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THE VARIETIES OF MATHEMATICAL EXPLANATION0

1. BACK TO THE FACTS THEMSELVES

When William James was faced with the task of writing in an encompassing
way on religion he emphasized the variety of phenomena that fell under the
topic and warned against the dangers of oversimplification:

Most books on the philosophy of religion try to begin with
a precise definition of what its essence consists of. Some
of these would-be definitions may possibly come before us
in later portions of this course, and I shall not be pedantic
enough to enumerate any of them to you now. Meanwhile
the very fact that they are so many and so different from one
another is enough to prove that the word “religion” cannot
stand for any principle or essence, but is rather a collective
name. The theorizing mind tends always to the oversimplifi-
cation of its materials. [...] Let us not fall immediately into a
one-sided view of our subject, but let us rather admit freely
at the outset that we may very likely find no one essence,
but many characters which may alternately be very impor-
tant to religion. (William James, The varieties of religious
experience, 1902, p. 31)

If we substitute ‘explanation’ for ‘religion’ in the above quote the result cap-
tures our point of view about the philosophy of explanation. Contemporary
work in scientific explanation has pursued to a great extent the project of a
single unified account of the nature of explanation. Unfortunately the drive
towards unification has also ignored an important number of phenomena.
In particular, many theories of scientific explanation do not address mathe-
matical explanation, either because they rule mathematical explanations out
of court from the outset or because they hold that their account of expla-
nation automatically takes care of mathematical explanation. Most of the
time, mathematical explanation is simply not mentioned. This is a symptom,
following James, of the dangers of the theorizing mind and like him we pro-
pose to begin “by addressing ourselves directly to the concrete facts”. Of
course, it is not our intention to downplay the importance of the work that
has been pursued in the area of scientific explanation and which has yielded
many remarkable insights. We do not even pass judgment on whether a more
careful analysis of concrete scientific case studies of explanatory activity in
the empirical sciences might have been beneficial for the subject as a whole.
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However, our topic demands a different approach. Indeed, in the case of
mathematical explanation we cannot rely, as people do in the natural sci-
ences, on well-entrenched intuitions concerning paradigmatic examples of
explanations.

In this paper we will begin with some general methodological remarks
about mathematical explanations. We will then point out that attention to
mathematical practice reveals the presence of a great variety of mathemati-
cal explanations. This realization affects two important aspects of the dis-
cussion of the nature of mathematical explanation. First of all, most of the
traditional debates (see Mancosu 1999, 2000, 2001) have focused on the op-
position between explanatory and non-explanatory proofs. However, there
are mathematical explanations that do not come in the form of proofs and
this has in fact been recognized by several scholars. Second, the variety of
mathematical explanations challenges the current philosophical accounts of
mathematical explanation, i.e. those of Kitcher and Steiner. As detailed dis-
cussion of case studies is necessary to see the limitations of such accounts,
in the second part of the paper we restrict our focus to Steiner’s theory and
to the discussion of an example of an explanatory proof which, we claim,
Steiner’s theory cannot account for.1

2. MATHEMATICAL EXPLANATION OR EXPLANATION IN
MATHEMATICS?

In the above we have been using freely the expression “mathematical expla-
nation”. The use was intentionally ambiguous and we should now clarify the
source of the ambiguity. “Mathematical explanation” could mean a) expla-
nations as they are given in mathematics; or, b) explanations that make use of
mathematics. The two definitions characterize different classes. In the first
case we intend to refer to explanatory practices that take place within the
realm of mathematics itself. In the second case, this would include, among
other things, mathematical explanations of physical facts which clearly do
not belong to the first class.

The second kind of explanation is part of a large problem area concern-
ing mathematical applications. Shapiro recently remarked that “a scientific
‘explanation’ of a physical event often amounts to no more than a mathe-
matical description of it.” His favorite example is given in the form of an
anecdote:

The story relies on the unreliable memory of more than one
person, but the situation is typical. A friend once told me
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that during an experiment in a physics lab he noticed a phe-
nomenon that puzzled him. The class was looking at an os-
cilloscope and a funny shape kept forming at the end of the
screen. Although it had nothing to do with the lesson that
day, my friend asked for an explanation. The lab instructor
wrote something on the board (probably a differential equa-
tion) and said that the funny shape occurs because a function
solving the equation has a zero at a particular value. My
friend told me that he became even more puzzled that the
occurrence of a zero in a function should count as an expla-
nation of a physical event, but he did not feel up to pursuing
the issue further at the time. (Shapiro 2000, p. 34)

Shapiro’s friend had all the rights to be puzzled. After all, it could be claimed
that the explanation why the equation in question has a zero at a particular
value rests on the physical situation and not vice versa. Of course, the equa-
tion has its zeros independently of any physical reality and thus the last re-
mark makes sense only under the assumption that the equation “represents”
the physical reality. But this only points to the fact that without a general
account of how mathematics hooks on to reality the role of mathematical
explanations in physics is bound to remain mysterious:

Clearly, a mathematical structure, description, model, or the-
ory cannot serve as an explanation of a non-mathematical
event without some account of the relationship between math-
ematics per se and scientific reality. Lacking such an ac-
count, how can mathematical/scientific explanations succeed
in removing any obscurity - especially if new, more trou-
bling obscurities are introduced? (Shapiro 2000, p. 35; cf.
p. 217)

This is a daunting problem indeed but fortunately we will not have to
discuss it here, as our major aim is to investigate the first sense of mathe-
matical explanation. Even with this restriction in place, things are far from
easy. “Explanation” is a notoriously ambiguous word and this ambiguity
shows up in mathematics just as much as in ordinary parlance. We can ex-
plain the rules of a certain calculus, the meaning of a symbol, how to carry
out a construction, how to fix or set up a proof. These are all “instructions”
on how to master the tools of the trade. There are however deeper uses of
“explanation” in mathematics which call for an account of the mathematical
facts themselves, the reason why. The distinction we just drew between “in-
structions” and deeper senses of “explanation” should be no more puzzling
than the equivalent one in physics. While doing physics we might ask for an
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explanation of a certain notation or of how to describe a certain phenomenon
by means of a new formalism. These uses of explanation are of a different
category from that involved in explaining, for instance, why salt dissolves in
water.

3. THE SEARCH FOR EXPLANATION WITHIN MATHEMATICS

In addition to “explanation” mathematicians and philosophers use a cluster
of expressions to refer to this phenomenon. Here is an illustrative sample
of expressions we found in the mathematical and philosophical literature in
which the search for explanations is sometimes characterized as a search for:

(a) “the deep reasons”
(b) “an understanding of the essence”
(c) “a better understanding”
(d) “a satisfying reason”
(e) “the reason why”
(f) “the true reason”
(g) “an account of the fact”
(h) “the causes of”

Of course, we are not claiming that the above expressions have the same
intension. However, we maintain that the cluster of notions we indicated is
not accidentally related.

That mathematicians seek explanations in their ordinary practice and
cherish different types of explanations is for us, after working on this topic
for so long, so obvious as to require almost no proof. However, some of the
philosophical literature on the topic has denied that there are mathematical
explanations and thus it will be useful here to provide some examples of
“explanatory” talk in mathematical practice.

First of all, the search for explanations is often the drive towards mathe-
matical research. What motivates mathematicians to look for explanations?
It is the old desire to know the reason why. This desire might be awakened
by different factors, a sample of which is given by the following illustrative
examples.

1. A number of mathematical phenomena are perceived as too complicated.
A desire to bring order in the “realm of facts” will drive the mathematician
to look for an explanation or a deeper explanation of what is going on.

Example 1. In the article “On the Kummer solutions of the hypergeo-
metric equation” Reese T. Prosser describes his aim as follows:
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One of the oldest, and still one of the most interesting ap-
plications of group theory arises in the study of the trans-
formations of an ordinary differential equation. If we know
that a given differential equation admits a group of transfor-
mations, then we know that the solution set must admit that
same group of transformations, and we can deduce proper-
ties of all the solutions from the properties of any one of
them. A case in point is offered by the celebrated hyperge-
ometric equation whose solutions include many of the most
interesting special functions of mathematical physics [. . .]
In 1836 Kummer published a set of six distinct solutions
of the hypergeometric equation. [. . .] A glance at the list
of these solutions reveals a rather complicated set of rela-
tionships which pleads for some simple explanation. We
show here that the Kummer solutions are related by a finite
group of transformations which serve to explain their rela-
tionships and to exemplify the use of transformation groups
in the study of differential equations. (p. 535)

2. Sometimes it is a desire of explaining “resemblances”, mysterious or
remarkable coincidences, as well as striking or deep analogies.

Example 2a. In “Eine Verbindung zwischen den arithmetischen Eigen-
schaften verallgemeinerter Bernoullizahlen”, Kurt Girstmair writes:

Let m ≥ 1, n ≥ 2 be integers. There are two kinds of gen-
eralized Bernoulli numbers which occur in the arithmetic of
Abelian number fields: on the one hand Leopoldt’s num-
bers [. . .], on the other hand, the cotangent numbers [. . .]
For both kind of numbers theorems of the v. Staudt-Clausen
type exist, which describe their (ideal) denominators. These
theorems resemble each other in several respects, a fact that
has not been explained so far. One aim of this paper is to
supply this explanation. (p. 47)

Example 2b. In the article “On the Betti numbers of the moduli space
of stable bundles of rank two on a curve” Bifet, Ghione and Letizia say:

The aim of this paper is to begin exploring a new algebra-
geometric approach to the study of the geometry of the mod-
uli space of stable bundles on a curve X over a field k. This
approach establishes a bridge between the arithmetic ap-
proach of G. Harder and M.S. Narasimhan and the gauge
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group approach of M.F. Atiyah and R.H. Bott. In particu-
lar, it might help explain some of the mysterious analogies
observed by Atiyah and Bott. (p. 92)

3. Very often the mathematical fact to be explained is understood from a
certain point of view but one looks for alternative explanations. When math-
ematicians speak about explanations they often modify the phrase by speci-
fying the nature of the explanation: analytical, algebraic, group-theoretical,
combinatorial, categorical, geometric, function-theoretic, measure-theoretic,
number-theoretic, probabilistic, cohomological, representation-theoretic, to-
pological etc. In some cases several of these goals are pursued at once.

Example 3. Iku Nakamura in “On the equations xpxx + yq + zr − xyz = 0”
writes:

We know two strange dualities - the duality of fourteen ex-
ceptional unimodular singularities and the duality of four-
teen hyperbolic unimodular singularities. The first purpose
of this article is to recall and compare them. The second
is to give explanations for the second duality from various
viewpoints. [. . .] In section 5 we give a number-theoretic
explanation for the duality. We see that the duality is es-
sentially the relationship between a complete module and
its dual in a real quadratic field. In section 6 we provide
a geometric explanation for the duality by means of gen-
eral theory of surfaces of class V II0II . In section 7 we give a
lattice-theoretic explanation for the duality. (pp. 281f)

4. However, most of the time explanations are provided for mathematical
facts independently of whether a particular point of view is emphasized.
While sometimes these facts might be “striking” or “curious” in many cases
the explanation is sought whether or not the fact in question might be strik-
ing.

Example 4a. Kubo and Vakil in “On Conway’s recursive sequence” say:

The recurrence a(n) = a(a(n−1))+a(n−a(n−1)), a(1) =
a(2) = 1 defines an integer sequence, publicized by Con-
way and Mallows, with amazing combinatorial properties
that cry out for explanation. We take a step towards unrav-
eling this mystery by showing that a(n) can (and should) be
viewed as a simple ‘compression’ operation on finite sets.
This gives a combinatorial characterization of a(n) from
which one can read off most of its properties. (p. 225)
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Example 4b. Leyendekkers and others in “Analysis of Diophantine proper-
ties using modular rings with four and six classes” write:

A modular ring ZAZ is described, and used together with a
modular ring Z6ZZ and the Pythagorean triple grid, described
earlier, to analyze various diophantine properties and ex-
plain why the area of a Pythagorean triangle can never be
a square.

4. SOME METHODOLOGICAL COMMENTS ON THE GENERAL
PROJECT

It should be obvious from the above that mathematicians seek explanations.
But what form do these explanations take? It is here that two possibilities
emerge. One can follow two alternative approaches: top-down or bottom-
up. In the former approach one starts with a general model of explana-
tion (perhaps because of its success in the natural sciences) and then tries
to see how well it accounts for the practice. In the latter approach one begins
by avoiding, as much as possible, any commitment to a particular theoreti-
cal/conceptual framework. We favor the second approach for the following
reasons. As a rule contemporary accounts of explanation have been devel-
oped within the philosophy of natural science without addressing the speci-
ficity of mathematical explanations. Hence the conceptual resources of those
accounts involving, e.g. the notions of causal connections or laws of nature
seem inappropriate for capturing explanations in mathematics. Furthermore,
even if some more abstract features of those accounts, e.g. construing the
general form of explanations as answers to why-questions could perhaps be
adopted for a theory of mathematical explanations2 proceeding in this way
would mean forcing the evidence from mathematical practice into a prede-
fined mould, thereby narrowing the perspective from the outset and probably
leading to distortions. The same holds for the few philosophical accounts of
mathematical explanation found in the literature (Kitcher, Steiner). Making
either theoretical unification or deformability (in Steiner’s particular sense)
the hallmark of mathematical explanations amounts to the imposition of a
defining characteristic feature on what ought to be counted as “explanation”
in mathematics.3 Proofs, theories, methods etc. which do not satisfy that
definition are then disregarded or discounted – regardless whether they are
indeed taken to be explanatory by working mathematicians!

Thus, in our mind, a fruitful approach would consist in giving a tax-
onomy of recurrent types of mathematical explanation4 and then trying to
see whether these patterns are heterogeneous or can be subsumed under a
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general account. We maintain that mathematical explanations are heteroge-
neous. However, neither giving the taxonomy nor arguing for the previous
claim is what we have set for ourselves in this paper. Rather, we would like
to provide a single case study of how to use mathematical explanations as
found in mathematical practice to test theories of mathematical explanation.
This can be seen, as it were, as a case study of how to show that the variety
of mathematical explanations cannot be easily reduced to a single model. In
what follows we will thus look at Steiner’s theory of explanation and discuss
a counterexample to his theory.

5. MARK STEINER ON MATHEMATICAL EXPLANATION

In developing his own account of explanatory proofs in mathematics Mark
Steiner discusses – and rejects – a number of initially plausible criteria for
explanation, i.e. the (greater degree of) abstractness or generality of a proof,
its visualizability, and its genetic aspect which would give rise to the discov-
ery of the result. In contrast, Steiner takes up the idea “that to explain the
behavior of an entity, one deduces the behavior from the essence or nature
of the entity” (Steiner 1978, p. 143). In order to avoid the notorious difficul-
ties in defining the concepts of essence and essential (or necessary) property,
which, moreover, don’t seem to be useful in mathematical contexts anyway
since all mathematical truths are usually regarded as necessary, Steiner intro-
duces the concept of characterizing property. By this he means “a property
unique to a given entity or structure within a family or domain of such enti-
ties or structures” (Ibid.), where the notion of “family” is taken as undefined.
Hence what distinguishes an explanatory proof from a non-explanatory one
is that only the former involves such a characterizing property. In Steiner’s
words: “an explanatory proof makes reference to a characterizing property
of an entity or structure mentioned in the theorem, such that from the proof
it is evident that the result depends on the property” (Ibid.). Furthermore, an
explanatory proof is generalizable in the following sense. Varying the rel-
evant feature (and hence a certain characterizing property) in such a proof
gives rise to an array of corresponding theorems, which are proved – and ex-
plained – by an array of “deformations” of the original proof. Thus Steiner
arrives at two criteria for explanatory proofs, i.e. dependence on a character-
izing property and generalizability through varying of that property (Steiner
1978, pp. 144, 147).

The following proof of the irrationality of
√

2 given by Steiner illustrates
the two criteria.5 Relying on the fact that each number has a unique prime
power expansion (the Fundamental Theorem of Arithmetic) we can argue
thus.
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Assume that 2 = (a
b )2, i.e. a2 = 2b2. The prime 2 has to appear with an even

exponent in the prime power expansion of a2. And since the same holds
for the prime power expansion of b2, the exponent of 2 in the expansion of
2b2 must be odd. Because of the uniqueness of prime power expansions it
follows that a2 � 2b2 contradicting our assumption.

This proof is explanatory according to Steiner, because it uses – as a
characterizing property of numbers – their prime power expansion. Also,
the proof is generalizable to numbers different from 2, i.e. one can establish
along the same lines the theorem that for any n,

√
n

√√
is either a natural number

or irrational. And generalizing further one can get the analogous result for
the pth root in place of the square root of n.

Steiner’s account has been criticized by Resnik and Kushner. They doubt
the existence of explanatory proofs in general, denying an objective distinc-
tion between explanatory and non-explanatory proofs. But more concretely
they also challenge Steiner’s account by proposing counterexamples, i.e. a
proof that meets his criteria but is not accepted as explanatory by Steiner
himself. And on the other hand Resnik and Kushner claim there are proofs,
namely a certain proof of the intermediate value theorem and Henkin’s proof
of the completeness of first-order logic, which seem to qualify as explanatory
but apparently fail to meet Steiner’s criteria. However, one may ask how well
these instances really work as counterexamples. To begin with, what justifi-
cations are put forward by Resnik and Kushner for the classification of their
examples as indeed (intuitively) explanatory? Besides simply claiming that
these proofs “would seem to qualify as explanatory if any do” (Resnik &
Kushner 1987, p. 147), it is contended with some – albeit rather vague –
reference to mathematical/logical practice that Henkin’s proof “is generally
regarded as really showing what goes on in the completeness theorem and
the proof-idea has been used again and again in obtaining results about other
logical systems” (Resnik & Kushner 1987, p. 149). And with respect to the
proof of the intermediate value theorem the authors “find it hard to see how
someone could understand this proof and yet ask why the theorem is true (or
what makes it true)” (Ibid.) and hence it has to be counted as explanatory.
Yet we are not given any hint as to what exactly the explanatory feature(s) of
this proof are supposed to consist in.

For counterexamples to Steiner’s theory to carry real weight they would
have to be much more closely related to mathematical practice. Contrary
to what Resnik and Kushner claim (p. 151), mathematicians often describe
themselves and other mathematicians as explaining. And their judgments
concerning explanatory vs. non-explanatory proofs (and other varieties of



224 J. HAFNER AND P. MANCOSU

explanation in mathematics as the case may be) has to figure as the basic ev-
idence, however subjective or context dependent they may be. Claims to the
effect that certain proofs are explanatory come from within mathematics not
from philosophers of mathematics. Their sources, working mathematicians,
are furthermore precisely identifiable, and the case for explanatoriness will
be even stronger, if a certain proof is put forward explicitly with the aim to
explain a “mathematical phenomenon”, which has been acknowledged for a
long time to be mysterious and puzzling by (a subgroup of) the mathematical
community. A case of mathematical explanation rooted in this way in mathe-
matical practice can justifiably serve as a test case for Steiner’s account. It
certainly cannot be dismissed easily if it should amount to a refutation of that
account. And it is such a test case coming from the work of Alfred Pring-
sheim in the theory of infinite series which we want to present and discuss in
the following.

6. KUMMER’S CONVERGENCE TEST

The following exposition is adapted from Pringsheim (1916). In order to
make it more readable and clearly bring out the points which are relevant in
our context we have simplified Pringsheim’s account by stating some results
in a slightly less general form than they could be formulated. But nothing
essential is lost because of that (cf. footnote 7).

Let’s start with some preliminary observations concerning infinite series.
We will confine ourselves to infinite series ∑∞n=1 an of positive terms,6 i.e.
an > 0 for n = 1,2,3, . . . and we will consider different convergence and di-
vergence tests for them. Of fundamental importance are the following com-
parison tests.

(1) If ∑cn is a convergent series such that the terms of ∑an satisfy an ≤ cn

for all n (or at least for all values of n greater than some fixed value m), then
∑an is also convergent.

Similarly we have:

(2) If ∑dndd is a divergent series such that the terms of ∑an satisfy dndd ≤ an

for all n (or at least for all values of n greater than some fixed value m), then
∑an is also divergent.

It turns out that the comparison tests are often easier to work with in practice
when they are stated in a slightly different form. In order to simplify the
exposition we will for the remainder of this section adopt the convention
to denote arbitrary infinite series by ‘∑an’, convergent ones by ‘∑cn’, and
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divergent ones by ‘∑dnd ’. Let CnCC = 1
cn

, Dn = 1
dnd and let g and G be two positive

numbers (g can be thought of as arbitrarily small and G as arbitrarily large).
Now suppose for all n (or at least for all n ≥ m, for some m)

an ≤ G · cn or an ≥ g ·dnd .

Then we have

(3)
1
cn

·an = CnCC ·an ≤ G =⇒== ∑an converges.

and

(4)
1
dndd

·an = Dn ·an ≥ g =⇒== ∑an diverges.

Under the assumption that limn→∞CnCC · an and limn→∞Dn · an exist,7 hence
limn→∞CnCC · an ≤ G < ∞ and limn→∞Dn · an ≥ g > 0, we arrive finally at the
following formulations.

(5) lim
n→∞CnCC ·an < ∞ =⇒== ∑an converges.

(6) lim
n→∞Dn ·an > 0 =⇒== ∑an diverges.

Tests (1) through (6) commonly also known as comparison tests of the 1st

kind arise from a direct comparison of the terms an with cn or dnd . In contrast
comparison tests of the 2nd kind are based on quotients of two consecutive
terms of the series and their comparison. This method is frequently very
convenient since for many series of practical importance the quotient an

an+1

happens to be simpler than the general term an. With our conventions of
denoting convergent and divergent series in place we can state these tests
concisely as follows.

(7) If for all n (or all n ≥ m, for some m) an+1
an

≤ cn+1
cn

, then ∑an converges.

And

(8) If for all n (or all n ≥ m, for some m) an+1
an

≥ dnd +1
dnd , then ∑an diverges.

They easily follow from the direct comparison of terms of the series involved8

and again they can be reformulated in different ways. Simple transforma-
tions of the conditions in (7) and (8) yield an+1

an
≤ CnCC

CnCC +1
and an+1

an
≥ Dn

Dn+1
and

then in turn we get

(9) For all n ≥ m, (CnCC · an

an+1
−CnCC +1) ≥ 0 =⇒== ∑an converges.
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(10) For all n ≥ m, (Dn · an

an+1
−Dn+1) ≤ 0 =⇒== ∑an diverges.

And finally by assuming the existence of the involved limits,

(11) lim
n→∞(CnCC · an

an+1
−CnCC +1) > 0 =⇒== ∑an converges.

(12) lim
n→∞(Dn · an

an+1
−Dn+1) < 0 =⇒== ∑an diverges.

Having established the general form of comparison tests of the 1st and 2nd

kind it now remains to determine concrete examples of convergent and diver-
gent series, ∑cn and ∑dnd , which can be substituted in those tests in specific
applications. For our purposes we don’t need to proceed any further in this
direction, instead we focus our attention on another formulation of a compar-
ison test of the 2nd kind due to Ernst Kummer.9 Letting (Bn) be an arbitrary
sequence of positive numbers Kummer’s test can be stated as follows.

(13) lim
n→∞(Bn · an

an+1
−Bn+1) > 0 =⇒== ∑an converges.

This test is rather striking because of the extreme generality or arbitrari-
ness of the sequence (Bn) occurring in it. Whereas the tests (11) and (12)
above require the use of sequences (CnCC ) and (Dn) which derive, respectively,
from convergent and divergent series, any old sequence (Bn) will do in (13).
Pringsheim calls it a “most remarkable criterion” (Pringsheim 1916, p. 379)
of “indeed surprising generality” (p. VI) that stands in need of explanation or
clarification [Aufklarung] (p. 379). Pringsheim’s opinion was by no means¨
exceptional, many mathematicians must have been similarly puzzled and left
unsatisfied by Kummer’s original proof of his criterion in 1835. As Knopp
notes it wasn’t until 1885 that O. Stolz gave an “extremely simple proof, by
means of which the criterion was first rendered fully intelligible” (Knopp
1928, p. 311, fn. 52). Moreover, even after another 30 years had passed this
criterion was apparently still viewed as an anomaly of sorts defying smooth
integration into the theory of infinite series. Pringsheim notices (in 1916)
that Kummer’s criterion “appeared as totally erratic in other accounts [of
convergence and divergence tests], seemingly lacking any analogue among
the convergence criteria of the 1st kind”10 and he thus aimed at presenting
it “freed from this mysterious isolation” (p. VI). Pringsheim gives two dif-
ferent proofs of it, one explanatory and another one which only “proves the
correctness of the criterion a posteriori in a simpler way” (p. 379). Let’s
begin with the latter; it is essentially due to Stolz and it’s indeed very simple.
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If limn→∞(Bn · an
an+1

−Bn+1) > 0, then there exists a ρ such that from some
stage m on, n ≥ m implies

Bn · an

an+1
−Bn+1 ≥ ρ> 0

hence

(14) Bn ·an −Bn+1 ·an+1 ≥ ρan+1.

Since the difference on the left hand side is thus positive it follows that the
products Bn · an form a monotone decreasing sequence (of positive terms).
So this sequence has a limit, say

lim
n→∞(Bn ·an) = α≥ 0.

If we now add, respectively, the left hand side and the right hand side terms
in inequality (14) from stage m to k we get

(Bm ·am −Bm+1 ·am+1)+ (Bm+1 ·am+1 −Bm+2 ·am+2)+ . . .

+(Bk−1 ·ak−1 −Bk ·ak) ≥ ρam+1 + . . .+ρak

which reduces to

(Bm ·am −Bk ·ak) ≥ ρ(am+1 + . . .+ ak).

Consequently, for k → ∞

(Bm ·am −α) ≥ ρ ·
∞

∑
j=m+1

aj

Which shows that ∑an is indeed convergent. This proof certainly establishes
its result, i.e. it shows that Kummer’s test works. But it fails to explain or
even address the very aspect of this test which makes it so puzzling. – How
come that the CnCC in (11) can be replaced by terms Bn of a completely arbitrary
sequence (as long as they are positive) and we still get a convergence test?
Here is Pringsheim’s explanation.

We first note elementary results concerning the representation of the
terms cn and dnd of convergent resp. divergent series.11 For any ∑cn we
can pick a strictly increasing sequence (MnMM ) of positive numbers satisfying
limn→∞MnMM = +∞ such that

(15) cn =
MnMM −MnMM −1

MnMM ·MnMM −1
.

And conversely, every series whose terms are defined in this way is conver-
gent.
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In case of a divergent series ∑dnd we can find a sequence (MnMM ) as above
such that

(16) dnd =
MnMM −MnMM −1

MnMM −1
.

And conversely, every series whose terms are defined in this way is divergent.
Now let’s assume that for some sequence (Bn) of positive numbers we

have

(17) lim
n→∞(Bn · an

an+1
−Bn+1) > 0.

We have to show that ∑an converges.
Considering ∑bn, where bn = 1

Bn
, there are only two cases possible. Ei-

ther ∑bn converges, i.e. the sequence (Bn) is of type (CnCC ), then ∑an con-
verges because of criterion (11). Or, on the other hand, ∑bn is divergent,
hence (Bn) is of type (Dn) and we can reformulate our assumption (17) thus

lim
n→∞(Dn · an

an+1
−Dn+1) > 0.

This implies that there is a ρ> 0 such that for appropriate m ≥ 1 we have for
all n ≥ m

Dn · an

an+1
−Dn+1 ≥ ρ

equivalently

(18)
1
ρ
·Dn · an

an+1
− 1
ρ
·Dn+1 ≥ 1.

Now, clearly, if∑dndd is divergent then so is∑ρ ·dndd . Hence the terms ρ ·dnd can
be expressed by means of a sequence (MnMM ) according to (16) in the following
way

ρ ·dnd =
MnMM −MnMM −1

MnMM −1

which yields
1
ρ
·Dn =

1
ρ ·dndd

=
MnMM −1

MnMM −MnMM −1
.

By substitution for 1
ρ ·Dn in (18) we get

MnMM −1

MnMM −MnMM −1
· an

an+1
− MnMM

MnMM +1 −MnMM
≥ 1.

Subtracting 1 and multiplying by MnMM gives

MnMM ·MnMM −1

MnMM −MnMM −1
· an

an+1
−MnMM · (1+

MnMM
MnMM +1 −MnMM

) ≥ 0
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that is

(19)
MnMM ·MnMM −1

MnMM −MnMM −1
· an

an+1
− MnMM +1 ·MnMM

MnMM +1 −MnMM
≥ 0.

Yet according to the converse statement following (15) the terms MnMM ·MnMM −1
MnMM −MnMM −1

and MnMM +1·MnMM
MnMM +1−MnMM define terms CnCC = 1

cn
and CnCC +1 = 1

cn+1
such that ∑cn converges.

In other words, (19) can be written in the form

CnCC · an

an+1
−CnCC +1 ≥ 0

from which the convergence of ∑an follows because of (9).
This finishes the proof of Kummer’s test:

lim
n→∞(Bn · an

an+1
−Bn+1) > 0 =⇒== ∑an converges.

According to Pringsheim this proof gives “the true reason why the CnCC which
naturally occur in (5) can eventually be replaced by completely arbitrary
positive numbers Bn” (Pringsheim 1916, p. 379).

Although Pringsheim’s proof of Kummer’s test explains why an arbi-
trary sequence (Bn) occurs in it, it does not by itself solve a further mystery
about Kummer’s test, i.e. its apparent isolation within the general theory of
convergence tests. According to Pringsheim (as already quoted above) Kum-
mer’s test seemed totally erratic because of its surprising generality and be-
cause it completely lacks, as a convergence test of the 2nd kind, any analogue
among the convergence tests of the 1st kind. Pringsheim wants to free it from
this (apparent) isolation and “show how it naturally fits into a systematically
developed general theory”. (Pringsheim 1916, p. VI)12 To be sure, Pring-
sheim’s explanatory proof already achieves something towards this goal of
integration by making fully explicit how this test is connected with the ba-
sic form of comparison tests (9)-(12), but it doesn’t relate it in any way to
comparison tests of the 1st kind. In order to do that and to remove the struc-
tural asymmetry Pringsheim supplies the missing analogue to Kummer’s test
by constructing a test of the 1st kind exhibiting the same extreme general-
ity. What Pringsheim is engaged in here is yet another explanatory project
which goes beyond giving explanatory proofs. Rather, he aims at a “global”
explanation of Kummer’s test by embedding it in a reorganized theory. This
kind of explanatory concern ties in very well with Pringsheim’s approach to
the foundations of complex analysis (cf. Mancosu 2001), and it also shows,
again, that explanations in mathematical practice come in a wide variety. It
certainly deserves to be analyzed in more detail and we refer the interested
reader to part II of the appendix where we provide a derivation of Pring-
sheim’s analogue to Kummer’s test; however, since Steiner addresses almost
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exclusively proofs and their explanatoriness, we will focus in what follows
on Pringsheim’s proof of Kummer’s test.

7. A TEST CASE FOR STEINER’S THEORY

How well can Steiner account for Pringsheim’s explanation? An analysis of
the explanatory nature of Pringsheim’s proof would have to proceed from a
characterizing property of some entity or structure in the result to be proved,
i.e. in Kummer’s convergence test (13). The proof counts as explanatory
according to Steiner only if it makes it evident that the conclusion depends
on this property. But here we already face a major difficulty. All “entities”
in Kummer’s test are generic, no concrete objects are mentioned in it (apart
from the number 0 of course, but the proof is clearly not based on any char-
acterizing property of 0). This generality makes it hard to come up with a
property that uniquely determines some entity within a family of them. In-
deed, the complete arbitrariness of the sequence (Bn) in (13) makes Steiner’s
account come unstuck. It is obvious that this arbitrary sequence (Bn) is the
focus of Pringsheim’s proof. After all, it is the very feature of Kummer’s test
that makes it so puzzling, thus prompting Pringsheim to provide an explana-
tory proof (different from Stolz’s proof which verifies but doesn’t explain the
result). Yet, (Bn) cannot be “characterized” in any way – the imposition of
any constraining property would obviously result in non-arbitrariness! Ann
arbitrary sequence simply cannot be distinguished – qua arbitrary sequence
– within the family of all sequences by any property. That’s just what it
means to be arbitrary. Hence one couldn’t base any proof on a characteriz-
ing property of (Bn) (nor of (an) for that matter, which are equally arbitrary),
and so it’s no surprise that no such property appears in Pringsheim’s proof.
Consequently, Steiner’s account renders it non-explanatory because it fails
to satisfy a necessary condition for explanatoriness. In other words, with
respect to Pringsheim’s proof Steiner finds himself plainly at odds with the
practice of explanation in mathematics.

At this point one might object the following.13 Although (Bn) stands for
an arbitrary sequence of positive terms, any such sequence has the property
of giving rise to a series which is either convergent or divergent. And this
in turn holds if and only if the terms Bn can be represented according to the
formulas (15) or (16) respectively. These representational facts are central
to Pringsheim’s proof. Exploiting them distinguishes it from Stolz’s proof
and constitutes a distinctive feature of it as an explanatory proof – as Pring-
sheim would argue. However, Steiner could maintain his account and make
it work based on the following disjunctive property C(x) or D(x), which also
incorporates the representation expressed by (16). Define C(x) to be true of
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a sequence (Bn) if and only if for all n ≥ 1, Bn > 0 and Σ 1
Bn

converges; and
define D(x) to be true of a sequence (Bn) if and only if for any ρ> 0 there ex-
ists a strictly increasing sequence (MnMM ), n = 0,1,2, . . . , of positive numbers
satisfying limn→∞MnMM = +∞ such that for all n ≥ 1, 1

ρ ·Bn = MnMM −1
MnMM −MnMM −1

.
Pringsheim’s proof clearly invokes and relies on the property C(x) or D(x),

one can as it were “read it off” the proof structure directly.14 Moreover this
property is both necessary and sufficient for being an (arbitrary) sequence of
positive numbers. Thus we have apparently managed to identify a character-
izing property of (Bn) after all.

This, however, is not the case. Steiner’s account cannot be salvaged in
this way. On closer inspection it turns out that C(x) or D(x) won’t do as a
characterizing property. To begin with, we should like to point out how the
problem of characterizing arbitrariness recurs with respect to C(x) or D(x),
which can be seen as the dual difficulty of the one mentioned above. Let’s re-
call Steiner’s definition of ‘characterizing property’. It is defined as “a prop-
erty unique to a given entity or structure within a family or domain of such
entities or structures” (Steiner 1978, p. 142), i.e. such a property “picks out
one from a family” (Steiner 1978, p. 147). One of Steiner’s own paradigmyy
examples, as mentioned already earlier, is “having a certain prime power ex-
pansion”, which uniquely determines a number n within the domain of all
natural numbers. Now, it is obvious that the property C(x) or D(x) is not a
characterizing property according to this definition, it fails to pick out any
particular sequence of positive numbers. In this respect it is analogous for
instance to the property “n is even or n is odd”, which does not single out any
particular element from the set of natural numbers. So C(x) or D(x) cannot
be used by Steiner to account for the explanatoriness of Pringsheim’s proof;
as a (supposedly) characterizing property of sequences, being true of every
sequence in the domain, it fails as badly as it is possible for a property to fail.
We can now sum up Steiner’s predicament as follows. No property which is
indeed unique to a certain sequence. i.e. which in fact “picks out one from a
family”, can characterize arbitrary sequences in general. On the other hand,
a property like C(x) or D(x) which holds true of all (and only) sequences of
positive numbers fails to be characterizing in Steiner’s sense.

This conclusion is based on the most straightforward understanding of
the notion characterizing property in our context, namely as a property ap-
plying to an individual sequence. It might be tempting to think that the above
predicament could be avoided by an appropriate reconstrual of that notion.
So we have to explore in detail other options of interpreting ‘characteriz-
ing property’ and point out why none of them works. More precisely, we
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will show that neither construing C(x) or D(x) as characterizing a set of se-
quences (as opposed to an individual sequence), nor the weakening of char-
acterization to partial characterization (of individual sequences) succeeds in
the twofold task of (i) rendering C(x) or D(x) a characterizing property and,
in turn, Pringsheim’s proof explanatory; while (ii) remaining consistent with
Steiner’s theory in other respects especially concerning his own examples
of characterizing properties and of explanatory as well as non-explanatory
proofs. But before taking this up we need to address an even more basic
problem, which is completely independent of how we construe the notion
of characterizing property, yet whose solution is a prerequisite for a precise
statement of Steiner’s theory in the first place.

However ‘characterizing property’ might be defined in particular, it has
to be first of all a property of “an entity or structure mentioned in the theo-
rem” (Steiner 1978, p. 143 our italics, cf. also p. 147). And here we comemm
up against a difficulty in Steiner’s theory. Failing to provide any definitions
of ‘entity’,‘structure’, and most important ‘mention in a theorem’ Steiner
left his theory vague or incomplete in crucial respects. In the absence of
clear criteria to determine which, if any entities or structures are indeed men-
tioned in a theorem we may be unable in certain cases to even get started on
applying Steiner’s theory. What, for instance, is mentioned in Kummer’s
test? Certainly no object like the generic arbitrary sequence (whatever that
may be); earlier we were speaking loosely when we said that apart from
the number 0 all entities (or rather “entities”) mentioned in Kummer’s test
(13) were generic. There are no singular terms in (13) referring to (par-
ticular or generic) sequences. The expression ‘Bn’ is to be construed as a
variable in the scope of a universal quantifier (and the same holds for the
expression ‘an’). Hence unless we take (the elements in) the domain of dis-
course over which the quantifiers range as something which is “mentioned
in a theorem” – and prima facie it is by no means clear whether this is the
right way to go – there is no explicit mention of sequences in Kummer’s test.
Consequently, if we should have good reasons not to count quantifier ranges
among what is mentioned in a theorem, then the whole issue as to whether
or not C(x) or D(x) is a characterizing property would simply be preempted
– there being no appropriate, i.e. mentioned, entity in Kummer’s test which
it could be the property of. In other words this attempt to make Steiner’s
account work vis a vis Pringsheim’s proof would seem wrong-headed from`
the very start, and the same goes for any other attempt based on a supposedly
characterizing property of sequences.

It is important to emphasize that we are dealing here not just with a
marginal problem which comes up only with respect to quantifier ranges
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or in the context of Kummer’s test. The problem is much more general.
Take for instance a theorem containing the predicate ‘x is prime’. Does this
theorem mention the property (or the concept) of being prime, thet set of all
prime numbers, all the individual prime numbers, or none of the foregoing?
Steiner remains silent on how to answer questions like this one in general;
and some of the examples he provides rather than clarifying things add even
further to the confusion – witness his remarks concerning explanatory proofs
of the summation theorem

(20) For all n, 1+ 2+ · · ·+ n =
n(n+ 1)

2
.

Steiner’s remarks imply that he apparently takes the symmetry properties as
well as the geometrical properties of the sum 1 + 2 + · · ·+ n as something
– entities or structures? – mentioned in (20). This is very puzzling indeed
and just highlights the need for precise definitions here. In the absence of
such definitions, to repeat our point from above, we don’t even have a clear
enough grasp of Steiner’s theory in order to apply and assess it in general.

Luckily, for our purpose of assessing Steiner’s theory vis à vis Pring-`
sheim’s proof we don’t need to solve the general problem. And concerning
the question whether or not (the elements in) the range of quantifiers should
be taken, on Steiner’s view, to be indeed – explicitly or perhaps implicitly
– mentioned in Kummer’s test we don’t have to resort to mere speculation
either, since Steiner provides an answer to a question exactly parallel to ours
when he discusses the inductive proof of theorem (20) above. Steiner argues
that this proof is not explanatory because it lacks a characterizing property.

“The proof by induction does not characterize anything men-
tioned in the theorem. Induction, it is true characterizes the
set of all natural numbers; but this set is not mentioned in the
theorem” (Steiner 1978, p. 145, emphasis in the original).

The set N of natural numbers is the range of the universal quantifier in (20)
as the set B of sequences of positive numbers is the range of the univer-
sal quantifier in (13), Kummer’s test, (once its quantificational structure has
been made fully explicit). Moreover, although C(x) or D(x) clearly fails as
a characterizing property of any particular sequence it can be argued, very
much in line with one of Steiner’s own examples,15 that it does characterize
the set B since we have for every sequence s of real numbers

C(s) or D(s) ↔ s ∈ B.

However, if according to Steiner the principle of induction does not charac-
terize anything mentioned in (20), then by the same token neither C(x) or D(x)
nor, for that matter, any other property true of all and only sequences of
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positive numbers characterizes anything mentioned in (13). To paraphrase
Steiner: C(x) or D(x), it is true, characterizes the set B (within some family
of sets of sequences); but this set is not mentioned in Kummer’s test.16

This presents a real stumbling block for any attempt to account for the
explanatoriness of Pringsheim’s proof based on a property true of all and
only sequences of positive numbers. Insisting that any such property is in-
deed a (characterizing) property of something mentioned in (13) implies, to
repeat our point, by parity of reason, the rejection of Steiner’s explicit claim
that the principle of induction fails to be a property of anything mentioned in
(20). Now, Steiner might be willing to give up his position here in order to
account, in turn, for the explanatoriness of Pringsheim’s proof (that is, pend-
ing its deformability into related proofs), since prima facie this concession
might seem a relatively small price to pay.17

After all, it is not tantamount to pronouncing the inductive proof of (20)
explanatory – which would indeed be very counterintuitive! More would be
needed for that as Steiner himself emphasizes.

“[. . . ] a characterizing property is not enough to make an
explanatory proof. One must be able to generate new, re-
lated proofs by varying the property and reasoning again.
Inductive proofs usually do not allow deformation, since
before one reasons one must have already conjectured the
theorem” (Steiner 1978, p. 151 fn. 11).

Unfortunately for Steiner, though, the inductive proof of (20) does allow for
deformation. Let us briefly sketch how it works. The property to be varied
is the principle of induction which characterizes N within the family of, say,
sets in the power-set of N. As a property of sets it contains a free set variable
X .

1 ∈ X & ∀x∀∀ (x ∈ X → (x+ 1) ∈ X) &

∀P[(P(1) & ∀x∀∀ (P(x) → P(x+ 1))) → (∀x∀∀ ∈ X , P(x))]
We’ll use ‘IND(1,x+1)’ as a convenient shorthand thus also clearly display-
ing its parameters. It should be obvious that IND(1,x + 1) besides charac-
terizing N also passes Steiner’s dependence test which is necessary to make
a proof explanatory. This test requires

“[. . . ] that from the proof it is evident that the result depends
on the [characterizing] property. It must be evident, that is,
that if we substitute in the proof a different object of the
same domain, the theorem collapses” (Steiner 1978, p. 143).

Trivially, theorem (20) could not be established by an inductive proof with-
out IND(1,x + 1). In other words, if we substitute in the proof a different
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set of our domain, i.e. a proper subset of N, and a corresponding, different
(restricted) induction principle, then we are clearly blocked from concluding
(20).

Let’s now turn to “deformations” of the principle of induction. Appro-
priate variation of IND(1,x+ 1) yields characterizing properties of different
sets in the given family. Below we list in pairs deformed induction princi-
ples and the respective sets characterized by them (a and b denote natural
numbers).

IND(2,x+ 2) E = {2,4,6,8, . . .}
IND(3,x+ 3) T = {3,6,9,12, . . .}
IND(a,x+ a) Ma = {a,2a,3a,4a, . . .}
IND(2a,x+ 2a) Ea = {2a,4a,6a,8a, . . .}
IND(1,x+ 2) O = {1,3,5,7, . . .}
IND(a,x+ 2a) Oa = {a,3a,5a,7a, . . .}
IND(a,x+ b) La,b = {a, a+ b, a+ 2b, a+ 3b, . . .}
IND(2,x+ 1+

√√
4

√√
x44 + 1) Q = {1 ·2, 2 ·3, 3 ·4, 4 ·5, . . .}

We use lower case letters as variables ranging over the elements in the sets
named by the respective upper case letters. For any variable ‘v’ and its re-
spective range V , we use ‘v+’ as notation for the successor of v in V . The
following rendering of theorem (20), which incorporates this successor nota-
tion, will be the basis for the array of related theorems obtained by a process
of deformation.

(21) For all n, 1+ 2+ · · ·+ n =
n ·n+

2
=

n ·n+

2(n+ −n)
.

And here are the related theorems.

For all e, 2+ 4+ · · ·+ e =
e · e+

2(e+ − e)
=

e · e+

4
.(22)

For all t, 3+ 6+ · · ·+ t =
t · t+

2(t+ − t)
=

t · t+
6

.(23)

For all ma, a+ 2a+ · · ·+ ma =
ma ·m+

a

2(m+
a −ma)

=
ma ·m+

a

2a
.(24)
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For all ea, 2a+ 4a+ · · ·+ ea =
ea · e+

a

2(e+
a − ea)

=
ea · e+

a

4a
.(25)

For all o, 1+ 3+ · · ·+ o =
o ·o+ + 1
2(o+ −o)

=
o ·o+ + 1

4
.(26)

For all oa, a+ 3a+ · · ·+ oa =
oa ·o+

a + a2

2(o+
a −oa)

=
oa ·o+

a + a2

4a
.(27)

For all la,b, a+(a+ b)+ · · ·+ la,b =
la,b · l+a,b + ab−a2

2(l+a,b − la,b)
(28)

=
la,b · l+a,b + ab−a2

2b
.

For all q, 2+ · · ·+ q =
q ·q+

3
2(q+ −q)

.(29)

A few comments are in order. Each of the theorems results from de-
forming the inductive proof of (20) by substituting a different subset of N
together with its corresponding induction principle. Throughout the array of
these proofs the “proof idea”, induction (in various forms), is held constant.
Although theorems (22), (23), (24), and (25) show in a straightforward way
how theorem (20) changes in response to substituting in place of N, respec-
tively, the set of even numbers, the set of multiples of 3, then more generally
the set of multiples of a, and the set of even multiples of a; it has to be
kept in mind that as a rule the process of “deformation” involves reworking,
“not just mechanical substitution” (Steiner 1978, p. 147). In the case of (26)
concerning the set O of odd numbers we need to observe that the recursive
characterization of the members of O by IND(1,x + 2) yields o = 1 + 2k,
o+ = (1 + 2k)+ 2, for some k ≥ 0. Hence o·o+

2(o+−o) = 4k2+8k+3
4 . Each sum-

mand in the numerator, except 3, is divisible by 4, so in order to ensure
getting an integer as a result we add 1 to the numerator and thus arrive at
formula (26), which is then proved by induction according to IND(1,x+ 2).
(Of course, subtracting 3 may seem, prima facie, an equally plausible alter-
native here, but adding 1 is favored by staying closer to the original form of
the summation theorem, i.e. by keeping the deformation minimal. Also the
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choice between between “adding 1” and “subtracting 3” can be decided by
checking the resulting formulas against the summation of 1+ · · ·+ o letting
o = 1 (and o+ = 3). It has to be stressed, however, that this slight element
of trial and error can be completely avoided once the theorems (20) and
(22) have been established.18) Deformations of a very similar kind19 lead
to further generalizations expressed in (27) and (28). The latter is a general
theorem covering the summation of arbitrary linear progressions of natural
numbers. Moreover, one can generalize even beyond linear progressions, as
shown by (29), if one doesn’t stick exclusively to deformations by means of
additive terms involving only constants (and parameters).20

Although we could continue our list of generalizations of theorem (20)
we stop here because the point should be clear by now. The inductive proof
of theorem (20) meets all of Steiner’s requirements to count as explanatory21

– provided, that is, quantifier ranges are indeed taken to be entities whichd
are mentioned in theorems. This puts Steiner in a dilemma. If he main-
tains that in general theorems make no mention of quantifier ranges, then
C(x) or D(x) is ruled out out as a characterizing property. And since this
is the most promising, perhaps even the only, candidate for such a property
that could render Pringsheim’s proof explanatory, Steiner’s account seems
bound to undergenerate, i.e. it seems thus blocked from fully capturing thee
intuitive notion of explanatory proof operative in mathematical practice. On
the other hand, including quantifier ranges among the entities mentioned in
theorems results in overgeneration by declaring, as we have just seen, the in-
ductive proof of (20) explanatory, which it clearly isn’t – neither by Steiner’s
own lights nor, as a rule, according to the understanding of working mathe-
maticians (some mathematicians even take inductive proofs to be paradigms
of non-explanatory proofs). So either way Steiner’s theory runs counter to
mathematical praxis.

Let us note, for the records, that this gives rise to an independent criti-
cism of Steiner’s account, since we can easily restate theorem (20), without
any changes to its proof, avoiding sorted variables and making sure N is
explicitly mentioned in it.

For all x in N, 1+ 2+ · · ·+ x =
x(x+ 1)

2
.

Now overgeneration is inevitable. Furthermore, it seems quite odd that Stein-
er’s theory qua theory of the explanatoriness of proofs should turn out to be
so overly sensitive to what appears to be a rather minor detail in the exact
wording of a theorem which doesn’t affect its proof.

Setting aside now the issue concerning quantifier ranges, let us investi-
gate further how Steiner’s account fares in the attempt to render Pringsheim’s
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proof explanatory in terms of C(x) or D(x) as a characterizing property of
the set B. After all, despite the fact that Steiner’s account overgenerates
there is still a question of independent interest as to whether or not it un-
dergenerates as well. So let us grant that the set B of sequences of positive
numbers is in some way or other indeed mentioned in Kummer’s test. Then
C(x) or D(x) does characterize B, and this property is also clearly exploited
in Pringsheim’s proof. But Steiner requires more, i.e. C(x) or D(x) has to
pass Steiner’s dependence test. In other words, it must be evident “that ift
we substitute in the proof a different object of the same domain, the theo-
rem collapses” (Steiner 1978, p. 143). This raises the question, first of all,
what the domain should be taken to consist of. When Pringsheim gives his
proof of Kummer’s test he is working exclusively with sequences of posi-
tive numbers, hence it appears most natural to take the power-set of B as the
domain – from which B is then singled out by our characterizing property.
However, this is already as far as we can get within Steiner’s theory, since
C(x) or D(x) obviously fails the dependence test. Once again it is the ex-
treme generality of Kummer’s test which creates a problem here. Since this
convergence test works for arbitrary sequences (Bn) of positive numbers, it
clearly won’t collapse no matter what subset of B gets substituted and its
proof won’t really be affected by it either! In order to make Kummer’s test
collapse we have to go outside of B and allow sequences to contain arbitrary
real numbers � 0, positive and negative.22 This constitutes already a de-
viation from Pringsheim’s original setting yet even further adjustments are
needed to make Steiner’s theory work. Letting S be the set of arbitrary se-
quences of non-zero real numbers and P the power-set of S, we could, as a
first try, take our domain D to contain the elements of P minus all the proper
subsets of B. However, a closer look at Kummer’s test, which is stated in
terms of a limit, and at Pringsheim’s proof reveals that neither of them de-t
mands (Bn) to consist exclusively of positive numbers. Kummer’s test still
holds good and Pringsheim’s proof goes through if we only require that all
but finitely many terms of (Bn) are positive, i.e. that there exists an m such
that for all n ≥ m, Bn > 0; finite initial segments of (Bn) don’t matter. In
other words, substituting for B the set B∗, the superset of B which comprises
all such “eventually positive” sequences, won’t make the theorem (nor the
proof of it) collapse. Hence C(x) or D(x) still fails the dependence test with
respect to domain D , that is, it does not fully capture – neither in the tech-
nical sense of Steiner’s theory nor in the intuitive sense – what property of
(Bn) Kummer’s test really depends on.

At this point Steiner has two options.23 He could either further tailor
the domain D to the purpose at hand by simply excluding B∗ (and various
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other sets) from it, thus ensuring by brute force that C(x) or D(x) passes the
dependence test. But this is unacceptable not only because it amounts to a
completely artificial, ad hoc “immunization manoeuvre” to save his theory
in the face of recalcitrant data. More importantly, such a move goes against
the spirit of Steiner’s theory. On his account the explanation provided by a
proof consists (besides generalizability) in showing that and how the proved
theorem depends on a certain characterizing property. In other words, an
explanatory proof makes it evident that the characterizing property in ques-
tion pinpoints the reason why, “essentially”, the theorem is true. As we have
seen, restricting quantification to elements of B is not essential for the truth
of Kummer’s test, it is a sufficient but not a necessary condition. So, pro-
nouncing Pringsheim’s proof explanatory in virtue of a spurious dependence
of Kummer’s test on the property C(x) or D(x) yields a correct result for a
wrong reason.

Steiner’s other option is to first generalize Kummer’s test by explicitly
turning it into a convergence test quantifying over sequences from B∗, i.e. to
get the dependence right, and then account with his theory for the explana-
toriness of an – equally generalized – proof of it. This would then have to be
done in terms of a correspondingly generalized property C∗(x) or D∗(x). But
now the property C(x) or D(x) as well as Pringsheim’s original proof are out
of the picture, instead we are dealing with a different proof (and a different
theorem), even though the difference consists merely in a slight generaliza-
tion. Steiner can’t claim that the two proofs are “essentially the same”, since
one turns out to be explanatory (if everything works out) while the other one
doesn’t. So we have to take them as in fact two distinct proofs. But in this
case rendering one of them explanatory doesn’t tell us anything about the ex-
planatoriness of the other. Hence Pringsheim’s proof still escapes Steiner’s
theory.

Let us finally look at the interpretation of C(x) or D(x) as a partially
characterizing property of sequences – if only to point out why it won’t help.
Steiner concedes that in order to account for the explanatoriness of certain
proofs the notion of characterization has to be weakened to that of partial
characterization. It is quite common

“to study domain X by assigning a counterpart Y to each
object in X . The object in Y need not uniquely character-
ize anything in X ; examples are Galois theory and algebraic
topology” (Steiner 1978, pp. 149f).

One worry one might have here at the outset concerning the introduction
of partially characterizing properties is the danger of inflation. Although
Steiner doesn’t give us much to go on, presumably any property counts as
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partially characterizing unless, in the extreme cases, a property happens to be
either empty or true of everything of the domain (which seem to be the only
cases in which we can’t plausibly claim that such a property characterizes
anything at all even partially). Thus once partially characterizing properties
are admitted to account for explanatoriness Steiner may find himself on the
slippery slope to a vast overgeneration of his account.

Given the plausible restrictions on the notion of partial characterization
just mentioned it follows that C(x) or D(x), being true of every sequence in
Pringsheim’s domain, won’t even pass as a partially characterizing property
of sequences. Which shouldn’t come as a surprise since the arbitrariness of
(Bn) excludes even partial characterization within the domain B. Again we
have to move beyond B and, in turn, the problem of passing the dependence
test recurs.

So far all our attempts to get Steiner’s theory off the ground vis à vis`
Pringsheim’s proof have failed. Our best candidate for a (partially) charac-
terizing property turned out either not to be (even partially) characterizing at
all or still unable to do the job of rendering Pringsheim’s proof explanatory.
And in the absence of a characterizing property it doesn’t even make sense
to ask whether or not Steiner’s second main criterion for explanatory proofs,
generalizability, is satisfied. Because generalizability presupposes that there
is in fact a characterizing property on which the theorem depends such that if
we substitute (the characterizing property of) a different object of the domain
we get a related “deformed” theorem. One has to be careful here, however,
to distinguish generalizability from mere generality. It is well known that
Kummer’s test, because of its generality, is the source of many other conver-
gence tests. By substituting specific sequences for (Bn) one can obtain from
it (or from Pringsheim’s proof) as special cases, for instance, D’Alembert’s
test, Raabe’s test, and Bertrand’s test (cf. Tong 1994). But these tests are
special cases of Kummer’s test they are not gotten by generalizing it in the
relevant sense of Steiner’s theory. And Steiner himself is very clear about it.
He states with respect to an analogous situation

“The new result is contained within the old. The point is,
however, that generalizability through varying a character-
izing property is what makes a proof explanatory, not simple
generality” (Steiner 1978, p. 146).

In other words, what has turned out again and again to be a difficult problem
for Steiner’s account, namely the generality of Kummer’s test, cannot simply
be declared a virtue which renders, by itself, Pringsheim’s proof explanatory.
There is no such “shortcut” in Steiner’s theory from mere generality to ex-
planatoriness.
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Although there are many more features of Steiner’s theory that deserve
thorough reconstruction and critical assessment they are not of major im-
portance in the given context so we conclude our discussion at this point.
Enough has been said to bring out the substantial difficulties Steiner’s theory
has to account for the explanatoriness of Pringsheim’s proof of Kummer’s
test – besides other problems of a general nature which came to light in the
course of our investigations. It is our hope that this kind of testing theories of
mathematical explanation against the practice of mathematical explanation
will pave the the way to further studies in the same vein. This seems to us
the most promising approach for making progress in this treacherous area.

Department of Philosophy
U.C. Berkeley
USA

APPENDIX

Part I.

We show how to arrive at the equations (15) and (16) above, i.e. how to repre-
sent the terms cn and dndd of convergent resp. divergent series by means of the
positive terms MnMM of strictly increasing divergent sequences (cf. Pringsheim
1916, pp. 326ff and 332).

(A) Let cn be the terms of a convergent series, i. e. ∑∞n=1 cn = s. We set
s0 = 0 and, for n = 1,2,3, . . ., sn = c1 + . . .+ cn. Notice that s− sn > 0 for
all n, since the cn are positive so s > sn for all n. We can therefore define, for
n = 0,1,2, . . .

MnMM =
1

s− sn
.

Since the sequence (s− sn) is strictly decreasing and converges to 0 it fol-
lows that (MnMM ) is a strictly increasing sequence such that limn→∞MnMM = +∞.
Furthermore, we have

s− sn =
1

MnMM
and, for n = 1,2, ...

s− sn−1 =
1

MnMM −1

Now, for n = 1,2, ... it holds that sn = sn−1 + cn and we can thus write

cn = sn − sn−1 = (s− sn−1)− (s− sn) =
1

MnMM −1
− 1

MnMM
=

MnMM −MnMM −1

MnMM ·MnMM −1
.
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To show the converse, assume (MnMM ) to be a strictly increasing sequence
(n = 0,1,2, ...) of positive numbers such that limn→∞MnMM = +∞. Let cn =
MnMM −MnMM −1
MnMM ·MnMM −1

= 1
MnMM −1

− 1
MnMM . Then

k

∑
n=1

cn =
k

∑
n=1

(
1

MnMM −1
− 1

MnMM
) =

1
M0MM

− 1
MkM

.

As limk→∞ 1
MkM = 0,

∞

∑
n=1

(
1

MnMM −1
− 1

MnMM
) =

1
M0MM

hence ∑cn is convergent.

(B) Let’s now turn to the case of a divergent series ∑∞n=1 dndd (such that dnd > 0).
We first observe that

(1+ d1)(1+ d2dd ) · · · (1+ dkd ) ≥ 1+
k

∑
n=1

dnd .

Since ∑dndd is divergent, the left hand side also diverges as k → +∞. Further-
more, every factor (1+di) in the product is > 1, hence the sequence (MnMM ) as
defined by

M0MM = 1

MnMM = (1+ d1) · · · (1+ dnd )
is strictly increasing. For n > 1 we have MnMM −1 = (1 + d1) · · · (1 + dnd −1) and
by division we get

MnMM
MnMM −1

= 1+ dnd

hence

dnd =
MnMM

MnMM −1
−1 =

MnMM −MnMM −1

MnMM −1
.

This equation also holds for n = 1 by definition of M0MM .
Conversely, let (MnMM ) be a strictly increasing sequence (n = 0,1,2, ...) of

positive numbers such that limn→∞MnMM = +∞. We have to show that ∑dndd
is divergent, where dnd = MnMM −MnMM −1

MnMM −1
. We start by noting that ∑(MnMM −MnMM −1) is

divergent.24 Because
k

∑
n=1

(MnMM −MnMM −1) = MkM −M0MM

hence
∞

∑
n=1

(MnMM −MnMM −1) = ( lim
n→∞MnMM )−M0MM = +∞.
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Applying the logarithm function to the terms MnMM yields a divergent sequence
(logMnMM ). Hence the previous result implies that also ∑(log MnMM − logMnMM −1)
diverges. On the other hand, because of the equation

logx < x−1 for x > 0, x � 1

and the fact that, for all n, MnMM
MnMM −1

> 1 we have

logMnMM − logMnMM −1 = log
MnMM

MnMM −1
<

MnMM
MnMM −1

−1 =
MnMM −MnMM −1

MnMM −1
.

So by the comparison test (2) we conclude that a series ∑dnd is indeed diver-
gent if its terms satisfy

dnd =
MnMM −MnMM −1

MnMM −1
.

Part II.

In the construction of a convergence test of the 1st kind that exhibits the same
kind of generality as Kummer’s test Pringsheim proceeds as follows.25

As a special case of comparison test (3) we have

If for all n ≥ m, for some m, CnCC ·an < 1 =⇒== ∑an converges.

Since all partial sums sn =∑n
k=1 ck are positive, this is equivalent to

If for all n ≥ m, for some m, (CnCC ·an)
1
sn < 1 =⇒== ∑an converges.

And by assuming the existence of the involved limit we get

(30) lim
n→∞(CnCC ·an)

1
sn < 1 =⇒== ∑an converges.

On the other hand, letting MnMM as before denote the positive terms of a strictly
increasing divergent sequence, we can show the following. (Its proof, though
not difficult, is a bit more involved hence we postpone it for the sake of
greater perspicuity of the main argument.)

(31) lim
n→∞(

an

MnMM −MnMM −1
)

1
MnMM < 1 =⇒== ∑an converges.

By setting

(32) d1 = M1 and dnd = MnMM −MnMM −1 (n = 2,3,4, . . .)

we obtain terms of a divergent series.26 Furthermore we have

MnMM = M1 +
n

∑
k=2

(MkM −MkM −1) =
n

∑
k=1

dkd = sn.
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Thus by observing that Dn = 1
MnMM −MnMM −1

convergence test (31) can be stated as
follows

(33) lim
n→∞(Dn ·an)

1
sn < 1 =⇒== ∑an converges.

The construction of the terms dnd (resp. Dn) out of the given sequence (MnMM )
does not - contrary to how it may appear - impose a constraint on the nature of
the divergent sequence that can occur in (33), since the terms of any divergent
sequence ∑dnd admit of such a representation (32) by simply defining the
required sequence (MnMM ) thus

MnMM =
n

∑
k=1

dkd .

(In effect, what we have obtained here is another, simpler and more straight-
forward, representation of the terms dndd than the one given by (16) above.)
Now we are in a position to state a most general convergence test by com-
bining (30) and (33). We only need to note that, obviously, any arbitrary
positive sequence (Bn) is either of type (CnCC ) or type (Dn). So we finally
arrive at

lim
n→∞(Bn ·an)

1
sn < 1 =⇒== ∑an converges

where sn = ∑n
k=1 bk.

This is the most general convergence test of the 1st kind and with regard
to its surpassing generality it thus represents in Pringsheim’s theory “the
perfect analogue to Kummer’s test” (Pringsheim 1916, p. 344).

To complete the foregoing proof it remains to establish proposition (31).
We first show that if α > 1, q > 0, and (MnMM ) a strictly increasing divergent
sequence of positive terms, then αMαα nMM eventually dominates Mq

nMM , i.e. there
exists an m such that for all n ≥ m

αMαα nMM > Mq
nMM .

To this end we start from the elementary inequality

ex > x (for x > 0).

Setting x = p
q+1 ·MnMM for arbitrary but fixed p > 0, q > 0 yields

e
p

q+1 ·MnMM >
p

q+ 1
·MnMM (for each n).

By raising both sides to the (q+ 1)st power we get

ep·MnMM > (
p

q+ 1
)q+1 ·Mq+1

nMM
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hence
ep·MnMM

Mq
nMM

> (
p

q+ 1
)q+1 ·MnMM .

Since limn→∞MnMM = +∞, there is an m such that for all n ≥ m the right hand
side is greater than 1, thus

ep·MnMM > Mq
nMM (for all n ≥ m).

If α> 1, then logα> 0 so we can set p = logα and conclude

αMαα nMM = elogα·MnMM > Mq
nMM (for all n ≥ m).

By letting now q = 2 and using the fact that for all n, MnMM −1 < MnMM we infer
further

αMαα nMM > M2
nMM > MnMM ·MnMM −1 (for all n ≥ m)

hence
1
αMαα nMM <

1
MnMM ·MnMM −1

(for all n ≥ m)

and by multiplying by the (positive) factor MnMM −MnMM −1

MnMM −MnMM −1

αMαα nMM <
MnMM −MnMM −1

MnMM ·MnMM −1
(for all n ≥ m).

We know already (cf. Part I above) that the terms on the right hand side are
terms cn of a convergent series, so comparison test (1) implies that also the
terms on the left hand side are of type cn. Substituting them in test (1) yields
the following (for α> 1)

If for all n ≥ m, for some m, an ≤ MnMM −MnMM −1

αMαα nMM =⇒== ∑an converges.

Equivalently

If for all n≥m, for some m, (
an

MnMM −MnMM −1
)

1
MnMM ≤ 1

α
=⇒== ∑an converges.

Under the assumption that the limit below exists and observing that 1
α < 1

we eventually obtain proposition (31)

lim
n→∞(

an

MnMM −MnMM −1
)

1
MnMM < 1 =⇒== ∑an converges.
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NOTES
0The work of both authors was carried out under the auspices of the NSF Grant

SES-9975628 (Science and Technology Studies Program; Scholar Award), for which
the second author was principal investigator. The authors would like to express their
gratitude to the NSF.

1For a discussion of unificationist theories of explanation, such as Kitcher’s, see
Tappenden’s contribution in this volume.

2This is far from obvious, see Sandborg 1998.
3Kitcher 1984 seems to accept the heterogeneity of mathematical explanations.

In his book “The Nature of Mathematical Knowledge” (1984) he recognizes that
mathematical explanations “appear heterogeneous”: “Thus, at first sight, mathema-
tical explanations, like scientific explanations, appear heterogeneous. Whether we
shall some day achieve a single model which covers all cases of scientific explana-
tion - or even of mathematical explanation - I do not know. However, we suggest
that any adequate account of explanation in general should apply to the mathema-
tical cases (“data”) presented here.” (p. 227) However, his later work seems to go
against the grain of the previous approach and to imply that a unification account of
scientific explanation will be able to account for mathematical explanation in gen-
eral – “the fact that the unification approach provides an account of explanation, and
explanatory asymmetries, in mathematics stands to its credit” (p. 437 of 1989).

4Sandborg 1997, chapter 3, developed a similar project but we envisage a differ-
ent taxonomy.

5The proof is given by Steiner, the proof idea being due to G. Kreisel.
6Since in what follows we are dealing exclusively with series and sequences of

positive real numbers, the qualification “of positive terms” will be omitted through-
out.

7As a matter of fact this existence assumption is not really needed. The criteria
in question can be stated, more generally, in terms of upper limit, in (5), and lower
limit, in (6), in place of limits (cf. Pringsheim 1916, p. 318; Bromwich 1942, p. 30).
However, the use of the weaker formulations allows us to simplify the exposition
without losing anything important in our context. The same goes for (11), (12), and
(13) below.

8In the case of the convergence test the condition an+1
an

≤ cn+1
cn

implies an+1
cn+1

≤ an
cn

,
hence the sequence an

cn
decreases monotonically and there is some number γ such

that an
cn

≤ γ. Consequentlyγγ an ≤ γ · cn for n ≥ m, for some m, which implies the
convergence of ∑an. The argument in case of the divergence test is analogous.

9Its history is somewhat entangled. When Kummer published it in 1835 he im-
posed the condition that lim(bnan) = 0, which was shown to be superfluous by U.
Dini. According to Knopp this test was later “rediscovered several times and gave
rise, as late as 1888, to violent contentions on questions of priority” (Knopp 1928, p.
311 fn. 52). Dini as well as Pringsheim improved it (cf. Bromwich 1942, p.37/38).
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10[... daß das Kummersche Konvergenzkriterium] bei der sonstigen Darstellungs-
weise vollig abseits stand und keinerlei Analogon unter den Kriterien¨ erster Art zu
besitzen schien (Pringsheim 1916, p. VI).

11Proofs of these results are presented in the appendix, part I.
12[. . . das Kummersche Konvergenzkriterium] aus dieser rätselhaften Isolierung¨

befreit als naturliches Glied einer folgerichtig aufgebauten allgemeinen Theorie er-¨
scheinen zu lassen. (Pringsheim 1916, p. VI)

13This possible objection was in fact suggested to us by Klaus Jørgensen.
14Another property, L(x), which can be drawn from Kummer’s test itself – as well

as from Pringsheim’s proof – and which appears to characterize perhaps even more
precisely than C(x) or D(x) those sequences which Kummer’s test and its proof are
really about, is defined as follows. Let L(x) hold of a sequence (Bn) if and only if
for all n ≥ 1, Bn > 0 and there exists a sequence (an) of positive terms such that
limn(Bn · an

an+1
− Bn+1) > 0. However, we can find for any (Bn) a sequence (an)

such that limn(Bn · an
an+1

−Bn+1) = 1 > 0 by setting a1 = 1 and an+1 = an · ( Bn
Bn+1+1).

Hence L(x) and C(x) or D(x) turn out to be co-extensional after all and any of our
arguments below concerning the latter property equally applies to the former. So we
will just focus on C(x) or D(x).

15With respect to an explanatory proof of the Pythagorean Theorem Steiner points
out that a right-angled triangle is characterized by the property of being decompos-
able into two triangles similar to each other and to the whole (Steiner 1978, p. 144).
Evidently, this property does not pick out any individual right-angled triangle, the
only way to render it in fact characterizing seems by taking it as defining the set of
right-angled triangles.

16Nothing hinges on the fact that the principle of induction as a property of sets
picks out N “directly”, i.e. characterizes it in a top-down way whereas C(x) or D(x)
characterizes S in a bottom-up way via its members. It is clear that C(x) or D(x)
characterizes, if anything, the set of sequences of positive numbers but certainly not
any particular such sequence.

17It should indeed be a rather small concession on Steiner’s part, given that he
has to make an analogous move in the context of the Pythagorean Theorem anyway.
As pointed out in footnote 15 Steiner declares a property characterizing which picks
out the set of right-angled triangles, and that set is no more explicitly mentioned in
the Pythagorean Theorem than N is mentioned in (20).

18The deformation at the level of characterizing properties, or sets, which occurs
in the move from IND(1,x + 1) to IND(1,x + 2), or from N to O, which is thus
evidently effected by skipping the even numbers (i.e. the members of E) translates
directly into the following subtraction at the level of summation formulas. 1+ · · ·+
o = n·n+

2 − e·e+

4 , where n = o, e = o−1, n+ = e+ = o + 1. So we have

1+ · · ·+o =
2o(o + 1)− (o−1)(o +1)

4
=

o2 + 2o + 1
4

=
o(o + 2)+ 1

4
=

o ·o+ + 1
4

.

In an analogous way we obtain formula (27) directly from (24) and (25).
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19In case of (28) we can prove, on the one hand, that adding (ab− a2) effects a
deformation which is minimal relative to a family of prima facie equally plausible
alternatives. On the other hand one may proceed, again, at the level of sets from
the deformation of N into La,b, keeping track of which elements of N get skipped.
This is then paralleled by a corresponding deformation of the summation formula
in the following way. We start by applying formula (20) to 1 + · · ·+ la,b taking into
account the necessary subtractions which correspond to the skipping of numbers in
La,b (with respect to N). To increase perspicuity we abbreviate ‘la,b’ by ‘l’, denote
1 + · · ·+ l by ‘Σ’ and also make further use of (20). Thus we readily arrive at the
equation

Σ=
l(l + 1)

2
− [

(a−1)a
2

+(b−1)(Σ− l)+ k · (b−1)b
2

].

The number k appearing here is some natural number ≥ 0 such that l = a+kb. From
this equation we now work out the resulting deformation of the formula l(l+1)

2 step
by step.

Σ+(b−1)Σ=
l(l + 1)− (a−1)a +2(b−1)l− k(b−1)b

2

Σ=
l(l + 1)+ (b−1)l−a2 + a +(b−1)(l− kb)

2b

Σ=
l(l + b)−a2 + a +(b−1)a

2b
=

l · l+ + ab−a2

2b
.

20Here is how we arrive at formula (29). q·q+

2(q+−q) = q(q+1+
√√

4
√√

q+1)
2(

√√
4

√√
q+1+1) = q(

√√
4

√√
q+1+3)
8 .

Checking against one or two concrete summations of elements of Q indicates the

change to q(
√√

4
√√

q+1+3)
6 . We try here, as before, to make do with just additive constants

in order to keep the deformation minimal. Expressing this change in terms of q and

q+ yields q·q+

3
2 (q+−q)

, which is then proved by induction according to IND(2,x + 1 +
√

4
√√

x + 1).
21It is important to note that nothing more is demanded of deformation (or gen-

eralizability) in Steiner’s account than that it should lead to related theorems; other
than that it is explicitly left undefined (cf. Steiner 1978, p. 147). In particular ques-
tions as to e.g. the efficiency (or “naturalness”, whatever that may mean) either of
the process of deformation or of the resulting proofs compared to other methods
don’t enter at all into Steiner’s criteria for explanatoriness. Hence they need not
concern us here.

22To construct a counterexample let e.g. an = 1 for all n, and Bn = −n.
23It should be clear that simply dropping the dependence requirement from the

account is not an option for Steiner. Dispensing with it leads immediately to over-
generation, i.e. it allows the construction of easy recipes for churning out “explana-
tory” proofs. For instance, take any proof of a theorem of the form ‘For all x, ϕ(x)’,
specialize to some element a in the domain and add on as an idle element in the
proof some characterizing property ψaψψ (x) of a. Thus we obtain an “explanatory”
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proof of ‘ϕ(a)’ (no matter how non-explanatory the proof may actually appear to
us intuitively): it makes reference to a characterizing property and can also be de-
formed to yield related results ‘ϕ(b)’, ‘ϕ(c)’, . . . by specializing to other elements
b, c, . . . in the domain, substituting for ψaψψ (x) equally idle characteristic properties
ψb(x), ψc(x), . . . .

24The divergence of (MnMM ) is the only property that is needed here, neither mono-
tonicity nor the positivity of its terms come in.

25We’ll focus only on the main steps in the derivation and, as before, simplify
matters slightly. For the strongest formulation of the results the reader is referred to
Pringsheim 1916, pp. 337-334.

26For a proof of the divergence of ∑dnd see part (B) of Part I above.
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