
Chapter 10 

A DISTRIBUTED USAGE MONITORING
SYSTEM

Philip Gray1, Iain McLeod1, Steve Draper2, Murray Crease3, and 
Richard Thomas4

1Computing Science Department, University of Glasgow,
17 Lilybank Gardens – Glasgow G12 8QQ (Scotland) 
E-mail: {pdg,mcleodia}@dcs.gla.ac.uk
URL: http://www.dcs.gla.ac.uk/~pdg –
http://www.dcs.gla.ac.uk/contacts/searchresults.cfm?rowid=362
Tel: +44 141 330 {4933, 4256} – Fax: +44 141 330 4913
2Psychology Department, University of Glasgow,2

58 Hillhead Street – Glasgow G12 8QB (Scotland)
E-mail: s.draper@psy.gla.ac.uk
URL: http://www.psy.gla.ac.uk/~steve/
Tel: +44 141 330 4961 – Fax: +44 141 330 5086
3NRC-IIT e-Business, 46 Dineen Drive, Fredericton – New Brunswick E3B 9W4 (Canada)
E-mail: murray.crease@nrc-cnrc.gc.ca 
URL: http://iit-iti.nrc-cnrc.gc.ca/personnel/crease_murray_e.html 
Tel: +1 506 444 0496 – Fax: +1 506 444 6114
4Computer Science & Software Engineering, The University of Western Australia,
35 Stirling Highway – Crawley 6009 (Australia)
E-mail: rct@csse.uwa.edu.au
URL: http://www.cs.uwa.edu.au/~richard 
Tel: +61 8 9380 2733 – Fax: + 61 8 9380 1089

Abstract We are developing a distributed computer system that supports usability and
interaction studies, by handling the collection, storage and analysis of usage
data, such as that generated by user-computer interaction and associated sens-
ing devices (e.g., cameras). Data sources may be distributed as may be the data 
repositories and data consumers (other computer processes and human investi-
gators). The system supports dynamic configuration of the entire process, in-
cluding changes in the goals of the investigation itself. In this paper we de-
scribe the system’s key features, including a generic and evolvable data trans-
port and processing network, a set of tools for capturing and cleaning usage
data, a tool for instrumenting software for data capture, and a system for man-
aging the entire process. We also report on several trials of the system, identi-
fying successes, failures, lessons learned and areas for future development.

Keywords: Usability testing tools, Usage monitoring. 
121

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 121–132.
© 2005 Kluwer Academic Publishers. Printed in  the Netherlands.



122 Gray, McLeod, Draper, Crease, and Thomas

1. INTRODUCTION

Usage data is central to investigative activities in a number of domains,
including usability testing and educational research. In these studies data is 
taken primarily from events generated by user manipulation of keyboards,
mice and other computer input devices, along with other observational data,
such as screen dumps and images or video streams from cameras. Although
there are a number of software tools that support the capture, storage and 
analysis of such data, it remains difficult to manage such usage data, espe-
cially when the data is being collected from a number of machines, perhaps
distributed over a large area and the analysis is being carried out by a num-
ber of researchers remotely from the data collection.

The Grumps Project at the University of Glasgow has been developing a 
set of software tools to address the opportunities and challenges of distrib-
uted usage monitoring, especially in the case of exploratory studies that do 
not have clearly defined and unchanging initial hypotheses and assumptions. 
We call studies of this type REDDIs: Rapidly Evolving Data Driven Investi-
gations [9]. Rather than focusing on a static set of fixed data sources such as 
log files, it focuses on explorations by an investigator where the question 
evolves as much as the answer, as in data mining. The findings are as likely 
to be an unanticipated pattern in the data as a specific answer to a defined 
question. Calling them ‘investigations’ rather than ‘experiments’ highlights
the fact that they may or may not have a prior hypothesis, let alone manipu-
late the circumstances being studied. These investigations depend upon data, 
and the possibility of collecting it easily (as opposed to using other methods, 
such as surveying human users); they are as much about what it is possible
to learn from these sources as about answering prior questions. To call them 
“data driven” is to further emphasise their orientation to a particular techni-
cal opportunity. On the other hand, and in contrast to their log file precursors 
and to data mining, the possibility is now emerging of changing or post-
processing the data collected rapidly, in response to new interests, guesses,
and hypotheses of the investigator; hence they are potentially “rapidly evolv-
ing”, and so also not simply passive, post hoc, archaeological analyses of 
what comes to hand.

This paper describes the Grumps software framework designed to sup-
port REDDIs and the current tools that reside in that framework, for soft-
ware instrumentation, event capture, event transport, processing and storage,
and data preparation and analysis. Section 2 describes the key features of our
approach to supporting usage monitoring. Section 3 surveys the framework 
and tools. Section 4 discusses the results of some early evaluations of our
prototypes, while Section 5 looks at some related work. The paper concludes 
with a consideration of future directions for our work.



A Distributed Usage Monitoring System 123

2. THE GRUMPS APPROACH

In the Grumps Project we have begun to develop a model of usage-based
studies. At a high level of abstraction, such studies can be represented by the
diagram in Fig. 1.

Figure 1. Key Aspects of Usage-Based Studies. 

The three key constituent aspects of a usage-based study are: 
Investigatory context. This includes the investigation goals or research
questions, the investigators, the resources (subjects, machines, time,
money) and constraints that motivate and drive the rest of the investiga-
tion effort.
Data requirement. This describes the sources of raw usage data and 
other related data, the process of preparing it for study and the mecha-
nisms for communicating it and storing it as necessary. 
Analytic activity. The activity that relates data to investigation goals, by
finding relevant patterns, correlations, etc.
The relationship of these three aspects – the ways in which they influence

or determine aspects of one another – depends on the type of investigation.
Thus, in the case of formal, hypothesis-driven experiments, the investigation
goals determine a fixed formulation of the analytic activity (the experimental
plan) and the data requirement is derived from that. In the case of most data 
mining, the analysis and investigatory contexts cause changes in one an-



124 Gray, McLeod, Draper, Crease, and Thomas

other, but typically there is no change to the data collection. However, in the 
case of REDDIs, it is possible to start with any aspect of the investigation 
and derive the other aspects as needed. Furthermore, in the course of the in-
vestigation, the aspects may change; for example, a usage monitoring oppor-
tunity may arise that stimulates research questions, leading to analysis that 
generates new questions which in turn require new data to be gathered, per-
haps of a new form. 

The Grumps software framework, designed to support both experiments 
and REDDIs, is a dynamically configurable system that implements the data 
requirement aspect. The key features of our system are:

Generic. The system is not restricted to any predetermined set of data 
sources. It can handle any source of usage data, direct (e.g., keystroke 
logs) and indirect (camera output), even including the results of think-
aloud protocol collection, as long as that data can be described in our 
simple usage data model (Section 3.1.1) .
Fundamentally distributed. Subject to security access, the sources of 
data can located anywhere, and the data processors and consumers can
be anywhere (Section 3.1.2). 
Component-based. A Grumps Usage Data System consists of a set of 
dynamically deployable components including data sources (event gen-
erators), data sinks (file archives or databases), routing components and 
data processors (filters, abstractors, aggregators). The components can be
modified through run-time change of parameters as well as by dynamic 
replacement (Section 3.1.2).
Heterarchic. It is possible to use (some) Grumps tools usefully in a
stand-alone mode, but also integrated piece-wise fashion, starting from
any point in the usage data handling process. 

3. THE GRUMPS SOFTWARE FRAMEWORK

3.1 Support for Data Capture and Transport

3.1.1 Modelling Usage Data 

Grumps usage data can be created by a number of different devices or
processes. Raw usage data, which is the output from data capture devices, 
therefore, has a simple and flexible structure, to accommodate the variety of 
data being collected and the need to modify it easily into other forms. Raw 
usage data is organized into distinct sequences of usage events, called ses-
sions. A session is a collection of usage events organized around an applica-
tion-significant grouping of usage events. For example, it might be all the



A Distributed Usage Monitoring System 125

events collected from a user-computer interaction from login to logout of a
single user. A session is currently defined as follows:

Raw usage session = <session_id, start_time, end_time, 
user_id, machine_id, exit_reason> 

Events belonging to a usage session are currently defined as follows:
Usage action event = <action_id, session_id, time-

stamp, type, body> 

Session and action ids are unique identifiers for the data items. Time-
stamps provide a way of ordering the events. The body holds variant fields 
determined by the nature of the collection device and its configuration.
These current definitions and indeed our modelling of usage data in general
is still the subject of ongoing work (Sections 4 and 6). 

Examples of a typical instance of a session and a usage action event 
within that session are given in Table 1. This data comes from a relational 
database storing the results of one of our ongoing field trials. This study is 
further discussed in Section 4.1. 

Table 1. Session and event within a session, as logged in a repository.

SessionID StartTime EndTime UserID MachineID UARExitReason

5253 104514285906
3

104514473017
3

87858268 bo715-11-02 User Logged Out 

ActionID Session Time Body Type
143002268 <p>adagide.exe</p>

<wl>58</wl>
<wt>62</wt> <wr>806</wr>

<wb>568</wb> <ws>nor</ws>

9

Note that the event record stores an XML representation of keystroke
data generated by an operating system monitor process.  Event type is some-
times inferrable from the body, but not in the general case (e.g., the body
might be a pixmap generated by a camera). In addition, explicitly including 
the event type helps tools that behave differently based on the event type.

3.1.2 Data Transport and Processing  

Usage data is handled by a network of data processing components. See 
Fig. 2. These components are known as GRUMPS Units (or GUs) and con-
nected in a graph, called a GRUMPSNet [2]. Each GU receives data in the 
form of events, optionally transforms these events (for example compresses 
them or combines events from multiple sources), and passes them to other
GUs in the network. This decouples each step in the data pipeline, facilitat-
ing dynamic reconfiguration of the GrumpsNet in response to changes in in-
vestigatory context, data requirements or analytic activity.



126 Gray, McLeod, Draper, Crease, and Thomas

Figure 2. An example GrumpsNet.

Fig. 2 illustrates a hypothetical GrumpsNet that can be used to support 
many usability studies combining data captured about user activity (via the 
UAR component, Section 3.1.2) and images of the user captured via a web-
cam. The data from these two sources is then combined by connecting them
to the aggregator GU. The aggregator generates “super sessions” that associ-
ates sessions from the two separate streams of captured data, thus creating an
association between the streams. The aggregator’s output is sent to a parallel 
stream viewer GU that displays the output to an investigator in real-time.
Note that the output of the aggregator is also sent to one or more data reposi-
tories. For clarity, this is not shown, but it could be done through an XML-
to-SQL transformation GU. 

Dynamic configuration and reconfiguration of a GRUMPSNet is done 
through Control Events.  A Control Event contains code which can be sent to 
a GU and executed remotely.  Values can also be returned via reply events.  
In this way, components of the network can be connected to or disconnected 
from each other, or even replaced altogether by components with different 
functionality.  A GU can also be interrogated via standard control events to 
bind, unbind, edit and discover properties at runtime.  These properties con-
tain information about the current state of the GU – by registering remote 
listeners on the properties, other parts of the network can keep track of the
state of a GU and even veto changes. For example, our data collection net-
work in Fig. 2 could be reconfigured to add a GU between the two sources
and the aggregator that controls the sources, switching off video collection
during a period with no user activity.



A Distributed Usage Monitoring System 127

3.1.3 Data Production 

We have produced several different data capture devices that can be con-
nected to a GrumpsNet. These include: 

User Action Recorder. This is a tool, written in C++, that registers with
operating system hooks in Microsoft Windows and captures keystrokes,
window focus and mouse events. To provide user privacy, it can be con-
figured to provide various levels of obfuscation of user data (e.g., replac-
ing specific characters by a single generic alphanumeric character). 
Specially instrumented Java applications. We have developed a sys-
tem, iGuess [8], that allows the customizable instrumentation of an ex-
ecutable Java application (no source code is needed), inserting a Grumps
Unit into the instrumented application.
Independent applications. We have constructed a Grumps Unit tailored 
for the capture of images from a webcam.
In general data sources constructed via any of these three methods can

provide three levels of increasing power, depending on their conformance 
with the Grumps data and control models. At the lowest level, any compo-
nent that can produce data (e.g., write data to a file) is a potential Grumps 
data source. Clearly, in this case the data format may limit the utility of the 
usage data, since it does not conform to the Grumps schema and thus may be 
inappropriate for some uses. Sources that produce data conforming to the
Grumps schema, on the other hand, can be processed using our set of data 
cleaning, preparation and analysis tools (Section 3.2). Finally, data sources 
that offer a control interface can be dynamically configured at run-time as 
well, providing the maximum level of Grumps functionality. 

3.2 Support for Data Preparation and Analysis

Once collected data must be cleaned, transformed to make it amenable
for analysis and subjected to additional processing to extract information
(e.g., statistical analysis). In the Grumps framework these operations can be
performed:

By Grumps components in the network, e.g., prior to storage in a reposi-
tory, filtering, abstraction, aggregation, etc.
As relational operations on database tables. 
Via processing using other general and special purpose utilities.

As part of field trials (Section 4.1) we have constructed a number of use-
ful general purpose data preparation routines, packaged as T-SQL stored 
procedures. We have also built a viewer for parallel data streams, useful for 
visualising heterogeneous sequential data.



128 Gray, McLeod, Draper, Crease, and Thomas

4. EARLY USES OF THE FRAMEWORK

4.1 Evaluation and Field Trials

We have tested components of the Grumps framework in several settings, 
including:
1. Two data capture episodes involving a first year undergraduate university 

programming laboratory; a third has now been running for 6 weeks.
2. A study of the effects of interruption on user behaviour.  
3. A study of the “Think Aloud Screen” at Simula Labs in Norway [6]. 

These studies have been quite different, enabling us to examine issues
arising from the range of usage-based studies, including: 

Data capture constraints. The programming study had strong security 
and engineering constraints. The data had to be anonymised at source
and had to run with minimal disruption to network and users. 
Scale. The two programming lab studies were carried out over several 
months, the second collecting over four million actions from 141 stu-
dents. The study at Simula involved about 50 users over several sessions.
The interruption study, on the other hand, is collecting data in 1 week 
sets from a total of four users.
Collaboration. The programming lab study involved several concurrent 
investigations involving different researchers located in the UK and Aus-
tralia. The Norwegian study and the Interruption study have single inves-
tigations.
Investigation Type. The studies have ranged from highly exploratory
studies to well-defined experiments. Thomas et al. [9] presents a brief 
account of the use of the Grumps system in of the programming labora-
tory studies, identifying issues of data capture, transport, cleaning, prepa-
ration and analysis.

4.2 Lessons Learned

While we anticipated that the support of REDDIs would demand a high
degree of flexibility across every aspect of data collection, storage and proc-
essing, we have found flexibility to be important for other reasons, too. 

GrumpsNet, due to its component based nature, affords many different 
connection methods. For example, “GrumpsNet Lite”, a version of Grumps-
Net uses local caching of events in files in transport rather than direct 
streaming of events across the network. This proved to be useful in the pro-
gramming lab studies, reducing network traffic during peak times. Its sim-



A Distributed Usage Monitoring System 129

plicity also appealed to the network administrative staff who were under-
standably concerned to run a system with a high degree of robustness and re-
liability and a minimum impact on other processes.

In order to support different data sources, low-cost exploration of differ-
ent questions and the sharing of data between investigations, we have found 
it important to keep the original raw data in a form that has minimal fixed at-
tributes. XML has proved useful as a representation for the variant part of 
the data, since it is easy to transform into other formats via XSL, e.g. SQL 
for storage, SMIL for visualisation, HTML for printing.

We have found that there are important and costly demands and con-
straints on individual studies that have emphasized the importance of con-
figurability. For example, some studies require heavyweight anonymisation
and data access controls that prevent subjects from viewing usage data tem-
porarily stored on their machines. For other investigations, such features are 
only an impediment to efficient research activity and are not needed. A 
framework like Grumps should make it possible to customise such facilities 
with minimum impact on the rest of the usage monitoring system.

Raw usage is fundamentally temporal and thus sequential. This has im-
plications for the way the data is modelled and handled. In many cases it is 
important to have direct sequence information, independent of timestamp,
both for efficiency in performing sequencing operations (e.g., over millions 
of events) and for checking that no events have been lost (e.g., dropped 
video frames due to an unreliable network connection). Synchronisation of 
events from independent data sources remains an area for further work.

Complicated investigations can involve a large number of concurrent 
data sources, a complicated transport network, considerable data cleaning 
and data preparation for analysis. This results in many intermediate files and 
database tables, not to mention a range of subsequent complex analyses, 
again requiring intermediate results to be stored. All of this complexity can 
place severe management demands on investigators. Particularly in the pro-
gramming lab studies we have become aware of the importance of higher-
level investigation management support and the need for reusable represen-
tations and packaged processing routines. Handling intermediate processing 
has become a key bottleneck in the process and is now a major focus of our
attention for future development.

5. RELATED WORK

There are many existing systems that support usage-based studies, in-
cluding commercial products and research systems. These range from built-
in logging facilities, like those in the BlueJ programming environment [7]



130 Gray, McLeod, Draper, Crease, and Thomas

through web testing systems such as WebQuilt [5] to full-featured human
behaviour experimentation environments like those from Noldus (www.
noldus.com). Such systems, where loggable events are determined by what 
is exposed by the system or related medium (e.g., http requests), can be effi-
cient, but its value depends on the match to monitoring needs. Thus, a sys-
tem that records interactions only at the command level can miss important 
information (e.g., whether the command is invoked via menu, accelerator or
toolbar), while logging at too low a level of abstraction can generate too 
much data. The Grumps system makes it possible to tailor the level of ab-
straction to the requirements of the problem. This was used successfully in 
our programming lab studies when, for the second study, specialised com-
mand logging was added to the programming environment [9].

The KALDI system [1] provides integration of data capture, transport 
and analysis. However, it has opted to capture usage data via one approach, 
viz., specialising the Java windowing classes. This restricts the genericity of 
the system compared to Grumps.

Hilbert and Redmiles’ internet-based usage data capture system [4] pro-
vides powerful distributed transport of events and is designed to deal with 
the problems of scale arising from large-scale usage studies. However, their
code instrumentation approach requires modification of source code.

The Grumps data transport system is similar to DataGrid [3] which uses a 
dataflow graph to represent the processing of data for experimental pur-
poses. In DataGrid, processing is specified in a language that can be used to 
construct and configure the data processing. We have not yet done this in
Grumps, although it should be feasible given the dynamic configurability of 
the GrumpsNet infrastructure (Section 6 below).

6. CONCLUSIONS AND FUTURE WORK

The Grumps Usage Monitoring System offers a generic approach to the 
support of both experiment and exploratory studies of human-computer in-
teraction. It is scalable, dynamically configurable and able to support the 
evolution of a study as findings generate new research and evaluation ques-
tions.

Although we have built and developed a working prototype and learned 
from its deployment in real trials of different kinds, there remains much to 
be done to achieve our aims. A key requirement, that we are tackling at the 
moment, is description languages for all three aspects of an investigation. In 
particular we need to be able to describe all potential data that can flow
through a GrumpsNet plus the capture, transport and processing of the data 
performed by the network. Specifications in this language can be generated 



A Distributed Usage Monitoring System 131

by tools like iGuess and used to create a GrumpsNet and to control its opera-
tion at runtime; the specifications can also be used to describe tracked 
changes in the system. These descriptions might also be reused between 
studies, forming investigatory patterns.

The current set of Grumps data preparation tools have not been fully in-
tegrated into GrumpsNet. In particular, we have not addressed the question
of tool support for constructing sequences of these operations using higher
level descriptions so that we can replace one implementation (e.g., a data-
base macro) with another (e.g., a special purpose grumps component). This 
will be a key requirement for the GrumpsNet modelling language. Also,
iGuess, our code instrumentation system, is limited to Java at present. How-
ever, the same approach is applicable to any bytecode-based language, e.g.,
C#. We intend to extend iGuess to handle this and possibly other languages,
as opportunities allow. 

ACKNOWLEDGEMENTS

This work was funded by EPSRC Grant GR/N38114. We wish to thank 
Malcolm Atkinson, Margaret Brown, Quintin Cutts, Huw Evans, Gregor
Kennedy, Rebecca Mancy and Karen Renaud, who have all contributed to
the work described in this paper.

REFERENCES

[1] Al-Qaimari, G. and McRostie, D., KALDI: A Computer-Aided Usability Engineering
Tool for Supporting Testing and Analysis of User Performance, in Blandford, A., Van-
derdonckt, J., Gray, Ph.  (Eds.), Interactions sans frontières – Interactions without fron-
tiers, Proceedings of the Joint AFIHM-BCS Conf. on Human-Computer Interaction
IHM-HCI’2001 (Lille, 10-14 September 2001), Vol. I, Springer-Verlag, London, 2001,
pp. 153-169.

[2] Evans, H., Atkinson, M., Brown, M., Cargill, J., Crease, M., Draper, S., Gray, P.D., and 
Thomas, R.C., The Pervasiveness of Evolution in GRUMPS Software, Software: Practice
and Experience, Vol. 33, No. 2, February 2003, pp. 99-120. 

[3] Foster, I., Vöckler, J., Wilde, M. and Zhao, Y., The Virtual Data Grid: A New Model and 
Architecture for Data-Intensive Collaboration, in Proceedings of 1st Biennial Conference
on Innovative Data Systems Research CIDR’2003 (Asilomar, 5-8 January 2003), acces-
sible at http://citeseer.nj.nec.com/554758.html

[4] Hilbert, D.M. and Redmiles D.F., Extracting Usability Information from User Interface
Events, ACM Computing Surveys, Vol. 32, No. 4, December 2000, pp. 384-421. 

[5] Hong, J.I., Heer, J., Waterson, S., and Landay, J.A., WebQuilt: A Proxy-based Approach
to Remote Web Usability Testing, ACM Transactions on Office Information Systems,
Vol. 19, No. 3, July 2001, pp. 263-285, accessible at http://citeseer.nj.nec.com/
454004.html.



132 Gray, McLeod, Draper, Crease, and Thomas

[6] Karahasanovic, A., Anda, B., Arisholm, E., Hove, S.E., Jørgensen, M., and Sjøberg, D.,  
A Think-Aloud Support Tool for Collecting Feedback in Large-Scale Software Engineer-
ing Experiments, Simula Research Laboratory Technical Report 2003-7, 2003, accessi-
ble at http://www.simula.no/publication_one.php?publication_id=603.

[7] Kölling, M., Quig, B., Patterson, A., and Rosenberg, J.,  The BlueJ System and its Peda-
gogy, The Journal of Computer Science Education, Special Issue on Learning and
Teaching Object Technology, Vol. 13, No. 4, December 2003, pp. 249-268.

[8] Mcleod, I.A., IGUESS: Instrumentation of Bytecode in the Production of Grumps Event
Sources, B.Sc. thesis, University of Glasgow, Glasgow, 2003. 

[9] Thomas, R.C., Kennedy, G.E., Mancy, R., Crease, M., Draper, S., Evans, H., and Gray, 
P.D., Generic Usage Monitoring of Programming Students, in Proc. of Australian Soci-
ety for Computers in Learning in Tertiary Education ASCILITE’2003 (Adelaide, 7-10
December 2003), The University of Adelaide, Adelaide, 2003.




