
Chapter 22

THE UBIQUITOUS INTERACTOR – DEVICE
INDEPENDENT ACCESS TO MOBILE
SERVICES

Stina Nylander, Markus Bylund, and Annika Waern
Swedish Institute of Computer Science
Box 1263, 16429 Kista (Sweden)
Tel.: +46 70 {3530369, 6615460, 3363916} – Fax: +46 8 751 7230
E-mail: {stina.nylander, markus.bylund, annika.waern}@sics.se – URL: www.sics.se

Abstract The Ubiquitous Interactor (UBI) addresses the problems of design and devel-
opment arising around services that need to be accessed from many different
devices. In UBI, the same service can present different user interfaces on dif-
ferent devices by separating user-service interaction from presentation. The in-
teraction is kept the same for all devices, and different presentation informa-
tion is provided for different devices. This way, tailored user interfaces for
many different devices can be created without multiplying development and
maintenance work. In this paper we describe the system design of UBI, the
system implementation, and two services implemented for the system: a cal-
endar service and a stockbroker service.

Keywords: Device independence, Interaction acts, Mobile services, Multiple user inter-
faces.

1. INTRODUCTION

The Ubiquitous Interactor (UBI) is a system addressing the problems
with design and development that arise when service providers face the vast
range of computing devices available on the consumer market. Today, users
have a wide range of devices at their disposal for accomplishing different
tasks: desktop and laptop computers, wall-sized screens, PDAs and cellular
phones. The range of services is equally wide: information services, shop-
ping and entertainment. This creates a need for service use from different
devices in different situations. Users could for example access their shopping

271

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 271–282.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

272 Nylander, Bylund, and Waern

services from a desktop computer at home and from a cellular phone on the
bus. Unfortunately, this is often not possible since devices and services can-
not be freely combined. Devices have different capabilities for user interac-
tion and presentation, and most services cannot adapt their user interfaces to
these differences. This means that users often have to use different versions
of a service from different providers to access the same functionality, which
causes problems of synchronisation and compatibility.

The main approach to making services accessible from multiple devices
today is versioning. However, with many different versions of services, de-
velopment and maintenance work get very cumbersome, and it is difficult to
keep consistency between different versions. Another popular method is to
use Web user interfaces since most devices run a Web browser. However,
adaptations are still needed, for example translation between mark-up lan-
guages and layout changes for small screens. It is also difficult to take ad-
vantage of device specific features and to control how user interfaces will be
presented to end-users. Thus, we need new and robust methods for develop-
ing services that can adapt to different devices [6]. It is not reasonable to
force users to use different services for different devices to get the same con-
tent [11]. UBI offers a possibility to develop a single device independent
version of a service, and then create device specific user interfaces for it. To
accomplish this, UBI uses interaction acts [8] (Section 4.1) to describe the
user-service interaction in a device independent way. This description is
used by all devices to generate an appropriate user interface. The presenta-
tion of user interfaces can be controlled through customisation forms [8]
(Section 4.2), which contain service and device specific information of how
user interfaces should be presented. This makes it possible to develop ser-
vices once and for all, and tailor their user interfaces to different devices.

2. BACKGROUND

Our interest and need for device independent services are results from
previous work with the next generation electronic services [1,2]. However,
the need for device independent applications is not new. During the seven-
ties and eighties, developers faced large differences in hardware. That time
the problem disappeared when personal computers emerged. The hardware
got standardized to mouse, keyboard and desktop screen, and direct manipu-
lation user interfaces worked similarly in different operating systems [6].

The situation that we face today is different. We are currently experienc-
ing a paradigm shift from application-based personal computing to service-
based ubiquitous computing. In a sense, both applications and services can
be seen as sets of functions and abilities that are packaged as separate units

The Ubiquitous Interactor – Device Independent Access to
Mobile Services

273

[4]. However, while applications are closely tied to individual devices, typi-
cally by a local installation procedure, services are only manifested locally
on devices and made available when needed. The advance of Web based
services during the nineties can be seen as the first step in this development.
Instead of accessing functionality locally on single personal computers, users
got used to access functionality remotely from any Internet connected PC.
This will change though. With the development of the multitude of different
devices that we see today (e.g., cellular phones, PDAs, and wearable com-
puters) combined with growing requirements on mobility and ubiquity, the
Web based approach is no longer enough.

The multitude of device types we see today is not due to competition be-
tween vendors as before, but rather motivated by requirements of specialisa-
tion. Different devices are designed for different purposes and thus their di-
verse appearance. As a result, the solution this time needs to support simple
implementation and maintenance of services without losing the uniqueness
of each type of device. This is what we set out to solve with UBI.

3. RELATED WORK

Much of the inspiration for the Ubiquitous Interactor (UBI) comes from
early attempts to achieve device independence or in other ways simplify de-
velopment work by working on a higher level than device details.

Mike [10] and ITS [13] were among the first systems that made it possi-
ble to specify presentation information separately from the application, and
thus change the presentation without changes in the application. However,
they only handled graphical user interfaces, and they had other important
limitations. Mike could not handle application specific data. In ITS, presen-
tation information was considered as application independent and stored in
style files that could be moved between applications, something that was not
very useful [13]. In UBI, we instead consider presentation as application
specific and tailor it to different devices.

Personal Universal Controllers (PUC) [7] encode the data sent between
application and client in a device independent format using a set of state
variables combined with dependency information, and leaves the generation
of user interfaces to the client. Unlike UBI, PUC does not provide any
means for service providers to control the presentation of the user interfaces.
It is completely up to the client how a service will be presented to end-users.

Unified User Interfaces (UUI) [12] is a design and engineering frame-
work that aims to provide user interfaces tailored to different user groups
and situations of use in terms of users' physical capabilities, preferences and

274 Nylander, Bylund, and Waern

usage context. Since UUI is a project with very large scope, making all user
interfaces accessible to all users, they take into account a large number of
factors (e.g., contextual and environmental) that make the system more
complex than we believe is necessary to solve the problems UBI is address-
ing.

Service
rpreter /

rrUI Generatorr

rpreter /
rUI Generatorr

Interpreter /
rUI Generatorr User InterfaceUser Interface

User InterfaceUser Interface

User InterfaceUser Interface

Figure 1. Services offer their interaction expressed in interaction acts, and an interpreter gen-
erates a UI based on the interpretation. Different interpreters generate different UIs.

4. DESIGN
In the Ubiquitous Interactor (UBI), we have chosen the interaction be-

tween users and services as our level of abstraction in order to obtain units of
description that are independent of device type, service type, and user inter-
face type. Interaction is defined as actions that services present to users, as
well as performed user actions, described in a modality independent way.
Some examples of interaction according to this definition would be: making
a choice from a set of alternatives, presenting information to the user, or
modify existing information. Pressing a button, or speaking a command
would not be examples of interaction, since they are modality specific ac-t
tions. By describing the user-service interaction this way, the interaction can
be kept the same regardless of device used to access a service. It is also pos-
sible to create services for an open set of devices.

The interaction is expressed in interaction acts that are exchanged be-
tween services and devices. User interfaces are generated based on interac-
tion acts and additional presentation information (Fig. 1). In the standard
case, interaction acts are interpreted and user interfaces generated on the de-
vice side, but for thin clients the interpretation and generation can be made
on a server. Although we are aiming for general solutions, which cover in-
teraction with many sorts of applications via a large range of interface types,
we realise that it might be difficult and in some cases not even desirable to
develop services using interaction acts. Some services might be too complex,
while others might be too device dependent (like a high-end multi-player
game) to benefit from this approach. For the time being, we are therefore
limiting our vision to a few interface types, (mainly windows-based GUIs,
command-line interfaces, and speech interfaces), and more simple services
(e.g., information services). However, these types of services and UIs cover
most of what is available today and will be available in the near future.

The Ubiquitous Interactor – Device Independent Access to
Mobile Services

275

4.1 Interaction Acts

Interaction acts are abstract units of user-service interaction that contain
no information about modality or presentation. This means that they are in-
dependent of devices, services and interaction modality. Throughout this
work, we assume that most kinds of interaction can be expressed using a
fairly limited set of interaction acts. User-service interaction for a wide range
of services can be described by combining single interaction acts and groups
of interaction acts.

The set of interaction acts have been established through analysis of ex-
isting services and applications [8]. We examined functionality and user-
service interaction in services on the Web, such as ticket reservation services
for trains and movie theatres, telephone services such as bank services and
train time tables, a desktop home care planning tool, and computer games.
Live face-to-face instructions were also studied informally. The current set
have eight members supported in UBI: input, output, select, modify,
create, destroy, start and stop. Input and output are defined from
the systems point of view. Select operates on a predefined set of alterna-
tives. Create, destroy and modify handles the life cycle of service spe-
cific data, while start and stop handles the interaction session. All inter-
action acts except output returns user actions to services. Output only pre-
sents information that users cannot act upon.

During user-service interaction, the system needs more information about
the interaction acts than its type. Interaction acts are uniquely identifiable, so
that user actions can be associated with them and interpreted by services. It
is also possible to define for how long a user interface component based on
an interaction act should be present in the user interface before being re-
moved. Otherwise only static user interfaces can be created. It is possible to
create modal user interface components based on interaction acts, e.g. com-
ponents that lock the user-service interaction until certain user actions are
performed. This way, user actions can be sequenced when needed. All inter-
action acts also have a way to hold information, as a default base for the ren-
dering of interaction acts. Finally, meta-data can be attached to interaction
acts. Metadata can for example contain domain information, or restrictions
on user input that are important to the service.

In more complex user-service interaction, there is a need to group several
interaction acts together, because of their related function, or the fact that
they need to be presented together. An example could be the play, rewind,
forward and stop functions of a CD player. The structure obtained by the
grouping can be used as input when generating the user interfaces. These
groups allow nesting.

276 Nylander, Bylund, and Waern

4.2 Controlling the Presentation

To give service providers a way to specify how their services will be pre-
sented to end-users, services must be able to provide detailed presentation
information. Control of presentation has proven to be an important feature of
methods for developing services [3,6], since it is used for e.g., branding.

In UBI, presentation information is specified separately from user-service
interaction. This allows for changes and updates in the presentation informa-
tion without changing the service. The main forms of presentation informa-
tion are directives and resources. Directives link interaction acts to for ex-
ample widgets or templates of user interface components. Resources could
be pictures or sounds that are used in the rendering of an interaction act.

It is optional to provide presentation information in UBI. If no presenta-
tion information or only partial information is provided, user interfaces are
generated with default settings. However, by providing detailed information
service providers can fully control how their services will be presented.

5. IMPLEMENTATION

The Ubiquitous Interactor (UBI) has three main parts: the Interaction
Specification Language (ISL), customisation forms, and interaction engines.
ISL is used to encode the interaction acts sent between services and user in-
terfaces, customisation forms contain presentation information, and interac-
tion engines generate user interfaces based on interaction acts and informa-
tion from customisation forms. The different parts are defined at different
levels of specificity, where interaction acts are device and service independ-
ent, interaction engines are device dependent, and customisation forms are
service and device dependent.

5.1 Interaction Specification Language

Interaction acts are encoded using the Interaction Specification Language
(ISL), which is XML compliant. Each interaction act has a unique id that is
used to map performed user interactions to it. It also has a life cycle value
that specifies when components based on it are available in the user inter-
face. The life cycle can be temporary, confirmed, or persistent. Interface
components based on temporary interaction acts are available in the user in-
terface for a specified time and then removed by UBI, confirmed compo-
nents are available until the user has performed a given action, and persistent
components are available in the user interface during the whole user-service
interaction. The default value is persistent. All interaction acts can be given a
symbolic name, and belong to a named presentation group in a customisation

The Ubiquitous Interactor – Device Independent Access to
Mobile Services

277

form. This will be discussed further in Section 5.2.
Interaction acts also have a modality value that specifies if components

based on them will lock other components in the user interface. The value of
the modality can be true or false. If the modality value is true, the component
is locking other components in the user interface until the user performs a
given action. The default value is false. All interaction acts contain a string
value used to hold default information. It is also possible to attach meta data
to all interaction acts. Listing 1 shows the ISL of a select interaction act.

<select>
 <id>235690</id>
 <life>persistent</life>
 <modal>false</modal>
 <string>browseList</string>
 <alternative>
 <id>5463</id>

 <name>alt</name>
 <string>Previous</string>
 <retVal>0</retVal>
 </alternative>

 <alternative>
 <id>5893</id>

 <name>alt</name>
 <string>Next</string>
 <retVal>1</retVal>

 </alternative>
</select>

Listing 1: ISL encoding of a select interaction act with id, life cycle, modality,
and default content information.

Interaction acts can be grouped using a designated tag isl, and groups
can be nested to provide more complex expressions of interaction. These
groups contain the same type of information assigned to single interaction
acts. The ISL code sent from services to interaction engines contains all in-
formation about the interaction acts: id, name, group, life cycle, modality,
default information and metadata. A large part of this information is only
useful for the interaction engine during generation of user interfaces. Thus,
when users perform actions, only the relevant parts of interaction acts are
sent back to the service. Two different DTDs have been created for this, one
for encoding interaction acts sent from services to interaction engines, and
one for encoding interaction acts sent from interaction engines to services.
The DTDs are available at http://www.sics.se/~stny/UIB/DTDs/dtd.html.

5.2 Customisation Forms

Customisation forms contain device and service specific information
about how the user interface of a given service should be presented. Infor-
mation can be specified on three different levels: group level, type level or

278 Nylander, Bylund, and Waern

name level. Information on group level affects all interaction acts of a group,
information at type level provides information for all interaction acts of the
given type; and information on name level provides information about all in-
teraction acts with the given symbolic name. The levels can also be com-
bined, for example creating specifications for interaction acts in a given
group of a given type, or in a given group with a given name.

The Interaction Specification Language contains attributes for creating
the different mappings. Each interaction act or group of interaction acts can
be given an optional symbolic name that is used in mappings where the
name level is involved. This means that each interaction act with a certain
name is presented using the information mapped to the name. Interaction
acts or groups of interaction acts can also belong to a named group in a cus-
tomisation form. All interaction acts that belong to a group are presented us-
ing the information associated with the group (and possibly with additional
information associated with their name or type).

<output>
 <id>235690</id>
 <name>sicsLogo</name>
 <group>calendar</group>
 <life>persistent</life>
 <modal>false</modal>
 <string>SICS AB</string>
</output >

Listing 2: ISL encoding of an output interaction act with a symbolic name, and that belongs to
a customisation form group called calendar.

Listing 2 shows an encoding of the output interaction act from listing 1
with a symbolic name, and as a member of a customisation form group.

Customisation forms are structured and can be arranged in hierarchies
which allows for inheriting and overriding information between forms. A
basic form can be used to provide a look and feel for a family of services,
with different service specific forms adding or overriding parts of the basic
specifications to create service specific user interfaces. A customisation form
does not need to be complete. Interaction acts that do not map to any presen-
tation information specified in the form are rendered with defaults.

Customisation forms are encoded in XML and a DTD can be found at
http://www.sics.se/~stny/UBI/DTDs/dtd.html. An entry in a customisation
form can be either a directive or a resource. Directives are used for mappings
to widgets or other user interface components and resources are used to as-
sociate media resources to interface components. Both directive mapping
and resource association can be made on all three levels, group, type and
name. Listing 3 shows an example of a directive mapping based on the type
of the interaction act, in this case output.

<element name"output">
 <directive>

The Ubiquitous Interactor – Device Independent Access to
Mobile Services

279

 <data>
 se.sics.ubi.swing.OutputLabel
 </data>
 </directive>
</element>

Listing 3: A mapping on type level for an output interaction act that maps a named interac-
tion act to a Java class that is used to render it.

5.3 Interaction Engines

Interaction engines interpret interaction acts and generate suitable user
interfaces of a given type for services on a given device or family of devices.
They also encode performed user actions as interaction acts and send them
back to services. During user-service interaction, interaction engines parse
interaction acts sent by services, and generate user interfaces by creating
presentations of each interaction act. If specific presentations, or media re-
sources, are specified for an interaction act in the customisation form of a
service, that presentation takes precedence. Otherwise, defaults are used. For
example, an output could be rendered as a label, or speech generated from its
default information, while an input could be rendered as a text field or a
standard speech prompt. We have implemented interaction engines for Java
Swing, Java Awt, HTML, and Tcl/Tk user interfaces. All four interaction
engines can generate user interfaces for desktop computers, but the Tcl/Tk
and the Java Awt engine are designed for PDA and cellular phone respec-
tively. The HTML interaction engine generates HTML code and sends it to a
browser via HTTP. The Tcl/Tk interaction engine is designed to generate
Tcl/Tk code and send it to a PDA that will interpret the code and render the
user interface. In these cases, the interpretation and generation is not exe-
cuted on the PDA to save computational resources. Both the Java Swing and
the Java Awt interaction engines interpret interaction acts and generate user
interfaces on the target device.

6. SERVICES

We will present two different services to illustrate how the Ubiquitous
Interactor (UBI) works, a calendar service and a stockbroker service.

6.1 Calendar Service

The calendar provides an example of a service that it is useful to access
from different devices. Calendar data may often be entered from a desktop
computer at work or at home, but mobile access is needed to consult the in-

280 Nylander, Bylund, and Waern

formation on the way to a meeting or in the car on the way home. Sometimes
appointments are set up out of office (in meeting rooms or restaurants) and it
is practical to be able to enter that information immediately.

The calendar service supports basic calendar operations as entering, edit
and delete information, navigate the information, and display different views
of it. The service is accessible from three types of user interfaces: Java
Swing and HTML user interfaces for desktop computers, and Tcl/Tk user in-
terfaces for handheld computer. Two different customisation forms have
been created for Java Swing, and one each for Tcl/Tk and HTML. These
four forms generate different user interfaces from the same interaction acts.
See Fig. 2 for pictures of three of the generated user interfaces.

Figure 2. User interfaces for the calendar service. The two to the left are generated by the
Java Swing interaction engine using two different customisation forms.

The one to the right is generated by the Tcl/Tk interaction engine.

6.2 Stockbroker Service

The stockbroker service TapBroker [9] has been developed as a part of a
project at SICS that works with autonomous agents that trade stocks on the
behalf of users [5]. Each agent is trading according to a built in strategy, and
users can have one or more agents trading for them. TapBroker provides
feedback on how their agents are performing so that users know when to
change agent, or shut them down.

The TapBroker service provides agent owners with feedback on the
agent's actions: order handling, and performed transactions. It also provides
information on the account state (the amount of money it can invest), status
(running or paused), activity level (number of transactions per hour), portfo-
lio content, and the current value of the portfolio. However, it does not pro-

The Ubiquitous Interactor – Device Independent Access to
Mobile Services

281

vide any means to configure or control the agent. Agents work autono-
mously and cannot be manipulated from outside for security reasons. We
have implemented customisation forms for Java Swing, HTML and Java
Awt (Fig. 3).

Figure 3. Three user interfaces to the TapBroker: a Java Swing UI for desktop computers (a),
a Java AWT UI for mobile phone (b), and a UI for a very small device (c).

7. FUTURE WORK

We will investigate how to handle dynamic resources in UBI. Services
that use dynamic media resources extensively, e.g., a service for browsing a
video database, might need an extension of our customisation form approach
to work efficiently for different modalities. One solution could be to handle
the choice of media type outside the customisation form.

8. CONCLUSION

We have presented the Ubiquitous Interactor (UBI), a system for devel-
opment of device independent mobile services. In UBI, user-service interac-
tion is described in a modality and device independent way using interaction
acts. The description is combined with device and service specific presenta-
tion information in customisation forms to generate tailored user interfaces.
This allows service providers to develop services once and for all, and still

282 Nylander, Bylund, and Waern

provide tailored user interfaces to different services by creating different
customisation forms. Development and maintenance work is simplified since
only one version of each service need to be developed. New customisation
forms can be created at any point, thus services can be developed for an
open set of devices.

ACKNOWLEDGEMENTS
This work has been funded by the Swedish Agency of Innovation Sys-

tems (www.vinnova.se). Thanks to the members of the HUMLE laboratory,
in particular Anna Sandin for help with the HTML interaction engine.

REFERENCES
[1] Bylund, M., Personal Service Environments - Openness and User Control in User-

Service Interaction, Licentiate thesis, Department of Information Technology, Uppsala
University, 2001.

[2] Bylund, M. and Espinoza, F., sView - Personal Service Interaction, in Proceedings of
5th International Conference on The Practical Applications of Intelligent Agents and
Multi-Agent Technology PA EXPO’2000 (Manchester, 10-14 April 2000), 2000.

[3] Esler, M., Hightower, J., Anderson, T., and Borriello, G., Next Century Challenges:
Data-Centric Networking for Invisible Computing. The Portolano Project at the Uni-
versity of Washington, in Proceedings of 5th ACM International Conference on Mobile
Computing and Networking MobiCom’1999 (Seattle, 15-20 August 1999), ACM Press,
New York, 1999.

[4] Espinoza, F., Individual Service Provisioning, Ph.D. thesis, Department of Computer
and Systems Science, Stockholm University/Royal Institute of Technology, 2003.

[5] Lybäck, D. and Boman, M., Agent Trade Servers in Financial Exchange Systems, ac-
cessible at http://arxiv.org/abs/cs.CE/0203023.

[6] Myers, B.A., Hudson, S.E., and Pausch, R., Past, Present and Future of User Interface
Software Tools, ACM Transactions on Computer-Human Interaction, Vol. 7, No. 1,
2000, pp. 3-28.

[7] Nichols, J., Myers, B.A., Higgings, M., Hughes, J., Harris, T.K., Rosenfeld, R., and
Pignol, M., Generating Remote Control Interfaces for Complex Appliances, in Proceed-
ings of 15th Annual ACM Symposium on User Interface Software and Technology
UIST’2002 (Paris, 27-30 October 2002), ACM Press, New York, 2002, pp. 161-170.

[8] Nylander, S., The Ubiquitous Interactor - Mobile Services with Multiple User Inter-
faces, Licentiate Thesis, Department of Information Technology, Uppsala University,
2003.

[9] Nylander, S., Bylund, M. and Boman, M., Mobile Access to Real-Time Information -
The case of Autonomous Stock Brokering, Journal of Personal and Ubiquitous Comput-
ing, Vol. 8, No. 1, 2003, pp. 42-46.

[10] Olsen, D.J., MIKE: The Menu Interaction Kontrol Environment, ACM Transactions on
Graphics, Vol. 5, No. 4, 1987, pp. 318-344.

[11] Shneiderman, B., Leonardo's Laptop, The MIT Press, Cambridge, 2002.
[12] Stephanidis, C., The Concept of Unified User Interfaces, in C. Stephanidis (ed.), “User

Interfaces for All - Concepts, Methods, and Tools” Lawrence Erlbaum Associates,
Mahwah, 2001, pp. 371-388.

[13] Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S., ITS: a Tool for Rapidly
Developing Interactive Applications, ACM Transactions on Information Systems, Vol.
8, No. 3, 1990, pp. 204-236.

