
Chapter 23

GENERATING CONTEXT-SENSITIVE MULTIPLE
DEVICE INTERFACES FROM DESIGN

Tim Clerckx, Kris Luyten, and Karin Coninx
Limburgs Universitair Centrum
Expertise Centre for Digital Media, Universitaire Campus, B-3590 Diepenbeek (Belgium)
E-mail: {tim.clerckx,kris.luyten,karin.coninx}@luc.ac.be – URL: http://www.edm.luc.ac.be
Tel.: +32 11 26 84 11 – Fax: +32 11 26 84 00

Abstract This paper shows a technique that allows adaptive user interfaces, spanning
multiple devices, to be rendered from the task specification at runtime taking
into account the context of use. The designer can specify a task model using
the ConcurTaskTrees Notation and its context-dependent parts, and deploy the
user interface immediately from the specification. By defining a set of context-
rules in the design stage, the appropriate context-dependent parts of the task
specification will be selected before the concrete interfaces will be rendered.
The context will be resolved by the runtime environment and does not require
any manual intervention. This way the same task specification can be de-
ployed for several different contexts of use. Traditionally, a context-sensitive
task specification only took into account a variable single deployment device.
This paper extends this approach as it takes into account task specifications
that can be executed by multiple co-operating devices.

Keywords: ConcurTaskTrees Notation, Context Sensitive, Model-Based User Interface
Design, Multiple Devices, Task Modelling.

1. INTRODUCTION

Recent advances in mobile computing devices and mobile communica-
tion support more complex interaction between different devices. This al-
lows users to migrate from their single “computer on the desk” setup to a
heterogeneous environment where he/she uses several devices to accomplish
his/her tasks. Although the provided hardware and software becomes more
powerful, it makes designing the interface more complex. Different contexts
(device constraints, environment of the mobile user,…) have to be taken into

283

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 283–296.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

284 Clerckx, Luyten, and Coninx

account. The nomadic nature of future applications also demands a way to
design interaction using multiple devices.

Combining our previous work [6,8] with context-sensitive task specifica-
tions [14,15] we realise a supporting framework for the design and creation
of context-sensitive multiple- and multi-device interaction. By multiple-
device interaction we mean the user interface (UI) is distributed over differ-
ent devices. The implementation has been tested as a component of the Dy-
gimes framework [6].

The remainder of this paper is structured as follows: Section 2 discusses
the related work, introducing the state of the art in context-sensitive task
modelling. To illustrate the context and test bed of this work, our framework
Dygimes is introduced in Section 3. This is followed by an overview of the
design process needed to create a context-sensitive UI in Section 4. Three
stages are described: the creation of the task model, the extraction of the dia-
log model and the generated presentation model. This is followed by a case
study to show how things work in practice. Finally, the obtained results and
their applicability are discussed in the conclusion.

2. RELATED WORK

Pribeanu et al. [14] proposed several possible approaches to adapt the
ConcurTaskTrees notation [12] for context-sensitive task modelling. As
pointed out in [14] and [15], the context of use of the application influences
which parts of the task model are executed. A context-sensitive (or depend-
ent) and a context-insensitive (or independent) part of the task model can be
identified and processed accordingly. The context-sensitive part can be re-
lated to the context-insensitive part in multiple ways [14]:

Both parts are specified in one task model: the monolithic approach.
The context-insensitive parts are connected to the context-sensitive parts
with general arcs: graph-oriented approach.
The context-insensitive parts are connected to the context-sensitive parts
with special arcs that can constitute a decision tree: separation approach.
The last approach in particular is interesting: although it allows different

parts for different contexts of use to be integrated in one model, there is a
decision tree that provides a nice separation. We choose to insert decision
nodes in the task specification instead of decision trees. Of course, decision
nodes can have other decision nodes as descendants. The children of a deci-
sion node are possible sub trees where one of them will be chosen in a pre-
processing step. Section 4 explains in detail how a concrete task specifica-
tion can be obtained by pre-processing the decision nodes.

Paternò and Santoro [13] present a method to generate multiple interfaces

Generating Context-sensitive Multiple Device Interfaces from Design 285

for different contexts of use starting from one task model. The TERESA tool
for supporting this approach is discussed in [13]. In contrast with their ap-
proach, we do not focus on the design aspect as much as they do, but empha-
size the runtime framework necessary for accomplishing this. To our knowl-
edge, the TERESA tool supports the creation of one task model for multiple
devices, but currently does not take into account multiple devices interacting
at once or the interface migrating from one device to another.

Calvary et al. [3,4] describe a process where a Platform and Environ-
mental Model are used to represent context information. The process allowsl
creating UIs for two running systems in different contexts. Although at sev-
eral stages in the UI design process (Task Specification, Abstract UI, Con-
crete UI, Runtime Environment) a translation can take place between the two
systems, the designer will have to change the task specification manually in
the process if the context has an influence on the tasks that can be per-
formed.

Nichols et al. [11] defined a specification language and communication
protocol to automatically generate UIs for remotely controlled appliances.
The language describes the functionalities of the target appliance and con-
tains enough information to render the UI. In this case, the context is secured
by the target appliance represented by its definition.

Ali and Pérez-Quiñones [2] also use a task model, together with UIML
[1], to generate UIs for multiple platforms. The task model has to increase
the abstraction level of the UIML specification, which is necessary to guide
the UI onto different devices.

3. DYGIMES

Most of the presented work is integrated in our framework Dygimes [6].
Besides supporting the ConcurTaskTree task specification, it uses high level
user interface Descriptions (specified in XML) to define the set of abstract
interactors necessary for completing the tasks specified in the task specifica-
tion. One of the aims of this framework is to support design through selected
models from Model-Based User Interface Design, and add support for trans-
forming the design into multi/multiple-device UIs at runtime.

The Dygimes framework supports roughly the following steps for creat-
ing UIs (a more detailed description can be found in [6]):
1. Create a context-sensitive task specification with the ConcurTaskTrees

notation.
2. Create UI building blocks for the separate tasks.
3. Relate the UI building blocks with the tasks in the task specification.
4. Define the layout using constraints.
5. Define custom properties for the UI appearance (e.g., preferred colours,

286 Clerckx, Luyten, and Coninx

concrete interactors,…).
6. Generate a prototype and evaluate it (the dialog model and presentation

model are calculated automatically).
7. Change the task specification and customisations until satisfied.

On the one hand it supports a clear separation between the creation of the
UIs and the implementation of the application logic that underlies the UI. On
the other hand there is built-in support to connect the UIs with the applica-
tion logic without manual intervention [18]. The next section will describe
how the design process for the context-sensitive UI and the generation of the
UI works.

4. DESIGN PROCESS

The proposed approach extends the process for automatically generating
prototype UIs from annotated task models introduced in [8]. Fig. 1 shows the
extended process where a context-sensitive task model is considered to gen-
erate UIs depending on the context at the time the UI is rendered.

Figure 1. Context-sensitive user interface Design Process.

Generating Context-sensitive Multiple Device Interfaces from Design 287

First, a context-sensitive task model is constructed and high-level UI
building blocks are attached to the leaves as described in the previous sec-
tion. Next, the context is captured and the proper context-specific Concur-
TaskTree will be generated automatically. Subsequently the Enabled Task
Sets (ETSs) are calculated. These are sets of tasks that can be enabled at the
same time [12] and therefore contain the proper information to be rendered
together in the resulting UI.

After this step, the appropriate dialog model is extracted automatically
from the task model using the temporal operators [8]. Each dialog still is re-
lated to the set of tasks it presents, thus also to the appropriate UI building
blocks it can use to present itself. The context-sensitive information in the
task specification is taken care of in a “pre-processing” step, which we will
explain now into further detail.

4.1 The Context-Sensitive Task Model

As pointed out in section 2, there are three proposed approaches to model
context-sensitive task models. Instead of collecting decision trees, we pro-
pose another way where the context-insensitive part points directly to con-
text-sensitive sub-trees through decision nodes. These nodes are marked by
the D in the example of Fig. 4. Although this resembles the graph-oriented
approach, the context-sensitive sub-trees are the direct children of the deci-
sion node. When the context-sensitive parts are resolved, the decision node
will be removed and replaced by the root of the selected sub-trees of that de-
cision node.

The decision nodes are executed in the first stage of the UI generation
process. This results in a normal ConcurTaskTree specification, but also one
that is suitable according to the rules defined in the decision nodes. The
normal ConcurTaskTree specification enables the provided algorithm to ex-
tract the dialog model automatically adapted to the current context.

In order to link the context detection and the task model, some informa-
tion about which sub-tree has to be performed in which case is added to the
decision node. Fig. 1 shows a simple scheme (as a Document Type Defini-
tion) defining how rules can be specified for selecting a particular subtree
according to a given context. Conditions can be defined recursively and nu-
merical and logical operators are provided (=, <, >, ,) to cope with sev-
eral context parameters. In Fig. 2, an example is presented where the current
context will be decided on the basis of comparing X and Y coordinates pro-
vided by a GPS module. The XML specification provides a way to exchange
context information. Tool support is required encapsulate the use of XML
from the designer.

Note the approaches described in [14,15] focus on the design of the inter-

288 Clerckx, Luyten, and Coninx

face at the task level. This work shows how the task model is used at runtime
to generate context-dependent UIs. This will be done by providing a frame-
work (Dygimes, Section 3) that can interpret a task specification and gener-
ate a presentation for the given task specification. The framework resolves
the context dependencies beforehand, resulting in a presentation that is
adapted to the context of use. The next section explains how we proceed
from the task specification to the presentation of the UI by using a dialog
model.
<?xml version="1.0"?>
<!ELEMENT decision ((cond,true,false) |(value,case+))>
<!ELEMENT cond (value,value)>
<!ATTLIST cond type CDATA IMPLIED>
<!ELEMENT value (cond | PCDATA)>
<!ATTLIST value type CDATA IMPLIED>
<!ELEMENT true (PCDATA)>
<!ATTLIST true platform IMPLIED>
<!ELEMENT false (PCDATA)>
<!ATTLIST false platform CDATA IMPLIED>
<!ELEMENT case (value|cond)> <!ATTLIST case platform CDATA IMPLIED>

Figure 2. Decision DTD.

<decision>
 <cond type="and">
 <value type="cond">
 <cond type="lt">
 <value type="context"> GPS:Xcoord </value> <value type="int"> 1 </value>
 </cond>
 </value>
 <value type="gt">
 <cond type="equals">
 <value type="context"> GPS:Ycoord </value> <value type="int"> 54 </value>
 </cond>
 </value>
 </cond>
 <true platform="context">left</true> <false platform="context">right</false>
</decision>

Figure 3. Decision XML example

4.2 The Dialog Model

Before applying further processing of the task model, it has to be trans-
formed into a concrete one (resolve all the decision nodes) in order to extract
a dialog model. The context-specific task model is a normal ConcurTask-
Tree, suited for the current context of use and can be processed as any other
ConcurTaskTree. The transformation can be done by replacing the decision
node with the appropriate subtree representing a subtask suitable for the cur-
rent context of use.

In [8] we proved it is possible to generate simple UIs directly from the
task specification. This was done through the automatic generation of a dia-
log specification from the task specification. In our approach, the dialog

Generating Context-sensitive Multiple Device Interfaces from Design 289

model is expressed as a State Transition Network (STN) and each state in
the STN equals an ETS. In the UI, the information about the tasks in an ETS
have to appear together in the resulting UI. The transitions between dialogs
are represented in the STN by transitions between states, marked with the
tasks that can trigger the change. The transitions between the different ETSsr
(“dialogs”) are identified by the different temporal operators connecting se-
lected tasks located in the different ETSs. An extensive description of the al-
gorithm can be found in [8]. An open source tool is provided that imple-
ments this algorithm and calculates a dialog model from the task specifica-
tion at: http://www.edm.luc.ac.be/software/TaskLib/.

4.3 The Presentation Model

The last step has to render the dialog model on the available output de-
vices. This is the presentation of (the different parts of) the concrete UI. The
nodes in the dialog model are ETSs. One such node represents all UI build-
ing blocks that have to be presented to complete the current ETS (Section 3
showed that UI building blocks were attached to individual tasks). The tasks
in an ETS are also marked with their target device, so two different situa-
tions are possible:
1. All tasks in an ETS are targeted to the same device
2. Not all tasks in an ETS are targeted to the same device

Situation (1) allows the UI to be rendered completely on one device. (2)
demands that the UI to be distributed over different devices. For this purpose d
the device-independence of the abstract UI description has to be extended
towards the use of multiple devices. On the level of the presentation model,
the Abstract UI descriptions of a dialog are rendered as concrete dialogs, this
can be accomplished by using two important techniques:

Customised mappings from Abstract Interaction Objects (AIOs) to
Concrete Interaction Objects (CIOs) [17]. The rendering engine for
each device can choose for itself the concrete widget selected to present
an AIO. This can be customised afterwards by the designer [16].
Positioning of the widgets is done through constraints which are de-
fined in a language-independent manner. The renderer can use the in-
formation about the hierarchical widget containment to split up the UI
in different parts. Details of this approach can be found in [9].

Customised mapping rules and device-independent layout management
are two important techniques for realising device-independent distributed
UIs. It is possible several concurrent tasks located in the same ETS have to
be rendered on different devices. Since the presentation building blocks are
attached to the tasks as XML documents, the presentation for an individual
device can be calculated for each device separately. Notice when concurrent

290 Clerckx, Luyten, and Coninx

tasks are rendered on separate devices, some kind of middleware will be
necessary to support data-exchange between both tasks in a heterogeneous
environment. In contrast with e.g. WebSplitter [7], the focus is not on distri-
bution of content, but distributed support of task execution.

5. A CASE STUDY: MANAGE STOCK

Fig. 4 shows the manage stock example. The following situation occurs:k
the storekeeper of a warehouse keeps track of the stock using two devices.
First a desktop PC is used to manage the purchase and sales of articles. Sec-
ond an employee checks and updates the stock amounts using his PDA to
note the changes immediately. When the amount of a certain article is up-
dated by the desktop PC, for example when new goods are purchased, the
employee receives a message on his PDA. When he/she stands in the vicin-
ity of a printer supporting Radio Frequency Identifier (RFID) tags, this can
be detected and the information of the product can be viewed and printed.

Figure 4. Context-Sensitive Task Model of the Manage Stock example.k

As a result, the example contains two types of context denoted by the de-
cision tasks: platform (Update and Request Overview) and location (Over-
view PDA). To link the context handler to the appropriate decision node, de-
cision rules need to be attached to these nodes. Fig. 6 shows an example for
the Overview PDA task. In this case there will be a call for the canPrint
function in the RFID Reader.

Generating Context-sensitive Multiple Device Interfaces from Design 291

Figure 5. Overview PDA sub-tree.

<decision>
 <cond type="equals">
 <value type="context"> RFID:Reader:canPrint </value>
 <value type="boolean"> true </value>
 </cond>
 <true platform="context"> Show Properties (No Printing)</true>
 <false platform="context"> Properties (Printing)</false>
</decision>

Figure 6. Decision rules for the Overview PDA task.

Figure 7. Update PC sub-tree.

The first step to automatically generate the UI is to convert the context-
sensitive task model into a context-specific task model. This is why the con-
dition in the decision XML has to be evaluated for each decision node and
the decision node is replaced by its sub-tree which matches the current con-
text. In the Overview PDA task example, there will be an evaluation of the
canPrint function. If the return value equalst true the Properties (Printing)
subtree will replace the decision node, else the Show Properties (No Print-
ing) will. Fig. 8 shows the context-specific task model in case of using the
PC to change the stock amounts and the PDA to notify the employee within
the reach of an RFID supporting printer.

The next step uses a custom algorithm (described in [5]) to calculate thet
enabled task sets (ETSs):

292 Clerckx, Luyten, and Coninx

ETS1S = {LogIn} Pall

ETS2S = {SelectPurchase(PpcP), SelectSell(Pcc pcP), ShutDown}cc PpcP
ETS3S = {EnterProduct(PpcP), EnterAmount(Pcc pcP), EnterPrice(Pcc pcP),cc

 ShutDown} PpcP
ETS4SS = {EnterProduct(PpcP), EnterAmount(Pcc pcP), EnterPrice(Pcc pcP),cc

 ShutDown} PpcP
ETS5S = {UpdateAmount(PpcP), ShutDown) cc PpcP
ETS6SS =6 {UpdateAmount(PpcP), ShutDown) cc PpcP
ETS7 =7 {ShowProperties(PpdaP), ShutDown) aa PpdaP
ETS8SS = {SelectPrint(PpdaP), ShutDown) aa PpdaP
ETS9S = {Print(PpdaP), ShutDown) aa PpdaP

PxP indicates on which platform the tasks can be executed. x = all means
the platform does not matter, and the task can be executed both on a PC or
on a PDA. This example only contains tasks restricted to either a PC or a
PDA because no ETS contains tasks marked PpcP and PpdaP . Remark that the
only difference between ETS3S and ETS4SS , and ETS5S and ETS6SS is they are chil-6
dren from another task. Afterwards, the dialog model (Fig. 9) is automati-
cally extracted. Finally the actual UI is rendered by the runtime environ-
ment. Fig. 10 shows the dialog model with the rendered UIs.

Figure 8. Context-specific Task Model.

Generating Context-sensitive Multiple Device Interfaces from Design 293

Figure 9. Dialog Model.
(The accepts state caused by the Shut Down task is omitted to avoid cluttering the picture).

Figure 10. Dialog Model with the concrete dialogs.

6. CONCLUSION AND FUTURE WORK

This paper shows how context information can be integrated in interface
design to generate multi- and multiple-device user interfaces at runtime. The
ConcurTaskTrees formalism is combined with decision nodes and rules to
allow the user interface to adapt to the context while still being consistent

294 Clerckx, Luyten, and Coninx

w.r.t. the design. An important case is where the context can indicate the
change in interaction device while executing a task. Our model allows this
change by providing an appropriate dialog model including the transitions
between dialogs on the same device and transitions between dialogs on dif-d
ferent devices. The presentation model also supports dialogs that are distrib-
uted over several devices. The precondition to make this work is the context
must be frozen from the start until the end of the main task.

Future work involves finding a way to switch the context-concrete task
model on a context change in order to recalculate the dialog and presentation
model. This approach however comes with a lot of complications. First of
all, the new dialog model may not be compatible to the old one and disrupts
the continuity of the user interface. This is because the current state might
not occur in the new dialog model. Also it is dangerous to adjust the user in-
terface every time the context changes. In some cases the user can become
confused about a sudden changed user interface.

Finally we believe the presented process is a first practical step towards
involving context in design.

ACKNOWLEDGMENTS

Our research is partly funded by the Flemish government and European
Fund for Regional Development. The SEESCOA (Software Engineering for
Embedded Systems using a Component-Oriented Approach) project IWT
980374 and CoDAMoS (Context-Driven Adaptation of Mobile Services)
project IWT 030320 are directly funded by the IWT (Flemish subsidy or-
ganisation). The authors would like to thank Bert Creemers for his contribu-
tion.

REFERENCES

[1] Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., and Shuster, J.E.,
UIML: An Appliance-Independent XML User Interface Language, in Proceedings of 8th

World-Wide Web Conference WWW’8 (Toronto, 11-14 May 1999), Computer Net-
works, Vol. 31, No. 11-16, 1999, pp. 1695–1708, accessible at http://www8.org/w8-
papers/5b-hypertext-media/uiml/uiml.html

[2] Ali, M.F. and Pérez-Quiñones, M.A., Using Task Models to Generate Multi-Platform
User Interfaces while Ensuring Usability, in Proceedings of ACM Conf. on Human As-
pects in Computing Systems CHI’2002 (Minneapolis, 20-25 April 2002), Extended Ab-
stracts, ACM Press, New York, 2002, pp. 670-671.

[3] Calvary, G., Coutaz, J., and Thevenin, D., Embedding Plasticity in the Development
Process of Interactive Systems, in P.L. Emiliani, C. Stephanidis (eds.), Proceedings of
the 6th ERCIM Workshop ”User Interfaces for All” UI4ALL’00 (Florence, 25-26 Octo-
ber 2000), CNR-IROE, Florence, 2000, accessible at http://ui4all.ics.forth.gr/UI4ALL-

Generating Context-sensitive Multiple Device Interfaces from Design 295

2000/files/Short_papers/Calva ry.pdf
[4] Calvary, G., Coutaz, J., and Thevenin, D., Supporting Context Changes for Plastic User

Interfaces: A Process and a Mechanism, in A. Blanford, J. Vanderdonckt, Ph. Gray
(eds.), Proceedings of Joint AFIHM-BCS HCI Conference on Human-Computer Inter-
action IHM-HCI’2001 (Lille, 10-14 September 2001), Springer-Verlag, London, 2001,
pp. 349-363.

[5] Clerckx, T. and Coninx, K., Integrating Task Models in Automatic User Interface De-
sign. Technical Report TR-LUC-EDM-0302, EDM/LUC, 2003.

[6] Coninx, K., Luyten, K., Vandervelpen, C., Van den Bergh, J., and Creemers, B.,
Dygimes: Dynamically Generating Interfaces for Mobile Computing Devices and
Embedded Systems, in L. Chittaro (ed.), Proc. of 5th International Symposium Human-
Computer Interaction with Mobile Devices and Services Mobile HCI’2003 (Udine, 8-11
September 2003), Lecture Notes in Computer Science, Vol. 2745, Springer-Verlag,
Berlin, 2003, pp. 256-270.

[7] Han, R., Perret, V., and Naghshineh, M., WebSplitter: a Unified XML Framework for
Multi-device Collaborative Web Browsing, in Proceedings of the 8th ACM Conference
on Computer Supported Cooperative Work CSCW’2000 (Philadelphia, 2-6 December
2000), ACM Press, New York, 2000, pp. 221–230.

[8] Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J., Derivation of a Dialog Model
from a Task Model by Activity Chain Extraction, Jorge, J., Nunes, N.J., Falcão e Cunha,
J. (eds.), Proc. of 10th International Conference on Design, Specification, and Verifica-
tion of Interactive Systems DSV-IS’2003 (Madeira, 4-6 June 2003), Lecture Notes in
Computer Science, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 203-217.

[9] Luyten, K., Creemers, B., and Coninx, K., Multi-Device Layout Management for Mo-
bile Computing Devices, Technical Report TR-LUC-EDM-0301, EDM/LUC, 2003.

[10] Mori, G., Paternò, F., and Santoro, C., Tool Support for Designing Nomadic Applica-
tions, in Proceedings of the 8th ACM International Conference on Intelligent User Inter-
faces IUI’2003 (Miami, 12-15 January 2003), ACM Press, New York, 2003, pp. 141–
148.

[11] Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K., Rosenfeld, R., and
Pignol, M., Generating Remote Control Interfaces for Complex Appliances, in Proceed-
ings of the 15th annual ACM Symposium on User Interface Software and Technology
UIST’2002 (Paris, 27-30 October 2002), ACM Press, New York, 2002, pp. 161–170.

[12] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 1999.

[13] Paternò, F. and Santoro, C., One Model, Many Interfaces, in Ch. Kolski, J. Vander-
donckt (eds.), Proceedings of the 4th International Conference on Computer-Aided De-
sign of User Interfaces CADUI’2002 (Valenciennes, 15-17 May 2002), Kluwer Aca-
demics Publishers, Dordrecht, 2002, pp. 143–154.

[14] Pribeanu, C., Limbourg, Q., and Vanderdonckt, J., Task Modelling for Context-Sensitive
User Interfaces, in Ch. Johnson (ed.), Proceedings of 8th International Workshop on De-
sign, Specification, and Verification of Interactive Systems DSV-IS’2001 (Glasgow,
13-15 June 2001), Lecture Notes in Computer Science, Vol. 2220, Springer-Verlag,
Berlin, 2001, pp. 60–76.

[15] Souchon, N., Limbourg, Q., Vanderdonckt, J., Task Modelling in Multiple Contexts of
Use, in P. Forbrig, Q. Limbourg, B. Urban, J. Vanderdonckt (eds.), Proc. of 9th Int.
Workshop on Design, Specification, and Verification of Interactive Systems DSV-
IS’2002 (Rostock, 12-14 June 2002), Lecture Notes in Computer Science, Vol. 2545,
Springer-Verlag, Berlin, 2002, pp. 59-73.

[16] Van den Bergh, J., Luyten, K., and Coninx, K., A Run-time System for Context-Aware
Multi-Device User Interfaces, in Proceedings of 10th International Conference on Hu-
man-Computer Interaction HCI International’2003 (Heraklion, 22-27 June 2003), Vol-
ume 2, Lawrence Erlbaum Associates, Mahwah, 2003, pp. 308-312.

296 Clerckx, Luyten, and Coninx

[17] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection, in Proc. of the ACM Conf. on Human Factors in Comput-
ing Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New York,
1993, pp. 424-429.

[18] Vandervelpen, Ch., Luyten, K., and Coninx, K., Location Transparent User Interaction
for Heterogeneous Environments, in Proceedings of 10th International Conference on
Human-Computer Interaction HCI International’2003 (Heraklion, 22-27 June 2003),
Volume 2, Lawrence Erlbaum Associates, Mahwah, 2003, pp. 313–317.

