the 
requirements on the hardware and software are derived from the specified request 
and provide the basis to evaluate the final product. In the field of system design 
the overall system is divided into modular components, whose sub-functions and 
interfaces are specified. The formulation of the structure of the modular compo-
nents takes place separately by the module design. The specified functions are re-
alized according to the formulated structures by the domain specific design, which 
completes the conversion of the system specification. 

The system integration part of the V-shaped model is used to verify and vali-
date the previous process steps for quality assurance. First of all, the module de-
sign is verified by a module test with Software-in-the-Loop simulations. Thereby, 
the compliance of the effective and desired properties or characteristics of the 
modules is tested. If all modules satisfy their specifications, the components are 
combined to the overall system. By the integration test the system design with re-
gard to the interfaces of the modules and their desired cooperation is verified. 

Extensive tests of the overall system ensure the system specification and ful-
fillment of the development request within the system validation. Both the integra-
tion test and system validation are executed by HIL simulations and road tests. 
The result is the system in use. 
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Fig. 1. The adapted V-shaped model [1], [2] 

2.2 Cyclical Development Process 

During a mechatronic development process the V-shaped model is completely or 
partially cycled because of frequently changing requests and requirements, respec-
tively. This cyclical procedure is very similar to the spiral model, whereby the 
achieved progress and the cumulative costs with every cycle can be described by the 
angular and radial spiral dimension (Fig. 2). The spiral model is ascribed to Boehm 
[3] and is initialized with the specification of aims, solution alternatives and con-
straints. The solution alternatives are analyzed and evaluated in the next step within 
the spiral cycle. Furthermore, the risks have to be determined and then reduced or 
eliminated. Now the next level product is realized and validated in terms of a func-
tional model, a prototype or the final product. The spiral cycle is ending with the 
product or because of poor evaluation at this point. Otherwise, after making a re-
view, the development team plans the next phase and specifies its commitments. 
Subject of the development process is the active automotive safety system ESP. 

3 Verification of the ESP Self-diagnosis 

In this section, the functionality of the considered active automotive safety system 
ESP is explained as a typical example of a mechatronic system. After giving a short 
overview in the field of the monitoring software as a part of the ESP self-diagnosis 
(section 3.2), the monitoring software verification is mentioned in section 3.3. 



28      Oliver Öttgen and Manfred Hiller 

Fig. 2. The spiral model 

3.1 The Vehicle Dynamics Control System ESP 

During the last years the safety of vehicles has increased significantly by introduc-
ing passive and active safety systems. Passive safety systems are developed for 
crashworthiness, whereby active safety systems are developed to reduce the num-
ber of severe accidents. The Vehicle Dynamics Control (VDC) system ESP in-
creases the vehicle handling during critical situations by influencing the brake sys-
tem and drive train [4, 5]. Consequently, it influences longitudinal, lateral and yaw 
dynamics of a vehicle. 

The Antilock Brake System (ABS) and Traction Control System (TCS) are sub-
systems of the ESP. The ABS actively reduces the brake pressure at each wheel, 
when the pressure induced by the driver causes a locked wheel while vehicle 
decelerations. The control variable is the longitudinal wheel slip, which is defined 
as the relative wheel velocity difference to the vehicle velocity. Thus, the vehicle 
is steerable while decelerating, because changing the steering angle has no effect 
on the forces at a locked wheel. Similar to the ABS the TCS avoids wheel 
spinning while vehicle accelerations. 

Fig. 3. Mode of ESP operation with oversteering a) and understeering b) vehicle behavior 
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The spinning wheels are slown down by controlling the longitudinal slip 
through reducing the engine torque or applying a brake pressure to the specific 
wheels. The superimposed VDC system controls the vehicle yaw moment at the 
vertical axis by controlling the longitudinal slip at each wheel, whereby the main 
task is to limit the vehicle side-slip angle. The side-slip angle describes the rota-
tion of the vehicle motion direction relative to the longitudinal vehicle axis. In Fig. 
3 the ESP operation with oversteering and understeering vehicle behavior is 
shown (Robert Bosch GmbH). In Fig. 3 a) oversteering vehicle behavior occurs, 
because the vehicle leaves the nominal trajectory and skids at the rear axle. By 
braking at the outer front wheel, a yaw moment is applied to stabilize the vehicle 
motion and keep it manageable for the driver. Fig. 3 b) shows an understeering 
vehicle behavior with drifting at the front axle. In that case a brake pressure at the 
inner rear wheel is applied to stabilize the vehicle behavior. 

For yaw moment control with considering a limitation of the vehicle side-slip 
angle the intended and current vehicle behavior have to be compared. The driver 
inputs steering wheel angle, accelerator pedal position and brake pressure are used 
to obtain the intended behavior. The knowledge of the current vehicle behavior is 
based on wheel speed, lateral acceleration and yaw rate sensors. A challenge 
within the development process of mechatronic systems with the complexity of 
the VDC system ESP is to ensure the safety requirements on the system. There-
fore, the development of the monitoring software as a part of the ESP self-
diagnosis is an important and weightily part of the ESP development. 

3.2 ESP Self-diagnosis 

The ESP is relevant to security of the occupants because of its active interventions 
on the vehicle dynamics. Therefore, the development of the monitoring software 
as a part of the ESP self-diagnosis is an important element within the development 
process. The failure detection logic within the monitoring software is divided into 
hardware close, signal based and model based monitoring. The first part monitors 
the electrical functions of the valve and pump motor, the power supply for the 
ECU, electronic components inside the ECU, the sensor wires and connectors, the 
Controller Area Network (CAN) bus, etc. [6]. 

In addition, the signal based monitoring checks the physical plausibility of one 
signal. For example, a fault is detected, if a sensor signal is out of range or has an 
implausible signal gradient. Within the model based monitoring, signals are esti-
mated with the sensor signals using several models. For example, together with 
the measured yaw rate, four yaw rates are derived with the steering wheel angle, 
lateral acceleration and wheel speeds [6]. Using a selection algorithm a reference 
yaw rate is determined, which is insensitive to a sensor failure. With inverted 
models the determination of a reference steering wheel angle and lateral accelera-
tion is possible as well. 

The system behavior after a fault detection by any monitoring is similar, 
whereby the failure handling manages the switch off strategy, failure storage and 
the information to the driver or other ECUs, respectively. Within the switch off 
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strategy the system is switched into a specific backup level by a predefined strat-
egy for each fault. For example, a steering wheel angle sensor failure has no effect 
on the ABS and TCS functionality of the ESP, meaning that only the superim-
posed VDC system has to be shut down. In the Electrically Erasable Programma-
ble Read-Only Memory (EEPROM) a unique failure code for each fault is stored, 
which provides details for diagnosis functionality. Furthermore, the driver gets in-
formation on the ESP backup level by signal lamps in the vehicle cockpit and the 
ESP status is transmitted to other ECUs, since a network of several relevant ECUs 
exists. To ensure the functionality the monitoring software has to be verified. 

3.3 Verification of the Monitoring Software 

As described before the ESP monitoring software is fundamental, because of its 
active interventions on the vehicle dynamics. To ensure the monitoring software 
quality, it has to be tested and verified systematically (Fig. 1). 

Fig. 4. Correction costs dependency on fault detection time 

Faults within the development of huge software projects are not avoidable, but 
it is essential to detect the faults as soon as possible. The later the detection the 
more expensive is the fault correction, which is principally described by a nonlin-
ear dependency in Fig. 4. Thus, monitoring software tests are important during all 
phases of development. The combination of vehicle dynamics simulations and 
road tests is considered as the optimal solution for the monitoring software verifi-
cation. Integration tests on the ECU or a prototype are possible using a vehicle 
model in a HIL simulation environment (section 2.1). 

The advantage of real-time simulations is the reproducibility by defining all 
boundary conditions and events exactly. Moreover, the realization of life-
threatening or vehicle destructing driving maneuvers is possible without any con-
sequences and the simulation environment supplies state variables, which are not 
available in the real vehicle. The real-time simulation provides time and cost sav-
ings since many simulations are shortly practicable, the test environment is rapidly 
changeable and a test automation is possible. Especially in early development 
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phases the availability of vehicle prototypes is limited. But even the best simula-
tion environment cannot exactly represent the reality and the results are only as 
good as the vehicle model. Therefore, road tests are still indispensable to analyze 
effects, which cannot be simulated by a HIL simulation. 

4 Reference Vehicle Model 

The structure of the reference vehicle model is shown in the following sections. 
Firstly, the modular simulation environment is described. The abstraction process 
from a real vehicle to the topological multibody systems structure is subject of 
section 4.2. Section 4.3 exemplary shows the topological structure of the four link 
wheel suspension at the front axle of the reference model. 

4.1 Simulation Environment 

The modular vehicle dynamics simulation environment FASIM_C++ [7] is used for 
the analysis of the generic real-time model in section 6. The simulation environ-
ment is developed in cooperation with the Robert Bosch GmbH and the University 
Duisburg-Essen in a timeframe of about 15 years. The object-oriented program-
ming language is C++ and the components are modeled by rigid bodies, because 
the lower frequent vehicle motions are primarily of interest. 

The three-dimensional reference vehicle model of an Audi A8 [8] (Audi inter-
nal name D2) is built up by mechanical (chassis, suspension, drive train, etc.) and 
non-mechanical (hydraulics, driver, environment, etc.) modules (Fig. 5). The 
model is validated through numerous road tests and the structure enables facile 
changes of particular components. 

Fig. 5. Modular model structure 
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4.2 Abstraction Process 

The reference vehicle model is based on a multibody systems approach including 
closed kinematical loops for wheel suspensions and drive train. Fig. 6 shows the 
abstraction and modeling process of the detailed reference model. 

Fig. 6. Vehicle abstraction 

The abstraction process starts with the real structure of a vehicle. As mentioned 
in section 4.1, the vehicle is modeled by rigid bodies and is described by a multi-
body systems structure. Based on the multibody systems modeling approach the 
topological structure of the vehicle matches to the representation in Fig. 6. The 
kinematics calculation and the computation of the equations of motion are realized 
with the software MOBILE, whereby the equations of motion are generated with 
the method of kinematical differentials [9]. Because the wheel suspensions are 
important for vehicle dynamics simulations, the modeling of the D2 front suspen-
sion is exemplary shown in section 4.3. 

4.3 Independent Wheel Suspension 

The independent wheel suspensions of the reference model are modeled exactly. 
The front axle is equivalent to a model of a four link axle and the rear axle to a 
model of a trapezium arm axle. Besides the wishbones, steering link and wheel 
carrier, kinematical models for the elastic bearings are considered. Following, the 
modeling process of the D2 front wheel suspension is exemplary explained. The 
four link wheel suspension is shown in Fig. 7. 
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Fig. 7. Four link wheel suspension [8] 

Firstly, the wheel suspension is schematically demonstrated by a multibody 
systems structure in Fig. 8 a), whereby the elements are represented by rigid bod-
ies. Because the model consists of nB = 7 bodies and nJ = 11 joints, 4 independent 
kinematical loops exist without considering the antiroll bar: 

4L J Bn n n  (1) 

Fig. 8. Multibody systems structure a) and topological structure b) 
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With the overall number of fJ = 27 joints degrees of freedom (DOF), the four 
link wheel suspension without the isolated DOF of the steering link fI = 1 has f = 2 
DOF:

.26 ILJ fnff  (2) 

The topological structure of the four link wheel suspension in Fig. 8 b) clarifies 
number and location of the kinematical loops. The spring-and-damper unit has no 
influence on the kinematics of the wheel suspensions. The modeling of the D2 tra-
pezium arm suspension at the rear axle is similar. 

Due to its complexity, the reference vehicle model is unsuitable for a real-time 
usage. Therefore, a generic vehicle model with simplified wheel suspensions in a 
HIL simulation environment is used to verify the ESP self-diagnosis in section 3. 
But the complex model represents a proper replacement for an analysis of the ge-
neric real-time model, because it supplies state variables, which are not available 
in the real vehicle. 

5 HIL Simulation Environment 

The HIL simulation environment for the ESP monitoring software verification is 
presented in the following section. Afterwards the used generic real-time vehicle 
model is described and its field of application within the software verification 
mentioned.

5.1 HIL Test Environment 

For testing the ESP monitoring software the HIL simulation environment LabCar 
NG [10] is used, which is shown in Fig. 9. The environment consists of software 
and hardware components, whereby the software primary consists of the compo-
nents Developer, Operator and the vehicle model. The LabCar Developer is based 
on ASCET-SD and used for development of the software components. The Lab-
Car Operator manages the LabCar Hardware, the vehicle model downloads to the 
real-time target and the access to all calibration and measurement variables of the 
vehicle model, which is described in section 5.2 later on. 

In addition to the operation PC as user interface to the test system and a meas-
urement, respectively, diagnosis PC the environment hardware consists of the 
components signal box, load box, breakout box and emulator. An emulator repre-
sents the ECU and is extended by the possibility to measure internal signals of the 
ECU. The vehicle model including hydraulics, sensor and actuator models is 
downloaded to the signal box with a VMEbus/VME64 standard support and simu-
lated on a Motorola PowerPC. Instead of a vehicle model the use of a stimulus set 
is possible, whereby open-loop driving maneuvers can be reproduced through 
time-dependent signal demands. The discrete sensor signal outputs of the vehicle 
model to the ECU are converted and prepared to analog electronic signals by D/A 
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converters of the load box. The signals from the ECU are transferred to discrete 
signals by A/D converters and returned to the vehicle model. The interface be-
tween signal and load box is a VME bus system. 

Fig. 9. Test environment LabCar NG 

For electronic signal manipulations like interruptions and short-circuits the 
breakout box can be used. The signal plausibility for example is tested with a 
software manipulation of the sensor models. 

5.2 Real-time Vehicle Model 

Because the detailed reference model in section 4 is not real-time capable, a more 
abstract vehicle model is required to verify the ESP self-diagnosis. A generic real-
time vehicle model within the HIL simulation environment LabCar NG is used for 
the ESP monitoring software verification. The three-dimensional vehicle model 
has mechanical and non-mechanical components, whereby the focus is on the sus-
pension model for simulating longitudinal, lateral and vertical dynamics [11]. The 
real-time model is a multibody system with an open kinematical structure and 
modeled by mainly non-interacting transmission blocks in the development envi-
ronment ASCET-SD. Besides springs and dampers, anti-roll bars are considered 
as force elements between the chassis and wheel carriers. 

Furthermore, the model contains the Highway Safety Research Institute (HSRI) 
tire model [12] and includes 18 mechanical DOF, 6 DOF for the vehicle move-
ment in space, 4 DOF for the wheel rotations, 4 DOF for the vertical and 4 DOF 
for the longitudinal wheel carrier movements (Fig. 10). The independent wheel 
suspensions of the generic model are modeled as semi-trailing arms to approxi-
mate the exact wheel suspensions (Fig. 11). The experiences in the field of the 
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ESP monitoring software verification point out, that the greater part of the testable 
monitoring software can be verified by the generic model. 

Fig. 10. Three-dimensional suspension model [11] 

The generic vehicle model with only one parameter set for a class of vehicles is 
cost-effective and adequate for testing the most of the hardware close and signal 
based monitoring (section 3.2). A verification of the accurate switch off strategy 
for correlative faults is executable as well, whereby tests in the vicinity of the re-
lease thresholds and the model based monitoring require a higher vehicle model 
quality.

Fig. 11. Semi-trailing arm wheel suspension 
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6 Improvement of the Real-time Vehicle Model 

In this section, the scope is on the analysis of the generic real-time vehicle model. 
In Fig. 12 a scale for the vehicle model quality is shown. An extended single track 
model [13] represents the lower bound of the scale and the detailed reference 
model the upper bound. The structure of the real-time model in section 5.2 is 
placed between the single track and reference model, whereby the parameters of 
the real-time model influences the quality. 

Fig. 12. Classification of the vehicle model 

Because of real-time capability the model has to be as simple as possible, but 
for vehicle dynamics analyses it has to be as complex as needful. Following, in 
section 6.1, the generic real-time model with only one parameter set for a class of 
vehicles is compared to the reference model. Afterwards improvement alternatives 
to enhance the field of application are discussed (section 6.2). 

6.1 Analysis of the Real-time Vehicle Model 

In this section, lateral and yaw dynamics of the generic real-time vehicle model 
with one parameter set for a class of vehicles is analyzed with the complex and 
validated reference model. Especially the modules tire, wheel suspension and the 
force elements spring, damper and anti-roll bar influence the vehicle dynamics. 

First of all, the tire characteristics of the reference vehicle model and the ge-
neric model are identified, because the tire-road contact is of particular importance 
for vehicle dynamics simulations. Therefore, steering angle steps with both vehi-
cle models are simulated up to a lateral acceleration range of ay  7 m/s2. The total 
lateral tire force dependency on the slip angle of one axle is identified using a sin-
gle-track model [14]. The slip angle describes the rotation of the wheel velocity 
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direction relative to the longitudinal wheel axis. The nonlinear dependency is ex-
emplary shown at the front axle in Fig. 13. Whereas the linearized single-track 
model is based on a linear tire model approach, the tire characteristic of the ge-
neric model is qualitatively conform to the reference model. The trajectories of the 
generic vehicle model (dashed) with one parameter set for a class of vehicles in 
comparison to the reference model (solid) is shown in Fig. 14. 

Fig. 13. Identified lateral tire force dependency on slip angle (front axle) 

Fig. 14. Trajectories of reference model (solid) and generic model (dashed) 

The exemplary driving maneuver is a steering angle step with end = 60°, a  
steering angle velocity of d dt = 200°/s and a friction coefficient of  = 1. The 
initial longitudinal vehicle velocity is vx, 0 = 15 m/s, whereby the throttle pedal is        
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constantly hold during the maneuver. The driven radius of the reference model is 
rref = 58.5 m, whereby the generic model follows a circle with a radius of 
rgen = 48.7 m. The relative radius deviation of r = 16.7 % points out, that the ge-
neric vehicle with only one parameter set for a class of vehicles is unsuitable for 
vehicle dynamics analyses of the considered vehicle. The relative deviation is 
computed as follows: 
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The lateral acceleration and yaw velocity characteristic in Fig. 15 documents
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Following, improvement alternatives for the generic vehicle model to enhance 
the field of application are discussed. 

Fig. 15. Lateral acceleration and yaw velocity of reference model (solid) and generic model 
(dashed)
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6.2 Alternatives to Improve the Real-time Vehicle Model 

An improvement of the real-time model to enhance the field of monitoring soft-
ware verification is possible by both varying the model structure and parameter 
adaptation. But the vehicle model quality always is limited by the processor per-
formance, because the simulation has to run in real-time (Fig. 16). Another model 
quality limit is set by the economic efficiency of the vehicle model validation. The 
model quality dependency on the development costs is nonlinear, so that the costs 
rise over-proportionally with increasing quality. 

Besides the tire model the module wheel suspension has special influence on 
the vehicle dynamics. But the integration of a complex wheel suspension model 
with closed kinematical loops would cause problems with the real-time capability 
of the model as denoted in Fig. 16. Furthermore, the development environment 
ASCET-SD embarks on a strategy with mainly non-interacting transmission 
blocks, which is unsuitable for modeling of kinematical loops. Consequently, an 
improvement of the generic model by parameter adaptation is aimed. 

In Fig. 17 the trajectories of the reference model (solid) and an adapted generic 
vehicle model (dotted) are exemplary shown at a steering angle step with 

end = 60° on a friction coefficient of  = 1. Firstly, the adaptation is reduced to the 
lateral tire stiffness of the used HSRI tire model to compensate all modeling sim-
plifications. Fig. 18 presents the lateral accelerations and yaw velocities of both 
vehicle models, whereby the deviations are decreased to r = 4.6 %, 

ay, max = 4.8 % and (d /dt)max = 6.8 % in comparison to the generic model with 
the standard parameter set (section 5.2). 

Fig. 16. Model quality dependency on costs 
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Fig. 17. Trajectories of reference model (solid) and adapted model (dotted) 

The simulation results in Fig. 17 and Fig. 18 point out the potential to improve 
lateral and yaw dynamics of the generic model by parameter adaptation. Besides 
the tire model adaptation the wheel suspension parameters angle and length are 
suitable to adapt the semi-trailing arms of the generic model to the exact wheel 
suspension of a vehicle. Especially in higher lateral acceleration ranges the influ-
ence of the force elements spring, damper and anti-roll bar on the vehicle dynam-
ics has to be considered. Therefore, an optimal parameter set for the modules tire, 
wheel suspension and force elements has to be found to simulate lateral and yaw 
dynamics accurately. But the economic limit as exemplary shown in Fig. 16 has to 
be considered for an efficient improvement of the generic vehicle model in rela-
tion to the profit for the ESP monitoring software verification. 

Fig. 18. Lateral acceleration and yaw velocity of reference model (solid) and adapted model 
(dotted)
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7 Conclusions 

Vehicle safety has been improved significantly by introducing active and passive 
automotive safety systems, which are typical examples of mechatronic systems. 
Whereas the complexity, interdependency and demands concerning safety systems 
continuously increase, a trend to shorter development cycles with consistent qual-
ity occurs. Simulation, therefore, has meanwhile become an important role in this 
development process, contributing also to a better understanding of the physical 
properties of the system. Complex mechatronic systems like the vehicle dynamics 
control system ESP are developed using an adapted V-shaped model, which is 
completely or partially cycled similar to the spiral model. The ESP is relevant to 
security of the occupants because of its active interventions on the vehicle dynam-
ics. Therefore, the development of the monitoring software as a part of the ESP 
self-diagnosis is an important element within the ESP development process and 
has to be verified systematically by tests in all development phases. 

The combination of vehicle dynamics simulations and road tests is the optimal 
solution for the monitoring software verification. The HIL application offers time 
and cost savings, reproducibility, performance of life-threatening driving maneu-
vers, the possibility for a test automation and the supply of state variables, which 
are not available in the real vehicle. But even the best simulation environment 
cannot exactly represent reality and results are only as good as the vehicle model, 
whereby road tests are still indispensable. The greater part of the ESP monitoring 
software can be verified by using a generic real-time model with one parameter set 
for a class of vehicles within the HIL simulation. Tests in the vicinity of the 
thresholds and the model based monitoring require a higher vehicle model quality. 
But generally in early phases of development a vehicle prototype is not available 
and the generic vehicle model covers a considerable part of the monitoring soft-
ware verification. 

An improvement of the real-time model to enhance the field of monitoring 
software verification is possible by both varying the model structure and parame-
ter adaptation. But for example, varying the structure by integrating a complex 
wheel suspension model with closed kinematical loops would cause problems with 
the real-time capability of the vehicle model. Therefore instead, an improvement 
by parameter adaptation is aimed. Considering lateral and yaw dynamics, the 
simulation results with adapted tire model parameters, to compensate all modeling 
simplifications, point out the model improvement potential. 

Besides the tire model adaptation the wheel suspension parameters – angle and 
length – are suitable to adapt the semi-trailing arms of the generic model to the 
exact wheel suspension of a vehicle. Especially, in higher lateral acceleration 
ranges the influence of the force elements spring, damper and anti-roll bar on the 
vehicle dynamics has to be regarded. Thus, an optimal parameter set for the mod-
ules tire, wheel suspension and force elements has to be found to simulate lateral 
and yaw dynamics accurately, whereby the economic limit of parameter validation
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in relation to the improvement profit has to be considered. Furthermore, a complex 
and validated reference model is not always available for an improvement of the 
models of actual vehicles. Therefore, a parameter adaptation procedure based on 
measurable vehicle state variables has to be worked out. 
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Modelling of the ride and handling dynamics of motorcycles using the symbolic 
mechanical multibody system package Autosim has been carried out since 1995.  
Motorcycles are principally of tree structure but their geometry is complex in rela-
tion to the tyre to road contact and tyre force and moment descriptions and to the 
chain drive system.  They may contain closed kinematic loops, according to com-
mon suspension and steering design variations.  Various aspects of the modelling 
problem are discussed and some implications, from a multibody standpoint, of 
choosing different options are exposed.  Simulation results illustrate the “anti-
squat” behaviour of a chain drive transmission and the “anti-dive” behaviour of a 
Telelever front suspension system. 

1 Introduction 

Mathematical modelling and simulation of the responses of motorcycles to control 
inputs from throttle, brake and steering are contemporary standard activities [16].  
The purposes include increasing understanding of behaviour and the relationships 
between behaviour, design and operating conditions [8,16,18] and the exploration 
of new design features [5,15,19]. Models need to be understandable, fully defined 
and documented, and to have some attractive balance between realism and compu-
tational speed.  For some applications, e. g. hardware-in-the-loop, speed is essen-
tial [1,2,11,12,22].

Motorcycle dynamics can be considered at each of two distinct levels.  The 
lower level involves confining the motion to small perturbations from straight 
running, in which case in-plane, ride dynamics are decoupled at first order from 
out-of-plane handling dynamics and relatively simple models will suffice for 
many purposes.  Such models can be built by hand [14].  Indeed, chronologically, 
there was no choice.  The higher level involves general motions, with potentially 
strong interactions between in-plane and out-of-plane motions [8,16,18,19], for 
which automated multibody modelling is currently the only sensible approach. 

The capabilities and features of Autosim [7] are very well matched to the mo-
torcycle problem, as long as the relatively low frequency behaviour is of interest  
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(<12Hz say) and a multi-rigid body representation of the system is considered 
adequate.  Autosim is basically a multibody description language written in LISP, 
with the means to automatically convert such a description into an executable 
simulation model, among other things.  The modelling problem becomes one in 
harmonizing the finite command set of the multibody language chosen with the 
concepts and parameters of the system of interest. 

In this work the architectural aspects of modern motorcycles are discussed.  
Some relevant information about using Autosim is provided. The mechanical fea-
tures of motorcycles and the description capabilities of the language are brought 
together to define a number of alternative models. Some model features and be-
havioural results are shown next and conclusions are finally drawn. 

2 Contemporary Motorcycle Architecture 

At the most basic level, motorcycles all have the same historic layout, involving a 
relatively rigid centre section, in which the masses are concentrated, drive to the 
rear wheel via a chain, belt or shaft and steering of the front frame including the 
front wheel and round section pneumatic tyres.  The rider sits on top of the centre 
section and steers by direct connection through the handlebars with the front 
frame.  Many current production motorcycles have the long-established telescopic 
front fork and rear swing arm suspension arrangements, Figure 1.  It has been 
clearly established that the main frame normally needs to be considered torsion-
ally flexible in the steering head region to properly represent the behaviour of real 
machines [6,16-20]. 

Important variants of these standard arrangements include the so-called 
“Telelever” front suspension, Figure 2, and “Monoshock” rear spring / damper 
unit linkages, Figures 3, 4 and 5. The basic system shown in Figure 1 has “tree” 
structure, while the other designs involve closed kinematic loops, which are inter-
esting from a multibody viewpoint [13]. A shaft drive system is straightforward to 
model, but a chain drive is more difficult, literal modelling being problematic due 
to the number of links in a typical chain and to the fact that each link changes its 
function as it progresses through its duty cycle, Figure 6. 

steer axis
twist axis x’

z’

main

frame

rider upper 

body

aerodynamic  origin

y’

swing arm

rear front

spring / damper unit

x

z

y

trail

Fig. 1. Diagrammatic motorcycle with telescopic front forks and swing arm rear suspension. 
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Fig. 2. Telelever front suspension system with frame torsional compliance. 
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Fig. 3. Suzuki GSX-R1000 Monoshock linkage system for rear suspension. 

0

p21

p22

p11

p13

p19

p20

l
4

l
1

l
2

l
3

l

p7

Fig. 4. Honda Pro-link Monoshock rear suspension system. 
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Fig. 5. Full floater Monoshock rear suspension system. 

swing arm
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driven
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p23

p11
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Fig. 6. Chain drive associated with swing arm rear suspension. 

External forces and moments are applied aerodynamically and through fric-
tional coupling between the tyre and the ground in the contact patches.  The aero-
dynamic influences included are drag and lift forces applied at the aerodynamic 
origin, Figure 1, as well as a pitching moment as follows: 

2
0.5x DF C Av  (1) 

2
0.5.z LF C Av  (2) 

2
0.5.y PM C ALv  (3) 

with  the air density, A the frontal area, L the wheelbase and  the longitudinal 
wind speed relative to the motorcycle. The tyre forces and moments are best de-
scribed by the “Magic Formulae” as designed and developed specifically for mo-
torcycles [3,4,9,19,21]. These formulae need to be supplied with the tyre load 
(normal to the ground), the longitudinal slip, the lateral slip and the wheel camber 
angle relative to the ground and they return the longitudinal force and the lateral 
force acting at the centre of the contact area and an aligning moment.  If the con-
tact geometry is described in detail, Figures 7 and 8, with the contact centre mov-
ing round the tyre circumference and laterally round the tyre sidewall, this force 
and moment system treatment is complete. A detailed discussion with parameter 
sets is given in [19]. 
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Fig. 7. Three dimensional tyre to ground contact geometry, showing the possible movement 
of the contact centre circumferentially and laterally. 

The main joints are for steering and the two suspensions.  The steering head joint, 
in particular, is designed and made to be virtually frictionless, taper roller bearings 
being common. Proper maintenance demands care in adjusting the head bearings, so 
that the friction is very small but the clearance is nil. The suspension bearings also 
are designed to operate with very little friction, so that the joints can be considered 
ideal. This is important from a multibody modelling point of view [13]. 
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Fig. 8. Two dimensional tyre to ground contact geometry, showing the lateral movement of 
the contact centre and the vertical flexibility of the tyre structure. 
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3 Autosim Features 

The starting point for any Autosim-based model building is the inertial reference 
frame “n”. The first body, whatever it is, is allowed to move with up to six degrees 
of freedom with respect to n. Children of this, or any other body present, can be 
added, with a description of the freedoms permitted to this new body, relative to its 
parent. In the nominal configuration of the system, the point common to both parent 
and child, names for the mass and inertia elements etc. need to be defined. The equa-
tions of motion are derived via Kane’s equations, which are based on the principle of 
virtual power [13]. Points can be defined in bodies. These are most often fixed 
points in the bodies to which they belong but they may be specified as “moving”, 
with their locations specified by coordinates in a defined reference system. 

Forces with given magnitudes and directions can be applied to points and re-
acted on other points.  Alternatively, a strut following a force law can be defined 
as acting between two points, in which case, the direction of the force is in the di-
rection of the line joining the points.  Moments with magnitudes and directions 
can be defined as acting between bodies. 

Position constraints, velocity constraints or both together can be added.  The 
analyst has the option to specify which freedom should be eliminated from the 
problem as a result of each constraint added.  Constraints may require points on 
two bodies to have no relative movement, for example, or they may consist of 
symbolic expressions which must have zero value.  To deal with a closed kine-
matic loop, this is first opened by an imagined cut in such a way that the longest 
chain of bodies contributing to the loop is as short as possible.  The loop closure 
constraints are then added.  On loading the model, Autosim forms the displace-
ment loop equations [10], expressing the condition that traversing the loop in cir-
cular fashion yields a zero vector resultant.  Each of the three resulting scalar 
equations is differentiated with respect to time to give the velocity level constraint 
equations, which are always linear in velocities.  Thus dependent velocities can be 
chosen automatically and written as linear functions of the remaining independent 
velocities.  The dependent velocities are temporarily lost from the problem, while 
the independent ones remain as generalised speeds to be evaluated through time 
by numerical integration. 

At each integration step, the dependent speeds are known from the independent 
ones and approximations to the dependent coordinates can be found by integration 
of the dependent speeds.  Displacement drift will normally occur in this process, 
implying opening of the closed kinematic loop.  To avoid this drift, the displace-
ment level loop equations are utilised in a Newton-Raphson iterative scheme to 
update the values of the dependent coordinates, until these equations are satisfied.  
The Newton-Raphson procedure requires repeated solution of the linear simulta-
neous equation update problem by matrix inversion.  Usually, since the approxi-
mate solution from integration is close to the true solution of the displacement 
loop equations, very few updates are needed.  However, some economy may be 
possible by relying only on the leading diagonal terms in the coefficient matrix for 
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the update calculations1.  User experience suggests this to be an excellent way of 
dealing with closed kinematic loops. 

New state variables can be added to a model and they can be made integral 
functions of existing variables.  Differentials with respect to time and partial dif-
ferentials of variables can be defined.  Max, min, sign and ifthen functions can be 
used, allowing discontinuous actions, like tyres leaving the ground and limit stops 
being contacted, to be modelled easily.  If necessary, the analyst can define how 
discontinuous functions are to be differentiated. 

Equations of motion come in the form: 

( , ) ( , , ) kinematics

( , ) ( , , ) dynamics

S q t q v q u t

M q t u f q u t
(4)

in which

0

0

S

M

is the speed coefficient matrix, q is the generalised displacement vector, u is the 
generalised speed vector and f the force vector.  Straightforward integration of the 
equations in this form implies the need to invert the speed coefficient matrix at 
each time step.  There is an option to LU decompose this matrix symbolically, fol-
lowing which, at each time step, 2n purely sequential arithmetic operations allow 
the computation of all the rates of change of generalised displacements and 
speeds.  Whether or not there is advantage in taking this option is case dependent.  
The probability of its being advantageous increases in alignment with the number 
of zeros in the matrix. On loading the model, its form and the numbers of multi-
ply/divide, add/subtract and function evaluations per time step are declared. Con-
sequently, symbolic LU decomposition can be compared with the alternative nu-
merical process on a case by case basis. The operation count can be reduced, 
leading to faster simulation, by declaring variables to be small.  In particular, 
small angle theory can be employed where it is appropriate. 

4 Modelling the Motorcycle in Autosim 

It is convenient to define all the key points in the model, Figure 1, in the inertial 
reference frame, n.  As the bodies are added, the points which belong to them can 
be located with respect to n.  Bodies and freedoms are added as shown in Figure 9.
Children are specified relative to parents. 

                                                          
1 Autosim contains a switch *fast-computed-coordinates*.  When this is “on”, only the 

leading diagonal terms are used in the updating calculations.  A larger number of iterative 
steps of simpler form is implied.  This is faster in some cases. 
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inertial frame; n

main; translate (x, y, z); rotate (z, y, x)

upper_body;

rotate x

ff_twist; rotate x’

ff_steer; rotate z’

ff_sus; translate z’

front_wheel; rotate y’

swing_arm; rotate y

rear_wheel; rotate y

Fig. 9. Parent/child body structure for model of motorcycle with telescopic front forks and 
swing arm rear suspension. 

Tyre to ground contact points are specified as follows: In any general configu-
ration, the wheel longitudinal direction is perpendicular to both the wheel spindle 
vector and the vertical, Figure 10.  The special radial direction to the tyre crown 
centre circle in the lateral plane of the contact point is perpendicular to both the 
longitudinal and the vertical directions.  The vector OC, from the wheel centre to 
the tyre crown centre, see also Figures 7 and 8, is of fixed length given by the tyre 
crown radius and in the radial direction defined.  Where a vertical through C 
meets the ground plane is the contact centre G.  The contact centre is defined as a 
moving point in the wheel, located by its coordinates in the wheel axis system, de-
rived from the analysis above. 

origin

horizontal 

projection of wheel 

spindle unit vector

wheel spindle unit vector

camber angle

ground plane

wheel lateral direction

wheel longitudinal direction

wheel centre, O

vertical

tyre crown centre circle

vertical, [nz]

C

G

radial 

direction

vertical

Fig. 10. Geometry of the front wheel, enabling to define the tyre/ground contact conditions. 
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The height of the wheel centre from the ground is the component in the vertical 
direction of the vector joining the global origin (at the rear wheel contact centre in 
the motorcycle’s nominal state) to the wheel centre.  The vertical component of 
OC is the tyre crown radius multiplied by the cosine of the camber angle, so that 
the distance from C to G can be found.  The change in this distance from the 
nominal state, through the assumption of a linear elastic tyre structure, gives the 
change in the tyre load from the nominal load and therefore the load itself. 

The wheel camber angle is clear in Figures 8 and 10.  The longitudinal slip is 
given by the ratio of the rearward longitudinal velocity of the tyre tread base mate-
rial to the absolute value of the rolling velocity.  This is the longitudinal velocity 
of the tread base with its spin component taken away.  The lateral slip is the ratio 
of the negative lateral component of the velocity of the tread base material to the 
absolute value of the rolling velocity [18,19]. 

In the tyre model, there is a time lag, , between changes in lateral slip and 
the corresponding changes in the lateral distortion of the tyre carcass and in the 
forces which depend on it [4,16]. The tyre relaxation length, , is proportional to 
the tyre cornering stiffness and also dependent on speed.  The load, the camber 
angle, the longitudinal slip and the lagged lateral slip are passed to the tyre algo-
rithm, which returns with the forces and moments. 

4.1 Telelever Front Suspension 

When the motorcycle has a Telelever front arrangement, the bodies down the right 
side of Figure 9, from ff_twst through ff_steer, ff_sus and front_wheel, can be re-
placed as shown in Figure 11.  The newly required points p15 to p18, Figure 2, are 
defined first in n and later copied to each relevant body.  The upper forks are 
added with three rotational freedoms to point p2 on the main frame, its local axes 
being aligned with x’, y and z’.  The lower forks are added to the upper forks with 
a single translational freedom.  The wishbone is added with rotational freedoms in 
yaw and pitch to the main frame with joint at p16.  Position and speed constraints 
are added to disallow relative motion between the wishbone end and the lower 
forks at p18 in each of three orthogonal directions.  The spring/damper unit is de-
scribed as a strut acting between p15 on the main frame and p17 on the wishbone.  
A spring/damper moment is applied to the upper fork rolling motion (about x’) to 
represent the frame twist compliance. 

Table 1. Telelever example geometric data. The x and z coordinates in n of the relevant 
points, Figure 2, are shown.  The steering head angle used is 0.2971 rad. 

P2 P4 P15 P16 P17 P18 
1.233 1.32 1.103 0.853 1.133 1.313 

-0.7488 -0.576 -0.729 -0.509 -0.569 -0.559 
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inertial body; n

main; translate (x, y, z); rotate (z, y, x)

upper_body; 

rotate x

ff_twst; rotate x’

f_wheel; rotate y’

swing_arm; 

rotate y

rear_wheel; 

rotate y

wishbone;

rotate y

ff_pit; rotate y’

ff_sus; translate z’

wishbone 

joint; rotate z

ff_str; rotate z’

Fig. 11. Parent/child body structure for model of motorcycle with Telelever front forks and 
swing arm rear suspension.  The dashed lines represent constraints at the ball joint between 
the wishbone and the lower forks. 

As a second alternative, the model of the Telelever system, Figure 2, can be 
solved kinematically by simulation for a prescribed motion of the lower forks.  
The numerical results for the upper fork pitching displacement and for the 
spring/damper unit extension can be fitted by simple polynomials and these can be 
used in the motorcycle model as constraint functions.  Numerical results for a lay-
out defined in Table 1 are shown in Figure 12. 
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Fig. 12. Example Telelever kinematic simulation results with polynomial fits.  The simple 
polynomials are virtually perfect representations of the numerical results. 
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A third alternative is to analyse the Telelever geometrically and to use the sym-
bolic relationships between  and  and between  and  obtained in constraint 
functions.  In either of these two alternative treatments, the wishbone and the con-
straints at p18 are omitted, while the pitching displacement of the upper forks is 
given as either an approximate or an exact function of the fork extension.  The 
strut force is easily converted via the virtual power principle assuming ideal joints 
[19] to an equivalent force acting between the upper and lower forks, as: 

( ) ( )
{ ( ), }

f f f f

f s f f f

f f

df e df e
F f f e e

de de
(5)

In which the spring/damper unit force is represented by: 

( , )s s s sF f e e (6)

with the nominal spring deflection, es, being related to the fork extension, ef, by:

( )s f fe f e (7)

The loop closure equations, for the circuit P2, P4, P18, P16, P2, Figure 2, are: 

2 1 0 0 4 0

5 0 16 2

sin( ) ( )sin( ) cos( )

cos( ) 0

l l

l x x
(8)

2 1 0 0 4 0

5 0 16 2

cos( ) ( ) cos( ) sin( )

sin( ) 0

l l

l z z
(9)

in which l2 is P2-P4, l4 is the projection of P4-P16 perpendicular to the fork line 
and l5 is the wishbone length P16-P18.  The symbols and  relate to the 
nominal configuration and their numerical values are known from the positions of 
the key points. 

Equations 8 and 9 can be combined to give l2

5 as l2

5 cos2 ( + ) + l2

5 sin2 ( + ),
which expression can be expanded and simplified to give the form: 

1 2 3
cos sin 0c c c (10)

where

2 2 2 2 2 2

1 0 5 16 16 2 16 2 16 2 2 2

2 2 2

0 4 2 0 0 1

2 4 0 1

2 2 2

2 ( )cos( )

2 sin( )

c l x z x x z z x z l

l l

l l

(11)

2 2 1 2 16 0 0 2 16

4 0 16 2 2 1 2 16

2

0 0 2 16 5 4 0 2 16

2 sin ( ) 2( )sin ( )

2 cos ( ) 2 cos ( )

2( ) cos ( ) 2 sin ( )

c l x x x x

l x x l z z

z z l l z z

(12)

3 2 1 2 16 0 0 2 16

4 0 2 16 2 1 16 2

0 0 16 2 4 0 2 16

2 cos ( ) 2( ) cos ( )

2 sin ( ) 2 sin ( )

2( )sin ( ) 2 cos ( )

c l x x x x

l x x l z z

z z l z z

(13)
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From Equation 10, 

1 2

2 2
3

2 3

arcsin arctan
c c

cc c
(14)

with  known,  can be found from Equation 9.  The coordinates of P17 are: 

17 16 6 1 17 16 6 1
cos( ), sin( )x x l z z l

in which l6 is the distance P16-P17 and  relates to the nominal state, Figure 2, so 
that the change in the spring unit length can be found as a function of , the fork 
extension, through: 

2 2

15 17 17 15 0
( ) ( )x x z z l (15)

where l0 is the nominal length of the spring/damper unit. 
Evaluation of these expressions, Equations 14 and 15, numerically yields the 

same results as obtained from the previous kinematic analysis, Figure 12, confirm-
ing their accuracy. 

Equation 14 for  is used directly in Autosim in an “add-position-constraint” 
command. A corresponding “add-speed-constraint” is needed, requiring the de-
termination of , which is found as: 

31 2

1 2 3

( )
cc c

c c c
(16)

In similar fashion, description of the spring/damper unit force effective at the forks 
requires Equation 15 to give the spring extension in relation to the fork movement 
and also the derivative, needed for the damper velocity and the motion ratio: 

17 17

17 17

( )
x zd

d x z
(17)

The effective force at the forks is then given, as Equation 5, by: 

( )
( , ) ( ( ), )

e

s s e

dfd d
f f f

d d d
(18)

4.2 Monoshock Rear Suspension 

Monoshock linkages take several different forms, as illustrated by Figures 3-5. 
The linkage couples the single spring/damper unit to the swing arm through a 
varying leverage ratio, performing no function in relation to the suspension ge-
ometry. The links can be modelled literally or preferably analytically [19]. In the 
latter case, some economy of computation at simulation time will result.  Three of 
the most common designs are examined below. 
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4.2.1 Monoshock rear suspension as on the GSX-R1000 

This Suzuki system is shown in Figure 3 and a geometric analysis of it has been 
published [19].  The spring/damper unit length was derived as a function of the 
swing arm displacement from nominal. That function can be used as in Equations 
5-7 above, via Autosim’s partial derivative capability, to represent the linkage sys-
tem and the spring/damper unit force law by an equivalent moment about the 
swing arm joint.  In the notation of Equations 5-7, this moment is: 

( ) ( )
{ ( ), }

f f

s f

df df
M f f

d d
(19)

4.2.2 Monoshock rear suspension used by Honda 

The so-called Pro-link system, as shown in Figure 4, is a small variation of the 
GSX-R1000 design.  The spring/damper unit acts on the connecting link instead of 
the rocking lever.  A geometric analysis is very similar to that done before.  Refer-
ring to Figure 4, the displacement loop equations for the circuits p11, p22, p20, 
p19, p11 and p11, p22, p20, p21, p11 yield: 

11 3 2 1 19
cos cos cosx l l l x  (20) 

11 3 2 1 19
sin sin sinz l l l z (21)

11 3 2 4 0 21
cos cos cos( )x l l l x (22)

11 3 2 4 0 21
sin sin sin( )z l l l z  (23) 

Forming l2

1 as l2

1 cos2
+ + l2

1 sin2 , from Equations 20 and 21, putting  
c1=-x11+x19+l3 cos  and c2=-z11+z19-l3 sin  and letting c1=A cos  and c2=-A sin :

2 2 2 2

1 11 2 1 2 2

2 2
1

2 1 2

cos ( ) tan ( )

2

l l c c c

cl c c
(24)

The spring/damper unit length is: 

2 2

13 21 13 21
( ) ( )l x x z z (25)

with x21 and z21 given by Equations 22 and 23 and  given by Equation 21 as a 
function of .  Thus, the suspension unit extension is a known function of the 
swing arm displacement and the moment M in Equation 19 can be defined. 

4.2.3 Fully floating Monoshock design 

Referring to Figure 5 and using a similar approach, the loop equations are: 

19 1 2 3 11
cos cos cosx l l l x (26)

19 1 2 3 11
sin sin sinz l l l z (27)
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Forming l2

2 as l2

2 cos2
+ + l2

1 sin2 , introducing c1=-x11+x19+l3 cos   and c2=-
z11+z19-l3 sin , and letting letting c1=A cos  and c2=-A sin , it can be shown that: 

2 2 2 2

1 11 2 1 2 2

2 2
1

1 1 2

cos ( ) tan ( )

2

l l c c c

cl c c
(28)

Also:

13 4 19
cosx l x (29)

13 4 19
sinz l z (30)

11 5 0 21
cos( )x l x (31)

11 5 0 21
sin( )z l z (32)

2 2

13 21 13 21
( ) ( )l x x z z  (33) 

leading to the suspension unit extension being definable as a function of the swing 
arm displacement, with x13 and z13 from Equations 29 and 30 and x21 and z21 from 
Equations 31 and 32. 

4.3 Chain Drive 

The chain functions as a tension link between the points pgu on the gearbox 
sprocket and pwu on the rear wheel sprocket when the engine is driving the wheel 
and between pwl and pgl when the wheel is driving the engine, Figure 13. Some 
slack or clearance is allowed between driving and overrunning, and the chain is 
treated as elastic and damped. The force transmitted between the relevant points 
thus depends on some logic, to decide between drive and overrun, and the relative 
angular displacements and velocities of the gearbox and rear wheel sprockets. The 
points themselves need to be defined as moving points in the appropriate sprock-
ets. The point definitions are derived via a geometric analysis which follows. 
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z, unit vector k
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Fig. 13. Geometry of chain drive with swinging arm suspension.  The point p11 is the 
swing arm pivot centre and p23 is the gearbox sprocket centre. 
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In Figure 13, these relationships are apparent: 

cos sinsa sa sar rr i k (34)

0 23 11 23 11
( ) ( )s x x z zr i k (35)

sin coswu w u w ur rr i k (36)

sin cosgu g u g ur rr i k (37)

sin coswl w l w lr rr i k (38)

sin cosgl g l g lr rr i k (39)

The chain lines are perpendicular to the radius vectors, so that: 

0
( ). 0wu sa s gu gur r r r r (40)

0
( ). 0wl sa s gl glr r r r r (41)

Through some algebra, these equations yield: 

1

2 2

23 11 23 11

1 23 11

23 11

sin ( )

( cos ) ( sin )
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tan ( )
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g w
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sa sa
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r r

r x x r z z
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r x x

(42)
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sa sa

sa

sa

r r

r x x r z z

r z z

r x x

(43)

expressing the angles u and l as functions of the swing arm angle to the horizon-
tal, , obtained by summing the nominal value with the displacement from nomi-
nal.  For any swing arm position, the coordinates of the points pgu, pwu, pgl and pwl

can therefore be specified. 
The upper chain run is in tension if (-rg g+rw w+  lu) is positive, the first two 

terms accounting for the spinning of the sprockets and the third for the increase in 
separation of pgu and pwu due to suspension motion. Similarly, the lower run is in 
tension if (rg g-rw w+  lu-sl) is positive, in which sl represents the chain slack.  If 
the upper chain run is in tension, it applies a force between the end points of the 
form (-kx-cv) where k is the spring rate and c the damping coefficient, x is the ex-
tension and v the extension speed. In such a case, the lower run force is zero and 
conversely.
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5 Observations on the Resulting Models 

5.1 Tuning for Fast Simulation 

Obtaining a fast simulation model depends partly on controlling the number of 
arithmetic operations per time step necessary to evaluate the rates of change of 
generalised speeds.  The fewer these are, the better it is.  Preparing the motorcycle 
model in various guises yielded the results of Table 2, with the variants defined in 
Table 3. 

Table 2. Operation counts for various analysis options 

Model variant Multiply/divides Add/subtracts Function evaluations 
A 6515 3261 99 
B 6909 3631 99 
C 6481 3241 93 
D 6559 3306 99 
E 6464 3267 97 
F 6467 3246 97 
G 6484 3219 96 
H 6732 3508 113 
I 11170 5451 107 
J 9413 4779 104 
K 9435 4631 99 
L 5432 2969 96 
M 5247 2937 92 
N 10221 4797 101 
O 9341 4570 97 
P 5227 2907 94 
Q 10902 5039 109 
R 9378 4620 105 
S 5264 2915 102 
T 5169 2890 98 

In the nominal case, the Monoshock rear suspension is modelled analytically 
and the LU decomposition is done numerically at simulation time. 

From these results, it can be concluded that: (i) symbolic LU decomposition is 
unhelpful in the case of the motorcycle.  Although only one comparison is in-
cluded, this has been a general feature over many trials: (ii) literal modelling of 
the Monoshock mechanism is the most extravagant, while using off-line generated 
fitted functions is the most economical.  Using analytically obtained functions lies 
between the extremes: (iii) the same is true for the modelling of the Telelever front 
suspension mechanism: (iv) the differences in operation counts between literal, 
function fit and analytical representations are only modest in the cases of both 
Monoshock and Telelever mechanisms: (v) restricting the main frame pitch angle 
to small reduces the model size substantially (vi) restricting the rider upper body 
lean and the swing arm angles to small brings very modest benefit to the operation  
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counts: (vii) modelling the Telelever suspension in full detail is costly: (viii) using 
small angle theory in dealing with the Telelever constraints, by considering 
wishbone yaw and pitch, frame twist and steering head pitch displacements to be 
small, reduces the model size substantially.  It also reduces the model building 
time, in the context of Autosim’s loading operation, considerably. 

Table 3. Key to Table 2 

System Description 
A Nominal configuration with telescopic front forks, Monoshock rear , shaft drive 
B A with symbolic LU decomposition prior to simulating 
C A with the Monoshock system modelled by fitted functions 
D A with the Monoshock system modelled literally 
E A with the swing arm angular displacement declared small 
F A with the rider upper body angular displacement declared small 
G A with the main frame pitch angular displacement declared small 
H A with chain drive 
I A with Telelever front suspension modelled literally 
J I with the main frame pitch angular displacement declared small 
K I with wishbone yaw and pitch, steering head pitch and frame twist angles small 
L K with the main frame pitch angular displacement also declared small 
M L with rider upper body lean and swing arm angles declared small 
N A with Telelever front suspension modelled by fitted functions 
O N with wishbone yaw and pitch, steering head pitch and frame twist angles small 
P O with the main frame pitch angular displacement also declared small 
Q A with Telelever front suspension modelled analytically 
R Q with wishbone yaw and pitch, steering head pitch and frame twist angles small 
S R with the main frame pitch angular displacement also declared small 
T S with the rider upper body and swing arm angles also declared small 

For straight running at constant speed, all the models give effectively the same 
behaviour.  For more complex but ordinary manoeuvring, it can be expected that 
varying any particular model will not influence the behaviour to any significant 
degree, provided that it is used within its compass.  Clearly, a proper connection 
between model building and model application must be maintained. 

5.2 The Influences of Chain Drive on the Accelerating Motorcycle 

The nominal geometry of the chain drive is shown in Figure 14.  p23 is at (0.629, 
0.3708) and the sprocket radii are 0.041 and 0.104m.  To demonstrate the good 
operation of the chain drive model, simulation results of the motorcycle in con-
stant acceleration of 5m/s2 from 5m/s initial speed up to about 65m/s are included, 
without consideration of whether or not this is feasible with the standard power 
plant.  The opportunity is also taken to compare the behaviour for shaft drive and 
for chain drive and to see the influences of raising or lowering the driving sprocket 
by 0.03m from its nominal position, Figures 15-17. 
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Fig. 14. Scaled motorcycle showing masses and chain sprockets in nominal state.  Masses 
shown in proportion.  Points fixed to main frame shown by crosses. 

Fig. 15. Pitch up angle of main frame for shaft drive and chain drive systems. 
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Fig. 16. Swing arm angular displacement (positive in rebound) for shaft drive and chain 
drive systems. 

Fig. 17. Front fork extension for shaft drive and chain drive systems. 

It can be observed in these results that the chain transmission system introduces 
a longitudinal oscillatory mode, by virtue of the chain compliance, which is not 
present in the case of shaft drive.  The chain compliance also includes a contribu-
tion from the shock cushioning system included in the connection of the sprocket 
to the rear wheel.  The damping of this mode can be controlled by any damping 
included in parallel with the chain “spring” and by a derivative term included in 
the rider’s speed control strategy.  In the virtual world, this damping can be in-
creased or decreased at will by parameter adjustments and in the simulations 
shown, no chain damping has been included.  The derivative term in the speed 
controller has been made effective only at very low speeds.  In reality, the extent  
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of the excitation of the mode will depend on the skill and attention of the rider.  In 
demanding a constant 5m/s2 acceleration here, there is no attempt at including 
rider finesse in the computations.  The oscillations are inevitably provoked. 

The “squat” response of the shaft driven machine to the application of drive 
torque is strong and the squat suppression properties of the chain drive system are 
apparent.  The standard geometry leads to very little swing arm motion relative to 
the main frame.  With the raised drive sprocket, the swing arm moves in bump (as 
with shaft drive) while, with the lowered sprocket, the swing arm moves in re-
bound and the anti-squat influence is most marked.  The main frame pitches nose-
up in all cases, since the front forks extend.  This non-oscillatory component of the 
extension is substantially the same for all four cases. 

5.3 The Influence of Telelever Front Suspension on the Braking Motorcycle 

The nominal geometry of the notional Telelever equipped motorcycle is shown in 
Figure 18.  As in Section 5.2, the operation of the Telelever system model is dem-
onstrated by some simulation results.  These are also used to illustrate the particu-
lar properties of the Telelever suspension as a function of the height of the rear-
ward wishbone pivot location.  The pivot is first lowered and then raised by 4cm 
from the nominal for the “low pivot” and “high pivot” cases respectively.  The 
front braking torque employed is near the limit of what is possible without causing 
a “stoppie” (the rear tyre lifting from the ground) and it slows the motorcycle 
nearly to a stop from an initial speed of 75m/s in 10s.  Simulation results are 
shown in Figures 19 – 22. 
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Fig. 18. Illustration of standard Telelever geometry.  Masses shown in proportion.  Points 
fixed to main frame shown by crosses. 
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Figure 19. Main frame displacement in pitch in front wheel braking for standard and 
Telelever equipped motorcycles. 

Fig. 20. Swing arm angular displacement (positive in rebound) in front wheel braking for 
standard and Telelever equipped motorcycles. 

The motorcycle pitches nose-down in each case, the angle reached varying by a 
factor of about 4 between the standard machine and the Telelever equipped ma-
chine with the high wishbone pivot location.  In this last case, the wishbone and 
front fork movements are quite small.  Then, most of the pitch attitude change is 
accounted for by swing arm movement in rebound.  These swing arm movements 
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are nearly the same for all the cases.  The anti-dive property of the Telelever sys-
tem is increased by raising the wishbone rearward joint and is accompanied by a 
more rapid change in loading of the front tyre at the commencement of the braking 
manoeuvre.  Although not shown, the variation in the front tyre loading follows 
the same pattern, although it does not, of course, start from zero.  Again, a skilled 
and attentive rider can be expected to apply a smoother torque than that simulated 
here, in order to control the transients well, but the control problem appears to be 
made more difficult by the employment of anti-dive kinematics. 

Fig. 21. Front fork extension in front wheel braking for standard and Telelever equipped 
motorcycles.

Fig. 22. Transient build up of braking force at the front tyre over the initial stages of the 
simulation runs. 
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6 Conclusions 

Many general issues in the modelling of motorcycle dynamics have been reviewed 
and the problem has been related to the use of Autosim as an aid.  New analyses of 
two variants of the Monoshock rear suspension system and of a Telelever front 
suspension have been included. 

It has been explained how the availability of analytic or numerical kinematic 
solutions to a mechanism makes possible the modelling of the system in alterna-
tive ways, which are essentially the same in terms of behaviour.  The options have 
been explored in detail for both Monoshock and Telelever suspensions and opera-
tion counts relating to each time step of the integration of the equations of motion 
have been used to show the implications of choosing different alternatives.  Al-
though the literal modelling is the easiest and the analytical modelling often much 
more difficult and more resource consuming in connection with model building, 
the resulting models are surprisingly similar in terms of these numbers of opera-
tions.  Using small angle theory in some instances has little influence on the 
operation count, while in other cases, it makes a large difference. 

A chain drive model has been developed and explained.  Compliance in the 
chain introduces a new longitudinal mode of motion which is likely to be quite os-
cillatory.  However, relevant parameter values are not known with any precision at 
this stage. 

Simulation results have illustrated the operation of the chain drive and 
Telelever models in particular, with the former showing “anti-squat” properties 
under hard acceleration and the latter demonstrating “anti-dive” behaviour, both 
depending on the geometric details of the design. 
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A new concept of gluing, also known as co-simulation, for dynamic simulation of 

distributed mechanical systems is presented to couple subsystem models in a dis-

tributed computing environment. Using the new gluing algorithm, subsystem models 

can be analyzed at their distributed locations, using their own independent solvers, 

and on their own platforms. The gluing algorithm relies only on information avail-

able at the subsystem interfaces. This not only enables efficient integration of sub-

system models, but also engenders model security by limiting model access only to 

the exposed interface information. These features make the new gluing approach 

suitable for practical use in a distributed simulation environment. The new concept 

system has been implemented with a standardized model description using XML 

and a logical distribution architecture including model database layout, wrapping 

methods for simulation codes, and a Web-based user interface. Examples using the 

developed simulation system demonstrate the potential for the application of the 

new methodology to general mechanical system simulation problems, including the 

design and analysis of globally distributed automotive systems. 

1 Introduction 

The automotive industry relies extensively on a multi-layered supply chain model. 

As such, the components of a vehicle are designed and tested in different compo-

nent supply companies; thus, the associated analysis and design models are dis-

tributed in different locations. This work addresses the need for a simulation envi-

ronment that can incorporate distributed heterogeneous mechanical systems 

models and couple them together to perform dynamics simulations to assist the 

virtual prototyping process. As shown in Figure 1, design and manufacturing of an 

automotive vehicle may be distributed amongst an OEM and its tiered suppliers. 

The simulation models of the different components often are developed using dif-

ferent computing platforms and different software tools. Traditionally, in order to 

study the behavior of the whole vehicle, all the subsystem models need to be 

brought together to form a monolithic all-in-one model. This results in a lengthy 
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and complicated process to collect and integrate subsystem models with little 

flexibility to incorporate design changes of the subsystems made by the suppliers 

in the later stages of vehicle design. 

In order to simulate more efficiently the vehicle system and to deal with the 

distributed nature of the problem, two significant challenges must be addressed. 

First, the distributed subsystems models might be developed using different soft-

ware packages, running on different computers, and/or residing at different geo-

graphical locations. Second, the model developers, to protect proprietary informa-

tion, often are not willing to share their models directly.  This suggests that only 

minimal information should be exchanged during the coupled simulation, and the 

local model developer/supplier should be able to control the accessibility of the 

model developed. These requirements call for a new integration algorithm that can 

efficiently and sufficiently integrate subsystems models in a distributed environ-

ment and that does not require internal details of the component models. 

Fig. 1. A distributed mechanical system 

Researchers have studied the decomposition of large mechanical systems with a 

primary focus on the decomposition strategy.  Arising from the field of parallel 

computing applied to finite element analysis, many have explored extending the 

concept of parallel algorithms to distributed simulation. A primitive version of a 

distributed finite element simulation is presented in [1], in which stiffness matrices 

and load vectors are generated concurrently on clients and sent to a central server 

to be assembled. Other researchers adopted a different approach, using parallel so-

lution of the system of equations. The parallelization of both direct solution meth-

ods [2] and iterative methods [3] has been studied extensively. A substructuring 

method, FETI, is presented in [4], introducing extra traction variables and exhibit-

ing more flexibility for model reduction and coupling, compared to existing com-

peting schemes. A similar algorithm, IGI, is presented in [5], which provides a 

practical way to update the interface force and in which the subsystem models can 

be solved independently. As discussed in [6], these efforts all focus on active par-
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titioning of an existing large-scale system rather than coupling an already distrib-

uted system, employing, e.g., substructuring [7] or domain decomposition meth-

ods [8], which usually requires the internal details of the subsystem models.  

In the multibody dynamics arena, researchers have also studied how to partition 

and parallelize systems [6, 9-20]. One strategy adopted by researchers is similar to 

substructuring in FEM, i.e., a small global problem is formed by incorporating 

condensed subsystem models. This smaller problem then is solved to provide nec-

essary information to subsystem models. The subsystem models subsequently can 

be solved based on this information. In [9], a subsystem synthesis method was 

proposed for dynamic analysis of vehicle multibody systems, in which each sub-

system is independently analyzed with a virtual reference body and the overall ve-

hicle system analysis is formed by synthesizing the effective inertia matrix and 

force vector from the virtual reference body of each subsystem. A divide-and-

conquer algorithm is presented in [10,11] for rigid body dynamics, which reduces 

the system to an “articulated-body” by recursively applying a formula that con-

structs the articulated-body equations of motion of the system from those of its 

constituent parts. Both the inputs and outputs of the formula are equations of mo-

tion. Another approach is given in [12,13], in which the equations of the subsys-

tem models are evaluated in parallel, and the results are loaded into a single sys-

tem wide equation to explicitly calculate the constraint forces.  The strategy 

adopted in [14] follows a similar path. 

Treating the subsystem models as control blocks and taking advantage of many 

sophisticated control-based simulation software packages is another common 

modeling approach. In [15], a modular formulation for multibody systems is pro-

posed, based on the block representation of a multibody system with correspond-

ing input and output quantities. This “block diagram” representation of the system 

can then be embedded into appropriate simulation packages, e.g., SIMULINK. In 

[16], “Co-simulation,” is presented, which employs a new discrete time sliding 

mode controller (DTSM) to satisfy the algebraic constraints among the subsystem 

models and to solve the causal conflicts associated with the algebraic constraints.  

The methods reviewed above either involve the active decomposition of the full 

system and require more information than just that associated with the subsystem in-

terfaces or mandate specific requirements or structures on the formulation of the 

subsystems. In the context of coupling already distributed subsystems, the gluing 

perspective is preferred. A study is presented in [6], in which the terminology “glu-

ing algorithm” is first suggested to describe a class of algorithms that can be used to 

glue distributed component models for use in dynamics simulations [17-19]. 

We have been developing a concept platform for simulating general distributed 

mechanical systems.  Here, the mechanical system may have a large number of 

components represented by either finite element models and/or multibody dynam-

ics models.  The goal is to fill the gap between state-of-the-art simulation tech-

niques and the practical collaborative product development systems described 

previously. Our efforts include three aspects as follows, with a focus on develop-

ing the gluing algorithm. 
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1. a standardized description of models implemented in XML;  

2. a distribution architecture that can be realized using available computational 

technologies;

3. a gluing algorithm that can couple component models without requiring 

sending the complete models or modifications to the model internals. 

2 Basic Concept of Gluing 

2.1 Subsystem Models 

Standard simulation practice involves the use of a dataset, which includes, e.g., 

structural geometry, material data, loading conditions. This dataset describes the 

simulation model being used to represent a specific mechanical component along 

with the simulation scenario in which to exercise the model. To obtain simulation 

results, the dataset must be input to a specific simulation code. Using the nomen-

clature of data trees, this combination of dataset and simulation code is defined as 

a leaf model. A leaf model represents the minimum information required to di-

rectly execute a component simulation. Thus, in the usual design and simulation 

environment, the analyst works with leaf models.  Instead of using the term par-

ent model, we use integrated model to refer to models that are assembled from leaf 

models and/or lower-level integrated models, i.e., children models.  As such, in-

tegrated models include the information required to couple/assemble its children 

models. Within the proposed framework, an integrated model also contains a 

strategy for gluing together its children models.   

An example of an integrated model is a truck chassis frame shown in Figure 2, 

which is formed by gluing six leaf models: right rail, left rail and four cross-

members. In the glue integration, the leaf models are “glued” together to form an 

integrated model  the complete chassis frame. This integrated model can be 

then integrated with other subsystem models to form a higher level integrated 

model. This process can be repeated, obtaining a full vehicle model as shown in 

Figure 2.  

2.2 Gluing Principles  

The proposed gluing algorithm only relies on the information at the interfaces of 

the models that are to be coupled. Here, interface refers to the connections or 

common surfaces of two models. An interface can be represented by a set of inter-

face nodes in a finite element model, or by a set of connecting joints in a multi-

body dynamics model.  The typical information available at the interface can be 

classified, in the present context, as kinematic information and force information. 

The kinematic information may contain displacements, velocities, and/or accelera-
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tions of the interface.  Force information refers to action-reaction forces at the in-

terface.

Mechanics principles require that at any interface the force quantities, namely 

action-reaction forces, satisfy the equilibrium equations, and the kinematic quanti-

ties satisfy the compatibility conditions, where it is assumed that the equilibrium1

and compatibility conditions in the internal domain of each subsystem are satisfied 

a priori.  The proposed gluing algorithm employs an iterative process, starting 

with an initial guess of some of the interface quantities.  These interface quanti-

ties are then updated using a prescribed iteration process to satisfy the equilibrium 

and/or compatibility conditions at the interface. 

In general, if a proper set of interface force variables is defined such that that 

the equilibrium conditions are satisfied, then only the compatibility conditions 

need to be considered during the iteration process.  In this case, the interface 

force variables can be considered as functions of the interface kinematic quanti-

ties, and these interface force variables can be updated using the kinematic infor-

mation and compatibility conditions.  Similarly, if a proper set of the interface 

kinematic variables is defined such that the compatibility conditions are satisfied, 

then only the equilibrium conditions need to be considered during the iteration 

process.  In this latter case, the interface kinematic variables are functions of the 

force quantities at the interface, and they can be updated by satisfying the equilib-

rium conditions.  Different gluing algorithms ensue, depending on which group 

of interface quantities is considered as the defined input.  

Fig. 2. Leaf and integrated model 

                                                          
1 Here the equilibrium will also consider the inertial forces and dynamic loads in the case 

of a dynamic problem. 
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2.3 Gluing Strategies  

Figure 3 illustrates three typical coupling strategies, which are candidates for a 

gluing algorithm. Here, X represents the vector of kinematic quantities, and T the 

vector of force quantities at the interfaces of the two models to be glued together. 

Figure 3a illustrates the T-T coupling strategy, for a two-subsystem case. In this 

strategy, kinematic quantities at the interfaces of both subsystem models, i.e., Xn
I

and Xn
II
, are used as inputs to the coordinator. The interface force vectors of the 

two models, Tn
I
and Tn

II
, are coordinator outputs, which will be applied to the sub-

system models for next time step calculations. Figure 3b illustrates the X-X cou-

pling strategy. In this method, interface force vectors Tn
I

and Tn
II

 of the two 

models are used as inputs to the coordinator. The kinematic quantity vectors Xn
I

and Xn
II

are the coordinator outputs. The MEPI algorithm developed in [6, 18] has 

the form of an X-X method. 

Fig. 3. Coupling strategies (T: force quantity vector, X: kinematic quantity vector, tn: time 

at the nth
 step.) 

a) T-T method 

b) X-X method 

c) X-T method 
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Figure 3c illustrates a mixed coupling strategy, the X-T method, in which the 

interface force vector Tn
I

of Model 1 and kinematic quantity vector Xn
II

of Model 

2 are used as inputs to the coordinator, while the kinematic quantity vector Xn
I

of

Model 1 and the interface force vector Tn
II
 of Model 2 become outputs from the 

coordinator. This strategy was adopted in [19] to simulate the behavior of an army 

tank using a distributed computing facility. This strategy is adopted by 

SIMULINK, and describes the so-called “across and through” variables method 

adopted in 20-Sim, which is employed in the control block strategy of [15]. 

Clearly the defined structure of the coordinator plays an important role in the 

problem and must be different for different coupling strategies. In the following, 

we will focus only on the T-T method. The major advantage of using the T-T 

strategy in a general problem of mechanical system simulation is that the forces 

can be easily applied to the subsystems when solving the subsystems equations, 

compared with the need to prescribe the kinematic conditions at the interfaces.  

The T-T strategy is more suitable to the standard setup of simulation codes that are 

employed in the subsystems analyses, and thus it improves the efficiency of the in-

tegration process and enhances the independency of the subsystems models.  

2.4 Time Stepping Methods 

Various time stepping methods to advance the subsystem solutions can be consid-

ered depending on whether or not there is a leading subsystem and how the time 

steps are arranged for the information exchange between the different models. 

Figure 4 illustrates three typical iteration methods, namely, parallel, leading and 

walking. For leading and walking, the compatibility of the whole system is not 

explicitly required as the simulation moves forward. Thus, they actually represent 

sequential methods. In the parallel method, components exchange information 

within the time step, and the coupled subsystems are compatible at the end of each 

time step. In this paper, we consider only the parallel method.  

3 The T-T Method 

3.1 Fundamental Concept 

Assume that F is a properly defined interface force vector; that is, F contains the 

necessary and sufficient set of variables that can represent the force space at the 

interfaces considered and F is self-balanced, i.e., the equilibrium conditions at the 

interfaces are automatically satisfied if F is employed. Let e be an error measure 

vector that represents the violation of the compatibility conditions at the inter-

faces, where e=0 indicates that the compatibility conditions are fully satisfied. In 

the general case, e can be considered as a function of F, namely 
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Fig. 4. Time stepping methods

( )e e F (1)

Since F is defined in such way that the equilibrium conditions can be automati-

cally satisfied, the objective of the gluing algorithm is to bring e to zero, that is, 

find F such that 

e 0 (2)

Equation (2) defines a set of (linear or nonlinear) equations, which can be solved 

by a properly chosen algorithm of (linear or nonlinear) equation solvers. 

Assuming an initial guess 
( )

, ( 0)
i iF F , we have 

i i
e e F , then in the 

general case, a gluing algorithm (T-T method) is proposed as  

1i i i
F F e (3)

where  is called the gluing matrix or lambda matrix, which will be constant if 

Equation (2) is linear, or a function of F if Equation (2) is nonlinear. The gluing 

matrix can be obtained, for example, by using a standard Newton-Raphson 

method, which engenders 

1

i
F F

e

F
(4)

Equation (3) simply implies that the interface forces can be updated (to satisfy the 

compatibility conditions) using only the kinematic information at the interface, 

provided that the gluing matrix is obtained. Therefore, the key issue becomes how 

to obtain the lambda matrix in a systematic and efficient way based on the inter-

face information.  
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3.2 Gluing Matrix Calculation 

In general, the equations of motion of each subsystem model can be written as 

, ( 1, 2, , )

i i

i o o

i i

c c

i n
q f

q f
L

ii
(5)

where i is the subsystem number, and 
i

L  represents a generalized operator, 

which results in a set of linear or non-linear, static or dynamic, constrained or un-

constrained equations, depending on the physics of the subsystem considered. For 

example, Equation (5) can be a set of equations associated with a finite element 

model or a multibody dynamics model. In the latter case, 
i

L  includes internal 

(joint) constraints.  Internal kinematic information of the i-th subsystem is de-

noted by, q
i
o; f

i
o denotes internal forces associated with q

i
o; q

i
c denotes interface 

kinematic information; f
i
o denotes action-reaction forces at the interface; n is the 

total number of the subsystems to be coupled.  The problem here is to couple the 

subsystems equations in Equation (5) so that the equilibrium and compatibility 

conditions at the subsystems interfaces are satisfied while individual equations in 

Equation (5) are solved independently. 

In the general case, the subsystem interface force vector f
i
c in Equation (5) can 

be represented by a subset of the variables in F; therefore f
i
c can be written as 

( 1, 2, , )( ),  
i i

c c i nf f F (6)

We define a matrix Ci, for the i-th subsystem as 

( 1, 2, , ),

i

c

i i n
f

C
F

(7)

Typically, iC will be a simple, constant matrix.  

Assume that U is an assembly of the interface kinematic variables (typically 

displacements) of all subsystems, namely, 

1

c
T

i

c

n

c

q

U q

q

(8)

In the general case, the error measure e can be written as 

( )e e U (9)

We now define a matrix, Bi, for the i-th subsystem as  

, ( 1, 2, , )i i

c

i n
e

B
q

(10)



78      Gregory M. Hulbert, Zheng-Dong Ma and Jinzhong Wang 

Using Equations (7) and (10), Equation (4) can be rewritten as  

1

1

n
i

i i

i

B G C (11)

and

i

i c

i

c

q
G

f
(12)

G
i
is called interface flexibility matrix of subsystem i, which is related only to the 

subsystem i and can be calculated by solving Equation (5) independently for each 

subsystem, where i=1,2,…,n.  It is important to note that  is essentially the in-

verse matrix of an assembly of the subsystem interface flexibility matrices defined 

in Equation (12).  Therefore, C
i
 and B

i
are called the assembly matrices of sub-

system i, and we will discuss them further below. Note that G
i

in Equation (12) 

can be approximated as 

,  (for small )
i k

j

j

q
f

f
G (13)

where qk is the k-th component of q
i
c and fi is the j-th component of f

i
c, qk is the 

change of qkwith respect to an incremental interface force fi. For a linear system, 

Equation (13) is exact. In other words, for a linear system, G
i
 is independent of the 

external force, and qk/ fi is independent of the amplitude of the fi used, there-

fore we can assume  

1jf  (14) 

and,

1 0

k k kq q q  (15) 

where q0
k is calculated by solving Equation (5) without applying any interface 

force, and q1
k is calculated by applying a unit interface force at the j-th interface 

degree of freedom. Note that for each fj we obtain a vector qj={ qk}
T
.

In summary, the procedure to calculate G
i
 is as follows: 

1. Calculate initial q
0

without applying any interface force. 

2. Apply a unit force to a degree of freedom, j, in the interface. 

3. Obtain qj by solving the subsystem’s Equation (5) (using its own inde-

pendent solver). 

4. Repeat steps 2 and 3 for all interface degrees of freedom to obtain 

G
i=[ q1, q2,…, qN], where N is the total number of interface degrees of 

freedom.

Algorithm 1: Calculating interface matrix 
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Usually, the number of interface degrees of freedom is much smaller than the 

number of total degrees of freedom of the subsystem model.  Therefore,  can be 

easily calculated when G
i
, (i=1,2,…,n) are obtained.  The proposed approach treats 

each subsystem as a black box without accessing its internal information. Subsystem 

interface matrices, G
i
, can be then calculated by calling the independent solvers as-

sociated with the subsystem models, and the subsystems can be glued together using 

only the interface information. Note that for a linear system, there is no need for it-

eration when Equation (3) is used.  Thus, the gluing process converges in one itera-

tion. Also, for linear problems, if the time step size is constant, the gluing matrix can 

be pre- calculated and stored because no update of the gluing matrix is needed. 

However, for non-linear problems or problems with variable time step size, update 

of the gluing matrix is usually necessary. Instead of calculating the gluing matrix in 

each time step, more efficient quasi-Newton methods, such as the DFP or BFGS 

method [21], can be employed to update the gluing matrix. For example, if the DFP 

method is employed, the gluing matrix can be updated using 

1

( ) ( )i i i i i i

i i

i i i i i

F F e e

F e e e
(16)

where i denotes the time step. Furthermore, note that multi-step methods can also 

be used to improve the performance of the numerical integration.  

4 Assembly Process 

4.1 Type of Connections 

In order to apply the gluing algorithm to a general mechanical system simulation, 

various types of interfaces must be considered. These connections can be classi-

fied, from the simulation viewpoint, into four categories as shown in Table 1. 

Only rigid connections are considered in this paper. The gluing algorithm, how-

ever, can be extended to treat the other connections. Another important matter at 

the interface is whether the connected subsystems have matching nodes or not. 

This usually depends on the meshing or discretization processes adopted for the 

different subsystems. A general formulation will be provided in the following for 

both matching and non-matching interfaces. 

Table 1: Types of Connections 

Type Examples 

Rigid Connections Fixed and Joints (including Spherical, Universal, Revo-

lute, Cylindrical, Translational joints) 

Compliant Connections Bushings, Mounts, Springs/Dampers 

Contact and Impact Point to Point, Point to Surface, Surface to Surface 

Actuators Applied Force/Torque, Motion Driver 
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4.2 Assembly Matrices 

To show more specific structure of the assembly matrices, Ci and Bi, defined in 

Equations (7) and (10), we discuss some typical cases. First, if components in the 

independent force vector F can be directly selected from f
i
c,(i=1,2,…,n), then 

1 2
, , ,

T
T T T

n

A A AF f f f
(17)

where f
i
A is the subset of independent force variables selected from f

i
c, and thus 

i

i A

c i

R

f
f

f
(18)

where f
i
R contains the remaining force components in f

i
c. For convenience, we call 

f
i
A “active” or “action” forces and f

i
R “passive” or “reaction” forces. Passive forces 

are in general determined by the active forces of the adjacent subsystems. For ex-

ample, for a system with the simple connections shown in Figure 5, we have  

1
, 1,2, , 1

i i

R A i nf f (19)

Here, in Equation (19), it is assumed that the interface between the subsystems i

and i+1 has matching discretization, namely, subsystems i and i+1 have the same 

nodes at the interface in the case a finite element, boundary element, or finite dif-

ference method is used. 

Fig. 5. Gluing simple-connected components

Using Equations (17)-(19), Ci in Equation (7) becomes a matrix with only terms 

of 1, -1 or 0. To be more specific, for the subsystem i, we have 

1i i

i
0 I 0 0C

0 0 I 0

(20)
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Fig. 6. Gluing multiple-connected components

For the same problem, assume the error measure is 

1

1

i i

A R

i i

A R

i th subsystem
q q

e
q q

(21)

Then from Equation (10) we have  

T

i i i th subsystem

0 0

I 0
B C

0 I

0 0

(22)

Another typical case is when the system has multiple components being con-

nected at the same interface. For example, for the system shown in Figure 6, an er-

ror measure can be taken as 
1

2

1

n

A R

n

A R

n n

A R

q q

q q
e

q q

(23)

and we can select F as  

1 2 1
( ) , ( ) , , ( )

T
T T n T

A A AF f f f (24)

Then from Equation (7) we have 

( 1,2, , 1)

( )

i thi

for i n

for i n

I
C

I I I

(25)
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Interpolation InterpolationTT Gluing

i

R

i

VR

1i

VA

1i

A

Fig. 7. Virtual interface for non-matching interfaces

From Equation (10), we have  

, ( 1, 2, , )
T

i i i nB C (26)

Note that subsystem assembly matrices Ci and Bi defined in Equations (7) and 

(10) are general; they can have more complex form than that shown in Equations 

(20) and (22) and Equations (25) and (26), depending on how the independent 

force vector F and the compatibility conditions are defined. This generality pro-

vides a means to deal with various kinds of connections for the subsystems, for 

example, connections without a matching interface on the adjacent subsystems, 

and various kinds of mechanical joints. In the case of a non-matching interface, a 

virtual interface between the non-matching interfaces can be defined; the gluing 

algorithm is then applied on the virtual interface. Figure 7 shows a schematic for 

the concept of the virtual interface. As shown in Figure 7, 
i
VR denotes a virtual in-

terface connected to the interface 
i
R of subsystem i, and 

i+1
VA denotes that con-

nected to the interface 
i+1

A of subsystem i+1. Between 
i
VR and 

i
R, we have 

and
T

i i i i i i

R R VR VR R Rf S p v S q (27)

where p
i
VR and v

i
VR denote force and kinematic quantity vectors at the virtual inter-

face
i
VR, and S

i
R is the interpolation matrix between the 

i
VR and 

i
R. Similarly, 

between
i+1

VA and 
i
A, we have 

1 1 1 1 1 1
and

T
i i i i i i

A A VA VA A Af S p v S q (28)

where, p
i+1

VA and v
i+1

VA denote force and kinematic quantity vectors at the virtual 

interface
i+1

VA, and S
i+1

A is the interpolation matrix between the 
i+1

A and 
i+1

A.

Since
i
VR and 

i+1
A are defined as matching interfaces, the previous formulations 
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apply to the force and kinematic quantity vectors at 
i
VR and 

i+1
A. Using Equa-

tions (27) and (28), Equations (20) and (22) now can be generalized as 

1i i

iT
Ai i

i

R

0 S 0 0C B

0 0 S 0

(29)

In the same way, using the virtual interface, Equations (25) and (26) can be gener-

alized as 

1 2

( 1, 2, , 1)

( )

i

AT

i thi i

n

R R R

for i n

for i n

S
C B

S S S

(30)

5 Implementation 

To build an executable platform based on the gluing algorithm developed, we 

need to deal with two other critical issues, namely, model description and logical 

distributed architecture design. 

5.1 Model Description Using XML 

Figure 8 shows the outline of a standardized model description developed using 

XML for describing subsystem models in the glue integration. The root element 

has three child elements, which correspond to the three information classes for the 

glue integration in the general platform, namely, General Information, Assembly

Information, and Simulation Information.  Here, General Information provides: 

1) model identification, including unique ID, identifications in the network, etc., 

for data management; 2) search information; 3) contact information of the devel-

oper and maintainer. Example items in the General Information include: model 

ID, model name, category, model image, developer name and location, dates, con-

tact information, application range of the model, simulation time, fidelity.  

Assembly Information enables: 1) instantiating integrated models and defining 

its subsystems; 2) matching interfaces of the subsystem models and defining the 

connection context; 3) providing information for gluing algorithms to couple the 

simulation models. Basically, two categories of information are included in the 

Assembly Information: interface definition information and information on how 

the model is assembled. Example items include: interface name, belonging, inter-

face type and context (nodes, joints, contacts, etc.), geometry and other detailed 

modeling information for the interface (if it is a leaf model), links to the subsys-

tem models (if it is an integrated model), and matching information of the inter-

faces of component models. 
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Fig. 8. Structure of the XML description

Simulation Information is for the purpose of defining code execution informa-

tion for the simulation.  Example items in the Simulation Information include: 

server type, location, input/output file names and locations, simulation code and 

the execution pass to the simulation code, simulation parameters (e.g., time step, 

error tolerances, and simulation time). 

5.2 Logical Distributed Architecture 

Figure 9 shows the proposed logical distributed architecture. Each ellipse repre-

sents a model simulation server, which is either a wrapped simulation code that 

can be accessed through the network or an implementation of the gluing algo-

rithm. A user accesses the system through a web browser and sends the XML de-

scription of a model to the server to conduct a simulation based upon the descrip-

tion. The web server creates an integrated model object and sends the XML file to 

the model object. The integrated model object parses the XML file and creates 

subsystem model objects according to the description in the 

<model_assembly> element. Then, the integrated model object sends the 

XML descriptions of subsystem models to the corresponding objects. If a compo-

nent model is also an integrated model, the above procedure is followed for the in-

tegrated model. In the model database, each leaf model can have several different 

designs. Therefore, the proposed simulation platform can be used to quickly assess 

different design options and their influence on the integrated system.  
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Fig. 9. Logical distribution architecture and model database

The leaf model object exposes the standard interface methods to the outside 

world; on the other hand it also serves as the wrapper of a simulation code. In our 

demonstration system, a legacy finite element analysis code was wrapped to serve 

as the leaf model simulation server. The legacy code was written in FORTRAN 

and was converted into a DLL (dynamic link library). As shown in Figure 10, the 

leaf model object is a .Net Remoting object that wraps around the DLL and im-

plements the standard interface methods.  

Fig. 10. Wrapping of a legacy FE code
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Fig. 11. Snapshot of the demonstration platform

A Web-based user interface has been developed, which is shown in Figure 11. 

6 Examples  

6.1 Example 1: Gluing a Finite Element Truck Model 

The first example is a distributed simulation problem of the truck model shown in 

Figure 12.  The simulation problem has two gluing layers, which simulates the 

generality of our coupling process for a distributed structural system.  In the first 

layer (Figure 12a), the integrated truck model is formed by assembling a leaf cabin 

model, a leaf bed model and an integrated frame model.  In the second layer 

(Figure 12b), the integrated frame model is formed by integrating six sub- compo-

nents: left rail, right rail and four connectors.  The simulation system couples the 

second layer components first to form a higher-level subsystem model, and then 

couples the first layer subsystem models to form the truck system. As shown in 

Figure 12, each component consists of a finite element input file and a standalone 

finite element code (solver).  
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Fig. 12. A two-layer distributed simulation of a truck model

During the gluing process, the models at the two levels communicate by ex-

changing their interface information at their own level, and the gluing coordinators 

update the interface variables using the gluing algorithm. Note that each layer has 

its own coordinator and its own gluing process. Since the problem is linear, there 

is no need for iteration when updating the interface forces using Equation (3). 

Figure 13 shows the results obtained using the gluing system developed compared 

with results obtained using an “all-at-once” finite element analysis. Here, dynamic 

loads of f=2000 sin(100 t) N are applied at the middle point of both the connector 

1 and 2, along the global z (vertical) direction, and the chassis frame is supported 

at the four points shown in Figure 12. Figure 13 shows the acceleration at a se-

lected node (node 1193) along the vertical direction. It is clear that the gluing 

process induced no additional error. 
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Fig. 13. Example result: nodal acceleration in z direction at a given node
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6.2 Example 2: Gluing a 4-Bar Link Mechanism with a Flexible Component 

Figure 14 depicts a four-bar link mechanism in which the third bar is flexible 

while the remaining links are rigid. This example is provided to demonstrate the 

applicability of the proposed methodology for flexible multibody dynamics prob-

lems. Figure 14 shows the four-bar link is separated into two subsystems at joint 

C, which connects Bodies 2 and 3. The first subsystem includes Body 1 and 2, 

both of which are modeled as rigid bodies. The second subsystem comprises Body 

3, which is modeled as a flexible Euler-Bernoulli beam. 

Fig. 14. Gluing simulation of a four-bar link flexible mechanism

Using the floating frame of reference coordinate system shown in Figure 14, 

the deformation shape of the beam is represented by 
1

22

2

32

sin 0 0

0 sin sin

x

l

x x

l l

q
u

q
v

q

Sq (31)

The parameters used for each body are:  
1 2 3

1 2 3

10 , 20 , 5

1 , 2 , 1

m kg m kg m kg

l m l m l m

where, mi, (i=1,2,…,3) are the masses of  bar 1, 2 and 3 and li, (i=1,2,…,3) are 

the link lengths of the bars. At joint A, a driving torque is applied, defined as  

1000* , 0.1

100 , 0.1

t N m t s

N m t s



Gluing for Dynamic Simulation of Distributed Mechanical Systems      89 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 Time (s)

 P
os

iti
on

 Y
 (

m
)

T−T Gluing
All−at−once

Fig. 15. Displacement along global Y direction of the interface joint C

For the flexible beam, the cross-section is assumed to be circular and uniform, 

with a radius r = 0.015m. The Young’s modulus and mass density of the beam are 

E = 210 GPa and = 7.0 103 Kg m-3
.

The mechanism is driven from an initial position 
1 = 2 = 3 = 0.3 rad with

initial speeds 
1 = 3 = -2.0 rad s-1

 and all other initial conditions are zero.  The 

equations of motion of both subsystems are first reduced to ODEs in terms of 

(
 1,   2

) and (
 3,q1,q2,q3

), respectively. Then both subsystems are solved using 

the ode45 solver in Matlab. The error tolerance for the gluing is ||e|| 10-10
 and the 

time step size t is selected as 10-3
. The compatibility condition at joint C is used 

to update the interface forces with the use of Equation (3). ADAMS/Flex was em-

ployed as the all-at-once system benchmark, in which the flexible bar is modeled 

using 10 beam elements, which are finally reduced to three modal coordinates as 

used in the gluing simulation. A damping coefficient of 0.1 is applied to all three 

modes in both simulations. Figs. 15 and 16 compare the results obtained from the 

T-T method and the ADAMS simulation. Figure 15 compares the displacement 

along the global Y direction at the cut joint (joint C); Figure 16 compares the ve-

locity at the same joint. Here all the measurements are in the global coordinate 

system. Good agreement is obtained between the two simulations except for the 

small oscillation in the velocity as seen in Figure 16, which arises when the 

mechanism passes through the “singular points”. These oscillations are observed 

in the results from both the T-T method and the ADAMS simulation with a slight 

difference. Note that the singular point is at the time when all bars lie on the same 

line when ignoring the deformation. 
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Fig. 16. Velocity along global Y direction of the interface joint C

6.3 Example 3: Gluing with Non-matching Nodes at the Interface 

A two dimensional elastic problem is considered to demonstrate the applicability 

of the gluing algorithm to the non-matching discretization problem at the inter-

face. Figure 17a illustrates a gluing problem with two non-matching interfaces, 
1

R and 
2

A, where 
1

R has 5 finite element nodes, while 
2

A has 4 finite element 

nodes. The problem is to glue the two substructures together for a coupled static 

analysis. As a reference, an all-at-once system model with the uniform mesh is 

also used for the comparison purpose, as shown in Figure 17b. 

In this example, virtual interfaces 
1

VR and 
2

VR (refer to Figure 7) are defined 

with the assumption of 
2
VA=

2
A, as shown in Figure 17a.  The problem thus be-

comes to glue the interfaces 
1
VR with 

2
A, with an numerical interpolation be-

tween
1

R and 
1
VR. Let f

1

R and q
1

R define the force and displacement vectors at 

the original interface 
1

R, and p
1

VR and v
1

VR define the force and displacement 

measures at the virtual interface 
1

VR. Using an interpolating scheme, we have:  

1 1 1 1 1 1
and

T

R R VR VR R Rf S p v S q (32)

where

1

R

S 0
S

0 S

and S is the interpolation matrix associated with a global axis (x or y). To calcu-

late S, we first assume a coordinate interpolation C between the nodes on 
1
R and 

the nodes on 
1

VR,
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Fig. 17. Two dimensional elastic problems with non-matching meshes in the subsystems

31

4 4

1 1

2 2

3 1

4 4

1

1

C (33)

Then C is calculated as the transposed pseudo inverse of C, namely,  

1
T

S C C C (34)

This procedure and the use of Equation (32) are necessary for energy conservation 

at the interface while enforcing the compatibility condition at the interface for the 

all nodes.  

Figure18 shows the comparison of the nodal displacements calculated using our 

gluing approach and the all-at-once method.  Figure 18a shows the displacements 

along the x-direction for the five nodes in the column circled in Figure 17b, while 

Figure 18b shows the relative errors at each node, which shows a maximum value 

of 0.2%.  It is seen that the gluing method can effectively handle the non-

matching interface problem. 

a) Gluing non-matching interfaces 

b) Reference all-at-once model 
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7 Conclusions 

A general gluing process, the T-T method, is presented in this paper, which can be 

used to glue, in an effective and accurate way, distributed subsystem models for both 

structural dynamics and multibody dynamics problems. The formulation of the glu-

ing algorithm is general so it can be extended to deal with a variety of different glu-

ing problems, including linear and non-linear problems. The proposed approach re-

lies only on the interface information exposed by the subsystem models, without 

requiring internal details of the model. Therefore, each subsystem model can be 

treated as a black box, regardless of the model and its inherent solution scheme. 

From the outset of the algorithm development, we considered that subsystem models 

do not possess knowledge of the gluing algorithm, and that the models may be built 

using different commercial packages, which usually do not communicate well with 

each other. These features make the algorithm suitable for practical use in a distrib-

uted simulation environment within a real distributed production system. 

We have demonstrated that the T-T method can produce exact solutions for linear 

systems, including static and dynamics problems, without any iteration of the update 

equations, and with only one-time calculation of the gluing matrix at the beginning 

of the simulation. With iteration, the gluing algorithm can be used to solve nonlinear 

multibody dynamics problems, including rigid and flexible multibody dynamics sys-

tems. A finite element example and a multibody dynamics example, including flexi-

ble members are shown in this paper, along with treatment of interfaces comprising 

non-matching nodes. Future development will focus on the applicability of the glu-

ing algorithm to a broader class of distributed system simulations. 
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1 Introduction

In the design of mechanical and structural systems, computer simulations are fre-
quently used to check the dynamic response of the system being developed. This
form of computer-aided engineering reduces strongly the need to construct and test
prototypes. During the last decades modeling and simulation of multibody systems
have been throughly investigated in theory and successfully applied in engineer-
ing, e.g., in automotive, aerospace and military industry as well as in biomechan-
ics and robotics. The development of the multibody system method is reviewed by
Schiehlen [38] for rigid multibody dynamics and Shabana [44] for flexible multibody
dynamics. Both authors pointed out that further study should be devoted to modeling
and simulation of multibody systems with impact and contact.

For multibody systems with impact, there are mainly two methods known to
analyse collisions depending on the duration of contact. The elastic collision ap-
proach and the rigid body approach. Both methods will be discussed in this paper
based on contributions by Hu and Schiehlen [20] and Schiehlen and Seifried [41].

The first method, see e.g. Bauchau [5], is based on finite contact duration and
a finite contact force. In contrast to the rigid body approach, the velocities of the
colliding bodies vary continuously. During the contact period, there are two force
components active at the point of contact, i.e., the normal contact force FN and the
tangential contact force FT . The normal contact force follows from a compliant con-
tact model where the local deformations of the colliding bodies in the neighborhood
of the contact surface are considered. Usually, the contact force is modeled as a func-
tion of the indentation depth. Typical compliant contact models are the Kelvin-Voigt
viscoelastic model or the extended Hertzian contact model. In the Kelvin-Voigt vis-
coelastic model, the contact force is modeled by a linear spring-damper element and
results in a linear function of the indentation depth while in the extended Hertzian
model the contact force is a nonlinear function of the indentation depth. For model-
ing the tangential contact force Coulomb’s friction law is usually used. It postulates
that the friction force for slipping is equal to the normal contact force times the co-
efficient of kinetic friction and acts in a direction opposing the relative motion. For
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sticking when the relative motion vanishes, the friction force is smaller than the nor-
mal contact force time the coefficient of static friction. Computer simulations using
Coulomb’s friction encounter numerical difficulties associated with discontinuity of
the friction force at zero relative velocity. Consequently, various approximations to
Coulomb’s law have been recommended. These approximations can be viewed as
continuous friction laws that replace the discontinuity at zero relative velocity by a
smooth, stiff function of the relative velocity, see e.g. Bauchau [4].

For accurate simulations of the impact responses, the elastic collision approach
has to be combined with the dynamics of an elastic body resulting in wave prop-
agation. Since the impact forces as well as the propagating waves have very high
frequency components, the simulation with the method of elastodynamics is very
time consuming and large computing time prohibits the simulation of the long term
impact responses.

The second method for multibody systems with impacts represents rigid body
collisions based on a duration of contact approaching zero and the contact force
approaching infinite. Thus, the analysis is divided into two intervals: before and af-
ter impact. The velocities after impact are obtained by solving a set of momentum
equations with a given coefficient of restitution which may be kinematic, kinetic or
energetic, defined by Newton, Poisson and Stronge, respectively, see Stronge [46].
The coefficient of restitution represents the kinetic energy loss by wave propaga-
tion, viscoelastic effects and plastic deformations during impact. This method was
also proposed by Kane [23], and applied to rigid multibody systems by Wehage and
Haug [50], and extended to flexible systems by Khulief and Shabana [24]. The rigid
collision approach together with the method of rigid multibody systems is very ef-
ficient, see Pfeiffer and Glocker [33]. However, it is well known that the coefficient
of restitution depends not only on the material parameters but also on the shapes and
motion states of the colliding bodies. It is usually difficult to get suitable values of
the coefficient of restitution.

For efficient simulation of impact responses with sufficient accuracy, both meth-
ods for rigid multibody systems and elastodynamics should be combined. During
contact the short time impact responses must be computed using the method of elas-
todynamics for accuracy and after impact the long term impact dynamics has to be
simulated using the method of rigid multibody systems for efficiency.

The first part of this paper deals mainly with an adaptive simulation technique
of impact responses during the transition from the short time elastodynamics to the
long term rigid body dynamics. For modeling of the elastodynamic phenomena the
method of flexible multibody systems with the floating frame of reference formula-
tion is used, and the impact induced elastic deformations are assumed to be small.
In the simulation of the transient impact responses the contribution of elastic coor-
dinates to the overall responses are monitored using their response bounds. When
these response bounds are small enough, the corresponding elastic coordinates will
be deleted. As a consequent, the degrees of freedom of the flexible system will be
reduced and the efficiency of the simulation will be improved. Due to the material
damping, the impact induced vibrations will decay and the system has then only the
rigid body motion. Correspondingly, due to monitoring the response bounds and the
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adaptive simulation strategy, all elastic coordinates representing the impact induced
vibrations will be computed temporarily and only the reference coordinates repre-
senting the rigid body motion are simulated in the long run. The application of this
adaptive simulation approach is experimentally validated for the longitudinal impact
of a rigid body colliding an elastic rod.

Adaptive simulation techniques have been extensively studied in the compu-
tations with finite element methods, see e.g. Erhart [11]. For multibody systems,
Khulief [26] presented recently an adaptive computational scheme which permits a
change in the basis of the modal space in order to regulate the admittance of higher
frequencies and to accommodate any change in the kinematic configuration by rou-
tinely checking the ratio between the averaged kinetic energy of the low-frequency
and the high-frequency motions. Such a kinetic energy index is, however, somewhat
empirical and no mathematical grounds were provided in his paper. In contrast to
Khulief’s approach, the computational scheme in this paper concerns only whether
the modal coordinates for deformations associated with elastic vibrations are small
enough to be negligible and the mode shapes are not changed during the simulation.
Instead of a kinetic energy index, some response bounds for the elastic coordinates
are directly used. Therefore, the simulation proves to be more reliable.

The second part of this paper deals mainly with the efficient simulation of im-
pacts in rigid multibody systems using the coefficient of restiution. For rigid body
models the kinetic energy loss is measured macromechanically by the coefficient of
restitution. This coefficient has to be estimated from experiments and experience but
it cannot be computed within the multibody system approach. In this paper results
of elastodynamic contact simulations performed additionally on a fast time scale are
used to compute the coeffcient of restitution. In the simulations only elastic impacts
without plastic deformations or viscoelastic effects are considered. However, the im-
pacts induce waves in the bodies which propagate after separation until they vanish
due to material damping. Especially in slender bodies, such as rods, beams, plates
and shells a large amount of the initial kinetic energy is transformed into propagating
waves. To investigate these high frequency phenomena three different methods are
presented. Firstly, the equations of motion for elastodynamics are used and solved
by D’Alembert’s approach for wave propagation combined with the Hertzian contact
law. Secondly, the modal approach for the elastic bodies together with the Hertzian
contact law is used. Thirdly, the equations of motion for elastodynamics are solved
by discretization using finite elements. Then, these results are compared with each
other and with experiments, and they are used to compute the coefficient of restitu-
tion. The coefficient is fed back to the multibody system equations and the solution
continues on the related slow time scale.

The efficiency and accuracy of the approach presented is shown by numerical
and experimental investigations on a slow and fast time scale for the impact of a
steel sphere on different objects made of aluminum with approximately the same
mass.
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Fig. 1. Description of a flexible multibody system

2 Flexible multibody systems with impact

A flexible multibody system may consist of elastic and rigid bodies which are con-
nected by joints and/or force elements such as springs, dampers and actuators. For
modeling flexible multibody systems featuring elastodynamics, there are different
approaches available. Well known approaches are the floating frame of reference
formulation, the linear theory of elastodynamics, the finite segment method and the
absolute nodal coordinate formulation, see Shabana [44]. Among them, the floating
frame of reference formulation is currently the most widely used in the computer
simulation of flexible systems. Hence, this modeling approach is used in this paper,
too, to describe impact responses of flexible multibody systems with impact. In the
floating frame of reference formulations, two sets of coordinates are chosen to de-
scribe the configuration of the deformable bodies; one set describes the location and
orientation of a selected body coordinate system, while the second set describe the
deformation of the body with respect to its body coordinate system. Using this de-
scription, the global position vector of an arbitrary point on the deformable body i
can be written as

ri = ri
0 + Ai(ui

0 + ui
e) (1)

where the vectors appear in this equation are shown in Fig. 1 and Ai is the transfor-
mation matrix that defines the orientation of the body reference frame with respect
to the inertial frame. In (1), subscript 0 and e refer to the undeformed position and
deformation variable, respectively. The deformation ui

e can further be described by
means of a shape matrix Si and a set of elastic coordinates qi,

ui
e = Siqi , (2)

see Shabana [45]. When the deformation is equal to zero, the kinematic description
leads exactly to the modeling in rigid body dynamics. The impact responses usually
consist of a gross rigid body motion and small elastic deformations resulting in wave
propagation and structural vibrations, respectively. The vector of the generalized co-
ordinates yi can be partitioned as

yi =
[
yi

r

yi
e

]
(3)
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where subscripts r and e refer to the reference and elastic coordinates, respectively,
and the vector of elastic coordinates

yi
e = qi . (4)

Using the floating frame of reference, the equation of the deformable body i can be
written in the following form

Miÿi + ki = f i + λi (5)

where superscript i refers to the body number, Mi is the mass matrix, and ki is the
vector of generalized Coriolis forces including stiffness and damping forces, while f i

is the vector of externally applied forces, and λi is the vector of contact forces. Using
the coordinate partitioning and performing the linearization for elastic coordinates,
the equations of motion of the flexible body i can be written as[

Mi
rr Mi

re

Mi
er Mi

ee

] [
ÿi

r

ÿi
e

]
+
[
0 0
0 Ci

ee

] [
ẏi

r

ẏi
e

]
+
[
0 0
0 Ki

ee

] [
yi

r

yi
e

]
=
[
f i
r

f i
e

]
+
[

λi
r

λi
e

]
+
[
−ki

r

0

]
(6)

where the matrices Mi
ee, Ci

ee and Ki
ee are the elastic mass, damping and stiffness

matrices of the flexible body i, respectively, and the quantities with index r refer to
the rigid body motion.

During contact, the elastic collision approach will be used instead of the rigid
collision approach for more accuracy and for more details about contact process.
The normal force FN is assumed to be a function of the indentation depth δ and the
tangential force is assumed to be a function of the relative velocity. A general relation
between the normal contact force FN and the indentation depth δ reads

FN = Kδn +Dδ̇ , (7)

see Khulief and Shabana [25], Lankarani and Nikravesh [27]. If n = 1, the model is
the Kelvin-Voigt viscoelastic model and if n = 3/2 and D = 0, the model describes
the Hertzian contact. The parameterK in the Hertzian model depends on the Young’s
moduli E1, E2, Poisson’s ratios ν1, ν2 and the geometry of the contact surfaces of
the colliding bodies, respectively,

K =
4qkπ

3( 1−ν2
1

E1
+ 1−ν2

2
E2

)
√

(A+B)
, (8)

where A and B are the curvature parameters of the surface and qk is a correc-
tion faktor depending on the ratio A/B, see Goldsmith [13]. Some experiences
show that the Hertzian contact model yields good results, see e.g. Hu, Eberhard and
Schiehlen [19]. For the computation of the continuous frictional force, a model de-
scribed in Bauchau [4] may be used, where the discontinuity at zero relative velocity
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of the Coulomb’s static friction law is replaced by a smooth, stiff function of the
relative velocity vt. The continuous frictional force can be written in the following
form

Ft = −µsign(vt)(1 − e−|vt|/v∗)FN (9)

where v∗ is a characteristic relative velocity typically chosen to be small compared to
the maximum relative velocity encountered during the simulation, see Bauchau [4].

Because the impact forces have very high frequency components, in addition
to the gross overall rigid body motion, the flexible deformations of the colliding
bodies must be considered. These flexible deformations are normally small and decay
fast compared to the overall motion. The problem is that during the simulation the
integration routine has to keep track of these fast but small vibrations which leads to
very high computation costs.

After impact, the contact force vanishes. Because of the material damping, the
stresses in the colliding bodies approach to zero after some time and the rigid body
motions are dominant. Then, the system dynamics can be modeled by the method of
rigid multibody systems most efficiently. All elastic coordinates can be assumed to
be zero and the equations of motion turn into

Mi
rrÿ

i
r = fr − ki

r (10)

When the system can be simulated completely as rigid multibody system (10) de-
pends on the damping of the elastic vibrations. It is well known that the higher fre-
quency elastic vibrations decay faster due to the material damping than the lower
ones. During the transition from elastodynamics to rigid body dynamics, the equa-
tions of motions for the reference coordinates and for the elastic coordinates given
by equation (1) turn into

Mi
rrÿ

i
r = fr − ki

r − Mi
reÿ

i
e (11)

Mi
eeÿ

i
e + Ci

eeẏ
i
e + Ki

eey
i
e = f i

e − Mi
erÿ

i
r (12)

where the inertial forces −Mi
reÿ

i
e and −Mi

erÿ
i
r represent the time varying coupling

between the reference motion and the elastic deformations. The problem is that the
large computing time prohibits long time simulation for these high frequency tran-
sient vibrations. Therefore, efficient simulations for these elastic vibrations are cru-
cial. The question to answer is when the elastic coordinates are small enough to be
negligible so that the method of rigid multibody systems can be used correctly.

2.1 Multi-time scale simulation for transient impact responses

The efficiency of numerical integration methods is strongly depending on the fre-
quency content in the system. If a system consists of fast and slow components, i.e.,
the eigenvalues are widely spread, the system is characterized as stiff, see Nikravesh
[31]. In flexible multibody systems with impact, the contact forces excite all modes
of vibration. After the contact force vanishes, the excited higher modes of vibration
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decay very fast due to the material damping and they exist only over short time inter-
vals. Thus, it will be inefficient to retain them during the entire simulation interval. In
order to account for efficiency without loss of the required accuracy, an adaptive sim-
ulation approach that provides a capability of changing the number of elastic degrees
of freedom during simulation is very useful. The elastic coordinates are considered
only during the time interval in which they share a significant portion of the impact
responses.

The most common method used for treating the flexible elements in multibody
systems is based on the modal superposition. This method allows a truncation of
the problem size. The flexible substructure modes may be measured experimen-
tally or determined by solving the flexible substructure eigenvalue problem, see e.g.
Ewins [12]. The deformation ui

e can be expressed with ni mode shapes ϕi
j(u0) and

elastic coordinates qi
j(t) by the modal superposition

ui
e =

ni∑
j=1

ϕi
j(u0)qi

j(t) . (13)

Without loss of generality, it can be assumed that all mode shapes ϕi
j are normalized,

usually with the Euclidean norm or the supremum norm to be equal to one. Then,
the contribution of the j-th vibration mode of the body i with the mode shape ϕi

j

to the deformation ui
e is mainly described by the elastic coordinate qi

j(t). If after an

initial time interval the maximum amplitude of the coordinate qj
i (t) remains always

small, then the elastic coordinate qj
i needs no longer to be considered and the degree

of freedom of the elastic vibration is reduced. Usually, the high frequency vibra-
tions are damped more quickly. Correspondingly, the elastic coordinates describing
the high frequency vibrations need not to be considered in the simulation after some
time. Due to the material damping, all elastic structural vibrations are damped and
vanish in time. For the long term impact responses, only the rigid body motion needs
to be simulated. But it remains a question when the elastic coordinate qj

i (t) can be
neglected. As a criterion the time instant is used when the amplitude of the elas-
tic coordinate qj

i (t) begins to be always smaller than a given small amplitude ε. It
is well known that the exact computation of the maximum vibration amplitudes is
time-consuming. However, an estimation of the amplitude bounds is easy for linear
vibrations. The idea for the adaptive simulation is to compute at which instant the
maximum amplitude bound is smaller than the given amplitude ε instead of comput-
ing the exact instant after that the amplitudes remain always smaller than ε.

For linear vibrations, many amplitude bounds were presented in the literature.
Here some results presented in Hu and Eberhard [15] are recalled for application
to longitudinal impacts presented in the next section. The equations describing the
vibration of an n–degree–of–freedom linear system can be written in the form

Mÿ + Dẏ + Ky = b , y(0) = y0 , ẏ(0) = ẏ0 . (14)

As usual, it may be assumed that the mass matrix M and the stiffness matrix K are
symmetric and positive definite, the damping matrix D is positive semi-definite. The
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displacement y(t) is an n–dimensional vector. The initial time is, without loss of
generality, chosen to be zero. The vectors y0 and ẏ0 correspond to the initial dis-
placements and the initial velocities, respectively. According to some investigations
about the eigenvalue bounds of system (14), see Nicholson [29, 30] and Hu and
Schiehlen [14], the real part of the eigenvalues of the system is smaller than (−µ),
where µ is defined to be

µ =

{
λm(D∗)/2 for λ2

M (D∗) ≤ 4λm(K∗) ,
min

{
1
2

(
λM (D∗) −

√
λ2

M (D∗) − 4λm(K∗)
)
, 1

2λm(D∗)
}

otherwise .
(15)

Here λm and λM denote the minimum and maximum eigenvalue of a matrix. The
matrices D∗ and K∗ in Eq. (15) are given by

D∗ = M− 1
2 DM− 1

2 , K∗ = M− 1
2 KM− 1

2 . (16)

For an oscillatory system with all eigenvalues having nonzero imaginary parts, the
quantity µ can be set equal to λm(D∗)/2. Denoting the initial energy

E0 =
1
2
ẏT (0)Mẏ(0) +

1
2
yT (0)Ky(0) (17)

and another energy quantity

E∗
0 = E0 + µ2yT

0 My0 + µyT
0 Mẏ0 − µyT

0 Dy0/2 (18)

one can give the following response bound for free vibrations

|yi(t)| ≤ min
{√

2K−1
ii E0 , e−µt

√
2K ′−1

ii E
∗
0

}
, (19)

|ẏi(t)| ≤ min
{√

2M−1
ii E0 , e−µt

(√
2M−1

ii E∗
0 + µ

√
2K ′−1

ii E
∗
0

)}
, (20)

where M−1
ii and K ′−1

ii are the i−th diagonal elements of the matrices M−1 and
K′−1, respectively, with the auxiliary matrix

K′ = K − µD + µ2M . (21)

Using these response bounds, one can compute when the amplitudes of these re-
sponse bounds instead of the exact responses begin to be smaller than the given small
amplitude ε. This estimated instant after that the amplitudes of elastic vibrations re-
main always to be smaller than ε is conservative. The exact maximum amplitudes of
the elastic vibrations after a time instant are usually not available in advance or need
too much time to compute, therefore, one use the response bound to estimate when
the elastic coordinates begin to be always smaller than ε. It is recommended for the
adaptive simulation to choose a corresponding relative amplitude error εri

instead
of the absolute small amplitude ε and to compute when the term e−µt begins to be
smaller than the relative error εri

.
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The response bounds given in (19) and (20) hold true for free vibrations described
by the equations of motion (14) with b = 0. Compared with (12), this means that,
if the applied force f i

e is vanishing, the acceleration of the rigid body motion ÿi
r

is negligible or the coupling matrix Mi
er has to be zero. Then, the impact induced

elastic vibrations during separation are free. In general, the right side of (12) is not
zero and the corresponding elastic vibrations are forced vibrations. For linear forced
vibrations, there exist also some response bounds which can be used, though they are
somewhat more complicated. More details about the response bounds of linear forced
vibrations can be found, for example, in Hu and Eberhard [15]. In the application of
the response bounds, if the system (12) can be decoupled into a number independent
subsystems, then one can compute the response bounds for every subsystem with
lower dimension and get usually sharper response bounds. If all elastic coordinates
are decoupled, i.e. they are modal coordinates, then generally the maximal efficiency
can be achieved. That is the reason why the mode shapes are preferred.

2.2 Application to longitudinal impacts

In the history of mechanics, longitudinal wave propagation in rods with uniform
cross sectional area along the length has been intensively investigated, see Szabó [48].
Vibrations resulting from longitudinal impacts were first examined by Bernoulli,
Navier and Poisson. A detailed treatment was provided by St. Venant [47] and later
supplemented by Boussinesq [6] and Donnel [10], see Goldsmith [13] and Timo-
shenko and Goodier [49]. Recently, this classical impact problem has been solved
using a computer algebra system, see Hu and Eberhard [18], Hu, Eberhard and
Schiehlen [17]. Closed-form solutions for the longitudinal wave are presented. All
these theoretical results, however, are based on St. Venant’s contact theory developed
for perfectly planar contacts, which, up to now, have not been validated experimen-
tally.

Experimental investigations of longitudinal wave propagations in elastic rods
were reviewed by Al-Mousawi [1]. For a rigid body colliding with an elastic rod,
important results were presented by Crook [7], Ripperger [36], Cunningham and
Goldsmith [8], Barton, Volterra and Citron [3], Ramamurti and Ramanamurti [35]
and Maekawa, Tanabe and Suzuki [28]. With the advancement of laser techniques,
some additional aspects of wave propagation can be observed with Laser-Doppler-
Vibrometers nowadays. Recent experimental investigation of a sphere colliding with
a rod can be found, for example, in Hu, Eberhard and Schiehlen [19] where some
comparisons between the measurements and numerical simulations with different
impact theories are discussed. In this paper, the impact responses during the transi-
tion from the wave propagation to the rigid body motion is further simulated as an
example to show how to use the multi-time scale approach presented.

2.2.1 Impact system and experimental setup

The schematic setup of the experiment is shown in Fig. 2. A steel sphere with radius
R1 = 1.5 cm, mass m1 = 0.11 kg, Young’s modulus E1 = 210GPa and Poisson’s
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Fig. 2. Overview of the experimental setup and the used instruments

ratio ν1 = 0.30 is considered as a rigid body and used to strike an aluminum rod with
Young’s modulus E = 71.08GPa and Poisson’s ratio ν = 0.33. The striking sphere
was suspended in a frame by a thin kevlar wire forming a ‘V’. In the experiments it is
released at a vertical height h above the axis of the rod and the initial impact velocity
of the sphere v0 =

√
2gh depends on the height h, where g is the gravitational

acceleration.
The used aluminum rod is homogeneous and cylindrical. It has diameter 20mm,

length L = 1m and density ρ = 2710 kg/m3. The aluminum rod is suspended by
two sets of thin kevlar wires at two locations and positioned horizontally by means of
a spirit level. The alignment of the rods and the sphere was also checked by sticking
a small piece of adhesive paper backed with carbon paper between the impacting sur-
faces. Adjustments were then performed until a dense carbon imprint was produced
exactly in the middle of the adhesive paper. The rod is suspended at the vertical
height l = 20 cm. For the measurement of displacements and velocities, a Laser-
Doppler-Vibrometer of type OFV-3000/OFV-302 made by Polytec GmbH was used.
The strains were measured with strain gauges of type 3/120XY13 made by Hot-
tinger Baldwin Messtechnik GmbH. The two used DC signal conditioners for the
strain signals are of type DMS805B made by Rohrer GmbH with a frequency range
up to 1MHz.
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2.2.2 Equations of motion

In the modal approach, it is assumed that the displacement of the rod at the position
x can be described approximately by a sum of the rigid body motion x1(t) and N
vibrations with the mode shapes φi(x) and the modal coordinates qi(t), i.e.,

r1(x, t) = x1(t) +
(
x+ u1(x, t)

)
= x1(t) + x+

N(t)∑
i=1

φi(x)qi(t) . (22)

The active degree of freedom of the elastic vibration varies with time so that the
impact responses can be simulated adaptively. The mode shapes φi(x) are functions
of the spatial coordinate x and satisfy the geometric boundary conditions of systems.
For a free rod, they are chosen as

φi(x) =
√

2 cos
(
iπ

L
x

)
for i = 1, 2, . . . , N . (23)

Compared with (1) and (2), the corresponding vectors and matrices read as

r1
0(t) = x1(t) , A1 = 1 , u1

0 = x , S1 = [φ1(x)φ2(x) · · ·φN (x)] . (24)

The rod is described by one reference coordinate x1 and N elastic coordinates qi.
The strain of the rod is

ε(x, t) =
N∑

i=1

φ
′
i(x)qi(t) = −

√
2π
L

N∑
i=1

qi(t)i sin
(
iπ

L
x

)
(25)

where the prime denotes the differentiation with respect to x. The constitutive law of
the rod is assumed to be viscoelastic,

σ(x, t) = E [ε(x, t) + ηε̇(x, t)] . (26)

where η is a coefficient representing viscosity. According to (25), the stress at the
contact end of the rod x = 0 remains always to be zero, i.e.

σ(0, t) = 0 (27)

which is, in fact, not true during contact. The reason for this problem is that the cho-
sen modal shapes (23) do not satisfy the dynamic boundary condition at the contact
end

EAσ(0, t) = FN (t) (28)

where FN (t) is the contact force. In the modal approach, it is assumed that the impact
force acts on the contact end of the rod like a concentrated force and the stress at
the contact end vanishes. The modal shapes which satisfy the dynamic boundary
condition (28) for the contact end can hardly be found. According to Eqs. (22) and
(23), the motion at the center of mass of the free rod corresponds to the rigid body
motion of the rod since
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r1(L/2, t) = x1(t) + L/2 . (29)

The elastic vibrations of the rod are not involved in the motion at the center of mass.
In order to get the equations of motion of the rod, D’Alembert’s virtual work

principle ∫ L

0

ρr̈1δr1Adx+
∫ L

0

σδεAdx = δW a (30)

is used. Since the rod is suspended with thin wires and moves with a small amplitude,
its rigid body motion can be modeled with a linear damped pendulum, representing
the influence of the suspension and the air on the small elastic vibrations, too. There-
fore, the virtual work of the applied forces is

δW a = FNδr
1(0, t) −mg

x1

l
δx1 − d1ẋ1δx1 . (31)

where d1 is the damping parameter. Using the orthogonality of the mode shapes
yields ∫ L

0

ρr̈1δr1Adx = mẍ1δx1 +m

n∑
i=1

q̈iδqi , (32)

∫ L

0

σδεAdx =
EAπ2

L

n∑
i

i2 (qi + ηq̇i) δqi . (33)

Therefore, the equations of motion given by D’Alembert’s virtual work principle
read as

mẍ1 + d1x1 +m
g

l
x1 = FN , (34)

M1
eeq̈ + C1

eeq̇ + K1
eeq = f1

e . (35)

where the mass matrix, the damping matrix and the stiffness matrix of the rod read
as

M1
ee = m1diag {1, 1, . . . , 1} , (36)

C1
ee =

ηEA

L
diag

{
12, 22, . . . , n2

}
, (37)

K1
ee =

EA

L
diag

{
12, 22, . . . , n2

}
, (38)

respectively, and the generalized force

f1
e = FN [φ1(0) φ2(0) . . . φn(0)]T = FN [

√
2
√

2 . . .
√

2]T . (39)

The normal contact force FN is assumed to be determined by the Hertzian contact
law, i.e.,

FN (t) = Kδ
3
2 (t) . (40)
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The factor K follows from (8) with A = B = 1/(2R) and qk = 1/π where R is the
sphere‘s radius. The indentation depth δ reads as

δ(t) = x2(t) − r1(0, t) = x2(t) −
(
x1(t) +

√
2

n∑
i=1

qi(t)

)
. (41)

This assumption is experimentally validated, see e.g. Hu and Eberhard [16]. In ad-
dition to the equations of motion of the elastic rod, one needs also the equation of
motion of the sphere

m2ẍ2 = −FN . (42)

The elastic vibrations of the sphere are not considered.
During contact the equations of motion of the rod and the sphere as well as the

elastic coordinates qi of the rod are coupled by the contact force. The system is de-
scribed by a set of nonlinear differential equations. Therefore, one can hardly get the
information about the maximum amplitudes of the elastic coordinates and determine
when an elastic coordinate can be neglected during contact. In order to describe the
wave propagation and to compute the contact force accurately, the degree of free-
dom of the elastic vibration of the rod N(t) is chosen to be constant during contact
and equal to the number N0 = 100. During contact the computation is very time-
consuming, but, fortunately, the duration of contact tc is usually very short.

After impact, i.e t > tc, the rod and the sphere have no contact and the contact
force vanishes, i.e., FN = 0. The equations of motion of the rod and the sphere are
no longer coupled. Further, the rigid body motion of the rod and the elastic vibrations
of the rod are not coupled and all elastic coordinates qi in (35) are independent since
the mode shapes are orthogonal to each other. The vibration equation for i-th mode
shape φi(x) reads as

mq̈i +
ηEA

L
i2π2q̇i +

EA

L
i2π2qi = 0 (43)

Its natural frequency

ωi =

√
EA

mL
iπ =

c

L
iπ (44)

and the damping ratio

ξi =
ηc

2L
iπ =

1
2
ηωi (45)

which is proportional to the eigenfrequency ωi. Here the wave speed c is introduced
as an abbreviation. The damping for the elastic coordinate qi may be also represented
by the constant

µi = ξiωi . (46)

It can be seen that for viscoelastic material higher frequency vibrations are damped
more quickly. For the elastic coordinate qi, one can solve (43) and get exact results
for t ≥ tc. Here the response bounds for free vibrations discussed before are used
as an example and the relative errors εri

are chosen to be 0.001. By solving the
inequality
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e−µi(t−tc) ≤ εri
/N0 (47)

one can determine that for

t ≥ tc −
1
µi

ln
εri

N0
(48)

the elastic coordinate qi needs no longer to be considered. The high frequency vi-
brations disappear after a short time and only the lower frequency vibrations remain.
In the numerical simulation, the damping coefficient d1 = 0.1620N/m/s and the
viscosity coefficient η = 3.6914 × 10−8 s are identified from the measured impact
responses. Though the coefficient η is very small, it plays an important role for the
decaying of elastic deformations.

2.2.3 Comparisons between Measurements and Simulations

In the experiments the strain signals at two different positions A and B with distance
0.3m and 0.6m from the contact end of the rod, respectively, and the velocity and
the displacement at the free end of the rod were measured. For the striking velocity
v0 = 0.28m/s, the comparison between the experimental and simulated results are
shown in Fig. 3 for a long time scale of 10 s and in Fig. 4 for a short time scale
of 2ms where the dark lines denote the measured signals and the light lines denote
the simulated results. The long term impact behavior shows a discontinuous rigid
body motion. After impact the rod changes its velocity suddenly. After one second
the strain signals vanish and the rod moves then like a rigid pendulum. Measurement
and simulation match perfectly. The short-term behavior shows the phenomenon of
the wave propagation. Due to the impact, a wave is induced. It propagates along
the rod and is reflected at the both ends of the rod. The wave dispersion can not be
seen in Fig. 4. The simulation results for the wave propagation may also be found
using St. Venant theory as shown in detail by Hu and Eberhard [16]. The comparison
between the measured and simulated results show that the wave propagation can be
simulated satisfactorily with the modal approach.

During the transition from the wave propagation to the rigid body motion the
impact behavior is characterized by structural vibrations. Due to the material damp-
ing, the high frequency elastic vibrations are damped and vanish within one second.
Figure 5 shows how the power spectral density (PSD) of the velocity signal at the
free end of the rod varies with time. In the computation of the PSD, signals with the
same time duration of 40ms, however, at different starting time are considered. In
the graphs the PSD with unitm2/s is shown in a logarithmic scale. It can be seen that
at the beginning there exist many elastic vibrations with high frequencies. However,
after 0.4 second some high frequency vibrations can not be recognized and at 0.8 s
there exist only the fundamental eigenmode. Since many high frequency vibrations
have very small amplitudes, their contribution to the impact responses in the time
domain can be neglected. In the numerically simulated signals only those lower fre-
quency elastic vibrations are considered. Hence, the measured and simulated results
have some differences in the high frequency range.

The comparison between the measured and simulated results during the transition
are shown clearly in Fig. 6 with a high resolution at different time. Both results have
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Fig. 3. Comparison between the measured and simulated results for a long time scale
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Fig. 4. Comparison between the measured and simulated results for a short time scale
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Fig. 5. Comparison between the measured and simulated results in the frequency domain for
the rod with the viscous damping

only slight differences. Comparing Fig. 4 and Fig. 6, one can see that the wave form
has changed. Due to the material damping, a wave dispersion exists. With a short time
scale of millisecond the wave dispersion can not be observed. The wave dispersion
makes the motion more uniform. Hence, in the long run there exists only the rigid
body motion.

In the multi-time scale simulation, the degree of freedom of the elastic vibration
varies with time. Figure 7 shows a time history of the active degrees of freedom
N(t). During contact, the degree of freedom N0 is chosen to be 100. During separa-
tion the high frequency vibrations decay very fast. After 0.1 second, one needs only
to consider lower frequency vibrations. It can be seen that in less than 0.2 second the
degree of freedom N(t) is reduced from 100 to 3. Using the multi-time scale sim-
ulation, the efficiency of computation is improved by a factor 100 without affecting
the required accuracy.

3 Rigid multibody systems with impact

The method of multibody systems allows the dynamical analysis of machines and
structures, see Schiehlen [37, 38, 39]. More recently contact and impact problems
featuring unilateral constraints were considered, too, see Pfeiffer and Glocker [33].
Subjected to an impact the multibody system motion is clearly divided into two peri-
ods by different sets of initial conditions. The rigid multibody system is represented
by its equations as
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Fig. 6. Comparison between the measured and simulated results during the transition for the
rod with the viscous damping
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Fig. 7. The time history of the degree of freedom of the elastic vibration

M(y)ÿ + k(y, ẏ) = f(y, ẏ) (49)

where y(t) is the global position vector featuring f degrees of freedom, M the inertia
matrix, k the vector of Coriolis and gyroscopic forces and f the vector of the applied
forces, see also (5). The continuous motion of the multibody system during the first
period is interrupted by collision. The hypothesis of an infinitely large impact force
λ leads to the force impulse

�p = lim
ε→0

∫ t1+ε

t1−ε

λ(τ) dτ (50)
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changing the velocities of the motion. Due to the infinitely large impact force all
other forces can be neglected during impact. This results in a discontinuous system

M(y)ÿ + k(y, ẏ) = f(y, ẏ) , 0 < t < t1 − ε , t1 + ε < t < ∞ . (51)

describing more precisely the motion before and after impact. At the instant of the
impact t = t1, the initial velocities of the second period have to be reset, however
the displacements remain unchanged. For the instant of impact the impulse equations
include the coefficient of restitution which represents the kinetic energy loss during
impact. This approach results finally in linear complimentary problems (LCPs) as
shown by Pfeiffer and Glocker [33].

3.1 Computation of the coefficient of restitution

For the simulation on the slow time scale using the multibody system approach the
coefficient of restitution is required to describe the kinetic energy lost during impact.
Therefore, the kinetic coefficient of restitution by Poisson is used. This coefficient
is defined as the ratio of linear momentum during the compression and restitution
phases of the impact, see e.g. Stronge [46]. The coefficient of restitution cannot be
determined within the multibody system approach but must be estimated by costly
experiments [13] or experience. However, performing additional elastodynamic con-
tact simulations on a fast time scale the coefficient of restitution can be determined
computationally.

Following the assumptions of rigid body impact, the impact duration is infini-
tesimally small and all forces but the impact force are negligibly small. The linear
momentum balance in the central impact line of two colliding bodies during the
compression and restitution phases reads as

�pc = m1(v−1 − v), �pc = m2(v − v−2 ), (52)

�pr = m1(v − v+
1 ), �pr = m2(v+

2 − v), (53)

where v−1 and v−2 are the velocities before impact and v+
1 and v+

2 are the velocities
after impact and m1 and m2 are the masses of the colliding bodies. The common
velocity of the bodies at the end of the compression phase is v and the linear mo-
mentum produced by the impact force during the compression and restitution phase
is denoted by �pc and �pr, respectively. Using the coefficient of restitution e by
Poisson, the total linear momentum produced by the impact reads as

�p = �pc + �pr = �pc(1 + e). (54)

Rearranging Eq. (53) and (54), the coefficient of restitution can be expressed in de-
pendence of the total linear momentum during impact as,

e =
(m1 +m2)�p
m1m2(v−1 − v−2 )

− 1. (55)
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The total linear momentum �p is known from additionally performed elastodynamic
contact simulations on the fast time scale as time integral of the computed impact
force. Therefore, the coefficient of restitution can be determined by the simulation
results on the fast time scale.

The efficiency and accuracy of this multi-time scale approach for rigid body im-
pact is shown on a fast and slow time scale. Therefore, the impact of a steel sphere
on different objects of similar mass made of aluminum are investigated numerically
and experimentally. The impacted bodies are a slender cylinder called rod in the fol-
lowing due to its longitudinal excitation, a half-circular plate, a compact cylinder
called ball in the following due to its similarity to a ball of the same mass and a
slender cylinder called beam due to its lateral excitation. The material and geomet-
rical data of the colliding bodies are summarized in Table 1. In Fig. 8 the geometry
configuration of the different impact systems is shown.

Steel Aluminum Aluminum Aluminum Aluminum
Sphere Rod Plate Ball Beam

Radius [mm] 15 10 200 36.48 10
Thickness [mm] − − 5.1 − −
Length [mm] − 1000 − 73.68 976.5
Young‘s modulus [GPa] 210 70.5 72.55 70.5 67.7
Poisson ratio 0.3 0.33 0.33 0.33 0.33
Density [kg/m3] 7780 2710 2710 2710 2696

Table 1. Geometrical and material data of the colliding bodies

3.2 Elastodynamic contact simulation on the fast time scale

For the elastodynamic contact simulation on the fast time scale three different meth-
ods are used in the following. Firstly, the equations of motion for elastodynamics are
introduced and solved by D’Alembert’s approach for wave propagation combined
with the Hertzian contact law. Secondly, the modal approach for the elastic bodies
together with the Hertzian contact law is applied. Thirdly, the equations of motion
for elastodynamics are solved by discretization using finite elements.

3.2.1 Elastodynamic contact using wave propagation

Using the equation of motion for elastodynamics and solving them by D’Alem-bert’s
approach for wave propagation is a very time effective method [17, 19] to simulate
impacts on the fast time scale. However, this approach is limited to geometrically
simple bodies, such as the longitudinal impact of a sphere on a rod as shown in the
following. The longitudinal waves in a rod are governed by the partial differential
equation

∂2u(x, t)
∂t2

= c2
∂2u(x, t)
∂x2

with c =

√
E

ρ
(56)



114 Werner Schiehlen, Bin Hu and Robert Seifried

Rigid body

Elastic body

Half−circular plate

Ball

Beam

Rod

Sphere

Sphere

Sphere

Sphere

Fig. 8. Colliding bodies of the impact systems

where c represents the wave speed, E, ρ are the rod’s Young’s modulus and density,
respectively. According to D’Alembert’s approach the general solution of (56) reads
as

u(x, t) = f(x− ct) + g(x+ ct), (57)

where f and g are real functions representing a forward and a backward traveling
wave, respectively. Using (56) and (57) with the dynamic boundary condition

−EA∂u(0, t)
∂x

= F (t) (58)

for the struck end, the impact of a sphere on a rod is modeled. Thereby the contact
force F (t) between the sphere and the rod is described by the Hertzian elastostatic
contact law described in (7) i.e.,
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F (t) = max[0,Kδ(t)3/2] with δ(t) = xs(t) − u(0, t) (59)

where xs(t) describes the sphere’s position. The good agreement of this analytical
model with experimental results is shown in [19].

3.2.2 Elastodynamic contact using modal approach

Another time efficient method for investigating elastodynamic contact problems is a
combination of a modal approach describing the linear elastic body and the Hertzian
contact law, as presented in Chapter 2. Using a modal approach, geometrically more
complex shaped bodies as well as more complex impact configurations can be mod-
eled efficiently. In the following the modeling of the transverse impact of a sphere
on the center of a beam is shown. The sphere is modeled as a rigid body whereas the
beam is represented by the modal approach. Therefore, a finite element model using
Timoshenko beam elements is created to compute the beam’s eigenfrequencies and
mode shapes.

Using the modal approach the displacement of a point of the discretized beam is
given by the sum of the beam’s rigid body motion x1(t) and the first N eigenmodes
given by the previously computed mode shape ϕi and the modal coordinates qi,

up(t) = x1(t) +
N∑

i=1

ϕp
i qi(t) (60)

where the index p identifies the nodes of the FE model. For the modeling of impacts
on the beam frequencies up to 100kHz are taken into account. The investigated beam
is suspended like a pendulum, thus the equations of motion of the beam reads as

mẍ1 +m
g

l
x1 = F (t)

q̈i + ω2
i qi = fi, i = 1(1)n (61)

wherem is the beam’s mass, g the gravity, l the length of the pendulum, F the contact
force and ωi the angular frequency of the ith eigenmode. The modal contact force is
given by

fi = F ϕc
i , i = 1(1)n (62)

where p = c denotes the point of the contact node. The contact force is computed
using the Hertzian contact law according to (59). For the contact between a sphere
and a cylinder, it turns out that the contact geometry is given by an ellipse. Following
Goldsmith [13] the contact stiffness is given by (8) with

A =
1

2Rs
and B =

1
2
(

1
Rs

+
1
R

) (63)

whereR andRs are the radius of the beam and sphere, respectively. The parameter qk

depends on the ratioA/B and is found in Goldsmith [13] as 0.3414. The comparison
of the results of the modal approach with results from a FEM-simulation presented
in Daparti [9] shows a good agreement, while the computation time for the modal
model is significant lower.
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3.2.3 Contact simulation using finite elements

For investigation of elastodynamic impact phenomena on the fast time scale involv-
ing bodies with complex geometric shapes resulting in complex contact conditions
as well as non-linear material properties, numerical methods such as the FEM have
to be used. The the nodal displacement vector U of a fricitonless static contact prob-
lem minimizes the potential energy function Π (U) of the FE system considering
the impenetrability condition g(U) ≥ 0 where the penetrations of the bodies are
summarized in g(U). Due to its simplicity the penalty method is used in most com-
mercial FE-codes for solving this restricted minimization problem. Other common
approaches are the Lagrange multiplier method, the augmented Lagrangean method
and hybrid methods, see e.g. Zhong [51].

Using the penalty method the potential energy function Π (U) is extended by a
penalty term of the form 1

2PgT g where P is called the penalty factor. The mini-
mization of the extended potential results in the nodal displacements U . The contact
force is computed by F = Pg. For penalty factors P approximating infinity the pen-
etration vanishes and the solution converges to physical reality. However, too high
penalty factors result in numerical instabilities. An optimal choice of the penalty
factor for static contact is described by Nour-Omid and Wriggers [32].

For impact problems the influence of the penalty factor and the discretization is
investigated for the test example of a sphere to rod impact as reported in [43], too.
It is shown that the choice of the penalty factor and the discretization of the contact
area have a significant influence on the time response of the calculated impact force.
Especially the independence of the results from the choice of the penalty factor has
to be checked by additional simulations. Also great attention has to be given to the
evaluation of the resulting wave propagation in the elastic bodies which requires a
small element size.

3.3 Experimental validation of rigid body impacts

For the experimental validation of the simulation results for the impact processes on
a slow and a fast time scale the experimental setup described in Sect. 2.2.1 is used.
The longitudinal impact on the rod and the ball occurs along the central axis of the
bodies and the radial impact on the half-circular plate occurs along the symmetry
axis on the curved side of the plate. The transverse impact on the beam occurs also
along the symmetry axis of the beam. When rebounding after impact the sphere is set
to rest again. Then, the impacted body moves like a free pendulum. The experimental
setup for the impact on the beam is shown in Fig. 9.

3.3.1 Experimental validation on the fast time scale

In the following the experimental and simulation results for the different impact sys-
tems are presented on the fast time scale. The impact velocity of the steel sphere is
approximately 0.3m/s. The left plot of Fig. 10 shows the measured velocities at the
free end of the aluminum rod on the fast time scale. During impact kinetic energy is
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Fig. 9. Experimental setup with the impact on the beam

transformed into strain energy which propagates as wave away from the contact re-
gion. This wave is reflected at the free end of the rod. The investigated rod is long so
that the contact is dissolved before the reflected wave reaches the struck end. Then,
the wave is reflected again. After the wave passes a point of the rod, e.g. the free end,
this point remains in rest again until the wave passes through it again. The simulation
results of the rod using D’Alembert’s approach for wave propagation combined with
the Hertzian contact law is indicated in the left plot. A comparison of the described
wave phenomena using the modal approach presented in Fig. 4 shows good agree-
ment, too. The right plot of Fig. 10 shows the measured velocity of the half-circular
plate. In the half-circular plate the initiated waves are multiply reflected at the bound-
aries and then the motion is composed of a rigid body motion and an irregular oscil-
lation. In the right plot the results of a FE-simulation of the half-circular plate using
ANSYS [2] are indicated, too. This shows the good agreement of FE-simulations and
experiments for the fast time scale. For more details see Seifried [42] and Seifried,
Hu and Eberhard [43].

In the left plot of Fig. 11 the impact on the aluminum ball is shown. In contrast
to the impact on the rod and plate no significant vibrations are observable. The ball
moves after impact as rigid body. The simulation of this impact system is performed
by a FEM-simulation, too.

Measurements and simulations using a modal approach for the beam agree also
very well as shown in the right plot of Fig. 11. The post impact behavior of the beam
shows very strong vibration phenomena of a wide frequency range. The bending fre-
quency of the beam is 94Hz, what is low compared with frequencies of 2500Hz for
the rod and 4800Hz for the plate. The velocity plot of the impacting steel sphere,
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Fig. 10. Aluminum rod and half-circular plate on the fast time scale
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Fig. 11. Aluminum ball and beam on the fast time scale

presented in Fig. 12, shows that there are two successive impacts within 1.5ms.
After the first impact the steel sphere still moves in positive direction with a rigid
body velocity of 0.062m/s. This velocity is larger than the rigid body velocity of
the beam with 0.033m/s. After the first impact the beam bends first forwards, then
the beam bends backwards and a second impact occurs. After the second impact the
sphere moves in opposite direction. These two successive impacts are also clearly
seen in the displacement plot of the sphere and beam as presented in the right plot
of Fig. 12. For the simulation of this transverse impact system with two successive
impacts the correct identification of the first impact is essential. Variations of the ve-
locities after the first impact might results in very different rebound velocities after
the second impact and also the instant of the second impact might vary. Due to sev-
eral impacts on the aluminum beam plastic deformation and a dynamic hardening of
the beam’s contact region occurs. This effect can also be observed for the impacts
on the other bodies; however its influence on these bodies’ motion is much smaller.
After several impacts no additional plastic deformation occurs and the material be-
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haves elastic, however due to a deformed contact surface the Hertzian contact law
presented in (59) and (63) does not describe the contact accurate enough. Compari-
son with measurements and first FE-simulations of successive impacts with plasticity
and hardening show that in a first approximation a higher Hertzian contact stiffness
K must be assumed. Therefore, the value following from (63) is increased by a factor
of 1, 7.
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Fig. 12. Velocity of the steel sphere and displacements of the sphere and beam in impact
direction

3.3.2 Experimental validation on the slow time scale

With an initial velocity of 0.3m/s for the steel sphere a coefficient of restitution of
0.625 is computed for the impact on the aluminum rod. Using this value, the rigid
body motion of the bodies can be simulated efficiently using multibody dynamics.
The rod’s velocity is shown in the left plot of Fig. 13 and compared with experimental
results. This shows the good agreement of the rigid body motion. The velocity differs
at the beginning due to the strong wave phenomena which cannot be captured by the
rigid body model, however the waves decay due to material damping and vanish
finally. Compared to Fig. 3 the material damping in Fig. 13 is smaller resulting in
a longer decay period. The difference in damping is due to the strain gauges which
are not used in the experiment shown in Fig. 13. The right plot of Fig. 13 shows the
velocity of the half-circular plate. Using the FEM-results for the impact on the half-
circular plate a coefficient of restitution of 0.967 is computed. Hereby much less of
the initial kinetic energy is transformed into waves and structural vibrations what is
clearly seen in the velocity plot.
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Fig. 13. Aluminum rod and half-circular plate on the slow time scale

The simulation of the impact on the aluminum ball shows that nearly no energy
is transformed into wave propagation and therefore the computed coefficient of resti-
tution is very close to 1. Due to the short dimensions of the ball multiple reflected
waves travel during impact with high frequency back and forth through the ball and,
therefore, the ball behaves nearly rigid as shown in the left plot of Fig. 14. For the
impact on the beam a coefficient of restitution of 0.3482 is computed. Most of the
initial kinetic energy is transformed into waves and vibrations. The measured veloc-
ity of the beam on the slow time scale, presented in the right plot of Fig. 14, shows
these strong vibrations. Again, a comparison of the measurement and the simulation
show good agreement for the rigid body velocity.
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Fig. 14. Aluminum ball and beam on the slow time scale

The coefficient of restitution depends not only on the material parameters, the
contact geometry and the body geometry but also on the initial velocity as shown
experimentally in Goldsmith [13] and analytically in Hu and Seifried [21]. The in-
fluence of the velocity is shown in Fig. 15 in a range of 0.05m/s to 0.8m/s for the
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rod, plate and ball. From the simulations for the rod and half-circular plate it is seen
that the coefficient of restitution decreases steadily with increasing initial velocity.
This indicates an increase of energy transformation from the initial rigid body mo-
tion into waves and vibrations with increasing velocity. The computed coefficient of
restitution for the ball is close to 1 for the investigated velocity range. For the impact
on the ball the transformation of initial kinetic energy into waves and vibrations can
be neglected. The computed kinetic energy loss during impact is for all bodies purely
due to the initiation of waves in the bodies and is also summarized in Fig. 15. For the
impact on the beam first simulations and experiments are performed in the range of
0.25m/s to 0.35m/s showing values of the coefficient of restitution between 0.30
and 0.38. This indicates a transformation of about 80% of the initial kinetic energy
into vibrations of the beam. These results are also indicated in Fig. 15.
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Fig. 15. Computed and some measured coefficients of restitution and energy transformation

A signal analysis of the simulation results shown in Schiehlen and Seifried [40]
help to investigate experimental observations such as the tone and noise produced.
The impact on the rod produces strong periodic waves which propagate in the rod
for a long time before they vanish due to material damping. This produces a clear,
harmonical, enduring tone. Due to irregular mode excitation the impact on the plate
produces a metal noise while for the impact on the ball only a very short dull noise
is observed.
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4 Conclusions

A detailed analysis of impacts shows that the impact behavior have three different
phenomena: wave propagation, structural vibrations and rigid body motion. For ef-
ficient simulation of these different phenomena, different time scales are needed.
During contact the short time impact response is computed using the method of
flexible multibody systems for accuracy and after separation the long term motion
is simulated using the method of rigid multibody systems for efficiency. During the
transition from the wave propagation to the rigid body motion, an adaptive simulation
method with varying degree of freedom for the elastic vibration is developed. In the
simulation, the contribution of each elastic coordinate to the overall motion is mon-
itored using their response bounds. When these response bounds are smaller than a
given constant, the corresponding elastic coordinates are deleted. As a consequence,
the elastic degrees of freedom are reduced and the efficiency of the simulation is
improved. The application of this multi-time scale simulation is experimentally val-
idated for the impact of a rigid body colliding with an elastic rod. The application of
this method for more complicated impact systems will be further investigated.

Multibody systems with impact may be analysed directly if the coefficient of
restitution is known. Three methods are presented to compute this coefficient on a
fast time scale: wave propagation, modal approach and finite elements. The main re-
sults include impacts on rods with longitudinal waves, impacts on a plate with plane
waves, impacts on a beam with bending vibrations and impacts on a ball shaped body.
While the longitudinal waves show strong periodicity, the plane and spatial waves
may be highly irregular even for linear structural dynamics models. It is shown that a
substantial amount of initial kinetic energy is transformed into waves and vibrations
for the impact on the slender rod and beam whereas the ball shaped body behaves
like a rigid body. In conclusion, the interaction of multibody dynamics and wave
propagation, represents an efficient multiscale tool for the dynamical analysis of me-
chanical systems with impacts. The required coefficient of restitution is determined
out of fast time scale results. The approach allows the consideration of nonlinear
material properties, too.
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1 Introduction

A major goal of research in multibody dynamics is to develop formulations that
automatically generate and solve the governing equations of motion for a system of
rigid and flexible bodies, given only a description of the system. Much progress has
been made in multibody dynamics research over the last few decades and nowadays,
there are several commercially-successful computer programs (e.g. Adams, Dads)
that automatically analyze the dynamics of multibody mechanical systems.

However, these same programs, and the theoretical formulations on which they
are based, are not capable of modelling general multidisciplinary applications in
which a multibody system is coupled to other physical domains, e.g. electrical or
pneumatic. There are numerous important applications of multidisciplinary multi-
body systems, including vehicles with active suspensions and traction control, mecha-
tronic systems, and micro-electromechanical systems (MEMS). The design of these
multidisciplinary applications would be greatly facilitated by algorithms that could
automate their dynamic analysis.

There are two distinct approaches that have been proposed for modelling and
simulating the dynamics of multidisciplinary multibody systems. The first is based
on coupled simulations, or “co-simulation”, in which two separate simulation pro-
grams or subroutines are coupled numerically. The advantage of co-simulation is
that one can use existing programs that are very well-developed for their particu-
lar domain. However, numerical stability problems may arise during a co-simulation
[20] and, more importantly, there is no underlying mathematical framework that one
could use to generate analytical models of these multidisciplinary applications.

The second approach is to apply a unified systems theory to the dynamic mod-
elling of multidisciplinary multibody systems. This paper focuses on this second
approach for several reasons:

• a unified theory leads to analytical models that promote physical insight
• a unified theory can be applied manually or implemented in a computer algorithm
• the computer implementation can be symbolic or numeric
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• symbolic models are very appropriate for real-time simulation
• symbolic models facilitate design optimization and sensitivity calculations
• symbolic models are easily communicated between colleagues and to students
• a unified theory can be extended to new situations and domains

Two main systems theories dominate the literature: linear graph theory and bond
graph theory. Note that linear graph theory is sometimes abbreviated to “graph the-
ory”, especially in the literature on electrical circuits. A few authors [17, 22] have
also proposed the principle of virtual work as the basis of a third unified theory, but
these authors are forced to adopt elements of graph theory in their formulations, e.g.
when generating topological equations for electrical subsystems. Thus, virtual work
on its own does not constitute a complete and independent systems theory that can
be used to automate the dynamic analysis of complex systems.

The goal of this paper is to present the modelling of multidisciplinary multibody
systems using bond graph theory and linear graph theory, and to investigate their
relative advantages and disadvantages.

2 Representative Problems

The features of modelling with bond graphs and linear graph theory will be demon-
strated by means of four example problems, ranging from quite simple to very com-
plex. Three of the examples are multidisciplinary applications, with components
from the mechanical and electrical domains, and the last three examples contain
multi-dimensional multibody subsystems.

2.1 Condenser Microphone

A simple model of a condenser microphone [3, 4] is shown in Figure 1. A voltage
source E4 is connected in series with a resistor R1, capacitor C2, and inductor L3.
The resistor and inductor are modelled by standard linear constitutive equations [10],
but the upper plate of the capacitor is free to move, requiring extra consideration.
This upper plate represents the mass (m5), stiffness (k6), and damping (d7) of the
mechanical portion of the microphone. For completeness, the gravitational force on
the upper plate has also been included in the model.

Due to the electrical attraction of the two plates, a voltage v2 across the capacitor
results in an attractive force F2 between the two plates given by [3]:

F2 = −1
2
dC2

dx
v2
2 (1)

where the capacitance C2 is a function of the plate separation x; it decreases as x
increases, i.e. dC2/dx < 0, giving a positive force of attraction in equation (1).

The second constitutive equation for the capacitor is:

i2 = C2
dv2
dt

+
dC2

dx

dx

dt
v2 (2)
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Fig. 1. Simple model of condenser microphone

where i2 is the current through the capacitor; the second term on the right-hand
side is induced by the relative motion of the two plates. Note that there are usually
two constitutive equations for transducers, such as this moving-plate capacitor, that
couple one physical domain (electrical) to a second (mechanical). It is through these
transducers that energy can flow between the two domains.

In this condensor microphone, vibrations of the plate result in an electrical cur-
rent that can be measured and amplified, if necessary. The goal of this example is to
generate the system equations that relate the motion of the plate to the current.

2.2 Inverted double pendulum

This example, taken from Karnopp et al [5], is a planar mechanical multibody sys-
tem. As shown in Figure 2, it consists of a horizontally-translating mass m, upon
which an inverse double pendulum is mounted. The two links of this pendulum have
lengths l1 and l2, and the masses m1 and m2 are assumed to be concentrated at the
tips of the links. Gravity acts vertically downwards.

The purpose of this example is to demonstrate some features of multi-dimensional
multibody systems, and the application of bond graphs and linear graph theory to
these systems.

To automate the dynamic analysis of a multibody system, one must develop a
formulation that can express all kinematic quantities in terms of a general set of
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Fig. 2. Inverted double pendulum
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coordinates, and generate the dynamic equations in terms of these coordinates. By
far, the two most popular sets are absolute (Cartesian) coordinates and relative (joint)
coordinates, although other possibilities do exist [23].

Absolute coordinates lead to relatively simple computer implementations, which
is why they are used in commercially-successful packages such as Adams, Dads, and
Working Model. These coordinates, which represent the position and orientation of
every body in the system, will not be independent if there are any holonomic joints
in the system. In that case, the n coordinates q are related by m nonlinear algebraic
equations:

Φ(q, t) = 0 (3)

where n−m = f , the degrees of freedom of the system. The dynamic equations are
easily generated from free-body diagrams of each body, with the constraint reactions
represented by Lagrange multipliers λ:

Mq̈ + ΦT
qλ = F (4)

where M is the constant n × n mass matrix, Φq is the Jacobian matrix of the con-
straint equations (3), and F contains external forces and quadratic velocity terms.
Equations (3) and (4) constitute a set of n + m differential-algebraic equations
(DAEs) that can be solved for q(t) and λ(t).

Joint coordinates are more difficult to implement in an automated formulation,
because one must pay more attention to topological processing [24]. However, the
reward is fewer equations to solve than those expressed in absolute coordinates. For
open-loop systems, i.e. those having no closed kinematic chains, the joint coordi-
nates are independent and equal in number to the degrees of freedom f . There are
no kinematic constraint equations (3) to satisfy, and a minimal set of f ordinary
differential equations (ODEs) is obtained for the dynamics:

Mq̈ = F (5)

where the f × f mass matrix M is now a function of q.
Since the inverted double pendulum is an example of an open-loop system, it is

best modelled by joint coordinates.

2.3 Robot Manipulator

In this example, an experimental two-link robot manipulator is modelled. An overview
of the experimental system is shown in Figure 3. It consists of two DC motors, a
shoulder motor and an elbow motor, and two links. The interchangeable links may
be rigid or flexible; in this example, we model the manipulator with rigid links. The
manipulator is supported by air bearings on a large glass surface so as to minimize
friction and gravitational effects. The shoulder motor may also be fixed to the glass
surface by a vacuum, which is the case considered in this example. A variety of sen-
sors are used to track the motion of the manipulator and a moving payload. These
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sensors provide feedback to a microcomputer that is responsible for generating con-
trol signals to the two motors. More details of the WatFlex experimental manipulator1

can be found in [21].
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Fig. 3. Watflex robot manipulator

Shown in Figure 4 is a model of the two-link manipulator. We have chosen to
include gravity (g) in the model, by re-orienting the robot such that the links rotate
about horizontal joint axes. The first joint angle is designated θ1, while the second
is θ1−2. Therefore, the absolute rotation θ2 of the second link is the sum of the two
joint angles.

The objective is to control the robot to follow a prescribed joint trajectory, specif-
ically a rotation of both joints by 90 degrees in 4 seconds at constant angular speeds.
These desired joint angles are input to a PD-controller that computes the differences
between the desired and actual angles. The controller then supplies the two DC mo-
tors with voltages that are proportional to these differences (errors), and the time
derivatives of these errors (i.e. the differences between desired and actual angular
speeds).

1 http://real.uwaterloo.ca/˜watflex
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Fig. 4. PD-controlled robot manipulator

Similar to the moving-plate capacitor in the previous example, there are two con-
stitutive equations for each DC motor in the model:

v = Kv
dθ

dt
+Ri+ L

di

dt
(6)

T = KT i−B
dθ

dt
(7)

where Kv is the voltage (back emf) constant, L and R are the armature inductance
and resistance, respectively, KT is the torque constant, and B is the coefficient of
viscous friction in the bearings. The masses and inertias of the stator and rotor are
assumed to be lumped with the mechanical component to which they are affixed.

2.4 Parking Gate System

In this fourth example, another electromechanical multibody system is considered.
This system is used to raise and lower a flexible barrier, which is typically used
to control access to a parking lot. The flexible barrier is 3 m long, and is rigidly
connected to link P2O2 of the Watt-II six-bar mechanism [8] shown in Figure 5. A
spring is used to counter-balance the weights of the moving links and flexible barrier,
and an asynchronous 3-phase induction motor is used to drive the input link of the
six-bar mechanism. More details of this system may be found in [13].

As shown in Figure 6, the induction motor is in a star-star configuration with
a short-circuited rotor. Mutual inductance effects arise within each circuit, and also
between the stator and rotor components — which is what converts the electrical
currents into a driving torque.

The position of the rotor θ influences these mutual inductance effects, as can be
seen from the constitutive equation for the motor torque T :

T =
1
2p

p∑
j=1

p∑
k=1

∂

∂θ
(Mjkijik) (8)
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where p = 3 is the number of pairs of poles, ij is the current in inductor j, the index
j ranges over the three inductors (Ls1, Ls2, Ls3) in the stator, k ranges over the three
rotor inductors (Lr1, Lr2, Lr3), and Mjk is the entry in the jth row and kth column
of the mutual inductance matrix defined by:

M = Msr

⎛⎝ cos (θem) cos
(
θem + 2π

3

)
cos
(
θem + 4π

3

)
cos
(
θem + 4π

3

)
cos (θem) cos

(
θem + 2π

3

)
cos
(
θem + 2π

3

)
cos
(
θem + 4π

3

)
cos (θem)

⎞⎠ (9)

where θem is the electromechanical position given by θem = pθ, and Msr is the
external mutual inductance between the stator and rotor.

The voltage vi induced in each stator and rotor inductance is given by the second
constitutive equation:

vi =
p∑

j=1

Lij
dij
dt

−
p∑

k=1

d

dt
(Mikik) (10)

where Lij is the entry in the ith row and jth column of the inductance matrix of the
stator or rotor in which inductor i resides:
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Ls =

⎛⎝ Ls Ms Ms

Ms Ls Ms

Ms Ms Ls

⎞⎠ Lr =

⎛⎝ Lr Mr Mr

Mr Lr Mr

Mr Mr Lr

⎞⎠ (11)

where Ls and Lr are the stator and rotor self-inductances, respectively, and Ms and
Mr are the internal mutual inductances of the stator and rotor. In equation (10), the
index j ranges over the inductors that are fixed with respect to the given inductor i,
while the index k ranges over the inductors that are in relative motion. Thus, the first
summation includes self-inductance terms, while the second summation represents
the mutual inductance between stator and rotor components, which depends on the
relative angle θ.

The flexible barrier is initially in a horizontal position, with no currents in the
stator and rotor. A dynamic analysis and simulation is required to determine the
response of the parking gate system to a sinusoidal input voltage (220V, 50Hz) over
a period of 2 seconds.

3 Unified Modelling Theories

A perusal through monographs on “system dynamics” [5, 11] reveals that two unified
modelling theories have become firmly established over the last few decades.

The first, linear graph theory, was invented by Leonhard Euler in 1736 to solve
the famous Königsberg bridge problem [1]. Kirchoff applied graph theory to his
analysis of electrical networks in the 1850s, and the generality of the graph theory
approach in all physical domains was established by Trent [32] in 1955. The appli-
cation of linear graph theory to physical system modelling is now well-established
[6, 10, 11]. For multidisciplinary applications, the coupling between the different
physical domains is not explicitly shown by the graph, but is embedded in the con-
stitutive equations for the coupling elements (transducers).

The second unified modelling theory, bond graph theory, was invented by Henry
Paynter [9] as an alternative notation in which energy flows between different phys-
ical domains are explicitly represented in the graph. Bond graphs were slow to be
accepted by the engineering community, “mostly because of rather hazy mathemati-
cal underpinnings” [26]. Birkett and Roe [14], among others, have published a series
of papers to address the lack of a combinatorial foundation for bond graphs. Nowa-
days, bond graphs are very well-known [2, 5, 12] and applied to multidisciplinary
problems in both academia and industry.

Some authors [26] have stated that bond graphs are a special case of oriented
linear graphs, while others [14] have concluded that bond graphs and linear graphs
are distinct special cases of matroids. Regardless of the relationship between bond
graph theory and linear graph theory, their representation of and application to multi-
disciplinary problems is very different in practice, especially for multibody systems.

In the following, a brief overview of bond graphs and linear graph theory is given,
and their differences are highlighted through their application to the four example
problems.
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3.1 Bond Graph Theory

To develop a bond graph or linear graph model of a physical system, it is first de-
composed into a finite number of discrete components. In bond graph theory, one
distinguishes between “one-port” elements that connect to other components at two
locations, and “two-port” elements that have four connection points. A one-port ele-
ment is represented graphically by a single stroke, or bond, while a two-port element
is depicted by two bonds. It is through these bonds that power flows through the sys-
tem model; the two-port elements can provide an explicit representation of the energy
transfer between different physical domains in a multidisciplinary application.

Associated with each bond is an effort (e) and flow (f ) variable, the product of
which gives power. For electrical components, the effort and flow corresponds to
voltage and current, respectively. For mechanical systems, the effort and flow are
usually taken as force and velocity, respectively, in what is known as the “force-
effort” analogy [12]. In the less popular “force-flow” analogy, forces are flows and
velocities are efforts.

By defining these generalized variables, and components with generalized con-
stitutive equations in terms of these variables, one can develop bond graphs that
represent multiple physical domains. The set of generalized one-port components
includes resistances (R), inertias (I), capacitances (C), effort sources (Se), and flow
sources (Sf ). A resistance, through which energy is lost from the system, can model
an electrical resistor or a mechanical viscous damper. Similarly, an inertia can model
an electrical inductor or a mechanical inertia, in the force-effort analogy. In the force-
flow analogy, an inertia represents a mechanical spring. A summary of the bond
graphs and constitutive equations for generalized one-port components is shown in
Table 1

Table 1. Bond graphs and constitutive equations for generalized one-port components

Component Bond graph Equation

Effort source S
e e = e(t)

Flow source S
f f = f(t)

Resistance R e = e(f)

Capacitance C f = C de
dt

Inertia I e = I df
dt

Note that the bond graphs shown in Table 1 have a half-arrow associated with
them. This is to identify the direction used to measure positive power flow, a conven-
tion established by the modeller for each system. Usually, one tries to predict positive
power flows, starting from energy sources and flowing to loads. Thus, the arrow is
directed away from the effort and flow sources in Table 1. Since resistances dissipate
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power, usually in the form of heat, the arrow is directed towards the R component.
Finally, power may flow to and from the capacitances and inertias; in Table 1, power
flowing into these components (i.e. being stored) is chosen as positive.

Also shown in Table 1 are vertical bars at one end of each bond. This bar is known
as a “causal” stroke, and is used to assign causality to a model, i.e. which of the
efforts and flows are causes, and which are effects. The convention is that the causal
stroke indicates the direction of effort, with flow acting in the reverse direction. Thus,
the causal stroke is on the right side of the effort source in Table 1, and on the left side
of the flow source. With linear R elements, there is no preferred causality; one may
interpret the effort as causing the flow, or vice-versa. With linear inertias, the flow is
proportional to the time integral of effort. The causal direction shown in Table 1 for
the I element implies that effort is input to the element, and flow is the output. Thus,
flow is being calculated from effort, which requires an integration. This is known as
“integral causality”; the converse is derivative causality [12].

The assignment of causality to a bond graph model is used to facilitate the com-
putation of the system equations. Causality conflicts can also reveal a fundamen-
tal modelling problem. By obtaining integral causality for a bond graph model, the
governing equations will take the form of ordinary differential equations that can
be readily solved using numerical integration methods. Derivative causality is to be
avoided, due to the error-prone nature of computations involving numerical differen-
tiation.

There are two basic types of two-port elements: transformers and gyrators [12].
In a transformer, the efforts in the two bonds are proportional, with the ratio known
as the transformer modulus. Since transformers are energy-conserving elements, i.e.
the power in one bond equals the power in the other, the flows in the two bonds must
be equal to the reciprocal ratio. For gyrators, the effort in one bond is proportional
to the flow in the second, and vice-versa for power conservation. The proportionality
constant is the gyrator modulus. In modulated transformers and gyrators, the moduli
are time-varying inputs.

From the topology of the physical system being modelled, the bond graphs of
the discrete components are combined using 0 and 1 junctions, where 0 represents
a parallel connection, and 1 represents a series connection. For all components con-
nected by a 0 junction, all efforts are equal and all flows must sum to zero, taking
into account the direction assigned to the half-arrows. For all components connected
by a 1 junction, all flows are equal and all efforts sum to zero. Thus, the 0 and 1
junctions provide the topological equations for a given system.

By combining the topological equations with the constitutive equations, one has
a necessary and sufficient set of equations to generate a complete system model. The
bond graph approach is unified, since it can easily handle multidisciplinary applica-
tions, and very systematic. Thus, it is quite amenable to computer implementation
and several computer programs have been developed using bond graph theory as
their basis.

Full details of bond graph theory may be found in [5], [12], and [14]. In the
following, the application of bond graph theory to the four examples is presented
and discussed.
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3.1.1 Bond Graph Model of Microphone

Shown in Figure 7 is a bond graph representation of the condenser microphone
shown in Figure 1. A single bond graph provides a unified representation of the elec-
trical and mechanical domains making up this multidisciplinary application. Note the
use of the colon (:) notation in the figure to show the parameters associated with a
generalized component model. Also, the effort and flow variables are shown explic-
itly for some of the bonds, with effort above the bond and the flow variable below.
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Fig. 7. Bond graph model of condenser microphone

The electrical circuit is modelled on the left using a resistance (R1), capacitance
(C2), an inertia (L3), and an effort source for the voltage driver (E4). These four elec-
trical components are connected in series, i.e. by a 1 junction. The assigned power
flow directions are consistent with those shown in Table 1.

The mechanical subsystem is modelled on the right using a resistance for the
damper (d7), a capacitance for the spring (k6), an inertia for the mass (m5), and an
effort source for the weight. The components in the physical system are connected in
parallel; however, we are using the conventional force-effort analogy which requires
that the bond graph components be connected by a series 1 junction. This is some-
what counter-intuitive, but it is needed to obtain the correct topological equations for
the force-effort analogy. Using the force-flow analogy, parallel and series mechanical
connections would be represented by parallel 0 and series 1 junctions, respectively.
Regardless of whether one uses a force-effort or force-flow analogy, the bond graph
does not bear much resemblance to the physical system.

The bond graphs for the mechanical and electrical domains are explicitly coupled
by the capacitance element. In this case, the moving-plate capacitor is modelled as
a “C-field” two-port component with the mechanical effort e2 = F2 and electrical
flow f2 = i2 defined by the constitutive equations (1) and (2), respectively.

The system equations are derived very systematically from the bond graph. One
starts with the topological equations for efforts from the 1 junctions:

v4 − v1 − v3 − v2 = 0 (12)

F2 + F5 + F6 + F7 − Fg = 0 (13)
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where vi and Fi is the voltage or force for component i, and Fg is the weight. The
corresponding topological equations for flows are:

i1 = i3 = i4 = i2 (14)

ẋ2 = ẋ6 = ẋ7 = ẋg = ẋ5 = ẋ (15)

Combining the topological equations (12-15) with the constitutive equations for
components, and re-arranging, one obtains:

C ′
2ẋ

(
−R1i2 − L3

di2
dt

+ E4(t)
)

+ C2

(
−R1

di2
dt

− L3
d2i2
dt2

+ Ė4

)
= i2 (16)

m5ẍ+ d7ẋ+ k6x+m5g =
1
2
C ′

2

(
−R1i2 − L3

di2
dt

+ E4(t)
)2

(17)

where C ′
2 ≡ dC2(x)

dx . These two ODEs are equivalent to those derived by hand in
[17], and can be solved for the capacitor current i2(t) and plate separation x(t).

3.1.2 Bond Graph Model of Inverted Double Pendulum

When one switches from one-dimensional systems to multi-dimensional mechanical
systems, the bond graph representation becomes considerably more complex. Con-
sider the bond graph model of the inverted double pendulum, taken from [5] and
shown in Figure 8. This bond graph requires some explanation since it bears little
resemblance to the physical system in Figure 2.

The bond graph model consists mainly of one-port elements, plus two multi-port
modulated transformers (MTFs). Although the system has only 3 degrees of freedom,
it is modelled by 7 absolute speeds: ẋ for the sliding mass, and ẋ, ẏ, θ̇ for each of the
two links. Associated with each of these speeds is an inertia in the bond graph, e.g.
the moment of inertia J1 corresponding to θ̇1. Note that θ1 = β6, the coordinate for
the first revolute joint in Figure 2, and θ2 = β6 + β7. Gravity and the applied force
F are modelled as effort sources in the −y and x directions, respectively.

Clearly, there are a lot of bonds making up the model of this relatively simple
mechanical system. This is due to the fact that bond graphs were designed to oper-
ate on scalar variables. Hence, there is one bond for each of the 7 absolute speeds.
One can combine the speeds associated with a given body into a single “multibond
graph” [31] to obtain a simpler graph representation. However, the speeds are still
represented by a column matrix of scalar variables, and not as a frame-invariant ten-
sor, e.g. a Gibbs vector. Thus, the modeller must keep track of local reference frames
and introduce manually-derived rotation transformations into the graph, as needed.

Note also that there are no components to explicitly represent the joints that con-
nect the rigid bodies and constrain their absolute speeds. Thus, the 4 kinematic con-
straint equations (3) that express the interdependency of the 7 absolute coordinates
must also be derived manually, with 2 equations obtained from each revolute joint.

The constraint forces that arise in the joints are converted into their correspond-
ing Lagrange multipliers by the modulated transformers. Thus, these MTF elements
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Fig. 8. Bond graph model of inverted double pendulum [5]

represent the rows of the Jacobian matrices (transposed) from equation (4); the top
MTF in the bond graph corresponds to the Jacobian of the two kinematic constraints
from the lower revolute joint in Figure 2, while the bottom MTF represents the Jaco-
bian of the two constraint equations from the upper revolute joint.

Bond graphs were designed to operate on speeds, so that power is obtained from
the product of efforts and flows. However, multibody system equations are gener-
ally expressed in terms of displacements, which are needed to calculate kinematic
constraint equations, their Jacobians, and kinematic transformations between frames.
These displacements are not represented as effort or flow variables in the bond graph,
and must be obtained from numerical integration of the absolute speeds.

The use of absolute coordinates results in large systems of DAEs corresponding
to equations (3) and (4). To avoid having to solve DAEs, resistance and capacitance
elements are added to the bond graph to model damping and stiffness in the joints
[33]. The translational speeds δ̇ across the joint, which are zero for an ideal joint
model, are the complementary variables to the Lagrange multipliers. By modelling
the joints in this fashion, the constraint equations are only needed to compute the
Jacobians for the MTF elements, and the DAEs are converted to stiff ODEs. For the
inverted double pendulum modelled with 7 absolute speeds, the 11 DAEs are reduced
to 7 ODEs. Numerical integration of the latter may require special solvers for stiff
systems, and will not guarantee that the 4 constraint equations are satisfied.
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Tiernego and Bos [31] use multibond graphs to analyze the dynamics of open-
loop multibody systems and, by applying well-known velocity transformations from
absolute speeds to joint speeds [18], they are able to generate a minimal set of ODEs
corresponding to equation (5). However, their procedure cannot handle the closed
kinematic chains that typically arise in mechanical systems, and it seems that much
of their analysis (e.g. derivation of velocity transformations) must also be performed
manually before the bond graph is constructed.

Favre and Scavarda [15] present an extension of the work by Tiernego and Bos
to systems with closed kinematic chains, but it seems that manual derivations of
kinematic transformations are still required (no equations are presented for their two
examples). The current state of bond graph modelling of multibody systems is best
summarized by Karnopp et al [5]: “It is true that low-order, linear systems can be
simulated with virtually no effort from the user. But complex nonlinear systems do
require significant user input”.

3.1.3 Bond Graph Model of Robot

Consider the bond graph representation, shown in Figure 9, of the two-link PD-
controlled robot manipulator from Figure 4. The bond graph is quite complex, mak-
ing it difficult to interpret, but it does constitute a single unified representation of this
multidisciplinary application.
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The two DC-motors are modelled on the left of the bond graph. The applied volt-
age (coming from the PD-controller) is represented as an effort source, while the I
and R elements correspond to the armature inductances and resistances, respectively.
These elements are connected in series (1 junction) with a gyrator (GY), that couples
the electrical domain to the mechanical domain. Substituting the component equa-
tions into the sum of efforts for the 1 junction gives the constitutive equation (6) for
the DC-motor model.

The mechanical portion of this bond graph is somewhat different from that shown
in Figure 8 for the inverted double pendulum. The mechanical subsystem is still
represented by absolute speeds, with inertias corresponding to each of these 6 speeds.
The joints are again modelled by stiffness (C) elements, but damping across the
joint is not included. The modulated transformers are now used to convert between
the Cartesian ẋ, ẏ speeds and the absolute rotational speeds θ̇1 and θ̇2, i.e. velocity
transformations. These transformations are manually derived and shown in the bond
graph as parameters for the MTF two-port elements. The absolute rotational speeds
are easily converted into joint angular speeds using 0 and 1 junctions. The rotational
damping in the DC motor, seen in equation (7), is modelled by a resistance acting on
the joint speed.
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Fig. 10. Angular displacement of first joint versus time

To evaluate the performance of the PD-controller, the dynamic response of the
robot is simulated by numerically integrating the 6 ODEs for the absolute coordi-
nates. This was accomplished using the commercial software package 20-sim2, with
which the system equations can be generated from the bond graph model and nu-
merically integrated. The 20-sim results for the angular displacement and speed of
the first joint are shown in Figures 10 and 11, respectively. Also shown are the re-

2 www.20sim.com
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sults from two other software packages: DynaFlex, based on linear graph theory, and
Robotran/Electran [13, 16], based on the virtual work principle and Kirchoff’s laws.
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Fig. 11. Angular speed of first joint versus time

Because the robot is started from rest and immediately commanded to move at
a constant speed of 90/4 deg/s (0.39 rad/s), large voltages are supplied by the PD
controller to accelerate the system. This sets up an oscillation in the system response
that is still evident at the end of the simulation. The plot of joint speed shows that
the response is slowly converging to 0.39 rad/s, and that the bond graph results from
20-sim are in good agreement with those from the two other programs. However,
additional high-frequency oscillations are visible in 20-sim velocity plot, resulting
from the use of stiff springs to model the revolute joints. In contrast, the Electran
and DynaFlex programs make direct use of rigid joint models, and their responses
do not exhibit this high-frequency oscillation. As a result, they are able to simulate
this problem faster than 20-sim.

3.1.4 Bond Graph Model of Gate System

Shown in Figure 12 is a bond graph model, created by Sass et al [27], of the 3-phase
induction motor used to actuate the parking gate system in Figure 5. The induc-
tive effects and the electromechanical coupling are modelled by a mixed IC-field for
which the corresponding inductance matrices Ls, Lr, and M are defined by equa-
tions (9) and (11). The star-star connection shown in Figure 6 is modelled by the two
0 junctions that force the sum of the three currents to be zero. This star-star connec-
tion results in two constraints that can be seen in the bond graph as two derivative
causalities for the I part of the IC-field.
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Fig. 12. Bond graph model of 3-phase actuator

A multibond graph of the 6-bar mechanism is shown in Figure 13. Using the
approach of Favre and Scavarda [15] for this mechanism, every vector is assumed
to be resolved in the inertial reference frame, and the center of mass is taken as the
point of reference for each body. Thus, the bond graph takes the shape of a diamond
for each body, as can be seen in the figure. This bond graph contains 5 moving bodies
(for simplicity, the flexible beam is not shown in the graph) and the loop constraints
are imposed by means of the zero-velocity flow source (Sf = 0). This method for
opening and closing kinematic chains is only valid for revolute joints connected to
the ground. Closing the loops elsewhere would require the manual calculation of the
relative velocities of the two points connected by the revolute joint. Other joint types,
e.g. prismatic or universal, would be even more problematic.
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Fig. 13. Bond graph model of parking gate mechanism

One can see that the causality assignment and derivation of equations is not
straightforward for a multidisciplinary system of this complexity. Furthermore, the
manual derivation of kinematic transformations is very tedious for a system con-
taining several bodies, especially if some of them are flexible. As a result of these
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difficulties, a numerical simulation of the system response using bond graphs and the
20-sim software was abandoned.

3.2 Linear Graph Theory

Linear graph theory is a branch of mathematics devoted to the study of system topol-
ogy. It has been combined with the characteristics of physical components to ob-
tain a unified systems theory for modelling multidisciplinary applications. The term
“graph-theoretic modelling” (GTM) is often used to denote this systems theory. In
a nutshell, a system model is obtained by combining topological relationships from
linear graph theory with the constitutive equations for individual components. This
systems theory is very methodical and well-suited to computer implementation.

To model a physical system, individual components are identified and their con-
stitutive equations are determined. In general, these constitutive relationships are ob-
tained from experimental measurements of the component’s “through” and “across”
variables; through variables (τ ) are measured by an instrument in series with the
component, while across variables (α) are obtained from an instrument in parallel.
For electrical systems, the through and across variables are current and voltage, re-
spectively. For mechanical systems, force and displacement (or its derivatives) play
the role of through and across variables, respectively. Note that through and across
variables may be tensors of any order, including scalars and vectors.

One can see that the through and across variables correspond (approximately)
to the flow and effort variables, respectively, from bond graph theory. However, the
definition of through and across variables as experimental measurements naturally
results in the force-flow analogy for mechanical systems. Furthermore, mechanical
displacements are represented explicitly, and not as numerical integrals of velocities.
Finally, the GTM approach is not restricted to scalar variables.

Once the constitutive equations are determined, the component models are com-
bined in the topology defined by the structure of the physical system. A linear graph,
consisting of lines (edges) and circles (nodes or vertices), is used to represent the sys-
tem topology. The edges represent the individual components, whereas nodes repre-
sent the points of their interconnection. From this graph, linear topological equations
are systematically obtained in terms of the through and across variables for all com-
ponents. The system model is simply the combination of these topological equations
with the individual constitutive equations.

Graph-theoretic modelling has been applied to a wide variety of disciplines and
multidisciplinary applications, including electrical and mechanical systems [6, 10],
electromechanical multibody systems [28], and electrohydraulic multibody systems
[25]. The essential features of graph-theoretic modelling are presented in the follow-
ing by means of the four example problems.

3.2.1 Linear Graph Model of Microphone

For the condenser microphone from Figure 1, a linear graph representation is shown
in Figure 14. Edges R1, C2, L3, and E4 represent the resistor, capacitor, inductor,
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and voltage source, respectively. Note that the linear graph resembles the physical
system, which is an advantage when it comes to modelling using this approach. Di-
rections are assigned to each edge to establish a positive convention for measuring
the through and across variables, similar to setting the polarity on a measuring in-
strument. The constitutive equations for electrical components are expressed in terms
of the scalar variables, current (i) and voltage (v). For the purpose of this example,
we assume standard linear relationships for these components, e.g. v1 = R1i1 and
v3 = L3

di3
dt , but the constitutive equations may be highly nonlinear in general.
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Fig. 14. Linear graph model of condenser microphone

Also shown in Figure 14 is the linear graph of the mechanical part of the con-
denser microphone. The edge m5 represents the inertia and weight of the moving
mass; the edge begins at a ground-fixed (inertial) reference node and terminates at
the center of mass. Its constitutive equation is given by the combination of gravity
with the d’Alembert form of Newton’s Second Law: F5 = m5g − m5a5, where
the vector force F5 depends on gravity g = −gı̂, the vector acceleration a5 = ẍ ı̂,
and the upwards unit vector ı̂ (parallel to x). The edge F6 represents the combined
effects of the spring and damper components (these could easily be split into sepa-
rate edges for the spring and damper, if desired). Its vector constitutive equation is
F6 = −k6(|r6| − l6)r̂6 − d7(v6 · r̂6)r̂6, where l6 is the undeformed spring length,
k6 and d7 are the stiffness and damping coefficients, v6 is the relative velocity of
the endpoints, and r̂6 = r6/|r6| is the unit vector parallel to the component. Finally,
the edge r0 locates the point where the spring-damper is attached to the ground:
r0 = l0 ı̂.

Note that the graph consists of two parts, one for each physical domain. This
is always the case for linear graph models of multidisciplinary applications. The
parts of the graph are not coupled explicitly, but by the constitutive equations for
transducer components, which have an edge in each of the coupled domains. In this
example, the electrical and mechanical domains are coupled by the moving-plate
capacitor, which is characterized by two constitutive equations: the scalar equation
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(2) for the electrical edge and the vector equation F2 = −F2ı̂ for the mechanical
domain, where the attractive force F2 is defined by equation (1) and acts in the −X
direction.

For each of the two parts of the linear graph, mechanical and electrical, we can
generate sets of topological equations that relate the through and across variables.
This can be done manually by inspection of the graph, or by applying matrix opera-
tions to an “incidence matrix” that encapsulates the topology of the physical system.
For a linear graph with e edges and v vertices, entry Ijk of the e×v incidence matrix
I is [0, -1, or +1] if edge k is [not incident upon, incident and away from, or incident
and towards] the vertex j.

The Vertex Postulate [6] then allows us to write:

I τ = 0 (18)

where τ is the column matrix of through variables for all edges. For electrical sys-
tems, the Vertex Postulate reduces to Kirchoff’s Current Law at every node. For me-
chanical systems, the Vertex Postulate gives v equations for dynamic equilibrium.

Starting from the Vertex Postulate, two very useful sets of topological equations,
the “cutset” and “circuit” equations, can be systematically derived by selecting a tree
and applying elementary matrix operations to I. For electrical networks, the circuit
equations correspond to Kirchoff’s Voltage Law around a closed circuit, while the
cutset equations are linear combinations of the vertex equations for all the nodes in
a given subgraph.

A tree is a set of v − 1 edges (“branches”) that connects all of the vertices but
does not contain any closed loops. A very attractive feature of linear graph theory
is that by selecting a tree, one can control the primary variables appearing in the
final system: they are the across variables αb for branch elements, and the through
variables τ c for cotree elements (“chords”). This is accomplished by:

• re-writing the cutset equations as the chord transformations τ b = −Acτ c, where
τ b are the branch through variables and Ac is obtained from elementary row
operations on I

• by re-writing the circuit equations as the branch transformations αc = −Bbαb,
where αc are the cotree across variables

The Principle of Orthogonality, which represents a very generalized energy conser-
vation principle, guarantees that Bb = −AT

c .
By selecting edges R1, L3, and E4 into the tree for the electrical sub-graph in

Figure 14, one gets the chord transformations:⎧⎨⎩
i1
i3
i4

⎫⎬⎭ =

⎡⎣ 1
1
−1

⎤⎦ i2 (19)

and the single branch transformation:

v2 = −

⎡⎣ 1
1
−1

⎤⎦T ⎧⎨⎩
v1
v3
v4

⎫⎬⎭ (20)
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Assuming that there is one constitutive equation for each of the v elements, sub-
stituting the branch and chord transformations into these constitutive equations will
result in v system equations in terms of the v primary variables.

It is possible to reduce the equations to an even smaller set by exploiting the
linear nature of the electrical constitutive equations. One approach is to generate
one equation for each capacitor and inductor, and to use the remaining constitutive
equations and branch/chord transformations to express all other variables in terms of
the capacitor voltages and inductor currents. This approach was successfully imple-
mented by Muegge [7]. For the electrical portion of the linear graph shown in Figure
14, one would get two first-order ODEs in terms of v2 and i3.

Another approach is to express all variables in terms of the currents associated
with chords, or the voltages associated with branches. The former is called the cur-
rent formulation, while the latter is named the voltage formulation; both were imple-
mented in the Maple symbolic programming language by Scherrer and McPhee [28].
By selecting the tree appropriately, one can significantly reduce the final number of
system equations.

For the example shown in Figure 14 with the capacitor C2 selected into the
cotree, the current formulation will give a single second-order ODE in terms of the
corresponding current i2.

This is accomplished by substituting the chord transformations in (19) into the
constitutive equations for the branches, giving:

v1 = R1i2

v3 = L3
di2
dt

v4 = E4(t)

where E4(t) is the prescribed voltage source. Substituting these constitutive equa-
tions into the branch transformation (20) gives:

v2 = −R1i2 − L3
di2
dt

+ E4(t) (21)

which expresses the capacitor voltage in terms of its current. Substituting this equa-
tion into the electrical constitutive equation (2), the single ODE for the electrical
domain is obtained:

C ′
2ẋ

(
−R1i2 − L3

di2
dt

+ E4(t)
)

+C2
d

dt

(
−R1i2 − L3

di2
dt

+ E4(t)
)

= i2 (22)

where C ′
2 ≡ dC2/dx and the primary electrical variable is the cotree current i2.

For the mechanical domain, the fixed vector r0 and mass m5 are selected into the
tree shown as bold edges in Figure 14, resulting in only one primary across variable
r5 = x. This is an independent coordinate for the 1-dof mechanical subsystem, and a
single dynamic equation is obtained from the cutset equation for the mass, projected
onto its motion space defined by ı̂:

(F5 + F2 − F6 = 0) · ı̂ (23)
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Substituting the mechanical constitutive equations into this expression, evaluating,
and re-arranging,

−m5ẍ−m5g +
1
2
dC2

dx
v2
2 + d7ẋ6 + k6(x6 − l6) = 0 (24)

Assuming that the spring is unstretched at x = 0, which implies that l6 = r0,
one gets the branch transformations:

x2 = x

x6 = r0 − x, ẋ6 = −ẋ

which shows that the spring-damper shortens as x increases. Substituting these
branch transformations and the capacitor voltage (21) into equation (24), one gets
the single ODE for the mechanical domain:

m5ẍ+ d7ẋ+ k6x+m5g =
1
2
dC2

dx

(
−R1i2 − L3

di2
dt

+ E4(t)
)2

(25)

Together, equations (22) and (25) can be solved for the primary variables i2(t)
and x(t). Equations (22) and (25) are equivalent to those derived by hand in [17].

3.2.2 Linear Graph Model of Inverted Double Pendulum

The same basic concepts apply when one models a multi-dimensional mechanical
(multibody) system using linear graph theory: the system model is obtained by com-
bining the constitutive equations for individual components with the linear cutset
and circuit equations resulting from their connectivity. Again, the selection of a tree
determines the primary variables appearing in the system equations. The cutset and
circuit equations retain a simple form because linear graph theory allows the use
of vector modelling variables. However, the constitutive equations for some compo-
nents will be nonlinear due to the finite rotations of bodies in the system. Further-
more, the physical interpretation of nodes and edges must be generalized.

To illustrate, consider the inverted double pendulum shown in Figure 2, and its
linear graph representation in Figure 15. For the sake of clarity, the three bodies are
superimposed on the graph with dashed lines. One can see that the topology of the
physical system is closely mirrored by the structure of the linear graph.

Each node in the linear graph represents the position and orientation of a body-
fixed reference frame, while the edges represent transformations between frames
corresponding to physical components. For each element, there are now two sets of
through and across variables: translational and rotational. Thus, there will be two
sets of cutset and circuit equations, since these variables cannot be added together.
Although the incidence matrix is the same for each, selecting different trees can be
used to create different cutset and circuit equations for translation and rotation. This
can be used to reduce the system equations to a set that is smaller in number than
those generated by conventional multibody formalisms [23].
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Fig. 15. Linear graph model of inverted double pendulum

In Figure 15, the edges m1, m2, and m3 represent both the translational and
rotational inertia of the three rigid bodies (slider and two links). These bodies are
connected by the revolute joints h6 and h7, and by the prismatic joint s8 between
the slider and the ground. The “rigid arm” elements r4 and r5 define the position
and orientation, relative to the center of mass frames on the bodies, of the body-fixed
frames that define the connection points of these joints. Finally, the external force
on the slider is modelled by the force element F9, originating at the inertial frame
(node) and terminating at the slider.

The constitutive equations for the multi-dimensional translation of rigid bodies
(and spring-dampers) are the same as that shown in the previous section. However,
a second equation relates the d’Alembert torque on the body to its rotational inertia.
This equation corresponds to Euler’s equations for rotational motion.

For the rigid-arm elements, e.g. r4, the tip node does not rotate relative to the tail
(center of mass) node; hence, the angular velocity (e.g. ω4) is zero. However, the
translational velocity of the rigid-arm is a nonlinear function of the angular velocity
of the body on which it resides, e.g. v4 = ω1 × r4, which is a well-known result
from rigid body kinematics. For the ideal joints, one always finds that the motion
allowed by a joint, e.g. r8 = xı̂ where r8 is the translational displacement of the
slider along X , is orthogonal to the reaction forces and torques that arise in the joint,
e.g. F8 = F8 ĵ and T8 = T8k̂ where ĵ and k̂ are unit vectors parallel to Y and Z,
respectively. This is a result of the fact that ideal joints do no work, and can be used
to eliminate joint reactions in the system dynamic equations.

The topological equations remain linear regardless of the nonlinearities in the
constitutive equations. Furthermore, the selection of trees can again be used to de-
fine the primary variables q and λ in the final system equations, where the “branch
coordinates” q are the unknown across variables for elements (branches) in the tree.

By selecting into the tree those components with known across variables, i.e. r4
and r5, the number n of branch coordinates (and system equations) is reduced. If the
tree is completed by m1, m2, and m3, then the final equations are in terms of the
absolute coordinates for the three bodies. In that case, the system equations take the
form of the DAEs (3) and (4).

If joints h6, h7, and s8 are selected into the tree in place of m1, m2, and m3,
then one obtains equations in the joint coordinates β6, β7, and x; for this open-loop
system, the governing equations would then take the form of the ODEs shown in
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(5). Thus, linear graph theory provides a unification of traditional absolute and joint
coordinate formulations.

Any joints left in the cotree, e.g. h6 in the absolute coordinate formulation, will
provide the reaction loads appearing in the Lagrange multipliers λ. Furthermore,
these cotree joints will also provide one kinematic constraint equation for each re-
action load. These m constraint equations (3) express the relationships between the
branch coordinates, which will not be independent if there are joints in the cotree;
this is always the case for a system with closed kinematic chains. These constraint
equations are always found by projecting the circuit equations for the cotree joints
onto their reaction spaces.

To demonstrate, consider a mixed-coordinate formulation that results from se-
lecting m1, m2, r4, r5, and s8 into the tree for Figure 15. The corresponding branch
coordinates q = [x1, y1, θ1, x2, y2, θ2, x]T are identical to those used in the previous
bond graph model of this system. (Note that the joint speed ẋ is the same as the ab-
solute speed used in the bond graph model, which neglected the other two absolute
speeds for the sliding mass in an ad hoc manner). The two revolute joints left in the
cotree, h6 and h7, each provide 2 Lagrange multipliers and 2 constraint equations to
the system DAEs, for a total of m = 4 constraints. For example, one can generate
the translational circuit equation for joint h6:

r1 + r4 − r6 − r8 = 0 (26)

where r6 = 0 and r8 = xı̂ from the constitutive equations for revolute and prismatic
joints, respectively. For the rigid body, r1 = x1ı̂ + y1ĵ, and r4 = −l1 sin θ1ı̂ −
l1 cos θ1ĵ for the body-fixed vector.

Note that the circuit equations represent the zero summation of displacement
vectors around a closed kinematic chain. The reaction space for h6 is spanned by unit
vectors ı̂ and ĵ, since the revolute joint prevents translations along these two axes (but
allows rotation along k̂, which defines the joint motion space). Projecting the vector
circuit equation (26) onto these two unit vectors, and substituting all constitutive
equations, results in the kinematic constraint equations:

x1 − l1 sin θ1 − x = 0 (27)

y1 − l1 cos θ1 = 0 (28)

which are easily verified by hand. These equations, which are very systematically
generated in terms of q, correspond to two of the four rows in the constraint equations
(3) for this example. The other two equations are obtained in exactly the same manner
from the cotree joint h7.

To obtain the dynamic equations of the system, the cutset equations for each
branch are projected onto the motion space for that branch. This is why, in the pre-
vious example, the cutset equation for the capacitor mass m5 was projected onto the
unit vector ı̂ defining its motion space.

Note that one can also generate the dynamic equations by combining linear graph
theory with analytical mechanics, e.g. the principle of virtual work. This approach
is very useful for incorporating flexible bodies into the multibody system model
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[30]. It has been implemented using the Maple symbolic programming language
into a multibody dynamics program called DynaFlex3, which can reduce the DAEs
to ODEs by means of symbolic coordinate partitioning. DynaFlex can be also be
used to model electromechanical multibody systems, as shown in the next section.

3.2.3 Linear Graph Model of Robot

For the PD-controlled robot manipulator in Figure 4, the linear graph representation
is shown in Figure 16.
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Fig. 16. Linear graph model of robot manipulator

The mechanical subgraph is obtained by applying the systematic procedure de-
scribed in the previous section:

• one node is added for each body-fixed reference frame, e.g. a center of mass
frame, joint connection point, or force application point;

• these nodes are connected by edges corresponding to different physical compo-
nents (rigid body m, revolute joint h, rigid arm r).

In a similar manner, the electrical subgraph is directly obtained by drawing an edge
for each physical component in the electrical circuit, on a one-to-one basis (e.g. volt-
age source V ). As described previously, the two physical domains are coupled by
the DC-motor transducer elements (M ), which have an edge associated with each
domain. The constitutive equations for the electrical and mechanical edges are de-
fined by equations (6) and (7), respectively.

Note that many of the contributing terms in these transducer constitutive equa-
tions could be modelled by separate elements in the electrical and mechanical sub-
graphs, as was done in the bond graph model; here, they are combined into this
“subsystem” representation of the DC-motor, for modelling convenience [29].

3 http://real.uwaterloo.ca/∼dynaflex/
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To generate a minimal set of system equations, all rigid arms and revolute joints
were selected into the tree of the mechanical subgraph. For the electrical subsystem,
the voltage sources were selected into the tree and a current formulation was applied.
The system equations were automatically generated in symbolic form by DynaFlex;
these ODEs are explicit functions of the joint angles θ1 and θ1−2 and the two motor
currents i7 and i8. These 4 ODEs were exported to Matlab and solved using a stan-
dard numerical integrator. As shown in Figures 10 and 11, the DynaFlex results are
in exact agreement with those from the independent software package Electran.

3.2.4 Linear Graph Model of Gate System

Figure 17 depicts the linear graph representation of the parking gate system shown
in Figures 5 and 6. The mechanical subgraph consists of components discussed in
previous sections, plus three new components: a weld joint (w), a flexible body (fb),
and an induction motor (im). The weld joint, as its name suggests, simply locks two
reference frames together.
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Fig. 17. Linear graph model of parking gate

The flexible body element represents the flexible parking barrier. Details regard-
ing the constitutive equations for the flexible body can be found in [30]. To summa-
rize, a Rayleigh beam model is used in conjunction with polynomial shape functions
that represent the axial and torsional deformations, as well as bending about two
lateral axes.

For this planar mechanism, only the in-plane bending was considered; 5 elastic
variables were used to model this bending deflection. The value of 5 was obtained by
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progressively adding more deformation variables until the simulation results con-
verged. It was also found that including axial deformations in the flexible beam
model had no effect on the simulation results.

The mechanical domain is coupled to the electrical domain by the induction mo-
tor. The constitutive equation for the mechanical edge (im29) of this transducer is
defined by equation (8).

The graph for the electrical domain is almost identical to the circuit shown in
Figure 6, the only difference being that the inductors have been replaced by mutual
inductance components. Note that the induction motor transducer has multiple edges
in the electrical subgraph. The constitutive equation for each one of these MI edges
is defined by equation (10).

By selecting an appropriate tree (shown in bold in Figure 17) and using a current
formulation, DynaFlex was used to generate 14 ordinary differential equations in
symbolic form: 5 for the rigid multibody system in terms of joint coordinates β20 −
β24, 5 for the deformation variables of the beam, and 4 for the electrical system in
terms of the cotree resistor currents i5, i6, i8 and i9. These ODEs were exported to
Matlab and solved by a standard numerical integrator.
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Fig. 18. Angular displacement of input link

Shown in Figures 18 and 19 are the numerical results from DynaFlex and Elec-
tran for the angular displacement of the input link and the current through a rotor
inductor, respectively. The plots on the right of these figures are over a shorter time
scale, in order to show the slight differences between the DynaFlex and Electran re-
sults that are not visible in the plots on the left. These results have been obtained
using a 1:53 gear ratio between the motor and the 6-bar mechanism.

The results from the two software packages are nearly identical, with only slight
differences in the currents. There are two possible sources of this difference:

• DynaFlex uses a Rayleigh beam model, while the Electran results were generated
with a flexible beam model that consisted of several rigid bodies connected by
rotational springs.
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Fig. 19. Current through rotor inductor Lr2 (MI15)

• the Electran results were generated with a different set of joint coordinates than
those used by DynaFlex.

Note that the input link rotor oscillations shown in Figure 18 are damped. The only
dissipative elements in this model are the electrical resistance; changing the resis-
tance value has an effect on the damping of these mechanical oscillations. This illus-
trates the tight interaction between the electrical and mechanical subsystems in this
multidisciplinary application.

4 Conclusions

The two most prominent unified theories for modelling multidisciplinary systems —
linear graph theory and bond graph theory — have been examined in detail. Although
similar in their decomposition of a system into a collection of discrete component
models that are combined using topological equations, they are quite different in
their graphical representation, the variables that they use, and the range of problems
for which they are suited.

A bond graph model provides a single, unified representation of a multidisci-
plinary application, in which the coupling between physical domains is represented
explicitly by a transducer element in the graph. Associated with each element are ef-
fort and flow variables, the product of which is the power flowing through the graph.
Bond graphs are very powerful for modelling systems governed by scalar variables,
e.g. electrical networks and 1-dimensional mechanical systems, and a number of
software packages are available for simulating bond graph models. However, they
were not designed to use tensor variables or mechanical displacements, and are there-
fore not very well-suited to the modelling of planar or spatial mechanical systems.
Furthermore, the popular use of the force-effort analogy leads to a discrepancy be-
tween the multibody system topology and the junctions used to model this topology,
the use of absolute coordinates in bond graph models leads to relatively large systems
of DAEs, and systems with several bodies require many tedious manual calculations
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of kinematic transformations. Further research is needed to address these issues in
bond graph modelling of multibody systems.

A linear graph model also provides a single, unified representation of a multidis-
ciplinary application. However, the coupling between domains is not as evident in the
graph, which consists of separate parts for each domain; this coupling is embedded in
the constitutive equations for transducer elements, which have an edge in each of the
two connected domains. Graph-theoretic modelling is supported by very few soft-
ware products, but it is very well-suited to the modelling of multi-dimensional mul-
tidisciplinary applications. This can be attributed to the use of mechanical displace-
ments as across variables, the ability to use tensors as through and across variables,
and the existence of models for a variety of mechanical joints and rigid or flexible
bodies. A unique and powerful feature of a graph-theoretic model is that, by select-
ing a tree, one can control the variables that appear in the final system equations.
For multibody systems, these variables can include absolute or joint coordinates, or
some combination of the two.
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20. Kübler R, Schiehlen W (2000) Modular Simulation in Multibody System Dynamics.
Multibody Sys Dyn 4:107–127

21. Lovekin D, Heppler G, McPhee J (2000) Design and Analysis of a Facility for Free-
floating Flexible Manipulators. Trans CSME 24(2):375–390

22. Maisser P, Enge O, Freudenberg H, Kielau G (1997) Electromechanical Interactions in
Multibody Systems Containing Electromechanical Drives. Multibody Sys Dyn 1:281–
302

23. McPhee J (1998) Automatic Generation of Motion Equations for Planar Mechanical Sys-
tems Using the New Set of ”Branch Co-ordinates”. Mech Mach Theory 33(6):805–823

24. McPhee J (1996) On the use of linear graph theory in multibody system dynamics. Nonlin
Dyn 9:73–90

25. Papadopoulos E, Gonthier Y (2002) On the Development of a Real-Time Simulator En-
gine for a Hydraulic Forestry Machine. Int Journal Fluid Power 3(1):55–65

26. Perelson A, Oster G (1976) Bond Graphs and Linear Graphs. J Frank Inst 302(2):159–
185

27. Sass L, McPhee J, Schimitke C, Fisette P, Grenier D (2004) A Comparison of Differ-
ent Methods for Modelling Electromechanical Multibody Systems. Multibody Sys Dyn
12(3):209–250

28. Scherrer M, McPhee J (2003) Dynamic Modelling of Electromechanical Multibody Sys-
tems. Multibody Sys Dyn 9:87-115

29. Schmitke C, McPhee J (2003) A Procedure for Modeling Multibody Systems Using Sub-
system Models. Int J Multiscale Comp Eng 1(2):139-159

30. Shi P, McPhee J (2000) Dynamics of Flexible Multibody Systems Using Virtual Work
and Linear Graph Theory. Multibody Sys Dyn 4:355–381

31. Tiernego M, Bos A (1985) Modelling the Dynamics and Kinematics of Mechanical Sys-
tems With Multibond Graphs. J Frank Inst 319(1/2):37–50

32. Trent H (1955) Isomorphisms between linear graphs and lumped physical systems. J
Acoust Soc Am 27:500–527

33. Zeid A, Chung C-H (1992) Bond Graph Modeling of Multibody Systems: A Library of
Three-Dimensional Joints. J Frank Inst 329(4):605–636



A Biomechanical Multibody Model with a Detailed 

Locomotion Muscle Apparatus 

Jorge A.C. Ambrósio and Miguel P.T. Silva 

Institute of Mechanical Engineering, Instituto Superior Técnico 
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal 
{jorge,pcms}@dem.ist.utl.pt

The ability of the animals to repeat the same movement or posture by recruiting 
different muscles or by using different muscle activation patterns is well known.  
From the mathematical point of view the solution of this problem and consequent 
determination of the recruited set of muscles and associated forces involves the so-
lution of an optimization problem, in which the intrinsic objectives used by the 
central nervous system to recruit the referred set of muscles are represented by 
means of proper physiological cost functions. The objective of this work is to pre-
sent a multibody dynamics based methodology to model the human body and the 
relevant features of the locomotion apparatus required for gait. For this purpose, a 
whole-body biomechanical model is used within the framework of an inverse dy-
namic analysis formulation with fully Cartesian coordinates, to calculate the indi-
vidual muscle forces in the locomotion apparatus, the net moments of force at the 
joints of the upper body and the joint reaction forces developed between the ana-
tomical segments of the biomechanical model when performing the specified task. 
Myoactuators representing the most relevant muscles of the locomotion apparatus 
are introduced using a Hill-type muscle model. Different cost functions are used to 
represent the objectives of the central nervous system when developing a particu-
lar task for the gait cycle. Sequential quadratic optimization tools are used to re-
solve the force-sharing problem arising from having a number of unknowns, asso-
ciated to the individual muscle forces, higher than the number of available 
equations of motion, representing the dynamics of the anatomical segments that 
represent the human body. The methodologies proposed here are applied to a 
normal cadence gait cycle. In the process the most suitable cost functions for the 
specific task under analysis are identified and the quality of the results produced 
for this type of indeterminate problems is discussed.

1 Introduction 

Biomechanical models based on multibody dynamics are used in a wide range of 
applications where the human motion is characterized by large displacements.  In 
fact almost all models used for impact biomechanics, in vehicle passive safety ap-
plications, in sports sciences or in gait analysis rely on the use of multibody dy-
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namics approaches to obtain the kinematics of the human body represented by the 
model, the reaction forces that develop between the different anatomical segments, 
the muscle forces that are required to develop specific motions or even to design 
protective equipment for sportsmen or for vehicle occupants or to devise new 
strategies for human-machine interaction. Among the possible applications of the 
biomechanical models this work focus on those used for the gait analysis empha-
sizing the requirements to construct them. 

The biomechanical models applied on the study of the human locomotion re-
quire that the major anatomical segments of the lower part of the human body are 
represented. The upper body may be represented by lumping some of the anatomi-
cal segments or by having a more or less detailed representation of the major seg-
ments. In any case, the multibody description of each segment requires that one or 
more rigid bodies are associated to it. The anatomical joints are represented either 
by kinematic joints or by contact joints in the multibody model, depending in the 
objectives of the analysis. The ligaments and other passive tissues required to pro-
vide stability or stiffness to the anatomical joints are typically represented as 
spring-damper elements with linear or nonlinear characteristics. The muscles of 
the locomotion apparatus need also to be represented in the models being possible 
to use different strategies to include them in the biomechanical model. In particu-
lar, the use of a detailed description of the muscles in the locomotion apparatus 
poses a problem known as ‘redundant problem in biomechanics’[1], which re-
quires the calculation of the redundant forces produced by the muscle apparatus. 
Finally, the use of multibody biomechanical models for gait analysis also requires 
a comprehensive description of the contact between the different segments of the 
models and external objects, such as the ground. 

It is the purpose of this work to present a multibody based methodology that 
together with the use of optimization procedures, allows for the calculation of the 
redundant muscle forces, generated in a particular muscle apparatus of the human 
body. The proposed methodology uses a multibody formulation with natural coor-
dinates where rigid bodies and kinematic joints are modeled using the Cartesian 
coordinates of a set of anatomical points and unit vectors [2,3]. Using this general-
purpose methodology, a whole body biomechanical model is constructed using 
rigid bodies interconnected by revolute and universal joints. The biofidelity of the 
model is improved using the subject’s anthropometric link lengths together with 
biomechanical information regarding the physical characteristics of the anatomical 
segments.  This information is collected from a general database and scaled for the 
subject dimensions and total body mass [4,5]. The motion of the subject is ac-
quired together with all the externally applied forces. 

Two different types of actuators are used to drive the biomechanical model 
through the acquired motion: joint actuators, that drive the degrees-of-freedom of 
the biomechanical model associated with joints that are not crossed by muscles, 
and muscle actuators that drive the degrees-of-freedom of the joints crossed by the 
muscles forming the muscle apparatus under analysis. It should be noted that 
when the aim of the analysis is to calculate exclusively reaction forces and net 
moments-of-force in a particular joint or set of joints, then only joint actuators 
need to be introduced and the solution to the inverse dynamics problem is unique 
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and non redundant [6]. When it is required to evaluate the muscle forces, muscle 
actuators need to be introduced, which represents a mechanical system with a re-
dundant nature, i.e., the system has more unknowns than equations. 

Optimization tools are used to resolve this indeterminate problem. These tools 
consider that muscle forces are generated according to the minimization of some 
performance criteria and that any optimal solution obtained for the muscle forces 
must satisfy the equations of motion of the biomechanical system. These perform-
ance criteria are analytical expressions that represent the decisions taken by the 
central nervous system when executing of the prescribed task. In the present work, 
the performance criteria used to calculate the muscle force generated during a 
normal cadence walking cycle are the sum of the average individual muscle stress 
raised to a power of three and the sum of the squares of the individual muscle 
force [7]. In particular, regarding the first performance criteria, some studies show 
that the minimization of the total muscle stresses is strongly related with the 
maximization of the muscle endurance [8]. 

To each muscle actuator a muscle model is associated that simulates its activa-
tion-contraction dynamics [9,10,11]. In the present work, a Hill type muscle 
model is applied, being the force produced by the muscle contractile element cal-
culated as a function of the muscle activation, maximum isometric peak force, 
muscle length and muscle rate of shortening. Using this constitutive law, the equa-
tions of motion of the biomechanical system and the performance criteria used in 
de optimization procedure are expressed in terms of muscle activations instead of 
muscle forces. For a detailed description of the methods used the interested reader 
is referred to the work presented in reference [11]. 

2 Multibody Formulation 

A multibody formulation, using natural or fully Cartesian coordinates, is applied 
to the study and analysis of the human body movement.  With this formulation, 
the rigid bodies are constructed by using the Cartesian coordinates of a set of 
points and unit vectors.  These points and unit vectors, usually located at the joints 
and extremities of the model anatomic components, are used not only to define the 
kinematic structure of the rigid bodies, but also, when shared by different rigid 
bodies, to define in natural way simple kinematic joints such as the spherical and 
revolute joint that represent hip and knee. 

A vector of generalized coordinates is constructed with the Cartesian coordi-
nates of the points and vectors used in the definition of the mechanical system [2]: 

1 2 3

T

nq q q qq  (1) 

where n=3(np+nv) is the total number of natural coordinates and np and nv are, 
respectively, the total number of points and unit vectors of the model. 
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2.1 Kinematic Constraints 

Rigid body constraints are the most common type since the number of natural co-
ordinates that defines a rigid body is always higher than the number of its degree-
of-freedom. Consequently, not all the coordinates are independent and some ki-
nematic constraint equations need to be added to express such dependences. Rigid 
body constraints represent physical properties of rigid bodies such as the constant 
distance between two points, the constant angle between two segments or the con-
stant length of a vector, which are shown as a scalar product given by: 

( ,1)
( , ) cos , ( ) 0

SP T

v ut L L tq v u v u (2)

where v and u are two generic vectors used in the definition of rigid bodies, Lv and 
Lu are the respective norms and <v,u>(t) is the angle between them.

Equation (2) is also applied to the definition of kinematic joints and driving 
constraints. In the case of driving constraints, used to prescribe the motion of the 
system over time, the angles are functions of time. Depending on vectors v and u,
Equation (2) has different physical meanings. Considering that ri, rj, rk and rl are 
the Cartesian coordinates of points i, j, k and l and that a and b are unit vectors, 
the most relevant kinematic constraints involving the scalar product and their re-
spective physical meanings are presented in Table 1. Note also that the most 
common kinematic constraints are obtained in this formulation either by scalar 
products or by sharing points and vectors between bodies. 

Table 1. Physical meanings of the scalar product constraint 

Constraint Description v u Lv Lu <v,u> Representation

Constant distance be-
tween points i and j. (rj-ri) (rj-ri) Lij Lij 0 i

j
Lij

Unit module vector. a a 1 1 0 a

Constant angle between 
unit vectors a and b.

a b 1 1 
a b

Constant angle between 
segment rij and unit vec-
tor a.

(rj-ri) a Lij 1 a
j

i

Constant angle between 
segments rij and rkl.

(rj-ri) (rl-rk) Lij Lkl

j

i
l

k

Rotational driver around 
revolute joint located in 
point i

(rj-ri) (rk-ri) Lij Lik =f(t) = f(t) 
i

  j 

k
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body 1 
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body n

Damper

Ball joint

Spring

Revolute joint

External forces

Fig. 1. General multibody system. 

The constraint equations associated with the mechanical system are assembled 
in a single vector and written as: 

( , )tq 0  (3) 

It should be noted that, not all the constraints assembled in vector  are independ-
ent. To prevent instabilities, numerical methods capable of dealing with redundant 
constraints are used in the solution of the kinematic and dynamic analyses[12]. 

There are other types of kinematic constraints, such as the linear combination 
constraint or the cross product constraints that are also used when modeling with 
natural coordinates [2]. All kinematic constraints mentioned have a quadratic or a 
linear dependency on the coordinates. Their contribution to the Jacobian matrix of 
the constraints is either linear or constant. 

2.2 Equations of Motion 

The equations of motion of a constrained multibody system acted upon by external 
applied forces, such as the one presented in Figure 1, are given by: 

T

qMq g  (4) 

where M is the global mass matrix of the system, q the Jacobian matrix of the 
constraints, q  the vector of natural accelerations, g the generalized force vector 
and  the vector of Lagrange multipliers [2,13,14]. Due to the presence of redun-
dant constraints, multiple solutions of Equation (4) can be found. In order to cal-
culate a single solution, the minimum norm condition is applied [2], assuring that 
the vector of Lagrange multipliers is orthogonal to the null space of q

T.
When performing an inverse dynamic analysis, the Lagrange multipliers vector, 

that represents the reaction forces and the driving forces and moments, associated 
to muscle forces and net moments of force at the joints of a biomechanical model, 
is the only unknown of Equation (4), being all other quantities calculated from ki-
nematic data and force measuring devices or given as modeling data. 
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3 The Biomechanical Model 

The biomechanical model, presented in Figure 2, is a three-dimensional model of 
the human body [3,5,6,12]. It is described using the general multibody formulation 
with natural coordinates presented before and it has a kinematic structure made of 
thirty-three rigid bodies, interconnected by revolute and universal joints, in such a 
way that sixteen anatomical segments are identified. A complete description of 
these segments and the corresponding rigid bodies used in their definition is pre-
sented in reference [11]. 
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Fig. 2. The biomechanical model: a) the sixteen anatomical segments; b) the kinematic 
structure; c) kinematic joints for the elbow and ankle 

A set of physical characteristics, obtained from anthropometric measures of the 
human body, is associated to each anatomical segment of the biomechanical 
model. The most important properties of the anatomical segments, in what multi-
body modeling is concerned, are its mass, principal moments of inertia, lengths, 
and distance of its center of mass to its proximal joint. The properties mentioned 
before are obtained from the literature for the 50th-percentile human male [4,5,15]. 
However, in order to improve the biofidelity of the data with respect to the an-
thropometrics of the subject modeled in any particular application, these physical 
properties are scaled using non-dimensional scaling factors [4,5]. 
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3.1 Description of the Kinematic Structure of the Biomechanical Model 

The 33 rigid bodies are constructed using an underlying kinematic structure made 
of 25 points and 23 unit vectors, accounting for a total number of 141 natural co-
ordinates.  Two types of rigid bodies are used: rigid bodies defined by two points 
and one unit vector and rigid bodies defined by three points and one unit vector. 
Two types of kinematic joints are used in the biomechanical model: revolute and 
universal joints. Since most joints are defined naturally by sharing points and vec-
tors between rigid bodies, the most common kinematic constraints that arise are of 
the rigid body type. A total number of 97 non-redundant kinematic constraints are 
introduced in this form. Consequently, the model has 44 degrees of freedom that 
correspond to 38 rotations about 26 revolute joints and 6 universal joints, plus 6 
degrees-of-freedom that are associated with free body rotations and translations of 
the base body, which coincides with the pelvis in the model. 

3.2 Input Data for the Biomechanical Model 

The main objective, when performing the inverse dynamic analysis of the biome-
chanical system, is to calculate the reaction and driving forces that the model has 
to develop at the joints and in the actuators to perform a predetermined movement.  
The kinematic information required for the analysis consists in the trajectories of a 
set of points, located at the joints and extremities of the subject under analysis [16] 
that are acquired using three-dimensional motion reconstruction techniques [18-
21]. The trajectories of points are filtered in order to reduce the noise levels intro-
duced in the motion reconstruction procedure [15,19] and their consistency with 
the kinematic structure of the biomechanical model is enforced [16,17]. 

Velocity and acceleration curves are calculated, for each point using the deriva-
tives of the constraint equations (3). These curves are also used to calculate joint 
direction unit vectors, average link lengths and the history curves of each degree-
of-freedom of the model. These history curves are used later to define the joint ac-
tuators that drive the model during the analysis period. 

Another important set of input data consists in the externally applied forces 
over the biomechanical model. In dynamic analyses of biomechanical systems, 
these forces are associated to impact forces, seat reaction forces, pressure-
distributed forces or, in the present case of gait analysis, to the ground reaction 
forces at the feet. 

The overall layout of the gait lab used to collect the kinematic and dynamic 
data for the present gait analysis is presented in Figure 3. An apparatus consisting 
in four video cameras and three force plates is used. The video cameras and force 
plates are synchronized to collect data with a sampling frequency of 60 Hz. 



162      Jorge A.C. Ambrósio and Miguel P.T. Silva 

Plate #1

Cam #4

Cam #3 Cam #2

Cam #1

Plate #2 Plate #3

Top View

Forward DirectionSubject

Plate #1

Cam #4

Cam #3 Cam #2

Cam #1

Plate #2 Plate #3

Top View

Forward DirectionSubject

Fig. 3. Overall layout of the lab apparatus. 

3.3 Joint Rotational Actuators 

To drive the biomechanical model throughout the inverse dynamic analysis joint ac-
tuators, such as the one shown in Figure 4 for the knee joint, are specified. For each 
degree-of-freedom, a joint actuator equation is added to the equations of motion of 
the system. Joint actuator equations are kinematic constraints of scalar product type 
presented in Equation (2), in which the angle between the two vectors is a function 
of time that describes the motion of each kinematic joint. These equations are added 
to the system kinematic equation, so that the number of non-redundant constraint 
equations becomes equal to the number of natural coordinates that describe the 
model. The results obtained, by solving Equation (4), include the Lagrange multipli-
ers of the joint actuators that represent the net moments-of-force of the muscles 
crossing those joints. The inverse dynamics problem, as stated here, is totally deter-
mined, i.e., Equation (4) has a unique solution. 

The results obtained using this type of analysis provides valuable information 
regarding the reaction forces at the joints and the overall behavior of the muscles 
during the execution of a task. However, these results do not provide any kind of 
information regarding specific muscle forces or muscle activation patterns. 

Fig. 4. Joint actuator associated to the knee joint. 
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4 Redundant Muscle Forces by Optimization Techniques 

In complex biomechanical systems such as the human body, nearly every joint is 
crossed by several muscles or muscle groups. This means that different muscle ac-
tivation patterns can generate forces that produce the same net moments-of-force 
at the joints and, as result, the same posture or movement. It is the central nervous 
system that, depending on the task being performed and objectives to be achieved, 
selects and activates the muscles that best fulfill some physiological criteria. 

Muscle force distribution problem results, from a mathematical point of view, 
from the fact that the number of load-transmitting elements at a joint usually ex-
ceeds the number of available equilibrium equations and consequently a unique 
solution for the distribution of those forces can not be obtained [7]. Optimization 
techniques are applied to resolve the indeterminate problem by choosing from an 
infinite set of solutions the one that minimizes one or more cost functions. The 
cost functions are mathematical expressions that intend to represent physiological 
principles used by the central nervous system to select the muscles recruited for a 
given activity. 

4.1 Muscle Actuators in Multibody Systems 

Muscles are introduced in the equations of motion of the multibody system as 
point-to-point kinematic driver actuators, also designated by myoactuators. Two 
of the muscles of the lower extremity muscle apparatus are shown Figure 5 to il-
lustrate different complexities in their path. The semimembranosus is a two-point 
muscle, the origin and insertion points, and the tensor fasciae latea is a muscle de-
fined by multiple points for an accurate characterization of its curvature. 

Tensor 

Fasciae 

LataeSemimembranosus

Tensor 

Fasciae 

Latae

Fig. 5. Muscle actuators defined with two or more points. 
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Fig. 6. Muscle actuator defined between points n and m of rigid bodies i and j.

A constraint equation that specifies the muscle action during the analysis period 
is associated to each muscle actuator. These kinematic relations constrain the dis-
tance between two generic points of different rigid bodies to change in agreement 
with a specified length history previously calculated from the motion reconstruc-
tion.  Considering a two-point muscle actuator, with an origin located in point n of 
rigid body i, and an insertion located in point m of rigid body j, as depicted by 
Figure 6, the mathematical expression used to define the constraint is

( ,1) 2
( , ) ( ) 0

TMA

m n m n nmt L tq r r r r  (5) 

where rm and rn are respectively the global position vectors of the origin and inser-
tion points and Lnm(t) is the muscle total length, calculated for each time step of the 
analysis. The two generic points n and m of rigid bodies i and j that are used to de-
fine the muscle actuator do not belong to the set of basic points and unit vectors 
used in the construction of the rigid bodies to which they are attached. It is neces-
sary that the quantities involved in Equation (5) are expressed in terms of the gen-
eralized set of natural coordinates. 

Let vectors qi and qj define the generalized natural coordinates of rigid bodies i
and j. The coordinates of points n and m are now rewritten as 

n

n i i i

m

m j j j

r C V q

r C V q
(6)

where Ci

n and Cj

m are constant transformation matrices that relate the Cartesian 
coordinates of a generic point with the generalized natural coordinates of the ele-
mentary rigid body [2]. Vi and Vj are transformation matrices relating the general-
ized coordinates of the elementary rigid body with the generalized coordinates of 
the rigid bodies used to describe the biomechanical model [2,16]. 

Substituting Equation (6) in the muscle actuator constraint Equation (5) leads to 
the following result for the muscle actuator constraint equation: 

( ,1) 2
( , ) ( ) 0

T
MA m n m n

j j j i i i j j j i i i nmt L tq C V q C V q C V q C V q  (7) 

where all quantities are expressed in terms of the natural coordinates of rigid bod-
ies i and j.  Note that Equation (7) presents a quadratic dependency on the natural 
coordinates, which means that the contributions of this constraint to the Jacobian 
matrix of the constraints are linear.
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Im1 = Om2
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Fig. 7. Describing more complex muscle actuators. 

A Lagrange multiplier is associated to each muscle actuator of the locomotion 
apparatus. The physical dimension of this multiplier, used in the context of the ac-
tuators described before, is a force per unit of length. In order to obtain muscle 
forces or muscle activations, these multipliers must be multiplied by proper scalar 
factors, which are closely related with the type of muscle model adopted. 

Muscle actuators defined with more than two points are introduced in the Jaco-
bian matrix of the constraints as a sum of several two-point muscle actuators. 
Consider, for example, the muscle tensor fasciae latea presented in Figure 5. This 
muscle is described using three two-point muscle actuators, labeled respectively 
m1, m2 and m3 in Figure 7. The Lagrange multipliers m1, m2 and m3 are associated 
to muscle actuators m1, m2 and m3, respectively. 

With the information presented before, the term q
T  of Equation (4) is assem-

bled for muscle actuators m1, m2 and m3, and written as: 

1 2 3

1

3 3

1 2

4 14 4

2 3

5 25 5

6 3

3

7 5

                     

m

m m
m

m m
m

m

m

m m m

q q 0 0

q q q 0

q 0 q q

q 0 0 0

q 0 0 q

(8)

where q3 to q7 indicate the rows of the Jacobian matrix and represent the set of 
natural coordinates defining the rigid bodies interconnected by the muscle, and 
• mi/•qj are the partial derivatives of muscle actuator equation mi with respect to 
the natural coordinate qj.

Consider that any muscle must have a constant force per unit of length from its 
origin to its insertion. For muscles defined with more than two points the La-
grange multipliers associated with each segment must be equal. In the muscle ten-
sor fasciae latea the Lagrange multipliers must be 

m1 = m2 = m3 = TFL (9) 
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Substituting Equation (9) in Equation (8) lead the three actuators associated with 
muscles m1, m2 and m3 to add up to form a single actuator equation expressing the 
kinematics of the muscle with more complex path, written as 

1 2 3

1

33
1 2

4 4 4

2 3

5 5 5

6

3
7

5

m

m m
TFL

m m

m

m m m

q 0 0q

q q q 0
q 0 q q
q 0 0 0
q 0 0 q

(10)

The muscle driver actuator equations are introduced in the Jacobian matrix of 
the constraints together with the kinematic constraint equations defining the mo-
tion of the biomechanical model and kinematic joints. Therefore, the muscle and 
reaction forces of the biomechanical model are all evaluated at the same time. 

Joint rotational actuators, introduced in last section, are removed from all the 
joints crossed by muscle actuators. However in the remaining joints, where muscle 
actuators are not used, joint rotational actuators are still maintained allowing for 
the muscle actuators to be introduced only in the anatomical segments of the bio-
mechanical model under analysis. 

4.2 Dynamics of Muscle Tissue 

The dynamics of muscle tissue can be divided into activation dynamics and mus-
cle contraction dynamics [9], as schematically indicated in Figure 8. The activa-
tion dynamics generates a muscle tissue state that transforms the neural excitation 
produced by the central nervous system, into activation of the contractile appara-
tus. The activation dynamics, although not implemented in this work, describes 
the time lag between neural signal and the corresponding muscle activation [11]. 

Muscle Contraction 

Dynamics 

Muscle Force Activation 

Dynamics 

Neural Signal Muscle Activation

Fig. 8. Dynamics of muscle tissue. 

The muscle contraction dynamics requires that a mathematical model of the 
muscle is introduced. In the present work the Hill muscle model is applied to the 
simulation of the muscle contraction dynamics. The model, depicted in Figure 9, 
is composed of an active Hill contractive element (CE) and a passive element
(PE).  Both elements contribute to the total muscle force Fm(t). In the present 
work, the series elastic element (SEE), usually associated with cross-bridge stiff-
ness, is not included in the model since it can be neglected in coordination studies 
not involving short-tendon actuators [9]. 
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Fig. 9. Contraction dynamics using a Hill-type muscle model. 

In the Hill muscle model, the contractile properties of the muscle tissue are 
controlled by its current length lm(t), rate of length change ( )

ml t  and activation 
am(t). The force produced by the active Hill contractile element, for muscle m, is 

0

( ( )) ( ( ))
( ( ), ( ), ( )) ( )

m m m m

lm m m m ml

CE m

F l t F l t
F a t l t l t a t

F
(11)

where
0

mF  is the maximum isometric force and ( ( ))
m m

lF l t  and ( ( ))
m m

l
F l t  are two 

functions that represent the muscle force-length and force-velocity dependency, 
respectively [9,11].  These two functions are approximated analytically by [11] 
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where
0

ml is the muscle resting length and 
0

ml  is the maximum contractile velocity 
above which the muscle cannot produce force. The passive element is independent 
of the activation and it only starts to produce force when stretched beyond its rest-
ing length l0

m. The force produced by the passive element is approximated by [11]: 

0

3
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0 0 03

0

0 0

0 ( )
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2 ( ) 1.63
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m m m m m m m
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F l t l l l l t l

l

F l t l

(14)
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Equation (14) shows that the force produced by the passive element is only a func-
tion of the muscle length, being its value completely determined during the total 
time of the analysis. Since the force produced by the passive element is not an un-
known it is treated here as an external force, which is directly applied to the rigid 
bodies interconnected by the muscle. 

The forces produced by the contractile element are the only unknown forces. In 
order to calculate these forces, a muscle actuator equation is associated to each 
contractile element. This association is accomplished multiplying each actuator 
equation by a proper scalar factor, so that the Lagrange multiplier associated to the 
actuator, represents muscle force or muscle activation.  The factors for the muscle 
force and activation are respectively 

0

1
;

2 2

m m

lm m l

m m m

F F

l F l
C C (15)

Note that if the Lagrange multiplier represents muscle activation, the associated 
muscle force is calculated using Equation (10). 

4.3 Muscle Database 

A muscle locomotion apparatus, with thirty-five muscle actuators, is used to simu-
late the right lower extremity intermuscular coordination. The muscle apparatus 
and a brief description of each muscle action [22] are presented in Table 2. The 
physiological information regarding the muscle definition is obtained from the lit-
erature [23,24] and compiled in a muscle database. This information consists in 
the maximum isometric force, resting length, attachment points, wrap-around bod-
ies and the local coordinates of the origin, insertion and via points.  The whole 
muscle apparatus is presented in Figure 10. 

Fig. 10. Lower extremity muscle apparatus 
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Table 2. List and description of the lower extremity muscle apparatus 

Nr Muscle Name Muscle Action 

1 Adductor Brevis Adducts and flexes and helps to laterally rotate the thigh. 

2 Adductor Longus Adducts and flexes the thigh; helps to laterally rotate the hip. 

3 Adductor Magnus Thigh adductor; superior horizontal fibers also help to flex the 
thigh, while vertical fibers help extend the thigh. 

4 Biceps Femoris 
(long head) 

Flexes the knee, and rotates the tibia laterally; long head extends 
the hip joint. 

5 Biceps Femoris  
(short head) 

Flexes the knee, and rotates the tibia laterally; long head extends 
the hip joint. 

6 Extensor Digitorum 
Longus

Extend toes 2 – 5 and dorsiflexes ankle. 

7 Extensor Hallucis 
Longus

Extends great toe and dorsiflexes ankle. 

8 Flexor Digitorum 
Longus

Flexes toes 2 – 5; also helps in plantar flexion of ankle. 

9 Flexor Hallucis 
Longus

Flexes great toe, helps to supinate ankle, and is a very weak plan-
tar flexor of ankle. 

10 Gastrocnemius  
(lateral head) 

Powerful plantar flexor of ankle. 

11 Gastrocnemius  
(med. head) 

Powerful plantar flexor of ankle. 

12 Gemellus  
(inf. and superior) 

Rotates the thigh laterally; also helps abduct the flexed thigh. 

13 Gluteus Maximus Major extensor of hip joint; rotate laterally the hip; superior fi-
bers abduct the hip; inferior fibers tighten the iliotibial band. 

14 Gluteus Medius Major abductor of thigh; anterior fibers help to rotate hip medi-
ally; posterior fibers help to rotate hip laterally 

15 Gluteus Minimus Abducts and medially rotates the hip joint. 

16 Gracilis Flexes the knee, adducts the thigh, helps to medially rotate the
tibia on femur. 

17 Iliacus Flex the torso and thigh with respect to each other. 

18 Pectineus Adducts the thigh and flexes the hip joint. 

19 Peroneus Brevis Everts foot and plantar flexes ankle. 

20 Peroneus Longus Everts foot and plantar flexes ankle; helps to support the trans-
verse arch of the foot. 

21 Peroneus Tertius Dorsiflexes, everts and abducts foot. 

22 Piriformis Lateral rotator of the hip joint; helps abduct the hip if it is flexed. 

23 Psoas Flex the torso and thigh with respect to each other. 

24 Quadratus Femoris Rotates the hip laterally; also helps adduct the hip. 

25 Rectus Femoris Extends the knee. 
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Nr Muscle Name Muscle Action 

26 Sartorius Flexes and laterally rotates the hip joint and flexes the knee. 

27 Semimembranosus Extends the thigh, flexes the knee, and also rotates the tibia
medially, especially when the knee is flexed. 

28 Semitendinosus Extends the thigh and flexes the knee, and also rotates the tibia
medially, especially when the knee is flexed. 

29 Soleus Powerful plantar flexor of ankle. 

30 Tensor Fasciae Lata Helps stabilize and steady the hip and knee joints by putting ten-
sion on the iliotibial band of fascia. 

31 Tibialis Anterior Dorsiflexor of ankle and invertor of foot. 

32 Tibialis Posterior Principal invertor of foot; adducts foot, plantar flexes ankle,
helps to supinate foot. 

33 Vastus Intermedius Extends the knee. 

34 Vastus Lateralis Extends the knee. 

35 Vastus Medialis Extends the knee. 

4.4 Static Optimization: Cost Functions and Constraint Equations 

The solution of the inverse dynamics problem, with muscle actuators instead of 
joint actuators, introduces indeterminacy in the equations of motion of the biome-
chanical system, since it involves more unknowns than available equations of mo-
tion. Indeterminate systems present an infinite set of possible solutions, being the 
aim of optimization techniques to find, from all the possible solutions, the one that 
minimizes a prescribed objective function, subjected to a certain number of re-
strictions or constraints. Mathematically, the optimization problems is stated as: 

0
minimize ( )

( ) 0 1,...,

subject to: ( ) 0 1 ,...,

1,...,

i

j i ec

j i ec tc

lower upper

i i i sv

u

f u j n

f u j n n

u u u i n

(16)

where ui are the state variables bounded respectively by ulower and uupper, 0
( )iu  is 

the objective or cost function to minimize and ( )j if u  are constraint equations that 
restrain the state variables.  In Equation (16), nst represents the total number of 
state variables and ntc the total number of constraint equations in which nec are of 
the equality type. 

The minimization of cost functions simulates the physiological criteria adopted 
by the central nervous system when deciding which muscles to recruit as well as 
the level of activation that produce the adequate motion or posture for a specific 
task. Many cost functions have been used by researchers in the study of the redun-
dant problem in biomechanics [1,7,8]. The selection of the most appropriate crite-
rion to use in the optimization process resides upon several important aspects such 
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as the type of motion under analysis, the objectives to achieve or the presence of 
any type of pathology. For instance if the subject under analysis suffers from se-
vere pain in the knee joint then the central nervous system is certainly concerned 
in minimizing the pain in the referred joint. In this case a possible criterion could 
be the minimization of the reaction forces at the knee joint. In a normal gait exam-
ple, the central nervous system focus in maximizing the comfort, i.e., the muscle 
endurance and therefore minimizing the muscle fatigue.  Here, possible criteria 
would be the minimization of the total muscle stress or the minimization of the to-
tal muscle force, which are closely related with the muscular fatigue [1,8]. 

A cost function must reflect the inherent physical activity or pathology and to 
include relevant physiological characteristics and functional properties, such as the 
maximum isometric force or the electromyographic activity [29].  From the com-
putational point of view, a cost function must be numerically stable and fast to 
evaluate. Some of the most commonly used cost functions are presented hereafter: 

i) Sum of the square of the individual muscle forces: 

2

0

1

man
m

CE

m

F (17)

When applied to the study of human locomotion, this cost function is considered 
to fulfill the objective of energy minimization. This cost-function does not include 
any physiological or functional capabilities [29]. 

ii) Sum of the cube of the average individual muscle stress: 

3

0

1

man
m

CE

m

(18)

This cost function was introduced by Crowninshield and Brand [8] and it is based 
on a quantitative force-endurance relationship and on experimental results. It in-
cludes physiological information, namely the value of the physiological cross sec-
tional area of each muscle and it is reported to predict co-activation of muscle 
groups in a more physiologically realistic manner [29]. 

iii) Sum of the square of the normalized muscular forces: 
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m
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F
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(19)

This cost function it is similar to the first one but including physiological informa-
tion, namely the maximum isometric force that each muscle is able to produce. 

iv) Sum of the square of the muscle forces related with the maximum instantane-
ous moment that each muscle can exert: 
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(20)
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This cost function has the important particularity of including physiological as 
well as functional information [29]. The calculation of the maximum instantane-
ous moment that the muscle is capable to generate not only requires the use of the 
maximum isometric force for that muscle but also its instantaneous moment arm. 

v) “Soft saturation” cost function: 

2
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1 0
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man m

CE

m
m

F

F
(21)

This cost function includes physiological information regarding the maximum 
isometric force that each muscle is able to generate. It produces a more realistic 
synergistic function of the muscle in particular when activation and co-activation 
of muscles is concerned. 

Cost functions can also be sum of the instantaneous muscle power or the sum 
of the square of the total reaction forces at the joints [7,29]. In the present work 
the principles of minimization of the sum of the square of the muscle forces [7] 
and of the sum of the cube of the individual muscle stresses [8] are used in appli-
cations involving human locomotion. Substituting Equation (11) in Equations (17) 
and (18), results for each one of this functions are 
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where nma are the number of muscle actuators and  is the specific muscle 
strength with a constant value of 31.39 N/cm2 [23,24]. Note that only state vari-
ables associated with muscle actuators are used to evaluate the cost functions, al-
though the complete set of state variables also include the Lagrange multipliers as-
sociated with the rest of the kinematic constraints. Using these cost functions, the 
state variables associated with muscle actuators represent muscle activations and 
for that reason are bounded to assume values between 0 and 1. No bounds are 
specified for all other state variables. 

In inverse dynamic analyses the equations of motion of the biomechanical sys-
tem are the constraint equations that the state variables must fulfill. Therefore, all 
the constraint equations are of equality type and their number is equal to the num-
ber of equations of motion, i.e., equal to the number of natural coordinates defin-
ing the system. A vector containing all optimization constraints is defined as: 

1

tcn

f

f

qf Mq g 0 (23)
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Equation (23) represents a set of linear equations on the state variables given by 
the Lagrange multipliers vector. This means that the gradients associated to these 
equations can be obtained analytically, i.e., the gradient of vector f in order to the 
state variables is given by the Jacobian matrix of the constraints already calcu-
lated.  Analytically, this is: 

q

f
f (24)

This important result reveals that there is no need to calculate the sensitivities by 
finite differences or by any other numerical method, because these are readily 
available, in analytical form, and can be used directly in the optimization process. 

Three optimization packages are tested in the solution of the optimization of the 
redundant muscle forces: DOT 5.0 - Design Optimization Tools [25], DNCONG 
from IMSL Math Library [26] and MMA – Method of Moving Asymptotes [27].  
The first two methods use successive quadratic programming algorithms, while 
the third one uses the globally convergent method of moving asymptotes with in-
ner and outer iterations. The analytical gradients of the cost function and the opti-
mization constraint equations are supplied to the three optimization routines. 

5 Application Case 

The methodology and the biomechanical model described before are applied to the 
gait analysis of a subject with a normal cadence stride period.  The subject under 
analysis is a 25-year-old male with a height of 1.70 m and a total body mass of 70 
kg.  The subject is wearing running shoes. The trial starts at the time step just be-
fore the right heel contact with the floor, and continues until the subsequent occur-
rence of the same foot. During the stride period, the subject has to walk over three 
force plates that measure the ground reaction forces for both feet [5,6]. A total 
number of 66 frames are recorded with a sampling frequency of 60 Hz.  The trial 
has a total duration of 1.083s that corresponds to a walking cadence of approxi-
mately 111 steps per minute.  This frequency is within the expected value reported 
in the literature for normal cadence stride periods [28]. 

An inverse dynamic analysis is performed to calculate the net moments of force 
developed by the joint actuators at the joints of the biomechanical model. The net 
moments of force for the joint actuators of the right ankle, knee and hip joints are 
presented in Figure 11. These results are within the expected values reported in the 
literature for a normal cadence stride period [28]. 

The muscle forces developed in the right leg during the stride period are calcu-
lated using the optimization procedure described before. For this purpose, muscle 
actuators associated with the muscles described in Table 2 are introduced in the 
biomechanical model while the joint actuators driving the joints crossed by the 
muscle apparatus are removed. The results obtained with two optimization pack-
ages, are presented in Figure 12 for the muscle Gluteus Minimus, an abductor of 
the hip and for Soleus, a powerful plantar flexor of the ankle. 
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Fig. 11. Net moment-of-force (scaled by the body mass) for the ankle, knee and hip joints. 

The results present a good correlation between the two optimization routines 
DOT and DNCONG. The forces present similar behaviors although with different 
force levels. The net moment-of-force produced by all muscles crossing a speci-
fied joint is equal to the net moment-of-force calculated for the joint actuators of 
that joint in the determinate inverse dynamics problem. This means that the results 
presented in Figure 12 are two possible solutions obtained by different optimiza-
tion packages and that both solutions fulfill the equations of motion of the system. 
In terms of CPU time, the optimization package DOT about 160 times longer than 
DNCONG to optimize the 66 time steps. 

The muscle activations represented in Figure 13 cannot be directly translated 
into muscle forces, as these are also related to the contraction velocity and to the 
muscle length through equation (11). The forces of the muscular apparatus are 
displayed in Figure 14 for some the muscles used in the biomechanical model.
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Fig. 12. Muscle Forces: a) Gluteus Minimus, b) Soleus
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Fig. 13. Activation patterns for the muscles of the locomotion apparatus (right leg). 

Comparing the results obtained for the normal cadence gait with those obtained 
by other authors, and in particular with those provided by Crowninshield and 
Brand [8], it is observed that the activation patterns shown in Figure 13 are similar 
to the EMG activation patterns reported for many of the muscles included in the 
model. Also the muscle forces obtained for many of the muscles described in Fig-
ure 14 are similar to those reported by Crowninshield and Brand [8]. But the op-
posite is also true, i.e., there is a significative number of muscles for which there is 
no correlation for the forces calculated in this work and those reported in the lit-
erature. The reason for not having a full agreement of all the muscle forces has to 
do with the detail of the muscle system used in the model and with the optimiza-
tion procedures used. Not only the number of muscles used by Crowninshield and 
Brand [8] is smaller than the number of muscles used to represent the locomotor 
apparatus in this work but also all muscles have a linear line of action in the refer-
ence while in this work they are modeled as curved muscles, when appropriate. 
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Fig. 14. Muscle force patterns for the muscles of the locomotion apparatus. 

The analysis of the existing literature shows that the data provided is not suffi-
cient to perform a quantitative comparison between published results and those 
reported here. In some cases only the temporal patterns of registered muscle activ-
ity are provided [7]. In other cases, the muscle forces are presented but only in 
qualitative terms [23], or in terms of their activation patterns [30]. However, in 
works where qualitative and quantitative information is provided, it is observed 
that the comparison of the results still may be difficult and misleading. To demon-
strate this, the results obtained for the individual muscle forces are compared, with 
those of Patriarco et al. [31] and Crowninshield et al. [8] and presented in Figure 
15 for the Iliacus, Soleus, Adductor Brevis and Biceps Femoris (SH). 
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Fig. 15. Comparison of results of individual muscle forces obtained by different authors 
during a normal gait stride period. (a) No correlation is observed between the results of the 
different works. (b) A minimum correlation is observed between different works. 

The analysis of the muscle forces presented in Figure 15 shows that there are 
several muscles where a minimum correlation can be obtained between the com-
pared works, as in Figure 15 (b), but there are also some muscles where no corre-
lation is found at all, even between the results presented by the different authors, 
as observed in Figure 15 (a). The difficulty in validating results against published 
data was already diagnosed in the literature.  In its work, Patriarco et al. [8] refers 
that comparisons between different approaches and results of different investiga-
tors are difficult. Pedersen et al. [32], also refer that the solutions of the redundant 
muscle problem, predicted by different investigators, differ considerably for a va-
riety of reasons, in which are included the use of different mathematical ap-
proaches, biomechanical models, input data, anthropometric models, acquisition 
devices, human subjects, muscle models, optimization techniques or objective 
functions.

A form of getting a better understanding of the quality of the results for the re-
dundant muscle forces is to consider the physiological function of each muscle 
group and this action on the observed motion. With such purpose, the muscles are 
grouped considering their most important function.  Eight different muscle groups 
are assembled: the hip adductors, composed by the adductor brevis, adductor
longus, adductor magnus, pectineus and quadratus femoris; the hip abductors, 
composed by the gluteus minimus, gluteus medius, gemelli and piriformis; the ilip-
soas, composed by the iliacus and psoas; the quadriceps femoris, composed by the 
vastus medialis, vastus intermedius, vastus lateralis and rectus femoris; the ham-
strings, composed by the semitendinosus, semimembranosus, biceps femoris, sar-
torius and gracilis; the triceps surae, composed by the soleus and the two heads of 
the gastrocnemius; the ankle plantar flexors (without the triceps surae group), 
composed by the tibialis posterior, peroneus brevis, peroneus longus, flexor digi-
torum longus and flexor hallucis longus; and the ankle dorsiflexors, composed by 
the tibialis anterior, peroneus tertius, extensor digitorum longus and extensor hal-
lucis longus.  The force developed by each one of these muscle groups as a func-
tion of the percentage of stride is represented in Figure 16. 

Six important events occurring during the stride period are highlighted, consid-
ering their relevance for the physiological analysis that follows.  These events are: 
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the initial (right) heel-strike (HS) at 0% of stride, the opposite (left) toe-off (OTO) 
that occurs roughly after 15% of stride, the moment when the left foot passes a 
point immediately below the right hip joint (LFRH) at approximately 30% of 
stride, the opposite (left) heel-strike (OHS) that occurs at 50% of stride, the mo-
ment when the right foot passes a point immediately below the left hip joint 
(RFLH) approximately at 80% of stride, and the consecutive right HS at 100% of 
the stride period. 
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Fig. 16. Muscle forces arrange by functional muscle groups. (a) Hip adductors; (b) Hip ab-
ductors; (c) Ilipsoas; (d) Quadriceps femoris; (e) Hamstrings; (f) Triceps surae; (g) Ankle 
dorsiflexors; (h) Ankle plantar flexors. 
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The results presented in Figure 16 allow distinguishing two major and distinct 
phases during the stride period. The stance phase that starts after right heel-strike 
(HS), at 0% of stride, and ends with right toe-off (TO), shortly after 60% of stride. 
The swing phase that starts after right TO and ends with the succeeding right HS 
at 100% of stride.  The stance phase is characterized by high levels of muscle acti-
vation and consequently by high levels of muscle forces, which develop to support 
the body weight and to thrust the body forward. Conversely the swing phase is 
characterized by small levels of muscle activity and consequently by considerably 
small muscle forces. In this latter phase, the central nervous system takes advan-
tage of the pendulum-like motion of the leg, using the momentum of the body to 
reduce muscular activity. 

6 Conclusions 

This work presents a methodology that allows for the calculation of the net mo-
ments-of-force and reactions at the joints, and also for the calculation of the mus-
cle forces developed in a specific muscle apparatus of a subject describing a pre-
scribed motion. The subject is simulated using a whole body biomechanical model 
constructed with rigid bodies interconnected by revolute and universal joints. To 
improve the biofidelity of the model, the most important characteristics and di-
mensions of its rigid bodies are scaled from biomechanical data contained in a da-
tabase with the most important physiological characteristics and properties of the 
principal anatomical segments of the human body. A general multibody formula-
tion using natural or fully Cartesian coordinates is applied to the definition of rigid 
bodies and kinematic joints. With this formulation, the equations of motion of the 
biomechanical system are assembled and solved in a systematic manner. 

The model is driven through the prescribed motion using kinematic driver ac-
tuators of two types: joint driver actuators and muscle driver actuators. A La-
grange multiplier is associated to each driver actuator that, depending on the ac-
tuator type, represents, for the case of a joint actuator, the net moment-of-force 
produced by all the muscles that cross the specified joint, or, in the case of the 
muscle actuator, the muscle force associated with a specified muscle or muscle 
complex. Depending on the objectives of the analysis, the two types of actuators 
can be used independently or cooperatively. It has been demonstrated that the use 
of muscle actuators usually introduces indeterminacy in the equations of motion of 
the biomechanical system. When this occurs, optimization techniques are the tools 
that allow for the selection of the solution that minimizes a specific cost-function. 
This cost function represents the physiological criteria used during the trial by the 
central nervous system of the subject under analysis. 

It was shown in this work that the use of different optimization procedures lead 
to different sets of results, but still fulfilling the constraint equations and the joint 
moments-of-force obtained in the determinant inverse dynamic analysis. It is no-
ticeable that some subsets of muscle forces compare better with the reported work 
by some authors while other muscle forces subsets are comparable with the results 
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provided by other authors, all for cases of normal gait patterns. The same type of 
relations is identified when comparing the muscle activations obtained with the 
EMG patterns reported in the literature. This confirms that there is a sensitivity of 
the results obtained to the type of optimization procedure adopted and to the detail 
of the muscle apparatus implemented in the model. 

From a quantitative point of view, the comparison of results with those reported 
by other investigators is difficult and eventually misleading.  If there are cases of 
individual muscle forces for which a minimum correlation can be found between 
all works, there are other muscles for which no correlation can be obtained at all, 
even when comparing the results among the other referred investigators. However, 
when the results obtained in this work, for the solution of the force-sharing prob-
lem and prediction of the individual muscle forces, are grouped in terms of their 
action and after that they are analyzed from a physiological point of view and 
compared with a similar procedure obtained from the literature, a strong agree-
ment is observed in all the phases of the stride period and for every muscle group 
considered in the study. 
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The use of the so-called mean axis conditions as a floating reference frame for mov-
ing deformable bodies is discussed. This reference frame is compared against the 
commonly used nodal-fixed frame. The discussion on various issues associated with 
these frames is facilitated through simple schematic visualizations. The equations of 
motion for a moving deformable body are analyzed in both nodal and modal spaces. 
Issues associated with the extraction of the free-free and constrained modes are also 
discussed. It is shown that the mean-axis conditions can be employed effectively to 
represent a floating reference frame for a moving deformable body. 

1 Introduction 

An interesting topic in multibody dynamics is how to attach a reference frame to a 
moving deformable body. In structural finite element analysis, it is a simple task 
to define a reference frame since, in most cases, the structure is assumed not to 
have any rigid body motion. However, when a deformable body is allowed to 
translate and rotate in space, the issue of attaching a reference frame to the body 
deserves special attention. It is a common practice to define six simple conditions 
to eliminate six of the nodal deflections from the equations of motion. These con-
ditions attach the structure to the reference frame or vise versa. We refer to this 
type of frame as the nodal-fixed axes. Another less known and sometimes misun-
derstood reference frame is the mean-axis conditions. The mean axes, which are 
based on the minimization of the deformation kinetic energy, impose six condi-
tions on all of the nodes impartially unlike the nodal-fixed conditions. Although 
there are other types of reference frames for moving deformable bodies, those 
frames are not discussed in this paper; e.g., using the instantaneous principal axes 
of the deformable body or using the nonmoving inertial frame. 

It has been common among researchers to use the nodal-fixed axes as the mov-
ing reference frame for deformable bodies. This is due to the fact that since the 
nodal-fixed frame is commonly used in the structural finite-element models, it is 
natural to use the same type of frame in a multibody system. Furthermore, since 
the frame is specifically fixed to some of the nodes, it is easy to locate the frame if 
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the positions of the nodes are known or vise-versa. In contrast, to someone unfa-
miliar with the mean-axis frames, it would be difficult to visualize how a frame 
could follow a deformable body without being fixed to any specific nodes. It is the 
objective of this document to illustrate that the mean-axis conditions provide a 
more meaningful moving frame compared to the nodal-fixed conditions. Further-
more, the resulting equations of motion from the mean axes contain terms that are 
more meaningful than those derived from the nodal-fixed equations. 

In this paper we first discuss the equations of motion for a deformable body. 
These equations are stated without proof in several forms. It is assumed that the 
reader has some familiarity with these equations. In order to concentrate on the 
concepts and not to be distracted by the complex form of these equations, we as-
sume that a finite element node exhibits only translational degrees-of-freedom. 
Elimination of the rotational degrees-of-freedom does not make the discussion 
any less general. The rotational degrees-of-freedom can be added to these formu-
lations if necessary. Furthermore, some of the equations have been stated in semi-
abstract forms. Interested readers who may want to formulate these equations into 
a computer program should be aware of the hidden details. 

Following the presentation of the equations of motion, conditions for defining a 
nodal-fixed or a mean-axis reference frames are discussed. Comparison between 
the two types of frames is made via a simple example. Then, the transformation of 
the equations of motion the nodal to modal space is considered. Issues associated 
with the use of free-free and constrained modes are discussed. Finally, some gen-
eral conclusions are drawn. 

It is important that the reader to become familiar with the notation first. There-
fore, it is recommended that the reader pay special attention to the following sec-
tion on notation. 

2 Notation 

In this paper matrix notation is used in order to keep the attention on concepts 
without much loss of details. The reader should find the notation very effective in 
multibody formulations, especially when deformable bodies are involved. The fol-
lowing nomenclature is used: 

Reference frames: 
x-y-z Inertial 

Body attached 
Vectors and arrays: 

 Bold-face, lower-case characters 
  Roman (regular) (contains x-y-z components) 
  Italic   (contains  components) 

Matrices:
 Bold-face, upper-case characters 
  Roman (regular) (described in x-y-z frame) 
  Italic   (described in  frame) 



Understanding Mean-Axis Conditions as Floating Reference Frames      187 

Right superscripts: 
a a node (or degree-of-freedom) defining reference axes 
b a boundary node (or degree-of-freedom) 
m a master node (or degree-of-freedom) 
s a slave node (or degree-of-freedom) 
u an unconstrained node (or degree-of-freedom) 

Over-scores: 
 ~ (tilde) transforms a 3-vector to a skew-symmetric matrix 
 ^ (hat) stacks vertically 3-vectors or 3 3  skew-symmetric matrices 

 (bar) repeats a 3 3  matrix to form a block-diagonal matrix 
Strike-through: 

 (bar) denotes an entity in modal space 

The following examples should clarify the notation. Assume that bi is a 3-
vector and ib  is a 3 3  skew-symmetric matrix for i=1, ..., n. Let I be a 3 3
identity matrix and A to be a 3 3  rotational transformation matrix. Then the fol-
lowing stack and block-diagonal matrices can be constructed: 

1 1

ˆ ˆ ,    ,    ,    ,   
n n

b b I I 0 A 0
b b I I A

I 0 I 0 Ab b

3 Equations of Motion for a Deformable Body 

In this section the equations of motion for a deformable body are stated. In order 
to simplify the form of the equations, without loss of generality, it is assumed that 
a finite element node exhibits only three translational degrees-of-freedom. 

3.1 Kinematics 

Assume that a deformable body is described by n nodes that are allowed only 
translational deflections; i.e., ndof =3×n. A body-reference frame denoted as 
is defined to move with the body without stating at this point how the frame is at-
tached to the body; i.e., no boundary conditions are defined between the frame and 
the nodes. For a typical node i, as shown in Figure 1, the translational deflection 
vector is denoted by a 3-vector i. This node is positioned from the origin of the 
body-frame in its undeformed state by vector si and in the deformed state by vec-
tor bi=si+ i. For all the nodes, the arrays of nodal deflections, the undeformed po-
sitions, and the deformed positions are defined as 

1 1 1

n n n

s b
s b

s b
(1)
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 x

 y

 z

s

 deformed

 undeformed

r

d

b

Fig. 1. A deformable body and its body frame positioned in an inertial frame. 

In addition to the  frame, we also introduce an inertial x-y-z frame where 
between the two frames a 3×3 rotational transformation matrix A is defined. The 
elements of this matrix; i.e., the nine direction cosines, can be determined and 
computed in term of any desired rotational coordinates that we define between the 
two frames. Components of any vector in  frame can be transformed into 
the x-y-z frame using this matrix; e.g., i = A i, si = A si, or TA . Note that a 
vector or an array in italic indicates that the components are in  frame. 

The absolute position of a typical node i, as shown in Figure 1, is expressed as 

i i i id r b r s (2)

The absolute velocity and acceleration of this node are expressed as 

i i id r b (3)

i i i id r b w (4)

where  and  are the angular velocity and acceleration vectors of the body 
frame, and all the quadratic velocity terms are grouped together as 

2i i iw b (5)

If arranged in stack form, the position, velocity, and acceleration of all the 
nodes can be written as 

ˆd Ir b (6)

ˆ ˆˆ ˆ
r

d Ir b I b I (7)

ˆ ˆˆ ˆ
r

d Ir b w I b I w (8)
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where 

2w b  (9) 

3.2 Kinetics 

For a deformable body, the mass and stiffness matrices, M and K, are initially 
constructed by any finite-element package in the body-frame . It should be 
noted that the stiffness matrix K has a rank deficiency of six since we have not yet 
imposed any reference conditions. These two matrices can be transformed into the 
x-y-z frame as1

TM A AM , TK A AK (10) 

In order to better understand the development of the equations of motion for a 
moving deformable body, we start with the standard equations of motion for a 
structure. We first assume that the  is a non-moving frame. The equations of 
motion for this structure are written as 

   M f K (11) 

where f is the array of external forces. We are reminded that in this equation all 
the entities are described in terms of their components in the  frame. 

Using the block-diagonal transformation matrix A , Equation (11) is ex-
pressed in terms of the x-y-z components of its entities as 

M f K (12) 

Now we allow the  frame to move relative to the x-y-z frame. The equations 
of motion can now be stated as 

Md f K (13) 

where d  contains the absolute nodal accelerations. Note that all entities in this 
equation are described in the x-y-z frame. Also note in Equation (12) rigid-body 
motion of the deformable body is not allowed but in Equation (13) the body is al-
lowed to translate and rotate in space while it deforms. 

We now transform Equation (13) into other useful forms. We substitute Equa-
tion (8) into Equation (13) to obtain 

ˆˆ
r

M I b I g (14) 

                                                          
1  If the mass matrix is constructed properly, then M M .  Further discussion on the char-

acteristics of the mass matrix is outside the scope of this paper. 
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where 

g f Mw K (15) 

If Equation (14) is pre-multiplied by the transpose of the coefficient matrix of 
Equation (8), we get 

T T T T

T T T T

ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆˆ

ˆˆ

I MI I Mb I M I gr
b MI b Mb b M b g

gMI Mb M
(16) 

We define the total mass of the body as m and the rotational inertia matrix of the 
body as J; i.e., 

Tˆ ˆ mI MI I , Tˆ ˆb Mb J (17) 

Equation (16) can be expressed as 

T T T

T T T

ˆˆ ˆ ˆ
ˆ ˆ ˆˆ

ˆˆ

mI I Mb I M I gr
b MI J b M b g

gMI Mb M
(18) 

So far we have described the equations of motion for a moving deformable 
body in three forms. The first form is given in Equation (13) where there are as 
many equations as the number of unknown absolute accelerations. The second 
form is provided by Equation (14) where we have six more unknown accelerations 
than the number of equations. Equation (18) is the third form of the equations of 
motion where the number of equations and the number of unknowns are the same. 
From these three forms, only Equation (13) is solvable for the accelerations—in 
Equation (14) we have more unknowns than the number of equations and the coef-
ficient matrix in Equation (18) has a rank deficiency of six. Equations (14) and 
(18) are not solvable since we have not yet defined reference conditions. 

For practical purposes, the array of nodal deflections in Equations (14) and (18) 
is normally described in terms of the body-fixed components. Therefore these 
equations are written as 

ˆˆ
r

M I b A g (19) 

and

T T T

T T T

T T T

ˆˆ ˆ ˆ
ˆ ˆ ˆˆ

ˆˆ

mI I Mb I MA I gr
b MI J b MA b g

A MI A Mb A A g
M

(20) 
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These equations may further be transformed to other forms. For example, the an-
gular acceleration vector can be expressed with respect to the body frame. This or 
any further transformations will be left to the reader. 

Several simplifications are made on the right-hand side of Equation (18). For ex-
ample, the expansion of the terms in TÎ g  and Tb̂ g  reveals that TÎ K 0  and 

Tb̂ K 0 2. Such simplifications are not shown in these and the following equations. 
In the following section we will discuss two choices of reference frames for 

moving deformable bodies. For this and other purposes, we may split the nodes or 
the deformation degrees-of-freedom into different subsets. For example, if we split 
the nodes or the deformation degrees-of-freedom) into the boundary and the un-
constrained (or free) nodes, we denote them with superscripts “b” and “u” respec-
tively. Based on this categorization, all nodal entities will also be split into sub-
sets. For example, the mass matrix will be split as: 

,
, ,

,

bb bu b
b u

ub uu u
M M MM M M
M M M

4 Reference Axis Conditions 

Attaching a reference frame to a deformable body requires defining six conditions. 
This reduces the number of nodal deflection degrees-of-freedom to ndof=3×n-6. The 
most common procedure, as it is normally done in structural analysis with finite 
element method, is to set six of the nodal deflections to zero. We refer to this proce-
dure as the nodal-fixed method. Another method that is not widely used is to define 
six equations called mean-axis conditions. Other methods such as using the instanta-
neous principal axes of the deformable body [1, 2] or using the inertial reference 
frame instead of the body-fixed frame [3] are not discussed in this paper. 

4.1 Nodal-Fixed Frame

In structural finite-element analysis, when nodal rotational degrees-of-freedom are 
not considered, the frame is normally attached to three nodes of the deformable 
body. We assume that the origin of the frame is always at node o, that node j al-
ways remains along the axis, while node k remains on the  plane. This 
yields six conditions as: 

( ) ( ) ( ) 0o o o

( ) ( ) 0j j

( ) 0k

(21) 

                                                          
2  These are the sum of internal (structural) forces and moments respectively. 
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With these six conditions, knowing where the nodes are at any instant, we can lo-
cate the  frame, and vise-versa. In order to incorporate these six conditions 
into the equations of motion, we split the array of nodal displacement and any as-
sociated entities into the axis and unconstrained sets. These sets are denoted by 
superscripts “a” and “u” respectively as: 

,
a a

u uu u

00
(22) 

With this partitioning of the nodal deflections, Equation (19) becomes: 

, , ,ˆˆ ( )u u u u u

u

r
MI Mb A f A M wM M (23) 

where we have as many equations in as the number of accelerations. It would also 
be possible to incorporate the nodal-fixed conditions into a form similar to that of 
Equation (18). 

4.2 Mean-Axis Conditions 

The mean-axis conditions are six constraints that enforce the body-frame to follow 
the motion of the nodes in such a way that the kinetic energy associated with the 
deformation stays at a minimum. In order to derive these conditions, the deforma-
tion kinetic energy is expressed as 

T T1 1
2 2

ˆ ˆˆ ˆ( ) ( )T M d Ir b M d Ir b (24) 

where we have used Equation (8). The partial derivatives of the kinetic energy 
with respect to the translational and rotational velocity vectors of the reference 
frame are 

T Tˆˆ ˆ ˆ( )rT d Ir b MI MI

T Tˆ ˆ ˆˆ( )T d Ir b Mb Mb

The translational and rotational mean axis conditions are obtained by setting 
these partial derivatives equal to zero3 [4]:

TÎ M 0      ( TÎ 0M ) (25) 

Tb̂ M 0      ( Tˆ 0b M ) (26) 

                                                          
3  If nodal rotational degrees-of-freedom are included, the mean axis conditions find a 

slightly different form than that of Equations 22 and 23.  
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The time derivatives of these equations, following some simplifications, are4

TÎ M 0      ( TÎ 0M ) (27) 

Tb̂ M 0      ( Tb̂ 0M ) (28) 

Other identities can be derived based on Equations (25) and (26). For example, 
the integral of Equation (25) is 

TÎ M 0      ( TÎ 0M ) (29) 

If the origin of the frame in the undeformed state of the body is positioned at the 

mass center; i.e., TÎ M s 0 , then Equation (29) becomes  

TÎ M b 0      ( TÎ 0M b ) (30) 

This means that the origin of the reference frame stays at the instantaneous mass 
center of the body. Furthermore, if the mass matrix is properly constructed, it can 
be shown that Equation (39) yields 

T Tˆ ˆˆ ˆI M b b M I 0      ( T Tˆ ˆˆ ˆI I 0M b b M ) (31) 

Note that all entities in Equations (25)-(31) can be described either in their x-y-z or 
 components. 

4.3 Interpretation of the Mean Axes 

The best way to understand how the mean-axis conditions enforce a reference 
frame to follow the nodes of a deformable body is through a simple example and 
visualization. Consider a simple planar deformable rod that is modeled by seven 
nodes as shown in its undeformed state in Figure 2(a). Under some applied forces 
the rod finds the undeformed shape shown in Figure 2(b). Now we observe the de-
flection of the nodes from two different reference frames. 

1 2 3 4 5 6 7 

(a)
1

2
3 4

5
6

7

(b)

Fig. 2. A simple deformable body in the (a) undeformed and (b) deformed states 

                                                          
4  The right-hand side of Equation 25 may contain a quadratic velocity term if the mass ma-

trix is not properly constructed. 
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The first reference frame that we consider is the conventional nodal-fixed axes. 
As shown in Figure 3(a), it is assumed that the origin of this frame is fixed to node 
1 (setting two of the deformation degrees-of-freedom to zeros) and the -axis 
remains on node 2 (setting one of the deformation degrees-of-freedom to zero). 
With this description of the body-frame, the deformation of the nodes are viewed 
as shown in Figure 3(b). Note that to a viewer attached to this frame it would 
appear that node 7 has the largest deflection, that node 2 has a slight deflection 
only along the -axis, and that node 1 has no deflection at all. 

1 2 3 4 5 6 7 

(a)

1

2
3 4

5
6

7

(b)

Fig. 3. Deflection of a rod as viewed from a nodal-fixed frame 

The next reference frame that we consider is the mean-axis conditions. As 
shown in Figure 4(a), the origin of the frame is initially positioned at the 
undeformed mass center of the rod that coincides with node 4. The axes of the 
frame can initially be rotated in any desired orientation since the rotational mean-
axis condition does not exist at the coordinate level. In our example, the -axis is 
positioned initially along the rod axis to the right. In the deformed position, as 
shown in Figure 4(b), the origin of the frame has remained at the instantaneous 
mass center and its orientation has followed the condition of Equation (26). Since 
this condition is on the velocities, it cannot be visualized as easily as the 
translational condition. Note that to a viewer attached to this frame every node 
would appear to have some deflection, and the deflections appear to be more 
uniformly distributed compared to the deflections viewed from the nodal-fixed 
frame. 
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1

2
3 4

5
6

7

(b)

Fig. 4. Deflection of a rod as viewed from a mean axes frame 

From the results shown in Figs. 3 and 4 we observe that the nodal deflections of 
a deformable body would not appear the same from two different body frames. In 
addition, the position and orientation of the two frames are not the same with re-
spect to the body nor with respect to a nonmoving inertial frame. Probably the 
most important difference is that the largest deflection as observed from a mean-
axis frame would, in general, be smaller than the largest deflection observed from 
a nodal-fixed frame. This may be an important issue when we consider the finite-
element approximations associated with the assumption of small deflections.

4.4 Equations of Motion with Mean-Axes 

Substituting Equations(27), (28), and (31) into Equation (18) yields: 

T

T

ˆ
ˆ

ˆˆ

m I gI 0 0 r
0 J 0 b g

gMI Mb M
(32) 

The coefficient matrix in this equation is non-singular. Therefore, if all the forces 
are known, this equation can be solved for the accelerations. 

Since the mean-axis conditions at the acceleration level are not explicitly present 
in Equation(32), there is no guarantee that the resultant values for  would satisfy 
the acceleration constraints; i.e., these constraints may slightly be violated. Although 
the amount of violation could be small, it is possible that during forward integration 
of the equations of motion, this error may cause numerical instability. In order to 
eliminate this particular error, Equations (27) and (28) can be incorporated into 
Equation (32) (or Equation (18)) with the aid of Lagrange multipliers to obtain 
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T

T

T

ˆ
ˆ

ˆˆ
m a

m am a

mI 0 0 0 r I g
0 J 0 0 b g

MI Mb M D g
0 0 D 0 0

(33) 

where  

T

T

ˆ
ˆm a

I M
D

b M

and m-a contains six Lagrange multipliers. The solution of Equation (33) guaran-
tees that the mean-axis conditions at the acceleration level are always satisfied. 

5 Nodal Reduction of Equations of Motion 

The number of nodes and consequently the number of degrees-of-freedom associ-
ated with a moving deformable body may be too large for any realistic numerical 
simulation within the context of multibody modeling. Therefore, different proc-
esses have been developed in the past to reduce the number of degrees-of-freedom 
in such systems. 

The reduction process may be performed in the nodal space. In the so-called 
static or Guyan condensation, it is assumed that some of the nodes of a finite ele-
ment model can be kept and the rest can be deleted [5]. For this purpose, we use 
superscripts “m” and “s” for master (kept) and slave (deleted) nodes. The struc-
tural equations of motion are re-written as 

mm ms m mm ms m m

ssm ss sm ss ss
M M K K f

fM M K K
(34) 

If we assume that the inertia of the entire structure is allocated to the master 
nodes and no external forces are applied to the slave nodes, then the condensed 
mass and stiffness matrices are found as: 

T Tmm ms sm ss
GM M M G G M G M G (35) 

mm ms
GK K K G (36) 

where the static condensation matrix is defined as 

-1ss sm
G K (37) 
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The condensed matrices of Equations (35) and (36) can be used instead of M
and K in Equations (13), (14), and (18) in order to reduce the number of equations. 
Following that we can enforce either the nodal-fixed or the mean-axis conditions5.

The nodal condensation is one of the simplest methods to reduce the number of 
degrees-of-freedom. However, we must note that this condensation process alters 
the modal characteristics of a deformable body; i.e., the reduced number of natural 
frequencies is not a subset of the original body. This feature could be a reason for 
not using this reduction method in certain applications. 

6 Modal Transformation 

The equations of motion can be transformed from nodal to modal coordinates. The 
mass and stiffness matrices yield matrices of mode shapes and modal frequencies 
denoted as  and . The transformation between the modal and nodal coordinates 
is expressed as: 

z (38) 

The modal mass and stiffness matrices are computed as: 

T
M M , T

K K (39) 

In order to follow the form of the equations of motion that we have discussed 
so far, for transformation purposes we define another modal matrix as 

A (40) 

Therefore the transformation of Equation (38) becomes 

z (41) 

As it will be discussed in the upcoming sections, the characteristics of matrix Y
depend on the lack or presence of boundary conditions on the nodes. 

6.1 Free-Free Modes 

Without applying any boundary conditions on M and K, the corresponding matri-
ces of mode shapes and modal frequencies are expressed as: 

ˆˆ , ( ,  ,  )f fdiagI 0 0s (42) 

where Î  and ŝ  represent the translational and rotational rigid-body mode 
shapes, each being an ndof×3 matrix, and f is an ndof×( ndof -6) matrix represent-

                                                          
5  Some of the simplifications in the mean-axis conditions may no longer be applicable 

when we use a condensed mass matrix. 
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ing the deformation mode shapes. The diagonal matrix of eigen-values contains 
six zero eigen-values associated with the rigid-body modes in addition to the de-
formation eigen-values denoted by f. The subscript “f” emphasizes that these en-
tities correspond to a free-free structure. The corresponding transformations are 

f z , T
f f fM M , T

f f fK K (43) 

The transformations of Equation (43) are substituted into Equation (32) to obtain: 

T

T

TT T

ˆ
ˆ

ˆˆ ff f f

m I gI 0 0 r
0 J 0 b g

z gMI Mb M
(44) 

The characteristics of matrix f guarantee that the mean-axis conditions are auto-
matically satisfied. Therefore, there is no need to substitute Equation (43) into 
Equation (33)—such a substitution will result into six redundant equations. Fur-
thermore, it is not of any use to incorporate the free-free modal data into the 
nodal-fixed equations of motion. 

6.2 Constrained Modes 

In structural analysis, the nodes that are connected to the ground are considered 
as the boundary nodes. Therefore, we denote these nodes with superscript “b” and 
the remaining nodes with superscript “u”. These boundary nodes also include the 
removed degrees-of-freedom that define the reference axes in the nodal-fixed con-
ditions. For these nodes in a nodal-fixed frame we set b b 0 . The corre-
sponding sub-matrices M uu and K uu are used to obtain the modal matrices c

and c. The subscript “c” emphasizes that these entities correspond to a con-
strained structure. The corresponding transformation equations are expressed as: 

u
c z , T uu

c c cM M , T uu
c c cK K (45) 

The transformations of Equation (45) can be used to transform the nodal-fixed 
equations of motion to modal space. However, if we use the mean-axis conditions, 
the boundary conditions can no longer be described as b b 0  and, therefore, 
the modal data must be obtained differently. This is the subject of discussion in 
the following sub-section. 

6.3 Constrained Modes and Mean-Axes 

In order to understand how the mode shapes are viewed from different reference 
frames, we consider the schematic presentation of the bending of a planar rod. The 
fixed-fixed rod is constrained to the ground at nodes 1 and 10 as shown in Figure 
5. Two possible reference frames are defined for the rod—a nodal-fixed frame and 
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a mean-axes frame. The nodal-fixed frame is attached to nodes 1 and 10; i.e., to 
the ground, where the mean-axes frame moves with the mass center as depicted 
schematically. The objective of this example is to understand how the mode 
shapes are viewed from different frames. We will look at two bending modes. 

1 2 3 4 5 6 7 
n-f

n-f m-a

m-a
8 9 10 

Fig. 5. A fixed-fixed constrained rod carrying a nodal-fixed frame and a mean-axes frame 

The first bending mode of this rod is shown in Figure 6(a). In this figure the po-
sition and orientation of the two frames are also shown. Obviously, since the 
nodal-fixed frame is attached to the ground, it has no movement, where the mean-
axes frame has moved with the mass center of the first bending mode. There is no 
rotation of the mean-axes frame since this bending mode is symmetric with re-
spect to the -axis. This bending mode as viewed from the nodal-fixed frame is 
shown in Figure 6(b). However, the same bending mode appears totally different 
to the mean-axis frame as shown in Figure 6(c) where the constrained nodes 1 and 
10 appear to be displaced with respect to the frame. 

n-f

n-f

m-a

m-a

(a)

n-f

n-f

(b)

m-a

m-a

(c)

Fig. 6. The first bending mode of the rod: (a) the actual bending; and the bending mode as 
viewed from (b) the nodal-fixed frame and (c) the mean-axes frame 
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The second bending mode of this rod and the two reference frames are shown 
in Figure 7(a). Similar to the first bending mode, obviously, there is no displace-
ment associated with the nodal-fixed frame. The figure schematically shows that 
the mean-axes frame has not translated but it has undergone a rotation. Since the 
mass center of the beam, as far as this mode is concerned, has remained at the 
same location, there is no translational displacement of this frame. In order to un-
derstand the cause of the rotation of this frame, we must consider Equation (26) 
and rewrite it for small displacements as: 

Tˆ ( )b M 0

Therefore, in order to satisfy this condition, the frame must undergo the neces-
sary rotation. This bending mode as viewed from the nodal-fixed and the mean-
axes frames are shown in Figs. 7(b) and (c). 

We should note that although the mode shapes have different appearances in 
the two frames, the natural frequencies are not effected by the choice of reference 
frames. It is possible to transform the mode shapes from one frame to another, if 
all the mode shapes are available in one of the frames. 

The constrained mode shapes, when we use the mean-axes, can be computed 
directly from the mass and stiffness matrices. We consider the equations of motion 
for a free deformable body from Equation (32) or (33). We split the nodes (or 
nodal degrees-of-freedom) into the boundary and unconstrained sets to get 

T

T
, , T

, , T

ˆ
ˆ

ˆˆ
ˆˆ

b b b bb bu b b
bm a

uu u u ub uu u u
m a

b u
m a

m a m a

mI 0 0 0 0 I gr
0 J 0 0 0

b g
M I M b M M D g
M I M b M M D g

00 0 D D 0

(46) 

Now the boundary nodes can be constrained as 

ˆˆb b b

b

r
d I b I w 0 (47) 

With the aid of Lagrange multipliers, the equations of motion become: 

T
T

T
T

, , T

, , T

ˆ
ˆ

ˆ
ˆ

ˆˆ
ˆˆ

ˆˆ

b

bb b b bb bu b b
m a

u uu u u ub uu u
m a

b u m a
m a m a b

b

mI 0 0 0 0 I
I gr

0 J 0 0 0 b b g
M I M b M M D I g

gM I M b M M D 0
00 0 D D 0 0
w

I b I 0 0 0

(48) 

From this equation we need to extract mass and stiffness matrices for modal 
analysis.
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n-f

n-f m-a

m-a

(a)

n-f

n-f

(b)

m-a

m-a

(c)

Fig. 7. The second bending mode: (a) the actual bending; and the bending mode as viewed 
from (b) the nodal-fixed frame and (c) the mean-axes frame 

The right-hand-side array of Equation (48) can be expanded as 

TT

TT

, ,

, ,

ˆˆ ( )
ˆˆ ( )

b b b b bb

u u u u u u

b b

I f Mw KI g

b f Mw Kb g
f M w Kg

g f M w K
0 0
w w

For modal extraction, we eliminate the applied forces and the velocity dependent 

terms. Furthermore, we observe that TÎ K 0  and Tb̂ K 0 6. Hence we get: 

T T

T T

,,

,,

ˆ ˆ
ˆ ˆ

b b bb bu bb b b

u u ub uu uu u u

b

I g I K 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0b g b K

K 0 0 K K 0 0g K
K 0 0 K K 0 0g K

0 0 0 0 0 0 0 00 0
0 0 0 0 0 0 0 00w

(49) 

                                                          
6  These two terms represent the sum of internal (structural) forces and moments, respec-

tively, to be zero. 
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Since modal extraction is performed at the undeformed state of the body, in the 
mass matrix of Equation (48), the b array is replaced by the s array. Therefore, the 
mass and stiffness matrices for modal extraction are: 

T

T

, , T

, , T

ˆ
ˆ

ˆˆ
 ,  ˆˆ

ˆˆ

b

b b b bb bu b bb bu
m a

ub uuu u u ub uu u
m a

b u
m a m a

b

mI 0 0 0 0 I 0 0 0 0 0 0
0 J 0 0 0 s 0 0 0 0 0 0

M I M s M M D I 0 0 K K 0 0
0 0 K K 0 0M I M s M M D 0
0 0 0 0 0 00 0 D D 0 0
0 0 0 0 0 0I s I 0 0 0

(50) 

Note that in matrix Dm-a, the b array must also be replaced by the s array. Further-
more, for extracting modal data, all entities associated with deformation in both 
matrices must be transformed to their components in the body-frame. 

An eigen-analysis with the mass and stiffness matrices from Equation (50) 
would reveal several zero eigen-values associated with the mean-axes and the 
boundary constraints. The deformation eigen-values and the corresponding eigen-
vectors represent the natural frequencies and the mode-shapes for the constrained 
structure as viewed from the mean-axes reference frame. These are the mode-
shapes that we should use in the transformations of Equation (45). 

7 Conclusions 

In this document two methods for defining a moving reference frame for a de-
formable body are discussed: the nodal-fixed frame which is quite conventional, 
and the mean-axis frame which is not well understood. The main purpose of this 
document is to describe the use of these two reference frames, to provide a better 
understanding of the mean-axis conditions, and to compare some advantages and 
disadvantages of each frame. 

These two reference frames each impose six conditions on the deformation de-
grees-of-freedom of a body. These conditions allow the corresponding reference 
frame to follow the deformable body without constraining its deformation. The six 
conditions for the nodal-fixed frame are so simple that they can be implemented in 
the equations of motion explicitly in order to reduce the number of equations of 
motion and the corresponding variables. In contrast, the mean-axis conditions in-
crease the number of equations of motion by at least six. 

The deflection of a deformable body appears different to each of these frames. 
In a nodal-fixed frame, the boundary nodes will appear not to have any displace-
ments and, therefore, some of the nodes will appear to have large displacements. 
However, since a mean-axes frame treats all of the nodes according to their iner-
tia, nodal displacements would appear more uniformly from this frame. In general, 
the largest displacement as viewed from a mean-axis frame would be smaller than 
the largest displacement viewed from a nodal-fixed frame. This could be an im-
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portant factor in error reduction in some applications if we consider the “small 
displacement” assumption in linear finite element modeling. 

Transformation of the equations of motion from nodal to modal space has been 
traditionally performed with the nodal-fixed frame. It has been the general belief 
that the mean-axes frame can only be employed for free-free structures. This 
document shows that if we interpret the deformation mode shapes properly, the 
mean-axes frames can be used whether the structure is constrained or not. 

Although the formulation of a moving deformable body is not extended in this 
document to multibody systems, the use of mean-axis conditions is highly recom-
mended for such formulations. These conditions provide more natural moving 
frames for deformable bodies that undergo large spatial translation and rotation, 
while interconnected to other rigid or deformable components. Whereas the nodal-
fixed frame is more suitable for structures that do not exhibit large translational 
and rotational displacements. 
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1 Introduction

Flexible multibody systems (MBS) appear in a number of mechanical applications, in
which the model must consider the deformation of some or all of the bodies. A clas-
sical method for considering flexibility has been the floating frame technique (25),
generally limited to small strains. A more general approach based on inertial coordi-
nates may be formulated by nonlinear finite element methods (27; 28; 11), which are
versatile and computationally efficient. Furthermore, employing energy-momentum
time integration algorithms they prove to be extremely stable for nonlinear stiff be-
haviours which frequently arise in such systems.

We present briefly the overall dynamic formulation, but we focus mainly on the
formulation of constraints for joints with or without clearances.

Integration algorithms that conserve both momentum and energy have been pro-
posed in (29; 26; 16; 15), attracting considerable attention in the last few years. One
of the main benefits of their robustness is their ability to perform stable long-term
simulations in nonlinear systems.

The approach followed here, in contrast to other energy-momentum formulations
(29; 16; 8; 5; 9; 23), differs in two key aspects: 1) a rotation-free parametrisation
for rigid bodies, based on inertial cartesian coordinates of body points, forming a
dependent set which is subject to constraints; 2) a penalty formulation for constraints.
As will be explained below, this allows for a simple, efficient and robust numerical
implementation.

Penalty methods are associated to a non-exact fulfilment of constraints, and in
order to ensure sufficient numerical accuracy, large enough penalty parameters must
be employed. These may lead to a stiff behaviour and further difficulties in the nu-
merical solution of the problem. Their effect on the system is analogous to intro-
ducing very stiff elements between the constrained degrees of freedom. As a con-
sequence, a penalty approach introduces high-frequency components in addition to
the already existing ones in flexible multibody systems, due to wave propagation in
the deformable bodies. This causes severe numerical difficulties for most time inte-
gration algorithms (8), being the main drawback of penalty formulations. However,
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the energy-momentum algorithm employed here performs exceedingly well, allow-
ing a stable integration even with large time-steps, which is the key to the success of
the method. This may be seen in the applications presented here (section 7) and in
previous work (12; 21; 13).

The parametrisation for rigid bodies employed is based on inertial cartesian co-
ordinates of body points, following ideas originally proposed by (10) (“natural coor-
dinates”). As a consequence, issues related to integration of rotation parameters are
of no concern here. Rotation-free parametrisation for flexible systems has been also
used recently by (30; 24). An important remark is that in order to use cartesian coor-
dinates of points for rigid bodies a dependent set of such points must be employed,
leading to associated rigid-body constraints. However, these constraints are of the
constant distance type (quadratic), and pose no special numerical drawbacks. On the
contrary, this choice has some convenient features such as producing a constant mass
matrix.

In summary, using cartesian coordinates of points and a penalty approach has two
main advantages: firstly it allows a simple formulation of the numerical algorithms,
and secondly it leads to a problem formulated as a set of ordinary differential equa-
tions (ODE’s) with the same number of equations as variables in the model. This is
not the case of the Lagrange multipliers method, which leads to a set of differential-
algebraic equations (DAE’s) with additional variables (Lagrange multipliers).

Regarding conservation properties, the use of a penalty approach has a useful
advantage in that the constraint forces may be derived from a potential function, the
constraint energy. The total energy of the system, defined to include this constraint
energy as well, is conserved by construction of the time integration algorithm. It
must be noted that the true energy (i.e. that corresponding to rigid bodies and elastic
bodies) does not exactly coincide with this total energy, the difference being the
said constraint energy, which is being continuously interchanged with that of the rest
of the system; however, using large penalty factors, the violation of the constraints
and their associated energy may be maintained sufficiently small for most practical
purposes.

Special attention is paid to study of real joints incorporating smooth clearances.
The basic phenomenon is the contact between the surfaces defining the joint, which
has particular features in the context of multibody dynamics: high number of inter-
mitent contacts and very different space and time scales.

The numerical models described here have been coded in a stand-alone computer
program using object-oriented programming (C++). This code structure has allowed
an efficient and simple framework for including different objects such as rigid bodies,
constraints and finite elements within a single system.

In the rest of this chapter, we first discuss briefly the equations of motion for
constrained flexible multibody systems. We then describe in more detail the rotation-
free formulation for rigid bodies. Following, the energy-momentum time integration
scheme is established. Attention is then focused on the modelling of joints, either
perfect or with clearances. Finally, some representative numerical applications are
shown.
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2 Parametrisation and General Equations of Motion

Following we introduce the notation and discuss briefly the equations of motion, first
for rigid bodies, identified with subscript (·)R; next, elastic bodies, identified as (·)E;
and finally, the joint equations for the complete flexible MBS.

2.1 Constrained System of Rigid Bodies

Let us consider a rigid body BR with mass MR, being X and x respectively the con-
vected (i.e. material) and spatial coordinates in an inertial frame for an arbitrary point
of the body. The kinematics of BR is defined in terms of the position of the centre
of mass (C.O.M.) xG and the rotation Λ ∈ SO(3) = {Λ : R3 �→ R3; ΛΛT =
1; det(Λ) = +1} as follows:

x = xG + Λ(X − XG). (1)

The spatial angular velocity ω is the axial vector of the skew-symmetric tensor
ω̂ = Λ̇ΛT. The convected central inertia tensor is constant, defined as JG =∫
BR

[
(X − XG)21 − (X − XG) ⊗ (X − XG)

]
ρdV , where 1 is the unit 2nd order ten-

sor, and ⊗ is the dyadic product. The non-constant spatial inertia tensor takes the
form IG = ΛJGΛT.

Let us consider a rigid body subject to q holonomic constraints Φ(qΦ) = 0,
in terms of p coordinates qΦ (Rp � qΦ �→ Φ(qΦ) ∈ Rq). The dynamics may be
formulated in weak terms based on Lagrange multipliers λ ∈ Rq as:1

δxG · MRẍG + δθ · d
dt

(IGω) +
1
2
δqT

Φ ·
[
(DΦ)T · λ

]
+

1
2
δλT · Φ − δxG · f R − δθ · mR = 0 ∀(δxG, δθ, δλ) (2)

where f R and mR are the force and torque resultants at G, and D is the derivative

operator (DΦ def= ∂Φ/∂q). The term (DΦ)T · λ represents the constraint forces
(f Φ), in terms of the Lagrange multipliers λ. The variations δxG are arbitrary, and δθ
is the axial vector of δθ̂ = (δΛ)ΛT. The variations δqΦ in (2) are defined by the
following kinematic relationship:

δqΦ = δxG + δθ ∧ (qΦ − xG), (3)

where it has been assumed, with no loss of generality, that the constraints are applied
to a single point, qΦ .

In this work we avoid the parametrisation of rotations Λ, instead we choose to
formulate the rigid body configuration in terms of the cartesian inertial coordinates

1 In this equation and hereafter we shall employ preferably the notation of upright boldface
(M,q) for matrix quantities and slanted boldface (x, f ) for tensor or vector quantities. Dots
(·) are employed for matrix products as well as for dot products between vectors.
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of a set of m points in BR, qR ∈ R3m. It will be shown in section 3 that, under this
assumption, the kinetic energy can always be expressed as:

TR =
1
2
q̇T

R · (MR · q̇R), (4)

with MR being the mass matrix (section 3.2). This matrix will be constant provided
that m ≥ 4 and the selected points are non-coplanar and non-aligned in groups of
three.

We now establish a set of coordinates qR which comprises basic points for de-
finition of the rigid body, as well as any extra points which may be necessary for
formulation of constraints (qΦ), point loads QR, etc. In terms of qR, the weak form
of the equations is given by:

δqT
R · (MR · q̈R) +

1
2
δqT

R ·
[
(DΦ)T · λ

]
+

1
2
δλT · Φ − δqT

R · QR = 0

∀δqR ∈ V3m−q, ∀δλ (5)

where V3m−q is a (3m − q)-dimensional space of the variations of qR compatible
with the constraints Φ.

The above equation (5) involves consideration of λ as additional variables, sub-
ject to the constraints Φ, resulting in a DAE system. Here we employ a different
approach, penalty methods. This may be defined by considering the Lagrange multi-
pliers and the associated constraint forces to be:

λ = α · Φ ; fΦ = −(DΦ)T · λ = −(DΦ)T · (α · Φ) , (6)

where α is a (q × q) constant penalty matrix, positive definite and symmetric. This
leads also to δλ = α · DΦ · δqR, where the variations δqR need no longer be com-
patible with the constraints Φ. Introducing these variations in (5) and considering
that now δqR are arbitrary, one obtains the following set of differential equations
(ODE’s):

MR · q̈R + (DΦ)T · (α · Φ)︸ ︷︷ ︸
−fΦR

−QR = 0 . (7)

A further alternative for treatment of constraints is the augmented Lagrangian
method, which may be understood to start from a penalty scheme followed by an
iteration to obtain the multipliers with the desired accuracy:

fΦ = −(DΦ)T · (α · Φ) + (DΦ)T · λ∗ ; λ∗
i+1 = λ∗

i + α · Φi+1 , (8)

where vector λ� converges to the exact Lagrange multiplier vector λ as Φ → 0.
The enforcement of constraints is the key issue in the numerical representation

of joints, and will be addressed again with more detail in section 5.1.
With the above approach, a multibody system formed by several rigid bodies

{BRi , i = 1, . . . ,N} is assembled by simply collecting in qR all the variables of
each body.
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2.2 Deformable Bodies

Let us consider an elastic body is designed by BE. A general motion is defined by a
smooth differentiable mapping ϕ : X �→ x. The deformation gradient F defines the
derivate of this mapping F = Dϕ = ∂x/∂X (with the abuse of notation involved in
the use of x instead of ϕ(X)).

We consider hyperelastic materials in which a stored energy density function
exists of the type W(C), with C = FTF, from which the symmetric Piola-Kirchhoff
stress tensor may be obtained as S = 2 DW. The strain energy of the elastic body
will be Π =

∫
BE0

W dV0. Introducing the notation for an L2-inner product, 〈·, ·〉� =∫
�(·)(·) d�, the variation of Π for an arbitrary virtual displacement is given by
δΠ = 〈FS,D(δx)〉BE0

. The weak form of the equations of motion for a single elastic
body BE with boundary ∂BE is:

〈ρẍ, δx〉BE
− 〈F S,D(δx)〉BE0

− 〈f , δx〉BE
− 〈t, δx〉∂BE,t

= 0, ∀δx ∈ W, (9)

where f and t are respectively the volumetric loads and traction forces at the bound-
ary. In this case, W is the infinite-dimensional space of the variations of x compatible
with the existing constraints (if any).

Further details on the treatment of elastic bodies are given in (19; 12) and will be
omitted here for brevity.

2.3 Global Flexible Multibody Equations

For a multibody system composed of both rigid (BR) and elastic (BE) bodies, the
weak form of the dynamic equations may be obtained gathering the terms from rigid
bodies (5) and elastic bodies (9):

〈ρẍ, δx〉BE
− 〈F S,D(δx)〉BE0

+ δqT
R · (MR · q̈R)

+ δqT
R ·
[
(DΦ)T · (α · Φ)

]
− 〈f , δx〉BE

− 〈t, δx〉∂BE,t
− δqT

R · QR = 0, ∀δqR, ∀δx ∈ W . (10)

In the above equation constraints are considered by a penalty method.

2.4 Finite Element Approximation

The elastic body BE continuum is discretized in space through standard finite ele-
ment techniques, such that both material (X) and spatial (x) coordinates of an arbi-
trary point within an element Ωe are interpolated from the nodal coordinates through
shape functions Ni:

x =
n∑

i=1

Nix
e
i =
(

N1I3 N2I3 . . . NnI3
)︸ ︷︷ ︸

N

⎧⎪⎪⎨⎪⎪⎩
xe

1
xe

2
. . .
xe

n

⎫⎪⎪⎬⎪⎪⎭ = N · qe
E (11)

X = N · qe
E0
, (12)
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where I3 represent unit (3×3) matrices. Additionally, in isoparametric elements, the
displacement (u) is interpolated in a similar fashion such that u = N · (qe

E − qe
E0

),
and as a consequence δx = N · δqe

E. The contribution of an element Ωe to the
discrete weak formulation (10) can be written in terms of δqe

E ∈ Wn, defined in a
finite-dimensional space, as:

(δqe
E)T ·

(∫
Ωe

ρNT · NdV︸ ︷︷ ︸
Me

E

q̈e
E −

∫
Ωe

0

BSe dV0︸ ︷︷ ︸
f e
int

−Qe
E

)
(13)

Details about the computation of the f e
int term (internal forces) are given in (12; 19)

and will be omitted here. Assembly of the element matrices Me
E, f e

int and Qe
E allows

the calculation of global matrices ME, fint, QE. Additionally, a force vector fΦE

similar to fΦR is introduced for constraints acting within the deformable bodies.
Finally, assembling a new vector q ∈ R3m+n which merges qR and qE, whose

variations δq are arbitrary, global dynamics will be expressed by the following set of
ordinary differential equations,written in partitioned form:(

MR 0
0 ME

)
︸ ︷︷ ︸

M

{
q̈R

q̈E

}
︸ ︷︷ ︸

q̈

=
{

fΦR

fΦE

}
+
{

fΦRE1

fΦRE2

}
︸ ︷︷ ︸

fΦ

+
{

0
fint

}
+
{

QR

QE

}
︸ ︷︷ ︸

Q

. (14)

In this expression fΦREi are coupling terms from constraints between the rigid and
the elastic sub-systems.

It must be remarked that in the above equation (14) the global mass matrix M
will always be constant, due to the choice of inertial cartesian coordinates made both
for rigid and elastic bodies. The applied force vector Q = Q(q, q̇, t) arises from
external or internal forces (imposed loads, internal forces of elastic bodies, springs,
dashpots, etc).

3 Rotation-free Formulation of Rigid Bodies

The position of a rigid body BR is defined by a collection of m points {qk, k =
1, . . .m} constrained to remain at constant relative distances, through (3m − 6) con-
straint equations. The parametrisation in terms of this set of dependent coordinates
arouses two issues: the constant-distance constraints and the consistent formulation
of the mass matrix. The approach taken for these two aspects follows the ideas pro-
posed originally in (10).

3.1 Constant Distance Constraint

Given two points (a and b) defined by their cartesian coordinates xa = (xa, ya, za), xb =
(xb, yb, zb), the constant-distance constraint equation is:
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Φ = (xb − xa)2 + (yb − ya)2 + (zb − za)2 − l2ab . (15)

The penalty potential is VΦ = 1
2αΦ

2, and the force vector, considering qT =(
xT

a xT
b

)
is:

fΦ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xa − xb

ya − yb

za − zb

xb − xa

yb − ya

zb − za

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
2α
(
(xb − xa)2 + (yb − ya)2 + (zb − za)2 − l2ab

)
.

Remark 1. Constraint equation (15) is quadratic and as a consequence results in a
linear Jacobian, which is particularly convenient from a computational point of view.

3.2 Consistent Mass Matrix

For a rigid body BR in 3D, it can be shown that the minimum number of points in
order to obtain a constant mass matrix is 4, being non-coplanar and non-aligned in
groups of three. Let these points be {x0, x1, x2, x3}, where O ≡ x0 may be taken as a
reference point and tj = (xj − x0), (j = 1, . . . 3) are non-unit vectors for reference
directions. These define a convected frame S′ ≡ {O, tj}, which in general may be
non-orthonormal. The position of a generic point P ∈ BR defined by vector x may
be expressed as:

x = x0 + X′
1t1 + X′

2t2 + X′
3t3 ,

being {X′
j} constants defining relative adimensional coordinates. In compact matrix

form, this may be written as:

x = C · qR, with C =
(

X′
0I3 X′

1I3 X′
2I3 X′

3I3
)
, (16)

being qR the 12×1 column matrix built with the cartesian coordinates of the 4 points
and X′

0 = 1 −
∑3

j=1 X′
j .

t3

P3

P2

t2 P1

t1

O ≡ x0

BR

Fig. 1. 3-D rigid body



212 J.C. Garcı́a Orden and J.M. Goicolea

Differentiating (16) one obtains ẍ = C · q̈R and δx = C · δqR, and the virtual
work of the inertia forces for a compatible displacement δqR in the body BR leads
to the following expression:

δWiner =
∫
BR

ρ(δxT · ẍ) dV = δqT ·
[∫

BR

ρCT · CdV

]
︸ ︷︷ ︸

MR

·q̈R , (17)

where the mass matrix MR can be identified. The most convenient procedure to
calculate the integral in (17) is in terms of the relative position vector X of an arbitrary
point,

X = TX′, with T =
(

t1 t2 t3
)
, and X′ =

(
X′

1 X′
2 X′

3

)
,

and in terms of the planar inertia tensor. This may be defined at O as PO = IOI − IO,
where IO is the polar moment of inertia and IO is the inertia tensor. The expression in
the convected non-orthonormal frame S′ is P′

O = T−1POT−T. Further, the relative
position vector of the C.O.M. in this same frame is X′

G = T−1XG. In terms of these,
the mass matrix obtained in (17) may be expressed as:

M =

⎛⎜⎜⎝
m00I3 m01I3 m02I3 m03I3

m01I3

m02I3 P̃′
O

m03I3

⎞⎟⎟⎠ ,

where the notation P̃′
O is used to define an inflated matrix, i.e.

P̃′
O =

⎛⎝P′
11I3 P′

12I3 P′
13I3

P′
21I3 P′

22I3 P′
23I3

P′
31I3 P′

32I3 P′
33I3

⎞⎠ .

The parameters m0i take the following values:

m00 =
∫
BR

X′
0X′

0ρdV = M(2X′
G0 − 1) +

3∑
i=1

3∑
j=1

P′
ij ,

m0i =
∫
BR

X′
0X′

iρdV = MX′
Gi −

3∑
j=1

P′
ij ,

where M is the total mass of the rigid body and X′
G0 = 1 −∑3

i=1 X′
Gi.

These expressions are greatly simplified for O ≡ G, and for directions ti which
coincide with principal inertia directions. Mass matrices for two and one dimensional
rigid bodies can be calculated in a similar fashion.
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4 Conservative Time Integration

Following (15), a conservative time integration for mechanical systems may be for-
mulated in terms of the discrete derivative of the Hamiltonian. A Hamiltonian canon-
ical system (P,J,H) is defined by evolution equations expressed as:

ż = JDH(z) with J =
(

0n In

−In 0n

)
,

where z = (q, p) ∈ P (generalised coordinates and moments, being P ∈ R2n the
phase space). 0n and In are the null and (n× n) unit matrices respectively. The skew-
symmetric operator J introduces a symplectic structure, and H : P → R is the
Hamiltonian function.

The discrete derivative of a function f : P → R, denoted by Df (zn, zn+1), with
zn, zn+1 ∈ P, is defined as a function of the continuous derivative Df by:

Df (zn, zn+1) = Df (zn+ 1
2
)

+
f (zn+1) − f (zn) − Df (zn+ 1

2
) · (zn+1 − zn)

||zn+1 − zn||2
(zn+1 − zn) ,

being zn+ 1
2

def= 1
2 (zn+zn+1). This calculation could be simplified if f can be expressed

in terms of a set of elemental functions π = πi(z), i = 1...p at most quadratic, with
the relation:

Df (zn, zn+1)
def= Df̃ (πn,πn+1) · Dπ(zn+ 1

2
) with f(z) = f̃(π)

where f̃ (π) is called the reduced function associated to f .
Applying the discrete derivative to system (P,J,H), we obtain a discrete Hamil-

tonian system, given by the finite difference equation:

zn+1 − zn = ∆t J [DH(zn, zn+1)] ; zn, zn+1 ∈ P (18)

For an autonomous system in which H has the meaning of the total energy and
is conserved, it is possible to show (15) that the discrete system (18) algorithmically
inherits this property, thus achieving exact energy conservation.

Before applying the discrete derivative directly to a simple example, let us
analyse the invariance of other first integrals in a Hamiltonian system, such as angu-
lar momentum. The conservation of this quantity holds if the Hamiltonian is invariant
under the action of the rotation group SO(3). In this case, the Hamiltonian system
is said to possess symmetry, and it is possible to define another discrete derivative
(called G-equivariant discrete derivative and labelled DG), such that the discrete sys-
tem given by:

zn+1 − zn = ∆t J
[
DGH(zn, zn+1)

]
; zn, zn+1 ∈ P (19)
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algorithmically conserves both energy and angular momentum. If H can be expressed
in terms of a set of invariant and independent functions π at most quadratic, the G-
equivariant discrete derivative can be calculated with an expression which is formally
identical to that previously employed for the standard discrete derivative:

DGH(zn, zn+1)
def= DH̃(πn,πn+1) · Dπ(zn+ 1

2
), with H(z) = H̃(π) .

Example 1. Particle under a central force Let us suppose a simple mechanical
system composed by a single particle with mass m subjected to a central force,
with coordinates q ∈ R3. The force F(q) = F(q)q/q derives from a potential
V(q) = V̂(q) =

∫
F(q)dq.

The mechanical system so defined has a Hamiltonian function

H =
1

2m
p2 + V̂(q) ,

which is independent of time and invariant under the action of rotations. These prop-
erties introduce symmetries in the Hamiltonian structure: i.e. total energy (H = E =
T + V) and angular momentum are conserved throughout the motion. Besides, in-
spection of the Hamiltonian function reveals that the following quadratic invariants
exist: {π1 = q2, π2 = q · p, π3 = p2}. An energy-momentum conserving algorithm
is obtained by application of the G-equivariant discrete derivative (19), arriving at:

pn+1 − pn = −∆t DGV(qn, qn+1)

= −∆t
V(qn+1) − V(qn)

qn+1 − qn

qn+ 1
2

qn+ 1
2

(20)

qn+1 − qn = ∆t
1
2
(q̇n + q̇n+1) = ∆t q̇n+ 1

2
(21)

where (·)n+ 1
2

def= 1
2

[
(·)n + (·)n+1

]
Remark 2. It is important to note that, in general, qn+ 1

2
= 1

2 (qn + qn+1) �= qn+ 1
2

=
||qn+ 1

2
||.

Remark 3. The energy-momentum method, as suggested by expressions (20) and
(21), can be understood as a modified implicit midpoint rule, just by altering the
force term in right-hand side of momentum balance equation in order to obtain (20),
which no longer has the meaning of the force at the mid-step but rather of a specific
discrete expression to obtain algorithmic conservation.

5 Conservative Formulation of Perfect Joints

A joint is understood as perfect as long as it is permanent, smooth (there is no fric-
tion) and has no clearances. This section outlines the formulation of such perfect
joints in the context of the conservative time integration described in section 4.
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In the numerical model, a perfect joint is represented by one or more equality
constraints, which are formulated in terms of the generalised coordinates that de-
termine the configuration of the connected bodies. Following this idea, a general
approach to the conservative formulation of constraints is presented first; in a second
stage, these ideas will be extended to the formulation of practical perfect joints.

5.1 Conservative formulation of constraints

If we denote by qΦ ∈ Rp the vector that contains the p generalised coordinates
associated to the connected bodies, a constraint Φ is a function defined as:

Φ : (Rp × Rp × R) � (q, q̇, t) �−→ Φ(q, q̇, t) ∈ R

However, for most practical perfect joints, the associated constraints neither de-
pend on the generalised velocities nor time, which is related to the fact that they are
permanent and smooth. As a consequence, we shall study at this point only holo-
nomic and escleronomic constraints, which take the simpler form:

Φ : Rp � q �−→ Φ(q) ∈ R (22)

Enforcement of a set of this type of constraints, grouped into a single vector
Φ(q) ∈ Rq, may be accomplished by several methods. From the different alter-
natives, we choose the penalty method as the basic methodology for the constraint
enforcement, based on the ideas outlined in the following remarks.

Remark 4. The Lagrange multipliers method provides an exact enforcement of the
constraints. However, the penalty method and the augmented Lagrangian methods
have a useful advantage from a numerical point of view: they lead to an ODE sys-
tem in terms of configuration parameters, without additional algebraic constraints or
additional mixed variables representing multipliers.

Remark 5. In the penalty method the constraint force (6) derives from a constraint
potential:

VΦ =
1
2
ΦT · (α · Φ) , fΦ = −DVΦ ;

this fact has relevance in the conservative formulation of constraints in the context
of the energy-momentum method.

Remark 6. The large penalty parameters α may introduce severe numerical diffi-
culties which are, in fact, the main drawback of the penalty method. However, this
problem is overcome by the energy-momentum formulation (13).

Note that constraints defined by (22) do not dissipate energy in any compatible
displacement (satisfying Φ = 0) which justifies the interest of developing a discrete
conservative formulation which inherits this important property.

In the context of this section, is useful to distinguish between scalar and vector
constraints. This will be related with the cartesian coordinates of selected points that
are used to define the system configuration.
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• In a scalar constraint between two points, the corresponding equation is a func-
tion of a single scalar variable (e.g. the modulus of the relative distance). This is
the case of the constant-distance constraint described in section 3.1.

• In a vector constraint between two or more points, the expression is a general
function of the cartesian coordinates of the constrained points. One example can
be the equation that forces four points to lie in the same plane.

5.1.1 Scalar constraints

Let us consider a closed two-particle system with a configuration defined by position
vectors (x1, x2). The global coordinate vector is q, which collects the six components
from both. The relative position is given by r = x2 − x1, with modulus r = |r|.
Assume an internal constraint exists defined by a function Φ : R � r �−→ Φ(r) ∈ R,
with constraint energy VΦ = (1/2)αΦ2. This is a Hamiltonian system with symme-
try, and total energy and momentum are constant.

Equations (20) and (21) developed for a single particle under a central force can
be directly applied to this case, giving the algorithmic equation:

M(q̇n+1 − q̇n) = −∆t DGVΦ(qn,qn+1) = −∆tα
Φ2

n+1 − Φ2
n

r2
n+1 − r2

n

{
rn+ 1

2

−rn+ 1
2

}

qn+1 − qn = ∆t
1
2
(q̇n+1 + q̇n) = ∆tq̇n+1/2

(23)

where rn+ 1
2

def= 1
2 (rn+1 + rn) and α is the penalty factor.

It is important to verify that expression (23)1 is well-behaved in the limit ∆r =
(rn+1 − rn) → 0. This is due to the fact that the most computationally-efficient
predictor value in the first iteration, when integrating from tn to tn+1, is r0

n+1 = rn. In
this limit case, the expression of the constraint force is given by:

(fΦ)∆r→0 = −αΦnΦ
′
n

rn

{
rn

−rn

}
, where Φ′ def=

dΦ
dr

. (24)

Expressions 23 define by themselves an implicit time marching scheme that de-
mands a built-in iterative procedure. This iterative process implies the linearision of
(23), leading to the calculation of a consistent tangent matrix. The contribution (KΦ)
to the global tangent matrix at tn+1 results from the exact linearision of the constraint
force vector, and is given by:

KΦ =
∂fΦ
∂qn+1

=
(

A −A
−A A

)
, (25)

with:

A def= −
[

2
V ′

Φn+1
− σrn+1

rn+1(r2
n+1 − r2

n)
(rn+ 1

2
⊗ rn+1) +

1
2
σ1

]
and
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σ
def=

VΦn+1 − VΦn

1
2 (r2

n+1 − r2
n)
.

It is important to remark that (25) results in a non-symmetric matrix.
In the limit ∆r = (rn+1 − rn) → 0, the contribution to the consistent tangent

matrix is symmetric and given by:

(KΦ)∆r→0 =
(

B −B
−B B

)
(26)

with

B def= −
[
(V ′′

Φ)n − σ∗

2r2
n

(rn ⊗ rn) +
1
2
σ∗1

]
,

and σ∗ given by:

σ∗ =
αΦnΦ

′
n

rn
.

Example 2. Constant distance constraints, essential in the definition of rigid bodies,
are a particular case of scalar constraints. They can be expressed as Φ(r) = r − r0,
being r0 the initial distance. With this notation, and applying expression (23), the
constraint force results:

fΦ = −α
(

1 − r0

rn+ 1
2

){
rn+ 1

2

−rn+ 1
2

}
,

which is well-behaved in the limit ∆r → 0 if rn �= 0. The consistent linearision of
this force, leading to a contribution to the global tangent matrix, can be found in (21).

5.1.2 Vector constraints

In this case, we consider N points defined by their position vectors x1, .., xN . We
define a new vector q ∈ R3N , collecting all coordinates of every position vector. A
vector constraint is defined by a general function Φ : R3N � q �−→ Φ(q) ∈ R.

Let us assume that each point corresponds to a particle, and the only applied
forces are due to the enforcement of the constraint. It can be shown (19) that this
results in a Hamiltonian system without symmetry, and only total energy is conserved
along the movement.

A convenient way of considering this type of constraints is to start from a modi-
fied midpoint rule given by:

M(q̇n+1 − q̇n) = −∆tσ(DΦ)n+β ; qn+1 − qn = ∆tq̇n+ 1
2
,

where (·)n+β expresses evaluation at point qn+β
def= qn + β(qn+1 − qn), and σ is a

scalar which will be calculated for exact energy conservation.
The kinetic energy variation is in this case:
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Tn+1 − Tn =
1
2
q̇T

n+1 · (M q̇n+1) −
1
2
q̇T

n · (M q̇n)

=
1
2
(q̇n+1 + q̇n)T · M (q̇n+1 − q̇n)

=
1
∆t

(qn+1 − qn)T(−∆t)σ(DΦ)n+β

= −σ(DΦ)Tn+β · (qn+1 − qn) . (27)

Additionally, note that the mean-value theorem shows that, Φ being continuous
with continuous derivative, there exists a value β ∈ (0, 1) such that the following
expression holds:

ψ(β) = (DΦ)Tn+β · (qn+1 − qn) − (Φn+1 − Φn) = 0 , (28)

Equation (27) shows that exact energy conservation implies two conditions:

1. When the constraint is exactly satisfied (Φn = Φn+1 = 0), the kinetic energy
variation of the constrained points should be zero, since (VΦ)n = (VΦ)n+1 = 0.
As a consequence, expression (27) has to verify:

(DΦ)Tn+β · (qn+1 − qn) = 0 , (29)

where existence of β is guaranteed by (28).
2. When the constraint is not satisfied exactly (Φn �= 0, Φn+1 �= 0), the increment

of kinetic energy should be equal to the decrement in potential energy:

Tn+1 − Tn = (VΦ)n − (VΦ)n+1 = −1
2
α(Φ2

n+1 − Φ2
n) ;

allowing, with expressions (27) and (28), the calculation of σ:

σ =
1
2
α

Φ2
n+1 − Φ2

n

(DΦ)Tn+β · (qn+1 − qn)
= αΦn+ 1

2
,

where, again, (·)n+ 1
2

def= 1
2

[
(·)n + (·)n+1

]
.

Summarising, the energy-momentum algorithm takes the general form:

M(q̇n+1 − q̇n) = −∆tαΦn+ 1
2
(DΦ)n+β ;

qn+1 − qn = hq̇n+ 1
2
,

(30)

where β is the solution of the scalar equation:

Ψ(β) = 0 = (DΦ)Tn+β · (qn+1 − qn) − Φn+1 + Φn . (31)

Remark 7. Equation (31) must be solved at every iteration within each time step, it is
non-linear and may be solved for β with different numerical methods. One possible
choice is to use the following Newton-Raphson iterative scheme:
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βk+1 = βk −
1

DΨ(βk)
Ψ(βk) , (32)

but other choices (quasi-newton, bisection, etc.) could be appropriate as well. This
issue will be addressed again related to the conservative formulation of clearances in
section 6.

Remark 8. If the constraint is at most quadratic, it is straightforward to see that β =
1/2, and equation (31) does not need to be solved.

The linearisation of the constraint force given in (30) leads to the following non-
symmetric contribution to the consistent tangent matrix:

KΦ = −α

2

[(
(DΦ)n+β ⊗ (DΦ)n+1

)
+ 2βΦn+ 1

2
(D2Φ)n+β

]
(33)

In practice, it is important to verify that the force constraint is well-behaved when
∆q = (qn+1 − qn) → 0, for the same reasons exposed earlier for scalar constraints.
In this case, the contribution to the tangent matrix is symmetric and given by:

(KΦ)∆q→0 = −α

2

[(
(DΦ)n ⊗ (DΦ)n

)
+ Φn(D2Φ)n

]
Remark 9. The functional dependency of β with qn+1 has been neglected in the lin-
earisation leading to the tangent matrix contribution given by (33). This approxi-
mation significantly simplifies the formulation and is justified by several numerical
applications (19), (13).

5.2 Conservative formulation of perfect joints

The most representative types are the spherical, revolute, cylindrical, prismatic and
planar joints. Each of these can be modelled with one or more basic holonomic con-
straints, with the conservative formulation developed in the previous section. This set
of constraints is what we call a basic constraint library. With the type of coordinates
employed throughout this work, the basic library may be expressed in the following
form:

1. Constant distance (l12) between two points defined by position vectors (x1, x2).

Calling xij
def= xj − xi, this constraint is given by: Φ = |x12| − l12

2. Constant relative position vector between two points defined by position vectors
(x1, x2), given by: Φ = x12 − (x12)0. If this constraint expresses the coincidence
between two points of different bodies (x12 = 0), is instead preferred to share
the point, avoiding the explicit definition of a constraint.

3. Alignment of three points defined by position vectors (x1, x2, x3), given by: Φ =
x13 ∧ x12

4. Constant angle α0 between two directions defined by four points with position
vectors (x1, x2, x3, x4). A cross product is employed for 0◦ ≤ α0 < 45◦, and a
dot product for 45◦ ≤ α0 ≤ 90◦:



220 J.C. Garcı́a Orden and J.M. Goicolea

Φ =
|x12 ∧ x34|
|x12||x34|

− sin(α0) 0◦ ≤ α0 < 45◦

Φ =
x12 · x34

|x12||x34|
− cos(α0) 45◦ ≤ α0 ≤ 90◦

5. Four coplanar points with position vectors (x1, x2, x3, x4); given by: Φ = x14 ·
(x12 ∧ x13) = 0

Example 3. A revolute joint between two bodies A and B can be formulated in terms
of two basic constraints. Assuming that the revolute axis is defined by points labelled
as 1 and 2 in body A, and there are other two points labelled 3 and 4 in body B, these
constraints are expressed as:

x13 = 0 , cos(x̂12, x34) − cos(α0) = 0 (34)

Details about the definition of other types of joints in terms of this basic con-
straint library can be found in (21).

Despite the simplicity of this approach, it is possible to obtain more efficient
formulations taking advantage of particular features of specific types of joints. This
is the case of a revolute joint between two rigid bodies, which is analysed in the
following example.

Example 4. A revolute joint connects two rigid bodies (see Figure 2), each one para-
metrised by the cartesian inertial coordinates of 4 selected points, with one of the
points in each body necessarily located at the joint (see Figure 3). If the joint is per-
fect (no clearance) both bodies can share this point, and only a total number of 7
points are needed to define the two-body system. The revolute axis is defined with
one vector e located at the point defining the joint.

In order to obtain the constraint function associated with this particular joint,
we define two different body (convected) reference frame systems {SA, SB}. System
SA is attached to body A at point 2 and defined by the three independent vectors
{t1, t2, t3}:

Fig. 2. Perfect three-dimensional revolute joint
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Fig. 3. Numerical model for a perfect revolute joint.

t1 = x1 − x2 , t2 = x3 − x2 , t3 = x4 − x2 , (35)

and system SB is attached to body B at point 5 and defined by vectors {n1, n2, n3}:

n1 = x1 − x5 , n2 = x6 − x5 , n3 = x7 − x5 (36)

Note that these convected systems are not necessary orthonormal. The constraint
function for this joint states that vector e, which defines the revolute axis, is the same
expressed in both convected reference systems {SA, SB}:

e = X′
1t1 + X′

2t2 + X′
3t3 = Y ′

1n1 + Y ′
2n2 + Y ′

3n3 (37)

Observe that equation (37) does not constrain any movement of the revolute axis
in space, which effectively follows the movement of the two connecting bodies. In
terms of an unknown vector q ∈ R21, which contains the cartesian inertial coordi-
nates of the 7 points in a column-matrix format, the vectorial equation (37) can be
stated in a more compact form:

Φ = Cq with qT =
{

xT
1 |xT

2 |...|xT
7

}
(38)

where the (3 × 21) constant matrix C has the expression:

C =
(
(X′

1 − Y ′
1)I3 X′

0I3 X′
2I3 X′

3I3 Y ′
0I3 Y ′

2I3 Y ′
3I3
)

,

with: X′
0 = −∑3

i=1 X′
i ,Y

′
0 = −∑3

i=1 Y ′
i , and being I3 the (3 × 3) identity matrix.

Remark 10. Note the simplicity of the constraint equation (38), which is linear in the
unknown vector q, unlike the second equation (34), which is quadratic. The con-
servative formulation of any of them does not need the β parameter calculation, but
the contribution to the total tangent matrix associated to the linear expression (38) is
constant.

6 Conservative Formulation of Real Joints with Clearances

Real joints incorporate complex effects, such as clearances and friction, that may
significantly affect the overall performance of a a mechanism.
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In this section we will focus on clearances, that typically appear due to geometri-
cal imperfections during the manufacturing process or are caused by wear. The basic
phenomenon is the contact between the surfaces defining the joint. Nevertheless,
contact problems in the context of multibody dynamics have special features (22):
high number of intermittent contacts, very different time scales (rigid body motion
and contact characteristic times are orders of magnitude apart) and very different
space scales (clearances are much smaller than the typical size of the components).
From the numerical point of view, this scenario typically leads to a stiff ordinary dif-
ferential equation system, which is very demanding for the time integration scheme.

In this context, it is desirable to study methodologies that stress robustness and
efficiency in time scale simulations typical in multibody systems. This time scale
is much larger than that required to study the contact phenomena in detail, but this
level of high detail is not generally an issue in multibody simulations. The challenge
is to be able to model clearances, which involve a very high number of contact/impact
events during typical rigid body time scales, in a robust and efficient manner, without
demanding great detail for local effects of the individual contacts.

This section presents a methodology that has three key ingredients directly in-
spired by these special features of intermittent contacts in multibody simulations:

• It takes advantage of the analytical definition of the surfaces involved in the con-
tact events, which reduces the number of variables involved in the problems;

• It does not use the gap as a primary variable of the formulation. This implies that
the costly calculation of the minimal distance between the contacting bodies is
avoided, speeding up the computations, and

• It sets the overall formulation in the context of an energy-conserving scheme,
which has proved to have clear advantage in terms of stability in dynamic contact
applications (1; 2; 18). Nevertheless, unconditionally energy-decaying methods
are a promising alternative which has been proposed in recent years (3; 4; 7; 6),
and should be considered for future developments.

Note that the introduction of both friction and material damping in the model
have an stabilising effect from the numerical point of view. Based on this, only the
most limiting situation will be considered, which is the case of a smooth clearance
made of materials such that the joint impacts are perfectly elastic. Note also that the
conservative formulation of such type of joints is clearly justified, since in this case
there are no energy dissipation due to the work of the joint forces.

6.1 Clearance formulation

Whereas a perfect joint is formulated in terms of an equality relationship between
the generalised coordinates of the bodies (e.g. expression (38) for a revolute joint), a
smooth clearance is usually described through an inequality. This inequality is often
stated in terms of the gap between the contact surfaces within the clearance, in the
form of the Kuhn-Tucker complementary conditions (31):

g ≥ 0 , p ≤ 0 , pg = 0 (39)
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where g is the gap defined as the minimum distance between the contacting bodies
(negative when there is penetration) and p the contact pressure (no adhesive stresses
are allowed in the contact interface).

In contrast with the previous approach, we present here a methodology that is
based on an equality constraint and does not explicitly use the concept of contact
gap. This idea will be introduced first with a special type of joint clearance, referred
as the rigid cavity model, and will be extended later to more general types of joints.

6.1.1 The rigid cavity model

This model represents a special joint clearance, understood as a rigid cavity attached
to one of the connected bodies. The connection points of the other bodies are re-
stricted to move inside this cavity, as shown in Figure 4. This model can accurately
represent a real spherical joint where one of the bearings is out of the nominal spher-
ical shape.

B2

P2 ∈ B2

B1

P1 ∈ B1

B0 ϕ = 0

Fig. 4. Rigid cavity model

In Figure 4, the rigid body to which the rigid cavity is attached is denoted by B0.
There are two other bodies B1 and B2 linked to B0 at points P1 and P2. These two
points are constrained to move inside the cavity defined by the surface ϕ : R3 −→ R,
such that their coordinates verify

ϕ ≤ 0 . (40)

The proposed methodology regularises the problem, designing an equality con-
straint (Φ) that replaces the inequality constraint given by (40). We require this func-
tion Φ to possess the following features:

i. It has to vanish at the clearance surface: verify Φ = 0 when evaluated at ϕ = 0.
ii. The related contact force modulus has to be at least C1, in order to avoid stability

problems during persistent contact. It can be proved (20) that this requirement
is satisfied if the surface is regular and the modulus of the constraint gradient
vanishes over it.
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iii. The contact force must be formally similar to the Hertz model (14), which has
been employed by several authors based on experimental investigations (17; 31).
In the case of a perfect spherical clearance (the bearings are spherical but have
different radius), we want to exactly recover the classical Hertz formulation of
the contact force. This is given by fHertz = kgnN, being g the normal gap and N
the unit normal to the spherical cavity.

A constraint function Φ that fulfils all these requirements is given by:

Φ =

{
0 if ϕ < 0√

2k
n+1ϕ

n+1 if ϕ ≥ 0
(41)

with n > 1 and k > 0. The related contact force, based on (6) with a penalty para-
meter (α = 1), is given by:

fΦ = Φ(DΦ) =

{
0 if ϕ < 0

kϕn(Dϕ) if ϕ ≥ 0
(42)

where parameter k plays the role of the contact stiffness.

B0

B1

r0

Fig. 5. Perfect spherical clearance

For the particular case of a perfect spherical clearance (Figure 5), it can be shown
that the force given by expression (42) exactly matches the one obtained with the
classical Hertz model. In this case, the function ϕesph that defines the surface of the
cavity is given by:

ϕesph = r − r0 , (43)

being r = ||r|| the distance from the centre of the spherical cavity and r0 its radius.
Introducing (43) in expression (42) the contact force match the Hertz model, given
by:

f esph
Φ = k (r − r0)

n r
r

= kgnN for g ≥ 0 , (44)

being g the normal gap and N the unit normal to the spherical cavity.
Based on these considerations, it is possible to understand the contact force given

by (42) as a generalised Hertz model for an arbitrary contact surface. It is important
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to note that this methodology does not use the gap as a primary variable, which
can be computed in the post-processing stage if desired. Only the evaluation of the
constraint function ϕ is required throughout the calculation.

6.1.2 A general clearance model

The previous ideas can be extended naturally to a more general situation where the
function ϕ does not represent any physical surface in the euclidean R3 space.

In such a general case, the clearance is represented by a set of q inequality con-
straints ϕi, each one expressed in terms of the generalised coordinates that define
the configuration of the connecting bodies. If we collect these coordinates within a
vector q ∈ Rp, any constraint of the set is a function defined as:

ϕi : Rp � q −→ ϕi(q) ∈ R , with i = 1, .., q .

In this fashion, each constraint ϕi can be understood as a surface defined in the
coordinate space Rp, and it is possible to apply all the concepts presented in the rigid
cavity model. The fact that this surface has not a direct geometrical interpretation
in the geometrical three-dimensional space where the movement takes place has no
effect from the computational point of view. Furthermore, this approach becomes
specially attractive for complex joints where the actual gap determination can be
computationally expensive, since it is completely avoided.

Based on these considerations and the results of section 6.1.1, it possible to define
a set of new regularised constraintsΦi in terms of the original functions ϕi as follows:

Φi =

{
0 if ϕi < 0√

2k
n+1ϕ

n+1
i if ϕi ≥ 0

, for i = 1, ..., q (45)

The associated constraint forces possess the same properties described in section
6.1.1 for the rigid cavity model in terms of regularity, and have the benefits already
discussed for intermittent contact situations.

Example 5. Clearance in a three dimensional revolute joint linking two rigid bodies.
We consider now a revolute joint with a clearance (Figure 6), accounting for the
following relative movements:

• Maximum relative displacement along the revolute axis (δz).
• Maximum relative displacement perpendicular to the revolute axis (δr).
• Maximum misalignment of the revolute axis (δθ).

A convenient approach to treat these clearances is to consider the first two move-
ments as independent, and the third related to the others. Based on this consideration,
it follows that a clearance located only in the longitudinal or only in the radial direc-
tion would not allow any misalignment of the revolute axis.

In this case, each body must be defined by 4 different points, and each one has a
different vector defining the revolute axis, as shown in Figure 7. The position of the
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δθ
δz

δr

Fig. 6. Three-dimensional revolute joint with clearance
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eB

3

Fig. 7. Numerical model for a revolute joint with clearance

system composed by the two connected bodies is defined by vector q ∈ R24, which
contains the inertial cartesian coordinates of the eight points.

The possible movements at the joint clearance are the displacement vector
r = (x5 − x1) and the angle θ between the two revolute axes. Figure 8 shows these
movements, where angle θ is visualised in the meridional plane of the inner bearing
only for clarity. With this notation, the constraint functions related with this joint can
be expressed as:

ϕ1 = cos δθ − (eA · eB) ≤ 0 (46)

ϕ2 = |r · eA| − δz ≤ 0 (47)

ϕ3 = ||r ∧ eA|| − δr ≤ 0 (48)

assuming that |eA| = |eB| = 1. Note that the clearances δr and δz can be considered
constant and be calculated from the particular geometry of the joint if the bearings
are perfectly cylindrical, but this is not possible for δθ in general; it depends on
the geometry but also on the relative displacement (r, θ) of the joint. It means that
relation (46) can be especially complex if all the possible movements are allowed.
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θ

eB

1

5 |r · eA|

||r ∧ eA||

eA

r

Fig. 8. Revolute joint movements.

Leaving aside the complexity introduced by the calculation of the clearances
δθ, δz and δr in terms of the geometry of the joint and the coordinate vector q for an
arbitrary position, most of the other terms can be stated in a simple and closed matrix
form, and will be analysed with more detail below.

Angular clearance

The angular misalignment (θ) of the revolute axes is represented by the inequality
constraint ϕ1 given in (46).

We denote by qA and qB the vectors containing the cartesian inertial coordinates,
in column format, of the four points belonging to each body A and B respectively.
These vectors can be related to the global unknown vector q through constant pro-
jection matrices PA and PB:

qA = PA q , qB = PB q , (49)

with:
PA =

(
I12 012

)
, PB =

(
012 I12

)
, (50)

being 012 and I12 the (12 × 12) null and identity matrices, respectively.
We can also obtain the cartesian inertial components of the revolute axes e1 and

e2 from vectors qA and qB respectively. The revolute axis eA can be expressed in the
reference system SA = {t1, t2, t3}, rigidly attached to the first body, as:

eA = X′
1t1 + X′

2t2 + X′
3t3 .

Taking into account that t1 = (x1 − x2), t2 = (x3 − x2) and t3 = (x4 − x2), the
following matrix expression is obtained:
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eA = CAqA , with CA =
(

X′
1I3 X′

0I3 X′
2I3 X′

3I3
)
, (51)

being X′
0 = −∑3

i=1 X′
i .

The same procedure can be followed in order to obtain eB from coordinate vector
qB. In this case, the projection matrix CB depends on the constant coordinates Y ′

i of
vector eB relative to the reference system SB = {n1, n2, n3} defined as n1 = (x5 −
x6), n2 = (x7 − x6) and n3 = (x8 − x6), obtaining:

eB = CBqB , with CB =
(

Y ′
1I3 Y ′

0I3 Y ′
2I3 Y ′

3I3
)
, (52)

being Y ′
0 = −

∑3
i=1 Y ′

i . Using relations (49), (51) and (52), the angular constraint ϕ1

given in (46) can be expressed as:

ϕ1 = cos δθ − (eA · eB) = cos δθ − qTΓ1q ≤ 0 , (53)

where the (24 × 24) constant matrix Γ1 is given by:

Γ1 = PT
A CT

A CBPB (54)

Axial clearance

The constraint function is in this case (see Figure 8):

ϕ2 = |r · eA| − δz ≤ 0 ,

where r = x5 − x1 denotes the relative position of the points located at the joint.
The cartesian inertial coordinates of x1 and x5 can be expressed in a compact matrix
format through a constant projection matrix P:

x1 = PqA ; x5 = PqB ; P =
(
I3 03 03 03

)
(55)

Using (55) and (49) is possible to obtain a matrix expression for vector r:

r = x5 − x1 = P(qB − qA) = P(PB − PA)q (56)

Finally, employing relation (51) for eA and expression (56), it is possible to obtain
the following compact matrix expression for the constraint function:

ϕ2 = |qT Γ2 q| − δz ≤ 0 , with Γ2 = (PT
B − PT

A )PTCAPA (57)

being Γ2 a constant (24 × 24) matrix.

Radial clearance

The constraint function is in this case (see Figure 8):

ϕ3 = ||r ∧ eA|| − δr ≤ 0 , (58)
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where r = x5 − x1 denotes the relative position of the points located at the joint.
There are alternative formulations that avoid the use of the vector cross product; e.g.,
the one given by:

ϕ�
3 = ||r − (r · eA)eA|| − δz ≤ 0 ,

which may be reformulated as:

ϕ�
3 = || [1 − (eA ⊗ eA)] · r|| − δz ≤ 0 , (59)

where 1 denotes the unit second-order tensor and ⊗ the standard tensor product of
two vectors.

Despite the fact that expressions (58) and (59) can be efficiently treated within
the general methodology presented in section 6.1, they can not be stated in such
a compact matrix form as the other two types of movements (angular and axial);
consequently, no more analytical details of their formulation will be presented.

6.2 Conservative formulation

Once a clearance constraint is formulated in terms of an equality relationship as in
(41), it is possible to evaluate the contact force in such a way that the total energy
is conserved, as presented in section 5.1. An intuitive interpretation for energy con-
servation is to ensure that the contact energy stored during penetration is exactly
restored when the contact is released, such that the total energy remains constant.
Contact force is evaluated with the algorithmic expression (30), calculating parame-
ter β by means of finding the root of the scalar equation (31).

Some remarks must be made at this point:

Remark 11. The proof of the existence of β relies on the mean value theorem, which
requires the regularised constraint function Φ to be at least C1. If the original con-
straint function ϕ is C1, the regularised function Φ inherits this property if the para-
meter n appearing in (41) is strictly greater than one.

Remark 12. A consequence from the previous remark is that the conservative formu-
lation (30) may not be applicable if the standard penalty regularisation is employed
(n = 1 in (41)). In this case, parameter β may not exist for an arbitrary function ϕ,
due to the regularity requirement on function Φ.

Remark 13. As a consequence of previous remarks, the conservative formulation of
the revolute joint clearance requires the numerical calculation of β from equation
(31); the original constraint functions ϕi given by (53), (57) and (58) are at least
quadratic and their first derivative does not vanish at the constraint surface.

Remark 14. If the original constraint function ϕ can be written in terms of an scalar
r (typically, the distance between two points), the conservative formulation of the
constraint force is always possible and given by (23):

f c
Φ = −αΦ

2
n+1 − Φ2

n

r2
n+1 − r2

n

{
rn+ 1

2

−rn+ 1
2

}
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where rn+ 1
2

= 1
2 (rn+1 + rn). This is the case of a perfect spherical clearance, as

described in section 6.1.1.

Remark 15. When the constraint function Φ is not piecewise defined and smooth, the
calculation of β from (31) is not so relevant, and β = 1/2 usually is a fair approxi-
mation that does not significantly spoils the conserving properties of the algorithm.
However, the precise calculation of β is crucial with a piecewise function, specially
at the interval containing the border of different branches of the function. This inter-
val is where penetration and separation from the constraint surface occurs, typically
associated to β values close to 1 or 0 respectively. In these situations, alternative
methods to the Newton-Raphson scheme given by (32) could perform better, e.g. the
bisection method.

7 Representative Numerical Application: Double Pendulum with
Joint Clearances

The selected application is a double pendulum composed by two rigid bars of length
l = 1 m and mass m = 1 kg. Both bars are initially horizontal and perpendicular to
each other, as shown in Figure 9. The system is released from rest under the gravity
g = 10 m/s2, and the motion is integrated up to 5 s.

Two variations are presented from this basic mechanism. The first case incorpo-
rates spherical joints, and rigid-cavity-type clearances are introduced at both joints O
and A. The second case incorporates revolute joints, with an angular-type clearance
in one of them.

Fig. 9. Double pendulum with clearances. Initial configuration. (not to scale)

A

O
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7.1 Rigid-cavity-type clearances

In this case the system has two smooth clearances represented by the rigid cavity
model described in section 6.1.1, located at points O and A of Figure 9. The inertia
of each bar around its longitudinal axis is supposed to be negligible, so each one is
completely defined with its two end points.

The clearance located at point O has a “blob” shape, shown in Figure 10, defined
by the function:

ϕ = e[1−(kxx)2−(kyy+δ)2−(kzz)
2] + e[1−(kxx)2−(kyy−δ)2−(kzz)

2] − 1 ,

with kx = ky = kz = 50 and δ = 1.1. The regularisation of this constraint is made
with parameters k = 107 (contact stiffness) and n = 4.
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Fig. 10. Rigid cavity clearance at point O: “blob” shape.
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Fig. 11. Double pendulum: trajectory of point O
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The clearance at point A, connecting both bars, is spherical with radius r0 = 0.04
m, with parameters k = 107 and n = 1.5 . A penalty parameter α = 1012 was
employed for the enforcement of the constant-distance constraints of the rigid bars,
and a constant time-step ∆t = 0.001 s is adopted.

Figure 11 shows the trajectory of point O, which clearly resembles the blob-
shaped volume where it is constrained to move. Figure 12 shows the effect of the
clearances over the trajectory of the free end of the double pendulum (point B) during
the first 3 s. Figure 13 shows the exact conservation of the total energy (kinetic +
gravitational potential + constraint) during the integration.

Two remarks must be made:

Remark 16. Typically, the maximum allowable time step achieved with the conserv-
ing integration is significantly larger than the one achieved with any standard implicit
integrator, unless considerable numerical damping is introduced. In the case of the
trapezoidal rule, this maximum time step for successful integration of the total 5 s
movement is ∆t = 7 · 10−5 s. The backward Euler method allows up to ∆t = 0.003,
but introducing an unacceptable numerical damping that reduces the kinetic energy
by half at the end of the first 10 s of movement.

Remark 17. It has been observed that in this particular application the maximum
time-step is significantly influenced by the complex blob-shaped clearance at point O.
If this is replaced by an spherical one, identical to the one located at joint A, the al-
lowable time step goes up to ∆t = 0.007 s with exact energy conservation.

No clearances
With clearances
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Fig. 12. Trajectory of the free end of the double pendulum (point B) during the first 3 seconds:
effect of the clearances.
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Fig. 13. Double pendulum: kinetic and total energy vs. time

7.2 Revolute joint clearance

In this second case the system incorporates two revolute joints at O and A, with
horizontal and vertical axes respectively, as shown in Figure 14. Each bar is modelled
as a prismatic homogeneous rigid body with dimensions (1 × 0.1 × 0.02) m.

Fig. 14. Double pendulum with revolute joints

Joint O is a perfect revolute joint, and joint A incorporates an angular clearance
δθ = 0.2 rad (� 11.5◦), with parameters k = 107 and n = 2. A penalty parameter
α = 1012 was employed for the enforcement of other constraints (related to the rigid
bodies and the perfect revolute joint).
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Fig. 15. Double pendulum with revolute joints: snapshot of the movement at t = 4 s
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Fig. 16. Trajectory of the centre of mass of the end bar during the fist 3 seconds: effect of the
revolute clearance

The motion is integrated with a time step ∆t = 0.004 s. Figure 15 shows a
snapshot of the movement at t = 4 s, where the angle between the two revolute joint
axes is clearly visible. Figure 16 shows the effect of the clearance on the trajectory
of the centre of mass of the end bar during the first 3 s, and Figure 17 the evolution
of the energy over the total movement.
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Fig. 17. Double pendulum with revolute joints: kinetic and total energy vs. time

8 Conclusions

The following general conclusions can be attained, based on the ideas presented in
this chapter:

• The parametrisation based on inertial cartesian coordinates of selected points and
the use of the penalty method for constraints, provide a simple formulation of the
equations of motion of flexible multibody systems.

• The energy-momentum method overcomes the numerical ill-conditioning intro-
duced by the large penalty factors and the high stiffness of the deformable bodies.
It’s possible to adopt rather large time steps while exactly conserving total energy
and momentum.

• Holonomic constraints, representing perfect joints, can be consistently formu-
lated with the energy-momentum method, which ensures energy preservation and
overcome the numerical ill-conditioning and stiff character of the equations.

• A methodology for the analysis of real joints with clearances has been presented,
which appears to be promising in terms of numerical efficiency and robustness.
This approach takes advantage of the analytical definition of the clearance sur-
faces in order to define a model where the gap between the contacting surfaces is
not a primary variable. The formulation is established in the context of an energy-
conserving time integration which results specially well suited for applications
where a high number of intermittent contacts are present.
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26. Simó J C, Tarnow N (1992) The discrete energy-momentum method. Conserving algo-

rithms for nonlinear elastodynamics. ZAMP
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The dynamics equations describing the motion of a flexible manipulator are deve-
loped. It is assumed that the manipulator supports the gravitational force, external
punctual forces and torques applied at specific points along each link’s neutral axis,
a punctual force and torque at the end effector, and loads resulting from the applica-
tion of piezoelectric patches that are bonded at specific points along the elastic links.
A discrete model of the Newton-Euler type capturing the fundamental dynamics re-
quired for flexible manipulator analysis is deduced for a generic link. A Eulerian
formulation is used for the rigid body motion and a total Lagrangian formulation
is used for the elastic deformation. To this end, Jourdain’s Principle or the Princi-
ple of Virtual Powers is adopted, assuming a Rayleigh-Ritz expansion of the elastic
variables. The elastic variables, which are the links curvature and shear deformation,
are assumed to be infinitesimal. However, nonlinear displacements are considered
due to the large length/width aspect ratio of the links. The dynamics model of the
manipulator is obtained from the assembling of the individual links. Both the Ar-
ticulated Body (AB) method, and the Composite Inertia (CI) method are obtained.
A validation and control exercise is performed on a single flexible link. Frequency
domain and time domain validation is performed in regard to the order of the cross
section rotation matrix. Linear and quadratic assumptions are compared against each
other, and against the experimental apparatus. Curvature feedback control is com-
pared against classical joint (collocated) feedback, and it’s improved performance is
shown through the measurement of tip acceleration.

1 Introduction

The advantages of lightweight manipulators over the traditional heavy and rigid ma-
nipulators have for long been recognized: less power consumption, higher payload
to weight ratio and faster motions are just a few. However, there is still a set back in
the use of these better machines. This resides in the fact that lightweight taken to a
certain level will give way to a natural loss of stiffness allowing the manipulator to
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vibrate due to elastic deformation, highly deteriorating machine precision. A promis-
ing approach to compensate for this set back, is to incorporate into these machines
more sophisticated control algorithms, with a more involving actuating and sensing
network. A basis for this approach, is a manipulator model capable of reproducing
the fundamental system dynamics in a given application, and amenable for real time
computation.

The first problem one faces in the modelling of flexible manipulators is at the
link level: how large are the elastic displacements? This problem has been topic of
research for many years, and one answer is that the displacements should not be
assumed only of first order. If one wishes a dynamics model capable of capturing
centrifugal stiffening and a kinematic model capable of reproducing the link fore-
shortening, at least second order strain-displacement relations are needed. Within
beam kinematics assumptions or rigid cross sections, this implies assuming at least a
second order rotation matrix of a cross section due to elasticity. Parameterization of
higher order rotation matrices on the other hand, require aditional care in the choice
of which parameters to use. One possible choice, are the beam bending curvatures.

The second problem one faces is the global dynamics formulation and solution
problem. Two approaches are available for dealing with the dynamics of rigid multi-
body systems: the Composite Rigid Body (CRB) method and the Articulated Body
(AB) method (Featherstone, 1987). For systems of smaller dimension, the CRB
method runs faster than the AB method, and as the size of the system increases
the AB method becomes more efficient. In robotics applications, both approaches
should be available, since the size of the system changes frequently (for example co-
operating manipulators). The formulation and solution problem is designated as the
formulation stiffness problem in (Ascher, 1997). These methods may be extended to
flexible manipulator systems, the CRB method being now designated as the Com-
posite Inertia (CI) method.

The control problem of flexible manipulator systems may be tackled by analyz-
ing the advantages of curvature (bending strain) feedback, over the traditional joint
feedback control. The high increase in vibration damping achieved at the cost of
small joint error reveals high potential of the approach. Is is simple to implement,
and totally signal based. Together with a higher level model based approach, it is the
grounds for many existing control approaches for flexible manipulator systems.

Following the works of [1–3], and [4] we present our modelling and computa-
tional environment, which is aimed at analysis and control of flexible manipulator
arms. To this end, in Sections 2 and 3 the dynamics equations of a rigid body and
of a flexible beam are presented respectively. In Section 3, piezoelectric actuators
are also modelled. In Section 4, the AB and CI solution methods are presented for
a serial topology manipulator. Each link is assumed to be a flexible beam rigidly
attached to a rigid body at each end. In Section 5, validation and strain feedback
control experiments are presented for a single flexible link, and in Section 6 the final
conclusions are drawn.
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Fig. 1. Rigid body reference frames

2 Dynamics Equations of a Rigid Body

A Eulerian description is used to formulate the rigid body dynamics equations.
The inertial reference frame is designated as {OI , XIYIZI} and the body refer-
ence frame is designated as {On, XnYnZn} (Fig. 1). The latter is rigidly attached
to a material point of the body. The orthogonal matrix expressing the orientation of
{On, XnYnZn} relatively to {OI , XIYIZI} is designated as R, and is given by

R =
[
E1 E2 E3

]
(1)

where E1, E2 and E3 are the unit vectors along the axes of the body reference frame,
expressed in the inertial reference frame. The position of a material point p of the
body, relative to, and expressed in the body reference frame is defined as Xp.

Due to the orthogonality of R the following is verified [5]

RT R = I (2)

RT Ṙ = ω̃n =

⎡⎣ 0 −ωn3 ωn2

ωn3 0 −ωn1

−ωn2 ωn1 0

⎤⎦ (3)

RT R̈ = Λn =
d

dt

(
RT Ṙ

)
− ṘT Ṙ = ˙̃ωn + ω̃n ω̃n (4)

ωn = vect(ω̃n) = [ωn1 ωn2 ωn3 ]
T is the angular velocity vector of the body refer-

ence frame, relative to the inertial reference frame (absolute angular velocity), and
expressed in the body reference frame. Λn is the absolute angular acceleration ma-
trix of the body reference frame, and expressed in the body reference frame. The first
part of Λn is skew symmetric and contains the transverse angular acceleration vector
ω̇n = vect( ˙̃ωn), the second part is symmetric and contains the centripetal acceler-
ation terms. The velocity vector, ωn, may not be integrated with respect to time in
order to obtain angular displacement since it is expressed in a non-inertial reference
frame, i.e, it represents a quasi-coordinate [6, 7].
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The absolute linear velocity and absolute linear acceleration of a material point
p are given by

vp = vn + ω̃n Xp (5)

ap = an + ˙̃ωn Xp + ω̃n ω̃n Xp (6)

respectively. These are expressed in the body reference frame. vn is also a quasi-
coordinate and together with ωn forms the set of quasi-coordinates that describe the
rigid body motion (Eulerian description). an = v̇n + ω̃n vn is the absolute linear
acceleration vector of the body reference frame.

The Newton-Euler equations of motion may now be deduced through Jourdain’s
Principle, also known as the Principle of Virtual Powers [8], which considering the
above formulation is stated as∫

Bn

δvT
p ap ρp dBn

=
∫
Bn

δvT
p g ρp dBn

+
∫

ΣBn

δvT
p fs dΣBn

(7)

The term on the left hand side represents the virtual power of the inertial force. The
first term on the right hand side represents the virtual power of the gravitational force
and the last term represents the virtual power of the external forces which are applied
on the surface of the body. ρp represents the specific mass of the body at point p, g
represents the gravitational acceleration vector and fs represents the external force
vector (force per unit of surface area) applied on the body surfaceΣBn. All vectors in
Eq. 7 are expressed in the body reference frame. The velocity variation is calculated
by applying the variational operator, δ, to the expression of the absolute velocity
vector (Eq. 5)

δvp = δvn + δω̃n Xp (8)

Using Eq. 8 the external force term reduces to the effect of a punctual force Fs

and punctual moment Ms applied at a specific point Xln∫
ΣBn

δvT
p fs dΣBn

= δvT
n

∫
ΣBn

fs dΣBn
+ δωT

n

∫
ΣBn

X̃p fs dΣBn

= δvT
n Fs + δωT

n

(
X̃ln Fs + Ms

)
(9)

Solving the other two terms, and collecting the coefficients of δvn and of δωn into
a matrix form results in the Newton-Euler dynamics equations of a rigid body[

mbI mbX̃gn

T

mbX̃gn Jn

][
an − g

ω̇n

]
+

[
mb ω̃n X̃gn

T
ωn

ω̃n Jnωn

]
=
[

Fs

X̃ln Fs + Ms

]
(10)

The mass of the body, its center of mass and its second moment of inertia have been
defined as

mb =
∫
Bn

ρp dBn
(11)
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Xgn =
1
mb

∫
Bn

ρp Xp dBn
=

1
mb

∫
Bn

ρp
[
X1 X2 X3

]T
dBn

(12)

Jn =
∫
Bn

ρp X̃p X̃p

T
dBn

=
∫
Bn

ρp

⎡⎣X2
2 +X3

2 −X1X2 −X1X3

−X2X1 X1
2 +X3

2 −X2X3

−X3X1 −X3X2 X1
2 +X2

2

⎤⎦ dBn

(13)

respectively. The diagonal terms of the second moment of inertia tensor represent the
principal moments of inertia of the rigid body, whereas the off-diagonal terms repre-
sent the products of inertia. If the body reference frame is chosen to be at the center
of mass of the body, then Xgn = 0 and Eq. 10 becomes decoupled. Furthermore, if
the reference frame is oriented along the principal axes of inertia of the body then
Jn becomes diagonal.

Assuming the case of a rigid body in a serial link manipulator (as in Figs. 4
and 5), the load term in Eq. 10 may be rewritten as[

Fs

X̃ln Fs + Ms

]
=
[

Fn

Mn

]
−
[

Rn+1/n 0
r̃n,n+1Rn+1/n Rn+1/n

] [
Fn+1

Mn+1

]
= Fn − Φr

T
n+1,nFn+1 (14)

where Fn and Fn+1 are the generalized force vectors applied on body Bn at On and
On+1 respectively. The former is expressed in {On, XnYnZn} and the latter is ex-
pressed in {On+1, Xn+1Yn+1Zn+1}. rn,n+1 is the position vector fromOn toOn+1

expressed in {On, XnYnZn}, and Rn+1/n is the rotation matrix whose columns are
the projections of the basis vector of reference frame {On+1, Xn+1Yn+1Zn+1} on
{On, XnYnZn}. In compact form one writes Eq. 10 as

MrnAn + Nrn(ωn) = Fn − Φr
T
n+1,nFn+1 (15)

3 Dynamics Equations of a Flexible Link

3.1 Kinematics

A Eulerian description is used for the rigid body motion and a total Lagrangian
description is used for the deformation [9]. Similarly to the rigid body case, the iner-
tial reference frame is designated as {OI , XIYIZI}, and the body reference frame is
designated as {On, XnYnZn} (Fig. 2). The latter is rigidly attached to the first (base)
cross section of the beam. It gives the orientation of the beam in space in its refer-
ence undeformed configuration designated as Bno

. The elastic motion of the beam is
based on the following deformation assumptions:

1. plane beam cross sections before deformation, remain plane after deformation
(warping is not considered),

2. bending and shear deformation are considered (Timoshenko beam theory),
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Fig. 2. Beam Kinematics

3. the beam neutral fiber does not suffer extension,
4. the beam neutral axis in the undeformed configuration is a straight line,
5. the beam cross sections are of constant specific mass, and are symmetrical rela-

tive to their principal axes,
6. and the shear strains and bending strains are considered to be small, that is, they

are accounted for up to the first order, O(1).

The kinematics of deformation is developed through the adoption of the cross section
reference frame {Ok ,XkYkZk}. Its origin is placed at the point where the beam
neutral axis intersects the beam cross section and its axes are directed along the
axes of symmetry of the cross section. For the base cross section, reference frames
{On, XnYnZn} and {Ok ,XkYkZk} coincide. For the last cross section (tip) the
cross section reference frame is designated as {On̂, Xn̂Yn̂ Zn̂}.

The orthogonal matrix expressing the orientation of {Ok ,XkYkZk} relatively to,
and expressed in the body reference frame is designated as Rek

. The position vector
of a material point p of the beam belonging to a certain cross section, relatively to,
and expressed in {Ok ,XkYkZk} is defined as Yp. Due to the assumption of rigid
cross sections the components of this vector remain constant during deformation.
However, relatively to the moving reference frame, the position coordinates of point
p change due to deformation. The reference position of point p is designated as Xp

and the displaced position of point p is defined as xp. The displacement vector car-
rying point p from position Xp to position xp is defined as up. Vectors Xp, xp and
up are all expressed in {On, XnYnZn}.

A material point in the beam neutral fibre is described by setting Yp = [0 0 0]T .
Accordingly, its reference position, displaced position and displacement vector be-
come Xk = [X1 0 0]T , xk and uk respectively. The vector tangent to the neutral
fiber is given by

t =
dxk

dX1
(16)
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This vector, also of unit magnitude due to assumption 3, does not coincide with the
vector perpendicular to the beam cross section due to shear deformation.

The basic deformation kinematic equation for a material point p of the flexible
link is (total Lagrangian description).

xp = Xk + uk + Rek
Yp (17)

The terms that are due to the deformation of the link are the displacement vector of
the material points of the neutral axis, uk, and the rotation matrix of a cross section
Rek

.

3.2 Nonlinear Strain-Displacement Relations

The strain measures that are most commonly applied to the treatment of flexible
beams are the Green-Lagrange strain measures [10] and the displacement gradient
measure of deformation [5]. The former provide a general means to measure the de-
formation inside a 3-D continuum whereas the latter is a simplification specific to
beam kinematics. In [5] it is shown that for the case of linear bending curvatures and
linear shear angles these coincide. The displacement gradient measure of deforma-
tion may therefore be used. For the current deformation assumptions results

D(Xp) = Γk + K̃k Yp (18)

where Γk is the vector of infinitesimal shear angles expressed in the cross section
reference frame

Γk =
[
0 ϕ12 ϕ13

]T
(19)

and the skew symmetric matrix K̃k represents the curvature of the beam cross sec-
tions from which the curvature vector expressed in the cross section reference frame
may be extracted, Kk = vect(K̃k) = [K1 K2 K3]

T with

K̃k =

⎡⎣ 0 −K3 K2

K3 0 −K1

−K2 K1 0

⎤⎦ = RT
ek

dRek

dX1
(20)

With the assumption of infinitesimal shear angles, the tangent vector to the neu-
tral axis may be written in the cross section reference frame as

kt =
[
1 ϕ12 ϕ13

]T
(21)

and in the moving reference frame as

t =
dxk

dX1
= Rek kt (22)

Noticing from Eq. 17 that
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dxk

dX1
=

d

dX1
(Xk + uk) =

⎡⎣1
0
0

⎤⎦+
duk

dX1
(23)

then uk can be calculated through integration

uk =
∫ X1

0

Rek kt dξ −

⎡⎣X1

0
0

⎤⎦ (24)

Although the bending strains are infinitesimal, and the shear strains are infinites-
imal, the strain displacement relations may be nonlinear if the rotation matrix Rek

is expanded up to nonlinear terms in the kinematics Eq. 17. Eq. 20 yields that infin-
itesimal bending strains along the beam, Kk, do not necessarily yield infinitesimal
cross section rotations. Similarly to [11] and [8], expanding Rek

and Kk in Taylor
series in Eq. 20, and retaining only the first order term of the bending strains results

dRek1

dX1︸ ︷︷ ︸
O(1)

+
dRek2

dX1︸ ︷︷ ︸
O(2)

+ · · · = ( I︸︷︷︸
O(0)

+Rek1︸ ︷︷ ︸
O(1)

+Rek2︸ ︷︷ ︸
O(2)

+ · · ·) K̃k1︸︷︷︸
O(1)

(25)

where I is the identity matrix, Reki
is the term of order i of the rotation matrix Rek

and Kk1 is the first order term of the bending strains.
The rotation matrix can then be calculated up to order n, through integration of

the same order terms in Eq. 25

Rek
= I + Rek1 + Rek2 + · · · + Ren

(26)

where

Rei
=
∫ X1

0

Rei−1K̃k1 dξ (27)

In order to simplify the notation in the above parameterization of the rotation matrix,
the following integral expressions are defined,

υ2 =
∫X1

0

∫ ξ

0
K3 dη dξ = υT

2x(X1)υ2t(t) (28)

υ3 =
∫X1

0

∫ ξ

0
−K2 dη dξ = υT

3x(X1)υ3t(t) (29)

α =
∫X1

0
K1 dξ = αT

x (X1)αt(t) (30)

γ2 =
∫X1

0
ϕ12 dξ = γT

2x(X1)γ2t(t) (31)

γ3 =
∫X1

0
ϕ13 dξ = γT

3x(X1)γ3t(t) (32)

where υ2 and υ3 represent pure bending deflections, α represents a pure torsion
angle, and γ2 and γ3 represent pure shear deflections. The Rayleigh-Ritz approxi-
mation of these variables is written in the right hand side of Eqs.28-32. υ2x, υ3x,
αx, γ2x and γ3x are the vectors of shape functions for the elastic deflections, and
υ2t, υ3t, αt, γ2t and γ3t are the corresponding vectors of modal coordinates. For a
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chosen order of the rotation matrix in Equation 26 the displacement vector is calcu-
lated according to Eq. 24 considering the above discretization. The vector of elastic
coordinates is defined as

qen
=
[
qT

Kn
qT

ϕn

]T
=
[
υT

2t υT
3t αT

t γT
2t γT

3t

]T
(33)

3.3 The Equations of Motion

Due to the orthogonality of Rek
, the following is verified [5]

Rek
RT

ek
= I (34)

Ṙek
RT

ek
= Ω̃k (35)

R̈ek
RT

ek
= Ak =

d

dt

(
Ṙek

RT
ek

)
− Ṙek

ṘT
ek

= ˙̃Ωk + Ω̃k Ω̃k (36)

where Ωk = vect(Ω̃k) = [Ωk1 Ωk2 Ωk3 ]
T is the angular velocity vector of the cross

section reference frame, {Ok ,XkYkZk}, relative to and expressed in the body refer-
ence frame (relative angular velocity). This is the angular velocity due to deformation
alone. Ak is the relative angular acceleration matrix of the cross section reference
frame, also expressed in the body reference frame. The first part of Ak is skew sym-

metric and contains the angular acceleration vector Ω̇k = vect( ˙̃Ωk), the second part
is symmetric and contains the centrifugal acceleration terms. Contrarily to the rigid
body description, these vectors may be integrated in time to give the rotation of the
beam cross sections due to deformation (total Lagrangian description).

After spatial discretization, the first and second time derivative of the displace-
ment vector in Eq. 24 may be written as

u̇k = JTk
q̇en

=
[
JTKk

JTϕk

] [ q̇Kn

q̇ϕn

]
(37)

ük = J̇TKk
q̇Kn

+ J̇Tϕk
q̇ϕn

+ JTKk
q̈Kn

+ JTϕk
q̈ϕn

(38)

where JTk
is the translation Jacobian. Similarly, the angular velocity due to defor-

mation of a cross section, written in the body reference frame, may be written as

Ωk = vect(Ω̃k) = JRek
q̇Kn

(39)

and its first time derivative becomes

Ω̇k = J̇Rek
q̇Kn

+ JRek
q̈Kn

(40)

where JRek
is the rotation Jacobian

Due to the kinematic assumptions for the beam deformation, the motion of a
material point may be dealt with in a more practical form where linear and angular
motion of a cross section are separated [9, 11]. The absolute linear and angular ve-
locity vectors of the body reference frame are given by vn and ωn as in the rigid
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body case. The absolute linear velocity vector of a material point, vp, expressed in
the body reference frame becomes

vp = vk + ω̃k Rek
Yp (41)

where vk is the absolute linear velocity vector of the cross section and ωk is its
absolute angular velocity vector,

vk = vn + ω̃n (Xk + uk) + u̇k (42)

ωk = ωn + Ωk (43)

In a similar fashion, the absolute linear acceleration vector of a material point, ap,
may be written as

ap = ak + Λk Rek
Yp (44)

where ak is the absolute linear acceleration vector of the cross section and Λk is the
absolute angular acceleration matrix,

ak = an +
(

˙̃ωn + ω̃n ω̃n

)
(Xk + uk) + 2ω̃n u̇k + ük (45)

Λk =
(

˙̃ωn + ˙̃Ωk + ω̃nΩk
˜

)
+
(
ω̃n + Ω̃k

)2

(46)

with an = v̇n + ω̃n vn.
Jourdain’s Principle may now be stated as follows:∫

Bno

δvT
p ap ρp dBno

+
∫
Bno

δḊ
T

σ dBno
=
∫
Bno

δvT
p g ρp dBno

+
∫

ΣBno

δvT
p fs dΣBno

(47)
The first term on the left hand side of this equation represents the virtual power of the
inertial force and the second term represents the virtual power of the internal elastic
force. The first term on the right hand side represents the virtual power of the grav-
ity force and the last term represents the virtual power of the external forces which
are applied on the boundary of the beam. In this equation, ρp represents the specific
mass of the beam at point p in the reference configuration, vector σ = [σ11 σ12 σ13]T

contains the Piola-Kirchoff stresses acting on a cross section, g represents the gravi-
tational acceleration vector and fs represents the external force vector (force per unit
of undeformed surface area) applied on the beam. All vectors in Eq. 47 are expressed
in the body reference frame with the exception of the internal elastic term which vec-
tors are expressed in the cross section reference frame. It is assumed that the material
law is linear and obeys Hook’s law.

The variational operator, δ, when applied to the velocity expression yields

δvp = δvk + δω̃k Rek
Yp

= δvn + δω̃n (Xk + uk) + δu̇k +
(
δω̃n + δΩ̃k

)
Rek

Yp (48)
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with
δu̇k = JTk

δq̇en
= JTKk

δq̇Kn
+ JTϕk

δq̇ϕn
(49)

and
δΩk = JRek

δq̇Kn
(50)

And when applied to the time derivative of Eq. 18 yields

δḊ = δΓ̇k + δ
˙̃KkYp (51)

3.3.1 The External Force Term

The external force term may be separated into three contributions: the loads on the
first cross section, the loads on the tip cross section and the loads on the edges of the
in between cross sections.∫

ΣBno

δvT
p fs dΣBno

=
∫

An

δvT
p fn dAn

+
∫

ΣBno

δvT
p fΣBno

dΣBno
+
∫

An̂

δvT
p f n̂ dAn̂

(52)

where An represents the first cross section, An̂ represents the last cross section and
ΣBno

represents the boundary of the beam excluding the first and last cross sections,
i.e, the lateral faces of the beam excluding the edges of the first and last cross sec-
tion. In a typical application, the first and last cross sections would be attached to
the neighboring bodies, and the lateral faces of the beam may have forces applied
on them either from external disturbances or for control purposes. The latter may
be achieved for example through the use of control-moment-gyros or proof-mass
actuators [12].

In a robotic manipulator, the last cross section of a flexible beam is typically
connected to another body, either rigid or another flexible beam. Therefore, reference
frames {On̂, Xn̂Yn̂ Zn̂} and {On+1, Xn+1Yn+1Zn+1} are placed coincident. Using
Eq. 48 in Eq. 52 under these assumptions yields⎡⎢⎢⎣

δvn

δωn

δq̇Kn

δq̇ϕn

⎤⎥⎥⎦
T ⎛⎜⎜⎝
⎡⎢⎣ I 0

0 I
0 0
0 0

⎤⎥⎦[ Fn

Mn

]
+
∫ L̄

0̄

⎡⎢⎢⎣
I 0
x̃k I

JT
TKk

JT
Rek

JT
Tϕk

0

⎤⎥⎥⎦
[

FΣBno

MΣBno

]
dX1

−

⎡⎢⎢⎢⎢⎢⎣
Ren̂

0

xñ̂ Ren̂
Ren̂

JT
TKn̂

Ren̂
JT
Ren̂

Ren̂

JT
Tϕn̂

Ren̂
0

⎤⎥⎥⎥⎥⎥⎦
[

Fn+1

Mn+1

]
⎞⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎣
δvn

δωn

δq̇Kn

δq̇ϕn

⎤⎥⎥⎦
T ⎛⎝[ I

0

]
Fn + FΣBno

−

⎡⎣Φr
T
n+1,n

Φe
T
n+1,n

⎤⎦Fn+1

⎞⎠ (53)
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Fig. 3. A piezopatch bonded on a lateral face of a beam

3.3.2 The Piezoelectric Actuator

In this section, laminar shape actuators are considered. It is assumed that the piezo-
electric patch is rigidly bonded to the lateral faces of the beam, and that it is suf-
ficiently thin when compared to the beam in order for the strain distribution to be
considered constant throughout the thickness of the patch [13] (Fig. 3). The defor-
mation problem is therefore a plane stress problem. The patch design, consisting of
the geometry and properties of the piezoelectic material and of the electrodes, that
yields the plane stress deformation problem for the piezoelectric patch is left generic.
Such can be achieved for example through the traditional design that takes advantage
of the in plane actuation mode, or through more complex designs that exploit the d33

piezoelectric coupling term in a laminar patch [14].
The generation of longitudinal and shear stresses on the beam will depend mainly

on the geometric distribution of the piezoelectric patches on the lateral faces of the
beam. For an effective design, this distribution should favor the deformation and
geometric assumptions introduced in Sec. 3.1. Specifically, patches distributed as to
generate bending, torsion and shear, should induce zero strain on the longitudinal
axis, due to the assumption of inextensibility of the longitudinal axis of the beam,
and should also not alter the symmetry of the cross sections.

A generic expression for a laminar piezoactuator is of the form

σpz = Epz εpz − dpz Vpz (54)

where σpz is the vector of stresses in the piezomaterial, Epz is a matrix containing
Young’s modulus and Poisson’s ratio, εpz is the corresponding vector of strains,
dpz is a matrix containing Young’s modulus, Poisson’s ratio and the piezoelectric
coupling terms, and finally, Vpz is the vector containing the applied voltage that
creates the electric field. The electric field is equal to the applied voltage devided by
the distance between the electrodes.

The stresses and strains in the piezoelectric material are transformed into stresses
and strains of the beam through a transformation into a plane parallel to the beam
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cross section. These transformations are calculated according to the placing of the
piezopatch relative to the beam (they depend on the orientation angle θ), and also on
which face of the beam the patch is bonded. The transformation matrices are defined
as Kσ and Kε for the stress and strain respectively and are written as

σ = Kσ σpz (55)

and
εpz = Kε D (56)

where σ is the vector of Piola-Kirschoff stresses, and D are the strains from Eq. 18.
Kσ is a 3 × 2 matrix and Kε is a 2 × 3 matrix. Applying these relations to Eq. 54
yields

σ = Kσ Epz Kε D − Kσ dpz Vpz (57)

The effect of the piezomaterial on a flexible link is accounted for by calculating the
virtual power of the elastic forces inside the piezoelectric patch similarly to the cal-
culation of the virtual power of the beam elastic forces; integration being performed
over the volume of the piezoelectric material in the undeformed configuration,∫

Bpz

δḊ
T

σ dBpz
=
∫
Bpz

(
δΓ̇k + δ

˙̃Kk Yp

)T

Kσ Epz Kε

(
Γk + K̃kYp

)
−
(
δΓ̇k + δ

˙̃Kk Yp

)T

Kσ dpz Vpz dBpz
(58)

The first term of the right hand side of this equation represents the structural effect of
the added material on the beam. It expresses an increase in the stiffness of the overall
structure. The inertial effect of the piezopatch on the other hand, is included by mak-
ing the adequate provisions in the inertial term, i.e, the piezomaterial specific mass
and its inertia tensor must be considered. If acceptable, both the structural stiffness
and inertia effect term may be neglected due to the small thickness of the piezoelec-
tric material. The last term of the above equation represents the contribution of the
electric field to the deformation of the structure. This is the manipulated variable that
is used for the control of the elastic deformation. Its effect is that of actively changing
the local strain in the beam surface by inducing stresses in the piezoelectric material.

The control term of Eq. 58 may be further simplified,∫
Bpz

−
(
δΓ̇k + δ

˙̃Kk Yp

)T

Kσ dpz Vpz dBpz

=
∫ b

a

δΓ̇k
T
∫

Apz

−Kσ dpz Vpz dApz︸ ︷︷ ︸
Fpz=[0 Fpz2 Fpz3 ]

T

+δK̇k
T
∫

Apz

Ỹp

T
Kσ dpz Vpz dApz︸ ︷︷ ︸

Mpz=[Mpz1 Mpz2 Mpz3 ]
T

dX1

(59)

where a and b are the beginning and ending point along X1 of the piezomaterial, and
Apz is the area of the piezoactuator in the plane of the beam cross sections. The first
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term of the above equation represents the virtual power of the induced shear and the
second term represents the virtual power of the induced curvature.

The resulting discretized dynamics equation of the flexible beam is obtained by
solving Eq. 47 and collecting into a matrix system the coefficients of δvn, δωn,
δq̇Kn

and δq̇ϕn[
Men,rr Men,re

Me
T
n,re Men,ee

] [
An

q̈en

]
+ Nen

(
vn,ωn, q̇en

)
+ Ken

(
qen

)
=
[
I
0

]
Fn + FΣBno

+ Fpz −
[
Φr

T
n+1,n

Φe
T
n+1,n

]
Fn+1 (60)

where Men is the mass matrix of the flexible beam, Nen is the generalized nonlinear
inertial force vector, Ken is the linear generalized elastic force vector, FΣBno

is the
generalized force vector of external forces applied on the sides of the beam, and Fpz

is the generalized force vector due to the piezoelectric material. The piezoelectric
loading vector is given by

Fpz =
∫ b

a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

υ′′
2xMpz3

−υ′′
3xMpz2

α′
xMpz1

γ′
2xFpz2

γ′
3xFpz3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
dX1 (61)

where (.)′ = ∂
∂X1

(.), and the linear elastic force vector is given by

Ken =
∫ L

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

EI3υ
′′
2xυ′′T

2x υ2t

EI2υ
′′
3xυ′′T

3x υ3t

GJα′
xα′T

x αt

GAγ′
2xγ′T

2xγ2t

GAγ′
3xγ′T

3xγ3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
dX1 (62)

To optimize the control authority of the piezoactuator on the structure,Fpz should
be analyzed. To this end, the control moments Mpz1

Mpz2
and Mpz3

, and the control
forces Fpz2

and Fpz3
due to the piezoactuator between point a and point b may also

be separated into a product of a spatial function vector multiplied by a time function
vector (Rayleigh-Ritz separation). The spatial term is a function of the geometry
(width and thickness) of the piezopatch between point a and point b and the time
varying term is a function of the applied voltage. Typically the shape function would
have the same form as the associated curvature function. Similarly, the problem of
optimum placement of small patches may be tackled by setting the integral between
point a and b to between the base of the beam and its tip. The effectiveness of the
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Fig. 4. Rigid-flexible multi-link serial manipulator

piezocontrol on the beam will ultimately be a function of the difference between the
elastic force vector Ken and the piezoactuator control vector Fpz .

In order to obtain a dynamics equation for the elastic beam with the same number
of terms as the dynamics equation of a rigid body, Eq. 60 may be rewritten in the form[

Men,rr Men,re

Me
T
n,re Men,ee

] [
An

q̈en

]
+
[
N en,r

N en,e

](
vn,ωn, q̇en

,Ken,FΣBno
,Fpz

)
=
[
I
0

]
Fn −

[
Φr

T
n+1,n

Φe
T
n+1,n

]
Fn+1 (63)

This allows a simpler analysis for the multibody case.

4 Dynamics of a Multi-Link Manipulator

A flexible manipulator consists of rigid bodies and flexible beams connected by joints
in a serial chain topology (Fig. 4). The body at one of the extremities of the chain
is designated as the base body B1, and the body at the other end of the chain is
designated as the tip body BN . The in-between bodies of the chain are connected to
only two joints. Body zero, B0, is the designation reserved for the inertial body.

The joints are numbered in a similar fashion as the bodies. For the nth body Bn,
the inboard joint is designated as Jn, and the outboard joint is designated as Jn+1.
The designation of inboard (outboard) refers to the topological position of the body
or joint in the chain which is closer (further) from the inertial body. The first joint,
J1, is the joint connecting the chain to the inertial body, B0.

The joints may have from zero to six degrees of freedom. If the multibody system
is floating in space for example, then J1 is set to allow the six degrees of freedom.
Similarly, if the multibody system consists of a mobile robot to which a flexible
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Fig. 5. Joint kinematics

manipulator is attached, then J1 must possess translation degrees of freedom. For
the typical case of a multibody system with a fixed base as in industrial manipulators,
then J1 only possesses rotational degrees of freedom.

A joint with zero degrees of freedom serves the purpose of rigidly connecting
flexible beams with flexible beams, as in JN of Fig. 4 for example, and flexible
beams with rigid bodies, as in J2, J3 and JN−1 for example. By rigidly connecting
flexible beams, flexible bodies of greater complexity may be modelled; higher dis-
placements may be achieved and the complexity of the shape functions reduced, by
assuming a flexible body composed of several flexible beams connected base to tip.
The dimension of the model however, is increased.

4.1 Joint kinematics

Joint Jn connecting bodies Bn−1 and Bn is represented in Fig. 5. We use a joint rep-
resentation similar to that of [15], but with the increasing body numbering from base
to tip as in [16]. The reference position of Jn on Bn−1 is designated as the inboard
point of Jn, O

n̂−1
. Similarly, the reference position of Jn on Bn is designated as

the outboard point of Jn, On, the origin of body reference frame {On, XnYnZn}.
The interbody position vector, which describes the position of On relative to On−1

expressed in {On−1, Xn−1Yn−1Zn−1}, is expressed as rn−1,n.
The rotation of Bn relative to Bn−1 is defined though the orthogonal rotation

matrix Rn/n−1. The columns of Rn/n−1 are the projections of the basis vectors of
reference frame {On, XnYnZn} on {On−1, Xn−1Yn−1Zn−1}. Similarly to Eq. 3,
the angular velocity of Bn relative to Bn−1 expressed in {On, XnYnZn} is obtained
from

ω̃n/n−1 = RT
n/n−1Ṙn/n−1 (64)

The absolute angular velocity of body Bn expressed in {On, XnYnZn} may then be
written as

ωn = RT
n/n−1ωn−1 + ωn/n−1 (65)
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The relative angular velocity between the two rigid bodies may be expressed in terms
of the time derivative of Euler angles [17] (the case of typical robotic manipula-
tors), therefore, ωn/n−1 may be written as a product of a rotational joint matrix,
Hnω (qnω) (rotational Jacobian matrix of joint n), multiplied by the vector of angu-
lar velocity parameters, q̇nω

ωn/n−1 = Hnω (qnω) q̇nω (66)

The absolute linear velocity of Bn, expressed in {On, XnYnZn} is given by

vn = RT
n/n−1

(
vn−1 + ω̃n−1rn−1,n + ṙn−1,n

)
= RT

n/n−1

(
vn−1 + ω̃n−1rn−1,n

)
+ Hnv (qnω) q̇nv (67)

where Hnv (qnω) is the translation joint matrix (translation Jacobian matrix of
joint n), and q̇nv is the vector of linear velocity parameters. Hnv (qnω) is depen-
dent on qnω if joint translation occurs in Bn−1. If translation occurs in Bn it is a
constant matrix. Writing Eq. 65 together with Eq. 67 yields [2][

vn

ωn

]
=

[
RT

n/n−1 RT
n/n−1r̃n−1,n

T

0 RT
n/n−1

] [
vn−1

ωn−1

]
+
[
Hnv 0

0 Hnω

] [
q̇nv

q̇nω

]
⇔ Vn = Φrn,n−1Vn−1 + Hnq̇n (68)

The absolute linear acceleration vector of Bn, expressed in {On, XnYnZn} may
be obtained as in Eq.45, and using the definition of the translation joint matrix Hnv .
On the other hand, the absolute angular acceleration vector may be obtained by tak-
ing the time derivative of Eq.65 and using the definition of the rotational joint matrix
Hnω . The result is[

an

ω̇n

]
=

[
RT

n/n−1 RT
n/n−1r̃n−1,n

T

0 RT
n/n−1

] [
an−1

ω̇n−1

]
+
[
Hnv 0

0 Hnω

] [
q̈nv

q̈nω

]

+

[
RT

n/n−1ω̃n−1ω̃n−1rn−1,n + · · ·
˜RT

n/n−1ωn−1Hnωq̇nω + · · ·

· · ·
(

2
(

˜RT
n/n−1ωn−1

)
+ ω̃n/n−1

)
Hnvq̇nv + Ḣnvq̇nv

· · · Ḣnωq̇nω

⎤⎦
⇔ An = Φrn,n−1An−1 + Hnq̈n + Nn (69)

The control force and the control torque at the joints may be obtained by per-
forming a virtual power balance across joint n. Since a joint has no mass, for the
linear relative motion results

δ (Hnvq̇nv)T Fn = δq̇T
nvH

T
nvFn (70)

and for the angular relative motion
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δ (Hnωq̇nω)T Mn = δq̇T
nωHT

nωMn (71)

The externally applied generalized force vector (torques and forces) is then written
as [

Tnv

Tnw

]
=
[
HT

nv 0
0 HT

nω

] [
Fn

Mn

]
⇔ Tn = HT

nFn (72)

In the case of a rigid connection where Bn−1 is a flexible beam and Bn is either
a flexible beam or a rigid body, then reference frames {O

n̂−1
, X

n̂−1
Y

n̂−1
Z

n̂−1
} and

{On, XnYnZn} coincide, and Eqs. 68 and 69 are obtained by evaluating vk, ωk, ak

and ω̇k at O
n̂−1

:

[
vn

ωn

]
=

⎡⎢⎣RT
n/n−1 RT

n/n−1r̃n−1,n
T

RT
n/n−1JTK

̂n−1
RT

n/n−1JTϕ
̂n−1

0 RT
n/n−1 RT

n/n−1JRe
̂n−1

0

⎤⎥⎦
⎡⎢⎢⎢⎣

vn−1

ωn−1

q̇Kn−1

q̇ϕn−1

⎤⎥⎥⎥⎦
⇔ Vn =

[
Φrn,n−1 Φen,n−1

] [Vn−1

q̇en−1

]
(73)

and

An =
[
Φrn,n−1 Φen,n−1

] [An−1

q̈en−1

]
+ Nen (74)

where

Nen =

⎡⎣RT
n/n−1

(
ω̃n−1ω̃n−1rn−1,n + 2ω̃n−1JT

̂n−1
q̇en−1

+ J̇T
̂n−1

q̇en−1

)
RT

n/n−1

(
ω̃n−1JRe

̂n−1
q̇Kn−1

+ J̇Re
̂n−1

q̇Kn−1

) ⎤⎦
(75)

and Rn/n−1 = Re
̂n−1

, rn−1,n = x
n̂−1

.

4.2 Dynamics of a Rigid-Flexible-Rigid RFR body

A flexible beam attached to two rigid bodies, one at each end, may be seen as a build-
ing block for a flexible manipulator. The rigid bodies are the supporting structures
for actuators and sensors at the joints, and are typically of significant mass. However,
if that is not the case, their mass may be easily neglected, and what remains are their
geometric properties. To this end, let us consider

Rigid Body: Bn (from Eq. 15, and setting q̇n = 0 and q̈n = 0 in Eqs. 68 and 69)
Flexible Beam: Bn+1 (from Eqs. 63, 73 and 74)
Rigid Body: Bn+2 (from Eq. 15)
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The generalized coordinates of the RFR body are the absolute linear and angular ve-
locity vectors of Bn, vn and ωn respectively, and the elastic bending displacements,
torsion angle, and shear angles of body Bn+1, qKn+1

and qϕn+1
. The dynamics

model of the RFR body may then be obtained by reapplying the Principle of Virtual
Powers. The generalized virtual velocities are δVn and δq̇en+1

, and therefore

δVn+1 = Φrn+1,nδVn (76)

and

δVn+2 =
[
Φrn+2,n+1Φrn+1,n Φen+2,n+1

] [ δVn

δq̇en+1

]
(77)

The acceleration of the flexible beam is given in relationship to the acceleration of
Bn by Eq. 69, and the acceleration of Bn+2 is obtained from Eqs. 69, and 74 as

An+2 =
[
Φrn+2,n+1Φrn+1,n Φen+2,n+1

] [ An

q̈en+1

]
+Φrn+2,n+1Nn+1+Nen+2

(78)
Adding the contribution of the three bodies according to the Principle of Virtual
Powers, and then adding the coefficients of δVT

n and δq̇T
en+1

and writing in matrix
form results in the following system of dynamics equations

Mrfrn

[
An

q̈en+1

]
+Nrfrn =

[
I
0

]
Fn−

[(
Φrn+3,n+2Φrn+2,n+1Φrn+1,n

)T(
Φrn+3,n+2Φen+2,n+1

)T
]
Fn+3

(79)
where

Mrfrn =
[
Mrn 0

0 0

]
+
[
Φr

T
n+1,nMen+1,rrΦrn+1,n Φr

T
n+1,nMen+1,re

Me
T
n+1,reΦrn+1,n Men+1,ee

]

+

⎡⎣ (
Φrn+2,n+1Φrn+1,n

)T Mrn+2Φrn+2,n+1Φrn+1,n

Φe
T
n+2,n+1Mrn+2Φrn+2,n+1Φrn+1,n(

Φrn+2,n+1Φrn+1,n

)T Mrn+2Φen+2,n+1

Φe
T
n+2,n+1Mrn+2Φen+2,n+1

⎤⎦ (80)

and

Nrfrn =
[
Nrn

0

]
+
[
Φr

T
n+1,n

(
Men+1,rrNn+1 + N en+1,r

)
Me

T
n+1,reNn+1 + N en+1,e

]
+

[(
Φrn+2,n+1Φrn+1,n

)T (Mrn+2

(
Φrn+2,n+1Nn+1 + Nen+2

)
+ Nrn+2

)
Φe

T
n+2,n+1

(
Mrn+2

(
Φrn+2,n+1Nn+1 + Nen+2

)
+ Nrn+2

) ]
(81)
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4.3 Dynamics of a serial multi Rigid-Flexible-Rigid body system

Let us now consider an articulated chain of RFR bodies representing a flexible ma-
nipulator. From Eq. 68, and Vn+2 as given in Eq. 77, the velocity of a fourth body
connected to Bn+2 through an articulated joint may by written as

Vn+3 =
[
Φrn+3,n+2Φrn+2,n+1Φrn+1,n Φrn+3,n+2Φen+2,n+1

] [ Vn

q̇en+1

]
+Hn+3q̇n+3 (82)

and from Eqs. 69 and 78

An+3 =
[
Φrn+3,n+2Φrn+2,n+1Φrn+1,n Φrn+3,n+2Φen+2,n+1

] [ An

q̈en+1

]
+Hn+3q̈n+3 + Nn+3 + Φrn+3,n+2

(
Φrn+2,n+1Nn+1 + Nen+2

)
(83)

Renumbering Eqs.79, 82 and 83 in terms of the nth RFR body, and rewriting the
generalized velocity, acceleration and force vectors in order to include the elastic
contributions results in the dynamics equation,

Mrfrn

[
An

q̈en+1

]
+ Nrfrn

=
[
Fn

0

]
−
[(

Φrn+3,n+2Φrn+2,n+1Φrn+1,n

)T 0(
Φrn+3,n+2Φen+2,n+1

)T 0

] [
Fn+3

0

]
⇔ MrfrnArfrn + Nrfrn = Frfrn − Φrfr

T
n+1,nFrfrn+1 (84)

the velocity equation,[
Vn

q̇en+1

]
=

[
Φrn,n−1Φrn−1,n−2Φrn−2,n−3 Φrn,n−1Φen−1,n−2

0 0

][Vn−3

q̇en−2

]

+
[
Hn 0
0 I

] [
q̇n

q̇en+1

]
⇔ Vrfrn = Φrfrn,n−1Vrfrn−1 + Hrfrnq̇rfrn

(85)

and the acceleration equation[
An

q̈en+1

]
=
[
Φrn,n−1Φrn−1,n−2Φrn−2,n−3 Φrn,n−1Φen−1,n−2

0 0

] [An−3

q̈en−2

]

+
[
Hn 0
0 I

] [
q̈n

q̈en+1

]
+
[
Nn + Φrn,n−1

(
Φrn−1,n−2Nn−2 + Nen−1

)
0

]
⇔ Arfrn = Φrfrn,n−1Arfrn−1 + Hrfrnq̈rfrn

+ Nrfrn (86)
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Furthermore, the externally applied generalized force vector in Eq. 72 may be rewrit-
ten as [

Tn

0

]
=
[
HT

n 0
0 I

] [
Fn

0

]
⇔ Trfrn = Hrfr

T
nFrfrn (87)

Equations 84, 86 and 87 are in a form compatible with the problem formulation
and solution methods for rigid manipulators presented in [18] and [19]. The solu-
tion method consists in writing a large algebraic system as in [20] or [21], which is
solved through elimination methods leading to either the global dynamics Composite
Inertia (CI) method (the Composite Rigid Body (CRB) method for rigid multibody
systems), or the Articulated Body (AB) method. The former has complexity O(N3)
due to the need of inverting the global system mass matrix, whereas the latter has
complexity O(N). To illustrate, following [18], the algebraic system for an uncon-
strained (Frfr3 = 0) 2 RFR body manipulator is written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mrfr2 0 I

0 0 Hrfr
T
2

I Hrfr2 0 −Φrfr2,1

−Φrfr
T
2,1 Mrfr1 0 I

0 0 Hrfr
T
1

I Hrfr1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Arfr2

q̈rfr2

Frfr2

−Arfr1

q̈rfr1

Frfr1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nrfr2

Trfr2

−Nrfr2

Nrfr1

Trfr1

−Nrfr1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(88)

The global dynamics CI method consists in rearranging the block rows and
columns of the above system into the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mrfr2 I

Mrfr1 −Φrfr
T
2,1 I

Hrfr
T
2

Hrfr
T
1

I −Φrfr2,1 Hrfr2

I Hrfr1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Arfr2

−Arfr1

q̈rfr2

q̈rfr1

Frfr2

Frfr1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nrfr2

Nrfr1

Trfr2

Trfr1

−Nrfr2

−Nrfr1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇔

⎡⎣ M 0 Φ−T

0 0 HT

Φ−1 H 0

⎤⎦⎡⎣−A
q̈
F

⎤⎦ =

⎡⎣ N
T
−N

⎤⎦ (89)

and solving through block-row elimination in order to arrive at(
HT ΦTMΦH

)
q̈ + HT ΦT (MΦN + N ) = T (90)
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which is the joint space dynamics equation of the flexible manipulator. This is the
solution one would obtain through a reapplication of the Principle of Virtual Powers
to the chain of RFR bodies. From Eq. 85 one may write[

Vrfr2
Vrfr1

]
=
[
I Φrfr2,1

0 I

] [
Hrfr2 0

0 Hrfr1

] [
q̇rfr2

q̇rfr1

]
⇔ V = ΦHq̇ (91)

thus identifying the product ΦH as a Jacobian matrix.
The AB method on the other hand, solves the algebraic system in Eq. 88, taking

advantage of its block diagonal structure. Each block corresponds to a RFR body,
which is coupled to the next body in the chain through matrix Φrfr

T
n+1,n . The

solution procedure consists in eliminating these matrices in order to decouple the
diagonal blocks. Therefore, for n = N,N − 1, ..., 1, eliminate the middle row of
each block using the first row and then the last row of the block. Then, using the
resulting nth block block rows, eliminate matrix Φrfr

T
n+1,n, coupling block n − 1

with block n. The resulting system is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mrfr2 0 I

0 Drfr2 0 −Hrfr
T
2 Mrfr2Φrfr2,1

I Hrfr2 0 −Φrfr2,1

M̆rfr1
0 I

0 Drfr1 0
I Hrfr1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Arfr2

q̈rfr2

Frfr2

−Arfr1

q̈rfr1

Frfr1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nrfr2

T̆rfr2

−Nrfr2

N̆rfr1

T̆rfr1

−Nrfr1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(92)

where

T̆rfrn
= Trfrn − Hrfr

T
n

(
N̆rfrn

+ M̆rfrn
Nrfrn

)
(93)

Drfrn = Hrfr
T
nM̆rfrn

Hrfrn (94)

N̆rfrn
= Nrfrn + Φrfr

T
n+1,n

(
N̆rfrn+1

+ M̆rfrn+1
Nrfrn+1

)
+Φrfr

T
n+1,nM̆rfrn+1

Hrfrn+1Drfr
−1
n+1T̆rfrn+1

(95)

and

M̆rfrn
= Mrfrn + Φrfr

T
n+1,nM̆rfrn+1

Φrfrn+1,n

−Φrfr
T
n+1,nM̆rfrn+1

Hrfrn+1Drfr
−1
n+1Hrfr

T
n+1M̆rfrn+1

Φrfrn+1,n

(96)

with M̆rfrN
= MrfrN . Eq. 92 represents a linear system for q̈rfrn

and Arfrn.
For n = 1, ..., N , one now may calculate q̈rfrn

. Eq. 96 is the composite rigid body
inertia introduced in [22] in the context of rigid multibody dynamics.
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5 Validation and Control of a Single Flexible Link

The IST planar flexible manipulator, Fig.6, was designed for the purpose of posi-
tion and force control algorithm testing [23, 24]. It consists of a modular structure
where the joints and links can be easily exchanged. To transform it into a single link
flexible manipulator, the first link is a very stiff steal beam and the respective joint is
blocked. Only the second joint of the manipulator is allowed to rotate and the respec-
tive link is made of a very flexible spring-steal beam. The actuation mechanism is a
Harmonic Drive RH-14-6002 servo system, current driven by a 12A8 servo amplifier
from Advanced Motion Controls. The sensors used in the measurements are a 2000
pulses per revolution shaft encoder for the motor rotor position, a high rate acquisi-
tion camera system for the tip displacement, a strain gauge full bridge for the beam
curvature at its base, and an accelerometer for the tip acceleration. The shaft encoder
is integrated in the Harmonic Drive servo system, and the visual system acquiring
1000 frames per second is a Kodak motion corder analyzer SR-series, model PS220.
The hub velocity and hub acceleration are obtained though differentiation of the hub
position. The relevant characteristics are as follows: beam length L = 0.5m, beam

Fig. 6. The IST planar flexible manipulator
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Fig. 7. Power spectral density of strain gauge measurements

width w = 0.001m, beam height h = 0.02m, beam specific mass ρ = 7850Kg/m3,
beam Young modulus E = 209 × 109Pa, hub radius r = 0.075m.

5.1 Frequency Domain Validation

The first three theoretical clamped-free (constrained) natural frequencies of the beam
are �1 = 20.95rad/s (3.33Hz), �2 = 131.28rad/s (20.89Hz) and �3 = 367.6rad/s
(58.5Hz). The experimental values (damped frequencies) are shown in Fig.7 for an
impact applied at the tip of the beam. The differences between the theoretical and
experimental values are justified by friction (material damping and aerodynamic ef-
fects) and the existence of strain gauges and cables on the experimental beam that
are not taken into account in the calculation of the theoretical values. Crucial to the
correct capture of the frequency behavior of a rotating flexible link is the order of
the rotation matrix assumed in Eq. 26. In order to capture the increase in frequency
due to the centrifugal force (centrifugal stiffening), at least a second order rotation
matrix must be considered, Fig.8. The frequencies plotted were calculated by solving
the eigenvalue problem at constant velocities from 0rad/s to 10rad/s. Comparing the
frequencies at 0rad/s and at 10rad/s shows an increase of 4.7% for the first mode,
1.9% for the second mode, and 0.8% for the third mode.

If a rotation matrix of order one is assumed, then a decrease in frequency is
obtained with the increase of hub velocity. This is of course contrary to the physical
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Fig. 8. Effect of the centrifugal force on the natural frequencies

reality, and is known as centrifugal softening [25]. In order to capture the (sometimes
reasonable) zero increase of frequency with the increase of hub velocity this term in
the dynamics equations must be neglected.

5.2 Time Domain Validation

Displacement driven manoeuvres are used for time domain validation [26]. This al-
lows us not to have to model joint friction. The system input for the displacement
driven models is the hub acceleration. Therefore, the approach adopted is to initially
implement a Proportional Derivative (PD) control loop around the hub position, and
apply a reference motion of a certain form to the manipulator. The real hub posi-
tion and velocity is then recorded and the acceleration estimated. The acceleration
response is then used as the input signal for the displacement driven models. The
applied maximum rotation speed is 7.6 rad/s as shown in Fig.9. Fig.10 shows the
measured end-point displacement of the manipulator and the simulated values. The
experimental values were measured with the camera system, and the simulated val-
ues were calculated assuming a quadratic rotation matrix in Eq. 26, and assuming
a linear rotation matrix, but neglecting the centrifugal softening term (the simpli-
fied model). The quadratic model shows closer performance to the real manipulator,
and the increase in frequency is visible in the decrease in oscillation period when
compared to the simplified model.
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5.3 Bending strain feedback control

The strain feedback approach adopted in this investigation follows the main route
found in works such as [11, 27] and [28]. The underlying idea is that vibration
damping cannot be achieved with collocated control (joint feedback) because of
the Coulomb friction present at the joint. Basically, an observability problem oc-
curs when the torque at the clamping point of the beam on the hub is smaller than
the Coulomb friction torque at the joint. An approach to overcome this problem is to
place a strain gauge close to the hub of the manipulator.

In this work, direct strain feedback is used for control of the vibration of the
flexible link [29]. The control structure comprises two feedback loops: (1) The hub
angle and hub velocity as inputs to a collocated PD control for rigid body motion
control. (2) A direct strain feedback signal from a strain gauge for vibration control.
These two loops are then combined to give a torque input to drive the system. A
block diagram of the control scheme is shown in Fig.11 where q3 represents the joint
angle andK3 is the beam curvature measured with the strain gauge. Thus, the control
law is given by

u(t) = Kp

(
q3ref − q3

)
− Kv q̇3 − Ks K3 (97)

The PD controller parameters Kp and Kv were deduced as 0.22 and 0.001 re-
spectively using the root locus analysis. The corresponding hub angle and end-point
acceleration responses of the manipulator using the PD control are shown in Fig. 12.
It is noted that an acceptable hub angle response was achieved. The manipulator
reached the demanded angle with a rise and settling times and overshoot of 0.098sec,
0.143 sec and 2.2% respectively. However, a significant amount of vibration occurred
during the motion of the link as demonstrated in the end-point acceleration response.
Moreover, the oscillation does not settle within 4 seconds with magnitude of accel-
eration of ±50 m/sec2. When the strain feedback loop is turned on, the tip vibration
is significantly improved with a small penalty on the hub angle Fig. 13.
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Fig. 11. Block diagram of strain feedback control
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Fig. 12. Joint angle and tip acceleration without strain feedback

Fig. 13. Joint angle and tip acceleration with strain feedback

6 Conclusions

A systematic modelling approach leading to a general modelling environment, which
may be used either in analysis or in the development of real time control schemes
of flexible manipulator arms has been presented. A flexible beam attached to two
rigid bodies, one at each end, has been assumed as a building block for a flexible
manipulator. The rigid bodies are the supporting structures for actuators and sensors
at the joints, and are typically of significant mass. However, if that is not the case,
their mass may be easily neglected, and what remains are their geometric properties.
The cross section rotations due to elasticity of the flexible beam may be of higher
order as needed and shear deformation according to the Timoshenko beam theory is
included. The formulation method for the dynamics of a flexible manipulator may be
either the global dynamics composite inertia (CI) method or the recursive articulated
body (AB) method. A validation and control exercise was performed on a single flex-
ible link. Frequency domain and time domain validation were performed in regard
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to the order of the cross section rotation matrix. Linear and quadratic assumptions
were compared against each other, and against the experimental apparatus. Curvature
feedback control was compared against classical joint (collocated) feedback, and it’s
improved performance is shown through the measurement of the tip acceleration.
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An Elastic Simulation Model of a Metal Pushing
V-Belt CVT
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This contribution presents the modelling of a metal pushing V-belt CVT to be used
in numerical simulations. The system is subdivided into the pulleys, the belt and
different types of contacts. The modelling is described in detail.

Since the deformation of the CVT is of major importance for the mechanical
behaviour, the elasticity of the colliding bodies has to be taken into account. The
deflection of the pulleys is split up into three parts. First the shaft is bent by radial
forces. Here a spatial model of an elastic beam is used. Second the pulley sheaves tilt
due to elasticity and clearance of the shaft-to-collar connection. This is modelled by
a force element. And third, as a consequence of the asymmetrical loading, the elastic
sheaves deform. This is calculated by different approaches, in which the best results
are achieved by the use of CASTIGLIANO’s Strain Energy Theorem.

The motion of the belt is specified in EULER-coordinates for the axial plane
by separate longitudinal and transversal approaches. Therefore continuous RITZ-
approximations are used in combination with hierarchical shape functions. For the
kinematics of the moving elements a transformation to LAGRANGE-description is
used.

The system contains a large number of contacts. The contact between the pulley
sheaves and the belt elements is modelled spatial. The contact between two adjacent
elements is modelled one dimensional. Both types of contacts consider unilateral
constraints. In the contact between two ring layers the radial expansion has to be
modelled accurately.

The simulation model is implemented in the object-orientated programming lan-
guage C++. This allows to calculate the kinematics of the belt and the local distribu-
tion of all contact forces. It permits to compute the necessary pulley thrust, the maxi-
mum transmittable torque and the efficiency for given loading cases. Some results of
the numerical simulation are presented at the end of this contribution. Although this
work deals with a metal pushing V-belt, the models can be modified for other CVTs.
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1 Introduction

Nowadays automatic transmission is dominating the Japanese and American au-
tomotive market. Besides conventional automatic shift transmissions, continuously
variable transmissions (CVT) have gained importance. Due to a step-less speed ratio
they have the potential to be an ideal link between the engine and the power-train.
Figure 1 shows a belt-CVT being used in a power train of a motorcar. The interface

Fig. 1. Functionality of a CVT-system

of the described mechanical system is defined by the rotation speed ω, the exter-
nal torque M and the pulley thrust Q. The indices dr, dn denote the driving and the
driven pulley. The belt runs inside two V-pulleys and transmits the power by friction.
One sheave of each pulley can be displaced axially by a hydraulic cylinder, the belt
is forced to a given input and output radius. Thus a continuously variable adjustment
of the transmission ratio is possible. This report deals with a metal pushing V-belt
shown in Fig. 2. It consists of 300 to 600 flat steel elements that are held by two
packs of thin steel rings. The flanks of the elements are periodically in contact to the

Fig. 2. Metal pushing V-belt
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driving and driven pulley. The torque of the pulleys is effected by the tangential fric-
tion forces in the flanks. Intra belt the element transmits the tangential flank friction
into two parts. One is transmitted by compression of the elements, the other by the
tension of the rings. The history of the CVT push belt started in 1971 with the foun-
dation of Van Doorne’s Transmissie in the Netherlands. The customer requirements
concerning transmission capacity, durability and efficiency have increased. There-
fore it is important to analyse and to predict the behaviour of power transmissions in
an early state of design. In this process numerical simulation models provide strong
support.

2 Power Transmission

This section explains the fundamental mode of operation of the system and presents
some important effects, which have to be taken into consideration modelling a push-
belt. Figure 3 shows the basic mechanism of the power transmission of a push-belt

��� | |���

���

���

| |	��

	����

�

Fig. 3. Power transmission of a metal pushing V-belt CVT

CVT. The transmitted torque M results from the difference of the span forces, in
detail the compression P < 0 and the ring tension T > 0. Using the contact radius r
it can be estimated by

Mdr

rdr
≈ Pt2 − Pt1 + Tt2 − Tt1 ≈ Mdn

rdn
. (1)

In case Mdr > 0 the main part of power is transmitted by a compression force Pt1

in the span leaving the driving pulley whereas the elements in the opposite span
are separated. For Mdr < 0 it is contrary. The maximum transmittable torque M∗

depends on the compression Q, the friction coefficient µ and the half wedge angle δ0
of the pulley groove. It can be estimated by

M∗
dr

rdr
≈ M∗

dn

rdn
≈ 2µ

cos δ0
min {Qdr, Qdn} . (2)
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The approximations assume that the friction forces are tangential with respect to the
pulley. In reality the thrust Q does not only transmit power by friction, but it also
deforms the pulley sheaves and the elements due to elasticity. This affects a radial
velocity due to the penetration of the belt into the pulley groove. The velocities of the
pulley vP and the belt vB as well as the relative velocity dv and the friction force f
are shown in Fig. 4.
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Fig. 4. Velocities of the pulley sheaves and the element

At a speed ratio i �= 1 and a smaller torque M with respect to the maximum
transmittable torque M∗ a kinematic phenomenon occurs that is typical for push-
belts. As experiments show, the inversion of the compression Pt1 ↔ Pt2 from one
span to the opposite one does not appear at zero torque, but it happens at a specific
torque M0 �= 0 depending on the speed ratio. The explanation is found in a radial
offset δr between the pitch line of the elements and the neutral lines of the rings. It
affects a relative velocity

vrel = ωdr

(
1
i

(rdn + δr) − (rdr + δr)
)

(3)

that is too big to be compensated by the elasticity of the rings. The phenomenon
is illustrated in Fig. 5 for underdrive (rdr < rdn) and overdrive (rdr > rdn) with
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Fig. 5. Inversion of compression
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four load cases each. The resulting transmission force is specified by ∆ = M
r . The

two grey bars present the total tangential force of the spans t1 and t2 including ring
tension T and compression P . In the case of underdrive the rings slip in the driving
pulley opposite to the rotation direction. Due to this effect the tension Tt2 rises al-
ways above the tension Tt1. To transmit zero torque it needs a compression force Pt2

to equalise the difference of ring tension. In the overdrive condition the opposite
effect occurs with a compression force Pt1. To simulate an accurate behaviour of
the power transmission, the following model considers the elastic deformation of the
pulleys and the elements as well as the unilateral constraints, such that separation of
the elements can be modelled.

3 Simulation Model

Before the CVT-system can be characterised by algebraic equations, an abstraction
of the real system to a physical model is necessary. This has to capture all impor-
tant aspects in detail, but at the same time it has to be simple enough to guarantee
reasonable simulation times. First of all the system is delimited with respect to the
power train and the external excitations have to be defined. The presented model
contains the driving and the driven pulleys, the belt and a controller. By the choice
of a defined interface it is possible to include this model in a simulation program for
complete power trains [7]. The rotation of the pulleys is excited by external kinemat-
ical or kinetical boundary conditions Edr, Edn. A target speed ratio i0 and a torque
ratio r [3], the latter being defined as the transmitted torque M divided by the max-
imum transmittable torque M∗, are assigned to the controller. The structure of the
simulation model is shown in Fig. 6. To achieve a well structured model and imple-
mentation, the CVT-system is divided into sub-systems. These communicate with
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Fig. 6. Structure of the simulation model
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each other via defined interfaces and are realized as classes in an object-orientated
programming language (C++). By this the sub-systems can be modified and tested
easily and it is possible to reuse them for other simulation programs (e.g. simulation
of chain-drives). The sub-systems are classified in force elements and bodies. Bod-
ies contain a set of rigid and/or elastic degrees of freedom. The equations of motion
result in the principle of virtual power, using the well known projection method by
JOURDAIN [6].∑

i

∫
mi

BJi
T (Bai −B f) dmi = 0 , BJi =

∂Bvi

∂q̇
(4)

Force elements calculate the interaction between bodies, e.g. the relative kinematics
and forces in a contact. In the following sections the sub-systems are described in
detail.

4 Model of the Pulleys

A CVT-system always contains a driving and a driven pulley, which transform the
input- and output-torque into a tangential friction force. In belt-CVTs a set of V-
pulleys is used, where one sheave of each pulley is axially movable by a hydraulic
cylinder forcing the belt to a prescribed radius (s. Fig. 1). A control algorithm affects
the pulley thrust Qdr, Qdn to adjust the speed ratio. The embedding of the pulleys
into the CVT-system is shown in Fig. 6. The boundary conditions are given by the
external excitation E the control pressure to affect the pulley thrust Q and the belt
contact forces f i. The external excitation E can either be a torque M or an angular
velocity ω as a constraint for the rotation. The pulley sheaves, the shaft and the shaft-
to-collar connection are deformed according to their elasticity. This causes a radial
penetration of the belt into the pulley groove, which is of major importance for the
mechanical behaviour of the CVT system. In contrast to rubber V-belts the deforma-
tion of the sheaves and the steel elements are of the same magnitude, so both must be
taken into consideration while modelling a metal V-belt system. This is included in
the present multibody system. First an elastic RITZ-approach is introduced and dis-
cussed. Because some eigenfrequencies of the elastic bodies are extremely high and
not of interest for the investigated problems, an alternative approach is introduced to
achieve reasonable times for the numerical simulation. This splits up the degrees of
freedom into dynamical and quasi-static ones.

4.1 Dynamical Ritz-approach

To evaluate Eq. (4) the absolute acceleration of the mass elements is needed. Mod-
elling an elastic multibody system, it is a common procedure [1] to describe the
position r of a mass point of the deformed configuration by the undeformed config-
uration r0 and a displacement vector rel. In order to limit the degrees of freedom of
the infinitesimal mass points a RITZ-approximation is used.
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r(r0, t) = r0(t) + rel(r0, t), rel(r0, t) = W(r0)qel(t) (5)

The matrix W contains the shape functions, the eigenforms of the pulley sheaves
respectively that are evaluated by FEM-calculations. The RITZ-approximation (5)
leads to an ordinary differential equation in standard form.

Mq̈ − h(q, q̇, t) = 0 (6)

The matrix M contains the mass integrals of shape functions. Due to small elastic
deformations, these integrals are independent of time and need to be evaluated only
once.

Fig. 7. FE-Model of the pulley

The RITZ-approximation is a powerful and often used method. To model the dy-
namics of CVT pulleys it was first used by SRNIK [9]. In the implementation only
a confined number of shape functions can be evaluated. This means the computa-
tion of the pulley surface implies a position error. Because the contact area between
the pulley sheaves and the belt spreads across the total arc of contact this error has
a big influence on the distribution of the contact forces. Many eigenforms have to
be superposed to compute an accurate force distribution. In [9] the eigenfrequencies
belonging to the higher eigenforms lead to nearly unacceptable computation times
for the numerical simulation. In order to eliminate these high frequencies and still
obtain an adequate deformations, a quasi-static approach for the elastic deforma-
tion has been developed. Alternatively it would be possible to use hierarchical shape
functions in the same manner as in Sec. 5.1.

4.2 Mixed Dynamical- and Quasi-Static-Approximation

Due to the high stiffness, a CVT-system involves a diversified frequency spectrum.
In order to obtain an appropriate mathematical model, it is important to define the
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limit of frequencies that can be resolved. Frequencies that exceed the limit are elimi-
nated, by calculating their degrees of freedom with a quasi-static formulation. At the
beginning of this section the dynamical degrees of freedom are introduced. Then the
quasi-static degrees of freedom are described, while the deformation of the elastic
bodies are discussed in detail.

4.2.1 Rigid-Body-Model

The elastic deformation of the pulley system is small, and therefore the global dy-
namics can be approached by a model of two rigid-bodies shown in Fig. 8. Its state
is defined by four degrees of freedom. The bearings of the shaft are assumed to be
inelastic. The rotation is specified by the angle ϕ and the angular velocity ω. The sec-

Fig. 8. Rigid body model of the pulleys

ond sheave is bedded by a shaft-to-collar connection. Its axial position is quantified
by the distance ∆z0 between the fixed and the movable sheave. Due to the elastic-
ity and clearance of the shaft-to-collar connection, the movable sheave can tilt. Its
orientation is quantified by the angles δx and δy with respect to an orthogonal axes
system that is perpendicular to the rotation axis. The rotation ω is either prescribed
kinematically, or it results from the principle of angular momentum.

Jzω̇ = M −
∑

i

(ri × f i)z , ϕ =
∫
ω̇ dt (7)

Here the moment of inertia Jz contains all masses of the pulley. In the steady state the
external torqueM and the axial components of the torques resulting from the contact
forces f i and the lever arms ri are in equilibrium. The motion of the adjustable pulley
sheave is strongly damped by the hydraulic oil. When a second order differential
equation is used to model the dynamics of the sheave the resulting eigenvalues are
of different order of magnitude. To avoid numerical problems the order is reduced
by one so that we obtain a PT1 behaviour. The distance ∆z0 is calculated by Eq. (8)
with a time delay T1.
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T1ż =
∑

i

fi,ax − Fc −Ap− Fω , z =
∫
ż dt (8)

The time constant T1 in Eq. (8) is scaled by a numerically calculated stiffness ∂Fc

∂z to
transform the equation to a standard form. In the steady state case the axial compo-
nents of the contact forces fi,ax are balanced by the spring prestress Fc and the piston
force. It consists of two parts. The first part Ap0 is independent of the rotational ve-
locity. It is proportional to the surface A of the piston and the applied pressure p0.
The second part Fω considers the centrifugal forces that influences the local piston
pressure. The tilting angles δx and δy are calculated by Eq. (9) using a rotational
stiffness cδ .(

T1 0
0 T1

)(
δ̇x

δ̇y

)
=

( 1
cδ

∑
i (ri × f i)x − δx

1
cδ

∑
i (ri × f i)y − δy

)
,

(
δx

δy

)
=

∫ (
δ̇x

δ̇y

)
dt (9)

This rigid-body model considers only the elasticity of the shaft-to-collar connection,
while the elasticity of the shaft and the sheaves are not included yet. This is done by
superposing the tilting angles δx, δy and the elastic deformation of the shaft and the
sheaves. The deflection models are presented in the next sections.

4.2.2 Deflection of the Shaft

The bending of the shaft is approximated by the deflection curve of a spatial beam.
The boundary conditions consider the deflection and clearance of the bearing points.
The contact forces of the belt are summed up to a resultant couple (FP , MP ). The
deflection can be calculated analytically by subdividing the shaft into segments of
constant cross sections. Figure 9 shows the mechanical model of the shaft. Assuming
rigid sheaves, the wedge angle is changed by the local bending δB . In case of the
movable pulley the tilting angles δx, δy and the clearance δS is added. The local
wedge angle depending on the rotational position is calculated by both parts of x-
and y-axis.
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Fig. 9. Elastic shaft
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4.2.3 Deflection of the Pulley Sheaves

To reduce acceleration losses, the moment of inertia of the power train should be as
small as possible. The CVT-pulleys contribute to the inertia significantly and there-
fore the pulley sheaves should be as thin as possible. Here the reduction of weight is
limited by the increasing deformation. It is important to model the deformations as
accurate as possible. In the following sections two approaches are presented.

A simple approach with which the deformation of the pulley sheaves can be
considered is to assume that the cone surface is tilting as a whole. In this case an
equivalent torsional spring is used. The stiffness can be treated as a spring in series
with the stiffness of the shaft-to-collar connection. Figure 10 shows the model of
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Fig. 10. Sinus approach

this approach. The results can be improved if the axis of tilting is shifted from the
centre point (r = 0) towards the contact (∆r). The approach leads to good results in
modelling CVT-chains [9] [8] but the distribution of the contact force is not accurate
when this approach is used for metal V-belts since the axial stiffness of the belt is
much higher in this case.

Thus a better approximation for the deformation has to be formulated in which
the high eigenfrequencies are eliminated. To this end CASTIGLIANO’s Strain Energy
Theorem is used, which is a useful tool for determining displacements of a linear
elastic system [10]. The change of the elastic potential is equal to the work performed
at the surface of the body. The partial derivative of the strain energy V by an external
force fi, acting on the surface point i, leads to its displacement ui along the direction
of fi.

V =
1
2

n∑
i=1

n∑
j=1

wijfifj → ∂V

∂fi
=

n∑
j=1

wijfj = ui (10)

The flexibility coefficients wij characterise the interaction of the surface points by
elasticity. Here they give the displacement of the i-th point of contact due to a gener-
alised force fj acting at a contact point j. The flexibility coefficients wij can easily
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Fig. 11. Reference systems of the belt

be calculated using a linear finite element analysis. The calculation of the contact
forces fj is explained in Sec. 6.1.

5 Model of the Belt

Before modelling the belt, one has to decide whether the behaviour of the metal V-
belt should be described by a discrete or a continuous approach. A discrete model
of the elements can be realised easily, but it results in extreme high frequencies
(≈ 500kHz) due to the small mass and the high stiffness. To achieve reasonable
simulation times, only frequencies up to a certain limit, that is of technical inter-
est, are included and the frequencies above the limit have to be eliminated. For this
objective the motion of the belt is specified by separate longitudinal and transver-
sal approaches in combination with hierarchical shape functions. The position of the
belt is specified in a reference system R by a path coordinate sR and the transversal
displaced w(sR, t). Due to the radial expansion of the elements and the rings a radial
reference mark is needed to which the transversal displacement w and the tangen-
tial velocity v refers to. The pitch line B0 is used for the elements and the neutral
lineBi for the rings. Figure 11 shows the systems of the belt. Because the transversal
position of elements and rings are coupled, the systems B0 and Bi are parallel and
the spacial derivatives w′, w′′ and time derivative ẇ are the same for all layers. The
motion of the belt is calculated in EULER-coordinates. To describe the kinematics
of the belt-fixed elements, a transformation to the LAGRANGE-description is used.
Equation (11) is valid for any field-variable x, e.g. the transversal displaced w.

ẋ =
∂x

∂t
+ vi

∂x

∂s
(11)

Furthermore transformations between the reference system and the belt systems
have to be considered. An infinitesimal length ∂sR of the reference system R differs
in the dedicated length ∂si in a belt system Bi. The transformation depends on the
curvature κR, the transversal position wi and its first derivative in space w′. The
planar transformation between the reference system R and a belt system Bi as well
as the transformation between two single rings i = 1..n with the thickness h are
given by
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dsi

dsR
=

√
(1 + κRwi)2 + w′2,

dsi+1

dsi
= 1 + κRh i = 1 . . . n− 1 . (12)

The path lengths of the systems Bi are calculated with the integral of Eq. (12) along
the reference coordinate sR, whereas the length l0 of the reference system R is
known.

l0 :=
∫
dsR, lB,0 =

l0∫
0

ds0
dsR

dsR, lB,i+1 = lB,i + 2πh, i = 1 . . . n− 1 (13)

5.1 Transversal Dynamics

The transversal position of the belt depends on the local deflection of the pulley
sheaves and results in the equilibrium of contact forces acting on the elements and
rings. A continuous approach is used. The LAGRANGE equations of motion are de-
rived from the kinetic energy T and the potential energy V of a stretched, moving
belt with the tangential velocity v. Here µ is the mass per length, EI the bending
stiffness and F the tension force. In this section the reference coordinate sR is short-
ened by s.

T =
µ

2

∫ (
(ẇ + vw′)2 + (1 + wκR)2 v2

)
ds (14)

V =
1
2

∫ (
F

(
w′2 + 2wκR

)
+ EI

(
κR − wκ2

R − w′′)2
)

ds (15)

The displacement w and its derivatives depend on both, time and space. In order to
solve the LAGRANGE’s equations, a RITZ approximation is introduced to separate
both dependencies.

w(s, t) = w̄T (s)q(t) (16)

This leads to the standard form of equations of motion (ODE, 2nd order), that
are integrated numerically by transforming to a first order system.

Mq̈ + Dq̇ + Cq + b = Qk + Qm (17)

The mass matrix M, the damping matrix D, the matrix of stiffness C and the vector
b contain integrals of the shape functions and have to be calculated only once, if the
reference system is invariant in time.

M = m̄

∫
w̄w̄T ds (18)

D = m̄v

∫
w̄w̄′T − w̄′w̄T ds (19)

C = EI

∫
w̄′′w̄′′T +

3
r4

w̄w̄T +
1
r2

w̄′w̄′T +
3
r2

w̄′′w̄T +
3
r2

w̄w̄′′T ds

+F
∫

w̄′w̄′T ds− m̄v2

∫
w̄′w̄′T +

1
r2

w̄w̄T ds (20)

b = −EI
∫

1
r3

w̄ +
1
r
w̄′′ds+ F

∫
1
r
w̄ds− m̄v2

∫
1
ri

w̄ds (21)
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The generalised force vector Qk contains the radial contact forces of the pulley. The
vector Qm comprises the torque that results from the compression force between
two interconnecting faces of elements. This is modelled with discrete force elements
with the distance δ.

Qk =
∑

w̄(si)Fi (22)

Qm =
∑(

w′(si +
δ

2
) − w′(si −

δ

2
)
)
Mi (23)

The bending torque in the belt-plane is given by Eq. (24), while k± is the outer and
inner border of the contact face based on the pitch line of the belt.

Mi =

⎧⎨⎩
Pk− for EIκi > −Pk−
−EIκi for Pk− ≤ −EIκi ≤ −Pk+

−Pk+ for −EIκi > −Pk+
(24)

The current position of the belt is calculated by the RITZ-approximation in
Eq. (16) with a confined number of eigenforms. So the set of possible positions is re-
stricted by the linear combination of shape functions w̄. The position error has a big
influence on the distribution of the contact forces. A small modelling error in position
leads to a large error in the contact forces. For a realistic distribution of the contact
forces, smooth local shape functions are necessary to describe the deformation of the
contact area. Then an ordinary RITZ-approach results in high eigenfrequencies that
lead to the same numerical problems as a discrete element by element model.

To avoid the high eigenfrequencies the method of hierarchical bases is used,
which represents finite functions with differently sized supports. So the whole belt is
discretised by a rough grid (Fig. 12a). B-Splines are used as shape functions. The
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Fig. 12. Hierarchical bases

contact areas are refined with additional splines (Fig. 12b) which do not change
the existing shape functions. In the borderline of the contact areas there are high
gradients of curvature w′′′, so more refinements are needed (Fig. 12c,d). Because
every base corresponds to a certain eigenfrequency, it is possible to trim the fre-
quency spectrum that is considered in the simulation results. If the eigenfrequency
of a shape function should be eliminated, the weighting is not calculated dynami-
cally but quasi-staticly (PT1). By this the state vector z = (q, q̇) is composed of the
position q = (qdyn,qPT1) and the velocity q̇ = q̇dyn.
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5.2 Longitudinal Dynamics

The longitudinal dynamics of the belt is fundamental for the power transmission.
Therefore only frequencies up to a certain limit (≈ 1kHz) have to be taken into
consideration. In almost the same manner as in Sec. 5.1 a dynamical and a quasi-
static approach are superposed. In this section the elements (index 0) as well as the
rings (index 1..n) are labelled by layers, to shorten the writing.

The tangential velocities vi of the elements and the rings are calculated by the
Continuity Equation. The equation is based on the line density ρi = (1 + εi)−1 that
is a function of the local strain εi(t, sR).

∂

∂t
(1 + εi)

−1 +
∂

∂sR

(
v

1 + εi

)
= 0 (25)

The local strain εi of the belt layers is calculated from the sum of the mean strain
ε̄i and a local deviation ∆εi. The mean strain ε̄i is defined by the proportion of the
present length of the layer and the length of the unstrained material. The present
length is equal to the length lB,i of the belt system in Eq. (13). The mean strain of
the elements ε̄0 and the rings ε̄i is given by

ε̄0 =
lB0

nb
− 1, ε̄i =

lBi

ki(l1 + 2π(i− 1)h)
− 1 , i = 1..n . (26)

Here nb is the sum of the thickness b of all elements and l1 is the ideal length of the
inner ring. In industrial manufacturing, the length of the rings contains a tolerance ki.
The local deviations ∆εi of the strain with respect to the mean values ε̄i is caused
by the local friction between the rings. It is approximated by a RITZ-approach in
Eq. (27) using linear shape functions, to get clear partition between separation and
compression of the elements. At this the closing condition has to be considered.

εi(sR, t) = ε̄i + w̄T (sR) qi(t) , qT
i (t)

l0∫
0

w̄(sR) dsR = 0 (27)

Although the closing condition can be treated as a constraint for the numerical in-
tegration (DAE), in this case it is possible to consider the closing condition in the
choice of the generalised coordinates qi in advance. This reduces the dimension
of qi by one and the constraints need not be checked separately (ODE). To elimi-
nate vibrations of single elements, the field of the deviations ∆εi(qi) is calculated
neglecting local acceleration. This leads to an ordinary differential equation of order
one.

Tq̇i = Hiqi + hi q ∈ IRn−1 (28)

The matrix T of characteristic time looses its band structure when the closing condi-
tion is considered. Since it is constant, it needs to be inverted only once. In addition, it
is equal for all layers. The matrix Hi represents the linearised interaction in a single
layer. In case of elements it includes the unilateral constraints, specified in Sec. 6.2.
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The vector hi contains the generalised friction forces. Here the friction forces acting
on the surface of the layer have to be generalised to the neutral line of the layer.
Details for this transformation are given in Sec. 6.3.

The local velocity vi is defined by Eqs. (25) and (27). For a constant loading the
local strain ε depends primarily on the path coordinate sR, while the influence of the
time coordinate t is low. So we assume the left term of Eq. (25) to be zero.

vi = C (1 + εi) → v̄i =
C

l0

l0∫
0

(1 + εi) dsR = C (1 + ε̄i) (29)

The constant C is computed by eliminating the closing condition. Then the local
velocity vi is given by

vi(t, sR) = v̄i(t)
1 + εi(t, sR)

1 + ε̄i(t)
. (30)

The mean velocity v̄i is computed in the equation of the linear momentum p in
tangential direction.

ṗi = lB,iµi ˙̄vi =
∫ lB,i

s=0

(
J i+1

i ft,i+1 − J i
ift,i

)
ds (31)

Here µi is the mass per length of the layer i and ft,i is the friction force between the
layer i − 1 and the layer i for an infinitesimal belt length ds. The friction force ft,j

acts on the surface j of the layer and has to be generalised to the neutral line Bi by
Jj

i . The details for the transformations are given in Sec. 6.3.
In addition to the local velocity vi the compression force P and the tension

forces Ti can simply be calculated from the local strain εi. The elements can only
transmit pressure forces P but no tension. The opposite is the case for the rings.

P (sR) =
{
EAε0 for ε0 < 0

0 for ε0 ≥ 0
, T (sR) =

{
0 for εi ≤ 0

EAεi for εj > 0
(32)

6 Modelling of the Contacts

The behaviour of the power transmission is primarily defined by the contact condi-
tions between the sheaves, the elements and the rings. Because of the high number of
contacts it is necessary to model only the important functionality of the contacts in
detail. Here state transitions and the chosen dimension of the transmitted forces are
important. If the state of a contact changes between closed and open, the unilateral
constraints have to be taken into consideration. A tangential relative velocity along
with a normal force generates a friction force in the contact plane. Depending on the
change of the relative velocity, one or two components of the friction force have to
be taken into account. Figure 13 shows the contact forces acting on an element. The
modelling is described in the following sections.



284 Bullinger, Funk, Pfeiffer

�	 �
��

�� ��

��

�	 ��

�� ��
��

���

��

�

�	 ��

��	 ��

Fig. 13. Forces acting on an element

6.1 Contact between the Pulley Sheaves and the Belt

The contact between the pulley sheaves and the belt is modelled by an unilateral nor-
mal force fP,n and and a two-dimensional friction force in the plane of the flanks. In
tangential direction it is labelled by fP,t, in radial direction by fP,r. The calculation
of the unilateral normal force fP,n and the friction forces is presented in this section.

Using the models described in Sec. 4.2, the tilting of the rigid sheaves consists
of the local bending δB of the shaft and the elastic deformation δ and the clearance
δS of the shaft-to-collar connection. The position of a contact point i is defined by
the coordinates (Pϕi, P ri) in a polar pulley system P . The distance, penetration g̃i

of rigid sheaves and a rigid element with the axial width ze, is calculated by

g̃i = ∆z0 + 2ri tan δ0 − ri (δx + δB,x + δS,x) sinϕi (33)

+ ri (δy + δB,y + δS,y) cosϕi − ze .

Next the geometrical value g̃i has to be separated into three parts. The first part is the
elastic deformation of the pulley sheaves, the second part is the axial strain resulting
from the compression of the elements and the last part is a positive distance gi of the
deformed bodies. Either the element i is in contact with the pulley sheave so that the
distance gi is zero and an axial force fax,i > 0 is transmitted or the deformed bodies
are separated gi > 0, so the contact force fax,i = 0 disappears. Algebraically this is
formulated by the complementarity

fax,i ≥ 0, gi ≥ 0, fax,i gi = 0 . (34)

As shown in Sec. 4.2 every contact force fax,i leads to a global deformation of the
sheave that is described by the flexibility coefficients wij . A negative value of g̃
is neither necessary nor sufficient to decide if a contact is open or closed. This is
illustrated in Fig. 14 using a cantilever beam. The contact on the right is open (gi >
0) in spite of the fact that g̃i is negative. The state of the contacts has to be identified
by solving all forces and deformations simultaneously. This leads to a linear system
of equations containing the flexibility coefficients wij and the axial stiffness ce of
the elements.
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g̃i =
∑

j

wijfax,j + c−1
e fax,i + gi (35)

The linear system of equations (35) has to be solved considering the unilateral con-
straints in Eq. (34). This results in a linear complementarity problem [6].

The contact force fax calculated above acts in axial direction. The axial force fax

has to be in equilibrium with all other forces in the cross section of the belt. As can
be seen in Fig. 13 the axial force fax, the normal ring force fR,n and the dynamic
force fω are equal to the normal and radial pulley forces fP,n, fP,r. Here the direc-
tion of the friction force fP,r influences the quantity of the axial and normal force.
Fig. 15 shows the polygon of forces for both directions of the friction force. On the
upper side the element slides into the pulley grove (ṙ < 0) and the friction force fP,r

attributes to the axial force fax. The other polygon shows an element with increas-
ing contact radius (ṙ > 0). Here the friction force fP,r works contrary to the axial
force fax.

The contact forces fP,n, fP,t, fP,r are evaluated in a suitable systemC that lies in
the flank of the element. The friction forces fP,t, fP,r are computed by COULOMB’s
friction law. Fig. 16 shows the contact forces in the system C. The direction of the
relative velocity dv is specified by the sliding angle γ with respect to the tangential
direction et. It is calculated by

γ =
{

arcsin dvr

dv for dvt > 0
π − arcsin dvr

dv for dvt < 0
. (36)

The absolute value of the friction force is transformed in a tangential and radial
component defined by the sliding angle γ. Here we assume no stick-slip effects,
because a disappearance of both, the tangential and the radial relative velocity is
infrequent.

fP,t = −fP,n µ cos γ = −fP,n µ
dvt

dv
(37)

fP,r = −fP,n µ sin γ = −fP,n µ
dvr

dv
(38)
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Fig. 14. Unilateral constraints
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Fig. 15. Polygon of forces in the cross section of the belt
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Fig. 16. Pulley contact forces in the system C

The contact force fP,n in normal direction is deduced from Fig. 15 using the friction
force defined in Eq. (38).

fP,n =
fax

cos δ0 − µ sin δ0 sin γ
(39)

Next the relative velocity dv is determined. The direction of the relative velocity,
the sliding angle γ respectively is necessary to assign the direction of the friction
force. Besides the contact system C, four additional coordinate systems are used for
the transformations. They are shown in Fig. 17. The reference system R and the belt
systemB0 have already been introduced in Sec. 5. For the pulleys an inertial system I
and a polar system P is used in addition. The relative velocity dv is calculated by the
difference between the local velocities of the pulley sheaves vP and the element vB .
It has to be transformed into the contact plane C of the element’s flank.

Cdv = CvB −C vP (40)

= ACBABR

⎛⎝⎛⎝ v0 (1 + wκ)
− (ẇ + v0w

′)
vax,1

⎞⎠− ARP

⎛⎝ω (ri + w)
0

vax,2

⎞⎠⎞⎠
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Fig. 17. Coordinate systems

Since the model of the belt is two-dimensional, the axial component in Eq. (40) is
not defined. On the other hand, it needs the relative velocity dv only in the case of
a closed contact. In this case the relative velocity in normal direction Cdvn is zero.
This constraint allows to calculate the unknown value vax. Note that there is only one
unknown value in Eq. (40), because the transformation ARP is a rotation around the
axial axis.

In order to compute the longitudinal dynamics, the contact force CfP , defined
by Eqs. (37), (38), (39) has to be transformed into the B-system by the transforma-
tion ABC . For the transversal dynamics a further transformation ARB to the refer-
ence system R is needed. And finally the excitation of the pulley model in Sec. 4.2 is
calculated in the initial system I . Therefore an additional transformation AIP APR

is used.

6.2 Contact between the Elements

The contact between two elements is modelled in one dimension, since there is no
relative velocity in radial and axial direction. This results from the construction of the

	��	
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� �	�

Fig. 18. Contact between the elements

elements shown in Fig. 18. The normal force P is unilateral and allows a separation
of the elements. Therefore a correlation of stress, force respectively and strain is
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used.

ε0(sR) = ε+(sR) − P (sR)
EA

(41)

The local strain of the elements ε0, calculated by Eq. (27) is split up into an elastic
strain, resulting from the compression force P and the gaps ε+ between the elements.
At this EA is the longitudinal stiffness of the elements. Similar to Eq. (34) either a
contact force P < 0 is transmitted or if it is zero the elements are separated and a
positive distance ε+ occurs.

−P (sR) ≥ 0, ε(sR)+ ≥ 0, P (s) ε+(sR) = 0 (42)

The information, if the contacts are open or closed is stored in a permutation matrix,
that is multiplied by the matrix Hi in Eq. (28) to switch on/off the interaction of
adjacent elements.

6.3 Contact of Rings

The contact between the elements and the innermost or outermost ring are calculated
in the same way as the contact between two adjacent rings. In this section the el-
ements (index 0) as well as the rings (index 1..n) are named layers, to shorten the
writing. We assume that there is no separation of the contacts. To get realistic rela-
tive motions between the layers their radial expansion has to be modelled accurately.
Fig. 19 shows the assembly of the rings in a finite section of the element. The rela-
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Fig. 19. Tangential velocities of rings

tive velocity dv is calculated by the difference of the local velocities of the layers’
contact surfaces. Here it is important to distinguish the neutral line (index i) and the
surface (index k) of a layer. For this reason a transformation

Jk
i =

∂vk

∂vi
(43)

is necessary. The relative velocity dvk is defined by the difference of velocities of
the inner surface of layer i = k and the outer surface of layer i = k − 1. In case of
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very high transmission velocities a contact between the outer ring n and the element
i = 0 may occur at the outlet of the pulley. The relative velocity becomes

dvn+1 = Jn+1
0 v0 − Jn+1

n vn (44)

dvk = Jk
k vk − Jk

k−1vk−1 , k = 1..n (45)

The transformations Jk
i depend on the radial displacement of the neutral line and the

surface in respect of the curvature κ of the belt systems Bi. In detail they are defined
by

J1
0 = (1 +∆rκ0), Jn+1

0 = (1 + (∆r + nh)κ0) (46)

Jk
k = (1 − 1

2
hκk), Jk+1

k = (1 +
1
2
hκk) , k = 1..n . (47)

The tangential force is calculated by continuous STRIBECK-friction laws depend-
ing on the relative velocity and the normal force. In Sec. 5.1 we assume the transver-
sal dynamics of the elements and rings to be coupled. Due to this constraint the
normal force is eliminated. Since the normal force is needed to quantify the friction
forces it is calculated analytically. For a convex curved belt section dϕ the normal
force fR,n decrease from inner to outer ring due to the ring tension T . It is approxi-
mated by

Bf
k+1
R,n =B fk

R,n +
(
m̄kv

2
k − Tk

)
dϕ , dϕ ≈ bκ0 . (48)

Here m̄k is the mass per length of the layer k and the angle dϕ is estimated by the
radian, the thickness of the element respectively, and the curvature κ0 of the pitch
line B0.

7 Simulation Results

This section shows results of numerical simulations using the model described above.
They are compared with published measurements if available. There are very few
publications presenting local measurements on metal V-belt CVT systems and there
is none that also specifies the exact geometry of the system. Thus the comparison of
measurements and results of simulations are effected only qualitatively.

Fist measurements of the Doshisha University of Kyoto in collaboration with
HondaR&D are used for validation. The measurements have been effected by micro
strain gauges that have been assembled in the elements. Even if the local measure-
ments presented in a series of papers [2][3][4] are only qualitative, they provide a
good insight in the belt mechanics.

Figure 20 compares the simulation results and the measurements for three differ-
ent torque ratios r, which gives the transmitted torque M with respect to the max-
imum transferable torque M∗ (s. Eq. 2). It is affected by varying the transmitted
torque M , while the thrust Qdn of the driven pulley is kept constant. The plots are
divided into four parts. The first specifies the areas of the driving pulley, the sec-
ond the span t1, the third the driven pulley and the last the span t2. Three forces
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are shown, on the left the compression force P , in the middle the tangential friction
force fP,t between the pulley sheaves and the element and on the right the tangen-
tial friction force fR,t between the element and the innermost ring (s. Fig. 13). The
comparison of all plots give good consistence.
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Fig. 20. Comparison with experiment (i = 1.0, torque ratio r = 0.26, 0.51, 0.77)

The elements enter the driving pulley being separated and uncompressed P = 0.
So the tangential forces fP,t and fR,t have to be in equilibrium to each other. At a
load depending position in the driving pulley the compression force P appears and
glows rapidly up to the exit of the pulley. This increases the tangential forces fP,t

and influences the ring friction fR,t by a jump in the velocity of the elements. In
the span t1 the compression force stays constant due to the ring friction is small and
there is no contact with the pulleys (fP,t = 0). In the driven pulley the compression
area continuous up to the exit. The torque ratios r used in Fig. 20 are rather low.
So the tangential slip is small. In this case the compression force P increases after
entering the driven pulley before it decreases to zero at the exit. This is affected
by the penetration of the belt into the pulley groove due to the elastic deformation.
The local contact radius decreases passing through the driven pulley. This can be
seen by the transversal position in Fig. 21. The velocity of the pulley in the contact
becomes slower with decreasing radius and the tangential relative velocity increases.
The sliding angle (s. Eq. 36) decreases starting with an angle above π

2 , which means
the pulley drives the belt to an angle below π

2 , so the belt drives the pulley. Due to
this the elements are distorted around the area where the tangential velocity changes
sign ( π

2 ). Fig. 20 shows results for a speed ratio i = 1. Here the inversion of the
compression force P proceeds around the change of sign of the transmitted torque.
At no-load the compression force disappear in both spans. For a speed ratio i �=
1 we observe a kinematic phenomenon that is described in Sec. 2. If no torque is
transmitted in case of overdrive (s. Fig. 22, left) a compression force Pt1 occurs
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Fig. 21. Transversal position and sliding angle (i = 1.0, r = 0, 0.26, 0.51, 0.77)

in the span t1 to equalise the difference of ring tension. In underdrive conditions
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Fig. 22. Compression force P varying the torque ratio r

(s. Fig. 22, right) the difference of ring tension is contrary, so it needs a compression
force Pt2 in the span t2. For both speed ratios the increase of the compression forceP
after entering the driven pulley disappears for high torque ratios r due to a rise of the
tangential slip, so the sliding angle is below π

2 .
Finally the normal contact force fP,n is presented. Measurements [5] have been

done by IDE/TANAKA using an ultrasonic technique. Figure 23 compares the simu-
lation results and the measurements for different torque ratios r. If the torque ratio r
is negative, this indicates a reversal of the power transmission e.g. dynamic braking.
The plots show the contact force fP,n in the pulley that drives the belt if r > 0. Due
to the exact geometry is unknown, it is possible to compare the measurements to
the simulation results only qualitatively. If no torque is transmitted and the rotation
speed is zero (not shown in Fig. 23) the distribution of the normal force between
the inlet and the outlet is symmetrically. Because the normal force acts on only one
half of the pulley sheave there are peaks at the inlet and the outlet due to neighbour
support. For a rotating pulley the friction force fP,r decreases the normal force fP,n

while sliding into the pulley groove and increases the normal force fP,n sliding to a
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Fig. 23. Normal force fP,n in the driving pulley (i = 2.16, r = −0.63, 0.0, 0.63)

bigger radius (s. Fig. 15). This decreases the peak at the inlet and increases the peak
at the outlet. Further the force distribution is influenced by the tangential span force.
The normal force fP,n is proportional to the sum of ring tension T and compression
force P (s. Fig. 15 and Eq. 48).

fP,n ≈ C1

(∑
T − P

)
dϕ+ C2 (49)

In case of r > 0 the normal force fP,n increases at the inlet and decreases at the
outlet. In the case of r < 0 it is contrary. Since the tangential force in the case of
r < 0 and the rotation have the same influence on the normal force the left and
middle plot in Fig. 23 are similar. In the case of r > 0 the influences erasure so the
right plot in Fig. 23 appears in a different way.

8 Conclusion

To describe the behaviour of the power transmission of a metal pushing V-belt CVT
it is important to model the deflection of the pulleys and the belt. Furthermore all
relevant contact properties e.g. unilateral constraints have to be considered to obtain
accurate results. To avoid numerical problems the frequency spectrum is separated
by a limit-frequence (≈ 1kHz). The frequencies that are of technical relevance are
calculated dynamicly. Frequencies above the limit have to be eliminated by a quasi-
static approach. By this we get accurate results together with reasonable simulation
times.

The presented multibody model allows to calculate the distribution of all contact
forces. In addition it permits to evaluate necessary pulley thrust, the maximum trans-
mittable torque and the efficiency. The comparisons between the simulation results
and the measurements that can be found in the public literature give good consis-
tence.
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In the first stages of the design of vehicle structures for crashworthiness, multicri-

teria optimization tools can be very useful in order to evaluate how conflicting re-

quirements compete. However, crashworthiness problems are by nature time con-

suming, if the standard non-linear finite elements simulation tools are used. 

Simplified models based on multibody dynamics can be developed and used for 

crashworthiness simulations as proposed in this work. With these simplified mod-

els, the computational time can be drastically reduced and evolutionary or genetic 

algorithms, that require large numbers of simulations, can be used, as proposed.  

The vehicle or structures are described as a set of rigid or flexible bodies con-

nected by non-linear springs. Different models are presented hereunder dealing 

with different needs or stages of the projects of railway vehicles, namely, 1D mod-

els that are mass-spring models, without kinematic constraints developed for the 

simulation of train sets and 2D rigid-flexible bodies developed for the study of 

structures and energy absorption devices with planar motion. These models in-

clude a Hertz contact-impact model (2D) for the simulation of the contact between 

the bodies and barriers and Coulomb friction for the wheel-rail contact. These two 

simulation tools are linked with evolutionary optimization algorithms to the mul-

ticriteria design of train structures. The design methodology developed is general 

and allows evaluating different conflicting design functions together, such as ac-

celerations or measures of the acceleration, deformations, energies, masses or ve-

locities. Also and in particular for the simulation of collisions of train sets differ-

ent scenarios can be considered, which corresponds to the evaluation of different 

models in a single iteration. Three examples are presented in order to illustrate the 

design methodology developed herein. A single criteria optimization problem of 

the setup of an experimental train crash test; a multicriteria optimization problem 

of the energy absorption devices of a train in a multi-scenario collision with 1D 

models; and the multicriteria optimization of an energy absorption structure with a 

2D flexible model.  
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1 Introduction 

Vehicle crashworthiness is a complex problem and requires, in general, large 

computer resources. The use of finite elements programs such as LS-DYNA or 

PAM-CRASH leads to several drawbacks: the time necessary to develop the mod-

els is large and, in general, these programs do not include optimization proce-

dures. In the first stages of the design project, when the characteristics of the struc-

tures and energy absorption devices are not known in detail, simplified models 

that allow simulation and optimization can be used with success. Mass-spring 

models have been used for the crash simulation of automotive vehicles [1,2,3], 

and for the crash simulation of train sets [4]. Models based on 1D, 2D and 3D 

multibody dynamics formulations, with rigid and flexible bodies, have been used 

successfully in the crash simulation of train structures. These models have been 

validated with experimental results [5,6,7,8,9], and train designers use some of 

them industrially. Multibody dynamics models have shown to be suitable to simu-

late the behavior of the structures, energy absorption devices, and vehicles in 

crashworthiness.  

The increasing demands in passive safety of trains are putting new challenges 

in the design methodologies. The designers nowadays, require not only simulation 

tools with high levels of complexity, based on nonlinear finite element models, but 

also simplified simulation tools with optimization procedures that can be used ef-

ficiently in the earlier design stages. These simplified models based in multibody 

dynamics formulations, have been integrated in design methodologies with deter-

ministic algorithms to evaluate the optimal characteristics of energy absorption 

devices and structures in crashworthiness in single design function problems 

[6,7,9]. However, in the first stages of the design process, the designer wants to 

know not only a solution, but also the spread of possible solutions and understand 

the behavior of conflicting functions. More powerful multicriteria design tools can 

nowadays, replace single objective functions well accepted in the past. 

Issues related with sensitivities are critical in the selection of the optimization 

algorithms. In general, deterministic algorithms, that use sensitivities information, 

are more efficient than zero-order algorithms i.e. optimization algorithms that do 

not use sensitivity information. The development of analytical sensitivities for 

multibody systems such as sensitivities obtained by the adjoint method [10] or by 

direct differentiation [11]  represents a difficult task, that in the last years has be-

came easier with the development of automatic differentiation tools such as 

ADIFOR [12]. It is well known that numerical sensitivities may exhibit inaccura-

cies, especially in non-linear problems. Recent progress in the area of genetic and 

evolutionary algorithms [13] made possible their application, in many fields, 

namely in structural dynamics and in multibody dynamics problems [14,15]. 

Crashworthiness problems are non-linear in nature and the system response can 

exhibit discontinuities or noise. The deterministic algorithms that have proved to 

be efficient in structural optimization can however be stacked in local minima that 

can arise in crashworthiness problems. Evolutionary algorithms can overcome this 

local minima problem but require efficient simulation tools in order that the Pareto 
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Fronts can be obtained in a reasonable time. When evolutionary algorithms are 

compared with deterministic algorithms that use analytical or numerical sensitivi-

ties the major advantages and drawback of each type of algorithm is as follows: 

The number of simulations required by the evolutionary algorithms is much larger 

than with deterministic algorithms; Evolutionary algorithms are better for func-

tions that have local minima in the system response. Deterministic algorithms can 

be stacked in the local minima, because each new solution is evaluated, in general, 

from the last one. Evolutionary algorithms work with a set of solutions and if the 

population and the number of generations are large enough a global solution can 

be found; the convergence of the deterministic algorithms depends on the initial 

solution provided. With evolutionary algorithms, no initial guess for the design 

function is required. In conclusion, evolutionary algorithms in single objective op-

timization are recommended only, for problems not computationally expensive 

and if the objective functions have local minima or noise. For multicriteria optimi-

zation and when the different conflicting functions are not combined in one single 

design function, evolutionary algorithms are very attractive, however they require 

a large number of simulations, which leads these algorithms prohibitive for prob-

lem with large simulation times.  

In the past, evolutionary or genetic algorithms were considered not suitable for 

crashworthiness optimization, but nowadays with accurate simplified models, with 

computers that are more powerful and with evolutionary algorithms more effi-

cient, it is possible now to perform crashworthiness optimization in a few hours in 

a modern personal computer. The great advantage of the use of simplified models 

is that the simulation times are quite small and then these models can be used to-

gether with evolutionary algorithms in the design process. The Pareto fronts are 

very important in the first stages of the design process when the trade-offs are to 

be decided. From the Pareto optimal front, and using higher order information, the 

designers can pick the best compromising solution between the different conflict-

ing objectives. In crashworthiness problems, maximal accelerations or a measure 

of the accelerations and deformations are conflicting functions that can be used in 

multicriteria optimization. Accident fatalities are mainly caused, by large accelera-

tions, normally observed when structures are too stiff, or loss of survival space 

when excessive structural deformation is observed [7]. Therefore, a trade-off be-

tween acceleration levels and deformations is necessary in order to protect effi-

ciently the vehicle passengers. Other conflicting design functions can be used in 

train crashworthiness such as, the minimization of the mass or the maximization 

of the energy absorbed. In these cases, the design variables are associated with the 

relevant structural characteristics of the energy absorption devices and structures.  

In this work, the evolutionary optimization algorithm NSGA II [16] is selected 

to be integrated in the design methodology, dealing with multicriteria constrained 

optimization problems.  
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2 Dynamic Analysis of Multibody Systems 

The simplified simulation models used in this work are based on the dynamic

analysis of multibody systems. The dynamic equations for a 2D rigid-flexible sys-

tem are [7]

r

f

r f

T

rr rf r r r

T

fr ff f f f ff f ff f

0

q

q

q q

M M q f g

M M q f g K q C q (1)

where Mrr contains the rigid body inertia Mff  and Kff are the standard finite ele-

ment matrices, Mrf  is the inertia coupling between rigid (qr) and flexible coordi-

nates (qf), is the Lagrange multiplier vector, fr and ff  are the generalized external

forces, gr and gf are the quadratic forces including gyroscopic, Coriolis forces and 

other terms associated with kinetic energy. The terms qr

T
, qf

T
 are the jacobians

of the kinematic constraints. These formulations are developed using a moving

frame approach to describe the kinematics of the deformable bodies. The large

rigid motion is described using Cartesian coordinates and the flexibility is intro-

duced using the finite element method. To reduce the number of elastic degrees of

freedom, the component mode synthesis is used. The mean axis condition method

is applied to the reference conditions to reduce the dynamic coupling between

rigid and flexible coordinates. The system of equations (1) is transformed using

the following coordinate transformation from the modal coordinates to the physi-

cal elastic coordinates

f f
q U p (2)

where U is the modal transformation matrix whose columns are the nm low-

frequency eigenvectors and pfis the vector of modal coordinates. The equations of

motion (1) are now written in terms of the modal coordinates, as 

r

f

r f

T

rr rf r r r

T

fr ff f f f ff f ff f

q

p

q p

M M q f g

M M p f g K p C p

0

(3)

The transformations from nodal to modal coordinates can be found in [17].  Equa-

tion (3) with the initial conditions

r r f f r r f

0 0 0 0 0 0 0 0
,(t )=  , (t )=  , (t )= (t )=q q p p q q p p

f
(4)

can be integrated with respect to time, in order to obtain all the state variables of 

the system, i. e. positions, velocities, accelerations and Lagrange multipliers.

For the simulation of train collisions, 1D rigid body models can be used. In this

case, Equation (1) is simplified as

M q f (5)
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where M is the mass matrix containing the body lumped masses, q  the accelera-

tion vector and f the forces vector. The differential equations (5) or the algebraic-

differential equations (3) can be solved for the determination of the accelerations

(1D) or the accelerations and Lagrange multipliers vector (2D). Then the accelera-

tions are integrated with respect to time in order to obtain velocities and positions. 

A variable order, variable step size algorithm has been used.

2.1 Plastic Deformations

The adequate modeling of the plastic deformations at the energy absorption de-

vices located at the extremities of the cars and crashworthy structures is crucial to 

simulate accurately crashworthiness with multibody models. Two types of plastic

deformations are modeled, axial and bending. The axial plastic deformations are

modeled as non-linear actuators coupled with translational joints or in 1D without

any kinematic joints. The energy absorption devices such as, couplers, honeycomb

structures and the end-structure are represented by non-linear actuators. These ac-

tuators take into account the energy absorption and loading-unloading effects. A

typical force-displacement curve and the location of the energy absorption devices

are shown in Figure 1.

f

K

K

Unloading

e
n

Coupler

Non-Structural Devices

Structural
Devices

Structure Non-Structural Energy
Absorption Devices

Coupler

Fig. 1. Typical force-displacement curve and location of the energy absorption devices in a

train extremity

A detailed force-displacement curve is indicated in Figure 2. Basically each one

of the energy absorption devices is represent by two straight line segments repre-

senting the elastic and plastic behaviour, where di is the crushing displacement, fi

is the plastic force level and ki is the elastic stiffness.

During the impact, four situations can arise: Elastic loading, plastic loading, 

elastic unloading and plastic unloading. Let us define d as the current crushing

displacement and d(t- t) as the previous crushing displacement. The crushing dis-

placement is calculated from the position of the connected lumped masses. By

convention, positive displacements correspond to crushing, d >0 is compression

loading and d<0 is traction. In addition, positive forces correspond to compressive

forces. For traction phases, only an elastic stiffness equal to the compression elas-

tic stiffness and a traction force (fT) is defined. Unloading may start at a point
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(fu,du). For the compression phase, the number of force levels to be considered de-

pends on the complexity of the end extremity of the train. In general, three plastic

levels are used to represent the global crashworthiness behavior, giving a good

approach for the deformations and energies absorbed. However, in these models,

the number of plastic levels can be increased in order to improve the accuracy of 

the accelerations, but with only a few stages, a reasonable idea of the sustained ac-

celeration levels is achieved. During the simulation, three conditions are verified:

1) EPC: Elastic-Plastic Condition

2) CTC: Compression-Traction Condition

3) LUC: Loading-Unloading Condition

These 3 conditions are stated as 

1 if d >0 (Compression)
CTC

0 if d <0 (Traction)

(i-1)i i

(i-1) (i-1)i

1 if d < d < d (Elastic)
EPC

0 if d < d < d  (Plastic)

1 if d > d(t- t) (Loading in compression phase)
LUC

0  if d < d(t- t)  (Unloading in compression phase)

Structural unloading follows a path parallel to the elastic slope. When a new

loading occurs after an unloading, the plastic deformation restarts from the last 

plastic point (fu,du) of the original curve. In each time step, the displacements, the

forces and the current segment of the curve are stored. So in the next time step the 

new location and the determination of the current situation is verified and accord-

ing to the current situation the forces are calculated. The forces for each situation 

are given by

T

1 T 1

1

( 1) ( 1) 1

f  (if EPC=1 and LUC=1 and CTC=0)

k (if EPC=0 and d < <d )

f  (if EPC=1 and LUC=1 and CTC=1 and d )

f k ( d ) (if EPC=0 and CTC=1 and d )

f -k ((du )) (if EPC=1 and LUC=0 and CTC=

i

i i i i

i i

d d

f d

d d

d
1

1 and d )d

(6)

where ki is the stiffness of the elastic slope and fi is the plastic level for the i ele-

ment of the curve that represents the last stage of the curve reached. Because a

predictor-corrector integration algorithm is used, a computational procedure to 

avoid misunderstands of the unloading phenomena during the corrector phase, as

been implemented.

The force displacement curves are obtained from, experimental tests, finite ele-

ments models or known characteristics of the standard devices. The detailed curve

obtained from the non-linear finite element analysis, is represented by a stepped

curve representing in the least squares sense the original curve.
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Fig. 2. Detailed force-displacement curve for the energy absorption elements

For the bending plastic deformations, the plastic hinge concept is used with

revolute joints and generalized spring elements, to represent the constitutive char-

acteristics of localized bending plastic deformation of beams as shown in Figure 3.

Fig. 3. Plastic Hinge concept

The revolute joint must be simultaneously perpendicular to the neutral axis of 

the beam and to the plastic hinge bending plane. From Figure 3 the following rela-

tionship can be written 

i j

ij i j

k k
= + - - (7)

which shows the dependency of the plastic hinge angle on the rigid body orienta-

tion positions
i

and
j

and on the elastic rotations of body i and body j, ki and

kj at the attachment node k. The angle values are directly obtained as relative co-

ordinates from the integration process and correspond to the relative degree of

freedom
ij

 of the revolute joint under consideration. The bending moments are 

calculated in a similar form as in Equation (7). 
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2.2 1D Models

For the collision simulation of train sets, each car is modeled as a series of lumped

masses, connected by actuators that represent the different energy absorption de-

vices. The typical force-displacement curve of a car end extremity is shown in Fig-

ure 1. Using these simulation models, a collision between two trains or a train and a 

truck can be performed in a few seconds. These models include braking forces re-

sulting from the application of Coulomb’s friction law for the wheel-rail contact as

( )    for = 0

( )  for  0

T N T

T
T N

t

f s f v

v
f s f v

v
T

(8)

where vt is the tangential velocity, (s) is the coefficient of friction and fN and fT

are the normal and tangential forces, respectively.

2.3 2D Models

With 2D tools, the models are more detailed and have been developed and used

for simulation and design of the structures and energy absorption devices. In addi-

tion to the overall behavior of the train calculated by 1D rigid models, 2D flexible

models can provide accelerations that are more accurate. 2D models can be used

for the design of vehicle structures or other energy absorption structures when the

deformation occurs in a plane. In the 2D models a proportional damping matrix

based on the Rayleigh model is considered as

C
ff
 = K

ff
 + M

ff
(9)

where the constants  and  are calculated from the vibration frequencies of the

structure, and is limited by . The structural damping is important in order to

have accurate acceleration results [5]. Also for the contact between structural

members and barriers a Hertz contact model that takes into account the energy

dissipation is included, as 

2
3(1 )

1
4

n e
f K (10)

where  is the penetration,  is the initial velocity of penetration, e is the coeffi-

cient of restitution, n is a constant typically 2/3 and K is a constant stiffness coef-

ficient that depends on the material and geometrical characteristics of the contact 

surfaces, that in the case of flat surfaces is given by
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2 2

2

1 1

i j

i j

ab
K

- -
m

E E

(11)

where are the Poisson’s ratio and Young Modulus associated to each sur-

face and a and b are the dimensions of the smallest contact surface.

and
i Ei

3 Multicriteria Optimization Problem 

A general multi-objective or multicriteria optimization problem has a number ndo

of competing design functions f(b) that are to be minimized or maximized and a

number ndc of inequality design constraints g(b) and nedc equality constraints 

h(b) that any feasible solution must satisfy. The design functions and design con-

straints are a function of the vector of design variables b. Each design variable has

a lower bound b
L
 and an upper bound b

U
. In the particular situation of single crite-

ria optimization, the parameter ndo is set to 1. The general objective optimization

problem can be stated as

Minimize/Maximize f ( ) =1,i i ndob (12)

Subject to ( ) 0 =1,jg j ndcb (13)

( )=0 =1,kh k nb edc (14)

L U
 =1,l l lb b b l nb (15)

With the evolutionary algorithm NSGA-II [16] all the design constraints should

be “greater than” and all the design functions should be minimized. To fulfill this 

condition the duality principle is used so that 

maximize f(b)=minimize –f(b) (16)

The main idea in this work is to solve multicriteria problems with several case 

models. A model can be a different multibody system or the same multibody sys-

tem simulated with different initial conditions, such as, for example different col-

lision scenarios. The multicriteria multi-model flowchart is indicated in Figure 4.

The design methodology for evolutionary multicriteria optimization of multi-

body systems has been developed in a general form allowing any design function

and design constraint related with the relevant characteristics of the system. In the

particular case of the train crashworthiness problem the possible design functions

are the maximal accelerations or a measure of the accelerations, deformations, en-

ergies absorbed, masses and impact velocities. The possible design parameters are

the characteristics of the force-displacement curves or in general any geometric or 

material property of the energy absorption devices or structures. The multicriteria
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design methodology for train crashworthiness is applied in two different simula-

tion codes based on multibody dynamics formulations. The code Crash1d for the 

simulation of train set collisions and the code Moms2D for the simulation of any 

structure or energy absorption device for crashworthiness when the deformation 

occurs in a plane have been developed. 

The design methodology as presented in Figure 4 starts from an initial popula-

tion that is selected randomly. This initial population (the size is specified by the 

user) corresponds to a random selection of the values for the design variables. 

However this initial population can contain predefined cases which already proven 

to be reasonable solutions, but the genetic algorithm used herein is an elitist algo-

rithm where the best solutions always are passed to the next generation and this 

can lead to a Pareto Front with a reduced spread. Once the population has been 

specified, then the objective functions and design constraints are evaluated. For 

railway vehicles crashworthiness it is sometimes necessary to consider different 

collision scenarios that will be explained later. Therefore, in this case the evalua-

tion of a member of the population (which corresponds to a specific set of design 

variables) can correspond to several simulations with different models. These dif-

ferent collision scenarios are independent and can be simulated using parallel 

processing. In the next step, the fitness is calculated. The fitness of a solution is a 

measure of its quality, or in general case and for non-constrained problems, the 

value of the objective function. However, for constrained optimization problems, 

as in the present case, the genetic algorithm uses a generalized fitness measure in-

volving the value if the design function and a penalty term associated to the con-

straint violation. Therefore, when two solutions are compared in the selection 

process, a feasible solution is always preferred to an unfeasible one, leading to the 

rejection of solutions involving design constraint violations.  

After the fitness is calculated, a termination condition is checked. In the case of 

single or weighted design functions, this condition is associated with a convergence 

tolerance. However, in the general case were different design functions are evaluated 

independently, the process will be halted when a predefined number of generations 

is obtained. Once the termination condition is not verified, the typical process of 

evolution of the genetic algorithm starts and the following steps are performed: 

1) Selection. The population selection is based on the principle of “survival 

of the fittest”. The tournament method is used in the present algorithm. 

Each solution participates in two tournaments. The fittest solution will 

collect two victories and the worst two defeats. According the number of 

victories each solution will have 0, 1 or 2 and will serve as progenitors for 

the next generations.  

2) Crossover. The crossover is the process of creating offspring from parents 

and is illustrated in Figure 5. Two pairs of solutions are selected based on 

a crossover probability specified and then two new offsprings are created 

by exchanging chromosomes from the parents. 

3) Mutation. Is the process of exchanging with a specified probability select 

bits in the chromosome to create a new individual in the population.  

Then the optimization process continues until the stopping condition is fulfilled.
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Generation=0

Evaluate objective functions and design constraints

Model 1 Model n

Assign fitness

Generate initial

population

(Randomly)

Stop

Cond ?

Yes

Selection

Crossover

Mutation

Gen=Gen+1

No

Model 2 …

Fig. 4. Flowchart of the design methodology for multicriteria optimization of multibody

systems

 010|00 01010   (8,10) 010|10 00110 (10,6)
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010|00 01010 010|10 01010

crossover

mutation

Fig. 5. Crossover and mutation operators for the genetic algorithm

The solution of Multi Objective Optimization Problem (12-15) can be classified 

in three categories [18]: 1) priori methods; 2) posteriori methods; 3) interactive

methods. Traditionally in multicriteria optimization all, the design functions are

combined in a unique weighted design function, which is called the priori method.

However, these weights are very difficult to specify in the first stages of the de-

sign process, especially when conflicting design functions are considered. In the

design methodology presented herein, the weights can be specified and two or

more design functions are combined in a single objective function. Nevertheless,
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the main purpose here is to show the advantages of the evaluation of the Pareto

Front, or ideally the Optimal Pareto Front. From the Pareto front, the designer ob-

tains a set of solutions and using high order information then a specific solution 

can be selected. This is called the posteriori method. The determination of the

Pareto Front is one of the greatest advantages of the genetic or evolutionary algo-

rithms. Due to the population concept, in each iteration several solutions are

evaluated simultaneously and if the genetic algorithm’ parameters are chosen ade-

quately, a Pareto Front with a good spread of solutions is obtained.

4 Design Examples 

To illustrate the multicriteria evolutionary optimization methodology developed

for design for crashworthiness, three examples are presented. These examples il-

lustrate the applicability of the current methodologies, from single criteria prob-

lems that can be used for the specification of the conditions of experimental crash-

tests or even to the determination of the optimal characteristics of energy absorp-

tion devices and structures, to multicriteria problems simulated with 1D rigid

models or 2D flexible models. The characteristics of the low-energy absorption 

devices to be tested are presented in Figure 6.

4.1 Single-Objective Optimization of a Train Crash Test Setup

In this example, the solution obtained with the presented methodology is compared

with the solution obtained with deterministic algorithms [9]. This is a single design 

function problem, and the use of both types of algorithms is discussed. This example

deals with a full-scale crash test carried out in framework of the European Project 

Safetrain [19]. In this experimental test (Figure 7), a wagon B collides with two

wagons (A and C) (Figure 8) connected by a Low-Energy device (LE), which

needed to be tested and validated. In the front of wagon C, a honeycomb structure 

(Figure 7), simulating a High-Energy (HE), is located. The characteristics of the

low-energy absorption devices to be tested are presented in Figure 6. 
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Fig. 6. Characteristics of the Low-Energy absorption devices
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Fig. 7. Experimental test: Physical set-up and honeycomb structure

The optimization problem consists in evaluate the definition of the experimen-

tal test (masses, velocity of the impact wagon and characteristics of the High En-

ergy absorption device), in order to absorb 1.4 MJ in the LE extremity. Without

design tools the determination of the experimental test conditions, is very difficult,

due to the strong interaction of the different physical parameters. In Table 1, the 

optimization problem is presented.

Fig. 8. Experimental test: Collision scenario and conditions 

The specified design constraints and the limits for the design variables are re-

lated with structural and manufacturing constraints of the experimental set-up. The

optimization results obtained with the presented methodology are compared with

the results obtained with the quadratic programming deterministic algorithm [9].

The results for the Genetic algorithm (GA) have been obtained with a population

of 18, 35 generations, crossover index of 60, mutation index of 20, crossover

probability of 0.9 and mutation probability of 0.2.

One of the problems related with genetic algorithms use, is the limits imposed in 

the design variables. Zero value limits for the design variables are quite acceptable

in deterministic algorithms, but can lead to errors in the simulation code or even 

very large computational times. To avoid this, the limits of the design variables have 

been changed and are presented between parentheses in Table 2. The results ob-

tained are quite similar. The results presented for the masses for the deterministic al-

gorithm are truncated due to practical reasons related with the execution of the test.

Table 1. Optimization problem for the determination of the experimental test set-up

Design Function
0

= (LE-1.4)
2

Design Constraints 
1

= HE<3MJ

Design Variables b = [MB, VB, MC, MA, L1]
T

With: MB: Mass of the impact wagon (Car B), VB: Velocity of the impact wagon, MA and 

MC: Mass of the wagons (Car A and C), L1: Force level for the Honeycomb.

LE

VB = ?MC=?MA=?
L1=?  MB=?
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Table 2. Optimization results for the determination of the experimental test set

MB

(Ton.)

MC

(Ton.)

MA

(Ton.)

VB

(km/h)

L1 (KN)
1

HE

(MJ)

0
LE

(MJ)

Lower Limits 30 30 30 0 (10) 0 (1000) - -

Upper Limits 70 50 60 72 3000 - -

Optimal DA [9] 70 30 59.5 53.7 3000 3 1.41

Optimal GA 69.6 30.1 60.0 53.4 2999.4 2.98 1.41

4.2 Multicriteria Optimization of the Energy Absorption Devices

This example describes a typical multicriteria problem that arises in the design of 

the energy absorption devices located in the front of the trains (High Energy de-

vices) and between cars (Low Energy devices) as indicated in Figure 9.
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Fig. 9. Characteristics and data of the front-front collision between two 3-car trains

These devices are optimized for a 3-car train with masses: 50 (front car), 45 

(middle car) and 40 ton (rear car), in a head-on train collision for a relative colli-

sion speed of 55 km/h. The accelerations in two other collision scenarios, a colli-

sion with a 30 ton truck at 90 km/h and a collision against a line end at 30 km/h

are also included as design constraints. The three different collision scenarios con-

sidered are schematically represented in Figure 10.

1 2 31 2 31 2 31 2 3

1 2 31 2 3

1 2 31 2 3

Fig. 10. Collision scenarios for multicriteria optimization

The conflicting design functions selected are the overall deformation in the

train and the sum of the sustained accelerations along the train. The design vari-
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ables are the plastic levels of the energy absorption devices located in the front of 

the cars (indicated by arrows in Figure 9). Each one of the energy absorption de-

vices (HE and LE) is represented by 3 design variables corresponding to the dif-

ferent force levels. The design constraints are related with the maximal accelera-

tions in each one of the cars and with the difference between consecutive plastic

levels. The optimization problem is summarized in Table 3. This problem has 2

design functions, 16 design constraints, and 6 design variables. The Pareto front

for a population size of 70 (meaning 70 independent simulations each one corre-

sponding to a different set of design variables) and 30 generations (meaning 30 it-

erations) is shown in Figure 11. The Pareto front has been obtained in about 8

hours in a PC 1.4 GHz.
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Fig. 11. Pareto front for the 3-car train set in a set of collision scenarios

The results in Figure 11 show that, when the sum of the accelerations in the

cars decrease the sum of the deformations increase. Each point in the curve corre-

sponds to specific characteristics of the energy absorption devices. The accelera-

tions levels are one of the most important parameters to be considered in the pro-

ject, because they are directly related with vehicle occupant injuries. On the other

hand lower deformation in cars means more space for the passenger’s compart-

ment. Once the designer selects a relative weight for each design function, the cor-

respondent force-deformation curve is selected. A weighted design can then be op-

timized as a single criteria design problem or from the optimal values for the

plastic levels, the structures and energy absorption devices can then be designed

using detailed models, such as finite element models.  In the case of 1D models

and for this type of problems it was found that is better to have a larger population

instead of a large number of generations. It can be seen in Figure 11, that with 20 

generations, the designer of the structures can have a reasonable idea of the Pareto

front.
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Table 3. Multiobjective optimization problem of the Energy Absorption Devices in a train

Design Functions

cars cars
n n

i

i=1 i=1

min acc  ;  min defi

Design Constraints 
i cars

acc <5g i=1, ..., n ;

1

500
i ixe xeL L KN

Design Variables 
1 2 3 1 2 3

{ , , }; { , , }Le Le Le He He HeL L L L L L

With: - Total number of cars; - Maximal acceleration level in car i;
cars

n acci

Defi  - Maximal allowed deformation in interface i;

1 2
, ,

3LE LE LEL L L - Low-Energy plastic limits;
1 2
, ,

3HE HE HEL L L - High-energy plastic limits.

4.3 Multi-Objective Optimization of a S-Shape Beam for Crashworthiness

In this example, an energy absorption structure, usually known as S-Shape beam, is

present. The simulation setup and configuration of the S-shape beam are presented

in Figure 12. The mass of the impact car is 1500 kg and the velocity of impact 50 

km/h. Due to the symmetry only half structure has been considered in the simula-

tion. The characteristics of the structure are presented in In this study and for the

multi-optimization optimization several conflicting design functions, as follows,

can be considered and analyzed.

Table 4. Characteristics of the S-Shape Beam

Material A36 Steel

Section of the beams Hollow Square

Total height of the structure 0.879 m

Length of bodies type A 0.2635 m

Length of bodies type B 0.404 m

Angle between bodies type A and B 30º

Minimization of the mass;

Minimization of the VCSI (Vehicle Crash Severity Index);

Maximization of the energy absorbed;

Minimization of the deformation.

. The S-Shape beam has been divided in three flexible bodies (2 bodies’ type A and

one body type B as indicated in Figure 12). Each node of these flexible bodies is 

represented with 5 nodes and 4 beam elements. The first four vibration modes have

been considered. The model has 4 plastic hinges, located in the connections between

the bodies of the S-Shape beam and two additional plastic hinges, one connecting

the beam and a plate that impact the rigid wall and the other connecting the impact

car. This model has been already studied with other characteristics and the results

compared with experimental results [5]. The simulation takes about one minute in a

PC 2.0 GHz.
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Fig. 12. Simulation setup for the S-Shape beam

In this study and for the multi-optimization optimization several conflicting de-

sign functions, as follows, can be considered and analyzed.

Table 4. Characteristics of the S-Shape Beam

Material A36 Steel

Section of the beams Hollow Square

Total height of the structure 0.879 m

Length of bodies type A 0.2635 m

Length of bodies type B 0.404 m

Angle between bodies type A and B 30º

Minimization of the mass;

Minimization of the VCSI (Vehicle Crash Severity Index);

Maximization of the energy absorbed;

Minimization of the deformation.

These four functions can be combined two by two forming a set of 6 multicriteria

optimization problems. This combination in some cases seems not to be conflict-

ing, but the maximal deformation of the structure is limited, the overlapping of the

bodies is not allowed, and each geometric part of the beam structure is considered

as a design variable, a Pareto Front can be obtained for each case. As a first exam-

ple, the minimization of the mass and the minimization of the VCSI are consid-

ered as design functions. Three design constraints related with the deformation of

the structure have been specified. These design constraints that correspond to the

overlapping and penetration of the bodies can be specified in the simulation with

contact models, but the contact-impact between bodies drastically increases the

simulation time and high acceleration peaks occurs. These design constraints are

illustrated in Figure 13.



312   João P. Dias and Manuel S. Pereira

6 2
y y

4 5
y y

6 5
0.3y y m

Fig. 13. Geometric design constraints for the S-Shape Beam

This design problem, which is summarized in Table 5, has 2 design functions, 3

design constraints, and 3 design variables. The beams have square hollow cross

sections and the width (H) for each beam is considered as a design variable. A

constant ratio H/t=6 is considered. The plasticity model corresponds to an elasto-

plastic behavior where the plastic moment and the plastic angle are given by

3

y

19

54
PM H (17)

L

3EI

P
P

M
(18)

where  is the yielding stress (300 MPa), “L” is the length of the corresponding

beam, “E” the Young Modulus (Steel=219 GPa) and “I” the moment of inertia

(calculated from “H”). Also because the beams’ width is changed during the opti-

mization process, all the simulation parameters dependent on the geometry are 

automatically updated such as areas and mass moments of inertia, structural damp-

ing parameters.

y

Table 5. Multiobjective optimization problem of the S-Shape Beam

Design Functions

T

2

5

0

min VCSI=1/T (y ) dt  ;  min mass

Design Constraints 
6 2

y y ; ;
4 5

y y
6 5

0.3y y

Design Variables
2 3 4

H ,H ,H

With: - Displacement in longitudinal direction of body i,  - Acceleration of body i,

 - Rotation of body i.

i
y

i
y

i

The evolution of the Pareto front is indicated in Figure 14 for a population size

of 20. The crossover probability is 0.9 and the mutation probability is 0.5. Each 

simulation takes about one minute in a PC 2.0 GHz. The solutions obtained are

presented in Figure 15. 

Table 6 contains the feasible designs of the S-shaped beam, in terms of the cross 

section widths. As can be observed the designs obtained are somehow unrealistic. 

This is because for keeping the deformation under the limits specified, the structure 

must be rigid at the extremities but reducing the mass in the central structural mem-
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ber the structure becomes sufficiently compliant in order to have lower accelerations

levels. Note that the characteristics of the plastic hinges when two contiguous mem-

bers have different dimensions, corresponds to the weakest member.
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Fig. 14. Pareto front for the S-Shape Beam structure for mass and VCSI

The type of configurations presented in Table 6, can be eliminated by adding

design constraints related with the relative dimensions between the structural

members or choosing other design functions. This is illustrated in the second

combination of design functions. In this case, the deformation and the accelera-

tions are selected. These two widely used functions in crashworthiness have al-

ready been explained in the example of the design of energy absorption devices of

trains. The results for these two design functions are presented in Figure 13. These

results have been obtained with the same parameters for the genetic algorithm that

in previous example.

From Figure 15 it can be observed that when the deformation tends to zero the

acceleration levels tends to infinite. In this case and for this small population, the

solution tends to be concentrated along a vertical line, but the more interesting so-

lutions at an applicability point of view are located along the horizontal line. In 

addition, in this case the convergence is very fast, so it is advisable to use a larger

population and a lower number of generations. With these two design functions, a

wide variety of solutions is obtained as presented in Table 7.

The results in Figs. 14 and 15 illustrate the trade-offs that are necessary in the

first stages of the design project between the design parameters. For the type of

problems presented, and based on previous tests to find the more efficient parame-

ters of NSGA II, it is advantageous to raise the population size and the number of

generations, but in a case where the simulation time cannot be much higher it is 

more convenient to raise only the population size. The increase of the mutation

probability reveals a stronger, and still positive, influence in this type of simula-

tions. In these two cases, no limits for the design functions have been specified.

However, this can be done in order to reduce the design space and forcing the

population solutions to be concentrated in a narrower zone.
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Table 6. Feasible designs of the S- Shape Beam for the Mass and VCSI problem

H2 (m) H3 (m) H4 (m)

0.0661 0.0100 0.0788

0.0661 0.0100 0.0779

0.0661 0.0100 0.0816

0.0661 0.0100 0.0797

0.0669 0.0100 0.0724

0.0667 0.0100 0.0764

0.0661 0.0100 0.0790

0.0670 0.0101 0.0740

0.0661 0.0100 0.0775

0.0670 0.0101 0.0740

0.0661 0.0100 0.0809

0.0673 0.0101 0.0731

0.0661 0.0100 0.0794

0.0669 0.0100 0.0729

0.0669 0.0100 0.0721

0.0638 0.0100 0.0689

0.0638 0.0100 0.0689

0.0667 0.0100 0.0764

0.0661 0.0100 0.0764

0.0664 0.0100 0.0806

Common

configuration

5 Conclusions 

In this work, a design framework for the multicriteria optimization of multibody

systems, with application to vehicle crashworthiness, has been proposed. With the

aim of multibody dynamics, simplified models for crashworthiness simulation are 

proposed and linked with the evolutionary algorithm NSGA-II. With these tools,

the Pareto front for conflicting objectives is obtained in a few hours on a PC. The

Pareto front is very important in the first stages of the design process when the

trade-offs between conflicting objectives are to be decided. From the Pareto front, 

the design can select the best compromising solution or then, solve a single criteria 

constrained optimization problem with weighted functions to know the optimal

characteristics of the structure or energy absorption devices. These aspects have

been illustrated in the examples presented. The parameters provided to the genetic 

algorithm play an important role in the efficiency of the optimization process. In 

the examples presented has been demonstrated that a reasonable idea of the Pareto

front can be obtained with a population size of 20-50 and for 20-30 generations.

The effect in the results of the population size is more important than the effect of

the number of iterations.
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Fig. 15. Pareto front for the S-Shape Beam structure for Deformation and VCSI 

Table 7. Feasible designs of the S-Beam Shape for the Deformation and VCSI problem

H2 (m) H3 (m) H4 (m)

0.1402 0.1321 0.0980

0.1638 0.0253 0.1891

0.1623 0.0230 0.1944

0.1345 0.1232 0.1199

0.0893 0.1326 0.1187

0.0640 0.1317 0.0985

0.1586 0.0218 0.1944

0.1623 0.0230 0.1944

0.1651 0.0214 0.1923

0.0902 0.1294 0.1188

0.1586 0.0218 0.1944

0.1343 0.0257 0.0672

0.0925 0.1326 0.1188

0.0925 0.1326 0.1187

0.0661 0.1361 0.1979

0.0596 0.1365 0.1887

0.1409 0.1307 0.0973

0.0647 0.1231 0.1195

0.0756 0.1318 0.1041

0.1358 0.1231 0.1199
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The methodology has been implemented two general-purpose multibody codes 

and any response parameter can be used as the design function or a design con-

straint. The design methodologies presented have been applied for crashworthiness 

problems; however, they are quite general and can be applied for other field related 

with multibody dynamics such as, mechanisms and vehicle dynamics. The main 

limitation of the methodologies presented is that is the complexity of the models in-

creases in the case of 2D flexible models, it will not be possible to obtain the Pareto 

front in a reasonable time. However, the simulations required in each generation are 

independent and the efficiency can be improved with parallel processing. 
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Multi-Criteria Optimization of a Hexapod Machine
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Alternative designs of a hexapod machine are proposed and investigated with the
aims to reduce flexibility and to eliminate singular kinematic configurations that ap-
pear in the workspace for the current design of the machine. The hexapod is mod-
eled as a rigid multibody system. Actuator amplitudes in the struts associated with
desired tool trajectories are computed by inverse kinematics. Hence, dynamic forces
and torques are not considered and, as there is no closed-loop control realized so
far in the model, the actual rotational and translational position of the tool deviates
from the desired position due to machining loads. These deviations serve as objective
functions during a multi-criteria optimization in order to determine the best design
regarding stiffness/flexibility of the machine. Further, a general approach for eval-
uating flexibility behavior of the machine in the complete workspace is introduced
and the results from the optimization are verified. Besides flexibility, a crucial point
for machining tools is the size of the feasible workspace. Therefore, the influence of
the design modification on the workspace is also taken into account.

1 Introduction

Machines with parallel kinematics feature low inertia forces due to low masses of
the structure combined with possible high accuracy and stiffness. Such machines
are currently under investigation in various fields of engineering like robotics, mea-
surement systems and manufacturing technologies, see e. g. [19, 6, 22]. The need
of shorter process times with even increasing demands in accuracy leads to a great
research interest in the area of machine tools with parallel kinematics, e.g. for high
speed cutting purposes, cp. [15]. In this paper the hexapod robot HEXACT is inves-
tigated. HEXACT is a research machine tool with parallel kinematics, developed by
Prof. U. Heisel and his coworkers at the Institute for Machine Tools at the University
of Stuttgart, Germany, see Fig. 1.

Hexapod machines feature the advantages of parallel kinematics and are char-
acterized by a simple, cost-effective design [16]. The tool carrier has six degrees of
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Fig. 1. Hexapod machine HEXACT (see http://www.ifw.uni-stuttgart.de)

freedom in space and is positioned by actuators integrated in the six telescope struts.
Furthermore, the specific construction of this machine allows for compensation of
joint clearance by pre-stressing of the symmetrically arranged struts with an initial
tension. However, pre-stressing leads to loss of one degree of freedom, as the rota-
tion about the tool axis is not controllable anymore. Nevertheless 5-axis processing
of cubic parts is possible in the pre-stressed case with high static and dynamic accu-
racy.

A general drawback of parallel kinematic robots is the appearance of kinematic
singular configurations that have to be avoided during operation and, hence, reduce
the usable workspace. For the current design of the investigated hexapod machine
an especially unpleasant kinematic singularity is located along the tool axis in the
central position of the machine, cp. [18], where the rotational stiffness about the tool
axis decreases to zero. One way to overcome this problem and to reduce the manifold
of singularities is to use a higher number of actuators than the degree of freedom of
the end-effector, so-called redundant actuation, see e. g. [7, 21, 26]. However, this
approach leads to additional difficulties. For example special techniques for the con-
trol of the over-constrained systems are required. In this article, redundant actuation
is not considered. The idea followed here is to remove unpleasent singularities in the
workspace by changing the design of the machine.

Modeling and optimization of the hexapod machine follow the integrated design
approach for dynamical systems proposed by [3], as illustrated in Fig. 2.

A brief description of the modeling of the hexapod is given in the first part of this
contribution. The dynamic behavior of the system is described by nonlinear differ-
ential equations of motion obtained from the multibody system approach. In order
to define tool trajectories, the actuator amplitudes in the struts have to be derived by
inverse kinematics. Both topics are described in [8], where the hexapod robot was
modeled and optimizations were carried out. We utilize a re-engineered, extended
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Fig. 2. Integrated modeling and design approach [3]

model in order to do further optimizations and to evaluate alternative designs, pro-
posed here, with less or even no singular configurations in the interesting workspace.

The description then continues with the design process optimization, see Fig. 2.
After definition of performance criteria and design variables a multi-criteria opti-
mization approach is applied in order to find an ‘optimal’ system, see [1, 10, 11].
The design goals considered here are to reduce flexibility and improve accuracy un-
der consideration of a sufficiently large workspace of the machine utilizing our alter-
native designs. This implies the decrease of the manifold of singular configurations
of the machine.

Further, a general approach to evaluate the stiffness/flexibility behavior of the
machine is introduced. Here, the tangential stiffness or flexibility matrices, respec-
tively, are determind for the entire workspace of the machine. The results found with
this method are compared with those from the previous optimization.

2 Modeling of the Hexapod Machine

A crucial point within the modeling of the hexapod machine is the description of the
telescope struts. A main question is whether elastic deformations of the relatively
slender struts have to be considered or not. In [8] flexible struts were investigated
with the conclusion that in the low frequency range the strut elasticity has a negli-
gible influence on the vibration behavior of the machine. In contrast, the elasticity
of the joints turned out to be important to get sound results corresponding closely
to real measured data. Hence, a rigid multibody system (MBS) model with elastic
joints for the connection of the struts is utilized, Sect. 2.2. In order to eliminate sin-
gular configurations and reduce flexibility, alternative design variants are proposed
in Sect. 2.3.
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2.1 Multibody Systems

In the common multibody system approach, deformations are neglected and the bod-
ies are considered as rigid. The bodies are interconnected with ideal joints and cou-
pling elements like springs, dampers and elements for active control. The dynamics
of multibody systems is described by the differential equations of motion, see [23].
Using f generalized coordinates y they can be written in general form as differential
equations

M(t,y) · ÿ + k(t,y, ẏ) = q(t,y, ẏ) , (1)

where M ∈ Rf×f is the symmetric, positive definite mass matrix, k ∈ Rf the vector
of generalized centrifugal and Coriolis forces and q ∈ Rf the vector of generalized
applied forces. Equation (1) can be derived from Newton’s and Euler’s laws and
d’Alembert’s principle.

Starting from initial conditions for position and velocity y0, ẏ0 the equations
of motion have to be solved by numerical time integration, where various algorithms
exist, e.g. Runge-Kutta methods or the Shampine-Gordon method that is also applied
to the presented example.

2.2 MBS Model of the Hexapod

The rigid MBS model of the hexapod used here is similar to the one in [8], except
that it was re-engineered for computational reasons and in order to extend the model
to further analysis and optimization tasks. The nonlinear equations of motion (1)
are created symbolically with NEWEUL [17]. In Fig. 3 a section of the spatial rigid
multibody model of the hexapod machine in central position is illustrated, compare
also the real machine in Fig. 1. A front view of the model in the xy-plane is shown
and for lucidity only three of the six telescope struts are drawn.

The model has f = 36 degrees of freedom. The generalized coordinates

y =
[
ytc yp1 . . . yp6

]
∈ Rf (2)

describe the motion of the tool carrier ytc = [xtc ytc ztc αtc βtc γtc] and the six strut
plungers ypi = [xpi ypi zpi ηpi ϑpi]. Since the telescope struts cannot rotate about
the strut axis only five coordinates are required for each plunger. The strut quils are
connected to the plungers via position actuators, which realize the positioning travel
of the telescope struts.

All parameters of the model like geometry, masses, spring and damper coeffi-
cients, etc. are taken from [8] or from the Institute of Machine Tools (IfW) at the
University of Stuttgart. Details on the measured elasticities of the bearings are given
in [9].

The actuator amplitudes are treated as time dependent variables, or rather rheo-
nomic constraints. For desired tool trajectories they are computed by inverse kine-
matics. As the dynamic forces and torques are not considered and there is no closed-
loop control realized so far, the actual position of the tool may deviate from the
desired position. Hence, it is desirable to improve the stiffness of the machine. For
this purpose alternative designs are proposed in the following section.
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Fig. 3. MBS model of the hexapod machine (front struts only)

2.3 Alternative Designs

In the current design of the hexapod machine the joints are placed equidistantly on
the perimeter of the tool carrier. Therefore, the struts are placed radial at the tool car-
rier in its central position. This leads to a kinematic singularity where the flexibility
around the tool axis approaches infinity and is very high at the nearby surrounding.
For machining processes this is very undesirable as high flexibility leads to loss of
accuracy and low surface quality of the produced parts.

In order to improve the flexibility behavior of the hexapod and to eliminate sin-
gular configurations two options for alternative designs are proposed and a third
variant, described in [9], is discussed. All variants, including the current design, are
illustrated in Fig. 4.

The angle between the struts and the tool can be varied in different ways. As a
first possibility one may rotate the joint positions at the tool carrier by an angle ζ, see
Fig. 4 (design I). Thus, the singular point in the center vanishes and a lower flexibility
is expected. However, the mentioned pre-stressing is no more possible. A second
option is to rotate the front and back joints in counterwise directions, respectively,
Fig. 4 (design II). It is the advantage of this design that a pre-stressing of the struts
for eliminating joint clearance is still possible. However, this modification leads to a
kinematic coupling of the tool rotation around the z-axis (tool axis) and its translation
in z-direction. A third possibility, proposed in [8], is to change the positions of the
two upper and lower joints each counterwise while the left and right joints remain in
their original positions, as illustrated in Fig. 4 (design III).

All alternatives involve a reduction of the workspace in the xy-plane as the pivot-
ing angle of the inner joints is restricted. This has to be considered when modifying
the design of the hexapod.
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current design variant I

variant II variant III

Fig. 4. Alternative designs: current design with radial struts; variant I with equally rotated joint
positions; variant II with counter-rotated joint positions; variant III with counterwise rotated
joint positions for four struts

3 Optimization of MBS

It is the purpose of optimizing multibody systems to find a mechanical design that
leads to improved dynamic behavior of the technical system, e.g., increased damp-
ing of undesired vibrations. In order to evaluate the dynamic behavior, the simulation
of the motion by numerical integration of the equations of motion is required. Dur-
ing the optimization process these time integrations are repeatedly executed using
different sets of design variables p. These design variables are the parameters of the
system that can be changed within given ranges for optimizing the dynamic behavior,
for example, parameters of the structure, geometric quantities, stiffnesses or active
controls of the technical system.

More information concerning the procedure and available solution methods is
given in the textbooks [1, 13] or the article [4].

3.1 Optimization Criteria

Use of numerical optimization methods requires that technical restrictions and de-
sign goals are formulated as mathematical functions. From the motion of the system,
which is determined by the time trajectories of the generalized coordinates, the op-
timization criteria can be evaluated. For the evaluation of vibrations, energies, etc.
these criteria are usually of the form
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ξi = Gi(tend,yend, ẏend,p) +

tend∫
t0

Fi(t,y, ẏ, ÿ,p)dt (3)

which is closely related to optimal control. In (3) the dynamic behavior during the
complete time interval [t0, tend] is taken into account by Fi, while Gi only considers
the final state and, hence, accounts for cases where special values for the final state
or a minimum time or energy must be achieved. The final time tend may be fixed or
given implicitly by the final state

tend : Hend(tend,yend, ẏend,p) = 0. (4)

Simple explicit functions ξi = ξi(p) or user-defined functions are also utilized.
For example, the bounds of the design variable space can be defined as

pil ≤ pi ≤ piu (5)

or implicitly

ξ1 = pi − pil ≥ 0,
ξ2 = piu − pi ≥ 0.

(6)

All criteria ξi may be used either as equality constraints gi, inequality constraints
hi, or optimization criteria ψi.

3.2 Multi-Criteria Optimization

The optimization of technical systems usually cannot be performed by the optimiza-
tion of only one criterion. Instead, several conflicting criteria must often be consid-
ered for optimization. The theory of multi-criteria optimization, [10], helps to avoid
such discrepancies. Several criteria can be minimized simultaneously, and optimal
compromise solutions can be derived if conflicts arise. In general, these solutions are
not unique but a whole set of solutions exists which are not comparable to each other,
so-called Edgeworth-Pareto-optimal (EP-optimal) solutions. All of these solutions
have to be considered as optimal since no strict order exists in vector optimization.
In general, the multi-criteria optimization task can be written as follows

find opt
p∈P

ψ(p) where P :=
{
p ∈ Rh |g(p) = 0,h(p) ≥ 0

}
(7)

with several optimization criteria ψi summarized in the vector ψ and analogous the
vectors g and h of equality and inequality constraints. Goal of the optimization of
the vector criterion ψ(p) is to minimize all criteria ψi. A simultaneous minimization
of all criteria is rarely possible as generally no point is feasible in the design space
where all criteria have their minimal values simultaneously. Such a point in the cri-
teria space is called utopian solution. Instead, multi-criteria approaches try to find a
compromise that favorably lies on the set of EP-optimal solutions. Which solution to
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choose from the set of EP-optimal solutions then depends on the preferences of the
designer.

Common to most of the strategies is the reduction of the vector optimization
problem to nonlinear programming problems. This reduction is based on two funda-
mental principles: scalarization and hierarchization.

In the case of scalarization the optimization criteria are combined to a scalar util-
ity function u(ψ) which is then optimized instead of the original vector criterion.
Often the weighted criteria method is applied which can be problematic for dynamic
problems, as the weighting coefficients are difficult to define physically and the de-
pendency of the result on this choice is highly nonlinear.

Hierarchical methods have in common, that the designer has to assign a level
of importance to each optimization criterion ψi. Optimization starts with a scalar
optimization of the first, most important, criterion. Then the next important criterion
can be minimized, where the results reached in the previous levels are considered as
inequality constraints and so on. An often useful modification introduces worsening
factors that allow a defined worsening of results reached in previous levels in order
to give the optimization of the criterion in the actual level some margin.

3.3 Optimization Algorithms

During the multi-criteria optimization every scalar optimization task reads

find min
p∈P

ψ(p) where P :=
{
p ∈ Rh |g(p) = 0,h(p) ≥ 0

}
. (8)

In order to solve this nonlinear optimization problem with equality and inequal-
ity constraints deterministic or stochastic optimization algorithms can be applied.
Deterministic algorithms usually use gradient information and have the advantage
of locating a minimum within a few iteration steps. On the other hand, they usually
only find local minima and require, at least in theory, a smooth optimization criterion.
Stochastic methods have the advantage that they may find a global minimum with-
out posing severe restrictions on the differentiability or convexity of the optimization
criterion, however, they often need many criteria evaluations. Therefore, they are not
well suited for systems which require a high computational effort for evaluation. This
drawback can be reduced by using parallel criteria evaluation in combination with a
stochastic evolution strategy, see e.g. [12].

For the use of gradient-based optimization algorithms, like sequential quadratic
programming (SQP) algorithms that are implemented in NEWOPT/ AIMS [2], gradi-
ents of the optimization criteria with respect to the design variables p are required.
Since the state variables y0, ẏ0 can not generally be given as explicit functions of
p, direct differentiation methods cannot be applied. In NEWOPT/AIMS gradients can
be derived by purely numerical methods like finite differences or more sophisticated
methods like the adjoint variables method [10], the direct differentiation approach [1]
and automatic differentiation using e.g. ADIFOR [5].
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4 Optimization of the Hexapod Machine

In this section the spatial MBS model of the hexapod machine described in Sect. 2 is
optimized with respect to flexibility and workspace. The optimization is carried out
under consideration of the alternative designs as proposed in Sect. 2.3. In a first step,
the flexibility of the system is investigated without considering geometric restrictions
in order to obtain the unconstrained theoretical minimum. This is advisable as a
premature restriction of the design space often leads to loss of innovative solutions of
the problem. Afterwards, the geometric boundary conditions are taken into account
and the influence of the new configuration on the workspace is discussed, where a
possible compromise is proposed. All optimizations are carried out using an SQP
algorithm with gradients computed by finite differences or automatic differentiation.

4.1 Optimization Criteria and Design Variables

It is the goal of the optimization to increase the stiffness, i.e. to reduce the flexibility
of the tool for machining purposes. Therefore, we define an exemplary tool trajectory
with relative large, but still realistic machining forces and moments. When running
the trajectory, the actual translational and rotational position is computed. The flexi-
bility can be evaluated by comparing the actual trajectory with the target values. This
can be formulated applying an integral optimization criterion, see (3). Regarding the
rotational flexibility about the tool axis, the average deflection of the tool rotation
can be used

ψ1 =
1
ttot

tend∫
t0

|γtc − γtc,target| dt. (9)

The translational flexibility can be evaluated analogously

ψ2 =
1
ttot

tend∫
t0

√
(xtc − xtc,target)

2 + (ytc − ytc,target)
2 + (ztc − ztc,target)

2
. (10)

As design variable p the joint rotation angle ζ is chosen. Due to geometric
restrictions the admissible range of values for the design variable is bounded by
0 ≤ p ≤ π/2.

4.2 Optimizing Design Variant I

During the first optimization run, only criterion ψ1 evaluating the rotational flexi-
bility is taken into account. In order to achieve an optimal angle ζ∗ in the central
position, the struts have to be fixed tangentially at the tool, here ζ∗ = 80.2◦. The
question is whether this is also the optimum for a typical machining trajectory. In
order to answer this question, the following trajectory is defined, see Fig. 5.

• 0 – 1 sec: adjust joint rotation angle ζ ,
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Fig. 5. Exemplary machining trajectory for evaluating flexibility behavior

• 1 – 2 sec: point to point motion to [-0.1 0 0] m ,
• 2 – 7 sec: circle with radius r = 0.1 m and midpoint at [0 0 0] m with an applied

torque of lz = 1000 Nm around the tool axis.

The optimum is found for approximately the same value for ζ as stated for the
zero position, ζ∗ = 82.5◦. Figure 6 shows the deviation of the tool rotation γtc both
for the original design (ζ = 0◦) and the optimized design (ζ∗ = 82.5◦). For the
“stationary” state (3 < t < 6 sec), the average rotational flexibility around the
tool axis calculates as cγγ = ∆γtc/lz = 1.77 · 10−2 ◦/Nm. The average rotational
flexibility decreases to cγγ = 9.00 ·10−4 ◦/Nm which is an improvement by a factor
of approximately 20. This factor can be seen in Fig. 6 from the ratio ∆γtc(ζ = 0◦)
to ∆γtc(ζ = 82.5◦).
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 [
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ζ = 82.5°

Fig. 6. Deviation of tool rotation γtc due to an applied torque for the original design (ζ = 0◦)
and the optimized design (ζ = 82.5◦)

At real machining processes, also force loads are applied to the tool, of course.
Therefore, the influence of the joint position angle ζ on the translational flexibility,
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evaluated by ψ2, must also be considered. For the original design, the resulting trans-
lational flexibility ctrans = |∆x|/F has a relative high value of 3.39 · 10−6 m/N. For
the optimization, the above described trajectory is chosen again with an additional
force loading of F = [1 1 1] kN. Now a vector optimization problem with criteria ψ1

and ψ2 has to be solved. For this purpose a hierarchical optimization is performed.
In the first level, criterion ψ1 is optimized. The solution is identical with the result
already derived for the first optimization (ζ = 82.5◦). The resulting translational
flexibility, which is not considered in ψ1, also improves by a factor of about 7 to a
value of 4.96 · 10−7 m/N, see Fig. 7.
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Fig. 7. Deviation of the absolute tool position x due to applied torque and force for the original
design (ζ = 0◦) and the optimized design at level 1 (ζ = 82.5◦)

In the second level of the hierarchical optimization, the criterion ψ2 evaluating
the translational flexibility is optimized. Now the result for criterion ψ1 is considered
as an inequality constraint. In order to give the optimization of ψ2 some margin in
the design space, the optimal value for ψ1 may increase, i.e. may be worsened by
50 %. The final optimum is stated for ζ = 68.2◦ where the translational flexibility
ctrans decreases by only 4.3 % to 4.76 · 10−7 m/N. Figure 8 (left) shows the decrease
of deviation of the translational position for the final optimum (ζ = 68.2◦) compared
to the result of the first optimization level (ζ = 82.5◦).

The rotational flexibility increases to cγγ = 9.68 · 10−4 ◦/Nm, see Fig. 8 (right).
As this is still far away from the maximum allowed worsening, i.e. the constraints
given by the worsening factor are not active, the optimum of ψ2 corresponds to the
unconstrained case.

4.3 Optimizing Design Variant II

Contrary to the expected behavior, a counter-wise rotation of the strut joints at the
tool by an angle ζ does not improve the rotational stiffness of the tool, but even
worsens it, see Fig. 9. For the desired trajectory, the average rotational flexibility
increases to a value of 3.3 · 10−2 ◦/Nm for ζ = 82.5◦ which is an increase by a
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Fig. 8. Deviation of resulting tool position x (left) and tool rotation γtc (right) due to applied
torque and force load for the optimal design of variant I at level 1 (ζ = 82.5◦) and the final
design (ζ = 68.2◦)

factor of about 2. In fact, from an optimization of ψ1 the optimal solution ζ = 0◦ is
found.
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Fig. 9. Increase of the rotational flexibility around the z-axis when rotating the struts counter-
wise (design variant II)

Due to the coupling of the translation and the rotation with respect to the z-axis,
the applied torque also causes a non-negligible deviation of the tool position in z-
direction, see Fig. 10.

This behavior is not acceptable when considering machining processes with the
hexapod. Hence, the alternative design II is discarded.

4.4 Results from an Optimization of Design Variant III

Design variant III has already been optimized for a spiral trajectory with a com-
bined force and torque load [8]. As additional design variable also the pre-stressing
force was taken into account. The optimum for the joint position angle was found at
ζ = 34.1◦. However, for the different loadcase and trajectory observed here, this de-
sign does not show a better behavior regarding rotational flexibility than the original
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Fig. 10. Deviation of the tool’s z-position due to the coupling of the tool’s z-rotation and
z-translation

design, cp. Fig. 11. The average rotational flexibility here is cγγ = 1.81 ·10−2 ◦/Nm.
In addition, a very strong coupling between the z- and y-rotation can be observed, as
illustrated in Fig. 12.
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Fig. 11. Rotational flexibility around the z-axis for design variant III

4.5 Workspace

The workspace is restricted in two different ways. On the one hand, it is limited by
the minimum and maximum stroke of the telescope struts. Additionally, the angle
limitation of the inner joints also reduces the workspace, exemplary illustrated in
Fig. 13 for design variant I. When the joint positions are rotated by an angle ζ, the
workspace decreases.

A reasonable quantity for evaluating the size of the workspace is given by the
radius r of the inscribed circle. When no rotation is applied to the joint positions, the
workspace is bounded by the strut lengths (r = 200 mm). Above a rotation of the
joints by ζ = 13.2◦, the restriction due to the angle limitation turns active. The radius
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Fig. 13. Limitation of workspace in xy-plane due to the strut stroke limit of 400 mm and the
admissible pivoting angle of the joints of ±40◦ (design variant I)

of the workspace now decreases almost linearly and becomes zero at ζ = 33.8◦, see
Fig. 14.

As a conclusion, the initial tool angle can be set to ζ = 13.2◦ without any loss
of workspace. For this configuration both rotational and translational flexibilities al-
ready decrease by a factor of approximately 2.5 to values of 7.45 · 10−3 ◦/Nm and
1.52·10−6 m/N, respectively. Any further increase must be balanced with the process
specific requirement of workspace. However, the reduction of the workspace due to
the angle limitations at the inner joints can be circumvented by changes in the design
of the machine. At the moment the alternative design I is realized by simply rotating
the tool carrier by the angle ζ to its initial position so that the pivoting angle range is
±40◦ still with respect to the radial direction. This implies that not the whole range
of angles can be used for the motions. A better solution would be to rotate the joints
by the initial angle ζ so that the limitation of the pivoting angle accounts to the ini-
tial strut orientation. Then, the design with the maximum stiffness can be realized
without any loss of workspace.
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I)

5 Investigation of Flexibility – General Approach

So far the flexibility behavior of the hexapod robot was investigated by observing the
deviation of the tool position for a certain trajectory within a numerical simulation.
Therefore, the results are only valid for this specific trajectory. Now, an approach is
introduced that allows investigation of the flexibility behavior all over the workspace.

In robotics, besides flexibility a very important criterion for the evaluation of
different design variants is the location of singular points in the workspace. At these
points, at least one direction exists where a small variation of the tool carrier position
is associated with an arbitrary change in the actuator amplitudes. Or vice versa, a
small variation of one or several actuator amplitudes would cause a very intensive
reaction of the tool carrier. These positions are disadvanteagous when located in the
workspace as there does not exist a definite relationship between the tool carrier’s
position and the actuator amplitudes.

For the stiffness behaviour this means that there exists one combination of ro-
tation and translation for which the stiffness vanishes or the flexibility approaches
infinity, respectively. Mathematically, these positions can be received by regarding
the eigenvalues of the tool carrier’s Jacobian Matrix which is given by the derivatives
of the actuator amplitudes Θ = [Θ1, Θ2, . . . , Θ6] with respect to the tool carrier’s
position ytc,

Jtc =
∂Θ
∂ytc

. (11)

Positions where at least one eigenvalue approaches zero are kinematic singular
positions. The associated eigenvector describes the motion of the tool carrier for
which stiffness disappears. As there also exist very small eigenvalues in the neigh-
borhood of singular positions, not only the exact singular position but also the neigh-
borhood around it is critical. For parallel kinematics much effort is given on the
investigation of singular constellations and their neighborhood [24, 25, 20, 14].

For the determination of kinematic singularities, the evaluation of the Jacobian is
useful. However, when investigating the neighborhood of kinematic singularities, the
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point of interest is the flexibilitity behavior of the machine. The direct usage of the
Jacobian matrix for investigations is not recommendable here as the results are not
significant as neither resulting flexibilities nor the corresponding axes are available.
Therefore, it is necessary to evaluate the flexibility behavior directly.

The stiffness and flexibility of the tool carrier depend on its translational and
rotational position in the workspace. The relation between applied forces and torques
on the one hand side and the evasive displacements of the tool carrier on the other one
is highly nonlinear. At each point in the 6-dimensional workspace this relation can
be linearized to obtain the tangential stiffness matrix Kt and the tangential flexibility
matrix Ct. The tangential stiffness matrix Kt describes the forces caused by a given
rotational and translational displacement where the tangential flexibility matrix Ct

(often also called compliance matrix) gives the relationship between a given force
and torque load and the resulting tool displacement. Both quantities are derived in
the following section.

5.1 Matrices of Tangential Stiffnesses and Compliances

Each deviation∆ytc of the tool carrier from its original position ytc0 causes a change
in the strut lengths si,

∆si = f(ytc0, ∆ytc) . (12)

This relation can be derived by geometric consideration. The absolute values of the
strut forces due to the resulting elasticity k of the joints are then given by

fsi = k∆si . (13)

As also the strut vectors si are known by the tool carrier’s position, the computation
of the force vectors is straightforward,

f si = fsi ·
si

si
. (14)

The resulting forces f tc and torques ltc at the tool carrier follow from the equilibra
of forces and moments,

f tc =
6∑

i=1

f si ,

ltc =
6∑

i=1

ai × f si ,

(15)

with ai denoting the moment arm of f si w.r.t. the tool carrier’s coordinate system.
The tangential stiffness matrix calculates as

Kt =

⎡⎢⎢⎣
∂f tc

∂∆ytc

∂ltc

∂∆ytc

⎤⎥⎥⎦ (16)
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and the corresponding tangential flexibility matrix as

Ct = Kt
−1 . (17)

In the general case both matrices are fully occupied. This means that a load in
one direction causes rotational and translational evasive motions in every direction.

5.2 Principal Stiffnesses and Flexibilities

A direct evaluation of the compliance matrix Ct is often not possible as the stiffnes
matrix Kt ist badly conditioned in the neighborhood of kinematic singular positions
and, of course, singular at singular positions. Therefore it is useful to transform the
stiffness matrix into its system of principal axes. Here the eigenvalues are the re-
sulting stiffnesses for the motions defined by the corresponding eigenvectors. The
corresponding principal flexibilities are then the reciprocals of the principal stiff-
ness constants as the transformed stiffness matrix is diagonal. In order to achieve
more insight into the global flexibility behavior of the machine, it is necessary to
evaluate either the principal stiffneses or the compliances at many points all over
the workspace. Here exemplary points on regular grids lying in planes x = const.,
y = const. and z = const. are regarded.

As criterion for the stiffness, it is both possible to regard the lowest normalized
principal stiffnesses min(k∗i ) or the mean value of the normalized principal compli-
ances mean(c∗i ) at each point, see also [27]. The normalization to unitless coefficients
is necessary as the tangential stiffness matrix consists of four blocks having different
units. For the normalization, characteristic reference values for forces (F0 = 1 N),
torques (l0 = 1 Nm), lengths (s0 = 10−6 m) and angles (ϕ0 = 10−6 rad) are used.
However, the numerical evaluation of compliances at kinematic singular points is
problematic because they approach infinity. Therefore, it is often recommendable to
regard the principal stiffnesses even if the compliances are the point of interest.

In the following section, the flexibilities and principal stiffnesses of the discussed
design variants are investigated.

5.3 Evaluation of the Alternative Design Variants

In this section the flexibility/ stiffness behavior of the alternative design variants is
evaluated with the described approach. In order to be able to explain the results from
Sect. 4 variants I and II are discussed for the theoretically optimal joint position
angle ζ = 82.5◦ and variant III for ζ = 34.1◦. In the following, several pictures are
given, some showing the flexibility-constants cij along the vertical axes, some the
minimum principal stiffnesses min(k∗i ). It is desirable to have very low flexibilities,
i.e. low values of cij or high stiffnesses, i.e. high values of min(k∗i ).

5.3.1 Current Design

At the original design the kinematic singularity at the center position is obvious,
compare Sects. 2.3 and 4.2. The compliance matrix at this point also confirms this
observation
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Ct =

⎡⎢⎢⎢⎢⎢⎢⎣
0.9739 0 0 0 0 0

0 0.9739 0 0 0 0
0 0 ∞ 0 0 0
0 0 0 0.1772 0 0
0 0 0 0 0.1772 0
0 0 0 0 0 0.1330

⎤⎥⎥⎥⎥⎥⎥⎦ · 10−6. (18)

At all other points on the described planes, always one principal stiffness van-
ishes. This means that every point in the workspace is kinematic singular with one
principal compliance approaching infinity. The axis of maximum flexibility (which
is the eigenvector corresponding to the lowest eigenvalue of Kt and therefore the
highest one of Ct) depends on the position in workspace. In the central position the
respective eigenvector is given by [0 0 1 0 0 0] corresponding to the kinematic
singularity observed in Sect. 4.2. The fact that at all other points also a singular di-
rection is existent accounts for the bad behaviour of this design variant observed for
the circular sample trajectory.

5.3.2 Design Variant I

During the optimization and evaluation of the designs in Sect. 4, the alternative de-
sign variant I achieved a strongly superior flexibility behavior in comparison to all
other designs discussed here. A look at the tangential stiffnesses and flexibilities for
ζ = 82.5◦ explains the advantage of this design. Here, no kinematic singularities
appear in the workspace at all. This further allows the general conclusion that the
favorable behavior can be achieved not only for the sample trajectory but also for
arbitrary motions in the overall workspace. However, due to space limitations it is
impossible to show the reader enough plots to sufficiently mirror the encouraging
stiffness behavior for the entire workspace. Therefore, only some exemplary planes
in the workspace are discussed. In Fig. 15 (left) the minimum principal stiffnesses
min(k∗i ) in xy- and yz-planes with z = 0 m and x = 0 m, respectively, are illus-
trated (xz-planes show similar results to yz-planes). These are critical planes during
the following investigation of the other variants.

Even the minimum principal stiffnesses are encouragingly large, which will be
seen in particular when compared to the other variants, discussed in the following
sections. In order to indicate the global stiffness behavior in the complete workspace
in Fig. 15 (right) exemplary also the minimum principal stiffnesses min(ki) in xy-
and yz-planes are plotted for x = 0.1 m and z = 0.1 m, respectively, where again
substantially large values are obtained.

Further, the flexibility behavior of the machine in the xy-plane at z = 0 m for an
applied torque around the z-axis lz is illustrated in Fig. 16, where the tool carrier’s
displacement is shown for each coordinate of ytc. This configuration corresponds to
the sample trajectory and the loading case applied in Sect. 4.2. It can be seen that
low flexibilities appear in all directions which is consistent with the results found in
Sect. 4.2.



Multi-Criteria Optimization of a Hexapod Machine 337

x = 0 m x = 0.1 m

−0.2
0

0.2

−0.2

0

0.2
4

5

6

z [m]y [m]

m
in

(k
i* ) 

[−
]

−0.2
0

0.2

−0.2

0

0.2
3

4

5

6

z [m]y [m]

m
in

(k
i* ) 

[−
]

z = 0 m z = 0.1 m

−0.2
0

0.2

−0.2

0

0.2
2

4

6

y [m]x [m]

m
in

(k
i* ) 

[−
]

−0.2
0

0.2

−0.2

0

0.2
2

4

6

y [m]x [m]

m
in

(k
i* ) 

[−
]

Fig. 15. Minimum principal stiffnesses min(k∗
i ) in yz-planes at x = 0 and 0.1 m (top) and

xy-planes at z = 0 and 0.1 m (bottom) for design variant I with ζ = 82.5◦

5.3.3 Design Variant II

At design variant II, the workspace contains a plane of kinematic singular positions
located at z = 0, which divides the workspace into two usable domains, see Fig. 17
(lower left). Within these domains, the prinicipal stiffnesses are relatively low, as can
be seen by comparison of Fig. 17 with the respective plots of variant I in Fig. 15.

The sample trajectory used during the investigation of design II in Sect. 4.3 is
completely located in the singular plane, which explains the very bad behavior of this
design. However, the flexibilities are also disappointingly high in the usable domains
(z �= 0) and the observed coupling of the translation and the rotation with respect
to the z-axis remains. This is illustrated in Fig. 18 by the corresponding flexibility
constants cγγ and cγz at z = 0.1 m, which are still much higher than the analogous
flexibilities for design I at z = 0 m, see Fig. 16.
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Fig. 16. Flexibility constants cγi describing the tool carrier’s displacements for an applied
torque around the z-axis in the xy-plane at z = 0 m for design variant I
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Fig. 17. Minimum principal stiffnesses min(k∗
i ) in yz-planes at x = 0 and 0.1 m (top) and

xy-planes at z = 0 and 0.1 m (bottom) for design variant II with ζ = 82.5◦
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Fig. 18. Flexibility constants cγγ and cγz in xy-plane at z = 0.1 m for design variant II
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5.3.4 Design Variant III

For this design variant the workspace contains three planes of kinematic singular po-
sitions located at x = 0, y = 0 and one twisted across the workspace. These planes
divide the workspace into eight domains. In Fig. 19 (top), the minimum principal
stiffnesses in yz-planes at x = 0 and 0.1 m are shown. Further, in Fig. 19 (bottom)
the minimum principal stiffnesses in xy-planes at z = 0 and 0.1 m are given which
are also divided by the singular planes (lines with zero stiffness). The separated,
relative small domains without singular configurations are surrounded by three sin-
gular planes each which leads to disappointingly low minimum prinicipal stiffnesses
which can in particular be emphasized by comparison of the plots in Fig. 19 with
those of variant I, Fig. 15.

x = 0 m x = 0.1 m

−0.2
0

0.2

−0.2

0

0.2
0

0.5

1

z [m]y [m]

m
in

(k
i* ) 

[−
]

−0.2
0

0.2

−0.2

0

0.2
0

0.1

0.2

z [m]y [m]

m
in

(k
i* ) 

[−
]

z = 0 m z = 0.1 m

−0.2
0

0.2

−0.2

0

0.2
0

0.1

0.2

y [m]x [m]

m
in

(k
i* ) 

[−
]

−0.2
0

0.2

−0.2

0

0.2
0

0.2

0.4

y [m]x [m]

m
in

(k
i* ) 

[−
]

Fig. 19. Minimum principal stiffnesses min(k∗
i ) in yz-planes at x = 0 and 0.1 m (top) and

xy-planes at z = 0 and 0.1 m (bottom) for design variant III with ζ = 34.1◦

In Sect. 4.4 large deflections of the z- and y-rotation appeared for the applied
torque around the z-axis. This behavior can also be seen when regarding the flexibil-
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ities cγγ and cγβ in Fig. 20. High values of these flexibilities clearly show this strong
coupling.
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Fig. 20. Flexibility constants cγγ and cγβ in xy-plane at z = 0 m for design variant III

6 Conclusions and Outlook

In order to increase the stiffness of the hexapod machine HEXACT and to eliminate
singular configurations three variants of alternative designs were discussed. Variant
I with equally rotated joints leads to a substantial improvement in both translational
and rotational flexibility in comparison to the current design. A global investigation
of the tangential flexibilities in the entire workspace shows the absence of any singu-
lar configuration which confirms the results received during optimization. A draw-
back of this design is that pre-stressing, used for compensation of bearing clearance,
is no more possible. The disadvantage of a workspace reduction can be eliminated
by an alternative mounting of the joints at the tool carrier. Therefore, variant I is an
attractive solution improving the flexibility behavior without reducing workspace.

In contrary to the expected behavior the flexibility cannot be improved by design
variant II with counter-rotated joint positions, which is due to a singular plane in the
workspace that also effects the flexibility behavior in the adjacent domains. Further,
coupling of the translation along and the rotation around the tool axis causes a non-
negligible deviation of the position in z-direction when torques are applied. Both
results disqualify design variant II. Analogous results are found for variant III, now
with three singular planes dividing the workspace into eight domains and a coupling
of the z- and y-rotation.

The introduced model of the hexapod only considers linear elasticities of the
joints. In future work, the joint clearance is introduced into the model, e.g. by us-
ing a nonlinear spring law. Then, the proposed optimum design can be compared
with the current design with pre-stressing. Besides stiffness, further aspects like en-
ergy consumption or behavior under thermal loading are currently investigated. The
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selected exemplary tool trajectory and loading will be replaced by a typical machin-
ing benchmark. Further, as a more general optimization criterion the minima of the
tangential principal stiffnesses in the entire workspace can be used. This allows for
results independent from specific tool trajectories.
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The use of multibody dynamics software in industrial firms is steadily increasing.
Engineering curricula often do not include mandatory courses where multibody dy-
namics is taught. This paper discuss some relevant teaching issues in this specific
cultural area. Noteworthy examples of the great variety of kinematic and dynamic
formulations, available for teaching a basic course in multibody dynamics, are il-
lustrated. The experience of the first author, when introducing a basic multibody
dynamics course at an Italian university, is also reported.

1 Introduction

In 1999 the Education Ministers of 29 European countries signed in Bologna the
document known as Bologna Agreement. The document was preceded by the Sor-
bonne Agreement signed in May 1998 and outlining cooperation between European
countries in the field of higher education. The main goal of the Bologna Agreement is
establishing, within 10 years, a standard European education system which would fa-
cilitate the implementation of clear and mutually recognized qualification standards.
Thus, the purpose is to bring transparency to all national qualifications and to enable
qualifications from one country to be recognised by another.

The proposed standard system of higher education would comprise 2 cycles:

• undergraduate bachelor degree (minimum 3 years), eligible also for professional
employment;

• further studies, and complete higher education cycle with master and/or doctor
degree.

The change is imposing a radical revision of the traditional program of studies
in European countries. In many engineering faculties there is strong skepticism con-
cerning the establishment of a bachelor’s degree awarded after at least three years of
study. In fact, it should be acknowledged that engineering teachers are complaining
about the influence that this reform of studies is having on the level of technical skills
of the European engineering graduates. We shall not discuss further on this topic, but
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the mention was necessary in order to introduce the cultural environnement in which
multibody dynamics education is likely to be developed in Europe.

The organisation of education and research activities in the United States of
America, when compared to Europe, is very different. Since most prominent uni-
versities are “graduate schools”, the professors can concentrate their teaching on
topics closely related to their research [1]. All European universities offer instead
both undergraduate and graduate curricula. This involves

• courses with more general contents and rather decoupled from state-of-the-art
research topics;

• heavy teaching load and administrative burden for the professors.

For these reasons the number of advanced multibody dynamics courses offered in
the USA is higher than in Europe.

Software packages based on multibody dynamics techniques are becoming com-
mon design tools. The availability of software where the cycle of design and mechan-
ical system simulation is made all within the same environment not only speeds up
the design overall process, but is making a radical change both in the way engineers
are approaching problems and in their required skills.

The situation calls for a revision of the current engineering curricula. However,
there are several issues and constraints involved in such revision. In this paper we
will focus and discuss on the most common ones, but without any claim of giving a
definite answer.

Although the education system is adapting itself to the new design methodologies
and tools it seems that there is not a general agreement on the most effective response.
Regarding university courses dedicated to multibody dynamics common arguments
of debate are:

• which should be the level of familiarity of the student with the fundamentals of
analytical mechanics and machine dynamics before being exposed to commercial
software?

• at university level should be given more emphasis on the theory behind the code
or it is better to concentrate on the development of the modeling skills of the
student?

Shortly, it seems that there is not a general consensus on the best approach for teach-
ing multibody dynamics. However, it is generalized the need for the introduction of
courses where the derivation of the equations of motion is presented in a computer
oriented manner together with time integration algorithms.

In a recent past, multibody dynamics was more a research topic rather than an
established subject for mandatory university courses. Although many distinguished
researchers in the field published textbooks describing the details of their methods,
few universities offered courses in modern multibody dynamics. The current situ-
ation has similarities with the pre-finite elements era. In the sixties few university
curricula included a course in finite elements. Nowdays the situation is radically
changed. There is not any university offering a degree in mechanical or civil engi-
neering without a mandatory course in finite elements.
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The content of textbooks traditionally used by undergraduate mechanical engi-
neering students for learning machine dynamics (e.g. [2, 3]) focus on Newton-Euler
approach and on simple planar inverse dynamics models. Forward dynamics is often
limited to the classical one or two degrees-of-freedom linear models used in vibra-
tions analysis. In some cases, advanced models of kinematic and dynamic systems,
with several degrees-of-freedom, are based on clever formulations that take advan-
tage of the specific problem to obtain a simplified form of equations of kinematics
and dynamics.

When present, the computer coding of the problem is based on ad hoc models
whose equations are deduced by hand.

In some instances the curricula reform which followed the Bologna agreement
shrinked the number of credits allocated for mechanics courses. These time con-
straints stimulated a noteworthy attempt, due to Valasek [4], to introduce a multibody
dynamics technique with a minimum or no prerequisite of analytical mechanics.

Thus, the teachers are forced to limit their lectures to the basics of machinery
dynamics instead of extending them by introducing multibody dynamics techniques.

From colloquia with collegues it seems that the above situation is not uncommon
at many European universities. This may slow down the introduction of multibody
dynamics in engineering curricula.

As depicted in Fig. 1, a modern approach to modeling and analysis of results
obtained from simulation involves knowledge and skills in different fields. In general
the multibody dynamics approach to system simulation requires that the user is not
just an analyst, but also a designer. This suggest that the student should have a basic
knowledge of machinery dynamics before starting the study of multibody dynamics.
In fact, he/she will have:
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• a better appreciation of the power of systematic kinematic and dynamic formu-
lations;

• the capability of a critical interpretation of results.

The widespread diffusion of multibody dynamics software calls for attention.
Multibody dynamics modeling is applied on a greater extent within industrial com-
panies or consulting firms. Thus, a significant portion of current European mechan-
ical engineering graduates are potential users of such a software without having a
minimal knowledge of its theoretical bases.

Moreover, many current users, although familiar with the graphic interface, lack
the basic understanding of the theory behind the code. Unfortunately, software pack-
ages without a detailed theoretical manual are not rare and the courses organized by
the companies, due also to time constraints, usually focus on the working features of
the code and not on its theory.

A correct interpretation of the results obtained from a software requires a deep
understanding of the theoretical bases used for its developement and of the numerical
methods used. This is a widely accepted opinion in engineering. Errors and inaccura-
cies in data input, dynamic formulation limits, improper modeling, failure of numer-
ical methods are common pitfalls for the user of multibody dynamics software. A
formal education on multibody dynamics theory and software may reduce the prob-
ability of errors. However, considered the current status of mechanical engineering
curricula, many users of multibody dynamics software may not be fully aware of the
limits of their models. The potential danger of the above described situation requires
some action from the multibody dynamics research community.

This action can take different forms according to the target of the instruction:

• students with no background in multibody dynamics and little or no experience
of CAE software;

• engineers already using CAE software;

For this last cathegory of individuals, the continuing education programs offered by
the universities or private companies should foresee lectures on theory and practice
of multibody dynamics. Noteworthy attempts in this direction can be recorded.

Serious problems may arise by the use of simulation software, such as multibody
dynamics codes, by CAD practitioners. Although extensive training is required to be
expert in using a computer to create solid models, this does not makes the person an
engineer [45]. Whoever is setting up the model not only must understand what kind
of assumptions he/she is making, but should also be aware of the main pitfalls that
can arise during simulation.

The difficulties of multibody dynamics modeling and simulation are very well
expressed by Haug [14]

“The insidious presence of nonlinearity in virtually all aspects of the kine-
matics and dynamics of machines leads to intricacies in mathematical and
numerical analysis that are not easily solved as in the case in linear structural
mechanics and associated finite element methods. Pathological forms of be-
havior, such as lock-up and branching of kinematic solutions, can best be
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understoood and overcome by an engineer who develops both a firm math-
ematical foundation and a clear physical understanding of the behavior of
mechanisms and machines.”

Freeman [5] highlighted on some problems encountered by knowledgeable multi-
body analysts, with little background in vehicle dynamics, when modeling vehicles.
The problems can be grouped as:

• Inappropriate application of models;
• Poor modeling assumptions;
• Incomplete model formulation or subsystem analysis;
• Methodology hides the completeness or lack thereof in the results.

Moreover, Freeman pointed out that

- it would be appropriate a direct interface of the numerical-multibody program with
the CAD modeling program, making it easy the transition from model building
to kinematic and dynamic simulation (much progress has been made in this di-
rection);

- to simulate properly vehicle behavior the user must have knowledge of how differ-
ent parameters and/or components affect system performance;

- only by understanding the relationship between the system components and system-
level parameters one can unleash the power and flexibility of multibody dynam-
ics software;

- ignorance of traditional analytical methods may lead easily to erroneous system
behavior;

- these technical skills can only be achieved by education and experience.

The above conclusions are shared by most of the technical personnel that use multi-
body dynamics software within engineering firms.

Beside a broad theoretical and practical knowledge on mechanical system simu-
lation to an engineer are also required many skills such as the ability:

• to interact with other team workers;
• to examine things critically and/or minutely, to separate the broad picture into its

individual components;
• to write and speak clearly, to summarize and document information in a manner

that other people can understand.

A modern education system must give the student the opportunity to develop and
practice also the above skills. This require time, human and financial resources not
always fully available.

The mechanical engineering community is currently benefitting from self-study
systems and use of world wide web as a teaching tools [6]. Little is known on the
effectiveness of such systems for learning multibody dynamics.
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2 Multibody dynamics and mechanical systems modeling

At university level, different strategies can be adopted for teaching multibody dy-
namics and mechanical systems modeling.

One of the approaches, successfully experienced by Fisette and Samin [7], is
based on a main course in classical mechanics which covers rigid body motion the-
ory and 2D “academic” problems. In this course the students learn how to obtain
analytical equations of motion. After that, with the active participation of a CAD
course, the students are required to develop a multibody simulation of a realistic
application.

The main steps of the project to be developed by a group of 6-8 undergraduate
students are:

- Understanding the system to analyse
- Project planning
- Choice and practice of computer tools
- Formulation of relevant modeling hypotheses
- Symbolic multibody model deduction
- Data acquisition and/or computation
- Understanding and computation of environment forces
- Numerical program and first simulations
- System analysis and parameterization
- Project report, presentation and evaluation

According to Fisette and Samin [7] “this multi-disciplinary project really improves
the student skills in the field of multibody system modeling”. A somewhat different
experience has been reported by Fanghella et al. [8] for teaching multibody dynamics
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Fig. 2. Scheme of teaching and learning activities on multibody dynamics at University of
Genoa [8]
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to postgraduate students (i.e. attending the last year of a 3+2 engineering curriculum).
In this case the lectures on multibody dynamics theory (32 hours) and hands on prac-
tice with commercial software (15 hours) are in parallel. At the end of these activities
the student is required to solve an engineering analysis problem with numerical data
defined. Fig. 2 depicts the flow of the described activities.

Industrial managers usually complain that most graduating engineers are very
well qualified as far as a theoretical understanding is concerned, whereas few appear
prepared for planning and implementing engineering projects which involve perfor-
mance prediction for complex systems. In other terms, engineering graduates do not
seem to have sufficient exposure to realistic modeling. Thus, it is important that the
courses on multibody dynamics theory are followed or coupled with classes where
are addressed realistic problems of mechanical system modeling. The structures of
the courses can range from individual study to group projects, sometimes supervised
jointly by faculty and industrial representatives.

The continuing education and training of engineers in system modeling by means
of multibody dynamics software should be also of concern to industries. In this field
it is auspicable a collaborative partnership between universities and industries.

3 Multibody dynamics in industry

Experienced engineers are challenged by technology moves beyond the levels that
were current at the time of their formal education. Similarly, young engineers cannot
achieve, through traditional mentoring and informal training, the levels of compe-
tence expected by a world-wide industrial competition.

In any case, gaining new skills and maintaining technical currency is a major
concern for all professional engineers.

The introduction of powerful and versatile CAD programs signed a dramatic
technological advancement. These tools allowed a significant reduction of the time
required to move from initial design to full production. In this overall process dy-
namic simulation plays a fundamental role. The capability to predict the effects of
design variables changes on system performance is necessary to optimize the me-
chanical system during the early phases of design. This allows also the reduction
of costs of experimental analyses on physical prototypes. However, the mentioned
capability rest on several factors such as:

- completeness and consistency of data;
- correcteness, sensitivity and reliability of the model;
- robustness of the numerical integration engine;
- expert interpretation of the results.

The discussed needs are all within the area of interest of multibody dynamics.
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4 Preparation of the multibody dynamics course

An instructor willing to organize a multibody dynamics course will face different
choices and options. The following items summarizes some of the main identified
options.

• Prerequisites
Multibody dynamics is an advanced topics. Students taking a course in this dis-
cipline should have a background in calculus, physics and machinery dynamics.
Computer programming skills are also required. Knowledge of numerical analy-
sis concepts would be preferable.

• Kinematic formulation and dynamic principles
In multibody dynamics there is a wide choice of generalized coordinates (e.g.
Euler angles, Cardan angles, Euler parameters, Denavit-Hartenberg, dual num-
bers,...) and methodologies for the systematic description of kinematic con-
straints (e.g. method of constraints, loop-closure equations,...)in mechanical sys-
tems.
Moreover, the equation of dynamics may be deduced from different approaches
(Newton-Euler, Lagrange, Gibbs-Appell, Jourdain, Gauss,...). Which kinematic
formulation and dynamic principle is the most effective for teaching? Although
this is a key question a definite answer cannot be given, and the final choice
depends on the instructor’s personal judgement and preferences. However, the
teaching of dynamic formulations adopted in commercial software is recom-
mended, at least in introductory courses. The student will have a better under-
standing of the theoretical bases and limitations of the software.
In the bibliography a list of textbooks dedicated to multibody dynamics is in-
cluded [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30]. Likely the list is far to be exhaustive. However, it is a good starting point.
A perspective on rigid multibody dynamics theory is presented in [16, 46].

• Course length
How many hours are required to teach basic multibody dynamics course for grad-
uate students?
According to the authors’ experience, 45 hours distributed in 15 lectures (2 lec-
tures each week) should be enough. For experienced engineers, three days in-
tensive course seems a reasonable length. In this case the instructor concentrates
mostly on theory and numerical methods and less on programming.

• Preparation of material to be distributed
Homework assignements and computer programming tasks should be clearly
stated in handouts. Reference to the equations in textbooks will help the students.
The reference to papers taken from technical literature may be useful when deal-
ing with advanced topics.

• Computer programming
The students must have normal skills of computer programming in a higher level
language of their choice.
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They should be required to develop software with the following modules: data in-
put and output, automatic build up of equations and numerical solution. Through
the computer programming of a multibody dynamics methodology the students
usually reach a deep understanding of the subject. For this reason computer pro-
gramming is strongly recommended in basic multibody dynamics classes. The
instructor can make available pieces of code that the students may use during the
developement of their own software. This will help the students not to get lost in
coding the all software, but to concentrate on the overall structure of the program.
Guidelines on the input/output of data and on the overall structure of the code
should also be discussed by the instructor.
The students should also be encouraged to use professionally tailored linear al-
gebra and numerical integration subroutines available in packages such as LA-
PACK, IMSL, NAG, ODEPACK, etc.

• Use of commercial multibody dynamics software
At university level, how much emphasis should be given to the teaching of com-
mercial software? Also in this case there are different answers. Some teachers
argue that the students should be educated for a correct use of commercial soft-
ware. Since user’s interface and capabilities of a software changes almost every
year, other teachers, during instruction, put more emphasis on the theoretical part
of the methodology rather than on the practical use of the software.
We believe that both aspects are relevant. The current trend is for the development
of software with friendly user’s interface. Thus an engineer can make himself fa-
miliar very quickly with the solid modeling and multibody dynamics software.
Many companies offer specialized training on the specific software being used
at their site. This training usually focus much more on the practical use of the
software and less on its theoretical bases or limitations. The training offered at
university level should involve a type of knowledge valid in the long term. Stu-
dents are usually attracted by the use of simulation tools and less by the theory.
Thus a teacher must search for a compromise between the instruction of the use
of commercial software and the teaching of multibody dynamics theory.

5 The ingredients of a basic course in multibody dynamics

The research in analytical mechanics and computational dynamics provides many
approaches for the systematic and computerized dynamic analysis of machine sys-
tems. None of the techniques available can be considered a priori the best one. Thus,
the advantages and disadvantages of each technique should be evaluated by the in-
structor.

In the following sections a brief overview is offered.
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5.1 The choice of coordinates

A multibody system is constituted of a number of parts, subject to interconnections
and constraints of various kind1. There are several ways of representing a rigid body
in space, however a system of coordinates must give at any time a unique represen-
tation of the configuration and displacements of the multibody system.

If δq1, δq2, . . . , δqn are arbitrary infinitesimal increments of the coordinates in
a dynamical system, these will define a possible displacement if the system is holo-
nomic, while, for non-holonomic systems, a certain number, say m, of equations
must be satisfied between them in order that they may correspond to a possible dis-
placement.

The number
F = n−m (1)

is the number of degrees-of-freedom of the system [31].
Hence, system of coordinates can be classified in

• independent coordinates, when n = F ;
• dependent coordinates, when n > F .

Independent coordinates determine only the position of some parts. The positions
of the remaining parts must be numerically computed solving a nonlinear system of
equations with multiple solutions. Thus, independent coordinates are not suitable
of unequivocally determine the position of the multibody system. Another problem
involved with the use of independent coordinates is the variation of F during simula-
tion. This is not a remote possibility and may happen, for instance, in linkages with
particular dimensions or when modeling stiction in kinematic pairs.

The most common types of coordinates currently used to describe the motion of
multibody systems are:

- Relative coordinates.
The position of each element is defined with respect to the previous one (e.g.
Fig. 3). These coordinates allow numerical efficiency due to their reduced num-
ber, but lead to small order and expensive to evaluate dense matrices. They are
specially suited for open kinematic chain systems. The control of movement be-
tween adjacent parts is easy. The choice of variables requires a preprocessing,
whereas a postprocessing is needed to determine the absolute motion of all the
parts. The set of coordinates used by the well known Denavit-Hartenberg nota-
tion [35] belong to this cathegory. Noteworthy multibody dynamics formulations
based on relative coordinates are reported in [17, 32].
Often dual numbers algebra is used to express the relative motion between two
adjacent links. Although unfamiliar to most engineers, dual algebra is a powerful
tool for kinematic analysis. Dual numbers were proposed by Clifford (1873), but
the first engineering publications were due to Denavit (1958) [35], Keler (1959)
[36], Yang (1963) [37] and Yang and Freudenstein (1964) [38].

1 For the sake of simplicity, only rigid parts and planar systems will be herein considered.
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At the textbook level, the works of Dimentberg [41], Beyer [40] and Fischer
[34] are excellent introductory texts to the topic. Recent reviews of dual algebra
kinematics are due to Wittenburg [42] and Angeles [43].

- Cartesian generalized coordinates.
The absolute position of each body is independently located by a set of Cartesian
generalized coordinates (3 for planar motion, 6 for spatial motion). Kinematic
constraints between bodies are then introduced as algebraic equations among
coordinates.
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Constraint expressions are numerous, but involve only the absolute coordinates
of adjacent parts. (e.g. Fig. 4). With the purpose of avoiding singular configura-
tions, some authors (e.g. [12, 14, 17, 24, 28]) prefer the definition of the spatial
attitude of a body in terms of Euler parameters (4 coordinates) instead of Euler
angles (3 coordinates).
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Computer codes using these coordinates require only a minimal amount of pre
and post processing. A substantial number of nonlinear constraint equations is
involved. Coefficient matrices are large but sparse. It is advisable to take advan-
tage of this condition in order to increase the numerical efficiency of the code.
There are difficulties in prescribing the relative motion between adjacent bodies.
The computer implementation is modular and library of components and stan-
dard joints can be defined and used in assembling a model. These coordinates
are being used by general purpose dynamic simulation codes such as ADAMS
[33] and DADS [14].

- Natural coordinates. Originally proposed by de Jalón and his coworkers, these
coordinates are made by the Cartesian coordinates of a series of basic points of
the mechanism. The points are chosen on the basis of the following criteria [18]:
1. Each link must have at least two basic points.
2. A basic point must be located at the center of revolute kinematic pairs. The

point is shared by the two kinematic elements.
3. In a prismatic pair one point is positioned on the line of action of the relative

motion among the two kinematic elements. The other point is attached on
the second kinematic element.

1

2 3

4A
0

A

B
C

a
1 a

2

Fig. 5. Example of natural coordinates

4. Other points whose motion needs to be monitored can be chosen as basic
points.

Fig. 5 shows the slider-crank mechanism modeled with natural coordinates.

Due to the elimination of angular coordinates, the number of natural coordinates
required for the analysis is usually less than the number of Cartesian generalized
coordinates.

de Jalón and Bayo [18] reported a thoughful discussion between these types of
coordinates and their influence in the simulation process.

5.2 The modeling of kinematic constraints

The convenience of using sets of dependent coordinates has been already stated.
These are related by the equations of constraints of the form
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Ψi (q1, q2, . . . , qn) = 0, (i = 1, 2, . . . , n) (2)

Ψj (q1, q2, . . . , qn, t) = 0, (j = 1, 2, . . . , nt) (3)

Equations (2) are the spatial or scleronomic constraints because only the space vari-
ables q appear as arguments. Equations (3) are said driving or rheonomic constraints
because also the temporal variable t does appear explicitly.

Each multibody technique has a distinctive feature in the automatic generation
and assembly of kinematic constraint equations. The algebraic structure of the con-
straint equations depends on the type of coordinates implemented.

The conditions used to generate the equations of constraints depend also on the
type of coordinates used. For some set of coordinates previously discussed the con-
straint equations for the kinematic modeling of a slider-crank are reported in the
following.

When relative coordinates {q} =
{
θ1 θ3 s4

}T
are used, loop closure conditions

are often imposed. For example, with reference to the nomenclature of Fig. 3, the
following equations can be written2

Ψ1 ≡ a1 sin θ1 − a2 sin θ3 − s4 = 0 (4)

Ψ2 ≡ a1 cos θ1 + a2 cos θ3 = 0 (5)

Let ai, αi, θi, si be the Denavit-Hartenberg parameters, and

α̂i = αi + εai (6)

θ̂i = θi + εsi (7)

their dual counterparts (ε2 = 0).
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With reference to Fig. 6, the links coordinate-transformation matrix takes the
form [34]
2 With this approach, the coordinate θ2 is not involved.
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[
T̂
]i

i+1
=

⎡⎣ cos θ̂i − cos α̂i sin θ̂i sin α̂i sin θ̂i

sin θ̂i cos α̂i cos θ̂i − sin α̂i cos θ̂i

0 sin α̂i cos α̂i

⎤⎦ (8)

The closure condition of the slider-crank chain is expressed by the matrix product[
T̂
]1

2

[
T̂
]2

3

[
T̂
]3

4

[
T̂
]4

1
= [I] (9)

where [I] is the unit matrix.
The constraint equations (4) and (5) follow by equating appropriate elements of

the final matrix products.
Using Cartesian generalized coordinates, with reference to the nomenclature of

Figure 4, the scleronomic constraints are expressed by the following equations

Ψ1 ≡ X
(1)
A0

−X
(4)
A0

= 0 (10)

Ψ2 ≡ Y
(1)
A0

− Y
(4)
A0

= 0 (11)

Ψ3 ≡ X
(2)
A −X

(3)
A = 0 (12)

Ψ4 ≡ Y
(2)
A − Y

(3)
A = 0 (13)

Ψ5 ≡ X
(3)
B −X

(4)
B = 0 (14)

Ψ6 ≡ Y
(3)
B − Y

(4)
B = 0 (15)

Ψ7 ≡ Y
(4)
B = 0 (16)

where X(i)
P , Y

(i)
P are the absolute coordinates of point P on the ith body. Such coor-

dinates are related to the generalized Cartesian coordinates by the transform{
X

(i)
P

Y
(i)
P

}
=

[
cos q3i − sin q3i

sin q3i cos q3i

]{
x

(i)
P

y
(i)
P

}
+

{
q3i−2

q3i−1

}
(17)

Using the natural coordinates (see Fig. 5, A0, A, B and C are basic points. The

coordinates of A0 and C are fixed and known. Thus, {q} =
{
XA YA XB YB

}T
is

the vector of variable coordinates. The constraints exquations are espressed by the
following equations

Ψ1 ≡ (XA −XA0)
2 + (YA − YA0)

2 − a2
1 = 0 (18)

Ψ2 ≡ (XA −XB)2 + (YA − YB)2 − a2
2 = 0 (19)

Ψ3 ≡ det

∣∣∣∣∣∣
XA0 YA0 1
XB YB 1
XC YC 1

∣∣∣∣∣∣ = 0 (20)

The constraints equations (2) e (3) are differentiated for velocity analysis3

3 Dots denote differentiation w.r.t. time.
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[Ψq] {q̇} = −{Ψt} (21)

and acceleration analysis,
[Ψq] {q̈} = {γ} (22)

where [Ψq] is the Jacobian of the constraint system and

{γ} = − ([Ψq] {q̇})q {q̇} − 2 [Ψqt] {q̇} − {Ψtt} (23)

5.3 Differential equation formulations

5.3.1 Newton-Euler equations

The Newton-Euler treatment is based on the consideration of a free rigid body, in the
sense that, if constrained, the forces of constraint are included.

For each ith (i = 1, 2, . . . , nb) body in the system, this treatment leads to:

• three translational equations of motion of the center of mass

mi {r̈i} = {Fi} (24)

where
- mi is the mass of the body;
- {ri} is the vector which locate the absolute position of center of mass Gi of

the body;
- {Fi} is the vector of the resultant of forces acting on the body;

• three equations which determine the rotational motion of the body

[Ji] {ω̇i} + [ω̃i] [Ji] {ωi} = {τGi
} (25)

where
[Ji] is the inertia matrix;
{ωi} is the angular velocity vector;
{τGi

} is the vector of the resultant of torques computed w.r.t. center of mass
Gi.

5.3.2 Principle of virtual work

The combination of the principle of virtual work4 and d’Alembert principle is ex-
pressed by the equation

{δr}T ([M ] {r̈} − {F}) + {δπ}T ([J ] {ω̇} + [ω̃] [J ] {ω} − {τG}) = 0 (26)

where
4 Lagrange in his Mécanique Analitique used the term Principle of virtual velocities.
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{δr} =
{
{δr1}T

, {δr2}T
, · · · , {δrnb}T

}T

(27)

{δπ} =
{
{δπ1}T

, {δπ2}T
, · · · , {δπnb}T

}T

(28)

[M ] = diag
[
m1 [I3×3] , m2 [I3×3] , · · · , mnb [I3×3]

]
(29)

[J ] = diag
[
[J1] , [J2] , · · · , [J3]

]
(30)

{F} =
{
{F1}T

, {F2}T
, · · · , {Fnb}T

}T

(31)

{τG} =
{
{δτG1}

T
, {δτG2}

T
, · · · , {δτGnb

}T
}T

(32)

{ω} =
{
{ω1}T

, {ω2}T
, · · · , {ωnb}T

}T

(33)

The expression (26) is also known as the variational Newton-Euler equation [14].

5.3.3 Lagrange equations

The Lagrange’s equations of motion are expressed by

d
dt

{
∂T

∂ {q̇}

}T

−
{

∂T

∂ {q}

}T

= {Q} (34)

where

T =
1
2

∑(
mi {ṙi}T {ṙi} + {ωi}T [Ji} {ωi}

)
(35)

is the kinetic energy of the system, and {Q} the vector of generalized forces.
The effect of constraints can be included by using the Lagrage’s multiplier tech-

nique. In this case the equation are applied to the extended form of kinetic energy

T � = T − {λ}T {Ψ} (36)

where {λ} is the vector of Lagrange’s multipliers.

5.3.4 Gauss principle

Gauss’s principle asserts that among all the accelerations {a} that a system of par-
ticles of masses m1, m2,. . ., mnb can have at time t which are compatible with the
constraints, the actual ones {r̈} are those that minimize the quantity

G (r̈) = {r̈ − a}T [M ] {r̈ − a} (37)

where

{ai} =
{Fi}
mi

(i = 1, 2, . . . , nb) (38)

are the accelerations of particles without constraints.
A modern treatment of Gauss principle is reported in [21].



Multibody dynamics in advanced education 361

5.3.5 Gibbs-Appell equations

The Jourdain principle, for a system of particles, can be written in the form

n∑
j=1

[
nb∑

k=1

(F e
k −mkr̈k)

∂r̈k

∂q̈j

]
δq̇j = 0 (39)

where F e
k is the kth external force.

If we let

S =
1
2

nb∑
k=1

mkr̈k · r̈k (40)

then, introduced the quasi coordinates u,

∂S

∂üi
=

nb∑
k=1

mkr̈k · ∂r̈k

∂üi
(41)

and (39) can be rewritten as follows

n∑
j=1

[
∂S

∂üi
−

(
nb∑

k=1

F e
k · ∂r̈k

∂üi

)]
δu̇i = 0 (42)

More concisely, introduced the generalized forces

Qi =
nb∑

k=1

F e
k · ∂r̈k

∂üi
=

N∑
k=1

F e
k · ∂ṙk

∂u̇i
(43)

from (42) one obtains the Gibbs-Appell equations

∂S

∂üi
−Qi = 0 (i = 1, 2, . . . , n) (44)

The extension of the Gibbs-Appell equations to systems of rigid bodies can be found
in textbooks (e.g. [28]).

5.4 Computation of generalized forces

Libraries for the computation of generalized force elements due to external forces
and torques are developed for a ready use when assembling the equations of motion.
The most common element is the spring-damper-actuator.
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5.5 Methodologies of numerical integration

Due to the use of redundant set of coordinates, a differential-algebraic equations
(DAE) system of differential index 3 is composed of

{Ψ(q, t)} = 0 (45)

together with Eqs. (22), (23) and

[M ] {q̈} + [Ψq]
T {λ} = {Q} (46)

often appear during the modeling process of multibody systems. The presence of
actively controlled components may also require DAE for mathematical modeling.

There exists a large amount of literature on computational algorithms on DAE
solving (e.g. [48, 49, 23]) and an exhaustive outline is not herein attempted.

The most straightforward approach requires the reduction of the original DAE
to differential index 1. Thus only the simultaneous integration of Eqs (46) and (23)
is herein considered. Since after numerical integration Eqs. (45) and (22) fail to be
satisfied, the right side of the acceleration constraint is altered as follows

{γ̄} = {γ} − 2α {Ψ} − β
{
Ψ̇
}

(47)

where α and β have to be properly chosen. The DAE system to be integrated is thus
transformed to [

M ΨT
q

Ψq 0

]{
q̈
λ

}
=

{
Q
γ̄

}
(48)

The coordinate partitioning method is an historically important and efficient compu-
tational scheme due to Wehage and Haug [47].

The set of coordinates q ∈ �n is partitioned into two sets v ∈ �F and u ∈ �m

of independent and dependent coordinates, respectively. Thus, by definition, the sub-
Jacobian [Ψu] is non singular. Based on this partitioning and the DAE equations can
be rewritten in the form5

[Mvv] {v̈} + [Mvu] {ü} + [Ψv]T {λ} = {Qv} (49)

[Muv] {v̈} + [Muu] {ü} + [Ψu]T {λ} = {Qu} (50)

{Ψ (u, v)} = 0 (51)

[Ψu] {u̇} + [Ψv] {v̇} = 0 (52)

[Ψu] {ü} + [Ψv] {v̈} = {γ} (53)

The non singularity of [Ψu] and the implicit function theorem guarantee that {u} con
be locally computed as a function of {v}, i.e.

{u} = {h(v)} (54)

With this the solution of the DAE system is reduced to a set of ODE system through
the sequence of steps listed below

5 It is assumed that the Jacobian [Ψq] has full row rank.
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1. Partition the vector {q} of coordinates;
2. Determine {u̇} and {u} at time t by means of Eqs. (52) and (54), respectively;
3. Solve Eqs. (49), (50, (53) w.r.t. {ü}, {v̈} and {λ};
4. Integrate and compute {u}, {v}, {u̇}, {v̇} at time t+∆t

A critical review of different dynamic formulations is offered in [50].
In order to reduce the DAE system to an ordinary differential equations (ODE)

the elimination of the Jacobian matrix Ψq of the constraint equations from (46) is
necessary. This approach offers the following advantages:

• The elimination of Lagrange’s multipliers when solving equations:
• The possibility to partition the entire set of generalized coordinates into indepen-

dent variables and dependent ones;
• The transform of the DAE system into a ODE gives the opportunity of a wider

choice of numerical integration subroutines;
• Mechanical systems with a redundant number of constraints or with changing

d.o.f. can be analysed.

For this purpose it is required to introduce a minimum set v of F independent co-
ordinates. Let us append to the constraint vector {Ψ} the equations {Φ} that can be
established between v and q. Thus, we obtain

{Γ} =
{

Ψ(q)
Φ(v, q)

}
= 0 (55)

The time derivative of (55) leads to

[Γv] {ṗ} + [Γq] {q̇} = 0 (56)

If we let
[V ] = − [Γq]

−1 [Γv] (57)

one obtains
{q̇} = [V ] {v̇} (58)

When there is not any explicit dependence on time of constraints equations, the fol-
lowing orthogonality condition is deduced

[Ψq] [V ] = 0 (59)

and the accelerations q̈ can be expressed in the form

{q̈} = [V ] {v̈} +
[
V̇
]
{v̇} (60)

Premultiplying both sides of the dynamic equation of system (46) and taking into
account (59) and (60), the vector of Lagrange’s multipliers is eliminated from the
differential equations of equilibrium and the following ODE is obtained

[V ]T [M ] [V ] {v̈} = [V ]T {Q} + [V ]T [M ]
[
V̇
]
{v̇} (61)
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The matrix [V ] is not unique. The singular value decomposition algorithm [51] and
the QR decomposition [52] are often used. In particular, when using the singular
value decomposition, the Jacobian matrix is decomposed in the form

[Ψq]
T =

[
[Wd] [Wi]

] [ [Λ1]
[0]

]
[U ]T

= [Wd] [Λ1] [U ]T , (62)

and
[V ] = [Wi] . (63)

When using the QR decomposition, the Jacobian matrix is decomposed in the form

[Ψq]
T =

[
[Q1] [Q2]

] [ [R1]
[0]

]
= [Q1] [R1] , (64)

and
[V ] = [Q2] . (65)

5.6 Interdisciplinary effects

The teaching of multibody dynamics involves disciplines like numerical analysis
and computer graphics. Moreover, as previously mentioned, the knowledge of the
particular field where multibody dynamics is being applied is required for a correct
interpretation of results. The applications of multibody dynamics in human move-
ment analysis and biomechanics are growing. This demonstrate the usefulness of
multibody dynamics instruction in engineering curricula such as biomedical, control
and computer science.

5.7 Computer programming and code organization

A moderate exposure of the student in computer programming of multibody dynam-
ics algorithms seems appropriate for an effective learning. In order to reduce the
burden of computer programming the instructor can make available to the students
software modules for different main functions required to a multibody dynamics
software. Thus the task of the student reduces to the correct assembly of parts and
execution of the entire program. In some cases the instructor may encourage the in-
troduction of improvements such as constraints stabilization or the testing of different
integration algorithms settings.

The understanding of the overall structure of a multibody dynamics software (see
Figure 7) and of basic functioning of its modules surely strength the knowledge of
multibody dynamics theory and of the limits of the models developed.
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Enter bodies geometry and kinematic
data
Enter spring-damper-actuator data
Enter force data
Define analysis mode
Input data consistency check

PRE-PROCESSOR

Printout alphanumeric results
Plot curves
Execute animations

POST-PROCESSOR

Assembly constraint equations and Jacobian  matrix
Assembly kinematic analysis vectors
Assembly inertia matrix
Identify and eliminate redundant constraints
Execute the type of analysis required
(kinematic, inverse dynamics, forward dynamics)

KINEMATIC AND DYNAMIC ANALYSIS

Fig. 7. Computational flow of a multibody dynamics simulation software

5.8 Home assignements and projects

In multibody dynamics instruction, the theoretical instruction and the practice can be
variously combined. Practice in the form of homeworks and medium term projects
are strongly recommended. At the conclusion of each theory topic, the instructor
should require the students to work out autonomously by hand, or with the use of
appropriate software tools, applications of the explained theory.

6 The author’s experience

The first author (E.P.) recently introduced a course on multibody dynamics in the
engineering curricula at Università di Roma Tor Vergata. The curricula were compli-
ant with the Bologna agreement. The course is currently mandatory for fourth year
mechanical and automatic control engineering students. This section describes some
of the choices and may offer guidelines for similar initiatives.
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6.1 Course syllabus

The method of constraints for planar kinematic analysis. Revolute, prismatic, gear
and cam pairs are considered together with other 2 degrees-of-freedom types of con-
straints. The automatic assembly of the systems of equations for position, veloc-
ity and acceleration analysis. Iterative solution of systems of non linear equations.
Geometry of masses. The principle of virtual work and Lagrange’s equations. Dy-
namics of planar systems. Systematic computation and assembly of mass matrix.
Computation of planar generalized forces for external forces and for actuator-spring-
damper element. Simple applications of inverse and forward dynamic analysis. Nu-
merical integration of first-order initial-value problems. The method of Baumgarte
for the solution of mixed differential-algebraic equations of motion. The use of co-
ordinates partitioning, QR and SVD decomposition for the orthogonalization of con-
straints. Kinematics of rigid bodies in space. Reference frames for the location of
a body in space. Euler angles and Euler parameters. The formula of Rodrigues.
Screw motion in space. Velocity, acceleration and angular velocity. Relationship
between the angular velocity vector and the time derivatives of Euler parameters.
Kinematic analysis of spatial systems. Basic kinematic constraints. Joint definition
frames. The constraints required for the description in space of common kinematic
pairs (revolute, prismatic, cylindrical, spherical). Equations of motion of constrained
spatial systems. Computation of spatial generalized forces for external forces and for
actuator-spring-damper element. Computation of reaction forces from Lagrange’s
multipliers.

Considered the introductory level of the course and the lack of funds for the
renting of licenses, hands-on practice with multibody dynamics commercial software
was not included in the course.

6.2 Homework and computer assignements

The homeworks requested are the development of computer codes for:

- the kinematic analysis of planar mechanisms with lower pairs
- the forward dynamic analysis of planar mechanisms with lower pairs, spring-

damper-actuator elements, external forces;
- dynamic analysis of a 3D mechanical system composed of two rigid bodies with

revolute, prismatic or spherical pairs.

The students were also requested to document their code to the best of their capa-
bilities. The time allowed for each project was about three weeks. For this purpose,
different pieces of software modules were made available to the students.

6.3 Course grading

The overall grading is based for 50% on the quality of the computer assignements
handed during the course, 25% from written test and a 25% on a brief oral exam on
different parts of the theory.
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6.4 Response and comments from the students

The students seems enjoying the study of multibody dynamics. What they like most
is the sistematicity of the approach. The computer oriented modeling of mechanical
systems makes them more confident about the formal correctness of the governing
equations deduced. Most of the complains arise from the limited time allowed for
computer homework. In fact, they claim that the theory is easy to learn and under-
stand, but debugging of the software takes most of their time. They find also useful
the experience made with specialized software for linear algebra and numerical in-
tegration of differential equations. The software tools usually chosen for computer
programming were Fortran90, C++, Matlab, Maple and Mathematica.

7 Needs

1. Increase the number of credits allocated for multibody dynamics courses in en-
gineering curricula.

2. Multibody dynamics computer codes with open architecture.
3. Standardised input-output of data between multibody dynamics codes.
4. High-level programming languages geared toward multibody dynamics pro-

gramming (mixed capabilities: numerical and symbolical).
5. Multibody dynamics software with a pre and post processing capabilities using

web browsers only.
6. Centralized web resources for the exchange of informations between teachers,

reserachers, students.

8 Conclusions

Different issues involved in multibody dynamics training of engineering students
were discussed. On the basis of their experience, the authors recommend that multi-
body dynamics courses should be preferentially offered during or after the third year
of an engineering curriculum. This will ensure a minimum of background. The ques-
tion on the most effective syllabus is still open. It would be interesting to compare
the proficiency in modeling mechanical systems of the students exposed to different
multibody dynamics methodologies.

The inclusion of more advanced multibody dynamics topics in engineering cur-
ricula seems is not widespread in European universities. For instance flexible multi-
body dynamics is still perceived like a research topic rather than an established disci-
pline. The scarsity of textbooks, usually very expensive, and of ready-to-use didactic
material does not help the diffusion of courses. Due to the lack of funds, the renting
and maintenance of commercial software licenses is also a problem. However, from
the didactic point of view, the development of open source multibody dynamics soft-
ware, made freely available to teachers and students or under a nominal fee, would
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greatly help the spread of the culture of multibody dynamic in the engineering cur-
ricula. Centralized web resources, where students and educators may find links to
reports, tutorials, software on the different branches of multibody dynamics, are also
useful for the above purposes.

The efforts in the developement of didactic tools and teaching methodologies in
the field of multibody dynamics are worthwhile. Beside the already mentioned ad-
vantages of informed software users, the research in multibody dynamics will surely
benefit of a large base of graduate students familiar with the basic techniques.
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