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VISUALIZATION IN LOGIC AND MATHEMATICS

In the last two decades there has been renewed interest in visualization in
logic and mathematics. Visualization is usually understood in different ways
but for the purposes of this article I will take a rather broad conception of
visualization to include both visualization by means of mental images as
well as visualizations by means of computer generated images or images
drawn on paper, e.g. diagrams etc. These different types of visualization
can differ substantially but I am interested in offering a characterization of
visualization that is as broad as possible. The article describes and explains
(1) the way in which visual thinking fell into disrepute, (2) the renaissance
of visual thinking in mathematics over recent decades, (3) the ways in which
visual thinking has been rehabilitated in epistemology of mathematics and
logic.

This renaissance of interest in visualization in logic and mathematics
has emerged as a consequence of developments in several different areas,
including computer science, mathematics, mathematics education, cognitive
psychology, and philosophy. When speaking of renaissance in visualization
there is an obvious implication that visualization had been relegated to a sec-
ondary role in the past. One usually refers to the fact that the development of
mathematics in the nineteenth century had shown that mathematical claims
that seemed obvious on account of an intuitive and immediate visualization
turned out to be incorrect on closer inspection. This went hand in hand with
a downgrading of Anschauung and specifically visuo-spatial thinking from
the exalted status it had in Kant’s epistemology of mathematics. The effects
were also felt in pedagogy with a shift of emphasis away from visualization
(for instance, in Landau’s diagram-free text on calculus).

1. DIAGRAMS AND IMAGES IN THE LATE NINETEENTH
CENTURY

Some of the standard cases mentioned in this connection are the belief that
every continuous function must be everywhere differentiable except at iso-
lated points, or the tacit assumption in elementary geometry that the two
circumferences drawn in the construction of the equilateral triangle over any
given segment in Euclid’s Elements I.1 meet in one point (the vertex of the
equilateral triangle).1

In both cases the claim seems to be obvious from the visual situation
(diagrams or mental imagery) but turns out to be unwarranted. In the for-
mer case this is the consequence of the discovery of continuous nowhere
differentiable functions. In the latter case, this was due to the realization
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that only a continuity axiom can guarantee the existence of the intersection
point of the two circles. Such results and many other concomitant factors,
led mathematicians to formulate more rigorous approaches to mathematics
that excluded the recourse to such treacherous tools as images and diagrams
in favor of a linguistic development of mathematics. Of course, the use of
images and diagrams was still allowed at a heuristic level. The careful math-
ematician was however supposed to resist the chant of the visual sirens when
it came to the context of justification:

For the appeal to a figure is, in general, not at all necessary. It
does facilitate essentially the grasp of the relations stated in the
theorem and the constructions applied in the proof. Moreover,
it is a fruitful tool to discover such relationships and construc-
tions. However, if one is not afraid of the sacrifice of time and
effort involved, then one can omit the figure in the proof of
any theorem; indeed, the theorem is only truly demonstrated
if the proof is completely independent of the figure. (Pasch,
1882/1926, 43).

In short, visualization seemed to lose its force in the context of justifica-
tion while being allowed in the context of discovery and as something that
simplifies cognition (but cannot ground it). Pasch is well known for being
one of the pioneers of a development of geometry characterized by the rejec-
tion of diagrams as relevant to geometrical foundations. In the Foundations
of Geometry (1899) Hilbert is not explicit about the role of diagrams in ge-
ometry. However, in a number of unpublished lectures he raises the issue. In
lectures on the foundations of geometry from 1894 we read:

A system of points, lines, planes is called a diagram or figure
[Figur]. The proof [of the theorem he is discussing] can in-
deed be given by calling on a suitable figure, but this appeal
is not at all necessary. [It merely] makes the interpretation
easier, and it [the appeal to diagrams] is a fruitful means of
discovering new propositions. Nevertheless, be careful, since
it [the use of figures] can easily be misleading. A theorem is
only proved when the proof is completely independent of the
diagram. The proof must call step by step on the preceding ax-
ioms. The making of figures is [equivalent to] the experimen-
tation of the physicist, and experimental geometry is already
over with the [laying down of the] axioms. (Hilbert, 1894, 11).

And in other lectures from 1898 and 1902 Hilbert provides examples of
how one can be misled by diagrams by going through a proof of the claim
that “every triangle is equilateral”. In introducing the example he says:
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One could also avoid using figures, but we will not do this.
Rather, we will use figures often. However, we will never rely
on them [niemals auf sie verlassen]. In the use of figures one
must be especially careful; we will always have care to make
sure that the operations applied to a figure remain correct from
a purely logical perspective. (Hilbert, 1902, 602).

These motivations, emerging from the foundational work in geometry
and analysis, led to a conception of formal proof that has dominated logic in
the past century (and it is usually attached to the names of Frege, Hilbert, and
Russell). This conception of formal proof relies on a linguistic characteriza-
tion of proofs as a sequence of sentences. We find the essential elements of
such conception already in Pasch:

We will acknowledge only those proofs in which one can ap-
peal step by step to preceding propositions and definitions. If
for the grasp of a proof the corresponding figure is indispens-
able then the proof does not satisfy the requirements that we
imposed on it. These requirements are fulfillable; in any com-
plete proof the figure is dispensable [. . . ]. (Pasch, 1882/1926,
90).

These attitudes towards diagrammatic reasoning and visualization have
thus a complex history, which still calls for a good historian. Certainly one
would have to take into account the importance of the development of pro-
jective and non-Euclidean geometries in the nineteenth century and of the
arithmetization of analysis.2

However, I am not convinced that we can tell a linear story where the
heroes finally attained a level of rigor hitherto unprecedented, thus leaving
the opposition in disarray. For instance, I think there is much to learn from
taking a look at the opposition between Klein and the Weierstrass school or
the debate that opposed the “rigorist” Segre to the “intuitionists” Severi and
Enriques in algebraic geometry.3

I will limit myself to a remark on one of the main paradigmatic exam-
ples that were used to discredit the role of geometric intuition in analysis,
e.g. Weierstrass’ discovery of a continuous nowhere differentiable function.
Weierstrass’ result was announced in 1872 (and published by du Bois Rey-
mond (1875, 29)). The function in question was given by the equation

f (x) =∑bn cos(anx)π

with a odd, b ∈ [0,1) and ab > 1+ 3π/2.
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FIGURE 1. von Koch’s snow-flake.

Weierstrass’ result was given in a strictly analytic way (du Bois Rey-
mond (1875, 29-31)) and it left obscure what the geometrical nature of the
example might be. This was somehow characteristic of the school of Weier-
strass, which – as Poincare poignantly puts it – “ne cherche pas a voir mais´
a comprendre” (Poincar´` e, 1898, 16). However, there were mathematicians´
who did not accept this distinction between seeing and understanding. A
case in point is Helge von Koch. Von Koch is now well known for his snow-
flake, one of the earliest examples of fractals and up to this day one of the
paradigmatic examples of fractals.

What is not well known is the motivation that led von Koch to his dis-
covery of the snowflake. In his 1906 von Koch begins by remarking that until
Weierstrass came up with his example of a continuous nowhere differentiable
curve it was a widespread opinion (“founded no doubt on the graphical rep-
resentation of curves”) that every continuous curve had a definite tangent
(with the exception of singular points). But then he adds:

Although Weierstrass’ example has once and for all corrected
this mistake, it is insufficient to satisfy our mind from the ge-
ometrical point of view; for the function in question is defined
by an analytic expression which hides the geometrical nature
of the corresponding curve so that one does not see, from this
point of view, why the curve has no tangent; one should say
rather that the appearance is here in contradiction with the re-
ality of the fact established by Weierstrass in a purely analytic
manner. (von Koch, 1906, 145-6).

Restoring geometrical meaning to the analytic examples was at the source
of the work:
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This is why I have asked myself – and I believe that this ques-
tion is of importance when teaching the fundamental princi-
ples of analysis and geometry – whether one could find a curve
without tangent for which the geometrical appearance is in
agreement with the fact in question. The curve which I found
and which is the subject of this paper is defined by a geomet-
rical construction, sufficiently simple, I believe, that anyone
should be able to see [pressentir] through “naı̈ve intuition” the¨
impossibility of a determinate tangent. (von Koch, 1906, 146).

Von Koch’s project must be seen against the background of the philo-
sophical discussion among mathematicians on the demarcation between “vi-
sualizable” (or “intuitable” ) and “non-visualizable” curves. This discussion
(see Volkert (1986)), to which Klein, du Bois Reymond, Köpke, Chr. Wiener¨
and others contributed, should draw our attention to the fact that a detailed
history of attitudes towards visualization in the twentieth century might re-
veal a more complex pattern than a simple and absolute predominance of a
linguistic, non visual, notion of proof.

2. THE RETURN OF THE VISUAL AS A CHANGE IN
MATHEMATICAL STYLE

But granting the predominance of a linguistic, non visual, notion of formal
proof in mathematics – and examples such as Bourbaki make clear that this
not a myth – let us now try to characterize the salient features of this ‘return
of the visual’.

One of the most important aspects is certainly the development of vi-
sualization techniques in computer science and its impact on mathematics.
Here there has clearly been a two ways influence as mathematical techniques
have helped shape techniques in computer science (including those leading
to great progress in visualization techniques). Conversely, developments in
visualization techniques developed by computer scientists have had impor-
tant effects on mathematics. Computer graphics has allowed researchers to
display information (say, analytic or numerical information) in ways that can
be represented in the form of a graph, or a chart or in other forms but in any
case in a form that allows for a quick visual grasp. Two areas are usually
singled out as paradigmatic of the powerful role displayed by visualization
in the mathematical arena. The first one is the area of chaos theory, and in
particular fractal theory (see Evans (1991)). In “Visual theorems”, Philip
Davis emphasizes that “aspects of the figures can be read off (visual the-
orems) that cannot be concluded through non-computational mathematical
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FIGURE 2. Mandelbrot and Julia sets.

devices” (1993, 339). For delightful examples of visual proofs see Roger B.
Nelsen (1993, 2000).

Here one can point at the dramatic case of the relationship between the
Mandelbrot set and all the Julia sets sitting inside it. It would have been im-
possible to recognize analytically, without the visual support offered by the
computer, that the Julia sets are present inside the Mandelbrot sets. More-
over, the connectedness of the Mandelbrot set became apparent to Mandel-
brot on the basis of its graphical appearance.

Another area where the benefits of computer graphics have been greatly
exploited is differential geometry. The visual study of three-dimensional
surfaces was pioneered in the late seventies by T. Banchoff and C. Strauss.
Through the use of computer graphic animation they were able to construct
surfaces and gain a better grasp of them by the application of transforma-
tions. However, the two most eventful results obtained in this way were
the problem of everting the 2-sphere and the discovery of new minimal
surfaces.4 Palais aptly summarizes the situation:

Two problems in mathematics have helped push the state of
the art in mathematical visualization – namely, the problem
of everting the 2-sphere and of constructing new, embedded,
complete minimal surfaces, especially higher-genus examples.
In the case of eversion, the goal was to illuminate a process so
complex that very few people, even experts, could picture the
full details mentally. In the case of minimal surfaces, the vi-
sualizations actually helped point the way to rigorous mathe-
matical proofs. (Palais, 1999, 654).

In his account of the latter discovery David Hoffman says:
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FIGURE 3. Costa’s surface.

In 1984, Bill Meeks and I established the existence of an in-
finite family of complete embedded minimal surfaces in R3.
For each k > 0, there exists an example which is homeomor-
phic to a surface of genus k from which three points have been
removed. Figure [3] is a picture of genus-one example. The
equations for this remarkable surface were established by Cel-
soe Costa in his thesis, but they were so complex that the un-
derlying geometry was obscured. We used the computer to nu-
merically approximate the surface and then construct an image
of it. This gave us the clues to its essential properties, which
we then established mathematically. (Hoffman, 1987, 8).

Hoffman emphasizes the importance of computer generated images as
“part of the process of doing mathematics”. However, in his paper he also
emphasizes the importance of proving ‘mathematically’ the properties of the
surface which can be ‘seen’ directly in the visualization:

Also it [the surface] was highly symmetric. This turned out
to be the key to getting a proof of embeddedness. Within
a week, the way to prove embeddedness via symmetry was
worked out. During that time we used computer graphics as
a guide to “verify” certain conjectures about the geometry of
the surface. We were able to go back and forth between the
equations and the images. The pictures were extremely useful
as a guide to the analysis. (Hoffman 1987, p.17)

We thus see that the ‘return of the visual’ has led to new mathematical
discoveries, which, it might be argued, could not have been obtained without
the application of computer generated images. Nonetheless, these ‘images’
are not taken at face value. The properties they display must then be verified
‘mathematically’.5
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The reaction against a purely symbolical conception of mathematics has
also found its way in new presentations of certain mathematical subjects that
emphasize the visual aspects of the discipline. Paradigmatic examples are
Fomenko’s ‘Visual geometry and topology’ (1994) and Needham’s ‘Visual
complex analysis’ (1997).

Both of them recognize the importance of the influence of computer sci-
ence in the recent shift towards more visual methods but their call for a return
to intuition and visualization runs deeper and it is rooted in an apprecia-
tion of the importance of visual intuition in areas such as geometry, topol-
ogy, and complex analysis. Fomenko quotes Hilbert approvingly to the ef-
fect that notwithstanding the importance of analytical and abstract reasoning
“visual perception [Anschauung] still plays the leading role in geometry”.
Fomenko however does not consider a visual presentation to be logically
self-sufficient:

Many modern fields of mathematics admit visual presenta-
tions which do not, of course, claim to be logically rigorous
but, on the other hand, offer a prompt introduction into the
subject matter. (Fomenko, 1994, preface p. vi).

And later:

It happens rather frequently that the proof of one or another
mathematical fact can at first be ‘seen’, and only after that (and
following the visual idea) can we present a logically consistent
formulation, which is sometimes a very difficult task requiring
serious intellectual efforts. (Fomenko, 1994, preface p. vii)

Thus, Fomenko’s emphasis is on the pedagogical and heuristic value of
visual thinking and he does not seem to ascribe to results obtained by visual
thinking a justificatory status comparable to that obtained by a ‘logically
consistent formulation’.

Needham is also very strongly critical of the tendency of modern math-
ematics to downplay the importance of visual arguments. In a ‘parable’ he
compares the situation in contemporary mathematics to that of a society in
which music can only be written and read but never be ‘listened to or per-
formed’. He says:

In this parable, it was patently unfair and irrational to have
a law forbidding would-be music students from experiencing
and understanding the subject directly through ‘sonic intu-
ition’. But in our society of mathematicians we have such
a law. It is not a written law, and those who flout it may yet
prosper, but it says, Mathematics must not be visualized!6
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Just like Fomenko, Needham concedes that “many of the arguments [in
the book] are not rigorous, at least as they stand” but that “an initial lack of
rigor is a small price to pay if it allows the reader to see into this world more
directly and pleasurably than would otherwise be possible” (p. xi).

In concluding this section then I would like to point out that many con-
temporary mathematicians are calling for a return to more visual approaches
to mathematics. However, this return of the visual does not seem to upset the
traditional criteria of rigor. In all the cases mentioned above all the authors
remark on the cognitive importance of visual images in doing mathematics
but also seem to recognize that images do not satisfy the criteria of rigor nec-
essary to establish the results being investigated. In this sense this new trend
towards visualization, while marking an important shift in style of research
and mathematical education (on mathematics education see Zimmerman and
Cunningham (1991)), does not seem to me to bring about a radically new po-
sition on the issue of the epistemic warrant which can be attributed to argu-
ments which rely on visual steps. In any case, this problem is not addressed
directly by any of the authors mentioned above.

At this point several problems could be raised. First, it would be inter-
esting to know more about the cognitive visual roots of our mathematical
reasoning and the exact role that mental imagery plays in our mathematical
thinking. Second, a number of classical foundational and epistemological
questions can still be raised about the warrant afforded by diagrammatic or
visual reasoning. In the next section I will try to mention what seem to be
the most promising directions of research in these areas at the moment.

3. NEW DIRECTIONS OF RESEARCH AND FOUNDATIONS OF
MATHEMATICS

Despite the great revival of interest for visual imagery in cognitive psychol-
ogy (Kosslyn, 1980, 1983; Shepard and Cooper, 1982; Denis, 1989) research
in the specific field of mathematical visualization has still a long way to go.
Some interesting results are emerging in the study of diagrammatic reason-
ing (Larkin and Simon, 1987; Glasgow et al., 1995) and problem solving
(Kaufmann (1979); for a survey and extensive references see Antonietti et al.
(1995)). However, the two most up to date treatments of how the brain does
arithmetic (Butterworth, 1999; Deheane, 1997) contain very little on visual-
ization in arithmetic. These investigations in cognitive psychology have in-
fluenced a number of researchers active in foundations of mathematics, who
are interested in addressing the complex web of issues related to perception,
imagery, diagrammatic reasoning and mathematical cognition.
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Let me begin by mentioning the project “Géom´ etrie et cognition” led by´
G. Longo, J. Petitot, and B. Teissier at the ENS in Paris. Their approach
emphasizes the need to provide cognitive foundations for mathematics, in
opposition to logical foundations à la Hilbert. Their research is strongly in-`
fluenced by the dramatic developments in cognitive psychology, especially
in the area of perception theory. And although mental imagery is not stressed
in their ‘manifesto’ (where the emphasis is on perception)7, it is obvious that
their program calls for an account of the cognitive role of mental imagery
in mathematics. This ‘cognitive’ approach to the foundations is less con-
cerned with the traditional goals of logical foundation, as it had been pur-
sued in the tradition of proof theory. Rather, it goes back to the tradition
represented by Riemann, Poincaré, Helmholtz and Weyl. Moreover, they ap-´
peal to Husserl’s phenomenological analyses and in particular the work on
genesis of concepts. For this tradition the foundational task is essentially to
give an epistemological analysis of the constitutive role of the mind in the
construction of mathematics and geometry in particular.

Of great interest is also the epistemological work on visualization car-
ried out by Marcus Giaquinto.8 One can read Giaquinto’s project as trying
to account for the epistemological status of certain experiences of visual-
ization which, he argues, are substantially different both from observation
and from conceptual reasoning. There is obviously a “Kantian” flavor to the
project. The thesis, as presented by Giaquinto, is that the epistemic func-
tion of visualization in mathematics can go beyond the merely heuristic one
and be in fact a means of discovery. We are used to associate discovery
with the heuristic context. But discovery is taken here in a technical sense
according to which “one discovers a truth by coming to believe it indepen-
dently in an epistemically acceptable way”. The independence criterion is
meant to exclude cases in which one comes to believe a proposition just by
being told. One of the conditions on the requirement of epistemic acceptabil-
ity is that the way in which one comes to believe a proposition is reliable.
Giaquinto then proposes a case of visualization (a simple geometrical fact
about squares) for which he claims that through that process of visualization
one could have arrived at a discovery (in the sense above, which does not
entail priority) of the result. However, the justification provided by the vi-
sualization need not be a demonstrable justification, i.e. a justification that
can be checked by intersubjective standards of proof. And nonetheless this
is, he concludes, a legitimate way to come to know a mathematical proposi-
tion. The upshot of his investigations is the claim that whereas in elementary
arithmetic and geometry it is possible to discover truths by means of visu-
alization this is not the case in elementary real analysis, except perhaps in
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extremely restricted cases. It is important to point out here some important
features of Giaquinto’s approach. In traditional philosophy of mathematics
the emphasis is mostly on major theories, such as arithmetic, analysis, or set
theory. The main question that has been pursued is whether these theories
are true and, if so, how do we know them to be true. Since deduction can
preserve knowledge, usually the question becomes that of the epistemology
of the axioms of such theories. Giaquinto asks the analogous question for the
case of the individual and his or her mathematical beliefs. How do people
know their initial (uninferred) mathematical beliefs? And more generally,
how do they acquire their beliefs, whether initial or derived? His strategy
is then to investigate how people actually acquire their beliefs, and this is
where cognitive psychology comes in. Once we have isolated the cognitive
mechanisms of belief acquisition then we can subject them to epistemolog-
ical analysis and ask whether they are in fact knowledge-yielding. While it
is beyond the scope of this paper to address the argumentative line defended
by Giaquinto, let me just grant him the thesis and see how it fits within the
spectrum of positions in foundations of mathematics. Obviously, his project
dovetails quite well with the issues raised by those philosophers of math-
ematics who insist that foundations of mathematics should address issues
concerning the epistemology of mathematics. Giaquinto’s last writings on
this issue in fact (see this volume) put forth an account of the interaction
between perception, visual imaging, concepts and belief formation in the
realm of elementary geometry. But, as mentioned before, it is not central to
Giaquinto’s claims that the types of visualizations he discusses would count
as proofs in the traditional sense. He thus moves away from the traditional
concerns in philosophy of mathematics in two ways. First of all, he shifts
the focus from the community to the individual. Second, since justification
will ultimately depend on some unjustified premises that we must hold to be
true, the question becomes how do we know these ultimate premises to be
true. And that, Giaquinto argues, cannot be done by giving another justifica-
tion (which would involve a regress) but rather by an epistemic evaluation of
the way we come to believe those premises. But this is a question that even
those who focus on major mathematical theories will have to address, as the
starting point of those theories would have to be accounted for epistemolog-
ically. And how could that be done, without going back to the mechanisms
of belief acquisition of the individual? In this way, Giaquinto’s work shows
its relevance also for traditional programs in the philosophy of mathematics.

By contrast, the work carried out by Barwise and Etchemendy on visual
arguments in logic and mathematics is motivated in great part by the proof-
theoretic foundational tradition.9 While Giaquinto was mainly concerned
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with discovery (in the technical sense we have pointed out), Barwise and
Etchemendy focus on proof.

Barwise and Etchemendy begin by acknowledging the important heuris-
tic role of visual representations but want to go further:

We claim that visual forms of representation can be important,
not just as heuristic and pedagogical tools, but as legitimate
elements of mathematical proofs. As logicians, we recog-
nize that this is a heretical claim, running counter to centuries
of logical and mathematical tradition. This tradition finds its
roots in the use of diagrams in geometry. The modern attitude
is that diagrams are at best a heuristic in aid of finding a real,
formal proof of a theorem in geometry, and at worst a breeding
ground for fallacious inferences. (Barwise and Etchemendy,
1996, 3).

Their position challenges the “dogma” ‘that all valid reasoning is (or can
be) cast in the form of a sequence of sentences in some language’. To this
effect they aim at developing an information-based theory of deduction rich
enough to assess the validity of heterogeneous proofs that use multiple forms
of representation (both diagrammatic and verbal). The point is that language
is just one of the many forms in which information can be couched. Visual
images, whether in the form of geometrical diagrams, maps, graphs or visual
scenes of real-world situations are other forms. The goal becomes then that
of developing formal systems of reasoning in which diagrammatic elements
play a central role. It is important here to keep two different claims in mind.
The first claim is that “not all valid reasoning is (or can be cast) in the form of
a sequence of sentences from some language.” The second claim is that it is
possible to construct heterogeneous systems of logic, which unequivocally
show that it is possible to reason rigorously with diagrammatic elements.
This requires extending to these new systems the analogue of notions of
soundness, completeness etc., which are the adequacy conditions for formal
systems of deductive inference. And in turn this requires a framework that
‘does not presuppose that the information is presented linguistically’. Work
along these lines has been done by Barwise, Etchemendy (see 1996) and
their students (see Allwein and Barwise (1996); Shin (1994), among others).

What conclusions can one draw from the work that has been achieved in
this area?

A far-reaching claim made by Barwise and Etchemendy was that “not
all valid reasoning is (or can be cast) in the form of a sequence of sentences
from some language”. If what is meant is that there are forms of valid rea-
soning (visual or diagrammatic reasonings) which cannot be expressed in
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linguistic form, then I claim that the positive developments mentioned above
do nothing at all to prove the point.10 Indeed, even setting up the question in
such a way is problematic, for there is very little clarity on what criteria one
can appeal to in order to distinguish linguistic systems from visual systems.
These issues are at the center of much recent work (Stenning, 2000).

However, the logical precision of these diagrammatic systems allows one
to investigate a number of claims that were made for or against the use of
visual elements in proofs. For instance, people have often noticed the lack of
expressive power of diagrammatic systems. The setting up of diagrammatic
systems has given us a better insight into the problem. Consider for instance
Venn’s idea of representing all relationships between an arbitrary number of
classes by means of closed curves. It was obvious to Venn that if one only
uses circles, there is no way to go beyond 3 classes, that is the addition of
a fourth circle to the diagram will not be able to represent all the possible
combinations between 4 classes.

In the case of Euler’s diagrams there are also limitations, due to Helly’s
theorem, which shows that there are consistent sets of set intersection state-
ments that cannot be represented by any diagram of convex curves. In short,
it is essential to study how the geometrical and topological features of the
representation system affects its expressivity.

Another advantage of setting up formal systems of diagrammatic rea-
soning is that one can give a logical analysis of the often made claim that
diagrammatic systems are intrinsically more efficient. A recent article by
Lemon and Pratt (1997) develops a computational complexity approach to
the study of diagrammatic representations.

I would like to conclude with a reflection on how this work affects tra-
ditional foundational concerns. One claim made by Barwise, Etchemendy,
Shin and others is concerned with the foundational issue of reasoning with
diagrammatic representations, i.e. that it is possible to reason rigorously with
diagrammatic elements. Thus, visual systems are not inherently deceptive,
or no more than linguistic systems might be. Here I think that the work done
by Barwise, Etchemendy, Shin and others proves the point. What they did
was to show that to the traditional model of linguistic rigor we can now add
rigorous forms of inference with diagrammatic elements.

However, there are several philosophers of mathematics who are op-
posed to this traditional approach and are interested in visual reasoning as an
essential factor in providing a more ‘realistic’ philosophy of mathematics,
sensitive to its practice and its cognitive roots. I believe that many of them
would find the work by Barwise and Etchemendy on diagrammatic reasoning
insufficient at best and misguided at worst. The problem, for many people in
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this tradition, is that exclusive attention to the goal of justification is unac-
ceptable. There are many other important epistemic goals, such as discovery
(in Giaquinto’s sense), explanation, understanding, genesis of concepts etc.,
that philosophy of mathematics should account for.

In any case, the work on diagrammatic reasoning accounts for a very
minimal part of our employment of visual tools in our logical and mathema-
tical experience. Should the practicing mathematician feel more comfortable
using visual or diagrammatic tools in his or her work? I think the work on
diagrammatic reasoning does not do much to allay possible worries of be-
ing misled by the visual tools in research contexts but it does show that the
reasons for why such tools are problematic is not necessarily on account of
some intrinsic feature of the visual medium. It is rather that one must always
check that the visual medium does not introduce constraints of its own on
the representation of the target area. And I doubt this is an issue that can be
settled a priori rather than by a detailed case by case analysis of such uses.
But after all, mathematicians have been doing just that for more than two
thousand years.
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NOTES
1See (Pasch, 1882/1926, 44).
2For diagrammatic reasoning in Greek mathematics see Netz (1999). For vi-

sualization in non-Euclidean geometry see Reichenbach (1956). For debates on
visualization in the arithmetization of analysis see Volkert (1986).

3One should recall here Hadamard’s distinction between visual and symbolic ap-
proaches to mathematical thinking. Hadamard himself claimed to think visually, and
following Poincaré characterized mathematicians as falling into two broad classes,´
the analysts and the geometers. As for Hilbert, quoted by Hadamard: “I have given
a simplified proof of part (a) of Jordan’s theorem. Of course, my proof is completely
arithmetizable (otherwise it would be considered non-existent); but, investigating it,
I never ceased thinking of the diagram (only thinking of a very twisted curve), and
so do I when remembering it” (Hadamard, 1949, 103).

4The problem of the eversion of the two sphere is that of turning it inside out
without tearing. For reasons of space I will not give a detailed explanation of what
the two problems are. Palais (1999) provides a very readable account of the two
results. I trust that the main methodological point will be clear even for those who
are not conversant with differential geometry.

5Indeed one should not make the mistake of underestimating the complexity
of producing ‘persuasive’ images. For instance in his article Hoffman describes
how much of the mathematical community admitted difficulty in understanding the
images they were producing and that this forced them to produce more realistic
images. See Hoffman, 1987, p.18.

6“More likely than not, when one opens a random modern mathematics text on
a random subject, one is confronted by abstract symbolic reasoning that is divorced
from one’s sensory experience of the world, despite the fact that the very phenom-
ena one is studying were often discovered by appealing to geometric (and perhaps
physical) intuition.

This reflects the fact that steadily over the last hundred of years the honour of
visual reasoning in mathematics has been bismirched. Although the great mathe-
maticians have always been oblivious to such fashions, it is only recently that the
“mathematician in the street” has picked up the gauntlet on behalf of geometry. The
present book openly challenges the current dominance of purely symbolic logical
reasoning by using new, visually accessible arguments to explain the truths of ele-
mentary complex analysis.” (Needham, 1997, vii).

7See http://www.di.ens.fr/users/longo/geocogni.html#anchor1640003for the pro-
gram and further references.

8The epistemological investigations by Giaquinto (1992, 1994) also take their
start from cognitive psychology. In particular, Giaquinto was influenced by Koss-
lyn, who in his book “Ghosts in the Mind’s Machine” comments on the relationship
between knowledge and imagery by making the point that previous knowledge con-
strains the images we come up with. By contrast, Brown (1997) takes its start from
the work by Barwise and Etchemendy.
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9I should immediately point out that the narrative contrast between Giaquinto’s
work and Barwise and Etchemendy has to be taken with caution. Barwise and
Etchemendy focus on diagrammatic reasoning, which is a form of visual reasoning,
but have nothing to say about the phenomenology of visualization, which constitutes
the main contribution by Giaquinto.

10A proper discussion of this topic would quickly lead into cognitive psychology
and to the ‘imagery debate’. See Tye (1991).
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