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NATURALISM, PICTURES, AND PLATONIC INTUITIONS

1. NATURALISM

The principal objection naturalists offer to platonism is epistemic. We have
seen this over and over again in the writings of self-professed naturalists.
They find platonic intuitions incredible. Many, of course, object to the sup-
posed reality of abstract entities, existing as they do outside of space and
time. But the real sticking point concerns our ability to perceive them. Pla-
tonists say we can; naturalists insist we can’t. The debate, it seems safe to
say, is on hold. It’s been at a standstill for several years. However, the ques-
tion at issue between Platonists and naturalists has suffered from a lack of
development of platonistic epistemology. Naturalists typically (though not
always) borrow from the well developed epistemology of the natural sci-
ences. To perceive something, they point out, a mediating agent, such as
a stream of photons, is needed. And, of course, there is nothing like this
connecting us to the entities in Plato’s heaven. There are no little “platons”
emitted by perfect circles that enter the mind’s eye. Contemporary Platonists
have almost nothing to offer in the way of a detailed epistemology of ab-
stract entities. And the original Platonist, namely Plato himself, conjectured
a wholly implausible epistemology involving immortal souls that previously
existed in this abstract realm, that came to know mathematical objects di-
rectly, but forgot what they knew in the act of being born, and that now in an
embodied form are recollecting bits and pieces of what they forgot. We have
to do better than this.

Contemporary Platonists cling to the idea of perception. They talk of
“seeing,” or “grasping,” or “intuiting” abstract entities. It’s often metaphor-
ical, to be sure, but the idea is that we can have some sort of perception of
the objects of our mathematical knowledge. One of the more vivid versions
of this comes from a famous passage by G.H. Hardy.

I have myself always thought of a mathematician as in the first
instance an observer, a man who gazes at a distant range of
mountains and notes down his observations. His object is sim-
ply to distinguish clearly and notify to others as many different
peaks as he can. There are some peaks which he can distin-
guish easily, while others are less clear. He sees A sharply,
while of B he can obtain only transitory glimpses. At last he
makes out a ridge which leads from A, and following it to its
end he discovers that it culminates in B. B is now fixed in his
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vision, and from this point he can proceed to further discov-
eries. In other cases perhaps he can distinguish a ridge which
vanishes in the distance, and conjectures that it leads to a peak
in the clouds or below the horizon. But when he sees a peak
he believes that it is there simply because he sees it. If he
wishes someone else to see it, he points to it, either directly
or through the chain of summits which led him to recognize it
himself. (1929, 18)

Naturalists react to views such as this with impatience, or amusement, or
both. I don’t. I take Hardy’s account seriously. But there is one thing wrong.
Hardy sees all mathematical evidence as ultimately some sort of perception.
Eventually, according to him, with enough training and guidance, we can
directly see that any given theorem is true. We simply perceive the objects in
questions. This is surely wrong. And platonism needn’t go this far. We need
only commit ourselves to the perception of some mathematical objects and
some mathematical facts. And these perceptions are evidential grounds for
other mathematical objects and propositions that we don’t see. The situation
is similar to natural science. We don’t see elementary particles, but we do
see white streaks in cloud chambers. What we actually do see can be turned
into evidence for theories about what we don’t see. This brings us to Gödel’s¨
brand of Platonism.

Godel likened the epistemology of mathematics to the epistemology of¨
the natural sciences in two important regards. First, we have intuitions or
mathematical perceptions that are the counterpart of sense perceptions of
the physical world. Second, we evaluate (some) mathematical axioms on
the basis of their consequences, especially the consequences that we can
intuit, just as we evaluate theories in physics or biology on the basis of their
empirical consequences.

On Godel’s view, mathematics is fallible for a number of reasons. We¨
can have faulty intuitions, just as we can make mistakes in our sense per-
ceptions. And false premises can have true consequences, so the testing
of axioms by checking their consequences is not foolproof either. Many
people dislike the idea of giving up certainty in mathematics; perhaps they
expect axioms to be “self-evident” truths. Naturalists typically will not ob-
ject to the test-the-axioms-by-their-consequences feature of Gödel’s view.¨
But physicalist-cum-nominalist-cum empiricist-minded naturalists will ut-
terly oppose the idea of Platonic intuitions, fallible or not.

The plan of this paper is as follows: First, I’ll give a brief statement of
Platonism, or at least my version of it. It may differ from other versions float-
ing around, but not by too much. Then I’ll take up the idea of observation
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and of intuition. This is the main sticking point. I will try to develop the idea
in a number of respects and, perhaps thereby, to make it a bit more palatable.
A key feature will be the use of pictures as proofs. Next I’ll discuss a particu-
lar version of naturalism, Penelope Maddy’s. In order to challenge her view,
I’ll describe an interesting thought experiment that tries to refute the con-
tinuum hypothesis (CH). Finally, a negative moral for Maddy’s naturalism
and a positive moral for Platonic intuitions will be drawn.

2. PLATONISM

There are a few key points to mention. I take these ingredients to be more or
less central to Platonism.

1. Mathematical objects are perfectly real and exist independently of us,
and mathematical statements are objectively true (or false) and their
truth-value is similarly independent from us.

2. Mathematical objects are outside of space and time. By contrast, the
typical subject matter of natural science consists of physical objects
located in space and time. Some commentators like to say that num-
bers “exist,” but they don’t “subsist.” If this just means that they are
not physical, but still perfectly real, then I am happy to agree. But if
it means something else, then it’s probably just confused nonsense.

3. Mathematical entities are abstract in one sense, but not in another.
The term “abstract” has come to have two distinct meanings. The
older sense pertains to universals and particulars. A universal, say
redness, is abstracted from particular red apples, red socks, and so on;
it is the one associated with the many. Numbers, by contrast, are not
abstract in this sense, since each of the integers is a unique individual,
a particular, not a universal. On the other hand, in more current usage
“abstract” simply means outside space and time, not concrete, not
physical. In this sense all mathematical objects are abstract.

4. We can intuit mathematical objects and grasp mathematical truths.
Mathematical entities can be “seen” or “grasped” with “the mind’s
eye.” The main idea is that we have a kind of access to the mathema-
tical realm that is something like our perceptual access to the physical
realm.

5. Mathematics is a priori, not empirical. Empirical knowledge is based
(largely, if not exclusively) on sensory experience, that is, based on in-
put from the usual physical senses: seeing, hearing, tasting, smelling,
and touching. Seeing with the mind’s eye is not included on this list.
It is a kind of experience that is independent of the physical senses
and to that extent, a priori.
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6. Even though mathematics is a priori, it need not be certain. These
are quite distinct concepts. The mind’s eye is subject to illusions and
the vicissitudes of concept formation just as the empirical senses are.
Mathematical axioms are often conjectures, not self-evident truths,
proposed to capture what is intuitively grasped. Conjecturing in math-
ematics is just as fallible as it is elsewhere.

7. Many methods are possible in mathematics. There is no limit to what
might count as evidence, just as there is no limit in principle to how
physics must be done. We might discover new ways of learning. By
contrast, for formalist or constructivist accounts, the only source of
evidence is, respectively, rule governed symbol manipulation or con-
structive proof. In principle, nothing else could count as evidence for
a theorem according to those two views. Platonism is not similarly
constrained.

3. GÖDEL’S PLATONISM

In what are perhaps the three most famous and most often quoted passages
in all of Godel’s works, he asserts the key ingredients in Platonism: the¨
ontology of realism and the epistemology of intuitions.

Classes and concepts may, however, also be conceived as real
objects. . . existing independently of our definitions and con-
structions. It seems to me that the assumption of such objects
is quite as legitimate as the assumption of physical bodies and
there is quite as much reason to believe in their existence.
They are in the same sense necessary to obtain a satisfac-
tory system of mathematics as physical bodies are necessary
for a satisfactory theory of our sense perceptions. . . (Gödel,¨
1944/83, 456f)

. . . despite their remoteness from sense experience, we do
have something like a perception also of the objects of set the-
ory, as is seen from the fact that the axioms force themselves
upon us as being true. I don’t see any reason why we should
have any less confidence in this kind of perception, i.e., in
mathematical intuition, than in sense perception, which in-
duces us to build up physical theories and to expect that fu-
ture sense perceptions will agree with them and, moreover, to
believe that a question not decidable now has meaning and
may be decided in the future. The set-theoretical paradoxes
are hardly more troublesome for mathematics than deceptions
of the senses are for physics... [N]ew mathematical intuitions
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leading to a decision of such problems as Cantor’s continuum
hypothesis are perfectly possible. . . (Gödel, 1947/83, 484)¨

. . . even disregarding the intrinsic necessity of some new
axiom, and even in case it has no intrinsic necessity at all, a
probable decision about its truth is possible also in another
way, namely, inductively by studying its “success.” Success
here means fruitfulness in consequences, in particular in “ver-
ifiable” consequences, i.e., consequences demonstrable with-
out the new axiom, whose proofs with the help of the new
axiom, however, are considerably simpler and easier to dis-
cover, and make it possible to contract into one proof many
different proofs. . . . There might exist axioms so abundant in
their verifiable consequences, shedding so much light upon a
whole field, and yielding such powerful methods for solving
problems . . . that, no matter whether or not they are intrinsi-
cally necessary, they would have to be accepted at least in the
same sense as any well-established physical theory. (Gödel,¨
1947/83, 477)

I take these passages to assert a number of important things, many over-
lapping the ingredients of Platonism that I listed above. These include:
mathematical objects exist independently from us; we can perceive or in-
tuit them; our perceptions or intuitions are fallible (similar to our fallible
sense perception of physical objects); we conjecture mathematical theories
or adopt axioms on the basis of intuitions (as physical theories are conjec-
tured on the basis of sense perception); these theories typically go well be-
yond the intuitions themselves, but are tested by them (just as physical the-
ories go beyond empirical observations but are tested by them); and in the
future we might have striking new intuitions that could lead to new axioms
that would settle some of today’s outstanding questions. In a later part of
this paper I will describe a mathematical thought experiment that generates
a new intuition which in turn leads to a refutation of CH.

Beginning in the next section, I’ll take up the idea of intuition or percep-
tion of abstract entities. But the notion plays some role here, so we need to
have at least a minimal idea. Godel took intuitions to be the counterparts of¨
ordinary sense perception. Just as we can see some physical objects (trees,
dogs, rocks, the moon), so we can intuit some mathematical entities. And
just as we can see that grass is green and the moon is full, so we can intuit
that some mathematical propositions are true. These perceptual facts will
play a big role in deciding which propositions to accept or to reject when
they cannot be directly evaluated perceptually.
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Since Godel invokes the analogy with the empirical sciences, it is natural¨
to look there for information about the relation between our mathematical
theories and intuitions. Godel, himself, offered little in the way of details.¨

4. THE CONCEPT OF OBSERVABLE

It’s surprising how much counts as perception within the natural sciences.
Physicists, for example, regularly talk about “seeing the interior of the sun.”
How do they do this? The sun produces neutrinos which normally pass
through regular matter. Because of this, neutrinos produced in the deep in-
terior of the sun pass with ease to the outside, some in the direction of the
earth. In deep, abandoned mine shafts large tanks filled with dry cleaning
fluid will detect the odd neutrino on those very rare occasions when one is
absorbed by a proton which subsequently decays. Out of this whole process
a number of conclusions about the interior of the sun are drawn.

Is this really seeing the interior of the sun? Or is this such a stretch that
it amounts to an outright abuse of the concept of seeing? It seems plausi-
ble to object that all we really see is a few streaks in a photo, caused by the
products of the decaying proton. The rest is inference based on some rather
sophisticated theory. But this rather conservative account may be unjusti-
fied. We are happy to claim we can see things with a magnifying glass or
microscope that we couldn’t otherwise see with the unaided eye. This goes
for high-powered electron microscopes as well as for low-powered optical
microscopes. It’s hard to draw a line between the naked eye and any pow-
erful instrument. Perhaps the apparatus for neutrino detection should also
be taken as an instrument for seeing the interior of the sun—a new type of
telescope.

There is quite a different sort of thing that we also happily call observ-
able. Consider the sort of thing we often see in an article or textbook on
high-energy physics, namely, a picture of some sub-atomic decay process.
These pictures are often given to us twice over. One of them is a photo of an
event in a bubble chamber. The second (usually right beside the first) is an
artist’s drawing of the same event. The difference is that all the messiness of
the first is tidied up. There are just a few bare lines in the artist’s version, ev-
erything else in the photo is eliminated as irrelevant, perhaps stemming from
processes having nothing to do with the one we’re interested in, or perhaps
mere scratches produced in the process of photographing, and so on. There
is certainly a difference between these two pictures, yet it seems fair to call
both a representation of something observable.

There is a useful terminology for this. The original photo is of a da-
tum, while the artist’s drawing is of a phenomenon. (Bogen and Woodward
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1988, Brown 1993) Interestingly, scientific theories usually try to explain
phenomena, not data. Phenomena are doubtless constructed (in some sense)
from data and occupy a middle ground between data and theory. One of the
most interesting and important aspects of phenomena is that they seem to
legitimize inductive inference from a single example. They are not alone in
doing this. So-called natural kind inference has this pattern. If any sample of
water is discovered to have the chemical structure H2O, then we infer that all
water has this structure. True, for safety’s sake a few samples would typically
be considered, just to make sure the test was done properly. By contrast, for
many other properties (e.g., are all ravens black?), we would insist on a very
large sample before cautiously drawing any conclusions. Not so in a natural
kind inference where a single instance is in principle sufficient.

Chicken sexing provides us with yet another unusual sense of seeing.
Expert chicken sexers are remarkable people. They can classify day old
chicks into male and female with 98% accuracy, and they can do this at a
rate of about 1000 per hour. The vast majority of us get it right about 50%
of the time, which is to say we’re utterly hopeless. The skill is considered
economically important if you want to feed those chicks who will eventually
become egg-layers, but not the others. (In an article on the epistemology of
mathematics, it is best not to reflect on the fate of the males.)

How do chicken-sexers do it? No one could do it until the Japanese dis-
covered a perceptual method of discrimination in the 1920s. This method
was passed on to North Americans in the 1930s. Some of the initial practi-
tioners have only just retired. Heimer Carlson of Petaluma, CA, for instance,
spent 50 years classifying a total of 55 million day-old chicks. His expertise
has been the subject of psychological study. (Biederman and Shiffrar, 1987)

The ability to correctly classify is so difficult that it takes years of train-
ing in order to achieve the rare expert level; this training largely consists of
repeated trials. The difference between good sexers and poor ones consists
for the most part in where they look and what distinctive features they look
for, especially contrastive features. It seems that expert chicken sexers were
not aware of the fact that they had learned the contrasting features, nor were
they aware of the exact location of the distinguishing information. By telling
novices where the relevant information was precisely located the novices
became experts themselves at a much quicker rate.

For our purposes the crucial thing to note is that the experts had some
sort of tacit understanding of where to look and what to look for. It may
seem that chicken-sexing is similar to riding a bicycle. We may all know
how to do it, but we can’t say what it is that we know. These two different
types of knowing are usually called “knowing how” and “knowing that.”
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Is chicken sexing just a case of knowing how, rather than knowing that?
There are certainly similarities, but there is one important difference between
classifying chicks and riding a bicycle. Knowing how to ride a bicycle is a
non-propositional skill; it results in actually riding. Knowing how to classify
chicks is also a non-propositional skill; it results in sorting. But it results in
propositional knowledge, as well, namely, being able to truly say “This is a
male.”

One might think that knowing how to ride a bicycle also results in propo-
sitional knowledge: “I am riding.” Not so. This instance of knowing that
does not come from knowing how, but from an empirical observation, a case
of knowing that: I see myself riding. The how-that order is reversed in the
two cases. In the bike example, the skill (riding) preceeds the knowledge
(knowing that I am riding), but in the sexing example the knowledge (his
knowing is a male) preceeds the skill (sorting).

Of course, there are lots of everyday examples such as seeing a cup on
a table just in front of us. This is certainly a legitimate case of perception.
I mention the other cases mainly to help prepare the case for mathematical
perception. Intuition may seem a deviation from the ordinary sense of seeing.
Perhaps it is, but so are a lot of other things, and it is not so great a deviation
as to be dismissed.

5. PROOFS AND INTUITIONS

Consider the following theorem and the picture that attempts to prove it. It
may take a few moments to see how the picture works, but it is certainly
worth the effort.

Theorem: 1+ 2+ 3+ . . .+ n = n2

2 + n
2

Proof:

I wish to claim that the diagram is a perfectly good proof. One can see
complete generality in the picture, even though it only illustrates the theo-
rem for n = 5. The diagram does not implicitly suggest a “rigorous” verbal
or symbolic proof. The regular proof of this theorem is by mathematical
induction, but the diagram does not correspond to an inductive proof at all
(where the key element is the passage from n to n + 1). The simple moral I
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want to draw from this example is just this: We can in special cases correctly
infer theories from pictures, that is, from visualizable situations. An intuition
is at work and from this intuition we can grasp the truth of the theorem.

What is an intuition? A standard definition of intuitive knowledge runs
as follows.

A knows p intuitively if and only if:

1. A knows that p
2. A’s knowledge that p is immediate
3. A’s knowledge is not an instance of the operation of any of the five

senses. (Dancy, 1992, 222)

This is good for a start, but there are problems with this definition. For
one thing, “knows” should be qualified to acknowledge the fallibility of in-
tuitions. Perhaps we should be talking about intuitive beliefs instead of in-
tuitive knowledge. Second, “immediate” should be qualified too. It does
not mean temporally immediate, though typically the process of coming to
know is fairly quick. Moreover, background knowledge and reflection may
be involved. The crucial thing in calling it immediate is that p is not derived
as the conclusion of an argument from other propositions.

Following Gödel, Platonists think of mathematical intuition as similar¨
to the sense perception of physical objects. Indeed, we could imagine an
analogous definition of sensory knowledge. It would be exactly the same
as the definition of intuitive except for the final clause which would assert
rather than deny that some of the five senses are involved.

If we return to the picture proof above, it seems a perfect candidate for
intuitive knowledge. There is one objection that might be raised. It might
be claimed that pictures give us sensory information and that is sufficient
for the proof. After all, I could come to know that Alice has red hair just
by looking at a colour photo of Alice. It is very doubtful, however, that
something similar is happening in the number theory example. The most
that one can acquire from the diagram by means of sense impressions, is a
limited version of the proof, namely a proof that works in the special case of
n = 5. Clearly, the picture provides a proof of very much more than that. It
proves the theorem for every natural number, all infinitely many of them.

We might try, as Jon Barwise and his associates have tried, to take
the picture to be not isomorphic but rather homomorphic to the structure
described in the theorem. Barwise and Etchemendy remark that “a good
diagram is isomorphic, or at least homomorphic, to the situation it repre-
sents. . . ” (1991, 22) Hammer (1995) also adopts this account. The problem
with this proposal is first, that the picture is obviously not isomorphic to the
whole natural number structure, since there are infinitely many numbers, and
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second, that there are too many homomorphisms; the picture does not tell us
which is the right one. And yet, we can seem to “grasp” it, nevertheless.
So, I conclude that the diagram is not a representation in any strict sense,
but rather something like a telescope that helps us to “see” into the Platonic
realm. In short, it’s a device for facilitating a mathematical intuition.

Let me take stock with a brief summery of what I’ve tried to establish so
far. Mathematical intuitions are similar to empirical observations, immediate
but fallible. Pictures and diagrams in mathematics are usually taken as mere
heuristic devices, psychologically useful, but not genuine proofs. Particular
examples, however, strongly suggest this is not so, that some pictures pro-
vide genuine proofs and are just as legitimate as traditional verbal/symbolic
proofs. A mathematical diagram can be seen, but it does not work because it
is literally observed. The observation and the intuition may be quite different
things. Often this will be the case, since what is seen is a finite entity, while
the intuition involves infinitely many things. This means the picture is more
like a device for seeing something else, an implement for generating the ap-
propriate intuition. The connection between sensory experience and mathe-
matical observation is two-fold. In one sense, they are analogous—both are
perceptions. Having an intuition is similar to having a sensory experience.
They are connected in another sense: one sees a diagram (sense perception)
that induces an intuition (mathematical perception) of something very differ-
ent. This is what happens when a picture is not merely a heuristic aid, but an
actual proof.

Now I will turn to a topic that is apparently quite different, Maddy’s
mathematical naturalism. In criticizing her view, I will make use of and even
reinforce the idea of mathematical intuition. There are two issues to consider.
First, does the Platonism described above succumb to Maddy’s naturalism?
Second, does the use of picture proofs lead to any problems for Maddy’s
naturalism?

6. MADDY’S NATURALISM

Penelope Maddy has changed her self-description from realist to naturalist.
Her earlier realism has two main characteristics (Maddy, 1990). First, an
ontological aspect: mathematical entities and mathematical facts exist inde-
pendently from us. Second, an epistemic aspect: we can perceive sets, even
though they are abstract entities, and this perception is compatible with nat-
uralist accounts of the perception of physical objects. These philosophical
claims lead her to make a methodological claim about mathematical practice.
Mathematicians make decisions based on philosophical assumptions. Thus,
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set theorists who accepted a realist ontology tended to accept impredicative
definitions and adopt so-called large cardinal axioms.

More recently, Maddy has adopted a view she calls naturalism. She actu-
ally has not rejected the two ingredients in her realism, but she has rejected
the methodological outlook that she thought went along with the realism.
Her new naturalism is the view that philosophy does not matter to mathe-
matical practice. In other words, working mathematicians do not accept im-
predicative definitions or the axiom of choice because of their realist philo-
sophical assumptions. Rather they do so because impredicative definitions
and the axiom of choice work. It’s a kind of internal pragmatism. Noth-
ing else matters, not philosophy, not science, not theology, just the needs of
mathematics itself.

Her argument is disarmingly brief: “Impredicative definitions and the
Axiom of Choice are now respected tools in the practice of contemporary
mathematics, while the philosophical issues remain subjects of ongoing con-
troversy. The methodological decision seems to have been motivated, not by
philosophical argumentation, but by consideration of what might be called
. . . mathematical fruitfulness. . . ” (1998, 164) Hence, her conclusion: “Given
that the methods are justified, that justification must not, after all, depend on
the philosophy.” (ibid. See also (Maddy, 1997, 191).)

There are two methodological practices that Maddy finds in the history
of mathematics: maximizing and unifying. “If mathematics is to be allowed
to expand freely. . . and if set theory is to play the hoped-for foundational
role, then set theory should not impose any limitations of its own: the set
theoretic arena in which mathematics is to be modelled should be as generous
as possible. . . Thus, the goal of founding mathematics without encumberingff
it generates the methodological admonition to MAXIMIZE” (1997, 210f,
her capitalization).

There are several points with which one could take issue. But there is
only one that I want to discuss in this paper. She claims that the policy MAX-
IMIZE, rather than philosophical beliefs about ontology or epistemology, is
what drives mathematics. I wish to counter this claim (in effect arguing that
her older view was right) and to counter it in a way that appeals to the notion
of intuition (as developed above) in a very fundamental and quite striking
way. This will arise in the following remarkable mathematical thought ex-
periment.

7. REFUTING THE CONTINUUM HYPOTHESIS

One of the more striking developments in recent mathematics is the use
of probabilistic arguments. This has been especially true in combinatorial
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branches of mathematics such as graph theory, but the potential is much
greater and could even be quite revolutionary. Given Maddy’s attitude to
means-ends relationships and especially her principle MAXIMIZE, she is
likely to endorse probabilistic proofs and want to see room made for these
methods in the foundations of mathematics. Amazingly, this may have con-
sequences for the continuum hypothesis, CH, and perhaps could even re-
bound against her naturalism.

Christopher Freiling (1986) constructed the following “refutation” of
CH. He calls his argument “philosophical,” since he does not provide a proof
or a counter-example in the normal mathematical way.

Imagine throwing darts at the real line, specifically at the interval [0,1].
Two darts are thrown and they are independent of one another. The point
is to select two random numbers. As background we assume ZFC. If CH
is true, then the points on the line can be well-ordered and will have length
ℵ1. If we pick a point in the well ordering then the set of earlier points
will have a lower cardinality. Thus, for each p ∈ [0,1], the set of all points
{q ∈ [0,1] : q < p} is countable. (Note that < is the well ordering relation,
not the usual less than.) Call this set SpS .

Suppose the first throw hits point p and the second hits q. Either p < q,
or vice versa; we’ll assume the first. Thus, p ∈ Sq. Note that Sq is a countable
subset of points on the line. Since the two throws were independent, we can
say the throw landing on q defines the set Sq “before” the throw that picks
out p. The measure of any countable set is 0. So the probability of landing
on a point in Sq is 0. While logically possible, this sort of thing is almost
never the case. Yet it will happen every time there is a pair of darts thrown at
the real line. Consequently, we should abandon CH, that is, the assumption
that the number of points on the line is the first uncountable cardinal number.

If the cardinality of the continuum is ℵ2 or greater, the argument as
set out here would not work, since the set of points Sq earlier in the well
ordering need not be countable, and so would not automatically lead to a
zero probability of hitting a point in it. (Freiling actually goes on to show
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that there are infinitely many cardinal numbers, ℵ1,ℵ2,ℵ3, . . ., between ℵ0

and 2ℵ0 .)
It is important to note that this argument cannot be formalized within

standard mathematics. Many sketchy arguments that appeal to vague intu-
itions can be rigorously reconstructed. But this one cannot. If we try to recast
it in purely mathematical terms we would violate established mathematical
principles. CH is, after all, independent of the rest of standard mathematics.

Freiling’s argument is contentious. But the mere possibility of its cor-
rectness (for all we know) is enough to make it an interesting example and
one that is useful for my purposes. Any realistic example is likely to be
contentious and I suspect that the majority of set theorists don’t accept this
refutation of CH. But some mathematicians do, including (Fields medallist)
David Mumford who would like to reformulate set theory, in consequence.
This is enough to make the example especially worth considering in connec-
tion with Maddy’s naturalism.

Mumford would like to see CH tossed out and set theory recast as “sto-
chastic set theory”, as he calls it. The notion of a random variable needs to
be included in the fundamentals of the revised theory and not be a notion
defined, as it currently is in measure theory terms. Among other things, he
would eliminate the power set axiom. “What mathematics really needs, for
each set X , is not the huge set 2X22 but the set of sequences XN in X.” (Mum-
ford, 2000, 208) I won’t pursue the details of this, but instead get right to the
philosophical point that has a bearing on Maddy’s views.

In the light of this example, we have two proposals, both of which could
claim support from Maddy’s methodological principle MAXIMIZE. First,
we have standard set theory in search of additional axioms, guided by the
desire not to limit in any way the notion of an arbitrary set. On this version
of MAXIMIZE the standard axioms remain, the proposed axiom of con-
structability V = L is rejected as too restrictive, and various large cardinal
axioms are tentatively accepted.

Second, we have Mumford’s programme. He can be seen as a max-
imiser, too. But his focus is on maximizing the range of legitimate proof
techniques and, in particular, making room for a more fruitful notion of ran-
domness. In enlarging the realm of mathematics for the sake of stochastic
methods and taking random variables seriously in their own right, Mumford
would reformulate set theory so as to pare down the universe of sets to a
much smaller size. This version of MAXIMIZE is, I suspect, also a per-
fectly legitimate mathematical aim by Maddy’s lights. Though it is not one
she anticipated.
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How are we to settle this dispute? Clearly, appeal to MAXIMIZE will
not help, since both sides could cheerfully embrace it. Freiling called his
argument “philosophical” and that seems exactly right (see Appendix). Why
“philosophy”? Because, it involves beliefs about symmetry, randomness,
and causal independence that go well beyond existing standard mathematics,
and his approach will likely stand or fall with the correctness or incorrect-
ness of those philosophical assumptions. Remember, Maddy’s naturalism
excludes not just science and philosophy, but everything non-mathematical
from having mathematical influence. If Freiling is right about CH, then
Mumford’s programme to overhaul mathematics gets a big boost and so will
his version of MAXIMIZE. Obviously, this will affect mathematical prac-
tice. In other words, philosophy has an effect on mathematical practice after
all. Freiling’s “philosophical” assumptions may be false, of course, but that
is neither here nor there. His particular assumptions and the (arguable) le-
gitimacy of pictures, diagrams, and thought experiments in mathematical
reasoning are the kinds of considerations that matter, at least in principle.
It is enough that one allows the possibility of intuitions based on visualiza-
tion – diagrams or thought experiments – and that this possibility is open
to philosophical debate. That is sufficient to undermine Maddy’s brand of
naturalism, since she denies any role at all for philosophy.

The final moral I wish to draw from the dart throwing example is to
reinforce the initial part of this paper. There is some sort of mathematical
perception which cannot be reduced to either physical perception or to dis-
guised logical inference. This, I think, is clear from the example. Obviously,
we have not refuted CH on the basis of accepted mathematical facts, since
CH is independent of those facts. Could it be an empirical process? This
seems very unlikely, since we cannot really pick out random real numbers
with darts. The process of this thought experiment, though highly visual, is
at bottom an intellectual one. Platonic intuitions a la` Godel play a crucial¨
role. And pictures, diagrams, and thought experiments can generate them.
Maddy and other naturalists might dispare, but Platonists should be cheered
by all of this.
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APPENDIX: FREILING’S “PHILOSOPHICAL” REFUTATION OF CH

The refutation of CH that I gave above is based on Mumford’s presentation.
The original version by Freiling is different in some respects. His thought ex-
periment assumes the following four “self-evident philosophical principles”
(1986, 199):

1. Choosing reals at random is a physical reality, or at least an intuition
mathematics should embrace to the extent possible.

2. A fixed Lebesgue measure zero set predictably will not be hit by a
random dart.

3. If an accurate Yes-No prediction can always be made after a prelim-
inary event takes place (e.g., the first dart is thrown) and, no matter
what the outcome of that event, the prediction is always the same,
then the prediction is also in some sense accurate before the prelimi-
nary event.

4. The real number line cannot tell the order of the darts.

To Freiling’s four assumptions I would add one more: the line consists
of pre-existing points. Aristotle, by contrast, thought that points could be
constructed, say, by throwing darts, but those points do not already exist on
the line. If Aristotle is right, then Freiling’s argument will certainly not work;
so the assumption of pre-existing points is crucial.

Freiling’s argument runs as follows: We throw two darts, one after the
other, at the real line [0,1]. There are a few obvious things we might note.
For instance, the first dart will land on an irrational number with probability
1, because the set of rational numbers is countable and so has Lebesgue
measure 0. It is not impossible to hit a rational number, but the probability
is 0, nevertheless.

Let f : R → Rℵ0 be a function that assigns a countable set of real num-
bers to each real; the number hit by the second dart will not be in the count-
able set assigned to the number hit by the first dart. The situation is symmet-
rical; the order of throwing is irrelevant. Thus, we can say that the number
hit by the first dart will not be in the set assigned to the second. This leads to
the following intuitive principle that I’ll call Freiling’s Symmetry Axiom:

FSA : (∀ f : R → Rℵ0)(∃x)(∃y) y � f (x) & x � f (y)

Theorem (of ZFC): FSA ⇐⇒¬CH

Proof : (⇒): Assume FSA and let < be a well ordering of R. The existence
of a well ordering follows from the axiom of choice which we have assumed.
We will further assume CH which implies that the length of the well ordering
is ℵ1. Our aim is to get a contradiction. Now let f (x) = {y : y ≤ x}. Thus,
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f : R → Rℵ0 . The way cardinal numbers are defined implies that we are
always bumped down a cardinality when picking a set of earlier points in
a well ordering. Moreover, a well ordering is total, so if some particular
y � {y : y ≤ x}, then x > y. Consequently, by FSA, (∃x)(∃y) x > y & y > x,
which is a contradiction. Hence, ¬CH.

For our purposes the refutation of CH is sufficient, but I will include
the rest of the proof of equivalence for those who are interested to see that
¬CH implies FSA.

(⇐): Assume that CH is false, i.e., 2ℵ0 > ℵ1. Let x1,x2,x3, . . . be an
ℵ1-sequence of distinct real numbers and let f : R → Rℵ0 . Now consider
the set A = {x : (∃α <ℵ1) x ∈ f (xα)}, which is the ℵ1-union of countable
sets. Thus, the cardinality of A is ℵ1. Since, by assumption, 2ℵ0 > ℵ1,
∃y � A. Thus, (∀α<ℵ1) y � f (x). Since f (y) is countable, we have (∃α ∈
ℵ1) xα � f (y). Therefore, y � f (x) & x � f (y).
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