
Chapter 18

INTERACTION TEMPLATES FOR
CONSTRUCTING USER INTERFACES FROM
TASK MODELS

David Paquette and Kevin Schneider
Department of Computer Science, University of Saskatchewan,
Saskatoon, SK S7N 5A9 (Canada)
E-mail: dnp972@mail.usask.ca, kas@cs.usask.ca

Abstract Task modelling is well suited to identifying user goals and identifying the ac-
tivities a user performs to achieve these goals. Some task model tools provide
simulation capabilities and/or aid in the construction of concrete user inter-
faces. When it is desirable for the simulated or constructed interface to be real-
istic, the task model must be specified in considerable detail. Unfortunately
this is usually quite onerous for medium to large size systems, for context-
dependent user interfaces, and for highly interactive user interfaces. This paper
introduces ‘Interaction Templates’: pre-defined components that can be
plugged into a task model to provide concrete dialogue and presentation. In-
teraction Templates define complex, context sensitive interaction that is to be
incorporated into the target user interface and can be used when simulating a
task model. Interaction Templates are bound to the task model using an ex-
plicit data model. We demonstrate the applicability of Interaction Templates
with a case study..

Keywords: Methods and languages, Model-based interface design, Task modelling, Tem-
plates, User interface design and specification.

1. INTRODUCTION

Our research applies task modelling approaches to the design of interac-
tive systems. Through a case study we investigated benefits and deficiencies
of using task modelling for the design of an interactive system for the pro-
pose of tracking soil samples. In particular we are interested in applying
ConcurTaskTrees [4] and tool support for simulating a user interface. Other

223

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 223–234.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

224 Paquette and Schneider

task modelling approaches include UAN [2], SUIDT [1] and U-Tel [8].
Our case study shows that task modelling, although useful for modelling

an interactive system with a user, becomes tedious when specifying a task
model in sufficient detail to benefit from simulation tool support.

We propose the use of Interaction Templates, pre-defined components
that can be plugged into a task model to provide concrete dialogue and pres-
entation. Interaction Templates define complex, context sensitive interaction
that is to be incorporated into the target user interface and can be used when
simulating a task model. Interaction Templates are bound to the task model
using an explicit data model.

CTTE [3,4,5] is a tool for building and evaluating ConcurTaskTrees and
was used in our case study. It features a visual task model builder and a task
model simulator, which is used to validate task models.

The visual task model builder aids in creating models. It is used to create
and define tasks as well as define relationships between those tasks. It in-
cludes features that help with layout as well as features that help to ensure
the mathematical correctness of a model.

The simulator can be useful in validating task models with users, as well
as evaluating usability at a very early stage. With CTTE’s Task Model
Simulator tasks can be selected from a list of available actions. Any one of
the actions can be performed by double clicking it. When an action is per-
formed, the list of enabled actions is updated. This allows users to test the
system design to ensure that it allows them to reach certain goals and does
not allow actions to be performed when they should not be.

A drawback of this simulator is that it does not allow for true simulation
of concurrent tasks. It treats concurrent tasks the same as choice tasks.

A tool similar to CTTE provides a simulator that has the ability to simu-
late concurrent tasks [6]. The simulation is made up of a window that is
filled with smaller windows containing play and stop buttons. Each of the
smaller windows represents a task from the task model. These tasks can ei-
ther be active or inactive. A user can activate a task by pressing the play but-
ton, or deactivate a task by pressing the stop button. Activating or deactivat-
ing a task in the simulator has the same effect as starting or stopping a task
in the system. Activities can either be enabled or disabled. This is shown in
the simulator by enabling or disabling the play and stop buttons. When a task
is activated, all tasks that are enabled or disabled by that task are updated.
By playing through different scenarios, it is easy to validate your task model
with users. One of the problems of this simulator is that it would get difficult
to sort through the many tasks involved in a large system.

In the next section we describe a case study in which we applied task
modelling to an existing interactive system.

Interaction Templates for Constructing User Interfaces
from Task Models

225

2. LAB ASSISTANT CASE STUDY

Lab Assistant is an information system for tracking soil samples through
a soil–processing lab in Saskatoon, Saskatchewan. The samples are provided
to the lab by producers and university researchers. The system is data inten-
sive, interacting with a database containing information about farmers, geo-
graphic locations, soil samples and quality control data. The Lab Assistant is
used to enter the data, verify the data, and create a variety of reports for the
users. The system was built using Borland Delphi 4 and runs on Microsoft
Windows operating systems. Fig. 1 is a screen shot of the Lab Assistant soil
sample data entry form.

Figure 1. Lab Assistant Soil Sample Data Entry Form.

2.1 Detailed Task Model

The ConcurTaskTree environment (CTTE) was used to model the user
interactions with the Lab Assistant. Each window was considered to be an
abstract task named after the main task performed in that window. The ab-
stract tasks were modelled in detail to describe the user’s interaction. Wid-
gets such as text fields and buttons were modelled as Interaction Tasks. Re-
lationships between tasks showed the effects each widget had on other ob-
jects in the system. Fig. 2 shows a small section of the task model that was
developed. The model gave a precise definition of the system and allowed
for an accurate simulation using CTTE.

226 Paquette and Schneider

Figure 2. Small section of detailed ConcurTaskTree of Lab Assistant.

Although the task model provided an accurate and precise description of
the Lab Assistant, some difficulties were encountered. The process of gener-
ating a detailed task model for an information system the size of the Lab As-
sistant was a long and tedious process. Every interaction between the user
and the system was modelled to enable a reasonable simulation of the user
interface. The model quickly became too large to be easily understood. The
section shown in Fig. 2 only accounted for approximately 10% of the entire
model. A model of this size is difficult to view in its entirety and it was dif-
ficult to get a good overview of the system from the task model.

2.2 Abstract Task Model

In an attempt to overcome the difficulties encountered in building the de-
tailed task model, a second, less detailed task model was created. Here, the
system was modelled at the abstract task level. Each window was again as an
abstraction task named after the main task performed in that window. How-
ever, the specifics of how those tasks were performed inside the window
were not considered. Task such as entering specific fields when adding sam-
ples were omitted. The abstract task model corresponding to Fig. 2 is shown
in Fig. 3. This model was both quicker and easier to build. Because it was
much smaller, it also gave a better overview of the system than the previous
model.

Figure 3. Small section of abstract ConcurTaskTree of Lab Assistant.

Modelling a system at this level of abstraction results in a loss of some of
the functionality that CTTE offers. In particular, because some of the detail
is missing, CTTE can no longer provide a suitable simulation of the task
model. A simulation of entering a sample no longer consists of entering a
few required fields and some optional ones. The simulation only consists of
entering an abstract sample object, the details of which are unknown. An-

Interaction Templates for Constructing User Interfaces
from Task Models

227

other problem is that valuable information about the system was lost. It is no
longer known what data is verified. In order to fully understand what is oc-
curring in this model, one must already have knowledge of the system.

2.3 User Feedback

In order to get user feedback on the validity of the two task models, the
main user involved in the development of the Lab Assistant was introduced
to the concept of task models using CTTE. The user is a business computer
user with limited technical background, however, she interacts with the Lab
Assistant system every day.

First, the user was given an overview of the CTT notation, and taken
through an example of modelling a small portion of the Lab Assistant. To-
gether, the task of adding a batch of samples to the database was modelled.
The user did not have any difficulties in following the construction of the
model, and was able to point out some inaccuracies as the model was built.
The user was able to correct a task operator in the model. User feedback al-
lowed for a more accurate model of the Lab Assistant to be built. After ana-
lysing the sample task model, the user expressed some concern as to how
large the model would be if the entire system were modelled. The small task
model built in this example had already covered the entire screen.

Once the small model was built, the user was introduced to the task
model simulator. The user was excited by the possibilities of the simulator:
the idea of simulating a software system before it was built seemed very use-
ful to her. She commented that if this tool had been available when design-
ing the Lab Assistant, some design flaws would likely have been identified
much earlier in the design process. In the current version of the Lab Assis-
tant, the flow of data does not match the flow of samples through the lab. To
work around this problem, users must change the way soil is analysed to
match the assumptions that were made when the Lab Assistant was built.
There are no current plans to fix this problem, as the cost is expected be sig-
nificant. If this problem could have been identified in a simulation with users
at an early stage in design, the cost would have been minimal.

Next the user was shown the detailed task model and the simplified task
model that had been previously developed. The user was overwhelmed by
the size of the first model. Since the model was too large to view in its en-
tirety, she found it difficult to see the ‘big picture’ of the Lab Assistant from
the model. She was impressed by the functionality available in the simulator
as it allowed for a very accurate simulation of the Lab Assistant. The user
found the second task model easier to understand. She found that because it
lacked detail and was smaller, it gave a better overview of the Lab Assistant.

228 Paquette and Schneider

She did not, however, find the simulation as valuable in this model as it had
been in the previous model. Overall the user felt that CTTE would be a use-
ful tool in the analysis and design of Lab Assistant. In particular, she felt that
the task model simulator integrated in CTTE would be a very valuable tool
in validating proposed designs and catching major problems early in the de-
sign process.

2.4 Case Study Summary

CTTE provides a good mechanism for modelling information systems.
Task trees provide an excellent overview of a system and offer a powerful
simulation capability. Task trees are valuable as a common language for
both designers and users. As was seen in the task modelling session with the
user, it appears that it is beneficial to actively involve users in the creation of
task models using CTTE, and that users are able to understand task models.
Once the task models have been built, the simulation capabilities provided in
tools such as CTTE can be extremely useful in validating proposed designs
with users. A few problems arose when modelling information systems us-
ing CTTE. These problems can be summarised as being a problem of scale.
Building accurate task models for medium to large systems is a long and te-
dious process. The models quickly grow to be too large to understand. This
can be partially solved by modelling information systems at a more abstract
task level, unfortunately with the side effect that simulations become less
valuable and validating designs more difficult. The next section tries to ad-
dress these shortfalls, with a proposal to extend task models with Interaction
Templates.

3. INTERACTION TEMPLATES

Interaction Templates were developed to attempt to find a middle ground
between the two models (detailed and abstract) discussed in the Lab Assis-
tant case study. Interaction Templates are intended to help us to build mod-
els quickly, and allow for detailed simulation while maintaining a useful sys-
tem overview.

While building task models for information systems, there are sub trees
that repeat throughout the model with only slight variations. These sub trees
are associated with common interface interactions found in information sys-
tems. Interaction Templates model these common interface interactions.
They include a detailed task model, an execution path (i.e., dialog), and a
presentation component. Inserting and customising Interaction Templates
reduces the need to model the same interaction repeatedly in a system, and

Interaction Templates for Constructing User Interfaces
from Task Models

229

thus, greatly reduces the time spent modelling information systems [7]. As
well, Interaction Templates can be designed and tested to ensure their usabil-
ity in accomplishing a task and can be designed to be ‘plastic’ [9] and thus
adapt to different contexts [7].

Two common interface interactions, data table interaction and print dia-
log interaction, were chosen as examples of Interaction Templates. These
examples illustrate how Interaction Templates attempt to solve some of the
problems encountered in the Lab Assistant case study. The next two sections
describe these Interaction Templates examples. To help illustrate an Interac-
tion Template we provide a snapshot of its presentation for a specific context
and its task tree.

3.1 Example 1: Data Table Interaction Template

Information systems typically deal with large amounts of data. This data
is often visualised and interacted with by means of a data table component.
The data table Interaction Template models the particular data table interac-
tion found in the data tables of the Lab Assistant. With slight modifications,
this Interaction Template could be adapted to model different data table
components. The screen snap shot of the data table Interaction Template is
shown in Fig. 4.

Figure 4. Data Table Interaction Template plugged into the Lab Assistant software.

230 Paquette and Schneider

In the abstract view (Fig. 5), with all sub trees hidden, the data table In-
teraction Template contains a description of the data the table will be show-
ing. The data is actually expressed with XML but for simplicity we have
shown just the key data fields in our figures. Given this abstract view and
field information of the data table Interaction Template, the details of the in-
teraction are known without viewing the larger detailed view shown in Fig.
6. Because data tables are common interface interactions in information sys-
tems, most users and designers do not need to view the detailed model to
understand the interactions that are being described.

This is the feature of the Interaction Template that allows for detailed
simulation while maintaining reasonable model size. Hiding the details be-
low the abstraction table interaction task helps to condense the overall size
of the model.

Figure 5. Abstract Task Tree of the Interaction Template for a data table.

Figure 6. Detailed Task Tree of the Interaction Template for a data table.

While it may not be useful to see the details of a table interaction when
trying to view an entire model, these details do become necessary when us-
ing the task model simulator. Given the description of the data, it would be
possible for a tool to customise the details of the template. With such a tool,
the Enter Field(s) task in Fig. 6 would be broken down into Enter Field1, En-
ter Field2, and Enter Field3.

The Move Column, Hide Column, Show Column, and Sort By Column
tasks could be expanded in a similar fashion. With this Interaction Template,
adding a detailed model of a table interaction would be as simple as select-
ing the Interaction Template and defining the data that will be displayed.
With proper tool support, a lot of the tedious work would be completed
automatically.

Interaction Templates for Constructing User Interfaces
from Task Models

231

Figure 7. Abstract view of Lab Assistant Task Tree.

The detailed view shows exactly how a user interacts with a data table.
The interaction is divided into two subtasks: modify table view and modify
table data. When modifying the table view, a user can move, hide and show
columns, as well as sort and filter rows. When modifying table data, a user
can add, edit and delete rows. With this parameterised Interaction Template,
detailed ConcurTaskTrees that are customised for a specific use could be
built quickly.

Figure 8. Lab Assistant Task Tree with the Data Table Interaction Template plugged in.

Fig. 7 shows how the data table Interaction Template was used in the Lab
Assistant. The abstract view gave a good overview of the system, and helped
to keep the model at a manageable size. In Fig. 8, the fsr (field service repre-r
sentative) and farmer tables fit perfectly with the template. No manualr
changes to the template were necessary to model these portions of the Lab
Assistant. The sample table, however, did not match the template exactly. In
the sample table, it is not possible to add a sample directly to the table. In
order to add a sample, the user must go to the abstract task of entering a
batch. The sample table also does not allow rows to be deleted. Sample dele-

232 Paquette and Schneider

tion is handled in a separate software system called the Lab Manager. The
Lab Manager was not modelled in this case study.

Fig. 9 shows how the template was inserted, and easily modified to re-
flect the differences found in the sample table. Under the abstract task Mod-
ify Table Data, Add Row was replaced with the abstract task Enter Batch.
The abstract task Delete Row was simply removed. Although the original
template did not match the sample table perfectly, the effort required to
manually customise it was minimal.

Figure 9. Data Table Interaction modified to fit the sample table.

Figure 10. Print Dialog Interaction Template Task Model.

Interaction Templates for Constructing User Interfaces
from Task Models

233

Figure 11. Print Dialog Interaction Template for Windows 9x.

3.2 Example 2: Print Dialog Interaction Template

Another interesting interaction that is commonly found in information
systems is the print dialog. Since print dialogs are usually built in to the op-
erating system, they are almost always identical in every place they appear
in a software system. This makes them an excellent candidate for Interaction
Templates. If they are always the same, an entire print dialog interaction can
be added in only one step. The only parameter needed for the Print Dialog
Interaction Template is an operating system, because print dialogs differ
slightly between operating systems. If an Interaction Template was being
built and a printer interaction was needed, the Print Dialog Interaction Tem-
plate could be selected, and an operating system selected. A model of a print
dialog matching the selected OS would then be inserted into the task model.
A plastic Interaction Template could be used to provide different behaviour
for each operating system. An example of the Print Dialog Interaction Tem-
plate for Windows 9x is shown in Fig. 10. The Windows 9x print dialog box
is shown in Fig. 11.

4. CONCLUSION

Interaction Templates were developed to solve the problems identified in
the Lab Assistant case study. They attempt to solve these problems by taking
advantage of common interface interactions found in information systems.
The data table interaction and print dialog interaction examples show how

234 Paquette and Schneider

Interaction Templates attempt to solve these problems of scale by condens-
ing the overall model size while maintaining quality of information. In the
future we hope to build tool support for building ConcurTaskTrees using In-
teraction Templates.

REFERENCES

[1] Baron, M. and Girard, P., SUIDT: A Task Model Based GUI-Builder, in C. Pribeanu, J.
Vanderdonckt (eds.), “Task Models and Diagrams for User Interface Design”, Proceed-
ings of the 1st International Workshop on Task Models and Diagrams for User Interface
Design TAMODIA’2002 (Bucharest, 18-19 July 2002), INFOREC Printing House, Bu-
charest, 2002, pp. 64-71.

[2] Brandenburg, J.L., Hartson, H.R., and Hix, D., Different Languages for Different De-
velopment Activities: Behavioral Representations Techniques for User Interface De-
sign, in B. Myers (ed.), “Languages for Developing User Interfaces”, Jones and Bartlett
Publishers, Boston, 1992.

[3] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 2000.

[4] Paternò, F., Task Models in Interactive Software Systems, in S.K. Chang (ed.), “Hand-
book of Software Engineering and Knowledge Engineering”, Vol. 1, World Scientific
Publishing Co., River Edge, 2001, accessible at ftp://cs.pitt.edu/chang/handbook/21.pdf

[5] Paternò. F., Tools for task modelling: Where we are, where we are headed, in C.
Pribeanu, J. Vanderdonckt (eds.), “Task Models and Diagrams for User Interface De-
sign”, Proceedings of the 1st International Workshop on Task Models and Diagrams for
User Interface Design TAMODIA’2002 (Bucharest, 18-19 July 2002), INFOREC Print-
ing House, Bucharest, 2002, pp. 10–17.

[6] Seffah, A. and Forbrig, P., Multiple User Interfaces: Towards a Task-Driven and Pat-
terns-Oriented Design Model, in P. Forbrig, Q. Limbourg, B. Urban, J. Vanderdonckt
(eds.), Proceedings of the 9th International Conference on Design, Specification, and
Verification of Interactive Systems DSV-IS’2002 (Rostock, 12-14 June 2002), Lecture
Notes in Computer Science, Vol. 2545, Springer-Verlag, Berlin, 2002, pp. 118–132.

[7] Souchon, N., Limbourg, Q., and Vanderdonckt, J., Task Modelling in Multiple Contexts
of Use, in P. Forbrig, Q. Limbourg, B. Urban, J. Vanderdonckt (eds.), Proceedings of 9th

International Workshop on Design, Specification and Verification of Interactive Sys-
tems DSV-IS 2002 (Rostock, 12-14 June 2002), Lecture Notes in Computer Science,
Vol. 2545, Springer-Verlag, Berlin, 2002, pp. 59-73.

[8] Tam, R.C.M., Maulsby, D., and Puerta, A.R., U-TEL: A Tool for Eliciting User Task
Models from Domain Experts, in Proceedings of 3rd ACM International Conference ond

Intelligent User Interfaces IUI’98 (San Francisco, 6-9 January 1998), ACM Press, New
York, 1998, pp. 77-80.

[9] Thevenin, D. and Coutaz, J., Plasticity of User Interfaces: Framework and Research
Agenda, in A. Sasse, Ch. Johnson (eds.), Proceedings of 7th IFIP TC.13 Internationa
Conference on Human-Computer Interaction Interact’99 (Edinburgh, 30 August- 3 Sep-
tember 1999), IOS Press Publ., Amsterdam, 1999, pp. 110–117.

[10] van Welie, M., van der Veer, G.C., and Eliens, A., Patterns as Tools for User Interface
Design, in J. Vanderdonckt, Ch. Farenc (eds.), Proceedings of International Workshop
on Tools for Working with Guidelines TFWWG’2000 (Biarritz, 7-8 October 2000),
Springer-Verlag, London, 2000, pp. 313-324.

