
Chapter 7

MAUI: AN INTERFACE DESIGN TOOL BASED
ON MATRIX ALGEBRA

Jeremy Gow and Harold Thimbleby
University College London, UCL Interaction Centre (UCLIC),
Remax House, 31-32 Alfred Place – London WC1E 7DP (United Kingdom)
E-mail: {j.gow, h.thimbleby}@ucl.ac.uk
Tel.: +44 (0)207 679 {5232, 5204} – Fax: +44 (0)207 679 5295

Abstract We describe MAUI, a user interface design tool that is based on a matrix alge-
bra model of interaction. MAUI can be used to build and analyse designs for
interactive systems, such as handheld devices. This paper describes MAUI, its
advantages and underlying mathematical approach. MAUI is implemented in
Java and XML, which allows flexible integration with other parts of the design
life cycle, such as prototyping, implementation and documentation.

Keywords: Finite state machines, Matrix algebra, User interface design, XML.

1. INTRODUCTION

Regardless of how attractive they are, many interactive systems remain
complex and hard to use, and many result in frustration and accidents. They
are often built informally, and it is not obvious what their problems are nor
how to avoid them. The research field of Human-Computer Interaction
(HCI) aims to improve the user experience, but it suffers from a lack of ana-
lytic tools that both support clear formal reasoning and support design and
evaluation at a practical scale. The theoretical approaches that have the for-
mal power to specify interactive systems are technical and beyond the reach
of real designers; and the practical development tools that create real interac-
tive systems are so informal that systems are inevitably developed in ad hoc
ways.

This paper introduces MAUI, a matrix algebra based User Interface (UI)
development and analysis tool that provides a simple, general and rigorous

81

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 81–94.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

82 Gow and Thimbleby

approach to design. It is sufficiently powerful to handle many complex inter-
active devices and because of its simplicity raises clear and well-defined de-
sign and research questions.

MAUI allows the designer to model an interactive device as a finite state
machine (FSM), a technique that has successfully been used in HCI [14].
From this representation, an event algebra is generated, essentially a decom-
position of the FSM's transition matrix into matrices representing individual
user actions [16]. We represent the FSM in linear algebra to permit equa-
tional reasoning about UI events. Properties of the interface can be formally
stated as theorems of this event algebra, and checked efficiently via matrix
calculations – though a user of MAUI need not know or care about the inter-
nal implementation technique. MAUI stands for Matrix Analysis of UIs.

Regardless of how attractive they are, many interactive systems remain
complex and hard to use, and many result in frustration and accidents. They
are often built informally, and it is not obvious what their problems are nor
how to avoid them. The research field of HCI aims to improve the user ex-
perience, but it suffers from a lack of analytic tools that both support clear
formal reasoning and support design and evaluation at a practical scale. The
theoretical approaches that have the formal power to specify interactive sys-
tems are technical and beyond the reach of real designers; and the practical
development tools that create real interactive systems are so informal that
systems are inevitably developed in ad hoc ways.

This paper introduces MAUI, a matrix algebra based UI development and
analysis tool that provides a simple, general and rigorous approach to design.
It is sufficiently powerful to handle many complex interactive devices and
because of its simplicity raises clear and well-defined design and research
questions.

MAUI allows the designer to model an interactive device as a finite state
machine (FSM), a technique that has successfully been used in HCI [14].
From this representation, an event algebra is generated, essentially a decom-
position of the FSM’s transition matrix into matrices representing individual
user actions [16]. We represent the FSM in linear algebra to permit equa-
tional reasoning about UI events. Properties of the interface can be formally
stated as theorems of this event algebra, and checked efficiently via matrix
calculations — though a user of MAUI need not know or care about the in-
ternal implementation technique. MAUI stands for Matrix Analysis of UIs.
There are three key ideas behind the system:

1. Specification. Algebraic properties can correspond to usability issues.
This is explored in Sections 5 and 6. MAUI maintains an algebraic speci-
fication which can be checked against the evolving design.

2. Simplicity. The simplicity of the formalism means that the system can
verify and generate relevant properties automatically. Hence the designer

MAUI: An Interface Design Tool based on Matrix Algebra 83

does not need to get involved in proof, and can gain insights into the in-
terface design from properties and inconsistencies pointed out by MAUI.

3. Integration. MAUI allows integration with other design tools and proc-
esses via XML. For example, fast prototyping with SVG (Scalable Vec-
tor Graphics) [5], an XML open standard version of Flash.
Fig. 1 shows a UI simulation in SVG. The interface design was specified

in MAUI, and automatically combined with an SVG image to make an inter-
active graphical simulation.

Figure 1. An SVG simulation of the Sanyo CDP-195 portable CD player. The graphics are
hand-coded, but the simulation code is automatically generated from the interface design in
MAUI. Viewed using the Squiggle SVG browser.

2. FSM MODELS

Formal techniques have found a wide variety of applications in UI designaa
— e.g., for a collection of recent work, see [12]. Finite state machines are a
basic formalism with a long history in this area, starting with Parnas [13] and
Newman [11] in the 1960s, and reaching a height of interest in User Inter-
face Management Systems (UIMS) work [18]. See [3] for a textbook intro-
duction with applications of FSMs in HCI.

Finite State Machines (FSMs) are a simple and well understood formal-
ism used throughout computer science. An FSM consists of a finite set of
states connected by labelled transitions. In this paper we assume that the
states are those of the UI, and that labelled transitions correspond to those

84 Gow and Thimbleby

events that change the interface’s state. Events usually consist of user ac-
tions, but may include other influences on the system. Examples of events
are the user pressing a button, selecting a menu item or doing nothing for
two seconds. We denote events with a box notation: Event

Fig. 2 shows an extremely simple example: an FSM model of a light
switch. It has the states On and Off, and a Switch event that flips between
them. This model is deterministic, in that every event has at most one effect
in any state. A non-deterministic version might define Switch in the Off state
so that it may turn the light on or blow the bulb. The model in Fig. 2 is also
unguarded, in that every event is possible in every state. A guarded version
might have a light switch that can be flicked Up or Down (together replacing
Switch), where Up works only in the On state and Down only in the Off state.

On Off

Switch

Switch

Figure 2. A simple FSM model of a light switch.

Formally, an FSM is a tuple S, , s0,00 , where S is a set of states,S an
alphabet (of events, in this case), s0 S the initial state,S S S theS
transition relation. The definition is standard. In MAUI, however, the FSM
model is enhanced in two ways: with signs and state classes. Signs allow the
designer to distinguish between the interface’s state and those features ob-
servable by the user. An interface has a collection of signs, and each state
displays some subset of them. Examples of signs are highlighting a menu
item, displaying the time, or playing some music. Each sign may be associ-
ated with several states. Formally, we add to the FSM tuple a set of signs
and a function : S P(), which yields the subset of observable signs in
each state.

State classes are used to reduce the effort in describing interface models,
and for MAUI to classify theorems. Event transitions and signs only have to
be defined once for a state class, and are inherited by all the states that are
members of the class. A state may be a member of several state classes. Two
classes are allowed to assign different transitions to the same state and event
– the model will simply be non-deterministic. State classes are presentational
and do not change the semantics. As a modelling technique, FSMs have the
advantage of being a standard, simple formalism, and therefore more acces-
sible to the technically-minded interface designer. They are also easy to
simulate, which is is good for prototyping.

MAUI: An Interface Design Tool based on Matrix Algebra 85

FSMs can be used in theory to model any finite, discrete concurrent or
sequential system, and so are widely applicable to UI design. For example, a
related state diagram formalism is used in [9] to model virtual environments.

However, FSMs also have a well known disadvantage in that they scale
badly. Because each state is represented explicitly, the size of an FSM in-
creases dramatically with the complexity of the modelled system – a combi-
natorial explosion. This is a potential problem, as the model may become too
large for the designer to comprehend or for a computer to store and analyse.
Fortunately, there are a number of ways in which the combinatorial explo-
sion can be mitigated:

Abstraction. Details of the design can be excluded from the model. Use-
ful formal analyses can be still carried out on abstract models.
Modularisation. Large interface designs can often be broken down into a
number of distinct, independent models.
Higher-Level Formalisms. Models can be built in equivalent higher-
level formalisms and compiled down to FSMs for analysis. The designer
need never see the underlying FSM; this is the approach of Esterel [1],
LTSA [10] and other languages.
Implementation techniques. There are numerous compact implementa-
tion techniques appropriate for FSMs, including BDDs [4] and symbolic
techniques.
Pragmatism. MAUI works with an event algebra that captures UI prop-
erties; if there is an unmanageable combinatorial explosion then this
might suggest that the user model is also extremely complex. Thus wet
claim that if MAUI cannot handle the specification of the device, the de-
signer should have a good idea of why the FSM is so complex, how the
users will cope with it, and whether this is acceptable.

3. EVENT ALGEBRAS

Analysis in MAUI uses a formalism consisting of states and events, rep-
resented by vectors and matrices respectively. For example, the states On
and Off from Fig. 2 are represented as vectors:

soff = (1 0) sf on = (0 1)

Events are represented as matrices that transform these state vectors ac-
cording to the FSM model. For example:

Switch =
01
10

Checking that these definitions conform to Fig. 2 is a matter of elemen-

86 Gow and Thimbleby

tary matrix multiplication:

soff Switch = son son Switch = soff

This can be read purely algebraically as a description of the light switch,
without reference to the underlying vectors and matrices. However, the real
advantage is that these matrices form an event algebra in which we can
make assertions about user actions independently of any particular state
[16]. For our toy example, we can state the following property:

Switch Switch =
10
01 = I

where I is the identity (“do nothing”) matrix. This tells us that pressing
Switch twice has the same final effect as doing nothing! This is an inherent
property of Switch, no matter what state the system is in. The strength of this
approach is that similarly concise statements can be made about far more
complex interfaces with many states. We look at some more interesting ex-
amples below.

Given a MAUI interface model S, , s0,00 , , , we formally define its
event algebra with a bijection :{1… S } S mapping states to elementS
indices; generates a representation function that maps states and events
to the vectors and matrices that denote them. For state s S define theS state
vector s = [[s[[]] by

si = otherwise
siif

0
)(1 ff

For event E define the event matrix E =E [[E]] by

EijEE =
otherwise

jiif
0

))(,),((1 ,(ff (

The algebra of these vectors and matrices, equipped with multiplication
and an initial state vector [[s[[0]], provides another model of the UI, based on
the original FSM. For brevity in this paper, we write the event E to denote
the matrix E =E [[E]] ; in general capital letters A, B,… denote matrices that
may or may not be events or products of events.

4. USING MAUI

MAUI’s own interface (Fig. 3) is a conventional GUI design, with win-
dows representing different aspects of a system’s functionality: Design,
Simulation, Statistics and Analysis (described in Section 5). There are also
menus for basic functions such as opening and saving files.

MAUI: An Interface Design Tool based on Matrix Algebra 87

Figure 3. MAUI being used to analyse the design of the Sanyo CDP-195 from Fig. 1.

The Design window displays the current interface design and allows the
user to edit it. The window is split into a Components panel and a Relation-
ships panel. The Components panel can be set to display a list of either
states, state classes, events or signs. Selecting a component from this list re-
sults in the Relationships panel displaying a list of related components. The
type of related components displayed can be set by the user. For example,
selecting a state from the Components panel causes its state transitions to be
displayed in the Relationships panel. The user can also choose to view the
classes the state belongs to, or the signs associated with it. The Components
lists may have items added, deleted or renamed, and the Relationships panel
may be used to edit transitions, class membership, etc.

The Simulation window shows an interactive simulator, ideal for basic
tests. The Simulation window does not aspire to be photorealistic, which is
currently handled externally by SVG and other mechanisms. The Statistics
window shows statistics that are useful for comparing the complexity of dif-
ferent designs. For example, minimum, maximum and average path length
between two states [14]. Another example is the overshoot recovery cost. A
common user error is an overshoot caused by doing an event, say E, once
too often. MAUI can calculate the overshoot recovery cost as the minimum
number of events that correct an overshoot: it determines a product of events
R such that E E R = E. The Analysis window allows the user to explore the
interface design’s event algebra, as discussed in Section 3. The following
section describes how this works in MAUI, and its utility in UI design.

88 Gow and Thimbleby

5. USER INTERFACE ANALYSIS IN MAUI

Event algebras in themselves are simply a restatement of an FSM with
the transition function ‘broken up’ into individual events. This makes them
well-suited for making statements about how events interact with each other,
and hence for usability analysis. Crucially, matrices allow theorems to be
checked efficiently by elementary numerical calculation.

Of course, reflecting on the usability of an interface design is an ex-
tremely context-dependent process. A formal approach does not relieve the
designer of the need to think about the implications of their design, and de-
cide which formal properties are relevant to the user’s experience. What
event algebras provide is a well-defined language to talk about UIs con-
cisely.

MAUI allows the designer to specify a set of event algebra properties
that they wish their design to conform to. As the design evolves, the system
provides feedback on which parts of the specification are currently satisfied.

Consider an interface button A such that A A = A, an idempotence that
tells us that if A needs pressing, it only ever need to be pressed once. The
button would avoid the possibility of an overshoot error (pressing once too
often). This would be suitable for the specification of a Play or Stop button.

Another example is undo. Allowing the user to undo their actions is a
common usability requirement. We can express the requirement that user ac-
tions B … C act as an undo for action A by: A B … C = I. The designer mayII
want each event to be easily undone, and so have a short undo sequence
(ideally one action) for each event A. Some events are inherently irreversi-
ble, and so have no B … C that yields the identity. This can be determined
by straightforward calculation (to show the matrix is singular); the designer
can specify in MAUI that an event must be reversible, or tat is must be irre-
versible. Further, some events although in principle invertible, are merely ir-
reversible for the user, as there is no sequence of events whose correspond-
ing matrix product is the inverse of the event.

Another kind of usability issue the designer may be interested in is per-
missiveness [15]: allowing many different sequences of actions to achieve
any given task, ones that commute or distribute, etc:

A B = B A, A B C = A B A C, A B = C D E

A related usability concept is that efficient shortcuts should be available
for expert users: A B … C D = M – where, in turn,M M can be factored as aM
product of user events, but its total cost (to the user) is less. So far we have
shown how universal statements about interface models can be made in
MAUI. In some cases a property will only be of interest for a certain subset
of states. This can be done by restricting properties to particular state classes.
For example, we can claim for a class, ‘For C: A = B’ if for all s (i) C, the

MAUI: An Interface Design Tool based on Matrix Algebra 89

ith row of A and B are equal. Another use for state classes is dealing with
predictable effects of actions. We can state that event A always puts an inter-
face into one of the states in class C if we can show that for every non-zeroC
jth column of A the state s (j) is not in C.

The designer manages the specification through MAUI’s Analysis win-
dow. This presents a list of the currently specified properties, with options to
add, delete and edit them. MAUI distinguishes between three basic types of
property: equality of two event/state expressions; the reversibility of an indi-
vidual event; and predictability of an event. These are displayed in the prop-
erty list as ‘A = B’, ‘E is reversible’ and ‘E A results in C’. Choosing to create
or edit a property brings up an editing panel that allows these properties to
be composed from the existing events, states and state classes in a straight-
forward way. Predefined events and states, like the identity and so on, are
also provided. More complicated properties can be built up in the editing
panel by either negating properties or restricting properties to a particular
state class.

The Analysis window monitors how the current interface design con-
forms to the designer’s specification. Unsatisfied properties are highlighted,
and annotated with a percentage of how true they are. For an equality theo-
rem the percentage of states for which it holds is used, by calculating the
percentage of equal matrix rows. Other measures could be used. The de-
signer can also request detailed information about why a property is not true
in the form of counter-example states, and can ‘lock’ any true property, so
that MAUI forbids changes to the UI that make it false.

One feature that makes MAUI stand out as a design tool is its ability to
suggest to the designer properties of the interface model. At the designer’s
request the system can automatically generate true theorems not already in
the specification, as well as ‘near-theorems’ – non-theorems of the equality
type that are true for a high percentage (e.g., > 95%) of states. The value of
near-theorems is that they may represent properties which the designer could
choose to make universal, for a more clear and consistent design. The auto-
matic suggestion mechanism currently works by enumerating all identities
up to a certain complexity, with some redundant theorems being pruned be-
cause they can be derived from simpler theorems. In order to manage the
amount of suggestions generated by MAUI, the designer can vary both the
theorem complexity level and the percentage threshold for near-theorems.

Ivory and Hearst [8] point out the current lack of automated support for
critiquing UIs, that is “methods that not only point out difficulties but pro-
pose improvements.” Following their terminology, MAUI’s ability to sug-
gest properties that are or should be true is a simple form of support for cri-d
tiquing analytical models. No other technique in their survey provides this
kind of support.

90 Gow and Thimbleby

6. EXAMPLES

The MAUI suggestion mechanism was used to analyse the design of a
portable CD player, the Sanyo CDP-195. The 29 state model captured the
behaviour of four events: Play, Stop, P-Mode and Wait (for 6 seconds). The P-

 button selects one of seven play modes (Normal, Random, Intros,…).
The suggestion mechanism generated the following 97% near-theorem: P-
Mode7 = I. Reflecting on why this is almost universally true, we found thatII
the P-Mode button cycled through the seven play modes and returned to the
original state, irrespective of whether the player was at rest, playing or
paused – except for in one state. In this state, the display gave the CD infor-
mation, but P-Mode7 took the user to an equivalent state with no display ex-
cept ‘--’. Merging these two states would have no effect on the functional-
ity of the interface, but would make P-Mode7 = I true and, we suggest, theI
device more understandable to the user. MAUI’s suggestion for a design
property thus leads to a simpler and more consistent interface design.

As a second example, the Nokia 5510 mobile phone menu system [16]
can be specified by 5 event matrices, over 188 states. We can automatically
(and quickly) find theorems including: Up Cancel = Cancel, Down Cancel =
Cancel, Cancel4 = Cancel5, Up Down = I.II

DESIGN INTEGRATION VIA XML

MAUI can store UI designs in an XML format. This is ideal for integrat-
ing the formal analysis done in MAUI with other stages of the design cycle:
prototyping, documentation, implementation, alternative analysis tools etc.
For proof-of-concept, so far we have written XSLT stylesheets to convert
designs to:
1. Graphviz. Visualisations of interface state graphs were produced by

converting XML designs into AT&T’s Graphviz format [6].
2. HTML+Javascript. HTML simulations are a simple, portable way to

share designs with other people over the web.
3. SVG+Javascript. Hand-coded SVG [5] was added to the MAUI-

generated XML and automatically transformed into SVG+Javascript, for
a more sophisticated graphical simulation. We intend to adapt an existing
SVG editor to integrate a graphical design editor with MAUI, to avoid
the need to write the SVG graphical elements by hand, as at present.

4. Mathematica. In the hands of an expert user, Mathematica could do lar-
ger and far more complex analyses than are done in MAUI, although it is
far less accessible than our system, both in terms of ease of use and price
(MAUI is free).
Reusing the design data in each stage means there is no need to reimple-

MAUI: An Interface Design Tool based on Matrix Algebra 91

ment the design several times, with the possibility of errors occurring at each
stage. Fig. 4 shows fragments of XML describing the Sanyo CDP-195 men-
tioned in Section 5. The XML was generated by MAUI, except for the hand-
coded form element which contains the graphical design. It was automati-
cally transformed to the graphical simulation shown in Fig. 1.
<fui>
 <name>Sanyo CDP-195</name>
 <event id="play"/>
 <event id="mode"/>
…

 <form width="600" height="250">
…

 <signs>
 <text id="track" ... x="260" y="195">01</text>
 <text id="time" ... x="320" y="195">0:24</text>

...
 </signs>
 </form>
 <function>
 <initial ref="StandBy"/>
 <state id="StandBy">
 <change event="play" to="PlayNorm" />
 </state>
 <stateclass id="PlayState">
 <change event="stop" to="NoAction" />
 </stateclass>
 <state id="PlayNorm" class="PlayState">
 <change event="play" to="PauseNorm" />
 <change event="mode" to="PlayRepeat" />
 <sign ref="track"/> <sign ref="time"/>
 </state>

...
 </function>
</fui>

Figure 4. XML description of the Sanyo CDP-195 portable CD player generated by MAUI,
except for the content of the form element, which is hand-coded SVG.

8. FURTHER WORK

In developing MAUI our highest priority is to apply it to more real-world
case studies. We have argued for the generality of MAUI’s design method-
ology, and given some examples. However, further work with a wider range
of examples is needed to establish the scope of the method, both in terms of
types of system and types of usability analysis. MAUI is a research tool, but
a separate question is how accessible we could make our formal methodol-
ogy to designers or HCI researchers. The real question here is ‘which ones?’

92 Gow and Thimbleby

MAUI’s approach to formal analysis is an attempt to be simple enough for
more technically-minded designers to grasp and to still be useful. Any fur-
ther development will need to consider more about the abilities and require-
ments of designers and/or HCI researchers. Sometimes a user will follow a
detour to achieve some straightforward goal, as in AB … CD = AD, etc. An
interesting future development might be to make some of MAUI’s analyses
available to end users, not just designers. “Would you like to know a better
way to do what you have just done?” In Hyperdoc [14], the end user could
ask the system to find event sequences that set signs to particular values.
There are many techniques for compressing matrices. In MAUI, an interest-
ing possibility to explore would be to compress matrices and hence help a
designer determine tighter class definitions and nearly (or completely) re-
dundant transitions, as well as transitions that if changed might reduce the
model. MAUI’s statistics could be extended in many ways, such as incorpo-
rating expectations based on Markov models [17]. MAUI could constrain
design changes to maintain statistics, as it currently does for theorems.

9. CONCLUSION

We have described MAUI, a design tool in which formal models of UIs
can be built and analysed. Integration with other design processes, especially
graphical prototyping, is achieved using XML. Design specifications are ex-
pressed and easily verified using event algebras, with the novel feature that
the system can suggest to the designer properties that are true or nearly true.

Our approach can be related to a great deal of previous work on model-
ling UIs with finite state machines and related formalisms. For instance,
VEG [2] is a recent example based on BNF grammars. MAUI’s algebraic
style of specification, based on the global properties of events, is a key dif-
ference with such methods. Also, more sophisticated interface models are
typically employed in order to ease the specification process. This is a less
important difference, as such techniques could be adopted by MAUI.

Many systems, like LTSA [10] or the Play-Engine [7], aim for compre-
hensiveness, and thus tend to lose sight of clarity in usability and effective
use by typical mathematically naïve designers. Usability itself is a very
complex field, and we feel that the interaction between usability research
and various schemes for combining rapid prototyping and modelling are not
best helped by the usual goals of universality. We imagine that as a body of
design and usability related theorems is developed (e.g., that many pairs of
actions, such as Up and Down, should be inverses), these will be embedded
into MAUI, thus making it a convenient tool for designers and researchers
not only to build, simulate and generate prototype interactive systems, but to

MAUI: An Interface Design Tool based on Matrix Algebra 93

check a wide range of their properties.

ACKNOWLEDGEMENTS

Harold Thimbleby is a Royal Society Wolfson Research Merit Award
Holder. Jeremy Gow is funded on the award. We are grateful to Paul Cairns
for constructive comments.

REFERENCES

[1] Berry, G., The foundations of Esterel, in G. Plotkin, C. Stirling, M. Tofte (eds.), Proof,
Language and Interaction: Essays in Honour of Robin Milner, The MIT Press, Cam-
bridge, 1998.

[2] Berstel, J., Reghizzi, S.C., Roussel, G., and Pietro, P.S., A Scalable Formal Method for
Design and Automatic Checking of User Interfaces, in Proc. of the 23rd Internationald

Conference on Software Engineering ICSE’01 (Toronto, 12-19 May 2001), IEEE Com-
puter Society Press, Los Alamitos, 2001, pp. 453-462.

[3] Dix, A., Finlay, J., Abowd, G., and Beale, R., Human Computer Interaction, Prentice
Hall, Englewood Cliffs, 1998.

[4] Drechsler, R., Binary Decision Diagrams: Theory and Implementation, Kluwer Aca-
demics Publishers, Dordrecht, 1998.

[5] Ferraiolo, J., Jackson, D., and Jun, F., Scalable Vector Graphics (SVG) 1.1 Specifica-
tion, Recommendation, W3C, 2003, accessible at http://www.w3.org/TR/SVG11.

[6] Gansner, E. and North, S., An Open Graph Visualization System and its Applications to
Software Engineering, Software Practice & Experience, Vol. 30, No. 11, 2000, pp.
1203-1233.

[7] Harell, D. and Marelly, R., Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine, Springer Verlag, Berlin, 2003.

[8] Ivory, M.Y. and Hearst, M.A., The State of the Art in Automating Usability Evaluation
of User Interfaces, ACM Computing Surveys, Vol. 33, No. 4, 2001, pp. 470-516.

[9] Jacob, R.J.K, Deligiannidis, L., and Morrison, S., A Software Model and Specification
Language for Non-WIMP User Interfaces, ACM Transactions on Computer-Human In-
teraction, Vol. 6, No. 1, March 1999, pp. 1-46.

[10] Magee, J., Behavioral Analysis of Software Architectures Using LTSA, in Proc. of 21st

International Conference on Software Engineering ICSE’99 (Los Angeles, 16-22 May
1999), ACM Press, New York, 1999, pp. 634-637.

[11] Newman, W.M., A System for Interactive Graphical Programming, in Proceedings of
the AFIPS 1968 Spring Joint Computer Conference (Atlantic City, 30 April - 2 May
1968), Vol. 32, American Federation of Information Processing Societies, Thomson
Book Company, Washington, 1968, pp. 47-54.

[12] Palanque, P. and Paternò, F., Formal Methods in Human-Computer Interaction,
Springer-Verlag, Berlin, 1997.

[13] Parnas, D.L., On the Use of Transition Diagrams in the Design of a User Interface For
an Interactive Computer System, in Proc. of the 24th ACM National Conference (26-28
August 1969), ACM Press, New York, 1969, pp. 379-385.

[14] Thimbleby, H., Combining Systems and Manuals, in J.L. Alty, D. Diaper, S.P. Guest

94 Gow and Thimbleby

(eds.), People and Computers VIII, Proceedings of the BCS-HCI Conference on Hu-
man-Computer Interaction HCI’93 (Loughborough, 7-10 September 1993), Cambridge
University Press, Cambridge, 1993, pp. 479-488.

[15] Thimbleby, H., Permissive User Interfaces, International Journal of Human Computer
Studies, Vol. 54, No. 3, 2001, pp. 333-350.

[16] Thimbleby, H., User Interface Design with Matrix Algebra, ACM Transactions on
Computer-Human Interaction, Vol. 11, No. 2, 2004, pp. 181-236.

[17] Thimbleby, H., Cairns, P., and Jones, M., Usability Analysis with Markov Models,
ACM Transactions on Computer-Human Interaction, Vol. 8, No. 2, 2001, pp. 99-132.

[18] Wasserman, A.I., Extending State Transition Diagrams for the Specification of Human
Computer Interaction, IEEE Transactions on Software Engineering, SE-11, No. 8,
1985, pp. 699-713.

