

Computer-Aided Design of User Interfaces IV

COMPUTER-AIDED DESIGN
OF USER INTERFACES IV
Proceedings of the Fifth International Conference on
Computer-Aided Design of User Interfaces CADUI’2004
Sponsored by ACM and jointly organised with the Eight ACM
International Conference on Intelligent User Interfaces IUI’2004
13-16 January 2004, Funchal, Isle of Madeira

Tufts University,

Medford, MA, U.S.A.

Université catholique de Louvain,

Louvain-la-Neuve, Belgium

and

Jean Vanderdonckt
Université catholique de Louvain,

Louvain-la-Neuve, Belgium

KLUWER ACADEMIC PUBLISHERS

DORDRECHT / BOSTON / LONDON

Quentin Limbourg

Robert J.K. Jacob

edited by

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 1-4020-3145-9 (HB)
ISBN 1-4020-3304-4 (e-book)

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Sold and distributed in North, Central and South America
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved
© 2005 Kluwer Academic Publishers
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

TABLE OF CONTENTS

Task Modelling

1. The Influence of Improved Task Models on Dialogues 1
A. Dittmar and P. Forbrig

2. Task-Based Web Modelling: The Web Object Life Cycle
 Modelling Concept .. 15

B. Bomsdorf and G. Szwillus

Hypermedia and Web-Based Systems

3. Model-Based Design of Online Help Systems ..29
M. Silveira, S. Barbosa, and C. de Souza

4. A Design Toolkit for Hypermedia Applications Based on
 Ariadne Development Method ..43

S. Montero, C. Fernández, J. M. Dodero, I. Aedo, and P. Díaz
5. SWCEDITOR: a Model-Based Tool for Interactive Modelling of

Web Navigation .. 55
M. Winckler, E. Barboni, Ch. Farenc, and Ph. Palanque

Model-Based Design

6. Behaviour Modeller: The Systematic Generation of Statechart from
Functional Relations and Scenarios for Prototyping User Interfaces 67
A. Urushihara, S. Kanai, T. Kishinami, and T. Tomura

7. MAUI: An Interface Design Tool Based on Matrix Algebra....................81
J. Gow and H. Thimbleby

8. GOLIATH: an Extensible Model-Based Environment to
Develop User Interfaces ... 95
D. Julien, M. Ziane, and Z. Guessoum

9. Transformational Development of User Interfaces with
Graph Transformations... 107
Q. Limbourg and J. Vanderdonckt

Usability Engineering

10. A Distributed Usage Monitoring System ... 121
Ph. Gray, I. McLeod, S. Draper, M. Crease, and R. Thomas

11. Dialogue-Based Design of Web Usability Questionnaires
Using Ontologies .. 133
E.G. Barriocanal, M.A. Sicilia Urbán, L. González, and J. Hilera

12. Creating Contextualised Usability Guides for Web Sites Design
and Evaluation ...147
C. Mariage and J. Vanderdonckt

v

vi

13. Usability Testing of Interaction Components:
Taking the Message Exchange as a Measure of Usability.................... 159
W.P. Brinkman, R. Haakma, and D.G. Bouwhuis

14. InFigura, An Integrated Design Tool.
Exploiting Semantics and Patterns of Web Development. 171
T. Tiedtke, T. Krach, and Ch. Märtin

15. Instrumenting Bytecode for the Production of Usage Data 185
I. Macleod, H. Evans, Ph. Gray, and R. Mancy

Patterns and Re-use

16. Patterns in Model-Based Engineering ... 197
D. Sinnig, A. Gaffar, D. Reichart, P. Forbrig, and A. Seffah

17. Analysis and Design of Model-Based User Interfaces:
An Approach to Refining Specifications towards Implementation 211
P.J. Molina and H. Trætteberg

18. Interaction Templates for Constructing User Interfaces
from Task Models... 223
D. Paquette and K. Schneider

19. Automating a Design Reuse Facility with Critical Parameters:
Lessons Learned in Developing the LINK-UP System.......................... 235
C.M. Chewar, E. Bachetti, D.S. McCrickard, and J.E. Booker

Mark-up Languages

20. XICL–An Extensible Mark-up Language for Developing User
Interface and Components .. 247
L.G. de Sousa and J.C. Leite

21.UIML.NET: an Open UIML Renderer for the .Net Framework 259
K. Luyten and K. Coninx

Ubiquitous Computing

22. The Ubiquitous Interactor – Device Independent Access to
 Mobile Services ... 271

S. Nylander, M. Bylund, and A. Waern
23. Generating Context-Sensitive Multiple Device Interfaces
 from Design ... 283

T. Clerckx, K. Luyten, and K. Coninx
24. A Lightweight Experiment Management System for
 Handheld Computers .. 297

Ph. Gray, J. Goodman, and J. Macleod

vii

Mixed-Reality Systems

25. Generic Interaction Techniques for Mobile
Collaborative Mixed Systems... 309
Ph. Renevier, L. Nigay, J. Bouchet, and L. Pasqualetti

26. The Continuity Property in Mixed Reality and Multiplatform Systems:
A Comparative Study ... 323
M. Florins, D.G. Trevisan, and J. Vanderdonckt

Speech-Based Systems

27. Building Rich User Interfaces for Digital Talking Books 335
L. Carriço, C. Duarte, R. Lopes, M. Rodrigues, and N. Guimarães

28. A Framework for Developing Conversational User Interfaces 349
J. Glass, E. Weinstein, S. Cyphers, J. Polifroni, G. Chung,
and M. Nakano

29. A System For Manipulating Audio Interfaces Using Timbre Spaces... 361
C. Nicol, S. Brewster, and Ph. Gray

viii

Sponsors
Official IUI Web site: http://www.iuiconf.org
Official CADUI Web site: http://www.isys.ucl.ac.be/bchi/cadui

Gold Corporate Sponsors

Microsoft Research
http://research.microsoft.com/
Mitsubishi Electric Research Laboratories (MERL)
http://www.merl.com
Oliva Nova Model Execution Software
http://www.care-t.com

RedWhale software Corporation
http://www.redwhale.com

Other Corporate Sponsors

Conference Reviewing System (CRS)
http://www.conferencereview.com

HSBC
http://www.hsbc.nl

IBM Research
http://www.research.ibm.com/

Kluwer Academics Publishers
http://www.wkap.nl

Lucent Technologies
http://www.lucent.com/
The XIML Forum
http://www.ximl.org/

Conference sponsors

The City of Madeira and Madeira Tourist Authority
Board

Câmara Municipal de Funchal
http://www.cm-funchal.pt/

ix

Scientific sponsors

American Association for Artificial Intelligence
http://www.aaai.org

Association for Computing Machinery
http://www.acm.org

ACM Special Interest Group on Computer-Human Inter-
action
http://www.acm.org/sigart
ACM Special Interest Group on Computer-Human Inter-
action
http://www.sigchi.org
ACM Belgian SIGCHI Chapter (BelCHI)
http://www.belchi.be

Association Francophone d'Interaction Homme-Machine
(AFIHM) http://www.afihm.org

Fonds National de la Recherche Scientifique
http://www.fnrs.be/

Institut d'Administration et de Gestion
http://www.iag.ucl.ac.be/

SIMILAR, The European research taskforce creating
human-machine interfaces SIMILAR to human-human
communication. http://www.similar.cc

Université catholique de Louvain
http://www.ucl.ac.be

University of Madeira
http://www.uma.pt

x

PROGRAM COMMITTEE MEMBERS

Ghassan Al-Qaimari, RMIT University, Australia
Elisabeth Andre, University of Augsburg, Germany
Simone Barbosa, Pontifical University Catholic de Rio de Janeiro, Brazil
Mathias Bauer, DFKI, Germany
Lawrence Bergman, IBM T.J. Watson Research Center, USA
Larry Birnbaum, Northwestern University, USA
Gaelle Calvary, IMAG Grenoble, France
Karin Coninx, Limburgs Universitair Centrum, Belgium
Mary Czerwinski, Microsoft Research, USA
Alain Derycke, University of Lille I, France
Prasun Dewan, University of North Carolina at Chapel Hill, USA
Jean-Daniel Fekete, INRIA Futurs/LRI, France
Steve Feiner, Columbia University, USA
Peter Forbrig, University Rostock, Germany
Elizabeth Furtado, University of Fortaleza, Brazil
Patrick Girard, University of Poitiers, France
Andreas Girgensohn, FX Palo Alto, USA
Mark Green, City University Hong Kong, Honk Kong
Peter Haddawy, Asian Institute of Technology, Thaïland
Kristian Hammond, Northwestern University, USA
Achim Hoffman, University of New South Wales, Australia
Anthony Jameson, DFKI and International University of Germany, Germany
Lewis Johnson, USC/Information Sciences Institute, USA
Peter Johnson, University of Bath, UK
Hermann Kaindl, Vienna University of Technology, Austria
Christophe Kolski, Université de Valenciennes, France
James Lester, North Carolina State University, USA
Henry Lieberman, MIT, USA
Maria-Dolores Lozano, University of Albacete, Spain
Claude Machgeels, Université Libre de Bruxelles, Belgium
Rob Miller, MIT, USA
Tom Moher, University Illinois at Chicago, USA
Faouzi Moussa, University of Tunisia, Tunisia
Kumiyo Nakakoji, University of Tokyo, Japan
William Newman, University College London Interaction Centre, UK
Erik Nilsson, SINTEF, Norway
Niels Ole Bernsen, Odense University, Denmark
Dan Olsen, Brigham Young University, USA
Philippe Palanque, University of Toulouse I, France
Cecile Paris, CSIRO, Australia

xi

Oscar Pastor, University of Valencia, Spain
Fabio Paterno, ISTI-CNR, Italy
Manuel Perez, Virginia Tech, USA
Costin Pribeanu, National Institute for Informatics, Romania
Angel Puerta, RedWhale Corp., USA
Thomas Rist, DFKI, Germany
Kevin Schneider, University of Saskatchewan, Canada
Ahmed Seffah, Concordia University, Canada
Eleni Stroulia, University of Alberta, Canada
Constantine Stephanidis, ICS-Forth, Greece
Pedro Szekely, University of Southern California, USA
Gerd Szwillus, University of Paderborn, Germany
Jean Vanderdonckt, Université catholique de Louvain, Belgium
Charles Wiecha, IBM T.J. Watson Research Centre, USA

ACKNOWLEDGEMENTS

The editors would like to thank particularly Ion Voicu and Cristi Voicu, who
significantly helped in the preparation and the editing of the final version of
this book. They were supported by SIMILAR (www.similar.cc), the Euro-
pean research taskforce creating human-machine interfaces SIMILAR to
human-human communication. The editors would like also to thank particu-
larly the FNRS (Fonds National de la Recherche Scientifique) from Belgium
(www.fnrs.be), who financially supported the conference and the editing of
this book.

Chapter 1

THE INFLUENCE OF IMPROVED TASK MODELS
ON DIALOGUES

Anke Dittmar and Peter Forbrig
Department of Computer Science, University of Rostock
Albert-Einstein-Straße 21 – D-18051 Rostock (Germany)
E-Mail: {ad,pforbrig}@informatik.uni-rostock.de
Tel.: +49-381-498 343{2,4} - Fax: +49-381-498 3426

Keywords: Abstract user interface models, Model-based design, Task modelling.

1. INTRODUCTION

The development of user interfaces (UIs) is a co-operative, multi-
disciplinary process. In particular, the views of all stakeholders need to be
considered and agreements must be found. Model-based approaches accept
this nature of design processes as to be seen e.g. in many CADUI-papers.
Different declarative models and their relationships are used to represent im-
portant aspects of human-computer interaction on a conceptual level. For
example, task models describe the actions and the goals of users and their
domain knowledge. Abstract and concrete dialogue models are focused on
the description of UIs themselves. There can also exist models of users or of
specific environmental circumstances (e.g., specific tools and platforms). As
a consequence, model-based techniques support the development of design
spaces and prevent designers from following “first-solution strategies” too
often.

1

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 1–14.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract Model-based approaches support a flexible design process and the develop-
ment of consistent device-dependent applications. However, their full strength
can only be achieved by expressive sub-models allowing to capture conceptual
knowledge as early as possible. In this paper we demonstrate how improve-
ments to task models, which can be seen as the heart of model-based tech-
niques, help to develop more appropriate models and prototypes of user inter-
faces (UIs).

2 Dittmar and Forbrig

In this paper, we concentrate on formal models about tasks, actions and
task domains and their influence on abstract dialogue models and, to some
extent, on abstract prototypes of UIs. Section 2 gives background informa-
tion and points out some limitations of current approaches. Based on a for-
malization of domain knowledge (3.1) a hybrid notation for describing ac-
tions and states is suggested (3.2). This leads to more convenient task de-
scriptions. An exploration of instantiating (3.3) and composing (3.4) actions
evokes the reconsideration of temporal descriptions (3.5). Section 4 dis-
cusses the influence of the suggested improvements on developing abstract
UI models. It is further argued that similar, but refined modelling techniques
are applicable to task modelling as well as to dialogue modelling. Section 5
gives some conclusions. The ideas are illustrated by an example and tool
support is discussed.

2. FROM TASKS TO DIALOGUES - BACKGROUND

Most techniques which support a task-driven design process of UIs
mainly exploit task structures (e.g., [2,10,15,20]). Fig. 1 depicts part of a
task model from [10] in CTTE-notation [15]. Task hierarchies, task types
and temporal relationships between sub-tasks are used to draw conclusions
concerning the structure and the behaviour of corresponding UIs.

Figure 1. Part of a task model from [10].

A tool we developed to design dialogue models and to generate appropri-
ate abstract prototypes of UIs is illustrated in Fig. 2. The designer can importaa
a task model ((1) in Fig. 2) and assign several dialogue models to it which
are based on dialogue graphs [5] ((2) in Fig. 2). A dialogue model consists
of a set of nodes (views) and a set of transitions. Each view contains a set of
elements which are created by mapping tasks to the view ((3) in Fig. 2). A
transition is a directed relation between an element of a view and a view. It
is distinguished between 5 types of views (single, multi, modal, complex and
end view) and 2 types of transitions (sequential and concurrent). A dialogue
model allows the generation of an abstract prototype in a WIMP style which

The Influence of Improved Tasks Models on Dialogues 3

can be animated (Fig. 3). Views are represented by windows, their elements
by buttons and transitions by navigations between windows. In case of a se-
quential transition, the source view becomes invisible and the destination
view will be visible and active if the associated button is pressed. Concurrent
transitions allow for the source view to be visible. The temporal constraints
of the underlying task model enable the buttons of abstract prototypes. In-
consistencies between the navigation structure of a dialogue model and the
temporal relations between sub-tasks are reported.

Figure 2. A dialogue graph assigned to Fig. 1.

Figure 3. An illustration of the generated abstract prototype of Fig. 2.

Our method is similar to [14] insofar as both approaches make the de-
signer responsible for relating tasks to parts of the UI model and supply
some form of model checking. So, we deliberately allowed the designer to
decide which part of the conceptual task structure has to be reflected by the
transition structure of a dialogue model. In the example, a user cannot exe-
cute Search by ID until he has “said” the interface (by navigation) that he
intends to Identify a customer (Fig. 2,3). The sub-task Search a
customer is not directly mapped. In contrast, a grouping of sub-tasks is not
possible in [11]. In [16], a set of task sets (comparable to views in our ap-
proach) is generated by applying heuristics to the enabled task sets of a task
model and by determining so called transition tasks. Approaches like [12,16]
rather try to derive UI models (and abstract prototypes) from task models
than to compare them.

Perhaps, many of us would accept Fig. 4b as part of a UI a system could

4 Dittmar and Forbrig

offer its users to perform the task of Fig. 4a. However, there is no hint in the
task model telling us that a mail has a sender, a receiver and a content. Al-
though models and abstract prototypes as presented so far can already be
used for discussions with stakeholders during early design phases, their lim-
ited expressiveness is obvious.

A main reason is the missing “introduction of domain and/or user models
along with the task model to derive presentation and dialog models” as
stated in [10]. Actually, there are approaches to relate task and domain
knowledge in general (e.g., [7]) and for deriving models of UIs (e.g.,
[1,6,15,17]). However, they are often restricted to specific fields of applica-
tion or the grade of formalisation is too low.

Figure 4. A task model of Manage mail (a) and a possible representation
for sub-task Read mail (b).

Throughout the rest of the paper we will further explore this simplified
mailing example to point out some modelling problems at the level of tasks.
We will show how a stronger formalisation of task models and even minimal
extensions like a new temporal operator can support a more appropriate
mapping on abstract UIs. Let us start with the exploitation of formalised
domain knowledge as proposed above.

3. IMPROVEMENTS TO TASK MODELS

In [3] we suggest to tighten the link between actions and states within
task models. A task is seen as a meta-action which includes a permanent de-
velopment of models about actions, current states and goal states. For com-
pleting a task, humans have to perform a sequence of actions using objects
of their environment (in the role of means and resources).

This results in creating or manipulating other objects (in the role of arte-
facts and side-effects). A deeper discussion can be found in [3]. Addition-
ally, action and task models are defined as objects with a specific structure.
We will use this idea in the following section.

The Influence of Improved Tasks Models on Dialogues 5

3.1 A Formalisation of Domain Knowledge
Objects are specified by sets of attributes (name-value pairs). A pattern-

instance relationship is defined between two objects OPO and P OIO if there is aI
subset of attributes in OPO (a pattern schema) so that we can find for each at-P
tribute A in this subset an attribute A' with the same name in' OIO . The value of
A' has to be an instance of the value of ' A. Consequently, an object can be
characterized intentionally by its attribute structure or extensionally by its
actual set of instances. In addition, partial descriptions can be introduced to
describe special subsets of instances of a (pattern) object. This can be ex-
pressed by partial equations.

Figure 5. Action Manage enriched by preconditions and effects on artefact Mail
(denoted by Pre Eff) and the object description of Mail.

Object Mail (right part of Fig. 5) illustrates the proposed specification
style. It represents a pattern for mail messages. There are partial descriptions
specifying subsets of mail messages (instances) which are received, read, re-
plied or filed by restricting ranges of attribute values (e.g., /1/) and intro-
ducing additional attributes (e.g., /2/). Furthermore, partial descriptions can
be composed of others by using special operators. For example, ReadRe-
plied describes all mail messages which are instances of Read or Re-
plied. Hence, the operator or works on states.

The left part of Fig. 5 shows the enriched action model of Fig. 4a (out-
side an object O a partial description PD of O is denoted by PD(O)). For
reasons of brevity, the artefact role is only considered in this paper. As men-
tioned earlier, actions are special objects. Their hierarchical decomposition
is reflected in their sets of partial descriptions. The partial equation of a basic
action contains predefined operations. For example, we support basic arith-
metic and string operations, operations to read and write attribute values and
to create and delete additional attributes. The partial equation of a non-basic
action specifies the temporal relations between its sub-actions by using tem-
poral operators. Tool support for creating and animating action models is il-

6 Dittmar and Forbrig

lustrated in the appendix. However, some further points are worthy of men-
tion regarding the example.

3.2 A Hybrid Notation for Action Models

Fig. 4a defines a behaviour which was not intended. Fig. 6 shows a STN
with the desired one instead and an equivalent temporal equation. A tempo-
ral description in CTTE-notation is even more complex because the comple-
tion of iterative actions must be described explicitly. In addition, ‘artificial’
nodes must be introduced which destroy the conceptual hierarchical struc-
ture of the model. A hybrid notation as used in Fig. 5 unifies structural and
procedural knowledge and can lead to more concise and, possibly, to more
‘natural’ descriptions than pure state or temporal notations.

The temporal equation /3/ guarantees that a mail message has been re-
ceived before it can be read, replied, or filed. We do not need to specify this
in the preconditions of the actions Read, Reply, and File. On the other
hand, we can express knowledge about requested and resulting states of ob-
jects in preconditions and effects to shorten temporal descriptions. An ex-
ample is the constraint that a mail message has to be an instance of the par-
tial description Read (/4/) in order to reply to it. Of course, consistency
checks of such hybrid models are useful, but their consideration is beyond
the present paper.

Figure 6. A STN with the desired behaviour and an equivalent temporal equation.

3.3 Two-fold Instantiation of Actions

Action models are patterns in a two-fold way. They describe a set of pos-
sible execution sequences of basic actions. In addition, if a pattern object oc-
curs several times in the preconditions and the effects of an action tree it can
be replaced consistently by the same instance. Necessary pattern names can
be indexed (e.g., Mail[1], Mail[2],...) to distinguish between several in-
stances currently used (Section 3.5). An instantiation for Fig. 5 can be found
in the appendix.

The Influence of Improved Tasks Models on Dialogues 7

3.4 Action Composition

As Paul entered his office on Friday morning the phone was ringing. “Hi
Paul. Here’s Stephen. Could you do me a favour and send your source code
for checking the consistency of action models? Could you send some docu-
mentation as well? I have a problem that seems to be quite similar. I’ve sent
you mail. Could you take a look at it? It’s urgent!” Besides Stephen’s mail
Paul has got 7 other messages. And before he started to work on Stephen’s
mail he had to see what Ann has written...

An action model describes sequences of (unconsciously executed) opera-
tions under actual conditions of the domain [8]. Fortunately, humans cannot
plan their whole activity by only one action. In other words, actions are situ-
ated and goal-directed. So, in the scenario above Paul obviously opened his
mailbox to read and answer Stephen’s mail immediately. Why did he react
to Ann’s mail in the next moment?

As mentioned before, we regard a task as a meta-action involving perma-
nent adjustments to situations, goals, and actions. Paul had to combine, for
example, his action models concerning the treatment of Stephen and Ann.
Within a task-oriented approach we try to describe by the envisioned task
model all those tasks which are supposed to be supported by the interactive
system under design. In [9], the term (Target) Composite Task Model is
used. The scenario reveals a phenomenon that often occurs when combining
action models. The resulting structure is not necessarily a concurrent compo-
sition of the single actions. Instead, new actions are introduced to replace a
set of sub-actions from different models. Such replacements can cause fur-
ther restructurings, the creation of auxiliary sub-actions etc.

Figure 7. A composition of actions. Figure 8. Paul has to reply to
mail from Ann immediately…

Fig. 7 shows an action composition for managing many mail messages
which is a more appropriate abstraction from the scenario as e.g. Manage |||
Manage ||| ... because Paul received several mail messages at once. In fact,
every model has to handle different scenarios or lower-level abstractions.

8 Dittmar and Forbrig

Even so it has Manage (Fig. 4a). But, how can we describe, for example,
that Paul has to reply immediately to all mail from Ann? Fig. 8 indicates two
possible solutions. So far, only actions were informed about objects they use
or manipulate.

We extend this uni-directional relation to a bi-directional one. In this
case, an attribute take_part:Manage is added to the (artefact) object
Mail. The partial description FromAnnToPaul_Active(Mail) determines
a subset of sequences of basic actions of Manage. A>>TB means that B has to
be started immediately after finishing A. Hence, if Paul has received mail
from Ann his behavioural description is restricted in the intended way. Fro-
mAnnToPaul_Passive(Mail) specifies an order of states which mail from
Ann to Paul has to go through.

Why can it be useful to ‘source out’ action knowledge to objects acted
upon? We can argue in the same way as in Section 3.2 and even our simple
example shows some advantages. If partial descriptions of actions restrict
the kind of acting on single objects, it is often more convenient to attach
these constraints to the objects themselves. Therefore, we could also weaken
the preconditions in Fig. 7 because attribute take_part in Fig. 8 already
says how to manage a single mail. In other words, take_part “saved” the
knowledge about Manage from Fig. 5 into Fig. 7.

We are well aware that interactive systems have to support users in per-
forming tasks in a variety of combinations under certain social, organiza-
tional and timing constraints. Before temporal operators are reconsidered in
the next section, we would like to point out some effects of task composi-
tion. Roughly speaking, an action A with precondition A and effect E (de-
noted by A{C E}) is described by a composed action CA{CC CE} if CC
guarantees C and E is achieved by CE. However, not only the effect is inter-
esting but also an efficient execution. Let us take the action Man-
ageSingle* of Fig. 7, which allows for an interleaved managing of mail.

It specifies sequences like Select{m1 m1},Read{m1 m1},Select
{m1 m2},Read{m2 m2},Select{m1 m2},Reply{m2 m2},… where ml
is an instance of Mail-List, m1 and m2 are instances of Mail. To observe
the work on one particular mail message we hide all actions from execution
sequences dealing with other mail and we get sequences like Select
{m1 m},Read{m m},Select{m1 m},Reply{m m},Select{m1 m},… .
It is easy to see that the following modification of ManageAll gives better
results (preconditions and effects are omitted).

ManageSingle = Select >> ManageSelected*
ManageSelected = Read [] Reply [] File

The Influence of Improved Tasks Models on Dialogues 9

3.5 Reconsideration of Temporal Operators

The *|-operator. Temporal operators serve to describe some basic com-
position “patterns'” of actions or tasks. The set of operators offered by CTTE
[15] is reproduced in Table 1.

Table 1. Temporal Operators of ConcurTaskTree notation.

[] Choice |> Suspend & Resume
| - | Order independency >> Enabling
| | | Concurrency >>[] Enabling with information exchange
| | | [] Concurrency with in-

formation exchange
* Iteration

[> Disabling […] Optional

With the two-fold instantiation as introduced in Section 3.3, operators
with information exchange are superfluous. By assigning preconditions and
effects, and by following the instantiation rules, information exchange be-
tween sub-actions can even be described more precisely. However, it also
becomes obvious that we need more than the *-operator for action repetition.
In Fig. ?, one action instance of ManageSingle has to be completed en-
tirely before a second one can be started. In reality, humans often perform
similar actions concurrently. A new operator *| is introduced to describe fi-
nite sets of concurrent instances of actions. It is inspired by the replication
operator ! as known from the -calculus [12] (!P P |!P). Thus, Man-
ageSingle*| allows an action instance like Select{m1 m1},Select
{m1 m2},Read {m1 m1},Read{m2 m2},… . Additionally, in order to ex-
plain the full semantics of action repetition, a closer look at the attached ob-
jects is necessary. It makes a difference whether we read mail again and
again (Fig. 5) or whether we repeat ManageSingle from Fig. 7 on differ-
ent mail messages. Fig. 9 illustrates two common instantiation patterns
which generalize above examples. For simplicity, we abstract from partial
descriptions of object O in preconditions and effects. BO can be instantiated
by an arbitrary set of instances of O.

Figure 9. Two instantiation patterns for repetitive actions.

The >>T-operator. In [4], the distinction between task enabling and trig-
gering is discussed. Triggers are proposed because they describe when ac-

10 Dittmar and Forbrig

tions finally occur. The >>T-operator as introduced in the previous section
could be useful for describing the immediate trigger type and, also, for de-
scribing environmental cues if >>T occurs in objects of the task domain.

4. FROM TASKS TO DIALOGUE MODELS

While the focus of task models is more on the description of user needs
abstract dialogue models focus on UIs (that is to say on the description of the
artefact itself) [18]. As we have shown in Section 2, much of the require-
ments on dialogue models can (and should) be derived from task models.
For example, the behaviour of a dialogue model has to obey the temporal
constraints of its task model. Temporal descriptions of tasks can be mapped
now more precisely on dialogue models, a conclusion we can draw directly
from the previous section. So, the dialogue of Fig. 10 which allows for work
on several mail messages concurrently would not be possible for the task
ManageAll (Fig. 7) until ManageSingle * is replaced by Man-
ageSingle *| in the temporal equation of ManageAll.

Figure 10. A dialogue graph for similar concurrent sub-actions (V2 is a multiple view) and
two screenshots of the generated abstract UI-prototype.

However, we can go one step further. The formalization of domain
knowledge also supports a more precise mapping on presentations. Further-
more, an abstract dialogue model (= behaviour + presentation) can be con-
sidered as a specific action model in a specific domain represented by Ab-
stract Interaction Objects (AIOs) [19]. Although mail in Fig. 7 can refer to
‘conventional’ letters we are particularly interested in the subset of email
messages and an appropriate software tool to manage them. A specialty of
interactive systems is that their UIs represent both tools (functionality) and
artefacts. Consequently, AIOs have to be assigned to actions and objects of
the task model or to groups of them in order to specify a UI. For the descrip-
tion of AIOs, the same mechanisms as introduced in Section 3 can be used.

The Influence of Improved Tasks Models on Dialogues 11

It is argued in [10] that different notations for task models and UI models are
of advantage because these models are built by different people and are used
independently. However, looking at object-oriented concepts and notations,
for example, they are applied in very different context AIOs specify at an
abstract level which parts of the underlying objects are visible, enabled, or
active at which stage of execution. Abstract user actions are represented by
function calls, navigation and data input. We can take a look at the example
of Fig. 7 to roughly illustrate this idea. We should especially note the map-
ping of actions to view V1 (Fig. 10). For simplicity, an AIO associated to an
object O is denoted by R_O. R_A is enabled/disabled if action A is en-
abled/disabled in the underlying action model.

Figure 11. Part of an abstract user interface model.

Fig. 11 shows part of an appropriate abstract UI model. For example, the
partial description Active(V1) in the precondition of fctCall(Receive
All) defines that view V1 has to be active. By executing fctCall-
(ReceiveAll), action ReceiveAll is completed. This enables the com-
plex action ManageSingle in the action model and, thus, the associated
AIO R_ManageSingle is enabled. If V1 and V2 are instantiated by win-
dows, R_ReceiveAll and R_ManageSingle by buttons and R_MailList
by a list of buttons, we get a presentation similar to the abstract prototype of
Fig. 10. However, the UI description is only complete in connection with the
underlying action model. Again, a hybrid notational approach was applied.

5. CONCLUSION

The pros and cons of using formal models to describe human work and,
in particular, human-computer interaction are well known. On the one hand,
formal models increase the guarantee that task knowledge and decisions
made at a conceptual level are reflected in the final implementation of UIs.
On the other hand, formal models are often rejected because they are “inap-
propriate for capturing the complexity of human experience and activity”

12 Dittmar and Forbrig

[4]. This is certainly true for at least two reasons. Often, formal models
overemphasize a certain perspective on the subject of interest. Furthermore,
some elements of the domain are not included in models but should be.

In this paper, an enriched, but more formalised description of tasks is
proposed. However, the suggested hybrid notation of actions can ease mod-
elling activities. It was shown that these improvements to task models (even
a small modification like the introduction of a new temporal operator) allow
a more precise mapping on abstract UI models. We provide prototypical tool
support for some of our ideas, but there is still much to do. For example,
domain knowledge is not fully exploited to derive abstract presentations.

REFERENCES

[1] Barclay, P.J., Griffiths, T., McKirdy, J., Paton, N.W., Cooper, R., and Kennedy, J., The
Teallach Tool: Using Models for Flexible User Interface Design, in A. Puerta, J. Van-
derdonckt (eds.), Proceedings of 3rd Int. Conf. on Computer-Aided Design of User Inter-d

faces CADUI’99 (Louvain-la-Neuve, 21-23 October 1999), Kluwer Academics Pub.,
Dordrecht, 1999, pp. 139-157.

[2] Dittmar, A. and Forbrig, P., Methodological and Tool Support for a Task-Oriented De-
velopment of Interactive Systems, in A. Puerta, J. Vanderdonckt (eds.), Proceedings of
3rd Int. Conf. on Computer-Aided Design of User Interfaces CADUI’99 (Louvain-la-d

Neuve, 21-23 October 1999), Kluwer Academics Pub., Dordrecht, 1999, pp. 271-274.
[3] Dittmar, A., and Forbrig, P., Higher-order task models, in J. Jorge, N.J. Nunes, J. Falcão

e Cunha (eds.), Proc. of 10th Int. Workshop on Design, Specification, and Verification of
Interactive Systems DSV-IS’2003 (Funchal, June 2003), Lecture Notes in Computer Sci-
ence, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 187-202.

[4] Dix, A., Managing the Ecology of Interaction, in C. Pribeanu, J. Vanderdonckt (eds.),
Proc. of 1st Int. Workshop on Task Models and Diagrams for User Interface Design
TAMODIA’2002 (Bucharest, 18-19 July 2002), Academy of Economic Studies of Bu-
charest, Economic Informatics Department, INFOREC Printing House, Bucarest, 2002,
pp. 7-9.

[5] Elwert, T. and Schlungbaum, E., Dialogue Graphs-A Formal and Visual Specification
Technique for Dialogue Modelling, in J.L. Siddiqi, C.R. Roast (eds.), Proceedings of the
BCS-FACS Workshop on Formal Aspects of the Human Computer Interface FAHCI’96
(Sheffield, 10-12 September 1996), accessible at http://ewic.bcs.org/conferences/1996/
formalaspects/papers/paper13.pdf

[6] Gamboa-Rodriguez, F. and Scapin, D., Editing MAD* Task Descriptions for Specifying
User Interfaces at both Semantic and Presentation Levels, in Proc. of 4th Int. Conf. on
Design, Specification, and Verification of Interactive Systems DSV-IS’97 (Granada, 4-6
June 1997), Springer-Verlag, Vienna, 1997, pp. 193-208.

[7] Johnson, P. and Wilson, S., A Framework for Task-based Design, in Proceedings of the
2nd Czech-British Symposium on Visual Aspects in Man-Machine Systems VAMMS’93d

(Prague, 24-28 March 1993), Ellis Horwood, Chichester, 1993.
[8] Leontiev, A.N., Activity, Consciousness, Personality, Prentice Hall, Englewood Cliffs,

1978.
[9] Lim, K.Y. and Long, J., The MUSE Method for Usability Engineering, Cambridge Uni-

versity Press, Cambridge, 1994.

The Influence of Improved Tasks Models on Dialogues 13

[10] Limbourg, Q., Vanderdonckt, J., and Souchon, N., The Task-Dialog and Task-
Presentation Mapping Problem: Some Preliminary Results, in F. Paternò, Ph. Palanque
(eds.), Proc. of 7th Int. Eurographics Workshop on Design, Specification, Verification of
Interactive Systems DSV-IS’2000 (Limerick, 5-6 June 2000), Lecture Notes in Com-
puter Science, Vol. 1946, Springer-Verlag, Berlin, 2000, pp. 227-246.

[11] Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J., Derivation of a Dialog Model
from a Task Model by Activity Chain Extraction, in J. Jorge, N.J. Nunes, J. Falcão e
Cunha, J. (eds.), Proc. of 10th Int. Conf. on Design, Specification, and Verification of In-
teractive Systems DSV-IS’2003 (Madeira, 4-6 June 2003), Lecture Notes in Computer
Science, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 203-217.

[12] Mori, G., Paternò, F., and Santoro, C., CTTE: Support for Developing and Analysing
Task Models for Interactive System Design, IEEE Transactions on Software Engineering,
Vol. 28, No. 8, August 2002, pp. 797-813. Accessible at http://giove.cnuce.cnr.it/
ctte.html.

[13] Milner, R., Communicating and Mobile Systems: the -Calculus, Cambridge University
Press, Cambridge, 1999.

[14] Navarre, D., Palanque, P., Paternò, F., Santoro, C., and Bastide, R., A Tool Suite for In-
tegrating Task and System Models through Scenarios, in C. Johnson (ed.), Proc. of 8th

Int. Workshop on Design, Specification, and Verification of Interactive Systems DSV-
IS’2001 (Glasgow, 13-15 June 2001), Lecture Notes in Computer Science, Vol 2220,
Springer-Vrlag, Berlin, pp. 88-113.

[15] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 2000.

[16] Paternò, F., and Santoro, C., One Model, Many Interfaces, in Ch. Kolski, J. Vander-
donckt (eds.), Proc. of 4th International Conference on Computer-Aided Design of User
Interfaces (Valenciennes, 15-17 May 2002), Kluwer Academics Publishers, Dordrecht,
2002, pp. 143-154.

[17] Puerta, A., Cheng, E., Ou, T., and Min, J., MOBILE: User-Centered Interface Building,
in Proceedings of ACM Conf. on Human Aspects in computing Systems CHI’99 (Pitts-
burgh, 15-20 May 1999), ACM Press, New York, 1999, pp. 426-433.

[18] Traetteberg, H., Model-based User Interface Design, Ph.D. thesis, Mathematics and
Electrical Engineering, Faculty of Information Technology, Norwegian University of
Science and Technology, 2002.

[19] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection, in Proc. of the ACM Conf. on Human Factors in Computing
Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New York, 1993,
pp. 424-429.

[20] Vanderdonckt, J., Limbourg, Q., and Florins, M., Deriving the Navigational Structure of
a User Interface, in M. Rauterberg, M. Menozzi, J. Wesson (eds.), Proc. of 9th IFIP TC
13 Int. Conf. on Human-Computer Interaction INTERACT’2003 (Zurich, 1-5 September
2003), IOS Press, Amsterdam, 2003, pp. 455-462.

14 Dittmar and Forbrig

APPENDIX: TOOL SUPPORT FOR TASK MODELLING

Task models can also be animated (but in a command-line style only).
For reasons of clarity the output of the following scenario Re-
ceive,Read,Reply,Read,File has been shortened. Actions executable
in the next step of the animation and the actual state of the instance mail1
are shown.

Parsing samples/mail/mail1.in...okay
Possible actions:
(1) [Manage, Receive]
Enter a number between 1 and 1 (0 to exit): 1
Environment: [1] Mail - replied=false read=false con-
tent="hallo paul..."
to="Paul" from="Ann"
Possible actions:
(1) [Manage, Read]
(2) [Manage, _Read] Enter...: 1
Environment: [1] Mail - read=true replied=false ...
%Possible actions:
(1) [Manage, Read]
(2) [Manage, _Read]
(3) [Manage, Reply] Enter...: 3
Environment: [1] Mail - replied=true read=true reply="hallo
Ann"
...
%Possible actions:
(1) [Manage, Read]
(2) [Manage, _Read] Enter...: 1
Environment: [1] Mail - read=true ...
%Possible actions:
(1) [Manage, Read]
(2) [Manage, _Read] Enter...: 2
Environment: [1] Mail - read=true ...
%Possible actions:
(1) [Manage, File] Enter...: 1
Environment: [1] Mail - read=true replied=true content="hallo
paul..."
to="Paul" from="Ann" location="trash" reply="hallo Ann"
Action finished

Chapter 2

TASK-BASED WEB MODELLING: THE WEB
OBJECT LIFE CYCLE MODELLING CONCEPT

Birgit Bomsdorf1ff and Gerd Szwillus2

1FernUniversität Hagen, Praktische Informatik I,
Universitätsstraße 1 – D-58097 Hagen (Germany)
E-Mail: birgit.bomsdorf@fernuni-hagen.de
URL: http://pi1.fernuni-hagen.de/mitarbeiter/bomsdorf.html
Tel: +49 2331 987-2962 – Fax: +49 2331 987-314
2Universität Paderborn, Fakultät EIM, Institut für Informatik,
Fürstenallee 11 – D-33102 Paderborn (Germany)
E-Mail: szwillus@upb.de
URL: http://www.uni-paderborn.de/cs/ag-szwillus
Tel: +49 5251 60-6624 – Fax: +49 5251 60-6620

Keywords: Interactive web sites, Task based design, User-centred design, Web modelling.

1. INTRODUCTION

In the early days of the WWW, web sites were created for fast and easy
dissemination of information to web site visitors. Gradually, though, web
sites have developed from this world of static HTML pages towards interac-
tive sites. In addition to receiving general information, the visitor inputs data
and is provided individually computed feedback from the web site. The visi-
tor might order something, deliver or request information specific to the
business, or request a specific service. In short, the dialogue going on is gov-
erned by the tasks of the user in relation to the business.

15

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 15–28.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract A web modelling approach is proposed, which uses a task model of the busi-
ness as underlying basis and exploits it for adequate modelling of web sites in-
cluding user interaction. We argue that a variant of classical task models,
which emphasizes task objects and task views, is specially well-suited to sup-
port a model-based development of web sites. Its concepts and its practical use
are discussed.

16 Bomsdorf and Szwillus

If we look at current web modelling approaches, however, we see that
they do not take the interactivity of web sites appropriately into account.
Dialogue modelling – as done in HCI – is not a significant part of the proc-
ess. Instead, the content-centred view on the domain objects is still the
dominant issue of these approaches. We claim, however, that interaction de-
sign and feedback specification from the point of view of the users should be
integral parts of a modelling technique for today’s web sites. As the informa-
tion presented and the user dialogues provided in the web are both dependent
on events “occurring” in and with the business, while the users perform their
tasks, we propose to include a task model of the business as underlying basis
for a web modelling approach and exploit it for adequate modelling of inter-
action and for supporting the web site update process.

2. MODEL-BASED APPROACHES

The model-based idea as such implies that the creation of some compli-
cated artefact can be divided into the handling of several distinct levels deal-
ing with separate aspects of the overall design. Following the motto “divide
and conquer” the development is structured into separate design phases pro-
ducing explicit, dedicated design documents – the models. Using explicit
models results in typical benefits, such as verifiable and re-usable docu-
ments. Before dealing with our concrete web modelling approach, we first
sketch and compare the existing HCI and web modelling approaches.

2.1 Model-based Approaches in HCI

In HCI there exist several model-based approaches for the development
of user interfaces (e.g., [1,2,7,8,10,11,12,14,17]). Although a great number
of variants of model-based approaches are discussed in HCI, there is a cer-
tain consensus about a collection of models and their importance for user in-
terface (UI) development.

Typically a model-based HCI approach starts with task modelling, de-
scribing the tasks from the user’s point of view – the user’s goals, activi-
ties, and basic actions are described. The model contains information
about the task objects operated upon by the tasks, and includes informa-
tion about the different types of users, referred to as role model.
The task model is partitioned into different views, thus defining which
tasks need to be dealt with together. This implies the visibility of means
to trigger task execution and visibility of task objects to the appropriate
user roles. These views can be seen as corresponding to dialogue ele-
ments showing subparts of the final user interface. This grouping is

Task-Based Web Modelling 17

guided by the necessity or usefulness for the user’s ability to operate on a
set of tasks at a time [3].

The behaviour of the user interface is described in two steps: first, the
navigation between views is defined; second, the processing of user input
events within single views is specified. Both parts together are referred to as
the dialogue model of the user interface.

The navigation model defines the visibility of the different views. It
specifies which views are initially visible when a system is started, and
which events in the user interface turn views visible or invisible. Hence,
it defines the overall navigation structure of the user interface. As the
views are derived from collections of tasks, the switch between different
views is strongly dependent of the underlying task model structure.
The processing model defines the details of user interaction within the
single views. Typically, this is a state-based model, specifying the differ-
ent states the user interface component can be in and the effects of events
on the state. Effects can be state transitions, modifications of the output
presented, application function calls, or arbitrary combinations of these.
In a final step within model-based approaches the details of what views
and their contents look like is defined in a presentation model.

Using this task-based model suite results in a user interface design which
is strictly based upon the user task specification and concentrates on the
functionality of the application as seen from the user’s perspective.

2.2 Model-Based Development of Web Sites

Similar as in the field of HCI the model-based idea is applied to the de-
velopment of web applications with the same general goals. Typically, a web
site is modelled at the conceptual level to describe the information space, its
structure and possible modifications independent from implementation is-
sues. Model-based approaches, e.g., WebML [19], OOHDM [12], Strudel
[14], RMM [8], and WSDOM [5], have their origin in the development of
hypermedia systems and information systems, increasingly incorporating
methods and techniques known from Software Engineering. SWCEditor is a
recent approach concentrating on modelling web navigation [20]. Although
there are significant differences between the approaches, there is consensus
on the core of the activities to be performed and aspects to be modelled.

Requirements are mostly captured by means of narrative scenarios and
use cases, i.e. the objectives of the web site, the prospective user groups
and their tasks are written down. The task specification is typically a
high-level task enumeration, and no refined description of task internals.

18 Bomsdorf and Szwillus

The domain model conceptually describes the objects of the business
domain, their properties in terms of attributes, sub-object structures, and
semantic relationships. In some approaches also the intended application
functionality is specified. Techniques adopted for defining this model
correspond to well-known structures from Software Engineering (such as
the class model in UML) or database engineering (ER diagrams).
Additionally, in some approaches user-related domain models are in-
troduced (e.g., navigational class schema in OOHDM [18], audience ob-
ject model in WSDM [5]), which are defined as views on the domain
model, similar to external schemas as known from database develop-
ment. Each user-related domain model represents a substructure of the
complete model by identifying those parts which are relevant to a sup-
posed type of user or role. Hence, these views describe properties, and
semantic links to be shown to the users, while they are performing their
role-specific tasks.
The navigation model shows possible ways for the user to access the in-
formation space in terms of navigation elements, i.e. nodes and links.
Hence, it defines the content and logical structure of the pages, as well as
accessing criteria (such as filtering or indexing) and types of navigation
(such as guided tours or object lists).
The presentation model captures how content and navigation commands
should be visualized to the user. Although this model varies in the degree
of abstraction within different approaches, it is often called an abstract
interface design. It shows the perceptual structure of single pages in
terms of hierarchical grouping and intra-page links. It defines where ad-
ditional files (images, audio, video) are to be inserted, and in which way
links are to be presented (e.g., textually or graphically). The main mean-
ing of abstraction in the context of this model concerns the independence
from any particular language and from devices used to deliver the pages.
The need for personalisation of web sites to individual users or user
groups is generally increasing. It concerns user interface adaptation as
well as the customisation of the underlying functionality, i.e. it is related
to content, presentation, and navigation, thus affecting all the models de-
scribed above. At the model stage personalization aspects are summa-
rised by the term personalisation model, although they are often defined
as special extensions of the existing models.

The main observation here is that there is no explicit model for user in-
teraction and for the modification of content. It is not captured how the busi-
ness functions work, i.e. which tasks are performed, and how they modify
data, resulting in web site changes. Emphasis is on data modelling expressed
in the domain model and on navigation within this information space.

Task-Based Web Modelling 19

2.3 Comparing HCI Models with Web Models

To strengthen the use and the role of task modelling within web model-
ling approaches, one could ask whether it would make sense to apply HCI
modelling approaches directly to web modelling. The problem with this idea
is that the objectives in both design fields were different from the very be-
ginning:

The primary goal of a user interface is to provide access to some applica-
tion functionality, the functional space, to the user. It provides means to
trigger functions and input data or parameter values to feed a given se-
mantic functionality.
The primary goal of a web site is to provide access to an information
space to the unknown user. This space is described in terms of nodes car-
rying content connected by links allowing the user to navigate through
the space, which is structured as a collection of web pages. Following a
link means “going to another place“, even if this may technically not be
the case.
This is a shift in paradigm from modelling flow of action in user inter-

faces to modelling movement in information structures in the web. Let us
look closer now into the single HCI models to find out more about the dif-
ferences between the two fields.

As mentioned above, task modelling is used in both fields, although the
degree of its use differs a lot. Both use task modelling for requirements gath-
ering. Within the HCI approaches, however, task models are refined much
further for describing the interaction model – they are richer in structure and
content, e.g., defining conditions and sequencing of task execution. In con-
sequence, task models are used as formal input to the subsequent construc-
tive phases.

In web modelling, task models are used primarily as a means to explore
requirements and are limited to high-level task descriptions (i.e. use cases or
scenarios). They are used as starting point to describe either the global do-
main model or the user-related domain models (if supported). In WSDM [5],
for example, task models are used to guide the design of the navigation, i.e.
the content units and navigation tracks for different user groups, as well as
the respective presentations. In OOHDM [18], task descriptions are analyzed
to identify the data items, which are to be exchanged between the user and
the web application. Hence, the task model is not exploited as a formal basis
for the design of the site structure and interaction.

View modelling is used in both fields too, but with slightly different
meanings. In the field of HCI, views are derived from the formal task model
based on task grouping, leading to the definition of interaction elements for
triggering tasks and information elements for displaying relevant task ob-

20 Bomsdorf and Szwillus

jects. Hence, the view definition originates essentially from task grouping. In
web modelling, the term view is used for two different aspects: on one hand,
user-related domain models are defined as views on the domain model,
which are similar to the models of task objects in UI modelling. On the other
hand, single nodes are considered as views on the underlying domain model.
Defining such a view means to design the structure and content of a web
page, typically derived from a data structure model of the web site. Hence, in
web modelling the derivation of both kinds of views is strongly based on
data modelling.

Navigation modelling means the transition between different views
(logical “windows” or pages) in both fields. In a user interface, navigation
corresponds to a transition between groups of tasks, hence UI navigation be-
tween views corresponds to movement within a function space.

Navigation in web modelling, however, means movement within an in-
formation space. The view model provides the necessary starting and end
points for the movement, which may additionally transport data provided by
the user for selection and filtering content from the underlying information
base. Hence it is strongly data oriented. As interaction with the web site is
mapped onto navigation too, there is no explicit orientation of the navigation
model towards the functions provided by the web site to the visitor.

The processing model as introduced by the field of HCI is the most de-
tailed part, specifying what is happening within single views.

In web modelling, there is no concept for specifying operations on a sin-
gle view. As mentioned before, interaction is described and implemented by
means of links. As links are used for different purposes, the definition of in-
teraction is mixed with other modelling aspects. In existing web modelling
approaches it is “visible” to the designer, e.g., in the form of extensions (new
symbols, e.g., in [3]). From the viewpoint of the user, the effects of submit-
ting information to the web site or invoking an application operation, for in-
stance by clicking on a button, is mapped onto navigation. As described in
[4] invoking operations is modelled as side effects of activating links.
Hence, there is no explicit concept in web modelling for dealing with the
user’s action steps to execute a task – the user’s movement possibilities are
modelled along the information structures underlying the web site.

Altogether, a sequence of web interactions while performing a task is
modelled as a sequence of pages the user has to navigate through. Hence,
each dialogue state is represented by a single view (page) and a dialogue se-
quence is defined by means of links, without distinguishing between the
navigation and processing dialogue. Furthermore, there is no explicit con-
cept of defining groups of related task, i.e. views as introduced by HCI,
which is important to match the mental model of the user and thus for sup-
porting usability.

Task-Based Web Modelling 21

Based on the approaches as known from HCI and web modelling, we
started to develop a web modelling approach with the objective to integrate
benefits from HCI methods with the needs of web modelling. The overall
goal is the strict user/task-orientation of the process throughout all develop-
ment phases and the switch to data-centric issues only later in the process.
Hence, the emphasis is on processes first and on information structures sec-
ond, which is typically the other way round in web modelling approaches.
Within our approach we are developing a system, referred to as Task-Object-
Based Web Site Management system [2], [15], [16]. In the following, we
will use WOLM (Web Object Life Cycle Model) as an abbreviation for this
concept, as this model is the kernel model of our approach.

3. TASK-OBJECT-BASED WEB SITES

Our approach is based strongly on an underlying task model, as is the
case in HCI modelling. As mentioned above, a classical task model specifies
primarily the task hierarchy, pre- and postconditions, and conditions for task
execution. Most existing models take user roles and task objects into account
too. Altogether, emphasis is on modelling of users’ “action” while they are
performing their tasks; modelling of “things”, i.e. task objects, which are af-
fected by those actions, comes second.

Web Site Owner

Abstract Web
Site Structure

Web Object Life Cycle
Model

l
<head>
<meta http-equiv="Content-Language"
content="de">
<meta http-equiv="Content-Type"
content="text/html; charset=windows-1252">
<meta name="GENERATOR"
content="Microsoft FrontPage 5.0">
<meta name="ProgId"

HTML Design
Files

Final Web Pages
Administration
Web Pages Web Site Visitor

Figure 1. Overview of the concept

When applying the task model approach to web modelling, it is important
to look at task modelling the other way round: The task objects modified
during task execution are to be displayed in the web, and thus are of primary
importance within the design process. Therefore, in our approach the core
part is a task object model, referred to as Web Object Life cycle Model

22 Bomsdorf and Szwillus

(WOLM), describing the task objects which will ultimately be represented
in the web as well as their modifications resulting from task execution. The
second basic part of the approach is the Abstract Website Structure
(AWS), which structures the information described by the WOLM into web
pages and parts of web pages. Fig. 1 gives an overview of the concept. In the
following we discuss these two main parts and how they contribute to task-
based modelling of web sites.

3.1 The Web Object Life Cycle Model

The WOLM contains web objects corresponding to the task objects of
the business to be represented in the web site, as they have been identified
during the task analysis phase. WOLM not only captures the objects’ data
structures as done in a domain model, but specifies the modifications they
undergo during task execution as well. Technically, objects are described by
means of a class specification, which specifies the properties of a given type
of objects. The class specification contains attribute declarations, initializa-
tion information, and methods to be performed “on” the objects of the speci-
fied type. Object modifications are described as state transitions correspond-
ing to the task description they are derived from. The different web object
states represent “situations“ or “configurations“ a web object can be in.
They are used to describe the changes a web object undergoes during its life
time through execution of tasks. The following example shows a specifica-
tion derived from the task model describing the user task “prolongate a
book” while using a library system:
class Book
 { string signature;g
 …

prolongate() {…}
 …

field (prolongable,not_prolongable);d
prolongable –prolongate()->

 [numberProlongation < 3]: prolongable
prolongable –prolongate()->

 [numberProlongation >= 3]: not_prolongable
…}

To define the dynamics, a WOLM class specification contains a defini-
tion of rules governing the transitions between states, specifying which state
transitions are possible and what the respective target states are. Together
with the state transition triggered by an event the effect of the transition on
the object’s attribute values is described. The performance of methods, i.e.

task object specification

method
states

transition

rule garding the transition

Task-Based Web Modelling 23

the execution of attribute modifications, may request input parameters from
the user. The transition below, for example, specifies that within the login
procedure the user has to fill in his “login” and “password”:

not_logged_in –tryLogin(login, password)-> logged_in
The input request is an abstract model of the interaction process which will
later on be mapped onto web site interaction elements.

WOLM specifies the modifications in the business from a strictly user
centred point of view. It is a mirror of the task execution as performed in re-
ality, described by the changes the task objects undergo. When specifying
the state transition possibilities and their effects on objects, it is not defined
where triggers for the state transitions originate. The model is explicitly con-
centrating on the effects and their interrelations between the objects. The
model is independent from any web representation specification, hence the
two design spaces “task model” and “web representation” are completely
separated in this approach.

3.2 The Abstract Web Site Structure

The Abstract Web Site Structure (AWS) contains a hierarchy of elements
structuring a web site, e.g., web pages, lists, graphics, text elements, links,
and interaction elements such as buttons and text input fields. AWS is a pure
structure model, as it defines what is shown on the web pages and does not
specify how things look. While the WOLM defines the content to be dis-
played and the functions accessible, the AWS defines the distribution of the
content onto web pages and the access to functions through the web pages,
i.e. the AWS covers the specification of views, navigation and processing di-
alog. Before describing this let us consider the interrelations of both models.

AWS and WOLM are linked through references to single web objects or
object lists, which are expressed in the AWS through specification of the
web objects’ properties. At runtime, the attribute values of linked WOLM
objects are available as information source to the AWS, and therefore to the
representation in the web. This concept is similar as in content management
systems, which link abstract objects (typically database records) to web
pages and derive the content of the pages from their contents.

Another important link between WOLM and AWS is the fact that differ-
ent states of objects can lead to different AWS fragments representing an ob-
ject. The AWS contains condition clauses defining which elements are
shown and not. Hence, the state transition of an object related to an AWS
fragment, can change its AWS representation by changing its state in the
WOLM model. This mechanism allows the visualization of semantically im-
portant object state information to the web site visitor.

Furthermore, based on task grouping, the AWS is used to define views,

24 Bomsdorf and Szwillus

which have a similar function as in HCI. A view in HCI specifies groups of
related tasks to match the mental model of the user. A page in the AWS also
groups related tasks; the modifications occurring within such a view are
modelled within WOLM, while the corresponding changing representation is
described within the AWS. The following AWS excerpt exemplifies a view
on the task object “book” by means of which users of a library system can
prolong an already borrowed book:

page BorrowBook (Book b)
…

 button Prolongate Activate [b inState prolongable]
 action b.prolongate() -> this {processing dialog}
 link close -> HomePage {navigation dialog}k
 …

The example also shows a part of the processing dialog: An abstract but-
ton Prolongate is defined. Activating it will invoke the function prolon-
gate of the WOLM book object b. As denoted by the this- specification
the same view, i.e. the same page, will be shown afterwards, of course in an
updated version if necessary.

Basically, there exist two interaction elements in the web: text input
fields and buttons. The user can click into text input fields and type text. If at
some point this information is collected by the web site, e.g. by pressing the
submit button of the corresponding form, the data is sent from the user’s web
browser to the server. This event triggering behaviour constitutes the second
type of user interaction. When clicking on a button on a web page, as shown
in the example above, the user triggers the execution of some application
functionality.

The effect of a button click is twofold: first, reading user input from text
input elements on the web page (if the button implements the “submit” func-
tionality) and, second, displaying a new or redisplaying the same page
(this). For the description of the navigation dialog we use a similar nota-
tion, e.g. link close -> HomePagek specifies a link close, which will
lead the user to the home page.

In the co-operation between AWS and WOLM, these two elementary
functions are mapped onto two corresponding effects of a button press:

First, the button can trigger a state transition of some WOLM object. In
this case the values input by the web site visitor are transferred as pa-
rameters to this state transition. The state transition is then executed until
the WOLM model has performed the corresponding modifications, in-
cluding attribute modifications and inferred state transitions.

view definition

part of the processing dialog

part of the navigation dialog

Task-Based Web Modelling 25

Second, once the model is stable again, the same or some other page is
displayed, using the “new” values of the WOLM model for this purpose.
Once an AWS is linked to a WOLM model, the remaining work to create

the final web pages is to combine it with layout files containing templates
for defining the visual representation.

3.3 Cooperation between the Components

WOLM and AWS cover very different design spaces within the web
modelling approach. By means of the AWS the structure of information pre-
sentation, including the navigation structure between these elements is de-
signed. Most important is the dependency of AWS parts of WOLM objects,
defined by declarative constraints, and the variants in the representation, de-
pendent on objects’ states. Classical hyperlinks are modelled as well as the
effect of interaction elements, and the two important components of a button
element – the trigger of semantic changes and the display of some new page
– are explicitly and separately specified. Hence, the two design spaces, mod-
elling the functionality on one hand, and the displayed information structure
and their properties on the other hand, are clearly separated, which allows to
update, refine, and debug both parts independently of each other.

WOLM allows the designer to base the web site creation explicitly on a
task model. The kernel model is a task object model specifying the web ob-
jects to be presented in the web, and defining their modification through task
execution. The AWS contains both the view model as well as the model of
the navigation and processing dialog. The views are defined by spreading the
information to be displayed onto web pages and web page parts. The naviga-
tion is defined by specifying links from one node within the AWS to another
one while the processing dialog is defined by abstract interaction elements
whereby navigation within a view and between views is clearly separated.

Other than in HCI modelling, there is no dialogue model concentrated in
a single component, which encapsulates the aspects “context” of a user in-
teraction and its effect. These two aspects are separated in our approach, as
the perceived context of an interaction is specified in the AWS, and the ef-
fect is specified in the WOLM kernel. This separation makes sense in the
web modelling case, however, as designing these aspects needs developers
with very different background and expertise.

In addition, exploiting the clear execution semantics of the WOLM al-
lows the performance of a simulation of the model at a very early develop-
ment stage. In addition, the “running” WOLM model can serve as underly-
ing directing device for the live web site while the AWS deals with the re-
sulting changes of the web presentation.

26 Bomsdorf and Szwillus

3.4 Status of the Work

To work successfully with a model-based approach such as WOLM, a
tool environment is needed. We designed such an environment and identi-
fied the following suite of tools (Fig. 2):

an editor to create and edit the WOLM,
a simulator to execute the kernel model for to validate the dynamics of
the specification,
an admin pages generator to enable the web site owner to manipulate
and define the contents of his web site via the simulator,
an AWS editor to create and edit abstract web site structure documents,
based upon an existing kernel WOLM model,
an AWS generator to create an initial AWS automatically from the
WOLM to allow fast and easy early-phase testing of the WOLM,
a layout Linker tool to create and merge concrete HTML design files
containing appropriate templates with the AWS, and
a runtime system for WOLM, based upon the simulator, which incorpo-
rates the complete functionality for a living web site, including admin
pages and a time stamp management for keeping the site up-to-date.

Most tools are currently under development and will soon be completed;
emphasis up to now has been on the design and specification of the WOLM
and AWS models, and their representation as XML files. A preliminary ver-
sion of the runtime system has been developed and is working. In the context
of language definition we currently look into applying the concept to realis-
tically sized web projects.

ype of the yy
generated administration

Figure 2. First prototype of the generated administration.

Task-Based Web Modelling 27

REFERENCES

[1] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot I., and Vanderdonckt, J., A
Model-based Approach to Presentation: A Continuum from Task Analysis to Prototype,
in F. Paternò (ed.), Proceedings of 1st Workshop on Design, Specification, and Verifica-
tion of Interactive Systems DSV-IS'94 (Bocca di Magra, 8-10 June 1994), Eurographics
Series, Berlin, pp. 25-39.

[2] Bomsdorf, B. and Szwillus, G., From Task to Dialogue: Task-Based User Interface De-
sign, A CHI’98 Workshop, SIGCHI Bulletin, Vol. 30, No. 4, 1998, pp. 40-42.

[3] Bomsdorf, B. and Szwillus, G., User-Centered Modeling of Interactive Web Sites, acces-
sible at http://www2003.org/cdrom/papers/poster/p327/p327-bomsdorf.htm

[4] Bomsdorf, B., Task Modelling for Customisation of Web Applications, in Proceedings of
10th International Conference on Human-Computer Interaction HCI International 2003
(Heraklion, 22-27 June 2003), Vol. 3, Lawrence Erlbaum Associates, Mahwah, 2003, pp.
33-37.

[5] Bongio, A., Ceri, S., Fraternali, P., and Maurino, A., Modelling Data Entry and Opera-
tions in WebML, in D. Suciu, G. Vossen (eds.), Proceedings of 3rd International Work-d

shop on the Web and Databases WebDB’2000 (Dallas, 18-19 May 2000), Lecture Notes
in Computer Science, Vol. 1997, Springer-Verlag, Berlin, 2000, pp. 201-214, accessible
at http://www.research.att.com/conf/webdb2000/PAPERS/6b.pdf

[6] De Troyer, O., Audience-driven Web Design, in M. Rossi, K. Siau (eds.), Information
modelling in the new millennium, IDEA Group Publishing, 2001, accessible at
http://wsdm.vub.ac.be/Download/Papers/WISDOM/WSDMChapter.PDF

[7] Elwert, T., Forbrig, P., and Schlungbaum, E., Meta Models for Task-oriented User Inter-
face Development, in C. Stary (ed.), Proceedings of the 1st Workshop on Cognitive Mod-
elling and Interface Development (Vienna, December 1994), pp. 163-172.

[8] Hackos, J.T. and Redish, J.C. (eds.), User and Task Analysis for Interface Design, John
Wiley & Sons, New York, 1997.

[9] Isakowitz, T., Kamis, A., and Koufaris M., The Extended RMM Methodology for Web
Publishing, Working Paper IS-98-18, Centre for Information-Intensive Systems, New
York University, New York, 1998, accessible at http://jmis.bentley.edu/rmm/papers/
RMM-Extended.pdf

[10] Palanque, Ph. and Bastide, R., Synergistic modelling of tasks, system and users using
formal specification techniques, Interacting With Computers, Vol. 9, No. 12, 1997, pp.
129-153.

[11] Paternò, F., Mancini, C., and Meniconi, S., ConcurTaskTrees: A Diagrammatic Notation
for Specifying Task Models, in S. Howard, J. Hammond, G. Lindgaard (eds.), Proceed-
ings of 6th IFIP TC 13 Conf. on Human-Computer Interaction Interact’97 (Sydney, 14-18
July 1997), Kluwer Academics, Dordrecht, 1997, pp. 362-369.

[12] Puerta, A., Cheng, E., Ou, T., and Min, J., MOBILE: User-Centered Interface Building,
in Proceedings of ACM Conf. on Human Aspects in computing Systems CHI’99 (Pitts-
burgh, 15-20 May 1999), ACM Press, New York, 1999, pp. 426-433.

[13] Rossi, R., Schwabe, D., and Lyardet, F., Web Application Models are More than Con-
ceptual Models, in P.P. Chen, D.W. Embley, J. Kouloumdjian, S.W. Liddle, J.F. Roddick
(eds.), Advances in Conceptual Modeling, Proceedings of the ER’99 Workshops on Evo-
lution and Change in Data Management, Reverse Engineering in Information Systems,
and the World Wide Web and Conceptual Modeling (Paris, 15-18 November 1999), Lec-
ture Notes in Computer Science, Vol. 1727, Springer-Verlag, Berlin, 1999, pp. 239-253.

[14] Stary, C., Task- and Model-Based Development of Interactive Software, in Proceedings
of 15th IFIP World Computer Congress IFIP’98 (Vienna, 31 August-4 September 1998).

28 Bomsdorf and Szwillus

[15] Strudel Home Page, accessible at http://www.research.att.com/sw/tools/strudel
[16] Szwillus, G. and Bomsdorf, B., Models for Task-Object-Based Web Site Management, in

P. Forbrig, Q. Limbourg, B. Urban, J. Vanderdonckt (eds.), Proceedings of 9th Interna-
tional Workshop on Design, Specification, and Verification of Interactive Systems DSV-
IS’2002 (Rostock, 14-16 June 2002), Lecture Notes in Computer Science, Vol. 2545,
Springer-Verlag, Berlin, 2002, pp. 267-281.

[17] Szwillus, G. and Bomsdorf, B., Task-Object Models for the Development of Interactive
Web Sites, in Proceedings of 10th International Conference on Human-Computer Interac-
tion HCI International 2003 (Heraklion, 22-27 June 2003), Vol. 1, Lawrence Erlbaum
Associates, Mahwah, 2003, pp. 248-252.

[18] van der Veer, G., Lenting, B., and Bergevoet, B., Groupware Task Analysis - Modelling
Complexity, Acta Psychologica, Vol. 91, 1996, pp. 297-322.

[19] Vilain, P. and Schwabe, D., Improving the Web Application Design Process with UIDs,
in Proc. of 2nd International Workshop on Web Oriented Software Technology IW-d

WOST’2002 (Malaga, 10 June 2002), 2002, accessible at http://www.dsic.upv.es/
~west2001/ iwwost02/papers/vilain.pdf

[20] WebML Home Page, accessible at http://webml.elet.polimi.it/webml.
[21] Winckler, M., Barboni, E., Farenc, C., and Palanque, P., SWCEditor: A Model-based

Tool for Interactive Modelling of Web Navigation, in R. Jacob, Q. Limbourg, J. Vander-
donckt (eds.), Proceedings of 5th International Conference on Computer-Aided Design of
User Interfaces CADUI’04 (Funchal, 13-16 January 2004), Kluwer Academics Pub.,
Dordrecht, 2004, pp. 55-66.

Chapter 3

MODEL-BASED DESIGN OF ONLINE HELP
SYSTEMS

Milene Selbach Silveira1, Simone D.J. Barbosa1,2, and Clarisse Sieckenius
de Souza2

1 PUCRS, Faculdade de Informática (FACIN)
Av.Ipiranga, 668, Prédio 30 – Porto Alegre, RS 90619-900 (Brasil)
E-mail: milene@inf.pucrs.br
URL: http://www.inf.pucrs.br/~milene
Tel: +55 51 3203558 – Fax: +55 51 3203621
2 PUC-Rio, Departamento de Informática,
R. Marquês de São Vicente, 225, 4o RDC, Gávea – Rio de Janeiro, RJ 22453-900, Brasil
E-mail: {simone,clarisse}@inf.puc-rio.br
URL: http://www.inf.puc-rio.br/{~simone,~clarisse}
Tel: + 55 21 3114-1500 ext. {4353,4344} – Fax: +55 21 3114-1530

Keywords: Design models, HCI design, Online help systems, Semiotic engineering.

1. INTRODUCTION

How can we help designers build online help for a computer application?
And how can we ensure that it will adequately tell users what to do with the
application, what the application is for, why certain design decisions were
made, and so on? Typical online help systems do not help their users much.
The reasons for this inefficiency may lie in lack of time or planning or in ex-
cessive confidence in the intuitiveness of a fail-proof interface, or in a naïve

29

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 29–42.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract Online help systems are typically used as a last resource in interactive break-
down situations. In this paper, we present a method for building online help
based on design models according to a semiotic engineering approach. We
show the benefits of having designers explicitly communicate their design vi-
sion to users, and we also point at the need to foster a new culture for online
help. We show how this proposal opens a direct communication channel from
designers to users, and we hope this will contribute to introducing this new
culture.

30 Silveira, Barbosa, and de Souza

acceptance of current standards [19]. Following Adler & Winograd’s views
[1] that attempting to build idiot-proof technology underestimates or hinders
the users’ intelligence and creativity to learn and transform software accord-
ing to their needs, we believe the role of the online help system is to open
new possibilities and give users resources to understand and go beyond the
designer’s original ideas, taking the most advantage of the technology. In
this view, the construction of the online help system becomes a critical step
in the design of human-computer interaction (HCI).

This work is based on Semiotic Engineering [7], which views the user in-
terface as a message sent from designers to users, representing the designers’
solution to what they believe is the users’ problems. It is through this mes-
sage that designers tell users what they have interpreted as being the users’
needs and preferences, what the answer for these needs is and how they im-
plemented their vision as an interactive system. In Semiotic Engineering,
online help is an essential application component. This is where designers
will explicitly “speak” to the users, revealing how the application was built,
how it can be used and for what purposes.

This paper describes a model-based approach for online help system de-
sign, stemming from Semiotic Engineering and driven by two main pillars:
communicability and the rhetorical layering technique used in the minimalist
approach. In order to illustrate our approach, the design of a real applica-
tion’s help system is presented as a running example.

2. A SEMIOTIC ENGINEERING VIEW OF ONLINE
HELP

According to Semiotic Engineering, it is essential that users understand
the designers’ message so that they may better use and take advantage of the
application. One way to make this message explicit is through a careful de-
sign of the application’s online help system. The goal of our research [21] is
to promote a novel perspective on online help design and usage. Users
should be able to express more precisely their doubts and needs, and design-
ers should be able to anticipate such doubts and needs, and to organize their
response accordingly.

Our proposal for online help design draws from two related works: com-
municability evaluation [15] and the layering technique used in minimalist
documentation [9]. Communicability evaluation is a qualitative HCI evalua-
tion method which reveals potential breakdowns during interaction. These
breakdowns are indicated by colloquial expressions which users can associ-
ate to their needs for help content. The minimalist approach to technical
communication suggests that using small pieces of very relevant contextual-

Model-Based Design of Online Help Systems 31

ized content is one of the best ways of providing information to users [5]. Its
benefits are increased by the layering technique [9], through which related
pieces of mutually accessible minimalist content are connected, and made
available to users.

In our approach, users are offered a set of expressions from which they
may choose one to indicate their doubts or trouble during interaction. In do-
ing this, they obtain the contextualized help content associated to the chosen
expression. For instance, if they can’t see or interpret feedback for an action,
users may ask “What happened?”.

Some of the expressions used for accessing help were drawn from the
communicability evaluation method, and others resulted from an analysis of
existing help literature about users’ most frequent doubts during interaction
[4, 20]. A few of them are frequently found in commercial applications, such
as “What’s this?” and “How do I do this?”. The current set of expressions
we use for accessing help is:

What’s this? How do I do this? What is this for?

Where is…? Where was I? What now?

What happened? Why should I do this? Why doesn’t it?

Who can do this? On whom does this depend? Who does this affect?

Oops! Is there another way to do this? Help!

Both users and designers benefit from using these expressions: users
have a greater chance of getting a relevant help response, and designers haveaa
an organisation principle directly driven by communicative breakdowns that
they intend to circumvent or solve. Inspired by the layering technique [9],
we allow users to access minimal pieces of help content about a certain user
interface element or task first, and then access further help material, depend-
ing on their needs, and then on to as much further information as required.

To review a text, access the Track
changes option under the Tools menu.

 What now?

How do I do this?

How do I do this?

Tools menu,
select the Track changes option. If you
want to turn on-off the reviewing mode,

select the Highlight changes... subitem.
If you would like to accept or reject each
one of the revisions, select Accept or

Reject Changes... Finally, if you would
like to compare two documents, select
Compare Documents...

IIs there another way to do this?

Figure 1. Help responses and their recurrence.

32 Silveira, Barbosa, and de Souza

A simple example illustrating minimalist responses and the recurring use
of expressions upon these is shown in Fig. 1. This is a fictitious example,
based on some help content found in MS Word®, as a response to help re-
quests about ‘tracking changes’. Our proposal includes a standalone help
module, where it is possible to find related information about the domain
and the application as a whole, as well as usage scenarios, so designers may
convey their global design vision in a consistent way. However, in this paper
we will focus on the local (contextualised) help only.

3. BUILDING ONLINE HELP SYSTEMS FROM HCI
DESIGN MODELS

In this section we describe the extended HCI models involved in design-
ing an online help system. We propose to use these models in a process
comprising the steps illustrated in Figure 2.

Application
Model + help User

Model + help

Interaction
Model + help

Interface
Model + help

Task
Model + help

Model-based design

Layering and refining
help

Help
draft

Local help +
recurrences

Creation of standalone
help module

Standalone
help module

Domain
Model + help

Help content
refinement and

redesign

Help content generation

Connection to interface
elements

Analysis and user testing

Figure 2. Steps used to build online help systems.

An implicit requirement of our proposal is that we capture design ration-
ale, a task known not to be easy [10]. We should emphasize that the only
relevant portions of design rationale for online help systems are those that
directly affect the users’ experience. In other words, all decisions that are re-
lated to software design, architecture and the like are unimportant for help

Model-Based Design of Online Help Systems 33

purposes. The relevant information must be captured during the application
design process. This is one of the reasons why we follow an extended
model-based approach to HCI design. In general, model-based approaches in
HCI promote the representation of interaction solutions in order for the de-
signer to reflect on and make adequate design decisions. There is a variety of
existing models: task models are the most widely used, but user, domain,
presentation and dialogue models are also found in the HCI literature, among
others [13,14,16,17,18,23,24,25]. We have carried out a series of studies
about these models, in order to verify the possibility of reusing the existing
information they provide in designing help and to identify the need for ex-
tensions. We have selected models for: domain, application, task, user, inter-
action and interface, and we have extended them to be able to represent in-
formation that is specific for help design.

Figure 3. Help request and response.

In order to illustrate our approach, we will describe portions of an appli-
cation we designed and developed for supporting the volunteer work in a

34 Silveira, Barbosa, and de Souza

nongovernmental organization [12]. The module we have chosen for illustra-
tion is the Bulletin Board, in which volunteers and employees of this organi-
sation may post and verify announcements related to their work or to the or-
ganisation as a whole. These announcements may be classified according to
different topics or divisions within the organisation, such as: Administration,
Events, Meetings, and so on. Figure 3 illustrates a usage scenario in the ac-
tual application, in which a member of the organisation has looked for help
about a section marker.

3.1 Model-based Design of Online Help

The information necessary for the construction of local help responses
and for the standalone help module is derived from HCI models built during
the design process. At this point we would like to emphasize the need for the
help designer to participate throughout the design process in order to capture
this information necessary for building the online help. His presence is es-
sential to ensure the timely capture of help-specific information. As the
models are created, the help designer should record the model components in
a database which, towards the end of the process, contains all necessary in-
formation for generating the draft help content. This way, the help design
process becomes more efficient and provides better results, for the informa-
tion not only reflects the design product, but also includes the rationale un-
derlying some relevant design decisions. If this information isn’t captured
throughout the design process, much of it would be scattered across numer-
ous representations, and possibly forgotten. We now describe the informa-
tion comprised in each model, highlighting (in boldface) the pieces of infor-
mation that are essentially driven towards help system construction.

Domain model: information related to the application domain, focused
on its description, the nature of work performed, and the information
elements (domain signs1) that belong to it.

Application model: information related to the application being de-
signed. The focus here lies in the application description, its utility, ad-
vantages, supported activities, alternative courses of action, and the
application signs. Besides, it encompasses the roles users may play in
this application, and for each role, the tasks related to it, and the neces-
sary basic knowledge.

1 A sign is a technical semiotic term that is usually taken to mean “something that stands for
something else for someone”. In this sense, every piece of data represented in a computer
application is a sign to the designer, and every user interface element is a sign both to the
designer and to the user(s).

Model-Based Design of Online Help Systems 35

Task model: information related to the tasks users may perform. For
each possible task, we represent its description, utility, reason why it
should be performed (from the designer’s point of view), its parent task
(considering a hierarchical task decomposition), the operator2 that con-
nects it to the following task, which establishes in which way it should
be executed, the tasks’ preconditions, and the related domain and appli-
cation signs.

User model: information related to the targeted application users. For
each user we represent his name, the roles he may play, and his profile,
which indicates the way in which he would like to interact with the ap-
plication.

Interaction model: information about the possible forms of interaction in
the application, that is, about how to effectively perform a certain task in
the application. For the execution of each task there may be alternative
courses of actions. For each alternative, there is the reason why it
should be executed (from the designer’s point of view), its precondi-
tion(s), the indication whether it is the preferred alternative (from the
designer’s point of view) and the actions necessary for its execution. For
each action, there is the default value, as well as the way to undo it, be-
sides the operator that connects it to the next action.

Interface model: information about the interface elements of the applica-
tion. For each element, we represent its type, the values it may assume,
its default value, its location at the user interface, and the related domain
and application signs.

As an example, consider a piece of the domain model, related to a couple of
domain signs in our case study:
DOMAIN SIGN Marker indicating current section {

DESCRIPTION (This marker indicates which is the current section (for instance,
Highlights, Events, and so on.))
PURPOSE (To quickly indicate the current section.)

}

DOMAIN SIGN section {
DESCRIPTION (A section is where the announcements are grouped according to
a common topic.)
PURPOSE (To classify the announcements that have common characteristics,
making it easier to locate them. For instance, announcements about upcoming
events are located in the “Events” section, about donations in the “How to help”
section, and so on.)

}
and a piece of the task model:

2 The operators considered in this version are those proposed in [14].

36 Silveira, Barbosa, and de Souza

TASK Provide the required information {
TASK PARENT(Create an announcement)
OPERATOR (sequence)
SEQUENCE (1)
…

}

TASK Confirm the operation {
TASK PARENT(Create an announcement)
OPERATOR (sequence)
SEQUENCE (2)
…

}

3.2 Help Content Generation using Templates

For each element–expression combination, a minimalist response is de-
signed. In order to generate a draft of this response, we have created a help
content template associated to each expression. This template is instantiated
with information from the different HCI design models. For instance, for the
“What’s this?” expression, the content comes directly from the description
of the related (domain or application) sign, which is represented in the corre-
sponding (domain or application) model:

Response: description(Sign)
What’s this?

A more elaborate generation may be illustrated by the “How do I do
this?” expression, related to a task. In this case, we have the following:

should
Response: In order to parent_task, you

 can

task1,
…
and
taskn.

task1,
…
ou
taskn.

depends on the task
sequence and operators

[, in whichever
order you wish].

searches, in the task
model, the tasks
which are children ofo
the indicated task.

How do I do this?HH

From the information contained in the models and these templates, a
draft of the candidate help responses is generated for each pair expression–

Model-Based Design of Online Help Systems 37

element (where element may be a sign, task, alternative courses of actions,
and actions). The help designer then selected which responses she would ac-
tually include in the application.

Let us consider the marker next to the name of the current section
(“Highlights”). A sample response generated from the database is obtained
as follows: This marker is a domain sign. The expressions related to (do-
main) signs are: “What’s this?”, “What is this for?”, and “Where is…?”.
Taking as an example the expression “What’s this?”, and using the afore-
mentioned template, the description element was retrieved from the domain
sign component, resulting in the following draft answer:

This marker indicates which is the current section (for instance, Highlights,
Events, and so on).

With regard to the task model, the response for the expression “How do I
do this?”, related to the task “Create an announcement”, would be:

In order to create an announcement you should provide the required informa-
tion and confirm the operation.

In case of procedural help content, animations may also be generated to
show users how the interaction should occur, in a way similar to Cartoonist
[22].

3.3 Layering and Refining Help and Creation of Stand-
alone Help Module

Based on the interviews with users, domain analysis, and so on, the de-
signer selects those elements which he believes users may have doubts or
which he would especially like to explain or describe to users, and the ex-
pressions that will be used to access this help content.

As soon as these element–expression pairs are selected, the generated
draft responses undergo a refinement process, in which technical communi-
cation specialists shape the text in order to better communicate the de-
signer’s message to users. Having done that, each help response is analysed
by the designer to verify the possible recurrence points it may comprise.
These points indicate the elements in the response to which further help ex-
pressions and content may be associated. This content may, in turn, contain
additional recurrence points, and so on, deepening the help content about
certain interrelated topics.

In our example, the draft text of the selected responses was refined and
analysed with the purpose of finding possible recurrence points. For in-
stance, in the response to the expression “What’s this?”

This marker indicates which is the current section (for instance, Highlights,

38 Silveira, Barbosa, and de Souza

Events, and so on.)

The designer has verified a reference to another domain sign, in this case
“section”. She selected this word as a recurrence point within the response,
and associated the expressions “What’s this?” and “What is this for?” to it.
The template for “What’s this?” of a domain sign is: description(Sign); and
the template for the expression “What is this for?” is: purpose(Sign). Thus,
the response to “What’s this?” is:

A section is where the announcements are grouped according to a common
topic.

And the response to “What is this for?”:

To classify the announcements that have common characteristics, making it
easier to locate them. For instance, announcements about upcoming events are
located in the “Events” section, about donations in the “How to help” section, and
so on.

It is important to note that help responses are generated and refined be-
forehand and embedded in the application as static information, instead of
being dynamically generated. This solution avoids execution delays in proc-
essing the possible expressions and responses for each element, and makes it
possible to manually refine the generated draft responses, so that the manner
of speech will seem natural and the communication will be more efficient.

Jointly with the layering and refinement of the help messages, the stand-
alone help module may be created. In its most basic form, this module
should contain help information about the domain and the application, as
well as an explanation about how different kinds of help work (standalone
and local). The domain and application portions of this module may be built
and refined pari passu the construction and refinement of local help content.
Afterwards, part of the local help content may also be included in the stand-
alone module.

3.4 Connection to Interface Elements

Having refined the local help content, the expressions and their corre-
sponding responses may be made available through the user interface, asso-
ciated to the elements which, according to the help designer, may raise some
kind of user doubt. This is achieved by adding a trigger or link to the corre-
sponding help expressions and content. In our case study, the graphics de-
signer created a symbol to function as a link to local help requests. The cho-
sen symbol was an interrogation mark within a square, such as ?, placed
next to the user interface element associated to the help expression

Model-Based Design of Online Help Systems 39

3.5 Analysis and User Testing

Having built the application prototype, the local help system and the
standalone help module, the design team should carry out some preliminary
testing in order to verify whether the expressions and the corresponding re-
sponses are consistent, as well as the general help information. Every con-
nection to help should be tested, as well as every recurrent point within the
responses.

Once the application is implemented it is ready for real user testing
through communicability evaluation [15], to verify if the interface is convey-
ing the designer’s message and to investigate which problems might occur
during interaction. In our case study, we set up a few sessions of communi-
cability evaluation with six users with varying degrees of computer literacy.
These users were selected specifically because they represented the majority
of the targeted user population, as indicated by the analysis interviews.

In order to better observe interaction during testing and to be able to cap-
ture the problems that may occur in help usage, it is interesting that the help
designer be present during observations, so that he may focus specifically on
help issues. He may not only observe problems in accessing help expressions
and in understanding their responses, but also find out user difficulties that
hadn’t been anticipated (and therefore had no associated help), or whose re-
sponses do not address the user’s current problem. In our case study, this
step made it possible to determine problems in the help content and in ac-
cessing help. These problems may be grouped into three classes: help con-
tent, “declining” help, and help culture.

Help Content. During testing, the help designer observed users having
problems in situations unanticipated by her, which meant that the corre-
sponding help was inadequate or altogether missing.

“Declining” Help. When a user, after many fruitless attempts to use the
searching mechanism, made a local help request, she read the explanation,
spontaneously said she understood it, but even so she decided to do some-
thing different from what was said in the help content, which made it impos-
sible to carry out the task defined in the test scenario.

Help Culture. Most users did not access help, independently of their ex-
perience with the application or in using computers. There isn’t a culture of
asking for online help when you are in trouble. Few were those who asked
for help and, when they did, some of them closed the help window before
there was time for them to have read the help information. Only one user ac-
tually read the help text and followed what the explanation suggested.

40 Silveira, Barbosa, and de Souza

4. FINAL REMARKS

In this paper, we have shown why, in Semiotic Engineering, online help
system is an essential part of an application. It is through help that the de-
signer can directly communicate with the application users, revealing the
reasons underlying his design and how users may make better use of it. In
this approach, model-based design is of utmost importance, for it makes it
possible to maintain the consistency between the design products built at
each phase. This allows the designer to create and convey a cohesive mes-
sage to users, in order to increase their chances of making sense of his mes-
sage.

The users may also express their doubts more directly using one of the
available local help expressions during interaction. The response will be a
fragment of the designer’s point of view and rationale when designing the
application. Moreover, users may delve deeper into the help content from the
recurrence points available at each help response, in an indefinitely long
chain of associations driven by their local needs. This process is associated
to some fundamental concepts in semiotic theory, namely semiosis and ab-
duction.

In addition to all technical and theoretical efforts, we should also pay at-
tention to introducing changes in the way users perceive help. As a rule, us-
ers access help only as a last resort [6]. They may have had frustrating ex-
periences in the past, or not even understand what help is for. So, without
fostering a culture for using help, the most carefully designed help won’t
improve the users’ experience with software. Since this proposal opens a di-
rect communication channel from designers to users, we believe it is a first
step towards the introduction of this new culture.

By following a model-based approach, the cost of extending current de-
sign practices to design help according to our view is reduced. Using design
models as a basis for context-sensitive help generation has been explored
elsewhere [11]. The main differences in our work rely on the communica-
tion-oriented mechanism for accessing help content,, made available through
communicability expressions. This mechanism empowers users, allowing
them to choose between a set of expressions that express their immediate
doubts in a more precise way, rather than relying on the designers’ judge-
ment of all the help content related to a certain user interface element.

In order to further increase the benefits of our work, our students at
PUCRS and PUC-Rio are working on software tools for aiding the design of
online help and integrating it to web and GUI applications.

Model-Based Design of Online Help Systems 41

REFERENCES

[1] Adler, P. and Winograd, T., Usability. Turning technologies into tools, Oxford Univer-
sity Press, 1992.

[2] Barbosa, C.M.A., de Souza, C.S., Nicolaci-da-Costa, A.M., and Prates, R.O., Using the
Underlying Discourse Unveiling Method to Understand Organizations of Social Volun-
teers, in E. Furtado, J.C. Leite (eds.), Proceedings of Vth Symposium on Human Factors
in Computing Systems IHC’2002 (Fortaleza, 7-10 October 2002), pp. ?.

[3] Barbosa, S.D.J., de Souza, C.S., de Paula, M.G., and Silveira, M.S., Modelo de Intera-
ção como Ponte entre o Modelo de Tarefas e a Especificação da Interface, in E. Fur-
tado, J.C. Leite (eds.), Proceedings of Vth Symposium on Human Factors in Computing
Systems IHC’2002 (Fortaleza, 7-10 October 2002), pp. ?.

[4] Baecker, R.M., Grudin, J., Buxton, W., and Greenberg, S., Readings in Human-
Computer Interaction: Toward the Year 2000, Morgan Kaufmann Publishers, San Fran-
cisco, 1995.

[5] Carroll, J.C. (ed.), Minimalism Beyond the Nurnberg Funnel, The MIT Press, Cam-
bridge, 1998.

[6] Ceaparu, I., Lazar, J., Bessiere, K., Robinson, J., and Shneiderman, B., Determining
Causes and Severity of End-User Frustration, Technical Report, HCIL-2002-11, CS-
TR-4371, UMIACS-TR-2002-51, University of Maryland, 2002, accessible at
ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/2002-11html/2002-11.pdf

[7] de Souza, C.S., The Semiotic Engineering of Human-Computer Interaction. The MIT
Press, Cambridge, 2004.

[8] de Souza, C.S., Prates, R., and Carey, T., Missing and Declining Affordances: Are
These Appropriate Concepts?, Journal of the Brazilian Computer Society, Vol. 7, No. 1,
July 2000, pp.26-33.

[9] Farkas, D.K., Layering as a Safety Net for Minimalist Documentation, In [5].
[10] Moran, T.P. and Carroll, J.M., Design Rationale: Concepts, Techniques, and Use, Law-

rence Erlbaum and Associates, Mahwah, 1996.
[11] Moriyon, R., Szekely, P., and Neches, R., Automatic Generation of Help from Interface

Models, in Proc. of ACM Conf. on Human Aspects in Computing Systems CHI’94
(Boston, 24-28 April 1994), ACM Press, New York, 1994, pp. 225-231.

[12] ORÉ Projeto, 2002, accessible at http://www.serg.inf.puc-rio.br/ore.
[13] Pangoli, S. and Paternó, F., Automatic Generation of Task-Oriented Help, in Proceed-

ings of the 8th Annual ACM Symposium on User Interface and Software Technology
UIST’95 (Pittsburgh, 15-17 November 1995), ACM Press, New York, 1995, pp. 181-
187.

[14] Paternò, F., Model-Based Design of Interactive Applications, Springer-Verlag, Berlin,
1999.

[15] Prates, R.O., de Souza, C.S., and Barbosa, S.D.J., A Method for Evaluating the Com-
municability of User Interfaces, ACM Interactions, Vol. 7, No. 1, January-February
2000, pp. 31-38.

[16] Preece, J., Rogers, Y., Sharp, E., Benyon, D., Holland, S., and Carey, T., Human-
Computer Interaction, Addison-Wesley, Reading, 1994.

[17] Puerta, A., The Mecano Project: Comprehensive and Integrated Support for Model-
Based Interface Development, in J. Vanderdonckt (ed.), Proceedings of 2nd Int. Work-d

shop on Computer-Aided Design of User Interfaces CADUI’96 (Namur, 5-7 June
1996), Presses Universitaires de Namur, Namur, 1996, pp. 19-36.

[18] Puerta, A., A Model-Based Interface Development Environment, IEEE Software, Vol.
14, No. 4, July/August 1997, pp.41-47.

42 Silveira, Barbosa, and de Souza

[19] Purchase, H. and Worrill, J., An empirical study of on-line help design: features and
principals, Int. J. Human-Computer Studies, Vol. 56, 2002, pp. 539-567.

[20] Sellen, A. and Nicol, A., Building User-Centered On-line Help, in B. Laurel (ed.), The
Art of Human-Computer Interface Design, Addison-Wesley, Reading, 1990, pp. 143-
153.

[21] Silveira, M.S., Barbosa, S.D.J., and de Souza, C.S., Augmenting the Affordance of
Online Help Content, in A. Blandford, J. Vanderdonckt, P. Gray (eds.), People and
Computers XV - Interaction without Frontiers, Proc. of the Joint AFIHM-BCS Conf. on
Human-Computer Interaction IHM-HCI’2001 (Lille, 10-14 September 2001), Vol. I,
Springer-Verlag, London, 2001, pp. 279-296.

[22] Sukaviriya, P. and Foley, J., Coupling a UI Framework with Automatic Generation of
Context-Sensitive Animated Help, Proceedings of ACM Symposium on User Interface
and Software Technology UIST’90 (Snowbird, 3-5 October 1990), ACM Press, New
York, 1990, pp. 152-166.

[23] Tarby, J.-Cl, The Automatic Management of Human-Computer Dialogue and Contex-
tual Help, in Proceedings of East-West International Conference on Computer-Human
Interaction EWCHI’94 (St. Petersburg, 2-6 August 1994), Springer-Verlag, Berlin,
1994.

[24] Vanderdonckt, J. and Berquin, P., Towards a Very Large Model-based Approach for
User Interface Development, in N.W. Paton, T. Griffiths (eds.), Proc. of 1st Int. Work-
shop on User Interfaces to Data Intensive Systems UIDIS’99 (Edimburgh, 5-6 Septem-
ber 1999), IEEE Computer Society Press, Los Alamitos, 1999, pp. 76-85.

[25] Vanderdonckt, J., Limbourg, Q., and Florins, M., Deriving the Navigational Structure
of a User Interface, in M. Rauterberg, M. Menozzi, J. Wesson (eds.), Proceedings of 9th

IFIP TC 13 International Conference on Human-Computer Interaction INTER-
ACT’2003 (Zurich, 1-5 September 2003), IOS Press, Amsterdam, 2003, pp. 455-462.

Chapter 4

A DESIGN TOOLKIT FOR HYPERMEDIA
APPLICATIONS BASED ON ARIADNE
DEVELOPMENT METHOD

Susana Montero, Camino Fernández, Juan M. Dodero, Ignacio Aedo, and
Paloma Díaz
Universidad Carlos III de Madrid, Departamento de Informática, Laboratorio DEI,
Avda. de la Universidad, 30 – E-28911 Leganés (Spain)
E-mail: {smontero@inf, camino@inf, dodero@inf, aedo@ia, pdp@inf}.uc3m.es
URL: http://www.dei.inf.uc3m.es/~smontero/
Tel: +34 91 624 9419 – Fax: +34 91 624 9129

Keywords: Development method, Design environment, Hypermedia applications, Hyper-
media modelling.

1. INTRODUCTION

The extremely high speed of demand on hypermedia systems, and in par-
ticular on web applications, have led to development processes where almost
the only existing phase is coding, mainly using tools as NetObjects’ Fusion
or DreamWeaver with no method behind. But hypermedia development pre-
sents very specific problems [6,10,14] that can be summarised in: mecha-

43

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 43–54.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract The development process of hypermedia applications implies very specific
problems mainly related, first, to the use of navigational structures, interactive
behaviours and multimedia compositions, and second, to the fact that are used
by users with different levels of knowledge and skills, and also different secu-
rity levels. This paper presents a design environment, AriadneTool, that allows
a designer to model a hypermedia application, to validate such a design and to
generate dynamically XML + SMIL implementation templates. This environ-
ment is based upon the Ariadne method which offers a set of integrated activi-
ties to model hypermedia applications in a systematic and iterative way. A
practical example is shown to illustrate the use of the tool in the development
of a hypermedia application.

44 Montero, Fernández, Dodero, Aedo, and Díaz

nisms to model sophisticated navigational structures, interactive behaviours
and multimedia compositions which have to be usable and harmonic at the
same time.

Traditional design methods lack intellectual mechanisms to analyse a de-
sign using abstractions and design entities related to the hypermedia domain
(e.g., nodes, links, anchors and synchronisms). Some hypermedia methods
provide designers with hypermedia specification tools including HDM [10],
RMM [12] and OOHDM [14], but the key point of taking into account secu-
rity issues is not addressed.

The proposal of this paper is the use of a graphical toolkit called Ariad-
neTool, to support the development of hypermedia applications following a
development method called Ariadne. The method applies an iterative process
based on the evaluation of design solutions with potential users to determine
their utility and usability. Compared to similar methods, Ariadne improves
three significant aspects: it provides a mechanism to define time- and space-
based constraints among contents; it offers a product to model the users
structure based on roles and teams that can be used to support personaliza-
tion and security; and it includes a security model to define the policy that
will be applied during the hyperdocument operation.

2. INTRODUCING ARIADNE AND ARIADNETOOL

Ariadne proposes a systematic approach to produce hypermedia applica-
tions. Compared to other hypermedia design methods such as HDM,
OOHDM or RMM, Ariadne shares a number of similarities concerning the
specification of the logical structure, navigation and interface layouts but it
also improves or introduces mechanisms to deal in an integrated way with
the six complementary views which have to be properly addressed by a de-
velopment method [6], including navigation, presentation, control, security,
processes and data. Several hypermedia methods and theirs CASE tools have
been proposed including Autoweb [9], WebML [3] and OO-H [11]. How-
ever, these methods have the following weak points:

Validation and integrity rules to test the correctness, completeness and
integrity of the design.
Contents modelling to organise and harmonise multimedia contents
both in their temporal and spatial dimension.
User modelling to model different types of application users and to ap-
ply personalisation as well as security constraints.
Security modelling to model which contents should be delivered to
which users, who can modify or personalise items and which con-
straints have to be applied.

A Design Toolkit for Hypermedia Applications Based on
Ariadne Development Method

45

Evaluation stage to collect information about the potential usability of a
system to improve features and functionality of application interface.

AriadneTool supports the Ariadne development method addressing these
features as it is shown in the following sections. In particular, the main con-
tributions of Ariadne are: the introduction of a specific mechanism to estab-
lish space and time-based relationships among contents, called alignments
and synchronisations respectively; the inclusion of elements to define a users
structure that can be used not only for security purposes (e.g., to define adap-
tive accesses); and, finally, the inclusion of a high-level security model
which makes possible to specify a role-based security policy, simpler and
easier to maintain than group-based policies [8], using the same design enti-
ties than those used to specify other hypermedia features such as the hyper-
text structure.

This method proposes a development process consisting of three phases:
Conceptual Design, Detailed Design and Evaluation. Each of them generates
a number of products covering the six views aforementioned Ariadne
method is graphically described in Fig. 1. Arrows represent a sequence
which is not unique but has been shown very helpful in different develop-
ments. Ariadne assumes an iterative process where the evaluation of proto-
types is used to gather information to improve the design, whether concep-
tual or detailed. A detailed explanation of the method can be found in [4]
and [6].

Figure 1. The Ariadne method.

AriadneTool is an environment devoted to the development of hyperme-
dia applications based upon the above design process. The main components
to support such mechanisms are (Fig. 2): (1) the Front-End that provides a
perfect environment for elaborating the Ariadne Method products; (2) the
Validation and Verification Module that holds the rules to validate
and verify the completeness and correctness of the design, notifying any
mistake or warning to the designer; (3) the Dynamic Repository that

46 Montero, Fernández, Dodero, Aedo, and Díaz

holds the components of the front-end in dynamic memory, so that access is
faster; and (4) the Central Repository that holds the components in a
persistent way. The development environment is implemented using
SDK1.4, allowing us to obtain an independent operation platform. The Vali-
dation and Verification Module is represented by DTD documents in which
the rules defining well-formed design products are specified. Elements de-
signed in the different products of the method are stored in the Central Re-
pository by JAXB1.1 which allows an automatic two-way mapping between
Java objects stored in the Dynamic Repository and final XML documents. A
module to translate synchronisation operations to SMIL specifications has
also been included.

Figure 2. The Ariadne architecture.

3. ARIADNE AND ARIADNETOOL WORKING TO-
GETHER

In this section, a practical example is used to guide the application of the
method with the use of the toolkit. The Ariadne Development Method estab-
lishes a systematic process composed by three phases: conceptual design, de-
tailed design and evaluation. Each of these phases proposes a number of de-
sign products to specify and produce hypermedia and web applications. The
conceptual design is focused on identifying abstract types of components, re-
lationships and functions. The detailed design is concerned with specifying
in a detailed way the system features, processes and behaviours the applica-
tion should be generated with. Finally, the evaluation is concerned with us-
ing prototypes and specifications to assess the system usability. The method
also provides a number of validation and integrity rules, both in the intra and

A Design Toolkit for Hypermedia Applications Based on
Ariadne Development Method

47

inter phase level to check completeness, consistency and integrity among the
various design products. These methodological foundations are the basis for
AriadneTool. At this moment, the tool supports the design products of the
conceptual design phase and the validation and integrity rules.

Figure 3. Example: Rural houses website.

The example shown in Fig. 3 illustrates a website about rural houses ori-
ented towards providing information about houses, their equipments, book-
ing and prices as well as places to visit or activities offered. The site will be
accessed by different users that can be identified as, for instance, visitors
who are anonymous users that browse the web-site, customers who are users
that have booked some time a house so they can check their reservations and
will be also notified of special offers, and the web-master who is the person
in charge of administrating the site. Navigation tools should be offered to
access all this information to all these users.

Taking this example site as an starting point, we will get through the
phases of Ariadne method showing how to generate the products proposed
by the method in the conceptual design phase: the structural diagram, the
navigation diagram, the attributes and events catalogue, the internal diagram
– including the spatial diagram and the timeline –, the users diagram, the
categorisation catalogue and the validation and verification, which are the
products included in AriadneTool.

48 Montero, Fernández, Dodero, Aedo, and Díaz

3.1 Structural Diagram

In this diagram, the structural relationships that appear in the application
domain are defined by means of composite nodes which are connected to
their components (simple or composite) by means of two abstraction mecha-
nisms: aggregation, that refer to a set of nodes as a whole, and generalisa-
tion, that represents an inclusion relation involving inheritance mechanisms.
The structure of our example (Fig. 4) is defined as an aggregation of a pres-
entation node, which is the entry point to the website (Fig. 3), and main
composite which aggregates the index and the information nodes. The aim of
this structure is to represent the fact that the website is made up of two
frames. One frame holds the index node and the other one holds the informa-
tion node. This last node generalises different kinds of information about
what the website offers to visitors, such as how to get there or the features of
the houses.

Figure 4. Structural diagram.

3.2 Navigation Diagram

The navigation diagram is where the navigation paths and tools the web-
site offers to the users are specified. Navigation paths are settled among
nodes using tagged links which can be uni- or bi-directional and n-ary [5].
For example in Fig. 5, from presentation node we browse both index and
houses node. Since information is a generalisation composite, all its compo-
nent (such as houses, location, and so on) will inherit the link information
and, therefore, the index node has turned into a navigation tool, tagged with
an NT. Moreover, we can define other navigation paths to external nodes of
our application as, for instance, the payment link, used when paying our
booking, to access the payment gateway, verify our visa number card and go
back again to reservation node.

A Design Toolkit for Hypermedia Applications Based on
Ariadne Development Method

49

Figure 5. Navigation diagram.

3.3 Attributes and Events Catalogue

The attributes and the events catalogue are repositories where properties
and behaviours are held so that they can be reused. The attributes catalogue
collects properties which add semantic to modelling. For each attribute there
is an entry including its name and its default value, so they can be associated
to nodes, contents and links and the value can be overwritten. In the case of
the events catalogue, they collect actions that take place when a condition is
fulfilled. The same way, there is an entry for each event and they can be as-
sociated to nodes or contents.

Figure 6. Attributes and Events Catalogue.

50 Montero, Fernández, Dodero, Aedo, and Díaz

For example in Fig. 6, we could have two attributes associated to the
email and password contents with the same name that holds the values typed
by the user. These attributes could be used in an event that checks the values
and send them to the server.

3.4 Internal Diagram - Spatial Diagram and Timeline

In order to provide more information about the nodes defined in the
structural and navigation diagrams, an internal diagram is created for each
node. This diagram consists of two subdiagrams; the spatial diagram and the
timeline, where contents, anchors, attributes and events can be placed. The
spatial diagram is a two dimensional space that represents the node visuali-
sation area where contents are placed.

Figure 7. Spatial diagram.

Figure 8. Timeline diagram.

A Design Toolkit for Hypermedia Applications Based on
Ariadne Development Method

51

In Fig. 7, our presentation node has two contents, the house logo and a
waterfall animation. The waterfall animation content is coloured in blue be-
cause it acts as source anchor for information and index links. To create
more harmonic presentations, space relationships can be set among contents.
For example, the waterfall content will be always below the logo content.
The other internal diagram is the timeline, which represents how the node
evolves throughout a time interval. In Fig. 8, a sound is added which will be
played during the time this node is being browsed. Moreover, to create more
dynamic presentations, time relationships can be set among contents. In this
case we have decided that the waterfall animation content is shown in the
first place, and at the end of the animation the logo content appears.

3.5 Users Diagram

In the users diagram, the expected types of users of the application are
identified inside roles and teams, with no individual users [2]. A role repre-
sents a job function or responsibility such as our visitors or the webmaster.
Roles can be specified as hierarchical structures where roles are specialised
into more specific roles by means of generalisation relationships. Fig. 9
shows how visitor role is specialised intor customers and anonymous visitors.
Roles can be grouped into teams that work together by means of aggregation
relationships. For instance, all application users are grouped into user team.r
The users diagram makes possible to define user-dependent presentations as
well as personalised hyperdocuments. For instance, only users that belong to
the customer role will have access to offers node (Fig. 9).

Figure 9. Users diagram.

3.6 Categorisation Catalogue and Access Table

The categorisation catalogue and the access table define who can do what
in the system. The categorisation catalogue holds the security category as-

52 Montero, Fernández, Dodero, Aedo, and Díaz

signed to each node or content defining the most permissive operation to be
performed by a user. These categories are: browsing, personalising and edit-
ing following the security model described in [2] and [7]. In this case the
category for all nodes and contents is browsing, that is all nodes can be read
but not modified. The access table allows the definition of the security poli-
cies following a RBAC (Role Based Access Control) approach, assigning a
manipulation category to each role for each node and content. For example
(Fig. 10), the offer node can be only accessed by customers, so the rest of the
users will have a no access category, except the webmaster role that needs to
edit the page.

Figure 10. Categorisation Catalogue and the Access Table.

3.7 Validation and Verification

The tool also checks by means of a number of inter- and intra validation
rules if each entity is fully and correctly described. For example, if visitor is
specialised into a customer, at the same time that customer is specialised into
a visitor, the inheritance mechanisms would always be applied. Therefore
the designer would be notified of this misconception. The validation and
verification module is in charge of checking the completeness and consis-
tency of the modelling entities by means of ontologies. The elements stored
in the dynamic repository are turned into an instance of an ontology that
conceptualise a hypermedia application domain by means of an explicit
number of elements, properties and axioms. After that, the instance is intro-
duced into the Jess rule engine and several rules that check possible errors
are run over the model and the results presented to the user. For example this
rule checks that a team has to be made up of at least one role.
(defrule team-whithout-roles

A Design Toolkit for Hypermedia Applications Based on
Ariadne Development Method

53

(declare (salience -150))
(PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type
 ?t http://ariadne/validator/laby#Team)
(not (PropertyValue http://ariadne/validator/laby#Valid
 ?t http://ariadne/validator/laby#Team))
=>
(assert (PropertyValue http://ariadne/validator/laby#Error
 ?t It/has/no/relation)))

4. CONCLUSION
AriadneTool is a design toolkit devoted to supporting the Ariadne devel-

opment method. The main contributions of this method are, on the one hand,
the multimedia modelling, offering mechanisms to organise and harmonise
multimedia contents in different dimensions such as time and space, and, on
the other hand, the user modelling that identifies the expected types of users
of the application making it possible to define user-dependent presentations.
Moreover, that modelling is used to define access policies in order to specify
who can do what into the system.

With regard to the tool, the main contributions are, on the one hand, the
validation and verification rules that help the designer to check completeness
and consistency of its work, on the other hand, the automatic generation of
documentation about the current design project, and, finally, since the con-
ceptual modelling is serialised into XML format, using XML transformation
language prototypes can be generated in HTML, SMIL or RDF.

AriadneTool has been evaluated by collecting feedback from the students
in a course on Hypermedia Design. This feedback has been very positive,
and a large majority believed that the tool supported well the method tasks
and made much easier to use the Ariadne Method. The tool has also been
used in a research project named ARCE, a web based system envisaged to
cope with the lack of synchronism among assistance requests and responses
in a multinational environment, whose main goal is to offer an efficient and
reliable communication channel among the different agents involved in a
disaster mitigation procedure [1].

Future work includes the support of the activities of the detailed design
related to the specification of concrete elements from the abstract entities de-
fined in the conceptual design. From this specification, prototypes will be
generated in SMIL, XML and HTML. Moreover, a web design patterns re-
pository will be integrated. Those web design patterns have already been
formalised using ontologies for the designer to apply the pattern into the
modelling phase using a task domain ontology. Finally, the ontology used in
the validation and verification module is being used to generate semantic
hypermedia applications that are made up of a domain ontology that de-
scribes the application domain in RDFS and its web resources using RDF.

54 Montero, Fernández, Dodero, Aedo, and Díaz

ACKNOWLEDGMENTS
We’d like to thank Jose Ángel Cruz and Juan Francisco Arévalo for their cooperation in

the development of AriadneTool. This toolkit is part of two projects funded by “Dirección
General de Investigación del Ministerio de Ciencia y Tecnología” (TIC2000-0402) and
“CAM” 07T/0024/2003.

REFERENCES

[1] Aedo, I., Díaz, P., Fernández, C., and Castro, J., Supporting Efficient Multinational Dis-
aster Response through a Web-Based System, in K. Lenk, R. Traunmüller (eds.), Proc. of
the 1st Int. Conf. on Electronic Government EGOV’2002 (Aix-en-Provence, 2-5 Septem-
ber 2002), LNCS, Vol. 2456, Springer-Verlag, Berlin, 2002, pp. 215-222.

[2] Aedo, I., Díaz, P., and Montero, S., A Methodological Approach for Hypermedia Secu-
rity Modelling, Information and Software Tech., Vol. 45, No. 5, 2003, pp. 229-239.

[3] Ceri, S., Fraternali, P., and Bongio, A., Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites, in Proceedings of 9th International World Wide Web
Conference WWW9 (Amsterdam, 15-19 May 2000), Computer Networks, Vol. 33, No.
1-6, 2000, pp. 137-157, accessible at http://www9.org/w9cdrom/177/177.html

[4] Díaz, P., Aedo, I., and Montero, S., Ariadne, A Development Method for Hypermedia, in
H.C. Mayr, J. Lazanský, G. Quirchmayr, P. Vogel (eds.), Proceedings of 12th Interna-
tional Conference on Database and Expert Systems Applications DEXA’2001 (Munich,
3-5 September 2001), LNCS, Vol. 2113, Springer-Verlag, Berlin, 2001, pp. 764-774.

[5] Díaz, P., Aedo, I., and Panetsos, F., Labyrinth, An Abstract Model for Hypermedia Ap-
plications. Description of its Static Components, Information Systems, Vol. 22, No. 8,
1997, pp. 447-464.

[6] Díaz, P., Aedo, I., and Panetsos, F., A Methodological Framework for the Conceptual
Design of Hypermedia Systems, in Proc. of the 5th Conf. on "Hypertexts and Hyperme-
dia: Products, Tools and Methods" H2PTM’99 (Paris, Sept. 1999), 1999, pp. 213-228.

[7] Díaz, P., Aedo, I., and Panetsos, F., Modelling Security Policies in Hypermedia and
Web-Based Applications, in S. Murugesan, Y. Deshpande (eds.), Proceedings of Confer-
ence on Software Engineering and Web Application Development Web Engineer-
ing’2001, LNCS, Vol. 2016, Springer-Verlag, Berlin, 2001, pp. 90-104.

[8] Ferraiolo, D.F., Barkley, J.F., and Kuhn, D.R., A Role-based Access Control Model and
Reference Implementation within a Corporate Intranet, ACM Trans. on Information and
Systems Security, Vol. 2, No. 1, 1999, pp. 34-64.

[9] Fraternali, P. and Paolini, P., Model-Driven Development of Web Applications: The
AutoWeb System, ACM Transactions on Office Information Systems, Vol. 18, No. 4,
2000, pp. 323-282.

[10] Garzotto, F., Paolini, P., and Schwabe, D., HDM-A Model-Based Approach to Hypertext
Application Design, ACM Trans. on Office Inf. Systems, Vol. 11, No. 1, 1993, pp. 1-26.

[11] Gómez, J., Cachero, C., and Pastor, O., Conceptual Modelling of Device Independent
Web Applications, IEEE Multimedia, Vol. 8, No. 2, 2001, pp. 26-39.

[12] Isakowitz, T., Stohr, E.A., and Balasubramanian, P., RMM: A Methodology for Struc-
tured Hypermedia Design, Comm. of the ACM, Vol. 38, No. 8, 1995, pp. 34-44.

[13] Lowe, D. and Hall, W., Hypermedia and the Web: An Engineering Approach, John
Wiley & Sons, New York, 1999.

[14] Schwabe, D. and Rossi, G., Developing Hypermedia Applications Using OOHDM, in MM
Proc. of the Workshop on Hypermedia Development Processes, Methods and Models
during the 9th ACM Conf. Hypertext’98 (Pittsburgh, 20-24 June 1998).

Chapter 5

SWCEDITOR: A MODEL-BASED TOOL FOR
INTERACTIVE MODELLING OF WEB
NAVIGATION

Marco Winckler, Eric Barboni, Christelle Farenc, and Philippe Palanque
Université Paul Sabatier, LIIHS -IRIT (Institut de Recherche en Informatique de Toulouse)
118, route de Narbonne – F-31062 Toulouse Cedex (France)
E-mail: {winckler, barboni, farenc, palanque}@irit.fr
URL: http://liihs.irit.fr/
Tel.: +33 (0)561 55 69 65 - Fax: +33 (0)561 55 62 58

Keywords: Diagrammatic tools, Formal methods, Model-based approaches for the Web,
Navigation modelling, Web application design.

1. INTRODUCTION

Despite the apparent facility of building Web pages promoted by current
visual environments, the development on the Web application remains com-
plex and requires appropriate methods and tools. This inherent complexity is
not only due to the huge number of pages that must be managed or the diver-
sity of technologies employed (JavaScript, Java, Active-X, etc) but also to
dynamic aspects such as on-the-fly page generation. In addition, Web appli-
cations require regular maintenance in order to update page content, to fol-
low a particular business workflow, to include new features for supporting

55

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 55–66.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract In spite of the apparent facility of building Web pages using current visual en-
vironments, the development on the Web application remains a complex task.
As for other complex software one possible and promising way of dealing with
this complexity is model-based approach. In this paper we present SWCEditor,
a model-based tool (exploiting the StateWebCharts notation) aiming at sup-
porting designers to build navigation models of Web applications. The State-
WebCharts (SWC) notation is a formalism that provides abstract mechanisms
to build navigation models of Web applications. This paper presents the
SWCEditor, a tool supporting the creation, edition, visualisation and simula-
tion of SWC models.

56 Winckler, Barboni, Farenc, and Palanque

new task and/or users, and so on. Besides, Web development is often per-
formed by several people (from different backgrounds) at a time and thus in
a parallel manner. Another important feature of a Web project is the time to
delivery or to update that can be as short as few hours. Designers can change
almost immediately their design, so this makes Web development projects
highly evolutionary in nature [12,14].

To deal with the complexity of Web development, modelling support is
essential as it provides an abstract view of the application thus leaving de-
tails to later phases in the development process. By means of a formal de-
scription technique, models can help designers by decomposing complex ap-
plications in smaller and manageable parts, increasing communication into
development team, reducing ambiguity, and providing support for verifica-
tion prior to implementation.

Traditional methods and models successfully employed for the develop-
ment of hypertext systems and traditional software have demonstrated that
they are insufficient to deal with Web design due the intrinsic specificities of
these systems [2,12]. Recently, some models have been proposed for sup-
porting Web development such as WebML [1], OOHDM [15,16], and UML
stereotypes [2]. Most of them propose solutions based on the concept of au-
thoring-in-the-large introduced by the HDM approach [8], which means they
provide abstract models describing the overall classes of information ele-
ments and navigation structures without much concern with implementation
issues. An important limitation of the “authoring in-the-large” approach lies
in the fact that it does not represent formally how users can interact with the
Web application. Such representation is essential when it comes to the us-
ability evaluation of these systems.

In [21], we have proposed a notation called StateWebCharts (SWC) to
help Web designers to formally describe navigation of Web application.
SWC is a notation extending StateCharts [7,9] which aims at providing dedi-
cated constructs for modelling specific aspects of Web applications. It pro-
vides a visual notation easy-to-apply for Web designers and formal enough
to allow automatic verification of the models, thus supporting the designer’s
activity throughout the design process. In this paper we present a tool, called
SWCEditor that supports the edition, visualisation and simulation of SWC
models. We describe hereafter how such a tool can support the design and
the evaluation of the navigation of Web applications modelled using SWC
notation. This paper is organised as follows: Section 2 discusses the role of
models for describing navigation of Web applications. Section 3 presents
briefly the StateWebCharts formalism. Section 4 presents the SWCEditor
and a case study that highlights its functionalities and use. We then discuss
the role of model-based approaches for Web navigation as well as future
work in this field.

SWCEditor: A Model-based Tool for Interactive Modelling of Web Navigation 57

2. MODELS FOR DESCRIBING NAVIGATION OF
WEB APPLICATIONS

Research on navigation modelling has a long history in hypertext and hy-
permedia domain [6,20,23], which have strongly influenced the technology
for the Web. State-based notations such as Petri nets [18] and StateCharts
[3,11,13, 23] have been explored to model navigation for hypertext systems.
However, such proposals are not able to represent some aspects of Web ap-
plications such as dynamic content generation, support to link-types (toward
external states, for instance), client and server-side execution. However,
some of them [3,18,23] do not make explicit the separation between interac-
tion and navigation aspects in the models while this is a critical aspect for
the usability of Web application.

More recent work devoted to Web applications, propose efficient solu-
tions to describe navigation and architecture in a single representation, as it
has been done by Connallen [2] using UML stereotypes, Fraternalli using
WebML [1] and Schwabe using OOHDM [15]. These approaches mainly
target data-intensive applications and even propose prototyping environ-
ments to increase productivity. The main inconvenience is that navigation is
described at a very coarse grain (for instance navigation between classes of
documents) and it is almost impossible to represent detailed navigation on
instances of these classes or documents. The same problem appears in Kock
[10]. Approaches such as Web UML stereotypes as in [2] and WebML [1]
may reduce creativity at design time as they impose the underlying technol-
ogy and as they do not provide efficient abstraction views of the application.

Many of these notations do not have appropriate tool support. Fraternali
presents in [4] a survey of available tools and approaches to deal with the
development of Web applications. Most of the tools presented in this survey
are visual editors and environment for programming; that do not follow a
model-based approach. Only a few, such as WebML and Web UML stereo-
types feature tools supporting abstract modelling and partial code generation
from models. However, as mentioned before, these two approaches present
some limitations with respect to the representation of user interaction, which
is essential in order to predict usability for instance. In addition, tools such
as WebRatio and Rational Rose that support respectively WebML and UML
Web Stereotypes do not provide tools for simulation and model analysis.

3. THE STATEWEBCHART NOTATION (SWC)

StateWebCharts is a formalism based on StateCharts [7,10], which has
been extensively used to model complex/reactive systems. StateCharts can
be defined as a set of the states, transitions, events, conditions and variables

58 Winckler, Barboni, Farenc, and Palanque

and their inter-relations. There are numerous extensions to StateCharts to
support different modelling needs and with different semantic. Hereafter we
introduce the basics of SWC with respect to the extensions made over State-
Charts, which give a view at glance of the domain addressed by SWC. More
details about StateCharts and SWC can be found in [7,21], respectively.

In SWC, states are abstractions of containers for objects (graphic or ex-
ecutable objects). For Web applications such containers are usually (but not
only) HTML pages. States in SWC are represented according to their func-
tion in the modelling. In a similar way, a SWC transition explicitly repre-
sents the agent activating it. Each individual Web page is considered a con-
tainer for objects and each container is associated to a state. Links and inter-
active objects causing transition are represented by events. The semantic for
a SWC state is: current states and their containers are visible for users while
non-current are hidden. Fig. 1 presents all elements of the SWC notation.

Static states (Fig. 1a) are the most basic structures to represent informa-
tion in SWC. A static state refers to a container with a static set of objects;
once in a static state the same set of objects is always presented. However,
the objects it contains are not necessarily static by themselves; they could
have dynamic behaviour as we usually find, for example, in applets,
JavaScript or animated images. Static is the default type.

Transient states (Fig. 1b) describe a non-deterministic behaviour in the
state machine. Transient states are needed when a single transition cannot
determine the next state for the state machine. Only completion or system
events are accepted as outgoing transitions of transient states. Transient
states only process instructions and they do not have a visual representation
towards users. Frequently, they refer to server-side parts of Web applica-
tions, such as CGI or Java Servlets programs.

Dynamic states (Fig. 1c) represent content generated dynamically at run-
time. They are usually the result of a transient state processing. The associ-
ated container of a dynamic state is empty. The semantics for this state is
that in the modelling phase designers are not able to determine which con-
tent (transitions and objects) will be made available at run time. Designers
can include static objects and transitions inside dynamic states; in such case
transitions are represented, but the designer must keep in mind that missing
transitions might appear at run time and change the navigation behaviour.

External states (Fig. 1d) represent information that is accessible through
transitions but are not part of the current design. For example, consider two
states A and B. While creating a transition from A to B, the content of B is
not accessible and cannot be modified. Thus, B is considered external to the
current design. Usually they represent connections to external sites. External
states avoid representing transitions without a target state, however all ac-
tivities (whatever it is entry, do, exit) in external states are null.

SWCEditor: A Model-based Tool for Interactive Modelling of Web Navigation 59

S2

b) Transient state d) External state

S4S1

a) Static state

S3
States

Pseudo States

Transitions

 S5
S5a

S5b

e) Composite XOR-state

S6a S6b
S6

S6a1
S6b1

S6b2

f) Composite AND-state

k) User transition

H

g) Shallow history state

H*
h) Deep history state i) End state j) Initial state

system event/condition :action condition :action

l) System transition m) Completion transition

user event/condition :action

Figure 1. Graphical representation of StateWebCharts.

Events are classified in SWC notation according to the agent triggering
them: user (e.g., a mouse click), system (e.g., a method invocation that af-
fects the activity in a state) or completion (e.g., execution of the next activity
in a row). A completion event is a fictional event that is associated to transi-
tions without triggers, e.g. change the system state after a timestamp. Fic-
tional completion events allow us to give the same representation for all
transitions in SWC machines. This classification of event sources is propa-
gated to the representation of transitions. Transitions whose event is trig-
gered by a user are graphically drawn as continuous arrows (Fig. 1k) while
transitions triggered by system or completion events are drawn as dashed ar-
rows (Fig. 1l and 1m, respectively).

In order to represent behaviour such as those found in StateCharts, SWC
provides the following pseudo-states (g) shallow history, (h) deep history, (i)
end state and (j) initial state. These pseudo-states do not have any container
associated to them. Pseudo-states and composite state in SWC are very close
of the definition given by StateCharts (see [21] for details). Both states and
transitions can have associated actions. When associated to transitions, ac-
tions represent what is executed by the system while traversing a transition.
When associated to state, actions represent the activity performed by the
state.

60 Winckler, Barboni, Farenc, and Palanque

4. THE SWCEDITOR

The SWCEditor is a prototype that supports creation, edition, visualisa-
tion, simulation and analysis of SWC models. It was built using Java and
models are stored in a XML format. In the XML DTD, SWC elements are
grouped in two main sections: a) state section, which contains the hierarchy
of state and pseudo-states elements; and b) the transition section, which pre-
sents the list of all transitions in a model. Fig. 2 presents an extract of a SWC
XML file.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with SWCEditor -->
<swc>

<CompositeState id="root" label="root" file="null" initial="S1" concurrent="false">
<BasicState id="S1" label="main intro" type="BasicState" file="

C:\swceditor\swceditor\demo\spider\spider_intro.html" >
</BasicState>
<BasicState id="S2" label="schedule" type="BasicState"

file="C:\swceditor\swceditor\demo\spider\spider_schedule.html">
</BasicState>

...
</CompositeState>
<Transition id="t1" type="user" label="" source="S1" target="S2" trigger="mouseClick"

guard="true" action="">
</Transition>
<Transition id="t2" type="user" label="" source="S1" target="S3" trigger="mouseClick"

guard="true" action="">
</Transition>
...

</swc>
Figure 2. XML file describing a SWC model.

4.1 Support for Creation, Edition and Visualization

One of the most basic requirements for model-based tools is to support the
creation of new models and the updating of existing ones. Fig. 3 presents the
edition of a basic state in a model. All attributes of a state are shown in a fill-
in form; including actions and URL address for a container of objects. The
URL field (see dialog “Edit Basic State” in Fig. 3) links an abstract represen-
tation of a state to a concrete Web page (a container of objects HTML, CSS,
JavaScript, etc). As SWCEditor does not support code generation of Web
pages, designers can use their preferred editor to implement the application.
Once Web pages have been created, it is possible to associate each state to a
corresponding Web page. This matching of states and Web pages is required
for simulating the application in advanced phases of development. Even
though the SWCEditor provides many facilities for creating new SWC mod-
els, it is also possible to imagine SWCEditor being used to visualize SWC
specifications resulting from reengineering process of existing Web sites.

SWCEditor: A Model-based Tool for Interactive Modelling of Web Navigation 61

Figure 3. Editing function with SWCEditor.

4.2 Supporting for Simulation

During early evaluation phases of development designers have to check
if abstract modelling will behave as expected. Simulations of models can be
useful for that purpose. Fig. 4 presents how SWCEditor allows simulation of
SWC models. First of all, let us to focus on the left part of the figure 4.
There are two windows: the simulator window (at top-left) and the visualisa-
tion window (at bottom-left). The window simulator is composed of two
panels showing: the set of active state (grey panel at left) and the set of en-
abled transitions at a time (white panel at right). The visualisation window is
the main graphic editor of SWC models (the SWCEditor module).

In the current implementation, all interactions concerning simulation are
performed over the simulator window. When an enabled transition is se-
lected (by double-clicking) the system fires it immediately causing the
changing of the system, which displays the next stable configuration. The in-
terpretation of changes in the system is eased by an animation thus reducing
the user’s activity of comparing the current state with the previous one. The
new active states become red in the visualization window, and the set of cur-
rent active states and the set of current enabled transition are updated in the
simulator window.

62 Winckler, Barboni, Farenc, and Palanque

Figure 4. Tools for simulating SWC models.

If a container is associated to a state, it is possible to concurrently display
the corresponding container (typically a Web page) in a browser during the
simulation. The concurrent simulation of model and implementation is suit-
able during the prototyping activity. Thus, designers can follow the changes
in the abstract specification at the SWCEditor as well as its concrete imple-
mentation at the Web browser. Fig. 4 shows in a browser window (at right
part) the corresponding Web page for the current state in that simulation.
The simulation can be used as a kind of automated walkthrough method for
inspecting both navigation specifications and their corresponding Web ap-
plications. The task of testing the application for different displays is eased
by repeating a simulation with different browsers.

Automated walkthrough is not the unique way for simulating models. In
[22] it is described how navigation and task modelling could be synergisti-
cally exploited to improve the development process of Web applications as a
means to evaluate Web applications at different phases of an iterative devel-
opment process. That assessment technique consists in play scenarios over a
model. By automatically simulating scenarios over navigation modelling it is
possible to verify the system’s conformance with the user requirements
specified through task models.

SWCEditor: A Model-based Tool for Interactive Modelling of Web Navigation 63

4.3 Analysis of SWC Models

The main role of task analysis is to check if some properties hold on a
model/application. As mentioned in Section 3, SWC is a formal notation
which allows the description of low level interaction concerning navigation.
Thus, SWC models provide information that can be employed by model
checker tools to analyse some system properties concerning the usability.
When employed in early phases of development, model checkers help to
prevent usability problems in the implementation. We have identified 5 cate-
gories of analysis techniques suitable to be automated by model checkers
and employed to analyse navigation models:

Static analysis: checks directly a model without having to provide any
additional information. For example: check if all states are accessible; if
there is no duplicated states or links; if all transitions have a valid target,
and so on.
Navigation path analysis: given a start point and a destination for a
navigation path it is possible to check: the availability of a path to the
destination; the shortest path to destination; the occurrence of path con-
straints (for example, to get destination ones have to visit some arbitrary
states first).
System properties analysis: one can choose to check if the systems obey
predefined rules such as if all states are accessible with a given number
of links (more or less 5, for instance). Most of properties we are inter-
ested in to analyse concern the usability of the application. However,
many others properties can be checked. Dhyani, Ng, and Bhowmick [19]
have collected an impressive number of metrics that can be analysed
over Web applications. They have classified Web metrics as: graph met-
rics, significance, similarity, search, usage and information theoretic.
Many of Web metrics require a representation of the Web in a form of a
direct graph or a description of the document and their relationships.
This kind of information can be easily caught from SWC models.
Assessment of task and navigation models: check if scenarios obtained
from task modelling can be performed over a navigation modelling. This
kind of analysis requires simulation of the system. The procedure to per-
form this assessment is described in [22].
Comparing alternative models: if there is more than one navigation
model for an application, it is possible to compare whether these models
provide similar or equivalent navigation paths. By comparing alternative
models, one can determine in which extension they are equivalent or not
and if they support the same set of tasks.

Up to now, there is no analysis tool integrated to SWCEditor but this
work is in progress. At present, we have selected a set of ergonomic rules

64 Winckler, Barboni, Farenc, and Palanque

that can be checked automatically or supported by semi-automatic tools. Our
aim is to transform these ergonomic rules in a formal description that can be
interpreted by model checker over SWC models.

5. DISCUSSION AND FUTURE WORK

SWC models can be used in many different ways formalizing navigation
for critical parts of the application or giving an abstract notation to support
prototyping phases. However, most of advantages of having formalisms like
SWC can only be fully exploited if appropriate software tools exist. The ad-
vantages of tool support for interactive design have been extensively dis-
cussed in the literature; they range from facilities for editing (such as provide
automatic layout to avoid crossing lines in models) until advanced model
analysis (i.e., prediction of system performance or automatic detection of
conflicts in the system).

In the specific case of development of Web applications, designers can
get many benefits from model-based approaches. Model-based tools can
give abstract views of application and guide the implementation passing the
interactive phase of prototyping (what is especially useful during the devel-
opment of interactive systems such as Web applications) and supporting
evaluation prior to implementation. Moreover, as discussed in [22] model-
based tools can help designers to evaluate applications and supporting the ra-
tional redesign of Web applications.

Surprisingly, only a few tools such as WebRatio (available at
http://www. webratio.com/), OOHDM-Web [15] and AutoWeb [5] support a
model-based approach for Web applications. However, these tools are not
based on a formal specification of the interface and they do not provide
functions for simulating user interaction over the applications. Furthermore,
due the lack of information about how users may interact with the applica-
tion, these tools can hardly reap the benefits of advanced analysis of system
properties.

We have presented in this paper our preliminary results of a prototype to
deal with the creation until the analysis of navigation of Web application.
The prototype presented here is based on a formal notation, called SWC. Our
aim is to get more benefits from the fact SWC is formal and non-ambiguous
to go further in the near future on the analysis of system properties. Even
though the current implementation does not included all tools before men-
tioned to analyse system properties, SWCEditor provides, at least, the core
functions enabling the development of such as tools. Our ongoing work con-
sists in to develop and to integrate such as analysis tools to our prototype.
We are also working on the development of more advanced visualisation
features to make easier the interaction and edition of very large models.

SWCEditor: A Model-based Tool for Interactive Modelling of Web Navigation 65

ACKNOWLEDGEMENTS

This work has been partially supported by CNPq (Brazilian Council for
Research and Development) and Capes/Cofecub (SpiderWeb project).

REFERENCES

[1] Ceri, S., Fraternali, P., and Bongio, A., Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites, in Proceedings of 9th International World Wide Web
Conference WWW9 (Amsterdam, 15-19 May 2000), Computer Networks, Vol. 33, No.
1-6, 2000, pp. 137-157, accessible at http://www9.org/w9cdrom/177/177.html

[2] Connallen, J., Building Web Applications with UML, Addison-Wesley, Reading, 1999.
[3] Dimuro, G.P. and Costa, A.C.R., Towards an Automata-Based Navigation Model for the

Specification of Web Sites, in Proc. of 5th Workshop on Formal Methods WFM’2002
(Gramado, 15-16 October 2002), accessible at http://gmc.ucpel.tche.br/ensinet/artigos/
Dimuro-Costa.pdf

[4] Fraternali, P., Tools and Approaches for Developing Data-intensive Web Applications: a
Survey, ACM Computing Surveys, Vol. 31, No. 3, 1999, pp. 227-263.

[5] Fraternali, P. and Paolini, P., Model-Driven Development of Web Applications: The
AutoWeb System, ACM Transactions on Office Information Systems, Vol. 18, No. 4,
2000, pp. 323-282.

[6] Halasz, F. and Schwartz, M., The Dexter Hypertext Reference Model, Communications
of the ACM, Vol. 37, No. 2, 1994, pp. 30-39.

[7] Harel, D., StateCharts: A Visual Formalism for Computer System, Science of Computer
Programming, Vol. 8, No. 3, 1987, pp. 231-271.

[8] Garzotto, F. and Paolini, P., and Schwabe, D., HDM-A Model for the Design of Hyper-
text Applications, in Proceedings of the 3rd Annual ACM Conference on Hypertext Hy-d

pertext’91 (San Antonio, 15-18 December 1991), ACM Press, New York, 1991, pp. 313-
328.

[9] Horrocks, I., Constructing the User Interface with Statecharts, Addison-Wesley, Read-
ing, 1999.

[10] Koch, N. and Kraus, A., The Expressive Power of UML-based Web Engineering, in D.
Schwabe, O. Pastor, G. Rossi, L. Olsina (eds.), Proc. of 2nd Int. Workshop on Web-d

oriented Software Technology IWWOST’2002 (Malaga, 10 June 2002), accessible at
http://www.dsic.upv.es/~west2001/iwwost02/papers/koch.pdf

[11] Leung, K., Hui, L., Yiu, S., and Tang, R., Modelling Web Navigation by StateCharts, in
Proc. of 24th Int. Conf. S.A., IEEE Computer Society Press, 2000.

[12] Murugesan, S. and Deshpande, Y., Web Engineering: Managing Diversity and Complex-
ity of Web Applications Development, Lecture Notes in Computer Science, Vol. 2016,
Springer-Verlag, Berlin, 2001.

[13] Oliveira, M.C.F. de, Turine, M.A.S., and Masiero, P.C., A Statechart-Based Model for
Modeling Hypermedia Applications, ACM Transactions on Office Information Systems,
Vol. 19, No. 1, April 2001, pp. 28-52.

[14] Sano, D., Designing Large-Scale Web Sites: A Visual Design Methodology, John Wiley
& Sons, New York, 1996.

[15] Schwabe, D., Pontes, R.A., and Moura, I., OOHDM-Web: An Environment for Imple-
mentation of Hypermedia Applications in the WWW, SigWEB Newsletter, Vol. 8, No. 2,WW
June 1999, pp. 18-34.

66 Winckler, Barboni, Farenc, and Palanque

[16] Schwabe, D., Rossi, G., and Barbosa, S.D.J., Systematic Hypermedia Application Design
with OOHDM, in Proc. of the 7MM th ACM Conference on Hypertext Hypertext’96 (Wash-
ington, 16-20 March 1996), ACM Press, New York, 1996, pp. 116-128.

[17] Silva, P. P. da, and Paton, N.W., UMLi: The Unified Modelling Language for Interactive
Applications, in Proc. of 3rd Int. Conf. on the Unified Modeling Language UML’2000d

(York, 2-6 October 2000), Lecture Notes in Computer Science, Vol. 1939, Springer-
Verlag, Berlin, 2000, pp. 117-132.

[18] Stotts, P.D. and Furuta, R., Petri-Net-Based Hypertext: Document Structure with Brows-
ing Semantics, ACM Trans. on Information Systems, Vol. 7, No. 1, January 1989, pp. 3-
29.

[19] Dhyani, D., Ng, W.K., and Bhowmick, S.S., A Survey of Web Metrics, ACM Computing
Surveys, Vol. 34, No. 4, 2002, pp. 469-503.

[20] Turine, M.A.S., Oliveira, M.C.F., and Masieiro, P.C., A Navigation-Oriented Hypertext
Model Based on Statecharts, in Proceeding of 8th ACM Conf. on Hypertext Hypertext’97
(Southampton, 6-11 April 1997), ACM Press, New York, 1997, pp. 102-111.

[21] Winckler, M. and Palanque, P., StateWebCharts: a Formal Description Technique Dedi-
cated to Navigation Modelling of Web Applications, in J. Jorge, N.J. Nunes, J. Falcão e
Cunha (eds.), Proc. of 10th Int. Workshop on Design, Specification, and Verification of
Interactive Systems DSV-IS’2003 (Funchal, June 2003), Lecture Notes in Computer Sci-
ence, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. ?.

[22] Winckler, M., Palanque, P., Farenc, Ch., and Pimenta, M., Task-Based Assessment of
Web Navigation Design, in C. Pribeanu, J. Vanderdonckt (eds.), Proceedings of 1st Int.
Workshop on Task models and Diagrams for User Interface Design TAMODIA’2002
(Bucharest, 18-19 July 2002), Academy of Economic Studies of Bucharest, Economic
Informatics Department, INFOREC Printing House, Bucharest, 2002, pp. 161-168.

[23] Zheng, Y. and Pong, M.C., Using Statecharts to Model Hypertext, in Proceedings of the
European Conference on Hypertext Technology (Milan, 30 November-4 December
1992), ACM Press, New York, 1992, pp. 242-250.

Chapter 6

BEHAVIOUR MODELLER
The Systematic Generation of Statechart from Functional
Relations and Scenarios for Prototyping User Interfaces

Akihiko Urushihara1, Satoshi Kanai1, Takeshi Kishinami1,
and Toyoaki Tomura2

1 Det. of Systems & Information Engineering, Graduate School of Engg., Hokkaido
University,
nishi 8 cho-me kita 13 jyo, kita-ku, Sapporo 0608628, JAPAN
E-mail: {kanai, kishinami}@coin.eng.hokudai.ac.jp, aurushi@minf.coin.eng.hokudai.ac.jp
URL: http://minf.coin.eng.hokudai.ac.jp/
Tel.: +81 11-706-6448 – Fax: +81 11-706-6448
2 Asahikawa National Collage of Technology,
6-1 2-chome 2-jyo syunkoudai Asahikawa City JAPAN
E-mail: tomura@asahikawa-nct.ac.jp
Tel.: +81 166-55-8027 – Fax: +81 166-55-8027

Abstract Designing user interface (UI) behaviour can be regarded as a mapping from
product functions and a set of UI control scenarios to state-transition-based UI
specification. However, in current UI prototyping tools, UI designers must di-
rectly describe the UI specification from scratch, and the specification is not
explicitly related to the product functions. In this paper, we present a “Behav-
iour Modeller” to systematically support this mapping process. In the model-
ler, required functional relations of the product are modelled as a functional re-
lation diagram (FRD), while UI control scenarios are modelled as sequence
diagrams (SDs). The UI element Statechart (SC) templates are also introduced
to enable efficient generation of the specification. The modeller automatically
generates an SC as the complete state-transition-based UI specification from
an FRD, SDs and templates. The designer can easily modify a complex SC
only by inserting or removing functions in the FRD and by changing the sce-
nario in SDs. The effectiveness of the method and tool was confirmed by ap-
plication to UI design for consumer products.

Keywords: Embedded system, Prototyping, Scenario, Statechart, State vector, User inter-
face.

67

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 67–80.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

68 Urushihara, Kanai, Kishinami, and Tomura

1. INTRODUCTION

1.1 Background and Purpose
Rapid development of embedded systems for consumer products such as

cellular phones is strongly needed in the electronic appliance manufacturers.
User Interface (UI) control software accounts for a large part of recent em-
bedded software used in these systems, and usability assessment using UI
prototype in the early design stage of the UI development process becomesf
more important. Thus, efficiency of development of UI control software is a
key to shorten the overall. However, the current bottleneck is design of the
UI behaviour specifications.

Product
Planning

Designing
Behavior

specification
Usability

Assessment

Software
Coding

Software
Testing

Operation Manual
Documentation

Partial UI control
Scenarios (document)

Product
PlanningPlanning

Designing
Behavior

specification

Designing
Behavior

specification
Usability

Assessment

Usability
Assessment

Software
Coding

Software
Coding

Software
Testing

Software
Testing

Operation Manual
Documentation

OO lOperation ManualOperation Manual
Documentation

UI Element

Design Change RequestDesign Change Requestg g q

Assessment CriteriaAssessment Criteria

Prototyping ToolPrototyping Tool

State-transition-based
UI specification
(Document)

ExistingExisting
ProductProduct

Market ResearchMarket Research
Cost ConstraintCost ConstraintCCC

Required Function
List (document)

Embedded CodeEmbedded Code

ImplementationImplementation

Operation ManualOperation Manual

UI DesignerUI Designer

Push clearPush clearsh c

Push F3Push F3

Push F2Push F2s

Push UPPush UP

Push clearPush clear

2003/8/26 15:23 2003/8/26 15:23

2003/8/26 15:23 2003/8/26 15:23

Phone book

A
B

C D
 E

 B

2003 March
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

Received mail
Hello
Re:Re:Re:
Re:
No subject

Tomorrow’s plan

Received mail
03/03/24 18:10
Friend 1
Hello!
How are you ?
This is …..

1,Function to call
1-1 dial
1-2 receive the call
1-3 change the sound

2,address book
2-1 register
2-2 search the name

3,Camera

Function of “dial”
Push the number
Represent the num

on the LCD
Push the “call button”

Figure 1. General development process for UI control software.

Fig. 1 shows the general development process of UI control software that
has been investigated by us from several Japanese electronics manufacturers.
As shown in the figure, designing the UI specification can be regarded as a
mapping process from the product function list, partial UI control scenarios
and UI elements to the complete state-transition-based UI specifications. The
function list is an enumeration of the product functions. The UI control sce-
nario shows how a user sequentially interacts with the UI to use a particular
function, and UI elements are input and output UI objects such as buttons
and display fields on the product.

However, from our investigation, the function list and the state-
transition-based UI specifications are mostly expressed only as written
documents, and the mapping is done manually. It is difficult to re-use speci-
fications in subsequent processes such as usability assessment, software cod-
ing/testing, and manual documentation. Therefore, the computer-aided tool

Behaviour Modeller 69

that can digitally transform the required function list into the state-transition-d
based UI specifications is needed. The purpose of this study was to establish
a method for automatic generation of SC specifications expressing UI behav-
iour from a function list of the product, scenarios of each function, and UI
elements of the product. The following approach was taken to reach this goal.
1. A functional relation diagram (FRD) is introduced to digitally describe

the functional relations of the product, and a systematic and automatic
method for generating the SC for function selection from the FRD de-
pendent on the UI elements is proposed.

2. A method for automatically generating the SC for function execution
from scenarios expressed by sequence diagrams (SDs) by evaluating the
state vectors dependent on the UI elements is proposed.

3. The behaviour modeller to digitally support the methods of 1) and 2) is
implemented and its effectiveness was confirmed by the results of a case
study on UI design for consumer products.
Our approach is outlined in Section 2. The method for generating the SC

for function selection from the FRD is described in detail in Section 3, and
the method for generating the SC for function execution from scenarios for
each function is described in detail in Section 4. Implementation of the tool
and results of a case study are described in Section 5.

1.2 Related Work

Several methods for representing UI behaviour by state-transition-based
specifications have been proposed. An Interactive Object Graph (IOG) [2] is
an extended Statechart to which the data objects and data flows between
states and data objects are attached. The IOG is effective in describing inter-
action objects in the UI. Jacob et al. [7] proposed a UI specification where
event-based discrete interactions and continuous interactions such as data
flow or constraint-like components are combined for Non-WIMP UI specifi-
cation. However, the above two methods did not sufficiently address how to
describe the functional specification and the process from the functions to a
behavior specification. Therefore, it is difficult for the UI designer to modify
behavior specifications corresponding to changes of the functions. Of course,
these methods could extend the functionality of the SC, and can be consid-
ered as complements to our SC-based approach.

On the other hand, XIML [11] was proposed as an XML-based common
representation for interaction data. It is readable to both humans and com-t
puters, and is consistently reusable from design to evaluation of the UI. But
it does not have a graphical representation, and capturing the UI behaviour
intuitively by designers is hard.

Based on these considerations, we use the SC for the UI specifications.

70 Urushihara, Kanai, Kishinami, and Tomura

The reasons are that 1) the concept and notation of the SC are standardized
by the UML and are widely accepted, 2) the SC has not only a graphical rep-
resentation, but also a standard XML document format (XMI), and 3) it en-
ables top-down step-by-step definition using state hierarchy by designers.

Several commercial CASE tools have become available recently. CASE
tools based on UML [13,14] can be used to help UI designers to schemati-d
cally specify the behaviour of the UI control software using sequence dia-
grams, collaboration diagrams, and Statecharts (SCs). Moreover, UI proto-
typing tools [9,12] can also be used to model state-transition-based UI speci-
fications using a “mode tree” or a set of finite state machines.

These tools can store UI specifications in digital form, but they still have
the following problems. Firstly, UI designers must directly generate complex
state-transition-based UI specifications from scratch, and they cannot handle
the specifications in relation to product functions. This is not good for the
process of designing UIs for consumer products, in which required functions
often change even during the design process. Secondly, scenarios are widely
used by UI designers as a specification method since they are easier for de-
signers to use than state-transition-based specifications. However, these tools
do not have functions to model the scenarios and convert them to state-
transition-based UI specifications. Thirdly, the format of state-transition-
based UI specifications is not open and their re-use is limited.

Recently, a methodology for developing UI specifications has also been
proposed. Horrocks [5] proposed a general guideline for constructing UI
specifications with SC using practical examples. But the supporting tools for
it were not discussed. Puerta [10] proposed sophisticated model-based UI
development methodology and tools. In his approach, the models of user-
task, dialog, and presentation are interrelated to provide a formal UI specifi-
cation. But they did not discuss the model of product functions and of state-
transition-based UI behaviour specification.

On the other hand, there have been a number of studies on the generation
of UI specifications from scenarios. Whittle et al. [17] reported a method for
generating an SC from multiple scenarios expressed by sequence diagrams.
In their method, however, the functions of the product are not explicitly
modelled, and the SC-based UI specification cannot be managed in relation
to product functions. Elkoutbi et al. [3] also proposed a method similar to
that of Whittle et al. for generating a UI specification from scenarios. They
also proposed another method [4] for generating a Petri-Nets-based UI speci-
fication from sequence diagrams and Use Case diagrams. In both approaches,
the generation of an SC-based UI specification from scenarios could be
automated. However, in both methods, the relation of product functions were
not captured and modelled, and the modification of the SC-based UI specifi-
cation could not be done efficiently.

Behaviour Modeller 71

2. FUNCTIONAL OUTLINE OF THE BEHAVIOUR

MODELLER

Fig. 2 shows an outline of our behaviour modeller. The basic concepts of
modelling UI behaviour in the modeller are based on the following assump-
tions:

1. The behaviour consists both of the behaviours of the input and output UI
elements themselves and the behaviour of the UI controller.

2. Each behaviour can be specified by the SC.
3. The SC structure for the UI controller mainly consists of the SC for con-

trolling function selection (ex. “Mode Selection”) and the SC for per-
forming the function according to the scenario in the selected function

4. The behaviours of three kinds of SC for input/output UI elements and UI
controller are logically interconnected by action-event chains. The user d
sends an event to and receives actions from the UI controller via the SCs
of input/output UI elements.

Based on these concepts, the modelling process in the behaviour model-
ler consists of three sub-processes:

1) Generation of the SC for function selection from the FRD corresponding
to the function list and from the UI element SC template.

2) Generation of the SC for function execution from the SDs expressing the
scenarios for each function and from the UI element SC template.

3) Completion of the SC for the UI controller by integration of the SC for
function selection with the SCs for function execution.

Figure 2. Outline of our behaviour modeller.

72 Urushihara, Kanai, Kishinami, and Tomura

3. GENERATION OF THE STATECHART FOR
FUNCTION SELECTION FROM A FUNCTIONAL
RELATION DIAGRAM

The process for generation of the SC for function selection involves two
steps: 1) combination of the product function list and UI elements using anff
FRD, and 2) automatic generation of the SC for function selection from the
FRD using UI element SC templates. The details of these steps are described
in the following sections (3.1-3.3).

3.1 Functional Relation Diagram (FRD)

A functional relation diagram (FRD) is a tree expressing relations and hi-
erarchy among product functions. Fig. 3 shows an example of an FRD.
Among the nodes at different levels of the tree, the hierarchical relation be-
tween a function and its sub-functions is defined. Among the nodes at the
same level of the tree, either an exclusive relation or parallel relation is de-
fined. An exclusive relation means that one function is selected from the
functions at that level and executed, while a parallel relation means that all
of the functions at that level are executed concurrently.

Func

Func

Func

Func

Func

Func

XOR

AND

XOR

XORAND Func

FuncFunc Function of reviewingFunction of reviewing

FuncFunc

FuncFunc

FuncFunc

Zoom FunctionZoom Function

Flash FunctionFlash Function

FuncFunc

FuncFunc

Usual Shooting FunctionUsual Shooting Function

Continuous Shooting FunctionContinuous Shooting Function

Timer Shooting FunctionTimer Shooting Function

XORXOR Function for Digital CameraFunction for Digital Camera

ANDAND Function for ShootingFunction for Shooting

XORXOR

: Exclusive Relation: Exclusive Relation: Parallel Relation: Parallel Relation XORXORANDAND FuncFunc A FunctionA FunctionAAAAAAAA

FS:Function SelectionFS:Function Selection
FD:Function DeterminationFD:Function Determination
FR:Function ReturnFR:Function Return

FS Dial
FD null
FR null

FS button0
FD button1
FR button2

Figure 3. Example of an FRD (expressing Functions for a Digital Camera).

Moreover, as shown in the Fig. 3, at the branch of the exclusive relation,
“function control attributes” are attached to the FRD. The attributes, which
show the logical relation between UI elements and function control, include

Behaviour Modeller 73

the attributes of 1) Function Selection (the UI elements that are used to se-
lect one function from a set of sub-functions in the function selection mode),
2) Function Determination (the UI elements that are used to enter the se-
lected function from the function selection mode), and 3) Function Return
(the UI elements that are used to escape from the selected function to the
function selection mode). These function control attributes enable generation
of the SC for function selection from an FRD.

Function Chaining Graph [16] and Activity Chaining Diagram [1] whose
notations were similar to our FRD have been already proposed for task mod-
elling. However, these diagrams aimed to describe and/or relations among
input/output information processed by a certain UI function, not to describe
and/or relations among product functions. IDEF-3 [6] also has extended no-
tation similar to above diagrams.

3.2 Statechart Templates for UI Elements

The SC template for a UI element consists of two pre-defined SC struc-
tures: one for a particular type of input UI element and one for the function
selection behaviour in the UI controller corresponding to that element type.r
A typical template includes a simple push button, slide switch, cross key,
thumb wheel and Jog-dial. An example of an SC template for Dial is shownf
in Fig. 4.

function1 function2 function n

CWeventCWevent

CWevent

CWevent

CCWevent

Statechart template for UI ControllerStatechart template for UI Controller

Waiting

Turn CCWTurn CCW
/ CCWevent/ CCWevent

Turn CWTurn CW
/ CWevent/ CWevent

Statechart for input UI elementStatechart for input UI element
Turn CWTurn CW

Turn CCWTurn CCW

DialDial

CCWevent CCWeventntnt ntntCCWevent

Figure 4. An example of an SC template (expressing Dial).

Only by specifying a particular type of UI element in the function control
attributes of the FRD can an SC of the input UI element and its function se-
lection part in the SC of the UI controller be generated automatically. Even
if it is necessary to change the design of an input UI element, the GUI de-
signer only has to change the attribute to the new type of UI element, and
new structures of the SCs automatically replace the old one based on the
templates. The concept of this SC template eliminates the necessity of de-
scribing and re-building the complex structure of the SC behaviour for the
UI specification from scratch.

74 Urushihara, Kanai, Kishinami, and Tomura

3.3 Automatic Generation of the SC for function selec-
tion

By using the FRD and SC templates for UI elements described in sec-
tions 3.1 and 3.2, it is possible to automatically and systematically generate
the SC for function selection for function control. The generation process
consists of the following three steps, and is as shown in Fig. 5.

Behaviour Modeller 75

1) A set of states is generated on the basis of function relations described in
the FRD. The functions in exclusive relations (e.g., F11 and F22) are
mapped to sequential sub-states in the parent state of SC, and their parent
function (e.g., F1) is mapped to the parent state. On the other hand, the
functions in a parallel relation are mapped to concurrent sub-states in the
parent state.

2) The state transitions for function selection in the case where one of the
sub-states is selected are inserted inside their parent state. The structure
of the state transition (e.g., f11, f12) is determined on the basis of the UI
element specified in the Function Selection attribute and is generated
from the SC templates for the UI element.

3) The states of the function selection part (f11, f12) are respectively con-
nected to the sub-states (F11, F12) by two bi-directional transitions. The
transition outgoing to the sub-state is labelled with the event name that
the UI element specified in the Function Determination attribute has. The
transition incoming from the sub-state is also labelled with the event
name that UI element specified in the Function Return attribute has.

As an example of this process, Fig. 6 shows the SC for function selection
generated from the FRD shown in Fig. 3.

4. GENERATION OF THE STATECHART FOR
FUNCTION EXECUTION FROM THE UI CON-
TROL SCENARIOS

To complete the SC of UI behaviour for the UI controller, we have to model
the SC for function execution for each function and insert it into the SC for ff
function selection. Modelling the SC for function execution is based on com-
bining UI control scenarios and consists of four steps as shown in Fig. 7: 1)f
modelling Sequence Diagrams (SDs) for UI control scenarios, 2) identifying
unique states from an SD by evaluating the state vector, 3) identifying the
transitions between states by classifying messages and tracing a lifeline of
the UI controller in an SD, and 4) combining SCs for function execution of
different scenarios to form one SC.

4.1 Sequence Diagram (SD)

In this paper, a UI control scenario is described as a Sequence Diagram
(SD). An SD is defined in UML [15] as a method for describing standard
behavioural specification for object-oriented software. Examples of an SD
are shown in Figure 8. The SD specifies object interactions arranged in time

76 Urushihara, Kanai, Kishinami, and Tomura

sequence. It shows the sequence of messages exchanged among objects. In
this paper, three objects are defined in the SD: “User”, “UI Elements”, and
“UI controller”. A vertical thin line in the SD represents the lifeline of the
object and represents the life of the object during the interaction, a horizontal
arrow represents a message between two objects, a tall thin rectangle shows
an activation that represents the duration of the object’s action in time.

Figure 7. The outline of generating the SC for function execution.

ShowNextPicture

Push LeftButton LeftButtonEvent
ShowPrevioisPictureShowPicture

Push RightButtonPush RightButtonh RightButton RightButtonEventRightButtonEventightButtonEvent
ShowNextPictureShowNextPicturehowNextPicture

Scenario for reviewing pictures

ShowPicture

Push LeftButtonPush LeftButtonh LeftButton LeftButtonEventLeftButtonEventftButtonEvent
ShowPrevioisPictureShowPrevioisPicturehowPrevioisPictureShowPictureeShowPicturehowPicture

USER
UI

Element
UI

Controller

PPPush RightButtonPush RightButtonPush RightButtonPush RightButtonggg RRRRightButtonEventRightButtonEventRightButtonEventRightButtonEventtttRightButtonEvent
ShowNextPictureShowNextPictureShowNextPictureShowNextPictureShowNextPictureShowNextPictureShowNextPicture

Scenario for reviewing picturesg pScenario for reviewing picturesio for reviewing picturesScenario for reviewing picturesScenario for reviewing picturesScenario for reviewing picturesScenario for reviewing picturesg pg pg pg pg pg pg p

SSS ow ctu eShowPictureShowPictureShowPictureShowPictureSS ow ctu eS

USER
UI

Element
UI

Controller

Push LeftButtonPush LeftButtonPush LeftButtonPush LeftButtonPush LeftButtonPush LeftButtonPush LeftButton LeftButtonEventLeftButtonEventLeftButtonEventLeftButtonEventLeftButtonEventLeftButtonEventLeftButtonEvent
ShowPrevioisPictureShowPrevioisPictureShowPrevioisPictureShowPrevioisPictureShowPrevioisPictureShowPrevioisPictureShowPrevioisPictureSS ow c u eS ow c u eShowPictureShowPictureS ow c u eS ow ctu eShowPictureShowPictureShowPictureShowPictureS

Figure 8. Examples of a sequence diagram.

In our study, multiple UI control scenarios were assumed to exist in one
function. Thus, multiple SDs may be defined for a function, and the SC for
function execution for a function must be generated from combining theset
SDs. The method to combine the SDs to form one SC is explained in the fol-
lowing sections.

4.2 State Identification from a Scenario using the State

Vector

It is difficult for a UI designer to manually identify the same states in
many SDs. We therefore use state vectors (STVs) of the UI controller for
this purpose. A STV is a vector of values of the state variables [14]. The
domain of a state variable is a set of states in the SC of one output UI ele-
ment. The UI controller has a unique state if it shares an identical STV. Here,
the different SVs are defined as Mm svsvsvsv ,...,,...,, 21 , and a set of these
STVs is defined as Mm svsvsvsvSV ,...,,...,, 21 , where M is the num-

Behaviour Modeller 77

ber of states of the UI controller, and a STV is defined as
mPmpmmm vvvv ,...,,...,, 21sv , where mpv indicates a p-th state variable

value and is one of the states in the SC of the p-th output UI element, and P
is the number of output UI elements. Change in this STV is triggered by an
incoming event to the UI controller from an input UI element. In response to
this event, the controller generates an outgoing action to an output UI ele-
ment, resulting in a change in the states of some output UI elements. There-
fore, one activation on the UI controller object corresponds to a STV,
namely, a state of the UI controller. We can therefore define the one-to-one
relation between a STV and a state of the UI controller. As a result of this
operation, all of the unique states of the UI controller in one SD can be iden-
tified.

4.3 Transition Identification and Integration of the
Statechart

For the set of states described in Section 4.2, transitions can be identified
from the SD to form a part of the SC. The SC for function execution is gen-
erated by combining the SDs. The method is similar to that of Whittle [14]
and involves following steps as shown in Fig. 7.

1. Do 1.1 to 1.3 from the top of the lifeline of the UI controller object in an
SD.
1.1. Select a pair of an incoming event to the UI controller (m1) and an

outgoing action from it (m2) if the pair exists in the same gap be-
tween two successive activations (A((0 and A1) on the UI controller
lifeline.

1.2. Using the state vector, identify the states CURRENTs and NEXTs for
these two activations (A0, A1).

1.3. Connect the transition from the current state CURRENTs to the next
one NEXTs and attach the event/action pair (m1/m2) on this transition.

2. Take forward the current state to the next one and repeat the step 1 until
the next state (activation) disappears.

3. Set the current SD to the next one, and repeat 2 until the next SD disap-
pears.

As a result, combining all of the SDs expressing UI control scenarios for
one function generates an SC specification for function execution in the UI
controller. Then, by embedding these SCs for function execution inside the
state for that function already defined in the SC for function selection, finaln
UI specification expressed by the complex SC of the UI controller can be
completed.

78 Urushihara, Kanai, Kishinami, and Tomura

5. BEHAVIOUR MODELLER AND A CASE STUDY

5.1 Implementation of the Behaviour Modeller

The proposed methods for SC modelling in previous sections were im-
plemented in a Java-based tool. A snapshot of the tool is shown in Fig. 9. Sot
far, the function of generating the SC for function selection from FRD has
been completed in the tool. JGo [17] was used for handling the SC schemati-
cally in our tool.

5.2 A Case Study for the UI of a Digital Camera
Statechart expressingStatechart expressing
SC specificationSC specification
For UI behaviorFor UI behavior

ntnt
rtrt

Figure 9. Prototype of the behavior modeler.

To confirm the effectiveness of the proposed methods and the tool, we
carried out a case study on modeling of the SC of the UI for a currentlyf
available digital camera (CANON Powershot A20). Fig. 3 shows the FRD
for the major functions of the camera. Three buttons (flash button, zoom but-
ton and dial) on the camera were assigned to the function control attributes.d
Based on this FRD, the SC for function selection was automatically gener-

Behaviour Modeller 79

ated as shown in Fig. 6. Examples of SDs expressing the UI control scenar-f
ios for “Normal Shooting Function” are shown in Fig. 8, and the complete
SC that contains the SC for function execution generated from these SDs is
shown in Fig. 10. By manually tracing all transitions of the SC in Fig. 10, it
was found that the state-transition behaviour of this SC specification
matches the real behaviour of the camera.

The function for a Digital Camera

button0Pushed button0Pushed

button0Pushed

Function for taking picture

Zoom Function

Flash Function

button1Pushed button2Pushed button1Pushed button1Pushed
button2Pushed

Dial CCWevent

Dial CWevent

Dial
CCWeventtt

Dial
CWevent

Usual Function

g

SelectStateSelectState SelectState

SC for Function Selection

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

LeftButtonPushed/
ZoomIN

RightButtonPushed/
ZoomOUT

Flash ON Flash OFF

FlashButtonPushed/
FlashONEvent

FlashButtonPushed/
FlashOFFEvent

Showing
Picture on

LCD

RightButtonPushed/
Show next Picture

LeftButtonPushed/
Show previous picture

SC for Function Execution

The function for a Digital CameraThe function for a Digital CameraThe function for a Digital Camera

Function for reviewing

button0Pushedbutton0Pushedbutton0Pushed button0Pushedbutton0Pushedbutton0Pushed

button0Pushedbutton0Pushedbutton0Pushedb 0P h d

Function for taking pictureFunction for taking pictureFunction for taking pictureture

Zoom FunctionZoom FunctionZoom Function

Flash FunctionFlash FunctionFlash FunctionF

button1Pushedbutton1Pushedbutton1Pushed button2Pushedbutton2Pushedbutton2Pushed button1Pushedbutton1Pushedbutton1Pushed button1Pushedbutton1Pushedbutton1Pushedh
button2Pushedbutton2Pushedbutton2Pushedtt hedbutto us

Dial CCWeventDial CCWeventDial CCWevent

Dial CWeventDial CWeventDial CWevent

DialDialDia
CCW ttCCWeventCCWeventttttt

DialDialDia
CWeventCWeventCWevent

Usual FunctionUsual FunctionUsual Function

NormalShootingFunction ContinuousShootingFunctionContinuousShootingFunction TimerShootingFunction

SelectStateeSelectStateSelectStateeSelectStateSelectStateSelectStatee SelectStateeSelectStateSelectStateate

SC for Function Selection Button0 Button2Button1

LCD1

Left
Button

Lamp1

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

LeftButtonPushed/
ZoomIN

RightButtonPushed/
ZoomOUT

Flash ON Flash OFF

FlashButtonPushed/
FlashONEvent

FlashButtonPushed/
FlashOFFEvent

Showing
Picture on

LCD

RightButtonPushed/
Show next Picture

LeftButtonPushed/
Show previous picture

SC for Function Execution

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

LeftButtonPushed/
ZoomIN

RightButtonPushed/
ZoomOUT

Flash ON Flash OFF

FlashButtonPushed/
FlashONEvent

FlashButtonPushed/
FlashOFFEvent

Showing
Picture on

LCD

RightButtonPushed/
Show next Picture

LeftButtonPushed/
Show previous picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

ShootingButtonPushed/
Show Picture

Waiting

LeftButtonPushed/
ZoomIN

RightButtonPushed/
ZoomOUT

Waiting

LeftButtonPushed/
ZoomIN

RightButtonPushed/
ZoomOUT

Flash ON Flash OFF

FlashButtonPushed/
FlashONEvent

FlashButtonPushed/
FlashOFFEvent

Flash ON Flash OFF

FlashButtonPushed/
FlashONEvent

FlashButtonPushed/
FlashOFFEvent

Showing
Picture on

LCD

RightButtonPushed/
Show next Picture

LeftButtonPushed/
Show previous picture

Showing
Picture on

LCD

RightButtonPushed/
Show next Picture

LeftButtonPushed/
Show previous picture

SC for Function Execution

Right
Button

Flash
Button

Figure 10. Complete SC for controlling the UI in a digital camera (Cannon Powershot).

6. CONCLUSION

The conclusions of this study are summarised as follows.

1. A method to automatically and systematically generate the SC for func-
tion selection of UI behaviour that contains function selection control
logic from a functional relation diagram and SC templates of the input
UI elements is proposed.

2. By identifying the unique states using state vectors, a method to auto-
matically combine multiple Sequence Diagrams for UI control scenarios
to form a SC for function execution is proposed.

3. A Java-based Behaviour Modeller was implemented and the effective-
ness of the methods and tool was confirmed by applying them to model-
ling an SC of the UI for real consumer products.

The most interesting feature of our approach is the systematic and auto-
matic generation of the SC for function selection from FRD and SC tem-

80 Urushihara, Kanai, Kishinami, and Tomura

plates. The UI designer can easily change the SC only by directly inserting
or removing functions at the FRD level and by replacing the input/output UI
elements. As future work, we plan to move in two directions. One direction
is to connect our modeller to a 3D Mechanical CAD system in order to eas-
ily evaluate the usability of a UI in a 3D virtual prototype, and the other di-
rection is to generate a test case from the SC specification.

REFERENCES

[1] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Vanderdonckt, J., and Zuc-
chinetti, G., Key Activities for a Development Methodology of Interactive Applications,
in D. Benyon, P. Palanque (eds.), Critical Issues in User Interface Systems Engineering,
Springer-Verlag, Vienna, 1995, pp. 109-134.

[2] Carr, D.A., Specification of Interface Interaction Objects, in Proc. of the ACM Confer-
ence on Human Factors in Computing Systems CHI’94 (Boston, 24-28 April 1994),
ACM Press, New York, 1994, pp. 372-378.

[3] Elkoutbi, M., Khriss, I., and Keller, R.K., Generating User Interface Prototypes from
Scenarios, in Proc. 4th IEEE International Symposium on Requirements Engineering
RE’99 (Limerick, 7-11 June 1999), IEEE Computer Society, 1999, pp. 150-158.

[4] Elkoutbi, M. and Keller, R.K., User Interface Prototyping based on UML Scenarios and
High-level Petri Nets, in M. Nielsen, D. Simpson (eds.), Proc. of 21st Int. Conference on
Application and Theory of Petri Nets ICATPN’2000 (Aarhus, June 2000), Lecture
Notes in Computer Science, Vol. 1825, Springer-Verlag, Berlin, 2000, pp. 166-186.

[5] Horrocks, I., Constructing the User Interface with Statechart, Addison-Wesley, Reading,
January 1999.

[6] Information Integration for Concurrent Engineering IDEF3 Process Description Cap-
ture Method Report, 1995, accessible at http://www.idef.com/.

[7] Jacob, R.J.K, Deligiannidis, L., and Morrison, S., A Software Model and Specification
Language for Non-WIMP User Interfaces, ACM Transactions on Computer-Human In-
teraction, Vol. 6, No. 1, March 1999, pp. 1-46.

[8] JGo Ver.5 Northwood Software, accessible at http://www.nwoods.com/go/jgo.htm.
[9] Protobuilder, accessible at http://www.gaio.com/.
[10] Puerta, A.R., A Model-Based Interface Development Environment, IEEE Software, Vol.

14, No. 4, July/August 1997, pp. 40-47.
[11] Puerta, A.R. and Eisenstein, J., XIML: A Common Representation for Interaction Data,

in Proc. of the 7th International ACM Conference on Intelligent User Interfaces
IUI’2002 (San Francisco, 13-16 January 2002), ACM Press, New York, 2002, pp. 214-
215.

[12] Rapid Plus, accessible at http://www.e-sim.com/.
[13] Rational Rose, accessible at http://www.rational.com/products/rose/index.jsp.
[14] State Mate Mugnum, accessible at http://www.ilogix.com/.
[15] Unified Modeling Language Ver.1.5, accessible at http://www.omg.org/uml/.
[16] Vanderdonckt, J., Tarby, J.Cl., and Derycke, A., Using Data Flow Diagrams for Support-

ing Task Models, in P. Markopoulos, P. Johnson (eds.), Sup. Proc. of 5th Int. Eurograph-
ics Workshop on Design, Specification, Verification of Interactive Systems DSV-IS’98
(Abingdon, 3-5 June 1998), Eurographics Association, Aire-la-Ville, 1998, pp. 1-16.

[17] Whittle, J. and Schumann, J., Generating Statechart Designs from Scenarios, in Proc. of
22nd International Conference on Software Engineering ICSE’2000 (Limerick, 4-11d

June 2000), ACM Press, New York, 2000, pp. 314-323.

Chapter 7

MAUI: AN INTERFACE DESIGN TOOL BASED
ON MATRIX ALGEBRA

Jeremy Gow and Harold Thimbleby
University College London, UCL Interaction Centre (UCLIC),
Remax House, 31-32 Alfred Place – London WC1E 7DP (United Kingdom)
E-mail: {j.gow, h.thimbleby}@ucl.ac.uk
Tel.: +44 (0)207 679 {5232, 5204} – Fax: +44 (0)207 679 5295

Abstract We describe MAUI, a user interface design tool that is based on a matrix alge-
bra model of interaction. MAUI can be used to build and analyse designs for
interactive systems, such as handheld devices. This paper describes MAUI, its
advantages and underlying mathematical approach. MAUI is implemented in
Java and XML, which allows flexible integration with other parts of the design
life cycle, such as prototyping, implementation and documentation.

Keywords: Finite state machines, Matrix algebra, User interface design, XML.

1. INTRODUCTION

Regardless of how attractive they are, many interactive systems remain
complex and hard to use, and many result in frustration and accidents. They
are often built informally, and it is not obvious what their problems are nor
how to avoid them. The research field of Human-Computer Interaction
(HCI) aims to improve the user experience, but it suffers from a lack of ana-
lytic tools that both support clear formal reasoning and support design and
evaluation at a practical scale. The theoretical approaches that have the for-
mal power to specify interactive systems are technical and beyond the reach
of real designers; and the practical development tools that create real interac-
tive systems are so informal that systems are inevitably developed in ad hoc
ways.

This paper introduces MAUI, a matrix algebra based User Interface (UI)
development and analysis tool that provides a simple, general and rigorous

81

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 81–94.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

82 Gow and Thimbleby

approach to design. It is sufficiently powerful to handle many complex inter-
active devices and because of its simplicity raises clear and well-defined de-
sign and research questions.

MAUI allows the designer to model an interactive device as a finite state
machine (FSM), a technique that has successfully been used in HCI [14].
From this representation, an event algebra is generated, essentially a decom-
position of the FSM's transition matrix into matrices representing individual
user actions [16]. We represent the FSM in linear algebra to permit equa-
tional reasoning about UI events. Properties of the interface can be formally
stated as theorems of this event algebra, and checked efficiently via matrix
calculations – though a user of MAUI need not know or care about the inter-
nal implementation technique. MAUI stands for Matrix Analysis of UIs.

Regardless of how attractive they are, many interactive systems remain
complex and hard to use, and many result in frustration and accidents. They
are often built informally, and it is not obvious what their problems are nor
how to avoid them. The research field of HCI aims to improve the user ex-
perience, but it suffers from a lack of analytic tools that both support clear
formal reasoning and support design and evaluation at a practical scale. The
theoretical approaches that have the formal power to specify interactive sys-
tems are technical and beyond the reach of real designers; and the practical
development tools that create real interactive systems are so informal that
systems are inevitably developed in ad hoc ways.

This paper introduces MAUI, a matrix algebra based UI development and
analysis tool that provides a simple, general and rigorous approach to design.
It is sufficiently powerful to handle many complex interactive devices and
because of its simplicity raises clear and well-defined design and research
questions.

MAUI allows the designer to model an interactive device as a finite state
machine (FSM), a technique that has successfully been used in HCI [14].
From this representation, an event algebra is generated, essentially a decom-
position of the FSM’s transition matrix into matrices representing individual
user actions [16]. We represent the FSM in linear algebra to permit equa-
tional reasoning about UI events. Properties of the interface can be formally
stated as theorems of this event algebra, and checked efficiently via matrix
calculations — though a user of MAUI need not know or care about the in-
ternal implementation technique. MAUI stands for Matrix Analysis of UIs.
There are three key ideas behind the system:

1. Specification. Algebraic properties can correspond to usability issues.
This is explored in Sections 5 and 6. MAUI maintains an algebraic speci-
fication which can be checked against the evolving design.

2. Simplicity. The simplicity of the formalism means that the system can
verify and generate relevant properties automatically. Hence the designer

MAUI: An Interface Design Tool based on Matrix Algebra 83

does not need to get involved in proof, and can gain insights into the in-
terface design from properties and inconsistencies pointed out by MAUI.

3. Integration. MAUI allows integration with other design tools and proc-
esses via XML. For example, fast prototyping with SVG (Scalable Vec-
tor Graphics) [5], an XML open standard version of Flash.
Fig. 1 shows a UI simulation in SVG. The interface design was specified

in MAUI, and automatically combined with an SVG image to make an inter-
active graphical simulation.

Figure 1. An SVG simulation of the Sanyo CDP-195 portable CD player. The graphics are
hand-coded, but the simulation code is automatically generated from the interface design in
MAUI. Viewed using the Squiggle SVG browser.

2. FSM MODELS

Formal techniques have found a wide variety of applications in UI designaa
— e.g., for a collection of recent work, see [12]. Finite state machines are a
basic formalism with a long history in this area, starting with Parnas [13] and
Newman [11] in the 1960s, and reaching a height of interest in User Inter-
face Management Systems (UIMS) work [18]. See [3] for a textbook intro-
duction with applications of FSMs in HCI.

Finite State Machines (FSMs) are a simple and well understood formal-
ism used throughout computer science. An FSM consists of a finite set of
states connected by labelled transitions. In this paper we assume that the
states are those of the UI, and that labelled transitions correspond to those

84 Gow and Thimbleby

events that change the interface’s state. Events usually consist of user ac-
tions, but may include other influences on the system. Examples of events
are the user pressing a button, selecting a menu item or doing nothing for
two seconds. We denote events with a box notation: Event

Fig. 2 shows an extremely simple example: an FSM model of a light
switch. It has the states On and Off, and a Switch event that flips between
them. This model is deterministic, in that every event has at most one effect
in any state. A non-deterministic version might define Switch in the Off state
so that it may turn the light on or blow the bulb. The model in Fig. 2 is also
unguarded, in that every event is possible in every state. A guarded version
might have a light switch that can be flicked Up or Down (together replacing
Switch), where Up works only in the On state and Down only in the Off state.

On Off

Switch

Switch

Figure 2. A simple FSM model of a light switch.

Formally, an FSM is a tuple S, , s0,00 , where S is a set of states,S an
alphabet (of events, in this case), s0 S the initial state,S S S theS
transition relation. The definition is standard. In MAUI, however, the FSM
model is enhanced in two ways: with signs and state classes. Signs allow the
designer to distinguish between the interface’s state and those features ob-
servable by the user. An interface has a collection of signs, and each state
displays some subset of them. Examples of signs are highlighting a menu
item, displaying the time, or playing some music. Each sign may be associ-
ated with several states. Formally, we add to the FSM tuple a set of signs
and a function : S P(), which yields the subset of observable signs in
each state.

State classes are used to reduce the effort in describing interface models,
and for MAUI to classify theorems. Event transitions and signs only have to
be defined once for a state class, and are inherited by all the states that are
members of the class. A state may be a member of several state classes. Two
classes are allowed to assign different transitions to the same state and event
– the model will simply be non-deterministic. State classes are presentational
and do not change the semantics. As a modelling technique, FSMs have the
advantage of being a standard, simple formalism, and therefore more acces-
sible to the technically-minded interface designer. They are also easy to
simulate, which is is good for prototyping.

MAUI: An Interface Design Tool based on Matrix Algebra 85

FSMs can be used in theory to model any finite, discrete concurrent or
sequential system, and so are widely applicable to UI design. For example, a
related state diagram formalism is used in [9] to model virtual environments.

However, FSMs also have a well known disadvantage in that they scale
badly. Because each state is represented explicitly, the size of an FSM in-
creases dramatically with the complexity of the modelled system – a combi-
natorial explosion. This is a potential problem, as the model may become too
large for the designer to comprehend or for a computer to store and analyse.
Fortunately, there are a number of ways in which the combinatorial explo-
sion can be mitigated:

Abstraction. Details of the design can be excluded from the model. Use-
ful formal analyses can be still carried out on abstract models.
Modularisation. Large interface designs can often be broken down into a
number of distinct, independent models.
Higher-Level Formalisms. Models can be built in equivalent higher-
level formalisms and compiled down to FSMs for analysis. The designer
need never see the underlying FSM; this is the approach of Esterel [1],
LTSA [10] and other languages.
Implementation techniques. There are numerous compact implementa-
tion techniques appropriate for FSMs, including BDDs [4] and symbolic
techniques.
Pragmatism. MAUI works with an event algebra that captures UI prop-
erties; if there is an unmanageable combinatorial explosion then this
might suggest that the user model is also extremely complex. Thus wet
claim that if MAUI cannot handle the specification of the device, the de-
signer should have a good idea of why the FSM is so complex, how the
users will cope with it, and whether this is acceptable.

3. EVENT ALGEBRAS

Analysis in MAUI uses a formalism consisting of states and events, rep-
resented by vectors and matrices respectively. For example, the states On
and Off from Fig. 2 are represented as vectors:

soff = (1 0) sf on = (0 1)

Events are represented as matrices that transform these state vectors ac-
cording to the FSM model. For example:

Switch =
01
10

Checking that these definitions conform to Fig. 2 is a matter of elemen-

86 Gow and Thimbleby

tary matrix multiplication:

soff Switch = son son Switch = soff

This can be read purely algebraically as a description of the light switch,
without reference to the underlying vectors and matrices. However, the real
advantage is that these matrices form an event algebra in which we can
make assertions about user actions independently of any particular state
[16]. For our toy example, we can state the following property:

Switch Switch =
10
01 = I

where I is the identity (“do nothing”) matrix. This tells us that pressing
Switch twice has the same final effect as doing nothing! This is an inherent
property of Switch, no matter what state the system is in. The strength of this
approach is that similarly concise statements can be made about far more
complex interfaces with many states. We look at some more interesting ex-
amples below.

Given a MAUI interface model S, , s0,00 , , , we formally define its
event algebra with a bijection :{1… S } S mapping states to elementS
indices; generates a representation function that maps states and events
to the vectors and matrices that denote them. For state s S define theS state
vector s = [[s[[]] by

si = otherwise
siif

0
)(1 ff

For event E define the event matrix E =E [[E]] by

EijEE =
otherwise

jiif
0

))(,),((1 ,(ff (

The algebra of these vectors and matrices, equipped with multiplication
and an initial state vector [[s[[0]], provides another model of the UI, based on
the original FSM. For brevity in this paper, we write the event E to denote
the matrix E =E [[E]] ; in general capital letters A, B,… denote matrices that
may or may not be events or products of events.

4. USING MAUI

MAUI’s own interface (Fig. 3) is a conventional GUI design, with win-
dows representing different aspects of a system’s functionality: Design,
Simulation, Statistics and Analysis (described in Section 5). There are also
menus for basic functions such as opening and saving files.

MAUI: An Interface Design Tool based on Matrix Algebra 87

Figure 3. MAUI being used to analyse the design of the Sanyo CDP-195 from Fig. 1.

The Design window displays the current interface design and allows the
user to edit it. The window is split into a Components panel and a Relation-
ships panel. The Components panel can be set to display a list of either
states, state classes, events or signs. Selecting a component from this list re-
sults in the Relationships panel displaying a list of related components. The
type of related components displayed can be set by the user. For example,
selecting a state from the Components panel causes its state transitions to be
displayed in the Relationships panel. The user can also choose to view the
classes the state belongs to, or the signs associated with it. The Components
lists may have items added, deleted or renamed, and the Relationships panel
may be used to edit transitions, class membership, etc.

The Simulation window shows an interactive simulator, ideal for basic
tests. The Simulation window does not aspire to be photorealistic, which is
currently handled externally by SVG and other mechanisms. The Statistics
window shows statistics that are useful for comparing the complexity of dif-
ferent designs. For example, minimum, maximum and average path length
between two states [14]. Another example is the overshoot recovery cost. A
common user error is an overshoot caused by doing an event, say E, once
too often. MAUI can calculate the overshoot recovery cost as the minimum
number of events that correct an overshoot: it determines a product of events
R such that E E R = E. The Analysis window allows the user to explore the
interface design’s event algebra, as discussed in Section 3. The following
section describes how this works in MAUI, and its utility in UI design.

88 Gow and Thimbleby

5. USER INTERFACE ANALYSIS IN MAUI

Event algebras in themselves are simply a restatement of an FSM with
the transition function ‘broken up’ into individual events. This makes them
well-suited for making statements about how events interact with each other,
and hence for usability analysis. Crucially, matrices allow theorems to be
checked efficiently by elementary numerical calculation.

Of course, reflecting on the usability of an interface design is an ex-
tremely context-dependent process. A formal approach does not relieve the
designer of the need to think about the implications of their design, and de-
cide which formal properties are relevant to the user’s experience. What
event algebras provide is a well-defined language to talk about UIs con-
cisely.

MAUI allows the designer to specify a set of event algebra properties
that they wish their design to conform to. As the design evolves, the system
provides feedback on which parts of the specification are currently satisfied.

Consider an interface button A such that A A = A, an idempotence that
tells us that if A needs pressing, it only ever need to be pressed once. The
button would avoid the possibility of an overshoot error (pressing once too
often). This would be suitable for the specification of a Play or Stop button.

Another example is undo. Allowing the user to undo their actions is a
common usability requirement. We can express the requirement that user ac-
tions B … C act as an undo for action A by: A B … C = I. The designer mayII
want each event to be easily undone, and so have a short undo sequence
(ideally one action) for each event A. Some events are inherently irreversi-
ble, and so have no B … C that yields the identity. This can be determined
by straightforward calculation (to show the matrix is singular); the designer
can specify in MAUI that an event must be reversible, or tat is must be irre-
versible. Further, some events although in principle invertible, are merely ir-
reversible for the user, as there is no sequence of events whose correspond-
ing matrix product is the inverse of the event.

Another kind of usability issue the designer may be interested in is per-
missiveness [15]: allowing many different sequences of actions to achieve
any given task, ones that commute or distribute, etc:

A B = B A, A B C = A B A C, A B = C D E

A related usability concept is that efficient shortcuts should be available
for expert users: A B … C D = M – where, in turn,M M can be factored as aM
product of user events, but its total cost (to the user) is less. So far we have
shown how universal statements about interface models can be made in
MAUI. In some cases a property will only be of interest for a certain subset
of states. This can be done by restricting properties to particular state classes.
For example, we can claim for a class, ‘For C: A = B’ if for all s (i) C, the

MAUI: An Interface Design Tool based on Matrix Algebra 89

ith row of A and B are equal. Another use for state classes is dealing with
predictable effects of actions. We can state that event A always puts an inter-
face into one of the states in class C if we can show that for every non-zeroC
jth column of A the state s (j) is not in C.

The designer manages the specification through MAUI’s Analysis win-
dow. This presents a list of the currently specified properties, with options to
add, delete and edit them. MAUI distinguishes between three basic types of
property: equality of two event/state expressions; the reversibility of an indi-
vidual event; and predictability of an event. These are displayed in the prop-
erty list as ‘A = B’, ‘E is reversible’ and ‘E A results in C’. Choosing to create
or edit a property brings up an editing panel that allows these properties to
be composed from the existing events, states and state classes in a straight-
forward way. Predefined events and states, like the identity and so on, are
also provided. More complicated properties can be built up in the editing
panel by either negating properties or restricting properties to a particular
state class.

The Analysis window monitors how the current interface design con-
forms to the designer’s specification. Unsatisfied properties are highlighted,
and annotated with a percentage of how true they are. For an equality theo-
rem the percentage of states for which it holds is used, by calculating the
percentage of equal matrix rows. Other measures could be used. The de-
signer can also request detailed information about why a property is not true
in the form of counter-example states, and can ‘lock’ any true property, so
that MAUI forbids changes to the UI that make it false.

One feature that makes MAUI stand out as a design tool is its ability to
suggest to the designer properties of the interface model. At the designer’s
request the system can automatically generate true theorems not already in
the specification, as well as ‘near-theorems’ – non-theorems of the equality
type that are true for a high percentage (e.g., > 95%) of states. The value of
near-theorems is that they may represent properties which the designer could
choose to make universal, for a more clear and consistent design. The auto-
matic suggestion mechanism currently works by enumerating all identities
up to a certain complexity, with some redundant theorems being pruned be-
cause they can be derived from simpler theorems. In order to manage the
amount of suggestions generated by MAUI, the designer can vary both the
theorem complexity level and the percentage threshold for near-theorems.

Ivory and Hearst [8] point out the current lack of automated support for
critiquing UIs, that is “methods that not only point out difficulties but pro-
pose improvements.” Following their terminology, MAUI’s ability to sug-
gest properties that are or should be true is a simple form of support for cri-d
tiquing analytical models. No other technique in their survey provides this
kind of support.

90 Gow and Thimbleby

6. EXAMPLES

The MAUI suggestion mechanism was used to analyse the design of a
portable CD player, the Sanyo CDP-195. The 29 state model captured the
behaviour of four events: Play, Stop, P-Mode and Wait (for 6 seconds). The P-

 button selects one of seven play modes (Normal, Random, Intros,…).
The suggestion mechanism generated the following 97% near-theorem: P-
Mode7 = I. Reflecting on why this is almost universally true, we found thatII
the P-Mode button cycled through the seven play modes and returned to the
original state, irrespective of whether the player was at rest, playing or
paused – except for in one state. In this state, the display gave the CD infor-
mation, but P-Mode7 took the user to an equivalent state with no display ex-
cept ‘--’. Merging these two states would have no effect on the functional-
ity of the interface, but would make P-Mode7 = I true and, we suggest, theI
device more understandable to the user. MAUI’s suggestion for a design
property thus leads to a simpler and more consistent interface design.

As a second example, the Nokia 5510 mobile phone menu system [16]
can be specified by 5 event matrices, over 188 states. We can automatically
(and quickly) find theorems including: Up Cancel = Cancel, Down Cancel =
Cancel, Cancel4 = Cancel5, Up Down = I.II

DESIGN INTEGRATION VIA XML

MAUI can store UI designs in an XML format. This is ideal for integrat-
ing the formal analysis done in MAUI with other stages of the design cycle:
prototyping, documentation, implementation, alternative analysis tools etc.
For proof-of-concept, so far we have written XSLT stylesheets to convert
designs to:
1. Graphviz. Visualisations of interface state graphs were produced by

converting XML designs into AT&T’s Graphviz format [6].
2. HTML+Javascript. HTML simulations are a simple, portable way to

share designs with other people over the web.
3. SVG+Javascript. Hand-coded SVG [5] was added to the MAUI-

generated XML and automatically transformed into SVG+Javascript, for
a more sophisticated graphical simulation. We intend to adapt an existing
SVG editor to integrate a graphical design editor with MAUI, to avoid
the need to write the SVG graphical elements by hand, as at present.

4. Mathematica. In the hands of an expert user, Mathematica could do lar-
ger and far more complex analyses than are done in MAUI, although it is
far less accessible than our system, both in terms of ease of use and price
(MAUI is free).
Reusing the design data in each stage means there is no need to reimple-

MAUI: An Interface Design Tool based on Matrix Algebra 91

ment the design several times, with the possibility of errors occurring at each
stage. Fig. 4 shows fragments of XML describing the Sanyo CDP-195 men-
tioned in Section 5. The XML was generated by MAUI, except for the hand-
coded form element which contains the graphical design. It was automati-
cally transformed to the graphical simulation shown in Fig. 1.
<fui>
 <name>Sanyo CDP-195</name>
 <event id="play"/>
 <event id="mode"/>
…

 <form width="600" height="250">
…

 <signs>
 <text id="track" ... x="260" y="195">01</text>
 <text id="time" ... x="320" y="195">0:24</text>

...
 </signs>
 </form>
 <function>
 <initial ref="StandBy"/>
 <state id="StandBy">
 <change event="play" to="PlayNorm" />
 </state>
 <stateclass id="PlayState">
 <change event="stop" to="NoAction" />
 </stateclass>
 <state id="PlayNorm" class="PlayState">
 <change event="play" to="PauseNorm" />
 <change event="mode" to="PlayRepeat" />
 <sign ref="track"/> <sign ref="time"/>
 </state>

...
 </function>
</fui>

Figure 4. XML description of the Sanyo CDP-195 portable CD player generated by MAUI,
except for the content of the form element, which is hand-coded SVG.

8. FURTHER WORK

In developing MAUI our highest priority is to apply it to more real-world
case studies. We have argued for the generality of MAUI’s design method-
ology, and given some examples. However, further work with a wider range
of examples is needed to establish the scope of the method, both in terms of
types of system and types of usability analysis. MAUI is a research tool, but
a separate question is how accessible we could make our formal methodol-
ogy to designers or HCI researchers. The real question here is ‘which ones?’

92 Gow and Thimbleby

MAUI’s approach to formal analysis is an attempt to be simple enough for
more technically-minded designers to grasp and to still be useful. Any fur-
ther development will need to consider more about the abilities and require-
ments of designers and/or HCI researchers. Sometimes a user will follow a
detour to achieve some straightforward goal, as in AB … CD = AD, etc. An
interesting future development might be to make some of MAUI’s analyses
available to end users, not just designers. “Would you like to know a better
way to do what you have just done?” In Hyperdoc [14], the end user could
ask the system to find event sequences that set signs to particular values.
There are many techniques for compressing matrices. In MAUI, an interest-
ing possibility to explore would be to compress matrices and hence help a
designer determine tighter class definitions and nearly (or completely) re-
dundant transitions, as well as transitions that if changed might reduce the
model. MAUI’s statistics could be extended in many ways, such as incorpo-
rating expectations based on Markov models [17]. MAUI could constrain
design changes to maintain statistics, as it currently does for theorems.

9. CONCLUSION

We have described MAUI, a design tool in which formal models of UIs
can be built and analysed. Integration with other design processes, especially
graphical prototyping, is achieved using XML. Design specifications are ex-
pressed and easily verified using event algebras, with the novel feature that
the system can suggest to the designer properties that are true or nearly true.

Our approach can be related to a great deal of previous work on model-
ling UIs with finite state machines and related formalisms. For instance,
VEG [2] is a recent example based on BNF grammars. MAUI’s algebraic
style of specification, based on the global properties of events, is a key dif-
ference with such methods. Also, more sophisticated interface models are
typically employed in order to ease the specification process. This is a less
important difference, as such techniques could be adopted by MAUI.

Many systems, like LTSA [10] or the Play-Engine [7], aim for compre-
hensiveness, and thus tend to lose sight of clarity in usability and effective
use by typical mathematically naïve designers. Usability itself is a very
complex field, and we feel that the interaction between usability research
and various schemes for combining rapid prototyping and modelling are not
best helped by the usual goals of universality. We imagine that as a body of
design and usability related theorems is developed (e.g., that many pairs of
actions, such as Up and Down, should be inverses), these will be embedded
into MAUI, thus making it a convenient tool for designers and researchers
not only to build, simulate and generate prototype interactive systems, but to

MAUI: An Interface Design Tool based on Matrix Algebra 93

check a wide range of their properties.

ACKNOWLEDGEMENTS

Harold Thimbleby is a Royal Society Wolfson Research Merit Award
Holder. Jeremy Gow is funded on the award. We are grateful to Paul Cairns
for constructive comments.

REFERENCES

[1] Berry, G., The foundations of Esterel, in G. Plotkin, C. Stirling, M. Tofte (eds.), Proof,
Language and Interaction: Essays in Honour of Robin Milner, The MIT Press, Cam-
bridge, 1998.

[2] Berstel, J., Reghizzi, S.C., Roussel, G., and Pietro, P.S., A Scalable Formal Method for
Design and Automatic Checking of User Interfaces, in Proc. of the 23rd Internationald

Conference on Software Engineering ICSE’01 (Toronto, 12-19 May 2001), IEEE Com-
puter Society Press, Los Alamitos, 2001, pp. 453-462.

[3] Dix, A., Finlay, J., Abowd, G., and Beale, R., Human Computer Interaction, Prentice
Hall, Englewood Cliffs, 1998.

[4] Drechsler, R., Binary Decision Diagrams: Theory and Implementation, Kluwer Aca-
demics Publishers, Dordrecht, 1998.

[5] Ferraiolo, J., Jackson, D., and Jun, F., Scalable Vector Graphics (SVG) 1.1 Specifica-
tion, Recommendation, W3C, 2003, accessible at http://www.w3.org/TR/SVG11.

[6] Gansner, E. and North, S., An Open Graph Visualization System and its Applications to
Software Engineering, Software Practice & Experience, Vol. 30, No. 11, 2000, pp.
1203-1233.

[7] Harell, D. and Marelly, R., Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine, Springer Verlag, Berlin, 2003.

[8] Ivory, M.Y. and Hearst, M.A., The State of the Art in Automating Usability Evaluation
of User Interfaces, ACM Computing Surveys, Vol. 33, No. 4, 2001, pp. 470-516.

[9] Jacob, R.J.K, Deligiannidis, L., and Morrison, S., A Software Model and Specification
Language for Non-WIMP User Interfaces, ACM Transactions on Computer-Human In-
teraction, Vol. 6, No. 1, March 1999, pp. 1-46.

[10] Magee, J., Behavioral Analysis of Software Architectures Using LTSA, in Proc. of 21st

International Conference on Software Engineering ICSE’99 (Los Angeles, 16-22 May
1999), ACM Press, New York, 1999, pp. 634-637.

[11] Newman, W.M., A System for Interactive Graphical Programming, in Proceedings of
the AFIPS 1968 Spring Joint Computer Conference (Atlantic City, 30 April - 2 May
1968), Vol. 32, American Federation of Information Processing Societies, Thomson
Book Company, Washington, 1968, pp. 47-54.

[12] Palanque, P. and Paternò, F., Formal Methods in Human-Computer Interaction,
Springer-Verlag, Berlin, 1997.

[13] Parnas, D.L., On the Use of Transition Diagrams in the Design of a User Interface For
an Interactive Computer System, in Proc. of the 24th ACM National Conference (26-28
August 1969), ACM Press, New York, 1969, pp. 379-385.

[14] Thimbleby, H., Combining Systems and Manuals, in J.L. Alty, D. Diaper, S.P. Guest

94 Gow and Thimbleby

(eds.), People and Computers VIII, Proceedings of the BCS-HCI Conference on Hu-
man-Computer Interaction HCI’93 (Loughborough, 7-10 September 1993), Cambridge
University Press, Cambridge, 1993, pp. 479-488.

[15] Thimbleby, H., Permissive User Interfaces, International Journal of Human Computer
Studies, Vol. 54, No. 3, 2001, pp. 333-350.

[16] Thimbleby, H., User Interface Design with Matrix Algebra, ACM Transactions on
Computer-Human Interaction, Vol. 11, No. 2, 2004, pp. 181-236.

[17] Thimbleby, H., Cairns, P., and Jones, M., Usability Analysis with Markov Models,
ACM Transactions on Computer-Human Interaction, Vol. 8, No. 2, 2001, pp. 99-132.

[18] Wasserman, A.I., Extending State Transition Diagrams for the Specification of Human
Computer Interaction, IEEE Transactions on Software Engineering, SE-11, No. 8,
1985, pp. 699-713.

Chapter 8

GOLIATH: AN EXTENSIBLE MODEL-BASED
ENVIRONMENT TO DEVELOP USER
INTERFACES

David Julien1, Mikal Ziane1,2, and Zahia Guessoum1

1Laboratoire d’Informatique de Paris 6, Thème OASIS,
8, rue du Capitaine Scott, F-75015 Paris (France)
E-mail: {david.julien,mikal.ziane,zahia.guessoum}@lip6.fr
Tel.: +33- 1 44 27 {5480, 8746, 8743} - Fax: +33- 1 44 27 70 00
2Université René Descartes,
12, rue de l’école de médecine, F-75005 Paris (France)

Abstract Despite the success of visual interface builders, user interfaces are still too dif-
ficult to develop. Model-based approaches are promising but have a high
threshold of use. In this paper, we describe GOLIATH, an easy-to-use Model
Based User Interface Development Environment (MB-UIDE) with an extensi-
ble architecture. The models of GOLIATH are simple enough to be used by de-
velopers who currently use visual interface builders. However, these models
are rich enough to better support the links between the interface and the func-
tional core of the application than current MB-UIDEs.

Keywords: Model-based interface design, Multi-agent system.

1. INTRODUCTION

Despite the success of visual interface builders, user interfaces are still
too difficult to develop. Even if interface elements can be assembled graphi-
cally in visual builders, “the behaviour of user interfaces is generally imple-
mented by complex, hand crafted software systems” [1]. In particular, it is
difficult to ensure that what is displayed by the interface corresponds to the
state of the application. Moreover, “changing an existing interface to reflect
changing requirements and to take account of user feedback is a laborious
and often somewhat ad hoc process” [1]. Model-Based User Interface De-
velopment Environments (MB-UIDEs) [6,9,11,12,13,14] automatically or

95

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 95–106.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

96 Julien, Ziane, and Guessoum

semi-automatically generate interfaces according to a declarative specifica-
tion which consists of several models describing different aspects of the in-
terface. Unfortunately, they have not yet caught on. Among the reasons to
explain this lack of success, [7] mentions the unpredictability of the resulting
interfaces and the threshold of use of these environments.

In this paper, we describe GOLIATH, an easy-to-use MB-UIDE with an
extensible architecture. The models of GOLIATH are simple enough to be
used by developers who currently use visual interface builders. However,
these models are rich enough to better support the links between the inter-
face and the functional core of the application than current MB-UIDEs. This
paper is organised as follows. Section 1 introduces MB-UIDEs and their
main models. Sections 2, 3 and 4 present the application, presentation and
dialogue models of GOLIATH. Section 5 describes its multi-agent architec-
ture. An address book example is used across the paper and its interface is
presented in section 6. Section 7 discusses potential drawbacks of GOLI-
ATH’s approach.

2. MB-UIDES

MB-UIDEs specify interfaces using models which typically include the
application model, the presentation model and the dialogue model. Fig. 1
shows a typical mapping of these models to the ARCH architectural model
of interactive systems [?].

ARCH architecture and MB-UIDEs models.

The Application Model. It describes the application’s data and function-
ality. Corba’s IDL is a standard way to describe an API independently from
its programming language, and was used to describe MASTERMIND’s appli-
cation models [13]. Teallach [6] relies on the ODMG object model which is
consistent with their particular focus on database applications. Since Corba’s
IDL gives very little information about the semantics of the application,
Mastermind extended it with pre-conditions and reports. This makes it easier
to avoid proposing invalid choices to the final user, and to refresh the pres-
entation when some data have changed. GOLIATH’s application model, even

GOLIATH: An Extensible Model-Based Environment toHH
Develop User Interfaces

97

though it is much simpler than Corba’s IDL, significantly improves on these
extensions for further automatisation.

The Presentation Model. It has two roles. First, it describes the presen-
tation elements of the targeted toolkits. Second, it allows defining new ele-
ments by composition. The salient aspects of GOLIATH’s presentation model
are its independence from toolkits (even though each presentation model
specification is bound to a specific toolkit), and its ability to ease the auto-
mation of the aforementioned behavioural aspects.

The Dialogue Model. It describes the links between the functional core
and the presentation. It mainly defines what is displayed in the presentation,
the functions to call (when and with what arguments) and the consequences
of user actions. Most MB-UIDEs define the dialogue through a task model.
However, Paternò [8] highlights that “designers find often them difficult to
apply, [...]. The reason for this problem is that it is not easy when analysing
an existing application or envisioning a new one to know immediately the
structure and the elements of the task model”. Since GOLIATH targets devel-
opers accustomed to visual interface builders, it introduces a simple and
concrete dialogue model. This model is defined in terms of abstract contain-
ers which are more concrete than abstract tasks.

From models to running interfaces. Despite significant effort, trans-
forming a set of models into a running interface is still a problem for MB-
UIDEs [10]. These transformations require often deep knowledge. So it is
not easy to have all the needed knowledge from the outset. In order to facili-
tate the representation and integration of this knowledge, we propose to use
a multi-agent system [5].

3. THE APPLICATION MODEL

GOLIATH’s application model is a language much simpler than Corba’s
IDL which is used by Mastermind, and essentially relies on the definition of
data types and function signatures. Moreover, GOLIATH’s application model
supports the definition of pre-conditions and dependency declarations. Pre-
conditions and dependency declarations make it easier to avoid proposing
invalid choices to the final user and to automate refreshing the presentation.
A term of this language is a data term, a pre-condition or a dependency dec-
laration. A data term is a variable of some type, a constant of some type, or
an application-data term. An application-data term is the output of a function
call without side-effects, or part of this output if the function has several
OUT parameters. The parameters of a function call are data terms of the ap-
propriate types.

98 Julien, Ziane, and Guessoum

3.1 Function Signatures and Notifications

Functions with side-effects (that is mostly which modify application
data) are denoted with a ‘+’ before their identifier. Notifications, denoted by
a ‘*’, allow identifying application-data modifications which do not depend
on side-effects function calls (for instance a modification of a mail box, after
the reception of new e-mail, does not rely on any function call). They are
more precise than MASTERMIND’s report mechanism: parameters allow pre-
cisely identifying which data has changed.

Example of function signatures and notifications from the AddressBook ap-
plication model:
getContact (IN AddressBook anAddressBook,

IN ContactKey aContactKey, OUT Contact aContact)
contactExists (IN AddressBook anAddressBook,

IN ContactKey aContactKey, OUT Boolean exists)
isDateValid (IN Date data, OUT Boolean valid)
+updateContact (INOUT AddressBook anAddressBook,

IN ContactKey aContactKey, IN String firstName, …, IN Date birthDate)
+removeContact (INOUT AddressBook anAddressBook,

IN ContactKey aContactKey)
*newMail(OUT Integer mailId)

3.2 Pre-Conditions

Contrarily to MASTERMIND’s pre-conditions which are informal, GOLI-
ATH’s pre-conditions can be automatically evaluated. Their syntax is the
following: <precondition> ::= <function-call> (("if" | "ifNot") <data-term>)+

Example: a call to updateContact of the formt updateContact(AB, CK, _, …, BD)
is valid if CK is a ContactKey of an existing contact in the AddressBook AB,
and if BD is a valid Date.
updateContact (AB, CK, -, …, BD)
 if exists from contactExists (AB, CK)
 if exists from isDateValid (BD)

3.3 Dependency Declarations

The presentation of displayed data-term has to be updated when its value
changes. GOLIATH can deduce at run-time that this value has changed thanks
to two mechanisms: inference from a call to a side-effect function, and noti-
fication by the application. When the application is not able to notify some

GOLIATH: An Extensible Model-Based Environment toHH
Develop User Interfaces

99

changes, it is still possible to declare that a data term is potentially out-of-
date. This allows GOLIATH to remind the developer to take appropriate
measures if necessary. These inferences rely on dependency declarations of
the following form: <dependency> ::= <function-call> "impacts" <data-term> |
<notification> "impacts" <data-term> | "unknown" "impacts" <data-term>

Example: removeContact modifies the result of t contactExists.
removeContact(AB,CK) impacts exists from contactExists(AB,CK)

4. THE PRESENTATION MODEL

Like every presentation model, GOLIATH’s allows to describe and com-
pose new presentation elements. Toolkit presentation models describe the
basic presentation elements, from which designers can compose new presen-
tation elements.

GOLIATH’s presentation elements. Each presentation element has an in-
terface part. It defines actions fired, data handled and existing slots in a pres-
entation element. A slot defines a customizable place in a presentation ele-
ment. It allows to define containers (like windows) or to delegate some in-
ternal rendering to an external presentation element (for instance a presenta-
tion element which displays a list of items may delegate the rendering of
each item to a specialised presentation element). Furthermore, each compos-
ite element defines a list of sub-elements, a set of mapping between its inter-
face and the sub-elements interface, and a set of behaviours to define dy-
namic modifications. These aspects are not described in this article.

Actions and data handled. In order to support the automatic updating of
the presentation, meanings are associated to each action of presentation ele-
ments.

Example: newContactSelected (EXPLICIT DATA_MODIFICATION
An action to select a contact in a list is explicit (the user has to click on the
item) and modifies the selected data.

A data handled by a presentation element is mainly described by an iden-
tifier, a type, a list of associated actions and a description of its content. As-
sociated actions allow identifying which action will be fired in case of modi-
fication of the presentation data. Thanks to this information, pre-conditions
and dependency declarations depending on a presentation data can be auto-
matically re-evaluated when a DATA_MODIFICATION action linked to the
presentation data is received.

100 Julien, Ziane, and Guessoum

Example: The ContactEditor presentation element allows to edit data de-r
scribing an addressbook contact. Here is what concerns the birthDate pres-
entation data:
birthDateModified (DATA_MODIFICATION)…
birthData:Date {
 actions = { birthDateModified)
 content = independent-content (
 day: Integer (…)
 month: Integer (…)

year: Integer (…))
The meanings of the birthDateModified action, which is linked to birthDate,
include DATA_MODIFICATION. Hence, GOLIATH can deduce when any data-
term including this birthDate has to be re-evaluated.

5. THE DIALOGUE MODEL

Since GOLIATH targets developers accustomed to visual interface build-
ers, it introduces a simple and concrete dialogue model. This model is de-
fined in terms of abstract containers. Each of them represents an independent
part of the interface linked to a composite presentation element, and de-
scribes what operations the final user can trigger and what data will be dis-
played in it.

Operations. It is mainly composed of a call to a function with side-
effects and a set of conditions to control its triggering. A condition typically
corresponds to an action defined in the composite presentation element asso-
ciated to the abstract container which holds the operation. When one of the
conditions is validated, the function is called. If the function call is not au-
thorized (because its pre-conditions are not verified), all of the conditions are
forbidden (by disabling the presentation elements which trigger the actions).

Example:
operation UpdateContact (

triggers = (update),
function-call= updateContact(myAddressBook, contactKey, contact.firstName, ...,
contact.birthDate)

...)
The UpdateContact operation describes how to update a contact in an ad-
dressbook when the “update” action is fired. “myAddressBook” and “con-
tactKey” are local variables of the abstract container, while “contact” refer-
ences data handled by its presentation element.

GOLIATH: An Extensible Model-Based Environment toHH
Develop User Interfaces

101

Views. A view binds a data term with a data variable of the composite
presentation element associated to the abstract container which holds the
view. The data term is automatically re-evaluated and the presentation up-
dated when a relevant modification is detected.

Example:
view DisplayContact (

data-term = contact from getContact(myAddressBook, contactKey),
pdata = (contact) ...)

This view displays a contact returned by the getContact function. “myAd-t
dressBook”, “contactKey” and “contact” are defined above.

6. AN EXTENSIBLE ENVIRONMENT

In order to foster extensibility and flexibility, GOLIATH’s models are in-
terpreted by a multi-agent system [5]. Unlike the PAC approach [4], which
decomposes the interface in many agents, GOLIATH limits the number of
agents by associating one agent to each component of the ARCH architec-
ture. Each agent is composed of an extensible set of services which allows
running an interface from the models. Agents communicate by sending mes-
sages to each others (Fig. 2A). These messages are requests for services. To
respond to the request, agents activate the requested services. Broadcasted
messages are allowed when information has to be sent to all agents.

The Functional Core Agent and the Toolkit Agent are wrapper agents.
They encapsulate the functional core and the toolkit. Consequently, they
provide a standard interface (through an Agent Communication Language)
to communicate with the functional core and the toolkit, independently of
their implementation language.

The Presentation Agent interacts with the Toolkit Agent to generate
automatically the physical presentation according to presentation models.
The Application Agent allows providing higher level functions from the
functional core.

The Dialogue Agent manages the relationships between the presentation
and the application. New services may be introduced in this architecture.
Our goal is to foster the introduction of interface-designers’ knowledge to
further relieve them of tedious tasks. For instance, a service has been intro-
duced into the dialogue agent to manage the consistency of the presentation
regarding the application state (Fig. 2B).

102 Julien, Ziane, and Guessoum

Figure 2. A) The toolkit agent sends a TkActionFired message when the user clicks on a but-
ton. This message is received by the presentation agent which determines the concerned pres-
entation element and the action name. The dialogue agent waits for ActionFired message to
determine if an operation is triggered. In that case, it sends a CallFunction message to the ap-t
plication agent and waits for its acknowledge.
B)When an addContact call-acknowledge message is detected, our consistency service evalu-
ates the consequences of this function call. The different models provide information whose
analyses allows to identify that the current displayed contact list is incoherent with current
application contact list. Therefore, the consistency service recovers an up-to-date contact list
from the application and updates the presentation.

7. A CONCRETE EXAMPLE

The GOLIATH environment is operational. The Application, Dialogue and
Presentation Agents are implemented in the (CAML) language [3]. The im-
plementation language for the Functional Core Agents and the Toolkit
Agents depends on the implementation language of the underlying applica-
tions and toolkit libraries. In the current version of GOLIATH, Functional
Core Agents encapsulating Java and CAML functional cores, and Toolkit
Agent encapsulating Java/Swing, have been tested successfully. GOLIATH
has been used for designing a user interface for an address book application
(Fig. 3).

GOLIATH: An Extensible Model-Based Environment toHH
Develop User Interfaces

103

Figure 3. On the upper picture, the address book user interface before the update. The “Up-
date” button has been automatically disabled because the new date edited is invalid (pre-

conditions of “updateContact” function is thus unverified). On the lower picture, the same in-
terface just after a contact update. The various windows have been updated automatically.

The AddressBook interface consists of four abstract containers: the main
container, the consult container, the update container and the add container.
The main container has a view on the contact list of the address book, and
the consult/update containers hold a view on a selected contact in the afore-
mentioned list. The update (resp. add) container holds an operation which
triggers updateContact (resp.t addContact) function. From these abstract con-
tainers described by the user-interface developer, GOLIATH generates a run-
ning interface and automatically updates the main interface after each
add/update/remove action, as well as other interfaces displaying updated or
removed contacts. Moreover, some buttons and menu items are enabled or

104 Julien, Ziane, and Guessoum

disabled according to operations they trigger. For instance, the final user can
not consult/update/remove a contact if there is no selected contact, and can
not add/update a contact if the birth date is invalid. This behaviour is fully
managed by GOLIATH, and thus does not require any particular design deci-
sion.

8. DISCUSSION

High threshold of use. According to Myers et al., MB-UIDEs have a
high threshold of use [7] because programmers must learn new languages to
define the models. This is one reason why GOLIATH does not rely on a task
model. Its dialogue model is more concrete and should be attractive to pro-
grammers used to visual interface builders [15]. Note however that dialogue
models are abstract enough not to be bound to any specific toolkit. More-
over, it is quite possible to add a task model to GOLIATH and then derive a
dialogue model from it.

Unpredictability. Another identified drawback of MB-UIDEs is their
unpredictability [7]. Again, thanks to its concrete dialogue model, we claim
that GOLIATH’s resulting interfaces are quite predictable. The focus of GO-
LIATH was not on introducing presentation-related heuristics, but rather on
making it easier to link the presentation and the functional core.

Performance. Despite the interpretation of models, we have not yet no-
ticed any significant performance problems with GOLIATH. To validate it on
large and sophisticated interfaces, we are currently designing, with GOLI-
ATH, a visual tool to edit GOLIATH’s models. If a performance problem ap-
pears, it will certainly not be due to the multi-agent system: the number of
agents is quite limited. If interpretation is not efficient enough, code genera-
tion should be considered.

9. CONCLUSION

GOLIATH is a MB-UIDE targeted at developers used to visual interface
builders. Thanks to its concrete dialogue model, it alleviates two important
drawbacks of current MB-UIDEs: the unpredictability of the resulting inter-
faces, and the threshold of use of these environments. Moreover, thanks to
its more precise models and an additional service, GOLIATH makes it easier
to avoid proposing invalid choices to the final user and to refresh the presen-
tation when some data have changed

GOLIATH: An Extensible Model-Based Environment toHH
Develop User Interfaces

105

REFERENCES

[1] Barclay, P.J., Griffiths, T., McKirdy, J., Paton, N.W., Cooper, R., and Kennedy, J., The
Teallach Tool: Using Models for Flexible User Interface Design, in A. Puerta, J. Van-
derdonckt (eds.), Proceedings of 3rd Int. Conf. on Computer-Aided Design of User Inter-d

faces CADUI’99 (Louvain-la-Neuve, 21-23 October 1999), Kluwer Academics Pub.,
Dordrecht, 1999, pp. 139-157.

[2] Bass, L. Little, R., Pellegrino, R., Reed, S., Seacord, R., Sheppard, S., and Szczur, M.R.,
The UIMS Tool Developers’ Workshop: A Metamodel for the Runtime Architecture of an
Interactive System, SIGCHI Bulletin, Vol. 24, No. 1, 1992, pp. 32-37.

[3] CAML, The CAML Language, INRIA, Rocquencourt, 6 October 2001, accessible at
http://caml.inria.fr

[4] Coutaz, J., PAC: An Object-Oriented Model for Dialog Design, in H.-J. Bullinger, B.
Shackel (eds.), Proceedings of 2nd IFIP Conference on Human-Computer Interaction In-d

teract’87 (Stuttgart, 1-4 September 1987), North Holland, Amsterdam, 1987, pp. 431-
436.

[5] Ferber, J., Multi-Agent System: An Introduction to Distributed Artificial Intelligence,
Addison-Wesley, Reading, 1999.

[6] Griffiths, T., Barclay, P., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D., Cooper, R.,
Goble, C., and Pinheiro da Silva, P., Teallach: a Model-based User Interface Develop-
ment Environment for Object Data-bases, Interacting with Computers, Vol. 14, No. 1,
pp. 31-68.

[7] Myers, B.A., Hudson, S.E., and Pausch, R., Past, Present, and Future of User Interface
Software Tools, ACM Transactions on Computer-Human Interaction, Vol. 7, No. 1,
2000, pp. 3-28.

[8] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 1999.

[9] Pinheiro da Silva, P., User Interface Declarative Models and Development Environ-
ments: A Survey, in P. Palanque, F. Paternò (eds.), Proceedings of 7th International
Workshop on Design, Specification, and Verification of Interactive Systems DSV-
IS’2000 (Limerick, 5-7 June 2000), Lecture Notes in Computer Science, Vol. 1946,
Springer-Verlag, Berlin, 2000, pp. 207-226.

[10] Pinheiro da Silva, P., Griffiths, T., Paton, N.W., Generating User Interface Code in a
Model-Based User Interface Development Environment, in V. Gesù, S. Levialdi, L. Tar-
antino (eds.), Proceedings of ACM Int. Conference on Advanced Visual Interfaces
AVI’2000 (Palermo, 23-26 May 2000), ACM Press, New York, 2000, pp. 155-160.

[11] Puerta, A.R., A Model-Based Interface Development Environment, IEEE Software, Vol.
14, No. 4, 1997, pp. 40-47.

[12] Puerta, A., Cheng, E., Ou, T., and Min, J., MOBILE: User-Centered Interface Building,
in Proceedings of ACM Conf. on Human Aspects in computing Systems CHI’99 (Pitts-
burgh, 15-20 May 1999), ACM Press, New York, 1999, pp. 426-433.

[13] Szekely, P.A., Sukaviriya, P.N., Castells, P., Muthukumarasamy, J., and Salcher, E., De-
clarative Interface Models for User Interface Construction Tools: the MASTERMINDMM Ap-
proach, in K. Unger, L. Bass (eds.), Proceedings of IFIP Working Conference on Engi-
neering for Human-Computer Interaction EHCI’95 (Grand Targhee Resort, 14-18 Au-
gust 1995), North Holland, Amsterdam, 1995, pp. 120-150.

[14] Vanderdonckt, J. and Berquin, P., Towards a Very Large Model-based Approach for
User Interface Development, in N.W. Paton, T. Griffiths (eds.), Proc. of 1st Int. Work-

106 Julien, Ziane, and Guessoum

shop on User Interfaces to Data Intensive Systems UIDIS’99 (Edimburgh, 5-6 Septem-
ber 1999), IEEE Computer Society Press, Los Alamitos, 1999, pp. 76-85.

[15] Vanderdonckt, J., Limbourg, Q., and Florins, M., Deriving the Navigational Structure of
a User Interface, in M. Rauterberg, M. Menozzi, J. Wesson (eds.), Proc. of 9th IFIP TC
13 Int. Conf. on Human-Computer Interaction INTERACT’2003 (Zurich, 1-5 September
2003), IOS Press, Amsterdam, 2003, pp. 455-462.

Chapter 9

TRANSFORMATIONAL DEVELOPMENT OF
USER INTERFACES WITH GRAPH TRANS-
FORMATIONS

Quentin Limbourg and Jean Vanderdonckt
IAG – School of Management, Université catholique de Louvain,
Place des Doyens 1 – B-1348 Louvain-la-Neuve (Belgium)
{limbourg,vanderdonckt}@isys.ucl.ac.be
URL : http://www.isys.ucl.ac.be/bchi/members/{qli,jva}
Tel : +32 10/47 {83 84, 85 25} – Fax : +32 10/47 83 24

Abstract In software engineering transformational development aims at developing
software systems by transforming a coarse-grained specification to final code
(or to a detailed specification) through a sequence of small transformation
steps. Transformational development is known to bring benefits such as: cor-
rectness-preserving of the development cycle, explicit mappings between de-
velopment steps, reusability and reversibility of transformations. No piece of
literature provides a systematic formal system applying transformational de-
velopment to user interface engineering. To fill this gap, a methodology, called
TOMATO, is described in three facets: 1) A development cycle is defined to
outline possible transformations. 2) A language for supporting the methodol-
ogy is presented relying on graph transformations, a mathematical system for
expressing specifications and transformation rules. 3) A tool implementation,
using a visual syntax, is illustrated.

Keywords: Forward engineering, Graph grammar, Graph theory, Mapping problem, Pro-
gram transformation, Reverse engineering, Transformational approach.

1. INTRODUCTION
A state of the art [18] in the field of engineering methods of user inter-

face shows that no method provides an integrated view of the abstractions
needed to build a user interface along with an explicit mechanism to manipu-
late these abstractions throughout a development cycle. More specifically,
there is no general logical mechanism to incorporate and manipulate design
knowledge in user interface creation tools [2,13] nor any system for relating

107

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 107–120.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

108 Limbourg and Vanderdonckt

abstractions needed for this purpose. This problem has been referred to as
the mapping problem by Puerta and Eisenstein in [16].

This paper addresses the lack of a disciplined and explicit mechanism for
supporting user interface development in a transformational approach from
early requirements to the final code. We draw the bases of such a mecha-
nism along with the explicit definition of an algorithmic method able to per-
form automatically (or semi-automatically) the transformation of specifica-
tion models.

A UI specification model consists in a series of representations (called l
component models) pertaining to various facets of the UI such as: user’s
task, domain objects, UI presentation and dialog, user’s characteristics,
computing platform, physical environment of interaction, etc [14,18]. A
consistent effort has been done in the literature to integrate these specifica-
tion models in an explicitly articulated and coherent manner. TOMATO
methodology (standing for “formal meThOdology for MApping user inter-
face specificaTiOn models) is composed of a development cycle and a lan-
guage (Tomato-L). It is aimed at supporting transformational development
of UIs. Within Tomato any UI artefact is internally represented by a set of
models that are analyzable, editable, and processable by software means
[14]. Each model is stored in a model repository in a UI specification lan-
guage based on graph theory. This UI internal representation is then subject
to production rules that progressively transform abstract concepts into con-
crete concepts so as to finally create a full description of a final UI [20].
Once this description is obtained, a rendering tool can be used to produce
the running code. Such renderers have already been developed and discussed
(www.uiml.org).This paper is focused on the transformation development
that leads to the final description.

In the context of model-based development environments [18], at least
four works can be cited: Mobi-D [13,14,15,16], Teallach [6], TIDE (www.
uiml.org) and TERESA [12]. All these works represent significant attempts to
incorporate design knowledge for a user interface design tool. The above
tools are advanced in the sense that they support the explicit mappings be-
tween the different models, the different views, and steps of the method. In
Tomato methodology, these mappings are not hand coded and built-in in the
software. Rather, they are graphically expressed in the environment, which
allows to exploit these mappings in a flexible way. With respect to the ap-
plication of graph transformations to user interface development, two con-
tributions can be mentioned: Freund et al. [5] and Sucrow [19]. Both ap-
proaches make an interesting use of graph transformations but have a too

cle.
The purpose of this paper is not to prove that a complete and consistent

set of rules can be achieved to store a comprehensive part of design knowl-

narrow conceptual coverage to address a fully defined UI development
cycc

Transformational Development of User Interfaces
with Graph Transformations

109

edge. Rather, it is intended to show how we can apply transformations from
the abstract to the concrete domain in a seamless manner. The remainder of
this paper is structured as follows: first, the transformation development life
cycle supported by the Tomato methodology will be described. Then, the
underlying language and its supporting tools are discussed. An example is
presented to introduce the method. Finally, a related work section shows that
this type of work remains unprecedented. The conclusion summarizes the
main benefits of the approach, while contrasting with potential shortcom-
ings.

2. TRANSFORMATIONAL DEVELOPMENT WITH
TOMATO

2.1 Context and Aim
An example is herby exposed in order to better introduce TOMATO meth-

odology. A simple scenario is proposed: a doctor at the hospital has to re-
cord information on her patient medical history. For this purpose, she has to
input identity information, medical history i.e., general pathologies, heart
pathologies, and other problems.

Figure 1. A Conceptual Model (Domain + Task).

Using TOMATO methodology, a developer may initiate the development
by a conceptual schema expressing either domain concepts or a task specifi-
cation or both. Fig. 1 shows a domain and task specification along with the
mappings between both models. In this example, input tasks are mapped

110 Limbourg and Vanderdonckt

onto the attribute or the attribute set they are concerned with. Tasks involv-
ing a system function are mapped onto domain operations. Having this
specification, the designer can pick up a derivation heuristic in a database
and generate a detailed specification of the desired UI. The heuristics ex-
ploited in this example are listed in Fig. 2. These heuristics are expressed in
natural language for the good comprehension of the example. The resulting
specification is illustrated by Fig. 3.

Now the developer is told that her system is not suited for patients admit-
ted through the emergency service. In this case a handheld platform has to
be used. In consequence, the developer selects an appropriate derivation to
transform the specification of the UI of Fig. 3 into a specification suited for
a small display device. The resulting specification is illustrated by Fig. 4.

R0: generate a “main” window;
R1: for each multi-valued class attribute, generate a group box whose name is the
name of the attribute;
R2: for each multi-valued class attribute whose domain is enumerated and is associ-
ated with a group box, generate a checkbox whose label is the label of the enumer-
ated value;
R3: for each class attribute of type string and not multi-valued, generate a label and
an input field whose, respectively, caption and name is the name of the attribute. The
label and the input field being topologically bound together;
R4: for each attribute of type long string, generate a multiple line edit box;
R5 for each operation class, generate a button whose label is the name of the opera-
tion;
R6 (A and B) : each object belonging to a same window are placed following an or-
der depending on the task they allow to accomplish.

Figure 2. Heuristic sample of the working example.

Figure 3. (Left) & 4 (Right) Recording Patient History File.

Transformational Development of User Interfaces
with Graph Transformations

111

The initial specification has been split up into four smaller interaction
spaces. Navigation between these interaction spaces has been automatically
generated. Some widgets have been replaced by a degraded equivalent (e.g.,
a group of text boxes has been replaced by a multiple selection list box
[22,23]). Because patient information is scattered between several interac-
tion spaces so that the task of checking the information before recording the
file can not be done appropriately, a summary interaction space in generated.
This example shows a possible application of Tomato methodology. Next
section exposes this methodology in a systematic way.

2.2 Development Cycle: TOMATO Cycle
Tomato cycle complies with transformational development theories.

Transformational development can be viewed as a development process that
takes as input a high level specification and produces as output a more con-
crete specification (i.e., implementation oriented) or an executable program.
The transformation process itself takes the form of a sequence of small
transformation steps. Each step preserves some desirable properties (e.g.,
correctness or consistency [9]).

High Level
Spec.

R1

R2

Detailed Spec.
or Program

T1T1

T2T2

T3T3

Task and
Domain

Abstract
User Interface

Concrete
User Interface

User Interface
Code

T1T1

T2T2

T3T3

Model
Edition & Checking

Transformation
Modification

Transformation
Triggering

Figure 5. Tomato Cycle.

Fig. 5 illustrates the sequence of abstractions and designer’s tasks to trans-
form a high level specification into a refined specification through the fol-
lowing steps [3]: task and domain, abstract user interface, concrete user in-
terface, and user interface code.

With such a transformational development, the role of the developer is
very different from traditional approaches. In traditional approaches, the de-
veloper receives a specification, tries to fully understand it and implements
what he has understood in a specific development environment. With trans-
formational approaches [10], the developer receives a specification, tries to
fully understand it, edits it, selects/modifies/creates an appropriate transfor-
mation and applies it to the initial specification in order to finally obtain a
refined specification. Properties of the resulting model can then be checked

112 Limbourg and Vanderdonckt

against a set of rules expressing coherence or usability properties.
Regarding the role of the developer, three types of transformations can

be identified [10]: manual transformations require intervention of the devel-
oper at each stage for choosing the appropriate transformation, semi-
automatic transformation and fully automatic transformation. TOMATO cycle
adopts a manual approach i.e., the developer builds the sequence of trans-
formation himself. This is explained by the fact that transformations are heu-
ristics. There is no single way to transform a task model into a presentation,
or a presentation adapted to a large display to a presentation adapted to a
small display, etc.

2.3 THE TOMATO-L

TOMATO-L is a language that enables the expression of concepts needed
to build a user interface. TOMATO-L structure is defined in Fig. 6.

Figure 6. TOMATO Language.

2.3.1 Abstract Concepts

The abstract concepts we consider to formalise with graph structures
consist in abstractions needed to build a UI in a model-driven approach [11].
It is impossible to list here all language elements. Nonetheless, these
abstractions can be categorised into three main classes.
1. Component models partition concepts needed to construct a UI. Com-

ponent models allow building several views on a UI. These views help to
answer questions like: what tasks does my UI support? What objects does
it manipulate? How does it look like? How does it behave? Component
models have been listed in [14]. They consist in: (1) a task model repre-l
sents a decomposition of user tasks in interaction with a system in order
to reach a specific goal, (2) a domain model represents the concepts ma-l

Transformational Development of User Interfaces
with Graph Transformations

113

nipulated by the user while interacting with the system, (3) a presentation
model consists in a specification of a hierarchy of graphical elements
composing a UI along with their respective topological constraints, (4) a
dialog model represents the dynamic aspects of a presentation model.l
Dialog modelling can concern different levels of granularity. We focus
here on navigational aspects i.e., window transitions. 5) a context model.
The context model essentially serves to describe in which conditions a
specific UI specification is valid or not. It is beyond the scope of this pa-
per to discuss extensively the context model. Schematically, our context
model is composed of [3,12] (a) a user model describing the main charac-
teristics of some user’s users ? stereotypes (b) a platform model contain-
ing the description of hard- and soft- resources exploited to render a UI
(c) an environment model describing environmental factors affecting the
way users interact (noise or light level, stress conditions,…).

2. Mappings are relationships between component models [15,16]. These
relationships are very interesting as they realize the integration of com-
ponent models into one whole specification instead of having a collection
of unrelated abstractions (this partly provides seamlessness to our
method). Concretely, expressing mappings allows us to answer questions
like: what objects do I need to accomplish this task? (task-domain map-
ping) What graphical objects support this task or represent this object?
(<task, domain>-presentation mapping).

3. Design Knowledge is the knowledge that is put into practice while build-
ing a UI [13]. In our perspective, applying design knowledge means ma-
nipulating component models and mappings. Design knowledge allows
answering questions like: what widgets are more appropriate to represent
such domain object? How should I lay out objects into a container?
Which navigation is preferred by a user stereotype? What kind of transi-
tion should I have between two windows? [24]. More detailed examples
are provided in Section 2.4.

2.3.2 Abstract Syntax and Operational Semantics

The abstract syntax is defined as the hidden structure of a language, its
mathematical background [9]. Our abstract syntax takes the form of a di-
rected graph. A graph g is defined as a quadruple (V, E, source, target) suchg
that (1) V is a finite set of vertices (2) E is a finite set of edges (3) source: E

V is an injective function assigning a source to each edge of E (4) target:
E V is an injective function assigning a target to each edge of E. To en-
able the expression of a specification model within a graph structure we en-
rich the initial definition of graph with several interesting features. Most im-
portant features are: (1) labelling: enables each edge or node to be labelled

114 Limbourg and Vanderdonckt

(2) typing: enables edges and nodes to be classified into types (3) constrain-
ing: enables to attach to nodes and edges constraints of various types (e.g.,
cardinality constraint) (4) nesting: enables to nest a graph into another
graph.

After expressing models, the abstract syntax of TOMATO-L expresses de-
sign knowledge via graph grammars. Graph grammars are set of rules,
called productions. Productions aim, in this context, at transforming the
graph representing UI artefacts. In order to transform graphs (i.e., UI artefact
transformation), a grammar is applied to an initial graph, called host graph
leading to a resultant graph. A resultant graph is said final if there is no
more applicable production to this graph. It is said intermediate in the oppo-
site case. The application of a production is called a graph transformation
step [7], for short a derivation.

The operational semantics of a language describes the way an automaton
(called interpreting automaton) transforms an input into an output [9]. The
behaviour of the automaton for graph transformation depends on the chosen
transformation technique. The technique used in this work is known as Sin-
gle PushOut approach (SPO). It is illustrated in Fig. 7.

G
Host Graph

G’
Resultant Graph

LHS RHS

Matches -C M t h

Is Transformed Into

Is Transformed Into

Production 1
Production 2

…

Production N

G
ra

ph
G

ra
m

m
ar

Figure 7. Production and Grammar in the Single Pushout Approach of Graph Transformation.

When a Left Hand Side (LHS) matches into a host graph G, it is replaced
by a Right Hand Side (RHS). G is resultantly transformed into G’. All ele-
ments of G not covered by the match are considered as unchanged.

In order to achieve a better level of expression of productions, the
mechanism of LHS match is complemented with 1) Positive Application
Conditions (PAC), expressed as textual Boolean expressions on variables of
the LHS and 2) Negative Application Conditions (NAC). A NAC is an addi-
tional condition to a production that contains a graph with which the host
graph must not match with. In addition, several technical problems may arise
while applying a grammar to a host graph e.g., conflicts between rules, oc-

Transformational Development of User Interfaces
with Graph Transformations

115

currence of dangling edges or dependencies between rules leading to an in-
determinable resultant graph. We deal with this problem by adopting a con-
servative and cautious approach by (1) identifying production conflicts a
priori when possible, (2) erasing all dangling edges in resultant graphs, (3)
constraining the application of productions to a specific order (programmed
graph rewriting).
2.3.3 Concrete Syntax

The concrete syntax of a language is its external appearance. Tomato-L
has two concrete syntaxes: (1) a graphical syntax which consists in the nota-
tion used in this paper. Its elements are just boxes, arrows and labels. The
advantage with this notation is that it is visual. The disadvantage is that it
can not, as is, be manipulated by an automaton (2) a textual syntax (called
TOMATO-XML) of XML files is also provided.

Existing UI Description Languages (UIDLs) like XIML (http://www.
ximl.org), UIML (http://www.uiml.org), and XHTML are limited to the ex-
pression of a concrete syntax. TOMATO concrete syntax is governed by an
XML schema. It is logically derived from its abstract syntax as its structure
is twofold: a set of nodes describing the elements populating the model at
hand, a set of relationship describing the relationships between these differ-
ent elements. An excerpt of an instance file in shown in Fig. 8.

2.4 TOOL IMPLEMENTATION
The principles exposed above could be put into practice in various pro-

gramming environment enabling an easy expression and manipulation of
graph structures (e.g., Prolog). An environment called AGG (Attributed
Graph Grammars tool) is used for this experiment. AGG can be considered
as a genuine programming environment based on graph transformations [7].
It provides:
1) A programming language enabling the specification of graph gram-

mars.
2) A customisable interpreter enabling graph transformations. AGG was

chosen because it allows the graphical expression of directed, typed and
attributed graphs (for expressing specifications and rules). It has a pow-
erful library containing notably algorithms for graph transformation [7],
critical pair analysis, consistency checking, positive and negative appli-
cation condition enforcement. AGG user interface is described in Fig.
8. Frame 1 is the grammar explorer. In Fig. 8, frames 2, 3 and 4 enable
to specify sub-graphs composing a production: a negative application
(frame 2), a left hand side (frame 3) and a right hand side (frame 4).
The host graph on which a production will be applied is represented in
Frame 5.

116 Limbourg and Vanderdonckt

Figure 8. AGG User Interface.

Fig. 9 illustrates a rule used to perform the example exposed in section
2.1 (R1 in Fig. 2). It asserts that for every possible multi-valued attribute, a
group box is generated. The group box’s name is the name of its correspond-
ing attribute. A negative application condition (left) avoids an infinite itera-
tion of this rule. In order to ensure a possible manipulation of the output pro-
duced by AGG, an export function towards TOMATO textual syntax has been
realised. An import function is currently under development.

Figure 9. Composition of a rule: a NAC (left), a LHS (center), a RHS (right).

Transformational Development of User Interfaces
with Graph Transformations

117

Experiments showed that AGG is a proper environment for defining and
applying rules. Unfortunately, it shows poor in terms of usability for
specifying large UI models. Indeed, it may appear somewhat abstract to the
designer to describe a UI appearance with a set of nodes and relationships.
An external tool for visually (“WYSIWYG” style) manipulating abstract and
concrete UI models is under development in our lab. At this time, the tool
allows specifying graphically a UI in terms of concrete widgets. A property
sheet allows the detailed specification of the widget properties. The tool ex-
ports the specification of the created UI in a syntax that is compliant with
Tomato concrete syntax. An import function, and consequently a rendering
function, of Tomato concrete syntax are currently being developed. The
main features of our tool experimentation can be summed up as follows.

1) A ‘design editor’ allows the creation and the consolidation of models ex-
ploited in the development process. A specific environment enables the
design of UI appearance by direct manipulation of widgets.

2) A ‘design derivator’ enables the transformation of a model into another
model.

3) A ‘rule editor’ enables the definition of new transformation rules.
4) A ‘rule validator’ enables the designer to identify conflicts within a set of

rules. The critical pair analysis technique is used for this purpose.
5) A ‘design analyser’ enables the verification of desirable properties of the

manipulated artefacts such as basic consistency rules, type checking or
even usability properties (i.e., IFIP properties like reachability, browsa-
bility).

3. CONCLUSION

In this paper, a formal development methodology (Called TOMATO-M)
enabling the construction of user interfaces through a set of transformations
has been presented.

This methodology relies on: 1) the representation of manipulated abstrac-
tions with directed, labelled, attributed, and typed graphs. 2) the progressive
transformation of higher level specification models to lower level specifica-
tion code via the application of graph transformations 3) the expression of
design knowledge with an explicit and developers accessible language.

The traditional role of the developer is challenged with TOMATO as it
consists in 1) the expression of specification models under the form of
graphs 2) the access, definition, extension, restriction, testing, verification
and, ultimately, the application of appropriate transformations corresponding
to design heuristics. The advantages of such a method can be summed up as

118 Limbourg and Vanderdonckt

follows:

A logical expression of design knowledge: rather than having concepts
of components models used in the process being hard coded and built-in
within the design tools. All design rules, heuristics, algorithms can be
expressed through productions that can be logically and mathematically
defined.

A flexible production process: productions can be gathered in graph
grammars to be executed on graphs representing the starting models
(e.g., task, domain, and user) to obtain the final models (e.g., presenta-
tion and dialog). This process is flexible in the sense that it can be con-
trolled (forward, backward, and both) by the tool engine, thus providing
developers with a great degree of freedom.

A reusable and combinable way of using design knowledge: any form of
design knowledge, once expressed in the Tomato language, can be re-
used at any time, can be refined when experience is growing, can be
stopped when needed, and can be combined with other rules to obtain a
more or less sophisticated production process. Using the same graph
grammar also reinforces the consistency of produced results.

A visual and mathematical expression: while the developer can graphi-
cally express productions in AGG tool, each production is stored as a
graph transformation rule, a mathematically sound concept.

A coverage for many particular methods: each method or tool typically
promotes its particular process. As productions can be arranged in bidi-
rectional ways and can start from any model, we believe that multiple
entry points and top-down or bottom-up approaches can be supported.
For example, linking and deriving rules from Teallach [6] can be ex-
pressed in TOMATO. Similarly, multiple UIs for multiple contexts of use
could be obtained through different graph grammars.

On the other hand, preliminary results obtained with the TOMATO
method revealed that some abstraction effort is required by the person who
is responsible to incorporate the design knowledge. But once the designed
knowledge is introduced into the tool it can be experimented with a limited
experience of the language [21].

ACKNOWLEDGEMENTS

This work has been supported by the Cameleon research project
(http://giove.cnuce.cnr.it/ cameleon.html) under the umbrella of the Euro-
pean Fifth Framework Programme (FP5-2000-IST2), which we gratefully

Transformational Development of User Interfaces
with Graph Transformations

119

acknowledge. This work gave birth to the USIXML language (User Inter-
face eXtensible Markup Language – www.usixml.org) that is used across
the members of the Cameleon project. The authors would like to thank
Cameleon partners who contributed to V1.2 of USIXML: Lionel Balme,
Gaëlle Calvary, Cristina Chesta, Alexandre Demeure, Joëlle Coutaz, Jean-
Thierry Lechein, Fabio Paternò, Stéphane Raymond, Carmen Santoro, and
Youri Vanden Berghe. This paper is related to USIXML V1.4, an extension
of USIXML V1.2 with dialog model, more inter-model mappings, a context
model made up of user, platform, and environment, and the concrete user in-
terface level.

REFERENCES

[1] Baresi, L. and Heckel R., Tutorial Notes on Foundations and Applications of Graph
Transformation, an Introduction From a Software Engineering Perspective, in Proceed-
ings of 1st Int. Conference on Graph Transformation, ICGT’02 (Barcelona, 7-12 Sep-
tember 2002), Springer-Verlag, Berlin, 2002, pp. 402-429, accessible at
http://link.springer.de/link/service/series/0558/bibs/2505/25050402.htm

[2] Brown J., Exploring Human-Computer Interaction and Software Engineering Method-
ologies for the Creation of Interactive Software, SIGCHI Bulletin, Vol. 29, No. 1, Janu-
ary 1997, pp. 32-35.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt, J.,
A Unifying Reference Framework for Multi-Target User Interfaces, Interacting with
Computers, Vol. 15, No. 3, June 2003, pp. 289-308.

[4] Engels, G. and Schürr, A., Encapsulated Hierarchical Graphs, Graph Types and Meta
Types, in Proceedings of Joint Compugraph/Semagraph Workshop on Graph Rewriting
and Computation, Electronic Notes in Theoretical Computer Science SEGRAGRA'95
(Volterra, 28 August-1 September 1995), Vol. 2, July 1995.

[5] Freund, R., Haberstroh, B., and Stary, C., Applying Graph Grammars for Task-Oriented
User Interface Development, in Proceedings of International Conference on Computing
and Information ICCI’1992 (Toronto, Ontario, 28-30 May 1992), IEEE Computer Soci-
ety Press, Los Alamitos, 1992, pp.389-392.

[6] Griffiths, T., Barclay, P., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D., Cooper, R.,
Goble, C., and Pinheiro da Silva, P., Teallach: A Model-Based User Interface Develop-
ment Environment for Object Databases, Interacting with Computers, Vol. 14, No. 1, 1
December 2001, pp. 31-68.

[7] Ehrig, H., Engels, G., Kreowski, H-J., and Rozenberg, G., Handbook of Graph Gram-
mars and Computing by Graph Transformation, Applications, Languages and Tools,
Vol. 2, World Scientific, Singapore, 1999.

[8] Mens, T., Conditional Graph Rewriting as a Domain-Independent Formalism for Soft-
ware Evolution, in Proc. of International Conf. Applications of Graph Transformations
with Industrial Relevance AGTIVE’1999 (Kerkrade, 1-3 September 1999), Lecture
Notes in Computer Science, Vol. 1779, Springer-Verlag, Berlin, 2000, pp. 127-143.

[9] Meyer, B., Introduction to the Theory of Programming Languages, Prentice Hall, New
York, 1990.

120 Limbourg and Vanderdonckt

[10] Partsch, H., and Steinbruggen, R., Program Transformation Systems, ACM Computing
Surveys, Vol. 15, No. 3, September 1983, pp. 199-236.

[11] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 2000.

[12] Paternò, F., and Santoro, C., One Model, Many Interfaces, in Proceedings of 4th Interna-
tional Conference on Computer-Aided Design of User Interfaces CADUI’2002 (Valen-
ciennes, 15-17 May 2002), Kluwer Academics Publishers, Dordrecht, 2002, pp. 143-154

[13] Puerta, A.R., and Maulsby, D., Management of Interface Design Knowledge with MOBI-
D, in Proc. of 2nd ACM International Conference on Intelligent User Interfacesd IUI’97
(Orlando, 6-9 January 1997), ACM Press, New York, 1997, pp. 249-252.

[14] Puerta, A.R., A Model-Based Interface Development Environment, IEEE Software, Vol.
14, No. 4, July-August 1997, pp. 41-47

[15] Puerta, A.R. and Eisenstein, J., Interactively Mapping Task Models to Interfaces in
MOBI-D, in Proceedings of 5th International Eurographics Workshop on Design, Speci-
fication and Verification of Interactive Systems DSV-IS’98 (Abingdon, 3-5 June 1998),
Springer-Verlag, Vienna, 1998, pp. 261-273.

[16] Puerta, A. and Eisenstein, J., Towards a General Computational Framework for Model-
Based Interface Development Systems Model-Based Interfaces, in Proc. of ACM Interna-
tional Conference on Intelligent User Interfaces IUI’99 (Los Angeles, 5-8 January 1999),
ACM Press, New York, 1999, pp. 171-178.

[17] Rozenberg, G., Handbook of Graph Grammars and Computing by Graph Transforma-
tion, Foundations, Vol. 1, World Scientific, Singapore, 1999.

[18] Szekely, P., Retrospective and Challenges for Model-Based Interface Development, in
Proc. of 2nd International Workshop on Computer-Aided Design of User Interfaces CA-d

DUI’96 (Namur, 5-7 June 1996), Presses Universitaires de Namur, Namur, 1996, pp.1-
27.

[19] Sucrow, B., On Integrating Software-Ergonomic Aspects in the Specification Process of
Graphical User Interfaces, Transactions of the SDPS Journal of Integrated Design &
Process Science, Vol. 2, No. 2, June 1998, pp. 32-42.

[20] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection, in Proc. of the ACM Conf. on Human Factors in Computing
Systems INTERCHI'93 (Amsterdam, 24-29 avril 1993), ACM Press, New York, 1993,
pp. 424-429.

[21] Vanderdonckt, J., Assisting Designers in Developing Interactive Business Oriented Ap-
plications, in H.-J. Bullinger & J. Ziegler (eds.), Proceedings of 8th International Confer-
ence on Human-Computer Interaction of HCI International’99 (Munich, 22-26 August
1999), Ergonomics and User Interfaces, Vol. 1, Lawrence Erlbaum Associated Pub.,
Mahwah, 1999, pp. 1043-1047.

[22] Vanderdonckt, J., Advice-Giving Systems for Selecting Interaction Objects, in N.W. Pa-
ton & T. Griffiths (eds.), Proceedings of 1st Int. Workshop on User Interfaces to Data In-
tensive Systems UIDIS’99 (Edimburgh, 5-6 September 1999), IEEE Computer Society
Press, Los Alamitos, 1999, pp. 152-157.

[23] Vanderdonckt, J. and Berquin, P., Towards a Very Large Model-based Approach for
User Interface Development, in N.W. Paton & T. Griffiths (eds.), Proc. of 1st Interna-
tional Workshop on User Interfaces to Data Intensive Systems UIDIS’99 (Edimburgh, 5-
6 September 1999), , IEEE Computer Society Press, Los Alamitos, 1999, pp. 76-85.

[24] Vanderdonckt, J., Limbourg, Q., and Florins, M., Deriving the Navigational Structure of
a User Interface, in M. Rauterberg, M. Menozzi, J. Wesson (eds.), Proc. of 9th IFIP TC
13 Int. Conf. on Human-Computer Interaction INTERACT’2003 (Zurich, 1-5 September
2003), IOS Press, Amsterdam, 2003, pp. 455-462.

Chapter 10

A DISTRIBUTED USAGE MONITORING
SYSTEM

Philip Gray1, Iain McLeod1, Steve Draper2, Murray Crease3, and
Richard Thomas4

1Computing Science Department, University of Glasgow,
17 Lilybank Gardens – Glasgow G12 8QQ (Scotland)
E-mail: {pdg,mcleodia}@dcs.gla.ac.uk
URL: http://www.dcs.gla.ac.uk/~pdg –
http://www.dcs.gla.ac.uk/contacts/searchresults.cfm?rowid=362
Tel: +44 141 330 {4933, 4256} – Fax: +44 141 330 4913
2Psychology Department, University of Glasgow,2

58 Hillhead Street – Glasgow G12 8QB (Scotland)
E-mail: s.draper@psy.gla.ac.uk
URL: http://www.psy.gla.ac.uk/~steve/
Tel: +44 141 330 4961 – Fax: +44 141 330 5086
3NRC-IIT e-Business, 46 Dineen Drive, Fredericton – New Brunswick E3B 9W4 (Canada)
E-mail: murray.crease@nrc-cnrc.gc.ca
URL: http://iit-iti.nrc-cnrc.gc.ca/personnel/crease_murray_e.html
Tel: +1 506 444 0496 – Fax: +1 506 444 6114
4Computer Science & Software Engineering, The University of Western Australia,
35 Stirling Highway – Crawley 6009 (Australia)
E-mail: rct@csse.uwa.edu.au
URL: http://www.cs.uwa.edu.au/~richard
Tel: +61 8 9380 2733 – Fax: + 61 8 9380 1089

Abstract We are developing a distributed computer system that supports usability and
interaction studies, by handling the collection, storage and analysis of usage
data, such as that generated by user-computer interaction and associated sens-
ing devices (e.g., cameras). Data sources may be distributed as may be the data
repositories and data consumers (other computer processes and human investi-
gators). The system supports dynamic configuration of the entire process, in-
cluding changes in the goals of the investigation itself. In this paper we de-
scribe the system’s key features, including a generic and evolvable data trans-
port and processing network, a set of tools for capturing and cleaning usage
data, a tool for instrumenting software for data capture, and a system for man-
aging the entire process. We also report on several trials of the system, identi-
fying successes, failures, lessons learned and areas for future development.

Keywords: Usability testing tools, Usage monitoring.
121

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 121–132.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

122 Gray, McLeod, Draper, Crease, and Thomas

1. INTRODUCTION

Usage data is central to investigative activities in a number of domains,
including usability testing and educational research. In these studies data is
taken primarily from events generated by user manipulation of keyboards,
mice and other computer input devices, along with other observational data,
such as screen dumps and images or video streams from cameras. Although
there are a number of software tools that support the capture, storage and
analysis of such data, it remains difficult to manage such usage data, espe-
cially when the data is being collected from a number of machines, perhaps
distributed over a large area and the analysis is being carried out by a num-
ber of researchers remotely from the data collection.

The Grumps Project at the University of Glasgow has been developing a
set of software tools to address the opportunities and challenges of distrib-
uted usage monitoring, especially in the case of exploratory studies that do
not have clearly defined and unchanging initial hypotheses and assumptions.
We call studies of this type REDDIs: Rapidly Evolving Data Driven Investi-
gations [9]. Rather than focusing on a static set of fixed data sources such as
log files, it focuses on explorations by an investigator where the question
evolves as much as the answer, as in data mining. The findings are as likely
to be an unanticipated pattern in the data as a specific answer to a defined
question. Calling them ‘investigations’ rather than ‘experiments’ highlights
the fact that they may or may not have a prior hypothesis, let alone manipu-
late the circumstances being studied. These investigations depend upon data,
and the possibility of collecting it easily (as opposed to using other methods,
such as surveying human users); they are as much about what it is possible
to learn from these sources as about answering prior questions. To call them
“data driven” is to further emphasise their orientation to a particular techni-
cal opportunity. On the other hand, and in contrast to their log file precursors
and to data mining, the possibility is now emerging of changing or post-
processing the data collected rapidly, in response to new interests, guesses,
and hypotheses of the investigator; hence they are potentially “rapidly evolv-
ing”, and so also not simply passive, post hoc, archaeological analyses of
what comes to hand.

This paper describes the Grumps software framework designed to sup-
port REDDIs and the current tools that reside in that framework, for soft-
ware instrumentation, event capture, event transport, processing and storage,
and data preparation and analysis. Section 2 describes the key features of our
approach to supporting usage monitoring. Section 3 surveys the framework
and tools. Section 4 discusses the results of some early evaluations of our
prototypes, while Section 5 looks at some related work. The paper concludes
with a consideration of future directions for our work.

A Distributed Usage Monitoring System 123

2. THE GRUMPS APPROACH

In the Grumps Project we have begun to develop a model of usage-based
studies. At a high level of abstraction, such studies can be represented by the
diagram in Fig. 1.

Figure 1. Key Aspects of Usage-Based Studies.

The three key constituent aspects of a usage-based study are:
Investigatory context. This includes the investigation goals or research
questions, the investigators, the resources (subjects, machines, time,
money) and constraints that motivate and drive the rest of the investiga-
tion effort.
Data requirement. This describes the sources of raw usage data and
other related data, the process of preparing it for study and the mecha-
nisms for communicating it and storing it as necessary.
Analytic activity. The activity that relates data to investigation goals, by
finding relevant patterns, correlations, etc.
The relationship of these three aspects – the ways in which they influence

or determine aspects of one another – depends on the type of investigation.
Thus, in the case of formal, hypothesis-driven experiments, the investigation
goals determine a fixed formulation of the analytic activity (the experimental
plan) and the data requirement is derived from that. In the case of most data
mining, the analysis and investigatory contexts cause changes in one an-

124 Gray, McLeod, Draper, Crease, and Thomas

other, but typically there is no change to the data collection. However, in the
case of REDDIs, it is possible to start with any aspect of the investigation
and derive the other aspects as needed. Furthermore, in the course of the in-
vestigation, the aspects may change; for example, a usage monitoring oppor-
tunity may arise that stimulates research questions, leading to analysis that
generates new questions which in turn require new data to be gathered, per-
haps of a new form.

The Grumps software framework, designed to support both experiments
and REDDIs, is a dynamically configurable system that implements the data
requirement aspect. The key features of our system are:

Generic. The system is not restricted to any predetermined set of data
sources. It can handle any source of usage data, direct (e.g., keystroke
logs) and indirect (camera output), even including the results of think-
aloud protocol collection, as long as that data can be described in our
simple usage data model (Section 3.1.1) .
Fundamentally distributed. Subject to security access, the sources of
data can located anywhere, and the data processors and consumers can
be anywhere (Section 3.1.2).
Component-based. A Grumps Usage Data System consists of a set of
dynamically deployable components including data sources (event gen-
erators), data sinks (file archives or databases), routing components and
data processors (filters, abstractors, aggregators). The components can be
modified through run-time change of parameters as well as by dynamic
replacement (Section 3.1.2).
Heterarchic. It is possible to use (some) Grumps tools usefully in a
stand-alone mode, but also integrated piece-wise fashion, starting from
any point in the usage data handling process.

3. THE GRUMPS SOFTWARE FRAMEWORK

3.1 Support for Data Capture and Transport

3.1.1 Modelling Usage Data

Grumps usage data can be created by a number of different devices or
processes. Raw usage data, which is the output from data capture devices,
therefore, has a simple and flexible structure, to accommodate the variety of
data being collected and the need to modify it easily into other forms. Raw
usage data is organized into distinct sequences of usage events, called ses-
sions. A session is a collection of usage events organized around an applica-
tion-significant grouping of usage events. For example, it might be all the

A Distributed Usage Monitoring System 125

events collected from a user-computer interaction from login to logout of a
single user. A session is currently defined as follows:

Raw usage session = <session_id, start_time, end_time,
user_id, machine_id, exit_reason>

Events belonging to a usage session are currently defined as follows:
Usage action event = <action_id, session_id, time-

stamp, type, body>

Session and action ids are unique identifiers for the data items. Time-
stamps provide a way of ordering the events. The body holds variant fields
determined by the nature of the collection device and its configuration.
These current definitions and indeed our modelling of usage data in general
is still the subject of ongoing work (Sections 4 and 6).

Examples of a typical instance of a session and a usage action event
within that session are given in Table 1. This data comes from a relational
database storing the results of one of our ongoing field trials. This study is
further discussed in Section 4.1.

Table 1. Session and event within a session, as logged in a repository.

SessionID StartTime EndTime UserID MachineID UARExitReason

5253 104514285906
3

104514473017
3

87858268 bo715-11-02 User Logged Out

ActionID Session Time Body Type
143002268 <p>adagide.exe</p>

<wl>58</wl>
<wt>62</wt> <wr>806</wr>

<wb>568</wb> <ws>nor</ws>

9

Note that the event record stores an XML representation of keystroke
data generated by an operating system monitor process. Event type is some-
times inferrable from the body, but not in the general case (e.g., the body
might be a pixmap generated by a camera). In addition, explicitly including
the event type helps tools that behave differently based on the event type.

3.1.2 Data Transport and Processing

Usage data is handled by a network of data processing components. See
Fig. 2. These components are known as GRUMPS Units (or GUs) and con-
nected in a graph, called a GRUMPSNet [2]. Each GU receives data in the
form of events, optionally transforms these events (for example compresses
them or combines events from multiple sources), and passes them to other
GUs in the network. This decouples each step in the data pipeline, facilitat-
ing dynamic reconfiguration of the GrumpsNet in response to changes in in-
vestigatory context, data requirements or analytic activity.

126 Gray, McLeod, Draper, Crease, and Thomas

Figure 2. An example GrumpsNet.

Fig. 2 illustrates a hypothetical GrumpsNet that can be used to support
many usability studies combining data captured about user activity (via the
UAR component, Section 3.1.2) and images of the user captured via a web-
cam. The data from these two sources is then combined by connecting them
to the aggregator GU. The aggregator generates “super sessions” that associ-
ates sessions from the two separate streams of captured data, thus creating an
association between the streams. The aggregator’s output is sent to a parallel
stream viewer GU that displays the output to an investigator in real-time.
Note that the output of the aggregator is also sent to one or more data reposi-
tories. For clarity, this is not shown, but it could be done through an XML-
to-SQL transformation GU.

Dynamic configuration and reconfiguration of a GRUMPSNet is done
through Control Events. A Control Event contains code which can be sent to
a GU and executed remotely. Values can also be returned via reply events.
In this way, components of the network can be connected to or disconnected
from each other, or even replaced altogether by components with different
functionality. A GU can also be interrogated via standard control events to
bind, unbind, edit and discover properties at runtime. These properties con-
tain information about the current state of the GU – by registering remote
listeners on the properties, other parts of the network can keep track of the
state of a GU and even veto changes. For example, our data collection net-
work in Fig. 2 could be reconfigured to add a GU between the two sources
and the aggregator that controls the sources, switching off video collection
during a period with no user activity.

A Distributed Usage Monitoring System 127

3.1.3 Data Production

We have produced several different data capture devices that can be con-
nected to a GrumpsNet. These include:

User Action Recorder. This is a tool, written in C++, that registers with
operating system hooks in Microsoft Windows and captures keystrokes,
window focus and mouse events. To provide user privacy, it can be con-
figured to provide various levels of obfuscation of user data (e.g., replac-
ing specific characters by a single generic alphanumeric character).
Specially instrumented Java applications. We have developed a sys-
tem, iGuess [8], that allows the customizable instrumentation of an ex-
ecutable Java application (no source code is needed), inserting a Grumps
Unit into the instrumented application.
Independent applications. We have constructed a Grumps Unit tailored
for the capture of images from a webcam.
In general data sources constructed via any of these three methods can

provide three levels of increasing power, depending on their conformance
with the Grumps data and control models. At the lowest level, any compo-
nent that can produce data (e.g., write data to a file) is a potential Grumps
data source. Clearly, in this case the data format may limit the utility of the
usage data, since it does not conform to the Grumps schema and thus may be
inappropriate for some uses. Sources that produce data conforming to the
Grumps schema, on the other hand, can be processed using our set of data
cleaning, preparation and analysis tools (Section 3.2). Finally, data sources
that offer a control interface can be dynamically configured at run-time as
well, providing the maximum level of Grumps functionality.

3.2 Support for Data Preparation and Analysis

Once collected data must be cleaned, transformed to make it amenable
for analysis and subjected to additional processing to extract information
(e.g., statistical analysis). In the Grumps framework these operations can be
performed:

By Grumps components in the network, e.g., prior to storage in a reposi-
tory, filtering, abstraction, aggregation, etc.
As relational operations on database tables.
Via processing using other general and special purpose utilities.

As part of field trials (Section 4.1) we have constructed a number of use-
ful general purpose data preparation routines, packaged as T-SQL stored
procedures. We have also built a viewer for parallel data streams, useful for
visualising heterogeneous sequential data.

128 Gray, McLeod, Draper, Crease, and Thomas

4. EARLY USES OF THE FRAMEWORK

4.1 Evaluation and Field Trials

We have tested components of the Grumps framework in several settings,
including:
1. Two data capture episodes involving a first year undergraduate university

programming laboratory; a third has now been running for 6 weeks.
2. A study of the effects of interruption on user behaviour.
3. A study of the “Think Aloud Screen” at Simula Labs in Norway [6].

These studies have been quite different, enabling us to examine issues
arising from the range of usage-based studies, including:

Data capture constraints. The programming study had strong security
and engineering constraints. The data had to be anonymised at source
and had to run with minimal disruption to network and users.
Scale. The two programming lab studies were carried out over several
months, the second collecting over four million actions from 141 stu-
dents. The study at Simula involved about 50 users over several sessions.
The interruption study, on the other hand, is collecting data in 1 week
sets from a total of four users.
Collaboration. The programming lab study involved several concurrent
investigations involving different researchers located in the UK and Aus-
tralia. The Norwegian study and the Interruption study have single inves-
tigations.
Investigation Type. The studies have ranged from highly exploratory
studies to well-defined experiments. Thomas et al. [9] presents a brief
account of the use of the Grumps system in of the programming labora-
tory studies, identifying issues of data capture, transport, cleaning, prepa-
ration and analysis.

4.2 Lessons Learned

While we anticipated that the support of REDDIs would demand a high
degree of flexibility across every aspect of data collection, storage and proc-
essing, we have found flexibility to be important for other reasons, too.

GrumpsNet, due to its component based nature, affords many different
connection methods. For example, “GrumpsNet Lite”, a version of Grumps-
Net uses local caching of events in files in transport rather than direct
streaming of events across the network. This proved to be useful in the pro-
gramming lab studies, reducing network traffic during peak times. Its sim-

A Distributed Usage Monitoring System 129

plicity also appealed to the network administrative staff who were under-
standably concerned to run a system with a high degree of robustness and re-
liability and a minimum impact on other processes.

In order to support different data sources, low-cost exploration of differ-
ent questions and the sharing of data between investigations, we have found
it important to keep the original raw data in a form that has minimal fixed at-
tributes. XML has proved useful as a representation for the variant part of
the data, since it is easy to transform into other formats via XSL, e.g. SQL
for storage, SMIL for visualisation, HTML for printing.

We have found that there are important and costly demands and con-
straints on individual studies that have emphasized the importance of con-
figurability. For example, some studies require heavyweight anonymisation
and data access controls that prevent subjects from viewing usage data tem-
porarily stored on their machines. For other investigations, such features are
only an impediment to efficient research activity and are not needed. A
framework like Grumps should make it possible to customise such facilities
with minimum impact on the rest of the usage monitoring system.

Raw usage is fundamentally temporal and thus sequential. This has im-
plications for the way the data is modelled and handled. In many cases it is
important to have direct sequence information, independent of timestamp,
both for efficiency in performing sequencing operations (e.g., over millions
of events) and for checking that no events have been lost (e.g., dropped
video frames due to an unreliable network connection). Synchronisation of
events from independent data sources remains an area for further work.

Complicated investigations can involve a large number of concurrent
data sources, a complicated transport network, considerable data cleaning
and data preparation for analysis. This results in many intermediate files and
database tables, not to mention a range of subsequent complex analyses,
again requiring intermediate results to be stored. All of this complexity can
place severe management demands on investigators. Particularly in the pro-
gramming lab studies we have become aware of the importance of higher-
level investigation management support and the need for reusable represen-
tations and packaged processing routines. Handling intermediate processing
has become a key bottleneck in the process and is now a major focus of our
attention for future development.

5. RELATED WORK

There are many existing systems that support usage-based studies, in-
cluding commercial products and research systems. These range from built-
in logging facilities, like those in the BlueJ programming environment [7]

130 Gray, McLeod, Draper, Crease, and Thomas

through web testing systems such as WebQuilt [5] to full-featured human
behaviour experimentation environments like those from Noldus (www.
noldus.com). Such systems, where loggable events are determined by what
is exposed by the system or related medium (e.g., http requests), can be effi-
cient, but its value depends on the match to monitoring needs. Thus, a sys-
tem that records interactions only at the command level can miss important
information (e.g., whether the command is invoked via menu, accelerator or
toolbar), while logging at too low a level of abstraction can generate too
much data. The Grumps system makes it possible to tailor the level of ab-
straction to the requirements of the problem. This was used successfully in
our programming lab studies when, for the second study, specialised com-
mand logging was added to the programming environment [9].

The KALDI system [1] provides integration of data capture, transport
and analysis. However, it has opted to capture usage data via one approach,
viz., specialising the Java windowing classes. This restricts the genericity of
the system compared to Grumps.

Hilbert and Redmiles’ internet-based usage data capture system [4] pro-
vides powerful distributed transport of events and is designed to deal with
the problems of scale arising from large-scale usage studies. However, their
code instrumentation approach requires modification of source code.

The Grumps data transport system is similar to DataGrid [3] which uses a
dataflow graph to represent the processing of data for experimental pur-
poses. In DataGrid, processing is specified in a language that can be used to
construct and configure the data processing. We have not yet done this in
Grumps, although it should be feasible given the dynamic configurability of
the GrumpsNet infrastructure (Section 6 below).

6. CONCLUSIONS AND FUTURE WORK

The Grumps Usage Monitoring System offers a generic approach to the
support of both experiment and exploratory studies of human-computer in-
teraction. It is scalable, dynamically configurable and able to support the
evolution of a study as findings generate new research and evaluation ques-
tions.

Although we have built and developed a working prototype and learned
from its deployment in real trials of different kinds, there remains much to
be done to achieve our aims. A key requirement, that we are tackling at the
moment, is description languages for all three aspects of an investigation. In
particular we need to be able to describe all potential data that can flow
through a GrumpsNet plus the capture, transport and processing of the data
performed by the network. Specifications in this language can be generated

A Distributed Usage Monitoring System 131

by tools like iGuess and used to create a GrumpsNet and to control its opera-
tion at runtime; the specifications can also be used to describe tracked
changes in the system. These descriptions might also be reused between
studies, forming investigatory patterns.

The current set of Grumps data preparation tools have not been fully in-
tegrated into GrumpsNet. In particular, we have not addressed the question
of tool support for constructing sequences of these operations using higher
level descriptions so that we can replace one implementation (e.g., a data-
base macro) with another (e.g., a special purpose grumps component). This
will be a key requirement for the GrumpsNet modelling language. Also,
iGuess, our code instrumentation system, is limited to Java at present. How-
ever, the same approach is applicable to any bytecode-based language, e.g.,
C#. We intend to extend iGuess to handle this and possibly other languages,
as opportunities allow.

ACKNOWLEDGEMENTS

This work was funded by EPSRC Grant GR/N38114. We wish to thank
Malcolm Atkinson, Margaret Brown, Quintin Cutts, Huw Evans, Gregor
Kennedy, Rebecca Mancy and Karen Renaud, who have all contributed to
the work described in this paper.

REFERENCES

[1] Al-Qaimari, G. and McRostie, D., KALDI: A Computer-Aided Usability Engineering
Tool for Supporting Testing and Analysis of User Performance, in Blandford, A., Van-
derdonckt, J., Gray, Ph. (Eds.), Interactions sans frontières – Interactions without fron-
tiers, Proceedings of the Joint AFIHM-BCS Conf. on Human-Computer Interaction
IHM-HCI’2001 (Lille, 10-14 September 2001), Vol. I, Springer-Verlag, London, 2001,
pp. 153-169.

[2] Evans, H., Atkinson, M., Brown, M., Cargill, J., Crease, M., Draper, S., Gray, P.D., and
Thomas, R.C., The Pervasiveness of Evolution in GRUMPS Software, Software: Practice
and Experience, Vol. 33, No. 2, February 2003, pp. 99-120.

[3] Foster, I., Vöckler, J., Wilde, M. and Zhao, Y., The Virtual Data Grid: A New Model and
Architecture for Data-Intensive Collaboration, in Proceedings of 1st Biennial Conference
on Innovative Data Systems Research CIDR’2003 (Asilomar, 5-8 January 2003), acces-
sible at http://citeseer.nj.nec.com/554758.html

[4] Hilbert, D.M. and Redmiles D.F., Extracting Usability Information from User Interface
Events, ACM Computing Surveys, Vol. 32, No. 4, December 2000, pp. 384-421.

[5] Hong, J.I., Heer, J., Waterson, S., and Landay, J.A., WebQuilt: A Proxy-based Approach
to Remote Web Usability Testing, ACM Transactions on Office Information Systems,
Vol. 19, No. 3, July 2001, pp. 263-285, accessible at http://citeseer.nj.nec.com/
454004.html.

132 Gray, McLeod, Draper, Crease, and Thomas

[6] Karahasanovic, A., Anda, B., Arisholm, E., Hove, S.E., Jørgensen, M., and Sjøberg, D.,
A Think-Aloud Support Tool for Collecting Feedback in Large-Scale Software Engineer-
ing Experiments, Simula Research Laboratory Technical Report 2003-7, 2003, accessi-
ble at http://www.simula.no/publication_one.php?publication_id=603.

[7] Kölling, M., Quig, B., Patterson, A., and Rosenberg, J., The BlueJ System and its Peda-
gogy, The Journal of Computer Science Education, Special Issue on Learning and
Teaching Object Technology, Vol. 13, No. 4, December 2003, pp. 249-268.

[8] Mcleod, I.A., IGUESS: Instrumentation of Bytecode in the Production of Grumps Event
Sources, B.Sc. thesis, University of Glasgow, Glasgow, 2003.

[9] Thomas, R.C., Kennedy, G.E., Mancy, R., Crease, M., Draper, S., Evans, H., and Gray,
P.D., Generic Usage Monitoring of Programming Students, in Proc. of Australian Soci-
ety for Computers in Learning in Tertiary Education ASCILITE’2003 (Adelaide, 7-10
December 2003), The University of Adelaide, Adelaide, 2003.

Chapter 11

DIALOGUE-BASED DESIGN OF WEB USABILITY
QUESTIONNAIRES USING ONTOLOGIES

Elena García Barriocanal, Miguel A. Sicilia Urbán, León González, and
José R. Hilera
Computer Science Department, Polytechnic School, University of Alcalá,
Ctra. Barcelona, km. 33.6; 28871, Alcalá de Henares, Madrid (Spain)
{elena.garciab, msicilia, leon.gonzalez, jose.hilera}@uah.es
Tel:+34 91 885 66 63 - Fax: +91 885 66 46

Abstract Questionnaires are nowadays widely used usability evaluation instruments,
and several generic usability questionnaires are available. But these generic ar-
tefacts are not always appropriate to evaluate a given setting, and constructing
a questionnaire from scratch is a complex task requiring both expertise and re-
sources, so that discount-usability approaches to questionnaire-based evalua-
tion can make a good option in many cases. In this work, a novel knowledge-
based approach to design Web usability questionnaires is described. The ques-
tionnaire model comprises different ontologies including concepts regarding
questions and questionnaires, the different measures that can be obtained and
the tasks that have to be carried out by users in order to evaluate a specific
kind of Web application. As a proof of concept for the model, a prototype
questionnaire design application is also described. The application demon-
strates how facts can be gathered through a guided dialogue with the user, and
how the system can use this information to tailor the resulting questionnaire to
the concrete situation.

Keywords: Computer-aided questionnaire design, Ontologies, Usability evaluation, Us-
ability questionnaire.

1. INTRODUCTION

Usability can be defined as the capability of the software product to be
understood, learned, used and attractive to the user, when used under speci-
fied conditions [15]. Developing usable Web applications entails significant
costs, since usability must be considered in all the phases of the development

133

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 133–146.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

134 Barriocanal, Urbán, González, and Hilera

life cycle [18], including evaluations at different process stages. Evaluations
can be carried out using different methods, like testing, inspection or inquiry,
which in turn comprise different techniques, like user testing [8], heuristic
methods [21] and questionnaires [23], respectively. In this work, we focus
on the use of questionnaires as a usability evaluation technique. Question-
naires can be used not only to collect factual information about users, but to
obtain their likes, dislikes, needs, and understandings of the system by ask-
ing them about some concrete interface aspects. Questionnaires are widely
used instruments in usability evaluation for many reasons, e.g. they are reus-
able, they can be used remotely, and they are a convenient vehicle for mas-
sive administration and so on. But the correct construction and configuration
of a questionnaire may increase evaluation costs in terms of time and re-
sources, because previous experience is needed in order to develop an ap-
propriate questionnaire with a minimum figure of validity and reliability. If
the questionnaire is not well-designed, biased results will be obtained, be-
cause it would not collect data about what testers really want to measure.
Nonetheless, as pointed out by Brooke [4], the use of “quick and dirty” ques-
tionnaires – i.e. with no demonstrated validity and reliability –, is justified to
allow low-cost assessments of usability in the evaluation of industrial sys-
tems. Several existing predefined questionnaires with good scores in validity
and reliability measures can be used for that purpose, e.g., QUIS [14] or
WAMMI [16], but they are not always directly applicable. Depending on the
application domain, these questionnaires may not cover all the desirable as-
pects that must be evaluated, as occurs in educational Web applications,
where a very specific set of parameters must be taken into account to obtain
useful measures [6]. This fact points out to the necessity of constructing
some kind of questionnaire-tailoring tools that could be used as “discount-
usability” artefacts [22]. As a matter of fact, some tools that allow the con-
struction of generic questionnaires are available, but very few ones are con-
cerned with the specifics of usability evaluation. An exception is Perlman’s
user interface questionnaire page (http://www.acm.org/perlman/question.
html), a Web-based tool that reads questionnaires and options from files and
form data, administers a questionnaire, and e-mails data to the administrator.
However, this system has limited applicability, since it’s based on a generic,
predefined questionnaire, and it does not provide guidance for the evaluators
in the definition of the tasks that participants would have to perform to carry
out the evaluation.

In this paper, we approach a computer-aided design process of usability
questionnaires using a logic-based knowledge representation, in an attempt
to overcome the just described limitations. Concretely, we use ontologies to
represent both the concepts and the concrete information surrounding the de-
sign of a usability questionnaire. The integration and use of ontologies pro-

Dialogue-Based Design of Web Usability Questionnaires
Using Ontologies

135

vides design flexibility, enables the sharing of conceptual and factual struc-
tures, and constitutes a sound basis for reasoning [19]. The design process is
intended for novice users or projects lacking resources, so that it can be con-
sidered a “discount usability” approach [22], as previously mentioned. On-
tologies have already been applied in Web application development, as in
[1], where learning systems are designed taking into account a multi-layer
authoring task conceptualization, or IIPS [17], an intelligent system which is
aimed at building and maintaining data-intensive Web sites using both inter-
face and domain ontologies. In the usability area some ontological modelling
representation techniques exist, like OSM [2] which provides a structured
but informal representation of the ontology of a system, forming a basis for
usability assessment. But the issue of questionnaire design have not been ad-
dressed yet in any of these efforts.

The rest of the paper is structured as follows. In the second section the
core components of the model and the relationships between them are de-
scribed, motivated in the context of usability evaluation. In the third section,
a case study illustrating some of the benefits of this ontological approach is
provided. Finally, conclusions and future research directions are provided in
the fourth section.

2. A QUESTIONNAIRE MODEL FOR USABILITY
EVALUATION

As the complete questionnaire ontology comprises a large amount of
concepts, – ranging from usability evaluation generic knowledge to specific
evaluable elements and tasks –, here we limit ourselves to describe the es-
sential elements that are directly connected to the objective of the paper.
Concretely, we will first sketch the overall structure of the model and then a
more detailed account of some key concepts and relationships will be pro-
vided.

2.1 Overall Structure of the Ontology

As it has been described in the previous section, the design of a Web us-
ability questionnaire can be made easier if a model that support the whole
process is available. This model should represent all the essential concepts
(also called terms or entities) that play a significant role in the evaluation,
and it should also be rich and precise enough to enable certain subsequent
automated ‘intelligent’ techniques aimed at aiding in the design of a ques-
tionnaire suitable for the application at hand. The elements that must be cov-

136 Barriocanal, Urbán, González, and Hilera

ered include the following: (a) questionnaire structure, including sections,
(b) usability attributes considered, (c) functionalities provided by the Web
application, and (d) the tasks that would be carried out by participants. In
Fig. 1, a UML [24] diagram showing the main model entities is provided.
The model described in this paper is just a view of a more comprehensive
one which comprises other terms in the domain of questionnaires in usability
evaluation. Some of these concepts are described in [12] (e.g., usability
techniques and methods, participants’ profile, etc.), and they enable the rep-
resentation of all the surrounding knowledge needed to develop applications
that facilitates an “enhanced” usability evaluation using attitude question-
naires [13].

Figure 1. Core classes of the usability questionnaire model.

As we are aimed to design close-ended attitude questionnaires, we repre-
sent here exclusively the knowledge about the questions that enable the col-
lection of user opinions according to his/her personal experience. Since it is
possible that participants had never used the application before, a collection
of typical tasks is provided so that they can create for themselves an opinion
about the system. Each task is intended to evaluate a specific functionality of
the application, and in addition, we have considered that usually each kind of
Web application contains a minimum well-defined set of typical functional-
ities. Another important part of model describes the attributes that can be
evaluated using the questionnaire. According to [20], a usability attribute can
be defined as a system feature that contributes to make the system more
easy-to-use. Attitude questionnaires measure user satisfaction about the ap-

Dialogue-Based Design of Web Usability Questionnaires
Using Ontologies

137

plication, and they can also indirectly measure the perception of the users
about other usability attributes. In consequence, we have called “measurable
factors” to the concrete system features that are used to estimate the intended
usability attributes. These factors may have a different impact on different
usability attributes, but exclusively satisfaction [15] can be directly obtained
from the overall questionnaire result. A question may contribute to more
than one measurable factor, and a given factor may be measured through
more than one question, possibly having different weights.

2.2 Key Ontology Concepts

The elements of the model are structured in four interrelated ontologies: a
“Web applications” ontology, a “functionalities and tasks” ontology, a “us-
ability attributes” ontology and a “questionnaires” ontology, showed as
UML namespaces in Fig. 1. The principles of the METHONTOLOGY approach
[9] have been applied for ontology engineering, but following a literature-
based process as described in [25]. In the rest of this section, a number of
concepts and relations embodied in the ontology are described using descrip-
tion logics syntax [3]. For the sake of brevity, only elements relevant to un-
derstand the subsequent case study are provided.

2.2.1 Web Application Ontology

The Web application ontology describes the most common kinds of ap-
plications available through the Web, along with their structure. Web appli-
cations (WA) can be classified according to their business or informationAA
handling model. Concretely, we have adopted the taxonomy described in [5].
According to this, it can be stated the following: WA hasType.WAType, so
that e – Commerce WAType, among others. Assertions WA(app1); e –
Commerce(e – shop);hasType(app1,e – shop) can be used to denote that the
Web application app1 is an e-shop. Depending on its type, a Web application
usually comprises different characteristic parts (WA includes.WAPart),
and these parts are also typed, e.g., an e-shop usually contains a registration
page, a search page, a shopping cart, etc, i.e: WAPart URL.(String)

hasPartType.WAPartType.

2.2.2 Functionality and Task Ontology

This ontology models both the typical functionalities (TypFunct) of the
Web application (and/or its application parts) and the tasks that will be pro-
vided to the user as part of the evaluation. Some functionalities may be mod-

138 Barriocanal, Urbán, González, and Hilera

elled as prerequisites for others transitively. Tasks may require input/output
parameters, (TInParam) and (TOutParam), respectively:

WAPartT ype usuallyHas.TypFunct
TypFunct hasPrerreq.TypFunct isT ypEvaluatedBy.Task
Task requires.TInParam requires.TOutParam

2.2.3 Attribute Ontology

This ontology describes usability attributes and the different factors that
can be measured using a questionnaire. There is no agreed upon definition of
usability [27]. Our model allows some degree of flexibility through the use
of analogy and influence relations among attributes in the same or different
“attribute list”. Two attributes of different lists are analogous if they define
the same concept using different terminology. For example, learnability as
defined in Nielsen’s list [20] is essentially the same that “time to learn” as
defined in Shneiderman’s one [26]. In addition, some attributes may influ-
ence positively others. For example, Dix defines a categorization of usability
attributes at different abstraction levels [7], where flexibility is positively in-
fluenced by customisability, among others:

Att definedIn.AttList (((isAnalogous.Att inflPos.Att)
AttList contains.Att contains.Att
definedIn contains¯(symmetric relation)

Several attributes can be measured (directly o indirectly) using a ques-
tionnaire. For example, WAMMI measures five factors –measurable factors
in our model–, including learnability. This factor constitutes in turn an ele-
ment that must be taken into account to evaluate other usability attributes,
like efficiency. Some of the model terminology needed to reflect this knowl-
edge is the following:

Att isMeasuredBy.MeasurableFactor
MeasurableFactor measuresOpinionAbout. Attribute
measureOpinionAbout isMeasuredBy¯

2.2.4 Questionnaire Ontology

Here we deal with attitude questionnaires with close-ended questions
which may contain different sections. The model represents this fact using a
composite structural design pattern [10]. A questionnaire is made up of sev-
eral questionnaire parts. Each part is a question or a section, and sections
may contain other questionnaire parts:

Dialogue-Based Design of Web Usability Questionnaires
Using Ontologies

139

Questionnaire isMadeUpOf.QnnPart ¬Section
Question QnnPart; Section QnnPart
Section contains.QnnPart

Finally, each question is intended to contribute to one or more measur-
able factors possibly with different weights:

Weight weights.MeasurableFactor value.(real)
Question hasWeight.Weight

The rest of the terms of these four ontologies are integrated as sketched
Fig. 1 above.

3. AN ONTOLOGY-BASED APPROACH FOR
QUESTIONNAIRE DESIGN: A CASE STUDY

The model described above can be used to implement usability evalua-
tion computer aided tools. Here we describe a prototype tool that guides the
questionnaire design process through a dialogue with the user. The informa-
tion needed in the different steps of the design process does not require any
depth knowledge about usability evaluation, so that this approach can be
considered a useful tool for novice information architects and Web design-
ers. The tool has been developed as a Web wizard that leads the designer
through the questionnaire design. During wizard execution the specific fea-
tures of the concrete application that must be evaluated are asserted as in-
stances and relations in the ontology. The application is modelled according
to the characteristic defined in the predefined Web application types de-
scribed above.

The first step in the dialogue collects basic application data like name, a
brief description and URI, creating an instance of WA concept:A WA (app1);
URL(app1,”http://…”). In the second steps the designer specifies the appli-
cation type by navigating the Web application ontology (Fig. 2). Concretely,
the system enables navigation from the more general categories of Web ap-
plications to more specific ones –pressing Refine button– until no more sub-
classes or instances of selected terms are found (a process similar to that de-
scribed in [25]). For example, in left part of Fig. 2, subclasses of WAType are
shown, and in the right part of the same figure, the commerce application
category is expanded, in this case retrieving the following instances of the
ontology: CommerceSite(e – shop); CommerceSite(e – mall); Commerce-
Site(virtual – market Place); CommerceSite(e – auction). When the designer

140 Barriocanal, Urbán, González, and Hilera

finishes the selection of the application type, the corresponding type is as-
serted, for example: hasType(app1, e – shop).

Figure 2. Second step: Selection of the application type and refinement.

Dialogue-Based Design of Web Usability Questionnaires
Using Ontologies

141

Figure 3. Third step: Selection of the elements that must be evaluated.

142 Barriocanal, Urbán, González, and Hilera

This navigational search through the ontology provides two main advan-
tages: On the one hand, designers are able to use different abstraction levels
to classify their application – the more specific type, the more concise be-
come in the following steps. An on the other hand, designers are able to cata-
log the system using several terms at the same time, so that the approach
provides a large flexibility to be used within a wide scope of applications.

Once the application type is specified, the wizard shows the parts that the
selected kind of application usually includes to support its typical functional-
ities. Following the example, Fig. 3 shows the parts that an e-shop normally
includes: recommendation system, shopping cart and searching and registra-
tion facilities.

The tool retrieves these elements using semantic relationships, e.g.:

WAType usuallyIncludes. WAPartType
WAPartType(RecommendationSystem); WAPartType(RegPage)
WAPartType(SearchPage); WAPartType(CartPage)
usuallyIncludes(e – shop, RecommendationSystem)
usuallyIncludes(e – shop, CartPage)
usuallyIncludes(e – shop, RegPage)
usuallyIncludes(e – shop, SearchPage)

According to the terms selected by the designer in the interface, the cor-
responding assertions are created. Using the hasPartType relation, the spe-
cific parts of the application can be linked to typical application parts (de-
pending on the application type). For example, if the designer specifies that
app1 contains a registration page and a shopping cart page, we have:

WAPart(app1RegPage); WAPart(app1CartPage)
includes(app1, app1RegPage); includes(app1, app1CartP age)
hasPartT ype(app1RegPage,RegPage)
hasPartType(app1CartPage,CartPage)
URL(app1CartPage ”http : //…”); URL(app1RegPage, ”http : //…”)

On the basis of the previously selected elements, tasks are retrieved using
the relationships among the concepts of the functionality and task ontology.
In the next step of the construction process, designer is asked for specific pa-
rameters required by the tasks, in order to contextualize them. To do so func-
tionalities are obtained by traversing usuallyHasfunctionality from the se-
lected instances of WAPartType. As the wizard shows the typical functional-l
ities of the selected parts, the concrete functionalities that the application
implements have to be asserted:

WAPart hasFunct.Funct

Dialogue-Based Design of Web Usability Questionnaires
Using Ontologies

143

Funct isLike.TypFunct isEvaluatedBy.ConcTask
ConcTask needs.ConcTaskInParam needs.ConcTaskOutParam
ConcTaskInParam type.TaskInParam
ConcTaskOutP aram type.TaskOutParam

According to the selected functionalities the designer is asked for the pa-
rameters required to complete each task (e.g., element to add in the shopping
cart, element and search criteria, etc.). Using this information task instances
are created. The use of the functionality and task ontology also enables some
other features like the establishment of pre-required between tasks. For ex-
ample, the task use to evaluate a shopping cart part requires the sign in
and/or the registration task. Subsequently the designer is asked to select the
usability attributes. To do so, he is able to select a complete list or some of
its attributes using a refinement process similar to the one illustrated in Fig.
2. A default list of attributes can be selected if desired. Finally, questions are
retrieved in accordance with the selected attributes and functionalities, com-
ing up with a complete questionnaire as illustrated in Fig. 4.

Figure 4. Example of generated questionnaire.

144 Barriocanal, Urbán, González, and Hilera

Once the design is completed, an editable Web form is automatically cre-
ated that allows the administration of the questionnaire, and stores collected
data in a relational database form consistent with the ontological model [12].

4. CONCLUSION

A new approach to design usability attitude questionnaires has been de-
scribed, intended to be used as a “discount usability” tool. The approach is
based on a knowledge representation comprising four ontologies: Question-
naire ontology, attribute ontology, functionality and task ontology and Web
application ontology. The use of a well-defined ontological model allows for
different applications like the one presented in this paper: a dialogue-based
construction of questionnaires.

It can be especially useful to novice information architects and designers
since the tool is able to suggest both the functionalities and the task that
should be evaluated, depending on the type of the Web application. Ontol-
ogy-based approaches to questionnaires also enable a common, shared in-
formation model for questionnaire results, that could be later exploited by
machine learning techniques as described in [11].

REFERENCES

[1] Aroyo, L. and Dicheva, D., Authoring Framework for Concept-Based Web Information
Systems, in Proceedings of the Workshop on Concepts and Ontologies in Web-based
Educational System, during International Conference on Computers in Education
ICCE’2002 (Auckland, 3-6 December 2002), CS-Report 02-15, Technical University of
Eindhoven, Eindhoven, 2002, pp. 41–48.

[2] Blandford, A. and Green, T.R.G., OSM: An Ontology-Based Approach to Usability
Evaluation, in Proc. of Workshop on Representation in Interactive Software Develop-
ment, Queen Mary & Westfield College, July 1997.

[3] Borgida, A., On the Relative Expressiveness of Description Logics and Predicate Logics,
Artificial Intelligence, Vol. 82, No. 1-2, 1996, pp. 353-367.

[4] Brooke, J., SUS: A ’Quick and Dirty’ Usability Scale, in P.W. Jordan, I.L. McClelland,
B. Thomas, and B.A. Weerdmeester (eds.), Usability Evaluation in Industry, Taylor and
Francis, London, 1996.

[5] Ceri, S., Fraternali, P., and Matera, M., Conceptual Modelling of Data-Intensive Web
Applications, IEEE Internet Computing, Vol. 6, No. 4, 2002, pp. 20-30.

[6] Díaz, P., Sicilia M.A. and Aedo, I., Evaluation of Hypermedia Educational Systems: Cri-
teria ad Imperfect Measures, Proc. of International Conference on Computers in Educa-
tion ICCE’2002 (Auckland, 3-6 December 2002), IEEE Computer Society, Los Alami-
tos, 2002, pp. 621-626.

[7] Dix, A., Abowd, G., Beale, R., and Finlay, J., Human-Computer Interaction, Prentice
Hall, New York, 1998.

Dialogue-Based Design of Web Usability Questionnaires
Using Ontologies

145

[8] Dumas, J.S. and Redish, J.C., A Practical Guide to Usability Testing, Intellec, Bristol,
1999.

[9] Fernández, M., Gómez-Pérez, A., Pazos, J., and Pazos, A., Building a Chemical Ontol-
ogy Using METHONTOLOGY and the Ontology Design Environment, IEEE Intelligent
Systems, Vol. 14, No. 1, 1999, pp. 37-46.

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Structural patterns, in Design Pat-
terns, Addison Wesley, Boston, 1995, pp. 163-175.

[11] García, E., Sicilia, M.A., Hilera, J.R., and Gutiérrez, J.A., Extracting Knowledge from
Usability Evaluation Databases, in Proceedings of the 8th IFIP TC. 13 International
Conf. on Human Computer Interaction INTERACT’01 (Tokyo, 9-13 July 2001), IOS
Press, Amsterdam, 2001, pp. 713-715.

[12] García, E., Sicilia, M.A., Hilera, J.R., and Gutiérrez, J.A., Computer-Aided Usability
Evaluation, A questionnaire case study, Advances in Human Computer Interaction, Ty-
porama, 2001, pp. 85–91.

[13] García, E., Sicilia, M.A., González, L., and Hilera, J.R., Machine Learning Techniques
in Usability-Evaluation Questionnaire Systems, in Proceedings of 2nd International Con-d

ference Learning ICDL’02 (Cambridge, 12-15 June 2002), IEEE Computer Society
Press, Los Alamitos, 2002.

[14] Harper, B., Slaughter, L., and Norman, K., Questionnaire Administration via the WWW:
A Validation and Reliability Study for a User Satisfaction Questionnaire, in Proc. of the
WebNet World Conference (Toronto, 31-5 October 1997), accessible at http://www.lap.
umd.edu/webnet/paper.html

[15] ISO/IEC/JTC 1/SC 7. ISO/IEC FDIS 9126-1, Software Engineering - Product quality -
Part 1: Quality model, Technical Committee of International Organization for Standardi-
zation, 2000.

[16] Kirakowski, J., Claridge, N., and Whitehead, R., Human Centered Measures of Success
in Web Site Design, in Proc. of the 4th Conference on Human Factors and the Web
HFWeb’1998 (New Jersey, 5 June 1998), 1998.

[17] Lei, Y., Motta, E., and Domingue, J., An Ontology-Driven Approach to Web Site Gen-
eration and Maintenance, in Proc. of 13th International Conference on Knowledge Engi-
neering and Knowledge Management EKAW’02 (Sigüenza, 1-4 October 2002), 2002,
pp. 219–234.

[18] Mayhew, D., The Usability Engineering Lifecycle, Morgan Kaufmann, San Francisco,
1999.

[19] Menzies, T., Cost Benefits of Ontologies, ACM SIGART Intelligence, 1999, accessible
at http://menzies.us/pdf/99sigart.pdf

[20] Nielsen, J., Usability Engineering, Morgan Kaufmann, San Francisco, 1994.
[21] Nielsen, J. and Mack, R., Usability Inspection Methods, John Wiley and Sons, New

York, 1994.
[22] Nielsen, J., Guerrila HCI: Using Discount Usability Engineering to Penetrate the In-

timidation Barrier, in R.G. Bias and D.J. Mayhew (eds.), Cost-Justifying Usability, Aca-
demic Press Professional, Boston, 1994, pp 245–272.

[23] Oppenheim, A.N., Questionnaire Design, Interviewing and Attitude Measurement, Pinter
Pub Ltd, 1992.

[24] Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modelling Language Reference
Manual, Addison Wesley, Boston, 1998.

[25] Sicilia, M., García, E., Díaz, P., and Aedo, I., A Literature-Based Approach to Annota-
tion and Browsing of Web Resources, Information Research, Vol. 8, No. 2, 2003, acces-
sible at http://informationr.net/ir/8-2/paper149.html

146 Barriocanal, Urbán, González, and Hilera

[26] Shneiderman, B., Designing the User Interface, Addison-Wesley, New York, 1998.
[27] van Welie, M., van der Veer, G., and Eliëns, A., Breaking down usability, in A.M. Sasse,

Ch. Johnson (eds.). Proceedings of 7th IFIP TC.13 International Conference on Human-
Computer Interaction INTERACT’99 (Edinburgh, 30 August-3 September 1999), IOS
Press, Amsterdam, 1999, pp. 613–620.

Chapter 12

CREATING CONTEXTUALISED USABILITY
GUIDES FOR WEB SITES DESIGN AND
EVALUATION

Céline Mariage and Jean Vanderdonckt
Institut d’Administration et de Gestion, Université catholique de Louvain
Belgian Lab. of Computer-Human Interaction (BCHI)
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
E-mail:{mariage,vanderdonckt}@isys.ucl.ac.be
URL: http://www.isys.ucl.ac.be/bchi/members/{cma, jva}
Tel.: +32-10-47 {8391, 8525} – Fax: +32-10-478324

Keywords: User-centred design and evaluation, Tools for working with guidelines, Web
usability guides.

1. INTRODUCTION AND MOTIVATIONS

Usability knowledge exists in many forms today, both and explicitly
within people, guides, and tools: guidelines, patterns, design rules, conven-
tions, and standards. Although this knowledge is supposed to be used con-
tinuously throughout the development life cycle, there is often a gap between
the constitution of this knowledge and its true usage during design and
evaluation. This gap is also often reflected in the existence of separate, inde-
pendent processes and tools intended to support design and evaluation at the

147

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 147–158.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract This work addresses the problem of creating usability guides for web sites de-
sign and evaluation. We present a web-distributed tool, called MetroWeb, to
help web designers create and/or access to contextualised usability knowledge
during the whole design process, in order to develop user-centred applications.
The developer creates her own usability knowledge bases, which can be com-
posed of other usability bases diffused by the tool, and uses this knowledge
when designing and/or evaluating her web site. The usability knowledge forms
a semantic network, in which various searching paths linked to user-centred
design and evaluation are represented.

148 Mariage and Vanderdonckt

same time. For instance, software exist that capitalise usability knowledge to
be used by developers, but once evaluators use the knowledge capitalised by
one of these tools in order to assess the usability of the developed user inter-
face (UI), the tool stops and another tool starts, thus preventing members of
the development team to link usability problems with related knowledge and
to accumulate this knowledge as the organisation experience is growing. In
addition, each tool typically remains focused on one aspect at a time: an on-
line style guide only provides guidelines, but no testing of them, some UI
evaluators can perform testing, but with little or no access to the usability
knowledge.

There is almost no task-based tool to support the constitution of a style
guide among stakeholders so as to share it with developers afterwards during
the development life cycle. Moreover, the process of progressively introduc-
ing guidelines in a standard remains mostly manual, without any tool sup-
port.

To address the above shortcomings, a generic tool is presented that per-
mits to create a contextualised usability guide, which represents a set of
guidelines linked to significant usability knowledge, like an interface object
on which the guideline can be applied, or an evaluation method that is able
to assess the guideline. The usability knowledge can be expanded at any
time, disseminated at any time and explicitly used during design and evalua-
tion in a continuous way, shared by everyone implied in the web site devel-
opment.

Although the tool presented can manage usability knowledge about any
potential type of interface and a large spectrum of evaluation methods, we
focus it on UIs for the web with heuristic or expert-based evaluation [1]. The
tool is web-distributed to manage usability knowledge in a flexible and
autonomous manner that can be run on multiple computing platforms.

Our main objectives are (1) to provide a tool responding to design ques-
tions with guidelines and resources exploitation, (2) to permit to automate
searching paths related to user-centred design and evaluation process, (3) to
support the usability guide creation task.

The paper is organised as follows: Section 2 reports on the most signifi-
cant pieces of work related to the main goal. Section 3 presents the semantic
network defining the fundamental usability concepts required to be manipu-
lated in a usability knowledge base, in regard to searching paths linked to
usability evaluation. Section 4 explains how to create a usability style guide
with the tool. Section 5 presents how to use the guide in web site develop-
ment. Section 6 reports on the design and development of the tool. Section 7
summarises the main points of the paper and presents some future work.

Creating Contextualised Usability Guides for Web Sites
Design and Evaluation

149

2. RELATED WORK

In the ‘Tools for Working with Guidelines’ (TFWWG) approach [11],
tools were developed for accessing and retrieving guidelines organised either
as a database or hypertext [4], in order to diffuse and promote usability
knowledge to use during UI design.

First, usability guides were diffused on paper, but rapidly appeared
guides on hypertext support. Hyperlinks joined guidelines to resources (e.g.
references or ergonomic criteria).

After that, hypermedia permitted to usability guides to link usability
knowledge to illustrative examples, presented in various format like screen
shots or video sequences.

These first supports did not permit efficacy information research. For that
reason appeared tools managing usability knowledge bases and permitting
efficacy research information and structure usability knowledge. Some of
these tools are: i) SIERRA [9,12], which manages a usability knowledge da-
tabase used with a hypermedia system; ii) Sherlock [4], which manages us-
ability guidelines by a client-server system, evaluating automatically some
guidelines or offering advice about how to solve detected design problems;
iii) GUIDE [5], which permits to manage a guidelines base, linking guide-
lines used to a particular application and storing these experiences in cases
in order to be reused by case-based reasoning; iv) the TELE-environment
[3], which consists of a multimedia learning environment for the web, man-
aging interactive examples and cases linked to usability guidelines, in order
to help developers understand and apply guidelines during the web design.

Unfortunately, these tools manage only one base at a time and for that
reason remain too rigid in a development cycle. Moreover, there do not sup-
port continuous evaluation usage, except Sherlock [4] that is supporting
some steps of the evaluation process. User-centred design is not really sup-
ported by these tools, because the guidelines contextualisation is poor. Vari-
ous design questions are not covered by the tools, e.g. “which are the guide-
lines appropriated to this context of use, in this particular development phase
and linked to some ergonomic criteria”.

We present in this paper the MetroWeb tool that enables the management
of multiple guidelines bases with a more precise contextualisation of the
guidelines. This contextualisation is guided by a semantic network managing
possible searching paths needed in web usability design and evaluation.
Moreover, many users are able to share the tool (evaluator, designer, devel-
oper, etc.).

150 Mariage and Vanderdonckt

3. THE METROWEB SEMANTIC NETWORK

This section presents the semantic network we want to support with the
MetroWeb tool, in order to respond to design questions. In fact, it’s frequent
that, during the user-centred design cycle of the web site, the designer needs
to assess to particular guidelines, e.g. guidelines dedicated to the elaboration
of forms. Guidelines can also be appropriated to such a development phase,
like the specifications. The designer can be interested in which evaluation
methods she can use to assess a set of guidelines. When she decides to
choice such interaction object to put in a web page, she can need to access to
the guidelines linked to this object. If she wants to assess ergonomic criteria
in her site, like consistency e.g., she needs to know which guidelines are
linked to these criteria. In parallel, to which criteria are linked such guide-
lines is important to know. In a particular context of use, like the use of the
web site by people with disabilities, particular guidelines (e.g., accessibility
guidelines), have to be respected. Moreover, the designer needs to access to
illustrative examples of the guidelines, references or related guidelines. The
complete information related to guidelines is summarised in Fig. 1. The se-
mantic network we define is aimed to respond to these questions.

The core concept of the MetroWeb network is the guideline. A guideline
consists of a design and/or evaluation principle to be observed to get and/or
guarantee a usable user interface [2]. Guidelines can be found in many dif-
ferent formats with contents varying both in quality and level of detail, rang-
ing from ill-structured common sense statements to formalized rules ready
for automatic guidelines checking [6]. A guideline can be characterised, or
contextualised, by other concepts like ergonomic criteria, linguistic level or
model.

Figure 1. Fundamental Concepts of MetroWeb.

The organisation of fundamental concepts around the guideline enables
browsing the knowledge base from multiple entry points toward any target
information in a reversible way: for instance, from task model to guidelines

Creating Contextualised Usability Guides for Web Sites
Design and Evaluation

151

and vice versa. An entity-relationship schema exists that structures consid-
ered usability concepts into 40 entities and 34 relationships.

Ergonomic criteria are criteria that lead to an elaborated, efficient, so-
phisticated, user friendly UI [2]. Nielsen's linguistic model [7] separates hu-
man-computer interaction into seven layers ranging from the highest level
(the closest of the human world) to the lowest level (the closest to the com-
puter world). In a guideline evaluation process, other interface information
has to be specified: interface and object types, context of use, development
phase. Indeed, evaluator needs more information about the guideline than the
guideline itself. For example, she needs to know to which types of user, task
and environment the guideline applies. This information forms the context of
use [5]. The evaluation methods and tools must also be specified, in order to
illustrate to the evaluator how to resolve the usability problems encountered.
Positive and negative examples and bibliographic references reinforce also
the evaluation when present. If the evaluator needs to assess a particular in-
teractive object of a particular interface, she can consult all the guidelines
linked to that particular point. If an evaluator wants to evaluate a specified
guidelines base in the evaluated interface, she can consult the evaluation
methods and tools permitting guidelines base assessment. Navigation can be
made by whatever input point and by direct manipulation. These concepts
are structured in a semantic network. This network allows different types of
reasoning because it contains several facets [8]:

Definitional: any entity of interest is described by its own definition in
the guidelines base, i.e. by the attributes. Moreover, relationships link en-
tities, e.g., the entity Web-Site is a subtype of the super type UI-type and
is the super type of Intranet, Extranet and Internet. Decomposition rela-
tion can also link objects to sub-objects, e.g. a Concrete Interaction Ob-
ject (CIO) [10] can be composed by other CIOs. In this way, usability
knowledge is attached to the highest level of application possible.
Assertional: assertions can be added between guidelines, e.g., the guide-
line stating that, in a web site, each image should have an alternative text
is no more valuable when another image with the same alternative text
stays next to the image.
Implicational: implications can be incorporated between contents. For
example, if you consider a guideline, then you also need to check if it re-
spects other guideline(s) implied by this one, e.g., a guideline stipulating
that web site look must be consistent in the entire application applies to
all the objects of the interface. To evaluate this, the consistency has to be
assessed in each web page of the web site. For that reason, each guideline
part of the consistency criteria must be assessed in each page of the web
site to evaluate. If the evaluation concerns several web sites, we must

152 Mariage and Vanderdonckt

verify each application page. The consistency evaluation is called inter-
application, and no more intra-application.
Executable: in our network, associations between evaluation tools and
guidelines are specified so that any usability knowledge content that can
be automated is delegated to a tool to be executed.
Pedagogic: the usability knowledge managed by MetroWeb, e.g. evalua-
tion methods and tools, can generate tutorial, guided tours, pro's and con-
tra's argumentation of the design cases, and teaching of design through
examples. This pedagogic facet is shared by other TFWWGs [3,11].

These 5 facets permit to support different searching paths linked to user-
centred design.

4. CREATING USABILITY GUIDES WITH
METROWEB

Once the fundamental aspects are known, there is a need to identify in-
teractive tasks that manipulate this knowledge in a user-centred way. Our
tool permits to create usability guides to be used during the web site devel-
opment. In this section we develop the different tasks to hold to get a usabil-
ity guide with the tool. We present also the evaluation tasks involving the
use of the usability guides. First the creation itself of usability guides is de-
composed into several tasks (Fig. 2): collecting, organisation and incorpora-
tion of the guidelines into a method.

Figure 2. Tasks of Usability Guide Creation.

The collection of the guidelines depends on the user’s needs. Does the
user want to use existing usability guides or create her own? She can also
use existing sources to create her guide, contextualised to the organisation
needs (types of web sites analysed, development phases to cover, evaluation
objectives like code verification of home pages or semantic analysis, etc.).
Our tool permits the management of multiple guidelines bases, whatever the

Creating Contextualised Usability Guides for Web Sites
Design and Evaluation

153

source. The guidelines collection can be divided in source elicitation, guide-
lines extraction and initial expression.

The organisation of the guidelines is the main goal of the tool. The guide-
line itself is structured on a hierarchy. Each guidelines base created can
manage sections and subsections, as deep as needed. Fig. 3 shows the im-
plemented interface: the left part contents hierarchy in one base, and the
right part shows the guidelines belonging to one subsection. The guidelines
details appear when the user selects a guideline.

Contextualisation of the guidelines is permitted by the semantic network
supported by the tool. All the themes presented in Fig. 1 can contextualise
the guidelines and form a contextualised usability guide. For example, an
organisation that wants to develop usability guides about Intranet will collect
specific guidelines linked to this topic.

The incorporation of the guidelines into a method is largely supported by
our tool. In fact, it supports heuristic inspection that assesses UIs in compari-
son with a list of principles or guidelines. A heuristic inspector can use
MetroWeb to access to the guidelines she wants to verify in the interface.
Links to usability knowledge reinforce the applicability of the guidelines.
Even if heuristic inspection is supported by the tool, other methods can be
linked to guidelines, in order to guide the evaluation process, whatever the
method used.

Figure 3. Guidelines hierarchy.

154 Mariage and Vanderdonckt

5. USING USABILITY GUIDES IN WEB SITES
DESIGN AND EVALUATION

Once a base is created, it can be used for various evaluation and teaching
purposes (e.g., browsing them, searching specific guidelines freely or design
question searching, or by teaching, see Fig. 4). A guidelines checklist can
gather guidelines previously input by identifying sections relevant for
evaluation (e.g., include, exclude, copy, import from various guideline
bases).

Figure 4. Tasks of Guidelines Learning.

The evaluation reporting task will be totally supported by our tool (Fig.
5), by a specific evaluation module, actually under development.

Figure 5. Tasks of Guidelines Use for Evaluation.

This module will permit to the evaluator to choice the information to re-
cord in the evaluation task (screen shots, guidelines, scenarios, meta-
information about the task like contact information of the evaluator, date,
etc.) and to record it when she evaluates her site. The tool supports partially
the other evaluation tasks (except the follow-up) by providing information
helping the evaluator judgments (e.g., information about which methods to
use in such evaluation context).

Creating Contextualised Usability Guides for Web Sites
Design and Evaluation

155

6. THE METROWEB TOOL

The tool is intended to support usability guides creation. The created
guides are contextualised in order to provide complete information about
how to apply the guidelines in a web development cycle. Fig. 6 shows the
implemented tool. The tool is developed in Java Swing, on top of Borland
Interbase databases, which is open source and can work on multiple plat-
forms. Different views are provided to the user, corresponding to her task.

Figure 6. The MetroWeb Tool: complete view.

The complete view (Fig. 6) presents in one screen the guidelines and re-
sources hierarchy, details and links. A guideline is no longer presented iso-
lated from its context of application and related concepts. All the concepts
related to the guidelines (Fig. 1), except the interface and objects types, are
actually implemented. The left part shows the guidelines hierarchy in bases
and sections (1 & 2). The central part contains details of guidelines and re-
sources linked to guidelines (3 & 4).

The right part contains types of links (and linkage attributes) between
guidelines and resources (5 & 6). Knowledge manipulation is direct because
user can move from a specific view to another, directly by moving slide
bars. By moving up or down the horizontal slide bar, the complete view (Fig.
6) becomes detailed view of guidelines or resources (Fig. 7), contextualised
by it hierarchy and links.

156 Mariage and Vanderdonckt

Figure 7. MetroWeb detailed view.

By moving left or right slide bar, complete view becomes more detailed
guidelines or resources views, called normal views (Fig. 8), keeping either it
hierarchy or links. These navigation facilities between coordinated views are
corresponding to different design and evaluation questions that can be raised
frequently in development teams.

At design time, it is possible to quickly identify usability knowledge re-
quired to address questions like: “for this interactive task, what are the pre-
vious UI implementations (examples) that have been recorded with usability
qualities?” (this enables people in an organisation to build an organisation
memory of their usability practise over time), “what guidelines do I need to
consider to design a form in a web page?”, “what are the most important de-
sign options impacting usability to be decided at design time?”.

At evaluation time, it is possible to find answer to questions like: “what
are the guidelines that need to be considered to check this UI against this
style guide or standard?”, “what should I do to make my web page compliant
with W3C Web Accessibility Initiative (WAI) guidelines?”, “what level of
support can I count on to automate this task?”, “Can I use the same guide-
lines both at design and evaluation time?”, “how to store evaluation results
so as to reuse them later on?”.

Creating Contextualised Usability Guides for Web Sites
Design and Evaluation

157

Figure 8. MetroWeb normal view.

7. CONCLUSION

The tool presented in this paper permits to support user-centred design
and evaluation of web sites, by the creation of multi-bases usability guides,
and the use of them during the whole development cycle. The tool, with re-
spect to existing work, is original for the following characteristics: continu-
ity (usability knowledge gathered in the phase of style guide constitution is
reused consistently), integration (design and evaluation can be supported si-
multaneously), multi-bases (multiple knowledge bases can be used at the
same time, for instance to evaluate guidelines belonging to different
sources), collaboration (since the tool is web-based itself, implemented in
Java/Swing, it can be installed and used locally or remotely), level of support
(several phases concerning usability in the development life cycle are cov-
ered). Our future work concerns the implementation of the evaluation mod-
ule, aimed to support the usability problems reporting, tightly coupled with a
system that supports the designer and the evaluator in automating the evalua-
tion of guidelines contained in METROWEB [13,14].

158 Mariage and Vanderdonckt

REFERENCES

[1] Bastien, J.M.Ch. and Scapin, D.L., Evaluating a User Interface with Ergonomic Crite-
ria, Research Report, No. 2326, INRIA, August 1994.

[2] Farenc, C., Palanque, P. and Vanderdonckt, J., User Interface Evaluation: is it Ever Us-
able?, in Proc. of 6th International Conference on Human-Computer Interaction HCI In-
ternational’95 (Yokohama, 9-14 July 1995), Elsevier, Amsterdam, 1995, pp. 329-334.

[3] Furtado, E., Furtado, V., Sousa, K., and Belchior, A., An Online Multimedia System for
Learning to Design User Interfaces, in Ch. Kolski, J. Vanderdonckt (eds.), Proc. of 3rd

Int. Conf. on Computer-Aided Design of User Interfaces CADUI’2002 (Valenciennes,
15-17 May 2002), Kluwer Academic Publishers, Dordrecht, 2002, pp. 229-242.

[4] Grammenos, D., Akoumianakis, D., and Stephanidis, C., Integrated Support for Working
With Guidelines: The Sherlock Guidelines Management System, Interacting with Com-
puters, Vol. 12, No. 3, 2000, pp. 281-311.

[5] Henninger, S., A Methodology and Tools for Applying Context-Specific Usability Guide-
lines to Interface Design, Interacting with Computers, Vol. 12, No. 3, 2000, pp. 225-243.

[6] Mariage, C., Vanderdonckt, J., and Pribeanu, C., State of the Art of Web Usability Guide-
lines, Chapter 41, in R.W. Proctor, K.-Ph.L. Vu (eds.), « The Handbook of Human Fac-
tors in Web Design », Lawrence Erlbaum Associates, Mahwah, 2004.

[7] Nielsen, J., Usability Engineering, Academic Press, Boston, 1993.
[8] Sowa, J.F., Principles of Semantic Network, Morgan Kaufmann, San Mateo, 1991.
[9] Vanderdonckt, J., Accessing Guidelines Information with SIERRA, in Proc. of IFIP

TC.13 International Conference on Human-Computer Interaction Interact’95 (Lilleham-
mer, 27-29 June 1995), Chapman & Hall, London, 1995, pp. 311-316.

[10] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection, in Proc. of the ACM Conf. on Human Factors in Computing
Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New York, 1993,
pp. 424-429.

[11] Vanderdonckt, J., Development Milestones towards a Tool for Working with Guidelines,
Interacting with Computers, Vol. 12, No. 2, December 1999, pp. 81-118.

[12] Vanderdonckt, J., Visual Design Methods in Interactive Applications, Chapter 7, in M.
Albers, B. Mazur (eds.), « Content and Complexity: Information Design in Technical
Communication », Lawrence Erlbaum Associates, Mahwah, 2003, pp. 187-203.

[13] Vanderdonckt, J. and Beirekdar, A., The Impact of Internationalization on Guidelines
Contents and Usage, in Proceedings of 2nd International Conference on Universal Accessd

in Human-Computer Interaction UAHCI’2003 (Creete, 22-27 June 2003), Vol. 4, C.
Stephanidis (ed.), Lawrence Erlbaum Associates, Mahwah, 2003, pp. 1544-1548.

[14] Vanderdonckt, J., Beirekdar, A., Noirhomme-Fraiture, M., Automated Evaluation of Web
Usability and Accessibility by Guideline Review, in Proceedings of 4th International Con-
ference on Web Engineering ICWE’04 (Munich, 28-30 July 2004), N. Koch, P. Frater-
nali, M. Wirsing (eds.), Lecture Notes in Computer Science, Springer-Verlag, Berlin,
2004.

Chapter 13

USABILITY TESTING OF INTERACTION
COMPONENTS
Taking the Message Exchange as a Measure of Usability

Willem-Paul Brinkman1, Reinder Haakma2, and Don. G. Bouwhuis3

1Brunel University, Uxbridge – Middlesex UB8 3PH (United Kingdom)
E-mail: willem.brinkman@brunel.ac.uk – URL: http://www.brunel.ac.uk/~csstwpb/
Tel.: +44 1895 274000
2Philips Research Laboratories Eindhoven, Prof. Holstlaan 4 – 5656 AA Eindhoven2

(The Netherlands)
E-mail: reinder.haakma@philips.com
3Technische Universiteit Eindhoven, P.O. box 513 – 5600 MB Eindhoven (The Netherlands)
E-mail: d.g.bouwhuis@tue.nl

Abstract Component-based Software Engineering (CBSE) is concerned with the
development of systems from reusable parts (components), and the
development and maintenance of these parts. This study addresses the issue of
usability testing in a CBSE environment, and specifically automatically
measuring the usability of different components in a single system. The
proposed usability measure is derived from the message exchange between
components recorded in a log file. The measure was validated in an
experimental evaluation. Four different prototypes of a mobile telephone were
subjected to usability tests, in which 40 subjects participated. Results show
that the usability of the individual components can be measured, and that they
can be priorities on their potential for improvement.

Keywords: Component-based software engineering, Log file analysis, Sequential data
analysis, Usability evaluation, Usability testing.

1. INTRODUCTION

Although Component-Base Software Engineering (CBSE) is becoming
more popular, so far, no empirical usability testing methods have been de-
veloped that correspond well with this engineering approach. CBSE is a sub-
discipline of software engineering, which is primarily concerned with the

159

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 159–170.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

160 Brinkman, Haakma, and Bouwhuis

following three functions: development of software from pre-produced parts;
the ability to re-use those parts in other applications; and easy maintenance
and customisation of those parts to produce new functions and features [3].
Instead of building an application from scratch, the CBSE approach focuses
on building artefacts from already made components (e.g., pop-up menus,
radio buttons, and list boxes). The idea behind the engineering concept is
that components can easily be re-used in other systems since they are
autonomous units, free of the context in which they are deployed. The prom-
ise of CBSE is reduced development cost and time since ready-made and
self-made components can be used and re-used.

The development organisation for CBSE differs from the ‘traditional’
engineering organisation that focused on writing new software and not on
composing an application from existing software. Therefore, an empirical
usability testing method in which the usability of an individual component
can be measured after they are deployed in an application is of course wel-
come. The usability of components has not yet been measured individually.
Several authors [2],[5][11] have proposed analysing the user interaction withd
a component to determine the usability of individual component. To reduce
the amount of work and to overcome the low reliability of existing usability
evaluation methods [4], employing automatic procedures has been suggested
[2] to determine the performance-oriented aspects of usability on the basis of
usage logs.

2. ARCHITECTURE OF INTERACTIVE SYSTEMS

The following three sections introduce the concepts: interaction compo-
nent, router, and layer. With these concepts it is possible to identify interac-
tive system architectures on which the testing method can be applied, such
as for example the CNUCE agent model [9]. The general architecture de-
scribed here is based on the ideas of the Layered Protocol Theory [11],
which decomposes the user-system interaction into different layers that can
be designed and analysed separately.

2.1 Interaction Components

Interaction components define the elementary units of interactive sys-
tems, on which behaviour-based evaluation is possible. An interaction com-
ponent is a unit within an application that directly or indirectly receives sig-
nals from the user. These signals enable the user to change the physical state
of the interaction component. Furthermore, the user must be able to perceive
or to infer the state of the interaction component. Therefore, an interaction
component should provide feedback. Without the possibility of perceiving

Usability Testing of Interaction Components 161

the state, users cannot separate the component from the whole system and
are not able to control it. Without the ability to control the feedback, users’
behaviour is aimless.

2.2 Routers

Another element in the general architecture is the Router. Routers are
binding elements that direct the communication flow between interaction
components, and do not have to have an own state. This component’s only
function may be merging the messages of two lower-level interaction com-
ponents into a message for the high-level interaction component or vice
versa.

Figure 1. Front and component structure of an alarm clock.

2.3 Layers

The points where input and output of different interaction components
are connected demarcate the border between layers. An interaction compo-

162 Brinkman, Haakma, and Bouwhuis

nent operates on a higher-level layer than another interaction component,
when the higher-level interaction component receives its user’s messages
from the other interaction component. With the definition of interaction
components, routers, and layers it is possible to describe the architecture of a
regular alarm clock to illustrate these concepts. With this alarm clock, users
can set the alarm time by setting the clock in the right mode, changing the
hours and minutes digits, and finally activating the alarm. Figure 1 shows the
interaction components involved. The Hour and Minute interaction compo-
nents are located on the lowest-level layer, where they manage the state of
the hour and minute digits. The Mode interaction component is placed on the
middle-level layer. The component is responsible for the mode of the alarm
clock, and consequently whether the current or the alarm time is visible or
set. To indicate that the alarm time is displayed, a small icon of a bell is
shown in the top-left corner of the display. The Alarm Time and Current
Time interaction components, which keep the corresponding times, make up
the top-level layer in the architecture. The Alarm Time interaction compo-
nent shows a small icon in the top-right corner of the display to indicate
whether the alarm is activated or not.

3. THE TESTING METHOD

3.1 Test Procedure

The test procedure of the testing method roughly corresponds to the nor-
mal procedure of a usability test. Subjects are observed while they perform a
task with the system. The task is finished once subjects attain a specific goal
that would require them to alter the state of the interaction component under
investigation. In advance, subjects are instructed to act as quickly as possible
to accomplish the given goal. As subjects perform the task, messages sent to
the various interaction components are recorded in a log file. Once they
reach the goal, the recording stops.

3.2 Component-Specific Usability Measure

The number of messages received by a component is a powerful measure
to study the difference in usability between two versions of a component [1].
This raw measure forms the basis for a usability measure that can be applied
on different components in a single system. Instead of a direct comparison,
the proposed method compares the performance of an (fictional) ideal user
with that of real users. The method looks at the performance of a component
as if higher-level components operated optimally. This way the inefficiency

Usability Testing of Interaction Components 163

of higher-level component is compensated for. In this context, inefficiency
means that a component requests more lower-level messages than optimal
required. The method assumes that lower-level components only sent mes-
sages upwards intended by users (no effectiveness problem) and messages
sent by an ideal user are also sent by real users.

Valuable information for evaluators is which interaction components
should be changed to create the largest usability improvement of the whole
system, i.e. impact assessment and effort allocation [6]. The impact an inter-
action component has on the overall performance can be estimated by as-
signing an effort value to each message received. These effort values are
based on the effort value of the lowest-level messages that are linked to
higher-level messages. At the lowest-level layer, weight factors of an arbi-
trary unit are assigned to the messages, which present the user effort value to
send a single message. This can be a number for each keystroke or for the
time users need to make an elementary message. The users’ effort, to make
these elementary actions, is regarded as similar throughout task execution. In
the next section, an example is worked out to explain the performance
evaluation in detail.

3.2.1 Example

Imagine a drawing application. A circle and polygon are drawn. Now, the
task is to change the circle’s colour into red and remove its black outline. If
users perform the task optimally, they first select the circle by clicking on it,
and then they open the Right Mouse Button Menu (RMBM) and choose the
option Properties. The application comes up with a property window, where
the users select the red box in the Fill tab sheet (Fig. 2). They also check the
“No Line” check box on the “Outline” tab sheet. Finally, the users click on
the “Ok” button of the property window and the circle changes accordingly.
Figure 3 presents the message exchange between the relevant interaction
components of the drawing application when the task is conducted in this
optimal way.

In this example, (imaginary) recordings are also made of the behaviour of
a (imaginary) real user who has three problems: first, with selecting an ob-
ject; second, with setting the right tab sheet; and third, with distinguishing a
circle from a polygon. The real user selects objects with a selection window
instead of clicking on the objects themselves. Furthermore, the real user
takes the polygon for a circle, and consequently makes two selections. After
the circle is selected, the real user searches for the right tab sheet, starting
with General, then Detail and ending with the right tab sheet. Fig. 4 shows
the message exchange between the same interaction components as before,
but now for the real user.

164 Brinkman, Haakma, and Bouwhuis

Figure 2. Property window for setting the fill colour of the selected circle.

3.2.2 Analysis of the Example

In this example, a value 1 is assigned to all Click messages (Fig. 3 and
4). After effort values are assigned to the lowest-level messages, the effort
values are calculated for the messages sent upwards. The effort value of a
message sent upwards is, in principle, the sum of the effort values of the
messages received between this and the previous message sent upwards. Fig.
3 gives the effort values for the messages sent upwards in the case of the
ideal user. Take for example the Call message sent upwards by the RMBM
at event 4. Two Click messages, each having an effort value 1, were received
before this message was sent (see event 3); therefore, an effort value of 2 is
assigned to this message. The calculation starts at the lowest-level layer and
works its way upwards. This means that first the effort value for the Selec-
tion and RMBM interaction components is calculated, followed by the effort
value for the messages sent upwards by the Properties and finally by the
Visual Drawing Objects (VDO) interaction component.

If messages are sent upwards through actual task execution (the real
user), the inefficiency of lower-levels is removed from the effort value. The
effort values of the messages that are also sent upwards in optimal task per-
formance receive a similar effort value as if these messages are sent upwards

Usability Testing of Interaction Components 165

in optimal task performance. If another type of message or a message with
another effect is sent upwards compared to that in optimal task performance,
it will receive the sum of the effort values of messages received. However, if
this message is of the same type as messages sent upwards in optimal task
performance, it may not exceed the maximum optimal effort value of mes-
sages of this type. For example, the Select messages, sent upwards by the
Selector in Fig. 4 at event 2 and 4, have an effort value of 1 because the ideal
user made a Select message that has the same effect with only an effort value
of 1.

Figure 3. Message exchange between the components of the drawing application in the case
of optimal task execution (ideal user). Effort values are given within brackets. The numbers in

the black circles give the event sequence of the task execution.

The total effort for the control of an interaction component is the sum of
the effort values of the messages received (third and fourth column of Table
1), which, in the case of real users, is later on corrected for the inefficiencies
of a higher-level. Without correction, the total effort still may include ineffi-
cient high-level demands, which should not be charged to the interaction
component. Therefore, the analysis only looks at the number of messages
sent upwards that are required to fulfil the optimal request of higher-level
layers. This corrected value is called the user effort and is also given in Ta-
ble 1. It is calculated by first taking the total effort in the case of the real user
(fourth column) and dividing it by the number of messages the real user sent
upwards (second column); and second, by multiplying the result by the
number of messages the ideal user sent upwards (first column). This correc-
tion assumes that the same number of messages have to be received to send a

166 Brinkman, Haakma, and Bouwhuis

message upwards again, which is the case when the state of the interaction
component is reset after a message is sent upwards.

Figure 4. Message exchange between the components of the drawing application in the case
of observed task execution (real user). Effort values are given within brackets. The numbers

in the black circles give the event sequence of the task execution.

Table 1. The extra user effort and the parameters to calculated it.

 Sent upwards Total effort
 Optimal Observed Optimal Observed User effort Extra
Properties 1 1 7 9 9 2
VBO 1 1 8 9 9 1
Selection 1 2 1 4 2 1
RMBM 1 1 2 2 2 0

The extra user effort is a measure of the effort difference when a real user
or an ideal user controls an interaction component. The extra user effort is
the result of the subtraction of the total effort made by the ideal user from
the user effort made by the real user. Table 1 shows the extra user effort per
interaction component. The Selection interaction component is charged with
1 extra keystroke. Although the real user made an inefficient selection two
times, only the average extra user effort per selection is taken into account
because the repetition is attributed to inefficiency of higher-level layers. The
RMBM interaction component, with its optimal performance, is subse-
quently charged with no extra user effort. The Properties interaction compo-
nent is charged with two extra keystrokes; the two keystrokes for searching
the right tab sheet. The VDO interaction component is charged with only one

Usability Testing of Interaction Components 167

extra keystroke; the one keystroke, an ideal user would need to select the
polygon. Finally, ordering the interaction components by their extra user ef-
fort creates the priority list of the most effective improvements; putting the
Properties component on top of the list.

4. EXPERIMENTAL VALIDATION

An experiment was conducted to study the method and to validate the
proposed component-specific usability measure. The experiment compared
prototypes with variations in their usability. The use of predefined usability
variations had to emphasise the validity of the usability measures. All usabil-
ity variations addressed the complexity of dialogue structures that can be
understood in terms of Cognitive Complexity Theory (CCT) [7]. This theory
holds that the cognitive complexity increases when users have to learn more
rules.

4.1 Prototypes

A mobile telephone was chosen for the experiment because of its rela-
tively complex user interface architecture. Two interaction components of a
mobile telephone were manipulated. They were responsible for the way sub-
jects could activate functions in the telephone (Function Selector), and send
text messages (Send Text Message). For each of these two interaction com-
ponents two versions were designed. In one version of the Function Selector
(FS), the menu was relatively broad but shallow, i.e. all eight options avail-
able within one stratum. In the other version, the menu was relatively narrow
but deep, i.e. a binary tree of three strata. Users tend to be faster and make
fewer errors in finding a target in broad menus than in deep menus [10].

In terms of CCT, the deep menu structure requires subjects to learn more
rules to make the correct choices when going through the deep menu struc-
ture. In the more usable version (simple version) of the Send Text Message
(STM) component, the component guided subjects through the required
steps. The less usable version (complex version) left the sequence of steps
up to the subjects. All these options were presented as icons that forced the
subjects to learn the icon-option mapping rules in the complex version. Fur-
thermore, they also had to learn in which order to choose the options. Com-
bining these versions led to four different mobile telephone prototypes.

The experimental environment was programmed in Delphi 5, and in-
cluded PC simulations of all mobile telephone prototypes and a recording
mechanism to capture the message exchange between the interaction com-
ponents [1].

168 Brinkman, Haakma, and Bouwhuis

4.2 Procedure and Subjects

All 40 participating subjects were students of Technische Universiteit
Eindhoven. None of them used a mobile telephone on a daily or weekly ba-
sis. The kinds of tasks they had to perform with the mobile telephone were
calling to someone’s voice-mail system; adding a person’s name and number
to the phone’s address list; and sending a text message. The application
automatically assigned the subjects in a random order to a prototype. At the
end of the experiment, subjects were asked to evaluate the mobile telephone
and the two components with a questionnaire on the computer. The com-
puter gave the questions in a random order. The questions addressed both the
ease-of-use and satisfaction of the overall mobile phone, and the FS and
STM components separately [1]. After the experiment, the subjects received
NLG 22.50 (roughly €10) for their participation.

4.3 Results

The extra user effort was calculated for the two interaction components
per prototype over all types of tasks (Table 2). For each prototype a multi-
variate analysis of variance was conducted on the extra user effort. The
analyses took the components as an independent within-subject variable. The
results revealed a significant difference in prototype 2, which was equipped
with the narrow/deep version of the FS component and the simple version of
the STM component. As expected, designers confronted with this prototype
should focus their attention on the FS component rather than on the STM
component. With prototype 3, designers should focus on the STM compo-
nent, although the analysis failed to reach a significant level.

The ability to say something about the accuracy of the extra user effort
measurement is limited. For the versions of the STM interaction component,
a difference of 29 keystrokes was found in the extra user effort, whereas a
difference of 64 keystrokes was found in the overall number of extra key-
strokes. A relative similar deviation was found for the difference between
the versions of the FS component, 55 versus 105 keystrokes. An explanation
for the difference between extra keystrokes and extra user effort is that the
extra keystrokes measure also includes the additional effect usability prob-
lems had on other components with usability problems.

After the multivariate analyses, the validity of extra user effort measure
was examined by correlating it with other measures obtained in the experi-
ment. Table 3 shows the partial correlations between these measures and the
extra user effort to control the FS and the STM components. All correlations
were controlled for the versions of the other interaction component. Only
significant partial correlations, in the expected direction, were found; except

Usability Testing of Interaction Components 169

for the correlations between the mobile telephone satisfaction and extra user
effort for STM component. The results validate the extra user effort measure
as a component-specific usability measure.

Table 2. Results of multivariate analyses of variance on the extra user effort for the four pro-
totypes with the components as independent within-subject variable.

Extra effort df
Prototype

Versions com-
ponents FS STM Hyp. Err. F p

Simple
1 Broad/shallow 0 2.2 1 9 1.34 0.277
2 Narrow/deep 47.7 13.6 1 9 34.91 <0.001

Complex
3 Broad/shallow 0 33.6 1 9 4.85 0.055
4 Narrow/deep 61.6 39.5 1 9 1.78 0.215

Table 3. Partial correlation between extra user effort regarding the two components and other
usability measures.

Measure Function Selector Send Text Message
Objective
 Extra keystrokes 0.64** 0.44**
 Task duration 0.63** 0.39**
Perceived

Overall ease-of-use -0.43** -0.26*
Overall satisfaction -0.25* -0.22

 Component-specific ease-of-use -0.55** -0.34**
 Component-specific satisfaction -0.41** -0.37**

p . < .05. **p* . < .01.

5. CONCLUSION

The benefit of the proposed empirical testing method is the ability to
evaluate the usability of an individual component in a single system. Some-
thing, overall measures (e.g., task duration, number of keystrokes) cannot
do. Other sequential data analysis methods (for a survey see [5]) take only
lower-level events for their analysis. They pre-processed this data to create
data that relates to more high-level concepts. However, these compound
messages leave more room for discussion about the system interpretation of
the lower-level messages as they lack a direct relation with higher-level sys-
tem components. Extending the log file with recording of the system’s status
makes it possible to construct the system interpretation of the lower-level
into higher-level message (e.g., [8]). However, directly logging the higher-
level messages when users interact with the system avoid the task of creating
a tool to pre-process the data later on.

The proposed analysis also has its limitations. It assumes that the usabil-
ity of a component will not influence other components. However, factors

170 Brinkman, Haakma, and Bouwhuis

like the user (e.g., memory load or inconsistency [1]), the environment and
even the system architecture can create relations between the components
that can disturb the analysis. For instance, the system architecture can be a
factor if an unclear input method for entering a character on a mobile phone
can cause users to create unwanted characters that will be sent to higher-
level String components. These unintended messages to higher-level com-
ponent should not be charged to the usability of String components. There-
fore, future evaluators should convince themselves that lower-level compo-
nents have no ineffectiveness problem. The so-called Standardised Recep-
tion Coefficient [1] can help them to inspect the components for ineffective-
ness.

REFERENCES

[1] Brinkman, W.P., Is Usability Compositional?, Ph.D. thesis, Technische Universiteit
Eindhoven, Einhoven, 2003.

[2] Brinkman, W.P., Haakma, R., and Bouwhuis, D.G., Usability Evaluation of Component-
Based User Interfaces, in Proceedings of IFIP 8th TC.13 International Conference on
Human-Computer Interaction INTERACT’01 (Tokyo, 9-13 July 2001), IOS Press, Am-
sterdam, 2001, pp. 767-768.

[3] Haakma, R., Layered Feedback in User-System Interaction. Ph.D. thesis, Technische
Universiteit Eindhoven, The Netherlands, 1998.

[4] Heineman, G.T. and Councill, W.T., Component-Based Software Engineering: Putting
the Pieces Together, Addison-Wesley, London, 2001.

[5] Hertzum, M. and Jacobsen, N.E., The Evaluator Effect: A Chilling Fact About Usability
Evaluation Methods, International Journal of Human-Computer Interaction, Vol. 13, No.
4, 2001, pp. 421-443.

[6] Hilbert, D.M. and Redmiles, D.F., Extracting Usability Information From User Interface
Events, ACM Computing Surveys, Vol. 32, No. 4, 2000, pp. 384-421.

[7] Hilbert, D.M. and Redmiles, D.F., Large-Scale Collection of Usage Data to Inform De-
sign, in Proceedings of 8th IFIP TC.13 International Conference on Human-Computer In-
teraction INTERACT’01 (Tokyo, 9-13 July 2001), IOS Press, Amsterdam, 2001, pp.
569-576.

[8] Kieras, D. and Polson, P.G., An Approach to the Formal Analysis of User Complexity,
International Journal Man-Machine Studies, Vol. 22, No 4, 1985, pp. 365-394.

[9] Lecerof, A. and Paternò, F., Automatic Support for Usability Evaluation, IEEE Transac-
tions on Software Engineering, Vol. 24, No. 10, 1998, pp. 863-888.

[10] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer,
London, 2000.

[11] Snowberry, K., Parkinson, S.R., and Sisson, N., Computer Display Menu, Ergonomics,
Vol. 26, 1983, pp. 699-712.

[12] Taylor, M.M., Layered Protocols for Computer-Human Dialogue, I: Principles, Interna-
tional Journal Man-Machine Studies, Vol. 28, No. 1, 1988, pp. 175-218.

Chapter 14

INFIGURA, AN INTEGRATED DESIGN TOOL
Exploiting Semantics and Patterns for Web Development

Thomas Tiedtke, Thomas Krach, and Christian Märtin
Augsburg University of Applied Sciences, Department of Computer Science
Baumgartnerstrasse 16 – D-86161 Augsburg (Germany)
E-mail: { tiedtke, krach, maertin}@informatik.fh-augsburg.de

Abstract This paper presents a tool for the computer-supported design of website inter-
action structures and interfaces. The InFigura tool incorporates user experi-
ence patterns and prototyping. It enables interdisciplinary cooperation. This al-
lows easier and faster development of high-quality websites.

Keywords: Interface and Interaction Design, Patterns, Prototyping, Usability, Web
Development.

1. INTRODUCTION

The construction of highly usable websites requires the integration of ad-
vanced user interface and interaction design methods into web design ap-
proaches. However, such unified approaches and appropriate integrated tool
support are still quite rare.

Most current proposals for improving website design either model web
applications like traditional software systems [3], or focus on visual design
aspects alone [27]. Both approaches neglect the interdisciplinary facets of
web development. Better solutions could be achieved by combining sound
conceptual models with state-of-the-art software development technology,
and communicative visual design, where all system aspects are modelled
from a user’s perspective [7].

The InFigura tool presented in this paper is built around such a user-
centered approach for web development. Its main purpose is to assist infor-
mation architects in developing the structures and semantic elements of web-

171

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 171–184.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

172 Tiedtke, Krach, and Märtin

sites. It also supports interdisciplinary cooperation that is vital for the pro-
duction of high quality websites and other multimedia products.

Usability engineering is an essential activity of interactive system design.
It is needed to create interactive software and media that enable positive user
experiences. InFigura supports usability engineering by integrating patterns
and usability guidelines. The tool also allows fast and easy user testing with
automatically generated prototypes [17].

The presented tool combines the advantages of automated processes –
made possible by a centralized and consistent database – with the flexibility
and creativity of interactive design methods. The tool emphasizes the impor-
tance of user experience for web design that has a great effect on conversion
rates and customer loyalty [20] and thus has direct impact on the economic
success of a web project [7]. Conceptually InFigura is not restricted to web-
sites. It could also be used to design user interfaces for interactive devices
like mobile PDAs or set-top boxes. In a first step the InFigura prototype has
been developed as a website development tool, in order to concentrate on a
well known field. The adaptation to other user interface types is planned in a
later step.

In Section 2 we describe current approaches and tools used for develop-
ing web sites and work to which InFigura´s approach is related. The archi-
tecture and basic concepts of the InFigura tool are presented in Section 3, its
workflow process, including prototyping, in Section 4. A short discussion in
Section 5 and future prospects in Section 6 conclude this paper.

2. RELATED WORK

Two different lines of interface design meet at web development: classic
GUI design for software systems, applying style guides and usability rules,
and the approach used by visual designers with their wish to create “flippy
and cool” designs [29]. So far, no unified interaction design methods have
been established.

Today most information architects still use standard software environ-
ments for developing websites. There are few tools offering integrated sup-
port for interaction and interface design and the modelling of websites. One
approach for designing web site structures and web pages is described in
[12], a sketch-based system with different zoom views on the website. Real
support of the website’s semantics, however, is missing, as well as prototyp-
ing. In [8], a schema-based tool with an explorer-like interface is described.
But information architects rather need tools with intuitive handling, like the
drawing applications they are used to.

Professional web design tools like DreamWeaver [13] or FrontPage [14]

InFigura, An Integrated Design Tool 173

as well as IDEs like Eclipse [9] enable web designers or software developers
to edit the code of user interfaces in a WYSIWYG manner. They lack the in-
tegration of the information and interaction architecture (semantics). With
these tools a user, e.g., creates a syntactic link element, but not a semantic
navigation element.

The experience a user gains, by using a website, is influenced by a vari-
ety of elements, as discussed in [7]. The main elements of this approach are
a strategic plane, which describes the main goals of a website, an overlying
scope plane that defines basic features and contents, the structure plane
which describes how these basic features and contents are structured and the
skeleton plane, that defines single page grids. On top, at the visual design
plane, the final visual representations are added.

User experience patterns contain proven and applicable design know-
ledge for the context of use [24]. Patterns follow a strict representation
scheme and provide some kind of positive handling advice. In [10] a good
categorisation of patterns used in web context can be found. An online tex-
tual pattern library is presented in [16]. In [6] and [2] several pattern-
oriented design approaches are discussed. Conceptual, implementation-
independent patterns are described in [22].

The tool presented in this paper is partially based on the concepts of user
experience elements and patterns, described above.

3. THE INFIGURA TOOL

3.1 Architecture

The core concept of the InFigura tool is the separation of visual, seman-
tic and syntactic representations of web elements. For each element there ex-
ists a visual drawing object and a semantic meta data object (Section 3.3).
Syntactic representations are generated in the prototyping step using both,
semantic data and visual data like element’s size and position (Section 4.5).

The architecture of the InFigura system is illustrated in Fig. 1. The main
actor components of the InFigura system are the Definers (SiteDefiner and r
PageDefiner), which provide functionality for defining the pages, the site
structure and individual page elements. The SiteDefiner provides functional-r
ity for designing the site structure and the users´ tasks, corresponding to the
structure plane described in [7] (Section 2). The elements of the individual
web pages (the skeleton plane) are defined using the PageDefiner. The De-
finers manage the meta data objects stored in WebsiteMetadata and keep
track of the corresponding drawing objects (e.g., circles and rectangles). The
drawing environment manages the visual editing of the website model. Usert
events related to website or web page elements, like resizing, moving etc.,

174 Tiedtke, Krach, and Märtin

are processed within the drawing environment. Relevant events like deleting
or editing are forwarded to the Page- or SiteDefiner that updates the Web-
siteMetadata.

Figure 1. System Architecture.

User experience patterns stored in XML documents are created using the
SitePatternDefiner and ther PagePatternDefiner, which are specializations of
the Site- and PageDefiner. For applying these patterns the PatternManager
integrates the patterns´ semantic metadata and visual objects into the website
model under development. The website model consists of semantic elements
like sections, web pages and navigation elements (links) and is stored in
WebsiteMetadata, which can later be used by maintenance and analysis
components (not described in this paper). The Usability Knowledge Base
contains guidelines about user experience aspects. The KnowledgeManager
customizes this stored knowledge to the current development step, e. g. by
layering the areas of attention on web pages [1] over the developed page
skeleton layout or by checking the site´s structure for maximal link depths
[17].

3.2 Actors and Handling

Information architects (IA) are the tool’s primary target group. They are
responsible for structuring information, for creating the navigation structure
and the relevant elements on individual pages. Today many IAs use standard
drawing and text editing software for performing the tasks covered by the
InFigura tool. Other actors are visual and software designers. For each target
group, a common user interface (“view”) exists, that focuses on the relevant
items while still showing their context. The visual designer interacts with a r
view of the visual elements and formatting information. The software de-

InFigura, An Integrated Design Tool 175

signer, on the other hand, needs information about the required backend
functionality. Finally there is the customer of the website agency, who wants r
to know about the current state of development.

The tool users have different professional backgrounds as described
above, so tool handling and visualisation have to be interactive and intuitive.
IAs may not be used to work with abstract models and notations like the
UML [3]. They often have different ways of thinking and notating things
compared to software developers. Most existing interface tools do not sup-
port intuitive actions of the tool user. The InFigura tool is controlled visu-
ally like the drawing applications, the information architects are used to. The
notation provided by InFigura is similar to structure trees, a de-facto-
standard for modeling the information architecture of web sites [11]. For de-
signing the individual pages layout skeletons [7] are used, consisting of rec-
tangles representing content, function or navigation elements. The user is not
bothered by technical details and can focus on website development, not on
editing XML files. For example, if the IA moves a web page onto the sur-
face, the PageDefiner creates both a visual representation (e.g., rectangle) of
the element in the drawing environment, as well as a web page object in the
metadata XML document. The page’s visual representation is linked to the
meta data object.

3.3 Website Metadata

Triggered by the IA, who defines sections, pages and page elements (see
chapter 4), the system builds up a central database of metadata keeping track
of each element through all steps of a website’s life cycle. This avoids mul-
tiple editing and manual translation of data during the design and develop-
ment process (e.g. from a textual to a visual representation), reducing possi-
ble sources of error and the risk of concurrent versions of artefacts. Thus the
development life-cycle is shortened and costs are reduced, while develop-
ment quality is improved. The website's metadata is stored in XML format,
which is structured as described in [22]. For every modelled item (section,
page, link or page element) conceptual data, technical data and visual data is
stored. For example, a function element delete from list, has a visual style
with two different values (normal and active), it defines a specific technical
functionality (delete selected item from database), and it has a semantic
meaning as it realizes a feature claimed in the website's scope.

3.4 User Experience Patterns

The exploitation of user experience patterns speeds up the development
life-cycle and helps to achieve better usability of the target system. Patterns

176 Tiedtke, Krach, and Märtin

used in this tool not only exist as written text, but are directly applicable
elements stored in XML containing all relevant items. The patterns can be
easily integrated into a website model by transforming their XML elements
into website model XML elements (done by the PatternManager) and insert-
ing them into the website model XML document (done by the Site- or
PageDefiner). After the insertion, the website model is rearranged, the navi-
gation structure is adjusted and the labelling database is updated.

Compared to the concept of templates, user experience patterns represent
a more complex and integrated approach. The patterns used by InFigura are
compositions of different items, from content and navigation items to sec-
tions, some limited to one page, others spanning over several pages. In addi-
tion these applicable patterns incorporate tested usability knowledge. In-
Figura classifies them into two main classes according to their range of ap-
plication: Structural patterns describe complex processes, that affect more
than one page, like online shopping or user registration.

Structural patterns are composed of linked sequences of pages and ele-
ments on every individual page, e.g., information items, functional elements
or link elements. Structural navigation patterns include link elements and
navigation pages needed for special navigation structures like index naviga-
tion. Elements implementing knowledge about usability issues, marketing
and legal aspects are stored in such patterns, too. For example, see Section
4.3. Page element patterns refer to individual web pages. They can be com-
plex content structures, sets of form elements or status information. Page
element patterns can also be part of more complex structural patterns which
implicitly define specific elements for each page (Section 4.4).

3.5 Usability Engineering

Besides the integration of patterns, the InFigura tool supports usability
engineering in different ways. A central labelling database helps to provide
labelling consistency (e.g., link and page labels). Central style sheet man-
agement keeps the visual representation of pages and page elements consis-
tent. Plug-ins add additional usability knowledge.

For example, one plug-in checks the click count to reach a specific goal
(the maximum should be three). Attention areas on pages [1] can be layered
over the edit canvas, helping the IA and/or visual designer to place page
elements on an appropriate position. The automated generation of prototypes
(Section 4.5) is another method of usability engineering comprised by In-
Figura.

InFigura, An Integrated Design Tool 177

4. THE INFIGURA DEVELOPMENT PROCESS
4.1 Workflow

The InFigura workflow can be described as follows (Fig. 2):
1. Definition of page types and their templates
2. Definition of website structure and resources (web pages)
3. Definition of page elements
4. Incremental adjustment and refinement

In the first step, the IA transforms the web site´s features and content
items (scope) into a basic structure. Using the tool, he or she defines sections
and pages of the website. Structural patterns are applied in this step. Next,
primary navigation links are defined. In the following step, the IA edits
pages and defines their individual elements. Further, the website model is
gradually refined as shown in Fig. 2.

Interaction and Interface Definition Workflow.

InFigura offers a structured workflow, but it still allows for the necessary
slack in order to trigger the creativity of the members of the development
team. It supports cooperation between IAs, visual designers and software de-
signers (SD), thus enabling an integrated design workflow. The centralized
website database prevents team members from doing redundant work and
provides consistency over the different development phases. Different views
(Section 3.2) of the website model and data focus on elements appropriate
for each actor, while still displaying their respective context. For example
texters can use a “texter view” to directly write their texts in the correct con-
text of use. An interactive list of the content elements is automatically cre-
ated from the website metadata. Thus content production and delivery can
easily be managed. Additonally InFigura supports the documentation of a
website, like site-structure and/or style guides. In this chapter we use a shop-

178 Tiedtke, Krach, and Märtin

ping website example because it is quite complex and yet a well known ex-
ample.

4.2 Defining Page Types and Templates

Basic page types and their templates are defined first. Table 1 shows ex-
amples of page types, based on [22]. In a later step (Section 4.3) pages are
assigned to page types in order to provide structural and layout consistency
and reduce the modelling effort for individual pages. The visual designer and
the information architect define a universal layout grid visually, by dividing
the page into several semantic canvases and setting a number of attributes,
e.g., fixed-sized ord dynamic-sized layout of pages. Based on this, layout gridst
for all page types are defined, as well as standard page elements. The soft-
ware designer can check these fundamental decisions with respect to their
impact on technical design and implementation.

Table 1. Semantic Page Types

Page Type Meaning
HomePage first page of website
FrontPage first page of a particular section within a website
NavigationPage page that is mainly used for navigation
ContentPage page that contains the actual content the user is searching for
RichContentPage page containing rich media content like videos or sounds
FormPage page containing a form (as the main element)
FormConfirmation page confirming the processing of form data
MoodPage page that stimulates the user's mood and emotions

4.3 Defining Website Structure and Pages

After setting up the project basis with page types, the IA defines the
structure of the site. This is done by translating the goals, features and con-
tent into a navigable structure [5]. The website structure is defined visually
by drawing rectangles and circles representing sections and pages on the edit
canvas. A page type is assigned to any created page, so the created page con-
tains standard page elements. The IA also sets page attributes that are used
for construction, maintenance and analysis of the website (e.g., whether the
page is an entry- or exit-page).

Additional attributes are set by the visual designer (colour set) and the
software designer (static or dynamic page). All these defined attributes are
stored in the central database. Fig. 3 shows a screenshot of the SiteDefiner.
For an example website the IA defines the following sections: Shopping and g
Corporate Information. Afterwards she creates all necessary logical pages
(home page, product list, product detail, order form, confirmation, …). For
standard processes there are predefined structural patterns that also can be

InFigura, An Integrated Design Tool 179

applied by drawing their visual pattern representation on the website edit
canvas. Thus all pages, navigation and page elements contained in the pat-
tern are created in a single step. Some structural patterns are listed in Table
2. For example, if the IA creates an online shopping process as described
above, she has to consider a multitude of aspects from technical and usabil-
ity issues to legal regulations.

The OrderPattern provides abstract task information together with a se-
quence of pages containing all necessary link and function elements. As an
example, the pattern may contain legal regulations as text blocks displaying
some necessary advice and usability issues incorporated in navigation ele-
ments with a consistent labelling. Using this pattern reduces modelling time
and ensures proven usability for the order process.

Table 2. Structural Patterns

Pattern Meaning
Login Pattern login process for registered users
Registration Pattern process for registration with a website
OrderPattern process for online shopping (ordering items)
Navigation Pattern patterns for navigation (grid, index, guided tour, …)

Figure 3. Screenshot SiteDefiner

180 Tiedtke, Krach, and Märtin

4.4 Defining Page Elements

After the site's structure has been arranged, the IA defines the layout and
the elements of the individual pages (the page’s skeleton) using the Page-
Definer. According to its page type, the layout area of each page is already
divided into canvases. Standard page elements have already been set auto-
matically on the page or have been added to a list of elements to be set. The
IA checks these elements and defines more page elements. Examples can be
found in Table 3. In our shopping website the IA would define the following
items on the productdetail page (in addition to standard elements, like top
navigation elements): content elements (product description, product image),
function links (add to cart) and navigation links (related teaser).

Figure 4. Screenshot of the PageDefiner

Fig. 4 shows this example in the PageDefiner. The main editing canvas
contains semantic elements with a metadata editor above. Additionally the
PageExplorer with the structure of the designed page is displayed. The IAr
can use page element patterns for easy and fast creation of complex compo-
nents. Table 4 lists examples of page patterns. InFigura allows page defini-
tion in two ways. An exact mode ee defines placement and size accurately. This

InFigura, An Integrated Design Tool 181

method can be used for rapid development or in projects with a very rigor-
ous style guide. Bubble mode gives more flexibility to the visual designer.
Here, actual positioning and sizes are not defined at this stage.

Table 3. Examples for semantic page elements

Page Element Meaning Syntactic Elements
Content contains actual content of a web page text, image, media
Branding creates branding and image "feeling" image, text
StatusInforma-
tion

information on status of application text

NavigationLinks provide main structural navigation text links, image links
ContentLinks links in context of the page's content text links, image links
FunctionLinks provide functionality text links, form buttons
InputElements allow users to enter data form elements
Notes notes that help the user use the site text, image

Table 4. Examples for page element patterns

Page Element Pattern Meaning
NavigationSelector user can select one navigation item from a list of items
ItemList list of linked items with more information available
TeaserElement linked element that teasers special content
PersonalDataForm form for input of personal data
Bestof Navigation list of most visited pages
ShoppingCart status information and functionality of a shopping cart
PersonalAccount Informat. status information and functionality of personal account
NavigationGroups groups of navigational links
ContactElements elements used for contacting

4.5 Automated Export and Prototyping

After the site’s structure and the basic elements have been defined, dif-
ferent types of prototypes can be produced at all steps of the development
process. This can be achieved by transforming the XML metadata of the
website into different formats like PDF for paper prototypes or F HTML for
clickable prototypes. Size and position of each element are gathered from the
drawing environment – as well as the page element’s hierarchy – and added
to the site´s model. Its navigation and resource elements are then trans-
formed into PDF or HTML using XSLT (Fig. 2).

The paper prototype [17] can be used to test the basic information archi-
tecture at early development stages. Also hints for improving the navigation
structure can be gathered this way.

The clickable prototype allows real-click testing of the information archi-
tecture, interaction and navigation design. New ideas can easily be evalu-
ated. This helps information architects to easily prove concepts. Web agen-
cies, dealing with customers, can use the prototypes to illustrate ideas and
getting better argumentational support.

182 Tiedtke, Krach, and Märtin

Plus, technical system designers can inspect the clickable prototype for
required techniques and the needed concrete behaviour of functions. Visual
designers can test designs not only on static screen designs or printouts, but
in a clickable environment which gives a better impression of the look-and-
feel of the created design.

5. CONCLUSION

The InFigura tool presented in this paper focuses on practical aspects of
website development. Its intuitive handling concepts and visualization en-
ables non-technical users like information architects to participate in the ad-
vantages of an integrated process, while still maintaining the flexibility they
need. The tool integrates conceptual, legal, marketing, as well as visual and
technical aspects of website development, what makes it a valuable devel-
opment system for interdisciplinary cooperation. The exploitation of patterns
and usability guidelines incorporates important design knowledge into the
development life cycle.

Today, where cost optimization is important for all web agencies, the In-
Figura tool increases the efficiency of web development activities and
bridges the gap between software developers and creative web designers.

6. FUTURE WORK

The InFigura tool is currently being developed as a joint project between
allevia gbr and the usability management project at the Department of Com-t
puter Science at Augsburg University of Applied Sciences. It is now plannedf
to extend the functionality of the existing prototype and to use the tool for
the construction of a group of pilot commercial applications. Another goal of
our research is the integration of the tool into the AWUSA website usability
analysis framework [22], completing the support for the overall website life-
cycle. This will lead towards a comprehensive and integrated framework for
interactive media development and analysis.

REFERENCES

[1] Bernard, M., Usability News, accessible at: http://psychology.wichita.edu/surl/usabili-
tynews/3W/web_object.htm

[2] Borchers, J., A Pattern Approach to Interaction Design, John Wiley, New York, 2001.
[3] Conallen, J., Building Web Applications with UML, 2nd ed., Addison-Wesley, Boston,d

2002.
[4] Costagliola, G., Ferruci, F., and Francese R., Web Engineering: Models and Methodolo-

gies for the Design of Hypermedia Applications, in S.K. Chang, “Handbook of Software

InFigura, An Integrated Design Tool 183

Engineering & Knowledge Engineering”, Emerging Technologies, Vol. 2, World Scien-
tific, 2002, Singapore, pp. 181-199.

[5] Fleming, J., Web Navigation Designing the User Experience, O’Reilly & Associates,
Sebastopol, 1 September 1998.

[6] Forbrig, P., Limbourg, Q., Urban, B., Vanderdonckt, J. (eds.), Design, Specification, and
Verification of Interactive Systems, Proceedings of the 9th International Conference on
Design, Specification, and Verification of Interactive Systems DSV-IS’2002 (Rostock,
June 2002), Lecture Notes in Computer Science, Vol. 2545, Springer, Berlin, 2002.

[7] Garrett, Jesse J., The Elements of User Experience, New Riders, Indianapolis, 2002.
[8] Garzotto, F., Paolini, P., and Baresi, L., Supporting Reusable Web Design with HDM-

Edit, in Proceedings of 34th Hawaii International Conference on System Sciences
HICSS’34 (Maui, 3-6 January 2001), IEEE Computer Society Press, Los Alomitos,
2001, accessible at http://csdl.computer.org/comp/proceedings/hicss/2001/0981/07/
09817076.pdf

[9] IBM Eclipse, accessible at http://www.eclipse.org/
[10] Gómez, J. and Cachero, C., Conceptual Modeling of Device-Independent Web Applica-

tions, IEEE Multimedia, Vol. 8, No. 2, April-June 2001, pp. 26-39.
[11] Kahn, P. and Lenk, K., Websites visualisieren, Rowohlt, Reinbek, 2001.
[12] Lin, J., Thomsen, M., and Landay, J., A Visual Language for Sketching Large and Com-

plex Interactive Designs, in Proceedings of ACM Conference on Human Factors in
Computing Systems CHI’2002 (Minneapolis, 20-25 April 2002), ACM Press, New
York, 2002, pp. 307-314.

[13] Macromedia Dreamweaver, accessible at http://www.macromedia.com/
[14] Microsoft Frontpage, accessible at http://www.microsoft.com/
[15] Molina, P., Meliá, S., and Pastor, O., User Interface Conceptual Patterns, in P. Forbrig,

Q. Limbourg, B. Urban, J. Vanderdonckt (eds.), PreProceedings of the 9th International
Conference on Design Specification and Verification of Interactive Systems DSV-
IS’2002 (Rostock, June 2002), University of Rostock, Univ. catholique de Louvain,
2002, pp. 201-214.

[16] Montreal Online Usability Digital Library, accessible at http://hci.cs.concordia.ca/
moudil/

[17] Nielsen, J., Usability Engineering, Academic Press, Boston, 1993.
[18] Nielsen, J., Erfolg des Einfachen, Markt+Technik Verlag, München, 2000.
[19] Perzel, K. and Kane, D., Usability Patterns for Applications on the World Wide Web, in

Proceedings of Pattern Languages of Programs PLoP’99 (Urbana, 15-18 August 1999),
accessible at http://jerry.cs.uiuc.edu/~plop/plop99/proceedings/Kane/perzel_kane.pdf

[20] Puscher, F. Das Usability Prinzip, Dpunkt-Verlag, Heidelberg, 2001.
[21] Rosenfeld, L. and Morville, P., Information Architecture for the World Wide Web,

O'Reilly, Sebastopol, 1998.
[22] Tiedtke, T., Märtin, C., and Gerth, N., AWUSA–A Tool for Automated Website Usability

Analysis, in P. Forbrig, Q. Limbourg, B. Urban, J. Vanderdonckt (eds.), PreProceedings
of the 9th Design, Specification, and Verification of Interactive Systems DSV-IS’2002
(Rostock, June 2002), University of Rostock, Univ. catholique de Louvain, 2002, pp.
251-266.

[23] van Welie, M., van der Verr, G.C., and Eliens, A., An Ontology for Task World Models,
in Proceedings of Conference 5th International Eurographics Workshop on Design,
Specification and Verification of Interactive Systems DSV-IS’1998 (Abingdon, 3-5 June
1998), Springer-Verlag, Wien, 1998, pp. 57-70.

[24] van Welie, M., van der Verr, G.C., and Eliens, A., Patterns as Tools for User Interface
Design, in J. Vanderdonckt, Ch. Farenc (eds.), Proceedings of International Workshop

184 Tiedtke, Krach, and Märtin

on Tools for Working with Guidelines TFWWG’2000 (Biarritz, 7-8 October 2000),
Springer-Verlag, London, 2000, pp. 313-324.

[25] van Welie, M., Task-based User Interface Design, Ph.D. Thesis, Amsterdam, 2001, ac-
cessible at http://www.cs.vu.nl/~martijn/gta/docs/Welie-PhD-thesis.pdf

[26] Wenzel, O., Webdesign, Informationssuche und Flow, Josef Eul Verlag, Köln, 2001.
[27] Wirth, T., Missing Links, Hanser Verlag, München, 2002.
[28] Wodtke, C., Information Architecture Blue Prints for the Web, New Riders, Indianapolis,

2002.
[29] Wroblewski, L., Site Seeing: A Visual Approach to Web Usability, Hungry Minds, New

York, 2002.

Chapter 15

INSTRUMENTING BYTECODE FOR THE
PRODUCTION OF USAGE DATA

Iain McLeod, Huw Evans, Philip Gray and Rebecca Mancy
Computing Science Department, University of Glasgow,
17 Lilybank Gardens – Glasgow G12 8QQ (Scotland)
E-mail: {mcleodia,huw,pdg,rebecca}@dcs.gla.ac.uk
URL: http://www.dcs.gla.ac.uk/contacts/searchresults.cfm?rowid=362 - (??) -
http://www.dcs.gla.ac.uk/~pdg –http://www.dcs.gla.ac.uk/contacts/searchresults.cfm?rowid=459
Tel: +44 141 330 {4256,(),4933, 0918} – Fax: +44 141 330 4913

Abstract We have taken the process of software instrumentation, normally used in the
creation of profiling and debugging tools, and applied it to the production of
usage data for user-computer interaction studies. This paper describes the de-
sign and evaluation of a prototype tool called iGuess, that enables an investi-
gator to discover which methods are used within a Java application when par-
ticular tasks are carried out, and instrument these to produce usage data. A
key feature of the system is that an application can be instrumented without
any need for access to the source code. In this paper we describe the system’s
functionality, briefly explain how it works and present the results of an early
informal evaluation.

Keywords: ByteCode instrumentation, Usability testing tools, Usage monitoring, Software
visualisation.

1. INTRODUCTION

In order to study usage data from an application, one must be able to ex-
tract it. Various approaches to extraction exist: [1,5,7]. These all require ei-
ther modification of the source code of the original application or the use of
a specially built run-time framework. Consequently, the generation and cap-
ture of usage data depends on having the right software in the first place or
considerable programming effort. The Grumps project is developing tools to
assist in the capture, transport, storage and processing of usage data in a dis-

185

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 185–195.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

186 McLeod, Evans, Gray and Mancy

tributed environment. As part of the project, we have addressed the problem
of how to make it feasible for investigators to build customised instrumenta-
tion of applications, even when they do not have access to the original
source code. iGuess, the system described here, is our first attempt at a solu-
tion.

2. INSTRUMENTING AN APPLICATION

Instrumentation is the process of augmenting an application with code
which conveys information about the running process. This is achieved
through the generation and transmission of events and optionally allows con-
trol of the application’s execution.

2.1 iGuess Approach to Instrumentation

For each of the tasks that the investigator wishes to study, he or she must
identify the methods called within a given application. The iGuess design is
based on the notion that an instrumenter can, by interacting with this appli-
cation, identify those interaction methods they wish to capture. iGuess pro-
vides a visualisation and count of the methods being called and allows the
investigator to turn instrumentation of every individual class and method on
or off (we include constructors in our definition of Method). Initially a fully
instrumented version of the application is launched. This generates instru-
mentation data for every method that is called. Using the feedback from
method call counts, the investigator turns off the instrumentation of different
methods according to whether they are used during the execution of the task
to be studied. By a process of elimination, the investigator determines the
methods to be included in the final instrumentation of the application.
 Fig. 1 shows this process, demonstrating the instrumentation of an appli-
cation by iGuess. The application is loaded into iGuess in the form of a Jar
file (the box labelled “Original Application”). A fully instrumented Jar file is
produced (the box labelled “Instrumented Application”) by the process de-
scribed in Section 2.3.1. There is then an iterative cycle of interaction, visu-
alisation and editing (shown by the processes “Interact with Application”,
“View set of methods called” and “Refine Instrumentation”). This cycle as-
sists the investigator in discovering the set of methods they wish to instru-
ment. At the end of the iterative process, only a subset of the methods within
the application is instrumented. This reduces code bloat and unnecessary
event generation. When the investigator is satisfied with the chosen set of
methods, the instrumented application can then be deployed amongst the end
user population (shown on the diagram by the process labelled “Deploy”).

Instrumenting ByteCode for the Production of Usage Data 187

View set of
methods called

Original
Application

DataUser Process

Refine
Instrumentation

Interact with
Application

DeployInstrumented
Application

Figure 1. The Macro Recorder approach.

2.2 Instrumenting an Application with iGuess

2.2.1 Classbrowser

iGuess has a classbrowser-style interface (Fig. 2), which displays the ap-
plication as a tree of packages (), classes (), methods () and construc-
tors (
so that the user can identify what is currently being instrumented and what is
not.

Figure 2. Classbrowser.

188 McLeod, Evans, Gray and Mancy

2.2.2 Instrumentation Editor

The Instrumentation Content Editor allows fine-grained control over
what parts of a method are logged (i.e. its parameters, return types and ex-
ceptions) as well as whether a class or method is currently being instru-
mented. When changes are made, the user is alerted to the fact that any in-
strumented applications they are currently running must be closed and re-
deployed to reflect these changes. The Instrumentation Editor for classes and
methods are both similar in design, with two tabs:

Standard Controls. Standard Controls has a master switch which deter-
mines whether the class or method is being instrumented (shown by the
checkbox “Instrumentation on”“ in Fig. 3). In the case of the method editor,
there is a checkbox for all parameters and exceptions of the method, as well
as for the return value if there is one. Note that the names of method parame-
ters, exceptions and return values are not stored in the bytecode of an appli-
cation and hence are not recoverable.

Figure 3. Standard Controls.

Extra Code. Extra Code, shown in Fig. 4 allows the investigator to insert
his or her own code into a method or class, over and above the standard in-
strumentation code. This could be used, for example, to display an incident
diary during execution of an instrumented application. Of course, use of this
field would require the instrumenter to be a proficient Java programmer.

Figure 4. Extra Code.

Instrumenting ByteCode for the Production of Usage Data 189

2.2.3 Viewing an Instrumented Application

There are two ways of viewing the output of an instrument application,
within the iGuess system: viewing the output of the application since it was
last re-deployed (runtime viewer) and viewing all output from the applica-
tion since iGuess was last re-started (lifetime viewer). These can be cleared
by a reset button if desired. The idea behind the runtime viewer and thet reset
button is that a potential strategy for discovery would be to start up a fully
instrumented application and wait until construction was finished, then clear
the runtime viewer before carrying out an action. Then, the only method
calls displayed (assuming no background threads) would be those directly
generated by that action. The output can be viewed in two ways: as a tree,
via the Call Count Visualiser, and as a list, via the Call Sequence Visualiser.

2.2.4 Call Count Visualiser

The Call Count Visualiser (Fig. 5) is similar to the Classbrowser, show-
ing a tree of packages, classes and methods. This tree (initially empty) is
built on-the-fly as the events are received from the instrumented application.
A count of every method call is stored next to that method entry in the tree.
Methods which were called more recently (the cut-off time defining recent is
user adjustable via a slider control) are displayed in green, those called less
recently are displayed in amber on both the text area and the tree. This is to
help the user to distinguish the events generated by the last action they per-
formed from those generated by previous actions.

Figure 5. Call Count Visualiser.

2.2.5 Call Sequence Visualiser

The Call Sequence Visualiser (Fig. 6) is a text area showing the instru-
mentation events received in order of arrival (and hence of generation).
Similar to the Call Count Visualiser, these are coloured according to time of
arrival. Clicking on a class or method in the Call Count Visualiser highlights
the corresponding event in the Call Sequence Visualiser, facilitating the
analysis.

190 McLeod, Evans, Gray and Mancy

Figure 6. Call Sequence Visualiser.

2.3 The Bytecode instrumentation process

2.3.1 Grumps Bytecode Tool

Grumps Bytecode Tool (GBT) is an API for modifying the bytecode of
an application. It uses the Apache Bytecode Engineering Library (BCEL)
API [11]. GBT replaces the standard Java bytecode for creating a new object
on the heap:

SomeObject obj = new SomeObject();
with a call to a nominated static method:

SomeObject obj = (SomeObject) Util.create (“SomeObject”);
The static method hands out an instance of a subclass of that object

which we generate by inspecting the object using the Java reflection API.
Each method we wish to instrument within this subclass will contain the in-
strumentation code plus a call to the superclass method (which ensures the
original application’s code is executed). The usage data produced by this
code is packaged up into an Instrumentation Event, which is relayed through
the Grumps data transport network (GrumpsNet [4]) via a call to a static
method in a “Logger” class:

Logger.log(InstrumentationEvent evt);

Instrumenting ByteCode for the Production of Usage Data 191

2.3.2 Related Work

The technique used by GBT is similar to that of JRat [12], a profiling tool
which is also built upon BCEL. JRat and GBT both require pre-processing
of the application. JFluid [13] is another profiling tool which can attach to a
running process and create instrumentation within a method, as well as be-
fore and after the method call (this requires sourcecode). However, it re-
quires a modified Hotspot™ Virtual Machine to run. BIT [8] and JOIE [3]
are both bytecode editing tools which provide similar functionality to that of
BCEL. Kaldi [1] provides instrumentation by replacing the core Java AWT
classes with pre-instrumented ones. This is not instrumentation by bytecode
manipulation, instead being instrumentation by replacement of core APIs.
However it achieves a similar end result. Chander, Mitchell and Shin [2] dis-
cuss the applications of replacing objects with safe subclasses to implement
mobile code security.

3. EVALUATIVE STUDIES

We have carried out a small, informal evaluation of iGuess to test its fea-
sibility and to identify problems in its interaction model and user interface.
Six users, with a variety of programming backgrounds, were invited to in-
strument a computer-based version of the board game Connect4, identifying
the occasions when a move was made. We asked them to think aloud during
their tasks and we also interviewed them afterwards.

Two trials were carried out with each subject. They were first given a
version of iGuess which initially produced a full instrumentation of our sam-
ple application, i.e. one in which every method was fully instrumented to
produce events. This task was intended to test their ability to cope with large
amounts of data being produced by an application and of narrowing down
their search by switching off methods within the instrumentation. The
method used was thus a process of elimination.

Users were then given a version which started with an empty instrumen-
tation, i.e. one in which none of the methods were initially instrumented.
This was designed to evaluate their ability to use the interface to find the
method which carried out a given action by looking at the names of pack-
ages, classes and methods. This could be described as a process of induction.

The main finding of our evaluation was that unstructured instrumentation
(i.e. without any knowledge of the structure of the target application) is not
desirable. A large number of events were generated by a fully instrumented
application - in the region of 2000 just for the initial construction and display
of a small sized application. A number of methods, particularly in user inter-

192 McLeod, Evans, Gray and Mancy

faces are low level, and are called many times. Actions such as moving the
mouse cursor across the screen of some applications can generate hundreds
of method calls as the application repaints. As methods are called in rapid
succession, the application slows considerably, so as to be almost unusable
in larger applications. See Section 4, Two Way Communication. In contrast,
when faced with an empty instrumentation, users did not know where to be-
gin looking within classes and methods to find suitable points of entry for
instrumentation. There were a number of other findings, the most important
of which are the following:

3.1.1 Problems of Search and Information Management

Lack of support for key tasks: Displaying full information on a method
within the tree of the classbrowser (e.g., “void wait() throws java.lang.
InterruptedException”) forced the user to scroll and expand the tree hori-
zontally to see all of the information on the method and placed too much
burden on users (particularly novice programmers).

Lack of support for key tasks: The lack of a search facility for finding a
given class or method within the Classbrowser or Call Count Visualiser.

3.1.2 Problems of Navigating Code Structure

Affordance of key tasks: When viewing and instrumenting a class, the
methods it declares should be separated from the methods that its super-
classes declare. This can easily be identified using the reflection mecha-
nism and the method getDeclaringClass().

3.1.3 Supporting the instrumentation process

Lack of support for key tasks: The lack of the support for highlighting
and annotating a method that the user was interested in looking at.

Affordance of key tasks: The master switch (“Instrumentation On”) for
adding or removing a method or class from the currently instrumented
set was hidden amongst the controls for fine-tuning the content of the in-
strumentation (Fig. 3), making it difficult for the user to find.

Affordance of key tasks: Subjects also found it hard to make the semantic
jump from clicking on a method or class in the classbrowser to editing it
in the class or method editor. This would have been better implemented
via a right click popup menu in the tree.

Lack of support for key tasks: Another desirable task not supported was
to edit the instrumentation of groups of classes or methods simultane-

Instrumenting ByteCode for the Production of Usage Data 193

ously.

Integration of key tasks in the instrumentation process: Visualising of in-
strumentation output and editing of instrumentation should be handled
within one part of the user interface, not separated as at present (many
users found it hard to distinguish between the Classbrowser and Call
Count Visualiser and tried to select methods for editing with the latter in-
stead of the former).

Lack of support for key tasks: The Call Sequence Visualiser was less
useful than the Call Count Visualiser in the process of discovering the
methods to instrument. Subjects used it a lot less than expected. Most
found it produced overwhelming amounts of information, which was not
well structured for digesting. The consensus was that had it provided
simply the name of the method, it would have proved to be a more valu-
able tool.

4. CONCLUSION
iGuess is primarily intended to be a tool for users such as HCI experts

and psychologists who may wish to generate data rapidly from specific parts
of an application. The major issue uncovered by our study is the level of
knowledge required to use the tool. With a classbrowser style interface,
iGuess is only realistically usable by someone with training and experience
in programming. The challenge, then, is to increase the potential user base of
future versions by minimising this specialist knowledge requirement. We be-
lieve that this is possible by shifting the focus of iGuess from a pack-
age/class/method-centric visualisation to one which more closely resembles
what the instrumenter sees when interacting with the application. Special-
ised applications, such as those described in Section 2.2.2, would still re-
quire programming knowledge, although tools such as incident diaries could
be pre-instrumented. Suggestions to this end are outlined in the rest of this
section, alongside other envisaged improvements to the tool.

Toolbox of commonly used UI components. The concept of a “Toolbox”
of commonly used UI components, such as buttons or menu items could
be introduced. These would be pre-instrumented. The user could select a
component from the toolbox and apply it to an application during editing
of its instrumentation. During the discovery process, the first time an in-
stance of that component is selected by the investigator on the instru-
mented application; it could initiate a dialogue with the instrumenter to
determine instrumentation. In this way, iGuess would shift the necessity
for knowledge of the internal structure of the application to knowledge
of the structure of its user interface.

194 McLeod, Evans, Gray and Mancy

Alternative visualisations of method call sequences. Several complimen-
tary techniques for visualising program execution which could be incor-
porated are demonstrated by Jerding et al. [6] and De Pauw et al. [9].
Creation of instrumentation code. In versions of Java prior to 1.4, there
was no support for persistence of an arbitrary object (they had to imple-
ment the Serialisable interface). A plug-in architecture was created to al-
low the content of an instrumentation event to be customisable – with the
default implementation simply calling toString(). With the inclusion of
the XMLEncoder and XMLDecoder classes in Java 1.4, this is no longer
an issue.

Two way communication. Instrumentation content could be controlled by
sending control events to the instrumented application. This would allow
the instrumenter to place a limit on the number of times a given method
call was logged within an interaction session. This would mean that an
instrumenter could be made aware of the fact that a method was being
called several times, without this causing the performance degradation
described in section 3.

Machine Learning. The process of discovery could be further automated
by using machine learning to analyse the sequence of method calls pro-
duced by an instrumented application as the investigator carries out the
task he or she wishes to study. This is necessary because these methods
may be executed by multiple threads within the instrumented application
and events may thus arrive out of order and with spurious events be-
tween them.

Code building. Our current implementation of iGuess does not deal with
pathological cases such as anonymous inner classes, final classes and
private constructors. These can be dealt with using techniques such as
JavaCloak [10].

Extension to other bytecode-based languages. iGuess is limited to in-
strumenting Java applications. However, the same approach is applicable
to any bytecode-based language, (e.g., C# and other .NET languages).
We intend to extend iGuess to handle other languages, as the opportuni-
ties allow.

ACKNOWLEDGEMENTS

This work was funded by EPSRC Grant GR/N38114. We wish to thank
Hunter Bryce, Steve Draper and Richard Thomas for their valuable contribu-
tions to the iGuess design and evaluation.

Instrumenting ByteCode for the Production of Usage Data 195

REFERENCES

[1] Al-Qaimari, G. and McRostie D., KALDI: A Computer-Aided Usability Engineering
Tool for Supporting Testing and Analysis of User Performance, in A. Blanford, J. Van-
derdonckt, Ph. Gray (eds.), Proceedings of the 15th Annual Conference of the British
HCI Group IHM-HCI’2001 (Lille, 10-14 September 2001), Springer-Verlag, London,
pp. 153-169.

[2] Chander, A., Mitchell J.C., and Shin, I., Mobile Code Security by Java Bytecode Instru-
mentation, in Proceedings of the 2001 DARPA Information Survivability Conference &
Exposition DISCEX-II’2002 (Anaheim, 12-14 June 2001), IEEE Computer Society
Press, Los Alamitos, 2002, pp. 1027-1040, accessible at http://citeseer.nj.nec.com/chan
der01mobile.html.

[3] Cohen, G., Chase, J., and Kaminsky, D. Automatic Program Transformation With JOIE,
In Proceedings USENIX Annual Technical Conference (New Orleans, 15-19 June 1998)
USENIX Association, Berkeley, 1998, pp. 167-178.

[4] Evans, H., Atkinson, M., Brown, M., Cargill, J., Crease, M., Draper, S., Gray, P.D., and
Thomas, R.C., The Pervasiveness of Evolution in GRUMPS Software, Software: Practice
and Experience, Vol. 33, No. 2, February 2003.

[5] Hilbert, D.M. and Redmiles D.F., Extracting Usability Information from User Interface
Events, ACM Computing Surveys, Vol. 32, No. 4, December 2000, pp. 384-421.

[6] Jerding, D.F., Stasko, J.T., and Ball, T., Visualizing Interactions in Program Executions:
International Conference on Software Engineering ICSE’97 (17-23 May 1997 Boston),
ACM Press, New York, 1997, accessible at http://citeseer.nj.nec.com/ jerding97visualiz-
ing.html.

[7] Kölling, M., Quig, B., Patterson, A., and Rosenberg, J., The BlueJ System and its Peda-
gogy, The Journal of Computer Science Education, Special Issue on Learning and
Teaching Object Technology, Vol. 13, No 4, pp. 249-268, December 2003.

[8] Lee, H.B. and Zorn, B.G., BIT: A Tool for Instrumenting Java Bytecodes, In Proceedings
USENIX Symposium on Internet Technologies and Systems, 1998.

[9] De Pauw, W., Helm, R., Kimelman, D., and Vlissides, J., Visualizing the Behavior of
Object-Oriented Systems, in Proceedings of the Conference on Object-oriented Pro-
gramming Systems, Languages and Applications OOPSLA '93 (Washington, 26 Septem-
ber-1 October), 1993, accessible at http://citeseer.nj.nec.com/depauw93visualizing.html

[10] Renaud K, Evans H. JavaCloak: Engineering Java™ Proxy Objects using Reflection.
NET.OBJECTDAYS 2000, Messekongresszentrum Erfurt, Germany, accessible at
http://www.netobjectdays.org/pdf/00/papers/jit/evans.pdf.

[11] BCEL: The Java Bytecode Engineering Library, accessible at http://bcel.sourceforge.net
[12] JRat: The Java Runtime Analysis Toolkit, accessible at http://jrat.sourceforge.net
[13] JFluid:dynamicbytecode instrumentation, accessible at http://research.sun.com/projects/

jfluid/

Chapter 16

PATTERNS IN MODEL-BASED ENGINEERING

Daniel Sinnig1,2, Ashraf Gaffar2, Daniel Reichart1, Peter Forbrig1

and Ahmed Seffah2

1Software Engineering Group, Department of Computer Science,
University of Rostock, Rostock (Germany)
E-mail: {daniel.reichart, Peter.Forbrig}@informatik.uni-rostock.de
2Human-Computer Software Engineering Group, Department of Computer Science,2

Concordia University, Montreal (Canada)
E-mail: {d_sinnig, gaffar, seffah}@cs.concordia.ca

Abstract In this paper we demonstrate how patterns can act as a driving force for the
development of interactive applications. As knowledge re-use is becoming
more and more crucial, patterns can be an effective tool to represent knowl-
edge of the HCI domain. Using a model–based development methodology, it
is shown how patterns can act as building blocks for the establishment of these
models. Starting from outlining the general process of pattern application, we
discuss how and which patterns are suitable for several models. In particular
we discuss the application and use of patterns for the task, dialog and presenta-
tion models. Furthermore, we suggest an interface for patterns using “generic
classes” and give concrete examples to corroborate our approach. This allows
for modular patterns reuse and plausible parameter exchange with the underly-
ing system. Tool support is based on XML-representations of patterns using a
template engine.

Keywords: Model-based interface design, Patterns, Task modelling, UI engineering.

1. PATTERNS FOR MODEL-BASED DESIGN

The concept of patterns has been transferred to the software community
by [5]. Their book “Design Patterns” contained a collection of patterns for
the design of object–oriented software. The book has been widely acknowl-
edged and referenced within the community. Recently, like in the software
engineering community, the user interface design community has also been a
forum for vigorous discussions on pattern languages for User Interface (UI)

197

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 197–210.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

198 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

design and usability engineering. UI patterns are an effective way to transmit
experience about recurrent problems in the HCI domain related to UI design
issues. A pattern is a named, reusable solution to a recurrent problem in a
particular context of use. Even though patterns serve a number of different
purposes (education, discussion ground, re-use, etc.), this paper mainly looks
at patterns as vehicles for re-use of existing solution.

Since UI patterns capture the essence of successful solutions to recurring
design problems, correctly applying them will help avoid “re-inventing the
wheel”. They could accelerate the development of initial prototypes and help
designers reuse successful, elegant designs without the need to rediscover
these designs [5]. In the following, we will introduce our approach of devel-
oping a formal notation for patterns within the scope of a model–based de-
sign of interactive applications.

1.1 The Impact of Patterns on the Model–Based Frame-
work

In a model based UI design methodology, various models are used to de-
scribe the relevant aspects of the user interface. Fig. 1 portrays that many UI
facets exist and reflects the relevant models for tasks, business objects (do-
main), users, dialogue and presentation.

First, design decisions are made to establish the envisioned task model in
which the future support of the interactive system is already considered. Ad-
ditionally, models for capturing user characteristics and business objects are
developed. Based on these rather abstract models, a dialog, a presentation
and a layout model are derived to reveal some implementation details of the
user interface. Due to the lack of tool support and libraries populated with
existing solutions and ideas, model based user interface design has not
reached the mainstream software developer, yet [14]. We believe that pat-
terns have the potential to overcome this major shortcoming. Therefore, as
demonstrated in Fig. 1, in our approach we are aiming to use patterns as
building blocks in order to create the various models. In the following we
will demonstrate how patterns can impact several models. In particular we
will focus on the impact of patterns on the envisioned task model, the dialog
model, the presentation model and the layout model.

1.2 The Process of Pattern Application

In the domain of software development, the reuse of ideas and knowledge
is becoming more and more crucial as a solution to the stark competition, the
demand on more quality and less time-to-market, and the steady increase in
complexity [10]. “Reusability” is considered as an important quality factor

Patterns in Model-Based Engineering 199

[7]. Using patterns can be an effective way to transmit experiences about re-
current problems in the software and UI development domain. Therefore a
solution should be generic enough to apply to different contexts of use. In
other words patterns should be formulated generically enough to withstand
variations of context and domain. Before the pattern solution stated in the
pattern is really tangible and applicable, it must be adapted to the current
context of use.

Figure 1. Patterns as building blocks within a model based methodology.

Thus we suggest that patterns contain variables, which can act as place-
holders for each particular context of use. In other words, the variables must
be bound to concrete values representing the surrounding context. Assuming
that patterns are applied to models, the process of pattern applications com-
prises four sequential steps:

1. Identification: A subset M’ of the target model M is identified: M’ M.MM
This should reduce the domain size, and help focus the attention on a
smaller subset of concern for the next step.

200 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

2. Selection: An appropriate pattern P is selected to be applied to P M’. By
focusing on a subset of the domain, the designer can scan M’ more effec-’
tively to capture potential “spots” that could be improved using some
patterns. This is the most important step of all the four. It depends
strongly on the experience and the creativity of the designer.

3. Adaptation: A pattern is an abstraction that must be instantiated. There-
fore in this step the pattern P will be adjusted according to the context of P
use resulting in the pattern instance S. In a top down process all variable
parts will be bound to specific values, resulting in a concrete instance of
the pattern.

4. Integration: The pattern instance S will be integrated intoS M’ by con-’
necting it to the other elements in the domain. This may require replac-
ing, updating or otherwise modifying other objects to produce a seamless
piece of design.

Automatic tool support is important in order to integrate patterns effec-
tively into the development life cycle of interactive applications. Moreover
by integrating the idea of patterns into development tools, patterns can be a
driving force throughout the entire UI development process. For instance the
top-down process of pattern adaptation can be greatly assisted by tools such
as Wizards. A Wizard runs through the pattern tree and questions the user
each time it encounters a variable that has not been resolved yet. We have
developed a prototype of a task pattern wizard (introduced in [11]), which
supports all phases of pattern integration for the task model, ranging from
pattern selection over pattern adaptation until pattern integration. Which pat-
terns are applicable for the task model is introduced in the next section.

2. PATTERNS FOR THE ENVISIONED TASK
MODEL

The envisioned task model describes how activities can be performed to
reach the user’s goals when interacting with an interactive system [9]. Using
task models, designers can develop integrated descriptions of the system
from a functional and interactive point of view. Task models typically are
hierarchical decompositions of goals, tasks and subtasks into atomic actions
[12]. Also the relationships between tasks are described in correlation with
the execution order or dependencies between peer tasks. The tasks may con-
tain attributes about the importance, the duration of execution and the fre-
quency of use. In order to speed up the process of establishing the task
model and to integrate proven and efficient solution, we suggest using pat-
terns as building blocks. In the following we will explain how patterns for
the task model should be written and how they should be applied. In a subtle
manner we distinguish between two kinds of patterns that are applicable for

Patterns in Model-Based Engineering 201

the user-task model: Task Patterns and Feature Patterns.

Task Patterns describe the activities the user has to perform while pur-
suing a certain goal. The goal description acts as an unambiguous identi-
fication for the pattern. In order to compose the pattern as generic and
flexible as possible, the goal description should entail at least one vari-
able component. As the variable part of the goal description changes, the
content solution part of the pattern will adapt and change accordingly.
Task Patterns can be composed out of sub-patterns. These sub-patterns
can either be task-patterns or feature-patterns.
Feature Patterns, applied to the user-task model describe the activities
the user has to perform using a particular feature of the system. For the
purpose of this paper we define a feature as an aid or a “tool” the user
can use in order to fulfil a task. Examples of these features can be “Key-
word Search”, “Login” or “Registration”. Feature patterns are identified
by the feature description, which should also contain a variable part, to
which the realization of the feature (stated in the pattern) will adapt. Fea-
ture patterns can comprise other sub-feature patterns.

As we mentioned above, the difference between task and feature patterns
is subtle, but noticeable. While task patterns concentrate on a specific goal,
the same task can be accomplished in different ways using different feature
patterns. That is why feature patterns are important as a classification. Simi-
larly, the same feature pattern can be used to accomplish different task pat-
terns. Therefore it is safe to say that there is a many-to-many relationship be-
tween the two. To summarise, Task patterns are concerned with the user
goals (what we need to do), while feature Patterns are concerned with the
system behaviour (how we can do it). A typical task performed in many dif-
ferent applications is to find something. This can range from finding a book
at www.amazon.com to finding a used car at www.cars.com, to even finding
a computer in a network environment. All these tasks embody the same basic
task and can just be distinguished by the particular “Find” object in the goal
description. In order to create a generalised Find Pattern, we must abstractd
the particular object we are searching, and replace it with a generic variable.

Figure 2. Pattern for find information.

202 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

For the sake of simplicity, let us assume that a simplified version of the
Find pattern suggests that “Find” information can be performed by brows-d
ing, searching or using an agent. In the left part of Fig. 2 the Find pattern isd
displayed in an abstract manner. We have used the UML notation for para-
metric classes is used to portray the pattern. The variable “Information” is
utilised as a placeholder for the particular type of information one is trying
to find. In the right part of Fig. 2 a possible instance of the pattern is shown.
The details of the resulting task tree are illustrated with CTTE notation [9].

Moreover, it is visualised that the Find pattern is composed of the featured
patterns Browse, Search and Agent. If we place patterns in such an “aggrega-
tion” relation we have to pay special attention to the variables. It is shown in
Fig. 3 that a variable, defined at the super-pattern level can affect the vari-
ables used in the sub patterns. The value of the variable “Information” of the
Find pattern is used to assign the “Object” variable in all sub patterns. How-d
ever the variables “Number_Elements”, and “Frequency” of the sub-patterns
Browse and Agent remain undefined. During the process of adaptation, thet
variables of each pattern must be resolved top-down and replaced by con-
crete values.

In Fig. 3, we have bound the variable “Information” with the value
“Book” to create the patterns instance Find Book; and with the value “Car”
to create the instance Find Car. Please note that with the binding of a con-
crete value to the variable “Information” in the goal description, the body of
the pattern has changed accordingly. After the pattern adaptation process, the
patterns instance can be integrated in an already existing task model. In Fig.
3, Find Car has been integrated into the Car-shop task model. This processr
of integrations is visualised using the inheritance relationship and can be in-
terpreted as: Car-shop has inherited all methods (tasks) from Find Car.
Eventually after resolving all variables, the pattern instance will be trans-
formed into a concrete task structure. Practically this integration process is
not realised by inheritance. It is supported by a wizard, which is described in
[11].

Figure 3. The Find pattern and its instances.

Patterns in Model-Based Engineering 203

3. PATTERNS IN THE PROCESS OF DERIVING
THE UI FROM ABSTRACT DESCRIPTIONS

Until now it was described how patterns can be used as building blocks
for establishing task models. Task models as well as user and object models
are rather abstract and deal only indirectly with user interface issues. In the
following we will explain how an implementation of a user interface can be
derived from these abstract descriptions. Moreover it will be shown how pat-
terns can drive and influence this process.

In Fig. 1, we have portrayed four milestones on the way from an abstract
description to the implemented user interface. First a dialog model is interac-
tively derived from the task, user and object model. The dialog model asso-
ciates several tasks to dialog views and defines transitions between these
dialog views. At this stage dialog patterns can help grouping the tasks and
suggest sequences between dialog views. Next, in order to develop the pres-
entation model the tasks of each dialog view are associated with interaction
elements such as buttons, trees and lists. Moreover, some domain objects
(tools or artefacts) which are related to the tasks are also mapped to interac-
tion elements. Presentation patterns can be applied in order to map complex
tasks (such as advanced search) to a predefined set of interaction elements.

Within our approach presentation patterns are described as Velocity XUL
templates [18]. Thus, our presentation model consists of a set of XUL code
fragments. Each fragment describes one or a set of interaction objects. After
that the interaction objects are positioned following an overall layout or floor
plan resulting in the layout model. Additionally, the visual appearance of
each interaction element is specified by setting fonts, colours and dimen-
sions. In our framework layout patterns –which are described as XUL tem-
plates as well– are used to integrate proven layouts and design solutions.
Practically the loose set of XUL fragments of the presentation model is ag-
gregated to XUL code. Finally this XUL code is automatically rendered to a
concrete user interface implementation. In the following we will explain in
greater detail each phase.

According to our model–based framework the presentation model and
layout model are logically separated. We decided to split them into two cate-
gories, since we believe that for each model different kinds of patterns apply.
The first category contains patterns that describe a set of interaction
elements (presentation patterns). The other category contains patterns that
describe the layout of the interaction elements (layout patterns).

3.1 Patterns and the Dialog Model

The dialog model specifies the user commands, interaction techniques,

204 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

interface responses and command sequences that the interface allows during
user sessions. It must encompass all static and dynamic information the user
needs for the dialog with the machine. This information is grouped into sev-
eral dialog views. The dialog view contains functionally- and logically re-
lated elements of the task model and the business object (domain) model.

In short, the dialog model specifies the navigational structure of the UI
and the interaction techniques [15]. It is a more specific model and can be
derived in good part from the more abstract task-, user- and business object
models.

There are different strategies to design the dialog model. One possibility
is the evolution of the task model to a final user interface. Janus [1] uses in-
formation mainly from the object model. However, most approaches are
based on tasks. TERESA [6] follows an idea of grouping tasks based on pre-
conditions, which allows an automatic generation of dialogue models.

Finding dialog views and transitions is closely connected to the underly-
ing task models. On the one hand, structural information from the task
model, which describes the task–subtask hierarchy can be used to group re-
lated tasks into task views. On the other hand temporal transitions between
sub tasks can be used to constrain and derive possible dialog transitions [9,
15]. Consequently patterns applied to the task model indirectly affect the
dialog model and in particular the dialog graph. Let us take the example of
the Multi Value Input Task Pattern introduced by [2]. For the sake of sim-k
plicity let us assume that our Multi Value Input Task pattern describes a task k
structure in which the user edits various values. After all values have been
entered the user can submit them.

In the left fraction of Fig. 4 the interface of the dialog pattern Wizard isd
illustrated. It is parameterised with the variable “Number” which stands for
the number of dialogs the wizard will run through. Let us assume that we
will use the Wizard pattern in order to realise thed Multi Value Input Task. An
instantiation for three input tasks of the pattern is depicted in the right frac-
tion of Fig. 4 and visualised as a dialog graph using the notation introduced
by [4].

Adopting the semantics of this graph, the user sequentially inputs three
values. After entering the third value submit can be performed and the dialog
view will be closed. In particular the user runs through a sequence of three
single dialogs, starting from dialog one. From each dialog only one of the
neighbour dialogs (previous or next) can be reached. After submitting the
third dialog the overall dialog view will be closed.

In order to validate, find and apply dialog patterns we have developed a
tool called “DialogGraphSimulator” [4]. Using our application the user can
interactively “walk through” the dialog graph. The DialogGraphSimulator
helps to define multiple dialog structures for one task model. Different at-

Patterns in Model-Based Engineering 205

tempts can be opposed to each other and the best solution can eventually be
extracted. Due to the separation of task and dialog structure, dialog patterns
can be brought in independently. As the DialogGraphSimulator processes
dialog structures described in XIML [3], our dialog patterns are formalised
as XIML fragments as well. Currently we are developing a tool, similar to
the TaskPatternWizard, to allow the computer aided adaptation and integra-
tion of dialog patterns.

Figure 4. Interface, instance and simulation of the Wizard dialog pattern.

Fig. 4 (lower right corner) contains also a screenshot of the simulation of
the Multi Value Input Task pattern implemented as ak Wizard. Each dialog is
visualised by a little window. Buttons in each window portray the possible
transitions to other dialog views. The third input dialog is currently active.
From this dialog it is either possible to go back to the second dialog or to
press submit, which would close the dialog view.

3.2 Patterns and the Presentation Model

In the presentation model, a set of abstract UI elements is defined to de-
termine the abstract appearance of the user interface. In particular, the
grouped tasks of each dialog view are associated with a set of interaction
elements such as buttons, trees and lists. Moreover some domain objects,
which will be displayed on the interface, are mapped to interaction elements
as well. Please note that all interaction elements should be described in an
abstract manner. Style attributes such as size, font, and color remain open
and will be defined by the layout model.

We have chosen the generic user interface description language XUL
[18] as a medium to describe the presentation model. Thus our presentation
model basically consists of a set of XUL fragments. Each fragment repre-
sents a single interaction elements or a group of interaction objects.

For the presentation model, presentation patterns embody building inter-
face object blocks. In practice, instantiations of presentation patterns deliver

206 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

XUL fragments which -again- describe user interface objects. Therefore
each presentation pattern must have a mechanism to generate variants of
XUL code depending on the assignment of their variables. We have chosen
to employ XUL Velocity templates in order to implement the patterns. Ve-
locity templates can be used to dynamically generate XUL code. If the vari-
able parts of the presentation pattern change, conditions, loops and other
control structures are used to adapt the template (pattern) accordingly.

Fig. 5 portrays three different views on a simplified version of the Input
Form pattern. On the left hand side, the interface of the patterns is displayed
showing that only one parameter “Number” is expected. This parameter de-
termines the number of elements to be entered.

The middle part of Fig. 5 shows the formalization of this pattern, which
consists of a mixture of XUL and velocity template code. The variable
$NUMBER is used to determine the number of iterations of the #foreach
loop. Within the loop XUL code for displaying the Input fields and labels is
produced. Eventually, the outcome of this template (the instantiation of the
pattern), which consists of “pure” XUL code can be rendered to a UI frag-
ment of the target platform. The right part of the illustration shows the
screenshot of the result of rendering the Input Form pattern instance to Win-
dows XP desktop platform.

Please note that, in practice, the Input Form presentation pattern is sig-
nificantly more complex. Since it must embody information and parameters
for the types of data input or the internal alignment of the interaction objects.

Figure 5. Different views on the Input Form presentation pattern.

3.3 Patterns and the Layout Model

In the layout model, the various XUL fragments of the presentation
model are merged together resulting in aggregated XUL code. The loosely
connected XUL pieces are nested and associated together. The way these
fragments are merged together depends on the overall “layout” of the entire
application.

Usually a Web site or a GUI consists of several pages or windows. In or-
der to maintain a consistent feeling across them, the same basic layout or
floor plan should be kept throughout the entire interface. Depending on the

Patterns in Model-Based Engineering 207

purpose, the complexity, the in-house style and other attributes, a certain ba-
sic layout for the UI is chosen. Selecting a basic layout style usually deter-
mines the positioning of navigational elements such as search elements and
menus or the size and position of information containers. As a result of this
merging process, the style attributes of the UI elements -which were not set-
are bound to concrete values. Patterns such as Column Layout, Liquid Lay-
out ort Card Stack are used to determine the structure of the layout model.k

As Velocity templates can be used to generate XUL fragments (presenta-
tion model) they can also be used to aggregate XUL code. Therefore layout
patterns are formalised as Velocity XUL templates as well, and the instantia-
tion of these patterns consists of pure XUL code.

Eventually the established layout model (XUL code) is used as input for
the automatic generation process in which the concrete interface is gener-
ated. Please note that the same layout model can be rendered to different tar-
get platforms such as Java Swing and Mozilla /Netscape. XUL has its focus
on window-based user interfaces. At the moment XUL specifications cannot
be rendered to multiple user interfaces including small devices.

4. RELATED WORK

In [16], van Welie describes how patterns can be used as tools for User
Interface Design. He recognised that different kinds of patterns should be
formatted in a way, which promotes best its purpose. Within our framework
patterns are intended to describe model fragments. Each model is described
differently and thus we have introduced different kinds of patterns which
have their own formalisation.

According to van Welie’s patterns are applicable in different contexts
and for each context the adaptation of pattern is necessary. We have adopted
this principle and attributed our patterns with variables, which are place-
holders for the particular context of use, in which the pattern will be applied.

Van Welie also published a pattern language for interaction design [17].
However all patterns are documented in an informal, narrative way which
makes it nearly impossible to implement them in development tools. The
overall goal of our approach is the computer aided generation of models,
which incorporates patterns as building blocks for re-use. Therefore in this
paper we have suggested a possible formalization of patterns.

In [8], Molina also recognised that the mostly-informal description of to-
day’s patterns is not suitable for processing them by tools. Within his Just-
UI framework, a more precise description of patterns is necessary, which can
be interpreted by software tools like validators or code generators. A set of
conceptual patterns which realise so-called interaction units is proposed. Ac-

208 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

cording to Molina frequent scenarios in user interfaces can be specified with
very little effort by combining these interaction units. Molina’s patterns are
closely connected to the underlying domain object model. They focus on ob-
ject manipulation and visualization. Compared to our approach Molina’s
conceptual patterns apply primarily to our presentation model. However, in
his work it is also shown how a task description can be extracted and hence
the patterns can be applied to underlying task model as well.

Trætteberg [13] recognized that multiple representations should be used
in the UI design process and that a uniform modelling language must support
the transition between the various presentations. In his work, he suggested
RML, TaskMODL and DiaMODL as interlocking fragments of a uniform
language for task, domain and dialog modelling. As TaskMODL is quiet
similar to our task model DiaMODL is based on the Pisa Interactor and the
UML Statecharts notation. Interactors are used to describe the functionality
and behaviour of concrete interaction objects, whereas statecharts model the
information flow and activation and deactivation of interactors [13].

On the contrary, our dialog model only groups tasks to dialog views and
defines transitions between the various dialog views. This allows an earlier
generation of a non-functional prototype and thus, earlier user evaluation
and earlier iterations. In comparison to Trætteberg’s work one could say that
within our dialog model the generic interactor is assigned to each task.

Within our framework the definition of interaction objects is described
by the presentation model, whereas Trætteberg specifies interactors already
during dialog modelling. He uses Statecharts to model the dynamic behav-
iour including the information flow. At the moment our framework focuses
on the generation of non-functional interface prototypes. Thus, the issue of
modelling the dynamic behaviour and the information flow between interac-
tors has not been tackled in this work.

In parallel to our approach Trætteberg also suggested to formulate model
fragments as patterns in order to facilitate the re-use. In particular he points
out the need for patterns in order to describe the mapping between concrete
dialog elements to abstract interactors (Presentation and Layout Patterns)
and the mapping from tasks to dialogs (Dialog Patterns).

5. CONCLUSION

In this paper, we demonstrated how patterns could be used in conjunction
with models to support the UI development process. The core ideas we in-
troduced were highlighted by some examples.

In our model-based framework the application of patterns has a number
of advantages. First, they can reduce the time required for UI engineering

Patterns in Model-Based Engineering 209

since for many of the common problems, some pattern solutions already ex-
ists. Moreover, a consequent use of UI patterns help in the comprehension of
the system for future maintenance.

In particular we have shown which patterns are suitable for several mod-
els. In the case of presentation and layout patterns we have suggested a pos-
sible formalisation of patterns using Velocity XUL templates. Even though
the validity of our approach can not be formally proven, through the realiza-
tion of the TaskPatternWizard we have experienced that the concept of pat-
terns is applicable and realizable at least for the task model. Furthermore we
are progressing in developing a tool that processes and applies dialog pat-
terns.

For the future we aim to develop an all-embracing tool set that supports
the integration of patterns into all steps of our model-based framework. We
wish to ground our pattern-driven UI engineering methodology as solidly as
possible on empirical data and theoretical principles. Furthermore we will
validate and compare design patterns with usability tests, particularly for
new and experimental patterns and extend our framework to be able to gen-
erate functional UI prototypes. In particular we will try to model the infor-
mation/data flow between the various UI elements.

REFERENCES

[1] Balzert, H., From OOA to GUIs: The JANUS System, Journal of Object-Oriented Pro-
gramming, Vol. 8, No. 9, February 1996, pp. 43-47.

[2] Breedvelt, I., Paternò, F., and Severiins, C., Reusable Structures in Task Models, in M.D.
Harrison, J.C. Torres (eds.), Proceedings of 4th International Eurographics Workshop on
Design, Specification, and Verification of Interactive Systems DSV-IS’97 (Granada, 4-6
June 1997), Springer-Verlag, Vienna, 1997, pp. 251-265.

[3] Eisenstein, J., Vanderdonckt, J., and Puerta, A., Model-Based User-Interface Develop-
ment Techniques for Mobile Computing, in J. Lester (ed.), Proceedings of 5th ACM Inter-
national Conference on Intelligent User Interfaces IUI’2001 (Santa Fe, 14-17 January
2001), ACM Press, New York, 2001, pp. 69-76.

[4] Forbrig, P., Dittmar, A., Reichart, D., and Sinnig, D., User-Centred Design and Abstract
Prototypes, in Proceedings of BIR’2003 (Berlin, September 2003), SHAKER, 2003, pp.
132-145, accessible at http://www.dsinnig.de/pdfs/User_Centred_Design.pdf

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of Ob-
ject-Oriented Software, Addison-Wesley, Boston, 1995.

[6] Mori, G., Paternò, F., and Santoro, C., Tool Support for Designing Nomadic Applica-
tions, in Proceedings of the 8th ACM International Conference on Intelligent User Inter-
faces IUI’2003 (Miami, 12-15 January 2003), ACM Press, New York, 1993, pp. 141-
148, accessible at http://portal.acm.org/citation.cfm?doid=604045.604069

[7] McCall, J., Richards, P., and Walters, G., Factors in Software Quality, Three Volumes,
NTIS AD, November 1977.

[8] Molina, P., Belenguer, J., and Pastor, O., Describing Just-UI Concepts Using a Task No-
tation, in J. Falcão e Cunha, N.J. Nunes, J. Jorge (eds.), Proceedings of 10 th International
Workshop on Design, Specification and Verification of Interactive Systems DSV-IS’03

210 Sinnig, Gaffar, Reichart, Forbrig, and Seffah

(Madeira, 4-6 June 2003), Springer-Verlag, Berlin, 2003, pp. 218-230.
[9] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-

Verlag, Berlin, 2000.
[10] Pressman, R.S., Software Engineering, A Practitioner Approach, McGraw-Hill, Berk-

shire, 2001.
[11] Sinnig, D., Javahery, H., Forbrig, P., and Seffah, A., The Complicity of Model-Based Ap-

proaches and Patterns for UI Engineering, in Proceedings of BIR’03 (Berlin, September
2003), pp. 120-131, accessible at http://www.dsinnig.de/pdfs/BIR_Pattern_Models.pdf

[12] Souchon, N., Limbourg, Q., and Vanderdonckt, J., Task Modelling in Multiple Contexts
of Use, in P. Forbrig, Q. Limbourg, B. Urban, J. Vanderdonckt (eds.), Proceedings of 9th

International Workshop on Design, Specification and Verification of Interactive Systems
DSV-IS 2002 (Rostock, 12-14 June 2002), Lecture Notes in Computer Science, Vol.
2545, Springer-Verlag, Berlin, 2002, pp. 59-73.

[13] Trætteberg, H., Dialog Modelling With Interactors and UML Statecharts – A Hybrid Ap-
proach, in J. Falcão e Cunha, N.J. Nunes, J. Jorge (eds.), Proceedings of 10 th Interna-
tional Workshop on Design, Specification and Verification of Interactive Systems DSV-
IS’03 (Madeira, 4-6 June 2003), Springer-Verlag, Berlin, 2003, pp. 346-361.

[14] Trætteberg, H., Using User Interface Models in Design, in Ch. Kolski, J. Vanderdonckt
(eds.), Proceedings of 4th International Conference on Computer-Aided Design of User
Interfaces CADUI’2002 (Valenciennes, 15-17 May 2002), Kluwer Academics Publish-
ers, Dordrecht, 2002, pp. 131-142.

[15] Vanderdonckt, J., Limbourg, Q., and Florins, M., Deriving the Navigational Structure of
a User Interface, in M. Rauterberg, M. Menozzi, J. Wesson (eds.), Proc. of 9th IFIP TC
13 Int. Conf. on Human-Computer Interaction INTERACT’2003 (Zurich, 1-5 September
2003), IOS Press, Amsterdam, 2003, pp. 455-462.

[16] van Welie, M., van der Veer, G.C., and Eliens, A., Patterns as Tools for User Interface
Design, in J. Vanderdonckt, Ch. Farenc (eds.), Proceedings of International Workshop
on Tools for Working with Guidelines TFWWG’2000 (Biarritz, 7-8 October 2000),
Springer-Verlag, London, 2000, pp. 313-324.

[17] van Welie, M., Patterns in Interaction Design, 2003, accessible at http://www.welie.
com.

[18] XUL, 2003, accessible at http://www.xulplanet.com/

Chapter 17

ANALYSIS AND DESIGN OF MODEL-BASED
USER INTERFACES
An Approach to Refining Specifications towards Implementation

Pedro J. Molina1 and Hallvard Trætteberg2

1CARE Technologies S.A., Pda. Madrigueres, 44, 03700 Denia, Alicante (Spain)
E-mail: pjmolina@care-t.com – URL: http://www.care-t.com
Tel.: +34 96 643 55 55
2Dept. of Computer and Information Sciences Norwegian, University of Science and 2

Technology, Sem Sælands vei 7-9, NO-7034 Trondheim (Norway)
E-mail: hal@idi.ntnu.no – URL: http://www.idi.ntnu.no/~hal/
Tel.: +47 7359 3443 – Fax: +47 7359 4466

Keywords: Conceptual models, Design models, Model-based user interface development,
User interface development

1. INTRODUCTION

Model-Based User Interface Development (MB-UID) is a field mature
enough to be applied into the software industry. However, still now, MB-
UID methods have produced little impact into the way User Interface (UI)
developers create user interfaces. Such methods are difficult to introduce due

211

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 211–222.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract This paper proposes a method for user interface development where a model
for analysis (Just-UI) and a model for design (DiaMODL) are conveniently
combined into an integrated method. Just-UI currently supports automatically
refining analysis models, through conceptual patterns to concrete user inter-
face designs. Integrating a dialog modelling language (DiaMODL) into the
method, will let the designers take part in the refinement process, hence gain-
ing control and allowing a greater variety of designs. The method encourages
the use of code generation for rapid prototyping of the UI. The ultimate objec-
tive is to provide a suitable software engineering and user interface design
method with coverage to cross through requirements to final implementation
of core application code and user interface.

212 Molina and Trætteberg

to different problems: learning curve, scalability, expressiveness, lack of
adequate tools, code immaturity of generators, etc.

In this context, Novak’s rule [9] becomes a painful truth: people will not
use specifications if the spend more time and resources creating the specifi-
cation and development from such a specification than developing in their
classical approach (without formal specification. In other words, using a
model-based approach has to be perceived by developers as an immediate
gain (in terms of productivity, quality, resource saving, error reduction, bet-
ter documentation, ease of maintenance, reduction in time to market, etc.)
and not as a useless intermediate step (waste of time, outdated documenta-
tion). Therefore, we definitely think that more effort must be put into creat-
ing agile methods and tools that are seen as really useful by actual develop-
ers and facilitate the adoption of MB-UID in the software industry.

In this work, we try to integrate the advantages of using two proven mod-
els for user interface development: one of them for analysis (JUST-UI [7])
and another one for design (DiaMODL [15]), establishing a bridge from the
former to the latter. Supported by code generation, the proposed method in-
tends to be interesting not only from the academic point of view, but also
useful to develop user interfaces for commercial software, thus increasing
the adoption of MB-UID methods and tools in the software industry.

2. RELATED WORK

TRIDENT [16,17] is a reference project in the field of MB-UID tools. A
Task Model (Activity Chain Graphs), a simple Domain Model (extended en-
tity-relational model) and Dialog Model are the main artifacts employed to
derive user interfaces in a semi-automatic way. Designers can participate in
the process choosing design alternatives among presented by an expert sys-
tem during the process of mapping from Abstract Interaction Objects (AIOs)
to Concrete Interaction Objects (CIOs) [16] (SEGUIA [18,19]).

MECANO, MOBI-D and MOBILE [10,13,14] are projects that have had
a significant impact in the state of the art of MB-UID tools. In these tools,
domain, dialog, task, user and presentation models are used in the process.

Just-UI [7] is the model of OO-Method [11] for the analysis of business
user interfaces. It is named “Presentation Model” in OO-Method. This model
is based on a conceptual user interface pattern language. It is used to specify
UIs from requirements in an abstract way: no design choices or platform
considerations are taken. The presentation model complements the domain
model resulting from object-oriented analysis of the functionality of the sys-
tem. OO-Method, including this model, is supported by two commercially
available tools: OlivaNova Modeler and Transformation Engines (code gen-
erators) to produce implementations for several devices [2]. The model has

Analysis and Design of Model-Based User Interfaces 213

been used during the last four years in an industrial context and has in-
creased the developer productivity [5].

DiaMODL [15] is a hybrid dialog modelling language based on intercon-
nected abstract interaction objects and UML class/object diagrams and
Statecharts. DiaMODL may be used for documenting the function and struc-
ture of concrete UIs, abstract specification of UI functionality and for sys-
tematic exploration of design alternatives. DiaMODL has also been used for
capturing design knowledge in abstract design patterns [20].

PSA (Patterns Supported Approach) [6] is a methodological proposal to
use patterns during the whole software life-cycle: from requirements to im-
plementation. The main idea behind the approach is that patterns constitute
proven solutions to frequent problems. Patterns are pills of distilled experi-
ence and constitute a common lingua franca [3] shared by the development
team. PSA is not specifically tied with user interface production. On the con-
trary, it can be applied to general software development.

3. THE PROPOSAL

The method we propose comprises the following steps:

1. Task Analysis and Use Case specification (to organise requirements);
2. User Interface Analysis (using Just-UI);
3. Refine analysis model to abstract design model expressed in DiaMODL;
4. Abstract design to concrete UI specification; and
5. Code Generation and Implementation (producing an executable UI).

Problem SolutionProblem Solution

11 2 32 3 4 54 5
Figure 1. Five steps from design problem to design solution.

The general idea is to gradually move from problem-oriented representa-
tions to solution-oriented ones as Fig. 1 suggests. Starting with the problem
i.e. the user domain and tasks, the design process breaks down user tasks,
moves through abstract descriptions of design to more formal, detailed and
concrete descriptions of a solution. By breaking the whole process into
smaller steps, we gain several advantages:

It is easier to apply appropriate design knowledge (whether automatic or
manual).
The process becomes more transparent, since the representation at each
step may be examined and manipulated by the designer/analyst.
Notations and tools may be tailored to each step.
It is easier to manage changes, as it is easier to trace the relations be-

214 Molina and Trætteberg

tween representations at different points from problem to solution.

The steps will be explained in the following subsections accompanied
with a small design example to illustrate the concepts.

Browse papersBrowse papers

Select paperSelect paper

Accept paperAccept paper

Reject paperReject paper

Program ChairProgram Chair

Figure 2. Example of User Task expressed using a Use Case.

3.1 Task Analysis / Use Cases

A task analysis supported by use cases is a good starting point for dis-
covering user goals in a given system. Main objectives and secondary tasks
can progressively be discovered and organised in convenient uses cases.
These use cases can also be prioritised accordingly to the relevance of the
functionality in the system. Care should however be taken when developing
the use cases, to avoid a system-centric view. I.e. focus should be put on the
user actor’s need, rather than on system response. Fig. 2 shows an example
of high-level user task described with a use case.

This example will be used to illustrate the following explanations. In the
use case, the main task of a Program Chair is to Accept or Reject the papers
for a given conference or workshop. As secondary tasks, selecting and
browsing papers will be also required to accomplish the first class tasks. In
this way, task requirements of the system are depicted: from high-level goals
to more concrete user actions that will require interaction with the system
through a UI.

3.2 User Interface Analysis with Just-UI

As described in the related work section, Just-UI [7] will be used in the
stage of UI analysis. The main objective of this phase is to take requirements
into account and focus only on what is needed instead of how it will be real-
ised. Here, conceptual UI patterns as presented in [8] helps to describe the
desired UI. UI patterns represent common configurations of UI elements that
support typical user tasks, such as exploration, navigation, search, selection
and service invocation.

In Just-UI three levels of UI patterns have been identified, and patterns
are structured in a hierarchy to represent how lower-level patterns may be
used to build and/or augment higher-level ones. A chart of conceptual user
interface patterns used in this approach is shown in Fig. 3.

Analysis and Design of Model-Based User Interfaces 215

Hierarchical Action
Tree IU Service

UI Instance

UI Population

UI Master/Detail

Introduction

Defined Selection

Argument Grouping

Supplementary
Information

Status Recovery

Order Criterium

Display Set

Filter

Dependency

Offered Actions

Navigation

Master UI

Details UIA uses B

A B

Legend

Figure 3. Just-UI pattern language.

One of the central concepts in Just-UI is the Interaction Unit concept
(IU). It represents an abstraction of a window, a web page or any other com-
ponent supporting communication between human and machine. Interaction
Units have been categorised as patterns comprising not only presentation as-
pects, but also behaviour and semantics based on the tasks to be accom-
plished in each unit. Each pattern shown in Fig. 3 is such an interaction unit.

During the specification, prototypes derived by transformation engines
allow to validate requirements with customers in a few and very fast cycles
of requirements-gathering, specification and user validation (one-three days
per cycle, two-seven iterations). Tool support and code generation for rapid
prototyping is crucial to guaranty the agility of approach. Patterns are used
as primitives to build a user interface specification. To avoid mixtures of dif-
ferent metaphors, interaction styles and conventions, patterns are tailored for

216 Molina and Trætteberg

specific domains. In the case of Just-UI, the domain of is user interfaces for
business application and information systems. Note however that the ap-
proach itself is not particular to a given domain. Only the pattern language
used (Just-UI) is oriented towards business applications.

IUMP_Paper_And_Reviews

List of Papers

IUP_Papers

Paper Information

IUI_Paper

List of Reviews

IUP_Reviews

Accept

IUS_Accept

Reject

IUS_Reject

Figure 4. Example of Just-UI diagram.

The pattern language constrains which patterns are meaningful to apply
together, in the general case. An actual design for solving a particular use
case, is specified by a structure of patterns forming a part-of hierarchy and
linked by navigation links, in what is called a Just-UI diagram. Fig. 4 shows
an example of specification solving the use case described in Fig. 2. A
population of papers (IUP_Papers) allows browsing among a list of pa-
pers. When a paper is selected, information and reviews of that paper appear
in a master/detail interaction unit (IUMP_Paper_And_Reviews). This
unit is composed of an instance (IUI_Paper) as master component and a
population (IUP_Reviews) as a detail. Finally, two services can be
launched for the paper: accept and reject, using two service interaction units
(IUS_Accept and IUS_Reject respectively).

3.3 Refine Analysis Models to Abstract Design Models

The patterns and Just-UI diagrams are fairly high-level and are similar to
Constantine’s abstract prototypes [3] in that respect. Nevertheless, it is pos-
sible to generate code from Just-UI diagrams, if we let the generator take a
lot of design decisions. This is acceptable for the purpose of quickly show-
ing end-users a prototype, but the designer should have the option of taking
part in the design process. To give the designer this possibility, the Just-UI
diagrams are converted to DiaMODL diagrams, which may be restructured,
elaborated, detailed and otherwise manipulated, before later being mapped to
a concrete design. The DiaMODL diagrams make it easier to systematically
explore alternatives for the design details that are underspecified in the Just-
UI diagrams and decisions made by the UI generator.

Analysis and Design of Model-Based User Interfaces 217

IUMP_Paper_And_Reviews

List of Papers

IUP_Papers

papersp p

paperp p

11

List of Reviews

IUP_Reviews
reviews

Paper
Information

IUI_Paper

paper-reviewser-rever-rev

IUS_Accept

IUS_Reject

Figure 5. Corresponding DiaMODL diagram.

The example above may be modeled by the DiaMODL diagram shown in
Figure. The IUP_Papers interactor presents a set of papers (UML multi-
object) to the user and the user may select one of the papers. The selected
paper flows into the IUMP_Paper_And_Reviews interactor, where it is
presented to the user by the IUI_Paper interactor. In addition, a set of re-
views are computed from the paper by the paper-reviews function, and
presented to the user by the IUP_Reviews interactor. Finally, the same se-
lected paper is used as input to the IUS_Accept and IUS_Reject func-
tions, which may be triggered by the user (the triggering event is not shown
in the diagram).

We see that each basic Interaction Unit in the Just-UI diagram has a cor-
responding DiaMODL fragment. These fragments are pre-made, i.e. for each
of the basic IUs defined by the Just-UI pattern language, we have made cor-
responding DiaMODL fragments. Just-UI’s compositional operators are
similarly mapped to DiaMODL’s interactor composition and gate intercon-
nection operators, which are used to compose these fragments. This process
is mechanical, although currently manual. We are investigating doing the
composition automatically, but the result will nevertheless only be a sugges-
tion that the design may want to edit.

3.4 Elaborating DiaMODL Diagrams

A DiaMODL may be more or less explicit about design details, and the
designer may want to both add detail and change the existing design. This
can happen in at least two ways, as we will illustrate below. First, the de-

218 Molina and Trætteberg

composition of an interactor may be incomplete (or not present) and the de-
signer may want to add functionality in the decomposition. E.g., the GUI
generated for the IUP_Papers interactor in the example above, will typi-
cally be a listbox with single selection. It may however be relevant to in-
clude a search field for limiting the size of the list, in this case the number of
papers in the list. Hence, the designer will decompose IUP_Papers and
add functionality corresponding to a relevant use case. It is for instance, not
uncommon that a reviewer is late with his reviews and that the program
committee will try to accept/reject papers without the missing reviews. This
use case may be supported by letting the user enter the reviewer’s name and
limit the list of papers accordingly. A possible decomposition of IUP_Pa-
pers is shown in Fig. 6.

IUP_Papers

IU_Reviewer_
name

reviewersreviewers
Find_

reviewer

paperspapers

paperpaper

1111111

IUP_Papers_2

Papers_
for_

reviewer

Figure 6. Decomposition of IUP_Papers.

The search field is represented by the IU_Reviewer_name interactor.
From the entered name and the set of all reviewers (the reviewers multi-
object) a specific reviewer is computed by the Find_reviewer function.
A second function (Papers_for_reviewer) computes the limited set of
papers based on this reviewer, and the result is presented by the IUP_Pa-
pers_2 interactor. Note that this decomposition preserves the outer
IUP_Papers interactor’s gate interface, and that the inner IUP_Pa-
pers_2 corresponds to the original IUP_Papers interactor, and hence
maps to a single selection list box.

A second way of elaborating the original model, is adding sequencing de-
tails. For instance, the diagram in Fig. 5 is not explicit about when the differ-
ent Interaction Units (or interactors in DiaMODL terminology) are active in
the user interface. One possibility is one large window with the IUP_Pa-
pers, IUI_Paper and IUP_Reviews are all present simultaneously.
This is acceptable for desktop screens and supports locating a paper based on

Analysis and Design of Model-Based User Interfaces 219

both paper info and reviewers. A medium-sized possibility is adding a transi-
tion from IUP_Papers and IUMP_Paper_And_Reviews, so the latter
replaces the former when a paper is selected and a trigger is activated. This
is shown left in Fig. 7. It can be argued that the designer should not have to
work at this level of detail, and we agree: The pattern and default DiaMODL
diagram provides the (most) common default case, while the designer has
the freedom to edit the result, e.g., based on user preferences and the target
platform.

wswsIUMP_Paper_&_Reviews

List of Papers

IUP_Papers

sIUP_Reviews

IUI_Paper

ssIUMP_Paper_&_Reviews

ssssList of Papers

IUP_Papers

IUP_Reviews

IUI_Paper

State1

a) b)a) b)
Figure 7. Two variants of interactor activation logic.

3.5 Concrete UI Specification

The DiaMODL diagram elements must be mapped to concrete UI ele-
ments, to make the design complete. For each basic IU an appropriate CIO
must be found [18], usually selected among several candidate CIOs. In the
example, the IUs presenting sets of objects (IUP_Papers and IUP_Re-
views) correspond to list and table interaction objects. The chosen CIO for
IUP_Papers must support single selection, while IUP_Reviews does not
specify a need for selection. The chosen CIO will lead to additional design
choices, like which columns to include, fonts and colors to use etc.

The next design step is to select CIOs for triggering action invocations,
e.g., whether to use menu items or buttons for invoking the accept-paper and
reject-paper object services. Furthermore, rules for triggering transitions be-
tween IUs must be specified. If the right variant in Fig. 7 is chosen, triggers
for IUMP_Paper_and_IUP_Reviews and for IUP_Reviews must be
specified, e.g., return, double-click and/or a button for the former and a but-
ton for the latter.

This mapping process is fairly mechanical, in that the DiaMODL dia-
gram may be used to drive a systematic mapping process. The mapping may
be supported by tools, and in many cases diagram elements may be auto-
matically mapped to CIOs. Design patterns may be applied to quickly get a
reasonable default design, while the designer is free to edit the result, based
on user preferences and target platform constraints and conventions.

220 Molina and Trætteberg

3.6 Code Generation / Implementation

Just-UI is supported by a modelling tool and a set of code generators
(OlivaNova Model Execution System) to produce user interfaces for differ-
ent devices (such as desktop and web) directly from an analysis Just-UI
specification. This approach has been useful in an industrial environment to
produce code for commercial applications.

Figure 8. Generated Desktop UI for the example task.

An example of code generated for the case of study directly from a Just-
UI model is show in Fig. 8. It contains a UI capable of reviewing papers, re-
visions and accepting or rejecting the paper. The generated UI is suitable for
early validation of user requirements. However, specific design aspects of
the user interface code has to be tuned manually due to the lack of a design
model capable of expressing different choices, alternatives to the common
default values for design choices.

Therefore, the approach presented here, proposes to use DiaMODL just
in the point where Just-UI jumps into the implementation using code genera-
tors. Refined specifications using DiaMODL can be changed by designers to
take in account alternatives designs and selecting platform properties like
font, colors, CIO selection and so on [17]. In this way, design models will
contain more detail information that the analysis one: enabling a finer tuning
of the generation process to suit better the UI needed. DiaMODL is currently

Analysis and Design of Model-Based User Interfaces 221

integrated with the Just-UI only, and not with the OlivaNova tool. A Java
execution engine for the DiaMODL language exists, but it currently cannot
generate code and do not support other platforms, as OlivaNova does.

4. CONCLUSION

The method proposed follows a gradual approach focusing on require-
ments, what (analysis), how (design) and implementation using a continuous
and model-based approach. Each step has a clear focus, clear separation of
concerns and uses as input the output of the previous steps. A model-based
approach for user interfaces has been used, refining a device independent
analysis specification to a design specification and progressively reaching a
device dependent specification taking in account the capabilities of the target
device. This is compliant with modern engineering techniques like Model
Driven Approach [10] where Platform Independent Models (PIMs) are re-
fined to specific ones (PSMs) and finally are automatically or semi-
automatically converted to source-code. The approach presented enriches
engineering methods for producing user interfaces in the way that covers
analysis and design of user interfaces. With more design information the
generated code will better fit the application and target platform.

REFERENCES

[1] Bodart, F., Hennebert, A.M., Leheureux, J.M., Sacré, I., and Vanderdonckt, J., Architec-
ture Elements for Highly-Interactive Business-Oriented Applications, in L. Bass, J. Gor-
nostaev, and C. Unger (eds.), Proceedings of 3rd East-West Conference on Human-d

Computer Interaction EWHCI’93 (Moscow, July 1993), Lecture Notes in Computer Sci-
ence, Vol. 153, Springer-Verlag, Berlin, 1993, pp. 83-104.

[2] CARE Technologies, OlivaNova Model Execution System, 2003, accessible at
http://www.care-t.com.

[3] Constantine, L. and Lockwood, L., Structure and Style in Use Cases for User Interface
Design, accessible at http://www.foruse.com/Files/Papers/structurestyle2.pdf

[4] Erickson, T., Patterns Languages as Languages, in Proceedings of CHI’2000 Workshop
Pattern Languages for Interaction Design (The Hague, 1-6 April 2000), 2000, accessible
at http://www.pliant.org/personal/Tom_Erickson/PatternLAsLanguage.html

[5] Gartner Inc., OlivaNova Benchmark, 2003, request for examination to care-technologies
@care-t.com, http://www.gartner.com.

[6] Granlund, Å. and Lafrenière, D., A Pattern-Supported Approach to the User Interface,
Design, in Proceedings of 9th International Conference on Human-Computer Interaction
HCI’International 2001 (New Orleans, 5-10 August 2001), Lawrence Erlbaum Associ-
ates, Mahwah, pp. 282-286, available at http://www.sm.luth.se/csee/csn/publications/
HCIInt2001Final.pdf

[7] Molina, P.J., Meliá, S., and Pastor, O., Just-UI: A User Interface Specification Model, in
Ch. Kolski and J. Vanderdonckt (Eds.), Computer-Aided Design of User Interfaces III,II
pp. 63-74, Kluwer Academics Publisher, Dordrecht, 2002.

222 Molina and Trætteberg

[8] Molina, P.J., Meliá, S., and Pastor, O., User Interface Conceptual Patterns, in P. For-
brig, Q. Limbourg, B. Urban, and J. Vanderdonckt (eds.), Design, Specification, and
Verification of Interactive Systems, Proceedings of 9th Int. Workshop on Design, Specifi-
cation, and Verification of Interactive Systems DSV-IS’2002 (Rostock, 12-14 June
2002), Lecture Notes in Computer Science, Vol. 2545, Springer-Verlag, Berlin, 2002,
pp. 201-214.

[9] Novak, G.S., Novak Rule, accessible at http://www.cs.utexas.edu/users/novak/
index.html.

[10] Object Modeling Group, Model Driven Architecture, 2001, accessible at http://www.
omg.org/cgi-bin/apps/doc?ormsc/01-07-01.pdf

[11] Pastor, O., Insfrán, I., Pelechano, V., Romero, J., and Merseguer, J., OO-METHOD: An
OO Software Production Environment Combining Conventional and Formal Methods, in
Proc. 9th Int. Conf. on Advanced Information Systems Engineering CAISE’97 (Barce-
lona, June 1997), Springer-Verlag, London, 1997, pp. 145-159.

[12] Puerta, A.R., A Model-Based Interface Development Environment, IEEE Software, Vol.
4, No. 14, July/August 1997, pp. 41-47.

[13] Puerta, A.R. and Maulsby, D., Management of Interface Design Knowledge With MOBI-
D, in Proceedings of the International Conference on Intelligent User Interfaces IUI’97
(Orlando, 6-9 January 1997), ACM Press, New York, pp. 249-252, accessible at
http://camis.stanford.edu/projects/mecano/pubs/iui97.pdf

[14] Puerta, A.R., Cheng, E., Ou, T., and Min, J., MOBILE: User-Centered Interface Build-
ing, in Proceeding of the ACM Conference on Human Factors in Computing Systems
CHI’99 (Pittsburgh, 15-20 May 1999), ACM Press, New York, 1999, pp. 426-433.

[15] Trætteberg, H., Dialog Modelling With Interactors and UML Statecharts - A Hybrid Ap-
proach, in Proceedings of 10th International Workshop on Design, Specification and
Verification of Interactive Systems DSV-IS’2003 (Funchal, June 4-6 2003), Springer-
Verlag, Berlin, Lecture Notes in Computer Science, Vol. 2844, pp. 346-361, accessible
at http://www.idi.ntnu.no/emner/sif80ap/dsvis-2003.pdf

[16] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection, in Proc. of the ACM Conf. on Human Factors in Computing
Systems INTERCHI'93 (Amsterdam, 24-29 avril 1993), ACM Press, New York, 1993,
pp. 424-429.

[17] Vanderdonckt, J., Assisting Designers in Developing Interactive Business Oriented Ap-
plications, in H.-J. Bullinger & J. Ziegler (eds.), Proceedings of 8th International Confer-
ence on Human-Computer Interaction of HCI International’99 (Munich, 22-26 August
1999), Ergonomics and User Interfaces, Vol. 1, Lawrence Erlbaum Associated Pub.,
Mahwah, 1999, pp. 1043-1047.

[18] Vanderdonckt, J., Advice-Giving Systems for Selecting Interaction Objects, in N.W. Pa-
ton & T. Griffiths (eds.), Proceedings of 1st Int. Workshop on User Interfaces to Data In-
tensive Systems UIDIS’99 (Edimburgh, 5-6 September 1999), IEEE Computer Society
Press, Los Alamitos, 1999, pp. 152-157.

[19] Vanderdonckt, J. and Berquin, P., Towards a Very Large Model-based Approach for
User Interface Development, in N.W. Paton & T. Griffiths (eds.), Proceedings of 1st In-
ternational Workshop on User Interfaces to Data Intensive Systems UIDIS’99 (Edim-
burgh, 5-6 September 1999), , IEEE Computer Society Press, Los Alamitos, 1999, pp.
76-85.

[20] van Welie, M., Trætteberg, H., Interaction Patterns in User Interfaces, in Proceedings of
7th Pattern Languages of Programs Conference PLOP’2000 (Allerton Park, 13-16 August
2000), accessible at http://www.cs.vu.nl/~martijn/patterns/PLoP2k-Welie.pdf

Chapter 18

INTERACTION TEMPLATES FOR
CONSTRUCTING USER INTERFACES FROM
TASK MODELS

David Paquette and Kevin Schneider
Department of Computer Science, University of Saskatchewan,
Saskatoon, SK S7N 5A9 (Canada)
E-mail: dnp972@mail.usask.ca, kas@cs.usask.ca

Abstract Task modelling is well suited to identifying user goals and identifying the ac-
tivities a user performs to achieve these goals. Some task model tools provide
simulation capabilities and/or aid in the construction of concrete user inter-
faces. When it is desirable for the simulated or constructed interface to be real-
istic, the task model must be specified in considerable detail. Unfortunately
this is usually quite onerous for medium to large size systems, for context-
dependent user interfaces, and for highly interactive user interfaces. This paper
introduces ‘Interaction Templates’: pre-defined components that can be
plugged into a task model to provide concrete dialogue and presentation. In-
teraction Templates define complex, context sensitive interaction that is to be
incorporated into the target user interface and can be used when simulating a
task model. Interaction Templates are bound to the task model using an ex-
plicit data model. We demonstrate the applicability of Interaction Templates
with a case study..

Keywords: Methods and languages, Model-based interface design, Task modelling, Tem-
plates, User interface design and specification.

1. INTRODUCTION

Our research applies task modelling approaches to the design of interac-
tive systems. Through a case study we investigated benefits and deficiencies
of using task modelling for the design of an interactive system for the pro-
pose of tracking soil samples. In particular we are interested in applying
ConcurTaskTrees [4] and tool support for simulating a user interface. Other

223

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 223–234.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

224 Paquette and Schneider

task modelling approaches include UAN [2], SUIDT [1] and U-Tel [8].
Our case study shows that task modelling, although useful for modelling

an interactive system with a user, becomes tedious when specifying a task
model in sufficient detail to benefit from simulation tool support.

We propose the use of Interaction Templates, pre-defined components
that can be plugged into a task model to provide concrete dialogue and pres-
entation. Interaction Templates define complex, context sensitive interaction
that is to be incorporated into the target user interface and can be used when
simulating a task model. Interaction Templates are bound to the task model
using an explicit data model.

CTTE [3,4,5] is a tool for building and evaluating ConcurTaskTrees and
was used in our case study. It features a visual task model builder and a task
model simulator, which is used to validate task models.

The visual task model builder aids in creating models. It is used to create
and define tasks as well as define relationships between those tasks. It in-
cludes features that help with layout as well as features that help to ensure
the mathematical correctness of a model.

The simulator can be useful in validating task models with users, as well
as evaluating usability at a very early stage. With CTTE’s Task Model
Simulator tasks can be selected from a list of available actions. Any one of
the actions can be performed by double clicking it. When an action is per-
formed, the list of enabled actions is updated. This allows users to test the
system design to ensure that it allows them to reach certain goals and does
not allow actions to be performed when they should not be.

A drawback of this simulator is that it does not allow for true simulation
of concurrent tasks. It treats concurrent tasks the same as choice tasks.

A tool similar to CTTE provides a simulator that has the ability to simu-
late concurrent tasks [6]. The simulation is made up of a window that is
filled with smaller windows containing play and stop buttons. Each of the
smaller windows represents a task from the task model. These tasks can ei-
ther be active or inactive. A user can activate a task by pressing the play but-
ton, or deactivate a task by pressing the stop button. Activating or deactivat-
ing a task in the simulator has the same effect as starting or stopping a task
in the system. Activities can either be enabled or disabled. This is shown in
the simulator by enabling or disabling the play and stop buttons. When a task
is activated, all tasks that are enabled or disabled by that task are updated.
By playing through different scenarios, it is easy to validate your task model
with users. One of the problems of this simulator is that it would get difficult
to sort through the many tasks involved in a large system.

In the next section we describe a case study in which we applied task
modelling to an existing interactive system.

Interaction Templates for Constructing User Interfaces
from Task Models

225

2. LAB ASSISTANT CASE STUDY

Lab Assistant is an information system for tracking soil samples through
a soil–processing lab in Saskatoon, Saskatchewan. The samples are provided
to the lab by producers and university researchers. The system is data inten-
sive, interacting with a database containing information about farmers, geo-
graphic locations, soil samples and quality control data. The Lab Assistant is
used to enter the data, verify the data, and create a variety of reports for the
users. The system was built using Borland Delphi 4 and runs on Microsoft
Windows operating systems. Fig. 1 is a screen shot of the Lab Assistant soil
sample data entry form.

Figure 1. Lab Assistant Soil Sample Data Entry Form.

2.1 Detailed Task Model

The ConcurTaskTree environment (CTTE) was used to model the user
interactions with the Lab Assistant. Each window was considered to be an
abstract task named after the main task performed in that window. The ab-
stract tasks were modelled in detail to describe the user’s interaction. Wid-
gets such as text fields and buttons were modelled as Interaction Tasks. Re-
lationships between tasks showed the effects each widget had on other ob-
jects in the system. Fig. 2 shows a small section of the task model that was
developed. The model gave a precise definition of the system and allowed
for an accurate simulation using CTTE.

226 Paquette and Schneider

Figure 2. Small section of detailed ConcurTaskTree of Lab Assistant.

Although the task model provided an accurate and precise description of
the Lab Assistant, some difficulties were encountered. The process of gener-
ating a detailed task model for an information system the size of the Lab As-
sistant was a long and tedious process. Every interaction between the user
and the system was modelled to enable a reasonable simulation of the user
interface. The model quickly became too large to be easily understood. The
section shown in Fig. 2 only accounted for approximately 10% of the entire
model. A model of this size is difficult to view in its entirety and it was dif-
ficult to get a good overview of the system from the task model.

2.2 Abstract Task Model

In an attempt to overcome the difficulties encountered in building the de-
tailed task model, a second, less detailed task model was created. Here, the
system was modelled at the abstract task level. Each window was again as an
abstraction task named after the main task performed in that window. How-
ever, the specifics of how those tasks were performed inside the window
were not considered. Task such as entering specific fields when adding sam-
ples were omitted. The abstract task model corresponding to Fig. 2 is shown
in Fig. 3. This model was both quicker and easier to build. Because it was
much smaller, it also gave a better overview of the system than the previous
model.

Figure 3. Small section of abstract ConcurTaskTree of Lab Assistant.

Modelling a system at this level of abstraction results in a loss of some of
the functionality that CTTE offers. In particular, because some of the detail
is missing, CTTE can no longer provide a suitable simulation of the task
model. A simulation of entering a sample no longer consists of entering a
few required fields and some optional ones. The simulation only consists of
entering an abstract sample object, the details of which are unknown. An-

Interaction Templates for Constructing User Interfaces
from Task Models

227

other problem is that valuable information about the system was lost. It is no
longer known what data is verified. In order to fully understand what is oc-
curring in this model, one must already have knowledge of the system.

2.3 User Feedback

In order to get user feedback on the validity of the two task models, the
main user involved in the development of the Lab Assistant was introduced
to the concept of task models using CTTE. The user is a business computer
user with limited technical background, however, she interacts with the Lab
Assistant system every day.

First, the user was given an overview of the CTT notation, and taken
through an example of modelling a small portion of the Lab Assistant. To-
gether, the task of adding a batch of samples to the database was modelled.
The user did not have any difficulties in following the construction of the
model, and was able to point out some inaccuracies as the model was built.
The user was able to correct a task operator in the model. User feedback al-
lowed for a more accurate model of the Lab Assistant to be built. After ana-
lysing the sample task model, the user expressed some concern as to how
large the model would be if the entire system were modelled. The small task
model built in this example had already covered the entire screen.

Once the small model was built, the user was introduced to the task
model simulator. The user was excited by the possibilities of the simulator:
the idea of simulating a software system before it was built seemed very use-
ful to her. She commented that if this tool had been available when design-
ing the Lab Assistant, some design flaws would likely have been identified
much earlier in the design process. In the current version of the Lab Assis-
tant, the flow of data does not match the flow of samples through the lab. To
work around this problem, users must change the way soil is analysed to
match the assumptions that were made when the Lab Assistant was built.
There are no current plans to fix this problem, as the cost is expected be sig-
nificant. If this problem could have been identified in a simulation with users
at an early stage in design, the cost would have been minimal.

Next the user was shown the detailed task model and the simplified task
model that had been previously developed. The user was overwhelmed by
the size of the first model. Since the model was too large to view in its en-
tirety, she found it difficult to see the ‘big picture’ of the Lab Assistant from
the model. She was impressed by the functionality available in the simulator
as it allowed for a very accurate simulation of the Lab Assistant. The user
found the second task model easier to understand. She found that because it
lacked detail and was smaller, it gave a better overview of the Lab Assistant.

228 Paquette and Schneider

She did not, however, find the simulation as valuable in this model as it had
been in the previous model. Overall the user felt that CTTE would be a use-
ful tool in the analysis and design of Lab Assistant. In particular, she felt that
the task model simulator integrated in CTTE would be a very valuable tool
in validating proposed designs and catching major problems early in the de-
sign process.

2.4 Case Study Summary

CTTE provides a good mechanism for modelling information systems.
Task trees provide an excellent overview of a system and offer a powerful
simulation capability. Task trees are valuable as a common language for
both designers and users. As was seen in the task modelling session with the
user, it appears that it is beneficial to actively involve users in the creation of
task models using CTTE, and that users are able to understand task models.
Once the task models have been built, the simulation capabilities provided in
tools such as CTTE can be extremely useful in validating proposed designs
with users. A few problems arose when modelling information systems us-
ing CTTE. These problems can be summarised as being a problem of scale.
Building accurate task models for medium to large systems is a long and te-
dious process. The models quickly grow to be too large to understand. This
can be partially solved by modelling information systems at a more abstract
task level, unfortunately with the side effect that simulations become less
valuable and validating designs more difficult. The next section tries to ad-
dress these shortfalls, with a proposal to extend task models with Interaction
Templates.

3. INTERACTION TEMPLATES

Interaction Templates were developed to attempt to find a middle ground
between the two models (detailed and abstract) discussed in the Lab Assis-
tant case study. Interaction Templates are intended to help us to build mod-
els quickly, and allow for detailed simulation while maintaining a useful sys-
tem overview.

While building task models for information systems, there are sub trees
that repeat throughout the model with only slight variations. These sub trees
are associated with common interface interactions found in information sys-
tems. Interaction Templates model these common interface interactions.
They include a detailed task model, an execution path (i.e., dialog), and a
presentation component. Inserting and customising Interaction Templates
reduces the need to model the same interaction repeatedly in a system, and

Interaction Templates for Constructing User Interfaces
from Task Models

229

thus, greatly reduces the time spent modelling information systems [7]. As
well, Interaction Templates can be designed and tested to ensure their usabil-
ity in accomplishing a task and can be designed to be ‘plastic’ [9] and thus
adapt to different contexts [7].

Two common interface interactions, data table interaction and print dia-
log interaction, were chosen as examples of Interaction Templates. These
examples illustrate how Interaction Templates attempt to solve some of the
problems encountered in the Lab Assistant case study. The next two sections
describe these Interaction Templates examples. To help illustrate an Interac-
tion Template we provide a snapshot of its presentation for a specific context
and its task tree.

3.1 Example 1: Data Table Interaction Template

Information systems typically deal with large amounts of data. This data
is often visualised and interacted with by means of a data table component.
The data table Interaction Template models the particular data table interac-
tion found in the data tables of the Lab Assistant. With slight modifications,
this Interaction Template could be adapted to model different data table
components. The screen snap shot of the data table Interaction Template is
shown in Fig. 4.

Figure 4. Data Table Interaction Template plugged into the Lab Assistant software.

230 Paquette and Schneider

In the abstract view (Fig. 5), with all sub trees hidden, the data table In-
teraction Template contains a description of the data the table will be show-
ing. The data is actually expressed with XML but for simplicity we have
shown just the key data fields in our figures. Given this abstract view and
field information of the data table Interaction Template, the details of the in-
teraction are known without viewing the larger detailed view shown in Fig.
6. Because data tables are common interface interactions in information sys-
tems, most users and designers do not need to view the detailed model to
understand the interactions that are being described.

This is the feature of the Interaction Template that allows for detailed
simulation while maintaining reasonable model size. Hiding the details be-
low the abstraction table interaction task helps to condense the overall size
of the model.

Figure 5. Abstract Task Tree of the Interaction Template for a data table.

Figure 6. Detailed Task Tree of the Interaction Template for a data table.

While it may not be useful to see the details of a table interaction when
trying to view an entire model, these details do become necessary when us-
ing the task model simulator. Given the description of the data, it would be
possible for a tool to customise the details of the template. With such a tool,
the Enter Field(s) task in Fig. 6 would be broken down into Enter Field1, En-
ter Field2, and Enter Field3.

The Move Column, Hide Column, Show Column, and Sort By Column
tasks could be expanded in a similar fashion. With this Interaction Template,
adding a detailed model of a table interaction would be as simple as select-
ing the Interaction Template and defining the data that will be displayed.
With proper tool support, a lot of the tedious work would be completed
automatically.

Interaction Templates for Constructing User Interfaces
from Task Models

231

Figure 7. Abstract view of Lab Assistant Task Tree.

The detailed view shows exactly how a user interacts with a data table.
The interaction is divided into two subtasks: modify table view and modify
table data. When modifying the table view, a user can move, hide and show
columns, as well as sort and filter rows. When modifying table data, a user
can add, edit and delete rows. With this parameterised Interaction Template,
detailed ConcurTaskTrees that are customised for a specific use could be
built quickly.

Figure 8. Lab Assistant Task Tree with the Data Table Interaction Template plugged in.

Fig. 7 shows how the data table Interaction Template was used in the Lab
Assistant. The abstract view gave a good overview of the system, and helped
to keep the model at a manageable size. In Fig. 8, the fsr (field service repre-r
sentative) and farmer tables fit perfectly with the template. No manualr
changes to the template were necessary to model these portions of the Lab
Assistant. The sample table, however, did not match the template exactly. In
the sample table, it is not possible to add a sample directly to the table. In
order to add a sample, the user must go to the abstract task of entering a
batch. The sample table also does not allow rows to be deleted. Sample dele-

232 Paquette and Schneider

tion is handled in a separate software system called the Lab Manager. The
Lab Manager was not modelled in this case study.

Fig. 9 shows how the template was inserted, and easily modified to re-
flect the differences found in the sample table. Under the abstract task Mod-
ify Table Data, Add Row was replaced with the abstract task Enter Batch.
The abstract task Delete Row was simply removed. Although the original
template did not match the sample table perfectly, the effort required to
manually customise it was minimal.

Figure 9. Data Table Interaction modified to fit the sample table.

Figure 10. Print Dialog Interaction Template Task Model.

Interaction Templates for Constructing User Interfaces
from Task Models

233

Figure 11. Print Dialog Interaction Template for Windows 9x.

3.2 Example 2: Print Dialog Interaction Template

Another interesting interaction that is commonly found in information
systems is the print dialog. Since print dialogs are usually built in to the op-
erating system, they are almost always identical in every place they appear
in a software system. This makes them an excellent candidate for Interaction
Templates. If they are always the same, an entire print dialog interaction can
be added in only one step. The only parameter needed for the Print Dialog
Interaction Template is an operating system, because print dialogs differ
slightly between operating systems. If an Interaction Template was being
built and a printer interaction was needed, the Print Dialog Interaction Tem-
plate could be selected, and an operating system selected. A model of a print
dialog matching the selected OS would then be inserted into the task model.
A plastic Interaction Template could be used to provide different behaviour
for each operating system. An example of the Print Dialog Interaction Tem-
plate for Windows 9x is shown in Fig. 10. The Windows 9x print dialog box
is shown in Fig. 11.

4. CONCLUSION

Interaction Templates were developed to solve the problems identified in
the Lab Assistant case study. They attempt to solve these problems by taking
advantage of common interface interactions found in information systems.
The data table interaction and print dialog interaction examples show how

234 Paquette and Schneider

Interaction Templates attempt to solve these problems of scale by condens-
ing the overall model size while maintaining quality of information. In the
future we hope to build tool support for building ConcurTaskTrees using In-
teraction Templates.

REFERENCES

[1] Baron, M. and Girard, P., SUIDT: A Task Model Based GUI-Builder, in C. Pribeanu, J.
Vanderdonckt (eds.), “Task Models and Diagrams for User Interface Design”, Proceed-
ings of the 1st International Workshop on Task Models and Diagrams for User Interface
Design TAMODIA’2002 (Bucharest, 18-19 July 2002), INFOREC Printing House, Bu-
charest, 2002, pp. 64-71.

[2] Brandenburg, J.L., Hartson, H.R., and Hix, D., Different Languages for Different De-
velopment Activities: Behavioral Representations Techniques for User Interface De-
sign, in B. Myers (ed.), “Languages for Developing User Interfaces”, Jones and Bartlett
Publishers, Boston, 1992.

[3] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 2000.

[4] Paternò, F., Task Models in Interactive Software Systems, in S.K. Chang (ed.), “Hand-
book of Software Engineering and Knowledge Engineering”, Vol. 1, World Scientific
Publishing Co., River Edge, 2001, accessible at ftp://cs.pitt.edu/chang/handbook/21.pdf

[5] Paternò. F., Tools for task modelling: Where we are, where we are headed, in C.
Pribeanu, J. Vanderdonckt (eds.), “Task Models and Diagrams for User Interface De-
sign”, Proceedings of the 1st International Workshop on Task Models and Diagrams for
User Interface Design TAMODIA’2002 (Bucharest, 18-19 July 2002), INFOREC Print-
ing House, Bucharest, 2002, pp. 10–17.

[6] Seffah, A. and Forbrig, P., Multiple User Interfaces: Towards a Task-Driven and Pat-
terns-Oriented Design Model, in P. Forbrig, Q. Limbourg, B. Urban, J. Vanderdonckt
(eds.), Proceedings of the 9th International Conference on Design, Specification, and
Verification of Interactive Systems DSV-IS’2002 (Rostock, 12-14 June 2002), Lecture
Notes in Computer Science, Vol. 2545, Springer-Verlag, Berlin, 2002, pp. 118–132.

[7] Souchon, N., Limbourg, Q., and Vanderdonckt, J., Task Modelling in Multiple Contexts
of Use, in P. Forbrig, Q. Limbourg, B. Urban, J. Vanderdonckt (eds.), Proceedings of 9th

International Workshop on Design, Specification and Verification of Interactive Sys-
tems DSV-IS 2002 (Rostock, 12-14 June 2002), Lecture Notes in Computer Science,
Vol. 2545, Springer-Verlag, Berlin, 2002, pp. 59-73.

[8] Tam, R.C.M., Maulsby, D., and Puerta, A.R., U-TEL: A Tool for Eliciting User Task
Models from Domain Experts, in Proceedings of 3rd ACM International Conference ond

Intelligent User Interfaces IUI’98 (San Francisco, 6-9 January 1998), ACM Press, New
York, 1998, pp. 77-80.

[9] Thevenin, D. and Coutaz, J., Plasticity of User Interfaces: Framework and Research
Agenda, in A. Sasse, Ch. Johnson (eds.), Proceedings of 7th IFIP TC.13 Internationa
Conference on Human-Computer Interaction Interact’99 (Edinburgh, 30 August- 3 Sep-
tember 1999), IOS Press Publ., Amsterdam, 1999, pp. 110–117.

[10] van Welie, M., van der Veer, G.C., and Eliens, A., Patterns as Tools for User Interface
Design, in J. Vanderdonckt, Ch. Farenc (eds.), Proceedings of International Workshop
on Tools for Working with Guidelines TFWWG’2000 (Biarritz, 7-8 October 2000),
Springer-Verlag, London, 2000, pp. 313-324.

Chapter 19

AUTOMATING A DESIGN REUSE FACILITY
WITH CRITICAL PARAMETERS
Lessons Learned in Developing the LINK-UP System

C.M. Chewar, Edwin Bachetti, D. Scott McCrickard, and John E. Booker
Center for Human-Computer Interaction and Department of Computer Science,
Virginia Polytechnic Institute and State University, Blacksburg, 24061-0106 VA (USA)
E-mail: {cchewar, mccricks}@cs.vt.edu, {ebachett, jobooker}@vt.edu

Abstract We propose an interface design process compatible with scenario-based design
methods, but specifically intended to facilitate three primary goals: design
knowledge reuse, comparison of design products, and long-term research
growth within HCI. This effort describes a computer-aided design tool suite,
LINK-UP, which supports the design process for specific genre of systems
that cross many domains-notification systems. We describe the vision for
LINK-UP, contrasting underlying concepts with typical task-based modelling
approaches. To achieve its stated goals, the design process is organised and
guided by critical parameters, presenting several challenges that we reflect on
through the results of a design simulation study. The possibilities envisioned
through this approach have important implications for the integration of reus-
able design knowledge, HCI processes, and design support tools.

Keywords: Claims, Knowledge-based interface design User interface design and specifi-
cation methods and languages, Notification systems, Task modelling.

1. INTRODUCTION

Our work probes two themes within human-computer interaction: ap-
proaches for reusing and improving design knowledge from project to pro-
ject, and the design and evaluation of systems used in divided-attention
situations (notification systems). Central to our goals is a desire to produce
automated design support tools that help designers reason and gain inspira-
tion about key questions related to the behaviour of an interface. We envi-
sion a system that complements a scenario-based design process [1], in
which formative interface development efforts focus on channelling re-

235

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 235–246.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

236 Chewar, Bachetti, McCrickard, and Booker

quirements and design ideas into narrative scenarios and concise claim
statements that evolve through iterative design activities. The majority of the
paper discusses the implications of such a system –LINK-UP– developed
specifically for our design concern of interest, but extensible to other types
of interfaces. However, we first situate this work by providing some back-
ground on the prospects of reusing and quantifying design knowledge, as
well as our design genre of interest and similar automation efforts.

1.1 Reusing Design Knowledge

As we consider how research growth within Human-Computer Interac-
tion (HCI) can be achieved, supporting design knowledge reuse seems para-
mount. This goal fits squarely into the movements within the software engi-
neering and HCI communities toward reusable design knowledge. The most
dominant approach to software and design knowledge reuse seems to be the
patterns movement, coupled with Unified Modelling Language (UML) de-
scriptions. Since patterns include records for design tradeoffs that are ob-
served through actual use, they rely on expression of reasoning about design
decisions, which is achieved through claims in scenario-based design meth-
ods. Claims articulate the positive and negative effects (tradeoffs) of an arte-
fact as feature on a user in accomplishing a task [1]. To achieve design
knowledge reuse, Carroll and Sutcliffe argue that research should focus on
producing “designer digestible” packets of knowledge in the form of claims,
grounded on theory [2,11]. Sutcliffe’s Domain Theory provides a structure
of abstraction, formal definitions, reuse program evaluation metrics, and ge-
neric tasks that can be used to catalog design information [10]. Related work
provides approaches for generalising claims for cross-domain reuse [12] and
for reuse specifically within the notification systems genre [8].

1.2 Quantifying Design Knowledge

In reflecting on how reuse approaches can include some judgment of de-
sign quality, we look to other important arguments with HCI literature.
Newman has pointed out the importance of basing design activities on criti-
cal parameters–figures of merit that are manageable and measurable, tran-
scending specific applications and focusing on the broader purpose of tech-
nology [7]. He argues recognising and adopting critical parameters for
classes of systems enhances ability to conduct meaningful modelling and
recognition of design progress between iterations of a single design and
among different designs. To our knowledge, no approach to design reuse or
automated design support systems integrates the idea of critical parameters.

Automating a Design Reuse Facility with Critical Parameters 237

1.3 Designing Notification Systems

Our genre of interest, notification systems design, is primarily concerned
with interactive or display systems delivering information to users that are
primarily engaged in another ongoing task [6]. These interfaces can be found
in many implementation forms and on a variety of platforms. Perhaps classic
desktop systems are the most readily identifiable–instant messengers, status
programs, and stock tickers. However, other familiar examples hint at the
range of potential notification systems, such as ubiquitous representations of
network traffic, in-vehicle information systems, ambient media, collabora-
tion tools, and multi-monitor or large screen displays. Systems have over-
arching goals of providing appropriate utility through delivered information
in a way that favourably balances demand on user attention. Many examples
of claims can be found in [1,2,9,11,12]. For convenience, an example of a
simple claim pertinent to notification systems design is:

Use of tickering text-based animation to display news headlines in a small
desktop window:

+ Preserves user focus on a primary task, while allowing long-term awareness
– BUT is not suitable for rapid recognition of and reaction to urgent information.

Previous work has presented arguments to support the identification of
notification system critical parameters [4],[5], which focus design on con-
trolling user interruption, reaction, and comprehension. A claim about a no-
tification system artefact can be quantified with its critical parameters:

Tickering text-based animation {low interruption,w low reaction,w moderate
 comprehension} (as established in [4])
The example continues in the next section, as a basis for our system vi-

sion.

2. VISION: A SYSTEM FOR DESIGN SUPPORT

In considering how to support design knowledge reuse and growth for
notification systems, several arguments from the Computer-Aided Design of
User Interfaces (CADUI) community are influential. Since notification sys-
tems design is inherently focused on supporting primary and secondary task
performance, approaches that seek to understand and model desired task be-
haviour are key. In particular, the Enhanced Task-Action Grammar (ETAG)
provides a proven mechanism to describe interface expectations and con-
nects HCI and software engineering concerns [3]. Wilson and Johnson pre-
sent considerations for task-based models developing the connection be-
tween design phases, identification of optional and compulsory features of
the existing task model, and development of the envisioned task model [15].
Building on this foundation, we propose an interface design process com-

238 Chewar, Bachetti, McCrickard, and Booker

patible with scenario-based design methods, but specifically intended to fa-
cilitate three primary goals: design knowledge reuse, comparison of design
products, and long-term research growth within HCI.

For example, a designer of a notification system for collaborative work
status should be able to benefit from lessons learned in developing previous,
similar systems–perhaps a notification system for news headlines or weather
information. Claims about appropriate artefacts used in other domains can be
accessed for reuse by designers to meet user notification goals. In conceptu-
alizing and developing this system, we have determined that critical parame-
ters provide a meaningful mechanism to specify and describe claims, allow-
ing structured design process transition and reuse.

2.1 LINK-UP, Our Envisioned System

The LINK-UP system (Leveraging Integrated Notification Knowledge
through Usability Parameters) operationalises our proposed interface design
process. The root concept of the system is to provide notification systems
designers with a facility for task-based design advice, consistent with the
Wilson and Johnson definition [15], guiding progression throughout an inter-
face design process. This design advice comes in the form of claims, demon-
strating an automated approach to claims reuse. In general, claims stem from
requirements analysis and provide the basis of the existing and envisioned
task model, motivating the design decisions leading to the interface model.
Testing of an interface model grounds claims by empirical observation, mak-
ing them useful and reusable in other design efforts [12]. To continue the ex-
ample started previously, a designer of a notification system can recognise a
need to support notification delivery that results in low user interruption and
reaction, but moderate gain of comprehension. In this case, the claim intro-
duced earlier would be returned as a matching technique to meet user re-
quirements.Characterising claims with critical parameters (as illustrated in
section 1.3) also allows designers to compare this claim with claims describ-
ing other techniques, such as in-place fading and blasting animation. As de-
signers proceed through a design cycle, they continuously question the val-
ues of targeted and actual critical parameters for key interface decisions.
Claims stored a design knowledge repository are accessed and modified at
several points with interactive system tools. Fig. 1 depicts LINK-UP’s gen-
eral architecture, relating it to Norman’s conceptual models [8]. Further de-
tails about all LINK-UP steps are provided in section 5, but we first focus on
Requirements Analysis (1), the initial step where we capture the design
model and start to recognise challenges with using critical parameters.

Automating a Design Reuse Facility with Critical Parameters 239

Figure 1. General architecture of LINK-UP. The light grey region in the center depicts Nor-
man’s conceptual models [8], which are extended through our work. Numbers refer to steps

though the process, and are referenced and explained in sections 2.2 and 5.1.

2.2 Capturing the Design Model

Modelling the usability engineering process, LINK-UP’s first step (“1” in
Fig. 1) is gathering and analysing user requirements to drive interface de-
sign, to include understanding tasks, information characteristics, user back-
ground, and other aspects of the situation. In Norman’s terms, this forms the
design model [8], based on dimensions of successful dual-task design recog-
nised in research [14]. Notification systems designers are provided with
convenient access to these considerations, as the system ascertains the criti-
cal parameter levels of desirable user interruption, reaction, and comprehen-
sion (or IRC values), expressed simply as triplet of ordinal scale values be-
tween 0 and 1.

Using the LINK-UP system, designers search for influential and reus-
able claims from previous projects and gather them (“2” in Fig. 1) in a man-
ner similar to the Internet shopping cart metaphor used on e-commerce sites.
Several indices are used to access this design knowledge within LINK-UP,
to include the generic tasks that the system will support (e.g., monitoring or
alerting), design choices (e.g., use of colour or animation), and IRC values
as the most influential index. Much of this information can be gathered from
ETAG specification [3] or direct input by the designer.

In order to use IRC values as indices, they first must be calculated. To fa-
cilitate this, a web-based questioning system probes requirements relating to
the critical parameters. Using easy to understand questions, LINK-UP guides

240 Chewar, Bachetti, McCrickard, and Booker

reasoning about notification tasks and usage factors (such as those summa-
rised in [5]). An algorithm converts designer responses to IRC values (trans-
parent to the designer) accurately and consistently for a wide variety of de-
sign models. Section 4 describes the methods used to guide development and
validation for accurate and consistent generation of critical parameters,
which have included expert walkthroughs with a variety of systems and lab-
based design simulation. This process within LINK-UP for characterising
the design model to access and judge effectiveness of claims in a design
knowledge repository overcomes a key challenge in the use of critical pa-
rameters. We elaborate on this challenge in the next section and then de-
scribe our related study.

3. CHALLENGES WITH CRITICAL PARAMETERS

Revisiting the concept of critical parameters, as introduced in [7], experi-
ence in developing LINK-UP helped recognise several challenges in using
them to guide design knowledge reuse (as we propose in our high-level vi-
sion). We introduce each challenge, commenting when appropriate on how it
was addressed in the design of the LINK-UP system.

Target appraisal. Designers must be able to transform abstract require-
ment variables to qualitative critical parameters. Although requirement
variables for any class of system (describing the design model) are likely
to be quite numerous with wide ranges of possible values, some mecha-
nism must be present that funnels these variables into abstract design
goals expressed as critical parameter values. This is the specific focus of
step 1 in the LINK-UP system, which we assess in the following section.
Iterative assessment. Designers must be able to estimate critical pa-
rameter values throughout the design cycle to gauge the impact of deci-
sion-making on design progress. In short, analytical and empirical testing
processes must be able to calculate effects necessary to determine
whether the critical parameters will be reached. LINK-UP steps that ad-
dress this challenge are discussed in section 5.
Benchmarking. Through iterative assessment, benchmarks must be es-
tablished to summarise state-of-the-art effects of actual systems used in
real world situations. In this case, design characteristics for specific pa-
rameter ranges (e.g., low interruption) would be collected, assisting other
designers with understanding implication of various parameter values.
This is also a challenge noted by others, which can be used to form refer-
ence tasks for research programs [13]. A benefit of an automated system
like LINK-UP is acceleration of consensus and collection of benchmark-
ing data.
Definition. A common conception of parameter definitions, as well as

Automating a Design Reuse Facility with Critical Parameters 241

acceptable units and methods of measure, must be established so that
they can be universally applied–a process worked out through the accep-
tance of benchmarks. While the researchers may be moving toward
common definitions of essential usability metrics, there is still a long way
to go. Certainly, related work in the behavioural science fields provides a
good starting point that can be bridged to the specific needs of design.
Selection. Researchers must be satisfied that they have exhaustively in-
cluded the right parameters in consideration of the system class and that
all parameters apply to all systems within that class. The LINK-UP sys-
tem is based on critical parameters of interruption, reaction, and compre-
hension, argued as essential usability metrics within relevant notification
systems literature [4],[5]. As this system and research area matures, ac-
ceptance of these parameters will become more widespread.
Our architecture situates the design phases that are important for notifica-

tion systems. As a vital first step, we consider target appraisal in the study
presented in the next section–the first concern a designer would be presented
with during requirements analysis in a design process and a topic of interest
in the CADUI community.

4. DESIGN SIMULATION STUDY WITH LINK-UP
Without consistency among designers in the determination of critical pa-

rameters, effectiveness of the system would be severely limited. If two de-
signers were to specify very different critical parameter values for the same
design model, the claims returned in a search result would not fit the needs
of this design model. Therefore, our current efforts in implementing and
validating LINK-UP probe establishment of a well-defined process for target
appraisal. To this end, we have developed a questionnaire and an underlying
algorithm in our system, taking designer’s abstract requirement variables and
transforming them into qualitative critical parameters values. A key valida-
tion concern with this tool allows designers to generate accurate and precise
results for a full range of notification system design models.

We hypothesize a user test with our tool would validate several system
objectives. Our first objective enforces accuracy of critical parameter estab-
lishment against expert consensus; we expect agreement within 20%. This
value was selected based on the best expert-to-expert parameter assessment
agreement rates previously obtained with manual assessment methods. Our
second objective ensures that different designers are able to derive similar
critical parameter values given an identical design model, for which we also
expect agreement within a standard deviation of 20%. These objectives ap-
ply throughout the full range of possible parameter values. Of course, we
also expect that designers generating critical parameter values with this tool

242 Chewar, Bachetti, McCrickard, and Booker

will obtain more accurate and precise results than designers with no tool at
all (using manual, heuristic-based estimation). Before beginning formal test-
ing, we tuned the algorithm with a number of system and requirements walk-
throughs by different experts, ensuring expert users could achieve agreement
between manual and tooled parameter assessment.

4.1 Methodology

The first phase of testing, which probed the accuracy and precision of our
tool, consisted of 10 undergraduate computer science students that received
credit in an HCI class for their assistance in a design simulation study. These
participants were instructed to consider themselves designers of notification
systems and were given four design problems, such as the example below:

You have been asked to design a desktop notification system that provides
sport score updates for several games that users select. You anticipate that
users (probably typical college students) will want to glance at this system
quite frequently during a course of several hours, as they perform other desk-
top processing tasks. These primary tasks include word processing, making
presentations, chat, and surfing the Internet. Although you feel it will be im-
portant for the notification system to be always visible, you don’t think it
should take up much screen space or be overly distracting. You don’t think
that users will usually want to click on anything to receive updates–but it is
possible they they’ll want to use the system to launch to more details about
close scores or important games. However, you guess that most users will just
want to know scores.

After reading a given design problem, participants used the tool to an-
swer approximately 16 multiple-choice questions. An example question is
“Which statement describes the general relationship between the importance
of the primary task and receiving the notification?” After answering all
questions, the parameter values are calculated via an underlying algorithm
and sent to the LINK-UP system. Following the generation of the critical pa-
rameter values, participants responded to a post-test survey to determine if
the questions addressed all factors they felt impacted interruption, reaction,
and comprehension. In addition to testing these novice designers, we ob-
tained benchmark parameter values for each of the four design problems
from an impartial expert that assisted in the development of the IRC system.
We conducted a second phase of testing to determine if the tool provided de-
signers with more accurate and precise results than designers without the
tool. This required 10 additional participants from the same population who
solved the same four design problems. Instead of an automated question-
naire, these participants were given a list of general heuristics to guide their
reasoning, but then used their best judgment to specify quantitative values
for the three critical parameters.

Automating a Design Reuse Facility with Critical Parameters 243

4.2 Results and Conclusion

In interpreting the results, we calculated the absolute difference between
each participant’s derived parameters and the benchmark results. This
yielded an overall difference of 18.0%, which is well within our expected
threshold for accuracy. The accuracy per parameter for the IRC values was
16.6%, 17.9%, and 19.5% respectively. While all three individually are also
within our threshold, upon further analysis of the comprehension parameter,
the majority of the disagreement between expert and novice designers came
from two outliers in two of the four design problems. This reveals the only
weakness in achieving accuracy across the full range of parameter values.

. Accuracy and precision results, indicating the superior performance of the tool over
the manual critical parameter assessment method, as well as the general match between par-

ticipant results with the tool and expert derived benchmarks.

Testing for precision was done by taking the raw parameter values and
calculating the standard deviation. The results were also favourable, yielding
a standard deviation of 14.1%, well within our expected threshold. In look-
ing at the standard deviations by parameter and problem, we note a problem
with consistently assessing reaction in one of the design problems, suggest-
ing additional fine-tuning work or perhaps rephrasing the problem.

To ensure that the tool indeed provided better support for calculating
critical values, we compared the benchmark differences of results obtained
by participants who had used the tool with those that did not. A single factor
ANOVA revealed a significant difference (F(1, 238) = 7.35, p<0.01). Details
of results can be seen in Fig. 2. Overall, these results are very favourable for
the prospect of integrating critical parameters into a design support system
like LINK-UP, since we can at least ensure target appraisal.

244 Chewar, Bachetti, McCrickard, and Booker

5. GENERAL IMPLICATIONS AND NEXT STEPS
The success in developing and validating the Requirements Analysis

module has provided confidence that the other challenges with using critical
parameters can be overcome. Just as we were able to develop general ques-
tions to characterise essential components of problem situations, we are
working on methods to refine details from participatory design processes and
analytical and empirical usability test results, making conclusions about ac-
tual critical parameter values of notification system artefacts. At this point,
we can continue a conceptualisation of the LINK-UP system and comment
on broader implications of our general approach.

5.1 LINK-UP, Beyond Requirements Analysis
The claims collected in step 2 assist designers in reasoning about sce-

nario-based design phases [1]. However, to aid participatory design efforts
and validate the design model IRC values, the LINK-UP system provides a
tool for designers to produce an interactive claims-review session with po-
tential users (“3” in Fig. 1). Designers can present prototypical usage scenar-
ios to the user, who then assesses the claims (and underlying, transparent
IRC values). Users accept or reject claims according to their needs, forming
the user’s design model (UDM)—a conception of the system effects gleaned
through the IRC values associated with the final claims set. In turn, the
agreement of the UDM with the design model helps the designer know when
to progress from one stage to the next (in this case, to production of the
physical system (“4” in Fig. 1)). This resolves a key concern cited with other
task-based design approaches [15]. It is anticipated that designer-user claims
negotiation is an iterative process involving multiple users. Once a system
image is available, the LINK-UP system supports analytical (expert) evalua-
tion (“5” in Fig. 1), with the hope that most usability problems can be caught
early in the development process and without requiring costly user evalua-
tion. Currently to support this stage, we use a heuristic method to analytical
evaluation, based on heuristics tailored for notification systems. LINK-UP
facilitates execution of the analytic method, recording of results, and estima-
tion of the actual IRC values, or the analytical model. In this step, the claims
set’s corresponding IRC values are assessed in light of the physical product,
providing a means for developing practical guidelines and comparing design
choices–another limitation noted in other task-based design support tech-
niques [15]. Designers are able to gauge whether targeted critical parameters
will be achieved in the design, receiving automated support to pinpoint spe-
cific design problems. Similar to the previous step, the next tool within the
LINK-UP system facilitates the execution and results analysis for an empiri-
cal user testing session (“6” in Fig. 1). Here, the system uses the original set

Automating a Design Reuse Facility with Critical Parameters 245

of claims to adapt a general instrument for collecting usage data. Based on
users’ qualitative feedback and quantitative performance, actual IRC values
are determined to characterise the user’s model (as defined in [8]) and effec-
tiveness of the claims. While the step allows formative and summative test-
ing of the designed interface, it generates new knowledge related to new and
existing claims. The key function of the tool assists the designer in compar-
ing actual with intended efforts, informing the next design iteration.

5.2 Implications: Integrated Design Knowledge Reuse
The conclusions drawn from our studies suggest several implications for

integrated design knowledge reuse. The LINK-UP system provides continu-
ous and integrated access to the design knowledge repository, facilitating
knowledge reuse. Through access to the claims database, designers are able
to build from and test previous design claim tradeoffs, contributing to a
growing body of knowledge. To enable these features in a manner that pre-
serves content quality and user trust, the system includes meta-analysis and
maintenance features for expert administrators, such as full claims editing,
association of claims with related theories, example systems, and design ar-
tefacts. The concept of this system extends the existing notion of claims
analysis [1] to one of claims engineering–design efforts will continuously gg
improve the quality of reusable claims.
 As we continue to develop the system, validation efforts will be structured
around lab-based simulation studies, and content creation will result mainly
from student design efforts and conversion of existing related literature.
However, as soon as possible, we would like to start testing the system’s
support for actual long-term development efforts. We welcome opportunities
to challenge LINK-UP’s utility (and that of its critical parameters) through
collaborative design efforts within the notification systems field, seeking to
broaden its functionality by integrating and extending CADUI research.

To summarise, the LINK-UP system provides a web-based interface to
guide the usability engineering process for a notification system. Designers
interact with five major design support tools, saving and building on pro-
gressive session results throughout the process. These tools include support
for requirements analysis and negotiation, analytical and empirical testing,
and design knowledge access. Design progress within a single design and
through a meta-analysis of several systems is guided by a set of claims (serv-
ing as design hypotheses) and associated critical parameters (acting as engi-
neering targets and results). The design knowledge repository will grow and
improve through use, becoming a living record of notification systems re-
search made possible by thinking about design through critical parameters.

We have begun formalising the way we develop and evaluate notifica-
tions systems. To generalise this effort, we have recognised potential for a

246 Chewar, Bachetti, McCrickard, and Booker

similar process of design knowledge reuse to be applied in the areas of in-
formation visualisation and community networks. Based on initial success,
we feel that the general process, integrated with critical parameters, can be
valuable to other genres in the user interface community.

REFERENCES
[1] Carroll, J.M., Scenario-based Design: Envisioning Work and Technology in System De-

velopment, John Wiley and Sons, New York, 1995.
[2] Carroll, J.M., Singley, M.K., and Rosson, M.B., Integrating Theory Development With

Design Evaluation, Behavior and Information Technology, Vol. 11, pp. 247-255, 1992.
[3] de Haan, G., ETAG-based Design: User Interface Design as Mental Model Specification,

in “Critical Issues in User Interface Systems Engineering”, Springer-Verlag, pp. 81-92.
[4] McCrickard, D.S., Catrambone, R., Chewar., C.M., and Stasko, J.T., Establishing

Tradeoffs that Leverage Attention for Utility: Empirically Evaluating Information Dis-
play in Notification Systems, International Journal of Human-Computer Studies, Vol. 8,
No. 5, May 2003, pp. 547-582.

[5] McCrickard, D.S., Chewar, C.M., Somervell, J.P, and Ndiwalana, A., A Model for Noti-
fication Systems Evaluation–Toward Assessing Usability for Multitasking Activity, ACM
Trans. on Computer-Human Interaction, Vol. 10, No. 4, December 2003, pp. 312-338.

[6] McCrickard, D.S., Czerwinski, M., and Bartram, L., Introduction: Design and Evalua-
tion of Notification User Interfaces, International Journal of Human-Computer Studies
Vol. 8, No. 5, May 2003, pp. 509-514.

[7] Newman, W.M., Better or Just Different? On the Benefits of Designing Interactive Sys-
tems in terms of Critical Parameters, in Proceedings of the ACM 2nd Symposium on De-d

signing Interactive Systems DIS’97 (Amsterdam, 18-20 August 1997), ACM Press, New
York, 1997, pp. 239-245.

[8] Norman, D.A., Cognitive Engineering, in D.A., Norman, S.W., Draper (eds.), “User
Centered Systems Design: New Perspectives on Human-Computer Interaction”, Law-
rence Erlbaum Associates, New Jersey, 1986, pp. 31-61.

[9] Payne, C., Allgood, C.F., Chewar, C.M. Holbrook, C., and McCrickard, D.S., Generaliz-
ing Interface Design Knowledge: Lessons Learned from Developing a Claims Library, in
Proceedings of 2003 IEEE International Conference on Information Reuse and Integra-
tion IRI’03 (Las Vegas, 27-29 October 2003), Los Alamitos, 2003, pp. 362-369.

[10] Sutcliffe, A., The Domain Theory: Patterns for Knowledge and Software Reuse, Law-
rence Erlbaum Associates, New Jersey, 2002.

[11] Sutcliffe, A., On the Effective Use and Reuse of HCI Knowledge, ACM Transactions on
Computer-Human Interaction, Vol. 7, No. 2, June 2000, pp. 197-221.

[12] Sutcliffe, A.G. and Carroll, J.M., Designing Claims For Reuse In Interactive Systems
Design, Int. J. of Human-Computer Studies, Vol. 50, No. 3, March 1999, pp. 213-241.

[13] Whittaker, S., Terveen, L., and Nardi, B.A., Let’s Stop Pushing the Envelope and Start
Addressing It: A Reference Task Agenda for HCI, Human-Computer Interaction, Vol. 15,II
No 2-3, 2000, pp. 75-106.

[14] Wickens, C.D. and Hollands, J.G., Engineering Psychology and Human Performance,
3rd edd ., Prentice Hall, New Jersey, 2000.

[15] Wilson, S. and Johnson, P., Bridging the Generation Gap: From Work Tasks to User In-
terface Design, in J. Vanderdonckt (ed.), “Computer-Aided Design of User Interfaces”,
Proceedings of the 2nd Workshop on Computer-Aided Design of user Interfaces CA-d

DUI’96 (Namur, June 1996), Presses Universitaires de Namur, Namur, 1996, pp. 77-94.

Chapter 20

XICL – AN EXTENSIBLE MARK-UP LANGUAGE
FOR DEVELOPING USER INTERFACE AND
COMPONENTS

Lirisnei Gomes de Sousa and Jair C. Leite
Department of Informatics and Applied Mathematics, Federal Univ. of Rio Grande do Norte,
Av Sen. Salgado Filho, 3000 - Lagoa Nova - Campus Universitario, Natal (Brazil)
Tel.: +55 84 215 3814 - Fax: +55 84 215 3813
E-mail: lirisnei@lcc.ufrn.br, jair@dimap.ufrn.br
URL: http://www.lcc.ufrn.br/~lirisnei, http://www.dimap.ufrn.br/~jair/

Abstract The development of browser-based User Interface (UI) components is impor-
tant to enhance Web Systems Usability. There are several solutions to the de-
velopment of UI components. Some of them are proprietary and requires spe-
cific high-cost development tools and run-time plug-in. DHTML – the W3C
client-side recommended technologies – provides resources to the develop-
ment of new UI components. However, the development of new UI compo-
nents using DHTML is a very hard work because of the lack of standardised
models and application programming interfaces. Reusability and Extensibility
is also very difficult to achieve. This work presents the XICL, a mark-up lan-
guage to describe user interfaces and UI components. This language defines a
description format and a semantic model that standardises UI components de-
velopment. XICL is based on DHTML and follows the component-based soft-
ware development paradigm to promote reuse, extension and portability. We
also present the XICL Studio, a development environment composed of an
editor, a library of components and a compiler.

Keywords: DHTML, Mark-up languages, User interface components, User interface
specification methods and languages, Web-based interfaces.

1. INTRODUCTION

As the World Wide Web increases, many browser-based applications are
available to a great number of users with very different profiles. Usability is
a very important issue in this scenario. However, browser-based user inter-

247

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 247–258.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

248 de Sousa and Leite

face (UI) development technologies have important limitations to allow us-
ability with portability, extensibility and reusability. DHTML, the WWW
Consortium recommended technologies [12], has only a limited set of UI
components and only allows the implementation of few interaction tech-
niques [7]. It is possible to develop legacy UI components such as pop-up
menus, dialog boxes, toolbars, toolboxes and others using DHTML. How-
ever, there are no models and standardised Application Programming Inter-
faces (APIs) to drive UI component development and to component-based
UI software development. Others UI development technologies also have
some limitations that are discussed in Section 2.

This work presents the XICL, an extensible XML-based mark-up lan-
guage to UI and UI components development to Web systems and Browser-
based software application. UI components are developed in XICL using
HTML elements and others XICL UI components. The language also de-
scribes additional information to allow XICL to be used in UI builders. The
goals of XICL are to provide a standardised way to UI component-based de-
velopment and to promote reusability, extensibility and portability. The
XICL Studio is an associated tool to the development of UI and UI compo-
nents. It has an editor, a library of components, and an interpreter to generate
DHTML code from XICL descriptions.

2. USER INTERFACE COMPONENT-BASED DE-
VELOPMENT TECHNOLOGIES

In this section we analyse the reusability, extensibility and portability
features of some UI component-based development technologies. The main
software industry solutions are the Microsoft IE WebControls [9], the Mac-
romedia Flash MX 2004 and the Sun Java Applets. The Internet Explorer
WebControls are a collection of ASP.NET server controls that generate
HTML 3.2 content that renders in all commonly used browsers [9]. A Tree-
View, ToolBar, MultiPage, and TabControld user interface are included in thel
Internet Explorer WebControls. There are others solution from Microsoft but
they are also based on the .NET (COM/ActiveX) technologies that are spe-
cific for Windows platform.

The Macromedia Flash MX 2004 is a proprietary and closed technology
to the development of Web UI Components [1]. It provides a Component
Architecture that uses the ActionScript 2 language to define Classes and In-
terfaces for Web components. However, the development of the components
and their execution in the resulting user interface requires a proprietary plug-
in that is not available to all operating platforms.

The Java-based technologies for UI components should be developed in

XICL – An Extensible Mark-up Language for Developing
User Interface and Components

249

the Java language using some specific development framework and API
(e.g., Java Swing). The running time UI components are Java Applets and
they require the Java Virtual Machine to be executed in a browser. Applets
are a powerful and flexible solution but they are limited to the Java devel-
opment and operating platforms.

There are others solutions to developing UI and UI components that are
based in XML. We analyse some of this language-based approach to UI de-
velopment.

AUIML (Abstract User Interface Mark-up Language) is “an XML vo-
cabulary which has been designed to allow the intent of an interaction with a
user to be defined.” This clearly contrasts with the conventional approach to
user interface design, which focuses on appearance. With an intent based
approach, designers are able to “concentrate on the semantics of the interac-
tions without having to concern themselves with which particular device
type(s) need to be supported.” Being an XML vocabulary, AUIML allows
device independent encoding of information. All the interaction information
can be encoded once and subsequently rendered using ‘device dependent
rendering’ so that users can actually interact with the system. AUIML is
therefore intended to be independent of the client platform on which the user
interface is rendered, the implementation language and the user interface
implementation technology [2]

XIML (eXtensible Interface Mark-up Language) is an XML-based “in-
terface representation language for universal support of functionality across
the entire lifecycle of a user interface: design, development, operation, man-
agement, organisation, and evaluation” [6,11]. The main concern of the
XIML approach is model-based development. It provides a standard mecha-
nism to data interchange among tools and application from design to opera-
tion. XIML allows design models to be transformed in multi-device imple-
mentation solution [11]. This language has an interested purpose but it does
not offers reusability and extensibility of components.

The UIML (User Interface Mark-up Language) aim is to allow platform
independent UI development – hardware devices, operating systems and
programming languages [10]. It was designed conforming to XML and has
HTML-like syntax. From a unique specification in UIML it is possible to
generate User Interfaces to several platforms in different programming lan-
guages. The main purpose of UIML is similar to that of XICL. However, it
is not possible the development, reuse and extension of UI components.

XUL is a multi-platform language to describe application UI. The most
of GUI components could be create using XUL – buttons, text-boxes, check-
boxes, menus, dialog boxes, trees and others [3]. It is similar to the Java ap-
proach but it uses the Mozilla engine instead of the Java Virtual Machine. It

250 de Sousa and Leite

chine. It is the ideal solution to Web system when it is not possible to install
a standard browser. It is also possible to design on-line and off-line applica-
tion. The main disadvantage is the low portability because it cannot be used
in every browser.

Xforms is a W3C initiative and it is an XML-based language to the crea-
tion of UI form elements to provide portability in different platforms [5].
However it is not possible to create menu, windows, dialog boxes, toolbar
and other UI component.

There is another project that is similar with the purpose of our work and
it also uses a mark-up language. The SEESCOA (Software Engineering for
Embedded Systems using a Component-Oriented Approach) project goal [8]
is to adapt the CBD (Component Based Development) technology that was
developed for mainstream software to the needs of embedded systems.

3. THE XICL LANGUAGE

XICL is a mark-up language to UI and UI component development for
browser-based software. Its syntax is based on XML, HTML and ECMAS-
cript and also follows the Document Object Model [11]. Our intention is to
provide a familiar syntax to Web system developer. The main goals are (1)
the development of UI component to browser-based software and (2) the de-
velopment of UI using HTML elements and XICL components.

Figure 1. The XICL components and HTML elements relationships.

New UI components are described in XICL using HTML elements and
XICL components by reuse and extension mechanisms. A XICL component
could be composed of reusable components stored in a library (XICL Lib) or
it can extend an existing component modifying specific propertied. The rela-
tionship among HTML elements and XICL elements are illustrated using
UML in Fig. 1.

3.1 Developing User Interfaces in XICL

The development process using XICL is described as follows and Fig. 2
illustrates it. The developer of the UI specifies it in the XICL code using a

XICL – An Extensible Mark-up Language for Developing
User Interface and Components

251

text editor. He/she could reuse a XICL component from the library (XICL
Lib). The interpreter analyzes the XICL code and generates the resulting UI
in DHTML code. The resulting DHTML code could run in all browsers that
follow W3C recommendations.

Figure 2. The development process.

The following sub-sections describe how a UI and its components are
developed using XICL.

3.2 Specifying the UI in XICL

To illustrate the features and the expressive power of XICL we present a
short example of the basic structure and the associated behaviour of a user
interface composed of HTML elements and XICL components.

The Fig. 3 shows a screenshot of the Presenta, a browser-based tool to
the development of slide presentations [4]. To open an existing presentation
in Presenta the user should open a file. This is done by entering a file name
in a dialog box window as shown in Fig. 3. The user interface of the Pre-
senta application was developed using XICL. The dialog box could be im-
plemented with DHTML but this requires several lines of Javascript and
HTML programming code. The development is easier and faster using XICL
than using DHTML technologies.

Fig. 4 shows a small part of the specification of the Presenta user inter-
face structure and behaviour. The XICL specification is a XML document.
Its syntax follows the mark-up style that is familiar to the most of web de-
velopers. The <XICL> is the root element of the specification. All others
elements must be inside its scope.

A XICL specification can contain zero or more component descriptions
and one or zero interface descriptions. It also can make reference to compo-
nents that were defined in another XICL documents. To use these outside
components it is necessary to import the specification documents using the

252 de Sousa and Leite

IMPORT element. Fig. 4 (line 2) illustrates a use of the IMPORT element.

Figure 3. A UI developed using XICL.

The INTERFACE element is used to describe the user interface structure
and behavior specification. The HTML components and its associated events
are specified using the XHTML syntax (remember that a XICL document is
a XML document). In our example, the paragraph <P> element and the ta-
ble (<TABLE>, <TR> and <TD>) are used in the specification. The
DHTML onclick event is also used in line 5.k

The XICL components are described in a similar way as HTML ele-
ments. The menuOption element (line 5) is a part of the menu component
specification that is not described here. The WINDOW component creates
the Open File Dialog Box.

It is identified by the “OpenFile” name. The structure of this window is
defined using the <TABLE> element. It contains an input file element (line
14) and two buttons. BtnOk is a button used to confirm the operation and tok
close the window. BtnCancel is used to cancel the operation and also tol
close the window.

The behaviour of the OpenFile window is defined by the methods show()
and close(). Each function should be associated to others UI components.
The show() function displays the OpenFile window to the user when the user
click on the corresponding menu option. This is specified in XICL by asso-

XICL – An Extensible Mark-up Language for Developing
User Interface and Components

253

ciating the onclick event of thek menuOption element (line 5) to the function
OpenFile.show(). The two buttons of the OpenFile window associate the
user click to the corresponding functions. The BtnOk button triggers thek con-
firm() and close() functions whereas the BtnCancel triggers only thel close()
function.

1. <XICL>
2. <IMPORT src= “lib1.xml”>
3. <INTERFACE>
4. …
5. <menuOption onclick=“OpenFile.show()”>Open File </menuOption>
6. …
7.
8. <Window title="Open File" id="OpenFile" width="250" top="200" left="200" height="200">
9. <table width="100%" border="0" >
10. <tr>
11. <p align="center"> Enter with the file (path) </p>
12. </tr>
13. <tr >
14. <p align="center"><input type="file" onBlur="eval(file=this.value)"/></p>
15. </tr>
16. <tr>
17. <td align="right"><BtnOk onclick="confirm(); OpenFile.close()" /> </td>
18. <td align="left"><BtnCancel value="Cancelar" onclick=" OpenFile.close()" /> </td>
19. </tr>
20. </table>
21. </Window>
22. </INTERFACE>
23. </XICL>

Figure 4. The XICL specification.

3.3 Developing XICL Components

Using the XICL language the developer can specify the user interface
and also new UI components. The component-based software development
paradigm recommends the definition of a conceptual model to drive the de-
velopers in defining and reusing a component.

XICL defines its own component conceptual model that is composed by
its structure, properties, events, methods and interaction modeld . Fig. 5 shows
the relationship between them.

In the Presenta example describe in last section, a WINDOW component
is reused to create the OpenFile dialog box. This component offers a struc-
ture to developers to create different kinds of windows in an easy way but it
is must to be created before reuse.

This section describes the development of the WINDOW component by
specifying it in XICL.

254 de Sousa and Leite

script

component

eventsproperties structure

property event

interationModel

The component conceptual model.

The specification begins with the <COMPONENT name=…> tag in-
forming the component name (see Figure 6 and ends with the
</COMPONENT> tag. The name attribute is used to reserve a namespace to
the component so the component can be used on the interface description
only putting its name between tag marks (<compName>). Components can
be defined extending others components. In order to do it we use the extends
attribute.

The structure of the WINDOW component is defined using HTML ele-
ments and XICL components. The WINDOW is a box with top and left po-
sitions. The interface described on the Fig. 3 use XICL component (TEXT)
and HTML elements (DIV, TABLE and others). A component instance can
appear and disappear when its methods show() and close() is activated by an
event.

A component can have another component as a child. The CHILDREN
element is used to specify the position of the child in the component struc-
ture so the compiler knows how to compose the components when neces-
sary. It is an important mechanism to reusability. Fig. 6 (line 17) shows that
the component WINDOW can have children in the table cell.

The PROPERTY element is used to describe the component properties.
This element has the attributes name and dataType. Although the type of the
data is not necessary in DHTML, it is necessary in XICL to explicitly de-
clare the type of the data. A set of component properties should be specified
inside of the PROPERTIES element.
1. …
2. <COMPONENT name="Window" >
3. <STRUCTURE>
4. <div id="$id">,
5. <div style="position:absolute; top:$top; left:$left; ">
6. <table border="1" style=" width:$width; height:$height; ">
7. <tr height="12">
8. <td align="left" border="0">
9. <TEXT style="color:blue; font-size:12 "> $title </TEXT>
10. </td>
11. <td width="2" align="right" border="0">
12.
13.
14.

XICL – An Extensible Mark-up Language for Developing
User Interface and Components

255

15. </td>
16. </tr>
17. <tr ><td colspan="2"> <CHILDREN/> </td> </tr>
18. </table>
19. </div>
20. </div>
21.
22. </STRUCTURE>
23. <METHODS>
24. <METHOD name="close" function="closeWindow" />
25. <METHOD name="show" function="showWindow" />
26. </METHODS>
27.
28. <EVENTS>
29. <EVENT name="onClose" objEvent=" fig1.click " when="during" />
30. <EVENT name="afterClose" functionExec=" closeWindow " when="after" />
31. </EVENTS>
32. </COMPONENT>
33. <SCRIPT><!— … —> </SCRIPT>

Figure 6. Component definition in XICL.

DOM allows the mapping of events into script function in a HTML user
interface element. The DOM events are primary events and the associated
functions are primary functions in XICL. It is not necessary to define pri-
mary events. The onclick is an example of a primary event.k New events can
be defined to new components in XICL. The new events are secondary
events and they should be defined in XICL in the scope of a component
definition specification using the EVENT element. This element has the at-
tributes name, objEvent, functionExe and whend . A new event can be based in
a primary event that are associated to an element – an element-event pair –r
that belongs to the component structure. All the EVENT elements of a com-
ponent should be specified inside the EVENTS element.

The WINDOW component has two secondary events. The onClose event
is associated with the event-element fig1.click and it triggers thek close pri-
mary function. The function is activated only during the event occurrence.
The afterClose event specifies that it occurs only after the closeWindow()
function has been executed. The afterClose event is applied in the WIN-
DOW reuse described in the last section.

The METHODS element encloses the definition of the components
methods. Each method is a script function that determines the behavior of
the component. Actually, the METHOD element maps a method name into a
scripting function.

The SCRIPT element is used to delimit the code of the scripting func-
tions that are methods of the component. The scripting function could be
coded in Javascript or ECMAScript.

256 de Sousa and Leite

4. XICL STUDIO – A DEVELOPMENT ENVIRON-
MENT

The UI development process using XICL requires a basic environment
composed of an editor, a library of components (XICL Lib) and an inter-
preter. The current version of XICL Studio environment consists of a very
basic editor where the developer edits the XICL code. Using the editor is
possible to edit the specification of user interfaces or components. When ed-
iting components the developer should store its source XICL code in the
XICL lib to be reused in future user interfaces.

To develop a complete UI, it is necessary to write the specification in
XICL code using the editor and then call the interpreter to generate the
DHTML final code. This code can be executed in any common browse.

The reuse of XICL components can be done by importing a component
from XICL Lib. The developer specifies the component by using the import
statement. The interpreter joins the source code of the component to that of
user interface and translates them into a DHTML code.

The XICL Studio environment is a browser-based software that inte-
grates the basic editor, the XICL Lib and the interpreter in the same applica-
tion. The developer executes it in a browser and it provides commands to
store a component in the XICL Lib, to call the interpreter and to view the fi-
nal DHTML code.

The XICL Lib has some pre-defined components that can be reused by
the developers. The Window component described in a previous section of
this paper is a pre-defined component that is available to reuse. The Window
is composed of a title bar, a button to close the window and an empty area
where others component could be put. The MessageBox component extends
the Window and could be reused to error messages and warnings. The Dia-
log Box is also an extension of the Window and it contains a text box, a OK
button and a Cancel button.

The ToolBar and MenuBar are components that present options to the
user to activate specific commands. The ToolBar presents a set of images
representing the corresponding functions. The MenuBar presents a set of r
words representing the functions and opens a set of Pulldown MenuOptions.
The user interface of the Presenta reuses both of these components.

5. CONCLUSION

Developers need always to construct new UI components to achieve
more system usability. The W3C recommends the client-side user interface
DHTML technologies to increase application portability. However, DHTML

XICL – An Extensible Mark-up Language for Developing
User Interface and Components

257

only provides a few basic UI components such as button, drop-down menu,
text fields, check-box, radio-button, etc. and developing in DHTML is a very
hard work. Also, there are no models and standards to the development of
DHTML UI components.

XICL is a language to User Interface development by specifying its
structure and behaviour in an abstract level than using only DHTML. It also
promotes reuse and extensibility of user interface components. The devel-
oper can create new and more abstract UI components.

XICL is based on the XML syntax and it follows a basic component
model to provide a well-structure code. The XICL code smoothly integrates
with DHTML technologies promoting also interoperabilty.

UI development in XICL can be done using the XICL Studio environ-
ment. This basic environment provides a simple editor, a library of compo-
nents and an interpreter that translate XICL code into DHTML code. The fi-
nal user interface is implemented using DHTML technologies and can run in
common Web browsers.

ACKNOWLEDGEMENTS

The authors would like to thanks to CNPq (Brazilian Council for Scien-
tific and Technological Development), PRH22 - ANP/MCT and to the Fed-
eral University of Rio Grande do Norte for their financial support.

REFERENCES

[1] Anbar, W., Exploring Version 2 of the Macromedia Flash MX 2004 Component Archi-
tecture, 2004, accessible at http://www.macromedia.com/devnet/mx/flash/articles/

[2] Azevedo, P., Merrick, R., and Roberts D., OVID to AUIML - User-Oriented Interface
Modelling, in N.J. Nunes (ed.), Proceedings of the UML200 Workshop “Towards a
UML Profile for Interactive Systems Development” TUPIS’2000 (York, 2-3 October
2000), accessible at http://www.math.uma.pt/tupis00/submissions/azevedoroberts/azeve
doroberts.html.

[3] Boswell, D., King, B., Oeschger, I., Collins, P., and Murphy E., Introduction to XUL, in
“Creating Applications with Mozilla”, O’Reilly, Sebastopol, September 2002.

[4] De Sousa, L.G, Oliveira, E.S., and Leite, J.C., Implementação de técnicas de interação
no Presenta – uma ferramenta para edição de apresentações na Web, in E. Furtado, J.C.
Leite (eds.), Proc. of 5th Symposium on Human Factors in Computer Systems IHC’2002
(Fortaleza, 7-10 October 2002), Fortaleza, 2002, pp. 141-152.

[5] Dubinko, M., Klotz L., Merrick, R., and Raman, T.V., XForms 1.0 W3C Working Draft,
accessible at http://www.w3.org/TR/xforms/.

[6] Eisenstein, J., Vanderdonckt, J., Puerta, A., Model-Based User-Interface Development
Techniques for Mobile Computing, Proc. of 5th ACM Int. Conf. on Intelligent User Inter-

258 de Sousa and Leite

faces IUI’2001 (Santa Fe, 14-17 January 2001), ACM Press, New York, 2001, pp. 69-76.
[7] Goodman, D., Dynamic HTML – The Definitive Reference, O’Reilly, Sebastopol, 1998.
[8] Luyten, K., Van Laerhoven, T., Coninx, K., and Van Reeth, F., Runtime Transforma-

tions for Modal Independent User Interface Migration, Interacting with Computers, Vol.
15, No. 3, 2003, pp. 329-347.

[9] Microsoft Corporation, Internet Explorer WebControls Reference, The MSDN Library,
accessible at http://msdn.microsoft.com/library/

[10] Phanouriou, C., UIML: A Device-Independent User Interface Markup Language, Ph.D.
Thesis, Virginia Polytechnic Institute, Blackburg, 26 September 2000.

[11] Puerta, A. and Eisenstein, J., XIML: A Universal Language for User Interfaces, in Proc.
of 7th ACM Conference on Intelligent User Interfaces IUI’2002 (San Francisco, 13-16
January 2002), accessible at http://www.iuiconf.org/02pdf/2002-002-0043.pdf

[12] W3C, accessible at http://www.w3c.org, 2003.

Chapter 21

UIML.NET: AN OPEN UIML RENDERER FOR
THE .NET FRAMEWORK

Kris Luyten and Karin Coninx
Limburgs Universitair Centrum, Expertise Centre for Digital Media
Universitaire Campus, B-3590 Diepenbeek (Belgium)
Tel.: +32 11 26 84 11 – Fax: +32 11 26 84 00
E-mail: {kris.luyten,karin.coninx}@luc.ac.be – URL: http://www.edm.luc.ac.be

Abstract As the diversity of available computing devices increases it becomes more diffi-
cult to adapt User Interface development to support the full range of available
devices. One of the difficulties are the different GUI libraries: to use an alterna-
tive library or device one is forced to redevelop the interface completely for the
alternative GUI library. To overcome these problems the User Interface Mark-up
Language (UIML) specification has been proposed, as a way of glueing the in-
terface design to different GUI libraries in different environments without fur-
ther efforts. In contrast with other approaches UIML has matured and has some
implementations proving its usefulness. We introduce the first UIML renderer
for the .Net framework, a framework that can be accessed by different kinds of
programming languages and can use different kinds of widget sets. We show
that its properties, among them its reflection mechanism, are suitable for the de-
velopment of a reusable and portable UIML renderer. The suitability for multi-
device rendering is discussed in comparison with our own multi-device UI
framework Dygimes. The focus is on how layout management can be general-
ised in the specification to allow the GUI to adapt to different screen sizes.

Keywords : Automatic User Interface Generation, Multi- and multiple-device User Inter-
faces, User-interface design and specification methods and languages, UIML.

1. INTRODUCTION

It is a known fact that all computing environments become more hetero-
geneous every day. Instead of emerging to a common set of hardware and
software platforms, computing gains at diversity. Nevertheless, a lot of atten-
tion is given to open standards supporting interoperability between different
devices and software platforms. The diversity raises the opportunity for new

259

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 259–270.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

260 Luyten and Coninx

methodologies and techniques to support multi- (and multiple-) device User
Interfaces (UIs). Several initiatives exist in the academic world as well as in
the industry. Managing the reuse of interactive software components over
several different kinds of devices is one of the problems tackled in this pa-
per. One of the noticeable methodologies is the use of Model-Based User In-
terface Development (MBUID). Another one is the use of User Interface De-
scriptions Languages (UIDL), nowadays mostly based on the XML syntax.
This work concentrates on the latter: the goal is to develop an adaptive,
flexible UIDL renderer so it can be deployed easily in MBUID for multiple
devices. In the existing literature there are several publications describing
the usage of the UIDL within MBUID to support the design of multi-device
UIs. XIML [6,17], XWeb [14], XForms [20], XUL [7] and TERESA XML
[12,15] are especially worth mentioning here. They provide solutions for
multi-device UI design and creation on different levels of abstraction. An-
other initiative is the Dygimes framework [5]: it combines several tech-
niques like task modelling, UIDL, web services and constraint-based layout
management to generate UIs for mobile and embedded systems at runtime.

Unfortunately, once the design reaches the presentation level it remains
difficult to specify this in a device-independent manner. Very few UIDLs
succeed in being generic enough to be really independent of the widget set
(e.g., some can only be used with Java widgets, or are only suitable with web
browser support). The User Interface Mark-up Language (UIML) [2,16] is a
specification that is independent of a widget set and claims to be device-
independent as well. Because the specification has matured over the years
and efforts are emerging to submit it as a World Wide Web Consortium
(W3C) specification, it is beneficial to develop renderers for the specifica-
tion. Some of the current research efforts include creating better support for
multi-platform UIs [3,16]. Targeting multi-device environments implies the
UIML renderer has to be very flexible: on different devices there could be
different widget sets, or the widget set API can be slightly different due to
the different device profiles. This work also aims at creating a UIML ren-
derer managing and supporting evolution in widget set APIs and differences
in widget set vocabularies without the need for changing the renderer itself.

The remainder of this paper is structured as follows: Section 2 gives a
short introduction into the UIML language. It provides the necessary details
of the specification to understand the following sections. In Section 3 some
related work and underlying technologies are discussed evaluating the use of
UIML to illustrate the context of the work. This is followed by a description
of the implemented renderer in Section 4. Several aspects will be highlighted
with the emphasis on the flexibility of the renderer. Section 5 identifies the
layout management problem and proposes a solution for future UIDL ren-
derers. Section 6 concludes the paper with an example.

UIML.Net: an Open UIML Renderer for the .Net Framework 261

2. UIML OVERVIEW

The UIML specification is currently under revision for submission as a
W3C standard. Consequently this means some changes in the specification
can be expected and current renderer software design should support easy
refactoring to adopt these changes. An UIML document exists of several
parts [1] that are shown in Fig. 1. Together they form the Meta-Interface
Model (MIM):
1. Interface describes four parts of the UI:

Structure: describes the “widget hierarchy” of the UI. It defines the
different parts that are contained in the UI, and the abstract widget name
of each part.
Style: describes properties of the parts defined in the structure. This
allows to change properties of the widgets like color, font, text,...The
layout is also defined as a style of the parts in structure. Unfortunately
the current way of defining a layout is not suitable for multi-device UIs,
Section 5 will elaborate further on this.
Content: separates the content of the interface (e.g., the list that has to
appear in a list presentation) of the other parts.
Behavior: defines rules with actions that are triggered when some
condition is met. Some kind of event mechanism is offered to the UI
designer this way.

2. Vocabularies are referred to as peers in the UIML specification: this
contains the mapping with the concrete UI toolkit. To allow the use of
different devices and different GUI libraries, one can define several peers
for the same UIML document while choosing the appropriate peer at
runtime. The renderer described in this paper is limited to 2D widget sets.

3. Logic defines how to bind the UI with the application logic. More precise
it describes the mappings with the software interface to communicate
with the application logic.

Figure 1. The UIML Meta-Interface Model.

262 Luyten and Coninx

3. RELATED WORK

Until now, we are not aware of any previous work describing the actual
implementation of an UIML renderer and releasing the source code. There
were some initiatives in the past, but most of these projects only implemen-
ted parts of an obsolete specification version or are no longer supported. [4]
describes how UIML can be converted into program code. Harmonia [3]
offers a Java-based UIML renderer that implements most of the
specification. Several other implementations are gathered on http://www.
uiml.org, but most of them are deprecated and/or no source code has been
released.

It is clear that UIML was designed with Object-Oriented programming
languages in mind. Most mappings on the UI toolkit and the relations with
the application logic rely on the existence of “classes” in the OO sense. The
most mature implementation of the UIML renderer is the one provided by
Harmonia, and is implemented in Java. However, the .Net framework offers
some new possibilities to develop a UIML renderer. For example it supports
on-the-fly executable code generation and better integration with web
services. This is the first attempt to write a UIML renderer for the .Net
Framework.

The widget set that is used to generate the UI is the GTK# (http://gtk-
sharp.sourceforge.net) widget set. Although it is still in a development
stage, and only few applications are implemented using this widget set, it is
mature enough to use as a basis. The most well-known widget set is the
Windows Forms library. This one is not chosen for two reasons: the first one
is that it is more complex to use than most other .Net widget sets, the second
reason is to keep the renderer independent of the Microsoft implementation.
Portability to different platforms and availability are important issues, so the
renderer was not implemented in the Microsoft .Net Framework, but in the
Mono (http://www.go-mono.com) implementation of .Net. Both .Net
Frameworks implement the same ECMA standard, so the implementation
should be reusable as is.

4. THE RENDERER

4.1 Overall Design

A UIDL can be processed in two different ways: either it can be compiled
or rendered. The former transforms the specification into program code, the
latter provides a rendering engine that can interpret the UIML document.
When the UIML document is transformed into source code (“compiled”), on

UIML.Net: an Open UIML Renderer for the .Net Framework 263

its turn the resulting source code needs to be compiled. Transforming the
UIML document into program code is advantageous when the code still
needs to be manually changed afterwards.

The rendering approach is more complex to implement, but is more
flexible: it allows fast prototyping because an UIML document can be tested
directly, it can offer dynamic changes in the UI and a transparent mechanism
for connecting the rendered UI with the application logic. Several parts of
the renderer can be distinguished:

Vocabulary Generator. One of the most cumbersome and tedious tasks
is to create a vocabulary for a particular widget set. When the
vocabularies are manually edited this often results in different incompati-
ble vocabularies and incomplete mappings. When the widget set API gets
updated, often the vocabulary has to be updated manually if one wants to
support the latest version of the widget set. This process can be auto-
mated when the implementation language supports reflection, e.g., Java
and C# have reflection support. Reflection allows software to inspect
implementation code and APIs at runtime.

Interface reader. In the initial stage the UIML document has to be
processed. The Interface reader processes the document and stores it in
an appropriate data structure. Notice that it is recommended to keep this
data structure in memory during the lifespan of the UI: dynamic changes
in the style and the UI structure can be supported better this way.

Style repository. The style properties included in a UIML document are
implemented in a repository-like manner. On the one hand the part that is
specified beforehand is queried using XPath expressions. On the other
hand there is support for properties that are added at runtime by an
internal data structure.

Rendering Backends. The specification allows different peers to co-
exist for the same interface specification. A peer defines the language
bindings for the interface, thus which widget set is being used and how it
can interact with the application logic.

System Glue. The system glue connects the concrete interface with the
application logic. There are different ways to do this; by means of direct
method invocation, remote method invocation or through web services.
All three ways are supported by the .Net framework making it a powerful
choice for implementing the renderer.

Fig. 2 gives an overview of the architecture of the renderer. Fig. 3
illustrates the rendering process of the uiml.net renderer.

264 Luyten and Coninx

Figure 2. A rough sketch of the UIML.Net architecture.

Figure 3. Processing an UIML file with UIML.net.

4.2 Dynamic Core

Roughly spoken, there are two ways of implementing a renderer for a UI
mark-up language:

Static renderer. The implementation relies on specific knowledge of the

UIML.Net: an Open UIML Renderer for the .Net Framework 265

widget set. The types offered by the target GUI library are loaded and
used at compile-time.
Dynamic renderer. The implementation does not rely on specific
knowledge of the widget set. The types offered by the target GUI library
are loaded and used at runtime.
The former is more robust but less flexible and requires more program

code. The latter takes full advantage of the information offered by the peer
descriptions (vocabularies); it requires a detailed mapping description in the
vocabulary.

Reflection is a very powerful tool to use when mapping the Abstract
Interface Objects (AIO) to Concrete Interface Objects [18]. AIOs are
abstract representation of widgets, and CIOs are the concrete representation;
e.g., a “range indicator” is an AIO and can be mapped to a slider widget
(CIO). The rendering engine itself has no notion of concrete widgets, but
will be guided by the vocabulary to search for the appropriate mapping.
Even when the concrete widgets are found (including its class name and
properties), the renderer will avoid using the explicit class names. Instead it
queries the available libraries containing possible widget sets with the
information retrieved from the vocabulary. The reflection mechanism allows
to construct new objects using solely this information. This has several
advantages:

The rendering engine is reusable for other widget sets, since it does not
explicitly creates the concrete widgets directly.
The vocabulary can be extended independently of the renderer. When
the widget set is updated, only the vocabulary has to be updated. New
entries in the vocabulary can be used without further adaption of the
program code.
The renderer is more portable across devices, e.g., it can be ported to
platforms that only offer a limited version of the same widget set.

5. THE LAYOUT PROBLEM

One of the pitfalls making UIML less suitable for multi-device interfaces
is the lack of support for uniform layout management. We propose to use
spatial hierarchical layout constraints to overcome this problem. [13]
rightfully argues that constraint-based systems have not caught on for UIs,
nevertheless simple constraints can be succesfull for specifying the layout of
a system. Since the very beginning of GUI creation constraints are
investigated to obtain better layout management. [10] gives an overview of
different techniques using constraints for the layout of graphical interfaces.
Thinglab used constraints for graphical simulation [8]. In [19] some

266 Luyten and Coninx

techniques are discussed that a renderer could implement to obtain a visually
pleasing result. Typically the layout of the UI is influenced by the interface
and style parts of the UIML document. Our approach differs with traditional
approaches in the sense that we also use the hierarchy as described by UIML
in the structure element instead of directly referring to the individual parts.
Most available vocabularies have the layout specified as parts of the
properties that can be defined in the style section of a UIML document.

Figure 4. A visual representation of the contraint definition for a structure tree.

In the way we implemented the renderer, the interface part determines
how the concrete UI will be nested and the style part specifies the more
widget-set related possibilities using layout managers. Using spatial layout
constraints this separation can be preserved, while adding adaptability when
rendering the UI. Constraints are only defined between siblings in the
structure tree. A visual representation of this related to the example in
section 6 is shown in Fig. 4.

The hierarchy divides the interface in groups. These groups can be
subdivided in other groups and so on. All widgets that are part of the same
group, have a logical relation with respect to each other. Some rules can be
applied here:

A group describes a set of logically related abstract interactors or groups
of abstract interactors. The designer should decide which widgets are
gathered in a group.
A group can be specified splittable (as a UIML property). This specifier
allows the layout manager to show the abstract interactors or groups of
abstract interactors in separate spaces.
The group specifier non-splittable (as a UIML property) forces the
layout manager to show the children of the group as a whole to make

UIML.Net: an Open UIML Renderer for the .Net Framework 267

sense to the user. Note that “non-splittable” is only valid for the direct
children of the group, and does not affect the further offspring.

For now, we have not implemented this into the UIML.Net renderer
because it would break the current specification. The layout management
should be generic and not related to any widget set and modalities. By
consequence this requires adding new elements into the UIML specification,
e.g., tags to define constraints. The spatial constraints are implemented in the
Dygimes framework [5,11] for testing purposes and has proven to be a
feasible solution for UIs containing a limited amount of widgets. Results
obtained in this experiment to combine UIDL with spatial constraints can be
seen in Fig. 5. The figure shows how a hotel registration form described in a
UIDL can be rendered to different devices.

Figure 5. Hotel registration form on an IPaq 3970 (a), a Palm IIIc (b), and a cell phone (c).

6. A MULTI(PLE)-DEVICE PICTURE BROWSER

To provide the reader with a clear understanding we introduce a simple
example here: the multi(ple)-device picture browser. We will show how to
create a simple picture browser that can be rendered on multiple different
devices, distributing the interface over several devices. Imagine the follow-
ing scenario: nowadays most people have a digital camera. It would be nice
to design one application for browsing your pictures that works on most
devices. Sometimes it is even usefull to distribute several parts of the UI
over several devices. For example suppose you want to give a presentation
showing your pictures on a large screen. The controls for browsing the
pictures (e.g., the “previous” and “next” button) can be shown on a PDA,
while the pictures can use the full screen space of the available monitor. An
extract of the UIML document can be seen in Fig. 7.

When the UIML document shown in Fig. 7 is rendered for the desktop,

268 Luyten and Coninx

the UI depicted in Fig. 6(a) is the result. Suppose we are only interested in a
part of the UI being rendered for our PDA, more specific the controls section
(thumbnails and buttons) of the picture browser. This results in only a
selection of the structure tree being rendered as shown in Fig. 6(b). The
interesting feature is that the pruning can be done at runtime, without manual
intervention (apart from the user interaction to initiate this action).

Figure 6. The Multi(ple) device Picture Browser on a desktop (a)
and controls rendered separately (b) .

<uiml>
 <interface>
 <structure>
 <part class="Frame" id="picbrowser">
 <part class="Frame" id="theimg">
 <part class="Image" id="image"/>
 </part>
 <part class="Frame" id="remote">
 <part class="Frame" id="thumbnails">
 <part class="Image" id="prev2"/>

...
<

 </structure> part class="Button" id="previous"/>
 </part>
 </part>
 </part>

...
Figure 7. Part of the UIML document.

UIML.Net: an Open UIML Renderer for the .Net Framework 269

7. CONCLUSION

We discussed the implementation of a User Interface Markup Language
(UIML) renderer and a possible extension: better adaptability for multiple/
multi-device environments throughout the usage of spatial constraints. Our
goals are to compare the UIML specification with the UIDLs supported by
the Dygimes framework and to contribute to the development of UIML; the
leading specification for multi-device UI development. We explored how the
.Net framework allows to create a renderer that is bound to a widget set at
runtime (through reflection) instead of at compile-time. This results in an
easy extensible rendering engine that supports evolution of widget set
vocabularies. The source code of uiml.net is accessible at http://www.
edm.luc.ac.be/software/uiml.net/.

ACKNOWLEDGEMENTS

The authors would like to thank Bert Creemers for his help implementing
the spatial layout constraints in Dygimes. The research at the Expertise
Centre for Digital Media (EDM/LUC) is partly funded by the Flemish
government and EFRO (European Fund for Regional Development).

REFERENCES

[1] Abrams, M. and Helms J., User Interface Markup Language (UIML) Specification
Version 3.0., Technical report, Harmonia, 2002.

[2] Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., and Shuster, J.E.,
UIML: An Appliance-Independent XML User Interface Language, Computer Networks,
Vol. 31, No. 11-16, 1999, pp. 1695-1708.

[3] Ali, M.F., Perez-Quiñones, M.A., Abrams, M., and Shel, E., Building Multi-Platform
User Interfaces With UIML, in [9], pp. 255-266.

[4] Binnig, C. and Schmidt, A., Development of a UIML Renderer for Di erent Target
Languages: Experiences and Design Decisions, in [9], pp. 267-274.

[5] Coninx, K., Luyten, K., Vandervelpen, C., Van den Bergh, J., and Creemers, B.,
Dygimes: Dynamically Generating Interfaces for Mobile Computing Devices and
Embedded Systems, in L. Chittaro (ed.), Proc. of 5th International Symposium Human-
Computer Interaction with Mobile Devices and Services Mobile HCI’2003 (Udine, 8-11
September 2003), Lecture Notes in Computer Science, Vol. 2745, Springer-Verlag,
Berlin, 2003, pp. 256-270.

[6] Eisenstein, J., Vanderdonckt, J., and Puerta, A., Model-Based User-Interface Develop-
ment Techniques for Mobile Computing, in Proc. of 5th ACM International Conference
on Intelligent User Interfaces IUI’2001 (Santa Fe, 14-17 January 2001), ACM Press,
New York, 2001, pp. 69-76.

[7] Hyatt, D., Goodger, B., Hickson, I., and Waterson, C., XML User Interface Language
(XUL) Specification 1.0. World WideWeb, 2001, accessible at http://www.mozilla.
org/projects/xul/

270 Luyten and Coninx

[8] Maloney, J., Boming, A., and Freeman-Benson, B.N., Constraint Technology for User
Interface Construction in ThingLab II, in Proceedings of ACM Conference on Object-II
Oriented Programming: Systems, Languages, and Applications OOPSLA’1989 (New
Orleans, 1-6 October 1989), ACM Press, New York, 1989, pp. 381-388.

[9] Kolski, C. and Vanderdonckt, J. (eds.), Computer-Aided Design of User Interfaces III,II
Proceedings of 4th Int. Conf. on Computer-Aided Design of User Interfaces CADUI’
2002 (Valenciennes, 15-17 May 2002), Kluwer Academic Publishers, Dordrecht, 2002.

[10] Lok, S. and Feiner, S., A Survey of Automated Layout Techniques for Information
Presentations, in Proceedings of SmartGraphics 2001 SG’2001 (Hawthorne, March
2001), pp. 61-68.

[11] Luyten, K., Creemers, B., and Coninx, K., Multi-device Layout Management for Mobile
Computing Devices, Technical Report, TR-LUC-EDM-0301, Limburgs Univeristair
Centrum, Expertise Centre for Digital Media, September 2003, accessible at
http://lumumba.luc.ac.be/kris/research.

[12] Mori, G., Paterno, F., and Santoro, C., Tool Support for Designing Nomadic
Applications, in Proceedings of 7th ACM International Conference on Intelligent User
Interfaces IUI’2003 (Miami, 12-15 January 2003), ACM Press, New York, 2003, pp.
141-148.

[13] Myers, B., Hudson, S.E., and Pausch, R., Past, present, and future of user interface
software tools, ACM Transactions on Computer-Human Interaction, Vol. 7, No. 1, 2000,
pp. 3-28.

[14] Olsen, D.R., Jefferies, S., Nielsen,T., Moyes, W., and Fredrickson, P., Cross-modal
interaction using XWeb, in Proc. of the 13th Annual Symposium on User Interface
Software and Technology UIST’00 (San Diego, 5-8 November 2000), ACM Press, New
York, pp. 191-200.

[15] Paterno, F. and Santoro, C., One Model, Many Interfaces, in [9], pp. 143-154.
[16] Phanouriou, C., UIML: A Device-Independent User Interface Markup Language, Ph.D.

Thesis, Virginia Polytechnic Institute, Blackburg, 26 September 2000.
[17] Puerta, A. and Eisenstein, J., XiML: A Common Representation for Interaction Data, in

Proceedings of 6th ACM International Conference on Intelligent User Interfaces (San
Francisco, 13-16 January 2002), ACM Press, New York, 2002, pp. 214-215, 2002.

[18] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic
Interaction Objects Selection, in Proc. of the ACM Conf. on Human Factors in
Computing Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New
York, 1993, pp. 424-429.

[19] Vanderdonckt, J. and Gillo, X., Visual Techniques for Traditional and Multimedia
Layouts, in Catarci, T., Costabile, M.F., Levialdi, S., Santucci, G. (eds.), Proceedings of
2nd ACM Workshop on Advanced Visual Interfaces AVI'94 (Bari, 1-4 June 1994), ACM d

Press, New York, 1994, pp. 95-104.
[20] World Wide Web consortium, XForms, World Wide Web, 2001, accessible at

http://www.w3.org/TR/xforms/

Chapter 22

THE UBIQUITOUS INTERACTOR – DEVICE
INDEPENDENT ACCESS TO MOBILE
SERVICES

Stina Nylander, Markus Bylund, and Annika Waern
Swedish Institute of Computer Science
Box 1263, 16429 Kista (Sweden)
Tel.: +46 70 {3530369, 6615460, 3363916} – Fax: +46 8 751 7230
E-mail: {stina.nylander, markus.bylund, annika.waern}@sics.se – URL: www.sics.se

Abstract The Ubiquitous Interactor (UBI) addresses the problems of design and devel-
opment arising around services that need to be accessed from many different
devices. In UBI, the same service can present different user interfaces on dif-
ferent devices by separating user-service interaction from presentation. The in-
teraction is kept the same for all devices, and different presentation informa-
tion is provided for different devices. This way, tailored user interfaces for
many different devices can be created without multiplying development and
maintenance work. In this paper we describe the system design of UBI, the
system implementation, and two services implemented for the system: a cal-
endar service and a stockbroker service.

Keywords: Device independence, Interaction acts, Mobile services, Multiple user inter-
faces.

1. INTRODUCTION

The Ubiquitous Interactor (UBI) is a system addressing the problems
with design and development that arise when service providers face the vast
range of computing devices available on the consumer market. Today, users
have a wide range of devices at their disposal for accomplishing different
tasks: desktop and laptop computers, wall-sized screens, PDAs and cellular
phones. The range of services is equally wide: information services, shop-
ping and entertainment. This creates a need for service use from different
devices in different situations. Users could for example access their shopping

271

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 271–282.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

272 Nylander, Bylund, and Waern

services from a desktop computer at home and from a cellular phone on the
bus. Unfortunately, this is often not possible since devices and services can-
not be freely combined. Devices have different capabilities for user interac-
tion and presentation, and most services cannot adapt their user interfaces to
these differences. This means that users often have to use different versions
of a service from different providers to access the same functionality, which
causes problems of synchronisation and compatibility.

The main approach to making services accessible from multiple devices
today is versioning. However, with many different versions of services, de-
velopment and maintenance work get very cumbersome, and it is difficult to
keep consistency between different versions. Another popular method is to
use Web user interfaces since most devices run a Web browser. However,
adaptations are still needed, for example translation between mark-up lan-
guages and layout changes for small screens. It is also difficult to take ad-
vantage of device specific features and to control how user interfaces will be
presented to end-users. Thus, we need new and robust methods for develop-
ing services that can adapt to different devices [6]. It is not reasonable to
force users to use different services for different devices to get the same con-
tent [11]. UBI offers a possibility to develop a single device independent
version of a service, and then create device specific user interfaces for it. To
accomplish this, UBI uses interaction acts [8] (Section 4.1) to describe the
user-service interaction in a device independent way. This description is
used by all devices to generate an appropriate user interface. The presenta-
tion of user interfaces can be controlled through customisation forms [8]
(Section 4.2), which contain service and device specific information of how
user interfaces should be presented. This makes it possible to develop ser-
vices once and for all, and tailor their user interfaces to different devices.

2. BACKGROUND

Our interest and need for device independent services are results from
previous work with the next generation electronic services [1,2]. However,
the need for device independent applications is not new. During the seven-
ties and eighties, developers faced large differences in hardware. That time
the problem disappeared when personal computers emerged. The hardware
got standardized to mouse, keyboard and desktop screen, and direct manipu-
lation user interfaces worked similarly in different operating systems [6].

The situation that we face today is different. We are currently experienc-
ing a paradigm shift from application-based personal computing to service-
based ubiquitous computing. In a sense, both applications and services can
be seen as sets of functions and abilities that are packaged as separate units

The Ubiquitous Interactor – Device Independent Access to
Mobile Services

273

[4]. However, while applications are closely tied to individual devices, typi-
cally by a local installation procedure, services are only manifested locally
on devices and made available when needed. The advance of Web based
services during the nineties can be seen as the first step in this development.
Instead of accessing functionality locally on single personal computers, users
got used to access functionality remotely from any Internet connected PC.
This will change though. With the development of the multitude of different
devices that we see today (e.g., cellular phones, PDAs, and wearable com-
puters) combined with growing requirements on mobility and ubiquity, the
Web based approach is no longer enough.

The multitude of device types we see today is not due to competition be-
tween vendors as before, but rather motivated by requirements of specialisa-
tion. Different devices are designed for different purposes and thus their di-
verse appearance. As a result, the solution this time needs to support simple
implementation and maintenance of services without losing the uniqueness
of each type of device. This is what we set out to solve with UBI.

3. RELATED WORK

Much of the inspiration for the Ubiquitous Interactor (UBI) comes from
early attempts to achieve device independence or in other ways simplify de-
velopment work by working on a higher level than device details.

Mike [10] and ITS [13] were among the first systems that made it possi-
ble to specify presentation information separately from the application, and
thus change the presentation without changes in the application. However,
they only handled graphical user interfaces, and they had other important
limitations. Mike could not handle application specific data. In ITS, presen-
tation information was considered as application independent and stored in
style files that could be moved between applications, something that was not
very useful [13]. In UBI, we instead consider presentation as application
specific and tailor it to different devices.

Personal Universal Controllers (PUC) [7] encode the data sent between
application and client in a device independent format using a set of state
variables combined with dependency information, and leaves the generation
of user interfaces to the client. Unlike UBI, PUC does not provide any
means for service providers to control the presentation of the user interfaces.
It is completely up to the client how a service will be presented to end-users.

Unified User Interfaces (UUI) [12] is a design and engineering frame-
work that aims to provide user interfaces tailored to different user groups
and situations of use in terms of users' physical capabilities, preferences and

274 Nylander, Bylund, and Waern

usage context. Since UUI is a project with very large scope, making all user
interfaces accessible to all users, they take into account a large number of
factors (e.g., contextual and environmental) that make the system more
complex than we believe is necessary to solve the problems UBI is address-
ing.

Service
rpreter /

rrUI Generatorr

rpreter /
rUI Generatorr

Interpreter /
rUI Generatorr User InterfaceUser Interface

User InterfaceUser Interface

User InterfaceUser Interface

Figure 1. Services offer their interaction expressed in interaction acts, and an interpreter gen-
erates a UI based on the interpretation. Different interpreters generate different UIs.

4. DESIGN
In the Ubiquitous Interactor (UBI), we have chosen the interaction be-

tween users and services as our level of abstraction in order to obtain units of
description that are independent of device type, service type, and user inter-
face type. Interaction is defined as actions that services present to users, as
well as performed user actions, described in a modality independent way.
Some examples of interaction according to this definition would be: making
a choice from a set of alternatives, presenting information to the user, or
modify existing information. Pressing a button, or speaking a command
would not be examples of interaction, since they are modality specific ac-t
tions. By describing the user-service interaction this way, the interaction can
be kept the same regardless of device used to access a service. It is also pos-
sible to create services for an open set of devices.

The interaction is expressed in interaction acts that are exchanged be-
tween services and devices. User interfaces are generated based on interac-
tion acts and additional presentation information (Fig. 1). In the standard
case, interaction acts are interpreted and user interfaces generated on the de-
vice side, but for thin clients the interpretation and generation can be made
on a server. Although we are aiming for general solutions, which cover in-
teraction with many sorts of applications via a large range of interface types,
we realise that it might be difficult and in some cases not even desirable to
develop services using interaction acts. Some services might be too complex,
while others might be too device dependent (like a high-end multi-player
game) to benefit from this approach. For the time being, we are therefore
limiting our vision to a few interface types, (mainly windows-based GUIs,
command-line interfaces, and speech interfaces), and more simple services
(e.g., information services). However, these types of services and UIs cover
most of what is available today and will be available in the near future.

The Ubiquitous Interactor – Device Independent Access to
Mobile Services

275

4.1 Interaction Acts

Interaction acts are abstract units of user-service interaction that contain
no information about modality or presentation. This means that they are in-
dependent of devices, services and interaction modality. Throughout this
work, we assume that most kinds of interaction can be expressed using a
fairly limited set of interaction acts. User-service interaction for a wide range
of services can be described by combining single interaction acts and groups
of interaction acts.

The set of interaction acts have been established through analysis of ex-
isting services and applications [8]. We examined functionality and user-
service interaction in services on the Web, such as ticket reservation services
for trains and movie theatres, telephone services such as bank services and
train time tables, a desktop home care planning tool, and computer games.
Live face-to-face instructions were also studied informally. The current set
have eight members supported in UBI: input, output, select, modify,
create, destroy, start and stop. Input and output are defined from
the systems point of view. Select operates on a predefined set of alterna-
tives. Create, destroy and modify handles the life cycle of service spe-
cific data, while start and stop handles the interaction session. All inter-
action acts except output returns user actions to services. Output only pre-
sents information that users cannot act upon.

During user-service interaction, the system needs more information about
the interaction acts than its type. Interaction acts are uniquely identifiable, so
that user actions can be associated with them and interpreted by services. It
is also possible to define for how long a user interface component based on
an interaction act should be present in the user interface before being re-
moved. Otherwise only static user interfaces can be created. It is possible to
create modal user interface components based on interaction acts, e.g. com-
ponents that lock the user-service interaction until certain user actions are
performed. This way, user actions can be sequenced when needed. All inter-
action acts also have a way to hold information, as a default base for the ren-
dering of interaction acts. Finally, meta-data can be attached to interaction
acts. Metadata can for example contain domain information, or restrictions
on user input that are important to the service.

In more complex user-service interaction, there is a need to group several
interaction acts together, because of their related function, or the fact that
they need to be presented together. An example could be the play, rewind,
forward and stop functions of a CD player. The structure obtained by the
grouping can be used as input when generating the user interfaces. These
groups allow nesting.

276 Nylander, Bylund, and Waern

4.2 Controlling the Presentation

To give service providers a way to specify how their services will be pre-
sented to end-users, services must be able to provide detailed presentation
information. Control of presentation has proven to be an important feature of
methods for developing services [3,6], since it is used for e.g., branding.

In UBI, presentation information is specified separately from user-service
interaction. This allows for changes and updates in the presentation informa-
tion without changing the service. The main forms of presentation informa-
tion are directives and resources. Directives link interaction acts to for ex-
ample widgets or templates of user interface components. Resources could
be pictures or sounds that are used in the rendering of an interaction act.

It is optional to provide presentation information in UBI. If no presenta-
tion information or only partial information is provided, user interfaces are
generated with default settings. However, by providing detailed information
service providers can fully control how their services will be presented.

5. IMPLEMENTATION

The Ubiquitous Interactor (UBI) has three main parts: the Interaction
Specification Language (ISL), customisation forms, and interaction engines.
ISL is used to encode the interaction acts sent between services and user in-
terfaces, customisation forms contain presentation information, and interac-
tion engines generate user interfaces based on interaction acts and informa-
tion from customisation forms. The different parts are defined at different
levels of specificity, where interaction acts are device and service independ-
ent, interaction engines are device dependent, and customisation forms are
service and device dependent.

5.1 Interaction Specification Language

Interaction acts are encoded using the Interaction Specification Language
(ISL), which is XML compliant. Each interaction act has a unique id that is
used to map performed user interactions to it. It also has a life cycle value
that specifies when components based on it are available in the user inter-
face. The life cycle can be temporary, confirmed, or persistent. Interface
components based on temporary interaction acts are available in the user in-
terface for a specified time and then removed by UBI, confirmed compo-
nents are available until the user has performed a given action, and persistent
components are available in the user interface during the whole user-service
interaction. The default value is persistent. All interaction acts can be given a
symbolic name, and belong to a named presentation group in a customisation

The Ubiquitous Interactor – Device Independent Access to
Mobile Services

277

form. This will be discussed further in Section 5.2.
Interaction acts also have a modality value that specifies if components

based on them will lock other components in the user interface. The value of
the modality can be true or false. If the modality value is true, the component
is locking other components in the user interface until the user performs a
given action. The default value is false. All interaction acts contain a string
value used to hold default information. It is also possible to attach meta data
to all interaction acts. Listing 1 shows the ISL of a select interaction act.

<select>
 <id>235690</id>
 <life>persistent</life>
 <modal>false</modal>
 <string>browseList</string>
 <alternative>
 <id>5463</id>

 <name>alt</name>
 <string>Previous</string>
 <retVal>0</retVal>
 </alternative>

 <alternative>
 <id>5893</id>

 <name>alt</name>
 <string>Next</string>
 <retVal>1</retVal>

 </alternative>
</select>

Listing 1: ISL encoding of a select interaction act with id, life cycle, modality,
and default content information.

Interaction acts can be grouped using a designated tag isl, and groups
can be nested to provide more complex expressions of interaction. These
groups contain the same type of information assigned to single interaction
acts. The ISL code sent from services to interaction engines contains all in-
formation about the interaction acts: id, name, group, life cycle, modality,
default information and metadata. A large part of this information is only
useful for the interaction engine during generation of user interfaces. Thus,
when users perform actions, only the relevant parts of interaction acts are
sent back to the service. Two different DTDs have been created for this, one
for encoding interaction acts sent from services to interaction engines, and
one for encoding interaction acts sent from interaction engines to services.
The DTDs are available at http://www.sics.se/~stny/UIB/DTDs/dtd.html.

5.2 Customisation Forms

Customisation forms contain device and service specific information
about how the user interface of a given service should be presented. Infor-
mation can be specified on three different levels: group level, type level or

278 Nylander, Bylund, and Waern

name level. Information on group level affects all interaction acts of a group,
information at type level provides information for all interaction acts of the
given type; and information on name level provides information about all in-
teraction acts with the given symbolic name. The levels can also be com-
bined, for example creating specifications for interaction acts in a given
group of a given type, or in a given group with a given name.

The Interaction Specification Language contains attributes for creating
the different mappings. Each interaction act or group of interaction acts can
be given an optional symbolic name that is used in mappings where the
name level is involved. This means that each interaction act with a certain
name is presented using the information mapped to the name. Interaction
acts or groups of interaction acts can also belong to a named group in a cus-
tomisation form. All interaction acts that belong to a group are presented us-
ing the information associated with the group (and possibly with additional
information associated with their name or type).

<output>
 <id>235690</id>
 <name>sicsLogo</name>
 <group>calendar</group>
 <life>persistent</life>
 <modal>false</modal>
 <string>SICS AB</string>
</output >

Listing 2: ISL encoding of an output interaction act with a symbolic name, and that belongs to
a customisation form group called calendar.

Listing 2 shows an encoding of the output interaction act from listing 1
with a symbolic name, and as a member of a customisation form group.

Customisation forms are structured and can be arranged in hierarchies
which allows for inheriting and overriding information between forms. A
basic form can be used to provide a look and feel for a family of services,
with different service specific forms adding or overriding parts of the basic
specifications to create service specific user interfaces. A customisation form
does not need to be complete. Interaction acts that do not map to any presen-
tation information specified in the form are rendered with defaults.

Customisation forms are encoded in XML and a DTD can be found at
http://www.sics.se/~stny/UBI/DTDs/dtd.html. An entry in a customisation
form can be either a directive or a resource. Directives are used for mappings
to widgets or other user interface components and resources are used to as-
sociate media resources to interface components. Both directive mapping
and resource association can be made on all three levels, group, type and
name. Listing 3 shows an example of a directive mapping based on the type
of the interaction act, in this case output.

<element name"output">
 <directive>

The Ubiquitous Interactor – Device Independent Access to
Mobile Services

279

 <data>
 se.sics.ubi.swing.OutputLabel
 </data>
 </directive>
</element>

Listing 3: A mapping on type level for an output interaction act that maps a named interac-
tion act to a Java class that is used to render it.

5.3 Interaction Engines

Interaction engines interpret interaction acts and generate suitable user
interfaces of a given type for services on a given device or family of devices.
They also encode performed user actions as interaction acts and send them
back to services. During user-service interaction, interaction engines parse
interaction acts sent by services, and generate user interfaces by creating
presentations of each interaction act. If specific presentations, or media re-
sources, are specified for an interaction act in the customisation form of a
service, that presentation takes precedence. Otherwise, defaults are used. For
example, an output could be rendered as a label, or speech generated from its
default information, while an input could be rendered as a text field or a
standard speech prompt. We have implemented interaction engines for Java
Swing, Java Awt, HTML, and Tcl/Tk user interfaces. All four interaction
engines can generate user interfaces for desktop computers, but the Tcl/Tk
and the Java Awt engine are designed for PDA and cellular phone respec-
tively. The HTML interaction engine generates HTML code and sends it to a
browser via HTTP. The Tcl/Tk interaction engine is designed to generate
Tcl/Tk code and send it to a PDA that will interpret the code and render the
user interface. In these cases, the interpretation and generation is not exe-
cuted on the PDA to save computational resources. Both the Java Swing and
the Java Awt interaction engines interpret interaction acts and generate user
interfaces on the target device.

6. SERVICES

We will present two different services to illustrate how the Ubiquitous
Interactor (UBI) works, a calendar service and a stockbroker service.

6.1 Calendar Service

The calendar provides an example of a service that it is useful to access
from different devices. Calendar data may often be entered from a desktop
computer at work or at home, but mobile access is needed to consult the in-

280 Nylander, Bylund, and Waern

formation on the way to a meeting or in the car on the way home. Sometimes
appointments are set up out of office (in meeting rooms or restaurants) and it
is practical to be able to enter that information immediately.

The calendar service supports basic calendar operations as entering, edit
and delete information, navigate the information, and display different views
of it. The service is accessible from three types of user interfaces: Java
Swing and HTML user interfaces for desktop computers, and Tcl/Tk user in-
terfaces for handheld computer. Two different customisation forms have
been created for Java Swing, and one each for Tcl/Tk and HTML. These
four forms generate different user interfaces from the same interaction acts.
See Fig. 2 for pictures of three of the generated user interfaces.

Figure 2. User interfaces for the calendar service. The two to the left are generated by the
Java Swing interaction engine using two different customisation forms.

The one to the right is generated by the Tcl/Tk interaction engine.

6.2 Stockbroker Service

The stockbroker service TapBroker [9] has been developed as a part of a
project at SICS that works with autonomous agents that trade stocks on the
behalf of users [5]. Each agent is trading according to a built in strategy, and
users can have one or more agents trading for them. TapBroker provides
feedback on how their agents are performing so that users know when to
change agent, or shut them down.

The TapBroker service provides agent owners with feedback on the
agent's actions: order handling, and performed transactions. It also provides
information on the account state (the amount of money it can invest), status
(running or paused), activity level (number of transactions per hour), portfo-
lio content, and the current value of the portfolio. However, it does not pro-

The Ubiquitous Interactor – Device Independent Access to
Mobile Services

281

vide any means to configure or control the agent. Agents work autono-
mously and cannot be manipulated from outside for security reasons. We
have implemented customisation forms for Java Swing, HTML and Java
Awt (Fig. 3).

Figure 3. Three user interfaces to the TapBroker: a Java Swing UI for desktop computers (a),
a Java AWT UI for mobile phone (b), and a UI for a very small device (c).

7. FUTURE WORK

We will investigate how to handle dynamic resources in UBI. Services
that use dynamic media resources extensively, e.g., a service for browsing a
video database, might need an extension of our customisation form approach
to work efficiently for different modalities. One solution could be to handle
the choice of media type outside the customisation form.

8. CONCLUSION

We have presented the Ubiquitous Interactor (UBI), a system for devel-
opment of device independent mobile services. In UBI, user-service interac-
tion is described in a modality and device independent way using interaction
acts. The description is combined with device and service specific presenta-
tion information in customisation forms to generate tailored user interfaces.
This allows service providers to develop services once and for all, and still

282 Nylander, Bylund, and Waern

provide tailored user interfaces to different services by creating different
customisation forms. Development and maintenance work is simplified since
only one version of each service need to be developed. New customisation
forms can be created at any point, thus services can be developed for an
open set of devices.

ACKNOWLEDGEMENTS
This work has been funded by the Swedish Agency of Innovation Sys-

tems (www.vinnova.se). Thanks to the members of the HUMLE laboratory,
in particular Anna Sandin for help with the HTML interaction engine.

REFERENCES
[1] Bylund, M., Personal Service Environments - Openness and User Control in User-

Service Interaction, Licentiate thesis, Department of Information Technology, Uppsala
University, 2001.

[2] Bylund, M. and Espinoza, F., sView - Personal Service Interaction, in Proceedings of
5th International Conference on The Practical Applications of Intelligent Agents and
Multi-Agent Technology PA EXPO’2000 (Manchester, 10-14 April 2000), 2000.

[3] Esler, M., Hightower, J., Anderson, T., and Borriello, G., Next Century Challenges:
Data-Centric Networking for Invisible Computing. The Portolano Project at the Uni-
versity of Washington, in Proceedings of 5th ACM International Conference on Mobile
Computing and Networking MobiCom’1999 (Seattle, 15-20 August 1999), ACM Press,
New York, 1999.

[4] Espinoza, F., Individual Service Provisioning, Ph.D. thesis, Department of Computer
and Systems Science, Stockholm University/Royal Institute of Technology, 2003.

[5] Lybäck, D. and Boman, M., Agent Trade Servers in Financial Exchange Systems, ac-
cessible at http://arxiv.org/abs/cs.CE/0203023.

[6] Myers, B.A., Hudson, S.E., and Pausch, R., Past, Present and Future of User Interface
Software Tools, ACM Transactions on Computer-Human Interaction, Vol. 7, No. 1,
2000, pp. 3-28.

[7] Nichols, J., Myers, B.A., Higgings, M., Hughes, J., Harris, T.K., Rosenfeld, R., and
Pignol, M., Generating Remote Control Interfaces for Complex Appliances, in Proceed-
ings of 15th Annual ACM Symposium on User Interface Software and Technology
UIST’2002 (Paris, 27-30 October 2002), ACM Press, New York, 2002, pp. 161-170.

[8] Nylander, S., The Ubiquitous Interactor - Mobile Services with Multiple User Inter-
faces, Licentiate Thesis, Department of Information Technology, Uppsala University,
2003.

[9] Nylander, S., Bylund, M. and Boman, M., Mobile Access to Real-Time Information -
The case of Autonomous Stock Brokering, Journal of Personal and Ubiquitous Comput-
ing, Vol. 8, No. 1, 2003, pp. 42-46.

[10] Olsen, D.J., MIKE: The Menu Interaction Kontrol Environment, ACM Transactions on
Graphics, Vol. 5, No. 4, 1987, pp. 318-344.

[11] Shneiderman, B., Leonardo's Laptop, The MIT Press, Cambridge, 2002.
[12] Stephanidis, C., The Concept of Unified User Interfaces, in C. Stephanidis (ed.), “User

Interfaces for All - Concepts, Methods, and Tools” Lawrence Erlbaum Associates,
Mahwah, 2001, pp. 371-388.

[13] Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S., ITS: a Tool for Rapidly
Developing Interactive Applications, ACM Transactions on Information Systems, Vol.
8, No. 3, 1990, pp. 204-236.

Chapter 23

GENERATING CONTEXT-SENSITIVE MULTIPLE
DEVICE INTERFACES FROM DESIGN

Tim Clerckx, Kris Luyten, and Karin Coninx
Limburgs Universitair Centrum
Expertise Centre for Digital Media, Universitaire Campus, B-3590 Diepenbeek (Belgium)
E-mail: {tim.clerckx,kris.luyten,karin.coninx}@luc.ac.be – URL: http://www.edm.luc.ac.be
Tel.: +32 11 26 84 11 – Fax: +32 11 26 84 00

Abstract This paper shows a technique that allows adaptive user interfaces, spanning
multiple devices, to be rendered from the task specification at runtime taking
into account the context of use. The designer can specify a task model using
the ConcurTaskTrees Notation and its context-dependent parts, and deploy the
user interface immediately from the specification. By defining a set of context-
rules in the design stage, the appropriate context-dependent parts of the task
specification will be selected before the concrete interfaces will be rendered.
The context will be resolved by the runtime environment and does not require
any manual intervention. This way the same task specification can be de-
ployed for several different contexts of use. Traditionally, a context-sensitive
task specification only took into account a variable single deployment device.
This paper extends this approach as it takes into account task specifications
that can be executed by multiple co-operating devices.

Keywords: ConcurTaskTrees Notation, Context Sensitive, Model-Based User Interface
Design, Multiple Devices, Task Modelling.

1. INTRODUCTION

Recent advances in mobile computing devices and mobile communica-
tion support more complex interaction between different devices. This al-
lows users to migrate from their single “computer on the desk” setup to a
heterogeneous environment where he/she uses several devices to accomplish
his/her tasks. Although the provided hardware and software becomes more
powerful, it makes designing the interface more complex. Different contexts
(device constraints, environment of the mobile user,…) have to be taken into

283

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 283–296.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

284 Clerckx, Luyten, and Coninx

account. The nomadic nature of future applications also demands a way to
design interaction using multiple devices.

Combining our previous work [6,8] with context-sensitive task specifica-
tions [14,15] we realise a supporting framework for the design and creation
of context-sensitive multiple- and multi-device interaction. By multiple-
device interaction we mean the user interface (UI) is distributed over differ-
ent devices. The implementation has been tested as a component of the Dy-
gimes framework [6].

The remainder of this paper is structured as follows: Section 2 discusses
the related work, introducing the state of the art in context-sensitive task
modelling. To illustrate the context and test bed of this work, our framework
Dygimes is introduced in Section 3. This is followed by an overview of the
design process needed to create a context-sensitive UI in Section 4. Three
stages are described: the creation of the task model, the extraction of the dia-
log model and the generated presentation model. This is followed by a case
study to show how things work in practice. Finally, the obtained results and
their applicability are discussed in the conclusion.

2. RELATED WORK

Pribeanu et al. [14] proposed several possible approaches to adapt the
ConcurTaskTrees notation [12] for context-sensitive task modelling. As
pointed out in [14] and [15], the context of use of the application influences
which parts of the task model are executed. A context-sensitive (or depend-
ent) and a context-insensitive (or independent) part of the task model can be
identified and processed accordingly. The context-sensitive part can be re-
lated to the context-insensitive part in multiple ways [14]:

Both parts are specified in one task model: the monolithic approach.
The context-insensitive parts are connected to the context-sensitive parts
with general arcs: graph-oriented approach.
The context-insensitive parts are connected to the context-sensitive parts
with special arcs that can constitute a decision tree: separation approach.
The last approach in particular is interesting: although it allows different

parts for different contexts of use to be integrated in one model, there is a
decision tree that provides a nice separation. We choose to insert decision
nodes in the task specification instead of decision trees. Of course, decision
nodes can have other decision nodes as descendants. The children of a deci-
sion node are possible sub trees where one of them will be chosen in a pre-
processing step. Section 4 explains in detail how a concrete task specifica-
tion can be obtained by pre-processing the decision nodes.

Paternò and Santoro [13] present a method to generate multiple interfaces

Generating Context-sensitive Multiple Device Interfaces from Design 285

for different contexts of use starting from one task model. The TERESA tool
for supporting this approach is discussed in [13]. In contrast with their ap-
proach, we do not focus on the design aspect as much as they do, but empha-
size the runtime framework necessary for accomplishing this. To our knowl-
edge, the TERESA tool supports the creation of one task model for multiple
devices, but currently does not take into account multiple devices interacting
at once or the interface migrating from one device to another.

Calvary et al. [3,4] describe a process where a Platform and Environ-
mental Model are used to represent context information. The process allowsl
creating UIs for two running systems in different contexts. Although at sev-
eral stages in the UI design process (Task Specification, Abstract UI, Con-
crete UI, Runtime Environment) a translation can take place between the two
systems, the designer will have to change the task specification manually in
the process if the context has an influence on the tasks that can be per-
formed.

Nichols et al. [11] defined a specification language and communication
protocol to automatically generate UIs for remotely controlled appliances.
The language describes the functionalities of the target appliance and con-
tains enough information to render the UI. In this case, the context is secured
by the target appliance represented by its definition.

Ali and Pérez-Quiñones [2] also use a task model, together with UIML
[1], to generate UIs for multiple platforms. The task model has to increase
the abstraction level of the UIML specification, which is necessary to guide
the UI onto different devices.

3. DYGIMES

Most of the presented work is integrated in our framework Dygimes [6].
Besides supporting the ConcurTaskTree task specification, it uses high level
user interface Descriptions (specified in XML) to define the set of abstract
interactors necessary for completing the tasks specified in the task specifica-
tion. One of the aims of this framework is to support design through selected
models from Model-Based User Interface Design, and add support for trans-
forming the design into multi/multiple-device UIs at runtime.

The Dygimes framework supports roughly the following steps for creat-
ing UIs (a more detailed description can be found in [6]):
1. Create a context-sensitive task specification with the ConcurTaskTrees

notation.
2. Create UI building blocks for the separate tasks.
3. Relate the UI building blocks with the tasks in the task specification.
4. Define the layout using constraints.
5. Define custom properties for the UI appearance (e.g., preferred colours,

286 Clerckx, Luyten, and Coninx

concrete interactors,…).
6. Generate a prototype and evaluate it (the dialog model and presentation

model are calculated automatically).
7. Change the task specification and customisations until satisfied.

On the one hand it supports a clear separation between the creation of the
UIs and the implementation of the application logic that underlies the UI. On
the other hand there is built-in support to connect the UIs with the applica-
tion logic without manual intervention [18]. The next section will describe
how the design process for the context-sensitive UI and the generation of the
UI works.

4. DESIGN PROCESS

The proposed approach extends the process for automatically generating
prototype UIs from annotated task models introduced in [8]. Fig. 1 shows the
extended process where a context-sensitive task model is considered to gen-
erate UIs depending on the context at the time the UI is rendered.

Figure 1. Context-sensitive user interface Design Process.

Generating Context-sensitive Multiple Device Interfaces from Design 287

First, a context-sensitive task model is constructed and high-level UI
building blocks are attached to the leaves as described in the previous sec-
tion. Next, the context is captured and the proper context-specific Concur-
TaskTree will be generated automatically. Subsequently the Enabled Task
Sets (ETSs) are calculated. These are sets of tasks that can be enabled at the
same time [12] and therefore contain the proper information to be rendered
together in the resulting UI.

After this step, the appropriate dialog model is extracted automatically
from the task model using the temporal operators [8]. Each dialog still is re-
lated to the set of tasks it presents, thus also to the appropriate UI building
blocks it can use to present itself. The context-sensitive information in the
task specification is taken care of in a “pre-processing” step, which we will
explain now into further detail.

4.1 The Context-Sensitive Task Model

As pointed out in section 2, there are three proposed approaches to model
context-sensitive task models. Instead of collecting decision trees, we pro-
pose another way where the context-insensitive part points directly to con-
text-sensitive sub-trees through decision nodes. These nodes are marked by
the D in the example of Fig. 4. Although this resembles the graph-oriented
approach, the context-sensitive sub-trees are the direct children of the deci-
sion node. When the context-sensitive parts are resolved, the decision node
will be removed and replaced by the root of the selected sub-trees of that de-
cision node.

The decision nodes are executed in the first stage of the UI generation
process. This results in a normal ConcurTaskTree specification, but also one
that is suitable according to the rules defined in the decision nodes. The
normal ConcurTaskTree specification enables the provided algorithm to ex-
tract the dialog model automatically adapted to the current context.

In order to link the context detection and the task model, some informa-
tion about which sub-tree has to be performed in which case is added to the
decision node. Fig. 1 shows a simple scheme (as a Document Type Defini-
tion) defining how rules can be specified for selecting a particular subtree
according to a given context. Conditions can be defined recursively and nu-
merical and logical operators are provided (=, <, >, ,) to cope with sev-
eral context parameters. In Fig. 2, an example is presented where the current
context will be decided on the basis of comparing X and Y coordinates pro-
vided by a GPS module. The XML specification provides a way to exchange
context information. Tool support is required encapsulate the use of XML
from the designer.

Note the approaches described in [14,15] focus on the design of the inter-

288 Clerckx, Luyten, and Coninx

face at the task level. This work shows how the task model is used at runtime
to generate context-dependent UIs. This will be done by providing a frame-
work (Dygimes, Section 3) that can interpret a task specification and gener-
ate a presentation for the given task specification. The framework resolves
the context dependencies beforehand, resulting in a presentation that is
adapted to the context of use. The next section explains how we proceed
from the task specification to the presentation of the UI by using a dialog
model.
<?xml version="1.0"?>
<!ELEMENT decision ((cond,true,false) |(value,case+))>
<!ELEMENT cond (value,value)>
<!ATTLIST cond type CDATA IMPLIED>
<!ELEMENT value (cond | PCDATA)>
<!ATTLIST value type CDATA IMPLIED>
<!ELEMENT true (PCDATA)>
<!ATTLIST true platform IMPLIED>
<!ELEMENT false (PCDATA)>
<!ATTLIST false platform CDATA IMPLIED>
<!ELEMENT case (value|cond)> <!ATTLIST case platform CDATA IMPLIED>

Figure 2. Decision DTD.

<decision>
 <cond type="and">
 <value type="cond">
 <cond type="lt">
 <value type="context"> GPS:Xcoord </value> <value type="int"> 1 </value>
 </cond>
 </value>
 <value type="gt">
 <cond type="equals">
 <value type="context"> GPS:Ycoord </value> <value type="int"> 54 </value>
 </cond>
 </value>
 </cond>
 <true platform="context">left</true> <false platform="context">right</false>
</decision>

Figure 3. Decision XML example

4.2 The Dialog Model

Before applying further processing of the task model, it has to be trans-
formed into a concrete one (resolve all the decision nodes) in order to extract
a dialog model. The context-specific task model is a normal ConcurTask-
Tree, suited for the current context of use and can be processed as any other
ConcurTaskTree. The transformation can be done by replacing the decision
node with the appropriate subtree representing a subtask suitable for the cur-
rent context of use.

In [8] we proved it is possible to generate simple UIs directly from the
task specification. This was done through the automatic generation of a dia-
log specification from the task specification. In our approach, the dialog

Generating Context-sensitive Multiple Device Interfaces from Design 289

model is expressed as a State Transition Network (STN) and each state in
the STN equals an ETS. In the UI, the information about the tasks in an ETS
have to appear together in the resulting UI. The transitions between dialogs
are represented in the STN by transitions between states, marked with the
tasks that can trigger the change. The transitions between the different ETSsr
(“dialogs”) are identified by the different temporal operators connecting se-
lected tasks located in the different ETSs. An extensive description of the al-
gorithm can be found in [8]. An open source tool is provided that imple-
ments this algorithm and calculates a dialog model from the task specifica-
tion at: http://www.edm.luc.ac.be/software/TaskLib/.

4.3 The Presentation Model

The last step has to render the dialog model on the available output de-
vices. This is the presentation of (the different parts of) the concrete UI. The
nodes in the dialog model are ETSs. One such node represents all UI build-
ing blocks that have to be presented to complete the current ETS (Section 3
showed that UI building blocks were attached to individual tasks). The tasks
in an ETS are also marked with their target device, so two different situa-
tions are possible:
1. All tasks in an ETS are targeted to the same device
2. Not all tasks in an ETS are targeted to the same device

Situation (1) allows the UI to be rendered completely on one device. (2)
demands that the UI to be distributed over different devices. For this purpose d
the device-independence of the abstract UI description has to be extended
towards the use of multiple devices. On the level of the presentation model,
the Abstract UI descriptions of a dialog are rendered as concrete dialogs, this
can be accomplished by using two important techniques:

Customised mappings from Abstract Interaction Objects (AIOs) to
Concrete Interaction Objects (CIOs) [17]. The rendering engine for
each device can choose for itself the concrete widget selected to present
an AIO. This can be customised afterwards by the designer [16].
Positioning of the widgets is done through constraints which are de-
fined in a language-independent manner. The renderer can use the in-
formation about the hierarchical widget containment to split up the UI
in different parts. Details of this approach can be found in [9].

Customised mapping rules and device-independent layout management
are two important techniques for realising device-independent distributed
UIs. It is possible several concurrent tasks located in the same ETS have to
be rendered on different devices. Since the presentation building blocks are
attached to the tasks as XML documents, the presentation for an individual
device can be calculated for each device separately. Notice when concurrent

290 Clerckx, Luyten, and Coninx

tasks are rendered on separate devices, some kind of middleware will be
necessary to support data-exchange between both tasks in a heterogeneous
environment. In contrast with e.g. WebSplitter [7], the focus is not on distri-
bution of content, but distributed support of task execution.

5. A CASE STUDY: MANAGE STOCK

Fig. 4 shows the manage stock example. The following situation occurs:k
the storekeeper of a warehouse keeps track of the stock using two devices.
First a desktop PC is used to manage the purchase and sales of articles. Sec-
ond an employee checks and updates the stock amounts using his PDA to
note the changes immediately. When the amount of a certain article is up-
dated by the desktop PC, for example when new goods are purchased, the
employee receives a message on his PDA. When he/she stands in the vicin-
ity of a printer supporting Radio Frequency Identifier (RFID) tags, this can
be detected and the information of the product can be viewed and printed.

Figure 4. Context-Sensitive Task Model of the Manage Stock example.k

As a result, the example contains two types of context denoted by the de-
cision tasks: platform (Update and Request Overview) and location (Over-
view PDA). To link the context handler to the appropriate decision node, de-
cision rules need to be attached to these nodes. Fig. 6 shows an example for
the Overview PDA task. In this case there will be a call for the canPrint
function in the RFID Reader.

Generating Context-sensitive Multiple Device Interfaces from Design 291

Figure 5. Overview PDA sub-tree.

<decision>
 <cond type="equals">
 <value type="context"> RFID:Reader:canPrint </value>
 <value type="boolean"> true </value>
 </cond>
 <true platform="context"> Show Properties (No Printing)</true>
 <false platform="context"> Properties (Printing)</false>
</decision>

Figure 6. Decision rules for the Overview PDA task.

Figure 7. Update PC sub-tree.

The first step to automatically generate the UI is to convert the context-
sensitive task model into a context-specific task model. This is why the con-
dition in the decision XML has to be evaluated for each decision node and
the decision node is replaced by its sub-tree which matches the current con-
text. In the Overview PDA task example, there will be an evaluation of the
canPrint function. If the return value equalst true the Properties (Printing)
subtree will replace the decision node, else the Show Properties (No Print-
ing) will. Fig. 8 shows the context-specific task model in case of using the
PC to change the stock amounts and the PDA to notify the employee within
the reach of an RFID supporting printer.

The next step uses a custom algorithm (described in [5]) to calculate thet
enabled task sets (ETSs):

292 Clerckx, Luyten, and Coninx

ETS1S = {LogIn} Pall

ETS2S = {SelectPurchase(PpcP), SelectSell(Pcc pcP), ShutDown}cc PpcP
ETS3S = {EnterProduct(PpcP), EnterAmount(Pcc pcP), EnterPrice(Pcc pcP),cc

 ShutDown} PpcP
ETS4SS = {EnterProduct(PpcP), EnterAmount(Pcc pcP), EnterPrice(Pcc pcP),cc

 ShutDown} PpcP
ETS5S = {UpdateAmount(PpcP), ShutDown) cc PpcP
ETS6SS =6 {UpdateAmount(PpcP), ShutDown) cc PpcP
ETS7 =7 {ShowProperties(PpdaP), ShutDown) aa PpdaP
ETS8SS = {SelectPrint(PpdaP), ShutDown) aa PpdaP
ETS9S = {Print(PpdaP), ShutDown) aa PpdaP

PxP indicates on which platform the tasks can be executed. x = all means
the platform does not matter, and the task can be executed both on a PC or
on a PDA. This example only contains tasks restricted to either a PC or a
PDA because no ETS contains tasks marked PpcP and PpdaP . Remark that the
only difference between ETS3S and ETS4SS , and ETS5S and ETS6SS is they are chil-6
dren from another task. Afterwards, the dialog model (Fig. 9) is automati-
cally extracted. Finally the actual UI is rendered by the runtime environ-
ment. Fig. 10 shows the dialog model with the rendered UIs.

Figure 8. Context-specific Task Model.

Generating Context-sensitive Multiple Device Interfaces from Design 293

Figure 9. Dialog Model.
(The accepts state caused by the Shut Down task is omitted to avoid cluttering the picture).

Figure 10. Dialog Model with the concrete dialogs.

6. CONCLUSION AND FUTURE WORK

This paper shows how context information can be integrated in interface
design to generate multi- and multiple-device user interfaces at runtime. The
ConcurTaskTrees formalism is combined with decision nodes and rules to
allow the user interface to adapt to the context while still being consistent

294 Clerckx, Luyten, and Coninx

w.r.t. the design. An important case is where the context can indicate the
change in interaction device while executing a task. Our model allows this
change by providing an appropriate dialog model including the transitions
between dialogs on the same device and transitions between dialogs on dif-d
ferent devices. The presentation model also supports dialogs that are distrib-
uted over several devices. The precondition to make this work is the context
must be frozen from the start until the end of the main task.

Future work involves finding a way to switch the context-concrete task
model on a context change in order to recalculate the dialog and presentation
model. This approach however comes with a lot of complications. First of
all, the new dialog model may not be compatible to the old one and disrupts
the continuity of the user interface. This is because the current state might
not occur in the new dialog model. Also it is dangerous to adjust the user in-
terface every time the context changes. In some cases the user can become
confused about a sudden changed user interface.

Finally we believe the presented process is a first practical step towards
involving context in design.

ACKNOWLEDGMENTS

Our research is partly funded by the Flemish government and European
Fund for Regional Development. The SEESCOA (Software Engineering for
Embedded Systems using a Component-Oriented Approach) project IWT
980374 and CoDAMoS (Context-Driven Adaptation of Mobile Services)
project IWT 030320 are directly funded by the IWT (Flemish subsidy or-
ganisation). The authors would like to thank Bert Creemers for his contribu-
tion.

REFERENCES

[1] Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., and Shuster, J.E.,
UIML: An Appliance-Independent XML User Interface Language, in Proceedings of 8th

World-Wide Web Conference WWW’8 (Toronto, 11-14 May 1999), Computer Net-
works, Vol. 31, No. 11-16, 1999, pp. 1695–1708, accessible at http://www8.org/w8-
papers/5b-hypertext-media/uiml/uiml.html

[2] Ali, M.F. and Pérez-Quiñones, M.A., Using Task Models to Generate Multi-Platform
User Interfaces while Ensuring Usability, in Proceedings of ACM Conf. on Human As-
pects in Computing Systems CHI’2002 (Minneapolis, 20-25 April 2002), Extended Ab-
stracts, ACM Press, New York, 2002, pp. 670-671.

[3] Calvary, G., Coutaz, J., and Thevenin, D., Embedding Plasticity in the Development
Process of Interactive Systems, in P.L. Emiliani, C. Stephanidis (eds.), Proceedings of
the 6th ERCIM Workshop ”User Interfaces for All” UI4ALL’00 (Florence, 25-26 Octo-
ber 2000), CNR-IROE, Florence, 2000, accessible at http://ui4all.ics.forth.gr/UI4ALL-

Generating Context-sensitive Multiple Device Interfaces from Design 295

2000/files/Short_papers/Calva ry.pdf
[4] Calvary, G., Coutaz, J., and Thevenin, D., Supporting Context Changes for Plastic User

Interfaces: A Process and a Mechanism, in A. Blanford, J. Vanderdonckt, Ph. Gray
(eds.), Proceedings of Joint AFIHM-BCS HCI Conference on Human-Computer Inter-
action IHM-HCI’2001 (Lille, 10-14 September 2001), Springer-Verlag, London, 2001,
pp. 349-363.

[5] Clerckx, T. and Coninx, K., Integrating Task Models in Automatic User Interface De-
sign. Technical Report TR-LUC-EDM-0302, EDM/LUC, 2003.

[6] Coninx, K., Luyten, K., Vandervelpen, C., Van den Bergh, J., and Creemers, B.,
Dygimes: Dynamically Generating Interfaces for Mobile Computing Devices and
Embedded Systems, in L. Chittaro (ed.), Proc. of 5th International Symposium Human-
Computer Interaction with Mobile Devices and Services Mobile HCI’2003 (Udine, 8-11
September 2003), Lecture Notes in Computer Science, Vol. 2745, Springer-Verlag,
Berlin, 2003, pp. 256-270.

[7] Han, R., Perret, V., and Naghshineh, M., WebSplitter: a Unified XML Framework for
Multi-device Collaborative Web Browsing, in Proceedings of the 8th ACM Conference
on Computer Supported Cooperative Work CSCW’2000 (Philadelphia, 2-6 December
2000), ACM Press, New York, 2000, pp. 221–230.

[8] Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J., Derivation of a Dialog Model
from a Task Model by Activity Chain Extraction, Jorge, J., Nunes, N.J., Falcão e Cunha,
J. (eds.), Proc. of 10th International Conference on Design, Specification, and Verifica-
tion of Interactive Systems DSV-IS’2003 (Madeira, 4-6 June 2003), Lecture Notes in
Computer Science, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 203-217.

[9] Luyten, K., Creemers, B., and Coninx, K., Multi-Device Layout Management for Mo-
bile Computing Devices, Technical Report TR-LUC-EDM-0301, EDM/LUC, 2003.

[10] Mori, G., Paternò, F., and Santoro, C., Tool Support for Designing Nomadic Applica-
tions, in Proceedings of the 8th ACM International Conference on Intelligent User Inter-
faces IUI’2003 (Miami, 12-15 January 2003), ACM Press, New York, 2003, pp. 141–
148.

[11] Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K., Rosenfeld, R., and
Pignol, M., Generating Remote Control Interfaces for Complex Appliances, in Proceed-
ings of the 15th annual ACM Symposium on User Interface Software and Technology
UIST’2002 (Paris, 27-30 October 2002), ACM Press, New York, 2002, pp. 161–170.

[12] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 1999.

[13] Paternò, F. and Santoro, C., One Model, Many Interfaces, in Ch. Kolski, J. Vander-
donckt (eds.), Proceedings of the 4th International Conference on Computer-Aided De-
sign of User Interfaces CADUI’2002 (Valenciennes, 15-17 May 2002), Kluwer Aca-
demics Publishers, Dordrecht, 2002, pp. 143–154.

[14] Pribeanu, C., Limbourg, Q., and Vanderdonckt, J., Task Modelling for Context-Sensitive
User Interfaces, in Ch. Johnson (ed.), Proceedings of 8th International Workshop on De-
sign, Specification, and Verification of Interactive Systems DSV-IS’2001 (Glasgow,
13-15 June 2001), Lecture Notes in Computer Science, Vol. 2220, Springer-Verlag,
Berlin, 2001, pp. 60–76.

[15] Souchon, N., Limbourg, Q., Vanderdonckt, J., Task Modelling in Multiple Contexts of
Use, in P. Forbrig, Q. Limbourg, B. Urban, J. Vanderdonckt (eds.), Proc. of 9th Int.
Workshop on Design, Specification, and Verification of Interactive Systems DSV-
IS’2002 (Rostock, 12-14 June 2002), Lecture Notes in Computer Science, Vol. 2545,
Springer-Verlag, Berlin, 2002, pp. 59-73.

[16] Van den Bergh, J., Luyten, K., and Coninx, K., A Run-time System for Context-Aware
Multi-Device User Interfaces, in Proceedings of 10th International Conference on Hu-
man-Computer Interaction HCI International’2003 (Heraklion, 22-27 June 2003), Vol-
ume 2, Lawrence Erlbaum Associates, Mahwah, 2003, pp. 308-312.

296 Clerckx, Luyten, and Coninx

[17] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection, in Proc. of the ACM Conf. on Human Factors in Comput-
ing Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New York,
1993, pp. 424-429.

[18] Vandervelpen, Ch., Luyten, K., and Coninx, K., Location Transparent User Interaction
for Heterogeneous Environments, in Proceedings of 10th International Conference on
Human-Computer Interaction HCI International’2003 (Heraklion, 22-27 June 2003),
Volume 2, Lawrence Erlbaum Associates, Mahwah, 2003, pp. 313–317.

Chapter 24

A LIGHTWEIGHT EXPERIMENT MANAGE-
MENT SYSTEM FOR HANDHELD COMPUTERS

Phil Gray1, Joy Goodman1 and James Macleod2

1Computing Science Department, University of Glasgow,
17 Lilybank Gardens – Glasgow G12 8QQ (Scotland)
E-mail: {pdg, joy-www}@dcs.gla.ac.uk
URL: http://www.dcs.gla.ac.uk/~{pdg, joy}
Tel: +44 141 330 {4933, 3541} – Fax: +44 141 330 4913
2Division of Immunology, Infection & Inflammation, University of Glasgow,2

Western Infirmary – Glasgow G11 6NT (Scotland)
E-mail: d.i.stott@clinmed.gla.ac.uk
URL: http://www.gla.ac.uk/immunology/people/stott.htm
Tel.: +44 141 211 2442 – Fax: +44 141 337 3217

Keywords: Evaluation of user interfaces and tools, Mobile applications, Usage monitoring

1. INTRODUCTION

The use of mobile technologies has been growing rapidly, primarily of
mobile telephones but also of other handheld devices. Together with the ex-
ploitation of new technologies such as GPS and 3G and improvements in

297

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 297–308.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract This paper describes a system that helps HCI practitioners and researchers
manage and conduct experiments involving context-sensitive handheld appli-
cations, particularly related to navigation assistance. The system provides a
software framework in which application, user interface and interaction moni-
toring components can be plugged, offering a simple interconnection protocol
and minimising the programming overheads of implementation. We have fo-
cused our attention on dealing with the challenges presented by the limited
memory and processing of handheld devices and the variety of data sources
for mobile context-sensitive applications. In this paper we give an overview of
the system’s functionality and architecture, discuss key challenges of support-
ing field-based experiments on handhelds and consider further developments
of the system.

298 Gray, Goodman, and Macleod

wireless capabilities, this has inspired the development of a wider and more
ambitious range of mobile applications. Additional challenges and opportu-
nities are posed by context-awareness, which can be used to provide infor-
mation related to the user’s current location, e.g., to aid navigation.

However, less is known about how to make the resulting applications and
devices usable. If this is to be achieved, usability experiments on handheld
devices are of key importance, both to test and improve the usability of ex-
isting and developed devices, and to gain information on how such devices
can be designed in general, for example, by comparing alternative interfaces.
Such experiments are important for groups that can particularly benefit from
these devices but are most likely to be excluded by them -disabled people
and older age groups. The design of handhelds for the older population is es-
pecially poorly understood and more work needs to be done in this area. Ex-
periments with older users themselves on different handhelds and user inter-
faces are important to improving this understanding. It is within this context
that the work described in this paper takes place [3,4].

Sadly, the management of such experiments can often be a time-
consuming and complicated task, as indicated in Table 1, meaning that
evaluations are often limited. However, this process can be improved using
software tools. Such tools have been shown to be of use in designing and
testing desktop applications in the past, and similar tools could prove useful
in mobile situations.

Table 1. Issues in managing experiments.

Category Example Examples of manage-
ment issues

Examples of particular is-
sues with handhelds

Participants 16 participants aged
18-40 who don’t know
the area, gender-
balanced

Obtaining and keeping
track of participants,
assigning them to con-
ditions, coping with
them dropping out

Changes may have to be
made to the list of partici-
pants in the field

Conditions Interface A is tested in
condition C1 and inter-
face B in condition C2

The right interface
should be brought up at
the right point in the
experiment

Limited screen space and
memory, rendering storage
and selection of interfaces
less easy

Tasks 1. Find your way from
the library to the butch-
ers
2. Find your way from
the supermarket to the
school

The right tasks must be
matched with the right
conditions for each par-
ticipant to prevent or-
der and other effects

Familiarity with the area
in the 1st task should affect
the 2nd as little as possible.d

Tasks may need to be
changed due to external
conditions, e.g., roadworks

Equipment A handheld computer
with the application, a
GPS receiver, consent
form, questionnaires,
notebook and pen

Ensuring that the right
equipment for each par-
ticipant and set of con-
ditions is available

Equipment must be car-
ried. This may include
equipment for several par-
ticipants if the experi-
menter cannot return to
base between trials

A Lightweight Experiment Management System for
Handheld Computers

299

Category Example Examples of manage-
ment issues

Examples of particular is-
sues with handhelds

Data Col-
lection

Start and end times for
each condition, notes of
when the participant
got lost and which in-
terface elements were
used and how often

The data must be col-
lected, collated and
stored

Limited storage space on
the device. Difficulties
taking notes while on the
move and trying to man-
age several pieces of paper
at once.

create a tool that would support the entire experiment process, including all
the issues described in Table 1, as well as support for activities before and
after the actual experiments. This paper, however, describes a prototype of
an experiment management tool for mobile devices, incorporating support
for managing the user interfaces and collecting usage data. In Section 2 we
describe and discuss other experiment management tools and how this work
relates to them. In Section 3 we then describe in more detail what our system
does and how it works. We map out and discuss key challenges of support-
ing field-based experiments on handhelds and consider further developments
of the system in Section 4, before concluding in Section 5.

2. RELATED WORK

Several experiment management tools exist for desktop applications and,
while they are not generally suitable for mobile devices, some of the tech-
niques used within them can be adapted to this setting. These tools have usu-
ally focused on either support for generating the User Interface (UI) or on
capturing data from the participants.

The system described in this paper does not provide support for generat-
ing interfaces per se, such as in the work on automatic interface generation.
Rather it supports the process of generating different interfaces for the same
data and then swapping between them so that they can be easily compared in
an experiment. The emphasis is on aiding the running of experiments, rather
than on generating good interfaces for a finished product. Worth mentioning
here is the TAE Plus system [12] which, while not aimed at supporting ex-
periments, separates the user interface and the program code making it easier
to swap between interfaces.

Previous work on capturing experimental usage data has followed two
main avenues – video and screen capture and event logging.

Video capture (e.g., [9]) involves videoing the participant and/or the
screen during the experiment. This method is not easily transferred to the
mobile domain without specialist equipment and/or wireless communication
[10]. Screen capture (e.g., [1]) may be more feasible as it stores the images

300 Gray, Goodman, and Macleod

appearing on the computer screen at regular intervals and therefore does not
require additional equipment. However, the resulting files are large and are
likely to take up too much memory for a mobile device. In addition, it does
not capture the context of use. Taken together with the simpler UIs on mo-
bile devices, this renders it not much more useful than event logging if the
latter is done at an appropriate level of detail.

Event logging systems [8] are potentially more useful for mobile studies,
but existing logging systems place heavy demands on processing, storage,
and communications. However, our understanding of interaction with mobile
devices is rather poor and many opportunities remain for carrying out useful
studies on or with relatively simple handheld user interfaces. Given the limi-
tations of handhelds, these opportunities depend on keeping processing,
memory and communication demands to a minimum. In addition, although
some current systems do allow the experimenter to choose the user actions to
be logged (e.g., [1]), this is complicated, and a simpler system is needed and
indeed possible for a mobile device.

In addition, mobile devices have a greater need for an integrated experi-
ment tool providing support for easily generating and swapping between ex-
perimental conditions as well as easy data capture and analysis. The limited
memory and processing power of these devices and the difficulties associ-
ated with moving the program and data around means it is best to have a sin-
gle program managing the experiment as a whole.

Although data capture and analysis have been integrated (e.g., [1,7]), less
work has been done on combining support for the interface with support for
data capture. One example is UsAGE [13], which added event logging to the
UI development system, TAE Plus [12], although not as a single unified
program, and not for mobile devices.

3. SYSTEM FEATURES

3.1 An Example

The motivating example for the system described in this paper is the
navigation aid, a typical mobile application that provides directions to the
user to enable him or her to find a location. Such directions can be provided
in a wide variety of formats, including maps, photographs and arrows, as
well as using different modalities, but little work has been carried out com-
paring these different approaches [2].

Let us imagine that we want to evaluate and compare three such inter-
faces, shown in Fig. 1. One way of doing this would be to write three appli-
cations, one with each interface, and create data sets for each for the test and
pilot routes. We would then have to run the experiment, ensuring that the

A Lightweight Experiment Management System for
Handheld Computers

301

right interface with the right route was brought up at the right time. Code
would have to be included in each application to monitor any usage data we
wanted collected, such as timings and button clicks or alternatively these
could be noted by hand by the experimenter. Although this process is possi-
ble, it is rather complicated, and our system aims to simplify and support it.

Figure 1. Three possible navigation aid interfaces.

3.2 Supporting Adaptation

Our system supports the adaptation of a context-aware handheld applica-
tion to different experimental conditions, by separating application data and
operations, such as geographical information about the location or context
(the Model) from the user interface components used to present this informa-
tion to the user (the View). For example, in Fig. 1, the same Model is used
(information is presented about the same route) but using different Views
(different interface methods).

It is possible to create very general models that contain enough informa-
tion for a variety of different views. In addition, the framework supports
more limited models, if less extensive surveying of the environment is de-
sired. However, these models may only be suitable for some views. For ex-
ample, the view shown in Fig. 1(c) requires a model with images or pointers
to images of locations, while those shown in Fig. 1(a) and (b) only need to
contain the directions to turn at particular coordinates. The same reduced
model could therefore be used for (a) and (b) but not for (c).

Our system matches model and view as well as possible, leaving spaces
in the resulting interface rather than crashing if they do not match com-
pletely, so that reasonable interfaces can still be produced if the model and
view do not match but are not far apart. This separation of model and view
makes it easier to:

302 Gray, Goodman, and Macleod

Create all of the experimental conditions. In context-aware applications
such as navigation aids, the conditions typically consist of all possible
combinations of the different test locations with the different interfaces
being tested. Using the method above, models can be shared between
views rather than having to create a separate application for each combi-
nation.
Select the experimental condition to be tested. Rather than having to keep
track of which application corresponds to which combination of condi-
tions, the model and view can be chosen separately but at the same time.
Currently this is done through XML configuration files, as shown in the
example in Fig. 2, which chooses a model called ArrowModel and a view
called ArrowView, generating the interface shown in Fig. 1(a).
Move the experiment to different locations, which may be necessary due
to constraints outside the experimenter’s control, such as roadworks. In
this case, only the models need to be changed.
Test new interfaces by creating a new view for an existing model.

This process is further supported by the use of templates and C# inter-
faces for the models and views, reducing the amount of coding necessary to
create new sets of location data and new interfaces. Since we are working
with complex and potentially unusual navigation and map-based user inter-
faces, we chose to represent our design options in term of parameterisable
components.

In particular, components can be linked by identifying data values in
models to be listened to (and potentially updated by) view components. An
alternative approach would be to employ a user interface specification lan-
guage, like UIML [14], from which the actual user interface components
could be generated by a “renderer”. While this would increase genericity,
there would be too high a cost in terms of the complexity and usability of the
specification and specification language, especially given the potentially
complex and non-standard character of interaction in our target applications.

<configuration>
 <Model>ArrowModel</Model>
 <View>ArrowView</View>
 <Data>
 <Item>ArrowChange</Item>
 <Item>LocationChange</Item>
 <Item>DirectionChange</Item>
 </Data>
 </configuration>

Figure 2. XML configuration for the data and view shown in Fig. 1(a).

A Lightweight Experiment Management System for
Handheld Computers

303

3.3 Supporting Observation

The system supports experimental observation by collecting usage run-
time information. This may include, for example, information on which but-
tons or other interface elements were selected, when they were selected,
when other important events occurred and the length of time taken for the
whole experiment. We log information at this level of complexity, rather
than lower-level actions and events, because we consider it to be the most
useful level for analysing the results of the experiment and because lower-
level events are of little use due to the reduced number of UI elements in a
handheld interface and the simplicity of the standard input methods.

Each item of loggable information is given a label in the code for the
model or the view. The experimenter can then use these labels to indicate
which information is to be logged, thus customising the experiment and only
collecting information of interest to that experiment. This reduces the sizes
of the logs and simplifies their later analysis.

The selection of items to be logged is given in the experiment’s XML
configuration file, as shown in the example in Fig. 2. This example generates
the interface shown in Fig. 1(a) and logs three events in addition to the ap-
plication’s starting and closing time. It logs when changes occur in the dis-
played arrow, the sensed GPS location and the direction. This particular in-
terface does not contain any interactive UI components. If it did, their use
could also be logged by generating suitable logging events in the code for
the view, labelling them and including their labels in the configuration file.

3.4 System Architecture

We have created an implementation of our system written in C#, using
Microsoft’s .Net Compact Framework, which runs on PocketPC devices.

A runnable application consists of a single model object (the model ob-
ject can also accommodate additional components, such as a GPS proxy ob-
ject), a single view object, and an optional data collection object connected
together and managed by an overall manager component (Fig. 3). The inter-
connection of the model, view and data collector is carried out with the aid
of event generation interfaces made available via class methods: get-
DataItems() and getSchema(), which both return a set of identifiers from the
model and view. getDataItems() returns a set of identifiers of active values
that can be logged - “loggables” - and getSchema() returns a set of identifi-
ers of active values that form the model-view link (i.e., values that the model
reveals to the view and values that the view is capable of presenting to a user
for interaction) - “linkables”. The manager creates a working application by:

304 Gray, Goodman, and Macleod

Connecting the model and view by finding name matches in the value
sets returned by the model and view via getSchema() and using the re-
sults to instantiate the actual user interface.
Determining what will be logged by finding name matches between the
value sets returned by the model and view via getDataItems() on the one
hand and the names of desired data to be logged located in the configura-
tion file on the other hand.
On startup the framework reads in an experiment configuration file, such

as that shown in Fig. 2. The model and view classes specified in this file are
then loaded and instantiated, and a data collection object is also instantiated.
Using the name matching algorithms described above, event listeners are
created for each matched loggable and linkable, with a predefined logging
callback (Fig. 3).

Figure 3. The architecture of the system.

The ability to construct running, loggable applications from simple con-
figuration files removes the need to pre-construct the several application
variants necessary for a comparative study. The cost to the developer lies in
the need to add into the source code the information used by the framework
manager to connect the components together, viz., the names of data items
that notify changes to their state. Such data items can be used to update

A Lightweight Experiment Management System for
Handheld Computers

305

views or can be logged by a data collector component. Furthermore, model
and view operations that can change the state of these data items must in-
clude in the relevant method a call to a method to fire an appropriate event.

Automatic linking of data items between model and view also demands
that the system can determine a unique and sensible mapping between model
and view. In the simple applications we currently envisage testing, such a
mapping is possible and not costly to embed in the source code. However,
this limits the generality of our automatic generation system and future ver-
sions may have to explore semi-automated approaches [5,6,11].

4. KEY CHALLENGES AND SUGGESTIONS FOR
FURTHER DEVELOPMENT

The system as described above has been implemented in prototype form.
We have constructed several alternative models and views and used these
with configuration files to construct and run the simple navigation applica-
tions described in section 3. We have yet to use it “in anger”, however, as
part of a usability study. This trial will be taking place in the near future. Our
study will investigate the relative effectiveness of several different methods
of providing navigation information to older users, such as maps, sequenced
landmarks and step-by-step directions. Consequently there will be a number
of combinations of models and views that must be trialled, and it will also bet
necessary to change the configuration in the field with each individual par-
ticipant.

There are many ways in which our current relatively primitive system
might be enhanced, including making it easier to specify an experiment and
adding tool support for other aspects of the process of conducting an ex-
periment.

XML is a useful data interchange language, but not very easy to generate
or read. A tool is needed to support the initial specification of an experimen-
tal platform that will hide the XML and that can present to an experimenter
lists of model and view components that can be combined and the type of
events that can be logged from each. Given that this information is available
from the components via reflection, it would be possible to build a running
example of the experimental application at design test. This example could
be used to test the configuration before using the application in the experi-
ment itself.

There are several additional aspects of the conduct of an experiment that
it would be useful to add to our system. Currently, the system only handles a
single trial. Typically data will be collected during a number of trials, with
different user participants and different conditions (e.g., counterbalanced

306 Gray, Goodman, and Macleod

combinations of user, location and user interface version). We intend to add
to the framework an Experiment Manager component that holds this infor-
mation, read from an augmented experiment configuration file, so that trials
can be set up and run either automatically, in sequence, or via experimenter
selection. The Experiment Manager is distinct from the current Manager
component in the framework that can only handle a single trial.

As the amount of logged data increases, e.g., via multiple trials, one
might run into storage difficulties due to the limited memory of a handheld
device and the space occupied by other application data, such as a geo-
graphic database. Our system will have to take appropriate action in such
cases, including compressing the logfiles during creation, transferring to
other devices if possible or alerting the experimenter to a possible loss of
data prior to data loss. In the latter case, this should occur between trials
based on an analysis of the amount of data logged in previous trials and the
current space available. This would give the experimenter adequate warning
to take action to make more memory available.

More ambitiously, we would like to add the ability to combine the logged
data with data collected concurrently by one or more observers. For exam-
ple, an observer might use a separate hand-held, entering time-stamped notes
or experimental protocols, or taking photos or videos or audio recordings.
These could be combined with the logged data later, if the timed data can be
suitably synchronised.

Indeed, if the experimenter is using a separate device in the field, such as
another handheld or a laptop, additional experimental support is possible.
For example, using a peer-to-peer wireless connection between the partici-
pant’s handheld and the experimenter’s device, the experimenter may be
able to monitor the handheld application (see real-time logged data, view a
copy of the participant’s screen) or modify the application if necessary.
Also, it may be possible to shift data to the experimenter’s device as a
backup or to free memory on the participant’s handheld.

It would also be desirable to integrate additional tools for data archiving,
preparation and analysis in to the overall system. However, these operations
are unlikely to be performed on the handheld device and thus are not a par-
ticular issue for the support of mobile-oriented experiments.

5. CONCLUSION

Interaction with mobile devices, such as handhelds, and the user inter-
faces that support such interaction, remain less well understood than with
desktop applications. Ironically, it is more difficult to collect logged data
from handheld applications than from workstations. In addition, although
several experiment management tools exist for desktops, little has been done

A Lightweight Experiment Management System for
Handheld Computers

307

in this area for the evaluation of handheld devices, with its different charac-
teristics and challenges. Experiments in the mobile domain have a greater
need for an integrated experiment environment and for methods for manag-
ing multiple data sources and for coping with limited memory and resources.

Our approach, as reported in this paper, has been to provide a relatively
simple tool that makes it easy for evaluators to construct experimental proto-
types and to log data from them. Although this system is in its early stages, it
provides a useful framework for managing experiments on handhelds and a
useful basis on which to build other features and tackle the other challenges
of this area.

ACKNOWLEDGEMENTS

This work was funded by SHEFC through the UTOPIA project (grant
number: HR01002), which is investigating the design and development of
usable technology for older people. We would also like to thank Kartik
Khammampad who built and evaluated a navigation system for us using an
interface similar to that shown in Fig. 1(c) and Professor Steve Brewster for
his useful comments on an earlier draft.

REFERENCES

[1] Al-Qaimari, G. and McRostie, D., KALDI: A Computer-Aided Usability Engineering
Tool for Supporting Testing and Analysis of User Performance, in Blanford, A., Gray, P.
and Vanderdonckt, J., (eds.), Proc. of the Joint AFIHM-BCS Conf. on Human-Computer
Interaction IHM-HCI’2001 (Lille, 10-14 September 2001), People and Computers XV,
Springer-Verlag, London, 2001, pp. 153-169.

[2] Bradley, N.A. and Dunlop, M.D., Understanding Contextual Interactions to Design
Navigational Context-Aware Applications, in Paternò, F., (ed.), Proceedings of 3rd Work-d

shop on Mobile Computing and HCI Mobile’2002 (Pisa, 18-20 September 2002), Lec-
ture Notes in Computer Science, Vol. 2411, Springer-Verlag, Berlin, 2002, pp. 349-353.

[3] Eisma, R., Dickinson, A., Goodman, J., Syme, A., Tiwari, L., and Newell, A.F., Early
User Involvement in the Development of Information Technology-Related Products for n
Older People, Universal Access in the Information Society, Vol. 3, No. 2, April 2004.

[4] Goodman, J., Gray, P.D., A Design Space for Location-Sensitive Aids for Older Users, in
Schmidt-Belz, B. and Cheverst, K., (eds.), in Proceedings of 17th BCS-HCI Annual Hu-
man-Computer Interaction Conference HCI’2003 (Bath, 8-12 September 2003), Sprin-
ger-Verlag, London, 2003, pp. 12-16.

[5] Gray, P.D. and Draper, S.W.D., A Unified Concept of Style and its Place in User Inter-
face Design, in Sasse, M.A., Cunningham, J., and Winder, R.L., (eds.), Proceedings of
BCS-HCI Annual Human-Computer Interaction Conference HCI’96 (London, 20-23
August 1996), People and Computers XI, Springer-Verlag, London, 1996, pp. 49-62.

[6] Griffiths,T., Barclay, P.J., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D., Cooper,
R., Goble, C.A., and Pinheiro da Silva, P., Teallach: A Model-Based User Interface De-

308 Gray, Goodman, and Macleod

velopment Environment for Object Databases, Interacting With Computers, Vol. 14, No.
1, 2001, pp. 31-68.

[7] Hammontree, M., Hendrikson, J., and Hensley, B., Integrated Data Capture and Analy-
sis Tools for Research and Testing on Graphical User Interfaces, in Bauersfeld, P., Ben-
nett, J., and Lynch, G., (eds.), Proceedings of ACM Conference on Human Factors in
Computing Systems CHI’92 (Monterey, 3-7 May 1992), ACM Press, New York, 1992,
pp. 431-432.

[8] Hilbert, D.M. and Redmiles, D.F., Extracting Usability Information from User Interface
Events, ACM Computing Surveys, Vol. 32, No. 4, December 2000, pp. 384-421.

[9] Macleod, M., Bowren, R., Bevan, N., and Curson, I., The MUSiC Performance Meas-
urement Method, Behaviour and Information Technology, Vol. 16, No. 4-5, 1997, pp.
279-293.

[10] Noldus Information Technology, accessible at http://www.noldus.com
[11] Pribeanu, C. and Vanderdonckt, J., Exploring Design Heuristics for User Interface Deri-

vation from Task and Domain Models, in C. Kolski, J. Vanderdonckt (eds.), Proceedings
of 4th Int. Conf. on Computer-Aided Design of User Interfaces CADUI’2002 (Valen-
ciennes, 15-17 May 2002), Kluwer Academics Pub., Dordrecht, 2002, pp. 103-110.

[12] Szczur, M. and Sheppard, S., TAE Plus: Transportable Applications Environment Plus:
A User Interface Development Environment, ACM Transactions on Information Sys-
tems, Vol. 11, No. 1, January 1993, pp. 76-101.

[13] Uehling, D. and Wolf, K., User Action Graphing Effort (UsAGE), in Katz, I., Mack, R.
and Marks, L., (eds.), Proceedings of ACM Conference on Human Factors in Computing
Systems CHI’95 (Denver, 7-11 May 1995), Companion volume 2, ACM Press, New
York, 1995, pp. 290-291.

[14] UIML website, accessible at http://www.uiml.org

Chapter 25

GENERIC INTERACTION TECHNIQUES FOR
MOBILE COLLABORATIVE MIXED SYSTEMS

Philippe Renevier1, Laurence Nigay1, J. Bouchet1, and L. Pasqualetti2

1CLIPS-IMAG Laboratory, IIHM Team, University of Grenoble
BP 53, 38041 Grenoble Cedex 9 (France)
E-mail: {Philippe.Renevier, Laurence.Nigay, Jullien.Bouchet} @imag.fr
URL: http://iihm.imag.fr/renevier
2FT R&D-DIH/UCE 38-40 rue G. Leclerc 92794 Issy-lesMoulineaux (France)2

E-mail: laurence.pasqualetti@francetelecom.fr

Abstract The main characteristic of a mobile collaborative mixed system is that aug-
mentation of the physical environment of one user occurs through available
knowledge of where the user is and what the other users are doing. Links be-
tween the physical and digital worlds are no longer static but dynamically de-
fined by users to create a collaborative augmented environment. In this article
we present generic interaction techniques for smoothly combining the physical
and digital worlds of a mobile user in the context of a collaborative situation.
We illustrate the generic nature of the techniques with two systems that we
developed: MAGIC for archaeological fieldwork and TROC a mobile collabo-
rative game.

Keywords: Computer-Supported Collaborative Work, Interaction Techniques, Mixed Re-
ality.

1. INTRODUCTION

Mixed systems seek to smoothly link the physical and data processing en-
vironments. This is also the objective of other innovative interaction para-
digms such as Ubiquitous Computing, Tangible Bits, Pervasive Computing
and Traversable Interfaces. These examples of interaction paradigms are all
based on the manipulation of objects of the physical environment [5]. Typi-
cally, objects are functionally limited but contextually relevant [8]. The chal-
lenge thus lies in the design and realisation of the fusion of the physical and

309

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 309–322.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

310 Renevier, Nigay, Bouchet, and Pasqualetti

data processing environments (hereafter called physical and digital worlds).
The object of our study is to address this issue in the context of a collabora-
tive mobility situation. Context detection and mixed reality are then com-
bined in order to create a personalised augmented environment.

The structure of the paper is as follows: first, we define the context of our
study by defining what mobile collaborative systems, mobile mixed systems
and finally collaborative mixed systems are. We present related work and
characterize existing systems highlighting the power and versatility of such
systems. We then clarify the notion of mobile collaborative mixed systems.
Having defined the goal and challenge of mobile collaborative mixed sys-
tems, we then present generic interaction techniques for smoothly combining
the physical and digital worlds of a mobile user in the context of a collabora-
tive situation. We illustrate the generic nature of the techniques with two
systems that we developed: MAGIC for archaeological fieldwork and TROC
a mobile collaborative game.

2. RELATED WORK

The objective of our study is to address the fusion of the physical and
data processing environments in the context of a collaborative mobility
situation. We therefore identify three intertwined ingredients: mobile sys-
tems, collaborative systems and mixed systems. In this section, we respec-
tively study mobile collaborative, mobile mixed, and collaborative mixed
systems.

2.1 Mobile Collaborative Systems

As computers become more and more prevalent, the need for systems
that support coordination, communication and shared production between
and within groups increases markedly. Such multi-user systems also called
groupware have been made possible thanks to the advances of network tech-
nologies. A groupware may support synchronous interaction between users,
such as a chat and/or asynchronous interaction between users such as email.
In our study, we focus on mobile groupware. Mobile groupware are rapidly
finding widespread use due to the recent progress in networking technolo-
gies. For example, a new protocol of continuous real time transport between
a wireless network and a fixed network such as Ethernet is presented in [9].
This protocol is compatible with the quality of service of the current wireless
networks. Moreover the studies carried out by the UMTS® consortium fore-
see, in the short run, flows of data of about 2Mbit/s. An example of existing
collaborative systems is RAMSES [1], in the archaeology domain. Each ar-
chaeologist in the field takes notes on a Palmtop connected to a radio fre-

Generic Interaction Techniques for Mobile Collaborative Mixed Systems 311

quency (2 Mb a second) network so that notes can be shared by the group of t
archaeologists working in the same field. Amongst mobile CSCW, the objec-
tive of our study is to understand the use of mobile supports and services re-
quired in a collaborative situation for a user's task in the real world. The aim
is to create a seamless collaborative operational field between the physical
and digital worlds, thanks to a so-called mixed system.

2.2 Mobile Mixed Systems

As we defined in [3], a mixed system is an interactive system combining
physical and digital entities. Two classes of mixed systems are identified:

Augmented Virtuality systems: Systems that make use of real objects to
enhance the interaction between a user and a computer.
Augmented Reality systems: Systems that enhance interaction between
the user and her/his real environment by providing additional capabilities
and/or information.

On the one hand, the Tangible User Interface paradigm [5] belongs to Aug-
mented Virtuality: physical objects such as bricks are used to interact with a
computer. On the other hand, the NaviCam system [10] and our Computer
Assisted Surgery system CASPER [3] are two examples of Augmented
Reality systems: the two systems display situation-sensitive information by
superimposing messages and pictures on a video see-through screen (HMD,
Head Mounted Display). The common design challenge of mixed systems
(Augmented Virtuality as well as Augmented Reality systems) lies in the
fluid and harmonious fusion of the physical and digital worlds.

In our study we focus on Augmented Reality systems, one class of mixed
systems. The first Augmented Reality systems were designed for a specific
use in a fixed environment. Progress made in wireless networks in terms of
quality of services make it possible to build mobile Augmented Reality sys-
tems [6]. We believe that mobile Augmented Reality systems have a crucial
role to play for mobile workers, bringing computer capabilities into the real-
ity of the different workplaces. Systems already exist such as the Touring
machine system of the project MARS (Mobile Augmented Reality Systems)
[4] or the NaviCam system [10]. The user, while walking in a building such
as a museum, in the streets or in a campus, obtains contextual information
about the surrounding objects or about a predefined path to follow.

A mobile Augmented Reality system is one in which augmentation oc-
curs through available knowledge of where the user is (the user's location
and therefore the surrounding environment). Even though the user's location
has an impact on the augmentation provided by the system, the latter does
not necessarily maintain this location. Indeed, as explained in [6], on the one
hand, the user's location and orientation are generally known by outdoor sys-

312 Renevier, Nigay, Bouchet, and Pasqualetti

tems such as the Touring machine system, the position being tracked by a
GPS. On the other hand, for indoor Augmented Reality systems, such as the
NaviCam system, objects and places identify themselves to the system (RF,
IR or video based tags): hence the system does not maintain the user's loca-
tion. To sum up, amongst mobile mixed systems, we focus on mobile Aug-
mented Reality systems that enhance the interaction between the mobile user
and her/his current real environment by providing additional capabilities
and/or information.

2.3 Collaborative Mixed Systems
Several collaborative mixed systems have been developed. As for mobile

mixed systems, we focus on one class of mixed systems, the Augmented Re-
ality systems. As defined above, in Augmented Reality, interaction with the
real world is augmented by the computer in order to assist a user in perform-
ing a task in the real world (i.e., modifying the real world). As a consequence,
systems such as the StudierStube [13] that allows multiple collaborating users
to simultaneously study three-dimensional scientific visualizations in a dedi-
cated room is not part of our study because the task of studying a virtual ob-
ject, is not in the real world. The shared real environment of the group of us-
ers is augmented by the computer but the task remains in the digital world.

An Augmented Reality system may provide support for shared production,
communication and/or coordination amongst users. We call such systems
Augmented Reality and Collaborative systems. We make a distinction be-
tween such Augmented Reality and Collaborative systems and the ones that
we call Collaborative Augmented Reality systems that depict systems in
which the physical environment of a group of users is collaboratively aug-
mented. A Collaborative Augmented Reality system is one in which aug-
mentation of the physical environment of one user occurs through the ac-
tions of other users. The main characteristic of a Collaborative Augmented
Reality system is that augmentation of the physical environment of one user
no longer relies on information pre-stored by the computer. Links between
the physical and digital worlds are therefore dynamic, based on the users' ac-
tions and not defined in advance as for example in an augmented museum
(the NaviCam system) [10]. Several Collaborative Augmented Reality sys-
tems exist and take on a variety of forms: In [11] we introduce a taxonomy
of Collaborative Augmented Reality systems based on the classical distinc-
tion in groupware, that is the distance between users, as well as the distance
between one or several users and the object of the task that belongs to the
real world.

Amongst collaborative mixed systems, we focus on Collaborative Aug-
mented Reality systems in which the physical environment of a group of us-
ers is collaboratively augmented.

Generic Interaction Techniques for Mobile Collaborative Mixed Systems 313

3. MOBILE COLLABORATIVE MIXED SYSTEMS

Having introduced the context of our research, we now define what a
mobile collaborative mixed system is. Such a system combines the charac-
teristics of a mobile mixed system and of a collaborative mixed system. First
a mobile mixed system, as defined above, is one in which augmentation oc-
curs through available knowledge of where the user is (the user's location
and therefore the surrounding environment). Second a collaborative mixed
system is one in which augmentation of the physical environment of one
user occurs through the actions of other users and no longer relies on infor-
mation pre-stored by the computer. Links between the physical and digital
worlds are therefore dynamic, based on the users' actions. Combining the
characteristics of a mobile mixed system and of a collaborative mixed sys-
tem, a mobile and collaborative mixed system is one in which augmentation
occurs through available knowledge of where the user is and what the other
users are doing.

Although mobile collaborative systems are now possible and systems al-
ready exist as explained in the previous section, and while some existing
mixed systems are mobile and some are collaborative, few mixed systems
combine the mobile and collaborative aspects. The main application domain
of such systems is game and one of our developed system, TROC, is a game.
Indeed, instead of recreating a virtual world, the existing games are based in
the real world, the system only adding the magical possibilities related to the
game rules. WARPING [12] is one example, but one of the users is not mo-
bile, since s/he is in front of an augmented desktop. ARQuake [14] and Hu-
man-Pacman [2] are two additional examples of games. The users are mobile
and they must kill digital enemies (ARQuake) or collect digital cookies (Hu-
man-Pacman). In these two examples, we can nevertheless notice that the
links between the physical and digital worlds are predefined (positions of
enemies or cookies) and the users can only destroy them, they cannot create
new “links” such as putting a new cookie in the game field.

Beyond the HCI classical design approach, mobile collaborative mixed
systems make it compulsory to use a multidisciplinary design approach that
embeds complementary methods and techniques for the design and evalua-
tion phases. In [7] we present a scenario-based design approach for mobile
collaborative mixed systems. In particular scenarios enable the description of
how the system would affect the way mobile users carry out their individual
and collective activities. Based on the functions integrated in the so-called
“projected scenarios”, different interaction techniques can be designed. The
interaction techniques, described in the following section, are generic and
are those supported by our two mobile collaborative mixed systems: MAGIC
dedicated to archaeological fieldwork and TROC, a mobile collaborative
game.

314 Renevier, Nigay, Bouchet, and Pasqualetti

3.1 Generic Interaction Techniques

In order to explain the generic interaction techniques, we first describe
the underlying hardware platform. This is an assembly of commercial pieces
of hardware. The platform includes a Fujitsu Stylistic pen computer. This
pen computer runs under the Windows operating system, with a Pentium III
(450 MHz) and 196 Mb of RAM. The resolution of the tactile screen is
1024x768 pixels. In order to establish remote mobile connections, a Wave-
Lan network by Lucent (11 Mb/s) was added. Connections from the pen
computer are possible at about 200 feet around the network base. The hard-ff
ware platform also contains a Head-Mounted Display (HMD), a SONY LDI
D100 BE: its semi-transparency enables the fusion of computer data (opaque
pixels) with the real environment (visible via transparent pixels). Secondly, a
(D-)GPS is used to locate the users. Finally, capture of the real environment
by the computer is achieved by the coupling of a camera and an orientation
sensor. We first used an absolute orientation sensor, the magnetometer
HMR3000 by Honeywell. We now use an intertrax 2 that is more accurate.
The camera orientation is therefore known by the system. Indeed the orienta-
tion sensor and the camera are fixed on the HMD, in between the eyes of the
user. The system is then able to know the position (GPS) and orientation
(magnetometer or intertrax) of both the user and the camera.

Figure 1. A user wearing and holding the hardware platform

Generic Interaction Techniques for Mobile Collaborative Mixed Systems 315

Fig. 1 shows a user, fully equipped: the equipment is quite invasive and
suffers from a lack of power autonomy. Our goal is to demonstrate the feasi-
bility of our interaction techniques by assembling existing commercial
pieces of hardware and not by designing specific hardware out of the context
of our expertise. For a real and long use of the platform in a “real” site, a
dedicated hardware platform must clearly be designed.

The mobile users manipulate objects that are either digital or physical.
Interaction techniques must be designed in order to let them manipulate the
two types of objects: physical and digital. For flexibility and fluidity of in-
teraction, such manipulation is either in the physical world or in the digital
world. We therefore obtain four cases, by combining the two types of objects
and the two worlds: the physical world (i.e., the archaeological field or the
game ground) and the digital world (i.e., the screen of the pen computer):
1. Interaction with a physical object in the digital world: Mixed interaction.
2. Interaction with a digital object in the physical world: Mixed interaction.
3. Interaction with a physical object in the physical world: Interaction

purely in the real world.
4. Interaction with a digital object in the digital world: Interaction in the

digital world (graphical user interface).
In [7] we fully describe the four types of interaction. We focus here on

the interaction techniques corresponding to the types (1) and (2). For both
cases, passive and active interaction techniques are designed. Passive inter-
action techniques are based on tracking mechanisms (such as localisation
and orientation of the mobile user). With passive techniques, the user does
not explicitly issue a command to the system as opposed to active interaction
techniques that correspond to the case where the user issues a command to
the system, for example a drag and drop of an object.

The two types of mixed interaction ((1) and (2)) respectively imply (i)
that physical objects must be manageable in the digital world (ii) that digital
objects must be manageable in the physical world. To do so we designed a
generic interaction technique, a gateway that plays the role of a door be-
tween the physical and digital worlds. As a door belongs to two rooms, the
gateway exists in both worlds:

The gateway is an area of the physical world, delimited by a rectangle
displayed in a semi-transparency Head-Mounted Display (HMD) as
shown in Fig. 2b,
The gateway is a rectangular area in the digital world, on the pen com-
puter screen as shown in Fig. 2a (window entitled “Head Mounted Dis-
play”).

Concretely the gateway is simply a window both displayed on the HMD
(Java JFrame) on top of the physical world and on the pen computer screen
(Java JInternalFrame). As opposed to the Touring Machine system [4] in

316 Renevier, Nigay, Bouchet, and Pasqualetti

which the pen computer is used to display information about the surrounding
physical environment of the user that is not displayed in the HMD, objects in
the gateway are visible on the HMD (i.e., in the physical world) as well as
on the pen computer screen (i.e., in the digital world), as shown in Fig. 2.
Based on the gateway, we designed two interaction techniques, namely the
“clickable reality” and the “augmented field”.

The “Clickable reality” technique: from the physical world to the
digital world. If the object is physical (1), the object is transferred to the
digital world thanks to the camera (fixed on the HMD, between the two
eyes of the user). The real environment captured by the camera is dis-
played in the gateway window on the pen computer screen as a back-
ground. We allow the user to select or click on physical objects: we
therefore call this technique “the clickable reality”. Before taking a pic-
ture, the camera must be calibrated according to the user's visual field.
Using the stylus on screen, the user then specifies a rectangular zone
thanks to a magic lens (a type of camera lens). The cursor displayed on
the pen computer screen is also displayed on top of the physical world.
The corresponding specified zone (magic lens), displayed in the gateway
window on screen and on the HMD, corresponds to the physical object
to be captured. The picture can then be stored in the shared database
along with the location of the object. Note that although the user is ma-
nipulating a magic lens using the stylus on screen, s/he perceives the re-
sults of her/his actions in the physical world.
The “Augmented field” technique: from the digital world to the
physical world. If the object is digital (2) dragging it inside the gateway
makes it visible in the real world. For example the user can drag a draw-
ing or a picture stored in a database to the gateway window. The picture
will automatically be displayed on the HMD on top of the physical
world as shown in Fig. 2b. Moving the picture using the stylus on the
screen will move the picture on top of the physical world. This action is
for example used if a user wants to compare an object from a database
with a physical object in the field. Putting them next to each other in the
real world will help their comparison. The motion of a digital object (ex:
drag and drop on the pen computer) can be viewed by the user without
looking at the pen computer screen. This is because in using the HMD
the user can simultaneously view digital objects and the real world. Al-
though the user is manipulating a digital object, s/he perceives the re-
sults of her/his actions in the physical world.

First, transfer of digital objects to the physical world can be explicitly
managed by the user by drag and drop (active interaction technique) as ex-
plained above or can be automatic (passive interaction technique). Automatic
transfer is performed by the system based on the current location of the user.

Generic Interaction Techniques for Mobile Collaborative Mixed Systems 317

Second, transfer of digital objects to the physical world can be transient or
persistent. Indeed, on the one hand, transfer of digital objects to the physical
world can be transient as for comparing a digital object from a database with
a physical found object. On the other hand, transfer of digital objects to the
physical world performed by one user can be persistent so that later on other
users can discover such digital objects that augment the physical environ-
ment. Such a technique is called “augmented field”. When a user walks in
the site, s/he can see discovered objects specified by colleagues. The “aug-
mented field” is an example of asynchronous collaboration. It is therefore a
generic technique for mobile collaborative Augmented Reality system.

These generic interaction techniques (i.e., the “gateway” technique on
which the “clickable reality” as well as the “augmented field” techniques
rely) are supported by two mobile collaborative mixed systems that we de-
veloped: MAGIC dedicated to archaeological fieldwork and TROC a mobile
collaborative game.

4. SYSTEMS: MAGIC AND TROC

4.1 MAGIC for Archaeological Fieldwork

The design of the MAGIC system is based on a study of the tasks of ar-
chaeological fieldwork, interviews and observations in Alexandria (Egypt)
[7]. The archaeological fieldwork in Alexandria is time-constrained because
the archaeological site must be explored in less than three months (rescue ar-
chaeology). Tools that can make such fieldwork more efficient are therefore
important. This is a suitable application domain for mobile collaborative
mixed systems because archaeologists work in groups, moving in a delimited
site and requiring collections of data. Fig. 2a presents the graphical user inter-
face of MAGIC on the pen computer. Coordination between users relies on
the map of the archaeological site, displayed within a dedicated window (at
the bottom left corner of Fig. 2a). For each found object, archaeologists fill a
form describing the object, draw some sketches or very precise drawings and
take pictures using the “clickable reality” technique. Analysis of objects re-
lies on comparisons with known objects (“Augmented field” technique) from
other archaeologists or reference manuals (database) and on discussions with
other archaeologists in the site or with a distant expert. Fig. 2b, a reconstituted
picture, presents such comparison. After validation, the object is then added
to the shared database and is visible on the map of each user. Because a pic-
ture is stored along with the location of the object, we can restore the picture
in its original real context (2D representation). When an archaeologist walks
in the site, s/he can see discovered objects removed from the site and speci-

318 Renevier, Nigay, Bouchet, and Pasqualetti

fied in the database by colleagues (“Augmented field” technique). S/he can
then see the object as it was before being removed from the site. The “aug-
mented field” technique is particularly useful to see objects belonging to a
stratum higher than the current one, because by definition the objects have
all been removed. The MAGIC system along with its software architecture is
fully described in [11]. Although the design is based on task and activity
analysis performed in Alexandria, we were not able to experimentally test
MAGIC on a site there. In order to show the generic aspect of our techniques
and also to be able to perform experimental tests we developed a second ap-
plication, TROC, a collaborative game.

4.2 TROC: a Mobile Collaborative Game

TROC (barter in French) is a mobile collaborative game. Each player has
to collect a list of digital objects that are positioned in the game field at the
beginning of the game. As shown in part B of Fig. 3, the digital objects to be
collected are animals (cat, gull, etc.). Thanks to the “augmented field” tech-
nique, the player while moving discovers the objects. TROC also includes
3D sounds that help the player to find the objects. In addition the player can
use “magical tools” to locate the objects as well as the other players on the
map displayed on the pen computer (part D of Fig. 3, the round circle speci-
fying the zone of observation). The player can also specify filters (part A of
Fig. 3) so that s/he will only see one kind of digital object, in the physical
world (the game field) as well as on the map. Digital objects collected by a
user are stored in four physical cubes carried by the player. The content of
the four cubes is displayed on the pen computer (part C of Fig. 3) as well as
on top of the physical cube recognized by a vision algorithm thanks to the
camera fixed on the HMD.

To collect a digital object, the player has two possibilities: first s/he can
use the “clickable reality” technique or s/he can present a physical cube to
the camera fixed on the HMD while issuing the voice command “take”. The
player can also empty a cube and put back on the game field a previously
collected digital object (“augmented field” technique). This is an example of
asynchronous collaboration between players. In order to win and collect
her/his assigned list of objects, the players must collaborate and exchange
collected objects. The game is based on the barter technique. During ex-
changes, a player can lie saying that s/he has a given object and can also give
a trapped object to another player.

We performed a first set of experimental tests of TROC. Two functions
were simulated (wizard of oz technique): the voice recognition and the loca-
tion of a player. We had one wizard per player. In addition, during this first
set of tests, the players did not have to manipulate the physical cubes.

Generic Interaction Techniques for Mobile Collaborative Mixed Systems 319

a)

b)

Figure 2. MAGIC system (a) User interface on the pen computer (b) View displayed on the
HMD

320 Renevier, Nigay, Bouchet, and Pasqualetti

Figure 3. User interface of TROC

Eight volunteers all familiar with computers participated in the experi-
ment. A first phase enables the players to get familiar with the rules of the
game and the techniques. Then four experimental settings were studied. (1)
without 3D sound (2) with 3D sound (3) in a game field without physical
landmark, (a big empty room) (4) in a game field with physical landmarks,
(with rooms and a corridor). Four players played the game twice in the two
following experimental settings: first, without 3D sound and then with 3D
sound in a field without physical landmark. The four other players also
played the game twice in the two following experimental settings: first with
3D sound and then without 3D sound in a game field with physical land-
marks. So each player played four games. For each game, the test was fin-
ished when a player collected all the objects assigned to her/him. After each
game, interviews were conducted with the players.

The primary analysis of the collected data shows that 3D sounds facilitate
the location of digital objects, sound being available before the object is visi-
ble. In addition, the players underlined the fact that the sound reinforces the
link between the physical and digital worlds, by making digital objects more
real. In addition, it has been observed that digital objects, the focus of the
players, had a strong presence to the point that players forgot the physical
obstacles. Players underlined the inconsistency of seeing an object through a

Generic Interaction Techniques for Mobile Collaborative Mixed Systems 321

through a wall and having to go inside the room to be able to pick it up. Al-
though such a possibility was presented as a magical tool which allows one
to see through the walls, it confirms the fact that consistency must be main-
tained while combining the physical and digital worlds. The participants also
wanted to pick up objects by hand. In particular such behaviour has been ob-
served when the objects were very close to the players and therefore very
big. Moreover players had more difficulties to locate objects in a game field
without physical landmarks. Indeed, they adopted an approach of blind
searching, while with physical landmarks they first located the objects on the
map and then went to pick them up.

5. FUTURE WORK

The generic techniques, “gateway”, “clickable reality” and “augmented
field”, define a reusable hardware and software platform. As ongoing work,
we are pursuing two avenues.

First, we are currently reusing and extending the platform for new
applications: we are developing a system that allows users to annotate
physical locations with digital notes, which are then read/remove by other
mobile users. The presented interaction techniques therefore constitute the
first bricks of a toolkit for developing mobile collaborative mixed systems.
Reusability of the code and independence of part of it with the hardware are
guaranteed by the software architecture model that we applied for
developing the platform [11].

Our second research avenue is experimental. Further experimental tests
will be performed with the TROC game and the new applications developed
with the platform. Our objective is to gain understanding of how the users
perceive and interact within the combined physical/digital world. For exam-
ple, we plan to study when the player selects interaction techniques in the
physical world as opposed to interaction techniques in the digital world. To
do so, functionally equivalent interaction techniques such as manipulation of
physical cubes and direct manipulation on the pen computer are provided.

ACKNOWLEDGEMENTS
This work is supported by France Telecom R&D, under contract Houria

No AJC067CH. Special thanks to G. Serghiou for reviewing the paper.

REFERENCES
[1] Ancona, M., Dodero, G., and Gianuzzi, V., RAMSES: A Mobile Computing System for

Field Archaeology, in Proc. of 1st International Symposium on Handheld and Ubiquitious
Computing HUC’99 (Karlsruhe, 27-29 September 1999), Lecture Notes in Computer

322 Renevier, Nigay, Bouchet, and Pasqualetti

Science, Vol. 1707, Springer-Verlag, Berlin, 1999, pp. 222-233.
[2] Cheok, A., Fong, S., Goh, K., Yang, X., Liu, W., Farbiz, F., and Li, Y., Human

Pacman: A Mobile Entertainment System with Ubiquitous Computing and Tangible In-
teraction over a Wide Outdoor Area, in Proc. of 5th International Symposium on Hu-
man-Computer Interaction with Mobile Devices and Services Mobile HCI’2003
(Udine, 8-11 September 2003), Lecture Notes in Computer Science, Vol. 2795,
Springer-Verlag, Berlin, 2003, pp. 209-223

[3] Dubois, E., Nigay, L., Troccaz, J., Chavanon, O., and Carrat, L., Classification Space
for Augmented Surgery, an Augmented Reality Case Study, in M. Rauterberg, M.
Menozzi, J. Wesson (eds.), Proceedings of 9th IFIP TC 13 International Conference on
Human-Computer Interaction INTERACT’2003 (Zurich, 1-5 September 2003), IOS
Press, Amsterdam, 2003, pp. 353-359.

[4] Feiner, S., MacIntyre, B., Höllerer, T., Webster, A., A Touring Machine: Prototyping
3D Mobile Augmented Reality Systems for Exploring the Urban Environment, in Proc.
of 1st International Symposium on Wearable Computers ISCW’97 (Cambridge, 13-14
October 1997), IEEE Computer Society Press, Los Alamitos, 1997, pp. 439-449, acces-
sible at http://computer.org/conferen/proceed/8192/pdf/81920074.pdf

[5] Ishii, H. and Ullmer, B., Tangible Bits: Towards Seamless Interfaces between People,
Bits and Atoms, in Proceedings of ACM Conference on Human Factors in Computing
Systems CHI’97 (Atlanta, 22-27 March 1997), ACM Press, New York, 1997, pp. 234-
241.

[6] Kangas, K. and Röning, J., Using Code Mobility to Create Ubiquitous and Active Aug-
mented Reality in Mobile Computing, in Proceedings of International Conference on
Mobile Computing and Networking Mobicom’99 (Seattle, 15-20 August 1999), ACM
Press, New York, 1999, pp. 48-58.

[7] Nigay, L., Salembier, P., Marchand, T., Renevier, P., Pasqualetti, L., Mobile and Col-
laborative Augmented Reality: A Scenario Based Design Approach, in Paternò, F.,
(ed.), Proceedings of 3rd Workshop on Mobile Computing and HCI Mobile’2002 (Pisa,d

18-20 September 2002), Lecture Notes in Computer Science, Vol. 2411, Springer-
Verlag, Berlin, 2002, pp. 241-255.

[8] Norman, D., The design of everyday things, Basic Books, September 2002.
[9] Pyssyalo, T., Repo, T., Turunen, T., Lankila, T., and Röning, J., CyPhone – Bringing

Augmented Reality to Next Generation Mobile Phones, in Proceedings of Designing
Augmented Reality Environments DARE’2000 (Elsinore, 12-14 April 2000), ACM
Press, New York, 2000, pp. 11-21.

[10] Rekimoto, J., Navicam: A Magnifying Glass Approach to Augmented Reality, Presence:
Teleoperators and Virtual Environments, Vol. 6, No. 4, 1997, pp. 399-412.

[11] Renevier, P. and Nigay, L., Mobile Collaborative Augmented Reality: the Augmented
Stroll, in Proceedings of 8th IFIP Working Conference on Engineering for Human Com-
puter Interaction EHCI’01 (Toronto, 11-13 May 2001), Lecture Notes in Computer Sci-
ence, Vol. 2411, Springer-Verlag, Berlin, 2001, pp. 315-334.

[12] Starner, T., Leibe, B., Singletary, B., and Pair, J., MIND-WARPING: Towards Creating
a Compelling Collaborative Augmented Reality Game, in Proceedings of 5th ACM In-
ternational Conference on Intelligent User Interfaces IUI’2000 (New Orleans, 9-12
January 2000), ACM Press, New York, 2000, pp. 256-259.

[13] Szalavári, Z., Schmalstieg, D., Fuhrmann, A., and Gervautz, M., Studierstube An Envi-
ronment for Collaboration in Augmented Reality, Journal of the Virtual Reality Society
“Virtual Reality: Research, Development and Application”, Virtual Press Ltd., 1997.

[14] Thomas, B., Close, B., Donoghue, J., Squires, J., De Bondi, P., and Piekarski, W., First
Person Indoor/Outdoor Augmented Reality Application: ARQuake, Personal and Ubiq-
uitous Computing, Vol. 6, No. 1, 2002, pp. 75-86.

Chapter 26

THE CONTINUITY PROPERTY IN MIXED
REALITY AND MULTIPLATFORM SYSTEMS:
A COMPARATIVE STUDY

Murielle Florins1, Daniela G. Trevisan1,2, and Jean Vanderdonckt1

1Université catholique de Louvain, Institut d’Administration et de Gestion,
Place des Doyens, 1 - B-1348 Louvain-la-Neuve (Belgium)
E-mail: {florins, trevisan, vanderdonckt}@isys.ucl.ac.be
URL: http://www.isys.ucl.ac.be/bchi/members/{mfl, dtr, jva}
Tel.: +32 10 47 {83 91, 85.55, 85 25} – Fax: +32 10 47 83 24
2Université catholique de Louvain, Faculté de sciences appliquées, Laboratoire TELE
Place du Levant, 2 - B-1348 Louvain-la-Neuve (Belgium)
E-mail: trevisan@tele.ucl.ac.be

Abstract Continuity as usability property has been used in mixed reality systems and in
multiplatform systems. This paper compares the definitions that have been
given to the concept in both fields. Continuity is then given in a consolidated
definition.

Keywords: Augmented reality, Continuity, Mixed reality, Multiplatform systems.

1. CONTINUITY IN THE LITERATURE

The concern about continuity as a usability property has appeared in two
fields: Mixed Reality systems and Multiplatform systems.

Mixed Reality (MR) systems are systems that combine real and com-
puter-based information. Milgram [12,13] defines the Reality-Virtuality con-
tinuum shown in Fig. 1. MR is the region between the real world and totally
virtual environments. Augmented reality lies near the real world end of the
continuum. In AR systems, the perception that predominates is the real
world augmented by additional capabilities or information provided by the
computer system. Vallino [18] gives a list of 7 application domains where
the use of AR reality systems has been investigated: medical domain, enter-
tainment, military training, engineering design, robotics/telerobotics, manu-
facturing & maintenance, and consumer design. Augmented virtuality is a

323

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 323–334.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

324 Florins, Trevisan, and Vanderdonckt

term created by Milgram to identify systems which are mostly synthetic with
some added real world sources such as texture mapping video onto virtual
objects. Vallino [18] expects that this distinction will fade as the technology
improves and the virtual elements in the scene become less distinguishable
from the real ones. Therefore we can say that AR and AV are parts of the
Mixed Reality systems and MR systems are any possible combination of
real and virtual information. We use the terms “digital” and “virtual” indis-
criminately to refer to a world that is not physical or real. We also consider
that “real” and “physical” share the same meaning of “not digital or virtual”.

Real EnvironmentReal Environment
(RE)(RE)

VirtualVirtual
Environment (VE)Environment (VE)

Mixed Reality (MR)Mixed Reality (MR)

AugmentedAugmented
Reality (AR)Reality (AR)

AugmentedAugmented
Virtuality (AV)Virtuality (AV)

Figure 1. Milgram's Reality-Virtuality Continuum [12].

An example of Mixed Reality is the Transfiction system [10] (more de-
tails about this technology can be found in http://www.alterface.com) where
extracted video images are analysed, in order to capture the users’ move-
ments. Afterwards, the video images are integrated into a virtual graphical
scene, which reacts in an interactive manner to the behaviour of the filmed
subject(s) (Fig.2).

Figure 2. Transfiction system, example of a Mixed Reality system [10].

The Continuity Property in Mixed Reality and
Multiplatform Systems: A Comparative Study

325

Multiplatform systems, as an extension of the notion of multidevice systems
proposed by [4], are systems whose versions are available from a range of
platforms, where the platform is a specific combination of a hardware (the
device) and a software (the operating system, the browser and the available
graphical toolkits). Some application fields such as personal information
management (e-mails, diary, address book, etc.), travel planning, real time
information management (weather, stock exchange, news, etc.) or e-banking
are particularly suitable for this kind of use [4].

In the last years continuous interaction has been the interest of works
such as those related in [6,9,11,16,17,18]. As results of those studies we can
see continuity as being particularly concerned with activity over a period of
time. At a low level, this can involve real-time aspects of technologies such
as gesture recognition. At a higher level, providing for continuity during a
user’s interaction with an application can be quite a challenge, as the context
of use, environmental conditions and device platform may all change repeat-
edly. In this work we propose to investigate the definition of the continuity
properties in the field of mixed reality and multiplatform systems. Are these
definitions compatible or are we speaking of different concepts under the
same term?

2. CONTINUITY IN MIXED REALITY SYSTEMS
The interaction in MR systems is no longer based only on the exchange

of discrete messages that could be considered as atomic actions. Instead, the
input provided by the user and/or the outputs provided by the computing
system are a continuous process of exchange of information at a relatively
high resolution. As almost all tools used to interact with virtual world are
separated from those used to interact with the real world it forces the user to
switch between operation modes resulting in a discontinuous interaction.
Another potential discontinuity can be found for different or not similar rep-
resentations of the real data in the virtual world. In this way we define the
continuity as a capability of the system to promote a smooth interaction
scheme with the user during task accomplishment considering perceptual,
cognitive and functional properties [17]. These properties will be presented
in the next sections.

2.1 Augmentation in Mixed Reality Systems

The main goal of the MR system is to augment the user’s cognition, per-
ception and/or interaction. User’s cognition can be augmented by providing
additional virtual information into real world or by providing additional real
information into virtual world.

326 Florins, Trevisan, and Vanderdonckt

User’s perception can be augmented by providing all needed information
for the user to perform his/her task in an adequate place or device. User’s in-
teraction can be augmented by providing similar mode of operation or inter-
action (e.g., use of tangible interfaces). These elements are responsible to
guarantee the continuous interaction in the MR systems.

2.2 Continuity Properties in Mixed Reality Systems

Cognitive continuity is defined as an ability of the system to ensure that
the user will correctly interpret perceived information and that the perceived
information is correct with regards to the internal state of the system. In
other words the system may provide similar virtual representation of the real
data. Perceptual continuity is defined as an ability of the system to make all
data involved in the user’s task available in one perceptual environment in
order to avoid changes in the user’s focus.

According to the principle of interaction robustness mentioned in Gram
[7] we have introduced the functional property to provide a complete analy-
sis of continuous interaction. Functional continuity is defined as an adapta-
bility level of the user to change or learn new modes of operation. It is re-
lated to the similarity level between real and virtual interaction modes. In
Dubois [6] two ergonomic properties of augmented reality systems are dis-
cussed: continuity and compatibility.

At the perceptual level, the perceptual compatibility extends the ob-
servability property [7] to the case where N concepts have to be observed atN
the same time. The factors influencing perceptual compatibility are the geo-
graphical dispersion of concepts within the environment and the human
senses necessary to perceive those concepts. At the cognitive level, the cog-
nitive compatibility extends the honesty property [7] to the case where N
concepts have to be observed at the same time. Cognitive compatibility is
achieved when the user is able to interpret correctly the N concepts. Table 1N
summarises these ergonomic properties when applied for an Augmented Re-
ality system.

Table 1. Ergonomic properties of observability, honesty, compatibility and continuity in
Augmented Reality systems [6].

Perceptual Level Observability Perceptual Compati-
bility

Perceptual Continu-
ity

Cognitive Level Honesty Cognitive Compati-
bility

Cognitive Continu-
ity

1 concept
1 representation

N concepts, 1 repre-N
sentation each

1 concept, N repre-N
sentations

The Continuity Property in Mixed Reality and
Multiplatform Systems: A Comparative Study

327

3. NORMAN’S THEORY AND CONTINUOUS IN-
TERACTION

Designing for continuous interaction requires designers to consider the
way in which human users can perceive and evaluate an artefact’s observ-
able behaviour, in order to make inferences about its state and plan and exe-
cute their own continuous behaviour [9]. By exploring the Theory of Action
[14], it is possible to identify two main levels in the execution cycle of a
task: execution and evaluation flows (Fig. 3). The execution level consists of
how the user will accomplish the task corresponding to the functional conti-
nuity property. The evaluation level consists of three phases: user’s percep-
tion, interpretation and evaluation. The perception corresponds to how the
user perceives the environment state. The interpretation level consists of
how much cognitive effort the user needs to understand the system state cor-
responding to the cognitive continuity property. The last phase corresponds
to the evaluation of the system state by the user with respect to the goals.

Establishing theEstablishing the
GOALGOAL

Forming theForming the
INTENTIONINTENTIONN

Specifying the Specifying the
ACTION SEQUENCEACTION SEQUENCE

EXECUTION of the EXECUTION of the
actionaction

EVALUATION of the EVALUATION of the
envorinment stateenvorinment staten

INTERPRETATION ofINTERPRETATION of
the envorinment statethe envorinment state

PERCEPTION of thePERCEPTION of the
envorinment stateenvorinment state

Real actionReal action
Digital actionDigital action

Real effectReal effect
Digital effectDigital effect
Shared effectShared effectt

Real WorldReal World Digital WorldDigital WorldMWMW

Platform1Platform1

Platform2Platform2

PlatformNPlatformN

EX
EC

U
TI

O
N

 P
H

A
SE

EX
EC

U
TI

O
N

 P
H

A
SE

EV
A

LU
A

TIO
N

 PH
A

SE
EV

A
LU

A
TIO

N
 PH

A
SE

Figure 3. The Norman’s action theory applied for Mixed Reality and Multiplatform systems.

328 Florins, Trevisan, and Vanderdonckt

During the execution phase the user can interact with a physical object
(Real Action) or with a digital object (Digital Action). As results of these ac-
tions during the evaluation phase we can have (Fig.3):
– A real effect if the action (real or digital) has affected the real world
– A digital effect if the action (real or digital) has affected the digital world
– A shared effect if the action (real or digital) has affected both worlds.

The shared effect is rarer to produce and an example of that can be found
in systems such as remote environment visualization and manipulation for
monitoring and exploration in distant or hazardous locations. For instance in
[1] they have developed an augmented virtual world that contains real world
images as object textures that are created in an automatic way, these are
called Reality Portals.d Using Reality Portals with the robotic system, a hu-
man supervisor can control a remote robot assistant by issuing commands
using the virtual environment as a medium. The action-effect tuples can be
applied for both paradigms (e.g., Mixed Reality and Multiplatform).

4. THE CONTINUITY PROPERTY IN MULTIPLAT-
FORM SYSTEMS

Denis and Karsenty [4] consider continuity of multiplatform systems at
two levels: knowledge continuity and task continuity:
1. Knowledge continuity is based on “the retrieval and adaptation of knowl-

edge constructed from the use of other devices”
2. Task continuity is based on “the memory of the last operations per-

formed with the service, independently from the device used, and the be-
lief that this memory is shared by the system”. Task continuity requires
that the user recover the state of data and the context of the activity.
Task continuity goes far beyond our study field and beyond the notion of

functional continuity as defined by the authors in [17]. For this reason, we
will now focus on the other dimension: knowledge continuity.

In [4], one identifies three requirements for knowledge continuity:
1. Access to the same functions available on each device
2. Access to the same data available on each device
3. Same presentation of the service on each device

Generally, due to constraints on the different platforms, the whole set of
tasks and concepts are not available in each system version. Starting from
that consideration, [4] identifies three kinds of relationships between system
versions: redundant, when all the versions give access to the same tasks and
concepts, exclusive, when each version gives access to different tasks and
concepts and complementary, when the versions have a zone of shared tasks
and concepts, but at least one version gives access to tasks or concepts un-

The Continuity Property in Mixed Reality and
Multiplatform Systems: A Comparative Study

329

available in the other versions. Problems identified at that level obviously
belong to the execution phase in the Norman’s model and this form of conti-
nuity is thus closely related to the functional continuity. Beside the problems
of task availability on the different versions, Denis and Karsenty [4] also
mention procedural discontinuity: i.e. discontinuity when the same high-
level task is present on each system version, but the function is not accom-
plished in the same way (different subtasks or actions required on the differ-
ent platforms). At the presentation level they report two kinds of usability
problems:

1. Problems caused by graphical differences:
Differences in spatial organization of information can cause users to fail
to locate an object quickly
Differences in the shape of an interface object can cause users to fail to
associate the object with its function

2. Problems caused by terminological differences: when a graphical object
is labeled inconsistently between two versions of the system, the user
must follow a reasoning process to establish whether the object has the
same function in both versions.

Continuity issues identified at the presentation level belong respectively
to the perception stage (perceptive screen display) and to the interpretation
stage (interpretation of the terminological and graphical differences). In
summary, there are also three forms of continuity in multiplatform systems:
perceptual continuity, cognitive continuity, and functional continuity.

Perceptual continuity is an extension of the observability property to the
case where an interaction space has to be observed in different system ver-
sions. An Interaction Space (IS) is assumed to be the complete presentation
environment required for carrying out a particular interactive task. A given
IS could not be observable in the same way in different system versions. It
entails also the concepts of perceptive surfaces discussed in [8]: the ade-
quacy of a surface for action and/or observation depends on its attributes
(such as size, weight and material) and properties (e.g., fluidity, flexibility,
opacity, transparency, etc.). For instance the quantity of observable elements
directly in an interaction space can be reduced or augmented in function of
screen size constraints. Fig.4 illustrates this on the prototype of a health-care
information system where the PDA version only display a limited view of
the desktop version IS.

Cognitive continuity is an extension of the honesty property to the case
where N representations of the same concept have to be observed in differ-N
ent system versions. Fig. 4 shows how the same concept (the patient’s per-
sonal effects) can be represented by a textual label (on the desktop version)
or by an icon (on the PDA version).

330 Florins, Trevisan, and Vanderdonckt

Functional continuity depends on the differences between the functional-
ities available on each system version and between the low-level user’s ac-
tions required in order to achieve those functionalities.

Figure 4. Example of an interaction space to be rendered into other surfaces of interactions.

The Continuity Property in Mixed Reality and
Multiplatform Systems: A Comparative Study

331

5. THE CONTINUITY PROPERTY: COMPARISON

The concepts of continuity and potential sources of discontinuities are
quite different in mixed reality systems and in multiplatform systems. These
aspects are summarised in Table 2.
Table 2. Comparative table between continuity concepts in Mixed Reality systems and Multi-

platform systems.

Mixed Reality Systems Multiplatform Systems

Continuity
Based on interaction modes
and similar representations of
real and digital information

Similar functionalities, similar
operation procedures, similar
data representation and same
data set

Source of potential
discontinuities

Different interfaces to interact
with different worlds (real
and digital)

Variations of interfaces caused
by platform constraints

On the other hand both share the same three levels distribution following
the Norman’s action theory:

Perceptual continuity (perception phase in Norman’s theory).
Cognitive continuity (interpretation phase in Norman’s theory).
Functional continuity (execution phase in Norman’s theory).
The definitions of perceptual continuity and cognitive continuity are

similar in both paradigms:
Cognitive continuity corresponds to the honesty of multiple representa-
tions of a single concept.
Perceptual continuity corresponds to the observability of a determined
interaction space.
However, the relation between concept and concept representation is

quite different in mixed reality systems and multiplatform systems.
In an AR system, “1 concept, N representations” means: there are 2 or N

more objects (typically: one real object and one software object) that repre-
sent the same concept and that have both to be perceived at the same time
(during the same interactive task) by the user during a given interactive use
of the system. An example in the CASPER system [5] is the needle concept,
materialised at the same time by a real object (the surgical needle) and a
software object (two crosses on a screen that represent the needle axis and
the position of its extremity). This should not be confused with the case
where one single concept has multiple representations within the same sys-
tem version but that the different representations do not have to be perceived
at the same time (because they do not participate in the same interactive
task). It this case, we will rather use the term coherence, defined by Bastien
and Scapin [2,3] as “the way interface design choices (codes, naming, for-

332 Florins, Trevisan, and Vanderdonckt

mats, procedures, etc.) are maintained in similar contexts”.
On the other side, in a multiplatform system, the phrase “1 concept, N

representations” will mean: there are 2 or more objects (always software ob-
jects) that have to be recognised by the user as representing the same con-
cept during different interactive uses of different system versions. This leads
us to consider that the perceptual continuity and cognitive continuity proper-
ties in the multiplatform field are different from those properties defined in
MR field.

Do we have to establish the same kind of distinction at the functional
level? In MR systems, functional continuity is achieved when “operation
modes between workspaces are similar”, i.e. when the user who was trained
in a task is able to reuse this knowledge in the mixed reality system. Thus,
task continuity refers to the comparison between the operation mode in the
real world and in the mixed reality. In multiplatform systems, there are two
criteria influencing the functional continuity:

The availability of the function on different system versions.
The operation procedures (how the function is realised in terms of tasks
and sub-tasks sequences). Those distinctions are summarised in Table 3.

Table 3. Interpretation of continuity properties for Mixed Reality and Multiplatform systems.

Continuity properties Mixed Reality Systems Multiplatform Systems
Cognitive Similar digital representation (be-

havioural and graphical) of the
real information

Similar data set and similar
data representation (graphical,
terminological, spatial)

Perceptual Observable objects in the same
perceptive environment

Same distribution of ob-
jects/functions between inter-
action spaces

Functional Similar interaction modes Similar functionality and simi-
lar sequence of operations

6. CONCLUSION

In conclusion, continuity is a notion that:
Has to be considered at different levels in the Norman’s action theory,
namely the functional, perceptual and cognitive levels
Has to be assessed between two ore more comparison elements that can
be of different nature (tasks or concepts and their representation)
The compared elements can be inserted in different entities. Possible en-
tities are the real world, an information system or a given version of an
information system.
Continuity can be described at the same three abstraction levels in mixed

reality systems and multiplatform systems. On the other side, the compari-
son elements are quite distinct and they belong to distinct entities. The major

The Continuity Property in Mixed Reality and
Multiplatform Systems: A Comparative Study

333

difference between continuity for mixed reality system and for multiplat-
form UIs is that the former works on digital and real worlds with only one
interactive system, while the last works only on the digital world, but with N
variations of the interactive system or N interactive systems.N

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Salamandre Project,
funded by the “Initiatives III” research program of the Ministry of Walloon
Region, DGTRE (http://www.isys.ucl.ac.be/bchi/research/salamandre.htm).

REFERENCES

[1] Akesson, K.P. and Simsarian, K., Reality Portals, in Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Technology VRST’99 (London, 20-22 December
1999), ACM Press, New York, 1999, pp. 11-18.

[2] Bastien, C., Validation de Critères Ergonomiques pour l’évaluation d’interface Utilisa-
teurs, Research report No. 1427, INRIA, Rocquencourt, May 1991.

[3] Bastien, C. and Scapin, D., Evaluating a User Interface With Ergonomic Criteria, Re-
search report No. 2326, INRIA, Rocquencourt, 1994.

[4] Denis, C. and Karsenty, L., Inter-usability of Multi-device Systems: A Conceptual
Framework, in A. Seffah and H. Javahery (eds.), Multiple User Interfaces: Engineering
and Application Framework, John Wiley and Sons, New Jersey, 2003.

[5] Dubois, E., Chirurgie Augmentée: un Cas de Réalité Augmentée, Conception et Réalisa-
tion Centrée sur l’Utilisateur, Ph.D. thesis, University Joseph Fourier, Grenoble, July
2001.

[6] Dubois, E., Nigay, L., and Troccaz, J., Assessing Continuity and Compatibility in Aug-
mented Reality Systems, International Journal on Universal Access in the Information
Society, Special issue on Continuous Interaction in Future Computing Systems, Vol. 1,
No. 4, 2002, pp.263-273.

[7] Gram, C. and Cockton, G. (eds.), Design Principles for Interactive Software, Chapman
& Hall, London, 1996.

[8] Lachenal, C. and Coutaz, J., A Reference Framework for Multi-Surface Interaction, in
Proceedings of 10th International Conference on Human-Computer Interaction HCI In-
ternational’2003 (Crete, 22-27 June 2003), Lawrence Erlbaum Associates, Mahwah,
2003.

[9] May, J., Buehner, M.J., and Duke, D., Continuity in Cognition, International Journal of
Universal Access in the Information Society, Vol. 1, No. 4, 2002, pp. 252-262.

[10] Marichal, X., Macq, B., Douxchamps, D., Umeda, T., and Art.live consortium, Real-
Time Segmentation of Video Objects for Mixed-Reality Interactive Applications, in Pro-
ceedings of International Conference on Visual Communication and Image Processing
VCIP’2003 (Lugano, July 2003).

[11] Massink, M. and Faconti, G., A Reference Framework for Continuous Interaction, Inter-
national Journal of Universal Access in the Information Society, Vol. 1, No. 4, 2002, pp.
237-251.

334 Florins, Trevisan, and Vanderdonckt

[12] Milgram, P. and Kishino, F., A Taxonomy of Mixed Reality Visual Displays, IEICE
Transactions on Information Systems E77-D, Vol. 12, 1994, pp. 1321-1329.

[13] Milgram, P., Takemura, H., Utsumi, A., and Kishino, F., Augmented Reality: A Class of
Displays on the Reality-Virtuality Continuum, in H. Das (ed.), SPIE Proceedings on
Telemanipulator and Telepresence Technologies, SPIE Vol. 2351, 1994, pp. 282-292,
accessible at http://vered.rose.utoronto.ca/people/paul_dir/SPIE94/SPIE94.full.html

[14] Norman, D.A. and Draper, S.W. (eds.), User Centered System Design: New Perspectives
on Human-Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, 1986.

[15] Rogers, Y., Scaife, M., Gabrielli, S., Smith, H., and Harris, E., A conceptual framework
for mixed reality environments: Designing novel learning activities for young children,
Presence, Vol. 11, No. 6, 2002, pp. 677-686.

[16] TACIT project, accessible at http://kazan.cnuce.cnr.it/TACIT/
[17] Trevisan, D., Vanderdonckt, J., and Macq, B., Continuity as a Usability Property, in

Jacko, J., Stephanidis, C. (eds.), Proc. of 10th Int. Conf. on Human-Computer Interaction
HCI International’2003 (Heraklion, 22-27 June 2003), Vol. 1, Lawrence Erlbaum Asso-
ciates, Mahwah, 2003, pp. 1268-1272.

[18] Trevisan, D., Vanderdonckt, J., and Macq, B., Analyzing Interaction in Augmented Real-
ity Systems, in G. Pingali, R. Jain (eds.), Proceedings of ACM Multimedia’2002 Interna-
tional Workshop on Immersive Telepresence ITP’2002 (Juan Les Pins, 6 December
2002), ACM Press, New York, 2002, pp. 56-59.

[19] Vallino J., Augmented Reality Page, Rochester Institute of Technology, Department of
Software Engineering, accessible at http://www.se.rit.edu/~jrv/research/ar /index.html

Chapter 27

BUILDING RICH USER INTERFACES FOR
DIGITAL TALKING BOOKS

Luís Carriço, Carlos Duarte, Rui Lopes, Miguel Rodrigues, and
Nuno Guimarães
Human-Computer Interaction and Multimedia Group, LaSIGE, Department of Informatics,
C5, Piso 1, Faculty of Sciences, University of Lisbon,
Campo Grande, 1749-016 Lisbon (Portugal)
E-mail: {lmc,cd,rlopes,mrod,nmg}@di.fc.ul.pt
Tel.: +351-21-{7500247 ext. 26329, 7500124} – Fax: +351-21-7500084

Keywords: Accessibility, Model-based tools, User diversity, UI generation.

1. INTRODUCTION

Audiotapes have served as an important medium, and sometimes the only
alternative, for print-disabled reader’s access to books. In several public li-
braries, in particular in the Portuguese National Library, a long time effort
was made in speech recording of a large amount of printed material. How-
ever, the limitations of this analogue approach, even when compared with

335

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 335–348.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract This paper presents a framework for the automatic production of Digital Talk-
ing Books (DTB). The production process converts existing audio tapes and
OCR-based digitalisation of text books into full-featured, multi- synchronised,
multimodal digital books. The framework deals with the standardisation proc-
esses, media enrichment and User Interface definition. The latter is based on
abstract, yet DTB specific, pattern-based UI specifications. This allows the
definition of various forms of interaction and presentation, required by the di-
versity and constraints of targets users (e.g. visually impaired persons) and
situations of use (e.g., learning). Balancing the focus of production between
personalised, situation-based UI and adaptive ones is also considered. The ar-
ticle also summarises some usability tests on generated DTBs that contributed
to the refinement of the framework.

336 Carriço, Duarte, Lopes, Rodrigues, and Guimarães

their printed counterparts are noteworthy (e.g., difficulties in indexing, anno-
tation and cross-referencing). Moreover, for particular disabilities and situa-
tions of use the visual complement is also required.

Digital Talking Books (DTBs) are a logical answer. Involving several
groups related with visually impaired people, DTB work identifies require-
ments, directions and recently a standard based on emerging Web technol-
ogy [2,9]. Nevertheless, the standard, wisely, does not intentionally propose
specific solutions for interaction. In fact, the required combination of syn-
chronisation, structural navigation and annotations management, using vis-
ual, audio, speech and standard interaction devices, poses ambiguity and
cognitive problems that must be dealt with at the UI design level [5,12,27].
These issues are further stressed by the diversity of targeted users, their par-
ticular disabilities and perspectives. It is essential to explore and evaluate
distinct UIs for the same book, with different multimodal combinations,
eventually enriched with new media contents not present in the original
book. Balancing DTBs modes and media, for example, can be explored to
overcome the cognitive limitations of human perception and attention [17].

This paper describes DiTaBBu (Digital Talking Books Builder), a
framework for the production of DTBs based on media indexing, speech
alignment and multimodal interaction elements. The work has been carried
out in the context of the IPSOM project, joining the Portuguese National Li-
brary (owner and publisher of analogue talking books), speech processing
technology experts (providing tools for speech recognition and speech
alignment) and multimedia interaction designers and engineers. The frame-
work balances its requirements between: (1) the existence of large amounts
of recorded material; (2) the flexibility and simplicity needed for the genera-
tion of UIs; (3) the DTB recommendations and standards; and (4) the ability
to integrate, explore and adjust multimedia units in the production process.
At its current status, the framework already builds on a set of results from
usability evaluation studies over produced DTDs, which consolidated and re-
fined several decisions on the execution platform and particularly on the UI
specification.

In the following section this article presents the requirements imposed on
the production framework by: the particular project needs; the related stan-
dards and recommendations; and the results of evaluation tests. Design deci-
sions are also referred. Next, the architecture of the DTBs generated by Di-
TaBBu framework is presented. The following section describes the frame-
works itself, covering the book’s content organisation and the modular UI
generation. Afterwards, some related work is discussed. The paper ends
drawing conclusions and delineating future work.

Building Rich User Interfaces for Digital Talking Books 337

2. REQUIREMENTS AND DESIGN OPTIONS

The construction of the DiTaBBu framework is the result of a set of re-
quirements and design decisions that evolved throughout the project.

2.1 Project Needs

The Portuguese National Library (BN) provides services for visually im-
paired persons. It possesses a large amount of analogue spoken books, re-
corded by volunteers and stored in analogue audio tapes. At the same time
the BN is also committed to build a digital version of books – actually
scanned books within a XML/HTML envelope. Although both results are
available, a need for its integration, along with the introduction of DTB gen-
eral functionalities, was clearly felt, particularly by the visually impaired
community. Two basic problems were raised at this level:

The huge amount of existing books, audio tapes and digital copies – re-
quiring an automated form to produce the integrated multimodal books.
The poor quality of the audio tapes – making it very difficult to auto-
matically generate computable digital audio versions.

The first issue should, of course, consider mechanisms for easy and reus-
able specifications of books’ UIs. Those should adapt to different book con-
tents and cope with various types of users and use settings.

The latter problem was solved by recording a clean audio version of
some books, or using existing digital forms. The initial pilot corpus was the
“O Senhor Ventura” (a novel by Miguel Torga), read by a professional
reader in a sound proof booth. Other digital versions were later used [35].
For the moment, then, the automation process departs from a digital (and
computable) version of the audio and from the existing scanned text. Re-
finement of the speech alignment component is currently under work, in or-
der to depart from the original analogue tapes.

2.2 DTB Recommendations and Standards

The work around DTBs has recently resulted in a standard specification
[2]. Throughout the process a list of features and functions was identified
[28]:

Support basic navigation (advancing one character, word, line, sentence,
paragraph or page at a time, and jumping to specific segments).
Fast forward and reverse, reading at variable speeds.
Navigation through tables or control files (allowing the user to obtain an
overview of the material in the book).
Reading notes, cross-reference access, index navigation, bookmarks,

338 Carriço, Duarte, Lopes, Rodrigues, and Guimarães

highlighting, taking excerpts, searching, and other capabilities.
All these requirements are fully considered in the generated DTBs, ex-

cept for the variable speed reading and the thinner (character and sometimes
word based) basic navigation support. For the first one, a complete speech
model must be available in order to maintain low voice distortion. An alter-
native, currently under evaluation, is the reduction or extension of sentence
separation (silence, or breathing times), combined with small speed changes.
The implementation of the second feature strongly depends on the ability to
isolate character and word sounds from the continuous speech recording. An
alternative is the introduction of speech synthesis. Here, cognition issues are
raised [18], which should still be a focus of further evaluation studies. Cur-
rently the production framework allows the definition of DTBs minimum
synchronisation unit, from word up, that determines the basic navigation and
playback granularity.

Another result from the DTBs specification process is a categorisation of
DTBs [9], according to the functionalities that could be made available to
the user under different scenarios:

Full audio with title element only – allows sequential playback and is
particularly useful for small devices and mobile settings.
Full audio with navigation control – adds direct access through structural
items (e.g., table of contents).
Full audio with navigation control and partial text – adds textual search
on specific components.
Full audio and full text – all features available and usually requires fix
desktop settings with sophisticated resources.
Full text and some audio – allows listening to some textual components
(e.g., pronunciation aids).
Text and no audio – structured text, allowing Braille production.
On this multifaceted perspective of a DTB, the same book “edition”, and

to some extent the same book (structure and content), could be presented and
interacted in different ways, using different devices [29] and different media
and mode combinations. As a direct consequence, the DTB production
mechanism or the DTB execution platform or both should build on an archi-
tecture that promotes a clear separation between the books' contents, includ-
ing the logical and semantic structure (e.g., media correspondence) and the
books’ user interface (UI). This will reinforce coherence between the several
usage settings of the same book, facilitating the maintenance and the specifi-
cation of UI and navigation.

The DiTaBBu framework enforces this architectural separation and al-
lows the generation of all these categories including the most complex DTB
format – full audio and full text.

Finally, the proposed standard [2] defines a model of DTBs around a set

Building Rich User Interfaces for Digital Talking Books 339

XML-based Document Type Definitions. A basic architecture is also pro-
posed identifying the modules (files) that should be present (Navigation
files, Media files, Synchronisation files). Presentation specifics are handled
with style sheets (CSS or XSL) and for synchronisation purposes, SMIL 2.0
is recommended. The proposed DTB architecture enables different presenta-
tion and interaction designs, and the choice of web-based technology ensures
the required wide dissemination.

However, in the final representation, content and presentation are dis-
persed and intermixed in several modules. For example, for the book's con-
tent, the media correspondence is defined in the Synchronisation file, where
the presentation sequence and timings are also established. On the other
hand, for navigation elements, the media correspondence (e.g., table of con-
tents text and speech) is specified in the Navigation file, whereas the time-
related presentation is in the Synchronisation module. This DTB proposed
architecture, although coping with several configurations for the same book
(a DTB for each configuration), hardly embraces the intrinsic correspon-
dence among them. It can (as a standard) be used as a final format for DTBs,
but a clearer separation of content and UI is required, either on DTB produc-
tion frameworks or on DTBs architectures that provide an enhanced run-time
flexibility or even adaptability [13]. Furthermore, other final DTB formats
should also be made available, that, for example run on off-the-shelf brows-
ers and common devices. The DITaBBu framework can produce different
arrangements and different formats for final DTBs.

2.3 Impact of DTB’s Evaluation Results

A set of usability studies on several UIs variants were done. The variants,
generated by the first versions of the DiTaBBu framework, departed from
the same book (“O Senhor Ventura”). Different synchronisation units and
different visual and audio marks for the synchronisation of navigation an-
chors, playback and annotation were used, as well as different forms of in-
teraction (pure voice-based, mouse, keyboard and combined). Wizard of Oz
tests were conducted to solve the language related problems of speech rec-
ognition software.

In terms of the DiTABBu framework the impact of the usability tests was
essentially felt in the identification and characterisation of the UI specifica-
tion language that enables DiTaBBu to generate UI variants for the DTDs. In
accordance with the results, the components controlling the interface genera-
tion were classified into several main classes, each with a different focus,
covering presentation and interaction aspects, for the main book content, as
well as for annotations, navigation structures, enriching media, etc. Particu-
lar relevant results where obtained for the synchronisation facet. For exam-

340 Carriço, Duarte, Lopes, Rodrigues, and Guimarães

ple, on DTBs with multiple media presentations, users require contextual in-
formation (such as containing sentence, paragraph or section) when naviga-
tion or continuous presentation occurs. Furthermore, evaluation results point
to the need for different temporal and spatial based contextual units (e.g., the
further the navigation “jump” the bigger the required context). The detailed
test results can be seen elsewhere [5,12].

3. DTB ARCHITECTURE AND PLATFORM

In view of the above-mentioned recommendations, the generated DTBs
must cope with a diversity of devices and modality combinations, which ad-
dress the specific characteristics of the books’ content, the situation of use
and the users. Thus a DTB architecture design that handles a flexible execu-
tion is a major prerequisite. Additionally, an easy form of dissemination and
integration, with emerging digital publication technologies, is not only a re-
quirement imposed by the source material provider (BN), but for the main
target users in general.

A Web-based technology approach was adopted, based on DTB and
XML related recommendations, but several final DTB formats and organisa-
tions are possible. The general architecture for a generated DTB includes:

An XML-based content specification, embracing text and other media
(in specific formats), media anchoring points, media correspondence (to
text or between media) and structure. No UI presentation or synchronisa-
tion issues are considered at this level.
A set of XSLT-based specifications enabling the creation of UIs for the
content.
The UI, including presentation and specific interaction objects when re-
quired. Presentation could follow several formats and organisations,
from plain SMIL (plus CSS), to versions compliant with the DTB stan-
dard architecture.

The introduction of the XSLT level permits to build the several UIs, us-
ing alternative DTB formats and still maintaining the coherence with the
books' content. On the other hand, it also allows balancing the generation of
the UI, between the production framework and the execution platform itself
(Fig. 1 shows an example with a DTB using an HTML+TIME format). If the
execution platform is able to process XSLT, a book following the above
three-layer organisation could be directly used. If performance is an issue or
the execution platform does not support it, the DiTaBBu framework could
generate the final DTB configurations (e.g., a DTB fully compliant with the
standard or a simpler SMIL version, in any DTB category).

Building Rich User Interfaces for Digital Talking Books 341

Figure 1. Balancing performance and run-time flexibility.

As a basic, yet powerful, execution platform, Internet Explorer 6, was
adopted. This choice enabled the use of HTML+TIME (and CSS), as a rep-
resentative of a SMIL 2.0 profile, and Microsoft's variant of VoiceML, for
voice interaction. Both architectural organisations are supported, since the
browser processes XSLT. In the simplest form, the digital book is a (set of)
HTML+TIME, CSS and media specific files. An initial version of the gener-
ated DTBs used HTIMEL [7], instead of HTML+TIME. Both languages are
still available as a result of the DTB production process. However, only
HTML+TIME is currently maintained. For voice interaction, off-the-shelf
products, recognizing Portuguese language, were initially used with very bad
performance results. The Microsoft's implementation of VoiceML, provided
better results, but using English as interaction language. Currently, Portu-
guese speech recognition software, developed within the IPSOM project's
teams, is being integrated.

4. THE FRAMEWORK

The DiTaBBu framework generates DTBs through an automatic produc-
tion process, configured by a set of specification files that allow the required
flexibility. Fig. 1 presents the framework’s inputs and outputs. Internally the
framework can be decomposed into two main phases: content organisation
and UI-generation.

4.1 The Content Organisation Phase

The content organisation phase is represented in Fig. 2. The first step is
to determine the time of the written words on the recorded speech (align-
ment). The book’s original text is initially expanded (e.g., abbreviations and
numerals are replaced by their complete textual representation) and stripped
from punctuation signs. This is feed in the alignment module that generates a

342 Carriço, Duarte, Lopes, Rodrigues, and Guimarães

table with the audio stream timings for each of the spoken words. Besides
the words, this process also identifies the silences (reader’s pauses) present
in the narration - details on the alignment process can be found elsewhere
[34]. From the alignment table, the expanded text (text as spoken) and taking
again the digital copies of the source text (raw digital text), two XML tagged
descriptions are generated. In the first one, derived from the source text, an
ID is assigned to every word and the correlation between written and “as
spoken text” is maintained whenever is needed (e.g. <word id=”10”
sounds=”one”>I</word>). The second file contains the words’ timing (e.g.
<anchor id=”10” unit=”word” begin=”13”/>) and silences and represents the
anchors into the media file (e.g. an “mp3” file with the book’s narration).

Figure 2. DiTaBBu: the content organisation phase

The final step on the content organisation phase is actually twofold: the
book structure is included in the XML-based content file and the remainder
DTBs standard files are generated. In the first process a set of rules in terms
of regular expressions are used to extract the structure (e.g., paragraphs, sec-
tions) from the digital source text. Alternatively and additionally specific
structure definitions can be introduced. The second process provides the
main DTB file, the navigation files (extracting table of contents, etc.) and the
connection between different media (referred as synchronisation). Synchro-
nisation units for syntactic constructs and for spoken divisions (breathing
and pauses) are added, enabling an easier (tagged based) production of multi
unit DTBs [12].

This phase result is mostly compliant with the ANSI/NISO recommenda-
tions. Exceptions are the inexistence of UI elements, including the SMIL-
based synchronisation specification defined on the standard. Instead, the
synchronisation file generated in this phase of DiTaBBu describes simple
media correspondence (through common id tags or meta-information).

Building Rich User Interfaces for Digital Talking Books 343

4.2 The UI Generation Phase

Figure 3. DiTaBBu: UI generation phase.

The UI-generation phase is represented in Fig 3. In the initial steps of this
phase the framework presents a set of interpreter modules. Each module re-
ceives as input: a set of XML-based files with content; and a specification
file, describing the patterns and rules to be applied to that content. Those
specification files follow XML-based dialects dependent on the module. In-
ternally the module also uses XSLT code and XSLT templates that are se-
lected and adjusted according to the specification, in order to generate the
module’s output (XML + XSLT files). Cocoon [23] is used in the transfor-
mation process. Two groups of interpreters can be identified relating to pri-
mary and secondary material. The primary material modules are the play-
back and interaction interpreters. Basically they deal with the main book
content, not considering footnotes, margin notes and navigation auxiliaries
(i.e., indexes, tables of content). The respective dialects handle the visual
and audio logical markup and their synchronisation. For example:

<showsync delay=”2s” sunit=”silence”/> means that playback will
show visual synchronisation marks (the visual effect is specified later in
the CSS) delayed by 2 seconds and using the words between reading si-
lences as a unit - the whole unit is marked (e.g., underlined) as narration
evolves.
<onsearch sunit=”word, paragraph” basedon=”paragraph, section” />

344 Carriço, Duarte, Lopes, Rodrigues, and Guimarães

means that in result of a search, the narration (sound) should start on the
word found or on the beginning of the paragraph containing that word
depending on how distant (paragraph of section) from the current read-
ing position the searched text is (see impact of evaluation results).

The secondary modules handle auxiliary navigation structures, user
annotations, side margin notes, etc. Apart from the specificity of their
dialects (e.g., <show summary> on annotations), the synchronisation rules
with the primary content are also specifiable. The remainder steps of the UI
generation phase provide the integration and filtering of the results of the
interpretation modules and the (optional) generation of the final presentation.
The former generates a set of XSLT and XML content files that can be also
interpreted by the execution platform.

5. RELATED WORK

Multimodal systems have a high degree of complexity. Even if consider-
ing only the integration of speech into a point and click interface, there are a
great number of problems to be considered [30]. Nevertheless, research has
indicates that speech input is advantageous in several circumstances [30],
and identified the task characteristics that better suit speech input [8,37].
Those tasks are the ones where the user has to issue brief commands using a
small vocabulary, which are approximate to the interaction characteristics of
a DTB. However, research on the effectiveness of speech as an input mode
has not been conclusive [26,39]. As such, there is still need to experiment
systems with different configurations of voice and other mode commands.
DiTaBBu platform offers the advantage of flexibility in the creation of
DTBs with different presentation and interaction characteristics. That will al-
low us to try out different ways to convey document structure and assist
navigation, such as the use of 3D audio [19], auditory icons [3,16], multiple
speakers and sound effects [21], etc.

Referring to DTB formats and architectures, the use of the DTB standard
has recently gained momentum. Several software [11,20,41] and hardware
[40] players were made available. However, other web-based solutions
should be envisaged, if a wider dissemination and ease of evolution is pur-
sued. For example, formats fully compatible with common Web browsers,
like the one proposed in this work, potentially executable in general purpose
mobile devices and adopting the mentioned flexible architecture should defi-
nitely be available.

Our platform of DTBs and its UI generation shares some of the character-
istics of model-based UI development environments, namely, the infrastruc-
tures needed for the automation of tasks related with the design and imple-

Building Rich User Interfaces for Digital Talking Books 345

mentation of UI processes [36], and the higher level of abstraction in the de-
scription of the interface [33,38,43]. For example, model-based approaches
were adopted to handle flexible generation of UIs for different users and de-
vices [31]. There are several model-based projects addressing the issue of
creating UIs for multiple devices [1,14,24] or to adapt to different devices
[4]. This, in fact, is a field where the transition to the commercial software
world has not yet occurred, in part because of the abstraction level used in
the specification of the models, which contradicts adopted user interface de-
sign techniques. However, in the case of DTB production, with the particu-
larities of the domain, there is not such a great emphasis on abstraction. The
generation process can, thus, be more easily adopted. Besides, the common
notion of “book collection” can definitely compel to reuse, a characteristic
reinforced by the automation process.

Still related to model-based UI development is the use of several specifi-
cations that are conceptually similar to the models employed in those envi-
ronments: application model, task model, dialogue model and presentation
model. Future developments, which target the construction of an intelligent
interface for the DTBs, will see the inclusion of new specifications to allow
an adaptation to the reader and the reading environment. This is similar to
the introduction of user and environment models presented by some model-
based frameworks [15,25,32,38].

6. CONCLUSION AND FUTURE WORK

This paper presented DiTaBBu, a framework for the production of DTBs.
We have described the requirements and design options taken in view of
those requirements and of the usability tests already performed on generated
DTBs. Currently, the produced DTBs provide most of the functionalities in-
tended in the standards literature, including audio and text synchronisation,
annotations, navigation through mouse and keyboard interaction and through
voice commands.

The platform itself was described. Its architecture based on modules that
derived from DTB specific concepts, enables the required flexibility for the
creation of multiple UI for DTBs, maintaining the automatic generation
premise. The fact that those modules are rule based and template-supported
stresses that flexibility.

As ongoing work, we are integrating tools for an higher level of specifi-
cation for the modules specification files. In line of hypermedia related
works [6,22] its being defined an UML description of those specification
dialects, that in turn will generate the XML specifications. Some work has
also started in the integration of images as secondary book material, includ-

346 Carriço, Duarte, Lopes, Rodrigues, and Guimarães

ing speech based description of such images. The enrichment book process
already present in the framework will handle explicit and semi-automatic in-
clusion of other multimedia related contents in the produced DTBs.

REFERENCES
[1] Ali, M.F. and Pérez-Quiñones, M.A., Using Task Models to Generate Multi-Platform

User Interfaces While Ensuring Usability, in Proceedings of ACM International Confer-
ence on Human Factors in Computing Systems CHI’2002 (Minneapolis, 20-25 April
2002), Extended Abstracts, ACM Press, New York, 2002, pp. 670-671.

[2] ANSI/NISO, Specifications for the Digital Talking Book, ANSI/NISO Z39.86-2002, Use
and Maintenance, 2002, accessible at http://www.loc.gov/nls/z3986/v100/index.html.

[3] Blattner, M.M., Sumikawa, D.A., and Greenberg, R.M., Earcons and Icons: Their Struc-
ture and Common Design Principles, Human-Computer Interaction, Vol. 4, 1989, pp.
11-44.

[4] Calvary, G., Coutaz, J., and Thevenin, D., A Unifying Reference Framework for the De-
velopment of Plastic User Interfaces, in Proceedings of 8th IFIP Working Conference on
Engineering for Human Computer Interaction EHCI’01 (Toronto, 11-13 May 2001),
Lecture Notes in Computer Science, Vol. 2411, Springer-Verlag, Berlin, 2001, pp. 173-
192.

[5] Carriço, L., Guimarães N., Duarte, C., Chambel, T. and Simões, H., Spoken Books: Mul-
timodal Interaction and Information Repurposing, in Jacko, J., Stephanidis, C. (eds.),
Proc. of 10th Int. Conf. on Human-Computer Interaction HCI International’2003 (Herak-
lion, 22-27 June 2003), Vol. 1, Lawrence Erlbaum Associates, Mahwah, 2003.

[6] Carriço, L., Lopes, R., Rodrigues, M., Dias, A., and Antunes, P., Making XML from Hy-
permedia Models, in Proceedings of the IADIS International WWW/Internet Conference,
ICWI’03 (Algarve, November 2003), accessible at http://www.di.fc.ul.pt/~paa/papers/
icwi-03.pdf

[7] Chambel, T., Correia, N., Guimarães, N., Hypervideo on the Web: Models and Tech-
niques for Video Integration, International Journal of Computers & Applications, Vol.
23, No. 2, 2001, pp. 90-98.

[8] Christian, K., Kules, B., Shneiderman, B., and Youssef, A., A Comparison of Voice Con-
trolled and Mouse Controlled Web Browsing, in Proceedings of 4th ACM Conference on
Assistive Technologies ASSETS’00 (Arlington, 13-15 November 2000), ACM Press,
New York, 2000, pp. 72-79.

[9] DAISY, Daisy Structure Guidelines, 2002, accessible at http://www.daisy.org/publica-
tions/guidelines/sg-daisy3/structguide.htm.

[10] DAISY, Statement of Principles for the Creation and Production of Accessible Books
and Materials, 1999, accessible at http://www.daisy.org/dtbook/guidelines/draft/princi-
ples.htm.

[11] Dolphin Audio Publishing, EaseReader - the next generation DAISY audio eBook soft-
ware player, 2003, accessible at http://www.dolphinse.com/products/easereader.htm.

[12] Duarte, C., Chambel, T. Carriço, L., Guimarães N., and Simões, H., A Multimodal Inter-
face for Digital Talking Books, in Proceedings of the IADIS International
WWW/Internet Conference ICWI’03 (Algarve, November 2003).

[13] Duarte, C. and Carriço, L., Identifying Adaptation Dimensions in Digital Talking Books,
in Proceedings of 9th ACM Conference on Intelligent User Interfaces IUI’2004 (Funchal,
13-16 January 2004), ACM Press, New York, 2004, pp. 241-243.

[14] Eisenstein, J., Vanderdonckt, J., and Puerta, A.R., Applying Model-based Techniques to
the Development of UIs for Mobile Computers, in Proceedings of 6th ACM International
Conference on Intelligent User Interfaces IUI’2001 (Santa Fe, 14-17 January 2001),
ACM Press, New York, 2001, pp. 69-76.

Building Rich User Interfaces for Digital Talking Books 347

[15] Elwert, T. and Schlungbaum, E., Modelling and Generation of Graphical User Interfaces
in the TADEUS Approach, in Ph. Palanque, R. Bastide (eds.), Proceedings of 2nd Euro-d

graphics Workshop on Design, Specification, Verification of Interactive Systems DSV-
IS'95 (Toulouse, 7-9 June 1995), Springer-Verlag, Vienna, 1995, pp. 193-208.

[16] Gaver, W., Synthesizing Auditory Icons, in Proc. of the ACM Conf. on Human Factors in
Computing Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New
York, 1993, pp. 228-235.

[17] Gazzaniga, M.S., Ivry, R.B., and Mangun, G.R., Cognitive Neuroscience - the Biology of
the Mind, W.W. Norton & Company, 1998.

[18] Gong, L. and Lai, J., Shall we Mix Synthetic Speech and Human Speech? Impact on
user’s Performace, Perception, and Attitude, in Proceedings of the ACM Conference on
Human Factors in Computing Systems CHI’2001 (Seattle, 31 March-5 April 2001),
ACM Press, New York, 2001, pp. 158-165.

[19] Goose, S. and Moller, C., A 3D Audio Only Interactive Web Browser: Using Spatialisa-
tion to Convey Hypermedia Document Structure, in Proceedings of the 7th ACM Confer-
ence on Multimedia Multimedia’99 (Orlando, 30 October-5 November 1999), ACM
Press, New York, 1999, accessible at http://www.kom.e-technik.tu-darmstadt.de/acm
mm99/ep/goose/.

[20] Innovative Rehabilitation Technology Inc., eClipseReader, 2003, accessible at
http://www.eclipsereader.com/.

[21] James, F., Presenting HTML Structure in Audio: User Satisfaction with Audio Hypertext,
Proceedings of International Conference on Auditory Display ICAD’96 (Palo Alto, 4-6
November 1996), ICAD, 1996, accessible at http://www.icad.org/websiteV2.0/Confer-
ences/ICAD96/proc96/james.htm

[22] Kraus, A. and Koch, N., Generation of Web Applications from UML Models using an
XML Publishing Framework, in Proceedings of 6th World Conference on Integrated De-
sign and Process Technology IDPT’2002 (Pasadena, 23-28 June 2002), Society for De-
sign and Process Science, 2002, accessible at http://www.pst.informatik.uni-muenchen.
de/~krausa/publications/UWEXML-Kraus-Koch-pn1.pdf

[23] Langham, M. and Ziegler, C., Cocoon: Building XML Applications, SAMS, New Riders,
2002.

[24] Lin, J. and Landay, L., Damask: A Tool for Early Stage Design and Prototyping of
Multi-Device User Interfaces, in Proceedings of the International Workshop on Visual
Computing during the 8th International Conference on Distributed Multimedia Systems
VC’2000 (San Francisco, 26-28 September 2002), San Francisco, 2002, accessible at
http://guir. berkeley.edu/projects/damask/pubs/damask-vc2002.pdf

[25] Markopoulos, P., Pycock, J., Wilson, S., and Johnson, P., ADEPT - A Task Based DesignT
Environment, in Proceedings of the 25th Hawaii International Conference on Systems
Sciences HICSS’92 (Koloa, 9 January 1992), Vol. 2, IEEE Computer Society Press, Los
Alamitos, 1992, pp. 587-596, accessible at http://www.idemployee.id.tue.nl/p.markopou-
los/downloadablePapers/Markopoulos-P-1992.HICSS25.pdf

[26] Martin, G., The Utility of Speech Input in User-Computer Interfaces, International Jour-
nal of Man-Machine Studies, Vol. 30, No. 4, 1989, pp. 355-375.

[27] Morley, S., Digital Talking Books on a PC: A Usability Evaluation of the Prototype
DAISY Playback Software, in Proceedings of the 3rd ACM Conference on Assistive d

Technologies ASSETS’98 (Marina del Rey, 15-17 April 1998), ACM Press, New York,
1998, pp. 157-164.

[28] NISO, Document Navigation Features List, 1999, accessible at http://www.loc.gov/nls/
z3986/background/navigation.htm.

[29] NISO, Playback Device Guideline, 1999, accessible at http://www.loc.gov/nls/z3986/
background/features.htm.

[30] Oviatt, S., Cohen, P., Wu, L., Vergo, J., Duncan, L., Suhm, B., Bers, J., Holzman, T.,
Winograd, T., Landay, J., Larson, J., and Ferro, D., Designing the User Interface for

348 Carriço, Duarte, Lopes, Rodrigues, and Guimarães

Multimodal Speech and Gesture Applications: State-Of-The-Art Systems and Research
Directions, Human-Computer Interaction, Vol. 15, No. 4, 2000, pp. 421-456.

[31] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 2000.

[32] Puerta, A.R., The Mecano Project: Comprehensive and Integrated Support for Model-
Based Interface Development, in J. Vanderdonckt (ed.), Proceedings of the 2nd Workshopd

on Computer-Aided Design of User Interfaces CADUI’96 (Namur, 5-7 June 1996),
Presses Universitaires de Namur, Namur, 1996, pp. 19-25.

[33] Puerta, A. and Maulsby, D., Management of Interface Design Knowledge with MODI-D,
in Proceedings of 2nd ACM Conference on Intelligent User Interfaces IUI'97 (Orlando, 6-d

9 January 1997), ACM Press, New York, 1997, pp. 249-252.
[34] Serralheiro, A., Caseiro, D., Meinedo, H., Trancoso, I., and Neto, J., Spoken Book Align-

ment Using WFSTS, in M. Marcus (ed.), Proceedings of 2nd Conference on Human Lan-d

guage Technology Conference HLT’02 (San Diego, 24-27 March 2002), Association for
Computational Linguistics, Morgan Kauffman, 2002, accessible at http://www.l2f.inesc-
id.pt/documents/papers/Serralheiro02.pdf

[35] Serralheiro, A., Trancoso, Caseiro, D., Chambel, T. Carriço, L. & Guimarães, N., To-
wards a repository of Digital Talking Books, in Proceedings of 8th European Conference
on Speech Communication and Technology Eurospeech’2003 (Geneva, 1-4 September
2003), International Speech Communication Association, Geneva, 2003, pp. 1605-1608.

[36] Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J. and Salcher, E. (1996).
Declarative Interface Models for User Interface Construction Tools: the MASTERMIND
Approach, in L. Bass, C. Unger (eds.), Proceedings of the 6th IFIP TC 2/WG 2.7 Work-
ing Conference on Engineering for Human-Computer Interaction EHCI’95 (Grand Tar-
ghee Resort, 14-18 August 1995), Chapman & Hall, Londres, 1995 pp. 120-150.

[37] Van Buskirk, R. and LaLomia, M., A Comparison of Speech and Mouse/Keyboard GUI
Navigation, in Proceedings of ACM Conference on Human Aspects in Computing Sys-
tems CHI’95 (Denver, 7-11 May 1995), ACM Press, New York, 1995, pp. 96-97.

[38] Vanderdonckt, J. and Berquin, P., Towards a Very Large Model-based Approach for
User Interface Development, in N.W. Paton, T. Griffiths (eds.), Proc. of 1st Int. Work-
shop on User Interfaces to Data Intensive Systems UIDIS’99 (Edimburgh, 5-6 September
1999), IEEE Computer Society Press, Los Alamitos, 1999, pp. 76-85.

[39] Visick, D., Johnson, P., and Long, J., The Use of Simple Speech Recognizers in Indus-
trial Applications, in B. Shackel (ed.), Proceedings of 1st IFIP International Conference
on Human-Computer Interaction Interact’84 (London, 4-7 September 1984), North-
Holland, Amsterdam, 1984.

[40] VisuAide, Victor Reader Classic, 2003, accessible at http://www.visuaide.com/victor-
classic.html.

[41] VisuAide, Victor reader soft, accessible at http://www.visuaide.com/victorsoft.html.
[42] W3C, Synchronized Multimedia Integration Language SMIL 2.0, 2001, accessible at

http://www.w3.org/TR/smil20/.
[43] Wiecha, C. and Boies, S., Generating User Interfaces: Principles and Use of its Style

Rules, in S.E. Hudson (ed.), Proceedings of 3rd Annual Symposium on User Interfaced

Software and Technology UIST’90 (Snowbird, 3-5 October 1990), ACM Press, New
York, 1990, pp. 21-30.

Chapter 28

A FRAMEWORK FOR DEVELOPING CONVER-
SATIONAL USER INTERFACES

James Glass1, Eugene Weinstein1, Scott Cyphers1, Joseph Polifroni1,
Grace Chung2, and Mikio Nakano3

1MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA 02139 Cambridge (USA)
E-mail:{glass, ecoder, cyphers, joe}@csail.mit.edu
2Corporation for National Research Initiatives, Reston, VA (USA)
E-mail: gchung@cnri.reston.va.us
3NTT Corporation, Atsugi (Japan)
E-mail: nakano@atom.brl.ntt.co.jp

Keywords: Conversational interaction, Spoken dialogue systems.

1. INTRODUCTION

In recent years, many sophisticated conversational interfaces have been
developed that enable fluent, spoken communication between humans and
machines. Such systems are developed by speech and language experts, and
require significant effort over a sustained period to achieve good perform-
ance. For this reason, non-experts must overcome a significant hurdle to use
human language technologies (HLTs) for their own applications. To address
this issue, we have been developing a utility (called SPEECHBUILDER),

349

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 349–360.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract In this work we report our efforts to facilitate the creation of mixed-initiative
conversational interfaces for novice and experienced developers of human
language technology. Our focus has been on a framework that allows develop-
ers to easily specify the basic concepts of their applications, and rapidly proto-
type conversational interfaces for a variety of configurations. In this paper we
describe the current knowledge representation, the compilation processes for
speech understanding, generation, and dialogue turn management, as well as
the user interfaces created for novice users and more experienced developers.
Finally, we report our experiences with several user groups in which develop-
ers used this framework to prototype a variety of conversational interfaces.

350 Glass, Weinstein, Cyphers, Polifroni, Chung, and Nakano

which enables rapid prototyping of spoken dialogue systems by both novice
and expert developers. In this paper we motivate the need for this research,
describe our approach and progress, and describe several experiments we
have performed with novice users creating their own speech-based inter-
faces. In the following section, we briefly provide additional background on
the current state of directed and mixed-initiative dialogue interaction, and
motivate the need for mechanisms to facilitate the development of mixed-
initiative conversational interface prototypes. We then describe the approach
that we have taken for our research in this area, and give an overview of the
user interface we have created. We then describe the speech understanding,
generation, and dialogue framework used, and describe several experiments
we have conducted with different groups of users. Finally we compare our
research to related work, and describe our ongoing research in this area.

1.1 Background

Although all spoken dialogue systems can be considered conversational
to some degree, they may be differentiated by the degree with which the sys-nn
tem maintains control of the conversation, and the inherent amount of flexi-
bility provided to the user to ask for a) what they want, b) in the way they
want to ask for it, and c) when they want to ask it. In the most conservative
approach, the computer takes complete control of the interaction. These di-
rected-dialogue applications typically require that the user answer a set of
prescribed questions, much like the touch-tone implementation of interactive
voice response systems. Since the user’s options are restricted, completion of
such transactions is easier to attain, and it is therefore not surprising that
such systems have been the first to be successfully deployed on a wide
scale [3,5,16]. An alternative approach to human-computer interaction is
based on the idea of mixed-initiative dialogue between the user and the ma-
chine. This approach employs a more flexible dialogue strategy that allows
both the user and the machine to participate actively to solve a problem in-
teractively using a conversational paradigm. Systems which are built with
the mixed-initiative paradigm must typically process more complex queries
than their directed-dialogue counterparts [33], and are inherently more diffi-
cult to design and deploy. For this reason, the majority of these kinds of sys-
tems remain under development in research laboratories [1,7,20,21,27], al-
though some are beginning to be deployed publicly as well [12].

1.2 Motivation

Although mixed-initiative conversational interfaces are a natural and ef-
ficient means of communication, there are two fundamental technical barri-

A Framework for Developing Conversational User Interfaces 351

ers which limit their widespread use. First, it is difficult to configure the
HLT required to create a prototype system, and second, performance optimi-
sation is typically an iterative process that is application specific, and not
fully automated. Creating a robust, mixed-initiative conversational interface
for a new application area currently requires a tremendous amount of effort
from speech and language experts. The development of speech recognition
and language understanding technologies is mostly domain and language
specific, requiring a large amount of annotated training data. Dialogue man-
agement is typically also fine-tuned for the application, often with domain-
dependent functionality. System development proceeds iteratively, with pro-
totypes being used to collect data that can then be used for system develop-
ment, training, and evaluation. This iterative process is crucial to achieve
good performance. For example, the initial prototype of a mixed-initiative
weather information system trained from several thousand utterances col-
lected from a simulated “wizard-of-oz” scenario saw its error rates more
than triple when it was first deployed over the telephone to a wide user
population [34]. As utterances were continuously collected, the performance
slowly improved to the point where it ultimately exceeded the original labo-
ratory performance. However, this level of performance was only achieved
through continuous data collection and system refinement over a period of
time.

For conversational interfaces to become as ubiquitous as the telephone,
researchers must make it easier for developers to create systems that learn
and improve their performance automatically. However, there are many hur-
dles to even allowing developers to create an initial prototype. For example,
we must address the problems of producing a conversational system in a new
domain and language given at most a small amount of domain-specific train-
ing data. To achieve this goal, we must strive to cleanly separate the algo-
rithmic aspects of the system from the application-specific aspects. We must
also develop automatic or semi-automatic methods for acquiring the acoustic
models, language models, grammars, and semantic structures for language
understanding, and dialogue models required by a new application. The issue
of portability spans across different acoustic environments, databases,
knowledge domains, and languages. The following section describes the ap-
proach we have taken to begin to address some of these challenging issues.

2. APPROACH

The approach we have adopted is to leverage the basic technology which
has been successfully deployed in more sophisticated conversational systems
(e.g., [23]). There are many reasons for this. First, we have devoted consid-
erable effort over the last decade to developing HLT to support conversa-

352 Glass, Weinstein, Cyphers, Polifroni, Chung, and Nakano

tional interaction. By employing these HLT components we minimise dupli-
cation of effort and maximise our ability to adopt any technical advances
which are made in any of these areas. Second, by using our most advanced
HLT components we widen the pool of potential users to include both nov-
ice and expert developers, since the latter can use the web-interface to rap-
idly prototype a new domain and subsequently modify it manually. Third,
since we are not limiting any of the HLT capabilities in any way, we allow
for the potential for prototype systems to eventually scale up to the same
level of sophistication as our most capable systems. Lastly, by focusing at-
tention on portability, we can identify weaknesses in existing HLT, which
can lead to better solutions which can benefit all of our conversational sys-
tems.

Figure 1. The SPEECHBUILDER user interface used to prototype conversational interfaces.R

We have also attempted to use as simple a user interface as possible,
while providing mechanisms to incorporate any needed complexities. To ac-
complish this, we have developed a web-based interface, illustrated in Fig. 1,
that is used by developers to specify information about the nature of the in-
teractions that will take place between a human and a spoken dialogue sys-
tem. More experienced developers wishing to bypass the web-interface, but
still desiring to leverage SPEECHBUILDER to configure HLT componentsR
may use a voice configuration syntax (VCFG) illustrated in Fig. 2. To con-
figure understanding, the developer defines semantic concepts, known as at-
tributes, and general functions, known as actions, that may be invoked by a
user in the domain. The developer can also configure system responses and
dialogue functionality for their application. This information can be auto-
matically generated from uploaded database tables, or via third-party pro-

A Framework for Developing Conversational User Interfaces 353

grams, or entered manually by the developer. All information is stored as a
human-readable description (XML) that is compiled to configure the appro-
priate HLT components.
<actions>
 <request_name> = I would like a restaurant | can you (show|give) me a Chinese restaurant in Arlington;
</actions>
<attributes> <cuisine> = Chinese|Taiwanese; <city> = Washington | Boston | Arlington; </attributes>
<discourse> name masks(city cuisine neighborhood); </discourse>
<constraints> <request_name> (city|neighbourhood) {prompt_for_city}; </constraints>

Figure 2. Partial VCFG file for a restaurant query domain.

Once a developer has configured their application domain, they use the
web-interface to compile it. This process uses the specified information,
along with example sentences provided by the developer to configure all
necessary HLT components. This process is usually quite rapid (i.e., one or
two minutes), although it depends on the domain complexity. Once the do-
main has been compiled, the developer can examine the resulting grammar,
deploy the system, talk to it, and subsequently iteratively refine aspects of
the understanding, generation, dialogue, etc. Using this interface, a spoken
language interface to query database content can thus be created without re-
quiring any programming on the part of a developer. Applications requiring
connections to external functionality (e.g., controlling the lights in a house)
require the developer to provide code to invoke the external functions.

3. HUMAN LANGUAGE TECHNOLOGIES

When a user speaks, audio data is sent through a speech recogniser to a
natural language understanding component that produces a plausible con-
text-independent semantic representation of what the user spoke. Then con-
text resolution is used to incorporate dialogue history context to resolve un-
known references in the sentence. For example, if the user asked, “Is there a
cheaper one?” and hotels were being talked about, “hotel” might replace
“one” in the semantic representation. Next, the dialogue manager determines
how to respond, either by taking an action or asking for additional informa-
tion. In either case, it generates a semantic representation for a response
which a natural language generator converts into the words for the response
to the user. All HLT components use the open source GALAXY architec-
ture [24]. The recogniser, natural language, context resolution, dialogue
management, and generation components are all configurable. The SPEECH-
BUILDER compiler generates the appropriate configuration files for each of R
these components. SPEECHBUILDER also allows the dialogue managementR
component to invoke arbitrary user code. The following sections describe
the configuration of some of these components in greater detail.

354 Glass, Weinstein, Cyphers, Polifroni, Chung, and Nakano

3.1 Understanding

The speech recogniser [11] uses generic telephone-based acoustic mod-
els, phonetic descriptions of the words in the vocabulary, and an n-gram
grammar, which provides likelihoods for sequences of n words, to describe
the ways words occur in sentences. The recogniser finds sequences of words
that maximise the combined likelihood of the word sequence based on its
component n-grams and the likelihood of each individual word given the
waveform. The n-gram grammar is derived from the language understanding
grammar rules and example sentences provided by the developer, while like-
lihoods for individual words are based on pronunciations. Baseform word
pronunciations can come from large on-line dictionaries, be generated by
rule [6], or be provided by the domain developer. We have incorporated an
out-of-vocabulary model to handle spoken words which are not in the vo-
cabulary [4]. The recogniser produces a ranked list, called an N-best list, of NN
most likely word sequences. Because an n-gram grammar is used, each word
sequence is only locally grammatical, i.e. each sub-sequence of n words is
likely, but the entire sequence may not be. The natural language component,
TINA [25], uses a probabilistic context-free grammar to combine the word
sequences in the N-best list into the semantic representation of the mostNN
likely parse tree. Developers do not actually specify a parsing grammar for
their application. Instead, a grammar is inferred using example-based speci-
fication [10] from attributes, which are semantic concepts specified by
phrases, and actions which are sentences that use attribute phrases. When
one phrase of an attribute appears in an action sentence, the generated
grammar will permit any other phrase for the same attribute. For example, in
Fig. 2, the “cuisine” attribute can be “Chinese” or “Taiwanese.” In the “re-
quest_name” action, only “Chinese” is listed, but the user could ask about
any other cuisine. The actual phrase used in a spoken sentence will be asso-
ciated with “cuisine” in the semantic representation. The generated grammar
provides a complete parse where possible, and backs off to concept spotting
when a complete parse is not found. Although this mechanism works fairly
well, the generated parsing grammar is very simple compared to those that
are written by experts, and does not allow domains to reuse sub-grammars
for concepts such as times, dates and prices. We have begun to address this
issue by allowing developers to incorporate sub-grammars catering to com-
mon semantic concepts such as dates and times. We have also developed a
new process that converts these concepts into a standard semantic represen-
tation. Fig. 2 also shows an example of configuring the context resolution
component [9]. The “discourse” section states that if a name is specified,
then the city, cuisine, and neighbourhood should not be inherited from the
dialogue history context into the semantic representation of the sentence.

A Framework for Developing Conversational User Interfaces 355

3.2 Dialogue Management

Developers must be able to configure complete mixed-initiative conver-
sational interfaces. Our initial interface constrained developers with no pro-
gramming experience to database query applications. Those with program-
ming experience could perform more sophisticated dialogue functions via a
remote CGI script. However, these two alternatives clearly limited the ability
of inexperienced developers to create the kinds of conversational interfaces
that can be created by experts.

To provide for more flexible dialogues, we have been developing a more
generic dialogue manager [17]. As part of this work, we have begun to ab-
stract a suite of easily configurable dialogue flow functions from our mixed-
initiative dialogue systems using a text-based domain specification format.
As illustrated in Figure 2, in the “constraints” section, if the user seems to be
invoking the “request_name” action and a city or neighborhood has not al-
ready been specified, then the dialogue manager should invoke the “prompt_
for_city” routine to ask for the city. The generic dialogue manager and func-
tions supporting common semantic concepts have been applied to several
new domains.

3.3 Language Generation

The natural language generation process converts semantic representa-
tions to text [2]. The most obvious role for generation is to produce a re-
sponse for the user via a speech synthesizer. These responses can be config-
ured by the developer via the web-interface, by modifying default generation
templates generated by the initial compilation process. The language genera-
tion process is also used to generate other internal representations. For CGI-
based applications, a generated URL-encoded version of the semantic repre-
sentation is passed to the remote application via an HTTP GET request. For
database query applications, the generation process also formulates an SQL
query from a semantic representation of a request. Finally, when the generic
dialogue manager is used, the generator is used to create an internal “E-
form” representation used by the context resolution and dialogue compo-
nents. E-forms are a simple semantic representation of the meaning of the
query, and can be augmented by the discourse and dialogue components
based on the query’s context.

3.4 HLT Infrastructure

Over the last few years, we have developed several ways to deploy do-
mains to fit particular needs. Originally, users accessed their domains by a

356 Glass, Weinstein, Cyphers, Polifroni, Chung, and Nakano

shared telephone line with dialogue processing running on a remote server.
We now also offer support for developers who want to run domains on local
hardware, and, as part of our research on pervasive computing, there is sup-
port for handheld devices [29]. We have made it easier for speech-interfaces
to communicate with external applications. This was initially accomplished
via HTTP requests which provided an encoded version of the semantic
frame to an application running on a web server. To eliminate the need for a
web server, and to allow applications to incorporate state information when
desired, we provide ways to extend a system with Perl, Python, or Java.

All systems generate log files showing the details of user interactions and
individual component input and output. We provide tools to allow domain
developers to view the logs as hypertext and listen to recordings of the dia-
logue. To further ease discourse and dialogue testing and debugging, a sys-
tem can also be run in batchmode. In this mode, previously recorded wave-
forms, N-best lists, or text input can be sent through the system and the out-NN
put examined. These capabilities are helpful for developers trying to im-
prove the performance of their initial prototype.

4. DEPLOYMENT

Over the last few years, we have had numerous experiences with devel-
opers using the SPEECHBUILDER utility to create a wide variety of speech-R
based applications. To familiarise new developers with the SPEECHBUILDER
system, we have developed an introductory laboratory exercise. Our first ex-
periences were with users interacting with database applications with limited
dialogue functionality, or controlling applications via the CGI interface. As
the dialogue management component was made available, we extended the
laboratory to explore this component in more depth within the context of a
hotel information domain. In the current laboratory, students develop a res-
taurant query system, starting from a database table containing simple attrib-
ute-value pairs (i.e., names, addresses, cuisines, etc., plus associated values).
An initial recogniser and natural language component are created automati-
cally using the values in the table. Discourse and dialogue components are
then configured and modified within the VCFG file; system responses are
also modified. The students use both batchmode and a telephone to commu-
nicate with their systems.

The laboratories we have developed have been used both locally and re-
motely. In a recent remote workshop on pervasive computing [14], a class of
over 30 researchers created a speech interface to an instant messenger client.
The web-based utility has also been used as a laboratory for Computational
Linguistics students at Georgetown University, and as part of summer school

A Framework for Developing Conversational User Interfaces 357

classes at Johns Hopkins University. Courses have varied from one to three
sessions where students with little prior background have learned to build
simple restaurant and hotel query applications using the web-based interface.

Finally, as part of collaboration with speech researchers at NTT, we have
been developing a Japanese version of this technology. As part of this work,
researchers have built several prototype applications including a bus timeta-
ble information system and a weather information system.

5. RELATED WORK

Other research groups have also been attempting to make it easier for
non-experts to create new domains. Systems which modularise their dia-
logue manager try to take advantage of the fact that a dialogue can often be
broken down into a set of smaller sub-dialogues (e.g., dates, addresses), in
order to make it easier to construct dialogue for a new domain (e.g., [3]). For
example, researchers at OGI have developed a rapid development kit for
creating spoken dialogue systems, which is freely available, and which has
been used by students to create speech-based systems [30]. Starkie et al. de-
scribe a spoken dialogue system creation toolkit that is able to infer complex
natural language grammars from examples specified by the developer [28].
On the commercial side, there has been a significant effort to develop the
Voice eXtensible Markup Language (VoiceXML) as a standard to enable
internet content and information access via voice and phone [32]. To date
these approaches have been applied only to directed-dialogue strategies. In
addition, example-based specification of user interfaces has also been ad-
dressed in the literature (e.g., [8]), but this work has focused on visual inter-
faces, and has not been significantly explored in the area of spoken dialogue.

Additionally, several attempts have been made at simplifying the process
of creating dialogue systems to query databases. Toth et al. [31] have created
a toolkit to allow a developer to efficiently configure human language tech-
nology components around relational database tables. However, the user
must first learn keywords to converse with the system. Microsoft English
Query is a commercial product that allows a developer to configure a typed
natural language interface to database content [13]. The system provides a
great deal of flexibility in specifying mappings from linguistic content to da-
tabase constructs; however, no speech interface is provided, and there is no
support for dialogue or discourse. [19] describes a tool similar to English
Query in purpose, which achieved better NL-to-SQL translation perform-
ance on a corpus of queries from several popular domains.

358 Glass, Weinstein, Cyphers, Polifroni, Chung, and Nakano

6. CONCLUSION

This paper has summarised our progress in developing a utility to enable
rapid prototyping of spoken dialogue systems. However, as was pointed out
initially, and as any experienced developer knows, a prototype is only the
initial step in the creation of a conversational interface. Creating a high-
performance system requires sustained data collection, continuous develop-
ment, evaluation, and refinement. To help developers achieve this goal will
require additional work on unsupervised learning. In our lab, we have begun
to improve system performance by processing untranscribed utterances [15],
but there is clearly much more research necessary.

The current compilation process configures the speech recogniser and
language understanding grammar in parallel, based on the domain descrip-
tion. Recently, we have added the ability to configure our recogniser based
on information in the natural language parsing grammar [26]. We plan to in-
tegrate this new method into the compiler, to provide increased flexibility to
developers in the future. In other areas of research, we have been developing
a dynamic vocabulary capability within our speech recogniser and language
understanding components [22]. This will give the developer increased flexi-
bility to modify system capabilities during run-time. This work will also al-
low us to take advantage of more flexible response planning techniques we
are developing [18].

Finally, as part of our recent efforts on multimodal interfaces, we have
augmented attribute values with timing information to indicate when a con-
cept was spoken. We have used this information to modify a SPEECH-
BUILDER-created application, so that it can incorporate pen-based input. Fu-
ture versions of the SPEECHBUILDER utility will probably include a connec-R
tion to our new multimodal component to enable more flexible interactions.

ACKNOWLEDGEMENTS

This research was supported in part by DARPA under contract N66001-
99-8904 monitored through Naval Command, Control and Ocean Surveil-
lance, and contract N66001-00-2-8922, monitored through SPAWAR Sys-
tems Center, San Diego, under an industrial consortium supporting the MIT
Oxygen Alliance, and by NTT.

REFERENCES

[1] Allen, J., Schubert, L., Ferguson, G., Heeman, P., Hwang, C.H., Kato, T., Light, M.,
Martin, N., Miller, B., Poesio, M., and Traum, D., The TRAINSTT Project: A Case Study inS
Defining a Conversational Planning Agent, Journal of Experimental and Theoretical

A Framework for Developing Conversational User Interfaces 359

Artificial Intelligence, Vol. 7, 1995, pp. 7-48.
[2] Baptist, L. and S. Seneff, GENESISGG -II: A Versatile System for Language Generation inSS

Conversational System Applications, Proceedings of International Conference on Spo-
ken Language Processing 2000 ICSLP’2000 (Beijing, 16-20 October 2000), Vol. 3,
ISCA Archive, 2000, pp. 271-274.

[3] Barnard, E., Halberstadt, A., Kotelly, C., and Phillips, M., A Consistent Approach to
Designing Spoken-Dialog Systems, in Proceedings of Workshop ASRU’99 (Keystone,
13-15 December 1999), accessible at http://asru99.research.att.com/abstracts/6_4490_
invited.html

[4] Bazzi, I. and Glass, J., Modeling Out-Of-Vocabulary Words for Robust Speech Recogni-
tion, in Proceedings of International Conference on Spoken Language Processing 2000
ICSLP’2000 (Beijing, 16-20 October 2000), ISCA Archive, 2000, pp. 401-404.

[5] Billi, R., Canavesio, F., and Rullent, C., Automation of Telecom Italia Directory Assis-
tance Service: Field Trial Results, in Proceedings of 4th IEEE Workshop on Interactive
Voice Technology for Telecommunications Applications IVTTA’98 (Turin, 29-30 Sep-
tember 1998), IEEE Computer Society Press, Los Alamitos, 1998, pp. 11-16.

[6] Black, A., Lenzo, K., and Pagel, V., Issues in Building General Letter to Sound Rules,
in Proceedings of 3rd ESCA/COSCOSDA International Workshop on Speech Synthesis d

(Jenolan Caves, 26-29 November 1998), 1998.
[7] Blomberg, M., Carlson, R., Elenius, K., Granström, B., Gustafson, J., Hunnicutt, S.,

Lindell, R., Neovius, L., and Nord, L., An Experimental Dialogue System: Waxholm, in
Proceedings of European Conference on Speech Communication and Technology Eu-
rospeech’93 (Berlin, September 1993), ISCA Archive, 1993, pp. 1867-1870.

[8] Derthick, M. ans Roth, S., Example-Based Generation of Custom Data Analysis Appli-
cations, in Proceedings of 6th ACM Conference on Intelligent User Interfaces IUI’2001
(Santa Fe, 14-17 January 2001), ACM Press, New York, 2001, pp. 57-64.

[9] Filisko, E. and Seneff, S., A Context Resolution Server For The GALAXYGG ConversationalY
Systems, in Proceedings of 8th European Conf. on Speech Communication and Technol-
ogy Eurospeech’2003 (Geneva, 1-4 Sept. 2003), ISCA Archive, 2003, pp. 197-200.

[10] Glass, J. and Weinstein, E., SPEECHBUILDERSS : Facilitating Spoken Dialogue Systems De-
velopment, in Proceedings of 7th European Conference on Speech Communication and
Technology Eurospeech’2001 (Aalborg, 3-7 September 2001), ISCA Archive, 2001, pp.
1335-1338, accessible at http://www.sls.lcs.mit.edu/sls/publications/2001/Speech Buil-
der.pdf

[11] Glass, J., A Probabilistic Framework for Segment-Based Speech Recognition, Com-
puter, Speech, and Language, Vol. 17, 2003, pp. 137-152.

[12] Gorin, A., Riccardi, G., and Wright, J., How may I help you?, Speech Communication,n
Vol. 23, 1997, pp. 113-127.

[13] Microsoft SQL Server: English Query, October 2000, accessible at http://www.micro
soft.com/sql/evaluation/features/english.asp

[14] MIT Project Oxygen web site, accessible at http://oxygen.lcs.mit.edu
[15] Nakano, M. and Hazen, T., Using Untranscribed User Utterances for Improving Lan-

guage Models Based On Confidence Scoring, in Proceedings of 8th European Confer-
ence on Speech Communication and Technology Eurospeech’2003 (Geneva, 1-4 Sep-
tember 2003), ISCA Archive, 2003, pp. 417-420.

[16] Nuance Communications, http://www.nuance.com
[17] Polifroni, J. and Chung, G., Promoting Portability in Dialogue Management, in Pro-

ceedings of 7th International Conference on Spoken Language Processsing ICSLP’2002
(Denver, 16-20 September 2002), ISCA Archive, 2002, pp. 2721-2724.

[18] Polifroni, J., Chung, G., and Seneff, S., Towards the Automatic Generation of Mixed-
Initiative Dialogue Systems From Web Content, in Proceedings of 8th European Confer-
ence on Speech Communication and Technology Eurospeech’2003 (Geneva, 1-4 Sep-
tember 2003), ISCA Archive, 2003, pp. 193-196.

360 Glass, Weinstein, Cyphers, Polifroni, Chung, and Nakano

[19] Popescu, A.M., Etzioni, O., and Kautz, H., Towards a Theory of Natural Language In-
terfaces to Databases, in Proceedings of ACM Int. Conference on Intelligent User Inter-
faces (Miami, 12-15 January 2003), ACM Press, New York, 2003, pp. 149-157.

[20] Rosset, S., Bennacef, S., and Lamel, L., Design Strategies for Spoken Language Dialog
Systems, in Proc. of 6th European Conf. on Speech Communication and Technology Eu-
rospeech’99 (Budapest, 5-9 September 1999), ISCA Archive, 1999, pp. 1535-1538.

[21] Rudnicky, A.I., Thayer, E., Constantinides, P., Tchou, C., Shern, R., Lenzo, K., Xu W.,
and Oh, A., Creating natural dialogs in the Carnegie Mellon Communicator system, in
Proc. of 6th European Conference on Speech Communication and Technology Eu-
rospeech’99 (Budapest, 5-9 September 1999), ISCA Archive, 1999, pp. 1531-1534, ac-
cessible at http://www.speech.cs.cmu.edu/Communicator/papers/NaturalDialogs2.pdf

[22] Schalkwyk, J., Hetherington, L., and Story, E., Speech Recognition With Dynamic
Grammars Using Finite-State Transducers, in Proceedings of 8th European Conference
on Speech Communication and Technology Eurospeech’2003 (Geneva, 1-4 September
2003), ISCA Archive, 2003, pp. 1969-1972.

[23] Seneff, S. and Polifroni, J., Dialogue Management in the MERCURYMM Flight ReservationY
System, in Proceedings of ANLP-NAACL Satellite Workshop on Conversational Sys-
tems (Seattle, 4 May 2000).

[24] Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P., and Zue, V., GALAXYGG -II: A Refer-YY
ence Architecture for Conversational System Development, in R.H. Mannell, J. Robert-
Ribes (eds.), Proceedings of 5th International Conference on Spoken Language Proc-
esssing ICSLP’98 (Sydney, 30 November-4 December 1998), Vol. 3, Australian Speech
Science and Technology Association, Incorporated (ASSTA), Canberra, 1998, pp. 931-
934, accessible at http://www.sls.csail.mit.edu/sls/publications/1998/icslp98-galaxy.pdf

[25] Seneff, S., TINATT : A Natural Language System for Spoken Language Applications, Com-
putational Linguistics, Vol. 18, No. 1, 1992, pp. 61-86.

[26] Seneff, S., Wang, Ch., Hazen, T.J., Automatic Induction of N-Gram Language Models
from a Natural Language Grammar, in Proceedings of 8th European Conference on
Speech Communication and Technology Eurospeech’2003 (Geneva, 1-4 September
2003), ISCA Archive, 2003, pp. 641-644.

[27] Souvignier, V., Kellner, A., Rueber, B., Schramm, H., and Seide, F., The Thoughtful
Elephant: Strategies for Spoken Dialogue Systems, IEEE Transactions on Speech and
Audio Processing, Vol. 8, No. 1, 2000, pp. 51-62.

[28] Starkie, B., Findlow, G., Ho, K., Hui, A., Law, L., Lightwood, L., Michnowicz, S., and
Walder, Ch., Lyrebird: Developing Spoken Dialog Systems Using Examples, in Pro-
ceedings of 6th International Colloquium on Grammatical Inference ICGI’02 (Amster-
dam, 23-25 September 2002), Amsterdam, 2002, pp. 309-311.

[29] Steele, K., Waterman, J., and Weinstein, E., The Oxygen H21 Handheld, MIT Lab. for
Computer Science Research Summary, March 2003.

[30] Sutton, S., Universal Speech Tools: The CSLU Toolkit, in R.H. Mannell, J. Robert-
Ribes (eds.), Proceedings of 5th Int. Conf. on Spoken Language Processsing ICSLP’98
(Sydney, 30 November-4 December 1998), Vol. 3, Australian Speech Science and
Technology Association, Incorporated (ASSTA), Canberra, 1998, pp. 3221-3224.

[31] Toth, A., Towards Every-Citizen’s Speech Interface: An Application Generator for
Speech Interfaces to Databases, in Proceedings of 7th International Conference on Spo-
ken Language Processsing ICSLP’2002 (Denver, 16-20 September 2002), ISCA Ar-
chive, 2002, pp. 1497-1500.

[32] VoiceXML, accessible at http://www.w3.org/TR/voicexml/
[33] Zue, V. and Glass, J., Conversational interfaces: Advances and challenges, Proceedings

of the IEEE, Vol. 88, No. 8, 2000, pp. 1166-1180.
[34] Zue, V., Seneff, S., Glass, J., Polifroni, J., Pao, C., Hazen, T., and Hetherington, L.,

JUPITERJJ : A Telephone-Based Conversational Interface for Weather Information, IEEE
Transactions on Speech and Audio Processing, Vol. 8, No. 1, January 2000, pp. 85-96.

Chapter 29

TERFACES USING TIMBRE SPACES

Craig Nicol, Stephen Brewster, and Philip Gray
Computing Science Department, University of Glasgow,
17 Lilybank Gardens – Glasgow G12 8QQ (Scotland)
E-mail: {can,stephen,pdg}@dcs.gla.ac.uk - URL: http://www.dcs.gla.ac.uk/~{can,stephen,pdg }
Tel.: +44 (0)141 330 {4256, 4966, 4933} – Fax: +44 141 330 4913

Abstract The creation of audio interfaces is currently hampered by the difficulty of de-
signing sounds for them. This paper presents a novel system for generating
and manipulating non-speech sounds. The system is designed to generate
Auditory Icons and Earcons through a common interface. It has been devel-
oped to make the design of audio interfaces easier. Using a Timbre Space rep-
resentation of the sound, it generates output via an FM synthesiser. The Tim-
bre Space has been compiled in both Fourier and Constant Q Transform ver-
sions using Principal Components Analysis (PCA). The design of the system
and initial evaluations of these two versions are discussed, showing that the
Fourier analysis appears to be better, contrary to initial expectations.

Keywords: Auditory Icons, Earcons, Multimedia interfaces, Timbre Spaces, User inter-
face design and specification methods and languages.

1. INTRODUCTION

Many authors, for example Gaver [6,7] and Mynatt [13], declare a lack of
clear design tools for sounds or auditory interfaces. This paper presents on-
going work on a system to address this need. The system we are developing
will use a more natural interface than the current tools and allow sounds to
be described not in terms of their wave properties, but in terms of the
sources that produce those sounds, with an advanced level to edit sounds via
auditory properties. It is hoped that this system will help sound designers
find useful sounds for their interfaces, and from this, a complete set of de-
sign guidelines for sonic interactions can be realised.

361

R. Jacob et al. (eds.), Computer-Aided Design of User Interfaces IV, 361–374.
© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

A SYSTEM FOR MANIPULATING AUDIO
 IN

362 Nicol, Brewster, and Gray

The interface will be designed around the timbre space concept typified
by work by Hourdin et al. [9,10], who based their work on perceptual mod-
els developed in human experiments [8]. Sounds will be analysed and loaded
into this timbre space where they can be manipulated before being output via
a suitable synthesiser. After a short discussion on why this is an important
topic, Section 3 discusses the current level of research in sound and in sonic
interfaces, and contains brief discussions of human perception and other
auditory interfaces. Section 4 overviews the technology and design behind
the current implementation of the system that has been designed, in the con-
text of the work that has been completed. Section 5 provides a quick sum-
mary of work to be completed on the project and possible future directions.

2. OVERVIEW

As computer displays get smaller on devices such as mobile phones and
PDAs, audio interfaces will become even more important for providing in-
formation to users. Audio has also been used to enrich a user’s information
awareness by presenting information non-intrusively [5]. With these new
challenges, new methods of designing and prototyping audio interfaces need
to be developed that can be understood not just by experts in music and
acoustics, but also by designers with a background in HCI and psychology.

Sound has always been an important part of interacting with the physical
world. Sound tells us when someone is coming up behind us, when we have
drilled though the wall and when we need to change our spark plugs. Against
our rich sonic environment, the computer interface is a poor cousin. Most
sounds from our computers are static sounds that do not change to reflect
changes in the environment and often have little to do with the events that
trigger them. Gaver noticed this [6] and developed a system of Auditory
Icons whose sound was related to the action to which they were connected,
and whose properties could be adjusted to reflect changes in the underlying
environment.

Since then, many people have developed sonic interfaces to various vir-
tual environments and data sets, but each one is distinct, and despite numer-
ous guidelines defining how each type of interface should be designed, and
how people will interpret these, there is no common tool for developing or
evaluating these sonic interactions. In the design of Audio Aura [14] for ex-
ample, the following guidelines were followed to prevent an “alarm re-
sponse” in the users:

“[Background sounds are designed to avoid] sharp attacks, high volume
levels, and substantial frequency content in the same range as the human
voice (200-2,000 Hz).”

A System for Manipulating Audio Interfaces using Timbre Spaces 363

The quote is then followed by a note that current audio design often in-
duces this alarm response, intentionally or otherwise. The computer music
community on the other hand has defined many methods for creating and
manipulating sounds through a small number of common interfaces, each
method having its own strengths and weaknesses.

The most basic musical interface is the MIDI standard, which defines a
series of commands that specify musical notes and operations on these such
as sustain, pan and instrument used. Short musical segments generated from
these commands are known as Earcons [1,3]. The biggest problem with
MIDI is that the output sound is not guaranteed. Although there has been
some recent standardisation, the basic MIDI specification does not guarantee
any particular sound is available on the playback device or that the device
will reasonably interpret all the commands. In the most extreme cases, MIDI
devices will ignore commands and only play one note at a time, ignoring any
other notes requested at the same time.

Another popular field within computer music concerns the transforma-
tions made available by the various Analysis-Synthesis techniques, a review
of which was done by Masri et al. [12]. Analysis-Synthesis allows compos-
ers to manipulate sounds directly rather than via the sources that produce
them. It allows sounds to be sliced, stretched, reversed and slowly changed
into other sounds. It achieves this by presenting the sound in a different for-
mat to that used for recording and storage. Since the aims of the MIDI and
Analysis-Synthesis techniques has been musical production, little thought
has been given to their perceptual relevance or their use as a design tool for
non-musical sounds.

The aim of this project is to go a long way to combining the work in the-
se two areas, allowing interface designers access to complex acoustic and
musical methods for developing sound through an interface defined in terms
of human perception and design methodologies.

3. HEARING, ANALYSING AND PRODUCING
SOUND

This section discusses current research in the fields of audio perception
and sound analysis. The focus here is on tools or the results of experiments
that have been or could be applied to the production of a generic sonic de-
sign tool.

3.1 Perception of Sound

There are four components to the way we hear a single sound: the pitch,

364 Nicol, Brewster, and Gray

the loudness, the duration and the timbre. Where sounds are combined, the
relative values of these are important as is the temporal pattern of the
sounds. This section concentrates on the issues of single sounds and leaves
the sound combination components to the discussion of Earcons in Section
3.3. The timbre of the sound is what differentiates two sounds whose pitch,
loudness and duration are equal. Unlike these other measures, the timbre is a
result of complex interactions of frequencies in the sound.

The objective measurement of timbre has been a long-running problem in
acoustics. Although Helmholtz did a lot of experiments in the 1870’s [16], it
has only been with recent advances in signal analysis techniques that timbre
has been seriously investigated in papers such as [8] and [9].

3.2 Playing Sounds

Once the sound has been designed, an appropriate and efficient output
algorithm is needed to play it to the user. In this section, the most common
synthesis techniques used on the desktop are discussed.

Sampled Sounds. A sound sample is simply a pre-recorded sound that
can be played back at will. Most modern GUIs have support for sound sam-
ples that can be triggered in response to a user action such as closing an ap-
plication. Sound samples are almost identical across a wide range of com-
puters and generally have low performance requirements. One of the major
drawbacks of using sound samples in an audio interface is the size of the
files. Even compressed samples are several orders of magnitude larger than
the parameter definitions for synthesis algorithms such as FM synthesis or
additive synthesis described below. Sampling also requires recording a dif-
ferent sample for every type of interaction we want to simulate. Not only
does this require a large amount of storage space, but is also labour-intensive
in the sound capture stage and may be impossible if you do not know all
possible interactions beforehand.

Wave Synthesis. For sounds generated algorithmically by the machine,
the simplest forms of synthesis are based on the manipulation of simple
waves. The algorithm will start with one or more simple input waves and
modifies them through various filters to create a complex output wave. The
input wave is usually a simple sine wave, although others such as sawtooth
and square waves are also common. Waves can be shaped by an envelope,
which defines the shape of one of the attributes of the wave such as the am-
plitute. At each point on the wave, the attribute is multiplied by the value of
the envelope. We say that the wave attribute has been convolved with thed
envelope. In Fig. 1, the amplitude of a sine wave has been convolved with
the envelope shown.

A System for Manipulating Audio Interfaces using Timbre Spaces 365

Figure 1. A sine wave shaped by an amplitude envelope. The thin line is the wave,
the thick line is the envelope.

Additive Synthesis. Additive synthesis is the basis of Gaver’s Auditory
Icons [7]. An additive synthesiser generates several waves, giving each wave
has its own frequency, phase and amplitude envelopes. The output is the
weighted sum of these input waves. Gaver used these to generate contact
sounds. The phase and amplitude envelopes are parameterised in order to
produce realistic timbre for a variety of real-world contacts. Additive syn-
thesis, though simple and powerful, is often a slow process as it can require
many individual waves to reproduce a complex sound. Synthesis with 10 or
more waves is not uncommon. This means that additive synthesis cannot be
used in real-time without sacrificing sound quality.

FM synthesis. In the 1970’s, Yamaha released a series of keyboards that
used Frequency Modulation (FM) synthesis to generate their sounds, as de-
veloped by Chowning [4]. Since then, the technique has found its way into
many soundcards available on modern machines, although in a more limited
form. For modern computers without a built-in FM synthesiser, the process
is fast enough to be computed in real time on the main processor during an
interactive session. A simple sine wave known as the carrier has its fre-
quency perturbed by a modulating wave. The effect is to induce a range of
tones around the original frequency, creating a complex sound from a small
number of input waves. As a consequence, the output of an FM synthesiser
is difficult to predict from its inputs, and it is non-trivial to achieve a desired
output sound. The characteristic FM sound is fairly metallic so the sound is
then filtered in order to produce a more natural sound. The most useful filter
for this purpose is the envelope, which is used to soften the onset and termi-
nation of the sound by modifying the amplitude.

3.3 Interfaces and Design

Our system is to be developed for a desktop environment, for situations
where the expressiveness and flexibility of the sound development is far
more important than accurately recreating a sound from the real world. An
example given by Gaver is his Auditory Icon illustrating a file being copied

366 Nicol, Brewster, and Gray

[7]. In this icon, the expressiveness of the pouring sound he uses is more im-
portant than using a less expressive realistic photocopying sound. The idea
behind an auditory interface is that the sounds produced will reflect the cur-
rent state of the system. In some cases, as in Gaver, this is used to provide
feedback and information on user actions. Others, such as Conversy [5], use
the sounds as a non-intrusive way of providing status information on back-
ground tasks. A short review of current audio interface concepts on the desk-
top follows.

Auditory Icons. Auditory Icons were devised by Gaver [7]. They are
auditory representations motivated by real-world sounds. In his paper, Gaver
discusses a variety of sounds designed to resemble tapping, scraping, pour-
ing and other real-world actions. The tapping sounds are used to represent
the act of clicking on an icon, the scraping to represent dragging an icon
over the desktop and the pouring is used as a progress indicator. The sounds
are parameterised such that different file types are associated with sounds of
taps on different materials and the size of the material being tapped repre-
sents the file size. The major problem with Auditory Icons is that the param-
eterisation is a hard problem. Even where the mapping between a perceptual
description of a sound and the system state it represents is obvious, it is
rarely easy to modify the sound signal in the correct way as standard sound
editors operate at the signal rather than the perceptual level. All the icons
Gaver presents have been developed after studying the processes that create
the sound, which is a slow process.

Earcons. In contrast to Auditory Icons, Earcons [1] do not attempt to de-
scribe an event with a real-world sound. Earcons are short musical segments
that are abstract representations of a computer process. Earcons are con-
structed as patterns of musical notes, where the instrument, duration, pitch,
volume and other attributes are modified according to the state of the proc-d
ess. As Earcons are made of many notes, the rhythm and tempo of those
notes and their relative volume and pitch are also important attributes that
are used in Earcon design. Unlike Auditory Icons, the connection between
state and the sound is arbitrary. Hierarchical Earcons, as used in the experi-
ments by Brewster et al. on the effectiveness of Earcons [2], attempt to as-
sign some structure to Earcons by mapping different attributes to different
levels of description of the interface. For example, menus are described by
the timbre of the sound, and menu items are described by the rhythm of the
sound, providing a consistency across the interface. Earcons allow a much
richer space of sound than Auditory Icons since Auditory Icons are inde-
pendent of each other and can only be parameterised with respect to simple
object interactions, such as a scrape. Earcons can be parameterised with a
wide range of musical features as listed above, allowing a single Earcon to
present much more information than an Auditory Icon.

A System for Manipulating Audio Interfaces using Timbre Spaces 367

Combined approach. A single Earcon is a complex unit formed of many
notes. Earcons treat timbre as a single dimension, which is categorical rather
than numerical. Earcons use musical concepts such as pitch, rhythm, dura-
tion and tempo as further dimensions, which modify the notes within them
and the relative positions of those to reflect changes in the underlying proc-
ess. Auditory Icons, however, treat timbre as the combination of many di-
mensions, and rarely use other dimensions, such as pitch and tempo.

A rare example being Gaver’s bouncing objects where the temporal prox-
imity of events is an indication of the original height and the springiness of
the dropped object. By combining the complex timbral manipulation of
Auditory Icons with the complex combination and musical manipulation of
Earcons, we can see that a system that allows control over both timbre and
musical dimensions will have a much richer design space than either idea on
its own. Whether this richer space will provide a more flexible and useful
design space is a matter for investigation.

3.4 Timbre Spaces

To effectively control sound, we need a representation that is flexible
enough to allow designers a variety of ways to adapt it. A timbre space is
one such representation, and has been chosen for our work because the stud-
ies detailed below suggest a link between human perception and a timbre
space representation. This implies that designers should find it easier to cre-
ate a desired sound with a timbre space representation than via traditional
synthesis algorithms, where the parameters do not necessarily adapt the
sound in the way the designer wishes.

Timbre Spaces. In 1977 Grey published a paper describing an experi-
ment he had done on perception of timbre [8]. In this, he played a series of
sounds to volunteers and asked them to rate how similar the sounds were.
Grey then constructed a 3-dimensional space to represent the sounds, such
that each axis represented a property of the sound, for example, he related
the first axis to the spectral distribution of energy. In 1997, Hourdin et al. [9]
first demonstrated an automated way to generate this space, although their
space has ten dimensions to Grey’s three.

They compared their space with that of Grey, showing a correlation be-
tween the axes of the two. They then used this space to drive a synthesis sys-
tem [10]. In their automated analysis, a set of input sounds is analysed to
produce a sonogram representation where the sound is described by how its
frequencies change over time.

Taking each frequency as a separate dimension, and the sound as a path
through this multi-dimensional space, the sound can be projected into a
lower dimensional space known as the timbre space, where each dimension

368 Nicol, Brewster, and Gray

represents some higher-level description of the sound based on its frequency
components. There are many possible timbre spaces and each one has its
own strengths and weaknesses for different tasks. Each combination of
analysis method and dimensionality reduction produces a different space,
and other spaces have been used for different tasks, such as for instrument
recognition [11].

Signal Analysis. Signal analysis is the first stage in producing a timbre
space. It is the process by which an input signal is broken into its constituent
frequencies. There are many different methods for doing this, and good ex-
planations for many of these techniques can be found in Roads [15] and in
[12]. In the analysis, the frequency axis is separated into a number of fre-
quency bins, each of which covers a range of frequencies. This range is
known as the bandwidth of the bin.

In general, a smaller bandwidth gives a more accurate frequency repre-
sentation and a less accurate time representation. The time axis is also split
into a number of shorter fragments which may have a window envelope ap-
plied, such as a Gaussian bell curve, to smooth the signal over the time seg-
ment. Unlike the frequency axis, the time segments can overlap, and this is
used to retain any information lost by applying a window envelope.

The two main analysis methods used for this project are the Short-Time
FourierTransform (STFT) and the ConstantQTransform(CQT), both de-
scribed in Roads (1996). In the STFT, the frequency scale is linear. In the
CQT, the frequency scale is logarithmic. In general, the CQT will produce a
smaller output but the STFT will compute faster and will have greater reso-
lution across the frequency range. Fig. 2 shows how the Flute sound from
our dataset is represented in the CQTand STFT forms. As you can see, due
to the higher frequency resolution in the CQT presented here, the frequency
data is spread across far more frequency bins than in the STFT.

Dimensionality Reduction. The dimensionality reduction techniques
presented here take a set of data in n dimensions and create a mapping to
convert the data into m dimensions where m is less than n. The output m di-
mensions are chosen to represent the directions of most importance in the
data and are ordered such that the first dimension is the most important.
Principal Components Analysis (PCA) is the simplest of the dimensionality
reduction techniques and the most susceptible to any noise in the input data.
It is the technique used by Kaminskyj [11] in his timbre space paper. In
PCA, the data is rotated such that the direction where the data has the most
variance is aligned with the primary axis and the other axes are aligned simi-
larly with the remaining variance in the data.

A System for Manipulating Audio Interfaces using Timbre Spaces 369

Figure 2. One of the 27 sounds used in our Timbre Space as PCM data and
as analysed by two different techniques.

370 Nicol, Brewster, and Gray

4. SYSTEM DETAILS

The complete system we are developing comprises an analysis engine
based on the Timbre Space work described above. New sounds presented to
the system are converted into paths in this space. The system allows manipu-
lation of these sounds via their path representation. When an output is re-
quired, the system maps the path from the Timbre Space onto an FM synthe-
siser which then outputs the sound to a specified device. The sound manipu-
lation component of the system allows morphing between sounds in the
space. To generate completely new sounds, the paths can be warped into any
shape in the space. Certain warps will describe easily heard transformations
of the sound and these can easily be coded into the interface, added by the
designer by hand or added by comparing two different sounds for the change
required to convert one into the other. This section will now discuss the
work and evaluations completed so far on the system and will give prelimi-
nary analysis of the results given.

4.1 System Overview

Fig. 3 shows how data is processed by the system that has been devel-
oped. There are 4 data stages and 3 translation stages that map one data type
to another. The intermediate data is stored on disk and can be passed be-
tween separate devices if required. The seven stages of the process are:

1. Get sounds (Wave Data).
2. Create timbre space representation of the sound.
3. Manipulate path in timbre space (Point List).
4. Create control parameters for the output synthesiser.
5. Send parameters to synthesiser (Event List).
6. Run synthesiser over parameter list.
7. Output sound to disk or speakers (Wave Data).

Of these, Step 1 and Steps 5-7 are complete. Current experiments are be-
ing run to determine the best timbre space to use for Step 2. Preliminary re-
sults for these are defined below. Since Step 4 depends on the type of timbre
space created, this will be completed after the experiments.

A System for Manipulating Audio Interfaces using Timbre Spaces 371

Figure 3. Data flow model of the system.

4.2 Analysis of Timbre Spaces

Analysis has been performed on a range of musical and synthetic signals
including output from an FM synthesiser and across a selection of sounds se-
lected to match those in Hourdin et al.’s experiments. Out of their 40 sounds,
27 have been chosen based on those available to us. Versions of the STFT
and CQT algorithms have been tested with various configurations. The CQT
has proved to be quicker than the STFT and produces less output data for the
same input, suggesting a greater likelihood of a fixed number of dimensions
being able to capture the input signal. Both methods take several minutes to
complete the analysis once the input signal is much longer than 400,000
samples (or 9 seconds at a 44.1kHz sampling rate).

A set of functions has been developed to automatically generate a set of
timbre spaces that will be compared on their compilation speed, timbre space
size and accuracy of sound reproduction. These experiments are ongoing
since each timbre space takes as long as 5 days to compile using all 27 input
sounds.

Once the space is compiled however, it takes under 5 minutes to process
each new sound through to its path representation. The test suite covers CQT
and STFT based Timbre spaces with 8 different window conditions, includ-
ing some where the input is not smoothed by a window before analysis.
These are tested against 3 different time resolutions. In the case of the CQT,
all these are tested against 3 separate frequency resolutions. When passed
through a Timbre Space, the CQT appears to lose a lot more information that
the STFT, producing a lower quality sound. This is contrary to expectations
as the CQT produces a smaller output and so has less information to lose.
The STFT is much more memory intensive however and will not compile at

372 Nicol, Brewster, and Gray

its highest resolution setting as the resultant output is too large for the PCA
algorithm under Matlab with 512Mb system memory and 2Gb virtual mem-
ory. When the STFT is compiled without a window, the consequent PCA
compilation takes exponentially longer with the time resolution. Every other
case appears to grow linearly against time resolution. This suggests that
there is much less structure to the STFT output when no window is applied,
which makes the PCA much less effective in this circumstance. Once this
testing is complete, the complete system will be tested for accuracy against
previous Timbre Space work and FM synthesis analysis to ensure the results
are perceptually sound.

4.3 Design of Interface

The completed tool will be implemented within a MIDI environment in
order to take advantage of existing work on Earcon design. It will accept
MIDI signals to control pitch and amplitude and will add an interface to al-
low real-time editing of timbre. This editing can be performed interactively
by a human operator or by another machine process. The interface will allow
selection of any of the pre-selected 27 timbres included in the timbre spaced
as well as any others the user has added to the system. For each of these pre-
set timbres, a selection of transforms will be made available. These trans-
forms will include morphing between two or more presets, looping the sound
within a preset, scaling the pitch of the preset or any other user-defined
transformation within the timbre space. The strength of each transform, or
the relative strengths of the timbres affected by the transform, can be con-
trolled by any MIDI controller. This allows the transform to be adjusted over
time by any external input and allows the change in the timbre to be re-
corded in the same place as the change in the melody.

In addition to the preset timbres, the timbre space will also include a se-
ries of timbral effects. This will include, for example, ‘Alarm sounds’ as de-
fined by Mynatt [14]. These effects will be defined as a region of timbre
space where the effect is greater the closer the path is to the region. When
these effects are used in a transformation, a timbre can be modified to be
more like the effect or less like the effect as required. These effects can also
be user defined and are expected to be based on psychoacoustic experiments
performed by practitioners in that field.

5. FUTURE PLANS

With this system complete, a range of experiments will be possible. In
particular, sounds can be developed according to both Auditory Icon and
Earcon principles such that in any given interaction, the most important in-

A System for Manipulating Audio Interfaces using Timbre Spaces 373

formation will be mapped to parameters relating to the Auditory Icon portion
of the sound (i.e., the note) and subsidiary information will be mapped to the
Earcon properties of the sound (i.e. the pattern of notes). We could perform
experiments to see how much of our perceptual space each synthesiser cov-
ers in order to decide upon the best synthesiser or configuration to use for
any particular sound. If any synthesiser is found to cover a particularly wide
or narrow area of this space, this will be a major consideration in its ongoing
usage.

6. CONCLUSION

We have set out to enable designers more flexibility when developing
sounds. The project has so far completed the design stage and is currently
evaluating the best way to represent the sounds to maximise this flexibility.
The Timbre Space has been chosen for this representation due to the percep-
tual basis afforded to it by the work of Grey. Preliminary results show that
the Timbre Space is heavily reliant on the quality of the audio analysis stage.
STFT looks to produce the best quality output at this moment, but experi-
ments on other techniques are ongoing.

REFERENCES

[1] Blattner, M.M., Sumikawa, D.A., and Greenberg, R.M., Earcons and Icons: Their Struc-
ture and Common Design Principles, Human Computer Interaction, Vol. 4, No. 1, 1989,
pp. 11-44.

[2] Brewster, S., Wright, P., and Edwards, A., A Detailed Investigation into the Effectiveness
of Earcons, in G. Kramer (ed.), Proceedings of the 1st International Conference on Audi-
tory Display ICAD’92 (Santa Fe, 28-30 October 1992), “Auditory Display, Sonification,
Audification and Auditory Interfaces”, Addison-Wesley, New York, 1992, pp. 471-498.

[3] Brewster, S., Wright, P., and Edwards, A., An evaluation of Earcons for Use in Auditory
Human-Computer Interfaces, in Proc. of the ACM Conf. on Human Factors in Comput-
ing Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New York,
1993,pp. 222-227.

[4] Chowning, J., The Synthesis of Complex Audio Spectra by Means of Frequency Modula-
tion, Journal of the Audio Engineering Society (JAES), Vol. 21, No. 7, 1973, pp. 526-
534.

[5] Conversy, S., Ad-Hoc Synthesis of Auditory Icons, in S.A. Brewster, A.D.N. Edwards
(eds.), Proceedings of 5th International Conference on Auditory Display ICAD’98 (Glas-
gow, 1-4 November 1998), British Computer Society Press, eWiC series, 1998, accessi-
ble at http://www.icad.org/websiteV2.0/Conferences/ICAD98/papers/CONVERSY.PDF

[6] Gaver, W.W., How do we Hear in the World? Explorations in Ecological Acoustics.
Ecological Psychology, Vol. 5, No. 4, 1993, pp. 285-313.

[7] Gaver, W.W., Synthesizing Auditory Icons, in Proc. of the ACM Conf. on Human Fac-
tors in Computing Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press,
New York, 1993, pp. 222-235.

374 Nicol, Brewster, and Gray

[8] Grey, J., Timbre Discrimination in Musical Patterns, Journal of the Acoustical Society
of America, Vol. 64, 1977, pp. 467-472.

[9] Hourdin, C., Charbonneau, G., and Moussa, T., A Multidimensional Scaling Analysis of
musical Instruments’ Time-Varying Spectra, Computer Music Journal, Vol. 21, No. 2,
1997, pp. 40-55.

[10] Hourdin, C., Charbonneau, G., and Moussa, T., A Sound-Synthesis Technique Based On
Multidimensional Scaling of Spectra, Computer Music Journal, Vol. 21, No. 2, 1997, pp.
56-68.

[11] Kaminskyj, I., Multidimensional Scaling Analysis of Musical Instrument Sounds’ Spec-
tra, in Proceedings of the Australasian Computer Music Conference ACMC’99 (Wel-
lignton, 1999), pp. 36-39.

[12] Masri, P., Bateman, A., and Canagarajah, C.N., A Review of Time Frequency Represen-
tations, With Application to Sound/Music Analysis-Resynthesis, Organised Sound, Vol.
2, No. 3, 1997, pp. 193-205.

[13] Mynatt, E.D., Designing with Auditory Icons: How Well do we Identify Auditory Cues?,
in Proceedings of ACM Conference on Human Factors in Computing Systems CHI’94
(Boston, 24-28 April 1994), ACM Press, New York, 1994, pp. 269-270.

[14] Mynatt, E.D., Back, M., Want, R., Baer, M., and Ellis, J.B., Designing Audio Aura, in
Proceedings of ACM Conference on Human Factors in Computing Systems CHI’98 (Los
Angeles, 18-23 April 1994), ACM Press, New York, 1994, pp. 566-573.

[15] Roads, C., The Computer Music Tutorial, Massachusetts Institute of Technology, Cam-
bridge, 1996.

[16] von Helmholtz, H.L.F., On the Sensations of Tone as a Physiological Basis for the The-
ory of Music, Dover, 1954.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

