Chapter 16

PATTERNS IN MODEL-BASED ENGINEERING

Daniel Sinnigl’z, Ashraf Gaffar®, Daniel Reichart', Peter F orbrig1
and Ahmed Seffah?

Software Engineering Group, Department of Computer Science,

University of Rostock, Rostock (Germany)

E-mail: {daniel.reichart, Peter.Forbrig}@informatik.uni-rostock.de
2Human—Computer Software Engineering Group, Department of Computer Science,
Concordia University, Montreal (Canada)

E-mail: {d sinnig, gaffar, seffah}@cs.concordia.ca

Abstract

Keywords:

1.

In this paper we demonstrate how patterns can act as a driving force for the
development of interactive applications. As knowledge re-use is becoming
more and more crucial, patterns can be an effective tool to represent knowl-
edge of the HCI domain. Using a model-based development methodology, it
is shown how patterns can act as building blocks for the establishment of these
models. Starting from outlining the general process of pattern application, we
discuss how and which patterns are suitable for several models. In particular
we discuss the application and use of patterns for the task, dialog and presenta-
tion models. Furthermore, we suggest an interface for patterns using “generic
classes” and give concrete examples to corroborate our approach. This allows
for modular patterns reuse and plausible parameter exchange with the underly-
ing system. Tool support is based on XML-representations of patterns using a
template engine.

Model-based interface design, Patterns, Task modelling, UI engineering.

PATTERNS FOR MODEL-BASED DESIGN

The concept of patterns has been transferred to the software community
by [5]. Their book “Design Patterns” contained a collection of patterns for
the design of object—oriented software. The book has been widely acknowl-
edged and referenced within the community. Recently, like in the software
engineering community, the user interface design community has also been a
forum for vigorous discussions on pattern languages for User Interface (UI)

197

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 197-210.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

198 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

design and usability engineering. Ul patterns are an effective way to transmit
experience about recurrent problems in the HCI domain related to Ul design
issues. A pattern is a named, reusable solution to a recurrent problem in a
particular context of use. Even though patterns serve a number of different
purposes (education, discussion ground, re-use, etc.), this paper mainly looks
at patterns as vehicles for re-use of existing solution.

Since Ul patterns capture the essence of successful solutions to recurring
design problems, correctly applying them will help avoid “re-inventing the
wheel”. They could accelerate the development of initial prototypes and help
designers reuse successful, elegant designs without the need to rediscover
these designs [5]. In the following, we will introduce our approach of devel-
oping a formal notation for patterns within the scope of a model-based de-
sign of interactive applications.

1.1 The Impact of Patterns on the Model-Based Frame-
work

In a model based UI design methodology, various models are used to de-
scribe the relevant aspects of the user interface. Fig. 1 portrays that many Ul
facets exist and reflects the relevant models for tasks, business objects (do-
main), users, dialogue and presentation.

First, design decisions are made to establish the envisioned task model in
which the future support of the interactive system is already considered. Ad-
ditionally, models for capturing user characteristics and business objects are
developed. Based on these rather abstract models, a dialog, a presentation
and a layout model are derived to reveal some implementation details of the
user interface. Due to the lack of tool support and libraries populated with
existing solutions and ideas, model based user interface design has not
reached the mainstream software developer, yet [14]. We believe that pat-
terns have the potential to overcome this major shortcoming. Therefore, as
demonstrated in Fig. 1, in our approach we are aiming to use patterns as
building blocks in order to create the various models. In the following we
will demonstrate how patterns can impact several models. In particular we
will focus on the impact of patterns on the envisioned task model, the dialog
model, the presentation model and the layout model.

1.2 The Process of Pattern Application

In the domain of software development, the reuse of ideas and knowledge
is becoming more and more crucial as a solution to the stark competition, the
demand on more quality and less time-to-market, and the steady increase in
complexity [10]. “Reusability” is considered as an important quality factor

Patterns in Model-Based Engineering 199

[7]. Using patterns can be an effective way to transmit experiences about re-
current problems in the software and Ul development domain. Therefore a
solution should be generic enough to apply to different contexts of use. In
other words patterns should be formulated generically enough to withstand
variations of context and domain. Before the pattern solution stated in the
pattern is really tangible and applicable, it must be adapted to the current

context of use.

Object Task

Model Model -
.\i/ ."._’

' Task &
Dialog Model Fonture
o ® — @ Palterns
N
®
Prasen- Velocity
o[Flocy | .l
Patterns :
Presentation Model
{XUL Fragments)
el)
\A. 7
Layout Velocity &
Patterns ssfpssssssssssstersasnansnnn .‘
Layout Model

(XUL Code)

Figure 1. Patterns as building blocks within a model based methodology.

Thus we suggest that patterns contain variables, which can act as place-
holders for each particular context of use. In other words, the variables must
be bound to concrete values representing the surrounding context. Assuming
that patterns are applied to models, the process of pattern applications com-
prises four sequential steps:

1. Identification: A subset M’ of the target model M is identified: M” < M.
This should reduce the domain size, and help focus the attention on a
smaller subset of concern for the next step.

200 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

2. Selection: An appropriate pattern P is selected to be applied to M. By
focusing on a subset of the domain, the designer can scan M’ more effec-
tively to capture potential “spots” that could be improved using some
patterns. This is the most important step of all the four. It depends
strongly on the experience and the creativity of the designer.

3. Adaptation: A pattern is an abstraction that must be instantiated. There-
fore in this step the pattern P will be adjusted according to the context of
use resulting in the pattern instance S. In a top down process all variable
parts will be bound to specific values, resulting in a concrete instance of
the pattern.

4. Integration: The pattern instance S will be integrated into M’ by con-
necting it to the other elements in the domain. This may require replac-
ing, updating or otherwise modifying other objects to produce a seamless
piece of design.

Automatic tool support is important in order to integrate patterns effec-
tively into the development life cycle of interactive applications. Moreover
by integrating the idea of patterns into development tools, patterns can be a
driving force throughout the entire UI development process. For instance the
top-down process of pattern adaptation can be greatly assisted by tools such
as Wizards. A Wizard runs through the pattern tree and questions the user
each time it encounters a variable that has not been resolved yet. We have
developed a prototype of a task pattern wizard (introduced in [11]), which
supports all phases of pattern integration for the task model, ranging from
pattern selection over pattern adaptation until pattern integration. Which pat-
terns are applicable for the task model is introduced in the next section.

2. PATTERNS FOR THE ENVISIONED TASK
MODEL

The envisioned task model describes how activities can be performed to
reach the user’s goals when interacting with an interactive system [9]. Using
task models, designers can develop integrated descriptions of the system
from a functional and interactive point of view. Task models typically are
hierarchical decompositions of goals, tasks and subtasks into atomic actions
[12]. Also the relationships between tasks are described in correlation with
the execution order or dependencies between peer tasks. The tasks may con-
tain attributes about the importance, the duration of execution and the fre-
quency of use. In order to speed up the process of establishing the task
model and to integrate proven and efficient solution, we suggest using pat-
terns as building blocks. In the following we will explain how patterns for
the task model should be written and how they should be applied. In a subtle
manner we distinguish between two kinds of patterns that are applicable for

Patterns in Model-Based Engineering 201

the user-task model: Task Patterns and Feature Patterns.

e Task Patterns describe the activities the user has to perform while pur-
suing a certain goal. The goal description acts as an unambiguous identi-
fication for the pattern. In order to compose the pattern as generic and
flexible as possible, the goal description should entail at least one vari-
able component. As the variable part of the goal description changes, the
content solution part of the pattern will adapt and change accordingly.
Task Patterns can be composed out of sub-patterns. These sub-patterns
can either be task-patterns or feature-patterns.

e Feature Patterns, applied to the user-task model describe the activities
the user has to perform using a particular feature of the system. For the
purpose of this paper we define a feature as an aid or a “tool” the user
can use in order to fulfil a task. Examples of these features can be “Key-
word Search”, “Login” or “Registration”. Feature patterns are identified
by the feature description, which should also contain a variable part, to
which the realization of the feature (stated in the pattern) will adapt. Fea-
ture patterns can comprise other sub-feature patterns.

As we mentioned above, the difference between task and feature patterns
is subtle, but noticeable. While task patterns concentrate on a specific goal,
the same task can be accomplished in different ways using different feature
patterns. That is why feature patterns are important as a classification. Simi-
larly, the same feature pattern can be used to accomplish different task pat-
terns. Therefore it is safe to say that there is a many-to-many relationship be-
tween the two. To summarise, Task patterns are concerned with the user
goals (what we need to do), while feature Patterns are concerned with the
system behaviour (how we can do it). A typical task performed in many dif-
ferent applications is to find something. This can range from finding a book
at www.amazon.com to finding a used car at www.cars.com, to even finding
a computer in a network environment. All these tasks embody the same basic
task and can just be distinguished by the particular “Find” object in the goal
description. In order to create a generalised Find Pattern, we must abstract
the particular object we are searching, and replace it with a generic variable.

/F\
{Object=Infarmation; : ; \\\ ;
iFrequency f— - ==

<<Feature>> Browse Search Activate Agent

Agent

Figure 2. Pattern for find information.

202 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

For the sake of simplicity, let us assume that a simplified version of the
Find pattern suggests that “Find” information can be performed by brows-
ing, searching or using an agent. In the left part of Fig. 2 the Find pattern is
displayed in an abstract manner. We have used the UML notation for para-
metric classes is used to portray the pattern. The variable “Information” is
utilised as a placeholder for the particular type of information one is trying
to find. In the right part of Fig. 2 a possible instance of the pattern is shown.
The details of the resulting task tree are illustrated with CTTE notation [9].

Moreover, it is visualised that the Find pattern is composed of the feature
patterns Browse, Search and Agent. If we place patterns in such an “aggrega-
tion” relation we have to pay special attention to the variables. It is shown in
Fig. 3 that a variable, defined at the super-pattern level can affect the vari-
ables used in the sub patterns. The value of the variable “Information” of the
Find pattern is used to assign the “Object” variable in all sub patterns. How-
ever the variables “Number Elements”, and “Frequency” of the sub-patterns
Browse and Agent remain undefined. During the process of adaptation, the
variables of each pattern must be resolved top-down and replaced by con-
crete values.

In Fig. 3, we have bound the variable “Information” with the value
“Book” to create the patterns instance Find Book; and with the value “Car”
to create the instance Find Car. Please note that with the binding of a con-
crete value to the variable “Information” in the goal description, the body of
the pattern has changed accordingly. After the pattern adaptation process, the
patterns instance can be integrated in an already existing task model. In Fig.
3, Find Car has been integrated into the Car-shop task model. This process
of integrations is visualised using the inheritance relationship and can be in-
terpreted as: Car-shop has inherited all methods (tasks) from Find Car.
Eventually after resolving all variables, the pattern instance will be trans-
formed into a concrete task structure. Practically this integration process is
not realised by inheritance. It is supported by a wizard, which is described in
[11].

’search(lnformatmn)o
’bmwse(lnformatmn)()
’a:twateAgem (Infarrmation)()

<<Information = Book" ", <alrformation = Cars>

Carshop

Find Book Find Car

®searchiBook)) ®zearch(Can()
Shrowsa(Book)() Shrowse(Can
‘activaleAgenl(Eunk)O

Figure 3. The Find pattern and its instances.

Patterns in Model-Based Engineering 203

3. PATTERNS IN THE PROCESS OF DERIVING
THE UI FROM ABSTRACT DESCRIPTIONS

Until now it was described how patterns can be used as building blocks
for establishing task models. Task models as well as user and object models
are rather abstract and deal only indirectly with user interface issues. In the
following we will explain how an implementation of a user interface can be
derived from these abstract descriptions. Moreover it will be shown how pat-
terns can drive and influence this process.

In Fig. 1, we have portrayed four milestones on the way from an abstract
description to the implemented user interface. First a dialog model is interac-
tively derived from the task, user and object model. The dialog model asso-
ciates several tasks to dialog views and defines transitions between these
dialog views. At this stage dialog patterns can help grouping the tasks and
suggest sequences between dialog views. Next, in order to develop the pres-
entation model the tasks of each dialog view are associated with interaction
elements such as buttons, trees and lists. Moreover, some domain objects
(tools or artefacts) which are related to the tasks are also mapped to interac-
tion elements. Presentation patterns can be applied in order to map complex
tasks (such as advanced search) to a predefined set of interaction elements.

Within our approach presentation patterns are described as Velocity XUL
templates [18]. Thus, our presentation model consists of a set of XUL code
fragments. Each fragment describes one or a set of interaction objects. After
that the interaction objects are positioned following an overall layout or floor
plan resulting in the layout model. Additionally, the visual appearance of
each interaction element is specified by setting fonts, colours and dimen-
sions. In our framework layout patterns —which are described as XUL tem-
plates as well- are used to integrate proven layouts and design solutions.
Practically the loose set of XUL fragments of the presentation model is ag-
gregated to XUL code. Finally this XUL code is automatically rendered to a
concrete user interface implementation. In the following we will explain in
greater detail each phase.

According to our model-based framework the presentation model and
layout model are logically separated. We decided to split them into two cate-
gories, since we believe that for each model different kinds of patterns apply.
The first category contains patterns that describe a set of interaction
elements (presentation patterns). The other category contains patterns that
describe the layout of the interaction elements (layout patterns).

3.1 Patterns and the Dialog Model

The dialog model specifies the user commands, interaction techniques,

204 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

interface responses and command sequences that the interface allows during
user sessions. It must encompass all static and dynamic information the user
needs for the dialog with the machine. This information is grouped into sev-
eral dialog views. The dialog view contains functionally- and logically re-
lated elements of the task model and the business object (domain) model.

In short, the dialog model specifies the navigational structure of the Ul
and the interaction techniques [15]. It is a more specific model and can be
derived in good part from the more abstract task-, user- and business object
models.

There are different strategies to design the dialog model. One possibility
is the evolution of the task model to a final user interface. Janus [1] uses in-
formation mainly from the object model. However, most approaches are
based on tasks. TERESA [6] follows an idea of grouping tasks based on pre-
conditions, which allows an automatic generation of dialogue models.

Finding dialog views and transitions is closely connected to the underly-
ing task models. On the one hand, structural information from the task
model, which describes the task—subtask hierarchy can be used to group re-
lated tasks into task views. On the other hand temporal transitions between
sub tasks can be used to constrain and derive possible dialog transitions [9,
15]. Consequently patterns applied to the task model indirectly affect the
dialog model and in particular the dialog graph. Let us take the example of
the Multi Value Input Task Pattern introduced by [2]. For the sake of sim-
plicity let us assume that our Multi Value Input Task pattern describes a task
structure in which the user edits various values. After all values have been
entered the user can submit them.

In the left fraction of Fig. 4 the interface of the dialog pattern Wizard is
illustrated. It is parameterised with the variable “Number” which stands for
the number of dialogs the wizard will run through. Let us assume that we
will use the Wizard pattern in order to realise the Multi Value Input Task. An
instantiation for three input tasks of the pattern is depicted in the right frac-
tion of Fig. 4 and visualised as a dialog graph using the notation introduced
by [4].

Adopting the semantics of this graph, the user sequentially inputs three
values. After entering the third value submit can be performed and the dialog
view will be closed. In particular the user runs through a sequence of three
single dialogs, starting from dialog one. From each dialog only one of the
neighbour dialogs (previous or next) can be reached. After submitting the
third dialog the overall dialog view will be closed.

In order to validate, find and apply dialog patterns we have developed a
tool called “DialogGraphSimulator” [4]. Using our application the user can
interactively “walk through” the dialog graph. The DialogGraphSimulator
helps to define multiple dialog structures for one task model. Different at-

Patterns in Model-Based Engineering 205

tempts can be opposed to each other and the best solution can eventually be
extracted. Due to the separation of task and dialog structure, dialog patterns
can be brought in independently. As the DialogGraphSimulator processes
dialog structures described in XIML [3], our dialog patterns are formalised
as XIML fragments as well. Currently we are developing a tool, similar to
the TaskPatternWizard, to allow the computer aided adaptation and integra-

tion of dialog patterns.
AN A Submit
Y \

Number &Slmulation
<<D|alnl_g-;‘>m”_m: Q @ [| m |
Wizard - — .
e mput 1 [input
& Input 2 | & Irput 3 e o

‘ & Input 1 & Submit

Figure 4. Interface, instance and simulation of the Wizard dialog pattern.

Fig. 4 (lower right corner) contains also a screenshot of the simulation of
the Multi Value Input Task pattern implemented as a Wizard. Each dialog is
visualised by a little window. Buttons in each window portray the possible
transitions to other dialog views. The third input dialog is currently active.
From this dialog it is either possible to go back to the second dialog or to
press submit, which would close the dialog view.

3.2 Patterns and the Presentation Model

In the presentation model, a set of abstract Ul elements is defined to de-
termine the abstract appearance of the user interface. In particular, the
grouped tasks of each dialog view are associated with a set of interaction
elements such as buttons, trees and lists. Moreover some domain objects,
which will be displayed on the interface, are mapped to interaction elements
as well. Please note that all interaction elements should be described in an
abstract manner. Style attributes such as size, font, and color remain open
and will be defined by the layout model.

We have chosen the generic user interface description language XUL
[18] as a medium to describe the presentation model. Thus our presentation
model basically consists of a set of XUL fragments. Each fragment repre-
sents a single interaction elements or a group of interaction objects.

For the presentation model, presentation patterns embody building inter-
face object blocks. In practice, instantiations of presentation patterns deliver

206 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

XUL fragments which -again- describe user interface objects. Therefore
each presentation pattern must have a mechanism to generate variants of
XUL code depending on the assignment of their variables. We have chosen
to employ XUL Velocity templates in order to implement the patterns. Ve-
locity templates can be used to dynamically generate XUL code. If the vari-
able parts of the presentation pattern change, conditions, loops and other
control structures are used to adapt the template (pattern) accordingly.

Fig. 5 portrays three different views on a simplified version of the Input
Form pattern. On the left hand side, the interface of the patterns is displayed
showing that only one parameter “Number” is expected. This parameter de-
termines the number of elements to be entered.

The middle part of Fig. 5 shows the formalization of this pattern, which
consists of a mixture of XUL and velocity template code. The variable
$NUMBER is used to determine the number of iterations of the #foreach
loop. Within the loop XUL code for displaying the Input fields and labels is
produced. Eventually, the outcome of this template (the instantiation of the
pattern), which consists of “pure” XUL code can be rendered to a Ul frag-
ment of the target platform. The right part of the illustration shows the
screenshot of the result of rendering the Input Form pattern instance to Win-
dows XP desktop platform.

Please note that, in practice, the Input Form presentation pattern is sig-
nificantly more complex. Since it must embody information and parameters
for the types of data input or the internal alignment of the interaction objects.

<window>
<table>
e memmmeee #iforeach(§1i in [1..S§NUMBER])
‘Mumber H <tr> EEEE—
T : ctas<label value=rInput $17/></tas| |IPU1]
<<Pragentation>> <tdr<texthox id="input§i"/></td> Input 2
Input Form </tr>
| dend npts |
- </rablex _
<hutton lebel="Submite/> Submit
</ windows>

Figure 5. Different views on the Input Form presentation pattern.

33 Patterns and the Layout Model

In the layout model, the various XUL fragments of the presentation
model are merged together resulting in aggregated XUL code. The loosely
connected XUL pieces are nested and associated together. The way these
fragments are merged together depends on the overall “layout” of the entire
application.

Usually a Web site or a GUI consists of several pages or windows. In or-
der to maintain a consistent feeling across them, the same basic layout or
floor plan should be kept throughout the entire interface. Depending on the

Patterns in Model-Based Engineering 207

purpose, the complexity, the in-house style and other attributes, a certain ba-
sic layout for the Ul is chosen. Selecting a basic layout style usually deter-
mines the positioning of navigational elements such as search elements and
menus or the size and position of information containers. As a result of this
merging process, the style attributes of the Ul elements -which were not set-
are bound to concrete values. Patterns such as Column Layout, Liquid Lay-
out or Card Stack are used to determine the structure of the layout model.

As Velocity templates can be used to generate XUL fragments (presenta-
tion model) they can also be used to aggregate XUL code. Therefore layout
patterns are formalised as Velocity XUL templates as well, and the instantia-
tion of these patterns consists of pure XUL code.

Eventually the established layout model (XUL code) is used as input for
the automatic generation process in which the concrete interface is gener-
ated. Please note that the same layout model can be rendered to different tar-
get platforms such as Java Swing and Mozilla /Netscape. XUL has its focus
on window-based user interfaces. At the moment XUL specifications cannot
be rendered to multiple user interfaces including small devices.

4. RELATED WORK

In [16], van Welie describes how patterns can be used as tools for User
Interface Design. He recognised that different kinds of patterns should be
formatted in a way, which promotes best its purpose. Within our framework
patterns are intended to describe model fragments. Each model is described
differently and thus we have introduced different kinds of patterns which
have their own formalisation.

According to van Welie’s patterns are applicable in different contexts
and for each context the adaptation of pattern is necessary. We have adopted
this principle and attributed our patterns with variables, which are place-
holders for the particular context of use, in which the pattern will be applied.

Van Welie also published a pattern language for interaction design [17].
However all patterns are documented in an informal, narrative way which
makes it nearly impossible to implement them in development tools. The
overall goal of our approach is the computer aided generation of models,
which incorporates patterns as building blocks for re-use. Therefore in this
paper we have suggested a possible formalization of patterns.

In [8], Molina also recognised that the mostly-informal description of to-
day’s patterns is not suitable for processing them by tools. Within his Just-
Ul framework, a more precise description of patterns is necessary, which can
be interpreted by software tools like validators or code generators. A set of
conceptual patterns which realise so-called interaction units is proposed. Ac-

208 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

cording to Molina frequent scenarios in user interfaces can be specified with
very little effort by combining these interaction units. Molina’s patterns are
closely connected to the underlying domain object model. They focus on ob-
ject manipulation and visualization. Compared to our approach Molina’s
conceptual patterns apply primarily to our presentation model. However, in
his work it is also shown how a task description can be extracted and hence
the patterns can be applied to underlying task model as well.

Traetteberg [13] recognized that multiple representations should be used
in the Ul design process and that a uniform modelling language must support
the transition between the various presentations. In his work, he suggested
RML, TaskMODL and DiaMODL as interlocking fragments of a uniform
language for task, domain and dialog modelling. As TaskMODL is quiet
similar to our task model DiaMODL is based on the Pisa Interactor and the
UML Statecharts notation. Interactors are used to describe the functionality
and behaviour of concrete interaction objects, whereas statecharts model the
information flow and activation and deactivation of interactors [13].

On the contrary, our dialog model only groups tasks to dialog views and
defines transitions between the various dialog views. This allows an earlier
generation of a non-functional prototype and thus, earlier user evaluation
and earlier iterations. In comparison to Treetteberg’s work one could say that
within our dialog model the generic interactor is assigned to each task.

Within our framework the definition of interaction objects is described
by the presentation model, whereas Tratteberg specifies interactors already
during dialog modelling. He uses Statecharts to model the dynamic behav-
iour including the information flow. At the moment our framework focuses
on the generation of non-functional interface prototypes. Thus, the issue of
modelling the dynamic behaviour and the information flow between interac-
tors has not been tackled in this work.

In parallel to our approach Tretteberg also suggested to formulate model
fragments as patterns in order to facilitate the re-use. In particular he points
out the need for patterns in order to describe the mapping between concrete
dialog elements to abstract interactors (Presentation and Layout Patterns)
and the mapping from tasks to dialogs (Dialog Patterns).

S. CONCLUSION

In this paper, we demonstrated how patterns could be used in conjunction
with models to support the Ul development process. The core ideas we in-
troduced were highlighted by some examples.

In our model-based framework the application of patterns has a number
of advantages. First, they can reduce the time required for Ul engineering

Patterns in Model-Based Engineering 209

since for many of the common problems, some pattern solutions already ex-
ists. Moreover, a consequent use of Ul patterns help in the comprehension of
the system for future maintenance.

In particular we have shown which patterns are suitable for several mod-
els. In the case of presentation and layout patterns we have suggested a pos-
sible formalisation of patterns using Velocity XUL templates. Even though
the validity of our approach can not be formally proven, through the realiza-
tion of the TaskPatternWizard we have experienced that the concept of pat-
terns is applicable and realizable at least for the task model. Furthermore we
are progressing in developing a tool that processes and applies dialog pat-
terns.

For the future we aim to develop an all-embracing tool set that supports
the integration of patterns into all steps of our model-based framework. We
wish to ground our pattern-driven Ul engineering methodology as solidly as
possible on empirical data and theoretical principles. Furthermore we will
validate and compare design patterns with usability tests, particularly for
new and experimental patterns and extend our framework to be able to gen-
erate functional Ul prototypes. In particular we will try to model the infor-
mation/data flow between the various Ul elements.

REFERENCES

[1] Balzert, H., From OOA to GUIs: The JANUS System, Journal of Object-Oriented Pro-
gramming, Vol. 8, No. 9, February 1996, pp. 43-47.

[2] Breedvelt, 1., Paterng F., and Severiins, C., Reusable Structures in Task Models, in M.D.
Harrison, J.C. Torres (eds.), Proceedings of 4" International Eurographics Workshop on
Design, Specification, and Verification of Interactive Systems DSV-IS’97 (Granada, 4-6
June 1997), Springer-Verlag, Vienna, 1997, pp. 251-265.

[3] Eisenstein, J., Vanderdonckt, J., and Puerta, A., Model-Based User-Interface Develop-
ment Techniques for Mobile Computing, in J. Lester (ed.), Proceedings of 5" ACM Inter-
national Conference on Intelligent User Interfaces IUI'2001 (Santa Fe, 14-17 January
2001), ACM Press, New York, 2001, pp. 69-76.

[4] Forbrig, P., Dittmar, A., Reichart, D., and Sinnig, D., User-Centred Design and Abstract
Prototypes, in Proceedings of BIR’2003 (Berlin, September 2003), SHAKER, 2003, pp.
132-145, accessible at http://www.dsinnig.de/pdfs/User_Centred_Design.pdf

[S] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of Ob-
Jject-Oriented Software, Addison-Wesley, Boston, 1995.

[6] Mori, G., Paterng F., and Santoro, C., Tool Support for Designing Nomadic Applica-
tions, in Proceedings of the 8" ACM International Conference on Intelligent User Inter-
faces IUI'2003 (Miami, 12-15 January 2003), ACM Press, New York, 1993, pp. 141-
148, accessible at http://portal.acm.org/citation.cfm?doid=604045.604069

[71 McCall, J., Richards, P., and Walters, G., Factors in Software Quality, Three Volumes,
NTIS AD, November 1977.

[8] Molina, P., Belenguer, J., and Pastor, O., Describing Just-UI Concepts Using a Task No-
tation, in J. Falc® e Cunha, N.J. Nunes, J. Jorge (eds.), Proceedings of 10 " International
Workshop on Design, Specification and Verification of Interactive Systems DSV-IS’03

210 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

(Madeira, 4-6 June 2003), Springer-Verlag, Berlin, 2003, pp. 218-230.

[91 Paterng F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 2000.

[10] Pressman, R.S., Software Engineering, A Practitioner Approach, McGraw-Hill, Berk-
shire, 2001.

[11] Sinnig, D., Javahery, H., Forbrig, P., and Seffah, A., The Complicity of Model-Based Ap-
proaches and Patterns for Ul Engineering, in Proceedings of BIR’03 (Berlin, September
2003), pp. 120-131, accessible at http://www.dsinnig.de/pdfs/BIR_Pattern_Models.pdf

[12] Souchon, N., Limbourg, Q., and Vanderdonckt, J., Task Modelling in Multiple Contexts
of Use, in P. Forbrig, Q. Limbourg, B. Urban, J. Vanderdonckt (eds.), Proceedings of 9"
International Workshop on Design, Specification and Verification of Interactive Systems
DSV-IS 2002 (Rostock, 12-14 June 2002), Lecture Notes in Computer Science, Vol.
2545, Springer-Verlag, Berlin, 2002, pp. 59-73.

[13] Trateberg, H., Dialog Modelling With Interactors and UML Statecharts —A Hybrid Ap-
proach, in J. Falc® e Cunha, N.J. Nunes, J. Jorge (eds.), Proceedings of 10" Interna-
tional Workshop on Design, Specification and Verification of Interactive Systems DSV-
IS°03 (Madeira, 4-6 June 2003), Springer-Verlag, Berlin, 2003, pp. 346-361.

[14] Trateberg, H., Using User Interface Models in Design, in Ch. Kolski, J. Vanderdonckt
(eds.), Proceedings of 4" International Conference on Computer-Aided Design of User
Interfaces CADUI'2002 (Valenciennes, 15-17 May 2002), Kluwer Academics Publish-
ers, Dordrecht, 2002, pp. 131-142.

[15] Vanderdonckt, J., Limbourg, Q., and Florins, M., Deriving the Navigational Structure of
a User Interface, in M. Rauterberg, M. Menozzi, J. Wesson (eds.), Proc. of 9" IFIP TC
13 Int. Conf. on Human-Computer Interaction INTERACT 2003 (Zurich, 1-5 September
2003), IOS Press, Amsterdam, 2003, pp. 455-462.

[16] van Welie, M., van der Veer, G.C., and Eliens, A., Patterns as Tools for User Interface
Design, in J. Vanderdonckt, Ch. Farenc (eds.), Proceedings of International Workshop
on Tools for Working with Guidelines TFWWG’2000 (Biarritz, 7-8 October 2000),
Springer-Verlag, London, 2000, pp. 313-324.

[17] van Welie, M., Patterns in Interaction Design, 2003, accessible at http://www.welie.
com.

[18] XUL, 2003, accessible at http://www.xulplanet.com/

