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1. THE PROBLEM MOTIVATED

Let us start with a trivial example, which however already suggests the out-
lines of the problem at hand. Imagine I have collected my lunch at a self-
service cafeteria so that now my tray holds, say, a paper plate with a sand-
wich on it, another one with fruit, and finally, a soda in a large cup (the kind
known as “small”). Now, as I prepare to detach myself from the counter, I
arrange the three objects on the tray. This can be approached through several
theoretical perspectives.

First, there is the mathematical-physical perspective, employing the spe-
cific field of statics (pioneered, as we shall note again below, by Archimedes).
The task is to arrange three objects on a plane, so that their individual cen-
tres of gravity, and the centre of gravity of the system as a whole, will ensure
maximum stability. One should in particular consider the problem of the
system’s robustness, i.e. how it may react with the disturbances it is likely to
undergo as I move towards a table. This is a very complex problem, and the
fact that we very often (not always) solve it in effective ways, may indicate
our powers of unconscious computation.

The mention of the “unconscious” immediately brings to mind a fur-
ther relevant theoretical perspective. It may be suggested that the desire
to arrange objects in neat, ordered ways could reflect either an obsessive-
compulsive disorder, or its more or less universal incipient form. Whatever
one thinks of any particular form of psychoanalysis, it is clearly a possible
way of explaining my acts as I rearrange the objects on the tray. While the
mathematical perspective provides a possible functional role for the arrange-
ment obtained, the psychoanalytic perspective provides a possible functional
role for the act of arrangement itself – by uncovering the desires and needs
which find their outlet in that act.

Finally, regardless of the desires that motivate the act of arrangement,
and regardless of the physical function of that act, one can study the formal
properties of the arrangement obtained, this time adopting the perspective of
aesthetics. Merely as a visual pattern on the tray, the objects possess prop-
erties such as symmetry and composition. The driving force that makes me
align my plates along a precise geometrical configuration is perhaps best un-
derstood by the psychoanalyst. However, some of the properties of the align-
ment I achieve are not psychological, but aesthetic: they belong, so to speak,
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not to the psychopathology of everyday life, but to the aesthetics of everyday
life. Anxiety was momentarily warded off; but on the tray itself, we observe
not the absence of anxiety, but the presence of, say, the golden section. In
general, then, statics studies the function of the arrangement obtained; psy-
choanalysis studies the function of the act of arrangement; and aesthetics
studies certain objective features of the arrangement obtained (which are of
course difficult to characterize precisely). We may perhaps say (if only so as
to have the word “function” available for our use on all occasions) that aes-
thetics studies the aesthetic function of an object. This is useful because now
we can note that the various functions differ as to their dominance in differ-
ent contexts. We may observe, for instance, how people rearrange their trays
as they sit down on the table: the tray safely in place, the physical function
lost its dominance and the aesthetic function is dominant instead.

I have introduced two theses. One is that the aesthetic function is ubiq-
uitous; the second is that, in different contexts, it may be more or less dom-
inant. Such theses have long been current (their best statement probably
remains Mukarovsky (1970), translation of a work written in 1936), though
perhaps interest in the aesthetic function of literary works has more recently
waned in the English-speaking world. At any rate, the trivial example I have
delineated is meant to introduce the idea of the aesthetic function of mathe-
matical texts.

Thus, we should not be concerned about the fact that mathematical texts
have obvious, overt functions (akin to the static features of the tray in my
example), e.g. to obtain the truth of mathematical results for some possible
mathematical or physical applications. This overt function can be separated,
analytically, from the aesthetic features of a mathematical text. (Of course,
there might be interesting interactions between such overt functions and the
aesthetic function.) Further, we need not be concerned about another fact,
that mathematical texts – like all texts – are motivated by all sorts of external
forces, such as the sociological realities of publication and tenure, compa-
rable to the psychological processes suggested to underlie my ordering of
plates on the tray. (Once again, though, sociological factors may interest-
ingly interact with the aesthetic factors.) Finally, I wish to stress – this is
the main point of my trivial example – the mundane nature of the aesthetic.
At least to begin with, in this article I do not intend to wax lyrical about the
beauty of mathematics. Mathematical works are sometimes great works of
art, sometimes (even when they are of considerable mathematical value) their
presentation is boring and pedestrian. It is not my contention that mathe-
matical texts are particularly beautiful, more so than other types of human
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expression. Rather, like all types of human expression, they possess, among
other things, an aesthetic dimension.

Yet the question of mathematical beauty is of special urgency. Math-
ematicians – it seems, more than most other scientists – often claim to be
motivated by the aesthetic dimension. To take the most famous example,
Hardy insisted that “The mathematician’s patterns, like the painter’s or the
poet’s, must be beautiful. . . Beauty is the first test: there is no permanent
place in the world for ugly mathematics” (Hardy, 1967, 85).1 Hardy then
went on to contrast the beauty of mathematics with its – as he claimed –
inutility. To be precise, Hardy argued that the utility of a given piece of
mathematics is inversely related to its beauty (so that, say, the multiplica-
tion table - perhaps the most ‘useful’ part of ‘mathematics’ – is so devoid of
beauty as hardly to deserve the name ‘mathematics’). In other words, Hardy
considered the aesthetic dimension as dominant in mathematics. We should
not follow judgements such as Hardy’s blindly; what we need to do is to have
some way to position them in the reality of mathematical experience. What
is the objective feature that authors such as Hardy identify in mathematics,
when they identify a ‘beauty’ within it? Only after we have answered such
questions, we can return to answer usefully the question, why Hardy chose
to value this feature above others. One purpose of this article is as a prole-
gomenon for such questions.

Another purpose lies within the history and philosophy of mathematics
themselves. It appears that there is a certain difference between arguing that
a certain piece of mathematics was created in order to get tenure, and arguing
that it was created in order to produce beauty. My intuition is that, in the first
case, we learn something about tenure, while in the second case we learn
something about mathematics. A mathematician, QUA mathematician, may
aim at truth, necessity, generality, and many other epistemic values – and at
the same time, and still QUA mathematician, he or she may also aim at non-
epistemic values such as beauty. Then again, he or she may aim at tenure –
but there we may be inclined to drop the ‘QUA mathematician’ clause.

This then may be the contribution of the following discussion to the his-
tory and philosophy of mathematics. Working in this discipline, we naturally
tend to concentrate on the epistemic values of mathematical activity – which
were of course at the heart of the philosophy of mathematics from its in-
ception with Plato onwards. If any non-epistemic values may be recognized,
their role might be acknowledged, but then they are considered as extrinsic to
mathematics itself. I would suggest that aesthetic value is a key example of
a non-epistemic value that, however, is intrinsic to mathematics. The thrust
of the articles collected at this volume is, I believe, to widen our picture of
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the field of mathematical practice as a rational activity: one that appeals to
the visual and not merely to the symbolic, that aims at explanation and not
merely at proof. It also appeals, I suggest, to the aesthetic. Among other
things – and still as rational practitioners – mathematicians aim at beauty.

2. SOURCES OF BEAUTY IN MATHEMATICS

2.1. An Outline

I propose in this section a typology of sources of mathematical beauty. How-
ever, I warn immediately of the simplifications I adopt, selecting from the
complexity of the problem to focus on what is, I hope, a tractable and still
significant domain.

To start with, the problem of mathematical beauty might be addressed
at several levels, as beauty is encountered throughout the mathematical life.
First, most mathematicians feel that there are aesthetic qualities to the mathe-
matical pursuit itself. The states of mind accompanying the search for mathe-
matical results are often felt as sublime; an aesthetic study seems warranted.
This then is mathematical beauty as a property of states of mind. Second,
beauty resides in the products of this pursuit – in mathematical theorems and
treatises. This then is mathematical beauty as a property of texts. Finally,
beauty resides in the entities studied by those theorems and treatises – in the
many mathematical worlds – groups, spaces, numbers and sets. . . This then
is mathematical beauty as a property of the ontological realm of mathemat-
ics. This ontological interpretation is perhaps the main context in which we
think of “mathematical beauty”.

In this article I focus on beauty as a property of mathematical texts. I do
this for two extrinsic reasons and for one intrinsic reason. The first extrin-
sic reason is that texts are most readily available for our study: we have a
clear and well-defined corpus for investigation. The second extrinsic reason
– closely related to the first one – is that there is already a body of theory, in
poetics, which I can take as suggestive for the study of beauty in mathemati-
cal texts.2 Finally, and more intrinsically, I suggest that the study of beauty
in mathematical texts may shed some light on the question of beauty in the
mathematical pursuit and in the mathematical world. I shall try to argue for
this in the conclusion, when we have completed the typology.

One simplification, then, is to focus on a single layer of mathematical
beauty. Simultaneously, I limit myself to a single field. In recent years, it has
been a tacit assumption of much of the work in the philosophy of mathemat-
ics that mathematical practice is heterogeneous. The nature of mathematics
changes, depending on the discipline, the time and the place. In this inves-
tigation, we concentrate on properties of mathematical texts, which are even
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more obviously dependent on culturally specific settings than mathemati-
cal “ideas”, say, are. Thus it seems prudent to start not from some global
overview of the beauty in mathematical texts as such, but instead from a
single genre of texts. In this article, I concentrate on ancient Greek mathe-
matics, in particular geometry. This, once again, has extrinsic and intrinsic
reasons. The extrinsic reason is that I am most familiar with this genre; the
intrinsic reasons are that this genre is the foundation of western mathematics
– and is often invoked as a model for the role of beauty in mathematics3.

Briefly, then, this article offers a typology of the aesthetic issues in Greek
mathematical texts. We now finally come to the subject matter itself, and let
me explain how I intend to carve up this large field into a typology.

A very obvious initial distinction to be made is between the large scale
and the small scale. On the one hand, beauty is felt at the level of whole
treatises (or at the level of a proposition, taken as a whole). On the other
hand, beauty is felt at the level of the mathematical text as it unfolds – in
the immediacy of the texture of read words. The main difference suggested
by this comparison, it seems to me, has to do not with scale itself as with
the different kinds of experience it implies. At the large scale, beauty has to
do more with the ways in which mathematical contents are arranged; at the
small scale, the contents are less important, and the form of the arrangement
becomes more important. To offer a rough analogue, one can liken the large-
scale structure of a treatise to the narrative structure of prose works, e.g.
novels – which of course is to a large extent an arrangement of the contents
signified by the novels. On the other hand, one can liken the small-scale
structure of a single mathematical statement to the prosodic structure of po-
ems – which of course to a large extent has to do with phonological form
independent of content. In the next two subsections, I shall discuss first the
“narrative” properties of mathematical works (subsection 2.2) and then their
“prosodic” properties (subsection 2.3). That this crude analogue is of service
is part of what I need to show.

Narrative has to do with content; prosody has to do with form. Those
are the two essential layers of any discourse, and it is often suggested that
aesthetics has to do precisely with the clashes between layers of discourse.4

If so, we should expect the relationship between form and content, itself, to
be a source of beauty in mathematical texts. I try to show that this is the
case in subsection 2.4 below. This area, of the relationship between form
and content – signifier and signified – does not lend itself to an easy label
but, for reasons which will be made clearer in subsection 2.4 itself, I title it
“correspondence”.
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2.2. “Narrative”

The question of narrative often enters contemporary poetics in the form of
narrative as a process: what may be called narration. Thus for instance
one may note the distances between writers, authors and narrators, so as to
follow the aesthetics of ironies and gaps (Booth, 1961). A defining feature of
Greek mathematics is its implicit claim to transcend subjective perspectives:
this approach is thus largely irrelevant for mathematics.5 Narrative enters
mathematics not as process, but as structure: ignoring the question of the
identity of the narrator, something is being narrated, and we may note how
elements are selected and combined along this narrative.6

Take for example Archimedes’ first book on Sphere and Cylinder. This
has for starting point a discursive introduction (addressed to Dositheus, a
colleague), where the goal of the treatise is set out explicitly. Archimedes
proudly says he had discovered fundamental results about the sphere, in par-
ticular that its surface is four times its great circle, and that its volume is
two-thirds the cylinder enclosing it. Having said that, he moves on to offer
a set of axioms or postulates (none of which is very closely related to the
sphere), and plunges into the mathematical detail.

There is nothing about spheres or cylinders, their volumes or their sur-
faces. The main substantial sequence of results (propositions 2-6) deals with
polygons and circles in proportion. Next, propositions 7-12 deal with sur-
faces of pyramids; propositions 13-20 – the surfaces of cones (and of various
figures composed of segments of cones). Still no word of the sphere (though,
with cones, we at least move into something resembling the cylinder). Then
the following two propositions 21-22 move out to a totally new territory. In-
stead of having anything to do with three-dimensional figures, they return to
the polygons of propositions 2-6 and state for them very complex and special
results, having to do with proportions of lines drawn through the polygons.
Those lines do not seem to have any relevance to anything – certainly not to
spheres. (fig. 1).

Then, in proposition 23, we are asked to make a thought experiment.
We rotate the circle, polygon and lines from fig. 1, and obtain in this way a
sphere in which is enclosed a figure composed of segments of cones. It now
becomes obvious that the results concerning polygons, and the results con-
cerning cones, can be put together and (with the aid of the specific claims
made about proportion, as well as about pyramids), can immediately give
rise to the proportions determining the surface and volume of a sphere. The
seemingly irrelevant and long preparation – just about half the book – is sud-
denly found to be directly relevant so that, indeed, the main line of reasoning
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FIGURE 1.

can now proceed quickly to obtain Archimedes’ main results in propositions
33-34.

As I promised already, it is not my intention to wax lyrical about mathe-
matics. That Archimedes was a genius of narrative is what I subjectively
feel. In more objective terms, however, all I am concerned with is that
narrative structure is indeed a proper perspective through which to analyze
Archimedes’ performance. The simplest way to show this is by noting that
he had alternative ways of presenting his argument. The most obvious one
– and the one with potentially the greatest harm for his narrative achieve-
ment – would have been to start with the thought-experiment of proposition
23. Clearly then the sense of a brilliant master-stroke would have been com-
pletely eroded. Thus we notice a fundamental fact: the mathematical kernel
of an argument – whatever we take this to be – only very weakly under-
determines the form it may take. The mathematician makes decisions for
the form, decisions that are mathematically undetermined (in a traditional,
narrow sense of mathematics) and therefore may well be dominated by the
aesthetic function.

We should not think of Archimedes’ Sphere and Cylinder as representing
the only type of mathematical narrative structure. As one further example,
let us now take Euclid’s Elements book I. We may first note that Euclid does
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not use the device of setting out his goal explicitly. Instead, his work starts
truly in medias res, with some definitions, postulates and common notions.
The text has to start from nowhere, but it is quickly infused with momen-
tum. A subject matter is implicitly defined – the triangle – and a string of
ever-stronger results follows, very often in a neat sequence where one result
leads on to the next. Thus we move almost imperceptibly from the state of
nil knowledge, at which we start, to relatively remarkable results such as the
congruities of triangles (propositions 4 and 8, to begin with). We also see the
relationships between angles and sides (the famous proposition 5 – base an-
gles in isosceles triangles are equal – and its converse 6). Problems, showing
how to obtain a task, and theorems, showing the truth of a result, are neatly
intertwined: problems 1-3, then theorems 4-8, then again problems 9-12. We
thus establish a pattern: problems lead on to theorems, which in turn lead on
to problems, and then again to theorems: theorems 13-21, and then again
problems 22-23. At this stage we get to some very strong and general con-
structions: a triangle from any given appropriate three sides, an angle equal
to any given angle. Now we press on again and, during the next phase of the-
orems, a variation on the theme of triangles-and-their-angles is offered, with
the notion of parallel lines, introduced from proposition 27 onwards. This
quickly leads to a problem, in 31, and then an application for the theme of
triangles-and-angles (the famous “sum of angles equal to two right angles”,
in proposition 32), as we move on to widen our field to quadrilateral figures,
from proposition 33 onwards. Parallelograms are studied, mainly through
the perspective of triangles-and-parallels, until we reach again a sequence of
problems on this set of issues, propositions 42-46. (45 is especially strong
and general – to construct, in a given angle, a parallelogram equal to a given
rectilineal figure – and Mueller (1981, 16) claims this is in some sense the
goal of book I.) Finally the book ends with the coda of Pythagoras’ theorem
(understood through triangles and parallelograms) in proposition 47, with a
quick converse, 48.

The movements of the text are all handled implicitly: the author never
interferes, never speaks on behalf of the propositions. They do the narrative
work on their own: pressing ahead with an even pace, moving from the ab-
solute nothingness of the foundations of geometry and obtaining a full struc-
ture, reaching the capstone theorem of I.477. (The architectonic metaphor is
hard to avoid.) A few figures are elaborated throughout, gradually evolving.
The evolution has a cyclical pattern – from problems to theorems and vice
versa – and a linear pattern – from more elementary results, to stronger re-
sults based on them. Thus there is an overall structure of a widening spiral
where every cycle of theorems and problems is capable of developing further
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the main themes. Finally we get to Pythagoras’ theorem, obviously a most
interesting result about triangles: triangles, the main character of the book,
make the most remarkable journey, from nothingness to Pythagoras.

This does not work at the level of surprise and irony of Archimedes’
Sphere and Cylinder, say, and the aesthetic principles are clearly different.
Euclid does not aim to startle, in a quick stroke, but to impress, in a stately
progression. Once again, Euclid could have made other choices, which
would have given the work as a whole a different aspect. He could have
introduced the circle at this stage, and so develop simultaneously the ele-
mentary results for all main plane figures (instead, he postponed the circle
to book III). This would have made this book more comprehensive in scope,
but lacking in narrative coherence. Or he could have ended this particular
book with the results on parallelograms, for instance, leaving Pythagoras’
theorem to another book. This, however, would be to miss on the sense of
closure which this theorem provides in its great inherent interest, and in its
reverting to the main character, triangles. In such ways, we can begin to sub-
stantiate one’s immediate impression, that in Euclid’s Elements I, narrative
structure is a dominant organizing principle.

We have thus seen two special examples of narrative structure in Greek
mathematical treatises. One can compare them, perhaps, to narrative struc-
tures in verbal art in general, for instance in the novel. Some novels are
organized in complex structures of suspense and irony, which work by evok-
ing expectations and then playfully subverting them; others are much more
directly progressive, and create their sense of structure from a certain bal-
ance and directionality about the work as a whole. Archimedes’ sudden
revelation, (polygon)=(figure composed of conic segments), is perhaps com-
parable to, say, Charlotte Bronte’s sudden revelation in Jane Eyre, (cries
at night)=(mad wife). An earlier stage of the narrative is suddenly found
to have a new, unanticipated meaning, by being retrospectively reinterpreted
through a piece of information provided at a later stage of the narrative. Take,
on the other hand, the stately progression of the triangle in Elements I, go-
ing through cycles of theorems and problems, in the process constructing
a thick world. This is perhaps comparable to, say, the stately progression
of the lives of Russian aristocrats in Anna Karenin, moving cyclically from
the Anna plot to the Lyovin plot and finally leading to the fulfilment of the
strands of narrative with Anna’s suicide and Lyovin’s family life. The ex-
amples are not meant with any great seriousness, and I certainly wouldn’t
like to suggest that, say, Euclid was a “realist” whereas Archimedes was a
“romantic” etc.. I merely wish to point out that one can plausibly point to a
variety of types of narrative structures which may be implemented to various
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aesthetic effects, and which can be found in mathematics just as they can be
found in literature. In the above, I have suggested two possible types, and
doubtless others can be observed as well.

It is immediately clear that narrative structures can be found in scales
smaller than the treatise taken as a whole. In the genre of Greek mathe-
matics, works are composed of a sequence of a few dozen smaller textual
segments, today referred to as “propositions”. Each of those units has inter-
nal structure, and some aspects of it closely mirror the narrative structures
suggested already. A proposition is a sequence of statements about objects.
The pace in which objects are introduced, and the ways in which statements
create expectations, fulfil or subvert them, may all be used for an overall
aesthetic function. I have touched upon this topic, from a separate angle,
in (Netz, 1999, 198-216), noting the Greek tendency to have smooth, linear
progressions in their proofs. I have identified there what I still consider to be
the dominant function: the desire to have the proof fit a certain model of per-
suasion. This may serve as an example of a more basic point. Persuasion, as
such, is not an aesthetic function: but the practices of persuasion and of nar-
rative are in fact closely implicated in each other. To persuade, the text must
be perceived to have a certain unifying structure - and a structure that may be
endowed with aesthetic properties. Furthermore, the very act of persuasion
is about the structure of introducing objects, raising expectations about them,
and fulfilling those expectations (or perhaps subverting them, e.g. in refuta-
tions). The structures that give rise to persuasion are precisely the structures
that give rise to narrative structure. Thus, while the aesthetic may not be the
dominant function of persuasive texts, it is an inevitably relevant function.8

I take a quick example. In (Netz, 1999, 213), I have suggested that
Archimedes’ Method 1 is different from most other, “smoother” proposi-
tions. Instead of a clear linear structure, it has several hiatuses in the ar-
gument and, in particular, it has a very complex, quirky structure near its
middle (I numbered the statements in sequence, so that the proof had 34
statements, and the complex passage is statements 13-18). I have suggested
that there might have been a particular motive involved: Archimedes intro-
duces here his surprising suggestion (to identify an area with a sum of lines).
The structure is all designed to delay this suggestion, and then to bring it out
in a startling way: exactly the same structure as we saw in larger scale in
Sphere and Cylinder I as a whole. We may indeed have identified a feature
of Archimedes’ style.

At any rate, it now seems plausible that narrative may sometimes serve
in mathematics as a source of beauty. I shall now briefly suggest, in more
metaphysical terms, why this, I think, may be the case.
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As noted above, narration – the use of narrators’ perspectives – does
not play a role in Greek mathematics. The medium of truth, par excellence,
is ordinary language. It is thus natural that verbal art – the art whose ve-
hicle is language – should so often dramatize the issue of truth and belief,
of objectivity and subjectivity. This however does not get dramatized inside
individual Greek mathematical texts, precisely because Greek mathematical
texts markedly dramatize this issue, when they are taken as a genre. In quite
simple terms, I argue that Greek mathematics was read, partly, against the
background of other forms of persuasion. Its claim to possess absolute ob-
jectivity and truth is reflected by a rigid form from which perspective-hood,
so to speak, has been eliminated. Perhaps this basic decision may be read in
aesthetic terms, so that the genre, as a whole, possesses beauty in its sublime
impersonality.

However, another kind of narrative structure is allowed: the author may
chose to reveal as much or as little of the plot as he or she pleases; he or she
may structure this information in many possible sequences. Such choices
may possess aesthetic value, and in this way mathematical texts may possess
an aesthetic dimension. I now suggest that this aesthetic dimension reveals
something fundamental about the relation between mathematics and beauty.

It might perhaps be considered strange that the author has so much
choice in mathematics. After all, is not mathematics governed by neces-
sity, so that mathematical truth simply unfolds as a matter of logic? In fact
this image is deceptive. It is true that, in a valid argument, the conclusion
does follow from the premises. If C follows from the combination of A and
B, it is possible to argue “A, and B, therefore C”, and C does not only appear
to be inevitable: it is inevitable, in the sense that it cannot fail to be true.
But it can easily fail to be made. In general, each mathematical text makes
a double set of choices: which premises to assert, and which conclusions to
draw explicitly from the premises. The fact that a premise is true, just as the
fact that a conclusion follows from asserted premises, both do not constrain
the mathematician, do not force the mathematician to make them. The math-
ematician works in absolute freedom – creating a fabric of text that is woven
together by the ties of logical necessity.

This dialectic of freedom and necessity is, I suggest, often at the root
of the beauty of mathematical narratives. What is, after all, a surprising
result in mathematics? It is a result whose perception of inevitability is not
determined by the text preceding it, so that it is perceived twice: once for
the freedom of the author who uncovered it, and then for the necessity of
logic the author has uncovered. Similarly, “smooth” structures work through
the perception of effortless inevitability, which is striking both persuasively
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and aesthetically. Now, it has been frequently suggested that the dialectic of
freedom and necessity is essential to art as such.9 Narrative art, certainly,
has for its protagonists individual persons, and for its form, structured plots.
It thus cannot fail to dramatize the theme of freedom versus determinism.
Among the many options open to persons, the author selects a single plot;
and similarly, among the many options open to mathematical objects, the
mathematician selects a single logical thread. Thus, mathematics cannot
fail to dramatize the theme of freedom versus necessity. This is one way in
which we see not only that mathematics possesses an aesthetic dimension,
but also that this dimension is essential to it, and closely implicates it with
other verbal forms that are more obviously “artistic”.

2.3. “Prosody”

The concept of “narrative” applies almost directly to mathematics, in that
mathematical works – just like many other works of verbal art – tell a story:
they have characters, and our information about the characters gradually
evolves. The same, of course, cannot be said about “prosody”. Literally
speaking, the prosodic dimension is completely suppressed in Greek mathe-
matics. The sequence of long and short syllables – the foundation of Greek
poetic prosody – never seems to be an issue at all.10 Here however I take
the notion of “prosody” in a very metaphorical sense, referring to any com-
positional device that may be analyzed apart from the meaning of the text,
referring purely to its form.

There are many compositional devices we can point out, some of them
familiar, indeed, from literature. To begin with, let us return once more to the
role of narrative. In literary theory, narrative has not only the global sense
of “plot” and “subject” in the work as a whole, but also the local sense of
a narrative textual segment, as opposed to other types of textual segments,
most importantly description. One of the main literary compositional de-
vices is this alternation of narrative and description. Some passages – de-
scriptive – add detail to the fictional world, constructing its underpinning
of reality; other passages – narrative – unfold the plot that takes place in
that fictional world.11 Description brings up things, narrative brings up the
events which happen and which are true of those things. Things and events
cross-determine each other, and in general narrative and descriptive passages
may work together in interesting ways. The same is true of mathematics.
In Greek mathematics, the two types of passages are technically known as
kataskeue, “construction” and apodeixis, “proof”. Construction is a descrip-
tive passage where things are brought into existence, proof is a narrative
passage where we are told what follows to those things. One should also
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FIGURE 2.

add the (shorter) ekthesis, “setting out”, which is a descriptive passage, and
the (shorter) diorismos, “definition of goal”, which is narrative.12 The main
difference between the “constructive” and the “argumentative” modes is that
the constructive mode is hardly structured in the syntagmatic dimension13.
The order of constructions is not set out as meaningful: they are merely a
sequence of one observation after another, “and let”, “and let”. The syn-
tagmatic dimension, however, is all-powerful in the “argumentative” mode,
strongly structured by the sequence of “since – therefore”. (It is perhaps for
this reason that the binary structure constructive/argumentative closely re-
sembles the binary structure descriptive/narrative: literary narrative, too, is
characterized by strong syntagmatic structure, absent from literary descrip-
tion).

Take for instance the first proposition in Apollonius’ Conics (I skip the
protasis or enunciation whose function is separate): “Let there be a conic
surface, whose vertex is the point A, and let some point – B – be taken on
the conic surface, and let some line – AΓB – be joined”. So far we have the
“setting out”, in mathematical terms a construction and in literary terms a
description (or, more precisely, an ekphrasis of the accompanying diagram,
fig. 2). “I say that the line AΓB is in the surface”. This is the “definition
of goal”, formulaically employing the first person to introduce the narrative
sequence. “For if possible, let it not be” (a meta-narrative statement, hard to
classify in terms of “construction or “proof”), “and let the line drawing the
surface be ∆E, and the circle, on which E∆ is carried – EZ”. (The “construc-
tion” proper: the ekphrasis of the diagram is now complete). “So if, the point
A remaining in its place, the line DE is carried along the circumference of
the circle EZ, it shall also pass through the point B” (the “proof”: we were
now told a story, and here comes its point:) “and there will be the same limits
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<shared> by two lines” (the end of the story proper) “which is impossible”
(a final meta-narrative statement).

David Fowler uses to say that Greek mathematics is about “drawing a
figure and telling a story” and Greek mathematical texts – to be more pre-
cise – are about “describing a figure and telling a story”. This is their basic
texture. In a miniature such as Conics I.1, the aesthetic effect derives from
the modal variety itself – the very fact that there are both descriptive and
narrative passages. In longer propositions, the alternation of description and
narrative can be used for more precise stylistic effects. This is because there
is a degree of freedom: the precise sequence of description and narrative is
far from rigid. One can chose to have a complete ekphrasis of the diagram
first, presented in great detail, then to move on to the proof (where no further
constructions are being made). This is often the path taken by Apollonius: in
Conics I.13, for instance, the “setting out” and “construction” take up (with
the brief intervention of the “definition of goal” between them) 20 lines, fol-
lowed by 30 lines of “proof”. The very long and very static stage of the
“setting out”, in particular, has a certain ponderosity that is very characteris-
tic of the style of Apollonius, and was clearly intentional. Compare this, say,
to the third proposition of Aristarchus’ On the Sizes and Distances of the Sun
and the Moon. The text starts with a brief “setting out”, immediately moving
on to draw a conclusion (“proof” mode) from it, and then back to construc-
tion, and so on. With D for description, N for narrative, and the number of
lines for each in brackets, the structure is

D (4) – N (1) – D (4) – N (1) – D (5) – N (15) – D (8)14 – N (4)

Aristarchus, correspondingly, has a much more “lively”, discursive style.
The binary structure of description and narrative is thus the chief com-

positional device of Greek mathematics. There are many other, more local
compositional devices, all due to the fact that the mathematician actively
selects from a variety of available modes. To begin with, mathematical argu-
ments are characterized by their sources of validity. Some claims are based
on visual considerations unpacking the diagram. Others are based on more
formal, linguistic manipulations (e.g., that if A is to B as C is to D, then
as A is to C as B is to D: proved in Elements V.16 and frequently used in
Greek mathematics). In more general, there is a tool box of results the Greek
mathematician knew well, and this tool box clearly has an internal structure:
some results fall together to form clusters; (Netz, 1999, 216-235) (e.g., as
we have seen for Book I of the Elements, elementary results about the tri-
angle are more closely related to elementary results about parallels, than to
elementary results about circles.) Thus the mathematical argument works by
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using sources of necessity of different kinds: a palette, from which the math-
ematician chooses and combines. This introduces the aesthetic dimension
of variety. Consider for instance the capstone theorem to the last book of
Euclid’s Elements (which is an appendix to XIII.18), proving that there are
only five regular solids. I quote a passage:

“For a solid angle cannot be constructed with two triangles, or indeed
planes” (a direct visual intuition) “With three triangles the angle of the pyra-
mid is constructed, with four the angle of the octahedron, and with five the
angle of the icosahedron”; (we enumerate numerically, going through the
ordinal sequence, certainty secured by the finite, inspectable nature of that
sequence) “but a solid angle cannot be formed by six equilateral and equian-
gular triangles placed together at one point, for, the angle of the equilateral
triangle being two thirds of a right angle, the six will be equal to four right
angles”: (this uses the properties of the triangle of Book I – together with a
quick calculation, which is yet another source of necessity) “which is impos-
sible, for any solid angle is contained by angles less than four right angles”
(this is proved in book XI, and is thus a very distinct part of the tool box).
This brief passage works then through visual intuition; through numbers per-
ceived as ordinals and as an object of calculation; through results from book
I and from book XI; all coming to function together organically. An obvi-
ous contrastive comparison would be propositions such as Euclid’s Elements
I.5, which work through an iterative application of a single source of neces-
sity. Elements I.5 is often felt to be dull (it is the famous pons asinoroum),
whereas the appendix to book XIII is obviously delightful. The difference
is essentially that, by the time he has reached book XIII, Euclid has enor-
mously widened his palette – he now has thirteen books to draw on whereas,
in I.5, he had only a handful of basic presuppositions.

“Variety” has to do with texture, but it is “prosodic” only in a very
metaphorical sense. My next example is nearly literally prosodic. For while
the rhythm of long and short syllables is not itself a marked feature of Greek
mathematical texts, the texts are marked by other rhythmic patterns, which
are of clear aesthetic significance. The rhythmic pattern of verse represents
the fact that verse is built from clearly defined units – lines – that partici-
pate in larger-scale structures – stanzas – and possess an internal structure
– feet. Greek mathematical texts – perhaps more than any other prose style
– are similarly built from clearly defined units, which allow a similar struc-
tural analysis. This is especially true of proofs which (as mentioned above)
possess the strong syntagmatic structure of the “since – therefore” sequence.
This sequence works on assertions, and combines them into arguments.
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FIGURE 4.

When analyzing mathematical proofs, I number the assertions and draw
the “trees” of the structure of the proof, e.g. representing an argument such
as “(1) and (2), therefore (3) (for (4), too), hence (5), as well” by fig. 3

Thus we can compare the logical structure of Elements II.5 (fig. 4) – a
prototypically “smooth” Euclidean proof – with that of Method 1 (fig. 5) – a
complex proof I have mentioned above. To begin with, we can see how the
notion of a “smooth” proof can be given concrete form. We may also begin
to note further features of this, quasi-prosodic structure. First of all, the proof
alternates between starting-points (assertions which are unargued for inside
the proof itself and appear in the tree “on top of nothing” – in Euclid’s Ele-
ments II.5 these are 1, 2, 5, 7, 10, 12, 13, 15, 16) and conclusions (assertions
which follow from other assertions and which thus appear in the tree “on
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FIGURE 5.

top of” other assertions). Although one could, as a matter of logic, struc-
ture proofs so that all the starting-points are asserted first, followed by all
the conclusions, this is in fact awkward both for the cognitive computation
of the validity and for the aesthetic appreciation. The structure adopted in-
stead is a constant interplay between starting-points and conclusions, which
form together minimal units: arguments.15 (Thus, in a tree, every triangle,
or independent line, stands for an argument). Starting-points are the mo-
ments in which the proof is recharged, building its energy for the charge
of the conclusion. I have offered a comparison of the mathematical asser-
tion to a line of verse; I now suggest a further analogue – which I consider
to be relevant almost in a literal way – comparing the structure of starting-
points, conclusions and arguments, to the structure of unstressed syllables,
stressed syllables and feet. It is indeed difficult not to think of structures
of proof in terms of their “flow” or lack thereof (the presence or absence of
regular meter) of becoming “quicker” or “slower” (shorter or longer feet).
Consider figures 4 and 5: the precise pattern of figure 4 (iamb-troche-iamb,
iamb-troche-iamb, anapest-anapest – if you see what I mean), the very com-
plex structure of figure 5 (a radical free verse, where feet are consistently
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changed, though notice a gradual transition, from a very rough meter to start
with, to a sequence without hiatuses in assertions 14-34, and in particular
a sequence of three “iambs” right towards the end16). It is clear that some
sort of rhythmic patterning is going on, and my intuition as a reader, at least,
is that this pattern contributes to my appreciation of the text. Following a
proof as it unfolds, you are carried along it; the structure of this intellectual
motion has significance in both cognitive and aesthetic terms.

Moving back from rhythmic patterns as such to more general relations
between signs, one finally notes the following. In Greek mathematical texts,
signs are constantly being reformulated and co-related with each other, thus
creating a rich texture. Consider for instance a passage from the construction
in Euclid’s Elements II.5:

“. . . [A]nd, through the <point> ∆, let a line, ∆H, be drawn parallel to
either of the <lines> ΓE, BZ, and, through the <point> Θ, let again a line,
<namely the line> KM, be drawn parallel to either of the <lines> AB, EZ,
and again, through the <point> A, let a line, <namely the line> AK, be
drawn parallel to either of the <lines> ΓΛ, BM”.

It will be seen that we have here the same formula (for drawing a par-
allel) repeated three times, with the substitution of different letters and the
addition of connecting particles. The effect in this case is probably one of
sheer monotony, but the formulaic nature of the text is aesthetically signifi-
cant. The Greek mathematical text is composed of nearly fixed expressions,
such as the formula for drawing a parallel above. These stand to each other
in several relations. First, they allow some freedom (for instance, the words
“to either of”, in the example above, are a local variation on the more stan-
dard formula which makes lines parallel only to a single other line). Second,
formulae are subject to substitutions (as, in this example, that of letters). Be-
cause of these two factors, different tokens of the same formula type tend to
be different (indeed, otherwise there would hardly be a mathematical point
in repeating them). Third, such tokens are often related in meaningful way.
This does not happen in the example above, as it is from the construction,
where the syntagmatic arrangement is weak. A typical structure in which
formulae figure inside proofs is, for instance, the result of Elements V.16,
mentioned already:

“As A is to B so is C to D. Therefore, as A is to C so is B to D”.
(In actual appearance, A, B, C and D would be spelled out as some ge-

ometrical object, providing the text with a richer pattern). We can now see
that this is a sequence of two tokens of the same formula (that of propor-
tion), arranged in the relation “since – therefore”. This is a textbook case of
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a patterning of the syntagmatic and the paradeigmatic dimensions. This pat-
terning is essential to Greek mathematics:17 it is also “prosodic” in a rather
direct sense, in that it is (at the abstract level suggested here) a form of al-
literation (“cat, therefore mat”). Why is that beautiful? Partly, the answer
has to do with the sheer presence of structure, but partly it has to do with the
basic relation between sign and signified, and in this respect we shall return
to discuss alliteration in the next subsection.

Before moving on, we need to point out the general moral of this sub-
section. The phenomena described are in a way heterogeneous. I have dis-
cussed several levels of formal structure – of selection and arrangement –
the alternations of construction and proof, of various sources of necessity,
of starting-point and conclusion, of different tokens of the same formula-
type. They are all similar only in that they are all alternations; no deeper
unity combines them all, and no generalization is possible at the level of
their contents. But the very fact that mathematical texts support many lay-
ers of structure indicates an essential reason for the presence of an aesthetic
dimension. Aesthetic appreciation is often based on the perception of struc-
tures inside the artistic object. A mere concatenation of objects, devoid of
any structure, cannot function as a vehicle of communication, let alone a ve-
hicle of beauty. Any perception is structural; by imposing structures on the
sequence of objects, perception makes them meaningful – and opens up the
possibility of aesthetic value.

Now mathematical perception, particularly in its Greek form, imposes
not merely structure, but some very definite structure. Bringing in logical
categories, its boundaries and markings are extraordinarily sharp. The asser-
tion begins here and ends there; it is definitely a proof and not a construction;
it is a conclusion from precisely those premises; it works through precisely
this type of reasoning; it is made precisely of this sequence of formula-tokens
that belong to precisely the same type as that used above.18 Note further that
it is in the nature of mathematics to make the signs themselves, taken for-
mally, contribute to the logical sequence (A:B::C:D therefore A:C::B:D! -
More on this below). Thus, the kinds of structural relations picked up by
mathematical perception are directly relations of signs, and thus are directly
of potential aesthetic significance. Nothing surprising, then, in that mathe-
matical texts may display aesthetically pleasing forms: the more structured
a text is, the more it is implicated in the pattern of objects and structures –
that is, in an aesthetic pattern.
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We saw above that mathematical texts are essentially implicated in the
dialectic of freedom and necessity; now we see that they are essentially im-
plicated in the dialectic of object and structure. I move on to discuss what I
call here “correspondence”, the locus of yet another dialectic.

2.4. “Correspondence”

“Correspondence” is a thick jungle, and, to make some progress, I start with
Jakobson’s helpful terminology (which I have already used above without
explanation).

Jakobson stressed the bipolar structure of language: selection and com-
bination, similarity and contiguity, the paradeigmatic and the syntagmatic.
For the notions of “selection” and “combination” note that, in a text, the
speaker (a) selects, for each slot in the text, a unit of speech out of a large
pool of available candidates, and also (b) combines the selected units in a
certain order. Thus two kinds of structure are at work: similarity (of the var-
ious candidates for a single slot) and contiguity (of units which happen to
lie next to each other). The “similarity” kind of structure is known as “pa-“
radeigmatic”, the “contiguity” as “syntagmatic”. Now, in even more gen-
eral terms, we may say this. One possible textual device is to represent an
object through its possible equivalents or near-equivalents, in other words
through that to which it stands in the relation of similarity – and this is what
Jakobson calls “metaphor”. Another device would be to represent one ob-
ject through that to which it stands in the relation of contiguity; this naturally
would be Jakobsonian metonym.19 While very typical of a certain theoretical
approach, this set of notions is at bottom an analytical, indeed terminologi-
cal exercise, in itself theory-free. Stripped of all jargon (and of the cognitive
and linguistic assumptions which do make it stronger and more interesting)
Jakobson’s theory of metaphor and metonym is very simple indeed. Some
signs are similar to each other, some are contiguous to each other; one of
the devices of art is to put such similarities and contiguities on display. It
is especially on the paradigmatic kind of correspondence that I concentrate
here.20

Many mathematical signs stand to each other in close paradeigmatic re-
lations. We already began to see this in the preceding subsection: several
tokens of the same formulaic expression, say

A is to B as C is to D, C is to D as E is to F, A is to B as E is to F
are like several inflections of the same verbal root. In full form (where the
A, B etc. are spelled out as full geometrical objects) this may be obscured at
the level of performed text – just as, in ordinary language, the words sharing
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the same root may appear, in phonological form, rather distinct. Here, for
instance, is a passage from Apollonius’ Conics IV.46:

“Since it is: as the <square> on MΨ to the <square> on ΨI, so the
<rectangle contained> by AΠB to the <rectangle contained> by ∆ΠE, but
as the <rectangle contained> by AΠB to the <rectangle contained> by
∆ΠE, so the <square> on ΛT to the <square> on TI, therefore also: as the
<square> on MΨ to the <square> on ΨI, so is the <square> on ΛT to the
<square> on TI”.

This is nothing more than a series of paradigmatically related signs, iden-
tical in some important ways. Now, the perception of hidden paradigmatic
identity is a tool often used in poetic alliteration – say, the “hundred visions
and revisions” of T.S. Eliot’s Prufrock – and now we see that it is an essen-
tial feature of mathematical perception, as well. Quite simply, mathematics
cannot work as a deductive exercise without the constant re-identification of
signs. It would be difficult to show that this has a specifically aesthetic effect
in mathematics, just because the deductive function is so central. As one
reads, one constantly notes with satisfaction, “yes, it is indeed the same”.
This satisfaction of sameness recognized is sung most loudly by the bass
section, exulting over the validity of the derivation; my own intuition is that,
listening carefully, one can also discern, in the chorus of one’s recognition,
an alt voice rejoicing over the finding of sameness in difference.

This, at any rate, is an example where paradigmatically related signs
are placed in syntagmatic order. We move a bit closer to “metaphor” when
considering the structure induced on the text by the presence of paradig-
matic relations that do not have syntagmatic meaning. To put this in simple
terms, mathematical texts often return to speak about the very same topic,
and thus they contain an element of repetition. Such repetitions may be han-
dled in various ways, and thus we have an aesthetically significant choice.
Parellalism is an extreme and therefore an illuminating case. As noted by
Jakobson (in the same fundamental study mentioned above): “Rich material
for the study of [metaphor and metonym] is to be found in verse patterns
which require a compulsory parallelism between adjacent lines, for example
in biblical poetry. . . This provides an objective criterion of what in a given
community acts as a correspondence” (Jakobson, 1987, 110-111) . Greek
mathematics possessed one such pattern of compulsory parallelism, namely
the relation between general “enunciation” and particular “setting-out” and
“definition of goal”. So for instance the first proposition in Euclid’s Ele-
ments:

[Enunciation] “On a given finite straight line to construct an equilateral
triangle”.
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[Setting-out] “Let there be the finite straight line, AB”.
[Definition of goal] “Thus it is required to construct an equilateral trian-

gle on the straight line AB”.
The two parts – enunciation on the one hand, setting-out and defini-

tion of goal on the other hand – are related paradigmatically. They are two
inflections, general and particular, of the same root meaning; two signs dif-
fering in their relation to a single signified. They stand to each other, in
this case, in very close explicit correspondence (although, of course, the “in-
flection” demands considerable rearrangement). This is the simplest, least
ambitious type of metaphorical relationship, namely near-synonymy (com-
pare, e.g. Psalms 2.1: “Why do the nations conspire / and the peoples
plot in vain?”). Close parallelisms are a feature of Euclid’s style, and while
they seem to have a didactic motivation, they are also important for the fabric
of the Euclidean text, contributing to its serenity and gravity.

In other authors, metaphor is often much more ambitious. I now quote
from Archimedes’ Balancing Planes, proposition 6 (this, incidentally, is the
theorem we use when balancing plates on a tray):

[Enunciation] “Commensurable magnitudes balance at reciprocal dis-
tances having the same ratio as the weights”.

[Setting-out] “Let there be commensurable magnitudes A, B whose cen-
tres are A, B, and let there be a certain distance, E ∆, and let it be: as A to B,
so the distance ∆ Γ to the distance Γ E”;

[Definition of Goal] “it is to be proved that Γ is centre of the weight of
the magnitude composed of both A, B.”

Now the transformation requires an unpacking of the mathematical mean-
ing of the enunciation. Instead of mere synonymy, we have two separate
signs, whose only connection is their shared signified. Thus the text displays
the paradigmatic structure of signs.

This relationship, between enunciation and the sequence of setting-out
and definition of goal, is a special case of a very general feature of mathe-
matical texts. They repeatedly need to speak about roughly the same objects,
saying roughly the same things. Several propositions all use the same piece
of construction; or they all rely on the same local argument (which did not
get enshrined as a separate lemma, and therefore gets repeated from one
proposition to another). Or, in the analysis-and-synthesis mode (used a few
dozen times in extant Hellenistic mathematics), the proof goes through two
parallel stages, inversely related, the analysis and the synthesis. In all such
cases, the mathematician has several options. They range between two ex-
treme positions that are, in themselves, aesthetically empty: exact repetition
(where no paradigmatic distance opens up at all), and the explicit deletion of
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a passage by “as has been said in the previous proposition” (where paradig-
matic distance becomes infinite, between expression and non-expression). In
between lie various forms of variation that may or may not be intended to be
perceived as such: in short, another avenue for aesthetic effect. (In more gen-
eral, an aesthetic effect may be obtained by the overall pattern of decisions
about which kind of repetition to employ – full, zero, or some metaphorical
repetition).

We saw several cases where the problem of repetition arises from some
mathematical functional constraint; the solution to this problem may then
involve an aesthetic function. In other cases, the mathematical function of
the repetition is much less obvious, and the aesthetic function may therefore
be dominant. The clearest example is the phenomenon of alternative proofs.
Inside a single book, say Archimedes’ second book on Sphere and Cylin-
der, one may find the same theorem proved twice. Proposition 8 shows that,
given two unequal segments of the sphere, the ratio of the greater volume to
the smaller is smaller than the (what we would call) the square of the ratio
of the surfaces, but greater than (what we would call) the 1.5 power of the
same. Having proved this remarkable result, the text goes on to prove the
same result, once again. Heiberg, the great editor of Greek mathematics,
considered this alternative proof to be spurious, and of course he may have
been right. (Heiberg, 1913, 217 n.1) It is always possible to argue that an
alternative proof resulted not from the decision of a single author to produce
more than a single proof, but from the decision of some later mathematician
to try his or her hand at finding an alternative proof, and then from the de-
cision of yet another later scribe, to put the two proofs together. Whether
this is the case or not is significant in historical terms (and has some bearing
on our aesthetic judgement), but it does not touch upon the basic aesthetic
interpretation of alternative proofs. We merely need to transpose the locus
of aesthetic judgement, from the original author to the later mathematicians
(who went on to offer what is, in mathematically functional terms, a “redun-
dant” proof), and the later scribes (who considered a juxtaposition of several
proofs, whose result is identical, to be of interest). Now here we touch on a
major theme of the history of mathematics. The development of mathemat-
ics is frequently motivated not by the desire to solve open problems, but by
the desire to solve problems that are solved already - the most famous case
in Greek mathematics is the duplication of the cube, for which see Eutocius’
catalogue of solutions (Heiberg, 1915, 54–106). (In general, for the Greek
accumulation of problems, see the fundamental study Knorr (1986).) Math-
ematicians went on proving the same enunciation, just as painters went on
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painting the same annunciation; in the first case as in the second, the desire
to replicate sustained a perfection of styles and techniques.

Needless to say, the desire is not to replicate in a strict sense. Once again,
we see that exact replication is aesthetically empty. The desire, instead, is
to replicate-with-a-difference – to achieve the same result (or paint the same
scene) through a different line of reasoning (or through a different mode of
painting). I shall now try to explain why this may indeed be of such aesthetic
significance. Before that, however, we need to widen even further our field,
to further possible relations between signs and signifieds.

So far, we saw several ways in which the mathematical text contains a
multitude of signs, all referring to the same signified. This was true at the
level of the text, in the strict sense: we have dealt purely with the modality
of written language. This is in some sense perhaps the main modality of the
signs of Greek mathematics (it is at this level that Greek mathmatical texts
are either true or false). But this is not the only modality of the signs of Greek
mathematics, and an appreciation of its aesthetics must refer to this presence
of many modalities. Greek mathematics relies essentially on at least two
modalities, language and diagram. It thus involves simultaneously verbal
and visual perception. Not only is it possible to have two written signs refer
to the same object, then: we also have the possibility of having an object
referred to simultaneously by both verbal and visual signs.

Greek mathematical texts, apart from their general enunciations, refer
throughout to a diagram labeled by letters. The A, B, Γ of Greek mathe-
matical proofs participate simultaneously in two semiotic systems, the text
(where they are manipulated inside expressions), and the diagram (where
they are spatially configured). I have argued in (Netz, 1999, Ch. 1), that, in
logical terms, the two can not be understood separately: the text does not
function unless we read it in the light of the diagram, the diagram is incom-
plete unless we interpret it through the text. We may now notice the aesthetic
significance of this situation. Put simply: the diagram is read; the text is vi-
sualized. Greek mathematics relies, therefore, on a kind of synesthesia. In
fact, the synesthetic structure is probably more complicated than that. The
diagram is, in reality, statically present to the eye, but it is also discussed as if
it were dynamically manipulated and constructed, in a language suggestive
of motion in and through it. In other words, the verbal and the visual are also
accompanied by the kinesthetic. An obvious case is the way in which par-
allel lines are mentioned so that they appear to “flow in the same direction”
(“AB is parallel to CD”, in fig. 6). Consider an even more beautiful example
– an expression of a very common type. I quote from Apollonius’ Conics
I.41:
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FIGURE 6.

FIGURE 7.

“. . .∆Γ has to ΓH the ratio composed of the <ratio> that ∆Γ has to ΓΘ,
and the <ratio> that ΘΓ has to ΓH”. (Fig. 7).

Note how the three modalities interact: the statement works as a struc-
tural manipulation of verbal signs (it is a complex structured formulaic ex-
pression). It is also premised on the visual expression of the same signs
– without which, indeed, the statement is hardly interpretable. But finally,
note the very typical switch in directionality. ΓΘ is transformed into ΘΓ, in
a kinesthetic metaphor (one can hardly avoid the term) for the canceling-out
involved in the operation. The motion “in and out”, across the single line
ΓΘ, introduces it and then cancels it.

Synesthesia is a key concept in romantic aesthetics. In its apparent ir-
rationality, untrammeled sensuality, it answers to a certain kind of aesthetic
temperament.21 Parenthetically, I note that many modern mathematicians
seem to have an enormous interest in synesthesia: in fact, I suspect it is fun-
damental to their reports of the mathematical process as beautiful. Friedberg
(1968), for instance, in a very personal introduction to number theory, starts
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with a long and fascinating excursus about the author’s polymodal synes-
thetic perception of numbers – colored, tactile, acoustic, what have you.22

Now, it is of course more difficult to show that such aesthetic concerns mo-
tivated the Greeks. They definitely did not seek, Baudelaire-like, the expan-
sion of perceptual experience for its own sake. A more modest claim, how-
ever, would be that we have here another kind of variety. The richness of
modalities – that are felt to be organically related – is very different from the
intended, jarring effect of the romantic juxtaposition of incommensurables.
Greek mathematical synesthesia thus comes down to yet another form of the
multiplicity of signs for a single signified, with the added complication that
the different signs cone from separate modalities, and can only function as a
whole: none stands on its own.

This mode of operation – simultaneously perceiving an object through
several systems – occurs in mathematics in other, more technical ways. Even
inside a given modality, two domains often interact. Most significantly,
Greek mathematics translates the synesthesia of the linguistic and the visual
into a dual set of mathematical domains: proportion theory, and geometry.
Very often, a Greek mathematical proof operates by thinking of an object,
simultaneously, through the more abstract properties revealed through pro-
portion theory, and through the more concrete properties revealed through
geometry: it is simultaneously a line in space, and a magnitude in propor-
tion. Further global metaphors were offered in Greek mathematics, espe-
cially in its interface with physics: for instance, rays of vision are lines (op-
tics), musical harmonies are numerical ratios (music), the motion of stars is a
configuration of circles (astronomy). Archimedes, to mention one example,
pioneered the science of statics with the global metaphor of balance as the
(composite domain of) geometrical proportions. He first used this metaphor
in On Balancing Planes, to obtain results on the physical balance. Then,
he went on, in the Method, to use this metaphor in the reverse direction,
now applying the results of On Balancing Planes to obtain new results about
pure geometrical objects (seen now through the metaphor of the balance). It
seems to me that this double metaphor is often considered Archimedes’ most
beautiful achievement.

The alignment of separate domains is mathematically functional: it al-
lows different kinds of understanding to operate simultaneously and thus
to generate results which would have been impossible with only one of the
kinds. The whole theory of conic sections, for instance, would be impossible
to develop on the basis of either geometry or proportion theory alone. At the
same time, this global metaphorical structure is clearly perceived in aesthetic
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terms: the duality of the concrete and the abstract, in particular, seems to lie
at the core of the Platonic fascination with mathematics.

In Greek mathematics, those bimodalities can be definitely mapped: be-
tween proportion theory and geometry, inside mathematics; between mathe-
matics and physics, outside it. The same cannot be said for modern mathe-
matics: just as modern mathematicians are fascinated by the specific notion
of synesthesia, they also set out systematically, in the 19th century and even
more in the 20th century, to seek out the global equivalences between do-
mains. This quest shaped the content of modern mathematics, which is a
tight network of poly-isomorphic disciplines.23 It is also, I would suggest, at
the core of the modern mathematical sense of beauty. This is very different
from the much more static structure of Greek mathematics, where isomor-
phism is much less actively sought after: in this respect, it appears that differ-
ent aesthetic temperaments are visible in ancient and modern mathematics.

We have made a long detour through synesthesia and global equiva-
lences, but ultimately we return to the very basic phenomenon of the mul-
tiplicity of signs for a single signified: the paradigmatic dimension. The
detour, however, may help us to perceive the special role this dimension has
in mathematics. Why is it that it so obvious to us that several mathematical
discourses are about ‘the same thing’?

In fact, with mathematics we seem to stand in an easier position than
with other verbal forms. The paradigmatic is especially easy to identify in
mathematics. Why?

In literary texts we always face a central question about the paradig-
matic: how is it to be defined? It would be natural to think of it in terms of a
shared “core” between the two verbal segments standing in the paradigmatic
relation – “cat” and “feline”, or “cat” and “dog”, or perhaps even “cat” and
“mat” – but, as the examples show, “core”, generally speaking, is a slippery
concept. Equivalence is perhaps indefinable in the natural lexicon. But now
it becomes clear that, in the mathematical context, the concept of “core”
has a special relevance. Consider “alternative proofs”: two proofs share a
core meaning, if they prove the same result, i.e. if they are mathematically
equivalent. Here is the concept organizing the paradigmatic dimension in
mathematics. As we have mentioned already in the preceding subsection,
the logical categories employed by mathematics make its structures much
sharper than those of ordinary discourse, and the same goes for paradigmatic
structure. “Equivalence” is a very clear term in mathematics, as perhaps
nowhere else.

However, even mathematical equivalence is a complex object. Hence its
aesthetic significance.
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Let us try to approach in aesthetic terms the most basic phenomenon of
mathematical equivalence, derivation. This is the major arranging principle
of a mathematical text: P→Q.

We have in fact mentioned derivations already, in the context of “rhythm”,
where I have suggested that the metrical pattern of a mathematical proposi-
tion is marked by the sequence of “unstressed”, argued assertions, alternating
with “stressed”, argued assertions. Thus, I suggested that the rhythmic pat-
tern of the proposition is given by its pattern of derivations. I now suggest
that this is also its main bind of correspondence. We thus see a certain dual
level for derivations: at the large-scale level, they create the pattern govern-
ing the proposition; at the immediate, small scale, they are a strongly marked
correspondence. This duality is very intriguing, since exactly the same holds
with rhyme. Derivation, one may say, is the rhyme of mathematics. For
rhyme, too, creates the strophic pattern of a (rhymed) poem - while being its
most strongly felt correspondence.

This analogy has an even more direct application: derivations, like rhym-
es, are aesthetically effective where there is sufficient distance between the
syllables/assertions – no “knight”/”night”, P→P.24 This is the principle that
tautologies must be avoided. Nor of course should distance be too large: the
rhyme must be heard, the derivation must be seen to be valid. Notice that the
constraints on derivation are aesthetic rather than logical. A “trivial” deriva-
tion (P→P, or nearly so) is logically valid; while a logically valid derivation
from P to Q, whose validity is, as stated, impossible to perceive, fails not as
a matter of logic but as a matter of persuasion and pleasure. Briefly then,
when following a derivation, we must see both that P and Q are distinct, and
that they are identical. The two signs must both refer to the same signified,
without being identical.

Consider e.g. the following type of derivation:25

“Triangle ABC is similar to triangle DEF. Therefore as AB to DE, so BC
to EF”.26

There is a beauty here, I feel: that two statements – one on a geometrical
shape, another on a much more abstract proportion – are found to be closely
related, indeed nearly “identical”. (The first implies the second; the second
does not fall much short from implying the first). Of course they are not
identical: they say different things, in very different ways; they belong to
different modalities; yet they are also nearly the same. Compare Larkin:

“Man hands on misery to man:
It deepens like a coastal shelf.
Get out as early as you can,
And don’t have any kids yourself”.



THE AESTHETICS OF MATHEMATICS: A STUDY 279

Once again: there is beauty in the startling, irrational apposition of
“shelf” (metaphorical to begin with) and “self”: the two, suddenly, the con-
crete and the abstract, are found to be somehow “nearly the same”.

The relation between rhyme and derivation merits a closer look for it
may, I think, offer a key to the more general relation between poetry and
mathematics. Both rhyme and derivation share the same combination of
difference and identity: they reveal that two entities, seemingly different, are
at some level identical. In both cases, this can be done because the entities,
to begin with, subsist at two separate levels – the sign and the signified.
Thus we are shown that two sign/signified combinations are identical in one
respect, different in another.

Rhyme and derivation are thus similar; but they are also different or,
more precisely, complementary. Rhyme works by having two sign/signified
combinations that are similar as signs and dissimilar as signifieds; derivation
works by having two sign/signified combinations that are similar as signi-
fieds and dissimilar as signs.

Rhyme: sign → signified1, signified2 (“shelf” / “self”)
Derivation: sign1, sign2 → signified (similarity / proportion)

The two sides of a mathematical derivation are very dissimilar in form;
they approach each other at the level of content. In a complementary fash-
ion, the two rhyming words are very dissimilar in meaning; they approach
each other at the level of form. The mathematical relationship is anchored
in meaning, marks the meaning; the poetic relationship is anchored in form,
marks the form. In sum, then, mathematics and poetry both utilize the binary
nature of the sign/signified relationship, to combine identity and difference;
in mathematics, the identity is at the “signified” level, in poetry, it is at the
“sign” level. The patterns of identity and difference are similar but comple-
mentary. Inasmuch as they are similar – merely as patterns of identity and
difference – they both yield a pleasing aesthetic relation. But inasmuch as
they are complementary – in the different levels they mark – they tend to
have very different effects.

Let us see what – in a similar metaphysical level of abstraction – Jakob-
son had to say on the nature of poetry. I quote the conclusion of his article
“What is Poetry?”27:

“Why is [poetry] necessary? Why is it necessary to make a special point
of the fact that sign does not fall together with object? Because, besides the
direct awareness of the identity between sign and object (A is A1), there is
a necessity for the direct awareness of the inadequacy of that identity (A is
not A1). The reason this antinomy is essential is that without contradiction
there is no mobility of concepts, no mobility of signs, and the relationship
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between concept and sign becomes automatized. Activity comes to a halt,
and the awareness of reality dies out”.

Art, according to Jakobson, is about subverting our ordinary, automatic
acceptance of reality – in this case our ordinary, automatic acceptance of the
sign/signified relationship. Because poetry creates a web of relations that
mark the sign aspect of the sign/signified combination, it subverts this very
relationship. Why is that? Because in the ordinary, automatic acceptance of
speech, we take it for granted that the relation is

sign → signified

That is, the sign is there merely to mark the signified, and does not have a
significance of its own. The sign is supposed to do no more than invoke the
signified – that is, determine the signified.

But in poetry, this determination of signified by sign is subverted: it has
the structure

sign → signified1, signified2

I.e. similar signs yield very different signifieds and the determination fails.
The very function

sign → signified

Is thus being questioned: poetry, in this way, is a critique of language.
Mathematics, on the other hand, does nothing of the kind. It is fully

anchored on the signified, and its structure

sign1, sign2 → signified

Supports the intuition that signs are no more than entries into signifieds. The
combination of sign/signified is not subverted, but supported. Mathematics
is not a critique of language, but its affirmation.

Such considerations may seem perhaps rather removed from actual expe-
rience; perhaps they are. Yet this kind of metaphysical politics – the politics
of abstract subversion, as it were – is central to contemporary literary theory.
And certainly the sheer surprise of irrationality, of the breaking down of the
relation between form and meaning, is part of aesthetic experience. This is
especially true for a certain kind of romantic (or modernist) aesthetic temper-
ament. Perhaps one might even suggest the following. If poetic correspon-
dences undermine the notion of rational correspondence, while mathemati-
cal correspondences affirm the notion of rational correspondence, we should
predict that, to some temperaments, poetry would seem suspect while math-
ematics would seem praiseworthy, indeed a model. Such may have been
Plato’s temperament.

With all such differences, however, the main result is this: that mathe-
matics is shot through with the notion of correspondence. It fully partakes in
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the dialectic of identity and difference. Thus it creates a pattern, of potential
aesthetic significance. Arguably, nowhere else is the dialectic of identity and
difference so rich and visible as in mathematics. Perhaps the best evidence
for this is, once again, the recent quotation from Jakobson:

“. . . Because, besides the direct awareness of the identity between sign
and object (A is A1), there is a necessity for the direct awareness of the
inadequacy of that identity (A is not A1)”.

Jakobson, of course, was not above using quasi-mathematical notation
to enhance the scientific credibility of his methodology. But could he really
have chosen a better way to express the notions of identity and its absence?
Nowhere else are those notions so central, so clear. Mathematicians keep
affirming just that: that A equals B. No one else – not even poets – affirms
such claims as often. The presence of the dialectic of identity and difference
in mathematics is far from accidental: it is, quite simply, what mathematics
is about.

3. CONCLUSION

I have offered a typology of possible sources of beauty in Greek mathema-
tical texts. They fell into three main categories. The first, “narrative”, is a
consequence of the fact that mathematical texts are freely written, and yet
display necessary connections. This allows mathematical texts to display all
kinds of combinations of surprise, invention and retrospective inevitability.
That is what I call the dialectic of freedom and necessity, a dialectic that
often seems to speak to our sense of beauty.

The second, “prosody”, is a consequence of the fact that mathematical
perception organizes its reality in well-defined units that are strongly struc-
tured by a web of relations. This allows mathematical texts to display rich
structures, in many interacting layers. That is what I call the dialectic of ob-
ject and structure, which is at the heart of art and indeed communication in
general.

Finally, “correspondence” is a consequence of the fact that mathematical
texts constantly restate their contents in equivalent ways. Statements are
subtly transformed and restated in derivations, and objects are perceived in
sequence through several separate perspectives. This may be at the heart of
mathematical beauty since this constant re-shuffling of equivalent statements
is what allows mathematical texts to display, finally, both the combinations
of surprise and necessity mentioned in the context of “narrative”, and the rich
structures mentioned in the context of “prosody”. In a more narrow sense,
the relations displayed in mathematical texts – true identities that bridge truly
different objects – somehow pick up a kind of surprise and structure that is
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of special value. That is the dialectic of identity and difference, which is
perhaps one of the major themes of the aesthetic experience. At any rate, in
a sense, this dialectic is most perfectly instantiated in mathematics.

In this article, I narrowed the questions of mathematical beauty to the
question of beauty in mathematical texts (concentrating on Greek mathema-
tical texts). I have largely ignored the question of beauty as a property of
mathematical states of mind, and of beauty as a property of mathematical
objects.

I shall not try to offer here any generalizations across historical periods.
I did make a few suggestions for possible historical discontinuities: the ap-
pearance of a personal voice in some early modern genres of mathematics;
the valuation of synesthesia and metaphor as such in some fields of modern
mathematics. I suspect the typology offered here has considerable continuity
with many other genres inside the western tradition, if only because of their
genetic dependence upon Greek mathematics. But it will be necessary to
study each genre separately, uncovering its own internal aesthetic principles.
In the study of experience there are no shortcuts.

Further, I have little to say on beauty as a feature of states of mind. Seen
in an abstract light, such states of mind are “text”, as well, but texts to which
our only access is the mathematician’s introspection. This I do not possess,
and I can only salute Polya or Poincare, Hardy or Hadamard. The study of
such mathematician’s reports is important, and may, with caution, be used
in a historical study (more on this below). I shall not try to pursue this here
except noting that, once again, I suspect there are continuities between the
texts of mathematics and “texts” of mathematical intuition. Perhaps surprise
and inevitability, the concrete and the abstract, conspire first in the mathe-
matician’s imagination, bringing forth in his or her mind what will later on
be enacted in writing.

Something similar may be said with greater confidence on the question
of the beauty of mathematical objects. Here, I would suggest, we have a spe-
cial or limiting case of the forces shaping the beauty of mathematical texts.
This is most obvious with one major type of mathematical objects, namely
mathematical facts. Mathematical facts (or results), such as Pythagoras’ the-
orem, or that a sphere’s surface is four times its greatest circle, are all clearly
beautiful. They are also, simply, a limiting case of a narrative. A result is a
narrative, stripped to its bare structure: instead of telling the elaborate story
of the first book of Euclid’s Elements, or of Archimedes’ first book on Sphere
and Cylinder, you reach directly for the punch line. But what makes this
beautiful is the promise of a narrative. Any fool can tell you that a sphere’s
surface is four times its great circle – or indeed that it is three times its great
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circle (which sounds even nicer). The beauty resides in the statement’s be-
ing demonstrably true. It is surprise and inevitability combined that make
a mathematical statement beautiful: exactly the “narrative” mechanism we
saw operating in the beauty of mathematical texts.

Moving on to “objects” in a more narrow sense – to the worlds of parabo-
las and perfect numbers – our observations on the mathematical perception
in texts become relevant to the mathematical objects themselves. Mathema-
tical perception is structural; aided by logic, it brings sharp contrasts, con-
tours and connections. These may then be beautiful. This principle is true
of derivations in the mathematical proof – and of objects in the mathema-
tical world. We are able to perceive, through mathematics, that a parabola
has infinitely many diameters, around which it is, in a clearly defined sense,
symmetrical; we are able to perceive that a perfect number is precisely equal
to the sum of its parts. I have said almost nothing so far about “symme-
try”, “harmony”, “equality”, “proportion”, perhaps the notions that spring
to mind most naturally when considering the beauty of mathematics. These
are structural notions; “harmony” is perhaps nothing more than a structure
we are able to perceive. At any rate, the continuity between the beauty of
texts and the beauty of objects, based in both cases on structural perception,
seems plausible. Finally, I would suggest the same for the final source of
beauty in mathematical texts – the dialectic of identity and difference. This
after all is a way in which texts refer to objects. It is the same parabola
which is seen both as a geometrical cut in a cone, and as the site for abstract
proportions; the same perfect number which is perceived both as a sum of
numbers and their multiple. Mathematical perception is not only structural,
but multi-layered. In particular, we repeatedly see things – when we see
them mathematically – as both concrete and abstract. This is the Greek,
and then western, bifocal vision of the mathematical object, simultaneously
particular and general. And this is further repeated throughout the mathema-
tical disciplines, whether “pure” (where a visual diagram is simultaneously
an abstract, language-defined object), or “applied” (where the same object is
simultaneously “mathematical” and “physical” – magnitudes in proportion
that are plates on a tray). From Plato onwards, this coincidence of the con-
crete and the abstract seems to have informed the aesthetic appreciation of
mathematical objects.

I now move on to a number of objections to the approach delineated in
this article.

I can imagine a perplexed response, wondering how valid my account
can be given its novelty. The very fact that mathematics is so little explicitly
analyzed in aesthetic terms, while art is, seems to indicate a real distinction
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between the two. This response has to be qualified – in some ways, an aes-
thetic appreciation of mathematics is not novel, but commonplace – but it
is essentially valid. A theoretical approach to the aesthetics of mathematics
should also offer an account of its own absence.

Something has already been said in this respect at the end of the preced-
ing section, where I pointed out the complementary nature of mathematics
and poetry. In fact, mathematical texts do differ fundamentally from other
forms of verbal art. Because their essential organizing principle is that of
logical equivalence, they foreground a set of relations which is in principle
independent of specific linguistic form. When the speaker and the audience
share a large body of linguistic tools (as was true inside Greek mathemati-
cal communication), specific forms such as Greek mathematical formulaic
expressions may be used to signal and support the logical relation of equiv-
alence. But when the linguistic tools are no longer shared (as happens, for
instance, when a Greek mathematical work gets translated by modern math-
ematicians), the specific linguistic tools are no longer of help at all. To per-
ceive the logical equivalence, then, the modern mathematician must substi-
tute new forms for the old ones. Typically, a modern rendering of an ancient
mathematical text would transform it into modern algebraic notation. This
would be done – here is a crucial realization – not to suppress its relevant
aesthetic properties, but to enhance them. The modern algebraic notation is
the restorer’s paint, retouching a surface that became worn with time. There
can be no aesthetic object where there is no perception, and the perception
of mathematical relations is dependent upon using the tools of mathemati-
cal perception available in your own culture. Briefly, then, most aesthetic
properties of mathematical texts become visible only under translation. This
is true for most properties of “narrative” and “correspondence”, and even
to many properties of “prosody” (the rhythm of a mathematical proof, for
instance, can only be perceived when the proof is perceived as a flowing se-
quence, i.e. translated to your own mathematical language). This is directly
the opposite of verbal art par excellence – lyric poetry – where the dominant
aesthetic properties reside in the specific linguistic form. It is for this rea-
son that mathematics appears not at all to be a form of verbal art. Indeed it
isn’t. It is enacted in words, but its dominant aesthetics are located not in the
verbal, but in the logical domain.

This, however, does not make it any less of an art. Logical relations are
not any less interesting than verbal relations. In fact, they allow rich and yet
precise structures, much more than verbal relations do. There should there-
fore be no surprise that poetics is applicable to science or to mathematics. In
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particular – just because of its great elegance – the glass slipper of structural-
ist poetics may, indeed, fit the foot of science even better than it fits that of
art. Here I approach another possible reaction against my study. Perhaps one
reason why many literary scholars are dissatisfied with the old structuralist
model is precisely because of its precision, of its search for structural har-
monies. In art, the ambiguous is sometimes as valuable as the precise, the
jarring as much as the harmonious.28 A theoretical model, where works of
art are analyzed as elegant solutions to problems, cannot apply directly to
works whose theme is failure and inresolution.29 But – with the interesting
exception of paradoxes - inresolution is not a theme in mathematics. Solu-
tions are; as are structures and harmonies; hence there is also a poetics – and
a rather straightforward one - of mathematics.

I am trying to reassure contemporary literary critics. No, I do not de-
mand of them to find in literature quite the same elegance we find in math-
ematics. But then I know they can hardly feel reassured. In this article, I
have argued for the presence of the aesthetic in mathematics, by arguing that
mathematics has a quasi-literary structure. I am not so naı̈ve as to fail to¨
realize that, in contemporary literary theory, the notion of the aesthetic in
literature has nearly become a taboo.30 Nor am I so hypocritical as to deny
that, in this article, part of my motivation was to challenge this taboo: I use
the metaphor of mathematics as literature as beautiful so as, implicitly, to
make more plausible the metaphor of literature as mathematics as beautiful.
Nor, finally, am I so naı̈ve as to believe it’s as easy as that.¨

The issue goes to the heart of my suggestion at the introduction to this
article, that while non-epistemic, beauty may be also a rational value: to put
roughly, that there is some objective reality corresponding to the experience
of mathematical beauty, which cannot be reduced to its historical construc-
tion. This is forcefully denied by contemporary literary theory, where the
historicity of value is often seen as a proved fact.

I believe that, in this respect, contemporary literary scholars have an
important and valid perception. Value should be historicized. But this, I
believe, is not contradicted by the kind of methodology advocated in this
article. To the contrary, I will argue that the approach of this article is a
necessary – and currently absent – component of historicism. In conclusion,
I shall now try to sketch this argument.

Let us start with the following methodological observation. The typol-
ogy offered in this article was intended, in the first instance, not as a contribu-
tion to the pure metaphysics of beauty (an interesting field in its own right).
My purpose was, indeed, historical: to find a way to describe a historical
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reality so that, among other things – armed with such typologies concern-
ing the various possible perceptions of the aesthetic – we may be able to
ask more specific historical questions. So, for instance, we could now fi-
nally turn to study, as historians, Hardy’s aesthetic statements. This must
be stressed: to be interested in the aesthetics of mathematics, does not at all
entail a blind, uncritical trust of, say, Hardy. Exactly the opposite: it is only
after we have built our own analytical tools for dealing with the mathema-
tical aesthetic experience, that we are in a position to approach Hardy in a
critical way. We may approach Hardy’s mathematics, and the mathematics
of his time, independently of Hardy: poetics, as it were, gives us a privi-
leged access to texts and to the reality of mathematical experience, an access
Hardy never had. We can now study the actual forms of aesthetic experience
implicit in this particular genre of 20th century mathematics, comparing it to
other genres, from different times, places, and fields. And we may of course
compare them to Hardy’s words about the genre, in this way uncovering the
ideological valuation of certain kinds of experience at the expense of others.
All of this becomes possible only after we have made the aesthetic study.

Even without an aesthetic study, we could study, of course, the (rather
obvious) ideological positions adopted by Hardy. But we wouldn’t know
how to situate those positions: as if we had a schematic map of a terrain
we did not know. Hardy had a position where “aesthetic” is opposed to
“utilitarian”, and this is easy to find and to trace as schematic map. But
what is the terrain to which this “aesthetic” refers? This terrain is at the
level of experience. We just cannot read our map, then, without reference
to an understanding of this level of experience. What was the thing Hardy
was referring to when he was speaking about ‘beauty’? An answer to this
question does not require of us to share Hardy’s valuation of the thing; but it
does require us to try to analyze the reality of experienced texts underlying
Hardy’s statements. And therefore – as historians – we need to understand
the whole range of phenomena described in this article – narrative and its
flow, perception and its structure, the way reality is taken in. It is all very
easy, to say that Hardy made an ideological valuation of something; the real
challenge is to say what this something was.

Of course cultures create their patterns of value. How else could value
become part of social existence? But they cannot make such patterns out
of nothing, into nothing. They make such patterns out of something (out of
the sheer facts of experience), into something (into another objectively felt
experience, that of value). The historicism of value is an empty claim as
long as it does not confront those – objective – realities, out of which and
into which the subjective is made.
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Having replied to my colleagues in literary theory, it is finally time for
me to turn to my colleagues in the philosophy of mathematics. Indeed I need
only glance behind my shoulder, to the preceding articles in this collection.
In a sense they do not question my very enterprise in quite the same way
the literary critics did. I imagined the literary critics questioning the very
notion of ‘mathematical beauty’. Not so the philosophers of mathematics.
Their worry, it appears to me, is different and – I concede – justified. Having
agreed on the existence of the category of ‘the beautiful’ in mathematics,
how does it speak to the concerns of the philosophy of mathematics?

It is of course a contribution to the aesthetics of mathematics, and the
main claim I now need to make is for the need for such a philosophical inves-
tigation, independent of the epistemic concerns that drive the other articles
in the collection.

One could address the question, why a mathematician may wish, for in-
stance, to have the narrative effect of surprise – in terms of the epistemic
significance such an effect might possess. One may argue perhaps that a sur-
prising result challenges us to uncover the links leading to its conclusion, in
this way possessing a specific epistemic value. I do not believe Archimedes,
for example, chose to have a surprising narrative in his Sphere and Cylinder I
for this reason (a plausible historical argument can be made that Archimedes’
aim was purely aesthetic), but in principle surprising narratives can definitely
be epistemically motivated. Or one may argue the converse (which, in this
case is, in my view, historically valid): one may argue that a stately, orderly
progression of narrative such as that of Euclid’s Elements I has a precise ped-
agogic effect, that helps the reader parse the text as it unfolds, in this way
making it easier to follow not the results alone but also their pattern of logi-
cal interrelation, so that the text as a whole becomes richer, to the reader, in
its explanatory meaning. I think it is likely that Euclid’s choice to prefer this
model of narrative, then, was pedagogically – that is epistemically – rather
than aesthetically motivated.

In other words, one strategy I could have taken while presenting this
paper to my colleagues in the philosophy of mathematics was to associate the
aesthetic effects discussed to their epistemic correlates, so that my aesthetic
styles would translate into epistemic styles in line with those discussed in the
preceding articles. This would have been possible and, for certain purposes,
valuable. Yet I have avoided, on purpose, doing so. And this was precisely
because my philosophical point was to make the claim for the theoretical
independence of an aesthetics of mathematics, as a philosophical domain
existing apart from the epistemological one.
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The issue is partly historiographical, partly philosophical. The historio-
graphical point was already hinted at above: I suggested briefly that I believe
Euclid’s goal, in his choice of narrative form for Elements I, was primarily
pedagogic, that is epistemic, while Archimedes’ goal, in his choice of narra-
tive form for Sphere and Cylinder I, was primarily aesthetic. Euclid wanted
his readers to learn something; Archimedes wanted to elicit a gasp of plea-
sured surprise. I will not try and advance the historical argument here (ad-
mittedly certainty is hardly possible with such questions having to do with
authorial intention). But the historiographical point is conceptually clear.
The position I describe concerning Euclid and Archimedes is obviously a
possibility. And, unless we allow the existence of a separate aesthetic realm
independent from the epistemic, then we cannot even formulate such a po-
sition. For our writing of the history of mathematics, then, the aesthetic is
a category we need in order to be able to state the full range of possible
motivations of authors in their writings: as simple as that.

The philosophical point – related to the historiographical one – is more
subtle. It has to do with the nature of mathematical experience itself.

It might appear strange for me to invoke, at this stage of the argument,
mathematical experience. After all I have eschewed the difficult question
of the mathematical states of mind, concentrating instead on the objective
features of texts. My approach throughout was structuralist, looking at the
semiotic properties of texts as vehicles for positively defined aesthetic ef-
fects. And yet my goal of course was to begin to stake a ground in this dif-
ficult terrain of experience. My approach throughout – here as in my other
studies in the cognitive history of mathematics – is to concentrate on the
surface details of texts, as offering us the best objective evidence to mathe-
matics as it is actually experienced (as opposed to some logical analysis of
its abstract content).

My philosopher colleagues will recognize my intention, if I stress my
interest in the phenomenology of mathematics. I ask the question: How is
mathematics present to the mind? And I concentrate on a more modest ques-
tion (where there is some useful evidence to work with): how are mathema-
tical texts present to the mind? My claim is that categories such as ‘truth’
or ‘validity’, even categories such as ‘visual’ and ‘symbolic’, cannot fully
provide an answer to this question. Part of the answer has to bring in other
categories of experience, such as ‘delight’, ‘pleasure’, ‘surprise’, or, indeed,
‘beauty’. All those terms of value are important not so that we may judge
mathematics, but so that we can describe it—in its phenomenal reality. A
phenomenology that disavows the experiences of value offers an abstracted,
synthetic vision of mathematics: as it were, a disembeautied vision, which



THE AESTHETICS OF MATHEMATICS: A STUDY 289

therefore has to be also a disembodied vision. And so, to begin to outline the
actual phenomenology of mathematics, we must start from its real phenom-
enal reality—the full range of its experience of value and cognition, percep-
tion and appetite. Which indeed reminds me that I should get back to my
interrupted lunch.

Classics Department
Stanford University
USA

NOTES
1Contemporary mathematicians often refer to Erdös’ famous dictum on ‘the¨

book of beautiful proofs’ (out of whose enumerable infinity mathematicians seek
to find their proofs!) – see Aigner and Ziegler (1998).

2As is obvious by now, I am mainly influenced in my thinking by structuralist
poetics, broadly construed - mostly because of its tangible, immediate applicability.
I do not at all dismiss other possible approaches, and I would be happy to see my
typology of sources of beauty enriched by further methodologies. Nor do I think
“texts” exhaust the problem. The beauty inherent in states of mind seems to be a
central theme in mathematicians’ own reports, and thus deserves close study. The
notion of the intrinsic beauty of the mathematical realm of being is one of the key
issues of western philosophy from Plato onwards; see Burnyeat (1998). I shall
briefly return to those general issues in the conclusion.

3See e.g. (Lang, 1985, 3): “The Greeks did mathematics for the beauty of it”, or
the whole of Artmann (1999) – a passionate reading of Euclid by a contemporary
mathematician, arguing for the sources of many mathematical values, in particular
beauty, in Greek mathematics.

4This is the main theme of Lotman (1976).
5One should note however the interesting complications of orders of reality, for

instance in proof by contradiction, where an alternative reality is entertained “for
the sake of the argument” – the perspective adopted and then finally discarded. I
also ignore the role of the first person singular in some formulaic expressions such
as ”I say that”, which, because formulaic, perhaps do not have much real force. I
give an example of both phenomena at the beginning of the next subsection. Finally,
note that in early modern mathematics, the authorial voice frequently interferes in
the text, suggesting the line of discovery and playfully interweaving the subjective
narrative of the implied author with the objective narrative of the proof. (For a
celebrated example, see Descartes’ Geometry; I thank Heda Segvic for suggesting
this comparison.) The implicit claim of the absent perspective characterizes not the
aesthetics of mathematics as such, but rather the aesthetics of Greek mathematics.

6My choice of the term ‘narrative’ for this process of selection and combination
of information is not obvious. I could equally have called this ‘rhetoric’, which how-
ever I have refrained from doing, wishing to avoid the pointless debate of ‘logic vs.
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rhetoric’. Obviously the structures represented in mathematical texts are unlike the
plots involving human agents which the term ‘narrative’ brings to mind: I hope to
show that, even so, the term ‘narrative’ remains useful in mathematics as well. (For
an interesting discussion of the applicability of the term ‘narrative’ to mathematics
see Thomas (2002).

7The term ‘capstone theorem’ was suggested to me by Henry Mendell. Mendell
has also suggested to me the further observation, that most books in Euclid’s Ele-
ments seem to end with such a capstone theorem.

8As it were, the considerations of statics and of aesthetics, governing the ar-
rangement of the plates on the tray, are both organized by the same principles (e.g.
of simplicity of form and of proportion).

9The Kantian aesthetic program is to understand art through the dialectic of the
subject’s freedom and the world’s lawlikeness: see e.g. Krukowski (1992) chapter
1.

10That prosody was suppressed in Greek mathematics can be seen from the fate
of the Archimedean corpus: originally written in Archimedes’ Doric dialect, it was
at some point mostly transferred into the Koine dialect. Such dialect transformation
impacts almost exclusively on prosody: but clearly readers did not consider that the
text has lost any meaningful dimension.

11Sometimes “narrative” is given a wider sense, so that the contrast is within
narrative structure, between description and fabula: see e.g. (Bal, 1997, 36-43) .

12The terms derive from Proclus’ In Eucl. I 203.
13“Syntagmatic” is a technical term of structuralist poetics: I briefly explain a few

of those terms at the start of subsection 2.4 below.
14The D (8) passage – Heath 362.12-364.4 – is an interesting complication: a

mere unpacking of what the diagram stands for (description, then, in literary terms)
is of immediate argumentative context (and therefore functions here as part of the
proof, in the mathematical sense).

15On starting-points and arguments in general see (Netz, 1999, 169–198).
16I have noted the tendency to have a “smoother” movement towards the end of

a proof, in (Netz, 1999, 206-207) , calling it “the cadenza effect”. I have there
stressed the possible rhetorical function of this effect; once again, the rhetorical and
the aesthetic coincide.

17See (Netz, 1999, Ch. 4) for the role of formulaic expressions. I return to discuss
these in greater detail below, when introducing the general notion of “correspon-
dence”.

18Note however that there might, in principle, be aesthetic value not in clarity,
but in ambiguity. This is in fact exactly parallel to the case of irony, mentioned in
the preceding subsection. The mathematical text largely forgoes the aesthetic pos-
sibilities of ambiguity, just as it largely forgoes the aesthetic possibilities of irony.
This is a limitation on the aesthetic range of mathematics – though once again, a
certain beauty resides in the limitation itself, providing mathematics with its sharp
luminosity.
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19For all this see especially Jakobson (1987) chapter 8, originally published in
1956.

20As noted by Jakobson himself (Jakobson, 1987, 113-114), metaphor is in gen-
eral easier to understand than metonym. It is in fact difficult to think of examples
of metonym in Greek mathematics. I note below the use of particular cases for gen-
eral statements, which is perhaps metonym-like; probably the clearest example of
metonym in mathematics in general is mathematical induction, where the argument
relies on the ineritence of properties by objects contiguous to each other (this is a
modern method: see Unguru (1991)). Perhaps even: when mathematicians say that
proofs by mathematical induction are “strange” and do not reveal the “real reasons”,
they, among other things, display the typical human preference for metaphor over
metonym?

21For a historical survey and interesting philosophical observations, see Dann
(1998).

22On this very widespread experience see Seron et al. (1992).
23For the quest and its results, see, e.g., Corry (1996). Note further a special

twist on this quest for global metaphor: the brilliant insight of some 20th century
mathematical works, that the signified can metaphorically act as sign – so that, for
instance, numbers are equated with statements about numbers.

24Indeed the effectiveness of rhyme often has to do with a distance which is not
only phonetic, but also semantic: compare e.g. (Wimsatt, 1954, 153–168).

25I concentrate on the simple form P→Q, ignoring the complication of the more
common structures, P&Q→R, etc. The presence of several premises for a single
conclusion is, among other things, a further device for creating a pleasing distance
between set of premises and conclusion.

26Note that this is not the definition of similarity of triangles – defined by equal
angles – but a result (Euclid’s Elements VI.4). The derivation is thus a substantive
equivalence between two different statements (rather than a disguised tautology).

27(Jakobson, 1987, Ch. 19), translation of an article from 1933-4. Jakobson
expresses here standard formalist positions, perhaps first articulated in Shklovsky
(1919).

28The preference for the disharmonious may be related to the widespread contem-
porary interest in literature as “subversion” (it seems at any rate that such an interest
in “subversion” was at the root of Bakhtin’s own distancing from Jakobson’s type
of structuralist poetics which of course, through Kristeva (1980) and other routes,
came to dominate contemporary literary theory).

29Of course, we will need the theoretical model to analyze how the effect of
inresolution is obtained; but it is true that the basic tenor of structuralist poetics is
alien to such an analysis.

30See Smith (1988) for a fascinating statement of the doubt in the aesthetic in
contemporary literary theory.
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