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Abstract In software engineering transformational development aims at developing
software systems by transforming a coarse-grained specification to final code
(or to a detailed specification) through a sequence of small transformation
steps. Transformational development is known to bring benefits such as: cor-
rectness-preserving of the development cycle, explicit mappings between de-
velopment steps, reusability and reversibility of transformations. No piece of
literature provides a systematic formal system applying transformational de-
velopment to user interface engineering. To fill this gap, a methodology, called
TOMATO, is described in three facets: 1) A development cycle is defined to
outline possible transformations. 2) A language for supporting the methodol-
ogy is presented relying on graph transformations, a mathematical system for
expressing specifications and transformation rules. 3) A tool implementation,
using a visual syntax, is illustrated.

Keywords: Forward engineering, Graph grammar, Graph theory, Mapping problem, Pro-
gram transformation, Reverse engineering, Transformational approach.

1. INTRODUCTION
A state of the art [18] in the field of engineering methods of user inter-

face shows that no method provides an integrated view of the abstractions 
needed to build a user interface along with an explicit mechanism to manipu-
late these abstractions throughout a development cycle. More specifically,
there is no general logical mechanism to incorporate and manipulate design
knowledge in user interface creation tools [2,13] nor any system for relating
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abstractions needed for this purpose. This problem has been referred to as
the mapping problem by Puerta and Eisenstein in [16].

This paper addresses the lack of a disciplined and explicit mechanism for
supporting user interface development in a transformational approach from 
early requirements to the final code. We draw the bases of such a mecha-
nism along with the explicit definition of an algorithmic method able to per-
form automatically (or semi-automatically) the transformation of specifica-
tion models.

A UI specification model consists in a series of representations (called l
component models) pertaining to various facets of the UI such as: user’s
task, domain objects, UI presentation and dialog, user’s characteristics,
computing platform, physical environment of interaction, etc [14,18]. A 
consistent effort has been done in the literature to integrate these specifica-
tion models in an explicitly articulated and coherent manner. TOMATO
methodology (standing for “formal meThOdology for MApping user inter-
face specificaTiOn models) is composed of a development cycle and a lan-
guage (Tomato-L). It is aimed at supporting transformational development 
of UIs. Within Tomato any UI artefact is internally represented by a set of 
models that are analyzable, editable, and processable by software means
[14]. Each model is stored in a model repository in a UI specification lan-
guage based on graph theory. This UI internal representation is then subject
to production rules that progressively transform abstract concepts into con-
crete concepts so as to finally create a full description of a final UI [20]. 
Once this description is obtained, a rendering tool can be used to produce 
the running code. Such renderers have already been developed and discussed 
(www.uiml.org).This paper is focused on the transformation development 
that leads to the final description.

In the context of model-based development environments [18], at least 
four works can be cited: Mobi-D [13,14,15,16], Teallach [6], TIDE (www.
uiml.org) and TERESA [12]. All these works represent significant attempts to
incorporate design knowledge for a user interface design tool. The above 
tools are advanced in the sense that they support the explicit mappings be-
tween the different models, the different views, and steps of the method. In
Tomato methodology, these mappings are not hand coded and built-in in the 
software. Rather, they are graphically expressed in the environment, which
allows to exploit these mappings in a flexible way. With respect to the ap-
plication of graph transformations to user interface development, two con-
tributions can be mentioned: Freund et al. [5] and Sucrow [19]. Both ap-
proaches make an interesting use of graph transformations but have a too

cle.
The purpose of this paper is not to prove that a complete and consistent 

set of rules can be achieved to store a comprehensive part of design knowl-
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edge. Rather, it is intended to show how we can apply transformations from 
the abstract to the concrete domain in a seamless manner. The remainder of
this paper is structured as follows: first, the transformation development life 
cycle supported by the Tomato methodology will be described. Then, the
underlying language and its supporting tools are discussed. An example is 
presented to introduce the method. Finally, a related work section shows that 
this type of work remains unprecedented. The conclusion summarizes the
main benefits of the approach, while contrasting with potential shortcom-
ings.

2. TRANSFORMATIONAL DEVELOPMENT WITH 
TOMATO

2.1 Context and Aim 
An example is herby exposed in order to better introduce TOMATO meth-

odology. A simple scenario is proposed: a doctor at the hospital has to re-
cord information on her patient medical history. For this purpose, she has to 
input identity information, medical history i.e., general pathologies, heart 
pathologies, and other problems. 

Figure 1. A Conceptual Model (Domain + Task).

Using TOMATO methodology, a developer may initiate the development 
by a conceptual schema expressing either domain concepts or a task specifi-
cation or both. Fig. 1 shows a domain and task specification along with the 
mappings between both models. In this example, input tasks are mapped 
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onto the attribute or the attribute set they are concerned with. Tasks involv-
ing a system function are mapped onto domain operations. Having this
specification, the designer can pick up a derivation heuristic in a database
and generate a detailed specification of the desired UI. The heuristics ex-
ploited in this example are listed in Fig. 2. These heuristics are expressed in
natural language for the good comprehension of the example. The resulting 
specification is illustrated by Fig. 3. 

Now the developer is told that her system is not suited for patients admit-
ted through the emergency service. In this case a handheld platform has to 
be used. In consequence, the developer selects an appropriate derivation to
transform the specification of the UI of Fig. 3 into a specification suited for
a small display device. The resulting specification is illustrated by Fig. 4.

R0: generate a “main” window; 
R1: for each multi-valued class attribute, generate a group box whose name is the 
name of the attribute;
R2: for each multi-valued class attribute whose domain is enumerated and is associ-
ated with a group box, generate a checkbox whose label is the label of the enumer-
ated value;
R3: for each class attribute of type string and not multi-valued, generate a label and 
an input field whose, respectively, caption and name is the name of the attribute. The
label and the input field being topologically bound together;
R4: for each attribute of type long string, generate a multiple line edit box;
R5 for each operation class, generate a button whose label is the name of the opera-
tion;
R6 (A and B) : each object belonging to a same window are placed following an or-
der depending on the task they allow to accomplish. 

Figure 2. Heuristic sample of the working example.

Figure 3. (Left) & 4 (Right) Recording Patient History File.
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The initial specification has been split up into four smaller interaction
spaces. Navigation between these interaction spaces has been automatically
generated. Some widgets have been replaced by a degraded equivalent (e.g.,
a group of text boxes has been replaced by a multiple selection list box 
[22,23]). Because patient information is scattered between several interac-
tion spaces so that the task of checking the information before recording the
file can not be done appropriately, a summary interaction space in generated. 
This example shows a possible application of Tomato methodology. Next 
section exposes this methodology in a systematic way.

2.2 Development Cycle: TOMATO Cycle
Tomato cycle complies with transformational development theories. 

Transformational development can be viewed as a development process that 
takes as input a high level specification and produces as output a more con-
crete specification (i.e., implementation oriented) or an executable program. 
The transformation process itself takes the form of a sequence of small 
transformation steps. Each step preserves some desirable properties (e.g., 
correctness or consistency [9]).

High Level
Spec.

R1

R2

Detailed Spec.
or Program

T1T1

T2T2

T3T3

Task and
Domain

Abstract
User Interface

Concrete
User Interface

User Interface
Code

T1T1

T2T2

T3T3

Model
Edition & Checking

Transformation
Modification

Transformation
Triggering

Figure 5. Tomato Cycle.

Fig. 5 illustrates the sequence of abstractions and designer’s tasks to trans-
form a high level specification into a refined specification through the fol-
lowing steps [3]: task and domain, abstract user interface, concrete user in-
terface, and user interface code.

With such a transformational development, the role of the developer is
very different from traditional approaches. In traditional approaches, the de-
veloper receives a specification, tries to fully understand it and implements
what he has understood in a specific development environment. With trans-
formational approaches [10], the developer receives a specification, tries to
fully understand it, edits it, selects/modifies/creates an appropriate transfor-
mation and applies it to the initial specification in order to finally obtain a
refined specification. Properties of the resulting model can then be checked 
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against a set of rules expressing coherence or usability properties.
Regarding the role of the developer, three types of transformations can

be identified [10]: manual transformations require intervention of the devel-
oper at each stage for choosing the appropriate transformation, semi-
automatic transformation and fully automatic transformation. TOMATO cycle 
adopts a manual approach i.e., the developer builds the sequence of trans-
formation himself. This is explained by the fact that transformations are heu-
ristics. There is no single way to transform a task model into a presentation, 
or a presentation adapted to a large display to a presentation adapted to a 
small display, etc. 

2.3 THE TOMATO-L

TOMATO-L is a language that enables the expression of concepts needed 
to build a user interface. TOMATO-L structure is defined in Fig. 6.

Figure 6. TOMATO Language.

2.3.1 Abstract Concepts

The abstract concepts we consider to formalise with graph structures 
consist in abstractions needed to build a UI in a model-driven approach [11].
It is impossible to list here all language elements. Nonetheless, these 
abstractions can be categorised into three main classes.
1. Component models partition concepts needed to construct a UI. Com-

ponent models allow building several views on a UI. These views help to
answer questions like: what tasks does my UI support? What objects does
it manipulate? How does it look like? How does it behave? Component 
models have been listed in [14]. They consist in: (1) a task model repre-l
sents a decomposition of user tasks in interaction with a system in order
to reach a specific goal, (2) a domain model represents the concepts ma-l
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nipulated by the user while interacting with the system, (3) a presentation
model consists in a specification of a hierarchy of graphical elements
composing a UI along with their respective topological constraints, (4) a
dialog model represents the dynamic aspects of a presentation model.l
Dialog modelling can concern different levels of granularity. We focus 
here on navigational aspects i.e., window transitions. 5) a context model.
The context model essentially serves to describe in which conditions a 
specific UI specification is valid or not. It is beyond the scope of this pa-
per to discuss extensively the context model. Schematically, our context 
model is composed of [3,12] (a) a user model describing the main charac-
teristics of some user’s users ? stereotypes (b) a platform model contain-
ing the description of hard- and soft- resources exploited to render a UI
(c) an environment model describing environmental factors affecting the 
way users interact (noise or light level, stress conditions,…).

2. Mappings are relationships between component models [15,16]. These
relationships are very interesting as they realize the integration of com-
ponent models into one whole specification instead of having a collection 
of unrelated abstractions (this partly provides seamlessness to our
method). Concretely, expressing mappings allows us to answer questions
like: what objects do I need to accomplish this task? (task-domain map-
ping) What graphical objects support this task or represent this object? 
(<task, domain>-presentation mapping). 

3. Design Knowledge is the knowledge that is put into practice while build-
ing a UI [13]. In our perspective, applying design knowledge means ma-
nipulating component models and mappings. Design knowledge allows
answering questions like: what widgets are more appropriate to represent 
such domain object? How should I lay out objects into a container? 
Which navigation is preferred by a user stereotype? What kind of transi-
tion should I have between two windows? [24]. More detailed examples 
are provided in Section 2.4. 

2.3.2 Abstract Syntax and Operational Semantics

The abstract syntax is defined as the hidden structure of a language, its
mathematical background [9]. Our abstract syntax takes the form of a di-
rected graph. A graph g is defined as a quadruple (V, E, source, target) suchg
that (1) V is a finite set of vertices (2) E is a finite set of edges (3) source: E 

V is an injective function assigning a source to each edge of E (4) target:
E V is an injective function assigning a target to each edge of E. To en-
able the expression of a specification model within a graph structure we en-
rich the initial definition of graph with several interesting features. Most im-
portant features are: (1) labelling: enables each edge or node to be labelled 
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(2) typing: enables edges and nodes to be classified into types (3) constrain-
ing: enables to attach to nodes and edges constraints of various types (e.g.,
cardinality constraint) (4) nesting: enables to nest a graph into another
graph.

After expressing models, the abstract syntax of TOMATO-L expresses de-
sign knowledge via graph grammars. Graph grammars are set of rules, 
called productions. Productions aim, in this context, at transforming the 
graph representing UI artefacts. In order to transform graphs (i.e., UI artefact 
transformation), a grammar is applied to an initial graph, called host graph 
leading to a resultant graph. A resultant graph is said final if there is no
more applicable production to this graph. It is said intermediate in the oppo-
site case. The application of a production is called a graph transformation 
step [7], for short a derivation.

The operational semantics of a language describes the way an automaton 
(called interpreting automaton) transforms an input into an output [9]. The 
behaviour of the automaton for graph transformation depends on the chosen 
transformation technique. The technique used in this work is known as Sin-
gle PushOut approach (SPO). It is illustrated in Fig. 7.
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Figure 7. Production and Grammar in the Single Pushout Approach of Graph Transformation.

When a Left Hand Side (LHS) matches into a host graph G, it is replaced 
by a Right Hand Side (RHS). G is resultantly transformed into G’. All ele-
ments of G not covered by the match are considered as unchanged.

In order to achieve a better level of expression of productions, the
mechanism of LHS match is complemented with 1) Positive Application 
Conditions (PAC), expressed as textual Boolean expressions on variables of 
the LHS and 2) Negative Application Conditions (NAC). A NAC is an addi-
tional condition to a production that contains a graph with which the host 
graph must not match with. In addition, several technical problems may arise 
while applying a grammar to a host graph e.g., conflicts between rules, oc-



Transformational Development of User Interfaces
with Graph Transformations

115

currence of dangling edges or dependencies between rules leading to an in-
determinable resultant graph. We deal with this problem by adopting a con-
servative and cautious approach by (1) identifying production conflicts a
priori when possible, (2) erasing all dangling edges in resultant graphs, (3)
constraining the application of productions to a specific order (programmed
graph rewriting). 
2.3.3 Concrete Syntax

The concrete syntax of a language is its external appearance. Tomato-L
has two concrete syntaxes: (1) a graphical syntax which consists in the nota-
tion used in this paper. Its elements are just boxes, arrows and labels. The
advantage with this notation is that it is visual. The disadvantage is that it 
can not, as is, be manipulated by an automaton (2) a textual syntax (called 
TOMATO-XML) of XML files is also provided.

Existing UI Description Languages (UIDLs) like XIML (http://www. 
ximl.org), UIML (http://www.uiml.org), and XHTML are limited to the ex-
pression of a concrete syntax. TOMATO concrete syntax is governed by an
XML schema. It is logically derived from its abstract syntax as its structure 
is twofold: a set of nodes describing the elements populating the model at 
hand, a set of relationship describing the relationships between these differ-
ent elements. An excerpt of an instance file in shown in Fig. 8. 

2.4 TOOL IMPLEMENTATION
The principles exposed above could be put into practice in various pro-

gramming environment enabling an easy expression and manipulation of 
graph structures (e.g., Prolog). An environment called AGG (Attributed 
Graph Grammars tool) is used for this experiment. AGG can be considered 
as a genuine programming environment based on graph transformations [7]. 
It provides:
1) A programming language enabling the specification of graph gram-

mars.
2) A customisable interpreter enabling graph transformations. AGG was

chosen because it allows the graphical expression of directed, typed and 
attributed graphs (for expressing specifications and rules). It has a pow-
erful library containing notably algorithms for graph transformation [7], 
critical pair analysis, consistency checking, positive and negative appli-
cation condition enforcement. AGG user interface is described in Fig.
8. Frame 1 is the grammar explorer. In Fig. 8, frames 2, 3 and 4 enable
to specify sub-graphs composing a production: a negative application
(frame 2), a left hand side (frame 3) and a right hand side (frame 4).
The host graph on which a production will be applied is represented in 
Frame 5.
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Figure 8. AGG User Interface.

Fig. 9 illustrates a rule used to perform the example exposed in section 
2.1 (R1 in Fig. 2). It asserts that for every possible multi-valued attribute, a
group box is generated. The group box’s name is the name of its correspond-
ing attribute. A negative application condition (left) avoids an infinite itera-
tion of this rule. In order to ensure a possible manipulation of the output pro-
duced by AGG, an export function towards TOMATO textual syntax has been 
realised. An import function is currently under development. 

Figure 9. Composition of a rule: a NAC (left), a LHS (center), a RHS (right).
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Experiments showed that AGG is a proper environment for defining and 
applying rules. Unfortunately, it shows poor in terms of usability for
specifying large UI models. Indeed, it may appear somewhat abstract to the 
designer to describe a UI appearance with a set of nodes and relationships. 
An external tool for visually (“WYSIWYG” style) manipulating abstract and 
concrete UI models is under development in our lab. At this time, the tool 
allows specifying graphically a UI in terms of concrete widgets. A property
sheet allows the detailed specification of the widget properties. The tool ex-
ports the specification of the created UI in a syntax that is compliant with
Tomato concrete syntax. An import function, and consequently a rendering
function, of Tomato concrete syntax are currently being developed. The 
main features of our tool experimentation can be summed up as follows. 

1) A ‘design editor’ allows the creation and the consolidation of models ex-
ploited in the development process. A specific environment enables the
design of UI appearance by direct manipulation of widgets.

2) A ‘design derivator’ enables the transformation of a model into another
model.

3) A ‘rule editor’ enables the definition of new transformation rules.
4) A ‘rule validator’ enables the designer to identify conflicts within a set of 

rules. The critical pair analysis technique is used for this purpose.
5) A ‘design analyser’ enables the verification of desirable properties of the 

manipulated artefacts such as basic consistency rules, type checking or
even usability properties (i.e., IFIP properties like reachability, browsa-
bility).

3. CONCLUSION

In this paper, a formal development methodology (Called TOMATO-M)
enabling the construction of user interfaces through a set of transformations
has been presented.

This methodology relies on: 1) the representation of manipulated abstrac-
tions with directed, labelled, attributed, and typed graphs. 2) the progressive
transformation of higher level specification models to lower level specifica-
tion code via the application of graph transformations 3) the expression of 
design knowledge with an explicit and developers accessible language.

The traditional role of the developer is challenged with TOMATO as it 
consists in 1) the expression of specification models under the form of 
graphs 2) the access, definition, extension, restriction, testing, verification
and, ultimately, the application of appropriate transformations corresponding
to design heuristics. The advantages of such a method can be summed up as
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follows:

A logical expression of design knowledge: rather than having concepts
of components models used in the process being hard coded and built-in 
within the design tools. All design rules, heuristics, algorithms can be 
expressed through productions that can be logically and mathematically 
defined.

A flexible production process: productions can be gathered in graph 
grammars to be executed on graphs representing the starting models 
(e.g., task, domain, and user) to obtain the final models (e.g., presenta-
tion and dialog). This process is flexible in the sense that it can be con-
trolled (forward, backward, and both) by the tool engine, thus providing 
developers with a great degree of freedom. 

A reusable and combinable way of using design knowledge: any form of
design knowledge, once expressed in the Tomato language, can be re-
used at any time, can be refined when experience is growing, can be 
stopped when needed, and can be combined with other rules to obtain a 
more or less sophisticated production process. Using the same graph
grammar also reinforces the consistency of produced results. 

A visual and mathematical expression: while the developer can graphi-
cally express productions in AGG tool, each production is stored as a
graph transformation rule, a mathematically sound concept.

A coverage for many particular methods: each method or tool typically
promotes its particular process. As productions can be arranged in bidi-
rectional ways and can start from any model, we believe that multiple
entry points and top-down or bottom-up approaches can be supported.
For example, linking and deriving rules from Teallach [6] can be ex-
pressed in TOMATO. Similarly, multiple UIs for multiple contexts of use 
could be obtained through different graph grammars.

On the other hand, preliminary results obtained with the TOMATO
method revealed that some abstraction effort is required by the person who 
is responsible to incorporate the design knowledge. But once the designed 
knowledge is introduced into the tool it can be experimented with a limited 
experience of the language [21].
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