
Chapter 1

THE INFLUENCE OF IMPROVED TASK MODELS
ON DIALOGUES

Anke Dittmar and Peter Forbrig
Department of Computer Science, University of Rostock
Albert-Einstein-Straße 21 – D-18051 Rostock (Germany)
E-Mail: {ad,pforbrig}@informatik.uni-rostock.de
Tel.: +49-381-498 343{2,4} - Fax: +49-381-498 3426

Keywords: Abstract user interface models, Model-based design, Task modelling.

1. INTRODUCTION

The development of user interfaces (UIs) is a co-operative, multi-
disciplinary process. In particular, the views of all stakeholders need to be
considered and agreements must be found. Model-based approaches accept
this nature of design processes as to be seen e.g. in many CADUI-papers.
Different declarative models and their relationships are used to represent im-
portant aspects of human-computer interaction on a conceptual level. For
example, task models describe the actions and the goals of users and their
domain knowledge. Abstract and concrete dialogue models are focused on
the description of UIs themselves. There can also exist models of users or of
specific environmental circumstances (e.g., specific tools and platforms). As
a consequence, model-based techniques support the development of design
spaces and prevent designers from following “first-solution strategies” too
often.

1

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 1–14.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract Model-based approaches support a flexible design process and the develop-
ment of consistent device-dependent applications. However, their full strength
can only be achieved by expressive sub-models allowing to capture conceptual
knowledge as early as possible. In this paper we demonstrate how improve-
ments to task models, which can be seen as the heart of model-based tech-
niques, help to develop more appropriate models and prototypes of user inter-
faces (UIs).

2 Dittmar and Forbrig

In this paper, we concentrate on formal models about tasks, actions and
task domains and their influence on abstract dialogue models and, to some
extent, on abstract prototypes of UIs. Section 2 gives background informa-
tion and points out some limitations of current approaches. Based on a for-
malization of domain knowledge (3.1) a hybrid notation for describing ac-
tions and states is suggested (3.2). This leads to more convenient task de-
scriptions. An exploration of instantiating (3.3) and composing (3.4) actions
evokes the reconsideration of temporal descriptions (3.5). Section 4 dis-
cusses the influence of the suggested improvements on developing abstract
UI models. It is further argued that similar, but refined modelling techniques
are applicable to task modelling as well as to dialogue modelling. Section 5
gives some conclusions. The ideas are illustrated by an example and tool
support is discussed.

2. FROM TASKS TO DIALOGUES - BACKGROUND

Most techniques which support a task-driven design process of UIs
mainly exploit task structures (e.g., [2,10,15,20]). Fig. 1 depicts part of a
task model from [10] in CTTE-notation [15]. Task hierarchies, task types
and temporal relationships between sub-tasks are used to draw conclusions
concerning the structure and the behaviour of corresponding UIs.

Figure 1. Part of a task model from [10].

A tool we developed to design dialogue models and to generate appropri-
ate abstract prototypes of UIs is illustrated in Fig. 2. The designer can importaa
a task model ((1) in Fig. 2) and assign several dialogue models to it which
are based on dialogue graphs [5] ((2) in Fig. 2). A dialogue model consists
of a set of nodes (views) and a set of transitions. Each view contains a set of
elements which are created by mapping tasks to the view ((3) in Fig. 2). A
transition is a directed relation between an element of a view and a view. It
is distinguished between 5 types of views (single, multi, modal, complex and
end view) and 2 types of transitions (sequential and concurrent). A dialogue
model allows the generation of an abstract prototype in a WIMP style which

The Influence of Improved Tasks Models on Dialogues 3

can be animated (Fig. 3). Views are represented by windows, their elements
by buttons and transitions by navigations between windows. In case of a se-
quential transition, the source view becomes invisible and the destination
view will be visible and active if the associated button is pressed. Concurrent
transitions allow for the source view to be visible. The temporal constraints
of the underlying task model enable the buttons of abstract prototypes. In-
consistencies between the navigation structure of a dialogue model and the
temporal relations between sub-tasks are reported.

Figure 2. A dialogue graph assigned to Fig. 1.

Figure 3. An illustration of the generated abstract prototype of Fig. 2.

Our method is similar to [14] insofar as both approaches make the de-
signer responsible for relating tasks to parts of the UI model and supply
some form of model checking. So, we deliberately allowed the designer to
decide which part of the conceptual task structure has to be reflected by the
transition structure of a dialogue model. In the example, a user cannot exe-
cute Search by ID until he has “said” the interface (by navigation) that he
intends to Identify a customer (Fig. 2,3). The sub-task Search a
customer is not directly mapped. In contrast, a grouping of sub-tasks is not
possible in [11]. In [16], a set of task sets (comparable to views in our ap-
proach) is generated by applying heuristics to the enabled task sets of a task
model and by determining so called transition tasks. Approaches like [12,16]
rather try to derive UI models (and abstract prototypes) from task models
than to compare them.

Perhaps, many of us would accept Fig. 4b as part of a UI a system could

4 Dittmar and Forbrig

offer its users to perform the task of Fig. 4a. However, there is no hint in the
task model telling us that a mail has a sender, a receiver and a content. Al-
though models and abstract prototypes as presented so far can already be
used for discussions with stakeholders during early design phases, their lim-
ited expressiveness is obvious.

A main reason is the missing “introduction of domain and/or user models
along with the task model to derive presentation and dialog models” as
stated in [10]. Actually, there are approaches to relate task and domain
knowledge in general (e.g., [7]) and for deriving models of UIs (e.g.,
[1,6,15,17]). However, they are often restricted to specific fields of applica-
tion or the grade of formalisation is too low.

Figure 4. A task model of Manage mail (a) and a possible representation
for sub-task Read mail (b).

Throughout the rest of the paper we will further explore this simplified
mailing example to point out some modelling problems at the level of tasks.
We will show how a stronger formalisation of task models and even minimal
extensions like a new temporal operator can support a more appropriate
mapping on abstract UIs. Let us start with the exploitation of formalised
domain knowledge as proposed above.

3. IMPROVEMENTS TO TASK MODELS

In [3] we suggest to tighten the link between actions and states within
task models. A task is seen as a meta-action which includes a permanent de-
velopment of models about actions, current states and goal states. For com-
pleting a task, humans have to perform a sequence of actions using objects
of their environment (in the role of means and resources).

This results in creating or manipulating other objects (in the role of arte-
facts and side-effects). A deeper discussion can be found in [3]. Addition-
ally, action and task models are defined as objects with a specific structure.
We will use this idea in the following section.

The Influence of Improved Tasks Models on Dialogues 5

3.1 A Formalisation of Domain Knowledge
Objects are specified by sets of attributes (name-value pairs). A pattern-

instance relationship is defined between two objects OPO and P OIO if there is aI
subset of attributes in OPO (a pattern schema) so that we can find for each at-P
tribute A in this subset an attribute A' with the same name in' OIO . The value of
A' has to be an instance of the value of ' A. Consequently, an object can be
characterized intentionally by its attribute structure or extensionally by its
actual set of instances. In addition, partial descriptions can be introduced to
describe special subsets of instances of a (pattern) object. This can be ex-
pressed by partial equations.

Figure 5. Action Manage enriched by preconditions and effects on artefact Mail
(denoted by Pre Eff) and the object description of Mail.

Object Mail (right part of Fig. 5) illustrates the proposed specification
style. It represents a pattern for mail messages. There are partial descriptions
specifying subsets of mail messages (instances) which are received, read, re-
plied or filed by restricting ranges of attribute values (e.g., /1/) and intro-
ducing additional attributes (e.g., /2/). Furthermore, partial descriptions can
be composed of others by using special operators. For example, ReadRe-
plied describes all mail messages which are instances of Read or Re-
plied. Hence, the operator or works on states.

The left part of Fig. 5 shows the enriched action model of Fig. 4a (out-
side an object O a partial description PD of O is denoted by PD(O)). For
reasons of brevity, the artefact role is only considered in this paper. As men-
tioned earlier, actions are special objects. Their hierarchical decomposition
is reflected in their sets of partial descriptions. The partial equation of a basic
action contains predefined operations. For example, we support basic arith-
metic and string operations, operations to read and write attribute values and
to create and delete additional attributes. The partial equation of a non-basic
action specifies the temporal relations between its sub-actions by using tem-
poral operators. Tool support for creating and animating action models is il-

6 Dittmar and Forbrig

lustrated in the appendix. However, some further points are worthy of men-
tion regarding the example.

3.2 A Hybrid Notation for Action Models

Fig. 4a defines a behaviour which was not intended. Fig. 6 shows a STN
with the desired one instead and an equivalent temporal equation. A tempo-
ral description in CTTE-notation is even more complex because the comple-
tion of iterative actions must be described explicitly. In addition, ‘artificial’
nodes must be introduced which destroy the conceptual hierarchical struc-
ture of the model. A hybrid notation as used in Fig. 5 unifies structural and
procedural knowledge and can lead to more concise and, possibly, to more
‘natural’ descriptions than pure state or temporal notations.

The temporal equation /3/ guarantees that a mail message has been re-
ceived before it can be read, replied, or filed. We do not need to specify this
in the preconditions of the actions Read, Reply, and File. On the other
hand, we can express knowledge about requested and resulting states of ob-
jects in preconditions and effects to shorten temporal descriptions. An ex-
ample is the constraint that a mail message has to be an instance of the par-
tial description Read (/4/) in order to reply to it. Of course, consistency
checks of such hybrid models are useful, but their consideration is beyond
the present paper.

Figure 6. A STN with the desired behaviour and an equivalent temporal equation.

3.3 Two-fold Instantiation of Actions

Action models are patterns in a two-fold way. They describe a set of pos-
sible execution sequences of basic actions. In addition, if a pattern object oc-
curs several times in the preconditions and the effects of an action tree it can
be replaced consistently by the same instance. Necessary pattern names can
be indexed (e.g., Mail[1], Mail[2],...) to distinguish between several in-
stances currently used (Section 3.5). An instantiation for Fig. 5 can be found
in the appendix.

The Influence of Improved Tasks Models on Dialogues 7

3.4 Action Composition

As Paul entered his office on Friday morning the phone was ringing. “Hi
Paul. Here’s Stephen. Could you do me a favour and send your source code
for checking the consistency of action models? Could you send some docu-
mentation as well? I have a problem that seems to be quite similar. I’ve sent
you mail. Could you take a look at it? It’s urgent!” Besides Stephen’s mail
Paul has got 7 other messages. And before he started to work on Stephen’s
mail he had to see what Ann has written...

An action model describes sequences of (unconsciously executed) opera-
tions under actual conditions of the domain [8]. Fortunately, humans cannot
plan their whole activity by only one action. In other words, actions are situ-
ated and goal-directed. So, in the scenario above Paul obviously opened his
mailbox to read and answer Stephen’s mail immediately. Why did he react
to Ann’s mail in the next moment?

As mentioned before, we regard a task as a meta-action involving perma-
nent adjustments to situations, goals, and actions. Paul had to combine, for
example, his action models concerning the treatment of Stephen and Ann.
Within a task-oriented approach we try to describe by the envisioned task
model all those tasks which are supposed to be supported by the interactive
system under design. In [9], the term (Target) Composite Task Model is
used. The scenario reveals a phenomenon that often occurs when combining
action models. The resulting structure is not necessarily a concurrent compo-
sition of the single actions. Instead, new actions are introduced to replace a
set of sub-actions from different models. Such replacements can cause fur-
ther restructurings, the creation of auxiliary sub-actions etc.

Figure 7. A composition of actions. Figure 8. Paul has to reply to
mail from Ann immediately…

Fig. 7 shows an action composition for managing many mail messages
which is a more appropriate abstraction from the scenario as e.g. Manage |||
Manage ||| ... because Paul received several mail messages at once. In fact,
every model has to handle different scenarios or lower-level abstractions.

8 Dittmar and Forbrig

Even so it has Manage (Fig. 4a). But, how can we describe, for example,
that Paul has to reply immediately to all mail from Ann? Fig. 8 indicates two
possible solutions. So far, only actions were informed about objects they use
or manipulate.

We extend this uni-directional relation to a bi-directional one. In this
case, an attribute take_part:Manage is added to the (artefact) object
Mail. The partial description FromAnnToPaul_Active(Mail) determines
a subset of sequences of basic actions of Manage. A>>TB means that B has to
be started immediately after finishing A. Hence, if Paul has received mail
from Ann his behavioural description is restricted in the intended way. Fro-
mAnnToPaul_Passive(Mail) specifies an order of states which mail from
Ann to Paul has to go through.

Why can it be useful to ‘source out’ action knowledge to objects acted
upon? We can argue in the same way as in Section 3.2 and even our simple
example shows some advantages. If partial descriptions of actions restrict
the kind of acting on single objects, it is often more convenient to attach
these constraints to the objects themselves. Therefore, we could also weaken
the preconditions in Fig. 7 because attribute take_part in Fig. 8 already
says how to manage a single mail. In other words, take_part “saved” the
knowledge about Manage from Fig. 5 into Fig. 7.

We are well aware that interactive systems have to support users in per-
forming tasks in a variety of combinations under certain social, organiza-
tional and timing constraints. Before temporal operators are reconsidered in
the next section, we would like to point out some effects of task composi-
tion. Roughly speaking, an action A with precondition A and effect E (de-
noted by A{C E}) is described by a composed action CA{CC CE} if CC
guarantees C and E is achieved by CE. However, not only the effect is inter-
esting but also an efficient execution. Let us take the action Man-
ageSingle* of Fig. 7, which allows for an interleaved managing of mail.

It specifies sequences like Select{m1 m1},Read{m1 m1},Select
{m1 m2},Read{m2 m2},Select{m1 m2},Reply{m2 m2},… where ml
is an instance of Mail-List, m1 and m2 are instances of Mail. To observe
the work on one particular mail message we hide all actions from execution
sequences dealing with other mail and we get sequences like Select
{m1 m},Read{m m},Select{m1 m},Reply{m m},Select{m1 m},… .
It is easy to see that the following modification of ManageAll gives better
results (preconditions and effects are omitted).

ManageSingle = Select >> ManageSelected*
ManageSelected = Read [] Reply [] File

The Influence of Improved Tasks Models on Dialogues 9

3.5 Reconsideration of Temporal Operators

The *|-operator. Temporal operators serve to describe some basic com-
position “patterns'” of actions or tasks. The set of operators offered by CTTE
[15] is reproduced in Table 1.

Table 1. Temporal Operators of ConcurTaskTree notation.

[] Choice |> Suspend & Resume
| - | Order independency >> Enabling
| | | Concurrency >>[] Enabling with information exchange
| | | [] Concurrency with in-

formation exchange
* Iteration

[> Disabling […] Optional

With the two-fold instantiation as introduced in Section 3.3, operators
with information exchange are superfluous. By assigning preconditions and
effects, and by following the instantiation rules, information exchange be-
tween sub-actions can even be described more precisely. However, it also
becomes obvious that we need more than the *-operator for action repetition.
In Fig. ?, one action instance of ManageSingle has to be completed en-
tirely before a second one can be started. In reality, humans often perform
similar actions concurrently. A new operator *| is introduced to describe fi-
nite sets of concurrent instances of actions. It is inspired by the replication
operator ! as known from the -calculus [12] (!P P |!P). Thus, Man-
ageSingle*| allows an action instance like Select{m1 m1},Select
{m1 m2},Read {m1 m1},Read{m2 m2},… . Additionally, in order to ex-
plain the full semantics of action repetition, a closer look at the attached ob-
jects is necessary. It makes a difference whether we read mail again and
again (Fig. 5) or whether we repeat ManageSingle from Fig. 7 on differ-
ent mail messages. Fig. 9 illustrates two common instantiation patterns
which generalize above examples. For simplicity, we abstract from partial
descriptions of object O in preconditions and effects. BO can be instantiated
by an arbitrary set of instances of O.

Figure 9. Two instantiation patterns for repetitive actions.

The >>T-operator. In [4], the distinction between task enabling and trig-
gering is discussed. Triggers are proposed because they describe when ac-

10 Dittmar and Forbrig

tions finally occur. The >>T-operator as introduced in the previous section
could be useful for describing the immediate trigger type and, also, for de-
scribing environmental cues if >>T occurs in objects of the task domain.

4. FROM TASKS TO DIALOGUE MODELS

While the focus of task models is more on the description of user needs
abstract dialogue models focus on UIs (that is to say on the description of the
artefact itself) [18]. As we have shown in Section 2, much of the require-
ments on dialogue models can (and should) be derived from task models.
For example, the behaviour of a dialogue model has to obey the temporal
constraints of its task model. Temporal descriptions of tasks can be mapped
now more precisely on dialogue models, a conclusion we can draw directly
from the previous section. So, the dialogue of Fig. 10 which allows for work
on several mail messages concurrently would not be possible for the task
ManageAll (Fig. 7) until ManageSingle * is replaced by Man-
ageSingle *| in the temporal equation of ManageAll.

Figure 10. A dialogue graph for similar concurrent sub-actions (V2 is a multiple view) and
two screenshots of the generated abstract UI-prototype.

However, we can go one step further. The formalization of domain
knowledge also supports a more precise mapping on presentations. Further-
more, an abstract dialogue model (= behaviour + presentation) can be con-
sidered as a specific action model in a specific domain represented by Ab-
stract Interaction Objects (AIOs) [19]. Although mail in Fig. 7 can refer to
‘conventional’ letters we are particularly interested in the subset of email
messages and an appropriate software tool to manage them. A specialty of
interactive systems is that their UIs represent both tools (functionality) and
artefacts. Consequently, AIOs have to be assigned to actions and objects of
the task model or to groups of them in order to specify a UI. For the descrip-
tion of AIOs, the same mechanisms as introduced in Section 3 can be used.

The Influence of Improved Tasks Models on Dialogues 11

It is argued in [10] that different notations for task models and UI models are
of advantage because these models are built by different people and are used
independently. However, looking at object-oriented concepts and notations,
for example, they are applied in very different context AIOs specify at an
abstract level which parts of the underlying objects are visible, enabled, or
active at which stage of execution. Abstract user actions are represented by
function calls, navigation and data input. We can take a look at the example
of Fig. 7 to roughly illustrate this idea. We should especially note the map-
ping of actions to view V1 (Fig. 10). For simplicity, an AIO associated to an
object O is denoted by R_O. R_A is enabled/disabled if action A is en-
abled/disabled in the underlying action model.

Figure 11. Part of an abstract user interface model.

Fig. 11 shows part of an appropriate abstract UI model. For example, the
partial description Active(V1) in the precondition of fctCall(Receive
All) defines that view V1 has to be active. By executing fctCall-
(ReceiveAll), action ReceiveAll is completed. This enables the com-
plex action ManageSingle in the action model and, thus, the associated
AIO R_ManageSingle is enabled. If V1 and V2 are instantiated by win-
dows, R_ReceiveAll and R_ManageSingle by buttons and R_MailList
by a list of buttons, we get a presentation similar to the abstract prototype of
Fig. 10. However, the UI description is only complete in connection with the
underlying action model. Again, a hybrid notational approach was applied.

5. CONCLUSION

The pros and cons of using formal models to describe human work and,
in particular, human-computer interaction are well known. On the one hand,
formal models increase the guarantee that task knowledge and decisions
made at a conceptual level are reflected in the final implementation of UIs.
On the other hand, formal models are often rejected because they are “inap-
propriate for capturing the complexity of human experience and activity”

12 Dittmar and Forbrig

[4]. This is certainly true for at least two reasons. Often, formal models
overemphasize a certain perspective on the subject of interest. Furthermore,
some elements of the domain are not included in models but should be.

In this paper, an enriched, but more formalised description of tasks is
proposed. However, the suggested hybrid notation of actions can ease mod-
elling activities. It was shown that these improvements to task models (even
a small modification like the introduction of a new temporal operator) allow
a more precise mapping on abstract UI models. We provide prototypical tool
support for some of our ideas, but there is still much to do. For example,
domain knowledge is not fully exploited to derive abstract presentations.

REFERENCES

[1] Barclay, P.J., Griffiths, T., McKirdy, J., Paton, N.W., Cooper, R., and Kennedy, J., The
Teallach Tool: Using Models for Flexible User Interface Design, in A. Puerta, J. Van-
derdonckt (eds.), Proceedings of 3rd Int. Conf. on Computer-Aided Design of User Inter-d

faces CADUI’99 (Louvain-la-Neuve, 21-23 October 1999), Kluwer Academics Pub.,
Dordrecht, 1999, pp. 139-157.

[2] Dittmar, A. and Forbrig, P., Methodological and Tool Support for a Task-Oriented De-
velopment of Interactive Systems, in A. Puerta, J. Vanderdonckt (eds.), Proceedings of
3rd Int. Conf. on Computer-Aided Design of User Interfaces CADUI’99 (Louvain-la-d

Neuve, 21-23 October 1999), Kluwer Academics Pub., Dordrecht, 1999, pp. 271-274.
[3] Dittmar, A., and Forbrig, P., Higher-order task models, in J. Jorge, N.J. Nunes, J. Falcão

e Cunha (eds.), Proc. of 10th Int. Workshop on Design, Specification, and Verification of
Interactive Systems DSV-IS’2003 (Funchal, June 2003), Lecture Notes in Computer Sci-
ence, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 187-202.

[4] Dix, A., Managing the Ecology of Interaction, in C. Pribeanu, J. Vanderdonckt (eds.),
Proc. of 1st Int. Workshop on Task Models and Diagrams for User Interface Design
TAMODIA’2002 (Bucharest, 18-19 July 2002), Academy of Economic Studies of Bu-
charest, Economic Informatics Department, INFOREC Printing House, Bucarest, 2002,
pp. 7-9.

[5] Elwert, T. and Schlungbaum, E., Dialogue Graphs-A Formal and Visual Specification
Technique for Dialogue Modelling, in J.L. Siddiqi, C.R. Roast (eds.), Proceedings of the
BCS-FACS Workshop on Formal Aspects of the Human Computer Interface FAHCI’96
(Sheffield, 10-12 September 1996), accessible at http://ewic.bcs.org/conferences/1996/
formalaspects/papers/paper13.pdf

[6] Gamboa-Rodriguez, F. and Scapin, D., Editing MAD* Task Descriptions for Specifying
User Interfaces at both Semantic and Presentation Levels, in Proc. of 4th Int. Conf. on
Design, Specification, and Verification of Interactive Systems DSV-IS’97 (Granada, 4-6
June 1997), Springer-Verlag, Vienna, 1997, pp. 193-208.

[7] Johnson, P. and Wilson, S., A Framework for Task-based Design, in Proceedings of the
2nd Czech-British Symposium on Visual Aspects in Man-Machine Systems VAMMS’93d

(Prague, 24-28 March 1993), Ellis Horwood, Chichester, 1993.
[8] Leontiev, A.N., Activity, Consciousness, Personality, Prentice Hall, Englewood Cliffs,

1978.
[9] Lim, K.Y. and Long, J., The MUSE Method for Usability Engineering, Cambridge Uni-

versity Press, Cambridge, 1994.

The Influence of Improved Tasks Models on Dialogues 13

[10] Limbourg, Q., Vanderdonckt, J., and Souchon, N., The Task-Dialog and Task-
Presentation Mapping Problem: Some Preliminary Results, in F. Paternò, Ph. Palanque
(eds.), Proc. of 7th Int. Eurographics Workshop on Design, Specification, Verification of
Interactive Systems DSV-IS’2000 (Limerick, 5-6 June 2000), Lecture Notes in Com-
puter Science, Vol. 1946, Springer-Verlag, Berlin, 2000, pp. 227-246.

[11] Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J., Derivation of a Dialog Model
from a Task Model by Activity Chain Extraction, in J. Jorge, N.J. Nunes, J. Falcão e
Cunha, J. (eds.), Proc. of 10th Int. Conf. on Design, Specification, and Verification of In-
teractive Systems DSV-IS’2003 (Madeira, 4-6 June 2003), Lecture Notes in Computer
Science, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 203-217.

[12] Mori, G., Paternò, F., and Santoro, C., CTTE: Support for Developing and Analysing
Task Models for Interactive System Design, IEEE Transactions on Software Engineering,
Vol. 28, No. 8, August 2002, pp. 797-813. Accessible at http://giove.cnuce.cnr.it/
ctte.html.

[13] Milner, R., Communicating and Mobile Systems: the -Calculus, Cambridge University
Press, Cambridge, 1999.

[14] Navarre, D., Palanque, P., Paternò, F., Santoro, C., and Bastide, R., A Tool Suite for In-
tegrating Task and System Models through Scenarios, in C. Johnson (ed.), Proc. of 8th

Int. Workshop on Design, Specification, and Verification of Interactive Systems DSV-
IS’2001 (Glasgow, 13-15 June 2001), Lecture Notes in Computer Science, Vol 2220,
Springer-Vrlag, Berlin, pp. 88-113.

[15] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 2000.

[16] Paternò, F., and Santoro, C., One Model, Many Interfaces, in Ch. Kolski, J. Vander-
donckt (eds.), Proc. of 4th International Conference on Computer-Aided Design of User
Interfaces (Valenciennes, 15-17 May 2002), Kluwer Academics Publishers, Dordrecht,
2002, pp. 143-154.

[17] Puerta, A., Cheng, E., Ou, T., and Min, J., MOBILE: User-Centered Interface Building,
in Proceedings of ACM Conf. on Human Aspects in computing Systems CHI’99 (Pitts-
burgh, 15-20 May 1999), ACM Press, New York, 1999, pp. 426-433.

[18] Traetteberg, H., Model-based User Interface Design, Ph.D. thesis, Mathematics and
Electrical Engineering, Faculty of Information Technology, Norwegian University of
Science and Technology, 2002.

[19] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection, in Proc. of the ACM Conf. on Human Factors in Computing
Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New York, 1993,
pp. 424-429.

[20] Vanderdonckt, J., Limbourg, Q., and Florins, M., Deriving the Navigational Structure of
a User Interface, in M. Rauterberg, M. Menozzi, J. Wesson (eds.), Proc. of 9th IFIP TC
13 Int. Conf. on Human-Computer Interaction INTERACT’2003 (Zurich, 1-5 September
2003), IOS Press, Amsterdam, 2003, pp. 455-462.

14 Dittmar and Forbrig

APPENDIX: TOOL SUPPORT FOR TASK MODELLING

Task models can also be animated (but in a command-line style only).
For reasons of clarity the output of the following scenario Re-
ceive,Read,Reply,Read,File has been shortened. Actions executable
in the next step of the animation and the actual state of the instance mail1
are shown.

Parsing samples/mail/mail1.in...okay
Possible actions:
(1) [Manage, Receive]
Enter a number between 1 and 1 (0 to exit): 1
Environment: [1] Mail - replied=false read=false con-
tent="hallo paul..."
to="Paul" from="Ann"
Possible actions:
(1) [Manage, Read]
(2) [Manage, _Read] Enter...: 1
Environment: [1] Mail - read=true replied=false ...
%Possible actions:
(1) [Manage, Read]
(2) [Manage, _Read]
(3) [Manage, Reply] Enter...: 3
Environment: [1] Mail - replied=true read=true reply="hallo
Ann"
...
%Possible actions:
(1) [Manage, Read]
(2) [Manage, _Read] Enter...: 1
Environment: [1] Mail - read=true ...
%Possible actions:
(1) [Manage, Read]
(2) [Manage, _Read] Enter...: 2
Environment: [1] Mail - read=true ...
%Possible actions:
(1) [Manage, File] Enter...: 1
Environment: [1] Mail - read=true replied=true content="hallo
paul..."
to="Paul" from="Ann" location="trash" reply="hallo Ann"
Action finished

